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Abstract

Infrastructure as a service (IaaS) Cloud platforms are increasingly used
in the IT industry. IaaS platforms are providers of virtual resources from a
catalog of prede�ned types. Improvements in virtualization technology make it
possible to create and destroy virtual machines on the �y, with a low overhead.
As a result, the great bene�t of IaaS platforms is the ability to scale a virtual
platform on the �y, while only paying for the used resources.

From a research point of view, IaaS platforms raise new questions in
terms of making e�cient virtual platform scaling decisions and then e�ciently
scheduling applications on dynamic platforms. The current thesis is a step
forward towards exploring and answering these questions.

The �rst contribution of the current work is focused on resource man-
agement. We have worked on the topic of automatically scaling cloud client
applications to meet changing platform usage. There have been various studies
showing self-similarities in web platform tra�c which implies the existence of
usage patterns that may or may not be periodical. We have developed an au-
tomatic platform scaling strategy that predicted platform usage by identifying
non-periodic usage patterns and extrapolating future platform usage based on
them.

Next we have focused on extending an existing grid platform with on-
demand resources from an IaaS platform. We have developed an extension to
the DIET (Distributed Interactive Engineering Toolkit) middleware, that uses
a virtual market based approach to perform resource allocation. Each user is
given a sum of virtual currency that he will use for running his tasks. This
mechanism help in ensuring fair platform sharing between users.

The third and �nal contribution targets application management for IaaS
platforms. We have studied and developed an allocation strategy for budget-
constrained work�ow applications that target IaaS Cloud platforms. The work-
�ow abstraction is very common amongst scienti�c applications. It is easy to
�nd examples in any �eld from bioinformatics to geology. In this work we
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have considered a general model of work�ow applications that comprise par-
allel tasks and permit non-deterministic transitions. We have elaborated two
budget-constrained allocation strategies for this type of work�ow. The prob-
lem is a bi-criteria optimization problem as we are optimizing both budget and
work�ow makespan.

This work has been practically validated by implementing it on top of the
Nimbus open source cloud platform and the DIET MADAG work�ow engine.
This is being tested with a cosmological simulation work�ow application called
RAMSES. This is a parallel MPI application that, as part of this work, has
been ported for execution on dynamic virtual platforms. Both theoretical
simulations and practical experiments have shown encouraging results and
improvements.
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Résumé

L'usage des plateformes de Cloud Computing o�rant une Infrastructure
en tant que service (IaaS) a augmenté au sein de l'industrie. Les infrastruc-
tures IaaS fournissent des ressources virtuelles depuis un catalogue de types
prédé�nis. Les avancées dans le domaine de la virtualisation rendent possible
la création et la destruction de machines virtuelles au fur et à mesure, avec un
faible surcout d'exploitation. En conséquence, le béné�ce o�ert par les plate-
formes IaaS est la possibilité de dimensionner une architecture virtuelle au fur
et à mesure de l'utilisation, et de payer uniquement les ressources utilisées.

D'un point de vue scienti�que, les plateformes IaaS soulèvent de nouvelles
questions concernant l'e�cacité des décisions prises en terme de passage à
l'échelle, et également l'ordonnancement des applications sur les plateformes
dynamiques. Les travaux de cette thèse explorent ce thème et proposent des
solutions à ces deux problématiques.

La première contribution décrite dans cette thèse concerne la gestion des
ressources. Nous avons travaillé sur le redimensionnement automatique des
applications clientes de Cloud a�n de modéliser les variations d'utilisation de la
plateforme. De nombreuses études ont montré des autosimilarités dans le tra�c
web des plateformes, ce qui implique l'existence de motifs répétitifs pouvant
être périodiques ou non. Nous avons développé une stratégie automatique de
dimensionnement, capable de prédire le temps d'utilisation de la plateforme
en identi�ant les motifs répétitifs non périodiques.

Dans un second temps, nous avons proposé d'étendre les fonctionnalités
d'un intergiciel de grilles, en implémentant une utilisation des ressources à
la demandes. Nous avons développé une extension pour l'intergiciel DIET
(Distributed Interactive Engineering Toolkit), qui utilise un marché virtuel
pour gérer l'allocation des ressources. Chaque utilisateur se voit attribué un
montant de monnaie virtuelle qu'il utilisera pour exécuter ses tâches. Le mé-
canisme d'aide assure un partage équitable des ressources de la plateforme
entre les di�érents utilisateurs.
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La troisième et dernière contribution vise la gestion d'applications pour les
plateformes IaaS. Nous avons étudié et développé une stratégie d'allocation des
ressources pour les applications de type work�ow avec des contraintes budgé-
taires. L'abstraction des applications de type work�ow est très fréquente au
sein des applications scienti�ques, dans des domaines variés allant de la géolo-
gie à la bioinformatique. Dans ces travaux, nous avons considéré un modèle
général d'applications de type work�ow qui contient des tâches parallèles et
permet des transitions non déterministes. Nous avons élaboré deux stratégies
d'allocations à contraintes budgétaires pour ce type d'applications. Le prob-
lème est une optimisation à deux critères dans la mesure où nous optimisons
le budget et le temps total du �ux d'opérations.

Ces travaux ont été validés de façon expérimentale par leurs implémenta-
tions au sein de la plateforme de Cloud libre Nimbus et de moteur de work�ow
MADAG présent au sein de DIET. Les tests ont été e�ectuées sur une simula-
tion de cosmologie appelée RAMSES. RAMSES est une application parallèle
qui, dans le cadre de ces travaux, a été portée sur des plateformes virtuelles
dynamiques. L'ensemble des résultats théoriques et pratiques ont débouché
sur des résultats encourageants et des améliorations.
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Chapter 1

Introduction

The work in this Thesis aims at improving resource provisioning and al-
location in Cloud platforms. First we consider the point of view of the Cloud
provider and in this sense study the state of the art and its current problems.
We propose resource provisioning solutions that improve on the state of the
art.

Next we concentrate on the point of view of the Cloud client. We propose
solutions for automatic virtual platform management in the general case and
in a specialized application case.

The current chapter presents the motivation, problematics and objectives
of the current Thesis, while o�ering a �rst introduction in the context of the
current domain.

Motivation of the current work

The idea of computing as a utility is by no means a new one. One of the
�rst references to this is given by John McCarthy in 1961 where he described
the possibility of having computational power as a utility in the future, similar
to the telephone system.

As technology evolved, this idea became a reality. Realizing this was done
in two step: a hardware step and a software step. The �rst step was the
proliferation of large data centers formed of computational clusters, each con-
sisting of a large number of powerful computers interconnected by a network,
all of them located in a close proximity to each other. Compute clusters were
interconnected by fast networks, thus becoming a bigger structure capable of
sharing resources from various clusters, regardless of geographic position. The
result is a large, heterogeneous platform called a computational grid, which
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is an analogy to the power grid. Computational grids were born in scienti�c
communities and were primarily used as a mechanism for researchers to share
their resources. They allow large simulations to be made that break geographic
boundaries.

Computational grids are shared environments and, as they come from the
scienti�c communities, internal security is usually low, yet internal security
problems rarely occur. Politeness and respect for the other members of the
community are usually enough for security enforcement. The users of the
grid are known, as well as their identities which means the environment is
transparent.

Given that compute grids are formed of heterogeneous resources, develop-
ing applications for them is a challenging task. The application developers have
to take into consideration topics as: ways in which resources can be accessed,
job scheduling, job and resource monitoring, data management, security and
others. All of these features can be abstracted away by a grid middleware,
which permits a more straightforward approach to application development.
As examples of toolkits that permit development of grid services we can con-
sider: gLite [1] developed as part of the Egee project, the Globus Toolkit [2]
developed by the Globus Alliance, Unicore [3] sponsored by the German
ministry for education and research and later by several European projects.

Another approach of providing transparent access to heterogeneous re-
sources is the Remote Procedure Call (RPC) approach which permits invok-
ing a method of an object regardless where the object is located. The RPC
paradigm was extended into the context of grid computing by the Open Grid
Forum with the GridRPC [4] standard. The standard insures interoperabil-
ity of grid middleware, meaning that any applications that are built on the
GridRPC paradigm are compatible with any GridRPC compliant middleware.
Examples of GridRPC middleware are GridSolve [5] which is one of the �rst
GridRPC compliant middleware, Ninf [6] with a similar functionality and Ninf-
G which is developed with the Globus Toolkit. Another example is DIET [7, 8]
(Distributed Interactive Engineering Toolkit). Throughout this Thesis, DIET
is used for practical validation either as an experimental testbed or by extend-
ing it with prototypes that underline the work in this Thesis. Whereas Ninf
and NetSolve use a single agent, DIET uses a hierarchy of agents. This al-
lows DIET installations to follow the grid topology closely and distributes the
scheduling decisions across the hierarchy of agents. This architecture makes
DIET a highly scalable middleware. More details about the DIET architecture
and its extensions will be presented throughout this Thesis.

In contrast to scienti�c research grids, a commercial computational grid
has di�erent requirements. One of the most important being guaranteeing
isolation and security of the environment since commercial grids cannot be
transparent to the same level as research grids are. Fair resource sharing
is also a problem, as commercial users will want a guarantee that they will
have the resources that they are paying for. There are successful commercial
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applications of the computational grid, usually based on isolation techniques
either by using Operating System mechanisms like processes or more advanced
mechanisms as virtualization like the Java Virtual Machine (JVM) or the Java
Multi-user Virtual Machine (MVM). A major step forward in this direction
was the development of virtualization technology that allowed the virtualiza-
tion of an entire compute machine inside a host physical machine, e�ectively
allowing the installation of multiple operating systems on the same physical
host and thus providing a high level of isolation between the virtual machines
themselves and the underlying host machine. This technology has evolved
over time from full software virtualization to paravirtualization, a technique
through which slow operations running inside the Virtual Machine (VM) can
be sped up with special instructions implemented by the CPU. The impli-
cations of this approach are that the di�erence in performance between an
application running inside a VM and outside, as a �rst class application, have
become considerably small.

This was the second step towards computation power as a utility: the
software step. It opened the possibility of migrating computational needs to
the big data centers while guaranteeing the same level of quality of service.
Obtaining more computational power or releasing unneeded one became as
simple as �ipping a switch. The providers of this type of service are called
Cloud providers, the term �Cloud� being an analogy to the fact that the end
users do not have physical access to the resources they use, they use them
through the Internet.

Cloud computing is one of the �elds where practice developed before theory
and as a result there was no standard way of working with a Cloud provider,
which made vendor lock-in a possibility for Cloud clients. Consequently, there
are e�orts oriented towards the possibility of treating all Cloud platforms in
the same way and abstracting away their interface. Interconnecting several
Cloud providers together gives birth to Cloud federations or �Sky Computing�.

The most typical use-case for Cloud platforms is to automatically scale a
virtual platform based on its usage. This leads to lower costs for the platform
owner, as he only pays for resources that he uses and the resources he uses
follow closely the usage of the platform. When contrasted to the traditional
approach of allocating a �xed number of resources, this is clearly a better
approach. Until the appearance of Cloud-like platforms this was not possible
in the general application case. Although automatic scaling comes with great
advantages, it has its share of questions and problems. The most important
of these are related to automatic platform scaling decisions in the general case
as well as in the case of a speci�c application type. Making a good scaling
decision is not trivial.
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Objectives and contributions of the current Thesis

The context of the current work is the �eld of virtual resource provisioning
using Cloud platforms. Resource provisioning for Cloud platforms can be seen
from two di�erent points of view: the Cloud provider's and the Cloud client's
point of view. The current work has contributions to both.

From the Cloud client's point of view, scaling his virtual platform is the
main concern. We have proposed a new automatic scaling algorithm for Cloud
client applications that tries to identify usage patterns in the platform's usage
history. The identi�ed patterns help in making the scaling decision. The
algorithm that we propose is able to identify nonperiodic repetitive behavior,
which has been documented in web tra�c and is inherent to some application
types and some usage scenarios. As such, the proposed algorithm can prove
e�ective for some applications and scenarios, but not for others.

We have considered a specialized application pattern, called work�ow, that
is very common in scienti�c communities. We have proposed two algorithms
for resource allocation on dynamic platforms. Both algorithms determine allo-
cations that minimize the total running time of the application while keeping
a �xed budget limit.

From the point of view of Cloud providers we have studied the problem
of resource provisioning and have contributed with the design of a mechanism
that extends a grid platform with Cloud resources from a resource catalog.
This mechanism was designed for the DIET toolkit (Distributed Interactive
Engineering Toolkit), an open-source grid middleware. In order to achieve
resource sharing we have used a mechanism based on commodity markets
where each user has a �nite amount of virtual currency that is recirculated into
the system and computational power is the commodity that is being traded.
In this system there are computational resource providers and resource users.
The virtual currency �ows naturally from user to producer and back again by
a recirculation mechanism. Resource prices are left to �uctuate freely in this
closed system and fair resource sharing comes as a side e�ect.

Organization of the current Thesis

This Thesis is organized as follows. Chapter 2 presents an introduction
into the �eld of Cloud computing and a study of the state of the art. We
focus on three important Cloud features: automatic scaling, load balancing
and platform monitoring.

In Chapter 3 we present an automatic scaling approach for Cloud clients.
This approach is based on identifying similar existing load patterns in the
history of the platform's usage and using them to extrapolate what the future
platform usage can be. This approach is highly e�ective for applications that
have a nonperiodic repetitive behavior. To validate our approach we have
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tested the algorithm against platform traces from one Cloud client application
and several grid workload traces.

Chapter 4 presents our proposal for extending a grid middleware with
Cloud resources based on economic mechanisms. Users are given a �nite quan-
tity of virtual currency that they spend to execute their tasks on virtual re-
sources. Virtual resource prices are left to �uctuate and tend to self-stabilize,
thus guaranteeing fair resource sharing amongst users.

In Chapter 5 we explore the problem of determining resource allocations
for a specialized class of applications, the work�ow class as this is a very
common application class in the scienti�c world. Since Cloud platforms are
advertised as having an unbound number of resources in their pool, the tra-
ditional scheduling problem becomes a bi-criteria optimization problem where
we must consider both running time and cost as criteria. We propose two
algorithms that determine budget-constrained allocations. For validation we
check and compare their performance against synthetic application traces.

Finally in Chapter 6 we conclude this Thesis while presenting a summary
of the contributions and future perspectives.
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Chapter 2

Resource management in Cloud

platforms

The current chapter has the purpose of introducing the reader into the
topic of the current Thesis. It presents an introduction of the Cloud com-
puting paradigm and then focuses on the current state of the art in resource
management for Cloud platforms, highlighting auto-scaling, load balancing and
monitoring as they appear in commercial and open-source Cloud platforms. At
the end it also presents further directions of improvement of these topics.

2.1 Steps towards the Cloud

Grid Computing

As Internet connection bandwidth increased and more types of distributed
architectures became possible. In order to facilitate resource sharing and pro-
vide access to large computational power, a distributed and heterogeneous ar-
chitecture is required. Foster and Kesselman invented the term Computational
Grid [9] to refer to such systems. The term is an analogy to the power grid,
but instead of electricity, computational grids provide computational power.

In their de�nition, a computational grid is an entity, owned by multiple
organizations and so it does not have a single controlling entity. In Foster's
vision, the grid is decentralized hardware and software infrastructure, based
on open protocols that delivers nontrivial services and qualities of service.
Each of the owning organizations has transparent access to the grid's resource,
regardless of geographic positioning.

In scienti�c communities involved in High Performance Computing (HPC)
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a research grid is typically a large network that connects multiple compute
clusters [10], giving shared resource access to membering institutions. Re-
source access is done in a transparent way, even if the membering clusters
have di�erent software installations

Cloud Computing

The idea of computational power served as a commodity has continued to
evolve beyond the initial computational grid concept. The development of vir-
tualization technology has opened new doors when it comes to computational
resource hosting. An organization can give its clients virtual resources which
are a very �exible in terms of virtual hardware and software speci�cations.
This leads to a step forward in computational resource sharing.

The term Cloud computing has a wide range of de�nitions [11] and types.
In what follows we will explore the most relevant of them.

IaaS (Infrastructure as a Service)

IaaS Cloud platforms o�er a virtualized infrastructure to their clients by
means of virtual machines (VM), an abstraction of a physical machine, that
have prede�ned characteristics from a resource catalog. The Cloud platform
deploys new virtual machines when its clients ask for them and gives the client
complete control over them. The client is charged based on the type and
number of virtual machines that he has running, each virtual machine having
a �xed per-hour cost. Typically when calculating costs, Cloud platforms round
up the running time of each running virtual machine to the nearest higher hour.

In the traditional grid environment, a user requests physical resources over
period of time called a resource lease. Once his request is accepted, the user
can access the physical resources and use them as he wills. The resource lease
is usually �xed in number of resources and in the lease time. In contrast,
in a traditional Cloud environment, a user requests virtual resources over an
unbound time period and uses them as he pleases. The user can always acquire
new resources if needed an release existing ones if they are unnecessary. The
contrast between the two scenario leads to more �exible and e�cient ways
of using resources. Given that Cloud computing o�ers virtual resources, the
Cloud user can sometimes change the virtual hardware speci�cations of his
running resources.

There are many commercial and open-source providers of this type. For the
commercial platforms we can enumerate: Amazon EC2 [12], Rackspace [13],
GoGrid [14], Microsoft Azure [15] and others. From the open-source commu-
nities, there are several platforms that have been developed, most notably:
Eucalyptus [16], Nimbus [17], OpenNebula [18], OpenStack [19] and others.

In the rest of this document the term Cloud computing or Cloud is used
with the meaning of an IaaS Cloud platform, unless otherwise speci�ed.
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PaaS (Platform as a Service)

In contrast to IaaS providers, in the case of PaaS, the users receive a devel-
opment platform that they can access and develop applications for. The PaaS
platform handles resource access, client application deployment and client ap-
plication scaling automatically, with no need of client intervention.

Examples of commercial PaaS platforms are: Google AppEngine [20], Mi-
crosoft Azure [15], Force.com [21], Heroku [22] and others. From the open-
source communities there are a number of PaaS platforms being developed,
most notably: AppScale [23], TyphoonAE [24], OpenShift [25] and others.

SaaS (Software as a Service)

In the case of SaaS, the end users are usually also the Cloud's users. No ap-
plications are being developed and deployed on the SaaS Cloud by the Cloud's
clients, rather the clients use the services themselves, paying for what they
use.

