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Chapter 1

Introduction

This Habilitation Thesis manuscript summarizes my main research activities since the end
of my Ph.D., to let the committee assess my ability to supervise the doctoral works of future
students. A large part of this activity has taken place at the border between physics and
other disciplines, namely discrete mathematics and theoretical computer science, the first
goal of this introduction is thus to make a short history and give a justification for this
interdisciplinary approach.

1.1 Statistical mechanics of disordered systems

On the physics side, the line of research that eventually led to these interdisciplinary ap-
plications was triggered, in the 70’s, by the discovery of materials with peculiar magnetic
properties [1]. These so-called spin-glasses are very imbalanced mixtures of two elements,
the majority one being metallic and non-magnetic, while the minority one has magnetic
properties. The compound is prepared in a liquid phase at high temperature, then cooled
down to a solid phase. The location of the magnetic impurities is thus frozen (“quenched”);
it turns out moreover that the interaction between the spins of the impurities is mediated
by the delocalized electrons of the metal, in such a way that the coupling strength between
two spins has an oscillating sign as a function of the distance between them [2]. The ex-
istence of both ferromagnetic and antiferromagnetic interactions between the spins induces
frustration in the system, i.e. these contradictory interactions forbid a simple groundstate
(a configuration of minimal energy) as in the ferromagnetic case where all spins are aligned
in the same direction. Yet, the competing effects of energy and entropy lead to a phase
transition as a function of temperature between a paramagnetic phase where interactions
are irrelevant and spins fluctuate under the effect of thermal noise, and a low-temperature
phase where the spins get polarized in a preferred orientation, even though this orientation
is different for each spin as a consequence of the frustrating interactions.

Structural glasses, e.g. window glasses, are liquids that, upon cooling, become so viscous
that they solidify. Yet they are amorphous solids, their microscopic structure shows no
trace of long-range crystalline order, at variance with many “ordered solids”, most pure
metals for instance. The “local freezing” of the positions of the molecules in a structural
glass, with no crystalline order, is the analog of the freezing of the spin orientations, with no
ferromagnetic order, of a spin-glass, hence the name of the latter. Glasses and spin-glasses
thus share several properties (slow dynamics, aging and memory effects), even if they also
differ on crucial aspects (continuity or not of their order parameter at the transition, presence
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of quenched disorder). Structural glasses are still the object of intense experimental and
theoretical works (see the book [3] for recent reviews). A central puzzle of this field is the
difficulty to find noticeable signatures of the growth of spatial correlations in the vicinity
of the glass transition, whereas on the contrary the temporal correlations of the dynamics
exhibit a dramatic increase. Some of the works discussed in the following will be directly
linked to this point.

The built-in (“quenched”) disorder of spin-glasses makes their theoretical study much
harder than their pure counterparts, i.e. ferromagnets. In the latter case one has a very
detailed picture of the finite-dimensional Ising models, for instance rigorous proofs for the
existence of a phase transition in the thermodynamic limit (in dimension ≥ 2), exact solution
in dimension 2, knowledge of the upper critical dimension above which the critical exponents
of the mean-field approximation are correct, and field theoretical approaches for systematic
computations of the critical behavior below the upper critical dimension. By contrast, and
despite decades of research, the status of finite-dimensional spin-glasses is much more uncer-
tain [4, 5, 6], and is still the object of (controversial) numerical studies [7, 8]. Fortunately,
for the interdisciplinary applications to be studied here, mean-field models, which from a
physical point of view only represent a gross approximation to be improved upon, are the
most relevant ones and shall be the focus of the following.

The simplest mean-field spin-glass model was introduced by Sherrington and Kirkpatrick
(SK) in 1975 [9], shortly after the finite-dimensional modelization and mean-field approxi-
mate treatment by Edwards and Anderson [10]. It is the disordered analog of the Curie-Weiss
model of a ferromagnet: N Ising spins interact all with each other, but the N(N − 1)/2
coupling constants are drawn as independent random variables. The computation of the
free-energy per spin was completed by Parisi in 1980 [11], via the development of the replica
method with replica symmetry breaking [12], that encodes the complex structure of the
configuration space of the SK model. A rigorous proof of this formula was obtained much
more recently by Talagrand [13], building on the interpolation method developed by Guerra
and Toninelli [14]. In the SK model every spin interacts (weakly) will all others, in other
words the graph of interaction is the complete graph on N vertices, where the degree of each
spin is N − 1, that diverges in the thermodynamic limit. There exists however mean-field
models which keep a finite degree (connectivity) in the thermodynamic limit, the first of
which was introduced by Viana and Bray [15]. The mean-field nature of these models arises
from the randomness in the choice of the interaction graph, they do not have an Euclidean
finite-dimensional geometric structure underlying the notion of“neighboring”vertices. These
models defined on sparse random graphs are tightly connected with random optimization
problems, as will be expanded upon below.

1.2 Random optimization problems

Combinatorial optimization problems [16] of theoretical computer science have many points
in common with statistical mechanics. In both cases one considers a discrete set of config-
urations (aka microstates, or assignments) built from a large number of elementary degrees
of freedom (spins, boolean variables...), endows it with some real function, to be called
cost function or energy depending on the context, and one is mainly interested in the min-
ima of this function (i.e. groundstates or optimal assignments). The positive temperature
partition function can be naturally interpreted as a generating function for the number of
configurations at a given energy, and allows to smoothly interpolate towards the counting
of the optimal assignments recovered in the zero-temperature limit. If the objects studied
are thus very similar, one however encounters at this point a deep divergence of methods
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and objectives between statistical mechanics and one branch of theoretical computer science,
namely the computational complexity theory [17, 18]. The latter classifies indeed families of
problems, in other words “shapes”of cost functions, according to the algorithmic complexity
of the exploration of the low energy configurations of all instances of a family of problems
(dividing, very roughly, families where the number of required operations is a polynomial in
the number of variables from those where it is exponential). This worst case point of view
has been very fruitful for this classification perspective and has led to a rich and beautiful
theory of complexity classes, with still famous pending conjectures, most notably the P vs
NP question. Physics tend on the contrary to disregard worst case events, and while ac-
knowledging that it is possible for all molecules of air inside a room to spontaneously leave
half of the room empty, the (hopefully) extremely small probability of this event makes it
considered irrelevant, because atypical. It turned out that a similar concern for “typicality”
emerged from inside computer science, and eventually made the two fields closer than could
be initially expected. This concern raised in the 80’s, because of the following disturbing
situation. Some combinatorial problems, notably k-satisfiability and q-coloring, to be de-
fined precisely later, were known to be NP-complete, and thus widely believed to be “hard”,
in the sense that some of their instances should require an exponentially large time to be
solved. At the same time most instances that could be explicitly constructed were easily
solved by known algorithms [19]. This observation raised two kind of questions: could it
be that some families of problems are difficult only because of a few atypical instances? Is
it possible to generate such hard instances in an efficient way? To answer these questions,
and to give a precise definition of typicality, random ensembles of instances of combinatorial
optimization problems have been introduced [20, 21, 22]. “Typical” is thus meant in this
context for “with a probability which goes to one in the large size (thermodynamic) limit”.
This construction actually leads back to the first subject of this introduction, and explains
the relevance of statistical mechanics to this approach to combinatorial optimization prob-
lems [12, 23]. The randomness in the ensembles of instances is the exact parallel of the
quenched disorder of spin glasses. In addition the constraints in hard optimization problems
have competing requirements, similarly to the physical frustration induced by coexisting fer-
romagnetic and antiferromagnetic interactions. Finally, there is a priori no reason to embed
optimization problems in a finite-dimensional Euclidean space (though there exist structured
instances relevant for applications that could have some remnants of finite-dimensionality),
hence the random ensembles of optimization problems devised by computer scientists turned
out to be (finitely-connected) mean-field spin-glasses. Not surprisingly with this analogy in
mind, (many distinct) phase transitions do occur in random ensembles of optimization prob-
lems. During the last twenty years many works used the methods originally devised for the
study of physical spin-glasses in order to better understand the properties of random op-
timization problems. Several insights, based in particular on the “glassy” aspects of such
models [24, 25, 26], have been fruitfully translated into this different context, and for some
of them have been turned into rigorous statements [27, 28, 29, 30]. In fact, if computer
scientists could early on identify one of the phase transitions occurring in these problems,
it seems fair to say that the intuition about glasses brought by physicists was very helpful
to understand that several other sharp thresholds were to be looked after in these models.
Note that the interdisciplinary character of this field of research has been also beneficial
for physics, as some concepts first elaborated in the mathematical literature turned out to
be useful for glassy physics [31]. The main features of the current picture that emerged
from this line of research will be presented in chapter 2, along with some of the works I
participated to.

A similar change of perspective from worst-case to typical analysis was also performed in



6

the 60’s in another domain of discrete mathematics, namely graph theory [32], even if with
slightly different motivations. Random graph theory [33] has since then become a branch
of probability on its own, with again a wealth of phase transitions occurring in the limit
of infinitely large random graphs. Tools of statistical mechanics have also been successfully
applied to these problems, I shall briefly mention some examples later on.

1.3 Quantum computing and statistical mechanics

Chapter 3 will be devoted to studies of quantum generalizations of the optimization prob-
lems, or more generically disordered models, introduced above. To give a brief definition for
a non-physicist reader, one should view the configurations of the classical model as indices
for an orthonormal basis of vectors in a Hilbert space, and define a Hamiltonian operator
on this space with diagonal matrix elements equal to the classical cost function, and some
non-zero off-diagonal elements that allow the system to “jump” from one classical configu-
ration to another. These quantum fluctuations are such that the Hamiltonian is Hermitian,
the operator has thus as many real eigenvalues as there were configurations in the classical
problem; the quantum partition function takes the same generating function form as in the
classical case, with these eigenvalues replacing the values of the cost function on the original
configuration space.

The motivation for these studies is two-fold. From a physical point of view, one can model
in this way for instance systems of interacting particles constrained to live on the vertices
of a lattice [34] (this is either a simplification of a system of particles in the continuum or
a very good description of some cold atoms experiments [35]), the quantum fluctuations
corresponding to the hopping events of one particle from one vertex to a neighboring one.
Understanding the interplay between interactions, in particular disordered and frustrating
ones, and quantum fluctuations is an important issue in condensed matter. One can notably
wonder about the existence of phases of matter that display simultaneously both quantum
and glassy features [36]. Quantum mean-field disordered systems are a natural (simplified)
playground to investigate this question.

The perspectives offered by quantum computing [37] form the second side of the motiva-
tion. Very roughly, a quantum computer would be a device whose internal state is described
by an arbitrary vector of the Hilbert space constructed above, in other words it can exist in
a coherent superposition of all the classical configurations. Presented in this way one could
think that such a device offers for free an exponential speedup with respect to classical
computers, as it seems to operate in a parallel way all possible inputs of a problem. This is
of course too naive because of the laws of projective measurement in quantum mechanics.
Nevertheless, specific quantum algorithms have been devised that solve computational tasks
by exploiting some of the specificities of the quantum mechanical behavior of a quantum
computer, the most famous one being the integer factoring algorithm by Shor [38]. For
what concerns optimization problems, a versatile algorithm has been proposed under sev-
eral names, i.e. quantum annealing or quantum adiabatic algorithm [39, 40, 41, 42], that
proceeds by a progressive vanishing of the quantum fluctuations (the off-diagonal elements
of the Hamiltonian), similarly to simulated annealing where the thermal fluctuations are
progressively reduced. This procedure can be applied to any optimization problem, however
its efficiency, i.e. the time required for it to be successful, will depend very much on the
problem considered. In a series of works summarized in chapter 3 and more extensively in
the recent review [43] we have attempted to understand this efficiency in the typical case,
by adding quantum fluctuations to random optimization problems.



Chapter 2

Phase transitions in random
constraint satisfaction problems

2.1 Definitions and basic properties

2.1.1 Constraint satisfaction problems

The optimization problems considered here are Constraint Satisfaction Problems (CSPs):
their energy function can be interpreted as the number of unsatisfied constraints, or clauses,
where each of these constraints involves a small number of variables and limits the autho-
rized values for them. To be specific, we shall consider a discrete configuration space of
N variables denoted σ1, . . . , σN , each of them taking values in a finite set χ, and denote
a global configuration σ = (σ1, . . . , σN ) ∈ χN . In most computer science applications the
variables considered are boolean, and will be encoded here as Ising spins, χ = {+1,−1}.
Let us give some examples of the energy, or cost function, E(σ), corresponding to some
well-known CSPs:

• In the graph q-coloring problem, in short q-COL, one is given a graph G = (V, L)
with V a set of N vertices and L a set of M edges between pairs of vertices. The
variables take values in χ = {1, . . . , q}, with q ≥ 2 an arbitrary integer, so that each
configuration σ corresponds to the coloring where vertex i is given the color σi. The
cost function is

E(σ) =
M∑

a=1

δσ
i1a

,σ
i2a
, (2.1)

where the sum runs over theM edges (i1a, i
2
a) of the graph, and δ denotes the Kronecker

symbol. The cost function thus counts the number of monochromatic edges in the
configuration σ.

