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Abstract

Pervasive computing is an intuitive evolution of computing paradigms driven by the wide

adoption of mobile devices and wireless networks. It introduces a novel way to support users

in their everyday life based on open and dynamic environments populated with unobtrusive

services able to perform user tasks on the fly.

Nevertheless, supporting user tasks from a functional point of view is not enough to gain

the user’s satisfaction. Users instead require that their tasks meet a certain Quality of Service

(QoS) level. QoS is indeed an inherent and primary requisite of users going along with their

required tasks.

In the context of pervasive environments, fulfilling user tasks while delivering satisfactory

QoS brings about several challenges that are mainly due to the openness, dynamics, and limited

underlying resources of these environments. These challenges are mainly about (i) the lack of

common QoS understanding among users and service providers, (ii) determining and integra-

ting, on the fly, the services available in the environment and able to fulfill the functional and

QoS requirements of users, and (iii) adapting the provided services at run-time to cope with

QoS fluctuations and ensure meeting user requirements.

To cope with the aforementioned issues, we opt for a middleware-based solution. Middle-

ware represents indeed the appropriate software system to deal with common concerns of user

applications such as QoS. In particular, we opt for a specific kind of middleware, viz., Ser-

vice Oriented Middleware (SOM). SOM can leverage middleware technologies and the Service

Oriented Computing (SOC) paradigm to enable pervasive environments as dynamic service en-

vironments. Particularly, SOM can provide middleware services that allow for supporting QoS

of user applications offered by pervasive environments.

This thesis presents a QoS-aware service-oriented middleware for pervasive environments.
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Table of Content

The main contributions of this middleware are : (1) a semantic end-to-end QoS model that

enables shared understanding of QoS in pervasive environments, (2) an efficient QoS-aware

service composition approach allowing to build service compositions able to fulfill the user

functional and QoS requirements, and (3) a QoS-driven adaptation approach to cope with QoS

fluctuations during the execution of service compositions.

The proposed contributions are implemented within a middleware platform called QASOM

and their efficiency is validated based on experimental results.
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Chapter I

Introduction

1 Pervasive Computing

Pervasive computing [Bacon, 2002] is the intuitive evolution of computing paradigms driven

by the wide adoption of mobile devices and wireless networks. It introduces a novel way to

support users in their daily life based on open and dynamic environments populated with

unobtrusive services able to fulfill user tasks on the fly.

Pervasive computing assumes the presence of networked software and hardware resources in

the user surroundings offering various services to users, thus forming functionally-rich environ-

ments in which users are able to carry out their daily tasks on-the-fly in a dynamic way, i.e.,

without prior knowledge about available services.

Nevertheless, fulfilling the user’s desired tasks from a functional point of view is not enough

to gain the user’s satisfaction. Indeed, along with the functional requirements associated with

tasks, users have non-functional requirements which determine the degree of quality according

to which tasks are fulfilled. For instance, users are generally interested in fulfilling their tasks

using services with short response time and high availability. The response time and availability

represent non-functional aspects of services.

In computer science, and in particular in pervasive computing, non-functional aspects of

computer systems (including pervasive systems) are referred to as Quality of Service (QoS).

QoS is a broad research topic, which is widely addressed in the literature. In the context of

pervasive computing, several research efforts have been put forward to deal with emerging

challenges related to QoS.

Indeed, pervasive computing presents three key features bringing about QoS challenges.

First, pervasive computing represents a shift from static to dynamic environments in the sense

that the resources and services available in pervasive environments vary continuously and there

is no prior knowledge about their availability, whereas in static environments services offered

1
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to users are known and fixed in advance. Second, pervasive computing shifts the emphasis from

stationary environments with fixed infrastructures to ad hoc infrastructure-less environments

formed of mobile devices connected via wireless networks. Third, pervasive computing puts

a special emphasis on the use of resource-constrained devices (e.g., mobile phones) to fulfill

user tasks, which is different from, traditional computing environments relying on resource-rich

devices.

The shift from static, stationary and resource-rich environments to dynamic, ad hoc and

resource-constrained environments raises several challenges about the level of QoS provided to

users. To illustrate these challenges and explain the kind of situations that our research focuses

on, we present the following scenarios:

“This week, Bob’s diary contains three main things to do. On Thursday, Bob will go to the

hospital for a medical visit, on Friday, he will go to a commercial center for shopping, and for

the weekend he will go to a holiday camp. Below, we use these activities to show how pervasive

computing makes people’s life easier while we emphasize at the same time research issues related

to QoS.

Pervasive Medical Visit When he goes to the hospital, Bob has to move between different

places in the hospital to fulfill the activities entailed by the medical visit such as registration,

doctor diagnosis, getting medicines at the pharmacy and payment, which represents a long and

hard process especially for patients.

A second issue about the visit concerns the assignment of patients to doctors. Generally, Bob

knows a priori the doctor who will examinee him. Nevertheless, the availability of this doctor

can change with respect to many conditions. For instance, his doctor may be absent or too buzy

with new visits (e.g., due to some emergency cases unforeseen during the scheduling of visits).

In such cases, Bob has to ask for an assignment to another doctor.

To avoid such complicated situations and spare Bob from unnecessarily moving between

different places, medical visits in hospitals should be managed in a novel way. Let us imagine

the case where the hospital is considered as a pervasive environment offering various services

(e.g., registration, diagnosis, providing medicines and payment) to patients who are generally

holding mobile devices. Using his mobile phone, Bob can plan his medical visit while staying in

the waiting room of the hospital.

To do so, he submits a medical visit request to the hospital information system via the wire-

less connectivity offered by the hospital. The information system takes in charge the registration

of Bob given his medical information and returns the time and the cabinet of the visit. If the doc-
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Figure I.1 – Pervasive shopping scenario

tor’s availability changes in-between, the system assigns Bob dynamically to another available

doctor having the same specialty and informs Bob about the changes.

When the doctor examination is finished, the system automatically orders the medicines

subscribed by the doctor from the pharmacy of the hospital and informs Bob about the desk to

get these medicines. Bob can also pay for the whole set of services using his mobile phone and

credit card information.

Given the large number of patients, the hospital offers several services for each activity in

the medical visit. For instance, it provides several registration services operating simultaneously.

To offer a better medical visit to Bob, the information system attempts to select services with

the highest QoS such as the registration service with the shortest response time and highest

availability.

Pervasive Shopping The next day, Bob goes to a commercial center to buy a set of items.

Bob likes shopping since he considers it as an entertaining activity. However, Bob has to move

between several shops in order to determine shops selling the desired items with respect to the

total budget devoted to shopping. Visiting the plenty of shops in the commercial center represents

a fastidious task for Bob.

To cope with this issue, we propose a pervasive shopping scenario where commercial centers

are managed as pervasive environments and customers equipped with mobile devices can fulfill

their shopping in an easy way. According to our scenario, Bob can order his desired items using

his mobile phone while staying in the lounge hall of the commercial center.

To do so, Bob submits a request to a shopping platform offered by the commercial center.

The request comprehends two main elements (see Figure I.1) : (i) a composition of abstract

3
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shopping tasks (e.g., buying a book, and a DVD or a CD,..) providing the set of items to buy

and their descriptions, and (ii) Bob’s QoS requirements such as the total price of the items and

the availability of shopping services.

Based on Bob’s request, the shopping platform proceeds to the selection of shopping services

in the commercial center offering the required items and meeting Bob’s QoS requirements. All

services are published within a directory in the platform. Each service advertises the items to

sell, their features, their prices as well as its QoS capabilities.

The shopping platform proposes to Bob several compositions of shopping services meeting

his requirements. The proposed compositions are ranked according to their QoS. Bob has then

to choose a composition of shopping services, to purchase and pay the items, and to go to the

chosen shops in order to get these items.

To make our scenario even more dynamic, we further assume that Bob can fulfill his shop-

ping task either in a commercial center or in an open-air market. The latter environment

does not provide a shopping platform, it is rather completely formed of mobile and resource-

constrained devices. In this environment vendors use their devices to advertise their services,

whereas users fulfill their shopping using also their mobile devices. The fact of carrying out the

shopping task in an ad hoc environment brings about further challenges related to QoS.

Pervasive Entertaining For the weekend, Bob goes to a holiday camp. During his stay, he

wants to listen to some recent music, which may be offered by people staying in the same camp.

Related to this, we consider the holiday camp as a pervasive environment offering entertaining

services provided by people in the camp using their mobile devices.

Bob uses his mobile phone to submit a request, which comprehends the following services:

First, he wants to get the ‘Top 10’ list of songs of the month, then he wants to look for an

audio streaming or video streaming service for the first song in the list.

People staying in the camp can answer Bob’s request if they provide such services. When

several providers exist for each kind of services. Bob’s device should select those services offering

the highest QoS. For instance, it should select ‘Top 10’ services with the shortest response time

and audio or video streaming services with the highest encoding quality.

Bob wants to listen to music or watch a video clip while moving in the camp, which may

decline the quality of the audio or video stream. In this case, Bob’s device should select another

audio or video streaming service with a higher QoS.

The aforementioned scenarios highlight the importance of pervasive computing environ-

ments in people’s life. Nevertheless, without providing a satisfactory QoS to users, pervasive

computing looses much of its interest, hence the motivation of our research, which aims at es-
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tablishing a QoS-aware middleware solution allowing to select, compose and adapt, on-the-fly,

services available in pervasive environments and able to fulfill users tasks while meeting their

QoS requirements. Next, we first introduce the concepts of QoS and QoS awareness. Then,

based on the presented scenarios, we study QoS related issues in pervasive environments and

delimit the scope of our research.

2 QoS and QoS-awareness

The concept of QoS emerged in the late 70’ in the telecommunication and networking field to

cope with the decline of quality in traditional networks that operate on a best effort basis, that

is, networks do not give any guarantee about the quality of the communication. The concept

of QoS has then been about ensuring a certain quality level for communication. Subsequently,

QoS has increasingly gained interest and its use has been extended to cover several domains.

In computer science, in particular in pervasive computing, the term Quality of Service is

used to refer to the quality of a computer system (including a pervasive system). Despite the

broad literature about QoS, there is no agreed definition of this term. One of the earliest

definitions of QoS that is also the commonly used one states that QoS is a collective effect of

service performance, which determine the degree of satisfaction of a user of the service [ITU-T

Rec., 1993]. Here, the reader can notice how broad this definition is. Indeed, it gives no tangible

specification elements of the QoS concept. Similarly, most of QoS definitions proposed in the

literature are less than tangible [Crawley et al., 1998; ISO, 1994].

This is due to a number of factors that are mainly about using QoS for a wide range of

application domains and different kinds of systems. Indeed, each domain and system has its

specific QoS vision and semantics, hence the heterogeneity of QoS definitions.

In this thesis, we deem that it is awkward to give a prescriptive and valuable definition of

QoS due to the aforementioned reasons. However, to delimit the QoS concept, we deem that it is

more important to establish a concrete model for QoS that enables the effective understanding

of this concept. The required model should allow addressing QoS with respect to a specific

domain (e.g., pervasive computing in our case) and not in a general manner.

Once a QoS model is established, it is important to define the notion of QoS awareness

which deals with delivering satisfactory QoS to users using the established model as a basis for

QoS understanding in pervasive environments.

The notion of QoS-awareness is seldom defined in the literature. Wac [Wac, 2005] states

that QoS awareness is the fact of being aware of the user required QoS and of the QoS offered
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by various resources at the user’s location and time. Whereas Bellavista et al. [Bellavista et al.,

2007] define QoS-awareness as the capability of having full visibility of QoS variations, thus

enabling to perform adaptation countermeasures. A third definition is given by Wichadakul

et al. [Wichadakul et al., 2001]. The authors claim that an application is QoS-aware if the

application developer deploys QoS assurance services needed by the application to deliver the

required QoS.

The above definitions are heterogeneous and they consider QoS awareness from different and

complementary points of view. The first definition focuses on the fact of knowing and expres-

sing the required and the offered QoS of a system. The second definition considers the dynamic

aspect of QoS, which is about QoS fluctuations and the adaptation actions taken accordingly.

Whereas the third definition concentrates on using QoS-supporting services and mechanisms

to provide the intended QoS of the system. To intermingle the above aspects of QoS awareness,

we provide the following definition:

QoS awareness is the fact of (i) being aware of the QoS required by actors (e.g., users,

systems) operating within a computing environment (notably a pervasive environment), of the

QoS offered by resources available in this environment, and of the variations of the required and

offered QoS in time, as well as (ii) performing the set of actions leveraging the offered QoS to

meet the required one and eventually, improve it.

This definition is quite comprehensive and makes it easier to delimit the notion of QoS

awareness in pervasive computing environments. If a pervasive system has continuous knowledge

about QoS requirements of the user and the QoS offered by services available in the environment,

and if the system performs the set of actions allowing to meet the user’s required QoS and

eventually improve it, then this system is considered as QoS-aware.

3 QoS Issues in Pervasive Environments

In this section, we aim at determining key research issues related to QoS awareness in per-

vasive environments. Based on the application scenarios described in Section 1, we roughly

distinguish four main QoS awareness issues in pervasive environments: (i) establishing QoS-

enabling specifications (i.e., specifications enabling QoS awareness in pervasive environments),

(ii) QoS-aware service discovery, (iii) QoS-aware service composition and (iv) QoS-driven com-

position adaptation.
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3.1 QoS-enabling specifications

A first step towards QoS awareness in pervasive environments consists in establishing QoS-

enabling specifications. The way QoS is specified has indeed a substantial impact on QoS

provision in such environments. In order to address QoS specification, two major steps are

required. First, defining a QoS model that enables the effective understanding and use of QoS.

Second, using the specified model to describe QoS-aware services.

• QoS modelling. QoS modelling provides the appropriate ground for QoS provisioning in

pervasive environments. It consists in identifying and formalizing QoS-related concepts

(such as QoS properties, their classification and their associated metrics) as well as the

relations among them. A key issue towards QoS modelling is the heterogeneity of QoS

vocabulary and semantics in pervasive computing environments. Indeed, users and service

providers operating in such environments use different QoS models. To cope with this issue

and enable interoperability between these actors, QoS models should be specified in a way

that enables a common understanding of QoS.

• QoS-aware service specification. Assuming a QoS model is established, a second issue to

be addressed is how to use this model for specifying QoS-aware services. This concerns

integrating QoS specifications within services descriptions. QoS-aware service specification

should be addressed at two levels: first specifying the user task and its associated QoS

requirements ; second, specifying concrete services available in pervasive environments

and their QoS descriptions.

3.2 QoS-aware service discovery

As illustrated by the scenarios of Section 1, users do not have prior knowledge about the

kind of services available in pervasive environments. To cope with this issue, a QoS-aware

service discovery phase is required to determine the set of services able to fulfill the task and

QoS requirements of the user. QoS-aware service discovery involves matching the functionalities

and QoS required by users to the functionalities and QoS offered by services available in the

environment. The way the matching is carried out deeply impacts the spectrum of services

proposed to users, notably the number of provisioned services and the extent to which they fit

the functionalities and QoS required by users.
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3.3 QoS-aware service composition

In the scenarios presented in Section 1, we can clearly notice that users are generally de-

manding in the sense that they ask for complex tasks that cannot be fulfilled by a unique

service, but rather by the composition of multiple services. Additionally, the devices operating

in pervasive environments are generally resource-constrained. Thus, the services hosted by such

devices are basic, in the sense that they offer simple functionalities and do not require a lot of

resources. Therefore, it is hard to assume that a complex task required by users can be fulfilled

by a unique service. Rather complex tasks are to be realized by the composition of several basic

services offered by different providers in the environment.

Therefore, QoS-aware service composition is required to compose services able to fulfill the

user task while considering their QoS aspects. Given the possibility to discover several services

that are functionally equivalent, a primary issue towards QoS-aware service composition is to

determine the set of services able to meet QoS requirements and provide the highest QoS to

the user.

To address this issue, QoS-aware service selection algorithms are required. QoS-aware service

selection can be carried out in two ways. One is the greedy way, which consists in choosing

the service with the highest QoS for each functionality in the user task. This solution has a

low computational cost but it does not guarantee providing the composition with the highest

QoS. A solution with a higher QoS may be found by applying global QoS-aware selection

algorithms (selection covering the scope of the whole composition), which is known to be NP-

hard [Ben Mabrouk et al., 2009]. In the context of pervasive computing environments, global

QoS-aware selection is even more challenging since it should be fulfilled on-the-fly, hence the

time available for services’ selection and composition is limited with regard to the computational

complexity of the problem.

3.4 QoS-driven composition adaptation

QoS-aware service composition is generally carried out based on QoS advertised by service

providers in pervasive environments. However, when executing service compositions, the effec-

tive QoS provided by their constituting services may fluctuate compared with the advertised

one. This is due to many reasons, including services’ failure and the dynamics of pervasive

environments such as user mobility or the decline of wireless connectivity. To cope with these

issues, service compositions have to be adapted dynamically at run-time with respect to QoS

fluctuations, to which we refer to as QoS-driven composition adaptation.

QoS-driven composition adaptation requires a preliminary step of QoS monitoring in order
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to determine the effective QoS provided by services at run-time. Based on the monitored QoS,

QoS-driven adaptation can be carried out. It roughly consists in defining a set of adaptation

actions and a set of rules controlling these actions. Adaptation actions induce changes on service

compositions, which affect such aspects like their behaviours or their constituting services.

The main issue towards QoS-driven adaptation is about applying these changes dynamically

without interrupting the execution of running compositions. That is, adaptation actions should

be applied in a flexible manner, in order to alter service compositions without inducing major

impacts on their executions.

To cope with the above QoS issues in pervasive environments, next we introduce a QoS-

aware service-oriented middleware solution for pervasive environments.

4 Towards QoS-aware Service-Oriented Middleware for

Pervasive Environments

To address the aforementioned QoS research issues in pervasive environments, there is a

number of questions that should be investigated. These questions are mainly about computing

paradigms and methods that are appropriate for designing and building a QoS-aware software

solution leveraging services available in pervasive environments to meet QoS requirements and

to provide the highest QoS to users.

A first question towards this purpose concerns the software engineering paradigm to adopt

in order to realize the required system. When we study the evolution of QoS-aware software

systems, we can notice that the proposed solutions evolve along with the advancement of

software engineering paradigms.

Early solutions proposed in this context are based on the Object Oriented Programming

(OOP) paradigm. They are designed and built as distributed object-oriented middleware plat-

forms, which aim at providing QoS management support for distributed object-oriented appli-

cations. TAO [Schmidt et al., 1997], QuO [Vanegas et al., 1998], the Lancaster’s Adapt project

[Coulson et al., 1999] and the EPIQ project of the University of Illinois [Shankar et al., 1999]

fall in this category.

Later, with the emergence of the component-based software engineering (CBSE), QoS-aware

software systems shift to component-based technologies. Several QoS-aware platforms have been

put forward in this context. 2KQ+ [Nahrstedt et al., 2001; Wichadakul et al., 2001], CIAO

[Balasubramanian et al., 2003], QuAMobile [Amundsen and Eliassen, 2006] and the TAPAS

project [Dept and Lodi, 2002] are some examples of research efforts proposed in this context.
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Software engineering paradigms continue to evolve to cope with issues brought about in

CBSE such as the heterogeneity of component technologies and the tight coupling between

components, which led to the emergence of the Service Oriented Computing (SOC) paradigm

[Koskela et al., 2003]. SOC introduces the concept of service as a fundamental building block

of distributed applications. Services extend the characteristics of components with important

features such as standard interface description independent from implementation technology,

loose coupling, autonomy, openness and contracting ability between services.

SOC introduces the Service Oriented Architecture (SOA), which represents a concrete ar-

chitectural view of SOC. SOA defines an interaction pattern based on three main entities: (i)

service consumer, (ii) service provider, and (iii) service repository that provides facilities to

discover services and acquire information needed for their usage. These entities interact with

each other using a set of standard specifications and protocols ; in the Web Services, one of the

dominant SOA technologies, these are WSDL, SOAP, and UDDI.

Based on the above interaction pattern, SOA advocates interaction between services without

prior knowledge of services’ specifications. In particular, SOA puts special emphasis on the

composition of independently built services in order to form coarse-grained services enabling

users to carry out more complex tasks [Koskela et al., 2003].

SOA is further important if we consider it from a QoS point of view. Indeed, a lot of research

efforts have been devoted to QoS-related issues in the context of SOA [Hilari, 2009]. These efforts

yield a set of QoS standard specifications and QoS-supporting methods and techniques that

can be investigated to address QoS concerns in the context of pervasive computing [Issarny

et al., 2011].

Based on the chronological evolution of software engineering paradigms, and given the afo-

rementioned features of SOC (notably SOA), we believe that SOC is the appropriate software

engineering paradigm to deal with QoS awareness issues in pervasive environments, namely

QoS-aware service specification, discovery, composition and adaptation.

Dealing with QoS awareness issues can be carried out at different levels of networked soft-

ware systems. Indeed, networked software systems can be divided into three broad classes :

(i) Applications, (ii) Middleware, and (iii) Operating Systems (OS). Applications are those

software systems realizing the functionalities required by the user. OS are software systems

needed to interact with the hardware infrastructure underlying computer systems and net-

works. Middleware is the broad class of software lying in-between Applications and Operating

Systems. Middleware represents a broad concept, which is used for multiple purposes such as

(to name a few) hiding the complexity of OS implementations, coping with the heterogeneity

of OS technologies, enabling interoperability between distributed user applications, and imple-
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menting reusable services to support user applications. Focusing on the latter role, middleware

offers unique reusability advantages through the provision of functionalities addressing common

aspects of user applications such as QoS. Given the above reasons, we deem that middleware is

the most appropriate software system to deal with QoS awareness issues in pervasive environ-

ments. As we opt for a service oriented solution, we employ Service Oriented Middleware (SOM)

to address QoS awareness. SOM leverages middleware technologies and the Service Oriented

Computing (SOC) paradigm to enable pervasive environments as dynamic service environments,

and to deal with pervasive computing challenges, notably QoS awareness. Hence, our solution

is implemented as a QoS-aware service-oriented middleware for pervasive environments.

Nevertheless, our middleware puts special emphasis on the fact that pervasive computing

has unique characteristics in addition to typical service oriented computing due to the dynamics

and limited resources of pervasive environments [Issarny et al., 2011] as discussed in detail in

Section 1. These characteristics call for advanced QoS awareness solutions to be provided by

SOM for pervasive computing.

With this in mind, we aim at establishing a QoS-aware service-oriented middleware that is

specifically designed for pervasive computing environments. Our ambition is to provide novel

QoS awareness solutions fitting the specific characteristics of pervasive environments. Next,

we give an overview of our middleware while highlighting its contributions, then we detail the

structure of this document.

5 Thesis Contribution and Document Structure

In this thesis, we introduce a QoS-aware service-oriented middleware for pervasive environ-

ments. As depicted in Figure I.2, our middleware addresses QoS-aware service specification,

composition and adaptation in pervasive environments. However, we do not deal with QoS-

aware service discovery for two main reasons. First, to limit the scope of our research. Second,

because we deem that significant efforts have been put forward in this context (e.g., [Ben Mo-

khtar, 2007]).

Our solution starts from the assumption that users in pervasive environments submit requests

to our QoS-aware service-oriented middleware (supposed to be installed on their mobile devices)

in order to accomplish their desired tasks. User requests comprehend two main parts:

1. Functional requirements, which describe the task required by the user (e.g., the shopping

task with respect to our scenario presented in Section 1). The user task is defined as

a composition of abstract activities (e.g., purchase a book, purchase MP3 player and
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Figure I.2 – Thesis overview

headphones, etc.) structured with respect to given execution patterns (also known as

composition patterns) such as sequential, parallel, and conditional execution.

A key assumption in our research is that the user task can be accomplished in several

ways, i.e., using various compositions of abstract activities. For instance, the shopping

task can be carried in different ways by changing the order in which shopping activities are

executed, or by changing the granularity of shopping activities, i.e., splitting (respectively

merging) shopping activities into simpler (respectively more complex) ones. To support

more than one possible way of realizing the user task, we introduce the novel concept of

Task Class, which defines several compositions of abstract activities that are functionally
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equivalent, i.e., they allow to fulfill the same user task. A task class is stored within a Task

Class Repository that makes part of our QoS-aware service-oriented middleware. The goal

of the task class repository is to provide abstract descriptions of the tasks offered by the

pervasive environment, and to assist users in expressing their desired tasks. Once the user

task is defined, it is later transformed into a concrete service composition by binding a

concrete service offered by the pervasive environment to each abstract activity in the user

task.

2. QoS requirements, which describe the set of constraints imposed by the user on QoS

properties associated with the required task (e.g., the total price and execution time of

the shopping task). Given the heterogeneity of actors in pervasive environments, users

and service providers may use different vocabularies to define the required and offered

QoS. To cope with this issue, QoS properties required by the user are mapped to those

offered by concrete services (available in pervasive environments) using a common QoS

model.

Once the user request is defined, our QoS-aware service-oriented middleware processes the user

request through the selection and composition of concrete services available in pervasive en-

vironments and able to meet the functional and QoS requirements of the user. To do so, we

introduce a novel service selection algorithm designed with respect to major requirements of

service selection in pervasive environments, notably timeliness, adaptation support and distri-

butivity.

Our algorithm produces several concrete service compositions meeting the user require-

ments, but providing different levels of QoS. That is, our algorithm selects several concrete

services to each abstract activity in the user task. When actually executing the composition,

QoS of services is monitored and assessed at run-time (to which we refer to as run-time QoS

of services), and just in time, only one service is bound to each activity in the user task, which

is known as Dynamic Binding of services [Di Penta et al., 2006; Pautasso and Alonso, 2005].

Dynamic binding consists in binding services to abstract activities just before invoking these

services, thus allowing to cope with the difference between the QoS advertised by service pro-

viders and the run-time QoS of services. In our thesis, we do not deal with dynamic binding,

but rather adopt existing dynamic binding approaches e.g., [Châtel et al., 2010].

During the execution of the selected composition, the QoS provided by the services forming

the composition may fluctuate due to the dynamically changing conditions of pervasive envi-

ronments (e.g., services may join and leave the environment, user mobility, etc.). The running

composition must then be adapted accordingly. Towards this purpose, our middleware sup-
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ports QoS-driven composition adaptation at run-time through the provision of two adaptation

strategies: (i) service substitution, which consists in replacing services providing unsatisfactory

QoS with alternative services. If service substitution cannot be accomplished (i.e., there are no

substituting services), our middleware proceeds to (ii) behavioural adaptation, which is based

on the task class concept introduced above. It consists on fulfilling the user task using an alter-

native behaviour, i.e., an alternative composition of abstract activities defined in the task class

repository. Based on the alternative behaviour, service selection and composition is performed

again and a new service composition is built to accomplish the user task.

In accordance with the above highlighted contributions, we organize the remainder of this

document as follows:

• Chapter II is devoted to the state of the art of QoS-aware service-oriented middleware.

It is structured with respect to key functionalities provided by such middleware, notably

QoS-enabling specification, QoS-aware service discovery, QoS-aware service composition

and QoS-driven composition adaptation.

• Chapter III presents the first contribution of this thesis, which consists in a QoS model

that provides the appropriate ground for QoS awareness in pervasive environments.

• Chapter IV presents our QoS-aware service composition approach for pervasive envi-

ronments. Our approach aims at building service compositions able to fulfill the user task

while meeting its associated QoS requirements. Particularly, our approach focuses on the

specific problem of QoS-aware service selection under global QoS requirements (i.e., re-

quirements imposed on the whole service composition), which is known to be NP-hard

[Yu et al., 2007]. To solve this issue, we propose a novel efficient heuristic algorithm based

on clustering techniques. Our algorithm represents a key contribution of this thesis.

• Chapter V presents our QoS-driven composition adaptation approach and its underlying

adaptation strategies (i.e., service substitution and behavioural adaptation). In this chap-

ter, we specifically focus on the behavioural adaptation strategy, which consists in finding

an alternative composition of abstract activities having a different structure (i.e., coordi-

nated with respect to different composition patterns) or a different activities granularity.

To do so, we first introduce the task class concept. Then, we show how to reduce behaviou-

ral adaptation to a graph comparison problem, more specifically graph homeomorphism

determination problem. Using graph homeomorphism determination introduces a novel

idea towards behavioural adaptation and represents another important contribution of

this thesis.

