.. Ejection-de-matière-au-voisinage-de-l-'électrode-enserrant-le-bouchon, 106 -X - 5.2.2. Ejection de matière au voisinage de l'électrode enserrant la gaine, p.106

I. Wright, G. Tatlock, H. Badairy, and C. Chen, Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys, Oak Ridge National Laboratory, vol.5, 2009.
DOI : 10.2172/969976

S. Bose and K. Sheffler, Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, MATE (Materials for Advanced Turbine Engines) Program, Project 3, 1988.

S. Ukai, M. Fujiwara, R. Lindau, A. Moslang, M. Rieth et al., Perspective of ODS alloys application in nuclear environments Present development status of EUROFER and ODS-EUROFER for application in blanket concepts Mechanical and microstructural behaviour of Y2O3ODS EUROFER 97, [9] Klueh RL, Shingledecker JP, Swindeman RW, Hoelzer DT. Oxide dispersionstrengthened steels: A comparison of some commercial and experimental alloys, p.749196103, 2002.

C. Fink, Ductile Tungsten and Molybdenum. The Chemical News and, Journal of Physical Science, 1911.

R. Irman and . Sap, Ein Neuer Werkstoff der Pulvermetallurgie aus AI, Teschnische Rundschau (Bern), vol.36, p.19, 1949.

J. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metallurgical and Materials Transactions B, vol.1, p.2943, 1970.

J. Schneibel and S. Shim, Nano-scale oxide dispersoids by internal oxidation of

D. Srinivasan, R. Corderman, and R. Subramanian, Strengthening mechanisms (via hardness analysis) in nanocrystalline NiCr with nanoscaled Y2O3 and Al2O3 dispersoids, Materials Science and Engineering: A, vol.416, issue.1-2, p.211, 2006.
DOI : 10.1016/j.msea.2005.09.109

C. Zakine, Plasticité des alliages ferritiques renforcés par dispersion d'oxydes. Commissariat à l'Energie Atomique, 1994.

H. Regle, Alliages ferritiques 14

A. Monnier, Etude bibliographique de la soudabilité des aciers ODS et premiers essais de soudage de l'acier ferritique ODS PM2000, pp.7-010, 2007.

C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, vol.461, 2001.

N. Iwata, R. Kasada, A. Kimura, T. Okuda, M. Inoue et al., Characterization of Mechanically Alloyed Powders for High-Cr Oxide Dispersion Strengthened Ferritic Steel, ISIJ International, vol.49, issue.12, 1914.
DOI : 10.2355/isijinternational.49.1914

M. Couvrat, L. Chaffron, and D. Nunes, Influence de la température de filage sur les aciers ODS ferritiques, Matériaux Nantes, 2010.

R. Rahmanifard, H. Farhangi, A. Novinrooz, and N. Afshari, Investigation of microstructural characteristics of nanocrystalline 12YWT steel during milling and subsequent annealing by X-ray diffraction line profile analysis, Journal of Materials Science, vol.45, issue.310, p.6498, 2010.
DOI : 10.1007/s10853-010-4738-3

P. Olier, A. Bougault, A. Alamo, and Y. De-carlan, Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties, Journal of Nuclear Materials, vol.386, issue.388, p.561, 2009.
DOI : 10.1016/j.jnucmat.2008.12.177

M. Turker and T. Hughes, Oxidation behavior of three commercial ODS alloys at 1200???C, Oxidation of Metals, vol.3, issue.5-6, p.505, 1995.
DOI : 10.1007/BF01051041

C. Chen, G. Tatlock, and A. Jones, Effect of annealing temperatures on the secondary re-crystallization of extruded PM2000 steel bar, Journal of Microscopy, vol.12, issue.3, p.474, 2009.
DOI : 10.1111/j.1365-2818.2009.03134.x