It is obvious that any type of online service �ts into this category thus
greatly widening the scope of the term �Cloud�.

2.2 State of the art in Cloud computing

Over the past years, the Cloud phenomenon had an impressive increase in
popularity in both the software industry and research worlds. In the industry
this increase is due to the bene�ts of on-demand provisioning: Cloud clients
can ask for resources when their platforms are under heavy load and pay for
those resources by the hours. Later, when load decreases, Cloud clients can
release unused resources and stop paying for them, therefore following more
closely their platform usage, which on the long term means saving money when
compared to a traditional static resource allocation that is unchangeable over
time, or changeable with a big latency. This led to a wide adoption of Cloud
computing in the industry.

In the academic world, the interest in Clouds comes from the new research
problems that it brings. Two such problems are determining a good strategy
for automatically allocating and deallocating resources to a Cloud client and
determining new virtual machine aware scheduling strategies.

Achieving the above mentioned is not trivial and is done by leveraging more
direct functionalities that Clouds provide. Three of these key functionalities
are automatic scaling, load balancing and monitoring.

The increasing relevance of Cloud computing in the IT world is undeniable.
Cloud providers have focused a lot of attention on providing facilities for Cloud
clients, that make using the Cloud an easy task. These facilities range from
automatic and con�gurable platform scaling and load balancing services to
platform monitoring at di�erent levels of granularity and con�gurable alert

17



services. Given that there are no formal standards related to this topic, each
Cloud provider has their own interpretation of the problem and their own way
of addressing it.

In what follows, we will detail the topics of auto-scaling, load-balancing and
monitoring. We will explore both Cloud provider and Cloud client points of
view and examine what approaches are taken by the commercial providers and
their open-source counterparts. Where an implementation is not available for
one of the discussed Clouds, we will present alternative solutions by turning to
available commercial services and open-source software. We will also present
research work that has been done around the topic of interest.

Among the commercial Cloud platform providers we have focused on Ama-
zon EC2, Microsoft Azure, GoGrid and RackSpace. From the open-source ini-
tiatives we have focused on Nimbus, Eucalyptus and OpenNebula. We have
also detailed endeavors in the research world that are relevant to the topics of
auto-scaling, monitoring and load balancing.

At the end of this chapter, we have also presented current standardization
e�orts around Cloud computing.

Auto-Scaling - a Cloud feature

Elasticity, or on-demand resource provisioning, is regarded as one of the
di�erentiating features of clouds. In fact, for some authors, it is considered the
characteristic that makes clouds something other than �an outsourced service
with a prettier face� [26]. Cloud users can quickly deploy or release resources
as they need them, thus taking bene�t of the typical pay-per-use billing model.
They avoid potential over-provisioning of resources which implies investment
in resources that are not needed. Also, increases on demand can be quickly
attended to by asking the cloud for more resources, thus preventing a possible
degradation of the perceived service quality.

However, to bene�t from elasticity in typical Infrastructure-as-a-Service
(IaaS) settings, the cloud user is forced to constantly control the state of the
deployed system. This must be done in order to check whether any resource
scaling action has to be performed. To avoid this, several auto-scaling solutions
have been proposed by academia [27, 28] and by di�erent cloud vendors. All
these solutions allow users to de�ne a set of scaling rules regarding the service
hosted in the clouds. Each rule is composed by one or more conditions and
a set of actions to be performed when those conditions are met. Conditions
are typically de�ned using a set of metrics which are be monitored by the
cloud platform, as for example CPU usage, and some threshold. When the
threshold is traversed the condition is met and an action is executed. Actions
are typically acquisition of new VMs or release of running VMs.

Most auto-scaling proposals are all based on the �conditions and actions�
approach, yet they vary substantially in several aspects: which metrics are
monitored (and so included in the rules de�nition); expressiveness of the con-
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ditions de�ning mechanism; and which actions can be taken. Many of them
focus on horizontal scaling, i.e., deploying or releasing VMs, while vertical
scaling (like for example increasing physical resources of an overloaded server)
is not considered, possibly due to the impossibility of changing the available
CPU, memory, etc., on-the-�y in general purpose OSs.

Here we analyze the di�erent auto-scaling solutions used by several cloud
proposals, commercial ones such as Amazon EC2 and open source solutions
such as Open Nebula. Also, we have examined solutions developed by third
parties.

Auto-Scaling in Commercial Clouds

Amazon EC2

Amazon provides auto-scaling as part of the service o�ered by their IaaS
EC2 public cloud. This service can be accessed by a web services API or
through the command line. Auto-scaling in EC2 is based on the concept of
Auto Scaling Group (ASG). A group is de�ned by:

� A launch con�guration that will be part of the group. The launch con�g-
uration is given by the virtual image (that contains the OS and software
stack of the VM) and virtual hardware characteristics. As there can
only be one unique con�guration per auto-scaling group, then all ma-
chines must by force have the same virtual hardware speci�cations. The
lack of heterogeneity in launch con�gurations means that a user wanting
a set of heterogeneous VMs has to have at least one di�erent launch
con�guration, and implicitly di�erent auto-scaling group, per VM type.
This is a limitation that makes certain usage scenarios more di�cult to
implement. For example, some users might bene�t by replacing several
�small� machines with one single �powerful� machine for cost reasons.
Such replacement cannot be done automatically by EC2 auto-scaling
service.

� Certain parameters such as the zone where VMs of the group will be
deployed (among EC2's available regions, i.e. EU, US East and others)
and the minimum and maximum amount of VM instances allowed for the
group. When setting a minimum size on the group, the user implicitly
con�gures EC2 to automatically create a new VM whenever some of
the running instances are shut down (e.g. because of a failure) and the
minimum limit is exceeded.

Finally, the user can de�ne a set of rules for each ASG. In EC2 jargon,
the possible actions to be run are denoted policies. Each policy de�nes the
amount of capacity (in absolute or relative values) to be deployed or released
in a certain group. The platform will create or shut down VM instances in the
ASG to meet that capacity demand. Triggers are denoted metric alarms and
are based on the metrics served by EC2's monitoring service CloudWatch (see
Section 2.2). Each metric alarm is de�ned by the metric and related statistic to
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be observed (like the average value), the evaluation period, and the threshold
that will trigger the alarm. When the alarm is triggered, the action de�ned
by the corresponding policy is run. Load balancers are automatically noti�ed
to start/stop sending requests to the created/stopped VMs.

Overall, the auto-scaling functionality that Amazon EC2 o�ers is consider-
ably �exible. Being one of the �rst IaaS Cloud providers, Amazon has consid-
erable experience which translates into maturity when it comes to the services
it o�ers.
Microsoft Azure

Microsoft Azure is considered to be a Cloud of type PaaS as the Google App
Engine platform or salesforce.com. PaaS clouds o�er a runtime environment
system (e.g. a servlets container) where users' components can be deployed
and executed in a straightforward manner. Thus, PaaS clouds are said to
o�er an additional abstraction level when compared to IaaS clouds [11], so
users do not have to handle virtual resources such as machines or networks to
start running their systems. In such settings is the cloud system who must
scale resources as needed by the container platform in a transparent manner,
without any user intervention. Users are not required to monitor its service to
scale resources, nor to de�ne scalability rules.

Azure, nonetheless, is an exception. In Azure it is the user who must con�g-
ure the scalability settings, i.e. the platform does not handle resources scaling
on behalf of the user. It is worth noting that the user is give access to in-
stantiating and releasing VMs through an API, so Azure does not isolate users
from resources, in contrast with other PaaS platforms. Azure does not have an
implicit auto-scaling mechanism, but there is an auto-scaling service for Azure
as part of Microsoft's Enterprise Library Integration Pack for Azure [29]. This
features a customizable rule-based VM auto-scaling mechanism. A user can
use two type of rules:

1. constraint rules that are independent of the current state of the appli-
cation, as for instance: minimum and maximum number of VMs for an
hourly interval

2. reactive rules that re�ect changes in the current state of the application
and can be con�gured on user-de�ned metrics.

Auto-scaling in Azure lacks the maturity of the equivalent service that can
be found in Amazon EC2. Given that in the �rst releases of Azure there was no
implicit auto-scaling service some commercial o�ers such as Paraleap [30] have
emerged that try to address this severe limitation. Paraleap automatically
scales resources in Azure to respond to changes on demand and is possibly
a more mature technology than the equivalent service from the Enterprise
Library Integration Pack for Azure.
GoGrid

By default, GoGrid does not o�er any auto-scaling functionality. Similarly
to Azure, it does provide an API to remotely command the addition or re-
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moval of VMs (servers), but it is up to the user to use this API method when
required. Auto-scaling is possible by using third party services either as part
of the GoGrid Exchange [31] program or outside of GoGrid, as discussed in
Section 2.2.

The market-based approach that GoGrid has related to Cloud services that
are not present in the platform has both advantages and disadvantages. On
the plus side of things, the presence of a market of similar services stimulates
market-driven service price. The services market also makes the whole Cloud
platform extensible, anyone can provide a new service for an uncovered need of
the platform's users. On the negative side of things, these services will never
be �rst class citizens of the Cloud platforms and as a consequence they will be
priced separately and introduce platform management complexity.
RackSpace

As in the case of GoGrid, RackSpace has not built in auto-scaling capabil-
ities, although it does provide an API for remote control of the hosted VMs.
Thus, the user is responsible for monitoring the service and taking the scaling
decisions. The creation and removal of resources is done through calls to the
remote API.

Third party tools for auto-scaling can be found as part of Rackspaces'
Cloud Tools Market, a catalog of third party tools developed for Rackspace.
This approach is similar to GoGrid's exchange program and shares the same
advantages and disadvantages.

Implementations of Auto-Scaling in Open-Source Clouds

In what follows, we will examine the presence of auto-scaling services in
the open source counterparts of the commercial providers.
Nimbus

The Nimbus Phantom protocol is an ongoing project that provides a partial
implementation of the Amazon Auto-scaling service, focusing on preserving a
�xed number of healthy VMs running in one or more Nimbus deployments.
However, the Phantom protocol does not provide any functionality similar to
Amazon's triggers and metric alarms, therefore limiting the �exibility of the
service.

Given that Nimbus implements a subset of the Amazon EC2 interface,
auto-scaling can be done by using third party services.
Eucalyptus

In Eucalyptus there is no out-of-the-box auto-scaling functionality. Euca-
lyptus is focused on the management at virtual resource level, and does not
control the services running on it. Hence it cannot be aware of their state and
so it cannot decide when to add or release resources to the service. However,
it does implement the Amazon EC2 API and, as such, can take advantage of
auto-scaling services of third party providers.
OpenNebula
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OpenNebula does not provide auto-scaling. It promotes a clear distinction
of the roles at each layer of the cloud stack. The Cloud is at the bottom of this
stack. It aims to ease the management of the virtual infrastructure demanded,
and it assumes that scaling actions should be controlled and directed at a
higher level. Therefore OpenNebula is not �aware� of the services it hosts, or
of their state and is not in charge of supervising the deployed systems.

The work in the �OpenNebula Service Management Project� [32] tries to
develop a component to be run on top of OpenNebula that handles services
(understood as a cluster of related VMs) instead of raw hardware resources.
Support for auto-scaling could be added in the future.

Third party services for auto-scaling

RightScale

RightScale [33] is a cloud management platform that o�ers control func-
tionality over the VMs deployed in di�erent clouds. It provides auto-scaling
functionality on top of GoGrid, EC2, Rackspace and others based on alerts
and associated actions to be run (one or more) each time an alarm is triggered.
This is similar to the auto-scaling services of EC2. But there are some di�er-
ences. First, alerts can be de�ned based not only on hardware metrics. Metrics
regarding the state of software applications such as the Apache web server and
MySQL engine are also available. Also, several actions can be associated to the
alert, like for example sending emails to administrators. Besides, these actions
can be run periodically for de�ned intervals of time, not just once. Finally,
alerts and actions are usually de�ned at the server level. But scaling actions
are an exception: they are performed only if a certain user-de�ned percentage
of servers �vote� for the action to be run.
Enstratus

Enstratus [34] is a cloud management platform that o�ers control function-
ality over the VMs deployed in di�erent clouds, as RightScale does. It pro-
vides auto-scaling functionality on top of all those clouds, including RackSpace,
again very similar to the one provided by the auto-scaling services of EC2.
Scalr

Scalr [35] is an open source project that handles scaling of cloud applica-
tions on EC2, RackSpace, Eucalyptus and others. It manages web applications
based on Apache and MySQL, and the scaling actions are decided by a built-in
logic. Users cannot con�gure how their applications must scale in response to
changes on load.

Cloud Client Load Balancing

This concept of load balancing is not typical to Cloud platforms and has
been around for a long time in the �eld of distributed systems. In its most
abstract form, the problem of load balancing is de�ned by considering a num-

22



ber of parallel machines and a number of independent tasks, each having its
own load and duration [36]. The goal is to assign the tasks to the machines,
therefore increasing their load, in such a way as to optimize an objective func-
tion. Traditionally, this function is the maximum of the machine loads and
the goal is to minimize it. Depending on the source of the tasks, the load
balancing problem can be classi�ed as: o�ine load balancing where the set of
tasks is known in advance and cannot be modi�ed and online load balancing
in the situation that the task set is not known in advance and tasks arrive in
the system at arbitrary moments of time.

In the case of Cloud computing we can consider load balancing at two
di�erent levels: Cloud provider level and Cloud client level. From the point of
view of the Cloud provider, the load balancing problem is of type online and
is mapped in the following way:

� The parallel machines are represented by the physical machines of the
Cloud's clusters

� The tasks are represented by client requests for virtual resources
� Cloud client requests can arrive at arbitrary moments of time
In the case of Cloud client's virtual platform, the load balancing problem

is mapped in the following way:
� The parallel machines translate into the virtual resources that the Cloud
client has currently running

� The tasks translate into client requests to the Cloud client's platform
� End user requests can arrive at arbitrary moments of time
As a consequence, in Cloud platforms, load balancing is an online problem

where end user requests that enter the Cloud client's application need to be
distributed across the Cloud client's instantiated virtual resources with the goal
of balancing virtual machine load or minimizing the number of used virtual
machines.

Although load balancing is not a unique feature to Cloud platforms, it
should not be regarded as independent from auto-scaling. In fact, the two
need to work together in order to get the most e�cient platform usage and
save expenses.

The end goal of load balancing from the Cloud client's point of view is
to have a more e�cient use of the virtual resources that he has running and
thus reduce cost. Since most Cloud providers charge closest whole hour per
virtual resource, then the only way that cost saving is achieved is by reducing
the number of running virtual resources, while still being able to service client
requests. It follows that load balancing should be used in conjunction with
auto-scaling in order to reduce cost. As a result we have the following usage
scenarios:

1. high platform load when the Cloud client's overall platform load is
high, as de�ned by the Cloud client. The platform needs to scale up by
adding more virtual resources. The load balancing element automatically
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distributes load to the new resources once they are registered as elements
of the platform and therefore reduces platform load.

2. low platform load when the Cloud client's overall platform load is low,
as de�ned by the Cloud client. In this situation, the platform needs to
scale down by terminating virtual resources. This is not as trivial as the
previous scenario, because the load balancing element typically assigns
tasks to all resources and therefore prevents resources from reaching a
state where their load is zero and can be terminated. In this situation,
the load balancing element needs to stop distributing load to the part of
the platform that will be released and, even more, the currently-running
tasks of this part of the platform need to be migrated to ensure that a
part of the platform will have zero load and therefore can be released.

Load balancing also brings some issues as side e�ects along with it. One of
these is session a�nity. Because load balancers distribute load evenly among
available nodes, there is no guarantee that all the requests coming from one
user will be handled by the same node from the pooled resources. This has
the implication that all context related to the client session is lost from one
request to another. This is usually an undesired e�ect. In the great majority
of situations, it is desired that requests from the same client be handled by the
same node throughout the duration of the client's session. In modern clouds
this is referred to as session stickiness.

Mapping of virtual resources to physical resources also has an impact on
Cloud clients. There is usually a compromise between the following two oppo-
site use cases:

� The Cloud provider achieves a more e�cient resource usage by trying
to minimize the number of physical hosts that are running the virtual
resources. The downside for the Cloud client is the fact that his platform
is at a greater risk in case of hardware failure because the user's virtual
resources are deployed on a small number of physical machines.

� The virtual resources are distributed across the physical resources. Thus
the risk of failure is less for Cloud clients in case of hardware failure. On
the downside, there is a greater number of physical machines running
and thus more power usage.

Load Balancing in Commercial Clouds

The problem of load balancing in all Cloud platforms may be the same,
but each Cloud provider has its own approach to it, which is re�ected in the
services they o�er and their di�erences with respect to other providers.
Amazon EC2

Amazon EC2 o�ers load balancing through their Amazon Elastic Load Bal-
ancing service [37]. The Cloud client can create any number of load balancers
and each will distribute all incoming tra�c that it receives for its con�gured
protocol to the EC2 instances that are sitting behind the load balancer. One
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single load balancer can be used to distribute tra�c for multiple applications
and across multiple Availability Zones, but limited to the same Amazon EC2
Region.

If an instance that is behind the load balancer reaches an unhealthy state,
as de�ned by the load balancer's health check, then it will not receive any new
load, until its state is restored so that it passes the health check. This feature
increases the fault tolerance of Cloud client applications by isolating unhealthy
components and giving the platform notice to react.

Amazon's Elastic Load Balancing service has two ways of achieving sticki-
ness:

1. A duration-based sticky session in which case the load balancers them-
selves emit a cookie of con�gurable lifespan, which determines the dura-
tion of the sticky session.

2. An application-controlled sticky session in which case the load balancers
are con�gured to use an existing session cookie that is completely con-
trolled by the Cloud client's application.

As for pricing, the Cloud user is charged for the running time of each load
balancer, rounded up to an integer number of hours, and also for the tra�c
that goes through the load balancer. Pricing for load balancers is calculated
identically to pricing for any other instance type, given that the balancers
are not hardware load balancers, but regular instances con�gured to balancer
incoming network load.