• Chapter VI presents QASOM, a prototype implementation of our QoS-aware service-
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oriented middleware. Based on this prototype, we present experimental evaluations to

assess the efficiency of our middleware.

• Chapter VII summarizes the contributions of this thesis and discusses future research

issues related to the studied topic.
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Chapter II

QoS-aware Service-Oriented Middleware: State

of the Art

As introduced in the previous chapter, we opt for a QoS-aware service-oriented middleware

solution to address QoS awareness in pervasive computing environments. A first step towards

this purpose consists in studying the state of the art of QoS-aware service-oriented middleware

and determine their pros and cons.

To make our survey comprehensive, we study QoS-aware service-oriented middleware in the

context of Service Oriented Computing (SOC) in general, while focusing on those middleware

solutions addressing service-oriented pervasive environments. Briefly stated, QoS-aware service-

oriented middleware supports QoS awareness in service environments through the provision

of a set of key functionalities dealing with QoS specification, QoS-aware service discovery,

composition and adaptation.

In accordance with the above, our survey is structured with respect to the key functiona-

lities provided by QoS-aware service-oriented middleware. We start by giving an overview of

QoS-aware service-oriented middleware in the service oriented community and service-oriented

pervasive computing community. Then, we focus on key functionalities provided by QoS-aware

service-oriented middleware, viz., (i) QoS-enabling specifications (i.e., specifications enabling

QoS awareness), (ii) QoS-aware service discovery, (iii) QoS-aware service composition, and (iv)

QoS-driven composition adaptation.

1 QoS-aware Service-Oriented Middleware

Service Oriented Middleware (SOM) is a key enabler of service-oriented computing as it

supports the service-oriented interaction pattern through the provision of proper functionalities

for deploying, publishing, discovering, accessing, composing and adapting services at run-time
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[Issarny et al., 2011].

The above functionalities provided by SOM are challenged by several cross-cutting require-

ments, notably QoS awareness [Maia et al., 2009]. Indeed, performing user tasks while delivering

satisfactory QoS requires bringing QoS awareness to all the stages (i.e., specification, discovery,

composition and adaptation of services) needed to achieve the user task. That is, service spe-

cification, discovery, composition and adaptation must be “QoS-aware”.

Towards this purpose, significant research efforts have been devoted to QoS-aware service-

oriented middleware in the service oriented community. A first class of middleware present frag-

mented solutions to QoS awareness as they address only a specific functionality of QoS-aware

service-oriented middleware such as service composition (e.g., middleware platforms presented

in [Kuehne et al., 2010; Van Hoecke et al., 2005; Zeng et al., 2004]) or service adaptation (e.g.,

SIROCCO [Fredj, 2009] and middleware platforms presented in [Erradi et al., 2006; González

and Ruggia, 2010; Zhai et al., 2009]). A second class of middleware (e.g., METEOR-S [Verma

et al., 2005], DySOA [Siljee et al., 2005], A-WSCE [Chafle et al., 2006], SCENE [Colombo

et al., 2006], PAWS [Ardagna et al., 2007], VRESCo [Rosenberg, 2009] and the middleware

platform presented in [Cavallaro, 2010]) present more comprehensive solutions to QoS awa-

reness in service-oriented environments as they deal with major functionalities of QoS-aware

service-oriented middleware. A particular category of QoS-aware service-oriented middleware

concentrate on a specific aspect of QoS such as reliability and fault tolerance [Erradi and

Maheshwari, 2005; Kareliotis et al., 2009; Zheng and Lyu, 2008].

Along with the emergence of pervasive computing, QoS-aware service-oriented middleware

has been increasingly adopted to deal with QoS awareness concerns in pervasive environments.

Related to this, several middleware platforms have been proposed in the literature, e.g., Spider-

Net [Gu, 2004], Amigo [Ben Mokhtar et al., 2005], Aura [Sousa et al., 2006], PICO [Kalasapur

et al., 2007], MUSIC [Rouvoy et al., 2009], MySIM [Ibrahim et al., 2009], PERSE [Ben Mokhtar,

2007] and DAMS-SS [Dutra and Junior, 2010].

QoS-aware service-oriented middleware dealing with pervasive environments focuses on pro-

viding advanced solutions to QoS-aware service specification, discovery, composition and adap-

tation that are customized to the specifics of pervasive environments, notably the dynamics and

resource limitations of these environments. Next, we detail the state of the art of each func-

tionality provided by QoS-aware service-oriented middleware, while highlighting the solutions

that are more suitable for pervasive environments.
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2 QoS-enabling specifications

Our study of QoS-aware service-oriented middleware starts from the analysis of their QoS-

enabling specifications. Related to this, two specifications should be addressed: (i) QoS models

and (ii) Quality-Based Service Description (QSD) [Benbernou et al., 2010], i.e., the way QoS

models are used to specify QoS-aware services.

2.1 Taxonomy of QoS models

As introduced in the previous chapter, QoS is a broad concept and there is no agreed defini-

tion neither a standard model for it. Accordingly, QoS-aware service-oriented middleware rely

on heterogeneous QoS models. These models can be classified with respect to their underlying

QoS properties and their specification language (see Figure II.1).

Figure II.1 – Taxonomy of QoS models

• Generic vs. Specific QoS models. QoS models can be divided into specific and generic

models with respect to their underlying QoS properties. Specific QoS models define a

limited number of QoS properties that are generally about commonly used QoS properties

such as response time, cost, availability and reliability. ASOB [Kareliotis et al., 2009],

DAMS-SS [Dutra and Junior, 2010] and the middleware presented in [Zhai et al., 2009]

use specific QoS models.

Generic QoS models are comprehensive models in the sense that define an extensive

categorization of QoS properties. VRESCo [Rosenberg, 2009], Amigo [Ben Mokhtar et al.,

2005] and PERSE [Ben Mokhtar, 2007] are based on generic QoS models. For instance,

Amigo and PERSE define a QoS model with five categories: Performance, Reliability,

Cost, Security and Transaction. Each category comprehends one or more QoS properties.

Regarding the openness of pervasive environments, generic QoS models are deemed more

suitable to address QoS awareness as they cover more QoS properties that are required

by users and service providers. However, generic QoS models are more complex to handle
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(compared with specific QoS models) as their expressiveness attempts to cover all QoS

properties with their specific semantics.

• End-to-end vs. Service-centred QoS models. QoS models proposed by QoS-aware service-

oriented middleware can be also divided into: (i) service-centred models, which focus only

on the QoS properties of application services (e.g., models proposed in[Kareliotis et al.,

2009; Zhai et al., 2009]) and (ii) end-to-end QoS models which consider all the factors

having impact on the QoS delivered to users. These factors include application services

as well as their underlying software, network and hardware infrastructure. In pervasive

environments, the infrastructure underlying application services may considerably affect

QoS provisioning, due to the usage of wireless network and resource-constrained devices.

Therefore, considering QoS on an end-to-end basis represents a key requisite of QoS

modelling in pervasive computing. Related to this, several middleware platforms define

QoS on an end-to-end basis. Yang et al. [Yang et al., 2009] propose the QoPS model

(quality of pervasive services) that considers both user-perceived QoS properties (i.e.,

availability, reliability, price and delay) as well as network QoS properties (i.e., node

availability and network delay and reliability). QoPS further formulates the relationship

between the user-perceived and network QoS properties.

Another interesting model is proposed by Chang and Lee [Chang and Lee, 2009]. The

authors define a quality model with three dimensions: (i) QoS (Quality of Service) that

considers quality properties measurable during the execution of services, (ii) QoC (Quality

of Content) that deals with the precision and correctness of the information processed by

services and (iii) QoD (Quality of Device) that addresses the processor speed, memory

capacity and power of devices underpinning the provision of services.

Another end-to-end QoS model called DSS (Degree of Service Satisfaction) is proposed by

ASPF (Adaptive Service Provision Framework) [Zhang et al., 2006]. DSS is a hierarchical

model that considers the network QoS properties (e.g., bandwidth, latency) as well as

the device capabilities (e.g., battery life, screen size). In the same way, Zhang et al.

[Zhang et al., 2007] present a layered end-to-end QoS model including user, application,

environment and resources QoS properties.

• Syntactic vs. Semantic QoS models. QoS models can be divided into syntactic and se-

mantic models with respect to their ability to express the semantics of QoS concepts.

Syntactic QoS models specify QoS concepts using a predefined syntax with implicit se-

mantics. Thus, users and service providers must use the same syntax to define the required

and offered QoS.

Semantic QoS models (e.g., QoS ontologies) explicitly define the semantics of QoS concepts
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and the relationship between these concepts. Such QoS models enable reasoning on QoS

concepts and inferring matches between them. Hence, users and service providers can use

different QoS syntax to define the required and offered QoS.

Employing syntactic QoS models requires establishing an agreement between users and

service providers about a common QoS syntax, which is hard to achieve in open pervasive

environments. For this reason, semantic QoS models represent a more suitable solution to

QoS description in pervasive environments. However, the usage of semantic QoS models

implies reasoning on QoS descriptions on-the-fly at run-time in order to infer matches

between the required and offered QoS, which calls for efficient semantic reasoning solu-

tions. In the literature, VRESCo [Rosenberg, 2009] and ASOB [Kareliotis et al., 2009]

use syntactic QoS models, whereas METEROR-S [Verma et al., 2005], Amigo [Ben Mo-

khtar et al., 2005], PERSE [Ben Mokhtar, 2007] and DAMS-SS [Dutra and Junior, 2010]

propose semantic QoS models based on the OWL semantic language 1.

2.2 Quality-Based Service Description (QSD)

Figure II.2 – Taxonomy of QoS-aware service specifications

QSDs are defined by embedding QoS specifications (i.e., established based on QoS models)

into the description of services. This can be carried out according to two approaches (see Figure

II.2). In the black-box approach (e.g., ASOB [Kareliotis et al., 2009], QuAMobile [Amundsen and

Eliassen, 2006]), QoS specifications are associated to services wrapped as black boxes. That is,

the specified QoS concerns the whole service entity. In the white-box approach, QoS specifications

are associated to the functional behaviour of services. More specifically, QoS specifications are

associated with elementary parts (i.e., known in the literature as operations [Ben Mokhtar

et al., 2007]) forming the service’s functional behaviour. For instance, PERSE [Ben Mokhtar,

2007] represents the functional behaviour of services as conversations. A conversation is a set

1. OWL:http://www.w3.org/TR/owl-features/
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of operations coordinated by control constructs (e.g., sequence, parallel, loop). In PERSE,

QSDs are defined by associating QoS descriptions to elementary operations forming the service

conversation.

The black-box approach is generally used when addressing atomic services with simple

behaviours (i.e., a single operation). However, the white-box approach is more suitable for long

running services with complex behaviours (i.e., various operations, each characterized with

a different QoS). The main issue of the white-box approach is that it requires the existence

of services’ behavioural specifications, which is not always possible, i.e., depending on service

information offered by service providers. A particular QSD is presented by VRESCo [Rosenberg,

2009]. The authors define QoS-aware service compositions using three layers: (i) service layer,

(ii) choreography layer, and (iii) orchestration layer. The first layer defines QoS attributes

associated with atomic services forming the composition. The second layer gives a peer-to-peer

view of QoS in the composition. It specifies QoS agreements (viz., SLA) established between

atomic services of the service layer. The third layer gives a centralized view of QoS. It focuses

on aggregating QoS of atomic services in order to determine the overall QoS of the composition.

Finally, QSDs can be further divided into syntactic and semantic specifications depending

on their underlying QoS models (i.e., syntactic or semantic QoS models). A hybrid approach is

presented by PICO [Kalasapur et al., 2007]. The authors define QoS-aware services based on

two-layers. The first layer describes the semantic concepts associated with services’ functions,

inputs and outputs, whereas the second layer describes the syntactic types of services’ functions,

inputs and outputs. For example, a service has an input that is defined using the semantic

concept ‘name’and the syntactic type ‘text’.

3 QoS-aware Service Discovery

QoS-aware service discovery is a fundamental functionality of QoS-aware service-oriented

middleware. It allows for determining service candidates that may fulfill the user’s required

task from the functional and QoS point view. QoS-aware service discovery involves matching

the required task and its associated QoS requirements to services available in the environment.

The way the matching is carried out impacts the spectrum of discovered services, notably the

number of discovered services and the extent to which they fit the user’s required task and

QoS. Related to this, we distinguish three main criteria allowing to compare QoS-aware service

discovery approaches:

• Syntactic vs. Semantic QoS-aware service discovery. QoS-aware service discovery ap-
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proaches can be syntactic or semantic depending on their underlying QoS models (i.e.,

syntactic or semantic QoS models). Syntactic discovery approaches (e.g., VRESCo [Ro-

senberg, 2009]) impose using the same syntax to describe the required and offered QoS.

Hence, they provide services that fully correspond to user requirements. However, such

discovery approaches constrain the number of discovered services as they disregard ser-

vices that fit the user requirements but use a different QoS syntax.

Semantic QoS-aware service discovery approaches (e.g., METEROR-S [Verma et al.,

2005], Amigo [Ben Mokhtar et al., 2005], PAWS [Ardagna et al., 2007], PERSE [Ben Mo-

khtar, 2007], DAMS-SS [Dutra and Junior, 2010]) infer matches between heterogeneous

QoS terms used to describe the required and offered QoS, hence determining all services

in the environment that are able to fulfill the required QoS. Semantic discovery enables

taking advantage of the full potential of pervasive environments (in terms of available

services), however it requires performing semantic reasoning on services’ descriptions on-

the-fly.

• Black-box vs. White-box QoS-aware service discovery. QoS-aware service discovery ap-

proaches can be divided into black-box and white-box approaches with respect to the

type of QoS-aware services’ specifications. Black-box discovery (e.g., Amigo [Ben Mokh-

tar et al., 2005], PAWS [Ardagna et al., 2007]) performs the matching between the required

task and services available in the environment based on their profiles. The service pro-

file presents a high-level description of the service comprising its provided functionalities

as well as its Inputs, Outputs, Preconditions and Effects (collectively denoted as IOPEs

[Issarny et al., 2011]).

White-box discovery performs a more refined matching, which is based on services’ pro-

files, but also their behaviour. The service behaviour specifies the observable supported

execution patterns (often called conversations) of the service in coordination with its

environment that allow the service to produce meaningful results [Issarny et al., 2011].

White-box discovery guarantees a full compatibility between the required task and the

offered services since it addresses not only what is required by users, but also the way

it is fulfilled. However, it may limit the number of discovered services since it discards

the services able to meet the functional and QoS requirements of users, but having a

different behaviour (than the one required by users). Related to this, white-box discovery

is generally used when a specific behaviour is needed ; this is particularly true when the

user task comprehends long-running services with complex behaviours.

METEROR-S [Verma et al., 2005] performs QoS-aware service discovery based on servi-

ces’ profiles, but also based on their interaction protocols. The authors represent interac-
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tion protocols as activity diagrams and use a protocol mediation module to ensure that

interaction protocols required by users are satisfied by service candidates.

4 QoS-aware Service Composition

Given the potential existence of functionally equivalent services in pervasive environments,

the user task can be fulfilled by one or more service compositions, which are functionally

equivalent but providing different QoS levels. The aim of QoS-aware service composition is

to select and assemble service compositions that: (i) meet the QoS requirements of the user,

and (ii) maximize the offered QoS. To do so, QoS-aware service selection algorithms should be

established. These algorithms represent indeed a key feature of QoS-aware service composition.

Related to this, we structure the state of the art of QoS-aware service composition with

respect to five criteria describing the way of assembling compositions and selecting their un-

derlying services (see Figure II.3) : (i) the service assembly approach, (ii) the scope of QoS

constraints imposed on the composition (i.e., whether QoS constraints cover the whole service

composition or an abstract activity of the composition), (iii) the way the selection problem is

modelled, (iv) the adopted strategy to resolve the problem, and (v) the technique used to select

service compositions.

4.1 Service assembly approach

A first criterion to evaluate QoS-aware service composition concerns the service assembly

approach. This criterion is generally associated with service composition from a functional point

of view. In our survey, we are interested in the service assembly approach as it determines the

way of exploring and selecting service compositions form a QoS point of view also.

Related to this, we distinguish the (i) template-based approach, (ii) graph-based approach

and (iii) AI planning. The template-based approach (e.g., PAWS [Ardagna et al., 2007]) assumes

that the user task is defined as template formed of a set of abstract activities coordinated using

composition patterns (sequence, parallel, choice, loop). To realize the user task, QoS-aware

service-oriented middleware proceeds through the discovery and selection of services based on

the considered template ; one or more services are then bound to each abstract activity in the

user task.

The graph-based approach assumes that the user task is defined as a set of abstract activities

(i.e., disregarding the way these activities are coordinated). Each activity is described with

its function, inputs and outputs. The graph-based approach (e.g., PICO [Kalasapur et al.,
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Figure II.3 – Taxonomy of QoS-aware service composition

2007]) proceeds through the construction of a global graph representing all possible service

compositions in the environment. The global graph is built by matching services’ inputs to

services’ outputs. Then, the user task is built by exploring the global graph in order to find a

path (of services) that satisfies the functionalities, inputs and outputs given by the user.

A third service assembly approach is AI planning (e.g., A-WSCE [Chafle et al., 2006]). This

approach requires only the inputs and outputs respectively consumed and produced by the

user task. AI planning performs forward and/or backward chaining of services available in the

environment in order to find a sequence of services that consumes and produces the considered

inputs and outputs, respectively.

The graph-based and AI planning approaches do not support service composition structu-

red with respect to composition patterns (sequence, parallel, choice, loop), they only produce

simple sequences of services able to fulfill the user task. On the other hand, the template-based

approach requires defining the structure of the user task (in terms of abstract activities and

composition patterns), which puts more responsibility on the user side. Therefore, the adoption
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of a service assembly approach depends on the trade-off between supporting simple service

composition (i.e., sequences of services) and imposing to users to define their required tasks in

detail.

4.2 Scope of QoS constraints

QoS-aware selection algorithms aim at selecting service compositions under a number of

QoS constraints. We distinguish two types of QoS constraints: global and local constraints,

which respectively denote QoS constraints imposed on the whole user task, and constraints

imposed on individual activities forming the user task. The type of QoS constraints has sub-

stantial impact on the complexity of selection algorithms since QoS-aware selection under glo-

bal QoS constraints is NP-hard [Yu et al., 2007], whereas QoS-aware selection under local QoS

constraints is of linear complexity [Yang et al., 2009].

Most of the algorithms proposed in the literature (e.g., Amigo [Ben Mokhtar et al., 2005],

Aura [Sousa et al., 2006], PICO [Kalasapur et al., 2007], SCENE [Colombo et al., 2006], PAWS

[Ardagna et al., 2007], Daidalos [Funk et al., 2007], PERSE [Ben Mokhtar, 2007]) focus on

QoS-aware service selection under global QoS constraints since it is a challenging task that

should be taken up, whereas selection under local QoS constraints (e.g., [Yang et al., 2009]) is

seldom addressed in the literature.

4.3 QoS-aware service selection models

QoS-aware service selection models allow the formal specification of the selection problem

and lay a foundation for its resolution. Jaeger et al. [Jaeger et al., 2005] present a comprehensive

taxonomy of QoS-aware service selection models. The authors map QoS-aware service selection

to one of the following models:

• Multi-dimension Multi-choice Knapsack Problem (MMKP). Given a set of items with

an associated value and a number of resource requirements for each item, MMKP aims

at selecting a sub-set of items to put into a knapsack with limited resource capacity, so

as to maximize the sum of the values of the included items, while the sum of required

resources is less or equal to the knapsack capacity. According to this definition, QoS-

aware service selection can be formulated as MMKP by mapping the composition to a

Knapsack with limited capacity (i.e., QoS constraints) and service candidates to items

with resource requirements (i.e., QoS of services). The Aura project [Sousa et al., 2006]

presents a QoS-aware service composition approach that models the selection problem as
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a variant of MMKP called 0-1 MMKP. In 0-1 MMKP, the number of selected services for

each abstract activity in the user task is either 0 or 1.

• MultiConstraint Optimal Path (MCOP). MCOP is an optimization problem which consi-

ders a graph formed of nodes and edges. Each node is associated with a benefit and a set of

attributes. The goal of MCOP is to determine the path with the highest benefit among all

feasible paths from a root node to a sink node under multiple constraints imposed on the

attributes. By abstracting service candidates and the control/data flow between them to

nodes and edges respectively, QoS-aware service selection can be expressed as an MCOP

problem that aims at traversing the graph of service candidates in order to find a path ha-

ving the highest QoS utility and satisfying global QoS constraints. PICO [Kalasapur et al.,

2007] models QoS-aware service selection as a variant of MCOP called multi-constrained

path selection (MCPS) that aims at selecting a path in a multi-constrained graph of

services.

• Mixed Integer Linear Program (MILP). The goal of a Mixed Integer Linear Program

(MILP) is to to determine a vector of variables that maximizes or minimizes an objec-

tive function, given a set of constraints imposed on variables and represented as linear

inequations. QoS-aware selection can be expressed as a mixed integer linear program by

defining the global QoS of the whole service composition as an objective function and

global QoS constraints as linear constraints. The main limitation of modelling QoS-aware

selection using MILP is that the considered QoS properties must be aggregated in an

additive way (i.e., using the operator ‘+’ in order to express QoS constraints as linear

inequations), which is not supported by all QoS properties. A-WSCE [Chafle et al., 2006],

SCENE [Colombo et al., 2006], PAWS [Ardagna et al., 2007], Daidalos [Funk et al., 2007]

and VRESCo [Rosenberg, 2009] are QoS-aware service-oriented middleware modelling the

service selection problem using MILP.

4.4 QoS-aware service selection strategies

Based on the models presented above, QoS-aware service-oriented middleware approaches

proceed to the selection of services using different strategies. Like all the algorithms dealing

with combinatorial problems, QoS-aware selection algorithms can be divided into two broad

classes: (i) brute-force-like algorithms and (ii) heuristic algorithms. The first class of algorithms

aim at determining the optimal service composition (i.e., with the highest QoS) by exploring

all possible compositions of services. Amigo [Ben Mokhtar et al., 2005], COCOA [Ben Mokhtar

et al., 2007], Daidalos [Funk et al., 2007] and the approach proposed by [Lee and Lee, 2006] fall
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under brute-force algorithms as they evaluate QoS of all possible compositions of services, and

then select the optimal one. These algorithms have high computational cost (NP-hard [Yang

et al., 2009]), thus they can not be executed in a timely manner with respect to spontaneous

interactions with the user aimed at by pervasive computing. To cope with this issue, a se-

cond class of solutions propose heuristic algorithms that find near-optimal compositions, i.e.,

compositions that meet global QoS constraints and maximize the QoS delivered to the user.

This class of algorithms do not explore all possible compositions of services ; they rather use

different heuristics to explore the set of service compositions that most likely can lead to a

satisfactory solution. For instance, the selection algorithm proposed by the Aura project [Sousa

et al., 2006] uses the QoS utility to required resources ratio as a heuristic to determine near-

optimal compositions, whereas PICO [Kalasapur et al., 2007] applies two heuristic algorithms

(viz., the extended Dijkstra algorithm and Bellman Ford algorithm [Xiao et al., 2004]) to resolve

QoS-aware service selection formulated as an MCPS problem.

4.5 QoS-aware service selection techniques

QoS-aware service selection algorithms use various techniques to explore and select service

compositions. The goal of the selection technique is to reduce the number of service compositions

to be investigated, thus enabling to enhance the timeliness of the algorithm. Several selection

techniques have been proposed in the literature [Jaeger et al., 2005]. In our study, we identify

three main selection techniques proposed by QoS-aware service-oriented middleware: (i) greedy

selection, (ii) branch and bound and (iii) discarding subsets.

Greedy selection is a technique that selects, for each abstract activity in the user task, the

service candidate with the highest QoS. The selection is performed for each abstract activity

individually and it is generally used for QoS-aware selection under local QoS constraints [Jaeger

et al., 2005].

Yang et al. [Yang et al., 2009] present a greedy selection algorithm called LOSSA (Local

Optimal Service Selection Algorithm). LOSSA proceeds to the selection of services for each

abstract functionality in the user required task through two steps: I-level selection that filters

out service candidates that fail individual QoS constraints, and A-level selection that selects

services resulting from the I-level selection based on a comprehensive score aggregating all QoS

values of services. A second greedy selection approach is presented by Chang and Lee [Chang and

Lee, 2009]. The authors use PROMOTHEE [Brans and Vincke, 1985], a multi-criteria decision

making (MCDM) technique to select the best service for each abstract activity in the user task.

Another interesting greedy selection approach is presented by the DAMS-SS middleware [Dutra
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and Junior, 2010]. This approach consists in three steps. First, the middleware clusters services

based on their QoS properties using the Self-Organizing Map (SOM) algorithm. Second, it uses

ADAPTREE which is an adaptive decision algorithm to generate a hierarchy of service clusters

with respect to the importance of QoS properties. Finally, it decides about the best cluster of

services in terms of QoS using the ANFIS (Adaptive Network-based Fuzzy Inference System)

algorithm.

The main issue of greedy selection techniques in general, is that they cannot ensure meeting

global QoS constraints. To cope with this issue, other global selection techniques have been

put forward. The selection algorithm proposed by the Aura middleware [Sousa et al., 2006]

applies a branch-and-bound technique to resolve QoS-aware selection formulated as an 0-1

MMKP problem (as explained above). PICO [Kalasapur et al., 2007] uses the discarding subsets

technique to resolve the MCPS problem. Discarding subsets [Jaeger et al., 2005] consists in

exploring service compositions over several steps. In each step, only relevant compositions (i.e.,

determined with respect to certain criterion) are considered for the remainder of the selection.

Accordingly, the extended Dijkstra and Bellman Ford algorithms used by PICO traverse the

graph of services over several steps ; in each step only non-dominated paths [Xiao et al., 2004]

are kept for the remainder of the selection.

Overall, selection techniques vary from one QoS-aware service-oriented middleware to ano-

ther. The choice of a selection technique depends on the kind of QoS constraints to deal with

(i.e., local or global QoS constraints), the way QoS-aware service selection is modelled, and the

adopted strategy to solve it.

5 QoS-driven Composition Adaptation

Service composition adaptation is a key functionality of QoS-aware service-oriented middle-

ware. It enables service compositions to evolve in dynamic pervasive environments and adequa-

tely react to various changes in these environments. As we focus on QoS concerns in pervasive

environments, in our work we concentrate on adaptation driven by QoS changes (e.g., QoS

fluctuation), known as QoS-driven composition adaptation.

The goal of QoS-driven composition adaptation is to adjust running QoS-aware service com-

positions in order to ensure meeting QoS requirements, and/or to optimize the QoS delivered

to users [Kazhamiakin et al., 2010]. Towards this purpose, various approaches have been pro-

posed by QoS-aware service-oriented middleware. To evaluate these approaches, we recall the

survey proposed by Kazhamiakin et al.. The authors present a conceptual model and a detailed
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taxonomy of service adaptation in general (i.e., including QoS-driven composition adaptation).

The authors introduce a set of criteria for the comparison of adaptation approaches (the survey

is interesting for the reader who would like to probe further). Based on this survey, we identify

our main criteria allowing to assess QoS-driven composition adaptation approaches (see Figure

II.4) : (i) adaptation model, (ii) adaptation timing, (iii) adaptation subject, (iv) adaptation

mechanism, and (v) the scope of adaptation effect [Kazhamiakin et al., 2010].

Figure II.4 – Taxonomy of QoS-driven composition adaptation

5.1 Adaptation model

Adaptation model concerns the way the adaptation problem is formulated. We identify (1)

the graph-based adaptation model, (2) adaptation policy, and (3) mathematical formulation.

PICO [Kalasapur et al., 2007] presents a graph model to enable adaptation. The authors

define services available in the environment as graphs and combine these services into a global

graph representing all possible composition of services in the environment. If one or more
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services making part of a running composition fail, PICO traverses the global service graph in

order to find alternative services able to replace the failed ones.

Zhang et al. [Zhang et al., 2007] define an adaptation policy which allows for expressing

the behaviour of users, user tasks, the environment and services available in the environment

according to the event-condition-action paradigm. Based on the proposed policy, the authors

introduce an adaptation approach that selects and assembles actions (i.e., associated with users,

user tasks, the environment and services) in order to adapt the running service composition.