The following examples involve binary variables, i.e. χ = {+1,−1}.

• The k-XORSAT problem is defined on a k-hypergraph G = (V, L): each of the M
hyper-edges in L involves a k-uplet of variables, with k ≥ 2, thus generalizing the
notion of usual graphs that corresponds to k = 2. We label the hyper-edges with an
index a = 1, . . . ,M , and denote i1a, . . . , i

k
a the indices of the vertices linked by the a-th
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hyper-edge. In addition to the hyper-graph the problem is defined by M constants
Ja ∈ {+1,−1}, and the cost function reads

E(σ) =

M∑

a=1

1− Ja
k∏

j=1

σija

2
. (2.2)

It is easily seen that this sum equals the number of hyper-edges a for which the
condition σi1a . . . σika = Ja is violated. There are various equivalent interpretations of
this condition; in the language of coding theory [44] this is a parity check rule. By
associating Ising spins to {0, 1} variables according to σi = (−1)xi it is also equivalent
to a linear equation of the form xi1a + · · · + xika = ya, where Ja = (−1)ya and the
additions are interpreted modulo 2. Finally it can be seen as a condition on the
eXclusive OR of k boolean variables {True,False}, hence the name of the problem.

• In the k-SAT problem one is given an hypergraph and, for each hyper-edge, k constants
J1
a , . . . , J

k
a ∈ {+1,−1}; the cost of a configuration is then defined as

E(σ) =

M∑

a=1

k∏

j=1

1− Jj
aσija
2

. (2.3)

Each term of the sum is equal to 1 if, for all the k vertices involved in that hyper-
edge, one has σija 6= Jj

a ; on the contrary it vanishes as soon as one of the k vertices

fulfill σija = Jj
a . In terms of boolean variables this is the disjunction (logical OR) of k

literals, that are equal to a variable or its logical negation depending on the sign of Jj
a .

The formula encoded by this set of constraints is thus a SAT formula in Conjunctive
Normal Form.

From the perspective of the computational complexity theory, the decision problem as-
sociated to these CSPs is: “given an instance (or formula), i.e. a (hyper)graph and the
coupling constants (if necessary), decide whether there exists an assignment σ satisfying
simultaneously the M constraints or not”. Such an assignment is usually called a solution
of the problem; in physical terms this corresponds to a zero-energy groundstate. The three
examples given above belong to different complexity classes: k-XORSAT is in the (easy)
class P for any value of k; there exists indeed an algorithm running in Polynomial time
(with respect to N,M) that provides the answer yes or no for the existence of a zero-energy
configuration. Using the interpretation in terms of linear equations given above, this can
indeed be solved by Gaussian elimination. On the contrary k-SAT and q-COL, for k, q ≥ 3
are in the NP-complete class (2-SAT and 2-COL turn out to be in P). This means that no
algorithm is known to solve all instances of these decision problems in polynomial time, and
if one were discovered it could be adapted to solve all problems of the class NP; the current
belief is that no such algorithm exists, but this remains a conjecture (the famous P 6=NP
one).

In the following we shall study random instances, for which the worst-case distinction
of computational complexity theory is much less relevant, and for instance the behavior of
random XORSAT instances is in many respects similar to the one of SAT instances. Before
that we shall make a few remarks: there are many other computational tasks related to
these CSP besides the decision on the existence of a solution. For instance, one can ask to
decide the existence of a configuration of energy smaller or equal than some threshold E0.
This problem contains the one introduced above (it is recovered when E0 = 0), hence it is
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at least as hard. But in fact it can be strictly harder, and this is the case for XORSAT; if
the Gaussian elimination algorithm concludes that no assignment can satisfy all the linear
equations, it gives no indication on the optimal configuration that minimizes the number
of unsatisfied constraints. This observation is made here to emphasize that there are many
different tasks associated to the same CSPs (finding the minimal energy reachable by a
configuration, constructing such an optimal configuration, counting their number, ...) and
that even when the decision problem on the existence of solutions is easy all these tasks are
generally (much) harder.

2.1.2 Random constraint satisfaction problems

The motivations for the study of optimization problems from a typical instead of worst-case
point of view have been discussed in the introduction. For the three examples given above
the simplest random ensembles, that were first (as far as I know) introduceded in [20] for
k-SAT, are defined in a very natural way. For each of the M constraints one chooses the
k-uplet i1a, . . . , i

k
a of variables involved uniformly at random among the

(
N
k

)
possible ones

(k = 2 in the coloring case), and the coupling constants (Ja for XORSAT, J1
a , . . . , J

k
a for k-

SAT) are taken to be ±1 with equal probability 1/2. These choices are done independently,
in the same way, for each constraint. The large size (thermodynamic) limit corresponds to
N,M → ∞, with α =M/N a fixed parameter (the other scaling regimes of M with respect
to N being trivial). In the coloring case one thus studies Erdős-Rényi G(N,M) random
graphs, the cases k > 2 corresponding to the natural hypergraph generalization of these
ensembles.

The authors of [21, 22] performed extensive numerical experiments on such randomly
generated instances. Using complete algorithms they determined the probability P (α,N)
that an instance with N variables and M = αN constraints has a ground state of vanishing
energy (i.e. is q-colorable, or satisfiable depending on the case). This probability is obviously
a decreasing function of α: it can only become harder to satisfy all the constraints as their
number is increased. What came as a surprise at that time is the fact that for larger and
larger values of N the probability of satisfiability decreased in a steeper and steeper way,
which suggested the following satisfiability conjecture:

lim
N→∞

P (α,N) =

{
1 if α < αs

0 if α > αs

, (2.4)

where αs is some fixed threshold value, that depends on the problem considered (coloring or
satisfiability), and on the parameters k, q. In more physical terms this threshold phenomenon
corresponds to a phase transition between a SAT (or COL) phase where almost all instances
are satisfiable (colorable) and their ground state energy is zero to an UNSAT (UNCOL)
phase in which almost none of them is, and the average ground state energy is positive.
A rigorous proof of a weaker version of the satisfiability conjecture for k-SAT and q-COL,
where αs is allowed to depend on N , can be found in [45]; lower and upper bounds on αs(N)
are known, see for instance [46, 47, 48] and references therein, that become tight in the large
k limit [49], what remains to be proven to settle the (widely held to be true) conjecture is
the convergence of αs(N) as N → ∞. The satisfiability transition was demonstrated for
k-XORSAT in [50, 51, 52].

Statistical mechanics methods applied to these random CSPs have provided a framework
to actually compute the satisfiability threshold αs, and maybe more importantly suggested
the existence of other phase transitions in the satisfiable regime α < αs, concerning the
different possible organizations of the set of solutions inside the space of all configurations.
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Figure 2.1: An example of a factor graph.

Before entering this discussion, let us introduce here a convenient representation of the
interactions present in Eqs. (2.1,2.2,2.3). All of them can be written generally

E(σ) =
M∑

a=1

εa(σ∂a) , (2.5)

where ∂a = (i1a, . . . , i
k
a) denotes the set of variables involved in the a’th constraint, for a

subset S of the variables σS means {σi|i ∈ S}, and εa is the energy associated to the a’th
term of the cost function. A factor graph [53], see Fig. 2.1 for an example, is a bipartite graph
where each of the N variables σi is represented by a circle vertex, while the M interactions
are associated to square vertices. An edge is drawn between a variable i and an interaction
a if and only if εa actually depends on σi, i.e. i ∈ ∂a. In a similar way we shall denote
∂i the set of interactions in which σi appears, i.e. the graphical neighborhood of i in the
factor graph. One has a natural notion of graph distance between two variable nodes i and
j, defined as the minimal number of interaction nodes on a path linking i and j.

To describe the set of solutions of a CSP it will be convenient to define the uniform
measure over these configurations,

µ(σ) =
1

Z

M∏

a=1

wa(σ∂a) , Z =
∑

σ∈XN

M∏

a=1

wa(σ∂a) , (2.6)

where the partition function Z ensures the normalization of the probability law. The uniform
measure over solutions of a CSP corresponds to the choice wa(σ∂a) = (1 − εa(σ∂a)), then
Z counts the number of solutions. For physical applications (and to regularize the above
definition if there are no solution) one introduces the Gibbs-Boltzmann measure at inverse
temperature β by setting wa(σ∂a) = e−βεa(σ∂a). The former case is thus the zero temperature
limit of the latter. The associated intensive thermodynamic potential is 1

N lnZ; at zero
temperature this is the entropy, at finite temperature we shall call it free-entropy (equal to
the usual free-energy multiplied by −β).

The random choices of the indices of variables appearing in an interaction obviously
turn the factor graphs into random objects. In the following we shall use some elementary
properties of these random factor graphs, in the thermodynamic limit:

• the probability that a randomly chosen variable i has degree |∂i| = d is qd = e−αk(αk)d/d!,
the Poisson law of mean αk.



11

• if one chooses randomly an interaction a, then a variable i ∈ ∂a, the probability that
i appears in d interactions besides a, i.e. that |∂i \ a| = d, is q̃d = e−αk(αk)d/d!.

• the random factor graphs are locally tree-like: choosing at random a vertex i, the
subgraph made of all nodes at graph distance from i smaller than some threshold t is,
with a probability going to 1 in the thermodynamic limit with t fixed, a tree.

More general ensembles of random factor graphs can be constructed, by fixing a degree
distribution qd and drawing at random from the set of all graphs of size N with Nq0 isolated
vertices, Nq1 vertices of degree 1, and so on and so forth. Then the two distributions qd and
q̃d are different in general, and related through q̃d = (d + 1)qd+1/

∑
d′ d′qd′ . An important

example in this class corresponds to regular random graphs, where qd is supported by a
single integer.

2.2 Structural phase transitions

The satisfiability phase transition described in Eq. (2.4) was identified already in the first
numerical studies of the random CSP ensembles. In the recent years several other phase
transitions in the satisfiable phase α < αs have been unveiled, that concern the typical
structure of the set of solutions of satisfiable problems. Their non-trivial organization is not
only interesting per se, but has also important consequences for the performance of some
algorithms to solve these problems, and understanding the organization of the solutions
for α < αs is actually crucial to understand the satisfiability phase transition αs itself.
The mechanism for the disappearance of the solutions at this transition is indeed strongly
dependent on their structure just before their limit of existence.

The presentation in the following pages does not follow the chronological order of the
wealth of works that applied statistical mechanics tools to random CSPs since several
years [54], but is rather an attempt to present the current understanding of their behavior
with (unfortunately non-exhaustive) references to the works that shaped this view.

The qualitative picture of these phase transitions is to some extent independent of the
details of the random CSP under study (for instance k-SAT and q-COL, for all large enough
values of k, q behave in the same way), and corresponds to the mean-field phenomenology of
(spin-)glasses. There are however some exceptions, and we shall begin the discussion with
the XORSAT case which turns out to be simpler than generic random CSPs.

2.2.1 The clustering transition of random XORSAT formulas

The first studies of the random XORSAT problem that unveiled the rich structure of its
satisfiable phase are [50, 51], with a construction that can be described as follows. Consider
an arbitrary XORSAT formula, and suppose that one of the variables σi appears in a single
interaction, call it a. A moment of thought reveals that the formula is satisfiable if and only
if the formula obtained from it by removing a is satisfiable. One can iterate this process
and reduce further the formula, removing at each step the interactions in which appears a
variable of degree 1. At the end of this “leaf-removal” process one ends up with a reduced
formula called the 2-core of the original one, that corresponds to the largest subgraph in
which all variables have degree at least 2; we shall denote C the set of these variables. By
analyzing the dynamics of the leaf removal process one can show that a phase transition
occurs, in the thermodynamic limit, for some value αd of the parameter α controlling the
density of the initial graph. For α < αd, the 2-core is typically empty, i.e. the leaf removal
process is able to prune all interactions. On the contrary for α > αd, with high probability
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Figure 2.2: A sketch of the configuration space of random XORSAT problems. For low
values of α the solutions, represented as black dots, are evenly spread on the N -dimensional
hypercube. In the intermediate regime they are grouped in clusters, symbolized by the
circles. For α ≥ αs there are no more solutions.

the 2-core is non-trivial. Moreover for k ≥ 3, which will be understood from now on in
this discussion, the transition is discontinuous: the typical fraction of vertices in the 2-core
jumps from 0 to a strictly positive value as α increases across αd.

Let us now discuss the consequences of this transition in the factor graph in terms of the
solutions of the corresponding formula. Consider first the case where the 2-core is empty;
then the original formula is obviously satisfiable. One can indeed assign satisfying values
for the variables in the last removed interaction, and then reintroduce the interactions in
the reverse order of their removal, using the fact that at each step at least one variable
(the leaf) can be freely chosen to satisfy the re-introduced interaction. Indeed, if one calls
la the number of yet non-assigned variables among the k variables of interaction a at the
moment it is reintroduced, by construction la ≥ 1. When la is strictly greater than 1
there are 2la−1 possible choices for the free variables in a, so that the total number of
solutions is exp[(ln 2)(

∑
a la − M)]. A detailed analysis [50, 51] reveals that typically in

the thermodynamic limit, 1
N

∑
a la → 1, hence the total number of solutions for α < αd is

eNstot(α), with an entropy density stot(α) = (ln 2)(1 − α). One can moreover show [55, 56]
that all these solutions are in some precise sense close one to each other.