S. Dryepondt, ODS alloys development for fossil energy applications. DIANA I

R. Lindau, A. Moslang, M. Schirra, P. Schlossmacher, and M. Klimenkov, Mechanical and microstructural properties of a hipped RAFM ODS-steel, Journal of Nuclear Materials, vol.307, issue.311, p.769, 2002.
DOI : 10.1016/S0022-3115(02)01045-0

J. Chen and W. Hoffelner, Irradiation creep of oxide dispersion strengthened (ODS) steels for advanced nuclear applications, Journal of Nuclear Materials, vol.392, issue.2, p.360, 2009.
DOI : 10.1016/j.jnucmat.2009.03.025

M. Klimiankou, R. Lindau, and A. Moslang, TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic???martensitic steels, Journal of Nuclear Materials, vol.329, issue.333, pp.329-33347, 2004.
DOI : 10.1016/j.jnucmat.2004.04.083

. Microscopy, . Afm, and . Tem, SEM) studies of oxide scale formation on FeCrAl based ODS alloys, Solid State Ionics, vol.117, p.13, 1999.

H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika et al., Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, Journal of Nuclear Materials, vol.384, issue.2, p.115, 2009.
DOI : 10.1016/j.jnucmat.2008.11.001

M. Klimenkov, A. Moslang, and R. Lindau, EELS analysis of complex precipitates in PM 2000 steel, The European Physical Journal Applied Physics, vol.42, issue.3, p.293, 2008.
DOI : 10.1051/epjap:2008084

M. Heilmaier, H. Saage, K. Mirpuri, J. Eckert, L. Schultz et al., Superposition of grain size and dispersion strengthening, ODS L1(2)-(Al,Cr)(3)Ti. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, p.106, 2002.

M. Nganbe and M. Heilmaier, Modelling of particle strengthening in the gamma' and oxide dispersion strengthened nickel-base superalloy PM3030, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.387-89609, 2004.

B. Reppich, On the dispersion strengthening mechanisms in ODS materaals, Zeitschrift f??r Metallkunde, vol.93, issue.7, p.605, 2002.
DOI : 10.3139/146.020605

A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier et al., Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel, Journal of Nuclear Materials, vol.405, issue.2, p.95, 2010.
DOI : 10.1016/j.jnucmat.2010.07.027

E. Arzt, Creep of dispersion strengthened materials: a critical assessment, Res. Mechanica, vol.31, pp.399-185, 1991.

P. Miao, G. Odette, T. Yamamoto, M. Alinger, and D. Klingensmith, Thermal stability of nano-structured ferritic alloy, Journal of Nuclear Materials, vol.377, issue.1, p.59, 2008.
DOI : 10.1016/j.jnucmat.2008.02.042

M. Miller, K. Russell, and D. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, Journal of Nuclear Materials, vol.351, issue.1-3, p.261, 2006.
DOI : 10.1016/j.jnucmat.2006.02.004

P. Krautwasser, A. Czyrskafilemonowicz, M. Widera, and F. Carsughi, Thermal stability of dispersoids in ferritic oxide-dispersion-strengthened alloys, Materials Science and Engineering: A, vol.177, issue.1-2, p.199, 1994.
DOI : 10.1016/0921-5093(94)90491-X

C. Montes, C. Bhadeshia, and H. , Influence of Deformation on Recrystallization of an Yttrium Oxide Dispersion-Strengthened Iron Alloy, 2000.

I. Toda-caraballo, J. Chao, L. Lindgren, and C. Capdevila, Effect of residual stress on recrystallization behavior of mechanically alloyed steels, Scripta Materialia, vol.62, issue.1, p.41, 2010.
DOI : 10.1016/j.scriptamat.2009.09.023

G. Korb and D. Sporer, Recrystallization behaviour of PM 2000 oxide dispersion strengthened iron-base superalloy. High temperature materials for power engineering, 1990.