This is carried out through two steps: (i) assessing the effect of each policy action and choosing

those actions complying with the current execution context of the running composition, then

(ii) selecting the set of optimal adaptation actions (i.e., actions allowing to achieve the highest

QoS) and their associated services (i.e., services allowing to achieve these actions).

The Aura project [Sousa et al., 2006] presents a mathematical formulation that expresses

adaptation as an optimization problem. This problem consists in selecting the optimal reconfi-

guration of a running QoS-aware service composition among several possible reconfigurations

(where each reconfiguration is defined as a set of service substitutions). The authors apply an

optimization algorithm, which selects the optimal reconfiguration, i.e., a set of substituting

services able to fulfill the user required task while providing a higher QoS than the currently

running services.

5.2 Adaptation timing

Adaptation timing defines the moment of time when the adaptation is performed [Kaz-

hamiakin et al., 2010]. Related to this, we distinguish: (i) Proactive, (ii) Reactive, and (iii)

Post-mortem adaptation.

Proactive adaptation (e.g., PERSE [Ben Mokhtar, 2007], Aura [Sousa et al., 2006], [Zhang

et al., 2007]) anticipates future needs of adaptation and determine possible adaptation actions

of QoS-aware service compositions. These actions are applied later when adaptation is effec-

tively triggered. Proactive adaptation allows then for enhancing the agility and timeliness of

adaptation approaches. However, it does not consider the variations occurring between the

time of computing adaptation scenarios and the time these actions are effectively applied (e.g.,

services that join the pervasive environment after the computation of the adaptation scenario).

Reactive adaptation (e.g., PICO [Kalasapur et al., 2007]) computes and applies adaptation

actions on-the-fly just after adaptation is triggered, therefore it considers the actual execution

context of QoS-aware service compositions. However, the delay of reactive adaptation may

be significant (compared with proactive adaptation), since adaptation actions are computed
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on-the-fly.

Post-mortem adaptation ((e.g., A-WSCE [Chafle et al., 2006])) represents a third class of

adaptation timing. It is characterized by a big gap between adaptation triggering and adaptation

execution [Kazhamiakin et al., 2010]. Generally, the post-mortem adaptation is accomplished

by bringing about deep changes on the running service composition such as re-designing the

composition and altering its behaviour.

5.3 Adaptation subject

Adaptation subject refers to the entity that should be modified by the adaptation approach

[Kazhamiakin et al., 2010]. We distinguish the composition behaviour and the services forming

the composition.

By behaviour we mean the observable supported execution patterns (often called conver-

sations) of the service in coordination with its environment that allow the service to produce

meaningful results [Issarny et al., 2011]. Related to this, PERSE [Ben Mokhtar, 2007] supports

adaptive user task specification by providing various behaviours allowing to achieve the same

user task. If the execution of the task according to one behaviour fails, an alternative behaviour

is then carried out.

Other QoS-aware service-oriented middleware (e.g., Aura [Sousa et al., 2006], PICO [Ka-

lasapur et al., 2007], [Zhang et al., 2007]) focus on adapting the services forming the running

composition. That is, these middleware substitute failed services in the composition with func-

tionally equivalent ones, without altering the behaviour of the composition.

5.4 Scope of adaptation effect

The scope of adaptation effect says whether the adaptation is local, i.e., applied locally to a

service in the composition ; partial, i.e., concerns a part of the composition (sub-composition) ;

or global, i.e., concerns the whole service composition. The Aura middleware [Sousa et al., 2006]

opts for a local adaptation approach that affects elementary services in the composition, whereas

PICO [Kalasapur et al., 2007] applies QoS-driven composition adaptation locally, partially or

globally depending on adaptation requirements.

5.5 Adaptation mechanism

Adaptation mechanisms refer to the techniques and facilities used to adapt service-oriented

systems [Kazhamiakin et al., 2010]. Adaptation mechanisms represent a broad research topic. In
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this survey, we focus on those mechanisms used by QoS-aware service-oriented middleware na-

mely, dynamic binding, retry/redo, substitution, dynamic reconfiguration and behavioural adap-

tation.

In dynamic binding (known also as late binding) [Di Penta et al., 2006], the user task is

defined as a set of abstract activities (template), while multiple services are selected as potential

candidates to fulfill each activity. At run-time, the selected services are bind or re-bind to

abstract activities with respect to QoS changes [Kazhamiakin et al., 2010]. Service discovery

is particularly relevant in this context, since it allows providing several alternative services

for each abstract activity in the user task. SCENE [Colombo et al., 2006] provides a flexible

platform that supports selecting alternative services and dynamically binding one service at

run-time.

Retry consists in invoking the failed service (or the service causing QoS decline) once again,

whereas redo consists in retrying the service using different input parameters. Both mecha-

nisms are implemented by the PAWS middleware [Ardagna et al., 2007]. The same middleware

implements the substitution adaptation mechanism, which consists in replacing the failed ser-

vice (or the service causing QoS decline) with a functionally equivalent service that provides

a satisfactory QoS. The main difference between dynamic binding and substitution is that the

latter adaptation mechanism selects substituting services once the failure of a service or QoS

decline occurs.

Dynamic reconfiguration represents a broad class of adaptation mechanisms. It includes

resource reconfiguration, parameter reconfiguration and service composition reconfiguration

[Amundsen and Eliassen, 2006]. Most of QoS-aware service-oriented middleware solutions (e.g.,

DySOA [Siljee et al., 2005]) focus on service composition reconfiguration, which consists in ad-

ding, deleting, replacing services forming service compositions [Amundsen and Eliassen, 2006].

Last, behavioural adaptation consists in executing the service composition with respect to an

alternative behaviour [Kazhamiakin et al., 2010]. Alternative behaviours are generally obtained

by changing composition patterns structuring service compositions or/and by changing services’

granularity (i.e., merging fine-grained services into coarse-grained services or the opposite). A-

WSCE framework [Chafle et al., 2006] presents an adaptation approach that proceeds through

two steps: (i) generating multiple abstract compositions (i.e., templates) allowing to perform the

user task, but behaving differently, and (ii) at run-time, if the execution of the task according

to one behaviour fails, an alternative behaviour is then carried out.

Overall, the choice of adaptation mechanisms depends on various parameters including the

adaptation timing, adaptation subject and adaptation effect. That is, given the requisites of the

pervasive environment, the middleware designer has to choose the proper adaptation mechanism
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with respect to the timing, subject and effect of adaptation.

6 Summary and Research Challenges

In this section, we introduce two tables (Tables II.1 and II.2) providing an overview of

state-of-the-art QoS-aware service-oriented middleware approaches, respectively, for traditional

service-oriented environments and pervasive environments. These tables are structured with

respect to the surveyed functionalities of QoS-aware service-oriented middleware and their

associated taxonomies.

Based on our survey, we argue that QoS-aware service-oriented middleware approaches ad-

dressing pervasive environments present QoS awareness solutions that are closely related to

those solutions proposed for service-oriented environments in general. As shown in our survey,

the same taxonomy can be applied for both kinds of middleware, they tend to apply similar mo-

dels, methods and technologies. We deem that this is not sufficient to cope with QoS awareness

issues in pervasive environments given the specifics of these environments.

For this reason, research efforts should be devoted to the design of innovative QoS-aware

service-oriented middleware that takes into account the challenges brought about by perva-

sive computing. Below, we identify major challenges imposed by pervasive computing on key

functionalities of QoS-aware service-oriented middleware, notably QoS modelling, QoS-aware

service composition, and QoS-driven composition adaptation. These challenges are respectively

addressed in chapters III, IV and V of the thesis.

1. QoS modelling research challenges. Addressing QoS awareness issues requires esta-

blishing a standard and rich QoS model that includes an extensive categorization of QoS

properties [Benbernou et al., 2010]. This model should define QoS on an end-to-end basis

by considering all the factors impacting QoS delivered to users, notably application ser-

vices and their underlying system and network infrastructure. In the context of pervasive

environments, considering QoS of the infrastructure is of significant importance, because

it allows assessing the impact of the dynamics and limited resources of such infrastructure

on the QoS provided to users.

Additionally, the QoS model should define QoS concepts with explicit semantics in order

to be both human-understandable and machine-interpretable [Benbernou et al., 2010].

This model should be further extensible so as to allow the addition of new QoS properties

on an as-needed basis (e.g., domain-specific QoS properties).

2. QoS-aware service composition research challenges. QoS-aware service selection
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is a key requisite of QoS-aware service composition in pervasive environments. Despite

the wide literature about selection algorithms, to the best of our knowledge there are

no algorithms dealing with major challenges imposed by pervasive environments on QoS-

aware service selection. These challenges are mainly about:

• Timeliness: QoS-aware service composition typically involves devices with limited re-

sources and computational capabilities. Thus, the algorithms for selecting and com-

posing services have to be conceived to be efficient. This is particularly true when we

deal with QoS-aware service selection under global QoS requirements, which is NP-hard

[Yu et al., 2007]. Indeed, pervasive computing envisions fulfilling user tasks on the fly,

hence the time available for services’ selection and composition is limited compared to

the computational complexity of the problem. Existing algorithms used for QoS-aware

service selection should be revisited and further investigated in this context.

• Considering end-to-end QoS requirements: Most of existing QoS-aware service selec-

tion algorithms consider only QoS of application services. However, in pervasive en-

vironments the software, hardware and network infrastructure underlying applications

services has substantial impact on QoS delivered to users. Therefore, QoS-aware ser-

vice selection algorithms should consider user QoS requirements on an end-to-end basis.

QoS-aware service selection under end-to-end QoS requirements is already addressed

in the literature [Yu et al., 2007]. However, further investigations are required to fit the

specifics of pervasive environments (e.g., resource limitations and mobility of devices,

and wireless network connectivity).

• Considering run-time QoS: Most of the existing service selection algorithms are carried

out based only on QoS information advertised by services providers. Nevertheless, at

run-time, the effective QoS provided by services may fluctuate with respect to the

advertised one because of the changes that may occur in the pervasive environment (e.g.,

user mobility, service overloading). To cope with this issue, service selection algorithms

should additionally consider QoS of services measured at run-time, referred to as run-

time QoS. This requires monitoring QoS of all service candidates just before enacting

the services, which is difficult to achieve given the high number of services that may

be investigated to fulfill the user task. An optimized solution for service selection is

needed to this regard. The required solution should fulfill service selection based on the

run-time QoS of services while reducing the cost of QoS monitoring at run-time.

• Adaptation support: Service compositions should be adapted at run-time with respect

to QoS fluctuations. One approach towards this purpose consists in substituting services

delivering unsatisfactory QoS by selecting other services with better QoS. Nevertheless,
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performing service selection during the execution of service compositions may delay the

execution and even interrupt it. To cope with this issue, alternative service compositions

should be selected simultaneously while constructing the composition needed to fulfill

the user task. Existing QoS-aware service selection algorithms focus on selecting only

one service composition. In this thesis, we aim at selecting several alternative service

compositions (i.e., several services should be assigned to each activity in the user task),

thus enabling dynamic re-binding of services at run-time.

• Distributivity: Most of the surveyed QoS-aware service-oriented middleware assume a

centralized and stationary infrastructure. However, pervasive computing advocates ad

hoc infrastructure-less environments populated with resource-constrained devices. For

this reason, we argue that QoS-aware service selection algorithms should be designed

in a distributed fashion enabling them to execute in infrastructure-less pervasive envi-

ronments. Given that QoS-aware service selection under global QoS requirements is of

high computational complexity, selection algorithms in pervasive environments cannot

be carried out using only one device, but rather through the collaboration of several

devices available in the environment, which calls for a distributed QoS-aware service

selection algorithm.

3. QoS-driven composition adaptation research challenges. QoS-aware service com-

positions have to be adapted at run-time (during their executions) to cope with QoS

fluctuations. One approach towards this purpose consists in replacing services forming

the composition with alternative services providing better QoS. However, it is not always

possible to find alternative services that can specifically substitute the former services.

Thus, adaptation approaches should investigate further solutions to fulfill the user task.

As already explained in Section 5.3, one possible solution is to alter the behaviour of QoS-

aware service compositions. Starting from the observation that the user task can be ful-

filled in several ways (i.e., with respect to several abstract compositions (templates) which

are functionally equivalent but behaving differently), QoS-driven composition adaptation

can be potentially accomplished by executing the user task with respect to an alternative

behaviour.

Compared to existing adaptation solutions (e.g., [Benatallah and Motahari-Nezhad, 2006])

where alternative behaviours are determined based on an exact matching of behavioural

specifications (notably automata), in this thesis we focus on a flexible matching between

alternative behaviours where an abstract activity in the user task can be replaced by a set

of fine-grained activities, and inversely (i.e., fine-grained abstract activities are merged
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into a coarse-grained activity). Nevertheless, a number of research questions should be

resolved towards this purpose. A first question is about how to enable such a flexible

matching. A second question deals with the efficiency of this adaptation method. More

specifically, the challenge is how to change the behaviour of QoS-aware service composi-

tions in a timely and transparent manner without interrupting their execution, and while

respecting QoS requirements.
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(a) generic (b) specific - b - b - a -

QoS model (a) service-centered - - - a - b -

(b) end-to-end

QoS-enabling (a) semantic (b) syntactic - - b a - b -

specifications QoS-aware (a) black-box - a a a - a ab

composition (b) white-box

specification (a) semantic (b) syntactic - a b a - b ab

(a) black-box - a a a - a ab

QoS-aware service discovery (b) white-box

(a) semantic (b) syntactic - a b a - b ab

Service (a) template-based

assembly (b) graph-based - a a a c - -

(c) AI planning

QoS (a) local - ab a ab b - -

constraints (b) global

Selection (a) MMKP

model (b) MCOP - c - c c - -

QoS-aware (c) MILP

service composition Selection (a) brute-force-like - - - b - - -

strategy (b) heuristic

Selection (a) greedy selection

technique (b) branch-and-bound - - a - - - -

(c) discarding subsets

Adaptation (a) graph

model (b) adaptation policy b b b c c - a

(c) mathematical formulation

Adaptation (a) proactive

timing (b) reactive b ab a b b ab b

(c) post-mortem

Adaptation (a) services a a a a ab a ab

QoS-driven subject (b) composition behaviour

composition Scope of (a) elementary part

adaptation adaptation (b) sub-composition a ab ab a abc a a

effect (c) whole composition

(a) dynamic binding

Adaptation (b) retry/redo

mechanism (c) substitution d ad a bc ce a cd

(d) dynamic reconfiguration

(e) behavioural adaptation

Table II.1 – Summary of relevant QoS-aware service-oriented middleware for service-oriented environments
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(a) generic (b) specific a b a b a b a a a a

QoS model (a) service-centered a b a a a a a a b b

(b) end-to-end

QoS-enabling (a) semantic (b) syntactic a a a b b b ab b a b

specifications QoS-aware (a) black-box a a b a a a a a a a

composition (b) white-box

specification (a) semantic (b) syntactic a a a b ab - ab ab a b

(a) black-box a a b a a - a a a a

QoS-aware service discovery (b) white-box

(a) semantic (b) syntactic a a a b ab - ab ab a b

Service (a) template-based

assembly (b) graph-based b - b b b - a - - b

(c) AI planning

QoS (a) local b a b b b - a - - ab

constraints (b) global

Selection (a) MMKP

model (b) MCOP - - - a b - - - - ab

QoS-aware (c) MILP

service composition Selection (a) brute-force-like a - a b b - - - - b

strategy (b) heuristic

Selection (a) greedy selection

technique (b) branch-and-bound - a - b c - a a - -

(c) discarding subsets

(a) graph

Adaptation (b) adaptation policy - - a c a - b - - b

model (c) mathematical formulation

Adaptation (a) proactive

timing (b) reactive - b a a b - b - b b

(c) post-mortem

Adaptation (a) services - a b b a - a - b a

QoS-driven subject (b) composition behaviour

composition Scope of (a) elementary part

adaptation adaptation (b) sub-composition - a c c abc - a - c abc

effect (c) whole composition

(a) dynamic binding

(b) retry/redo

Adaptation (c) substitution - c e cd cd - cd - d c

mechanism (d) dynamic reconfiguration

(e) behavioural adaptation

Table II.2 – Summary of relevant QoS-aware service-oriented middleware for pervasive computing environments
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Chapter III

QoS Modelling in Pervasive Environments

Addressing QoS-aware middleware for pervasive environments requires establishing QoS

models that provide the appropriate ground for QoS awareness in pervasive environments. A

promising approach towards this purpose relies on Semantic Web technologies, notably onto-

logies. Ontologies provide a formal, syntactic and semantic description model of QoS concepts

and relationships between these concepts. Ontologies define QoS concepts with explicit mea-

nings, so they are human-understandable, machine-interpretable, and provide the means for

interoperability. Moreover, ontologies are extensible so that new concepts and relationships can

be easily added [Benbernou et al., 2010]. In addition, Semantic Web techniques can be used

for reasoning about QoS concepts, thus enabling the semantic matching of heterogeneous QoS

terms used in different QoS descriptions. Therefore, ontologies cater for sophisticated matching

between the required and offered QoS. For these reasons, many ontologies have been proposed

for specifying QoS.

Nevertheless, recent surveys about QoS modelling (e.g., [Benbernou et al., 2010]) have sho-

wed the lack of well established and standard QoS ontologies. Indeed, existing QoS ontologies

do not offer a rich description of QoS that includes an extensive categorization of QoS pro-

perties [Benbernou et al., 2010]. Moreover, most of existing QoS ontologies focus only on QoS

provided by application services. They do not consider QoS properties associated with other

service technology layers, notably the infrastructure layer, which impacts the QoS offered to

users [Benbernou et al., 2010].

Hence, in our research [Ben Mabrouk et al., 2009] we focus on the development of a standard-

based and rich QoS ontology that provides an extensive categorization of QoS properties in all

service technology layers. As we address QoS modelling in the context of pervasive computing,

the required QoS ontology should consider features related to pervasive environments. For

instance, user mobility and context awareness of application services should be considered as

quality features affecting the QoS provided to users.
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Given the wide literature about QoS modelling, the required QoS ontology should not

be established from scratch, but rather from existing QoS models. Towards this purpose, we

investigated existing standards or standardization efforts for QoS modelling. Indeed, standard

QoS models represent the consensus of the QoS modelling community, as well as comprehend

rich QoS information including various visions of QoS. In this thesis, we investigate the Web

Service Quality Model (WSQM) [Min et al., 2007], which is a standardization effort proposed

by the OASIS WSQM technical committee for the specification of Web Services’ QoS. WSQM

is a comprehensive model that defines a well-founded taxonomy of QoS and provides a wide

range of QoS properties [Benbernou et al., 2010].

Based on WSQM, we present a QoS model formed of a set of QoS ontologies. Our model

considers QoS on an end-to-end basis, in the sense that it defines QoS properties related to

application services, but also the system and network infrastructure underlying these services.

Our model puts special emphasis on emerging QoS features related to the dynamics of pervasive

environments. Next, we first give an overview of WSQM and we assess it with respect to QoS

modelling requirements in pervasive environments (Section 1). Then, we detail our QoS model

and its underlying ontologies (Section 2). Finally, we discuss the proposed model with respect

to existing QoS ontologies (Section 3).

1 WSQM Overview

WSQM (Web Service Quality Model) 1 is a conceptual model for Web Services’ QoS which

defines three basic concepts: quality associates, quality activities and quality factors. A quality

associate refers to the person or the organization that is directly or indirectly managing QoS.

The set of actions performed by quality associates throughout the whole services’ lifecycle

are called quality activities, whereas the quality factors are the attributes used to represent and

assess QoS. Our primary focus is on the quality factors, which represent the core entities of QoS.

Indeed, QoS models are usually centred on the definition and the classification of quality factors.

WSQM formally specifies the quality factors and their associated concepts using the Web

Service Quality Description Language (WSQDL), which provides an XML-based description

method for standardizing the expression of QoS. WSQDL defines the constructs needed to

specify the quality factors, their taxonomy, the way they are assessed and the relationships

between them.

The main construct within WSQDL is QualityFactor. It is represented with a global struc-

1. WSQM: http://www.oasis-open.org/committees/tc_home.php ?wg_abbrev=wsqm
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ture that expands into four levels reflecting the complex details of quality factors. These levels

are: SubFactor, Property, SubProperty and Function. For instance, the Security quality factor is

divided into three properties: confidentiality, integrity and non-repudiation. Confidentiality may

include other sub-properties such as message level confidentiality and user confidentiality. In

turn, the message-level confidentiality can be defined, e.g., using the XML-encryption function.

Additionally, WSQDL divides QualityFactor into two main groups: System quality group

and Business quality group. The former group describes quality factors related to the imple-

mentation of services, whereas the latter group deals with quality factors defining the business

aspects of services. The Business quality group includes the Business Value quality factor, which

comprehends in turn quality sub-factors such as price, penalty and service provider reputation.

The System quality group is composed of two parts: varying quality factors and non-varying

quality factors. Varying quality factors are determined with metric values that can change at

run-time while a service is being used. The Service Level Measurement quality factor falls under

this category. It includes quality sub-factors such as response time, maximum throughput and

availability. On the other hand, non-varying quality factors are determined and fixed before

using the service. It includes Interoperability,Workflow Processing, Manageability and Security

quality factors.

Interoperability is a quality factor evaluating whether a service implementation conforms

to standard specifications. Workflow Processing is a quality factor evaluating the ability of

a service to participate in a workflow in order to fulfill a common goal ; it includes the re-

liability, transaction integrity and collaborability sub-factors. Manageability is a quality factor

concerning the facilities offered by services to be easily managed. This includes sub-factors such

informability, observability and controllability. Finally, the Security quality factor includes the

sub-factors: encryption, authentication, authorization, integrity, non-repudiation, availability,

audit and privacy.

Complementary to the quality factors, which are centred on describing the individual aspects

of QoS, the Quality Chain concept introduced by WSQDL gives a global view of QoS. It states

that the quality factors are not totally independent and they may influence each other, and

hence impact the overall QoS. Indeed, Quality Chain defines a configuration of dependencies

describing the correlation between quality factors. This can be used, for instance, to reflect the

relationship between BusinessValue factors (e.g., service price) and other quality factors (e.g.,

response time), which allows for specifying trade-offs that service providers can make in the

quality levels they offer.

Although it provides a well-founded specification of QoS at the service level, WSQM presents

three main shortcomings regarding QoS modelling in pervasive environments: First, it neglects
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QoS associated to other resources and actors participating in service provisioning (e.g., net-

work, devices and end-users). Second, it does not consider emerging QoS factors related to the

dynamics of pervasive environments (e.g., adaptability, context-awareness). Third, as already

explained, WSQM adopts an XML-based approach to specify QoS, which may bring about the

syntactic heterogeneity problem (since XML is a syntactic language). In the following section,

we define a semantic QoS model that copes with the aforementioned shortcomings. The propo-

sed model is defined in terms of a set of ontologies expressed using the Web Ontology Language

(OWL), which is a W3C recommendation designed for publishing and sharing ontologies. The

next section details the proposed ontologies and outlines their usage in the context of pervasive

environments.

2 A Semantic End-to-End QoS Model for Pervasive En-

vironments

In our work, we concentrate on QoS knowledge representation rather than a language to

specify QoS. To this extent, our approach is to provide a set of QoS ontologies that can be

referenced by any appropriate QoS specification language, notably XML-based QoS languages

supporting OWL semantic annotations Oldham et al. [2006]. This approach yields semantically

enriched QoS descriptions that combine the accuracy of QoS description languages with the

rich semantics of QoS ontologies, hence broadening QoS understanding among users and service

providers in pervasive environments.

In this section, we present a QoS model formed of a set of QoS ontologies addressing QoS

on an end-to-end basis. Our model covers quality factors associated with the main elements

impacting QoS in pervasive environments. These elements are mainly about: (i) the environ-

ment and its underlying network and system resources, (ii) application services, and (iii) users.

Additionally, our model puts special emphasis on quality features related to the dynamics of

the environment, application services and users (e.g., user mobility, adaptability and context

awareness of application services).

Our model is designed according to a layered approach, thus aiming to provide distinct and

easily manageable ontologies. As depicted in (Figure III.1), it comprehends four ontologies:

1. The QoS Core ontology incorporates general concepts needed for QoS description (e.g.,

quality group and quality factor). Most of the conceptual elements of this ontology are

derived from WSQDL.

2. The Infrastructure QoS ontology specifies quality factors related to the environment and
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Figure III.1 – QoS model overview

its underlying network and system infrastructure. More specifically, it defines inherent

characteristics of the environment where users and services act. These characteristics are

mainly about the service density and the number of active users that can be supported, in

addition to the ability of the environment to offer functionally equivalent services that can

replace each other. The Infrastructure QoS ontology defines also quality factors related

to the capabilities of mobile devices and the connectivity of wireless networks.

3. The Service QoS ontology specifies quality factors of application services. It recalls the

quality factors already defined by WSQM and extend them with other factors (e.g., adap-

tation and context awareness) supporting the dynamics of the application services. The

added factors are carefully selected by examining the dynamicity of pervasive environ-

ments. Additionally, this ontology is extendable in that new quality factors (e.g., domain-

specific quality factors) can be easily added.

4. The User QoS ontology addresses user concerns about QoS. The role of this ontology is

twofold: First, it provides the concepts needed to specify user QoS requirements. Second,

it specifies quality factors associated with the user such as user mobility.

Ontologies 2), 3) and 4) specialize the general concepts defined in the QoS Core ontology ;

they are layered (Figure III.1) from lower (i.e., infrastructure) to higher level of abstraction

(i.e., end-user).

2.1 QoS Core ontology

Figure III.2 gives an overview of the QoS Core ontology, which defines basic concepts requi-

red for QoS description. In this figure, the boxes denote ontological concepts, and the ellipses

denote properties relating these concepts.
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Figure III.2 – Overview the QoS Core ontology

The QoS Core Ontology reproduces the constructs used in WSQDL to define the QoS taxo-

nomy of WSQM. The main concepts of the QoS Core ontology are QualityGroup, QualityFactor

and QualityChain. QualityGroup consists of one or more QualityFactor, which are represented

from two points of view : (i) their structure (i.e., SubFactor, Property, SubProperty, Func-

tion), and (ii) their type (i.e., MeasurementFactor, EvaluationFactor, BusinessProcessFactor,

BusinessValueFactor). The QualityChain concept is defined using the property hasInfluenceOn

indicating that two or more quality factors are in a quality chain relationship.

For visibility reasons, Figure III.2 does not show further concepts of the QoS core ontology

such as the concepts needed to assess quality factors like MetricType and Conformity. Related to

this, it is worth mentioning that the concept Unit within MetricType references other external

ontologies to define its semantics. Currently, Unit references the OWL time ontology Hobbs

and Pan [2006].
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2.2 Infrastructure QoS ontology

As already explained, QoS is difficult to evaluate in an accurate manner without considering

the infrastructure supporting the provision of services, namely the network and the devices

enabling services and users to interact, as well as the characteristics of the environment where

services and users act. For this reason, we developed the Infrastructure QoS ontology, which

consists of three quality groups: Network, Device and Environment as depicted in Figure III.3.

For visibility reasons, in this figure we only represent quality groups and their underlying quality

factors and quality subfactors using different boxes. The relation between theses entities are

already explained in the QoS Core ontology (see Figure III.2).

Figure III.3 – Overview the Infrastructure QoS ontology

The Network quality group addresses the communication infrastructure in pervasive envi-

ronments. It consists of two quality factors: Type and Performance. The first factor indicates

the network category, which can be either Wired or Wireless. The second factor comprehends

quality items specifying the performance of a network. Common performance metrics include

Bandwidth, Latency, Loss, Jitter Marchetti et al. [2004] and Availability Yang et al. [2009].

Bandwidth refers to the rate of data transfer ; Latency refers to the total time needed to deliver

a message ; Loss represents the rate of message units lost during the delivery of a message ;

Jitter expresses the variation in Latency. Finally, Availability refers to the presence of a node

in the network in the transmission range of the user device Yang et al. [2009].

The Device quality group addresses devices hosting application services and supporting end-
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users (e.g., PDA, SmartPhone, PC). It defines three quality factors outlining the capacity of

these devices: Category, Mobility and Performance. The first factor refers to the role of devices

in service provision, which divides into two types: Client and Server Papaioannou et al. [2006].

The second factor describes the mobility of devices which can be either Stationary or Mobile.

The third factor comprehends quality items specifying common device capabilities, i.e., CPU,

Memory, Storage Capacity and Power Consumption.