On the other hand, when α > αd the 2-core contains typically an extensive number
of variables and interactions. This reduced formula, in which all variables are involved
in at least two interactions, goes from satisfiable to unsatisfiable at an higher threshold
αs > αd [50, 51]. As a formula is satisfiable if and only if its 2-core is satisfiable, this is also
the satisfiability threshold for the original ensemble (before leaf removal).

Let us consider the intermediate regime α ∈ [αd, αs], where the reduced formula on the
2-core is non-trivial but still has some solutions; we shall denote eNΣ(α) the typical number
of solutions of the reduced formula on the variables C of the core, and call its exponential
rate Σ(α) the complexity (or configurational entropy). From every solution of the 2-core
reduced formula one can construct different solutions of the full formula, by reintroducing
the interactions in reverse order, as explained above. All the solutions that emerge from
the same seed, i.e. from the same solution σC of the 2-core, will be said to belong to
the same cluster (or pure state). The number of free choices while constructing a cluster
from one seed is

∏′
a 2

la−1, where the product is restricted to the interactions outside the
2-core. This geometrical construction makes it clear that the number of solutions of the
full formula emerging from one solution σC of the 2-core is independent of σC (this can be
traced back to the linear structure of the constraints), and we shall denote eNsint(α) this
number. In this intermediate regime the total entropy density stot(α) is decomposed as
Σ(α) + sint(α), with a contribution from the cluster degeneracy and one from the internal
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Figure 2.3: The total entropy of solutions stot(α) and the complexity (or configurational
entropy) Σ(α) for the 3-XORSAT problem [50, 51]. The inset is a zoom of the region close
to αd and αs; the internal entropy sint is given by the difference stot − Σ.

entropy of the clusters. A very important point is that two distinct solutions σC and σ′
C

of the 2-core formula are far away from each other, in the Hamming distance sense (the
number of variables taking opposite values in σC and σ′

C). Indeed, because of the form of
the constraints of the XORSAT problem, each interaction must contain an even number of
spins i with σi 6= σ′

i. In other words, as the 2-core does not contain leaves, at least one loop
of disagreeing spins between σC and σ′

C has to be closed. As the random graphs are locally
tree-like such a loop has necessarily a length diverging with N in the thermodynamic limit
(this is not strictly true: in random graphs one typically find a finite number of finite cycles,
hence clusters whose core solution only differs on a small “flippable cycle” should be grouped
together [55, 56]).

The fact that solutions inside one cluster are close to each other, while solutions belonging
to distinct clusters are necessarily separated by a large Hamming distance, is represented
pictorially in Fig. 2.2; the outer square contains all the 2N configurations (obviously the
representation of this N -dimensional hypercube on a two-dimensional drawing is only a
cartoon), while the black area stands for the eNstot(α) solutions. For α < αd all solutions are
somehow close to each other, while for the intermediate regime α ∈ [αd, αs] they are broken
in eNΣ(α) clusters, each containing eNsint(α) solutions. The functions stot(α), sint(α),Σ(α),
as well as the thresholds αd, αs can be computed explicitly [50, 51], they are plotted in
Fig. 2.3 for k = 3. Further results on the organization of the solution space of random
XORSAT formulas can be found in [57, 58, 55, 56].

Let us summarize the main messages on the properties of random CSPs that should be
drawn from this particular case. For low values of the control parameter α the exponen-
tially many solutions are spread in the whole configuration space, and close-by one to the
other. Increasing α there appears a clustering transition at αd, after which there are still
exponentially many solutions, yet they are grouped in clusters of close-by configurations, the
clusters being separated one from the other; in this regime the complexity or configurational
entropy Σ counts the exponential number of clusters. The total entropy density of solutions,
stot, is the sum of the complexity Σ and the internal entropy density sint of each cluster,
which is here the same for all clusters: stot(α) = Σ(α) + sint(α). For even larger values of
α the satisfiability transition αs is due to the vanishing of Σ, i.e. the disappearance of the
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Figure 2.4: Illustration of Eq. (2.7). The solid curve is the function Σ(s), dashed lines have
slope −1. On the left panel, α < αc, the supremum is reached in an interior point (s∗,Σ∗).
On the right the system is in a condensed phase, α > αc, the supremum is reached at the
upper edge smax, the typical complexity Σ∗ vanishes, stot = smax. On both panels ΣSP is
the maximum of Σ(s).

clusters of solutions. It is thus crucial to identify the relevant decomposition into clusters
of the set of solutions: what vanishes at αs is the number of clusters, not the total number
of solutions, because the last clusters to disappear still contain an exponential number of
solutions.

2.2.2 The condensation transition

For a generic random CSP one can expect, from what we learnt by studying the XOR-
SAT problem, that by increasing the density α of constraints a clustering transition will
be encountered at some critical value αd, above which the set of solutions breaks into well-
separated clusters of close-by solutions (even though an explicit definition of the clusters is
more complicated, as discussed at the end of this section). There is however a priori no
reason to assume that all clusters will be of the same size; in XORSAT this feature was
a side effect of the peculiar linear structure of the constraints. We will now discuss the
consequences of a non-trivial distribution of cluster sizes, that were first envisioned in this
context in [24, 59]. Assume that, for a typical random instance of density α, the number of
clusters containing eNsint solutions is, at the leading exponential order, eNΣ(α,sint). Suppose
in addition that the range of allowed internal entropies is some interval [smin, smax], and that
in this range Σ is some positive concave function of sint, vanishing at the upper limit smax

(see Fig. 2.4). Then the computation of the total entropy reads

eNstot(α) =

∫ smax

smin

ds eN(Σ(α,s)+s) , stot(α) = sup
s∈[smin,smax]

Σ(α, s) + s , (2.7)

where the second expression is obtained from the first via an evaluation of the integral by
the Laplace method, at the leading exponential order.

Two qualitatively distinct situations can then occur (and are illustrated on the two
panels of Fig. 2.4). If the supremum in Eq. (2.7) is reached at a point s∗ inside the interval
[smin, smax], in other words if there exists a point where the tangent of Σ has slope −1, then
the total entropy is dominated by the eNΣ∗ clusters with internal entropy s∗. This means
that a randomly chosen solution of such a formula would belong to such a cluster, i.e. the
vast majority of solutions are spread in an exponential number of clusters. On the contrary
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Figure 2.5: Schematic representation of the phase transitions in a random CSP ensemble.

in the situation depicted on the right panel of Fig. 2.4 the supremum is reached at the upper
limit smax, the associated complexity Σ∗ vanishes, hence a typical configuration belongs to
one of the sub-exponentially many largest clusters of internal entropy smax.

Explicit computations for k-SAT and q-COL (for k, q ≥ 4, the cases k, q = 3 being
peculiar) [26, 60, 61] have shown that the first situation is encountered in a regime of
parameter α ∈ [αd, αc], while the second one occurs for α ∈ [αc, αs] (see Fig. 2.5 for an
illustration). The so-called “condensation” transition that occurs at αc is the analog of the
thermodynamic, also called Kauzmann, transition of mean-field spin-glasses, that occurs
already in the simplest of such models, the Random Energy one [62].

The condensation transition can thus be identified as the threshold for the vanishing of
the complexity Σ∗ of the point of Σ(s) that has a tangent slope of −1. Another point of this
curve also plays a special role, namely the maximum of Σ(s) (with tangent slope 0), denoted
ΣSP on the figure. This is indeed the exponential rate for the total number of clusters,
irrespectively of their size. As a consequence the satisfiability transition αs corresponds
to the vanishing of ΣSP, beyond which there are no cluster anymore, hence no solution.
The index SP stands for Survey Propagation, ΣSP is indeed the quantity computed by the
Survey Propagation algorithm [25, 63] and the criterion of its vanishing was used for the
first computation of the currently held values of αs in [25, 64].

Note that the case of random 3-SAT and random 3-COL is peculiar: for this value of k, q
one has αd = αc, the clustering transition is continuous and there is no phase α ∈ [αd, αc]
with an exponential number of clusters in the relevant part of µ (i.e. in the support of
typical solutions). Conversely in the case of k-XORSAT the two thresholds αc and αs

coincide, as all clusters have the same size the disappearance of the relevant ones (at αc)
marks simultaneously the disappearance of all of them (at the satisfiability threshold αs).

We come back now on the issue of the definition of the clusters in a generic CSP. The in-
tuitive notion that solutions inside the same cluster should be close (in Hamming distance),
while two distinct clusters should be far away, is slightly delicate to formalize (see [26] for
one such proposal). For a given instance of finite size, the set of clusters should provide a
partition of the set of solutions; this partition should be such that the “frontiers” between
clusters contain much less solutions than their inside, i.e. that “entropic barriers” sepa-
rate them, mimicking the more usual notion of pure states decomposition for translation
invariant statistical mechanics models. This definition should imply some correlation decay
condition for the Gibbs-Boltzmann probability measure restricted to one cluster (pure state).
Note however that the condition to be fulfilled for a partition to be an acceptable cluster
decomposition becomes sharp only in the thermodynamic limit, some arbitrariness should
remain for a finite given instance, non ambiguous statements on the number of clusters are
restricted to the exponential rate of growth of this number in the large N limit. In the
rigorous works [28, 29] “clusters” are defined as connected components on the hypercube
(two configurations being considered adjacent if the Hamming distance between them is 1),
and are grouped in “regions” that fulfill conditions similar to the intuition explained above.
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2.2.3 The freezing transition

By their very definition the clusters of XORSAT do contain a finite fraction of frozen vari-
ables, in the sense that some variables σi take the same value in all solutions of a given
cluster (these are the variables of the 2-core C, and actually a few more, as during the
re-introduction of the constraints some variables are directly implied by the choice of σC).
This is however a particular case: for generic random CSPs the clustering threshold αd

does not coincide with the freezing threshold αf above which typical solutions contain an
extensive number of frozen variables, in general αd < αf . From a technical point of view
this statement can be deduced by inspection of the solution of the equations describing the
clustered phase in the statistical mechanics formalism, that will be presented in Sec. 2.4
(for the expert reader, there can be non-trivial solutions of the 1RSB equations without any
hard field).

A more intuitive and richer discussion of this phenomenon can be obtained in terms of
the optimal rearrangements of the solutions. Consider indeed an instance of a CSP, and
one of its solution σ; a rearrangement of σ at vertex i will be another solution σ′ of the
instance, such that σ′

i 6= σi. In pictorial terms one perturbs the solution σ by flipping
its i-th variable, and one rearranges the new configuration (eliminates the excess energy
introduced by the defect at i) in order to fall back to a different groundstate of zero energy.
Among all possible rearrangements one can study for instance the ones with minimal “size”
(number of flipped variables during the rearrangement), i.e. the solutions σ′ at minimal
Hamming distance n from σ, under the constraint that σ′

i 6= σi. This minimal distance n
is a random variable because of the choice of the instance and of the reference solution σ.
Its probability distribution has been studied in [57] for XORSAT and in [65] for arbitrary
CSPs. These studies showed the existence of a threshold αf that separates a phase where n
remains bounded in the thermodynamic limit from another one, at α > αf , where n diverges
in the thermodynamic limit with finite probability. In this framework infinite minimal size
rearrangements are associated to frozen variables; one can actually be more precise and
study the precursors of this divergence, i.e. the critical behavior of the distribution of n
when α → α−

f . On the plots of Fig. 2.6 one sees a plateau growing in this limit in the
integrated distribution of n, i.e. its probability law is bimodal with a second peak that
moves towards larger values of n when α increases towards αf . This divergence is controlled
by a non-trivial exponent, as well as the scaling behavior around the plateau, that was
computed in [57, 65] (for a technical coincidence this critical behavior is the one of the
schematic Mode Coupling Theory [66] of liquids).

As said above for XORSAT one has the coincidence αd = αf ; for this model further
properties of the rearrangements were studied in [57], in particular the scaling of the minimal
energy barrier to be crossed during a rearrangement. The low temperature dynamics of this
model, for α ≤ αd, could thus be understood in terms of the Arrhenius law, with a barrier
for relaxation fluctuating from spin to spin, and a crossover to a super-Arrhenius law when
these barrier diverge at the freezing transition. For k-SAT and q-COL one finds instead
αf > αd; the relative position of αf and αc do change with k and q [65, 61], for large values
of these parameters one finds back the simpler situation of XORSAT with αf ∼ αd. Rigorous
proofs for the existence of frozen variables in this limit k, q → ∞ can be found in [28, 29, 30].

2.3 Algorithmic/dynamic consequences

We shall now briefly discuss some studies of time-dependent processes related to disordered
systems. In the computer science point of view they correspond to algorithms devised to
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Figure 2.6: The integrated distribution Qn of minimal size rearrangements, defined as the
probability that a rearrangement has minimal size ≥ n, for various values of α growing
towards αf , here in the case of 3-XORSAT.

solve a computational task, for instance decide whether there exists a solution or not. In a
physical context these processes will mimic the real time dynamics of a system, for instance
in contact with a thermostat.