The Elastic Load Balancing service is a useful service for any large scale
platform, especially after Amazon added HTTPS tra�c decryption at load
balancer level. Its integration with other EC2 services is also a plus of the
service. The one disadvantage that comes to mind is the fact that the load
balancing service does not use dedicated hardware load balancers.
Microsoft Azure

In Windows Azure, Microsoft has taken an automatic approach to the
load balancing problem, the Windows Azure Load Balancers[38] work with
VM endpoint connections, which can be Windows or Linux instances. An
endpoint is a tuple of a port number and a protocol, which can be either
TCP (including HTTP and HTTPS tra�c) or UDP. Endpoints need to be
connected under the same Cloud service. Once this is done, the load balancer
will automatically use a round robin algorithm to balance load on all the public
ports of the Cloud service.

The Azure load balancing service is well integrated into the platform and its
ability to load balance even HTTPS tra�c is highly useful. The only negative
point that comes to mind when examining the Azure load balancing service is
its lack of maturity when compared to similar services in other platforms.
GoGrid

With respect to load balancing, GoGrid uses redundant hardware load
balancers [39]. Each account has free usage of the load balancers.
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The load balancers can be con�gured in terms of what load balancing
algorithm to use. The user has a choice between two available approaches:

1. Round robin: with this con�guration, tra�c is balanced evenly among
available pooled nodes.

2. Least connect: this con�guration makes the load balancers send new
tra�c to the pooled node with the least number of currently active con-
current sessions.

Load balancing can disturb client sessions if tra�c for the same session is
not routed to the same server node that initiated the session throughout the
whole duration of the session. To prevent this, load balancers can be con�gured
with a persistency option. The user can choose one of the following three:

1. None: in which situation, tra�c is distributed as according to the bal-
ancing algorithm selected, ignoring possible session problems.

2. SSL Sticky: in which situation, all SSL tra�c is routed to the same
destination host that initiated the session. When a new SSL session is
initiated, the destination node for handling the �rst request is chosen
based on the balancing algorithm selected for the load balancer.

3. Source address: in which situation, all tra�c from a source address is
routed to the same destination node after the initial connection has been
made. The destination node for handling the �rst connection of a new
source is chosen based on the algorithm that the load balancer is con�g-
ured to use.

The load balancers also check the availability of nodes in the balancing
pool. If one node becomes unavailable, the load balancer removes it from the
pool automatically.

The load balancing service o�ered by GoGrid has advanced features related
to load distribution and session a�nity. In combination with the fact that
load balancing is done by dedicated hardware, their service is one of the most
interesting ones from the commercial providers that we have examined.
Rackspace

Rackspace Cloud o�ers two types of Cloud services: Cloud Servers and
Cloud Sites. The Cloud Servers service is of type IaaS in which all auto-scaling,
load balancing and backup related issues are left in the hands of the Cloud
client. A solution proposed by Rackspace is its Cloud Load Balancers [40] ser-
vice which are dedicated load balancers. These services are widely con�gurable
and o�er a wide range of load distribution algorithms, including round robin,
weighted round robin, sticky, random and others.

The possible pluses and minuses of a market-based approach to extend
cloud services has been discussed in the previous section.
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Implementations of Load Balancing in Open-Source Clouds

As the open source IaaS providers evolved later then their commercial
counterparts, it is expected (and recurring) that �nd a lot more features in the
commercial side of things.
Nimbus

From the Cloud provider's point of view, there is a feature still under
development in Nimbus that allows back-�lling of partially used physical nodes.
This will also allow preemptable virtual machines, an identical concept to
Amazon EC2's spot instances.

From the virtual platform level, there is ongoing work for a high-level tool
that monitors virtual machine deployment and allows for compensation of
stressed workloads based on policies and sensor information.

For current use, the Nimbus user can set up his own load balancing VM.
This approach has the disadvantage of being tedious when compared to using
an automated load balancing service that is present in other providers.
Eucalyptus

Eucalyptus does not contain an implicit load balancing service for low-level
virtual machine load balancing or high-level end-user request load balancing.
Nor does Eucalyptus have a partnership program similar to RackSpace's Cloud
Tools or GoGrid's Exchange programs.

As alternatives, one can opt for a complete managed load balancing solution
o�ered by third party providers. Given that Eucalyptus implements the same
management interface as Amazon EC2 does, it is relatively easy to �nd such
commercial services. Alternatively, the Cloud user can set up his own load
balancing service, as in the case of Nimbus.
OpenNebula

OpenNebula is service agnostic. This means that the service being deployed
on OpenNebula needs to take care of load balancing on its own.

From a virtual resource balancing point of view, OpenNebula's virtual
resource manager [41] is highly con�gurable. Each virtual machine has its own
placement policy and the virtual resource manager places a pending virtual
machine into the physical machine that best �ts the policy. This is done
through the following con�guration groups:

� The Requirements group is a set of boolean expressions that provide
�ltering of physical machines based on their characteristics.

� The Rank expression group is a set of arithmetic statements that use
characteristics of the physical machines and evaluate to an integer value
that is used for discriminate between the physical machines that have
not been �ltered out. The physical host with the highest rank is the one
that is chosen for deploying the virtual machine.

To choose the best physical machine is done by �rst �ltering based on the
requirements of the virtual machine and then choosing the physical machine
with the highest rank for deployment.
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It is trivial to obtain a policy that minimizes the number of used physical
resources. It is also possible to obtain a policy that achieves a good distribution
of virtual machines among the physical machines with the goal of minimizing
the impact that a hardware failure would have on a Cloud client's platform.

The virtual machine placement policies can be con�gured per virtual ma-
chine instance; however, when using a Cloud interface, this cannot be speci�ed
by the user and so they are de�ned by the Cloud administrator per virtual ma-
chine type.

The extra control that the OpenNebula administrator has related to VM
placement is a plus to the general platform, but it is transparent to the Cloud
user. To achieve load balancing, the user has to take a manual do-it-yourself
approach, similar the Eucalyptus and Nimbus. This process is clearly inferior
to using an automated and integrated approach that the commercial providers
o�er.

Cloud Client Resource Monitoring

Load balancing is an important feature for an e�cient large-scale Cloud
client application, yet just as important is ensuring that the platform's re-
sources are working according to speci�cations.

Keeping track of the platform health is crucial for both the platform
provider and the platform user. This can be achieved by using platform mon-
itoring systems. Monitoring can be done on two di�erent levels, depending on
the bene�ciary of the monitoring information:

1. Low-level platform monitoring is interesting from the point of view of
the platform provider. Its purpose is to retrieve information that re�ects
the physical infrastructure of the whole Cloud platform. This is relevant
to the Cloud provider and is typically hidden from the Cloud clients, as
their communication to the underlying hardware goes through a layer of
virtualization. In general, it is the responsibility of the Cloud provider
to ensure that the underlying hardware causes no visible problems to the
Cloud clients. For commercial Cloud providers, the low-level monitoring
service is usually kept con�dential.

2. High-level monitoring information is typically interesting for Cloud clients.
This information is focused on the health of the virtual platform that
each individual Cloud client has deployed. It follows that the Cloud
providers have little interest in this information, as it is the up to the
client to manage his own virtual platform as he sees �t. Due to pri-
vacy constraints, platform monitoring information is only available to
the virtual platform owner and is hidden from the other Cloud clients.

Although this separation is intuitive, there is no clear separation between
the two. Each Cloud provider comes with its own interpretation and imple-
mentation of resource monitoring.
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In what follows we will examine how resource monitoring is achieved in
commercial and open-source Cloud platforms.

Monitoring in Commercial Clouds

Amazon EC2

As a commercial Cloud, the low-level monitoring system that Amazon uses
for acquiring information on its physical clusters is kept con�dential.

The approach that Amazon EC2 has taken with respect to high-level re-
source monitoring is to provide a service called CloudWatch [42] that allows
monitoring of other Amazon services like EC2, Elastic Load Balancing and
Amazon's Relational Database Service. The monitoring information provided
to a Cloud client by the CloudWatch service is strictly related to the Cloud
client's virtual platform.

The CloudWatch service collects the values of di�erent con�gurable mea-
surement types from its targets and stores them implicitly for a period of two
weeks. This period of two weeks represents the expiration period for all avail-
able measures and is, in essence, a history of the measure that allows viewing
of the evolution in the measurements. CloudWatch is actually a generic mech-
anism for measurement, aggregation and querying of historic data.

In association with the Elastic Load Balancer service and the Auto-scaling
feature, CloudWatch can be con�gured to automatically replace platform in-
stances that have been considered unhealthy, in an automatic manner.

CloudWatch comes with an alarm feature. An alarm has a number of ac-
tions that are triggered when a measure acquired by the monitoring service
increases over a threshold or decreases under a threshold. The measures are
con�gurable and the thresholds correspond to con�gurable limits for these mea-
sures. The possible actions are either a platform scaling action or a noti�cation
action. In the case of noti�cation, there are a number of possible channels for
doing this. They include Amazon's SNS and SQS services, HTTP, HTTPS
or email. The actions are executed only when a measure transitions from one
state to another and will not be continuously triggered if a measure persists
on being outside the normal speci�ed working interval.

Related to pricing, the CloudWatch service is charged separately with a
single price per hour, regardless of the resource that is being monitored. Re-
cently, Amazon changed the basic monitoring plan to be free of charge. This
includes collection of values every �ve minutes and storage of these values for
a period of two weeks. A detailed monitoring plan is also available that o�ers
value collection at a rate of once per minute and is charged per hour of instance
whose resource values are collected.

The CloudWatch service is well integrated into the Cloud platform (it was
designed to work well with the auto-scaling services for example). It also has
advanced features and a level of maturity that few other providers can rival
with.
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Microsoft Azure

Information about the monitoring system used for low-level platform mon-
itoring of the whole Azure platform has not been given. However, the ap-
proaches that the Azure Cloud client has to application monitoring have been
documented [43].

For monitoring applications deployed on Microsoft Windows Azure, the
application developer is given a software library that facilitates application di-
agnostics and monitoring for Azure applications. This library is integrated into
the Azure SDK. It features performance counters, logging, and log monitoring.

Performance counters are user-de�ned and can be any value related to the
Cloud application that is quanti�able.

The logging facilities of the library allow tapping into:
� Application logs dumped by the application. This can be anything that
the application developer wants to log.

� Diagnostics and running logs
� Windows event logs that are generated on the machine that is running
a worker role

� IIS logs and failed request traces that are generated on the machine that
is running a web role

� Application crash dumps that are automatically generated upon an ap-
plication crash

The storage location for the log �les is con�gurable. Usually one of two
storage environments is used: local storage or Azure storage service. The for-
mer is a volatile storage that is included in the virtual machine's con�guration,
while the latter is a storage service o�ered by Azure and has no connection
to the virtual machine's storage. Usually the latter is preferred for what the
Cloud user considers to be permanent logs while the former is used as a volatile
storage.

There is no automatic monitoring mechanism for web roles and worker
roles running on Microsoft Azure.

The cost implications of using the diagnostics and monitoring libraries are
only indirect. There is no fee associated to using them, but there is a fee for
storing information in a non-volatile persistence storage service and also in
querying that storage service.

In association to the monitoring library, Windows Azure's load balancing
mechanisms also o�er the possibility of probing the load balanced endpoints
every 15 seconds and if an endpoint does not reply it will be taken out of the
round robin rotation. Probes can be customized by means of PowerShell, a
console scripting language.

Azure's approach to monitoring is do-it-yourself, but in contrast to other
providers with the same approach, it does give users a set of libraries that
facilitate this. The result is still more time consuming than using an automated
service.
GoGrid
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There is currently no public information related to how GoGrid achieves
low-level monitoring on their platform.

The GoGrid Exchange program includes third-party packages that target
monitoring features ranging from platform security monitoring to resource us-
age monitoring and database monitoring. These services also include the pos-
sibility of con�gurable alerts based on the values of the monitored measures.

The do-it-yourself approach is present in GoGrid, but its service market
helps in �nding automated solutions.
RackSpace

As in the case of the other commercial Cloud providers, the approach used
by RackSpace for low-level platform monitoring is not public. In what follows
we will detail how Cloud clients can monitor their platform on RackSpace.

The Rackspace Cloud Sites service o�ers monitoring capabilities at the
whole application level for �xed parameters that include used compute cycle
count, used bandwidth and storage. This �ts well into the usage scenario
that Cloud Sites o�er: that of a PaaS service; but lack of �ner-grained sub-
application level monitoring can be a downside for some Cloud clients. Again
at an application level, logging for applications deployed on Cloud Sites is
o�ered, but in a per-request manner.

On the other hand, the Cloud Servers service, which is an IaaS-type of
service, does also have monitoring capabilities through the use of third-party
partner software, especially tailored for Rackspace's Cloud Servers service.
These partner solutions are aggregated by Rackspace under the name of Cloud
Tools [44]. Among these partner services, one can �nd complete monitor-
ing solutions ranging from general virtual machine monitoring to specialized
database monitoring. The services that are specialized on monitoring also
feature con�gurable alert systems.

Recently, RackSpace has acquired CloudKick [45], a multi-cloud virtual
platform management tool. CloudKick has a broad range of monitoring fea-
tures for virtual machines. These include di�erent monitoring metrics from
low-level metrics like CPU / RAM / disk utilization to high-level metrics like
database statistics, HTTP / HTTPS and others. The monitoring metrics can
be extended by custom plugins that are able to monitor anything that the user
de�nes. Measured data can be presented in raw form or aggregated by user-
de�ned means. For data visualization, a real-time performance visualization
tool is also provided.

CloudKick also features alerts that have a con�gurable trigger and repeat
interval. The alert prompt can be sent by SMS, email or HTTP. These features
make the monitoring capabilities of CloudKick one of the most complete that
we have examined.

Implementations of Monitoring in Open-Source Clouds

Nimbus
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Nimbus features a system of Nagios[46] plugins that can give information
on the status and availability of the Nimbus head node and worker nodes,
including changes of the virtual machines running on the worker node.

Monitoring on a Nimbus deployment can also be done via the cloudinit.d [47]
service, or by using third party distributed system monitoring software as the
ones discussed in Section 2.2.
Eucalyptus

Since version 2.0, Eucalyptus has introduced monitoring capabilities[48]
for the running components, instantiated virtual machines and storage ser-
vice. This is done by integrating Eucalyptus monitoring into an existing and
running monitoring service. Currently, monitoring has been integrated with
Ganglia[49] and Nagios. In Eucalyptus this is done by means of scripts that
update the con�guration of the running monitoring service to also monitor
Eucalyptus components and virtual machines.

As alternative solutions to achieving monitoring at a hardware level, one
can employ one of the monitoring systems that have been designed and used
in grid environments. Some such systems have been detailed in Section 2.2.

We can also opt for a completely managed monitoring solution o�ered by
third party providers. Given that Eucalyptus implements the same manage-
ment interface as Amazon EC2 does, it is relatively easy to �nd such commer-
cial services.
OpenNebula

The built-in monitoring capabilities of OpenNebula focus on the Cloud
provider's interest in the physical resources. This functionality is found in the
OpenNebula module called the Information Manager [50].

The Information Manager works by using probes to retrieve information
from the cluster's nodes. The probes are actually custom scripts that are
executed on the physical nodes and output pairs of Attribute=Value on their
standard output. The pairs are collected and centralized. As a requirement,
the physical nodes should be reachable by SSH without a password.

Currently, the probes are focused on retrieving only information that un-
derlines the state of the physical nodes and not its running virtual machines
(CPU load, memory usage, host name, hypervisor information, etc.). It is
advised that this information not be mixed with information of interest to
the Cloud client. For such a task, the OpenNebula community recommends
using a service manager tool that is a separate entity from OpenNebula. As
possible solutions, we can consider commercial services that are specialized in
Cloud platform management, including monitoring. Such solutions have been
described in the previous sections. Alternatively, we can also turn to cluster
monitoring solutions that come from the open-source world, some of which are
the result of long research endeavors and have been described in Section 2.2.
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Other Research Endeavors That Target Monitoring in Large-Scale

Distributed Systems

Over the years as grid computing evolved, so did the need for monitoring
large-scale distributed platforms that are built on top of grids. There have
been many fruitful research e�orts for designing and implementing monitoring
systems for large-scale platforms. In the following, we will highlight some of
these e�orts. The list of research projects that we present is not exhaustive
for the �eld of large-scale platform monitoring.
The Network Weather Service - NWS

NWS [51] has the goal of providing short-term performance forecasts based
on historic performance measurements by means of a distributed system. To
achieve this, NWS has a distributed architecture with four di�erent types of
component processes:

Name Server process is responsible for binding process and data names
with low level information necessary when contacting a process

Sensor process is responsible for monitoring a speci�ed resource. The �rst
implementation contained sensors for CPU and network usage. Sensors
can be added dynamically to the platform.

Persistent state process is responsible for storing and retrieving monitor-
ing data. By using this type of process, the process of measuring is
disconnected from the place where measurements are stored.

Forecaster process is responsible for estimating future values for a measured
resource based on the past measure values. The forecaster applies its
available forecasting models and chooses the value of the forecaster with
the most accurate prediction over the recent set of measurements. This
way, the forecaster insures that the accuracy of its outputs is at least as
good as the accuracy of the best forecasting model that it implements.

To increase fault tolerance, NWS uses an adaptive and replicated control
strategy by an adaptive time-out discovery and a distributed leader election
protocol. Sensors are grouped into hierarchical sets called cliques. A Sen-
sor can only perform intra-clique measurements, thus limiting contention and
increasing scalability of the system.

The implementation uses TCP/IP sockets because they are suited for both
local area and wide area networks and they provide robustness and portability.
Ganglia

Ganglia [49] addresses the problem of wide-area multi-cluster monitoring.
To achieve this it uses a hierarchy of arbitrary number of levels with compo-
nents of two types:

Gmon component responsible for local-area monitoring. To gather infor-
mation from cluster nodes, Gmon uses multicast over UDP, which has
proved to be an e�cient approach in practice, and it also makes Ganglia
immune to cluster node joins and parts.
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Gmeta component is responsible for gathering information from one or more
clusters that run the Gmon component or from a Gmeta component
running in a lower level of the tree hierarchy. Communication between
the two components is done by using XML streams over TCP.