The Environment quality group specifies quality factors intrinsically related to the net-

working environment where users and services exist. Such environments are populated with

services supporting user applications. The quality of these environments can be assessed by

evaluating their degree of support to user applications [Kalasapur et al., 2006]. This can be

specified using three quality factors: Service Density, Sustainability and Scalability [Kalasapur

et al., 2006]. Service Density refers to the number of services available in service environments.

It indicates in part the ability of an environment to satisfy user requests, i.e., the higher the

service density is, the higher is the probability to fulfill the users’ tasks. Sustainability measures

the environment’s ability to sustain employed services if they fail. Sustainability is generally

enabled by fault tolerance mechanisms, like identifying alternative services which are able to

replace the failed ones. Finally, scalability refers to the ability of the environment to support a

large number of active users and to handle their requests in a satisfying manner.

2.3 Service QoS ontology

The Service QoS ontology defines QoS features associated with application services. This

ontology reproduces WSQM standard quality factors to define common QoS properties of ap-

plication services. The Service QoS ontology further specifies new quality factors addressing,

on the one hand, the dynamicity of services in pervasive environments and, on the other hand,

domain-specific quality factors. The main concepts of the Service QoS ontology are depicted in

Figure III.4. In this figure, the coloured boxes represent the quality factors already defined by

WSQM, whereas the white boxes represent the added quality factors. Concerning the relations

between quality groups, quality factors and quality subfactors, they are already explained in

the QoS Core ontology (see Figure III.2).

As already introduced, WSQM divides quality factors into two main groups : Business

quality group and System quality group. The latter group is in turn composed of two parts:

varying quality factors and non-varying quality factors. In this section, we aim at extending

these groups in order to support dynamic features of services. The responsibility of services with

respect to the dynamics of pervasive environments mainly includes supporting adaptability and
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Figure III.4 – Overview the Service QoS ontology

context awareness [Maia et al., 2009]:

– Adaptability: Services operating in pervasive environments need to continuously adapt

themselves in order to react to changing conditions such as QoS fluctuations and user

requirements [Nitto et al., 2008]. Related to this, we define the Adaptability quality factor

as the ability of a service to adapt itself to changing conditions, and to reconfigure itself

accordingly.

– Context-awareness: Context awareness is the ability to provide and use relevant infor-

mation about the networking, and in particular the pervasive environment [Maia et al.,

2009]. Context awareness allows for enhancing the QoS provided to users by exploiting

context information, such as users’ location and their proximity to other devices and

services. It further allows for reducing input required from users and replacing it with

knowledge of context information, thus enabling fulfilling user tasks in a transparent way

that places fewer demands on user attention. Related to this, we introduce the Context

Awareness quality factor, which describes the ability of a service to gather, manage, use

and disseminate context information.
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The aforementioned quality factors (i.e., Adaptability and Context-awareness) are non-

varying quality factors which have been incorporated into of the System quality group.

Furthermore, in addition to the Business and System quality groups, we define the Domain-

Specific quality group to support quality factors related to services’ application domains. Indeed,

pervasive environments offer a wide variety of services dealing with various domains. Thus, users

often need to specify quality factors related to particular domains. For instance, if we consider

the application scenario (introduced in Chapter I, Section 1) where Bob asks for audio or video

streaming service with high encoding quality, the encoding quality represents a domain-specific

quality factor related to the audio and video streaming application domain.

2.4 User QoS ontology

The User QoS ontology addresses two main issues (Figure III.5): (i) user requirements mo-

delling and (ii) user profile modelling. On the one hand, requirements modelling deals with

the concepts needed to express the user’s QoS requirements. Related to this, we define the

concept Requirement, which corresponds to the description of a QoS constraint imposed by the

user on the offered QoS. A QoS constraint targets the concept QualityFactor defined in the

QoS Core ontology, and it is given in terms of Operator, Value and Unit. The latter constructs

change according to the type of quality factors. Requirements concerning EvaluationFactor,

BusinessValueFactor and BusinessProcessFactor (see Figure III.2) are expressed using boolean

operators (i.e., is-a, is-not-a) and string values, whereas requirements regarding Measurement-

Factor are given in terms of comparison operators (i.e., equal, not-equal, more-than, less-than,

max-value-of, min-value-of ), numerical values and measurement units. Users can further define

composite requirements using and and or operators. Moreover, they are allowed to express their

relative preferences about QoS requirements by assigning a certain Weight to every requirement.

On the other hand, user profile modelling aims at defining the user’s inherent quality factors

(i.e., quality factors intrinsically related to the user) such as user mobility and user generated

traffic. Related to this, we introduce the concept of User Profile, which comprehends two quality

factors: Mobility and Traffic. These factors have been defined based on the model proposed in

[Resta and Santi, 2008]. The authors divide User Mobility into three patterns: Stationary users,

QoS-driven users, and Mobile users. The first pattern concerns really stationary users or users

with constrained movement that does not affect service provisioning. QoS-driven users are

mostly stationary, but they move when their perceived QoS level drops below an acceptable

threshold. Finally, the mobile users are characterized by continuously moving positions.

Concerning User Traffic, users are divided into three classes of load according to their
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Figure III.5 – Overview the User QoS ontology

generated traffic: low, medium, and high load. The lowest class of traffic accounts for users

who are using the network for lightweight services (i.e., in terms of resource consumption)

such as e-mailing and Web browsing. The medium class of traffic accounts for users who are

using services such as file downloading and audio streaming. Finally, the highest class of traffic

accounts for users who make an intensive use of the network, such as video streaming. User

Mobility and Traffic are extensible in that new specific patterns of mobility and traffic can be

easily defined and added.
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3 Discussion

In this section, we study QoS models proposed in the literature in general, and not only

in the context of QoS-aware service-oriented middleware (as already presented in Chapter II).

Thus, we address a broader field of study with many interesting works.

QoS modelling has been the topic of wide research crossing distinct communities. For the

purpose of this work, it is worth mentioning the service-oriented community (e.g., [Dobson

et al., 2005; Dobson and Sanchez-Macian, 2006; Kim et al., 2005; Maximilien and Singh, 2004;

Papaioannou et al., 2006]), the end-to-end QoS community (e.g., [Marchetti et al., 2004]), as

well as the pervasive computing and mobile computing communities (e.g., [Mcnamara et al.,

2006; Resta and Santi, 2008]). Even if different in purpose, these efforts have aimed at least to

identify relevant quality factors affecting QoS and being associated to a specific resource (e.g.,

an application service, a network, a device).

For instance, focusing on the service-oriented community, several proposed approaches [Dob-

son et al., 2005; Maximilien and Singh, 2004] identify quality factors deemed useful for charac-

terizing services’ QoS. In [Kim et al., 2005], the authors propose a methodology enabling to

express user QoS requirements and to link them to quality factors of services using the notion of

traceability. More recently, other approaches [Dobson and Sanchez-Macian, 2006; Papaioannou

et al., 2006] have derived semantic languages of QoS ontologies that represent generic models

for QoS. These models identify a set of general and abstract concepts needed to define QoS

factors and the way they are assessed. Nevertheless, the aforementioned models focus on QoS of

application services and do not consider QoS of the infrastructure underpinning these services.

To define more comprehensive QoS models, other works consider QoS on an end-to-end basis

by defining QoS of application services and their underlying system and network infrastructure.

Marchetti et al. [Marchetti et al., 2004] present a quality model for capturing and reasoning

about quality aspects of multichannel services (a channel being the abstraction of a device

and a network). This model enables a clear separation of quality aspects of services, networks,

devices and users. Furthermore, it embeds rules enabling the evaluation of end-to-end QoS.

Nevertheless, this model does not consider the dynamic features of these elements (i.e., networks,

devices, services, users) such as user mobility and context awareness of application services.

Another related area of research focuses on representing dynamic features of users, applica-

tion services and their underlying devices and networks. Capra et al. [Capra et al., 2005] define

a context-aware semantic QoS model, which considers three types of resources: services, sensors

and components. Based on this model, the authors address QoS issues related to the mobility

of these resources. The authors combine mobility patterns with QoS information in order to
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give an accurate evaluation of QoS. This work presents two main drawbacks: first it considers

specific patterns of user mobility (i.e., “seasonal” mobility, in the sense that it is related to the

daily routines of users). Second it does not take into account QoS at the end-user level (i.e.,

user QoS requirements).

In the same context, Resta and Santi propose WiQoSM, a Wireless QoS-aware Mobility

model [Resta and Santi, 2008]. WiQoSM considers QoS, user mobility, user behaviour and

wireless connectivity. This model defines generic mobility patterns and takes QoS at the end-

user level into account. The main drawback of WiQoSM is that it totally separates QoS and

the other aforementioned aspects, as it considers them in four disjoint models: 1) a QoS model,

2) a user mobility model, 3) a user traffic model, and 4) a wireless technology model. This

structure enables WiQoSM to express the above factors, but it does not allow to consider them

jointly and establish relations among them, which represents a major shortcoming for having

a comprehensive QoS description.

Our model considers collectively the above aspects. Using the quality chain concept, we

can describe relationships between QoS factors associated to networks, devices, application

services and end-users, thus enabling a comprehensive description of QoS. Moreover, our model

focuses on representing QoS knowledge with rich semantic information rather than specifying a

language for QoS. Coupled to XML-based or other QoS language specifications, our proposed

ontologies can formulate a robust QoS description framework that combines the rich semantics

of QoS ontologies with the accuracy of QoS specification languages. Additionally, our model is

extendable in that domain-specific QoS factors can be easily added.

The presented model underpins our QoS-aware middleware solution for pervasive environ-

ments and its constituent functions, notably QoS-aware service composition, which is the topic

of the next chapter.
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Chapter IV

QoS-aware Service Composition in Pervasive

Environments

Pervasive computing environments enable integrating and composing, on the fly, services

that are available in the environment in order to fulfill complex tasks required by users. By

user task, we refer to a composition of abstract activities (i.e., functionalities) structured with

respect to certain execution patterns such as sequential, parallel, and conditional execution

(also known as composition patterns).

Nevertheless, fulfilling the user’s tasks only from the functional point of view is not enough

to gain user satisfaction. Users further require a certain Quality of Service (QoS) when executing

their tasks. Related to this, a lot of research efforts in pervasive computing have been devoted

to the composition of services under the user’s QoS requirements, which is known as QoS-aware

service composition. QoS-aware service composition in a broad topic. At the core of QoS-aware

service composition is the issue of QoS-aware service selection, which allows determining services

available in pervasive environments and able to fulfill the user’s QoS requirements. The problem

arises when each abstract activity in the user’s task can be fulfilled by several services which

are functionally equivalent but providing different QoS levels. The question to be asked is then:

“what is the service that should be selected for each functionality in the user’s task in order to

meet the user’s QoS requirements and produce the highest QoS ?”

To answer this question, several QoS-aware service selection algorithms have been put for-

ward. However, as already discussed in Chapter II (Section 6), the proposed algorithms do

not address major challenges of QoS-aware service selection in pervasive environments. These

challenges are mainly about: (i) timeliness, (ii) considering end-to-end QoS requirements, (iii)

considering run-time QoS, (iv) adaptation support, and (v) distributivity.

In this chapter, we present QASCO, a QoS-Aware Service Composition approach fulfilling

the above requirements. We first give an overview of QASCO (Section 1), then we formally
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Figure IV.1 – QoS-aware Service Composition Approach

define its underlying QoS-aware service composition model (Section 2). After that, we present

an efficient service selection algorithm called QASSA (Qos-Aware Service Selection Algorithm)

which represents the key contribution of QASCO (Section 3). Later, we present a distributed

version of QASSA, which is able to execute in infrastructure-less pervasive environments (Sec-

tion 4). Finally, we discuss the novelty of our algorithm with respect to related work in the

service-oriented community in general (Section 5).

1 QASCO Overview

The main idea of QASCO is to select and compose services able to fulfill the user task while

considering their QoS measured at run-time. Indeed, most of the existing service selection

algorithms are carried out based only on QoS information advertised by services available in
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pervasive environments. Nevertheless, at run-time the QoS provided by these services may

fluctuate with respect to the advertised one because of the changes that may occur in pervasive

environments (e.g., user mobility). For this reason, service selection approaches should consider

QoS of services measured at run-time (referred to as run-time QoS).

One approach towards this purpose is to use the Dynamic Binding technique [Di Penta

et al., 2006; Pautasso and Alonso, 2005] (also known as Late Binding), which enables binding

concrete services to abstract activities of the user task at run-time just before invoking services.

However, this technique requires monitoring QoS of all service candidates just before binding

them to abstract activities, which is difficult to achieve especially when a high number of

services are investigated for fulfilling the user task.

To cope with this issue, QASCO combines both solutions, i.e., (i) initial selection based on

advertised QoS, and (ii) final selection based on run-time QoS and dynamic binding of services.

The principle of QASCO is to perform a preliminary phase of selection at the global level (i.e.,

for the whole composition) which is based on QoS information advertised by service providers.

This phase is based on QASSA, which selects several alternative service compositions meeting

global QoS requirements imposed by users. That is, it selects several services for each abstract

activity in the user task. At the dynamic binding stage, one service (among those previously

selected by QASSA) is bound to each activity in the user’s task. The binding is based on the

QoS of services monitored at run-time.

The contribution of QASCO is twofold: First, it enables selecting services based on their

run-time QoS while avoiding to monitor all service candidates associated with the user task.

Only services advertising high QoS are selected, monitored and evaluated for dynamic binding.

Second, it supports adapting service compositions on the fly at run-time by providing several

alternative services for each activity in the user task. As depicted in Figure IV.1, our approach

comprehends three main steps: (1) capturing user requirements, (2) global service selection and

(3) dynamic binding of services.

1. Capturing user requirements. QASCO starts from the assumption that users submit

their service composition requests via a GUI (Graphical User Interface) provided by

our middleware platform (i.e., supposed to be installed on their devices). Each request

comprehends the functional and QoS requirements of the user.

As already explained, the user task is formulated as a composition of abstract activities.

Each activity is described with its function, inputs and outputs, and it can be fulfilled

by one or several concrete services available in pervasive environments. Concerning user’s

QoS requirements, they are formulated as global QoS constraints associated with a number
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of QoS properties and imposed on the whole composition.

2. Global service selection. Once user requirements are captured, we proceed to the

global selection phase, which aims at selecting, on-the-fly, services able to fulfill the user

task. This phase requires a prior step of service discovery which allows for discovering

services available in pervasive environments and potentially able to fulfill the required

task from the functional and QoS points of view. In this thesis, we do not deal with

services’ discovery since it is not in the scope of our research. We rather adopt a semantic-

based approach for QoS-aware service discovery introduced in [Ben Mokhtar et al., 2006,

2008]. This approach uses domain-specific and QoS ontologies to match the functional and

QoS requirements of users to services available in the environment. The matching uses

services’ advertised information and performs efficient semantic reasoning at run-time.

The discovery approach yields as output the set of service candidates potentially able to

fulfill the composition from both the functional and QoS points of view. Focusing on the

QoS point of view, the discovery phase represents an initial filtering of services, which

allows for: (i) discarding services that do not advertise QoS properties required by the user,

and (ii) ensuring that the discovered services respect global QoS requirements individually

(i.e., each service apart). Services resulting from the discovery phase are further filtered by

the global selection phase in order to ensure meeting global QoS requirements jointly when

composed inside the user task. To achieve this, we propose an efficient service selection

algorithm for pervasive environments called QASSA (Sections 3 and 4).

3. Dynamic binding. Complementary to the global selection phase, which selects several

alternative services per user task activity based on their advertised QoS, dynamic binding

aims at enacting one service per activity among those previously selected based on its run-

time QoS, thus ensuring that the composition will indeed provide the QoS level required

by the user. To do so, dynamic binding requires a prior phase of QoS monitoring, which

allows for determining the QoS level delivered by services at run-time. Based on the

monitored QoS, dynamic binding checks whether a service provides a run-time QoS that

is equal or higher than the advertised one. If many services meet this condition, the one

with the highest run-time QoS is enacted. In the remaining part, we do not focus on

dynamic binding since it is not in the scope of our research. We rather recall existing

works such as [Châtel et al., 2010].
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2 QoS-aware Service Composition Model

The way service composition is specified has a substantial impact on QoS-aware service

composition approaches in pervasive environments. In order to address this issue, two major

steps are required. First, establishing a QoS model that enables the effective understanding and

use of QoS. Second, using the specified model to describe QoS associated to compositions and

their constituent services.

2.1 QoS model

We recall our semantic QoS model presented in the previous chapter. Our model is expressed

as a set of QoS ontologies defining a detailed taxonomy of QoS. These ontologies are extendible

so that they can support the myriad of QoS properties needed in pervasive environments. For

the purpose of our QoS-aware service selection algorithm, we distinguish two classes of QoS

properties: (i) negative QoS properties, which a have negative effect on QoS, i.e., the higher their

values, the lower is QoS, thus they should be minimized ; and (ii) positive QoS properties (e.g.,

availability), which should be maximized since they have positive effect on QoS, i.e., the higher

their values, the higher QoS, is. In the remainder of this chapter, we consider only positive QoS

properties in order to make our approach easier to understand. Negative QoS properties can

be easily transformed into positive properties using simple arithmetic operations.

Additionally, in our approach we consider user QoS requirements on an end-to-end basis.

This is based on our semantic end-to-end QoS model. For instance, in our approach the response

time required by users is computed using the expression rt = t + d, meaning that the total

response time perceived by users when executing a service is the sum of the service response

time t and the network delay d. Likewise, the availability perceived by users is computed by

the expression av = as ◊ an, where as is the service availability and an is network availability.

Similarly, the reliability perceived by users is defined by re = r ◊ l, where r represents the

reliability of the service and l is the network loss rate.

2.2 Composition model

Our QoS-aware service composition approach is initialized by taking as input a user request

R which is defined as a quadruple R = (T , U , P, W ), where T refers to the required task

and U refers to global QoS constraints U = Èu1, .., unÍ imposed by the user on a set of QoS

properties P = Èp1, .., pnÍ. For each constraint, the user has to specify the relative importance of

its associated QoS property by giving a set of weights W = Èw1, .., wnÍ, where wi is the weight
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of QoS property pi. It is worth noting that the sum of all the weights must be equal to 1, i.e.,
qn

i=1 wi = 1.

For a user task T , its structure is specified as a set of abstract activities T = ÈA1, ..AzÍ

coordinated by composition patterns. In our approach, we consider four types of composition

patterns, which are commonly used to construct service compositions [Yu et al., 2007; Zeng

et al., 2004]: Sequence, AND, XOR and Loop.

To each abstract activity Ai in the user task is associated a set of concrete service candidates

S = {si,1, si,2, .., si,mi
} that are able to realize Ai. Each service si,k (1 Æ k Æ mi) is represented

by its QoS vector QoSsi,k
= Èq1, .., qnÍ, where qj is the advertised value of QoS property pj (1 Æ

j Æ n).

Only one concrete service si,ki
is enacted for each abstract activity Ai, thus forming a

concrete service composition Ci = Ès1,k1 , .., sz,kz
Í realizing the user’s task.

The question to be asked is then which service should be enacted for each activity in the user

task so that the overall composition meets the user’s QoS requirements U = Èu1, .., unÍ. The

problem becomes even more complicated when we aim at selecting several alternative service

compositions C1, .., Cv in order to support dynamic binding of services (i.e., allowing the choice

among several alternative services per user task activity).

The first step to address this problem is to determine how to evaluate the QoS of a service

composition QoSCi
= ÈQ1, .., QnÍ based on the structure of the composition (i.e., its composition

patterns) and the QoS of its constituent services, as discussed in the next section.

2.3 QoS aggregation

Global service selection requires evaluating QoS of service compositions prior to their execu-

tion. As the way service compositions will be executed is unforeseen during service selection, the

overall QoS of a composition cannot be assessed in an accurate manner, it is rather estimated

with respect to possible execution scenarios of the composition. For instance, the response time

of two services composed in exclusive choice (XOR) can be estimated either to the longest, or

the shortest or the mean response time of the two services. Related to this, we consider three

QoS aggregation approaches: (1) optimistic approach (i.e., considering the best QoS value), (2)

pessimistic approach (i.e., considering the worst QoS value), and (3) mean-value approach (i.e.,

considering the average of services’ QoS values).

The choice of the proper aggregation approach is performed with respect to the requirements

of the pervasive environment, notably the degree to which the user QoS requirements are strict.

More specifically, if the user requirements are too strict, the middleware designer shall opt
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for the pessimistic aggregation approach, which ensures meeting the user QoS requirements,

even when the composition is executed with respect to the worst scenario (i.e., from a QoS

point of view). However, it is worth noting that the pessimistic aggregation approach may

lead to discarding more solutions (i.e., service compositions) compared with the mean-value or

optimistic aggregation approaches.

Table IV.1 gives examples of QoS aggregation formulae of commonly used QoS properties

according to the optimistic, pessimistic and mean-value aggregation approaches [Alrifai et al.,

2008]. In this table, rti, pri, avi, rei and thi denote respectively the response time, price, availa-

bility, reliability and throughput of services si,k forming the composition pattern, and k is the

estimated number of loops in a repeated activity.

The QoS of a service composition QoSCi
= ÈQ1, .., QnÍ is determined by aggregating QoS

values of its constituent services QoSsi,k
= Èq1, .., qnÍ. QoS aggregation is a complicated task

which depends on both the considered QoS properties and the composition patterns underlying

the composition. We consider three types of QoS properties with respect to their inherent

aggregation semantics: i) additive properties which can be aggregated using the operator +

such as response time, ii) multiplicative properties which can be aggregated using the operator

◊ such as availability and reliability, and iii) properties which can be aggregated using min

and max operators. Each type of QoS properties can be aggregated differently with respect

to composition patterns (Seq, AND, XOR, Loop). Concerning the particular case of iterative

execution of services (i.e., loop execution), where we need to estimate the number of loops, we

adopt a history-based estimation that considers the number of loops previously executed for

the considered service.

3 The QASSA Algorithm

3.1 Design Rationale

As introduced in Chapter II, QoS-aware service selection algorithms fall under two broad

classes with respect to their selection techniques. We distinguish local selection (i.e., greedy

selection), which proceeds by selecting the best service in terms of QoS for each abstract

activity in the user task separately. This technique has a low computational cost but it can

not guarantee meeting global QoS requirements. Second, global selection covers the scope of

the whole composition and ensures meeting global QoS requirements. However, it is has a high

computational complexity.

Based on the aforementioned classification of QoS-aware service selection algorithms, we
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QoS aggregation of service compositions
Additive Multiplicative Min/Max

properties properties properties
response time price availability reliability throughput

Seq
optimistic

qn
i=1 rti

qn
i=1 pri

rn
i=1 avi

rn
i=1 rei max (thi)

pessimistic
qn

i=1 rti

qn
i=1 pri

rn
i=1 avi

rn
i=1 rei min (thi)

mean
qn

i=1 rti

qn
i=1 pri

rn
i=1 avi

rn
i=1 rei (

qn
i=1 thi)/n

AND
optimistic max (rti)

qn
i=1 pri

rn
i=1 avi

rn
i=1 rei max (thi)

pessimistic max (rti)
qn

i=1 pri

rn
i=1 avi

rn
i=1 rei min (thi)

mean max (rti)
qn

i=1 pri

rn
i=1 avi

rn
i=1 rei (

qn
i=1 thi)/n

XOR
optimistic min (rti) min (pri) max (avi) max (rei) max (thi)
pessimistic max (rti) max (pri) min (avi) min (rei) min (thi)
mean (

qn
i=1 rti)/n (

qn
i=1 pri)/n (

qn
i=1 avi)/n (

qn
i=1 rei)/n (

qn
i=1 thi)/n

Loop
optimistic rti ◊ k pri ◊ k (avi)k (rei)k thi

pessimistic rti ◊ k pri ◊ k (avi)k (rei)k thi

mean (
qn

i=1 rti)/n (
qn

i=1 pri)/n (avi)k (rei)k thi

Table IV.1 – Examples of QoS aggregation formulas

propose a heuristic algorithm that combines local and global selection techniques in order to

handle the complexity of service selection under global QoS requirements. The objective of

our algorithm is to select near-optimal service compositions, i.e., service compositions meeting

user QoS requirements and providing a level of QoS as high as possible. More specifically,

our algorithm aims at selecting several alternative near-optimal compositions, thus enabling to

support dynamic binding of services.

Our algorithm proceeds through two main steps: (1) local selection, which aims at selecting

services with the highest QoS for each abstract activity in the user task and (2) global selection,

which aims at composing services resulting from local selection and selecting near-optimal

service compositions. The selected compositions are ranked according to their QoS.

3.2 Local Selection Phase

The local selection phase represents a preliminary filtering of services aiming to determine

services with the highest QoS for each activity in the user task. The selected services are further

investigated by the global selection phase in order to select near-optimal service compositions.

To address local selection, we propose investigating clustering techniques, notably the K-

means algorithm. Clustering techniques allow for grouping a set of data into several clusters

with respect to given criteria. If we apply the same principle to our purpose (i.e., QoS-aware
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service selection), we can group service candidates associated with an abstract activity into

several clusters according to their QoS values. Each cluster includes services having roughly

the same QoS.

The importance of this idea is that it allows for determining the set of services providing

high QoS, dynamically, with respect to the number of service candidates. Indeed, given that

the number of service candidates varies from an activity to another and from a pervasive

environment to another, determining the number of services providing high QoS for each activity

in the user task is not obvious. Traditionally, local selection approaches either select only one

service (i.e., the one with the highest QoS) or they fix a static number – of services to be

selected. Depending on the density of services and the level of QoS they provide, the number

– may be excessive or insufficient. On the one hand, if the number of services providing a high

level of QoS is superior to –, selecting only – services leads to discarding services with high QoS

that can potentially fulfill the user task. On the other hand, if the number of services providing

a high level of QoS is inferior to –, selecting – services leads to investigating services with low

QoS. Using K-means allows coping with this issue, since K-means dynamically determines the

number of services with high QoS depending on the density of services and the level of QoS

they offer.

Moreover, K-means allows for establishing several clusters of services representing different

QoS levels. Thus, if we consider only services belonging to the highest QoS level, we can

considerably reduce the number of service compositions to be investigated, hence improving the

timeliness of the algorithm without much loss in the optimality of the resulting composition

(i.e., since we consider services with the highest QoS).

Finally, it is worth noting that K-means is a simple algorithm with low computational cost,

thus using it as a preliminary selection phase does not increase the complexity of the problem.

Indeed, K-means reduces the overall computational cost of QASSA since it prunes the size

of service compositions to be investigated at the global selection phase, especially since our

method of using K-means is highly selective (see details in Section 3.2.2).

3.2.1 Preliminary Investigation

In this section, we present our preliminary investigations concerning the usage of K-means

for local selection, thus sharing our experience with the reader. K-means is an iterative algorithm

which takes as input (i) the set of data points defined by their coordinates di = Èx1, .., xnÍ (where

n is the number of coordinates), and (ii) a number of centroids defined by their coordinates

ci = Èy1, .., ynÍ. Every centroid represents a cluster of data points.
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In each iteration, K-means performs two steps. First it associates data points to their nearest

centroid (i.e., cluster) by computing the n-dimensional Euclidean distance between each data

point and each centroid:

D = n

ˆ

ı

ı

Ù

n
ÿ

j=1

(xi ≠ yi)2 (IV.1)

Second, it updates the centroids’ coordinates by computing the average of their associated data

points. The clustering further iterates by alternating these two steps until reaching a fixpoint

(i.e., data points associated to each cluster do not change any more).

In our work [Ben Mabrouk et al., 2009], we applied the aforementioned method of K-means

to fulfill the local selection phase of our algorithm. To do so, we replaced data points and their

coordinates by service candidates and their associated QoS vectors. Additionally, we fix the

number of centroids to three and we determine their initial coordinates as follows :

• c1 = Èxmin
1 , .., xmin

n Í ;

• c2 = È
xmax

1 ≠xmin
1

2
, .., xmax

n ≠xmin
n

2
Í ;

• c3 = Èxmax
1 , .., xmax

n Í.

The above formulae mean that the three centroids take as initial coordinates, respectively,

the minimal, middle and maximal value of each QoS dimension (among all service candidates).

Although, our approach yields interesting results in terms of timeliness and optimality

[Ben Mabrouk et al., 2009], the way of using K-means based on n-dimensional Euclidean dis-

tance brings about a specific problem, which represents the main weakness of the existing

algorithms. This problem is about compensation and counterbalance between QoS properties.