M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, and S. Ohtsuka, Reverse phase transformation from [alpha] to [gamma] in 9Cr-ODS ferritic steels

Y. Yazawa, T. Furuhara, and T. Maki, Effect of matrix recrystallization on morphology, crystallography and coarsening behavior of vanadium carbide in austenite, Acta Materialia, vol.52, issue.12, p.3727, 2004.
DOI : 10.1016/j.actamat.2004.04.027

G. Zhang, R. Chandel, H. Seow, and H. Hng, Microstructural Features of Solid-State Diffusion Bonded Incoloy MA 956, Materials and Manufacturing Processes, vol.11, issue.4, p.599, 2003.
DOI : 10.1016/S1359-6462(97)00224-8

A. Richard, Le soudage des alliages ODS base fer -Étude bibliographique. CEA, 1996.

G. Gessinger, Joining techniques for P/M superalloys. Powder metallurgy of superalloys, 1984.

E. Tabakin, S. Kuz-'min, Y. Ivanovich, S. Ukai, T. Kaito et al., Investigation of the Y2O3 distribution in the weld joints of dispersion-hardened steel cladding of fast-reactor fuel elements, Atomic Energy, vol.42, issue.1, p.430, 2007.
DOI : 10.1007/s10512-007-0068-1

T. Kelly, Welding of Mechanically Alloyed ODS Materials. Trends in Welding Research in the United States, p.471, 1981.

S. Ukai, T. Kaito, M. Seki, A. Mayorshin, and O. Shishalov, Oxide Dispersion Strengthened (ODS) Fuel Pins Fabrication for BOR-60 Irradiation Test, Journal of Nuclear Science and Technology, vol.204, issue.6, p.109, 2005.
DOI : 10.1080/18811248.2005.9726370

L. Zirker and C. Tyler, Pressure Resistance Welding of High Temperature Metallic Materials, Idaho National Laboratory, 2010.

M. Inoue, T. Kaito, and S. Ohtsuka, Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels, Materials Issues for Generation IV Systems, p.311, 2008.
DOI : 10.1007/978-1-4020-8422-5_16

K. Shinozaki, C. Kang, Y. Kim, M. Aritoshi, T. North et al., The metallurgical and mechanical properties of ODS alloy MA 956 friction welds, Welding Journal, vol.76, p.289, 1997.

B. Inkson and P. Threadgill, Friction welding of FeAl40 Grade 3 ODS alloy, Materials Science and Engineering: A, vol.258, issue.1-2, p.313, 1998.
DOI : 10.1016/S0921-5093(98)00950-2

A. Mathia, Soudabilité d'alliages ODS pour le gainage combustible, CEA, 2008.

M. Mathon, V. Klosek, Y. De-carlan, and L. Forest, Study of PM2000 microstructure evolution following FSW process, Journal of Nuclear Materials, vol.386, issue.388, p.475, 2009.
DOI : 10.1016/j.jnucmat.2008.12.163

F. Legendre, S. Poissonnet, P. Bonnaillie, L. Boulanger, and L. Forest, Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy, Journal of Nuclear Materials, vol.386, issue.388, pp.537-186, 2009.
DOI : 10.1016/j.jnucmat.2008.12.170

C. Chen, P. Wang, and G. Tatlock, Phase transformations in yttrium ???aluminium oxides in friction stir welded and recrystallised PM2000 alloys, Materials at High Temperatures, vol.2, issue.3, p.299, 2009.
DOI : 10.1016/j.jnucmat.2008.12.163

D. De-prunelle, F. Gevrey, . Rnr, and . Combustibles, CEA, 1980.

D. Duthoo and C. Vauglin, Le soudage dans la fabrication des assemblages de combustible pour réacteurs à eau pressurisée (REP) Matériaux, Nantes, 2010.

P. Rudling, A. Strasser, F. Garzarolli, and L. Van-swam, Welding of Zirconium Alloys, 2007.

A. Monnier, Synthèse sur l'avancement 2009 et perspectives 2009-2012 de l'action concernant le soudage par résistance des gaines combustibles ODS pour RNR-Na, 2009.