In order to achieve almost linear scalability with the total number of nodes
in the clusters, the root Gmeta component should not be overwhelmed with
monitoring data. To do this, an 1-level monitoring hierarchy should be avoided.
Instead, an N-level monitoring tree hierarchy should be deployed, where it is
dependent on the number of nodes in the cluster. There is a limitation here in
the sense that although nodes can be dynamically added and removed from a
cluster without needing to manually update the Ganglia hierarchy, the same
cannot be said for Gmon and Gmeta components. The Gmeta needs to have
a priori knowledge of the of its underlying child nodes.
Supermon

Supermon [52] aims at providing a high-speed cluster monitoring tool, fo-
cusing on a �ne-grained sampling of measurements. To achieve this, Supermon
uses three types of components:

Kernel module for monitoring provides measurements at a high sampling
rate. Values are represented in the form of s-expressions [53].

Single node data server (mon) is installed for each monitoring kernel mod-
ule. It parses the s-expressions provided by the kernel module. For each
client connected to this server, it presents measurement data �ltered by
the client's interest. Data is sent by means of TCP connections.

Data concentrator (Supermon) gathers data from one or several mon or
Supermon servers. They also implement the same per client �ltering
capability that mon servers have. Hierarchies of Supermon servers are
useful to avoid overloading a single Supermon, especially in situations
where a large number of samples is required or there is a large number
of nodes that are monitored.

RVision

RVision (Remote Vision) [54] is an open tool for cluster monitoring. It has
two basic concepts that make it highly con�gurable:

Monitoring Sessions are actually self-contained monitoring environments.
They have information on what resource to monitor and what acquisition
mechanism to use for the monitoring process associated to the resource.

Monitoring Libraries are actually collections of routines that are used for
resource measurement information acquisition. These routines are dy-
namically linked at runtime and thus information acquisition, which is
occasionally intimately tied to the resource that is being measured, is
disconnected from the general mechanisms of monitoring.

The architecture of RVision is a classical master-slave architecture. The
master node is represented by the RVCore. It is responsible for managing all
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the active sessions and distributing the monitoring information to the clients.
The communication layer is implemented by using TCP and UDP sockets.

The slave part corresponds to the RVSpy component. There is one such
component running on each node of the cluster that is to be monitored. The
monitoring libraries that are needed for information acquisition are dynami-
cally linked to the RVSpy. The slave component communicates its acquired
information to the master by means of UDP, as this is a low-overhead protocol,
and cluster nodes are usually connected by means of a LAN, where package
loss is usually small.

E�orts of uniformization and standardization in Cloud

computing

Cloud computing is one of the �elds of Computer Science where practice
(and commercial applications) evolved faster than theory and open source. As
a possible implication Cloud platforms do not expose the same API, do not
have the same component service and do not have the same behavior.

In what follows, we will explore e�orts in the direction of standards and
uniformity related to Cloud platforms.

The NIST De�nition of Cloud Computing

One of the possible causes of the di�erent behaviors of Cloud platforms is
the fact that there are no standard de�nitions for what a Cloud platform is.

In the USA, the National Institute of Standards and Technology (NIST)
proposed a de�nition for what a Cloud platform is [55]. Since its publication,
this de�nition was used as the de-facto standard de�nition of a Cloud platform
in the USA and has gained increasing traction worldwide.

The NIST de�nition, �cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of con�gurable com-
puting resources (e.g., networks, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal management e�ort
or service provider interaction.�

Their de�nition encompasses �ve essential characteristics of Cloud com-
puting: on-demand self-service, broad network access, resource pooling, rapid
elasticity or expansion, and measured service.

δ-cloud

The Apache δ-cloud [56] is an open source API project that abstracts away
the di�erences between IaaS Cloud platforms. It works by providing a REST
API service that creates a wrapper over existing Cloud APIs.

Currently, the instance management API supports the following Cloud
providers (some not completely): Amazon EC2, Eucalyptus, IBM Smart-
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Cloud, GoGrid, OpenNebula, Rackspace, RHEV-M, RimuHosting, Terremark,
vSphere, OpenStack, FGCP, Aruba cloud.it.

Open Cloud Computing Interface (OCCI)

The Open Grid Forum (OGF) is a community of users, developers and
vendors around grid computing. This community focuses on building stan-
dards around grid and Cloud computing. In 2010, OGF release the Open
Cloud Computing Interface (OCCI) [57]. OCCI delivers �an API speci�cation
for remote management of cloud computing infrastructure, allowing for the
development of interoperable tools for common tasks including deployment,
autonomic scaling and monitoring�. The speci�cation includes VM life cycle
management and elasticity speci�cations.

OCCI is free to contribute and has contributions from notable commercial
providers, but the number of actual implementations of the OCCI interface
amongst Cloud providers is still in its infancy. Most notably we can enumerate
OpenNebula and OpenStack amongst the �st implementers.

2.3 Conclusions

The current chapter aims to familiarize the reader with the background
information that is the basis of the current Thesis. It discusses the evolution
of parallel computing from multicore to cluster and Grid, and �nally to Cloud
platforms and Cloud federations. Then, it presents in-depth information on
the state of the art in resource management for Cloud platforms.

The last parts of this chapter tries to familiarize the reader with the im-
portance of auto-scaling, load balancing and monitoring for a Cloud client
platform. The elasticity of Cloud platforms is re�ected in their auto-scaling
feature. This allows Cloud client platforms to scale up and down depending
on their usage. Achieving automatic client platform scaling is done in di�erent
ways, depending on the Cloud platform itself. One can opt for the Cloud's
built-in auto-scaling feature if present in Amazon EC2, Microsoft Azure, or
use a third party Cloud client management platform that o�ers this function-
ality: RightScale, Enstratus, Scalr, that are usable in most Cloud platforms.
GoGrid and RackSpace have partner programs the GoGrid Exchange and the
RackSpace Cloud Tools that provide custom-made tools that work on top of
the hosting service that they o�er.

Load balancing has the goal of uniformly distributing load to all the worker
nodes of the Cloud client's platform. This is done by means of an entity called
a load balancer. This can be either a dedicated piece of hardware that is able
to distribute HTTP/HTTPS requests between a pool of machines the case of
Microsoft Azure, GoGrid, or with a Virtual Machine instance that is con�gured
by the platform provider or by the client himself to do the same job the case
of Amazon EC2, Rackspace, Nimbus, Eucalyptus and OpenNebula.
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In order to make sure that the platform is in a healthy working state,
platform monitoring is used. This is done by means of a service that peri-
odically collects state information from working virtual machines. The mon-
itoring service can either be built as a part of the Cloud platform, as is the
case of Amazon's CloudWatch, Microsoft Azure's monitoring package, Nim-
bus' Nagios plugins, Eucalyptus 2.0's monitoring service and OpenNebula's
Information Manager. GoGrid and RackSpace o�er this feature by means of
their partner programs. Alternatively, Cloud clients can always choose a third
party monitoring solution. As examples, we can enumerate CloudKick, Makara
or any of the third party Cloud client platform management tools presented
above.

Ultimately, all the three presented Cloud features are designed to work
hand-in-hand and have the high-level goal of ensuring that the Cloud client's
platform reaches a desired QoS level in terms of response time and serviced
requests, while keeping the cost of running the platform as low as possible.

Cloud computing is a �eld where practice evolved a lot faster than theory
and as a result, the commercial providers tend to have more mature services
than their equivalent open source counterparts. This was visible in all three
topics that we have examined in this chapter.
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Part 2: Resource management

in Cloud platforms
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Chapter 3

Auto-scaling Cloud applications

The current chapter builds on the topic of automatic application scaling
that was introduced in Section 2.2. Here we go in depth by presenting the ex-
isting types of auto-scaling approaches. We then introduce our contribution to
the topic of predictive approaches. We have chosen to elaborate a new predic-
tive approach because in the case of on-demand resource scaling, knowledge in
advance is necessary as the virtual resources that Cloud computing users have
a setup time that is not negligible. The approach that we will present to the
problem of workload prediction is based on identifying similar past usage pat-
terns to the current short-term workload history. This approach is useful for
any signal that has a repetitive, non-periodic behavior.

We present in detail the auto-scaling algorithm that uses the above approach
as well as experimental results by using real-world data and an overall evalua-
tion of this approach, its potential and usefulness.

3.1 Introduction

The evolution of IT software services in the direction of Cloud Computing
took a step forward in the e�cient use of hardware resources through the use
of virtualization. In a traditional hosting services the user receives a static
amount of hardware resources that he or she makes use of. In contrast to
this, the Cloud approach is to o�er on-demand virtualized resources to its
users. Because virtual resources can be added or removed at any time during
the lifetime of the application hosted on a Cloud, the possibility of dynamic
scaling arises. Even more, dynamic scaling can be easily automated either
at Cloud provider level or at Cloud client level through the use of the Cloud
provider's APIs.
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To take full advantage of the bene�ts of dynamic scaling, a Cloud client
(user or middleware) needs to be able to make accurate decisions on when to
scale up and down.

To achieve good performance, the Cloud client needs to be able to make
accurate scaling decisions. These scaling decisions are in�uenced by several
aspects as for example virtual resource setup time or migration of existing
processes to free resources, but resource usage has the biggest impact on the
decision.

The idea of self-similarity in web tra�c is not new [58]. Based on this a
new auto-scaling strategy can be elaborated. By identifying usage patterns
that have occurred in the past and have a high similarity to the present usage
pattern, a decision can be made as to the necessity and/or direction of scaling
for the present situation.

This chapter presents a new approach to the resource usage prediction
problem based on identifying past patterns that are similar to the present use
of the system. We present an algorithm for identifying the patterns by using
an approximate matching approach.

In Figure 3.1 we have a generic Cloud system usage model to have a top-
level view on the role of the prediction model. As part of a Cloud client's
resource management module, the prediction module uses the client's usage
history to try and make an intelligent guess on short-term usage demands. This
alone does not constitute the client's scaling decision as there are a number of
other relevant factors that should be taken into consideration like the migration
of currently running tasks from virtual resources that need to be terminated.
In the current work we are focusing only on resource usage prediction.

Figure 3.1: The role of the prediction component in a generic model of a Cloud
system usage scenario.

The rest of this chapter is organized as follows. The next section present
an overview of existing approach given in the literature. Then, Section 5.4
presents our algorithm and its key design principles. Finally, before a conclu-
sion and a description of future work, Section 3.4 presents our experimental
results using actual grid traces.
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3.2 Related Work

There are currently two main approaches for facilitating the auto-scaling
decisions of Cloud client as a result of resource usage. The �rst approach treats
the past server usage as a predictable sequence and constructs a mathematical
model around it. As a result, the next value of the request sequence is obtained
by evaluating the obtained model at the next time point. In other words,
a prediction model is built by considering past resource usage. The second
approach is a reactive one, based on the current server load and auto-scaling
rules that are set up by a human operator (usually a cloud client). This
approach has been often referred to as the �Elasticity rules� approach or the
�SLA� approach.

In [59] a description and comparison of three di�erent auto-scaling algo-
rithms is given: auto-regression of order 1 (AR1), Linear Regression, and the
RightScale algorithm. The auto-regression of order 1 algorithm is from the
�rst category of auto-scaling algorithms. Its approach consists in using a �nite
history window and identifying appropriate parameters so that a recurring se-
quence can be obtained and therefore used to calculate the next values. The
obtained parameters are adapted as the window slides along the time axis.
The linear regression algorithm is also from the �rst category and calculates
a polynomial approximation of the history of requests. The predicted value is
then obtained by evaluating the polynomial at a higher point along the time
axis. The RightScale algorithm is from the second category, being a version of
threshold-based auto-scaling. Its approach is to use a democratic voting sys-
tem that is based on the current server load. Each virtual machine owned by
the cloud client has a vote based on its current load level and two thresholds:
low threshold that corresponds to a �scale down� vote (with a default value
of 30% system usage) and a high threshold that corresponds to a �scale up�
vote (with a default value of 85% system usage). The votes are collected by
a central machine and the majority decides the scaling decision for the whole
platform. The three algorithms have been put side-by-side and compared by a
metric proposed in the same article. Their performance is considerably high.

A more complex form of SLA-based dynamic provisioning can be described
by using elasticity rules that dictate what part of the cloud client needs to scale,
in which direction and by how much. In [60], we �nd such an example with
threshold-based rules. This is done by means of an extension to the OVF (Open
Virtualization Format), an interoperable, platform and vendor neutral, open
format that is used to describe VAs (Virtual Applications). VAs are precon-
�gured software stacks consisting of one or several Virtual Machines with the
purpose of o�ering self-contained services. The OVF document is actually an
XML document containing the description of the OVF package. The elasticity
rules come as an extension of this document. They have three components:
an associated name, a trigger condition based on the de�ned key performance
indicators and an associated action that represents the concretization of the
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rule in the form of instantiating new components of the VA or removing exist-
ing component instances. Like the RightScale algorithm, this approach is also
a reactive one. Scalability rules have the bene�ts of combining the high per-
formance of threshold-based algorithms such as RightScale with tune-ability
and therefore have been widely used in practice in commercial clouds.

In [61] a decentralized online clustering model is described and proposed for
automatic workload provisioning for enterprise grids and clouds and addresses
their distributed nature. In this approach a workload prediction algorithm is
used and integrated into the system to model the application dynamics. More
speci�cally, a quadratic response surface model is used.

The ideas of workload prediction and workload modeling are by no means
new, in fact they have been active areas or research in the �eld of Grid com-
puting. In [62] we �nd a �ne-detailed study on the topic of Grid performance
evaluation by using synthetic workloads obtained from the modeling of grid
workloads. The work describes performance metrics useful for evaluating grid
environments. These are composed of traditional performance metrics that
are time, resource or system related and grid-speci�c related to workload com-
pletion or failure metrics. The article continues by describing the speci�cs
of grid workload modeling. These include user group modeling that under-
line the importance of taking into consideration statistics for all gobs on one
hand and statistics for each user in particular on the other hand, based on
his (or her) past actions. The article also describes submission patterns that
arise in Grid environments and enumerate some of the current approaches of
modeling them that include combining Poisson distributions for daily patterns
or by using a polynomial function of degree eight. The authors argue that
these pattern modeling approaches may not hold as they are indi�erent to
workload inter-dependency. The authors continue by presenting the Grench-
Mark [63] synthetic grid workload generation, execution and analysis frame-
work. They also present extension suggestions to the framework that would
make the framework be a better tool for workload generation and analysis.

In [64] we �nd an integration e�ort of a grid application development toolkit
named Ibis [65], a grid co-scheduler name Koala [66] and the GrenchMark

synthetic grid workload generator with the purpose of providing an end-to-
end workload generation and testing framework. The authors argue about the
bene�ts that experimental testing of grid systems has over an analytical or
simulated test model. The authors also argue in favor of using synthetic grid
workloads over real grid workloads or benchmarking approaches. Next the au-
thors describe their integration proposal of building applications with the Ibis
toolkit, generating and submitting synthetic workloads with GrenchMark,
and then scheduling them with Koala so that the results cal be analyzed with
GrenchMark again. As result of experimentation they concluded that work-
loads generated in GrenchMark can cover a wide range of run characteris-
tics.

A non-linear model for grid workload prediction can be found in [67]. The
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authors propose a prediction model as a series of �nite known functional com-
ponents, usually taken from the sigmoid function class, with unknown coe�-
cients. The coe�cients are determined by using the least square approximation
method on a training set. The training set can be split into a training par-
tition and an evaluation partition. This way an early stop strategy can be
applied to avoid data over-�tting. Their model has been tested on a 3D image
rendering set of tasks based on the Blue Moon Rendering Tool. The error of
their prediction is less than 14% with an average of 7.5%.

In [68] we �nd a real-time resource provisioning system for massive mul-
tiplayer online games based on a predictive usage model. The application is
dynamically provisioned on a Grid environment. The authors propose a pre-
dictive model based on neural networks as this approach has more predictive
power than simpler approaches like exponential smoothing, yet is faster in
terms of runtime than more complex approaches like autoregressive models,
integrated models or moving average models. The neural network is prepared
with two o�ine phases that include gathering of training samples and using
them to train the neural network. As results of experimentation, the neural
network approach has proved to have a greater accuracy when compared to
the other tested prediction methods: average, moving average, last value and
exponential smoothing. The obtained prediction error during the experiments
has a maximum value of 33% and a minimum value of 4.94%.

3.3 String Matching based Scaling Algorithm

Idea Description

A Cloud client is provisioned depending on his platform's usage. The
usage of a Cloud client can sometimes have a repetitive behavior. This can
be caused by the similarities between tasks that the Cloud client is running or
the repetitive nature of human behavior. Given the self-similar nature of web
tra�c it follows that current usage patterns of online services have a probability
of having already occurred in the past in a very similar form. Therefore we
can infer what the system usage will be for a Cloud client by examining its
past usage and extracting similar usages.

The pattern strategy has two inputs: a set of past Cloud client usage traces
and the present usage pattern that consists of the last usage measures of the
Cloud client. Cloud clients working in the same application domain have a
higher similarity in resource usages. Due to this similarity it follows that the
most relevant historic resource usage data that can be used comes from Cloud
clients working in the same application domain. Therefore it would make sense
to isolate historical data based on application domains before usage.

The present usage pattern of the Cloud client is used to identify a number
of patterns in the historical set that are close to the present pattern itself.
Identi�ed patterns should not be dependent on their scale, just on the relation
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between the elements of the identi�ed pattern and the pattern we are looking
for. The resulting closest patterns will be interpolated by using a weighted
interpolation (the found pattern that is closest to the present pattern will
have a greater weight) and will have as result an approximation of the values
that will follow after the present pattern. In essence, the usage of the Cloud
client is predicted by �nding similar usage patterns in the past or in other
usage traces.

The problem of �nding a pattern inside an array of data that is very similar
to a given pattern is close to the problem of string matching. The approximate
string matching problem has been widely studied especially in its relation to
bioinformatics problems, yet it is considerably di�erent from the problem we
are addressing.

One de�nition for the approximate string matching problem is the follow-
ing: given a text string T = t0t1...tn and a pattern P = p0p1...pm �nd a
substring of consecutive characters from T call it Ti,j that has the smallest
edit (or Levenshtein) distance as possible [69].

The edit distance is de�ned as the number of simple string operations:
insert, delete, replace and sometimes exchange, that needs to be performed on
the identi�ed text substring to have equality to the pattern. The operations
can have the same or di�erent weights, depending on problem needs. The
identi�ed match can have any length because of the possible insert and delete
operations.