Indeed, most of existing algorithms [Yu et al., 2007] use QoS utility functions aggregating jointly

all QoS properties of services. Such functions may hide the deficiency of services with respect

to one or more QoS properties. More specifically, if a service has a low value for a given QoS

property (e.g., availability) and high values for other properties (e.g., reliability and response

time), when we aggregate all these values using a utility function, the low QoS property can be

compensated by the high ones, thus yielding a balanced QoS utility and hence the service may

be selected by the local selection phase. However, when checking global QoS constraints during

global selection, the service will be most likely rejected as it may lead to the violation of one

or more QoS constraints related to the deficient QoS properties (e.g., availability). Therefore,

such services should be discarded during local selection in order to improve the timeliness and

the optimality of the algorithm.

In our case, the n-dimensional Euclidean distance represents a QoS utility function aggrega-

ting all QoS properties of services jointly. Hence, it causes the same problem of compensation
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and counterbalance between QoS properties. To cope with this issue, in QASSA we propose a

novel way of using K-means to fulfill local selection of services.

3.2.2 Local Selection in QASSA

As explained above, the preliminary approach using K-means for local selection (that we

proposed in [Ben Mabrouk et al., 2009]) is subject to the problem of compensation between QoS

properties. In QASSA, we apply K-means in a way that guarantees selecting services with high

value for each QoS property individually. We first explain this idea, then we give the detailed

algorithm of local selection in QASSA.

Idea. To select services providing high values for all QoS properties, we shift from clustering

services based on n-dimensional Euclidean distance (i.e., considering n QoS properties jointly)

to one-dimensional clustering applied n times (once per QoS property). That is, we cluster

service candidates (i.e., associated with each abstract activity in the composition) for each QoS

property separately (Figure IV.2). Thus, we obtain for each QoS property pj several clusters,

going from the cluster of services with the highest values of pj to the cluster of services with

the lowest values for the same property (respecting the definitions of positive and negative

QoS properties). Further, by considering the intersection of the clusters with the highest values

associated with each QoS property, we obtain the set of services providing high values for all

QoS properties jointly. To explain this idea in detail, let us consider the scenario introduced

in Chapter I where Bob asks for an audio or video streaming service with high availability

and high encoding quality. To fulfill the local selection for this activity and determine what

are the most interesting audio and video streaming services from the availability and encoding

quality points of view, we first cluster audio and video streaming services with respect to their

availability into three groups (low, medium and high), then we cluster them again with respect

to their encoding quality again into three groups (low, medium and high), and after that we

perform the intersection of the group of services with high availability and the group with high

encoding quality, thus obtaining audio and video streaming services with high availability and

encoding quality at once.

To implement the local selection in QASSA, we use a variant of K-means called K-means++

[Arthur and Vassilvitskii, 2007], which takes as input only the number of clusters (in opposi-

tion to K-means which takes as input the number of centroids and the initial values of their

coordinates). The number of clusters can be determined using various techniques proposed in

the literature, e.g., [Bezdek and Pal, 1998; Davies and Bouldin, 1979; Milligan and Cooper,
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Figure IV.2 – The local selection phase

1985]. In our approach, we opt for the Davies–Bouldin index [Davies and Bouldin, 1979], which

is specifically designed for the K-means clustering algorithm.

Algorithm. We present the Algorithm 1 of local selection in QASSA, which comprehends

two main steps. The first step (lines 2 to 5) concerns clustering service candidates associated

with an abstract activity for each QoS property pj separately, thus yielding a set of clusters

CL = Èclj,1, .., clj,gÍ, where clj,g is the best cluster (i.e., with the highest values of pj) and cl1,j is

the lowest cluster (i.e., with the lowest values of pj). Once the clustering is fulfilled, we perform

the intersection of the best clusters (i.e., clusters with the highest values) associated with each

QoS property, thus obtaining services with high values for all QoS properties. To define the

local selection in QASSA in a formal way, we introduce two concepts: QoS Level and QoS Class.

Definition 1 Given a set of QoS properties P = Èp1, .., pnÍ and a set of services S = {si,1, si,2, .., si,mi
}

grouped into g clusters Èclj,1, .., clj,gÍ for each QoS property pj (where clj,1 is the cluster of ser-

vices with the lowest values of pj and clj,g is the cluster of services with the highest values of

pj), we define a QoS level QLr = Ècl1,r, .., cln,rÍ as the set of clusters associated with each QoS

property pj and having the same rank r (1 Æ r Æ g).

The concept of QoS Level is used to group clusters with the same rank r together, thus

we can perform their intersection and determine services with QoS values in the rank r. In

particular, we are interested in the best QoS level QLg which groups clusters with the highest
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input : a set of activities T = {A1, .., Az} of size z,
a set of services Si = {si,1, .., si,mi

} of size mi for each activity Ai (i œ [1, z]),
a set of QoS properties P = {p1, .., pn} of size n,
a set of weights on QoS properties W = {w1, .., wn} of size n,
a QoS vector QoSsi,k

= Èq1, .., qnÍ for each service si,k (k œ [1, mi]).

output: a set of services S Õ
i for each activity Ai (S Õ

i ™ Si i œ [1, z]).

1 foreach Ai œ T do

2 (Step 1) Clustering services;
3 foreach pj œ P do

4 K-means++(Si, w) æ Èclj,1, .., clj,gÍ;
// g is the number of clusters

// apply K-means++ to obtain g clusters for the QoS property pj

5 end

6 (Step 2) Services’ selection;
7 for r Ω g downto 1 do

8 for e Ω n downto 1 do

9 build QoS Level r;
10 QLr Ω Èclr,1, clr,2, .., clr,nÍ;

11 build QoS class e of the level r by;

12 QCr,e Ω {si,k \ si,k œ
u

C
QLr
e };

// C
QLr
e is the combination of e clusters among QLr

13 intialize the selected QoS class and its score;
14 S Õ Ω ÿ;
15 highest-score Ω 0;

16 select the QoS class with the highest score;
17 if QCr,e is not empty then

18 scoreQCr,e
Ω r ◊ e ◊

qy

j=1
wj ;

19 (wj œ W \ clr,j œ QCr,e)

20 if scoreQCr,e
> highest-score then

21 highest-score Ω scoreQCr,e
;

22 S Õ
i Ω QCr,e;

23 end

24 end

25 end

26 end

27 return (S Õ
i, scoreQCr,e

);

28 end

Algorithm 1: The local selection algorithm
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QoS values (Ècl1,g, .., cln,gÍ). The intersection of these clusters yields services with the highest

QoS values for all QoS properties. To do so, we define the concept of QoS Class.

Definition 2 Given a QoS level QLr = Ècl1,r, .., cln,rÍ, we define a QoS class QC r,e (1 Æ e Æ n)

as the intersection of e clusters among QLr. Subsequently, a QoS level QLr comprehends n QoS

classes (QLr = {QC r,1,..,QC r,n}).

Literally, a QoS class QC r,e represents the set of services having exactly e QoS properties

out of n at the QoS level QLr. According to this, the QoS class QC g,n groups the best set of

services in terms of QoS, since they have all their n QoS properties in the highest QoS level

QLg. Nevertheless, if QC g,n is an empty set (i.e., there are no services with high values for

all QoS properties), we try to find the next best QoS class in terms of QoS (e.g., QC g,n≠1).

However, we may obtain several QoS classes having the same level and the same rank (e.g.,

selecting n ≠ 1 QoS properties out of n). To determine the best QoS class, we introduce the

following score:

ScoreQCr,e
= r.e.

e
ÿ

j=1

wj where wj œ {W /clj,r œ QC r,e} (IV.2)

This score means that a QoS class is important (i.e., it includes services with high QoS)

when (i) it is associated with a high QoS level QLr, (ii) it comprehends a high number of QoS

properties e in that level, and (iii) the weights wj associated with these QoS properties are

important for the user.

3.3 Global Selection Phase

Once the local selection is fulfilled, we proceed to global selection, which allows for composing

locally selected services and determining near-optimal service compositions. Two challenging

issues should be addressed concerning global selection. First, the computational complexity

of the problem is still NP-hard, even though our local selection phase is highly selective and

reduces considerably the number of services to be investigated. Therefore, we need a heuristic

algorithm to address the global selection phase. Second, the purpose of our global selection phase

is not to select only one composition fulfilling user requirements, but rather several alternative

compositions. More specifically, we aim at selecting several services for each abstract activity in

the user task, such that, no matter what is the service executed for each activity, the resulting

composition meets user QoS requirements. Nevertheless, selecting several alternative service

compositions makes the problem even more complicated.
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In QASSA, we propose a heuristic algorithm for global selection (Algorithm 2), which selects

several alternative service compositions. Our algorithm comprehends five steps:

1. Figure IV.3 depicts an example of running our global selection algorithm for a sequence of

3 abstract activities with 8 services candidates (resulting from the local selection phase).

For each activity, we sort its associated services with respect to their overall QoS (lines 2

to 8 in 2). To do so, we introduce a QoS utility function, f , which is defined as follows:

fsi,k
=

Y

]

[

qz
x=1(wx. qx≠qmin

qmax≠qmin
) +

qn
x=z(wx. qmax≠qx

qmax≠qmin
) if qmax ≠ qmin , 0

1 if qmax ≠ qmin = 0

where z is the number of positive QoS properties (respectively n ≠ z is the number of

negative QoS properties), qx is the value of the QoS property px for the service si,k, and

qmin, qmax denote respectively the minimal and maximal values of px among all service

candidates associated with the activity Ai. Yet, it is worth noting that we use the QoS

utility function f only to sort services (i.e., to establish an order according to which the

services are processed), and not to select these services based on their overall QoS utility.

Therefore, we avoid the problem of compensation between QoS properties.

Figure IV.3 – An example of running the global selection algorithm in QASSA

2. As depicted in Figure IV.3, our heuristic algorithm explores service compositions by

picking a service from each activity and composing them together. Services with the
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input : a set of activities T = {A1, .., Az} of size z,
a set of services SÕ

i = {si,1, .., si,yi
} of size yi for each activity Ai (i œ [1, z]),

a set of QoS properties P = {p1, .., pn} of size n,
a set of QoS constraints U = {u1, .., un} imposed on each property,
a set of weights W = {w1, .., wn} of size n associated with each QoS property,
a QoS vector QoSsi,k

= Èq1, .., qnÍ for each service si,k (k œ [1, yi]).

output: a set of service compositions ranked according to their QoS utilities.
1 begin

2 Sort services of with respect to their QoS utilities;
3 foreach Ai œ T (i œ [1, z]) do

4 foreach si,k œ SÕ

i (k œ [1, yi]) do

5 fsi,k
=

q

j

x=1
(wx.

qx≠qmin
qmax≠qmin

) +
q

n

x=j
(wx.

qmax≠qx
qmax≠qmin

)

6 end

7 SÕ

i Ω sort(SÕ

i, f );
// sort is a function which yields an oredered set given a set of elements and a sorting criteria

8 end

9 Initialize the service composition, its status and the set of solutions;
10 C Ω Ès1,1, .., sz,1Í;
11 near-optimal Ω true;
12 solutions Ω ÿ;

13 Initialize the minimal QoS values;
14 foreach Ai œ T (i œ [1, z]) do

15 foreach pj œ P do

16 qj,min Ω qj (qj œ QoSsi,1
);

17 end

18 QoSsi,min
= Èq1,min, .., qn,minÍ;

19 end

20 while si,k , si,vi
do

21 Checking whether C meets user requirements;
22 foreach pj œ P do

23 foreach Ai œ T (i œ [1, z]) do

24 aggregating the minimal QoS value for the property pj ;

25 Qj,min = Qj,min ü qj,min (qj,min œ QoSsi,min
);

// ü is a function which aggragates the QoS of a composition for a QoS property pj with respect to formulas in Table

IV.1

26 checking whether the minimal QoS value Qj,min meets the user requirement uj ;

27 if Qj,min violates uj then

28 near-optimal Ω false;
29 break;

30 end

31 end

32 end

33 Updating the set of solutions and the minimal QoS values;
34 if near-optimal = true then

35 add C to the list of near-optimal service compositions;
36 solutions Ω solutions fi C;

37 updating the minimal QoS values;
38 foreach Ai œ T (i œ [1, z]) do

39 QoSsi,min
= min(QoSsi,min

, QoSsi,k
);

40 end

41 end

42 Constructing a new composition by updating one service of C;
43 intializing the highest heuristic;
44 hmax = 0;

45 foreach Ai œ T (i œ [1, z]) do

46 compute the heuristic hsi,k+1
of service si,k+1 for each activity Ai;

47 hsi,k+1
= ScoreQCr,e

◊ 1

f ≠f Õ
;

48 determine the highest heuristic;
49 if hsi,k+1

Ø hmax then

50 hmax Ω hsi,k+1
;

51 end

52 end

53 update C by switching to the service si,k+1 with the highest heuristic;

54 C – si,k Ω si,k+1;

55 reinitialize the composition status;
56 near-optimal Ω true;

57 end

58 Sort accepted compositions with respect to their QoS utilities;
59 foreach C œ solutions do

60 compute the utility of each composition;

61 FC =
q

j

x=1
(wx.

Qx≠Qmin
Qmax≠Qmin

) +
q

n

x=j
(wx.

Qmax≠Qx
Qmax≠Qmin

)

62 end

63 solutions Ω sort(solutions, F);

64 end

Algorithm 2: The global selection algorithm70
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highest utilities are explored first. Our algorithm checks whether a service composition Cv

meets global QoS requirements U = Èu1, .., unÍ (lines 26 to 30 in 2). If so, Cv is considered

as a solution (i.e., a near-optimal composition). Otherwise, Cv is rejected. After that, our

algorithm proceeds to checking another service composition Cw obtained by performing a

simple update to (Cv). We define a simple update as changing only one service in Cv by

switching from a service si,k to its following service si,k+1 (i.e., the service having the next

best utility f ), where both services are associated with the same activity Ai. Changing

only one service allows to browse service compositions in an ordered manner and also

to speed up the time needed for computing the QoS of the resulting composition (i.e.,

Cw). This is achieved by simply updating the QoS of the current composition (i.e., Cv)

with respect to the difference of QoS between services si,k and si,k+1 (i.e., QoSsi,k
and

QoSsi,k+1
).

3. When a service composition Cv meets user QoS requirements U = Èu1, .., unÍ (for example

Step 1 in Figure IV.3), our algorithm does not switch from Cv to a new composition Cw

randomly, but it rather attempts to find a service si,k+1 replacing si,k such that the

resulting composition Cw yields nearly the same QoS utility F as Cv, hence it, too, can be

most likely a near-optimal composition. To do so, we introduce a heuristic h of services

si,k+1 associated with each activity Ai (lines 45 to 52 in 2). This heuristic is defined as

follows:

hsi,k+1
=

r.e

f ≠ f Õ
(IV.3)

where r and e denote the coordinates of QC r,e, the QoS class to which si,k+1 belongs, and

f and f Õ denote respectively the QoS utilities of services si,k and si,k+1.

The above formula means that our algorithm switches to the service si,k+1 (i) belonging

to the most important QoS class (i.e., with the highest coordinates r and e), and (ii)

having a QoS utility f Õ which is the closest to the utility f of its preceding service si,k in

the activity Ai. In Figure IV.3, the black arrow indicates the activity in which we switch

from the service si,k to si,k+1 according to the heuristic h.

4. Our algorithm must guarantee that, at run-time, if the running composition fails, we

can switch to any accepted service composition (i.e., while always respecting global QoS

requirements of the user). For this reason, when checking whether the current service

composition Cw meets user QoS requirements, we must guarantee that Cw can replace any

previously accepted composition Cv without violating QoS requirements.

To achieve this purpose, for each user task activity, we compute the minimal QoS value

qj,min (of each QoS property pj) among the service belonging to Cw and the previously
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accepted compositions. Thus, we obtain a QoS vector Èq1,min, .., qz,minÍ for each activity

Ai. For instance, in Figure IV.3, Step 5, we compute the minimal QoS values of services

1 and 2 for activity A1, services 3,4 and 5 for activity A2, and service 7 for activity A3.

After that, we aggregate the minimal QoS values of all the activities and we obtain a QoS

vector QoSCmin
= ÈQ1,min, .., Qz,minÍ representing the composition with the minimal QoS

values among Cw and the previously accepted compositions (lines 22 to 32 in 2). If QoSCmin

meets global QoS requirements, this means that any combination of services belonging to

Cw or the previously accepted compositions Cv can also meet these requirements.

5. Our algorithm iterates checking service compositions until investigating all the services

associated with each user task activity (as depicted in Figure IV.3). It yields as a result

several alternative service compositions ranked with respect to their overall QoS utility

F defined as follows (lines 59 to 62 in 2).

FCw
=

Y

]

[

qz
x=1(wx. Qx≠Qmin

Qmax≠Qmin
) +

qn
x=z(wx. Qmax≠Qx

Qmax≠Qmin
) if Qmax ≠ Qmin , 0

1 if Qmax ≠ Qmin = 0

where z is the number of positive QoS properties (respectively n-z is the number of

negative QoS properties), Qx is the value of the QoS property px of Cw, and Qmin, Qmax

denote respectively the minimal and maximal values of px among the accepted service

compositions.

During dynamic binding, we first enact services forming the composition Cmax (having

the highest QoS utility Fmax). If the run-time QoS of one service in Cmax declines, we

enact another service belonging to another composition. Obviously, the QoS utility of the

resulting composition is different from Fmax, but it always respects global QoS require-

ments.

The importance of this flexibility in choosing and enacting services is twofold. On the one

hand, it avoids managing complicated dependencies between services. On the other hand,

it avoids rolling back services already executed when a service composition fails. For ins-

tance, in the example of Figure IV.3, the global selection yields four service compositions

ÈC4, C2, C1, C5Í ranked according to their utilities F . To fulfill the user task, we attempt to

execute at first the composition C4. To do so, we start by enacting Service 1, then Service

5. However, if the latter service is not available at run-time, we execute the composition

C2 by enacting Service 4, then Service 7.

We note that if we consider our global selection approach apart (without the local selection

phase), it may lead to discarding a lot of possible solutions, because it considers the least QoS
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values when selecting service compositions. However, our global selection approach, strongly

relies on the quality of the local selection phase. More specifically, there are two facts which make

our local and global selection phases complementary. First, the services yielded by local selection

are of high QoS, thus at the global selection phase, service compositions will be most likely

near-optimal compositions. Second, the services yielded by local selection (for each activity in

the user task) belong to the same QoS class, thus they have roughly the same QoS, and hence

at the global selection phase it is very probable to find alternative service compositions.

Overall, our selection approach presents two main advantages. First, as explained above, it

allows high flexibility when choosing services at the dynamic binding stage. Second, it consi-

derably reduces the complexity of the problem. In the next section, we study in detail the

computational complexity of our algorithm.

3.4 Computational Complexity Analysis

In this section, we give a detailed analysis of the computational complexity of our QoS-

aware service selection algorithm. The analysis concerns both phases of our algorithm (i.e.,

local selection and global selection). It will be based on the following parameters:

Z = the number of activities in the composition,

P = the number of QoS properties,

K = the number of clusters.

Due to the fact that the local selection algorithm makes extensive use of K-means, its

performance is strongly dependant on the performance of this algorithm. As already explained,

in the local selection phase we cluster services for each QoS property and for all the activities in

the composition. For this reason, the computational complexity of our local selection algorithm

is of O (Z.P.∆) where ∆ is the complexity of K-means. ∆ is defined as O (NP.K+1 log N) where

N is the number of services to cluster [Lloyd, 1957].

Concerning the global selection phase, its computational complexity is related to two main

facts. First, we explore service compositions while changing only one service when switching

from a service composition to another. Second, each service we switch to is investigated once.

That is, it is not investigated again with another combination of services. According to this, our

global selection phase comprehends N ≠ Z + 1 steps, each dealing with a service composition,

where N is the total number of services associated with all the activities in the user task. Then,

the computational complexity of our global selection algorithm is of O (N≠Z+1). Accordingly,
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our approach reduces considerably the computational complexity of service selection under

global QoS requirements, which is NP-hard. Even more, our approach has a lower computational

complexity compared to existing heuristic algorithms for QoS-aware service selection. Further

details about this subject are given in Section 5.

4 Distributing QASSA

The version of QASSA presented in Section 3 assumes the presence of a centralized and

stationary infrastructure supporting QoS-aware service composition. Nevertheless, within per-

vasive environments, it is not always possible to assume the support of such infrastructure.

QoS-aware service composition in pervasive environments (i.e., more specifically selection algo-

rithms) rather relies on ad hoc environments with no infrastructure support.

For this reason, we aim at making the QASSA algorithm capable of operating on top of ad

hoc infrastructures. We present a distributed version of QASSA, which can be executed in ad

hoc environments populated by mobile resource-constrained devices.

As depicted in Figure IV.4, our distributed algorithm starts form the assumption that

pervasive environments are populated by mobile and resource-constrained devices, which are

able to communicate in a peer-to-peer fashion. Devices are mobile, so that the environment

changes dynamically according to the emergence or departure of devices. Thus, it is hard to

assume a stationary infrastructure in ad hoc pervasive environments. Our distributed selection

algorithm is implemented within a QoS-aware service-oriented middleware that is supposed to

be installed on each device operating in the environment. We also assume that our middleware

deals with preliminary phases required for QoS-aware composition such as service discovery in

ad hoc pervasive environments [Raverdy et al., 2006].

Our distributed service selection algorithm allows for fulfilling service selection as a syner-

getic interaction between the user device (referred to as requester) and other devices available

in the environment (referred to as helpers). The main idea of our distributed algorithm is to

fulfill local selection for each abstract activity in the user task using a helper, thus enabling

to execute the whole local selection phase using several helpers simultaneously. After that, the

requester collects the local selection results and performs the global selection phase on the user

device.

When a user submits a QoS-aware composition request, the middleware platform installed

on his/her device processes the request through the following steps (Algorithm 3):

1. The middleware analyzes the composition request and splits it into several elementary
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input : a set of activities T = {A1, .., Az} of size z,
a set of services Si = {si,1, .., si,vi

} of size vi for each activity Ai (i œ [1, z]),
a set of QoS properties P = {p1, .., pn} of size n,
a set of QoS constraints U = {u1, .., un} imposed on each property,
a set of weights W = {w1, .., wn} of size n associated with each QoS property,
a QoS vector QoSsi,k

= Èq1, .., qnÍ for each service si,k (k œ [1, vi]).

output: a set of service compositions ranked according to their QoS utilities.
1 begin

2 (Step 1) Splitting the user request into a set E of elementary requests;
3 foreach Ai œ T (i œ [1, z]) do

4 ei Ω (Ai, Si, P, W );
5 E Ω E fi ei;

6 end

7 (Step 2) Broadcasting help message and getting helpers;
8 broadcast (help message);
9 foreach device d favorably replying to the help message do

10 helpers Ω helpers fi d;

11 end

12 while E , ÿ do

13 (Step 3) Scheduling elementary requests to helpers;
14 foreach ei œ E do

15 ei Ω d (d œ helpers);

16 end

17 (Step 4) Fulfill the local selection phase;
18 while Timeout Session do

19 Helper Algorithm : execute local selection (Algorithm 1) given ei as input;

20 end

21 (Step 5) Getting the results of elementary requests;
22 foreach ei œ E do

23 if result (ei) , null then

24 S Õ
i Ω result (ei);

25 E Ω E \{ei};

26 end

27 end

28 end

29 (Step 6) Fulfill the global selection phase;
30 execute global selection (Algorithm 2);

31 end

Algorithm 3: Overview of the distributed service selection algorithm from the requester
point of view. The coloured box concerns the part executed on the helper side.
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Figure IV.4 – Ad hoc pervasive environments

requests each dealing with service discovery and local selection for an abstract activity in

the user task.

2. The requester device broadcasts a help message asking devices available in the environ-

ment for collaboration in order to fulfill a QoS-aware service composition request. The

other devices can favourably reply to the message if they have free resources.

3. The requester schedules elementary requests with respect to the number of helper devices

that accepted to participate in fulfilling the user task.

4. The requester waits up to a timeout for helpers to process their associated elementary

requests. Each helper interacts with service directories available in the environment in

order to discover services able to fulfill the elementary request. Once service discovery is

achieved, the helper proceeds to local selection based on Algorithm 1, and it returns the

selected services to the requester.

5. If the time-out expires without all the results available, the requester re-schedules the

failed elementary requests.

6. When the requester acquires all services resulting from the local selection phase, it pro-

ceeds to global selection based on Algorithm 2.

The global service selection is difficult to carry out in a distributed way because it requires

a global vision of QoS information and the structure of the composition [Li et al., 2010].

Additionally, it typically requires a resource-rich device, given the computational complexity

of the problem. In our approach, we propose a global service selection algorithm with low

computational complexity (as detailed in Section 3.4), thus it can be carried out using only
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the resource-constrained device of the requester. The timeliness of our distributed algorithm is

further validated by experimental results (see Chapter VI).

Finally, it is worth noting that our approach copes with further issues of distributed QoS-

aware service selection, notably data privacy. Indeed, pervasive computing advocates open ad

hoc environments which offer access to any user, hence there are no guarantees about the

trustworthiness of other users operating in the environment. For this reason, user data must

be protected while carrying out QoS-aware service selection in a distributed way. Towards this

purpose, we recall the solution provided by Cardoso [Cardoso, 2009], which allows for carrying

out distributed semantic-based service discovery and composition in pervasive environments

while preserving data privacy.

5 Evaluation and Discussion

In this section, we study QoS-aware service selection algorithms proposed in the service-

oriented community in general, and not only in the context of QoS-aware service-oriented

middleware (as presented in Chapter II). This represent a broader field of study with many

interesting heuristic algorithms. Below, we discuss the contribution of QASSA compared to

existing heuristic algorithms.

Yu et al. [Yu et al., 2007] present two heuristic algorithms, WS-HEU and WFlow, to resolve

the QoS-aware service selection problem. WS-HEU is specific heuristic algorithm applied to

sequential workflows (i.e., workflows structured as a sequence of activities), whereas WFlow

is designed for general workflow structures (i.e., sequential, conditional, parallel). The main

idea of WFLow is to decompose workflows into multiple execution routes. WFlow considers

a parameter ξi for every route indicating its probability to be executed, and it then focuses

on the route with the highest probability to be executed. Therefore, WFlow can give good

results for the most probably executed routes, however, when a different route is executed, the

algorithm may give less good results. In QASSA, we use different QoS aggregation approaches

(i.e., pessimistic, mean-value and optimistic) to evaluate the overall QoS of a workflow, and

select near-optimal service compositions regardless of the way the workflow will be executed.

Likewise, Comes et al. [Comes et al., 2010] present two heuristic algorithms for QoS-aware

service selection: OPTIM_HWeight and OPTIM_PRO. Both algorithms represent the selection

problem as browsing a tree of abstract activities with multiple concrete services for each activity.

To select near-optimal service compositions, OPTIM_HWeight uses a function fHW eight which

sorts service candidates with respect to their influence on the overall QoS of the composition.
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This function reflects jointly all QoS properties of services, thus it suffers from the problem of

compensation between QoS properties. Whereas, OPTIM_PRO uses the probability of execu-

ting a node of the tree multiplied by the number of execution loops as a heuristic to guide the

selection of services. This idea starts from the assumption that the nodes executed more often

receive a higher importance. Similar to WFlow, OPTIM_PRO may give good results for the

most probably executed branches of the tree, but also less good results when a different branch

is executed.

Other QoS-aware service selection approaches present solutions based on evolutionary algo-

rithms which browse service compositions in a random way. These solutions can be divided into

three sets. A first set of solutions [Canfora et al., 2005; Cao et al., 2007; Gao et al., 2007; hong

SHEN and hu YANG, 2010; Jaeger and Mühl, 2007; Jiang et al., 2011; Kobti and Zhiyang,

2007; Lécué, 2009; Vanrompay et al., 2008; Zhang et al., 2006] use the genetic algorithm (GA)

to fulfill QoS-aware service selection. A second set of solutions use other evolutionary algo-

rithms such as the Harmony Search (HS) algorithm [Jafarpour and Khayyambashi, 2010] and

the Ant Colony Algorithm (ACA) [Xia et al., 2008]. Whereas, a third set of solutions propose

combining GA with other algorithms, such as the Ant Colony Algorithm [Zongkai YANG and

ZHAO, 2010] and the Tree Traversal Sequence (TTS) coding scheme [Kai Shuang and Su, 2009].