R. Cazes, Soudage par résistance. Techniques de l, Ingénieur, vol.77201, 1993.

B. Kim, K. Hsieh, and F. Bostick, A three-dimensional finite element model for thermal effect of imperfect electric contacts, IEEE Transactions on Magnetics, vol.35, issue.1, p.170, 1999.
DOI : 10.1109/20.738397

M. Bahrami, J. Culham, and M. Yovanovich, Modeling Thermal Contact Resistance: A Scale Analysis Approach, Journal of Heat Transfer, vol.126, issue.6, p.896, 2004.
DOI : 10.1115/1.1795238

P. Rogeon, P. Carre, J. Costa, G. Sibilia, and G. Saindrenan, Characterization of electrical contact conditions in spot welding assemblies, Journal of Materials Processing Technology, vol.195, issue.1-3, p.117, 2008.
DOI : 10.1016/j.jmatprotec.2007.04.127

URL : https://hal.archives-ouvertes.fr/hal-00399101

F. Bowden and J. Williamson, Electrical Conduction in Solids. I. Influence of the Passage of Current on the Contact between Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.246, issue.1244, p.1, 1958.
DOI : 10.1098/rspa.1958.0102

A. Nikitina, R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors. DIANA I, 2011.

S. De-burbure, Resistance butt welding of dispersion-hardened ferritic steels, Advances in Welding Processes 3rd International Conference, p.216, 1974.

S. De-burbure, Resistance welding of pressurized capsules for in-pile creep experiments, Welding Journal, vol.57, p.23, 1978.

L. Zirker, J. Bottcher, S. Shikakura, C. Tsai, and M. Hamilton, Fabrication of oxide dispersion strengthened ferritic clad fuel pins, Argonne National Lab., IL, 1991.

M. Seki, K. Hirako, S. Kono, Y. Kihara, T. Kaito et al., Pressurized resistance welding technology development in 9Cr-ODS martensitic steels, Journal of Nuclear Materials, vol.329, issue.333, p.1534, 2004.
DOI : 10.1016/j.jnucmat.2004.04.172

D. Bremaecker and A. , Contrôle des soudures des bouchons supérieurs -Certificat

A. Delbrassine, Soudure par résistance -Qualification du procédé, 1983.

A. Monnier and F. Corpace, Avancement 2009 de l'étude de soudabilité des gainages combustibles ODS par soudage par résistance, 2009.

G. Sibilia, Modélisation du soudage par point: Influence des conditions interfaciales du procédé, Ecole polytechnique de Nantes, 2003.

A. Monnier, Etude et simulation du soudage par résistance de matériaux de contact

C. Tsai, W. Dai, D. Dickinson, and J. Papritan, Analysis and Development of A Real-Time Control Methodology in Resistance Spot Welding, SAE Technical Paper Series, p.339, 1991.
DOI : 10.4271/910191

J. Greenwood and J. Williamson, Electrical Conduction in Solids. II. Theory of Temperature-Dependent Conductors, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.246, issue.1244, pp.13-187, 1958.
DOI : 10.1098/rspa.1958.0103

J. Greenwood, Temperatures in spot welding, Brit. Weld. J, vol.8, p.316, 1961.

K. Bentley, J. Greenwood, P. Knowison, and R. Baker, Temperature distributions in spot welds, p.613

W. Rice and E. Funk, An analytical investigation of temperature distributions during resistance welding, Welding Journal, vol.46, p.175, 1967.

A. Chakalev, Evaluation of thermal state of metal in spot welding with help of a computer, Welding Production, vol.20, p.9, 1973.

H. Nied, The finite-element modeling of the resistance spot-welding process, Welding Journal, vol.63, p.123, 1984.

J. Gould, An examination of nugget development during spot-welding, using both experimental and analytical techniques, Welding Journal, vol.66, p.1, 1987.