In the problem that we are addressing, the edit distance cannot be applied
as we are not comparing string character values, but �oating point values. We
are interested in identifying sub-arrays of the same over very close length and
and whose �oating point absolute value di�erence is as close as possible to
zero. An insertion into or deletion from the identi�ed sub-array would have a
great impact on the �oating-point di�erence.

We shall now describe the problem of string matching and its relation to
the problem that the current chapter addresses, as well as our proposal for the
approximate variant that is relevant to our problem.

The String Matching Problem

The string matching problem consists in �nding the position of a string
(called pattern) inside a larger string. There are several approaches solutions
to this well known problem. We have chosen the Knuth-Morris-Pratt (ab-
breviated KMP) as its performance are good as described in [70]. The KMP
algorithm consists of a preprocessing step with a running time of Θ(m) where
m is the length of the matching pattern and a matching step with running time
of Θ(n) where n is the length of the string to match against. The algorithm
is also embarrassingly parallel as it is data independent. Therefore the input
data can easily be divided into independent blocks on which the algorithm can
run in parallel.
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1 A B A B A B C
A B A B C

2 A B A B A B C
A B A B C

3 A B A B A B C
A B A B C

Table 3.1: KMP example

P = A B A B C
π = _ _ 0 1 _

Table 3.2: Calculating the auxiliary array

The e�ciency of the KMP algorithm is due to its approach in saving unnec-
essary comparisons in case of a mismatch between the pattern and the string
to match against. It is able to do this by �rst identifying repetitive pre�xes of
the input pattern in the preprocessing step.

Consider the following example: input pattern P = �ABABC� and match-
ing string T =�ABABABC�. There are three possible positions for P to be
found in T, by using a sliding window approach, until one of the matches
succeeds.

In the example given in Table 3.1, when step 1 fails, the pattern slides
to the next possible position in the matching string and a new comparison is
made in step 2. After step 2 fails, the pattern slides once again and reaches
step 3 which makes a full match.

In Table 3.1, step 2 can be skipped altogether if we consider the relation
that the pattern has with itself, i.e. its repetitive pre�x. Once the �rst 4
characters of P have been matched against the 4 consecutive characters in T
(the following 4 characters starting from position 0) we deduce that there is
no need to restart the whole matching from position 1 in T because, from
analyzing P we know that the match will fail as the 4 characters of T starting
from 0 are the same as the �rst 4 characters of P starting from 0.

To assist the matching process, an auxiliary array is constructed over P
(called π) that contains at position i, the ending position of the largest pre�x
of P that is a su�x of P[0..i]. For the P in our example, we have the results
given in Table 3.2.

The entries in π that have a value of �_� represent entries that are not
pre�xes of P. For example the second �A� in P is both a pre�x and also a
su�x of P[0..2] = �ABA�. The largest pre�x that is also a su�x for P[0..2]
is �A� and has the ending position at P[0]. This means that once we have
matched P[0..2] = �ABA� in T and P[3] does not match in T, we can continue
matching in T from the same index of T, and we can start in P knowing that
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we have already matched the �rst character in P, as it is a pre�x of length 1 of
P[0..2]. Therefore we resume matching with the P index of π[2] +1 = 0 +1 =
1. Now, resuming our matching example, in step 1 we have matched P[0..3] to
T[0..3]. We have P[4] != T[4], but we know that P[0..3] = �ABAB� has �AB�
as the largest pre�x that is also a su�x. So we can resume by matching T[4]
to P[π[3]] = P[1], skipping P[0].

The preprocessing step The goal of the preprocessing step is to compute
the π array. At each index i, π stores the end position of the longest
pre�x of P[0..i], that is also a su�x of P[0..i]. The algorithm for this has
a runtime of Θ(m) where m is the length of P (Algorithm 1).

Algorithm 1 Calculate-pre�x(P)

1: m ← length(P)
2: π[0] ← -1
3: k ← -1
4: for q ← 1 to m - 1 do
5: while k > -1 and P[k+1] 6= P[q] do
6: k ← π[k]
7: end while

8: if P[k+1] = P[q] then
9: k ← k+1
10: end if

11: π[q] ← k
12: end for

13: return π

The matching step The matching algorithm (Algorithm 2) has a runtime of
Θ(n), where n is the length of T, the string to match against. It is very
similar to a naive matching algorithm, but improved to skip redundant
comparisons.

Algorithm Description

The KMP algorithm (Algorithm 2) is a good solution to the string matching
problem. Despite the great similarities, our own pattern matching problem has
some particularities of this own:

� an approximate matching is needed since the odds of �nding an identical
pattern to the one we are looking for are considerably low;

� matches which are too dissimilar either on small intervals or as a whole
need to be discarded;

� when comparing the pattern to the matching data, scale also needs to
be taken into consideration. To be more exact, the scale of the pattern
and the scale of the possible match should not a�ect the comparison,
therefore it needs to be scale-independent.
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Algorithm 2 KMP(T, P)

1: n ← length(T)
2: m ← length(P)
3: π ← Calculate-pre�x(P)
4: q ← -1
5: for i ← 0 to n - 1 do
6: while q > -1 and P[q+1] 6= P[i] do
7: q ← π[q]
8: end while

9: if P[q+1] = T[i] then
10: q ← q+1
11: if q = m-1 then
12: write �Found at position� i-m
13: q ← π[q]
14: end if

15: end if

16: end for

� the resulting matches are interpolated having di�erent weights on the
�nal result, based on their similarity to the identi�ed pattern.

In order to do an approximate matching, the original KMP algorithm needs
to be changed in the content of both functions, therefore they need to be
modi�ed accordingly.

Two types of approximation errors are used for the matching:
� an instant error which dictates the amount by which the current match
is allowed to di�er from the pattern by comparing in smallest possible
units;

� a cumulative error that characterizes the amount by which the current
match is allowed to di�er from the pattern as a whole. This is basically
a sum of the instant errors of the whole matching.

Figure 3.2 illustrates graphically the di�erence between the two types of
acceptable errors (instant and cumulative) when comparing two patterns.

Scale-Independent Comparison

The distance between the pattern we are trying to match and a candidate
pattern should be computed in a scale-independent manner by �rst normal-
izing the two pattern values to a common scale. To decrease �oating point
approximation errors, one can choose a distance computation that does not
use divisions and therefore calculating only on integer values.

As an example, consider the pattern and the candidate from Figure 3.3(a).
The pattern is an array containing values: 20 , 38 , 21 and the candidate
match contains values: 42 , 81 , 39 . In this form, we cannot compare the two
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Figure 3.2: Di�erence between the two types of acceptable errors.

patterns. A �rst idea would be to normalize both arrays to a �oating point
[0..1] interval and then compare. Working with �oating point numbers can be
avoided by working with big integer numbers. To reach a common scale we
simply multiply each array by the scale of the other. For the scale of each
array we can simply consider the �rst element. As a result, the pattern array
is multiplied by the scale of the candidate (this is 42) and the candidate is
multiplied by the scale of the pattern (which is 20). The result is depicted in
Figure 3.3(b). In this new situation, comparing two components of each array
is done simply by subtraction. The instant error is used here to assure that
there is no pair of components of the two arrays whose values di�ers too much.

Once the comparison is done, the identi�ed candidate is stored along with
its total distance from the pattern. This facilitates the signi�cance of the
result, as the candidate that is closest to the pattern has a higher weight in
�nal result. The pseudocode for computing the instant error is illustrated
Algorithm 3.3.1 in the Distance function.

Algorithm 3.3.1 Distance(PatternElement, PatternScale, DataElement,
DataScale)

return PatternElement × DataScale - DataElement × PatternScale
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(a) Initial (b) Normalized to common scale

Figure 3.3: Scale-independent comparison

The cumulative error is obtained by summing up the instant errors from
all the elements of the pattern and candidate. This is illustrated in the Cu-
mulativeDistance function.

Algorithm 3.3.2 CumulativeDistance(P, T, DataO�set)

1: patternScale ← P[0]
2: dataScale ← T[DataO�set]
3: length ← length(P)
4: distance ← 0
5: for index ← 0 to length do
6: distance ← distance + | dataScale × P[index] - patternScale × T[index

+ DataO�set] |
7: end for

8: return distance

KMP Modi�cation

The pre�x calculation function is changed as described in Algorithm 3.3.3.
The scales of the two components compared are represented by the �rst value
of each component. This is arguable, but in practice we have achieved good
results with this approach. In the function, scaleK represents the scale of
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Algorithm 3.3.3 Calculate-pre�x-approx(P, ACCEPT_INST_ERR)

1: m ← length(P)
2: π[0] ← -1
3: k ← -1
4: scaleK = P[0]
5: scaleQ = P[1]
6: for q ← 1 to m - 1 do
7: dist ← Distance(P[k+1], scaleK, P[q], scaleQ)
8: maxDistance ← ACCEPT_INST_ERR × scaleQ × P[k+1]
9: while k > -1 and dist > maxDistance do
10: k ← π[k]
11: dist ← Distance(P[k+1], scaleK, P[q], scaleQ)
12: scaleQ = P[q - (k+1)]
13: end while

14: if dist ≤ ACCEPT_INST_ERR × scaleQ × P[k+1] then
15: k ← k+1
16: end if

17: π[q] ← k
18: end for

19: return π

the pre�x and scaleQ represents the scale of the post�x of the pattern. The
Distance function returns an appreciation of the distance between two di�erent
pattern instances, each having a di�erent scale which is passed as parameter.
The comparisons on lines 9 and 14 assure that the current instant distance
does not di�er by more then the acceptable error (ACCEPT_INST_ERR
in percentage) from the actual pattern that we are matching. The scaleQ term,
representing the scale of the data, from the comparison is needed for bringing
the current term of the pattern to the same scale as the data.

The matching algorithm is changed as described in Algorithm 3.3.4. The
main di�erence when compared to the original KMP algorithm is the use of the
instant and cumulative distances as a means of �ltering out potential matches
that are too di�erent either on small time intervals or as a whole.

On lines 10 and 16 we ensure that the instant distance between the iden-
ti�ed candidate and the pattern is no more than what the acceptable error
(ACCEPT_INST_ERR) permits. In order to ensure a correct comparison,
the pattern term needs to be scaled to the same size as the data, hence the
scaleT term is used in the comparison. Filtering by cumulative distance is
done in lines 20 to 24. The CumulativeDistance function returns a sum of
instant distances for every instant of the two compared arrays. The running
time of this function is Θ(m) where m is the length of the arrays, which in our
case is always equal to the length of P. Line 22 of the algorithm assures that
the cumulative distance of the candidate does not di�er more than is accepted
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Algorithm 3.3.4 KMP-approx(T, P, ACCEPT_INST_ERR, AC-
CEPT_CUMUL_ERR)

1: n ← length(T)
2: m ← length(P)
3: π ← Calculate-pre�x(P)
4: q ← -1
5: scaleP = P[0]
6: scaleT = T[0]
7: for i ← 0 to n - 1 do
8: dist ← Distance(P[q+1], scaleP, T[i], scaleT)
9: maxDist ← ACCEPT_INST_ERR × scaleT × P[q+1]
10: while q > -1 and dist > maxDist do
11: dist ← Distance(P[q+1], scaleP, T[i], scaleT)
12: q ← π[q]
13: scaleT = T[i - (q+1)]
14: maxDist ← ACCEPT_INST_ERR × scaleT × P[q+1]
15: end while

16: if dist ≤ maxDist then
17: q ← q+1
18: end if

19: if q = m-1 then
20: dist ← CumulativeDistance(P, T, i - m + 1)
21: maxDist ← ACCEPT_CUMUL_ERR × patternSum × scaleT
22: if dist ≤ maxDist then
23: StoreSolution(dist / scaleT, i - m + 1)
24: end if

25: q ← π[q]
26: scaleP = P[q+1]
27: scaleT = T[i - (q+1)]
28: end if

29: end for

by the cumulative error (ACCEPT_CUMUL_ERR) from the pattern itself.
The pattern itself is represented by the patternSum term in the comparison.
This is a sum of all the terms in the pattern and should be calculated only
once, at the beginning of the algorithm. The pattern sum needs to be brought
to the same scale as the candidate sequence and therefore the scaleT term is
used. Filtering by an acceptable cumulative error that is smaller or equal to
the acceptable instant error is useless. This conclusion is trivial when taking
into consideration that the cumulative error is a sum of all the instant errors.

The use of the cumulative error changes the running time of the matching
algorithm to Θ(n ×m) in the worst case, where n is the length of the string
to match against and m is the length of the input pattern.
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Interpolating the Values Found

Once approximate matches have been found, the problem of obtaining
a relevant result from those matches is raised. Each match should have a
contribution to the �nal result that is proportional to its relative distance to
the pattern with respect to the other identi�ed patterns. This corresponds
to a weighted sum of the identi�ed matches, where weights are calculated by
considering the distance of the current match to the pattern and to the rest of
the matches. Once the weights are calculated, the interpolation is performed
between the following L elements after each approximate match. The result is
a predicted sequence of length L.

Algorithm parameters

The algorithm accepts a number of parameters used for �ne-tuning in ac-
cordance to each use-case. These parameters are:

• The maximum number of matches (called closest neighbors) to take into
consideration (denoted K).

• The length of the predicted sequence (denoted L).

• The acceptable instant error representing the amount by which the iden-
ti�ed sequence is allowed to di�er on the smallest possible interval lengths
from the pattern we are looking for.

• The acceptable cumulative error which represents the amount by which
the identi�ed sequence is allowed to di�er as a whole from the pattern
we are looking for.

• The input set of data representing the database of past requests.

• The input pattern representing a sequence with the last period of requests
received.

The �rst parameter is not independent of the others. It is actually in�u-
enced considerably by the acceptable errors. The correlation is strong and can
be expressed very easily: the larger the acceptable error, the more matches the
algorithm identi�es, but the more irrelevant they will be.

Calculating the acceptable errors

The value of the acceptable errors can be calculated based on the maximum
number of neighbors that we wish to �nd. The approach for this is to use a
binary search to zone in on the appropriate values for the acceptable errors. By
using the binary search approach, we have obtained values that have proved to
be good in practice. We have used a lower bound of 20% of K for a minimum
of identi�ed neighbors and 90% of K as the upper bound for maximum number
of identi�ed neighbors.

Calculating the appropriate pattern length

The length of the pattern that represents the last traces of server usage
has a great impact on the results of the algorithm. Finding the appropriate
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length is a problem in its own as we have a trade-o� between patterns of big
lengths that yield a small number of similar candidates, that might be to small
in order to be usable, and patterns of small lengths, that �nd more candidates
but they tend to be more irrelevant to our current situation. We have chosen
two approaches to this problem. The �rst approach is to �nd the most lengths
of the most frequent repetitive patterns and use the same length as input to
the prediction algorithm.

We have the following constructive approach to identifying the length of
the most frequent repetitive patterns:

1. �nd all similar patterns of length 2 in the historic data

2. take all similar patterns of length 2 and try to match the next element
too. This yields all similar patterns of length 3.

...

3. take all patterns of length n and try to match the next element too. This
yields all similar patterns of length n+ 1.

The result is that the number of identi�ed similar patterns decreases as
the length of the patterns increases:

count[n+ 1] ≤ count[n] ≤ ... ≤ count[3] ≤ count[2]

The conclusion is that the most frequent patterns are of the ones with length 2.
In practice, using a pattern length of 2 would have the following consequences:

• Good for predicting very short in advance (i.e. 1)

• Loses meaning when trying to predict longer sequences

• The idea of trend is lost as the steps are very small while the trend is a
longer sequence.

We need to have a better way for choosing the pattern length, that would
give more relevant results and avoid pollution as much as possible.

The length of the pattern should be in�uenced by the time it takes to
service a request on the server. We then have the following possibilities:

• Median / average

◦ Representative of most of the requests

• Minimum

◦ A large pattern cannot match against a smaller pattern that is half
di�erent

◦ A small pattern can match against a large pattern that's half dif-
ferent

◦ The minimum is very probably close to 0 (grid testing experiments)

◦ A close minimum can be selected (ex. 5% - 10% from the bottom)
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Animoto LCG Nordugrid Sharcnet
Avg 1296 8970 91893 33516
Min 4 0 0 0

Median 283 255 3861 12165
Max 22452 586702 1452763 7449415

Table 3.3: Job length statistics for the data sources. Values represent time in seconds
based on the running time of the recorded jobs.

By using real-world grid traces from the workload archive of TUDelft Uni-
versity [71]. We have used the running time in seconds of each job and obtained
the results given in Table 3.3. We have tested traces from several research
grids [72, 73, 74] to get a real-world appreciation of possible values for the
pattern length, by taking di�erent metrics.

We can also consider plots of sorted job lengths in seconds.
The conclusions given by Figures 3.5(a), 3.6(a), and 3.7(a) along with

the previous table are that, for all practical purposes, a pattern length that
is a minimum or even median of the time it takes to service a request, is
unusable when dealing with servers that have a similar usage to the research
grids described above. In practice we have used the average of the request
service time and have obtained good results.

3.4 Experimental Results

In all our experiments we have used a time unit of 100 seconds and we
have discretized the traces by this time unit. The plots of the grid traces and
the predicted traces represent the total number of CPUs used by di�erent jobs
running in parallel in the time unit of 100 seconds. We have focused only on
CPU usage as the information of memory usage was not available. Neverthe-
less, should the information of memory usage be available our approach can
also be applied for its prediction.

Data Sources

We have tested our auto-scaling approach with traces from one Cloud client
application and three di�erent research grids, each having its own usage par-
ticularities, with main di�erences in the frequency and amplitudes of changes
in their overall usages.

Animoto 1

Animoto is a Cloud client application that specializes in automatically-
orchestrated videos starting from user-generated content. Their platform usage
represents oscillations as per user activity.

1. http://animoto.com
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Figure 3.4: The Animoto platform - total number of CPUs aggregated over
100 seconds

LCG - Large Hadron Collider Computing Grid 2

Here we �nd traces from several nodes from the computing grid associated
to the Large Hadron Collider. Its behavior is mildly oscillatory and a plot of
the total number of CPUs used in time slices of 100 seconds, discretized across
time intervals of 100 seconds can be found in Figure 3.5(b).
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Figure 3.5: The LCG platform

NorduGrid 3

Here we �nd higher amplitudes for oscillations as the grid is more hetero-
geneous than the previous. A plot of the total number of CPUs used in time
slices of 100 seconds, discretized across time intervals of 100 seconds can be
found in Figure 3.6(b).