Although these algorithms may produce satisfying results, their application to the service se-

lection problem presents two major drawbacks. First, the order in which service compositions

are checked is randomly chosen, whereas in QASSA we check services in an ordered way to

optimize the timeliness and the accuracy of our algorithm. Second, these algorithms can run

endlessly, thus developers have to set a termination condition, such as the maximum number

of iterations in order to stop the algorithm. However, even setting a high number of iterations

gives no guarantee about the quality of the result.

A more recent trend in QoS-aware service selection algorithms [Alrifai et al., 2008, 2010;

Ben Mabrouk et al., 2009; Liu et al., 2009] consists in combining local and global selection

techniques similarly to QASSA. A first research effort in this context is proposed by Alrifai et

al. [Alrifai et al., 2008]. The authors present a selection algorithm that starts from the global

level and resolves the selection problem at the local level. Indeed, they proceed by decomposing

global QoS constraints (i.e., imposed by the user on the whole composition) into a set of

local constraints (i.e., for individual sub-tasks, parts of the whole composition). To do so, the

algorithm uses MILP techniques to find the best decomposition of QoS constraints. The main

drawback of this approach is that it relies on a greedy method for the decomposition of QoS

constraints, thus yielding strict constraints discriminating a lot of service candidates.

To cope with this issue, the same authors present another approach [Alrifai et al., 2010]
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combining local and global selection techniques in another way. The authors start by the local

selection phase. They use two techniques to reduce the number of services investigated for each

abstract activity in the user task. First, they use the skyline concept [Börzsönyi et al., 2001]

as a technique to determine the most interesting services in terms of QoS. Once skyline ser-

vices are determined, the authors cluster them into several clusters using K-means, and then

they select a representative service for each cluster. At the global level, the authors compose the

representative services selected at the local level, and check whether the composition meets glo-

bal QoS requirements using MILP. This approach also presents several drawbacks. Concerning

the algorithm itself, the authors claim finding the optimal service composition, because they

assume that skyline services are the best services in terms of QoS, which is not true. Indeed,

a skyline service is a service which has the highest (i.e., the best) value for one or more QoS

properties, whereas for the remaining QoS properties it may have very low values. Regarding

this definition, it is possible that a non-skyline service with high values (and not the highest)

for all QoS properties yields a higher overall QoS than a skyline service. Additionally, the fact

of using MILP to resolve the global selection phase restricts the usage of the approach, since

MILP supports only additive QoS properties. Concerning the performance of the algorithm, the

authors execute K-means Z.(N/2) times, where N is the number of service candidates investi-

gated for the user task, which represents a high number of iterations, especially when it deals

with a high number of service candidates. In our approach, we execute K-means Z.P times

where P is the number of QoS properties, which is always limited compared to the number

of service candidates. Additionally, at the global selection phase, the authors execute MILP

iteratively until a near-optimal composition is found. In each iteration, the set of representative

services with the highest QoS utilities is investigated. This approach may end by executing

MILP N times, where N is the number of representative services, which may represent also a

high number of iterations when it deals with a high number of representative services.

Another approach combining local and global selection techniques is presented by [Li et al.,

2010]. Similar to [Alrifai et al., 2008], the authors decompose global QoS constraints into lo-

cal constraints using MILP. Based on the local QoS constraints, they select services for each

abstract activity in the user task. Then, they compose locally selected services and check whe-

ther the composition meets global QoS constraints, using MILP again. The main advantage

of this approach is that it executes local selection in a distributed way similarly to our ap-

proach. However, they decompose global QoS constraints based on the average of QoS values

associated with each abstract activity, which is not accurate and may discriminate a number of

service candidates. A similar approach is presented by Jin et al. [Jin et al., 2010]. The authors

decompose global QoS constraints into local constraints using MILP, then they perform local
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selection. The main shortcoming of this approach is that, when they compose locally selected

services, they do not check whether the resulting composition meets global QoS requirements.

A more interesting approach is presented by Liu et al. [Liu et al., 2009]. The authors

propose a QoS-aware service selection algorithm which also combines local and global selection

techniques. They use the convex hull concept [Mostofa Akbar et al., 2006] as a local selection

technique. At the global level, the authors randomly establish an initial composition, and they

try to enhance it using services selected by the convex hull. The main drawback of this approach

is that it closely depends on the initial composition.

Much recent approaches dealing with QoS-aware service selection in the context of pervasive

computing [Chang and Lee, 2009; Dutra and Junior, 2010] address the problem of compensa-

tion between QoS properties. To cope with this issue, Chang and Lee [Chang and Lee, 2009]

propose a strict ordering of QoS properties with respect to their priority (from the software

developer’s point of view). Based on this ordering, the authors use PROMETHEE (Preference

Ranking Organization METHod for Enrichment Evaluations), a well-known MCDM (Multi-

Criteria Decision Making) to perform pair-wise comparisons repeatedly, and select the set of

services associated with the most important QoS properties. Nevertheless, the proposed or-

dering is static, and it does not consider user preferences in terms of QoS. An alternative

approach is proposed by Dutra and Junior [Dutra and Junior, 2010]. The authors propose a

hierarchical classification of QoS properties using ADAPTREE, which is an adaptive decision

tree algorithm. Based on the established classification of QoS properties, they select services

providing the highest values of the most important QoS properties. The main drawback of both

aforementioned approaches (i.e., [Chang and Lee, 2009; Dutra and Junior, 2010]) is that they

do not consider selection under global QoS requirements. They rather perform greedy selection

for each abstract activity in the user task.

In comparison with all the above analyzed research approaches, QASSA addresses service se-

lection under global QoS requirements while coping with the problem of compensation between

QoS properties. To do so, we combine local and global selection techniques while using one-

dimensional K-means clustering as a local selection technique (instead of skyline and convex

hull techniques). The main advantage of our algorithm is that it considers jointly : (i) end-

to-end QoS requirements, (ii) both advertised and run-time QoS of services, (iii) supporting

dynamic binding and adaptation of service compositions by selecting several alternative com-

positions instead of only one, and (iv) distributivity. To the best of our knowledge, there is no

other approach addressing jointly the above requirements. Moreover, our algorithm is of low

computational complexity, which makes it suitable for application to interactive pervasive en-

vironments. Chapter VI further confirms the efficiency of our algorithm based on experimental
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results.
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Chapter V

QoS-driven Composition Adaptation in

Pervasive Environments

In the previous chapter, we proposed a QoS-aware service composition approach allowing to

build complex services meeting the functional and QoS requirements of users. Nevertheless, the

proposed approach is not sufficient to ensure meeting QoS requirements during the execution

of service compositions, because services’ QoS may vary at run-time. To cope with this issue,

service compositions have to be dynamically adapted with respect to QoS fluctuations. By

adaptation we refer to the ability to alter service compositions in response to changes impacting

their execution. In particular, we focus on changes having impact on the QoS produced by

service compositions, notably (i) changes in QoS requirements imposed on the composition

(i.e., generally associated with long running service compositions), and (ii) changes in services’

QoS due to the dynamics of pervasive environments (e.g., user mobility).

To cope with the aforementioned changes, we present a QoS-driven adaptation approach

for service compositions that is based on two adaptation strategies. First, service substitution,

which consists in replacing services forming the composition with alternative ones.

When service substitution fails, we proceed with the second adaptation strategy, which

consists in adapting the behaviour according to which the user task is carried out. This strategy

is based on the concept of Task Class that we introduce to define the set of abstract service

compositions functionally equivalent (i.e., allowing to achieve the same user task) but having

different behaviours. Based on the Task Class concept, we reduce the behavioural adaptation

problem to vertex disjoint subgraph homeomorphism [Xiao et al., 2007].

The behavioural adaptation strategy represents a key contribution of this thesis. For this

reason, the major part of this chapter is devoted to this strategy. Next, we present the baseline of

our QoS-driven adaptation approach (Section 1). Then, we give the background and definitions

underpinning our behavioural adaptation strategy (Section 2). After that, we concentrate on our
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behavioural adaptation strategy. We first give an overview of this strategy (Section 3). Then,

we show how to transform the user task into a behavioural graph (Section 4). After that, we

introduce the Task Class concept, which specifies the set of functionally equivalent behavioural

graphs (Section 5). Based on this concept, we show how to reduce the behavioural adaptation

problem to vertex disjoint subgraph homeomorphism [Xiao et al., 2007] (Section 6). Finally,

we discuss the features of our approach with respect to related work in the service-oriented

community in general (Section 7).

1 Approach Baseline

In this section, we first present the QoS monitoring approach underpinning both adaptation

strategies (i.e., service substitution and behavioural adaptation). Then, we briefly sketch an

overview of the service substitution strategy (Section 1.2).

1.1 Global and Proactive QoS Monitoring

QoS monitoring is a primary requisite of QoS-driven composition adaptation in pervasive

environments, since it allows for determining the run-time QoS of services, thus enabling to

detect QoS requirements’ violation and trigger adaptation actions.

Nevertheless, QoS monitoring is generally carried out at the scope of individual services

forming QoS-aware compositions. Such an approach of QoS monitoring provides an incomplete

view of QoS at run-time since it does not cover the whole composition, thus it cannot control

and ensure global QoS requirements imposed on QoS-aware compositions.

Additionally, QoS monitoring is generally enacted along with the invocation of services

forming the composition. Therefore, QoS monitoring does not support early detection of services

providing unsatisfactory QoS. In this section, we identify two main features leveraging QoS

monitoring approaches to cope with the aforementioned issues.

First, QoS monitoring should be enacted a priori, i.e., just after the selection of services and

before their binding and invocation. We refer to this approach as proactive QoS monitoring. It

allows for determining the run-time QoS of all the services selected by the QASSA algorithm

(detailed in Chapter IV). Based on this anticipated QoS monitoring, dynamic binding can

choose the best service (in terms of QoS) to be enacted for each abstract activity in the user

task. Hence, services providing unsatisfactory QoS are early detected and discarded. However,

we note that proactive QoS monitoring is not always possible to accomplish, depending on

whether the services are invoked by other clients, and if they allow to be monitored by third
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parties.

Second, QoS monitoring should be performed at the level of the whole composition. We

refer to this as global QoS monitoring. It can be carried out by aggregating the run-time QoS

of basic services participating in the composition [Comes et al., 2009]. Global QoS monitoring

provides a holistic view of the running service composition and assesses its status with respect

to global QoS requirements. Global QoS monitoring enables predicting the violation of QoS

requirements and taking anticipated adaptation actions (e.g., re-composition). Indeed, given

QoS requirements of the user, and given the run-time QoS of the executed services and those

to be executed, global QoS monitoring can determine whether the run-time QoS of the overall

composition can meet QoS requirements. If not, it triggers adaptation actions. In accordance

with the above, our adaption approach assumes a global and proactive QoS monitoring method

(e.g., KAMI [Epifani et al., 2009]).

1.2 Service Substitution

Service substitution is triggered when one or more running services provide unsatisfactory

QoS. It consists in substituting these services using alternatives available in pervasive envi-

ronments. Alternative services can be determined in two ways. First, based on those services

previously selected by the QASSA algorithm (detailed in Chapter IV). If these services are no

longer available or they also provide unsatisfactory QoS, a second solution may be carried out.

It consists in performing QoS-aware service discovery for the failed activity (or activities). For

each activity, the discovered services must provide a QoS that is at least equal to the worst

service previously selected for the considered activity.

Service substitution based on QoS-aware discovery is more suitable when we deal with long

running user tasks and highly dynamic pervasive environments, so that: (i) new services may

join the environment during the execution of the user task, and (ii) the duration of service

discovery is negligible compared with the execution time of the user task.

Service substitution is not enough to cope with QoS fluctuations in pervasive environments

since it is not always possible to find substituting services. In this case, it may be possible to

find other abstract compositions that can fulfill the user task, but behaving differently, and for

which fitting services can be found in the environment. In this chapter, we investigate this idea

to leverage QoS-driven composition adaptation with a behavioural adaptation strategy. Below,

we present the theoretical background and definitions underpinning this strategy.
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Figure V.1 – Illustrating graph definitions

2 Background and Definitions

Our behavioural adaptation strategy is based on the notion of vertex disjoint Subgraph

Homeomorphism (vdSH) [Xiao et al., 2007]. vdSH allows for defining the similarity between

subgraphs where vertex skipping is allowed. vdSH works on labelled undirected graphs, whereas

the user tasks (i.e., which we represent as graphs) have known directions. To enable vdSH

determination, we transform the user tasks into undirected graphs by adding start and end

vertices. Further details about this transformation are given in Section 4. To explain the notion

of vdSH, we give the following graph theory definitions [Diestel, 2005]. Let L denote a set of

labels.

Definition 1 An undirected labelled graph G is a tuple G = (V, E, µ), where

– V is the set of vertices,

– E ™ V ◊ V is the set of edges,

– µ : V æ L is a function assigning labels to vertices.

We use the undirected labelled graph defined above to specify abstract compositions represen-

ting the user tasks. In this definition, vertices represent abstract activities, composition patterns

as well as the start and final nodes of the user task. The edges are not labelled since it is not

useful in our approach.
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Definition 2 Graph isomorphism

Given two graphs G = (V, E, µ) and G Õ = (V Õ, E Õ, µÕ). A bijective function ” : V æ V Õ is a

graph isomorphism from G to G Õ if:

For any edge e = (v1, v2) œ E, there exists an edge eÕ = (”(v1), ”(v2)) œ E Õ.

Informally, graph isomorphism enables expressing the functional equivalence between two abs-

tract compositions having the same set of abstract activities, but differing in the order according

to which the activities are executed.

Definition 3 Vertex and graph subdivision

Let G = (V, E, µ) be a graph and v œ V.

The subdivision of v is obtained by decomposing v into two vertices v1 and v2, all edges having

v as destination will have v1 as destination, where all edges having v as source will have v2 as

source, and an edge will be added between v1 and v2.

A subdivision of G is any graph which can be obtained by recursively subdividing vertices in G.

Starting from the assumption that G represents an abstract composition, the vertex subdivision

means that a coarse-grained abstract activity is replaced by two finer-grained activities. The

subdivision of G represents then an alternative abstract composition allowing to achieve the

user task based on finer-grained abstract activities.

Definition 4 Subgraph

Given a graph G = (V, E, µ), a subgraph of G is a graph Gs = (Vs, Es, µs) such that:

1. Vs ™ V

2. Es = E fl Vs ◊ Vs

3. µs is a restriction of µ, i.e., µs(v) =

Y

]

[

µ(v) if v œ Vs

undefined otherwise

In our approach, we use the subgraph to represent the part of an abstract composition that is

not executed when a failure of the composition occurs.

Definition 5 Topological minor

A graph M is called a topological minor of a graph G if there exists a graph M Õ such that:

– M Õ is a subgraph of G
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– M Õ is isomorphic to some subdivision of M.

We use the notation M / G to indicate that M is a topological minor of G.

Definition 6 Independent paths

Given a graph G = (V, E, µ), a path P in G is a sequence of vertices v1, v2, ..., vk, where vi œ V

and (vi, vi+1) œ E for 1 Æ i < k. The vertices v1 and vk are linked by P and are called its

ends. A path is simple if its vertices are all distinct. Particularly, a group of paths in G are

independent if none of the paths has an inner vertex in another path.

Definition 7 vertex disjoint Subgraph Homeomorphism (vdSH) Given two graphs G

and M, if M is a topological minor of G, then there exists a corresponding vertex disjoint

subgraph homeomorphism from M into G, which is a pair of injective mappings (–, —) from M

into G [Xiao et al., 2007]. – is an injective mapping from the vertex set of M into that of G,

and — is an injective mapping from edges of M into simple paths of G such that: (i) for each

e(v1, v2) œ E(M ), —(e) is a simple path in G with –(v1) and –(v2) as two ends, and (ii) all

mapped paths are pairwise independent, i.e., they have disjoint inner vertices (only the vertices

of the extremity can be common to several paths) [Xiao et al., 2007].

Literally, vdSH determination is performed by mapping each edge of M to an independent

path in G having the same extremity vertices.

3 Behavioural Adaptation Strategy: Overview

Our behavioural adaptation strategy consists in carrying out the user task using an alter-

native abstract composition allowing to achieve the required user task.

To determine alternative abstract compositions, we introduce the concept of Task Class,

which defines abstract compositions that are functionally equivalent, i.e., abstract compositions

allowing to achieve the same user task. The task Class concept starts from the idea that the

user task can be fulfilled in different ways. These ways can be obtained either by changing the

order in which abstract activities are executed, or by dividing coarse-grained abstract activities

into fine-grained activities, respectively by merging fine-grained activities into coarse-grained

abstract activities.

To motivate our approach, we recall Bob’s shopping scenario. Let us assume the case where

Bob performs the first activity in the task, which is about ordering a book. Meanwhile, the

monitoring service notifies that the selected services for the activities ordering an MP3 player

and headphones and ordering food and a drink are no longer available (Figure V.2), e.g., because
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they are overloaded. To cope with this situation, we have to replace the non-executed sub-

composition (i.e., activities that are not yet executed ; henceforth we refer to them as failed

sub-composition) with an alternative sub-composition behaving differently, but functionally

equivalent.

To do so, we propose to explore the task class associated with the user task and analyse avai-

lable alternative abstract compositions. More specifically, we aim at finding a sub-composition

that is functionally equivalent to the failed one, but behaving differently.

To enable the behavioural comparison of abstract compositions, we transform abstract com-

positions into graphs. Graphs represent indeed a powerful and universal data structure that

can be used for multiple purposes, including the specification of abstract compositions’ be-

haviours. Thus, the problem of comparing abstract sub-compositions can be formulated as a

search for correspondences between subgraphs. Such correspondences are generally established

by subgraph isomorphism detection (e.g., [Messmer and Bunke, 2000]). Nevertheless, subgraph

isomorphism can simply determine exact matching between subgraphs, where only the order

of abstract activities changes. In our approach, we do not consider subgraph isomorphism, be-

cause when the service substitution fails, changing only the order in which abstract activities

are executed does not provide any alternative solution.

For this reason, we rather focus on inexact and flexible subgraph matching where vertex

subdivision is supported. To address this issue, we propose using the concept of topological

minor [Xiao et al., 2007], which enables subgraph matching with vertex subdivision. Using the

Graph Minor theory [Robertson and Seymour, 1995], the relation between a subgraph and its

topological minor can be described as vertex disjoint Subgraph Homeomorphism (vdSH) (also

known as node disjoint Subgraph Homeomorphism [Xiao et al., 2007]).

Topological minors allow for capturing the high-level topological structure of a subgraph

while tolerating vertex subdivision. Related to this, vdSH allows for matching two subgraphs

and checking whether they have roughly the same structure while tolerating vertex subdivision.

Nevertheless, having roughly the same structure is not enough to state that two subgraphs

(representing two abstract sub-compositions) are functionally equivalent. We further need to

ensure that: (i) abstract activities of both subgraphs cover the same set of functionalities, and

(ii) both subgraphs consume the given inputs and produce the required outputs. Related to

this, we formulate our behavioural adaptation approach as a two-phase process (Figure V.2):

1. We first perform two preliminary verifications. The first verification consists in establi-

shing a vertex mapping between the failed subgraph and each investigated subgraph.

This verification ensures that both subgraphs cover the same functionalities, thus allo-
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Figure V.2 – Overview of the behavioural adaptation strategy

wing to discard subgraphs having more or less functionalities (not defined in the failed

sub-composition). The second verification concerns ensuring that both subgraphs consume

the given inputs and produce the required outputs. The former verification (i.e., vertex

mapping) can be carried out offline or online, i.e., when an abstract composition is ad-

ded to a task class, or just before performing vdSH determination, respectively. Further

details about both preliminary verifications are given in Section 6.1.

2. Second, we carry out vdSH determination based on the algorithm defined in [Xiao et al.,

2007]. vdSH determination allows for ensuring that both subgraphs have similar struc-

tures while tolerating vertex subdivision. We further propose some extensions to the vdSH
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determination algorithm in order to preserve the functional semantics of the investiga-

ted subgraphs (i.e., sub-compositions). These extensions are mainly about (i) supporting

semantic matching of vertices, and (ii) preserving data constraints, during behavioural

adaptation. These extensions are detailed in Section 6.2.

Next, we show how to transform the abstract compositions (representing user tasks) into

behavioural graphs (Section 4). Based on behavioural graphs, we introduce the concept of task

class, which encompasses abstract compositions that are functionally equivalent (Section 5).

After that, we address the detail of our behavioural adaptation strategy (Section 6).

4 From a User Task to a Behavioural Graph

Figure V.3 – Bob’s shopping task and its equivalent labelled graph

As already introduced in the previous chapter, a user task T = ÈA1, .., AzÍ is defined as a

set of abstract activities coordinated using composition patterns (i.e., Sequence, AND, XOR).

Each activity is defined by a function f , a set of inputs I and a set of outputs O. To enable

behavioural adaptation, we transform the user task into a behavioural graph [Liu et al., 2008],

which describes the evolution of the user task execution in time. Formally, the behaviour of the

user task can be defined as an undirected labelled graph. Let s, F, VA and VP denote respectively,

the start vertex, the set of final vertices, the set of vertices associated with abstract activities

and the set of vertices associated with composition patterns in the user task.

Definition 8 A user task is an undirected labelled graph GT = (V, E, µ), where

– V is the set of vertices ; V = s fi F fi VA fi VP ,

– E ™ V ◊ V is the set of edges,

– µ : V æ L is a function assigning labels to vertices,
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µ =

Y

_

_

_

_

_

_

]

_

_

_

_

_

_

[

(f, I, O) if v œ VA

p if v œ VP

s if v = s

‘ if v œ F

where (f, I, O) defines the label of elements which are associated, respectively, with the function,

the set of inputs and the set of outputs of an abstract activity, and p œ {Sequence, AND_split,

AND_join, XOR_split, XOR_join, Loop} denotes the label of a composition pattern.

To simplify the graph representation, we replace the Sequence composition pattern by a

simple edge. Whereas for the loop composition pattern, we transform each loop activity in the

user task with a simple activity with an index k (Figure V.4), where k is the number of loops.

Figure V.4 – Simplifying loop activities

5 The Task Class Concept

We introduce the novel concept of Task Class, which enables behavioural adaptation of

service compositions in pervasive environments. We first give an overview of this concept, then

we define it in a formal way.

5.1 Overview

The Task Class concept starts from the observation that the user task can be carried out

in different ways. In practice, the abstract composition identified by the user represents only

one possible way to achieve the intended task. To illustrate this idea, let us recall the pervasive

shopping scenario, in which Bob wants to carry out a shopping task composed of the following

activities: (1) buying a book, (2) getting the catalogue of MP3 players and headphones, (3)
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ordering an MP3 player and headphones, (4) buying either a DVD or a CD of a given music

album, (5) getting food menus, and finally (6) ordering food and a drink.

As depicted by Figure V.5, Bob’s shopping task can be fulfilled using various abstract

compositions. These alternative compositions can be defined using two main methods:

1. By changing the order in which abstract activities are carried out, still respecting to data

constraints (data constraints are detailed in Section 6.2) ;

2. By replacing one or more abstract activities with other activities having different granu-

larity (i.e., either finer or more coarse granularity).

Figure V.5 – Illustrating the Task Class concept

Figure V.5 illustrates the aforementioned methods of generating alternative abstract com-

positions allowing to realize the user task. Assuming that composition 1 is the abstract com-

position defined by the user, composition 2 shows how to change the order in which abstract

activities are executed, e.g., ordering the book is postponed after ordering the MP3 player and

headphones. Abstract compositions 3 and 4 depict how to replace a coarse-grained activity
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(e.g., ordering an MP3 player and headphones, respectively ordering food and a drink) with

finer-grained activities (e.g., ordering the MP3 player then ordering the headphones, respec-

tively, ordering the food then ordering the drink). Finally, the abstract composition number

5 combines both methods, e.g., ordering the MP3 player and headphones is divided into two

activities and ordering the book is executed subsequently.

Based on the above description, we can state that the task class concept represents a set

of abstract compositions which are functionally equivalent, i.e., they allow to achieve the same

user task. In this section, we aim to profit from the full functional potential enabled by the

task class concept to propose further solutions for service composition adaptation in pervasive

environments. Our approach starts from the assumption that task classes are built progres-

sively based on learning techniques and user feedbacks. More specifically, each time the user

defines a new task T , our middleware platform (installed on the user device) uses planning

techniques to automatically generate alternative abstract compositions allowing to achieve the

required task T . Later, when users ask for the task T , our middleware platform proposes the

generated abstract compositions to the users and gets their feedback. If an alternative abstract

composition is accepted and validated by users, it is added to the same task class as T .

Task classes and their underlying abstract compositions are further used to assist users

defining their required tasks. Users can choose the way their tasks are executed among various

abstract compositions. Based on the abstract composition specified by the user, we carry out

our approach of QoS-aware service composition in pervasive environments presented in the

previous chapter.

At run-time, if the produced composition provides unsatisfactory QoS and the service sub-

stitution fails, we proceed to behavioural adaptation. To explain this adaptation strategy, next

we define the Task Class concept in a formal way. Based on this definition, we express the

behavioural composition adaptation as a subgraph homeomorphism problem.

5.2 Formal Definition

Formally, the task class concept can be defined as follows:

Definition 9 Task Class

Let GT = (V, E, µ) be the graph representing the user task. A task class is a set of graphs

G = {G1, .., Gn} where for each graph Gi = (Vi, Ei, µi) (i œ [1, n]):

1. Gi is isomorphic to GT , or

2. Gi is a subdivision of GT , or
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3. GT is a subdivision of Gi.

This definition means that the task class concept comprehends abstract compositions which

are obtained either by changing the order in which the activities are executed, or by dividing

one or more coarse-grained activity into finer-grained activities, or by merging one or more

fine-grained activities into coarse-grained activities. The statement number (4) in the task class

definition means that the task class may further comprehend abstract compositions which are

obtained by simultaneously: (i) dividing one or more coarse-grained activities in the user task

into finer-grained activities and (ii) merging one or more fine-grained activities into coarse-

grained activities.

6 A Subgraph-Homeomorphism-based Approach to Be-

havioural Adaptation

In this section, we explain how to reduce the behavioural adaptation problem to vdSH

determination. We start from the assumption that when a failure occurs during the execution of

a user task T , and service adaptation is not feasible, we determine the subgraph Gf representing

the part of T that is not executed. Then, we attempt to find an alternative behavioural graph

(in the same task class as T ), which contains a subgraph Ga that is functionally equivalent to

Gf , but behaving differently.

By different behaviour we mean having abstract activities with different granularities. Two

cases should be considered to this regard. First, the user task is adapted by dividing one or

more activities in Gf into finer-grained activities, i.e., Gf is a topological minor of Ga. In this

case we are interested in determining if there is a vdSH from the Gf into Ga.

Second, the user task is adapted by merging one or more activities in Gf into coarse-grained

activities. In this case we are interested in determining whether Ga is a topological minor of

Gf , i.e., there is a vdSH from Ga into Gf .

In order to determine the subgraph Ga, we consider the difference between each graph in

the task class and the activities of T that are already executed. To do so, we use the notion of

difference graph defined below.

Definition 10 Difference graph

Given a graph G = (V, E, µ) and a subgraph S = (Vs, Es, µs) of G, the difference of G and S

is the subgraph denoted G ≠ S and defined by the set of vertices V ≠ Vs.
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Based on the definition of difference graph, we formulate both aforementioned cases of

behavioural adaptation as follows:

1. Given a subgraph Ge (representing the executed part of the user task), a subgraph Gf

(representing the non-executed part of the user task) and a graph G, we aim at deter-

mining whether Gf / G ≠ Ge. More generally, given a family of graphs G = {G1, .., Gn}

(representing the task class to which Ge and Gf belong), we aim at determining whether

there is a graph Gi (1 Æ i Æ n) such that Gf / Gi ≠Ge. Solving this problem is equivalent

to determine if there exists a vertex disjoint subgraph homeomorphism from Gf into each

graph Gi ≠ Ge.