There exists many different types of algorithms to solve the decision problem for a CSP,
that can be roughly divided in two broad categories: local search and sequential assignment
procedures. In the first one a random walk is performed in the configuration space, with
transition rules tuned to bias the walk towards the solutions. This kind of algorithm is
called incomplete: it cannot prove the absence of solution if it fails to find one. The second
category proceeds differently: at some step of the algorithm only one part of the variables
has a definite value, the others still being free. Each step thus corresponds to the choice of
one free variable and of the value it will be assigned to, the CSP on the remaining variables
being consequently simplified. The heuristics guiding these choices can be more or less
elaborate. In the simplest cases one only takes into account simple properties of the free
variables, such as the number of their occurrences in the remaining CSP. A rigorous analysis
of these simple (“myopic”) approaches is possible and is at the basis of most of the lower
bounds on the satisfiability transition [46, 47]. Such algorithms can be made complete if
backtracking is allowed, i.e. choices which have led to a contradiction can be corrected in a
systematic way. This complete version of the procedure is called the DPLL algorithm.

It is only natural, and very important for applications, to investigate the effect of the
structural, static, phase transitions exposed above on the behavior of such algorithms. Intu-
itively the complex configuration space fractured in clusters for values of α relatively close
to αs should be more difficult to explore by simple algorithms than the well-connected phase
at low α. It is however not easy to turn this intuition into precise and generic statements,
of the type “all algorithms of the family X will always fail to solve CSPs at density larger
than αY ”, where X could denote local-search vs sequential assignment procedures (or more
precise subdivisions of these algorithms), and Y one of the phase transitions (clustering,
condensation, freezing,...). We shall content ourselves in the next two subsections with two
specific studies dealing with one representative of each family of algorithms, and briefly
discuss at the end of each subsection the difficulty in the generalization of such statements.
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Figure 2.7: The clustering and condensation transitions of a random CSP extend in the
(α, T ) phase diagram, at positive temperature T = 1/β.

2.3.1 Dynamical signature of the clustering transition

The clustering threshold at αd is actually the zero-temperature remnant of a dynamical tran-
sition (hence the subscript d) for a whole class of stochastic processes verifying the detailed
balance condition. This statement can be more easily understood by considering the finite
temperature generalization of the measure µ discussed after Eq. (2.6). The zero temperature
thresholds αd and αc extend as transition lines in the phase diagram function of (α, T ), as
shown in Fig. 2.7. For all values of α > αc one encounters, upon lowering the temperature,
the two transitions ubiquitous in mean-field spin-glasses with interactions between p ≥ 3
spins, first studied in the p-spin fully-connected spherical model [67, 68, 69], and on which
has been based the RFOT theory of glasses [70, 71]. When the temperature Td(α) is crossed
the free-energy of the system is analytic, even though the Gibbs-Boltzmann measure is frac-
tured in an exponentially large number of pure states (the finite-temperature equivalent of
clusters), and it is only at the condensation, or Kauzmann, temperature Tc(α) that a ther-
modynamic second order phase transition can be detected from the free-energy. However
the structural transition at Td has a drastic consequence for any dynamics that respect the
detailed balance condition (in mathematical terms, that is reversible) with respect to the
finite temperature Gibbs-Boltzmann measure. Indeed the equilibrium autocorrelation time
of such a dynamics diverges when T → T+

d , and becomes exponentially large in the system
for T < Td, with a very rich out-of-equilibrium dynamics exhibiting an aging behavior [69].

This dynamic characterization of the transition at Td was first understood via explicit
resolutions of fully-connected models (that correspond here to the limit α → ∞). This can
be put in a more general perspective in the context of finite connectivity disordered models
by combining the following two observations:

• One technical definition for the transition at Td is the appearance of a non-trivial 1RSB
solution with Parisi parameter m = 1. It was first shown in [72], then expanded upon
in [57, 26], that an equivalent definition can be given in terms of a specific form of
spatial correlations, namely a point-to-set correlation function. To define this concept
let B(i, ℓ) be the set of variables at graph distance ℓ from the vertex i in a factor graph,
and define the correlation between i (a point) and B(i, ℓ) (a set) as

C(i, ℓ) =
∑

σB(i,ℓ)

µ(σB(i,ℓ))
∑

σi

|µ(σi|σB(i,ℓ))− µ(σi)| . (2.8)

The inner sum quantifies the effect of a boundary condition σB(i,ℓ) on the central
variable σi (and indeed vanishes if they are independent one from each other). The
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correlation function is an average measure of this dependency, when the boundary
condition itself is taken with the Gibbs-Boltzmann probability law (a “thermalized
boundary condition”, related to the thought experiment discussed in [73]). What
happens at Td is the birth of long-range point-to-set correlation length, i.e. for T < Td
C(i, ℓ) remains strictly positive in the limit ℓ→ ∞ (the thermodynamic limit and the
average over the quenched disorder being taken first).

• It has been shown in [31] that the temporal correlations of a (local) dynamics that
respect detailed balance can be related to the spatial correlation length defined in
terms of point-to-set correlation. More precisely, one can define ℓi as the minimal
distance such that C(i, ℓ) drops below a given small reference value, and similarly τi
as the minimal time t such that the equilibrium auto-correlation function at site i,
〈σi(0)σi(t)〉−〈σi〉2 is smaller than some arbitrary threshold. Then bounds of the form

ℓi ≤ τi ≤ exp[V (ℓi)] (2.9)

were proven in [31], where several constants have been hidden for simplicity, and where
V (ℓi) is the number of sites contained in the ball of radius ℓi around site i.

Now the “dynamical” character of the clustering transition is demonstrated: on this line
the point-to-set correlation length diverges, and from (2.9) this implies a divergence of the
equilibrium correlation time of a reversible dynamics.

Note that the bounds between length and time scales obtained in [31] are valid for any
topology of interactions, be it mean-field or finite-dimensional. This has some relevance in
the context of glasses, as it sheds light on the apparent paradox of the glass transition phe-
nomenology, where a dramatic increase of the relaxation time of a liquid occurs in a range
of temperature where the structure factor (i.e. a two-point correlation function) barely
changes. The upper bound in (2.9) shows that some correlation length has to increase (even
in a modest way) when a relaxation time grows, but that more complicated correlation func-
tions than a two-point function might be necessary to detect it. The point-to-set correlation
functions were later on computed with numerical simulations of model liquids, see for in-
stance [74, 75]. It is fair to say that connections between spatial and temporal correlations is
a theme extensively studied in the mathematical physics literature on Markov Chains [76].
One originality of the treatment in [31] relied in the consideration of local measures of re-
laxation, i.e. in times τi a priori distinct for each site, instead of global measures as the gap
of the Markov Chain generator. In this way the bounds in (2.9) are valid site by site, which
is useful in presence of quenched disorder that can induce very heterogeneous distributions
of correlation times.

Coming back to the issue of the efficiency of local search algorithms for solving random
CSPs, one can deduce from the above considerations that for any α > αd, a simulated
annealing procedure slowly decreasing the temperature will necessarily cross the dynamical
transition line at Td(α) and then fall out-of-equilibrium (assuming the annealing time does
not scale exponentially with the system size). One should however not conclude that such
an algorithm is unable to reach a solution: even if the probability distribution at the end
of the annealing cannot be the uniform measure over solutions, it can well be supported on
a subset of the zero energy configurations. For further studies of such thermal annealing
the reader is referred to [77, 78], where it is argued that the freezing transition is actually
the relevant one up to which simulated annealing might be able to reach a (possibly non-
uniform) solution (see also [79] for a more general discussion of the effect of this transition
on local search algorithms). A further difficulty for reaching generic conclusions on the
efficiency of local search algorithms is the fact that most of them do not respect the detailed
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balance condition. Hence the dynamical transition has no reason to be an obstacle for
them, and there are indeed evidence for some of them to be successful for clause densities
α > αd [80, 81, 82, 83]. The algorithmic threshold of success is very sensitive to the details
of the stochastic procedure for the exploration of the configuration space. The simplest of
them, called (Pure Random) WalkSAT, chooses uniformly at random first an unsatisfied
constraint a, then one of the variables i ∈ ∂a of this constraint, and changes the value of σi
to satisfy a. Numerical and approximate analytical studies of this procedure can be found
in [84, 85], while a rigorous lowerbound on its threshold for k-SAT in the large k limit was
given in [86].

2.3.2 Belief inspired decimation

We turn now to an analysis of a sequential assignment procedure to solve CSPs, that has been
published in [87, 88]. Part of these results were turned into rigorous statements in [89, 90].
This procedure mimics the following idealized one, which assigns the values of theN variables
in N steps T = 1, . . . , N (not to be confused with temperature). Let us call i(1), . . . , i(N)
the order in which the variables are assigned, DT = {i(1), . . . , i(T )} the set of variables
assigned at time T , and τDT

the values chosen for these variables. One can define the
uniform probability measure over the solutions of the CSP which are still compatible with
the previous choices, let us call it µT (σ) = µ(σ|σDT

= τDT
). If one were able to compute

the marginal probabilities of this (conditional) probability measure and use them to draw
the value of the newly assigned variable at each step, i.e. draw σi(T+1) with probability
µT (σi(T+1)) and set τi(T+1) = σi(T+1), the Bayes rule would easily show that the output
configuration after the N steps is an uniformly drawn random solution, and this would in
particular lead to an algorithm for finding one solution of the CSP. The computation of these
marginal probabilities µT (σi) is a computationally intractable task, in practice one has to
resort to approximate algorithms, and in this context a natural choice is Belief Propagation
(BP), which is often able to compute good approximations of these marginal probabilities.
We shall come back on this algorithm in Sec. 2.4, at this point we may only say that it is
expected to yield exact predictions for the free-entropy density, in the thermodynamic limit,
for constraint densities α < αc. Analyzing the behavior of the Belief inspired decimation
procedure thus amounts to control the small (in the large N limit) error which accumulates
at each of the N steps by using the BP approximate estimates of the marginal probabilities
instead of the exact ones. A theoretical understanding and quantitative description of the
deviations between exact and BP-computed marginal probabilities for graphical models is a
formidable problem. In the works [87, 88] we followed a slightly simpler route, and studied
the following question: assuming that all steps up to some time T have been performed with
an hypothetical algorithm able to compute exactly the marginal probabilities required, what
is the structure of the support of µT , i.e. the shape of the set of solutions compatible with
the previous choices ?

The analytical description of the dynamics followed by this ideal process seems very
difficult: at each time step the probability of the evolution τDT−1

→ τDT
depends in a

non-trivial way on all the choices made in the previous steps. However one can study this
dynamical process in terms of a series of static problems, thanks to the following elementary
observation. At any step T , the Bayes rule can be used to show that τDT

is distributed
according to the marginal of µ(·). One can state this in a slightly different way: τDT

can
be obtained by drawing uniformly a solution τ from µ(·), retaining the configuration of the
variables in DT , and discarding the rest of the configuration. We shall further assume that
the permutation i(1), . . . , i(N) is drawn uniformly at random, such that DT is a random
set of T variables among N . In the thermodynamic limit we shall define θ = T/N , the



21

α

1

0

θ

α∗ αd αc αs

Figure 2.8: Sketch of the phase diagram in the (α, θ) plane for the analysis of the decimation
process of random CSP formulas.

fraction of assigned variables, and consider for simplicity that DθN is built by retaining
independently each variable with probability θ (we only make an error of order 1/

√
N on

the fraction of variables thus included in D).
These considerations led us to the definition of an ensemble of CSP instances parame-

terized by α and θ, generalizing the original one which corresponds to θ = 0. Explicitly this
ensemble of formulas corresponds to the following generation process:

1. draw a satisfiable CSP with parameter α

2. draw a uniform solution τ of this CSP

3. choose a set D by retaining each variable independently with probability θ

4. consider the residual formula on the variables outside D obtained by imposing the
allowed configurations to coincide with τ on D.

Let us emphasize that, apart from simple cases like the XORSAT model, these ensembles
do not coincide in general with randomly uniform formulas conditioned on their degree
distributions. The fact that the generation of the configuration τ depends on the initial
CSP induces non-trivial correlations in the structure of the final formula.

We could however devise a generalization of the methods used to treat the original CSP
ensembles (at θ = 0), and compute phase diagrams for these new ensembles in the (α, θ)
plane of parameters. As shown in a schematic way in Fig. 2.8 the phase transitions αd,c

extend as transition lines in some region of the phase diagram. More precisely, both lines
exhibit a reentrance behavior (they go towards lower values of α when θ increases), down
to some values α∗ where they meet. In the crescent-shaped region of the phase diagram
enclosed by these two lines the measure µθN is typically split on an exponentially large
number of clusters, outside of it is dominated by a single or a sub-exponential number of
clusters. Consider for instance some value α ∈ [αd, αc]; at θ = 0 there exists exponentially
many clusters. However when θ increases more and more variables are revealed and the set
of solutions compatible with the assignments in DθN shrinks; when the line θc(α) is crossed
the single cluster containing the reference solution τ dominates the measure.