2. http://lcg.web.cern.ch/LCG/

3. http://www.nordugrid.org
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Figure 3.6: The NorduGrid platform

SHARCNET 4

SHARCNET has been described as a �cluster of clusters�. Its volatility is
very high and its amplitudes can reach surprising peaks. A plot of the total
number of CPUs used in time slices of 100 seconds, discretized across time
intervals of 100 seconds can be found in Figure 3.7(b).
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Figure 3.7: The SHARCNET platform

Experiment setup

All the experiments use the server traces of the same form of input data
as described above with time units of 100 seconds, and resource usage value
consisting of the total number of CPUs used across the 100 seconds. A pattern
length of 100 time units has been used for all the experiments (this is 100 ×

4. http://www.sharcnet.ca
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100 seconds - approximately 2.7 hours of server time) and predictions are made
for one time unit, this is 100 seconds, which is a little over 1 minute 30 seconds.

The results are displayed under the form of a set of standard metrics that
include minimum, maximum, median, and average percentage and value dif-
ference between the prediction and the actual value.

A second set of metrics has also been used that allows the comparison to
other existing auto-scaling algorithms. This metric was proposed and used
by UCSB to compare the performance of three existing auto-scaling algo-
rithms [59]: auto-regression of order 1, linear regression and the RightScale
democratic voting algorithm.

We have also measured the average running time necessary for calculating
one prediction. This has an impact on the practical usefulness of the prediction
since it needs to be subtracted from the prediction time - which is 100 seconds
- to calculate the e�ective prediction time.

The metric proposed by UCSB is in�uenced by platform availability and
cost by the following formula:

(Alog)
α

C
− γC

Alog
+ β (3.1)

where: A = #serviced_requests/#of_requests represents the availability of
the platform,

Alog = −log(1 + δa −A), δa < 1 (3.2)

represents the availability in logarithmic scale and C = #CPU/(hours×0.10)
represents the cost. The constants α, β, γ and δa have been chosen through
experimentation.

We have used two versions of the metric proposed by the UCSB team:

• An instant score where we considered resource cost as being charged
per fraction of an hour, although this is not the case in current cloud
providers

• A second score where we take the maximum prediction over the course
of an hour and use that as static provisioning for the whole hour

Results

We have done two types of tests: self-prediction in which a resource trace
is used as historic data to predict itself, ignoring exact matches and cross-
prediction tests in which the resource trace of one source is used to predict the
resource trace of another source. The results can be seen in Table 3.4.

Predicting LCG with LCG as historic data
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Metric A w/ A A w/ L L w/ L L w/ N N w/ L S w/ N
Min error (%) 0.0 0.0 0.0 0.0 0.0 0.0
Max error (%) 100 856.87 53.4 100.0 1146.00 528.03
Med error (%) 2.69 4.08 1.0 1.2 1.74 0.9
Avg error (%) 5.42 7.4 1.749 7.32 35.38 375.65

UCSB (max / hour) -1.39 -15.95 10.66 3.43 30.64 -3.23
UCSB (instant) -18.38 -38.75 -2.68 -10.71 27.27 -2.06

Runtime (ms) 186.625 27.63 41.734 514.956 162.949 528.418

Table 3.4: Results of prediction experiments with traces from the four data sources:
Animoto, LCG, Nordugrid and SHARCNET. Experiments consist of predicting one
platform's usage with another platform's traces as historic data, across time slices of
100 seconds. The naming of the columns is done after the following convention A
w/ B where A is the platform whose usage is being predicted and B is the platform
whose trace is being used as historic data.

We have done a self-prediction test by using LCG as historic data with
the purpose of predicting LCG itself. When �ltering out potential pattern
candidates, exact matches have been ignored, since the pattern itself is a piece
of the historic data. The results of this experiment can be found in Table 3.4,
column �L /w L�. Figure 3.8 shows a zoom-in of the actual value of resource
usage in the LCG platform and the predicted resource usage.
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Figure 3.8: Zoom into the plot of CPUs used in time slices of 100 seconds
versus time in units of 100 seconds for the LCG platform's actual resource
usage (shown in red) and predicted resource usage (shown in green).

Predicting NorduGrid with LCG as historic data

We have experimented with using traces from a di�erent grid which is close
to the one we are trying to predict. In the current test case, we have tried to
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predict NorduGrid workloads by using LCG as historic data. The experiment's
results can be seen in Table 3.4, column �N w/ L�. A zoom into the plots of
the actual resource usage and the predicted usage is shown in Figure 3.9.
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Figure 3.9: Zoom into the plot of CPUs used in time slices of 100 seconds versus
time in units of 100 seconds for the NorduGrid platform's actual resource usage
(shown in red) and predicted resource usage (shown in green) by using LCG
as historic data

Predicting LCG with NorduGrid as historic data

We have experimented with the symmetric of the previous experiment in
trying to predict LCG workloads by using NorduGrid as historic data. The
results are shown in Table 3.4, column �L w/ N�. A zoom into the plot of
the actual resource usage of the platform and the predicted resource usage is
shown in Figure 3.10.
Predicting SHARCNET with NorduGrid as historic data

We have also experimented the behavior of the algorithm when using his-
toric data that does not have a high similarity to the workload that is being
predicted. In our experiment, we have used NorduGrid traces as historic data
when trying to predict SHARCNET traces. The results of this experiment are
available in Table 3.4, column �S w/ N�.

An analysis of the results reveals that this is a feasible approach to auto-
scaling. It is clear that the algorithm yields better results when the set of
historic data that is used has a similarity to the signal that is being predicted.
This similarity is in�uenced by several parameters that constitute the domain
of the server whose load is being predicted. It follows from the obtained results
that data from the same domain can easily be used to predict one-another.

The time necessary for computing one prediction instance has proved in
practice to be low relative to the prediction time.
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Figure 3.10: Zoom into the plot of CPUs used in time slices of 100 seconds
versus time in units of 100 seconds for the LCG platform's actual resource
usage (shown in red) and predicted resource usage (shown in green) by using
NorduGrid as historic data.

Predicting LCG with LCG as historic data and varying pattern

lengths and historic data lengths

Although we cannot show that the algorithm yields the best results, we can
show that its results improve as we increase the size of the historic data and
as we �nd the best pattern length to take into consideration when predicting.
The tables below illustrate results when varying the pattern length and the
length of the historic data used for prediction. We have varied the historic
data from 100% - the full set, to 50%, 25% and 12.5% of the set. The pattern
length has also been varied from 1000 time units to 500, 100, 50 and 25.

Data length (%)

1.0 0.5 0.25 0.12

P
a
tt
e
rn

le
n

(x
1
0
0
s)

1000 -18.99 -36.37 -57.83 -97.37
500 -9.43 -19.97 -23.47 -43.06
100 5.44 3.32 4.05 4.05
50 9.41 9.6 8.48 8.21
25 10.67 11.11 12.62 11.79

Table 3.5: Score given by the UCSB metric (maximum per one hour) for
predicting LCG with LCG as historic data and by varying the length of the
pattern used for prediction and the length of the set of historic data.

Table 3.6 contains the results of the experiment when calculating the met-
ric proposed in [59] and using instant values for the the number of virtual
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Data length (%)

1.0 0.5 0.25 0.12

P
a
tt
e
rn

le
n

(x
1
0
0
s)

1000 -38.96 -59.57 -79.25 -103.57
500 -31.36 -38.54 -45.88 -63.18
100 -11.08 -13.81 -16.49 -15.44
50 -4.54 -4.83 -7.22 -8.23
25 -0.14 -0.3 -0.05 -1.36

Table 3.6: Score given by the UCSB metric (instant) for predicting LCG with LCG
as historic data and by varying the length of the pattern used for prediction and the
length of the set of historic data.

resources. Table 3.5 contains results of applying the previous metric by using
the maximum across each hour as reference point for virtual resources and
cost.

We have experimented with various lengths of the historic data set and of
the pattern that is considered for input. The results with the prediction error
in each case can be seen in Table 3.7. Although this does not show that the
algorithm yields the best possible results, it does show that there is a clear
tendency for the accuracy of the prediction to improve as we increase the size
of the historic data and as we �nd the best pattern length to take into con-
sideration when predicting. The results table illustrates results when varying
the pattern length and the length of the historic data used for prediction. We
have varied the historic data from 100% - the full set, to 50%, 25% and 12.5%
of the set. The pattern length has also been varied from 1000 time units to
500, 100, 50, 25, 12 and 2 time units.

Data length (%)

1.0 0.5 0.25 0.12

P
a
tt
e
rn

le
n
g
th

(x
1
0
0
se
c
o
n
d
s) 1000 5.3% 9.5% 19.7% 100%

500 3.7% 6.0% 8.6% 18.7%
100 1.0% 1.2% 1.3% 2.0%
50 0.6% 0.5% 0.9% 1.3%
25 0.3% 0.3% 0.4% 0.5%
12 0.2% 0.2% 0.2% 0.3%
2 98% 100% 100% 82%

Table 3.7: The prediction error obtained for various lengths of historic data and
pattern lengths for the LCG platform.

The reader will note that in our experiments we have considered only CPU
usage as measure and prediction target. In a Cloud environment, a virtual
resource usually has more characteristics associated to it than just CPU power.
In particular, memory usage is one of the most notable characteristics. Our
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approach can also be used to have a prediction of the memory usage if the server
traces also contain information about past memory usage. With predictions
for both memory and CPU usages, the scaling component of the Cloud client
should be able to more accurately decide the characteristics of the virtual
resources that are to be instantiated or released. The topic of making a good
scaling decision both in direction and in virtual machine characteristics is an
interesting topic of research, yet it is beyond the scope of the current work.

3.5 Conclusions

One of the most important bene�ts of Cloud Computing is the ability for
a Cloud client to adapt the number of resources used based on its actual use.
This has great implications on cost saving as resources are not paid for when
they are not used. Dynamic scalability is achieved through virtualization. The
downside of virtualization is that it has a non-zero setup time that has to be
taken into consideration for an e�cient use of the platform. It follows that
an accurate prediction method would greatly aid a Cloud client in making its
auto-scaling decisions.

In this chapter, a new resource usage prediction algorithm is presented.
It uses a set of historic data to identify similar usage patterns to a current
window of records that occurred in the past. The algorithm then predicts
the system usage by interpolating what follows after the identi�ed patterns
from the historical data. Experiments have shown that the algorithm has
good results when presented with relevant input data and, more importantly,
that its results can improve by increasing the historic data size. This makes
the evaluation of the algorithm be context dependent. As a note, the current
approach can be applied to predict any repetitive, non-periodic signal.

As future work directions we will be looking into ways that a relevant set
of historic data can be composed for a particular application domain.
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Chapter 4

Economic model based resource

management

Infrastructure as a Service clouds are a �exible and fast way to obtain
(virtual) resources as demand varies. Grids, on the other hand, are middleware
platforms able to combine resources from di�erent administrative domains for
tasks execution.

This chapter explores the possibility of using an IaaS service by a grid
platform as a provider of resources in the form of virtual machines. This
requires grids to be able to decide when to allocate and release those resources.
Here we introduce and analyze by simulations an economic mechanism a) to set
resource prices and b) resolve when to scale resources depending on the users
demand. This system has a strong emphasis on fairness, so no user hinders
the execution of other users' tasks by getting too many resources.

Our simulator is based on the well-known GridSim software for grid simula-
tion, which we expand to simulate infrastructure clouds. The results show how
the proposed system can successfully adapt the amount of allocated resources to
the demand, while at the same time ensuring that resources are fairly shared
among users.

4.1 Introduction

As discussed in the previous chapters, the novelty in Cloud computing
comes from scalability i.e. the ability to acquire and release resources on-
demand, without a predetermined contract or lease and with a small time
overhead. Virtualization, the key to on-demand resources, also allows lots of
�exibility when it comes to the software stack installed on the virtual machine.
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Grid systems, on the other hand, are a well-known technology that can
provide a seemingly unique infrastructure from several resource providers, pos-
sibly heterogeneous. Typically, grid users send their tasks to the grid platform
which will distribute them among the resources available. Activities such as
resource location, execution scheduling, security handling, etc. are managed
by the grid.

Grids can use clouds as infrastructure providers so they can deploy or
release resources in order to react to changes on demand, or to anticipate
to variations on that demand if load prediction systems (like the approach
presented in Chapter 3) are available. This demand of resources will be induced
by the amount (which depends on the triggering rate) and size of tasks sent
to the grid. Thus, grids will be able to allocate only the infrastructure they
require. Besides, grids can bene�t from clouds �exibility as they will be able to
run tasks with heterogeneous software requirements in the same host. We deem
this is of special interest in some typical grid usage scenarios where several users
compete for resources which are freely (in monetary terms) available, but are
also limited. Examples of such scenarios are several scienti�c environments,
where resources can be provided by one or several entities. This proposal is
mainly oriented to that kind of setups.

However, this brings a new problem: how can grids decide when to scale
up or down resources? For example, a grid system could decide to enqueue
incoming tasks, or even to reject them, instead of allocating new resources.
Hence, it seems reasonable that users should be able to point out if their tasks
have a certain priority so they should be run as soon as possible, instead of
being enqueued or discarded.

Here we propose an economic mechanism to enable grids to decide how to
scale resources. A price is computed for each resource, so the cost of running
each task can be calculated. These prices are adapted depending on the de-
mand. Users have a limited, periodically renewed budget to run their tasks.
Negotiation follows a tender/contract-net model [75] where users ask for o�ers
for each task they want to run and choose the most suitable one following a
utility function also de�ned by them. The tender/contract-net model is known
to be the economic model that optimizes users' utility [76], which is the main
goal in the scenarios we address. Also, as no user can demand too many re-
sources due to budget restrictions, no user can get a unfair share of those
resources. Tasks have a deadline, so those that could not be run (not suitable
o�er was received) before their deadline expires will be marked as failed.

The main contribution of this work is the introduction of a hybrid grid-
cloud architecture where one or more clouds provide infrastructure resources
and the grid:

� Automatically scales resources usage to attend a variable demand to run
tasks with possibly heterogeneous software needs.

� Splits resources fairly among users. Here, fair does not mean equally.
Maybe some users need more resources than others, and those should be
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granted while there are enough resources for all.
In the presented architecture the grid system is not in charge of ordering

users' tasks, which are processed following a FIFO approach. We assume
instead that each user is the one who must prioritize her tasks following her
own criteria, i.e.: the user is the one to decide which is the next task to execute.
A tasks ordering mechanism is also proposed in this work, based not only on
the priority assigned to each task by the user, but also on the risk of not being
able to run that task which is computed using its size and the time to its
deadline. This mechanism shows a better outcome than ordering tasks using
only their priority.

We test and evaluate this proposal by simulations run using the Grid-
Sim [77] simulator, whose features we extended in order to suit the require-
ments of our experiments. Experiments are run over a hybrid architecture that
combines a grid system with IaaS clouds. The grid system used as basis of
this architecture is DIET [7]. In [78] Caron et al. introduce and discuss a �rst
proposal of the architecture presented here.

The rest of the chapter is organized as follows: Section 4.2 details the
architecture proposed; Section 4.3 explains how the system market approach
is implemented, i.e. how currency �ows, how o�ers for each task request are
computed, how prices are adapted, etc.; Section 4.4 shows the results of some
simulations that test key features of the proposed system; Section 4.5 presents
an analysis of related work in the area of clouds and economy-based grid
systems; �nally Section 4.6 discusses the conclusions of the work presented.

4.2 Grid-Cloud Architecture

The solution proposed in this chapter combines a hierarchical grid system,
DIET, with several clouds that will provide resources to the grid. To describe
this solution we need �rst to outline how DIET works.

DIET [7] connects its components through a hierarchical tree for scalability.
The basic DIET component is the Agent. Agents have scheduling and data
management capabilities, but here we will focus on their primary and most
basic functionality: service location. Figure 4.1 depicts DIET components
organization. Each DIET grid has a unique Master Agent (MA) on the top
of its hierarchy. This MA gets service requests from users. Each request goes
down through the hierarchy formed by the agents until it reaches the Server
Daemons (SeD), that interact with the execution environments and provide
the actual execution services. Each Agent knows the services that can be
executed by the SeDs at the bottom of each one of its children Agents, and
it will not forward service requests to those Agents whose corresponding SeDs
cannot run the service. Each SeD is connected to DIET's hierarchy through
Local Agents (LA), LAs are intended to be at the resources provider site. When
some request reaches the SeD, it builds a reply reporting its state. Replies are
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sent back through the hierarchy up to the MA. Replies are ordered by some
objective function that depends on the SeDs' state, so the �best� SeDs are �rst
in the list. Finally the MA will send the list of replies to the user, who will
pick some SeD in the list (usually the �rst one) and command it the task to
run.

Figure 4.1: DIET hierarchical layout.

DIET's layout makes straightforward to connect IaaS clouds as resource
providers to the grid. IaaS systems will be connected to the SeD nodes, who
will decide when to scale (allocate and release) resources to attend users re-
quests. Services will be run in the VMs hosted in the cloud. IaaS providers
can be built on top of hardware providers by using several open solutions such
as OpenNebula [79], Eucalyptus [80] or Nimbus [81]. Such solutions have sim-
ple remote interfaces that SeD nodes can use to request the creation of VMs
and/or networks to connect them. Once a VM is created, the SeD node will
be in charge of connecting to it to run services in order to attend users' tasks.
Figure 4.2 shows a �rst sketch of the elements involved in the described layout,
using OpenNebula as a possible IaaS Provider. In our proposal the user inter-
acts at all times with DIET elements (MA and SeDs). She is totally unaware
about the fact that SeDs may run tasks in VMs supplied by IaaS clouds.

The hybrid approach presented here is detailed in Figure 4.3. A new mod-
ule for tasks allocation is placed between the IaaS system and DIET's SeD
node (Task Allocation Module, TAM), that will be in charge of computing
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Figure 4.2: Sketch of the proposed hybrid grid-cloud layout.

where the tasks sent by users can be executed and will adapt prices as de-
mand changes. A task can be run in an already active VM, or in a new VM
that will be demanded by the TAM to the cloud provider. The cloud provider
will have a catalog describing the hardware con�guration of the VMs that the
TAM can instantiate. Each VM will have one or more processing elements
(virtual CPUs) with their corresponding queue of pending tasks. When com-
puting allocations for a given task, the TAM must take into account the tasks
already in the queues of each VM. The TAM can ask to the cloud provider
whether a VM of a certain type can be instantiated or not which will depend
on the resources of the physical hosts available. This is necessary so the TAM
can determine allocations in new VMs. We assume that a set of disk images
containing the VMs software stack (OS, libraries...) required to run the tasks
is available.