2. Given a subgraph Ge (representing the executed part of the user task), a subgraph Gf

(representing the non-executed part of the user task) and a graph G, we aim at deter-

mining whether G ≠ Ge / Gf . More generally, given a family of graphs G = {G1, .., Gn}

(representing the task class to which Ge and Gf belong), we aim at determining whether

there is a graph Gi (1 Æ i Æ n) such that Gi ≠Ge / Gf . Solving this problem is equivalent

to determine if there exists a vertex disjoint subgraph homeomorphism from each graph

Gi ≠ Ge into Gf .

To resolve the aforementioned behavioural adaptation problem, we recall the algorithm for

vdSH determination defined in [Xiao et al., 2007]. This algorithm is based on a state-space

searching [Nilsson, 1980] and employs heuristics to prune the search space. The basic idea of a

space-state search is to divide the mapping process into several states and to define transitions

from one state to another. Each state Ê can be associated with a partial mapping solution

Mω = (V M, EM), where V M and EM are respectively the set of vertex mapping and the

set of edge-path mapping at state Ê. For each state Ê, there is an evaluation function Ï(Ê)

which describes the quality of the represented solution. The states are expanding themselves

according to the value of Ï(Ê). In the mapping process, the next state is more complete than

the previous one and will probably be a subset of the final mapping.

Nevertheless, as already mentioned in Section 3, the vdSH determination algorithm is not

enough to state that two subgraphs (representing two abstract sub-compositions) are functio-

nally equivalent. To cope with this issue, we present two main solutions. First, before proceeding

to vdSH determination, we add a preliminary step of vertex mapping aiming to verify that both

subgraphs (subjects of vdSH determination) cover the same set of functionalities. Second, we

introduce a set of extensions to the vdSH determination algorithm. These extensions aim at en-

suring that functional semantics are preserved during vdSH determination, consequently during
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behavioural adaptation.

Next, we detail the preliminary step of vertex mapping (Section 6.1). We use the term

vertex mapping to denote the correspondence between two sets of vertices belonging to two

subgraphs, and we use the term vertex matching to denote the semantic matching between two

single vertices based on their descriptions.

6.1 Preliminary Verifications

The preliminary verifications aim at reducing the number of subgraphs investigated for vdSH

determination. It consists in two main steps. First, vertex mapping which aims at verifying that

each couple of investigated subgraphs (denoted Gf and Gi ≠Ge) cover the same functionalities.

To do so, we attempt to establish a vertex mapping which ensures that all the vertices (i.e.,

activities) in the subgraph Gi≠Ge are functionally related to one or more vertices (i.e., activities)

in Gf . That is, both subgraphs cover similar functionalities, but only the granularity of abstract

activities and their order are different.

As mentioned in the user task definition (see Definition 8), vertices are labelled using com-

plex labels formed of the tuple (f, I, O) denoting respectively the function, the set of inputs and

set of outputs of an abstract activity. Starting from the assumption that abstract compositions

may be labelled using heterogeneous labels (as they may be defined by different users), we opt

for a semantic vertex matching in order to cope with the syntactic heterogeneity of labels. More

specifically, we suppose that each element in the tuple (f, I, O) is characterized by a semantic

concept cpt in a domain ontology.

To enable the vertex mapping between subgraphs, we proceed to a semantic vertex matching,

which is defined upon a concept matching with concepts associated to the tuple (f, I, O). We

begin by defining the concept matching, after that we address the semantic vertex matching.

In our approach, we adopt the definition of concept matching proposed in [Paolucci et al.,

2002]. Given two concepts cpt1 and cpt2 belonging to the same ontology Ω. Paolucci et al. define

four values of concept matching MΩ:

1. MΩ(cpt1, cpt2)= Exact, if cpt1 and cpt2 are equivalent concepts,

2. MΩ(cpt1, cpt2)= PlugIn, if cpt1 is a super concept of cpt2,

3. MΩ(cpt1, cpt2)= Subsume, if cpt1 is a sub-concept of cpt2,

4. MΩ(cpt1, cpt2)= Fail, if cpt1 and cpt2 do not verify the above conditions.

Starting from the above definition of concept matching, we present the following definitions

specifying the semantic vertex matching:
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Definition 11 Semantic label matching

Given two labels l1 and l2, and a domain ontology Ω, l1 is semantically matched to l2 if:

– l1 and l2 are respectively associated with two concepts c1 and c2 within Ω ; and

– MΩ(cpt1, cpt2)= Exact, or PlugIn, or Subsume.

The labels l1 and l2 can be associated with functions, Inputs, or Outputs.

Definition 12 Semantic vertex matching

Given two subgraphs G1 and G2, and two vertices v1 = (f1, I1, O1) and v2 = (f2, I2, O2) with

v1 œ G1 and v2 œ G2, v1 is semantically matched to v2 if:

– f1 is semantically matched to f2 ; and

– there exists i œ I1 and iÕ œ I2 such that i is semantically matched to iÕ, (denoted I1 fls I2 ,

ÿ): and

– there exists o œ O1 and oÕ œ O2 such that o is semantically matched to oÕ, (denoted

O1 fls O2 , ÿ).

In this definition, we introduce a flexible semantic vertex matching ensuring that the vertex

v2 is semantically matched a vertex v1 if: (i) it performs either the same functionality as v1, or

a sub-functionality of v1, or a more complete functionality than v1, and (ii) it processes at least

one input of v1, and (iii) it produces at least one output of v1.

Such a flexible definition enables matching a coarse-grained activity to two or more fine-

grained activities, respectively, matching a fine-grained activity to a coarse-grained activity (see

the example of Figure V.6). Based on the above definition of semantic vertex matching, we can

establish a correspondence between the vertices of two subgraphs in order to verify whether

they encompass equivalent functionalities.

Given two subgraphs G1 = (V1, E1, µ1) and G2 = (V2, E2, µ2), we state that both subgraphs

G1 and G2 cover the same set of functionalities if there is a function f : VA1 æ VA2 such that:

1. f(v1) = v2 iff v1 is semantically matched to v2.

2. For any v2 œ VA2 there exists a vertex v1 œ VA1 such that f(v1) = v2.

Where VA1 ™ V1 and VA2 ™ V2 denote respectively the set of vertices associated with abstract

activities in G1 and G2. We recall that the vertex mapping deals only with the vertices associated

with abstract activities.

When a vertex mapping is established between G1 (representing the failed subgraph) and

G2 (representing the investigated subgraph), we proceed to the second preliminary verification
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Figure V.6 – Illustrating the preliminary vertex mapping

which consists in checking that: (i) the investigated subgraph does not require more inputs

than the failed subgraph, i.e., all the inputs required by G2 are provided by G1, and (ii) the

investigated subgraph produces all the outputs of the failed subgraph, i.e., all the outputs of

G1 are included in the outputs of G2. Formally, this can be expressed as follows.

Given two subgraphs G1 and G2 with two sets of vertices associated with abstract activities,

respectively, VA1 and VA2 . We state that there is a correspondence between the inputs and

outputs of G1 and G2, if two conditions are satisfied:

1.
t

Ii
™

t

Ij

2.
t

Oj
™

t

Oi

where Ii (respectively Ij) denotes the set of inputs associated the vertex Vi (respectively Vj),

Oi (respectively Oj) denotes the set of outputs associated the vertex Vi (respectively Vj), and

Vi œ VA1 (respectively Vj œ VA2).

The above verification of inputs and outputs is not carried out at the level of individual

vertices, but rather at the level of the whole subgraph (i.e., globally). To illustrate this verifica-
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tion, we consider the example depicted in Figure V.6. In this example, we have two subgraphs

with two sets of vertices associated with abstract activities, respectively, {V1, V2, V3, V4, V5, V6}

and {V1, V Õ
2 , V ÕÕ

2 , V3, V4, V5, V Õ
6 , V ÕÕ

6 }. Before investigating both subgraphs for vdSH determina-

tion, we must verify that : (i)
t

Ii
™

t

Ij
, and (ii)

t

Oj
™

t

Oi
, where i œ {1, 2, 3, 4, 5, 6} and

j œ {1, 2Õ, 2ÕÕ, 3, 4, 5, 6Õ, 6ÕÕ}.

Both preliminary verifications (i.e., vertex mapping and input/output verification) are re-

cursively executed in order to check the functional, input and output correspondence between

the failed subgraph and each alternative subgraph (obtained from the task class). These veri-

fications represent a preliminary graph filtering allowing to discard subgraphs requiring more

inputs, producing less outputs, or having extra or less functionalities (with respect to the failed

subgraph), hence reducing the number of subgraphs to be investigated for vdSH determination.

6.2 Extended Vertex Disjoint Subgraph Homeomorphism

In this section, we introduce some extensions to vdSH determination defined in [Xiao et al.,

2007] in order to preserve the functional semantics of the user task during behavioural adapta-

tion and also reduce the number of graphs to be investigated during vdSH determination.

6.2.1 Semantic vertex matching

vdSH determination is based on an injective vertex mapping – which assumes a simple

and syntactic vertex labelling function. That is, a vertex has a simple label l and it can be

mapped only to vertices having the same label. However, as explained above, in our approach

we consider a semantic vertex matching, thus enabling to cope with the syntactic heterogeneity

of labels. For this reason, the injective vertex mapping – performed during vdSH determination

is extended to support semantic matching of vertices, as detailed in Section 6.1.

6.2.2 Data constraints

vdSH algorithms do not consider any constraints on edges connecting vertices. However in

our context, we have to consider data constraints relating abstract activities, which imposes

certain constraints on vertices’ ordering. For instance, in our pervasive shopping scenario, the

activity catalogue of music albums has data links with the activities Order CD and Order

DVD. Indeed, the title and the reference of the required CD or DVD must be selected from

the catalogue. Thus, the activities Order CD and Order DVD must be always preceded by the

activity catalogue of music albums. Such data constraints must be preserved when adapting the
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behaviour of the user task. To do so, we extend the injective edge mapping — performed during

vdSH determination so that it takes into consideration data constraints. Towards this purpose,

we first propose a definition of a data link, then we define our extension to the injective edge

mapping.

Definition 13 Data link

Given two vertices v1 = (f1, I1, O1) and v2 = (f2, I2, O2), there is a data link from v1 to v2 if

there exists o œ O1 and i œ I2 such that i is semantically matched to o, (denoted O1 fls I2 , ÿ).

Definition 14 Extended injective edge mapping

Given two subgraphs G1 = (V1, E1, µ1) and G2 = (V2, E2, µ2), and the vdSH problem G1 / G2,

an injective edge mapping from G1 into G2 is a function — : E(G1) æ P (G2) such that:

– for each e(v1, v2) œ E(G1), —(e) is a simple path p in G2 with –(v1) and –(v2) as two

ends, and

– all mapped paths are pairwise independent, and

– if there is a data link from v1 to v2, there must be a data link from vi to vk for each

e(vi, vk) œ p.

P (G2) denotes the set of simple paths in G2, and – is the extended injective vertex mapping

(see Section 6.2.1).

6.2.3 Particular vertex mappings

The last restrictions that we impose on vdSh determination concern the mapping of the start

and final vertices, vertices associated with composition patterns Vp, and vertices associated with

loop activities. Given two subgraphs G1 = (V1, E1, µ1) and G2 = (V2, E2, µ2), and the vdSH

problem G1 / G2:

– The start vertex s1 of G1 must be mapped only to the start vertex s2 of G2.

– A final vertex f œ F1 must be mapped only to a final vertex f Õ œ F2.

– A vertex v œ Vp1 with a label l must be mapped only to a vertex vÕ œ Vp2 having the same

label l.

– A loop vertex v œ VA1 must be mapped only to a loop vertex vÕ œ VA2 (obviously v must

be semantically matched to vÕ).

F1 and F2 denote respectively the final vertices of G1 and G2, Vp1 and Vp2 are the vertices

associated with composition patterns in G1 and G2, respectively. Whereas, VA1 and VA2 denote
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the vertices associated with abstract activities in G1 and G2, respectively.

Intuitively, the aforementioned extensions may improve the timeliness of the vdSH determi-

nation algorithm as they impose several restrictions that may reduce the number of investigated

subgraphs. However, further studies should be established to confirm this statement. Besides,

there is a second question that should be resolved towards a comprehensive behavioural adapta-

tion solution. This question concerns the case where vdSH determination produces more than

one solution, i.e., there exists several alternative subgraphs (i.e., abstract sub-compositions)

that can be applied for behavioural adaptation. To cope with this issue, a certain metric should

be introduced to measure the degree to which an alternative subgraph represents a satisfactory

behavioural adaptation solution. This metric should reflect parameters such as vertex subdivi-

sions, as well as the consumed inputs and the produced outputs of the alternative subgraph ;

this is subject of ongoing research.

7 Evaluation and Discussion

The need to take into account adaptation of service compositions is underlined by tre-

mendous research efforts in the service oriented community. A current trend is to study the

equivalence between services in order to enable the replacement of defective services [Ibrahim

et al., 2011].

In the literature, we distinguish two broad approaches addressing services’ equivalence. The

first approach deals with services as black boxes and determines their equivalence based on

their functional and QoS descriptions. The second approach considers services as white boxes

and focuses on their behavioural equivalence.

Concerning the first approach, we distinguish two types of service equivalence, namely syn-

tactic equivalence and semantic equivalence [Kareliotis et al., 2009]. Syntactic equivalence is

carried out by matching services’ descriptions that are defined using a common syntax.

In semantic equivalence, services are described using different syntactic terms that reference

a common domain ontology. Services’ equivalence is then carried out by matching semantic

concepts within services’ descriptions. In [Paolucci et al., 2002], the authors define four values

of semantic concept matching: Exact, PlugIn, Subsume and Fail (see Section 6.1 for details).

However, in [Zeng et al., 2008] the authors define three values of semantic concept matching:

(i) Exact match, which means that two concepts c1 and c2 directly match with no traversal of

the ontological concept hierarchy, (ii) Direct match, when c1 is a direct subclass of c2, and (iii)
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Taxonomic match, when c1 is a descendant concept in the taxonomic hierarchy, i.e., there are

arbitrary number of levels of inheritance.

Based on the semantic matching defined in [Paolucci et al., 2002], Ibrahim et al. [Ibrahim

et al., 2011] introduce a semantic service substitution approach for pervasive environments.

The authors present a semantic service model that comprehends the operation (i.e., function),

inputs, outputs and QoS properties of services. Based on this model, the authors specify the

semantic equivalence between services as well as the degree of match between their QoS pro-

perties.

Other approaches (e.g., [Kareliotis et al., 2009],[Lim and Thiran, 2010]) establish communi-

ties of services (also known as similarity group of services [Ruta et al., 2008]), which encompass

functionally equivalent services. Within these communities, services are sorted with respect to

their QoS. For instance, in [Kareliotis et al., 2009] the process of sorting services based on their

QoS is driven by the user-defined QoS policy, specifying the importance of QoS properties, as

well as the lower and upper bounds for each QoS property.

Nevertheless, equivalence established based on the functional and QoS properties of services

is not always enough to enable accurate replacement of services. This is particularly true for

services having complex behaviours. For this reason, other adaptation approaches establish

service equivalence based on behavioural specifications.

PERSE [Ben Mokhtar, 2007] presents a preliminary idea towards this purpose. The author

generates from the user task specification a global graph that contains all behavioural (adapta-

tion) possibilities of the user task. However, PERSE does not focus on adaptation as a separate

problem from service composition.

Chafle et al. [Chafle et al., 2006] propose a behavioural adaptation approach, which compre-

hends two phases: (i) Logical composition, which uses planning techniques to produce several

behaviours allowing to fulfill the user task ; (ii) Physical composition, which generates a concrete

service composition based on a specific behaviour defined at the logical composition stage and

selected according to a ranking function. At run-time, if the concrete service composition fails,

another behaviour is selected and implemented using concrete services. The main drawback of

this approach is that it does not consider the case where the composition is partially executed,

hence where adaptation should ideally be applied only for the failed part of the composition.

To enable partial adaptation of the user task, SIROCCO [Fredj, 2009] considers stateful

services and uses the annotated finite state automata (aFSA) formalism to model their beha-

viour. SIROCCO further proposes a service substitution framework that takes into account the

state of a service at the moment of the failure, thus ensuring a transparent adaptation and

continuous execution of the service.
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A recent discovery approach which is very close to our behavioural adaptation strategy,

is introduced by Grigori et al. [Grigori et al., 2010]. The authors define service compositions

as BPEL processes, and they aim at determining the functional equivalence between them.

To do so, they transform these processes into behavioural graphs, then they apply subgraph

isomorphism to determine whether they are functionally equivalent. To enable inexact matching

of graphs (e.g., vertex skipping), the authors further define edit operations on graphs such as

deleting and inserting edges and vertices. Despite the importance of the approach, it is not as

flexible as our matching enabled by vdSH determination.

Behavioural equivalence of services is also known in the literature as replaceability analysis

[Ponge et al., 2010]. Briefly stated, replaceability refers to the ability for a service to replace

another one without inducing incompatibilities [Dumas et al., 2008]. Further definitions of

replaceability are provided in [Elabd et al., 2009].

In the ServiceMosaic project [Benatallah and Motahari-Nezhad, 2006], services’ behaviour

is represented using a specific class of timed automata, called protocol timed automata (PTA).

Based on PTA, two main classes of replaceability are defined: subsumption and equivalence. A

PTA p1 subsumes a PTA p2 if p1 supports at least all the execution traces that p2 supports.

A service s1 (with PTA p1) can replace a service s2 (with PTA p2). If p1 subsumes p2 and p2

subsumes p1, then p1 and p2 are equivalent, and services s1 and s2 can be used interchangeably.

In the same project, Ponge et al. [Ponge et al., 2010] provide an approach for replaceability

analysis that determines either full or partial replaceability. The latter kind of replaceability

means that a PTA p1 does not support all the execution traces of p2, but there is at least one

possible execution of p2 that is supported by p1.

Other approaches (e.g., [Beyer et al., 2005] and [Elabd et al., 2009]) represent services’

behaviour as timed protocols and provide several algorithms for replaceability analysis. Globally,

the main drawback of addressing behavioural equivalence using timed automata is that such

automata are not always available (i.e., developers seldom provide such specifications).

In our approach, we generate the behaviour specification automatically from the user task

definition (e.g., abstract BPEL). We define the behavioural adaptation problem using graph

minor theory, and we solve it using an existing algorithm for vertex disjoint subgraph homeo-

morphism. We propose some extensions to the vdSH determination algorithm in order to cope

with the requirements of behavioural adaptation. Compared to related work, our approach fo-

cuses on adapting only a part (i.e., the failed part) of a running composition and not the whole

composition, thus avoiding the problem of rolling back the executed services.

As yet, in our approach we show how to reduce behavioural adaptation to vdSH, but we do

not claim that applying behavioural adaptation is always possible or efficient. Further studies
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should be established to this regard. These studies should consider many factors including: (i)

the delay of the behavioural adaptation strategy, (ii) the execution time of the user task, and (iii)

the number of alternative abstract compositions in the task class. Indeed, if we deal with long

running user tasks, the effectiveness of applying behavioural adaptation increases. However, the

effectiveness and efficiency of this adaptation also depend on the number of existing alternative

abstract compositions. If this number is high, vdSH determination may produce more solutions,

but it may take longer time.
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Chapter VI

QASOM: A QoS-Aware Service-Oriented

Middleware for Pervasive Environments

In this chapter, we present QASOM, a QoS-aware Service-Oriented Middleware which pro-

vides a comprehensive solution for service composition and adaptation in pervasive computing

environments. QASOM implements the contributions presented in this thesis, notably QoS-

aware service selection (Chapter IV) and QoS-driven composition adaptation (Chapter V).

The remainder of this chapter is structured as follows. In Section 1, we present an overview of

the SemEUsE research project to which this thesis has contributed. In Section 2, we introduce

the QASOM middleware. Finally, we present a prototype implementation and performance

evaluation of QASOM in Section 3.

1 SemEUsE Research Project

This thesis has contributed to the SemEUsE research project 1 funded by the French National

Research Agency (ANR). This project has aimed at leveraging SOA middleware technologies,

viz., Enterprise Service Bus (ESB), by taking into account semantic services and QoS requi-

rements, while composing services and running resulting complex services. SemEUsE enables

services to be used anywhere from any kind of device (pervasive services), while addressing QoS

requirements associated with service provisioning. Next, we give an overview of the SemEUsE

architecture, then we highlight our contribution to this project.

1. SemEUsE project: http://www.semeuse.org/
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1.1 SemEUsE Architecture

Figure VI.1 depicts the overall architecture of SemEUsE. It adheres to the Service Oriented

Computing paradigm and is designed according to modularity and flexibility requirements

in order to provide distinct and easily manageable system components. The features of the

SemEUsE architecture are thus designed as a set of components deployed on top of PEtALS,

an existing open-source ESB (Enterprise Service Bus) for large SOA architectures.

Figure VI.1 – SemEUsE ARchitecture

Built in accordance with the layering approach, the SemEUsE architecture services com-

prises two main parts: (i) a service design part, and (ii) a run-time part. The former part enables

the specification of user requests, which are formed of abstract user tasks with associated global

QoS requirements. This part makes the SemEUsE architecture user-friendly and accessible to

non-experts thanks to a graphical editor and a translation tool from high level languages such

as BPMN into BPEL. Whereas the SemEUsE run-time part comprehends two layers:

1. The Service Layer enabled by the PEtALS ESB corresponds to the backbone of SemEUsE

and provides low level capabilities to deploy, invoke services, and monitor them with

probes. This layer comprehends five components : (1) PEtALS Registry, (2) Dynamic
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Orchestration, (3) Probes, (4) Message Routing, and (5) Security.

2. The Semantic Layer corresponds to the main contribution of the SemEUsE project. It is

composed of a set of middleware services offering semantic-enabled capabilities: (i) the

use of semantic service and task descriptions that combine functional, non-functional (e.g.

QoS, security and context) and user profiles aspects ; and (ii) the ability to dynamically

discover, select, compose, monitor and reconfigure services at run-time, while enforcing

QoS. In a coarse-grained view, the semantic layer comprehends three main components:

(1) Semantic Registry, (2) Dynamic QoS-enabled Composition Framework, and (3) Mo-

nitoring Service. Further details about the SemEUsE architecture are provided in the

SemEUsE website 2.

1.2 Contribution to SemEUsE

Our contribution to SemEUsE concerns the Dynamic QoS-enabled Composition Framework.

More specifically, we have contributed to two components within this framework: QoS-enabled

Composition and Reconfiguration (see Figure VI.1).

1.2.1 QoS-enabled Composition

QoS-enabled Composition plays a primary role in the SemEUsE architecture. It is the

component responsible for building an executable composition able to fulfill the user task and

meet its associated global QoS requirements. QoS-enabled Composition implements QASCO,

our QoS-aware service composition (including our selection algorithm QASSA).

1.2.2 Reconfiguration

Dynamic reconfiguration is an important feature in SemEUsE. It allows for coping with

QoS fluctuations of services during the execution of the composition. The Reconfiguration

component addresses this purpose by reconfiguring dynamically the composition at run-time

without aborting its execution.

Our contributions to SemEUsE, notably QoS-enabled Composition and Reconfiguration

represent the core of our QoS-aware Service-Oriented Middleware for pervasive environments

(QASOM).

2. http ://www.semeuse.org/architecture.html
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2 QASOM Middleware

We present in this section, the architecture and the implementation techniques of QASOM.

As already introduced, QASOM has been initially developed as a part of the SemEUsE midd-

leware, more specifically, it implements the QoS-awareness aspect in SemEUsE.

2.1 QASOM Architecture

As depicted in Figure VI.2, QASOM is composed of two frameworks: QoS-aware Service

Composition Framework, and QoS-driven Composition Adaptation Framework. The former fra-

mework implements the contributions presented in Chapter IV, whereas the latter implements

the contributions of Chapter V of this thesis. Concerning service discovery and monitoring,

QASOM is designed in a flexible way so that it can be used with several proper discovery and

monitoring approaches. In the context of SemEUsE, QASOM relies on those services offered by

the SemEUsE middleware (since service discovery and monitoring are not in the scope of this

thesis).

Figure VI.2 – QASOM Architecture

2.1.1 QoS-aware Service Composition Framework

As depicted by Figure VI.3, the QoS-aware Service Composition Framework comprehends

the following components:
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• User Request Manager is the component that receives and processes the user request.

It comprehends two sub-components: (i) User Request Parser, which is responsible for

parsing the user request and providing information such as the activities forming the

user task and global QoS constraints, and (ii) User Request Splitter, which splits the

user request into elementary requests that are later used for services’ discovery or for the

distributed execution of QASSA. The User Request Splitter requires information provided

by the User Request Parser.

• QoS-aware Service Selection implements the QASSA algorithm. It comprehends two sub-

components: (i) QoS Aggregator, which is responsible for determining the overall QoS of a

service composition based on QoS aggregation formulae explained in Chapter IV, and (ii)

Composition Selector, which is responsible for selecting and ranking near-optimal service

compositions.

• Service Composition Generator is responsible for generating an executable service com-

position based on (i) the specification of the user task, and (ii) the services selected by

QASSA. Compared to the abstract user task, the executed composition mainly interpo-

lates information needed to bind and enact a service for each abstract activity int the

user task.

Figure VI.3 – QoS-aware Service Composition Framework

The QoS-aware Service Composition Framework takes as input a user request which com-

prehends the description of the user’s task and the set of global QoS constraints imposed on

this task. To fulfill the required task, it proceeds through the following steps:

1. User Request Parser parses the user task’s specification and determines its underlying

abstract activities and the set of global QoS constraints imposed on the whole task.
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2. User Request Manager invokes the SemEUsE discovery service to acquire a set of service

candidates for each activity in the user’s task.

3. QoS-aware Service Selection chooses a set of services among the candidates of each ac-

tivity, which meet global QoS constraints and maximize the overall QoS offered to the

user.

4. Based on the selected services, Service Composition Generator builds an executable com-

position able to fulfill the user’s task.

2.1.2 QoS-driven Composition Adaptation Framework

Figure VI.4 – QoS-driven Composition Adaptation Framework

As depicted in Figure VI.4, QoS-driven Composition Adaptation Framework comprehends

four components:

• Decision Engine is responsible for evaluating the status of a running service composi-

tion with respect to QoS requirements of the user, and decides about the appropriate

adaptation strategy accordingly.

• Service substitution is responsible for substituting the failed services of a running com-

position according to the service substitution strategy.

• Task Class Manager takes in charge the management of task classes in pervasive environ-

ments. It comprehends two elementary components: (i) User Task To Behavioural Graph,

which transforms a given abstract service composition to a behavioural graph, and (ii)

Task Class Generator, which generates and stores task classes used in a specific pervasive

environment.
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• Behavioural Adaptation implements the behavioural adaptation strategy. Given a failed

user task, it calls Task Class Manager to acquire its associated task class, then it proceeds

to vdSH determination using the following components:

– Preliminary Verifications is responsible for performing the preliminary verifications

(i.e., semantic vertex mapping and input/output verification) before carrying out the

vdSH determination.

– vdSH Determination implements the extended vdSH determination algorithm defined

in Chapter V.

– Behavioural Adaptation Manager coordinates the sub-components of Behavioural Adap-

tation (i.e., Preliminary Verifications and vdSH Determination) in order to fulfill be-

havioural adaptation requests triggered by Decision Engine.

2.2 Prototype Implementation

We have implemented a prototype of QASOM using Java technologies, notably Java 1.6.

to implement our service selection and adaptation algorithms, J2EE to support Web Services

and SOA technologies, and Android SDK 2.2 to implement the distributed version of QASSA.

To specify service compositions we use the BPEL 3 language. The usage of BPEL is motivated

by the fact that it defines service compositions with different abstraction levels. Jaeger [Jae-

ger, 2006] divide composition languages into three classes : (i) Abstract level languages, (ii)

Concrete level languages, and (iii) languages covering both levels. BPEL belongs to the third

class and represents according to the authors a typical service composition language. Hence,

we use BPEL to specify both user tasks and concrete service compositions. The importance of

this approach is twofold. First, the user task is specified using a standard language of service

compositions. Second, the user task can be easily transformed into a concrete and executable

service composition by replacing opaque elements with concrete execution details, as discussed

in the next section.

2.3 Specifying User Tasks

BPEL provides a sub-specification named Abstract Process, which defines abstract Web Ser-

vice compositions by omitting their execution details and keeping only an abstract description

of the function, inputs and outputs of Web Services. Abstract Process uses the notion of opa-

city to omit execution details of Web Service compositions. According to this, BPEL elements

3. BPEL 2.0: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
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related to aspects such as Web Service’s binding and data processing are replaced with opaque

tokens (i.e., ##opaque).