One can then try to interpret the behavior of the realistic implementation of this proce-
dure, i.e. the decimation algorithm where the estimation of the probability µ(σi(T+1)|σDT

=
τDT

) is made approximately by using Belief Propagation. In the case of XORSAT an exact
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analysis of this process can be performed and confronted with the computation of the phase
diagram in the (α, θ) plane (see also [91] for a similar study). The comparison shows explic-
itly that for α < α∗ the probability of success of the BP guided decimation is strictly positive
in the thermodynamic limit, while it vanishes for α > α∗. For k-SAT one has to resort to nu-
merical simulations to compute this probability of success. The results presented in [88] are
in reasonable agreement with the conjecture that α∗ marks the limit above which BP guided
decimation typically fails. Indeed during the execution of the algorithm θ increases from 0
to 1, as symbolized with arrows in Fig. 2.8. For α > α∗ the condensation transition is thus
crossed at θc(α) after which the marginals computed by BP probably acquire a systematic
error. Note that this interpretation, even if consistent with the numerical results, is rather
speculative. In addition the analysis crucially relied on the randomness in the order of the
assignment of the variables. In practice a modified algorithm where one uses the marginal
probabilities computed by BP to set in priority the most biased variables (assuming that
the error made by BP is likely to be smaller for these variables) remains successful for larger
values of α, and it does not seem obvious to adapt the theoretical analysis to this case.
Similarly the decimation based on the informations provided by Survey [25, 63] instead of
Belief Propagation (i.e. concentrating on the most numerous clusters and not on the typical
solutions) works for larger values of α, close to the satisfiability threshold αs. As anticipated
at the beginning of Sec. 2.3 the performances of algorithms are often very much dependent
on fine details in their definitions, and thus difficult to analyze theoretically in complete
generality.

From a technical point of view the computations in the (α, θ) plane are similar to those
of the Franz-Parisi quenched potential [92]. In both cases one has to deal with two replica
configurations of the same system, the first one (denoted τ here) being thermalized, while the
second one (σ) is constrained by the first. Here the constraint is that the two configurations
coincide on a subset (D) of variables, i.e. they are infinitely coupled on a finite fraction of
variables, while in the usual potential the two replica have a finite coupling uniform on all
variables (fixing in average the overlap between the two replicas). The technique introduced
in [88], that can be easily adapted to the usual Franz-Parisi potential, was, to the best of
my knowledge, the first computation of a two replica potential in a finite connectivity mean-
field model. These potentials have also been studied in [77, 78] to interpret the annealing
dynamics mentioned in Sec. 2.3.1. The decimated ensemble defined above has also been
recently re-investigated in the perspective of glasses, see [93, 94] for a discussion of the effect
of “random pinning” of particles in a liquid.

2.4 Methods

This section contains an overview of the methods used to derive in a quantitative way
the picture of the various phase transitions discussed above. Generalizing the definition of
Eq. (2.6), we consider a factor graph model defining a probability measure over the set of
configurations χN as

µ(σ) =
1

Z

M∏

a=1

wa(σ∂a)

N∏

i=1

vi(σi) , Z =
∑

σ∈XN

M∏

a=1

wa(σ∂a)

N∏

i=1

vi(σi) , (2.10)

where for future convenience we allowed some weights vi (external fields) to act on the
variables. As explained after Eq. (2.6) we consider random ensembles of such models, the
indices of the variables involved in an interaction being chosen randomly, with the constraint
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that the degree distribution of the variable nodes has to be qd. We also let the weight
functions wa be independent identically distributed functions (and the same for the vi’s).

The measure µ and the partition function Z are thus random variables Thanks to self-
averaging (concentration) properties in the thermodynamic limit, the typical features of such
a random model are encoded in the average free-entropy

φ = lim
N→∞

1

N
E[lnZ] , (2.11)

where E[•] denotes the average with respect to the quenched randomness. For the zero-
temperature CSPs this potential is the total entropy density stot.

Averaging the logarithm of a random variable is in general a difficult task. The replica
method bypasses this difficulty by computing moments of order n of the partition function,
which is relatively easy for integer n, and by using the identity

E[lnZ] = lim
n→0

1

n
lnE[Zn] . (2.12)

This method has been originally developed for mean-field fully connected models defined
on the complete graph, most notably for the Sherrington-Kirkpatrick model [9]. The con-
tinuation from integer values of n (the number of “replicas” of the system) towards n = 0
involves a very subtle mechanism of replica symmetry breaking [11], that encodes the com-
plicated landscape of mean-field spin-glasses. The replica method has been extended to deal
with finite connectivity models, see in particular [95, 24] and references therein. However
the formally equivalent cavity method turned out to be more adapted to finite connectivity
models [96], and has a more transparent interpretation that will be described now.

The cavity method relies crucially on the local convergence of random factor graph
models to random trees explained at the end of Sec. 2.1.2. Let us assume momentarily that
the factor graph representing the model under study is a finite tree. Then the problem of
characterizing the measure (2.10) and computing the associated partition function Z can
be solved exactly in a simple, recursive way. One introduces on each directed edge i → a
from one variable i to an adjacent function node a a “message”µi→a, which is a probability
measure on the alphabet X , that would be the marginal probability of σi if the interaction a
were removed from the graph. These messages are easily seen to obey the recursive (so-called
Belief Propagation) equations depicted in Fig. 2.9,

µi→a(σi) =
1

zi→a
vi(σi)

∏

b∈∂i\a

∑

σ∂b\i

wb(σ∂b)
∏

j∈∂b\i

µj→b(σj) , (2.13)

with zi→a ensuring the normalization of the law µi→a. On a tree factor graph there exists
a single solution of these equations, which is easily determined starting from the leaves of
the graph (for which the empty product above is conventionally equal to 1) and sweeping
towards the inside of the graph. Once the messages µi→a have been determined all local
averages with respect to µ can be computed, as well as the partition function. The Belief
Propagation algorithm, that was mentioned in Sec. 2.3.2, consists in looking for a fixed-point
solution of (2.13), iteratively, even if the factor graph is not a tree.

Of course random graphs are only locally tree-like, they do possess loops, even if their
lengths typically diverge in the thermodynamic limit. The cavity method amounts thus to
a series of prescription to handle these long loops and to describe the boundary condition
they impose on the local tree neighborhoods inside a large random graph. The simplest
prescription, that goes under the name of replica symmetric (RS) and that is valid in the low
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a i

µi→a

c

j1

j2

b
j

µj→b

Figure 2.9: Graphical representation of Eq. (2.13).

α regime for random CSPs (more precisely α < αd), assumes some spatial correlation decay
properties of the probability measure µ. Consider the neighborhood of variable i represented
in Fig. 2.9, viewed as a small portion of a large random factor graph. If the interaction c
were removed from the graph, the variables j1 and j2 would typically be far away (in terms of
the graph distance), and because of the correlation decay the probability µ\c(σj1 , σj2) in the
amputated factor graph could be factorized as µ\c(σj1 )µ\c(σj2 ). The recursive computation
of Eq. (2.13), exact on a tree, would thus be asymptotically exact in a random factor
graph with fast enough spatial correlation decay. To compute the average thermodynamic
potential (2.11) it is enough in this case to study the statistics with respect to the quenched
disorder of the messages µi→a on the edges of the random factor graph. In other words the
order parameter of the RS cavity method is P(η), the probability (over the disorder) that
the messages µi→a in Eq. (2.13) (which are themselves probability distributions on X ) are
equal to η. P obeys a self-consistent functional equation, which is more simply written in a
distributional form as

η
d
= g(η1,1, . . . , η1,k−1, . . . , ηd,1, . . . , ηd,k−1, v, w1, . . . , wd) . (2.14)

In this equation all the η’s are drawn independently from P , and
d
= denotes the equality in

distribution between random variables. Moreover d is drawn according to the law q̃d, the
v and wa’s are independent copies of the variable and interaction random weights, and the
function g in the r.h.s. is defined by

η(σ) =
1

z({ηa,i}, v, {wa})
v(σ)×

∑

{σa,i}
i∈[1,k−1]

a∈[1,d]


∏

a,i

ηa,i(σa,i)




d∏

a=1

wa(σ, σa,1, . . . , σa,k−1) , (2.15)

z({ηa,i}, v, {wa}) ensuring the normalization of η. The RS prediction for φ can then be
expressed as a functional of P , more precisely as the average over copies ηi drawn from P
of some simple functions obtained by analogy from the exact computation of the partition
function of a finite tree. Note that the equation (2.14), if it has in general no analytic solution,
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lends itself to a very natural numerical resolution where P is approximately represented as an
empirical distribution over a set of representatives η (a population representation [97, 96]).

The assumption of fast correlation decay that underlies the RS cavity method can fail in
presence of frustration, for instance in the case of random CSPs with α > αd, the clustering
transition (we announced in Sec. 2.3.1 the interpretation of this transition as the birth of
long-range point-to-set correlations). Indeed the configuration space of these models gets
fractured in a large number of pure states (or clusters), and the correlation decay hypothesis
only holds for the Gibbs measure restricted to one pure state, not for the complete Gibbs
measure. This complication can be handled by the cavity method with “replica symmetry
breaking” (RSB). It amounts to make further self-consistent hypotheses on the organization
of these pure states, and on the correlated boundary conditions they induce on the tree-like
portions of the factor graph. Inside each pure state the RS computation holds true, the RSB
computation is then a study of the statistics of the pure states. Let us explain how this is
done in practice at the first level of RSB (1RSB cavity method). The partition function is
written as a sum over the pure states γ, that form a partition of the configuration space,
Z =

∑
γ Zγ , where Zγ is the partition function restricted to the pure state γ. It can be

written in the thermodynamic limit as Zγ = eNφγ , with φγ the internal free-entropy. As
in Sec. 2.2.2 one further assumes that the number of pure states with a given value of φ
is, at the leading exponential order, eNΣ(φ), with the complexity Σ a concave function of
φ, positive on the interval [φmin, φmax]. In order to compute Σ one introduces a parameter
m (called Parisi breaking parameter) conjugated to the internal thermodynamic potential,
and the generating function of the Zγ as Z(m) =

∑
γ Z

m
γ . In the thermodynamic limit its

dominant behavior is captured by the 1RSB potential Φ(m),

Φ(m) = lim
N→∞

1

N
logZ(m) = sup

φ
[Σ(φ) +mφ] , (2.16)

where the last expression is obtained by a saddle-point evaluation of the sum over γ. The
complexity function is then accessible via the inverse Legendre transform of Φ(m) [98], or
in a parametric form

φ(m) = Φ′(m) , Σ(φ(m)) = Φ(m)−mΦ′(m) , (2.17)

where φ(m) denotes the point where the infimum is reached in Eq. (2.16). One has Σ′(φ(m)) =
−m, i.e. the introduction of the parameterm allows to explore the complexity curve as shown
in Fig. 2.4 by tuning the tangent slope of the selected point.

The actual computation of Φ(m) is done as follows. One introduces on each edge of the
factor graph a distribution Pi→a(η) of messages, which is the probability over the different
pure states γ, weighted proportionally to Zm

γ , that µγ
i→a = η, where µγ

i→a are the messages
that appear in Eq. (2.13), for the measure restricted to the pure state γ. Because Pi→a(η)
fluctuates from instance to instance, the order parameter now becomes the distribution of
Pi→a(η) with respect to the disorder, which we call P(1)(P ) and is solution of a self-consistent
functional equation written as

P
d
= G(P1,1, . . . , P1,k−1, . . . , Pd,1, . . . , Pd,k−1, v, w1, . . . , wd) . (2.18)

Similarly to the RS case the P ’s are independent copies drawn from P(1), and the random
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weights v and wa are also independently generated. The r.h.s. of this equation stands for:

P (η) =
1

Z({Pa,i}, v, {wa},m)
×

∫ ∏

a∈[1,d]
i∈[1,k−1]

dPa,i(ηa,i) δ(η − g({ηa,i})) z({ηa,i}, v, {wa})m , (2.19)

with g and z defined above in Eq. (2.15), and m is the Parisi parameter. From the solu-
tion of this equation (that again can be found numerically with the population dynamics
method [96]) one computes the 1RSB potential Φ(m) via an expression similar to the one
giving the expression of φ at the RS level, with now averages over P(1).

There are different justifications for the appearance of the“reweighting factor”z({ηa,i}, v, {wa})m
in Eq. (2.19). The argument in [96] is based on the exponential distribution of the free-
entropy Nφγ of the pure states with respect to some reference value, and on consistency
requirements on the evolution of the pure states when the cavity factor graph is modified.
One can also study the statistics of the many fixed point solutions of the BP equations (2.13)
and devise a dual factor graph for the counting of these fixed points [23], the reweighting
factor allowing to select the fixed points associated to some internal free-entropy. Another
interpretation was proposed in [26], associating the pure states of a large but finite factor
graph model to boundary conditions on trees.

The thresholds αd and αc (or their finite temperature counterparts) separate regimes
where the 1RSB equations have different kind of solutions.