Now, the main goal of the grid system is to ensure fairness in how resources
are shared. To achieve this we propose a market-based approach, that is
described in detail in the next section. The characteristics of this approach
impose certain changes in the way SeD nodes run. Those changes are also
explained in the next section.

4.3 Using Markets to Reach Fairness

Markets can be de�ned as a way to exchange �goods�, in this case the
right to run tasks on some infrastructure. In such market, resources have a
certain price associated, and so users must take into account their (limited)
budget to decide when and where to demand the execution of those tasks.
If resource prices are set taking into account the demand, and budgets are
allocated equally among users, by intrinsic market dynamics we can expect
resources to be fairly shared (a more thorough discussion about the role of
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Figure 4.3: Architecture overview.

markets as a solution for fair resource sharing can be found in [82]).
When designing a market environment several decisions must be taken

regarding di�erent features:
� How currency is managed.
� How negotiation is performed, i.e. how requests are sent and how o�ers
are collected.

� How o�ers for each user request are built.
� How resource prices, that determine each o�er cost, are computed.
� How the user chooses the best o�er.
The rest of this section describes the characteristics of our proposed market

and explains the design decisions taken regarding them.

Currency

Users budget will be bounded by the amount of virtual currency they have
(using real money is possible, but is has several drawbacks, see Section 4.5).
An initial budget is assigned to each new user in the system. Users cannot
run tasks beyond their budget. On the other hand, currency should be as-
signed to users to avoid the potential problems of starvation (users cannot
access resources), depletion (users hoard currency to monopolize resource ac-
cess at certain times) and in�ation (prices grow due to uncontrolled addition
of currency to the system) [83]. Several options are possible:
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� The global value of all resources is periodically computed, taking into
account their present prices. This would represent the total �wealth� of
the system. This amount is then split and sent to the users.

� A given �xed amount is sent periodically to all users. Providers (i.e.
clouds) do not hoard the money they get from users.

� SeD/Clouds do not hoard neither drop the money received from the
users. Instead, all that money is periodically gathered and forwarded
back to the users.

The two �rst options can easily lead to in�ation as currency is injected to
the system even if the demand of resources is low. Also, new users will be in an
adverse situation as previous users can hold big amounts of virtual currency.
Thus, the third option seems the more feasible, and is in fact similar to the
idea proposed in Mirage [84] (see Section 4.5). Our proposal adds a new entity,
the Virtual Bank, will be in charge of gathering all the incomes of the cloud
providers. Periodically, the total of these incomes is split and sent to the users
in equal parts. Payments from users to providers are done directly once the
corresponding task execution is �nished, with no intervention from the Virtual
Bank.

Tasks Execution Negotiation

Every time the user needs to run a task, it sends a REQUEST_FOR_OFFERS

message that through DIET hierarchy will reach all available SeD nodes (in
fact, their corresponding TAM modules, see Figure 4.3) connected to some
cloud provider. Our simulations take into account three resources (more can
be easily added): CPU, disk and memory. Hence, each request contains infor-
mation about the requested amount of all involved resources (CPU measured
in MIs, memory measured in MBs, and disk measured in GBs).

When a REQUEST_FOR_OFFERS message reaches a certain TAM, this module
will build a set of o�ers to execute the task. The process of creating o�ers for a
request is detailed in Section 4.3. An allocation o�er A is a tuple that contains
the cost and time that it will take to run a given task (ATIME, ACOST). A
TAM can create none, one or many allocation o�ers for a task Ti. When all
possible allocations to run the task have been computed by the provider they
are sent back to the user in an OFFERS message. If the provider could not
�nd any suitable o�er then the message will be empty. OFFER messages are
sent again through DIET. Each node in the hierarchy (LAs, Agents and the
MA) will gather all the o�ers they receive from their children nodes for each
REQUEST_FOR_OFFERS they had forwarded before, and will build a new OFFERS

message with the o�ers carried by the OFFERS messages from its children. Of
course, the node will not build and send the new OFFERS message for a task
until it node has received an OFFERS message for that task from all its children.

Finally, only one OFFERS message will reach the user, containing all o�ers
from all SeDs. Then, the user will choose the most suitable allocation o�er
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using some utility function, and will send a RUN_TASK message directly to the
corresponding provider. If the OFFERS message is empty, or it does not contain
any suitable o�er, then the task is stored in a queue by the user to be tried
again later. An o�er is not suitable for a task if its cost ACOST is greater than
the available user's budget, or if the time to execute it ATIME exceeds the task
deadline. Each user periodically checks the tasks stored, discarding as failed
those tasks whose deadline has expired.

A RUN_TASK message carries the time and cost conditions from the origi-
nal o�er. When the TAM receives such message, it computes again possible
allocations for the task to check if it still can honor the o�er. If it is not so
(due to shortage of resources or changes on resource pricing) then the user is
noti�ed. In such case the task is stored by the user as if it had no o�er. If the
task can still be run under the o�er conditions then it is executed. When the
task is �nished the result is sent to the user by a RUN_RESULT message, which
carries the task results or the corresponding errors. If the task could not be
run due to some reason (e.g. unexpectedly the deadline was surpassed during
execution) then the user discards the task as failed.

Building Tasks Allocations O�ers

Before describing how o�ers are built by cloud providers, it is necessary
to outline how physical hosts and VMs are characterized. Then we describe
the process of computing all possible options to run a task. Each option
will then become an allocation o�er (ATIME, ACOST) that will be sent in the
corresponding OFFERS message.

Physical Hosts and Virtual Machines

Each cloud provider has a catalog of VM types available {V1, · · ·Vn}. Each
VM type Vj de�nes a hardware con�guration with the resources it has: amount
of Processing Elements PEs 1 V C

j and their processing speed V s
j (in MIPS);

memory V m
j ; and disk V d

j . Also, there is information about how long it takes
to start a VM of that type V START

j and the price of creating such instance
V COST
j . Each cloud provider has a set of m physical hosts {H1, . . . Hm}. Each

host Hk has a set of HC
k CPUs all with the same processing capacity Hs

k. For
each processor pk,l (1 ≤ l ≤ HC

k ) in host Hk we represent by pak,l the available
processing capacity of that CPU (in MIPS), i.e. the processing capacity not
used for any of the VMs allocated in the host. Conversely puk,l is the used
capacity, so pak,l + puk,l = Hs

k. Also, the amount of memory in host k is given
by Hm

k , while Hm,a
k and Hm,u

k are the available and used memory in that host
respectively. HD

k represents the amount of disks of host k, and Hd
k represents

1. To avoid confusion with physical CPUs, we will denote as PEs the VMs' CPUs.
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their capacity. For each disk zk,l (1 ≤ l ≤ HD
k ), z

a
k,l and z

u
k,l are the available

and used storage capacity of disk zk,l (zak,l + zuk,l = zk,l).
When a new VM of type Vj is allocated in some host Hk then the corre-

sponding values are updated. The PEs must be allocated in V C
j physical CPUs

(of course V C
j ≤ HC

k ) with enough available capacity. For example, processor
pk,1 would be assigned one of VM's PEs only if pak,1 ≥ V s

j . When one PE is
assigned to some physical CPU its corresponding parameters are updated so
for example pak,1 = pak,1−V s

j . Also, the host available memory must be enough
to allocate the VM memory, and if so then it must be updated when the VM
is �nally created Hm,a

k = Hm,a
k − V m

j . Finally, the capacity of the disk where
the VM storage will be set is also updated so zak,l = zak,l − V d

j . H
m,u
k and zuk,l

are updated likewise. If there are more than one host where the VM can be
created, then the host running more VMs is used for the new VM. The goal
is to use as less physical hosts as possible at all times, which in turn should
impact on the power consumption (unused hosts can be in sleep mode, which
will demand less power). On the other hand, as time passes some VMs can
become idle, i.e. they have run all tasks assigned and are waiting for new tasks
to be executed. Periodically it is checked how long each one of these idle VMs
has been in that state. If any VM has been idle for a period longer than a
certain threshold time, that VM is switch o� and its resources are released.
So if the VM was of type Vj and was running on host Hk, then the available
resources are updated as expected: Hm,a

k = Hm,a
k + V m

j , and so on.
All PEs have a FIFO queue of tasks associated. When a RUN_TASK message

reaches a cloud provider the set of possible allocations must be computed again
to check whether that task can be run within the cost and time originally
o�ered (which are carried by the RUN_TASK message). If so, the provider will
choose among the found allocations the one that maximizes the user's utility
function. Depending on the allocation, the task can 1) be assigned to a free
PE and start immediately; 2) be assigned to a PE that is busy (an then it will
be added to the PE's tasks queue); 3) require to start a new VM, in such case
a new VM instance will be created, once it is ready the task will be assigned
to any of its PEs. The algorithm to compute all possible allocations for a task
is described in the next section.

Tasks Allocations Computation

An allocation for a task is the assignation of the task to a certain PE in
some VM. Each allocation will have a cost and duration (ATIME, ACOST).

When an user asks for o�ers to compute a task, or sends a request to execute
it, potential allocations for that task must be looked for. In the former case,
each allocation found is sent back to the user as an o�er (see Section 4.3).
In the latter case, if some of the possible task allocations meets the time and
budget given by the user, then the task will be processed by the corresponding
PE.
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All the possible allocations for a task are calculated by an algorithm that
comprises two steps: 1) �rst the TAM analyzes the VMs already present and
whether they can run the task; 2) then the possibility of creating new VMs
to run the tasks is checked. The output of each step will be a collection of
allocations. Both sets will be combined resulting in the �nal set of potential
allocations for the task. The remaining of this section details these two steps,
specifying also how ACOST and ATIME are computed for each allocation:

1. First, the TAM analyzes the state of the already present VMs in order to
�nd running VMs where the task could be executed. They are grouped
by the VM type (Vj) they belong to. These VMs can be active (running
some other tasks) or idle (all PEs are free). Idle VMs are checked �rst.
For a task i, let ci, di and mi be the amount of CPU, memory and disk
required by that task respectively. The time to run the task i in an
idle machine of type Vj is ATIME = ci/V

s
j . Regarding cost computation,

let Pm, Pd and Pc be the price of 1MB of memory, 1GB of disk, or the
computation of MI (prices computation is explained in Section 4.3), then
the cost of the task is computed as:

ACOST = Pmmi + Pddi + Pcci (4.1)

After looking for allocations in the idle VMs, active VMs are checked too,
i.e. those VMs whose PEs are running some other tasks. For each active
VM of type Vj , the TAM checks each one of its V C

j PEs to see when it will
be available (it will not be running any task and its queues are empty).
Let q be the amount of tasks waiting in the PE's queue, numbered from 1
to q. Let {c1, . . . cq}, {m1, . . .mq} and {d1, . . . dq} the CPU, memory and
disk those tasks demand. Let also c0 the remaining MIs to be executed
of the task being run when the allocations are computed. Then, the PE
will be busy until tb = (c0 +

∑
0<x≤q cx)/V s

j . If at tb the amount of disk
and memory that will be available in the VM (i.e., not used by the tasks
run by the others PEs in at tb, which is known studying their queues)
will be enough to run the task, then a new allocation where the task is
assigned to that PE can be built. The time to run the task will be:

ATIME =
c0 +

∑
0<x≤q cx + ci

V s
j

(4.2)

The cost of running the task is computed as before (see Eq. 4.1).

2. Second, each VM type Vj is analyzed to check a) if a new VM instance
of that type could run the task, i.e: V m

j ≥ mi; V d
j ≥ di; b) if there

is any physical host Hk with enough spare capacity where the VM can
be instantiated, that is, it has enough available memory V m

j ≤ Hm,a
k , it

has some disk with enough available storage V d
j ≤ zak,l and it has V C

j

processors with enough spare processing capacity V s
j .
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If both conditions are met, then a new allocation has been found. The
allocation time is computed as the addition of the time to start the VM,
plus the time to run the task itself:

ATIME = V START
j +

ci
V s
j

(4.3)

The allocation cost is computed as the addition of the cost of instantiat-
ing the VM, plus the cost of using the resources for the duration of the
task which depends on their price. Let Pm, Pd and Pc be the prices of
memory, disk and CPU (price computation is explained in Section 4.3).
Then:

ACOST = V COST
j + Pmmi + Pddi + Pcci (4.4)

Choosing the Best Allocation to Run a Task

When the SeD receives a task to run (in a RUN_TASK message) and the
TAM has computed all the suitable allocations for that task, then one of those
allocations must be chosen. The TAM applies the user' utility function to
choose which is the best allocation choice.

But in some cases di�erent allocations will have the same time and cost
(and so the same utility value). For example, one allocation can run the task
in an already active VM with some free PEs, and another one can run the
task in an idle VM of the same type. So, when several allocations have the
same time and cost the TAM applies some heuristics that favor energy saving
to choose the de�nitive allocation for the task:

� The grid will prioritize those allocations that will run the task in an
already active VM (i.e. one or more of its PEs are running tasks).

� If no allocation in an active VM is found, then the grid will prioritize
those allocations that assign the task to an already present VM (which
will be idle). If there are several idle machines, the VMs that have been
idle for the shortest period of time are preferred. The goal is to keep idle
machines in that state while possible, so their resources will be eventually
freed when they are shut down (the grid shuts down the VMs that have
been idle for longer than a certain time).

� Only if no allocations in active or idle VMs are found, then allocations
that require instantiating a new VM are considered.

Resource Prices Computation

The price adaptation mechanism applied takes into account the resources
demand to change prices accordingly. This algorithm is run periodically by
the TAM to compute the price of the resources in the cloud.

A cloud provider will price resources di�erently depending on the goals
pursued. To maximize bene�ts, the provider could apply the approach ex-
plained in [85]. In collaborative environments, the cloud provider can also
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try to maximize resource usage and so the amount of tasks run. This is the
approach taken in this work.

The algorithm goes as follows. Let r be the total amount of some resource
in the provider's site, measured in a certain unit (e.g. MBs of memory). Let
rd(t), ra(t) and rw(t) the amount of demanded resources by all tasks in the
grid (running or in queues), available resources, and resources demanded only
by waiting tasks at time t. The amount of free resources ra(t) is given by the
addition of the free resources in all physical hosts plus the available resources
in all the virtual machines they run (i.e. unused by the tasks being processed
at that moment). At all times rd(t) = r − ra(t) + rw(t). Also, often (but
not always) if rw(t) > 0 then ra(t) = 0. Let Pr(t) by the price at time t.
Price is adapted periodically every s seconds as described in Equation 4.5 (let
t′ = t+ s):

Pr(t
′) =


Pr(t)× (1 + rd(t′)−r

r )
rd(t′)
rd(t) if rd(t′) > 0 ∧ rd(t) > 0

Pr(t)× (1 + rd(t′)−r
r )&if rd(t′) > 0 ∧ rd(t) = 0

Pr(t)/2&if rd(t′) = 0

(4.5)

The �rst case in Equation 4.5 aims to increase (decrease) the price depend-
ing on the amount of resources demanded over (below) the total available. The
exponent modulates the adaptation depending on how sharp the change on re-
sources demand has been since the last price recomputation. The second case
is identical to the �rst one, to be applied when rd(t) = 0. Finally, if the amount
of resources used at t is 0, then the price is divided by 2.

Processing of O�ers by Users

To simulate real users behavior is far from trivial. Usually, logs of task
requests in real-world grids are helpful to reproduce a real load. However,
they do not capture users reactions to situations where their requests could
not be run due for example to resource contention, i.e. how they prioritize their
tasks, how they choose between di�erent execution options from di�erent grids
when available (usually grid usage logs refer to a single grid), how many tasks
were outdated while waiting in the users queues, etc. Thus, instead of going
through static load records, we chose to simulate users as dynamic entities
that take planning decisions about their tasks.

Utility Function for O�er Selection

For each REQUEST_FOR_OFFERS issued by the user, the MA will send back
a list of possible allocations (o�ers). The user will �rst �lter those o�ers
that cannot be accepted because of time or cost restrictions. Each task has a
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deadline associated, so o�ers that would last beyond that deadline will not be
considered by the user. Also, if the o�er cost is greater than the user actual
budget the o�er is likewise rejected.

Then, the user must choose the best o�er among the remaining ones. This
depends on the user own priorities. Users will de�ne a utility function u :
R≥0 × R≥0 → R to express the �utility� or worth of each task depending on
the cost and time to execute it. The utility function is applied to the o�ers
received, and the o�er with the greatest utility value will be chosen. A possible
utility function is u(ACOST, ATIME) = (ACOST×ATIME)−1. If the user is only
concerned about the time to execute the task regardless of its cost then the
utility could be de�ned as u(ACOST, ATIME) = (ATIME)−1. The goal is to
enable users to express their preferences, e.g. not to spend too much in a task
(although it takes longer to run it) or to run the task as quickly as possible
(even if it is expensive).

Negotiation Strategies

When some user requests execution o�ers for a task, she can face di�erent
situations:

� No o�er is received, or all fail to meet the time and cost bounds imposed,
that is the task deadline and the user budget. Then, the user can just
label the task as �failed� or store it in a queue for later retrial.

� Some o�ers are suitable. Then, the best is chosen using the utility func-
tion as described in Section 4.3. The task is sent to the corresponding
provider. In such case, still two things can happen.
� The o�er can still be honored by the provider, and so the task is
executed.

� The provider cannot ful�ll the o�er any more (e.g. due to a load burst
after the o�er was computed). Again, the user can then ignore the
task or retry it.