Nevertheless, Abstract Process is a general specification, which covers several use cases and

different abstraction degrees. To delimit the usage of Abstract Process, the notion of profile is

used. BPEL specifies several profiles including the Template profile, which provides a high-level

representation of Web Service compositions and hides almost any execution detail 4. Below,

we give a code snippet of the abstract BPEL associated with the pervasive shopping scenario

introduced in Chapter I.

<process name="PervasiveShoppingProcess" xmlns="http ://docs.oasis-open.org/wsbpel/2.0/process/abstract"

targetNamespace="http ://www-rocq.inria.fr/arles/bpel/examples"

xmlns :tns="http :// http ://www-rocq.inria.fr/arles/bpel/examples "

suppressJoinFailure="yes"

xmlns :xsd="http ://www.w3.org/2001/XMLSchema"

xmlns :ext="http ://example.com/bpel/some/extension"

xmlns :template="http ://docs.oasis-open.org/wsbpel/2.0/process/abstract/simple-template/2006/08"

abstractProcessProfile="http ://docs.oasis-open.org/wsbpel/2.0/process/abstract/simple-template/2006/08">

<extensions>

<extension namespace="http ://docs.oasis-open.org/wsbpel/2.0/process/abstract/simple-template/2006/08"

mustUnderstand="yes"/>

</extensions>

<partnerLinks>

<partnerLink name="BookShop" partnerLinkType="##opaque" partnerRole="BookVendor">

...

</partnerLink>

</partnerLinks>

<variables>

<variable name="BookRequestVar" element="##opaque" />

<variable name="BookReplyVar" element="##opaque" />

...

</variables>

<assign>

<documentation> Transform book purchase information into the format accepted by the book shop service.

</documentation>

<from opaque="yes" />

<to variable="BookRequestVar"/>

</assign>

<sequence>

<scope>

<faultHandlers>

<catchAll> ... </catchAll>

</faultHandlers>

<sequence>

<opaqueActivity>

<documentation> opaque receive activity </documentation>

</opaqueActivity>

4. Abstract Process Profile for Templates: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
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<invoke partnerLink="BookShop" operation="BookPurchaseOrder" inputVariable="BookRequestVar" />

<receive partnerLink="BookShop" operation="BookPurchaseOrder" variable="BookReplyVar"/>

</sequence>

</scope>

...

</sequence>

</process>

2.4 Specifying Executable Service Compositions

Based on the user task specification and the services selected by QASSA, we generate an

executable service composition. Compared to the user task specification, the generated com-

position mainly interpolates concrete details about Web Service’s binding and data exchanged

between Web Services. BPEL allows binding exactly one concrete Web Service for each abstract

activity in the user task. Nevertheless, as introduced in Chapter IV, in our approach we need

to bind multiple Web Services for each activity in the user task in order to support dynamic

binding of services.

To cope with this issue, we use the Extension Activity of BPEL, which allows for defining

customized activities fitting specific use cases of Web Service compositions. In our context, we

use Extension Activity to define a special dynamic binding activity, which supports binding

multiple concrete services to each abstract activity in the user task. Below, we give a code

snippet of the extension activity associated with the book ordering abstract activity (of the

pervasive shopping scenario).

<extensionActivity>

<qasom :DynamicBindingInvoke invocationID="BookPurchaseOrder" inputVariable="BookPurchaseRequest"

outputVariable="BookPurchaseReply"/>

<qasom :candidateServices>

<qasom :service EPR="BookShop1" portType="BookShop1PT" operation="purchaseBook"/>

<qasom :service EPR="BookShop2" portType="BookShop2PT" operation="orderBook"/>

. . .

</qasom :candidateServices>

</extensionActivity>

3 Experimental Results

We conducted a set of experiments to assess the centralized and distributed versions of

QASSA, and our QoS-driven composition adaptation approach, notably the transformation

of the user task into a behavioural graph. Concerning the evaluation of the extended vdSH

determination algorithm, it makes part of our future work. As yet, the reader can refer to the

experimental evaluation of vdSH determination presented in [Xiao et al., 2007].
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3.1 Experimental set up

Table VI.1 describes the experimental set up used in our experiments. For the evaluation of

QASSA, we are interested in two metrics:

1. Execution time measures the timeliness of QASSA with respect to the size of the

selection problem in terms of the number of activities and the number of services per

activity.

2. Optimality measures how optimal is the QoS utility provided by QASSA. This is deter-

mined by the ratio of the QoS utility resulting from QASSA over the optimal QoS utility

given by a brute-force algorithm (that we developed for the purpose of the experiments).

The optimality metric is then given by the following formula:

Optimality = F/Fopt

where F is the QoS utility given by our heuristic algorithm (see Chapter IV, Section 3.3),

and Fopt is the optimal QoS utility given by the brute force algorithm.

To determine Fopt, we developed a brute force algorithm that we execute using a cluster

of computers called riob 5. To the best of our knowledge, there are no other works that

use the brute-force algorithm to determine the optimality of QoS-aware service selection

heuristics. Instead, most of the existing works (e.g., [Alrifai et al., 2010]) use MILP solvers

such as the IBM ILOG CPLEX Optimizer 6 to determine optimality. Nevertheless, MILP

solvers can not replace the brute-force algorithm, since they also use heuristics to deter-

mine the optimal service composition, thus the optimality results given by these works

are not accurate.

Centralized algorithm Distributed algorithm

- Machine: Dell - Machine: HTC Desire
- Processor: AMD Athlon 1.80GHz - Processor: Qualcomm QSBD8250 1GHz
- RAM: 1.8 GB - RAM: 576 Mo
- OS: Windows XP - OS: Android 2.2 (Froyo)
- Programming language: J2SE 1.6 - Programming language: Android SDK 2.2 (based on J2SE 1.5)

Table VI.1 – Experimental set up

For the purpose of our experiments, we developed a Composition Generator, which ran-

domly generates service compositions used for experimenting with QASSA. The Composition

Generator takes as parameters the number of activities a and the number of candidate services

5. https://www.rocq.inria.fr/intranet/miriad/themes/cluster/riob.htm
6. http ://www-01.ibm.com/software/integration/optimization/cplex-optimizer/about/ ?S_CMP=rnav
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per activity k, and it proceeds through two steps: (i) yielding an abstract service composition

which comprehends a activities structured with respect to randomly chosen composition pat-

terns, (ii) binding k concrete services to each activity in the composition. QoS values associated

with these services are acquired from the QWS dataset available online 7. This dataset consists

of 5000 real Web services, each with a set of 9 QoS properties measured using commercial

benchmark tools [Al-Masri and Mahmoud, 2007a,b].

Once service compositions are generated, we further need to configure the execution of

QASSA with respect to the following parameters:

1. Aggregation approach: As already introduced in Chapter IV, our algorithm supports three

QoS aggregation approaches: pessimistic, optimistic and mean-value. We opt for the pes-

simistic approach as the default method for aggregating QoS values. We further perform

experimentations with respect to the three aggregation approaches in order to study their

impact on the timeliness and optimality of QASSA.

2. User QoS constraints: QASSA requires as input global user QoS constraints imposed on

the whole composition. As we do not have real user requirements, we opt for a statistical

method to determine global QoS constraints. For each QoS property (e.g., response time)

we calculate the mean value mi of the service candidates associated with each activty

Ai, then we aggregate all mean values (i.e., m1, m2,.., mn) with respect to the structure

of the composition. That is, we set the global QoS constraint of each QoS property to

the aggregated mean value of service candidates associated with each abstract activity.

Additionally, we set global QoS constraints to different statistical values in order to ana-

lyze their impact on the timeliness and optimality of QASSA. Further details are given

in Section 3.2.2.

3.2 Performance of QASSA (the centralized version)

In this section, we present the experimental evaluation of the centralized version of QASSA.

We begin by evaluating the timeliness of the algorithm. Towards this purpose, we vary the

number of activities between 10 and 50, the number of services per activity between 50 and

200, and the number of QoS constraints between 2 and 5. For the sake of precision, we execute

each experiment 20 times and we calculate the mean value of the obtained results.

Figure VI.5 (a) depicts the execution time of QASSA with respect to the number of services

per activity. We fix the number of QoS constraints to 5, vary the number of activities between

7. http://www.uoguelph.ca/v qmahmoud/qws/index.html
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Figure VI.5 – Execution time while varying (a) the number of services per activity and (b) the number
of QoS constraints

10 and 50, and vary the number of services per activity between 50 and 200. The obtained

results show that the execution time of our algorithm increases (up to 89ms) along with the

number of services, which is an expected result.

Figure VI.5 (b) depicts the execution time of QASSA with respect to the number of QoS

constraints. We fix the number of services per activity to 200 and vary QoS constraints between

2 and 5. The obtained results show that the execution time of our algorithm increases (up to

89ms) along with the number of QoS constraints, which is also an expected result, i.e., a higher

number of QoS constraints requires more computational effort, hence a longer execution time.

Both figures show that the execution time of our algorithm increases almost linearly along

with the number of activities in the composition. In general, our algorithm executes in a timely

manner (i.e., less than 0.09s) with respect to spontaneous interaction with users aimed at by

pervasive computing.

Concerning the optimality of QASSA, we measure it while varying the number of activities

between 5 and 10. We choose such a low number of activities because the execution time of the

brute-force algorithm for a high number of activities is too long (because of the computational

complexity of the problem).

Figure VI.6 (a) depicts the optimality of QASSA while fixing the number of QoS constraints

to 5, varying the number of activities between 5 and 10 and varying the number of services

per activity between 50 and 200. It shows that the optimality of QASSA is generally more

than 90%, and it can reach 100%. However, for a low number of activities and a low number

of services per activity, the optimality decreases to 60%, which can be explained by the fact

that when the number of services decreases, the probability to find services with a satisfactory

value for all QoS properties decreases also, hence yielding a low optimality.
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Figure VI.6 – Optimality measurements while (a) varying the number of services and (b) the number
of QoS constraints

Additionally, we measure the optimality of QASSA while fixing the number of services

to 200, varying the number of activities between 5 and 10 and varying the number of QoS

constraints between 2 and 5. Figure VI.6 (b) shows that the optimality of our algorithm is

generally satisfactory (more than 90%) and it can reach 100%.

Overall, both figures show that the optimality of our algorithm varies between 90% and

100% independently from the number of services and the number of QoS constraints.

3.2.1 Impact of the Aggregation Approach

As already introduced, QASSA supports different QoS aggregation approaches (i.e., pessi-

mistic, optimistic and mean-value). These approaches produce different QoS values of service

compositions, which may impact the results obtained by our algorithm. For this reason, we

propose to evaluate QASSA with respect to various QoS aggregation approaches, notably pes-

simistic, optimistic, and mean-value approach.

Towards this purpose, we fix the number of QoS constraints to 5, we vary the number of

activities in the composition between 10 and 50, and we vary the number of services per activity

between 50 and 200. Figure VI.7 depicts the execution time of our algorithm associated with

the pessimistic, mean-value, and optimistic aggregation approaches, respectively. The reader

can clearly notice that aggregation approaches have no effect on the execution time of our

algorithm, which can be explained by the fact that these approaches require nearly the same

computational effort (i.e., since they perform similar aggregation operations).

Concerning the optimality of QASSA, we measure it while fixing the number of QoS

constraints to 5, varying the number of activities in the composition between 5 and 10 and
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Figure VI.7 – Execution time wrt to the (a) pessimistic, (b) optimistic and (c) mean-value aggregation
methods

varying the number of services per activity from 50 to 200. Figure VI.8 depicts the optimality

of our algorithm associated with the (a) pessimistic, (b) mean-value, and (c) optimistic aggre-

gation approaches. This figure shows that the optimality of the algorithm slightly decreases

from (a) to (c). The best optimality is associated with the pessimistic aggregation approach, it

reaches 100% ; for the mean-value aggregation approach the optimality does not exceed 99% ;

whereas for the mean-value aggregation approach it is limited to 97%. This can be explained

by the fact that when our algorithm is too stringent and considers the worst QoS values, it

discards more service compositions and keeps only those compositions with high QoS.

3.2.2 Impact of User QoS requirements

The degree to which users are demanding, i.e., how strict are their QoS requirements,

obviously impacts the number of service compositions able to fulfill these requirements, which

impacts the results given by QASSA. For this reason, we propose to evaluate our algorithm
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Figure VI.8 – Optimality of the algorithm wrt to the (a) pessimistic, (b) optimistic and (c) mean-value
aggregation methods

with respect to various values of the user QoS requirements.

In practice, determining such requirements for evaluation of the algorithm is not evident and

requires real-world scenarios (i.e., real requirements), as well as it depends on the user profile

(e.g., whether users are demanding or not). Existing QoS-aware service selection algorithms do

not give systematic method for setting meaningful user QoS requirements.

To cope with this issue, we opt for a statistical approach which allows for determining global

QoS requirements based on QoS values qi of service candidates. Related to this, we test our

algorithm while setting the global QoS requirements QCi (associated with each QoS property

Pi) to two values:

For positive QoS properties: QCi =

Y

]

[

Agg(m)

Agg(m + ‡)
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For negative QoS properties: QCi =

Y

]

[

Agg(m)

Agg(m ≠ ‡)

Where Agg is a function aggregating QoS values with respect to the services and structure

of the composition (see Table IV.1), and m and ‡ are respectively the mean value and standard

deviation of QoS values qi of service candidates associated with each abstract activity.

Under the assumption that we deal with a large number of service candidates, the central

limit theorem [Hogben et al., 2007] states that the randomly generated QoS values follow the

normal distribution law. Thus, setting the values m and m + ‡ (respectively, m and m ≠ ‡ for

negative QoS properties) as local QoS constraints (i.e., for each abstract activity), allows for

discarding 50% and 84,1% of service candidates, respectively.

Figure VI.9 – The normal distribution law

Consequently, setting the user QoS requirements to Agg(m) and Agg(m + ‡) (respectively,

Agg(m) and Agg(m ≠ ‡) for negative QoS properties) may discard approximately 50% and

84,1% of service candidates, respectively.

Figure VI.10 depicts the execution time of our algorithm associated with user QoS requi-

rements set to m and m + ‡, respectively. In these figures, we notice that the execution time

slightly decreases when the value of user constraints increases, which can be explained by the

fact that the algorithm discards more service compositions when user QoS requirements are

more constraining, which reduces the number of investigated compositions, hence reducing the

execution time of the algorithm.

Concerning the optimality results, we measure it while fixing the number of QoS constraints

to 5, varying the number of activities in the composition between 5 and 10 and varying the

number of services per activity from 50 to 200.

Figure VI.11 depicts the optimality of our algorithm associated with user QoS requirements

respectively set to m and m + ‡. This figure shows that the optimality produced by our al-
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Figure VI.10 – Execution time while fixing global QoS requirements to (a) m and (b) m + σ

Figure VI.11 – Optimality of the algorithm while fixing global QoS requirements to (a) m, (b) m + σ

gorithm considerably decreases (it declines to 26% in some cases) when the value of user QoS

requirements increases, which is an expected result. Indeed, QASSA discards more service com-

positions when the value of user QoS requirements increases, hence the probability to find a

service composition with high optimality declines.

3.3 Performance of QASSA (the distributed version)

In this section, we evaluate the distributed version of QASSA using the experimental setup

detailed in Table VI.1. Distributing QASSA changes two main features compared with the

centralized version, notably : (i) the communication cost of the algorithm (specifically, the

communication cost between the devices participating in fulfilling the user task), and (ii) the

hardware setup underpinning the execution of the algorithm. Both features do not impact the
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optimality of QASSA, thus in our experiments, we focus only on the execution time metric.

Additionally, we assume that the communication cost is neglectable compared with the overall

execution time of the algorithm. Thus, the execution time presented in these experiments

concerns only the local and global selection algorithms of the distributed version of QASSA.

Figure VI.12 – Execution time of the (a) local selection and (b) global selection of our distributed
QoS-aware service selection algorithm

Figure VI.12 depicts the execution time of the local selection and global selection of the

distributed version of QASSA. For the local selection, the execution time is measured for one

abstract activity (indeed, each helper device processes local selection for one activity in the

user task). We fix the number of QoS constraints to 5 and vary the number of services between

50 and 200. Whereas for the global selection, we fix the number of QoS constraints to 5, the

number of services to 200 and we vary the number activities in the user task between 10 and

50.

Despite the limited hardware resources used in these experiments, QASSA shows satis-

factory timeliness with respect to spontaneous interaction with users aimed at by pervasive

environments. Indeed, the local selection is executed in at most 25 ms, whereas the global se-

lection is executed in at most 1.2 s, thus the overall algorithm can be accomplished in less than

1.5s, depending on the size of the user task and the number of services per activity.

3.4 Performance of Transforming the User Task into a Behavioural

Graph

In this section, we partially evaluate the performance of our QoS-driven composition adap-

tation approach. We particularly focus on transforming the user task into a behavioural graph.

Concerning the evaluation of the extended vdSH determination algorithm, it makes part of our

future work.
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Figure VI.13 – Execution time of transforming abstract BPEL specifications into behavioural graphs

As we use the BPEL language to represent user tasks, we aim at evaluating the transfor-

mation of an abstract BPEL specification into a behavioural graph. Towards this purpose, we

developed an abstract composition generator, which automatically generates abstract BPEL

specifications given the number of opaque invoke activities as input. Opaque invoke activities

are structured according to randomly chosen BPEL composition patterns.

Once the abstract BPEL is generated, we apply the BPEL to graph transformation defined

by Grigori et al. [Grigori et al., 2010] in order to generate the equivalent behavioural graph.

The idea behind the transformation is to map BPEL activities to respective behavioural graph

elements. To do so, we traverse the nested structure of the BPEL document in a top-down

manner and apply recursively a transformation procedure specific to each type of activities. We

use the StAX 8 Java API for XML to parse the BPEL document, and the JGraphT 9 API to

build and handle graphs.

We measure the execution time of the transformation starting from parsing the abstract

BPEL specification until the complete building of the graph. We perform 20 executions for

each transformation and we give the average execution time. Figure VI.13 depicts the obtained

results. It shows that the transformation is executed in a small amount of time, i.e., nearly

35ms.

8. StAX API: http://stax-ex.java.net/
9. JGraphT API: http://jgrapht.sourceforge.net/
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Chapter VII

Conclusion

Pervasive computing environments are characterized by their limited computational re-

sources and wireless connectivity, which may cause Quality of Service (QoS) decline or fluc-

tuation. Therefore, delivering a satisfactory QoS to users represents a major challenge for the

pervasive computing community. Indeed, without QoS guarantees pervasive computing looses

much of its interest.

To ensure a satisfactory level of QoS, user tasks need to be accomplished while being ‘QoS

aware’, i.e., aware about QoS conditions in pervasive environments during their execution. The

notion of QoS awareness involves (i) establishing a proper QoS model that enables the effective

understanding and use of QoS, (ii) considering QoS aspects of services during the composition

and deployment of the user task, and (iii) adapting the execution of the user task with respect

to QoS changes in pervasive environments.

In this thesis, we opt for a middleware solution to address the aforementioned QoS awareness

issues. Our middleware contributes to the state of the art through the provision of efficient QoS

awareness solutions for pervasive computing environments. Below, we present the contributions

of our middleware, then we give the short term and long term perspectives of our research work.

1 Contributions

In this thesis, we presented a QoS-aware service-oriented middleware for pervasive compu-

ting environments, and a prototype implementation of this middleware, viz., QASOM.

The first contribution of our middleware is a semantic QoS model that supports interopera-

bility between heterogeneous QoS descriptions used by users and service providers in pervasive

environments. Our model is based on a QoS standardization effort established by OASIS 1,

and offers a set of QoS ontologies that include an extensive categorization of QoS properties.

1. OASIS Web Services Quality Model TC: http://www.oasis-open.org/committees/tc_home.php ?wg_abbrev=wsqm
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The proposed ontologies cover QoS on an-end-to-end basis by considering QoS properties of all

the factors involved in fulfilling the user task, notably applications services, their underlying

infrastructure, and end-users, hence providing a comprehensive of vision of QoS. Our model

is further extendible so that domain specific QoS properties can be added easily. With all the

aforementioned features, our QoS model provides the appropriate ground for QoS awareness in

pervasive environments and supports our middleware in fulfilling the user task while delivering

satisfactory QoS to users.

As part of the QASOM prototype, we developed the QoS ontologies of our model using the

OWL-DL 2 language. To produce semantically rich QoS specifications, the developed ontologies

are combined with an emergent QoS specification language proposed by the OASIS Web Ser-

vices Quality Model Technical Committee, namely WSQDL (Web Service Quality Description

Language). More specifically, we have enriched WSQDL specifications with semantic anno-

tations referencing QoS concepts in our ontologies. Specifying services’ QoS is subsequently

achieved by associating semantically enriched WSQDL specifications with WSDL descriptions

(WSDL is an XML-based schema describing Web Services’ interfaces).

To assist users of pervasive environments in realizing their daily tasks, our middleware pro-

vides a QoS-aware service composition approach that assembles, dynamically on-the-fly, proper

services available in the environment in order to accomplish users’ tasks. Our composition ap-

proach introduces QASSA, a novel and efficient QoS-aware service selection algorithm that

copes with major challenges of service selection in pervasive computing environments. Thanks

to a novel way of using clustering techniques, QASSA is highly selective and can execute in a

timely manner with respect to spontaneous interaction with users. Additionally, QASSA can

be executed in a centralized or distributed fashion depending on the infrastructure of per-

vasive environments (i.e., stationary and centralized infrastructure or ad hoc infrastructure).

Furthermore, QASSA considers end-to-end QoS properties and supports QoS-driven composi-

tion adaptation by (i) selecting multiple alternative service compositions, and (ii) supporting

dynamic binding of services, i.e., binding services just before their invocation based on the

run-time QoS of services.

QASSA is implemented as a part of the QASOM prototype. The experimental evaluation

of QASSA shows that both versions of the algorithm (i.e., centralized and distributed versions)

execute in a timely manner with respect to spontaneous interaction with users aimed at by per-

vasive computing. At the same time, QASSA meets the user QoS requirements while achieving

a high QoS optimality.

2. OWL-DL: http://www.w3.org/TR/owl-features/
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To ensure delivering the intended QoS steadily during the execution of service compositions,

our QoS-aware service-oriented middleware introduces a novel QoS-driven composition adap-

tation approach that focuses on adapting the behaviour of service compositions. Behavioural

adaptation represents an important alternative to service substitution widely investigated by

existing adaptation approaches.

Our QoS-driven composition adaptation represents user tasks as graphs and reduces the

behavioural adaptation problem to a well-known graph problem, viz., vertex disjoint Subgraph

Homeomorphism (vdSH) [Xiao et al., 2007]. The advantage of expressing the behavioural adap-

tation problem as vdSH is two-fold. First, it enables a flexible matching of behavioural subgraphs

where vertex subdivision is allowed. This means that behaviours covering the same functionali-

ties but having different granularities can be matched, thus enabling to take advantage of many

potential ways for accomplishing the user task.

Second, expressing the behavioural adaptation problem as vdSH allows for applying be-

havioural adaptation for subgraphs instead of complete graphs (which is the case of existing

behavioural adaptation approaches). This means that only the part of the user task which is

not accomplished is concerned by behavioural adaptation, thus avoiding to roll-back the whole

composition and switching from a behaviour to another in a transparent and flexible manner.

Finally, it is worth mentioning that the main objective of our QoS-driven composition

adaptation approach has been to bring the behavioural adaptation problem to a well-known

graph field where multiple solutions and algorithms are already proposed, hence opening new

perspectives to efficiently resolve this problem. The experimental validation of our QoS-driven

composition adaptation approach makes part of our future work.

Overall, the QASOM prototype implementation of our middleware constitutes an efficient

and comprehensive QoS-awareness solution for pervasive computing environments, and has

been successfully integrated in the ANR SemEUsE project.

2 Perspectives

Besides the contributions presented above, short term and long term perspectives are still

to be investigated towards a valuable solution for QoS awareness in pervasive environments.

Short term perspectives represent potential enhancements of our middleware, whereas long

term perspectives are about future research directions that we deem important to enable the

QoS vision aimed at by pervasive computing.
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2.1 Short-term perspectives

In order to improve the actual state of our middleware, we mainly focus on enhancing our

QoS-driven composition adaptation approach. Three short-term perspectives can be investiga-

ted towards this purpose. First, we aim at theoretically validating our QoS-driven composition

approach. Particularly, we are interested in establishing proofs about the correctness of our

approach in the sense that the functional equivalence established between subgraphs based on

vdSH determination is correct. The second short term perspective is about fully validating our

QoS-driven composition adaptation approach experimentally. Specifically, we are interested in

studying the response time of our extended vdSH algorithm with respect to timeliness require-

ments in pervasive environments. Finally, we are interested in extending our approach in order

to handle the case where multiple behavioural adaptation solutions are found. That is, we shall

define a utility function based on which we can determine the best behavioural adaptation

solution.

2.2 Long-term perspectives

Integrating QoS Awareness and Context Awareness The notion of context represents

any useful information (besides functional and QoS information) characterizing an entity and

the world in which this entity operates [Dey et al., 2001]. Related to this, context awareness is

defined as “the use of context to provide task-relevant information and/or services to a user,

wherever they may be”[Abowd et al., 1999].

The extension of our middleware with the support of context awareness would enable ga-

thering and processing information about user characteristics and state of the physical envi-

ronment, which can be used to improve the QoS delivered to users [Wac, 2005]. Nevertheless,

addressing QoS awareness and context awareness simultaneously brings about a number of

challenging issues to investigate regarding middleware for pervasive environments.

The first issue concerns the establishment of an integrated QoS and context model that

relates QoS properties to context elements and defines the impact of context variations on the

QoS delivered to users. As modelling only one aspect (i.e., QoS or context) is not a trivial task,

establishing an integrated QoS and context model seems to be even more challenging.

Another issue concerns managing the trade-off between QoS and context during service

discovery, composition and adaptation. Indeed, in many situations the user required QoS and

the user context may be conflicting, e.g., choosing a service with a medium QoS and which is

next to the user’s location or selecting another service a little bit further from the user but

offering a higher QoS. This raises the issue of conflict-free discovery, composition and adaptation
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approaches. A preliminary idea towards resolving this issue is to find the appropriate balance

between QoS and context using, e.g., MCDM (Multi-Criteria Decision Making), or to prioritize

the conflicting QoS and context constraints as suggested in [Lupu and Sloman, 1997].

From QoS Awareness to QoS Enhancement The notion of QoS awareness as addressed

in this thesis is roughly about managing QoS provided by different resources in pervasive

environments so as to deliver the best ‘offered QoS’ to users. Nevertheless, it may happen that

the offered QoS is not enough to gain the user satisfaction because of the resource limitations

in pervasive environments.

For this reason, we argue that research efforts should switch from the notion of QoS aware-

ness to a QoS enhancement perspective, which envisions improving the QoS delivered to users

instead of only managing existing QoS. One idea towards this purpose is to endow user ap-

plications with software elements that may enhance specific QoS properties. For instance load

balancing, fault tolerance, security software elements may enhance, respectively, the response

time, availability and reliability, and the security of user applications.

Related to this, pervasive computing requires a specific software engineering fashion that is

able to cope with the inherent challenges of pervasive computing (notably QoS) at the architec-

tural level. This involves defining an architectural style that allows for designing and building

user applications while considering software elements able to improve the overall QoS delivered

to users. Existing approaches addressing this purpose (e.g., WSAMI [Issarny et al., 2005]) use

connectors, considered as key architectural elements, to weave QoS-supporting mechanisms into

service-oriented user applications, where hosting and integrating such connectors is accounted

for in the design and implementation of the middleware layer.

However, in order to fit on-the-fly design and construction of user applications in pervasive

environments, middleware connectors shall be dynamically synthesized in an automated and

implicit way, given the specification of the required QoS properties and available QoS-supporting

mechanisms.

Middleware connectors dealing with QoS enhancement shall further be composed when dea-

ling with several QoS properties. Same as for the integration of application services, middleware

connectors must be also integrated in a way that guarantees the correct and efficient use of

connectors, i.e., connecting applications services correctly while improving the overall QoS of

the application.

The above raises a number of multi-disciplinary challenges going from formal foundation to

run-time engineering of middleware connectors [Issarny et al., 2011].
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