D. Dickinson, C. Tsai, and O. Jammal, Modeling of resistance spot weld nugget growth: applications for the automotive industry: Society of Automotive Engineers, 1990.

E. Thieblemont, Modélisation du soudage par résistance par point, 1992.

J. Khan, L. Xu, and Y. Chao, Prediction of nugget development during resistance spot welding using coupled thermal???electrical???mechanical model, Science and Technology of Welding and Joining, vol.74, issue.12, p.201, 1999.
DOI : 10.1179/136217199101537789

V. Robin, A. Sanchez, T. Dupuy, J. Soigneux, and J. Bergheau, Numerical simulation of spot welding with special attention to contact conditions, Mathematical Modelling of Weld Phenomena, vol.6, p.997, 2002.

Z. Feng, S. Babu, B. Riemer, M. Santella, G. J. Kimchi et al., Modeling of resistance spot welds: Process and performance, Welding in the world, vol.45, p.18, 2001.

Y. Li, Z. Lin, S. Hu, and G. Chen, Numerical analysis of magnetic fluid dynamics behaviors during resistance spot welding, Journal of Applied Physics, vol.101, issue.5, p.10, 2007.
DOI : 10.1063/1.2472279

T. Dupuy, Simulation numérique du soudage par résistance

J. Bergheau, Apports de la modélisation numerique pour l'optimisation des procédés de soudage, 2003.

X. Lai, A. Luo, Y. Zhang, and G. Chen, Optimal design of electrode cooling system for resistance spot welding with the response surface method, The International Journal of Advanced Manufacturing Technology, vol.174, issue.1???3, p.226, 2009.
DOI : 10.1007/s00170-008-1478-5

K. Yeung and P. Thornton, Transient thermal analysis of spot welding electrodes, Welding Journal, vol.78, p.1, 1999.

L. Xu and J. Khan, Nugget growth model for aluminum alloys during resistance spot welding, Welding Journal, vol.78, p.367, 1999.

A. De, M. Thaddeus, and L. Dorn, Numerical Modelling of Resistance Spot Welding of Aluminium Alloy., ISIJ International, vol.43, issue.2, p.238, 2003.
DOI : 10.2355/isijinternational.43.238

F. Pennec, Modélisationdu contact métal-métal: application aux microcommutateurs MEMS RF, 2009.

S. Wang and S. Wp, Modeling Dynamic Electrical Resistance During Resistance Spot Welding, Journal of Heat Transfer, vol.123, issue.3, 2001.
DOI : 10.1115/1.1370502

E. Feulvarch, V. Robin, and J. Bergheau, Resistance spot welding simulation: a general finite element formulation of electrothermal contact conditions, Journal of Materials Processing Technology, vol.153, issue.154, p.436, 2004.
DOI : 10.1016/j.jmatprotec.2004.04.096

N. Kerstens and I. Richardson, Heat distribution in resistance upset butt welding, Journal of Materials Processing Technology, vol.209, issue.5, p.2715, 2009.
DOI : 10.1016/j.jmatprotec.2008.06.015

A. Monnier, B. Froidurot, C. Jarrige, R. Meyer, and P. Teste, A coupled-field simulation of an electrical contact during resistance welding. Electrical Contacts -2006, Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts. Ieee, pp.95-188, 2006.

M. Hamedi, H. Eisazadeh, and M. Esmailzadeh, Numerical simulation of tensile strength of upset welded joints with experimental verification, Materials & Design (1980-2015), vol.31, issue.5, p.2296, 2010.
DOI : 10.1016/j.matdes.2009.12.011

C. Srikunwong, Modélisation du procédé de soudage par points, 2005.

P. Rogeon and N. Laraqi, Modélisation du contact dissipitatif. SFT, 2009.

R. Linder, Les plans d'expériences: un outil indispensable à l'expérimentateur: Presses des Ponts, 2005.

E. Bachelet, High temperature materials for power engineering, pp.24-27, 1990.