• It can happen that only trivial solutions of (2.18) exist, i.e. the P ’s are supported on a
single value of η. This is the translation of the existence of a single pure state, in which
case the whole 1RSB machinery reduces to the RS case. This case is realized at high
temperatures/low connectivity parameter α, on the left of the dynamical transition
line in Fig. 2.7.

• If on the contrary non-trivial solutions of the 1RSB equations appear, one has to
investigate them more carefully in order to obtain the 1RSB prediction for the free
entropy density. From the definition of Z(m) one would naturally take Φ(1) for it. This
is indeed the case, provided the corresponding complexity Σ(φ(m = 1)) is positive. In
this case, corresponding to the regime of (α, T ) between the two lines of Fig. 2.7,
an exponential number eNΣ(φ(1)) of pure states contribute to the Gibbs-Boltzmann
measure, each with an internal free-entropy φ(m = 1). It turns out that in this
case the prediction Φ(m = 1) coincides with the RS one, hence the analyticity of
the thermodynamic properties upon crossing the line Td(α), that has however drastic
consequences on the dynamics as discussed in Sec. 2.3.1. Such a phase is usually called
for this reason a dynamic 1RSB (d1RSB) phase.

• If there are non-trivial solutions of the 1RSB equations, but with Σ(φ(1)) < 0, the
system is in a condensed phase, corresponding to the rightmost part of the phase
diagram in Fig. 2.7. By definition the number of clusters is expressed in terms of the
complexity Σ as eNΣ: if the complexity at m = 1 is negative there are typically no
clusters with internal free-entropy φ(1), its value corresponds to large deviation events
with rare disorder realizations [99]. As depicted in the right panel of Fig. 2.4 the
thermodynamic properties are dominated by the few largest clusters, one has thus to
find the value ms of the Parisi parameter such that Σ(φ(ms)) = 0, ms is thus equal to
minus the tangent slope of Σ(φ) in φmax.
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We can now clarify the technical remark made in Sec. 2.2.3 on the criterion of existence
of frozen variables in the clustered phase. A “hard field” is a probability distribution on χ
that allows a single value of the variable, i.e. of the form η(σ) = δσ,σ0 . Typical solutions
of a CSP will thus have an extensive number of frozen variables in their respective clusters
whenever the solution of the 1RSB equation (2.18), for the relevant value ms of the Parisi
parameter (ms = 1 in a d1RSB phase), gives a non-zero probability to hard fields. However
there can be in general non-trivial solutions of (2.18) without any weight on the hard fields,
as happens for k-SAT and q-COL in the regime α ∈ [αd, αf ].

Even though the main focus chosen in this manuscript was the application of statistical
mechanics methods to random CSPs of computer science, it should be clear that the method
sketched here applies more generally to any factor graph model that converges locally to a
tree. It can thus be applied to other problems, in particular some emerging from random
graph theory. One can for instance count the typical number of copies of some large subgraph
inside a random graph. This strategy was applied to the counting of matchings [100], i.e.
non-overlapping dimers, cycles [101] and k-regular subgraphs [102].

Many steps in the derivation of quantitative results on sparse random graphs by the
cavity method are heuristic and far from mathematical rigor. Some of its predictions have
however received rigorous confirmations. One can distinguish two main paths that have been
followed to reach them. The first one is an extension to the finite-connectivity setting of the
interpolation method of Guerra and Toninelli [14], first developed for fully connected models,
that led Talagrand to the proof of the Parisi formula for the free energy of the Sherrington-
Kirkpatrick model [13]. The finite-connectivity version of the interpolation method was first
treated in [103, 104], where bounds on the free-energy of sparse mean-field models could be
given in terms of the replica/cavity method predictions, including replica symmetry breaking
ones. The second approach is closer in spirit to the heuristic version of the cavity method,
as it exploits directly the local convergence of random graphs to trees, and amounts to prove
rigorously the spatial correlation decay assumed in the heuristic version. Two examples of
this approach are [105], where ferromagnetic Ising models are shown to obey the predictions
of the cavity method, and [106], where the results on the number of matchings first obtained
in [100] are recovered. Note that in both cases the model is replica-symmetric; obtaining
the local convergence of µ towards a 1RSB measure remains a challenging open problem.
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Chapter 3

The effect of quantum
fluctuations

In this chapter I will present my recent works on quantum disordered models, which were
motivated by applications both to computing issues and to more physical problems. In a
first part (Sec. 3.1) I will briefly introduce some notions on quantum computing, then in
Sec. 3.2 I will discuss one method which was developed to study how random optimization
problems would be solved by a quantum computer, and finally show some results obtained
in this way (in Sec. 3.3). A more extensive discussion can be found in the review [43].

3.1 Introduction to (adiabatic) quantum computing

The classical computational complexity theory classifies the difficulty of computational tasks
in terms of the time (number of steps) and space (memory usage) requirements of algorithms
that perform these tasks. One could think that these requirements are very much dependent
on the actual device on which they are implemented. This is fortunately not the case: up
to polynomial reductions these are universal quantities, and one can use a simplified model
of a computer, known as a Turing machine, to formalize the notion of computation. This
universality result is the content of the Church-Turing hypothesis.

Quantum computers are however a class of devices that fall out of this paradigm, because
their basic functioning is ruled by the laws of quantum mechanics, instead of the classical
vision that underlies the Turing machine modelization. In consequence quantum computers
are potentially more efficient than classical ones, and a parallel classification in quantum
complexity classes has been developed [37, 107, 108, 109, 110] (to name only two main
classes, P and NP are respectively replaced by BQP and QMA in the quantum context).

The paradigmatic shift from classical computer science is the assumption that the ele-
mentary variables at the core of the computer behave quantumly: instead of bits which can
take either the value 0 or the value 1, one deals with qubits which can be in a coherent
superposition of the two values. More generically the classical configuration space χN is
replaced by an Hilbert space spanned by the orthonormal basis {|σ〉 : σ ∈ χN}, the so-called
computational basis. According to the laws of quantum mechanics the state of the system
is described by a vector |ψ〉 of this Hilbert space, i.e. a (complex) linear combination of the
vectors of the computational basis, which has norm 1. The state of the computer evolves
during the execution of an algorithm; quantum mechanics teaches that this evolution is
represented by the action of a linear operator on the Hilbert space, |ψ〉 → Û |ψ〉, where the
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linear operator Û must be unitary in order to conserve the norm of |ψ〉. Every quantum
algorithm thus corresponds to an unitary operator; in principle this operator acts on all the
qubits of the system, making a practical implementation of non-trivial algorithms a seem-
ingly impossible task. Fortunately it has been shown [111, 112, 113, 114] that any unitary
operator can be factorized (with arbitrary precision) as a product of simple operators, called
gates in this context, that act only on one or two qubits (this is to some extent similar, in
the classical case, to the reducibility of any Boolean function to a combination of NotAND
gates). Moreover there exist universal sets of gates that contain only a finite number of
operators. The complexity of a quantum algorithm can thus be quantified as the number of
elementary gates it involves.

Even if a quantum computer can be in a superposition of all the classical states, this does
not mean that it can treat its exponentially many inputs in parallel (as a non deterministic
Turing machine), because the output must be read out according to the quantum law of
measurement. To state clearly this important point let us consider a binary function f(σ)
from {0, 1}N to {0, 1}M . In the quantum setting this function is implemented as an unitary

linear operator Ûf ; note that an unitary transformation is invertible, hence Ûf must somehow
keep trace both of the input σ and of the output f(σ) of the function f . A convenient way

to fulfill this request is to let Ûf act on the Hilbert space of N +M qubits, its action being
defined on the computational basis as

Ûf |σ, σ′〉 = |σ, σ′ ⊕ f(σ)〉 , (3.1)

where ⊕ is here the bitwise addition modulo 2. Suppose that the quantum computer is
initially prepared in the state

1

2N/2

∑

σ∈χN

|σ, 0〉 , (3.2)

where 0 = (0, . . . , 0). Then Ûf transforms this state into

|ψ〉 = 1

2N/2

∑

σ∈χN

|σ, f(σ)〉 , (3.3)

which seems indeed to contain all the information about the behavior of f on its 2N pos-
sible inputs. However this information is not reachable by an observer, because of the
measurement axiom of quantum mechanics. For the non-physicist reader, a quantum me-
chanical observable is an Hermitian operator Ô of the Hilbert space, with distinct eigenvalues
O1, . . . , On, and associated eigenprojectors P̂1, . . . , P̂n. If the system is, right before the mea-
surement, in the state |ψ〉 (a normalized vector of the Hilbert space), the measured value of

Ô will be one of the eigenvalues Oi, with probability |〈ψ|P̂i|ψ〉|2. In that case the state of

the system right after the measurement is proportional to P̂i|ψ〉, i.e. the state is projected
to the eigenspace corresponding to the outcome of the measurement. A measurement of the
qubits in the state |ψ〉 written above thus leads to nothing but a random choice of a single
configuration σ among the 2N possible ones, and the associated value f(σ), with absolutely
no gain with respect to a classical computation. This trivial observation explains why some
thought has to be put in devising quantum algorithms that outperform classical ones; the
availability of linear superpositions is not enough for that, one has to use in a more clever
way the possibility of interference between states.

Several quantum algorithms have been devised in this framework, most of them dealing
with arithmetic problems. This line of research culminated with the discovery by Shor [38] of
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a quantum algorithm that factors integers in a time growing polynomially with the number of
bits of the integer in input. This is a breakthrough with respect to classical algorithms that
all require a superpolynomial time for this task. It would have deep practical consequences
if a large quantum computer was built, as it destroys the security of some widely used
cryptographic protocols, based precisely on the difficulty of integer factoring. However this
problem is not known to be NP-complete, hence the existence of Shor’s algorithm does not
imply a “quantum collapse” of the whole NP class.

We shall now consider a generic quantum algorithm to solve any optimization problem,
namely the quantum annealing or quantum adiabatic algorithm [39, 40, 41, 42], that exploits
quantum fluctuations to find low-energy configurations of an Hamiltonian, in a similar way
as simulated annealing [115] uses thermal fluctuations for the same purpose. The state of a
quantum system evolves in time according to the Schrödinger equation,

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (3.4)

in units where ~ = 1, Ĥ(t) being the time-varying Hamiltonian of the system. The quantum
annealing algorithm corresponds to a specific choice of the time dependence of the Hamilto-
nian, that is assumed to be at the disposal of the algorithm designer. To be more precise, to
a cost function E(σ) defined on the space of classical configurations we associate an operator

Ĥf , diagonal in the computational basis, with Ĥf |σ〉 = E(σ)|σ〉. We also consider another

Hermitian operator Ĥi, that has non-zero off-diagonal elements in the computational basis,
and such that one can easily prepare the system at time t = 0 in the groundstate of Ĥi. In
the case of Ising spins the natural choice for Ĥi is an uniform transverse field −∑

i σ̂
x
i , such

that 〈σ|Ĥi|σ′〉 is equal to −1 if and only if σ and σ′ are at unit Hamming distance one from
the other. Now the quantum adiabatic algorithm, for an execution time T , corresponds to
the Schrödinger evolution (3.4) with an Hamiltonian interpolating linearly between these

two operators, Ĥ(t) =
(
1− t

T

)
Ĥi +

t
T Ĥf with t ∈ [0, T ]. This evolution defines an unitary

operator ÛT such that |ψ(T )〉 = ÛT |ψ(0)〉. In the limit T → ∞, i.e. for infinitely slow
interpolations, this operator becomes an “intertwiner” that associates to each eigenvector of
Ĥi an eigenvector of Ĥf , respecting the order of the eigenvalues. In particular if |ψ(0)〉 is

the groundstate of Ĥi, then the final state of the algorithm is the groundstate of Ĥf , and
the classical optimization problem is solved, as a projective measurement of |ψ(T )〉 in the
computational basis outputs one of the configurations minimizing E(σ). Of course an algo-
rithm taking an infinite time is of little practical use. Fortunately for large but finite times
ÛT remains close to its limit. A more quantitative condition is provided by the adiabatic
theorem [116]; roughly speaking, the evolution time should be larger than the inverse square

of the minimal gap between the two lowest eigenvalues of Ĥ(t) along the interpolation for

the groundstate of Ĥi to be transformed in a state close to the groundstate of Ĥf .

The computational complexity of solving optimization problems via quantum annealing
is thus reduced to the determination of the minimal gap between the groundstate and the
first excited state along the interpolation ÛT . Generically a quantum phase transition in the
thermodynamic limit of a model is associated to a vanishing of this gap. For what concerns
typical random optimization problems, one can expect that the classical phase transitions
discussed above translate into quantum phase transitions as a function of the interpolating
parameter. Indeed quantum phase transitions have been known to occur for fully-connected
mean-field quantum spin glasses for a while [117, 118, 119, 120, 121]. This motivated the
development of a quantum extension of the cavity method, able to produce quantitative
predictions for the typical behavior of random CSPs in a transverse field.
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3.2 Quantum cavity method

For the reasons exposed above we want to determine the spectrum of an Hermitian operator
Ĥ on the Hilbert space spanned by {|σ〉, σ ∈ χN}, with diagonal elements given by a cost
function E(σ) and off-diagonal elements encoding some quantum fluctuations. Equivalently
the eigenvalues can be obtained from their generating function, the partition function Z =

Tr e−βĤ . For simplicity we shall discuss only the case of Ising spins, with the off-diagonal
part given by a transverse field of intensity Γ, i.e. the off-diagonal part of Ĥ is −Γ

∑N
i=1 σ̂

x
i .

This quantum computation can in fact be turned into a classical one, by modifying the
nature of the basic degrees of freedom. We shall first state the result and explain later on
its derivation. One finds that

Z =

∫

σ(0)=σ(β)

[
N∏

i=1

Dσi vi(σi)

]
e−

∫
β
0

E(σ(t))dt . (3.5)

Several new notations have been introduced: bold symbols denote functions of an “imagi-
nary” time t ∈ [0, β]; in particular here σi is a piecewise constant function σi(t) : [0, β] →
{−1,+1}. The integration measure Dσi is decomposed as a sum over the number n of
discontinuities of the function σi(t), the times t1 ≤ · · · ≤ tn at which they occur, and the
value σ0

i at initial time (then σi(t) flips to its opposite value at each discontinuity):

∫
Dσi ≡

∞∑

n=0

∑

σ0
i

∫ β

0

dt1

∫ β

t1

dt2 . . .

∫ β

tn−1

dtn . (3.6)

For such a function the weight vi(σi) reads vi(σi) = Γn. Such a path integral representation

can be devised for any matrix element of e−βĤ , by simply fixing the initial and final config-
urations σ(0) and σ(β). Here we let them free, under the condition σ(0) = σ(β), to compute

the trace of e−βĤ . As σi(0) = σi(β) only even values of the number n of discontinuities in
the trajectory σi(t) do contribute.

There are several ways to obtain such a path integral representation. The most pedestrian
one is to use the Suzuki-Trotter formula, decomposing the imaginary time interval [0, β] in
Ns slices,

eX̂1+X̂2 = lim
Ns→∞

(
e

1
Ns

X̂1e
1

Ns
X̂2

)Ns

, (3.7)

with the two non-commuting operators X̂1 = −β∑σ E(σ)|σ〉〈σ| and X̂2 = βΓ
∑

i σ̂
x
i . One

can then introduce Ns representations of the identity between the terms of the product, as
sums over the configurations σ(t = αβ/Ns) with α a discrete time index. The continuous
time limit Ns → ∞ then yields the path integral (3.5). A maybe more elegant way to obtain
this result is to use the following operator identity,

eX̂1+X̂2 =

∞∑

p=0

∫ 1

0

dt1

∫ 1

t1

dt2 . . .

∫ 1

tp−1

dtp e
t1X̂1 X̂2 e

(t2−t1)X̂1 X̂2 . . . X̂2 e
(1−tp)X̂1 ,

with the same values of X̂1,2 as above; one then inserts p representations of the identity in
the p-th term of the sum, rescales the time integrals and reorders the summation according
to the number of times each flipping operator σ̂x

i is picked in the expansion of X̂2. Finally
these path integral representations can also be handled in a mathematically rigorous way,
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see for instance [122, 123, 124, 125, 126, 127, 128], by starting from Poisson point processes
for the candidate times of discontinuities of the variable trajectories, a distribution which is
then properly biased by the classical energy term.

Suppose now that the classical energy function is decomposed along a factor graph as
E(σ) =

∑M
a=1 εa(σ∂a). The quantum partition function can then be rewritten as

Z =
∑

σ∈X̂N

δσ(0),σ(β)

M∏

a=1

wa(σ∂a)

N∏

i=1

vi(σi) , wa(σ∂a) = e−
∫

β

0
dt εa(σ∂a(t)) , (3.8)

where we introduced X̂ the space of periodic piecewise constant functions from [0, β] to
{−1,+1}, and used the notation

∑
σi∈X̂ as a synonym of the integration

∫
Dσi defined in

Eq. (3.6). This notation was chosen to emphasize the similarity with the classical partition
function (2.10): the quantum computation is reduced to a classical one, the cost to be paid
being the replacement from a discrete variable σi in X to a function (trajectory) σi =

{σi(t)|t ∈ [0, β]} in X̂ as basic degrees of freedom. Note that apart from this replacement,
the “spatial” structure of the interactions wa encoded in the factor graph is the same in
the classical and in the quantum case. In particular as soon as the classical energy part
of the quantum Hamiltonian falls into the category of models that can be solved by the
cavity method (i.e. sparse random graphs), then this is also true for the quantum problem.
This observation was first exploited in [129] to study the quantum spin glass on a random
regular graph, at the replica symmetric level and within a finite number of Suzuki-Trotter
slices. The formulation of the quantum cavity method in continuous imaginary time was
then presented in [130] at the RS level, for a ferromagnetic model, and in [131] for the
Bose-Hubbard model of bosonic particles. Results at the 1RSB level were given in [132]
for quantum XORSAT problems on random regular graphs (see next subsection for some of
these outcomes), and in [133] for interacting particle models. A more complete presentation
of this series of works, treating the case of generic χ, as well as further original results on a
quantum version of the coloring problem, can be found in the review [43]. Of course technical
complications do arise when replacing a discrete spin σi by a function σi(t), but conceptually
the quantum cavity method remains very close to the classical one; in fact the number of
discontinuities in the trajectory σi(t) is of order βΓ, and as long as this parameter remains
bounded the description of a trajectory in terms of the times of its discontinuities is relatively
compact and manageable numerically. This estimation shows on the other hand the main
drawback of this approach: the zero temperature (β → ∞) limit cannot be taken explicitly
here. Alternative, approximate, versions of the quantum cavity method that bypass this
limitation can be found in [134, 135, 136, 137, 138, 139, 140, 141].

3.3 Quantum annealing of random CSPs

To assess the time requirements of the quantum adiabatic algorithm for the resolution of
typical CSPs one has to evaluate the scaling of the minimal gap along its interpolation
path, i.e. when the transverse field Γ controlling the intensity of the quantum fluctuations
is reduced from a very large value down to zero. Quantum phase transitions, where this
gap closes in the thermodynamic limit, are thus a major issue in this perspective; numerous
studies of mean-field fully connected quantum spin-glasses [117, 118, 119, 120, 121], which
share a large part of their phenomenology with random CSPs, have unveiled quantum phase
transitions as a function of the transverse field. With this application in mind we have used
the quantum cavity method to study several models in [132, 133, 43, 142], and also studied
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Figure 3.1: Left panel: phase diagram for the 3-XORSAT model on 3-regular random graphs
with a transverse field Γ. The vertical line at Γ = 1 marks the location of a first-order
transition between a (dynamic) classical and a quantum paramagnet phase, the two lines
around it are the spinodal limit of existence of these two phases. The line starting from
Γ = 0 is the clustering (dynamic) 1RSB transition. Right panel: numerical results for
the minimum gap ∆min of this model, showing its exponential scaling as a function of the
size N of the instances. Full black points represent the average of ∆min obtained by exact
diagonalization up to N = 24 (error bars are of the order of the symbol size except when
explicitly shown for N = 24). Dashed bars represent the standard deviation of a single
realization of the random variable ∆min. Open blue diamonds are Quantum Monte Carlo
data for the median minimal gap from [145]. Here again error bars are of the order of symbol
size. Dashed line is a fit to ∆min(N) = 0.911 exp(−0.081N).

the quantum version of a toy model [143] which captures classically [144] the clustering and
condensation phenomenon. To keep this manuscript within the required length we shall only
discuss briefly the results for one of these models and mention the other cases afterwards.

For technical reasons models defined on random regular (hyper)graphs, in which all
variables are connected to the same number of interactions, are simpler to analyze, while ex-
hibiting the same phenomenology as models on Erdös-Rényi random graphs. For this reason
we concentrated in [132] on random regular XORSAT formulas, of different connectivities.
The results presented in Fig. 3.1 are for the simplest non-trivial case we encountered, with
the same degree for the interactions and for the variables (all interactions involve k = 3
variables, all variables appear in 3 interactions). Classically this model exhibits a dynamical
(clustering) transition at some temperature Td, with a complexity at m = 1 that remains
positive for all positive temperature, and vanishes at T = 0. In other words the Kauzmann
temperature vanishes in this case, the whole low-temperature phase T ≤ Td is a d1RSB
phase, with thermodynamic properties described by the RS cavity method. The effect of
the transverse field Γ in this model is summarized in the phase diagram on the left panel
of Fig. 3.1. The most important phenomenon is the appearance of a thermodynamic first
order transition, at low enough temperature, at the critical value of the field Γ = 1 (this
value was determined, within numerical accuracy, in [132], and later shown to be exactly 1
with a duality argument between high and low values of Γ [146, 145]). At this point the
first derivative of the free-energy with respect to Γ (proportional to the transverse magne-
tization) has a discontinuity. This is the trace of the crossing of the free-energies of two
distinct phases, the (dynamic) classical paramagnet which emerges continuously from the
classical model at Γ = 0, and the quantum paramagnet which is the continuation of the
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phase at Γ = ∞ with all spins aligned along the transverse field. As usual in mean-field
these two phases coexist in a region of the phase diagram, delimited by the spinodals also
drawn on the phase diagram. The quantum cavity method does not give access directly
to the zero-temperature limit, however by extrapolating the free-energies obtained at small
temperatures one obtains a fairly good estimate of the groundstate energy per spin, and of
the location of the zero-temperature quantum phase transition. It is generically expected
that first-order transition are accompanied by an exponentially small gap with respect to
the size of the system. This is indeed the case in this model, as demonstrated in the right
panel of Fig. 3.1 with data obtained numerically for small system sizes. The phase diagram
on the left of the figure also displays the dynamical (clustering) transition line Td(Γ) that we
computed with the 1RSB quantum cavity method. On this line the structure of the measure
on imaginary-time trajectories change, with no effect on the thermodynamics of the model.

The other models considered in [132, 143, 133, 43, 142] display some variety in the type
of quantum phase transitions encountered upon lowering the transverse field Γ. In some of
them it remains thermodynamically of first order, but towards a spin-glass phase emerging
from a condensed situation in the classical limit Γ = 0. It can also occur that the quantum
phase transition is of second order, but towards a complex spin-glass phase with a contin-
uum of avoided crossings because of a competition between clusters that have classically a
higher energy but which are bigger, and hence have an energy that decrease faster with the
transverse field. This scenario can be explicitly checked in the toy model studied in [143],
but this mechanism is probably at play in generic random CSPs in presence of quantum
fluctuations [43, 142], and implies an exponentially small gap between the groundstate and
the first excited state in the whole low Γ phase, below the phase transition. A seemingly
similar phenomenon of “perturbative avoided crossings” was studied in [147, 148, 149, 150].

These statements sound rather negative for the interest of the quantum adiabatic al-
gorithm, as it appears that for most types of CSPs an exponentially small gap will be
encountered during the annealing of typical instances, hence the scaling of its execution
time T should be exponential in the size of the system to reach the groundstate of the
classical problem. This contrasts the hope, triggered by numerical simulations on small size
systems [42], that the quantum adiabatic algorithm could solve in polynomial time problems
for which all classical algorithms take an exponential time. This negative conclusion was
probably anticipated for a long-time by most practitioners of mean-field disordered systems,
from the intuition gained on fully-connected quantum spin-glasses [117, 118, 119, 120, 121],
demonstrating it on finite-connectivity models more closely related to optimization problems
might help to export this opinion to other communities.

Despite this caveat there might be a strong potential for the quantum annealing to solve
approximation problems in a more efficient way than classical algorithms. To explain this
statement one should recall that it was proven in classical computational complexity theory
that for some models, including k-SAT or k-XORSAT, it is hard to find an approximate
estimate of the groundstate energy asymptotically better than the one obtained by picking
at random a configuration [151]. If one runs the annealing algorithm for a time T smaller
than the adiabatic time (i.e. the inverse square of the minimal gap), the classical energy
reached at the end, call it Efin(T ), will certainly be greater than the groundstate one Egs.
However one could hope that for some models the scaling of the residual energyEfin(T )−Egs,
for large but sub-adiabatic times T , would lead to better estimates of Egs in a “reasonable”
execution time of the quantum annealing.

Unfortunately there does not appear to be generic tools for the quantitative computation
of Efin(T ) in the non-adiabatic regime. To investigate this question we considered in [152] a
very simple model, fully-connected and ferromagnetic, known as the p-spin quantum Curie-
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Figure 3.2: Spectrum of the model (3.9) for p = 3, in the completely symmetric (maximal
spin) sector. The right panel is a zoom around the first-order transition, that shows the
metastable continuations of the groundstates from both phases, and the spinodal of the large
s phase. All crossings are avoided but the exponentially small gaps are not distinguishable
on the figure.

Weiss model (and related to the Lipkin-Meshkov-Glick Model [153]). Its Hamiltonian is
given by

Ĥ(s) = −Ns(m̂z)p −N(1− s)m̂x , m̂x =
1

N

N∑

i=1

σ̂x
i , m̂z =

1

N

N∑

i=1

σ̂z
i , (3.9)

where the parameter s is related to the transverse field Γ via Γ = (1 − s)/s; σ̂z
i is defined

by its action in the computational basis, σ̂z
i |σ〉 = σi|σ〉. The operator Ĥ(s) is invariant un-

der all permutation of site indices, which allows to diagonalize it in subspaces classified by
representations of the symmetry group (in more physical terms, by the total spin operator

that commutes with Ĥ). The lowest energy states are found in the maximally symmetric
subspace, of dimension N +1, the eigenvalues in this sector are plotted in Fig. 3.2 for p = 3,
as a function of s. For this and all larger values of p there is a first-order phase transition,
more easily seen on the blow up of the right panel. What appear as level crossings on this
picture are actually avoided crossings with exponentially small gaps. This plot also exhibits
in a striking way the metastability phenomenon, as an analytic continuation of one branch
of the eigenvalue across the avoided crossing; one also sees the spinodal for the branches
coming for large values of s, in particular the metastable continuation of the large s ground-
state disappears around s ≈ 0.4. Thanks to the permutation symmetry the diagonalization
of this Hamiltonian, inside one symmetry sector, amounts to an unidimensional quantum
problem, the magnetization playing the role of the coordinate of a particle. Moreover in this
interpretation the role of ~ is played by the inverse size of the system, 1/N , hence in the ther-
modynamic limit all properties of the system, including the exponentially small gaps, can
be computed with semi-classical methods, either instantonic [154, 155] or WKB-like [152].

One can then relate in an intuitive way these features of the spectrum to the annealing
dynamics of a mean-field model exhibiting a first-order transition (see the sketch on the
left panel of Fig. 3.3). Suppose first than the annealing time T is very large, but sub-
exponential in N . Then during the annealing all the exponentially small gaps encountered
after the first-order transition cannot be resolved, and the dynamics follows the metastable
continuation of the initial groundstate. Once the spinodal is reached there are no more
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Figure 3.3: Left panel: a schematic view of annealing through a first-order phase transition.
Right panel: explicit analytical and numerical results for the model (3.9), in the regime where
T (denoted T in this plot) is finite in the thermodynamic limit. Lines are the results of the
numerical integration of the Hamilton equations resulting from the semi-classical equations
in the thermodynamic limit, symbols correspond to the integration of Schrödinger equation
at finite N .

avoided crossings, and as T is large from this point the dynamics is adiabatic, the final
energy reached at the end of the annealing is the one of the level connected to the spinodal
point, let us call êfin the corresponding energy density. This trajectory actually separates
two distinct regimes: for times T = eNτ , with τ > 0 but smaller than the exponential
rate for adiabaticity, the metastable continuation of the initial groundstate is only followed
up to a turning point before the spinodal, when a gap large enough to be resolved on the
time-scale eNτ is encountered. After this point the dynamics is again adiabatic, and leads to
the energy density efin(τ) < êfin continuously connected to the turning point. This energy
density decreases when τ increases, and reaches the groundstate one when τ crosses the
exponential rate of the adiabatic time. The second regime corresponds on the contrary to
times T finite in the thermodynamic limit, and leads to energy densities ẽfin(T ) > êfin, as
illustrated on the right panel of Fig. 3.3.

In the simple model defined in Eq. (3.9) one can perform explicit calculations for the fi-
nally reached energy densities in these two regimes, efin(τ) and ẽfin(T ), in the first one thanks
to the WKB computation of the exponentially small gaps encountered along a metastable
branch, and in the second one via a semi-classical reduction of the quantum dynamics to a
Hamiltonian one. Maybe the most important outcome of these computations are the scaling
laws found in the neighborhood of the separating trajectory, i.e. for “exponential but small”
times (τ → 0) or “finite but large” times (T → ∞ after N → ∞):

êfin − efin(τ) ∝ τ
4
5 , ẽfin(T )− êfin ∝ T − 4

5 . (3.10)

Indeed one can conjecture that this exponent 4/5 is universal for all mean-field models with
a first-order transition, as this scaling behavior is controlled by the neighborhood of the
spinodal point. A first step to check this idea would be to compute êfin in a less trivial
model.
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Chapter 4

Perspectives

I have tried in this manuscript to summarize the main results recently obtained in this
interdisciplinary field at the interface between statistical mechanics, theoretical computer
science and discrete mathematics. Let me now give some perspectives on possible directions
for future research.

For what concerns the applications to computer science, two issues could be consid-
ered. The first one concerns the type of instances of CSPs studied up to now. Random
ensembles have nice properties, as they are defined in terms of a single parameter α, and
possess a natural thermodynamic limit in which sharp thresholds appear, with a very rich
phenomenology as we have seen. However the satisfiability instances that are relevant for
industrial applications are very different from random ones. They do exhibit some local
structure, either because they derive from problems embedded in a finite-dimensional space,
or because they are produced by encoding a problem from another language, this encoding
repeating small “gadgets” that translate the basic unit of the more elaborated language. It
would thus be very important to adapt, if possible, the statistical mechanics tools to these
industrial formulas, without sacrificing the notions of typicality and thermodynamic limit
that underlies the statistical mechanics approach (even if single sample algorithms as Survey
Propagation [25, 63] deviate somehow from this paradigm). An intermediate step in this
project would consist in devising a “random ensemble of structured formulas”, i.e. a prob-
ability law over instances biased to exhibit some of the features held relevant for industrial
instances. The second issue would be the study of more general problems than CSPs, higher
in the “polynomial hierarchy” of computational complexity theory, in particular Quantified
Boolean Formulas. In these problems the existential quantificator“is there a configuration of
the variables σ that satisfy all constraints” is complemented by an universal one, and leads
to questions of the type “for all assignments of the variables σU, is there a configuration
of the variables σE that satisfy all constraints”, with a partition of the variables between
Universal and Existential ones. Statistical mechanics tools have recently been applied to
similar problems in [156, 157].

On the physics side, besides technical issues as a better understanding of the Hilbert
space interpretation of the replica symmetry breaking in quantum models, and a further
development of the cavity method for stochastic dynamics, there is probably hope for new
results on (many-body) localization problems [158] in the mean-field framework. This issue
of transport properties of (interacting or not) quantum particles in a disordered environ-
ment is a long-standing subject of research in condensed matter [159] and in mathematical
physics [160], with some controversial views on the effect of interactions on the localization
phenomenon. Models of interacting quantum particles defined on random graphs should
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enlighten these issues and provide a mean-field picture of the many-body localization; how-
ever the combination of disorder, quantum fluctuations, finite-connectivity and the necessity
of exploring low-temperature regimes make the resolution of such models, even if they are
mean-field, a challenging task, and up to now only approximate versions of the quantum
cavity method could be used [139, 140, 141] for such problems. Note also that the mean-field
non-interacting case [97], even if studied for a very long time, still exhibits not completely
understood features. For instance it was rigorously proven very recently [161] that, at vari-
ance with all intuitive expectations, the mobility edge in the (energy-disorder) phase diagram
does not extend down to zero disorder, i.e. that the spectrum of the Anderson model on the
Bethe lattice remains entirely absolutely continuous in presence of a small but finite disorder
in the local potentials. This phenomenon could not be detected via numerical methods, see
for instance the (incorrect) phase diagram in [162], because of the Lifshitz tail phenomenon
that brings the density of states to very small values close to the band edge [163].

In the context of quantum adiabatic computation it would be desirable to obtain a
quantitative understanding of the energy reached by real-time Schrödinger and Quantum
Monte Carlo annealing of non-trivial mean-field models, as attempted for classical simulated
annealing in [77, 78], in particular in view of the approximability issues in computational
complexity discussed at the end of Sec. 3.3.

Finally a large part of the results presented in this manuscript await a rigorous proof.
From a physicist point of view the most satisfying scheme of proof would be the closer
possible to the heuristic picture proposed by the cavity method, and would thus be based on
the local convergence of random graphs to random trees supplemented by a precise control
of the correlation decay. Some models have been treated rigorously along these lines, in
particular the ferromagnetic Ising model [105] and the matchings problem [106], both being
replica-symmetric. A local convergence result at the replica-symmetry breaking level would
be a breakthrough for this line of research; more modest objectives would be generic proofs
valid for a larger class of RS models, and generic validation of the exactness of the RS
prediction for the free-energy in a dynamic 1RSB regime.
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[23] M. Mézard and A. Montanari. Information, Physics and Computation. Oxford Uni-
versity Press, 2009.

[24] G. Biroli, R. Monasson, and M. Weigt. A variational description of the ground state
structure in random satisfiability problems. Eur. Phys. J. B, 14, 551 (2000).
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[59] M. Mézard, M. Palassini, and O. Rivoire. Landscape of Solutions in Constraint Satis-
faction Problems. Phys. Rev. Lett., 95(20), 200202 (2005).

[60] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Clusters of solutions and replica
symmetry breaking in random K-satisfiability. J. Stat. Mech., 2008(04), P04004
(2008).
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[78] L. Zdeborová and F. Krzakala. Generalization of the cavity method for adiabatic
evolution of Gibbs states. Phys. Rev. B, 81(22), 224205 (2010).

[79] F. Krzakala and L. Zdeborova. Phase transitions and computational difficulty in ran-
dom constraint satisfaction problems. Journal of Physics: Conference Series, 95(1),
012012 (2008).

[80] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In
Proc. of the Twelfth National Conference on Artificial Intelligence (AAAI’94), pages
337–343, Seattle, 1994.

[81] D. McAllester, B. Selman, and H. Kautz. Evidence for Invariants in Local Search.
In Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI’97),
pages 321–326, Providence, Rhode Island, 1997.

[82] J. Ardelius and E. Aurell. Behavior of heuristics on large and hard satisfiability prob-
lems. Phys. Rev. E, 74(3), 037702 (2006).

[83] M. Alava, J. Ardelius, E. Aurell, P. Kaski, S. Krishnamurthy, P. Orponen, and S. Seitz.
Circumspect descent prevails in solving random constraint satisfaction problems. Pro-
ceedings of the National Academy of Sciences, 105, 15253 (2008).



48

[84] G. Semerjian and R. Monasson. Relaxation and metastability in a local search proce-
dure for the random satisfiability problem. Phys. Rev. E, 67(6), 066103 (2003).

[85] W. Barthel, A. K. Hartmann, and M. Weigt. Solving satisfiability problems by fluc-
tuations: The dynamics of stochastic local search algorithms. Phys. Rev. E, 67(6),
066104 (2003).

[86] A. Coja-Oghlan and A. Frieze. Analyzing Walksat on random formulas. Proc. 9th
ANALCO, pages 48–55 (2012).

[87] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Solving Constraint Satisfaction
Problems through Belief Propagation-guided decimation. (2007). arXiv:0709.1667,
Proceedings of the 45th Allerton Conference.

[88] F. Ricci-Tersenghi and G. Semerjian. On the cavity method for decimated random
constraint satisfaction problems and the analysis of belief propagation guided deci-
mation algorithms. Journal of Statistical Mechanics: Theory and Experiment, page
P09001 (2009).

[89] A. Coja-Oghlan. On belief propagation guided decimation for random k-SAT. Proc.
22nd SODA, page 957 (2011).

[90] A. Coja-Oghlan and A. Y. Pachon-Pinzon. The decimation process in random k-SAT.
SIAM Journal on Discrete Mathematics, 26, 1471–1509 (2012).

[91] F. Altarelli, R. Monasson, and F. Zamponi. Relationship between clustering and
algorithmic phase transitions in the random k-XORSAT model and its NP-complete
extensions. Journal of Physics: Conference Series, 95(1), 012013 (2008).

[92] Silvio Franz and Giorgio Parisi. Recipes for Metastable States in Spin Glasses. J.
Phys. I France, 5(11), 1401–1415 (1995).

[93] C. Cammarota and G. Biroli. Ideal glass transitions by random pinning. Proceedings
of the National Academy of Sciences, 109, 8850 (2012).

[94] C. Cammarota and G. Biroli. Random Pinning Glass Transition: Hallmarks, Mean-
Field Theory and Renormalization Group Analysis. arXiv:1210.8399, (2012).

[95] R. Monasson. Optimization problems and replica symmetry breaking in finite connec-
tivity spin glasses. J. Phys. A, 31(2), 513–529 (1998).
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Résumé

Ce mémoire présente mes activités de recherche dans le domaine de la mécanique statis-
tique des systèmes désordonnés, en particulier sur les modèles de champ moyen à connectivité
finie. Ces modèles présentent de nombreuses transitions de phase dans la limite thermody-
namique, avec des applications tant pour la physique des verres que pour leurs liens avec des
problèmes d’optimisation de l’informatique théorique. Leur comportement sous l’effet de
fluctuations quantiques est aussi discuté, en lien avec des perspectives de calcul quantique.

Abstract

This manuscript present my research activities in the field of statistical mechanics of
disordered systems, in particular mean-field models with finite connectivity. These models
exhibit several phase transitions in the thermodynamic limit, with applications both for the
physics of glasses and for their links with optimization problems from theoretical computer
science. Their behavior under the effect of quantum fluctuations is also discussed, within
the perspective of quantum computation.