If failed tasks are stored, then users will prioritize them to set which tasks
must be tried again �rst. Each task i will have a value Ii to represent its
importance/priority. A basic strategy is to order tasks by importance so those
with higher Ii values are retrieved from the queue and tried again �rst. We
denote this strategy Priority by Importance. Yet, in real situations users will
take also into account the �risk� of not being able to execute some task before
its deadline expires. For example, if one task has a higher importance than
another one, but there is still plenty of time to run the �rst while the second
task's deadline is close, then the user can prefer to run the second task �rst. We
propose the following mechanism for our simulations to set the tasks priorities:
for each task i we compute the risk of not being able to run it on time as the
coe�cient between the task size (ci) and the remaining time until the task
deadline Ti (how the deadline is computed is explained in Section 4.4), which
at time t is Ti − t. Then, this risk is multiplied by the task importance Ii to
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get the priority of the task. So, the priority of task i at time t is computed as
ci × (Ti − t)−1 × Ii. The user queue that stores the tasks will order them by
this value. We denote this other strategy Priority by Risk.

Users will periodically check if there are pending tasks stored, choose the
one with the highest priority, and start the negotiation to run the task (see
Section 4.3). This is done also every time that the user receives the result of
another task.

Also, when the user has chosen the best o�er for a certain task, she can
store the other suitable o�ers instead of just discarding them. Thus, if the o�er
initially chosen is not valid anymore, then the user can try the other alterna-
tive o�ers before requesting new ones. In that case, providers can also send
alternative o�ers when they are not able to run the task with the conditions of
the original o�er. These new alternative o�ers will be blended with the ones
the user already stores for the task. As long as there are suitable alternative
o�ers, the user will not send any new REQUEST_FOR_OFFERS message.

Figure 4.4 summarizes the main architectural elements presented in this
section and their interactions as part of the market-oriented grid architecture
proposed.

Figure 4.4: Main Architecture Elements and Interactions

4.4 Simulations Results

This section studies the best strategies for the user, and also two features
of the system: adaptability to load changes and fairness.
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Cloud Provider Setup

As explained in Section 4.2, each cloud provider has a catalog of types
of VMs that it can instantiate to attend users requests. For the experiments
presented here, providers are assigned a catalog de�ning three types of VMs
that can be instantiated (these types closely correspond to the ones de�ned in
EC2 catalog 2). This catalog is described in Table 4.1. These types correspond
to the set {V1, · · ·Vn} introduced in Section 4.3. The V COST

j and V START
j

parameters for each type are set to minimal values so they do not interfere
in the results outcome. Thus, the cost is set to 0, although in real settings
administrators could choose to discourage the usage of certain VM types by
assigning them higher prices. Also, the creation time is set to 1, which the
authors know is fairly optimistic but will not introduce biases in the results:
the goal is not to study which is the best/most chosen VM type, but the
performance of the system as a whole.

VM Type PEs (V C
j × V s

j ) Mem (Vm
j ) Disk (V d

j )

Normal 1 PE at 1 GHz 1.5 GBs 160 GBs
Large 4 PEs at 1 GHz 7.5 GBs 850 GBs
Extra-large 8 PEs at 1.5 GHz 15 GBs 1690 GBs

Table 4.1: Catalog of VMs Types Available.

Tasks processing requirements will be expressed in MIs, so we need to con-
vert GHzs to MIPS. Such conversion is never accurate in any architecture, and
it strongly depends on the software being run. But an approximate conversion
can be 1GHz=6000MIPS 3.

Also, it is needed to de�ne the amount of hardware resources of each cloud
provider. Table 4.2 shows the amount of physical hosts and the resources of
each one: memory, CPUs (with their processing speed) and disks (with their
size). The hardware con�guration of a standard cluster host is close to typical
blade hardware settings 4, the con�guration of hosts in the other cluster types
are de�ned taken that one as reference.

Cluster Hosts CPUs/Host (HC
k ×H

s
k) Mem/Host (Hm

k ) Disks/Host (HD
k ×H

d
k )

Small 4 2 CPUs at 2 GHzs 16 GBs 2 x 1 TBs
Standard 5 8 CPUs at 2 GHzs 64 GBs 8 x 2 TBs
Powerful 10 12 CPUs at 3 GHzs 96 GBs 12 x 2 TBs

Table 4.2: Hw Con�gurations for Cloud Providers in Experiments.

2. http://aws.amazon.com/ec2/instance-types/

3. See for example http://en.wikipedia.org/wiki/Instructions_per_second

4. See for example http://www.sgi.com/products/servers/half_depth/2u_intel_2p.
html
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Each provider updates the prices of resources every 50 seconds. All providers
set initial prices as follows: Pc = 100 (per MI), Pm = 1000 (per MB), Pc = 1000
(per GB). Also, as commented in Section 4.3, each provider will check for idle
VMs every 50 seconds. When a VM is found that has been idle for more than
600 seconds, the VM is turn o�.

Nodes Setup

Nodes in the system (DIET nodes, TAMs, the Virtual Bank) have all
the same bandwidth, 1Mb (which is quite conservative). All messages are
1Kb. The Virtual Bank retrieves money from providers and splits it among
users every 1000 seconds. We assume messages processing time is negligible.
This can be safely assumed even for messages that imply the computation of
allocations for a task, as the process has little complexity and this complexity
grows linearly with the amount of present VMs and the cluster size.

Users Behavior

We deem interesting to study which strategy is better suited for the user
bene�t before further research. That way, we can make a reasonable assump-
tion about how users will behave in real situations, which we will apply in our
later experiments.

The setting applied to study users strategies is as follows. We assume
a scenario with two private clouds, each one getting resources from a Small
cluster (see Table 4.2). Also, we assume 20 users, each one with 500 tasks to
run. Time between the issuing of new tasks follows an exponential distribution.
Initially, the average time between tasks is set to λ−1 = 30 s.

For each task i, its size ci also follows an exponential distribution with
average size 106 MI. Also, for each task it is necessary to know the maximum
amount of time the user will accept to wait to get the task result. This time
will be proportional to the task size and a new magnitude that we denote
urgency factor fi. This magnitude simulates the fact that not all results are
equally critical for the user, so more important ones will get a higher fi value.
Then, if task i is created at t then the task deadline will be Ti = t + ci × fi,
that is, the time the user is ready to wait to obtain the result is proportional
to both the size and importance of the task. In our experiments fi is uniformly
chosen from the following values: {0.001, 0.01, 0.1, 10, 100}. The memory mi

and disk di required are also uniformly chosen from di�erent sets of values.
In our experiments these were {10, 20, 30, 40, 50} MBs for memory size and
{10, 20, 30, 50, 60, 100} GBs for disk size.

Finally, each task i importance (Ii), which is required to know its priority
against other tasks (see Section 4.3), must be computed too. As in [86], we
split tasks into two categories: high importance tasks and low importance tasks.
Also as in [86], 20% of tasks will be of high importance. The importance of
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tasks of high importance follows a normal distribution with mean 100 and
standard deviation 50. The importance of tasks of low importance follows a
normal distribution with mean 10 and standard deviation 5. Note that we
do not relate importance with the maximum amount of currency the user will
accept to pay for a task. As long as one o�er's cost is not greater than the
present user budget (minus the cost of the tasks already under execution, to
ensure that the user never runs out of enough currency to pay an executed
task), the o�er can be accepted by the user.

The utility function u applied by users to choose the best o�er is:

u(ACOST, ATIME) = (ACOST ×ATIME)−1 (4.6)

The initial price of processing one MI is 100. The initial price of one MB
and of one GB of disk is the same, 10000. Each user has an initial budget of
109 currency units.

As explained in Sec. 4.3 users can follow two di�erent strategies:
� Retry asking for o�ers for those tasks that do get an acceptable o�er.
Those tasks are stored in a queue ordered by priority. Each user will pick
the �rst task in the queue and send a REQUEST_FOR_OFFERS message for
that task every time the result of another task is received, and period-
ically at a certain rate. Experimentally we have seen that a low rate is
enough to ensure that stored tasks do not have to wait long periods of
time. We set this rate to 500 seconds.

� Keep alternative o�ers sent in the OFFERS message, i.e. those o�ers that
were not chosen initially by the user. If the grid replies in the RUN_RESULT
message that it failed to run the task, the user will check �rst whether
there are still alternative o�ers for that task. If so, one of them will be
chosen (using the user' utility function). Only when the user runs out
of alternative o�ers a new REQUEST_FOR_OFFERS message will be sent.

Four sets of �ve experiments were run, each set corresponding to a di�erent
users' strategy. Results are shown in Fig 4.5 in four set of histograms, one
histogram per experiment. Each histogram depicts the amount of tasks that
were successful, that did not �nd a suitable o�er due to budget limitations,
etc. If we look at the �rst set of histograms, we see that the proportion of
failed tasks is really high (due also in part to the high load). Almost all failed
tasks are due to budget constraints: the user cannot a�ord paying for the task
given the o�ers received (�No O�er Fits Budget�). A small set of tasks fail
because no o�er can run the task before the deadline is met (�No O�er Fits
Deadline�). And another set of tasks fail because when the cloud provider is
asked to run a task under certain cost and time conditions (extracted from the
o�er chosen by the user) those conditions cannot be ful�lled any more (�No
Allocation Possible For O�er �).

The second set of histograms show the results when the user applies the
alternative o�ers. This policy does not bring any signi�cant improvement in
terms of the successful tasks rate.
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Figure 4.5: Impact of Retrials on Request for O�ers and Usage of Alternative
O�ers.

Much more useful is asking for new o�ers (i.e. as long as the task deadline
can be met) as shown in the third and fourth group of histograms. Now
each task is stored until either a provider runs it or the task expires. Using
alternative o�ers slightly improves the rate of successful tasks. I.e., it is better
to use alternative o�ers before performing requests for new ones. Another
interesting metric to study is the sum of the values (importance) assigned
to the executed and failed tasks,

∑
Success

Ii and
∑

Failed
Ii, which should be

maximized and minimized respectively. In both cases, the combination of using
alternative o�ers and asking for new ones get the best results.

Our results show how simple user strategies such as storing tasks with no
o�ers to retry them later have a signi�cant positive e�ect on the �nal system
outcome. Thus, it should be assumed that users will implement such strategies
in real world situations. In the rest of the simulations presented users will use
alternative o�ers if there are any. When no alternatives o�er are available,
then the user will store the task in her queue and resend REQUEST_FOR_OFFERS

messages when the task is chosen again to be executed among the enqueued
ones. This contrasts with typical approaches where failed tasks are simply
discarded.
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Tasks Priority

Also, we have studied the positive impact of the prioritization mechanism
for stored tasks we propose (see Section 4.3), Priority by Risk, compared with
the most straightforward Priority by Importance approach. In these experi-
ments users will retry failed tasks and will use alternative o�ers. The setting
of all parameters is similar to the one used in the previous experiments, but
each user will run 5000 tasks, and load is changed by setting an average time
between tasks of 50.

Figure 4.6 shows the results. Recall that the priority is represented by the
value assigned to the task, and that tasks can be of two kinds, those with high
value and those with low value (see Section 4.4). Figures 4.6(a) and 4.6(b)
show the amount of failed and total tasks for both types, when users apply
priority by importance. Figures 4.6(c) and 4.6(d) show the results when users
order tasks by risk.
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Figure 4.6: Failed and Total Tasks for Di�erent Task Priority Mechanisms.

It can be observed from Figure 4.6 that, for both sets of values, when apply-
ing priority by risk the proportion of successful tasks over the total is greater
(around 77% in total) that when applying priority by importance (when is only
around 66%). Regarding the total value of the successful tasks (

∑
Success

Ii),
priority by risk yields an improvement of a 11% compared with the same value
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when using priority by importance. On the other hand
∑

Failed
Ii is 62% lower

when using priority by risk than when using priority by importance. Due to
its better performance, it can be assumed that users will prefer using the pri-
ority by risk strategy to order their tasks. This will be assumed during the
next experiments. Also, this was the policy applied in the experiments shown
in previous Section 4.4 (we tested that using priority by importance does not
alter the conclusion that retrying tasks and using alternative o�ers is the best
choice).

About Users Behavior: Summing Up

The main goal of this section was to �nd out the strategies that bring the
best outcome for users:

� When no suitable o�er is found for some task, it is worth to store it for
later retrieval instead of just discarding it, even it this strategy means
that tasks will have to �compete� as user' budget is limited.

� It is better to use alternative o�ers before requesting new o�ers to the
grid.

� The Priority by Risk strategy to order enqueued tasks results in less
failed tasks.

Once these best strategies have been identi�ed we can build a representative
characterization of users. This is necessary to simulate market-based scenarios
realistically, where users take decisions regarding tasks ordering, etc., instead
of just discarding failed tasks.

System Adaptability

Once the most bene�cial/likely strategies for users have been settled, it
is time to study the behavior of the market-based system proposed. Two
properties must be analyzed: adaptability and fairness. This section addresses
the ability of a cloud provider to adapt to a changing load, while fairness is
studied in the next section.

Recall that load can be controlled by setting the average time between
tasks for each user, λ−1, to di�erent values. To check system adaptation an
experiment will be run where λ−1 will be changed to check the performance
under di�erent loads. Thus, λ−1 is set initially (t = 0) to 75, to 7.5 at
t = 10000, to 75 again at t = 15000 and �nally to 750 at t = 20000. There
will be 10 users with 2000 tasks each to run, and a single cloud provider on
top of a Powerful cluster (see Table 4.2). The rest of the setup is similar to
the previous experiments.

Results are shown in Figure 4.7. It depicts the amount of allocated and
running PEs, along with the number of tasks waiting in VMs queues (the
number of tasks in execution is of course equal to the number of running
PEs). It can be observed that the system successfully reacts to the increased
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Figure 4.7: Adaptability: Allocated PEs under Varying Load.

demand of resources by allocating new Processing Elements in new VMs at
t = 10000, where tasks will be run. Likewise, when the rate is decreased again
at t = 15000 to the initial value the amount of running PEs falls abruptly,
and so does the amount of PEs allocated later. Finally, when the rate shrinks
at t = 20000 once again the system adapts and uses a minimum amount of
resources. The reason because the changes on the amount of allocated PEs is
abrupt is that users choose o�ers that will cause their tasks to be run in VMs
of Extra-large type, which are faster (see the VM de�nitions in Table 4.1), but
require more CPU resources.

Fairness

Achieving fairness is the main goal of grid market based systems. Fairness
refers to how resource usage is split among users by providers. No user should
be able to require resources without limits as this could lead to resource short-
age for others. But users should be able to run their tasks as long as they do
not impact on other users throughput even if they have a higher resource de-
mand. On the other hand, there should also be a limit so under high demand
from several users, those demanding too many resources will not be able to
get all of them, and so being �penalized� because of the tasks they will not be
able to run.
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To test the fairness of our system three experiments were run, each one
assigning to the (only) cloud one Small cluster, one Standard cluster and one
Powerful cluster respectively. All experiments have 30 users, split into three
sets of 10 users each. The average time between tasks for each set are 500,
200, and 25 seconds respectively. Each user will try to run 2000 tasks.
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Figure 4.8: Number of tasks successfully run or failed

Figure 4.8 shows the amount of tasks successfully run or failed (they expired
before they could be executed) during the initial part of the experiment for
three users, each one with a di�erent task generation rate (users with the
same rate show all very similar behavior), in the three di�erent settings. In a
powerful cluster (Fig. 4.8(a)) all users can run their tasks with no restriction,
as there are enough resources to attend all petitions regardless of the resources
they demand. But in a standard cluster (Fig. 4.8(b)) the cloud cannot serve
all petitions, i.e. there is a certain resources shortage, and so some tasks fail.
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Yet, this does not a�ect all users equally: users with low demand are not
a�ected by this resource shortage and can run their tasks as in the previous
setting. Also, users with medium demand are able to run almost all their tasks
as before, and are only very lightly impacted by the lack of resources. Users
with a high load, however, cannot run all their tasks anymore as they demand
more resources than those the cloud will grant to any user. As a result, many
tasks from users with high load will fail. Note that around t = 50000 users
with high load will have already initiated all their tasks, so from that moment
on they will only request to run the tasks enqueued. Finally, when using a
small cluster (Fig. 4.8(c)), the same e�ect seen in the standard cluster is found
again but in a higher degree. Users with small and medium load are only
lightly a�ected, as their demand for resources can be attended by the cloud.
In contrast, many tasks from users with a high generation rate fail (more in
fact that the amount of run tasks). Note also how the rate of successful tasks
from the users with medium rate is increased little after t = 50000. The reason
is that users with high rate are only trying to run tasks stored in their queues,
thus e�ectively lowering their need for resources.
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Figure 4.9: Fairness: Tasks Run and Failed in Small Cluster.

In Figure 4.9 we show the run and failed tasks for the small cluster until
the end of the experiment. While users with low and medium demand keep
the same tasks execution rate, users with high demand only very slowly are
able to keep running tasks. After users with medium load have left the system
(they have �nished all their tasks) the demand of resources is so low that users
can again run requests at high rate (recall that users check their tasks stored
in their queues every 500 seconds and also every time that one task result is
received, which allows for fast re-sending of tasks when resources are available).

These results lead to interesting conclusions. Users can try to run more
tasks up to a certain rate as long as they do not interfere with other users.
This is positive, as we do not force all users to work at the lowest rate. But
if the resource demand by some user is too high then the system penalizes the
user by not running many of her tasks �which will have to store them until
many eventually expire (fail), the system does not subtract resources from
other users needs.
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4.5 Related Work

Despite being a recent technology, cloud computing has already raised the
interest of the research community. Present research on IaaS systems is focus-
ing on two main topics:

� Enabling the allocation of distributed resources on federated cloud sys-
tems. Open Cirrus [87], the Sky Computing [81] initiative or the EU
Reservoir [88] joint research project are works oriented to the construc-
tion of such environments.

� Automatic scaling to adjust resources allocation to the demand. Au-
tomatic scaling is already implemented in some commercial solutions
such as Amazon, where users con�gure scaling actions based on hard-
ware state metrics such as CPU usage, etc. Other works [27, 89] propose
more �exible scaling mechanisms based on service state in federated en-
vironments.

Regarding clouds and grids, there was some initial confusion about the dif-
ferences and similarities between the two, although this was soon addressed by
the community [11]. Later work [90] has further clari�ed the distinction be-
tween them, and analyzed how grids could evolve to bene�t from the ideas
introduced by the cloud (or the other way around, see for example [91]).
In [92, 93] the authors present an architecture for the dynamic provision of
resources to the virtual organizations (VO) of a grid. Part of the same team
lead the StratusLab 5 project, a strong initiative in this regard. StratusLab
is an EU joint research project that views clouds and grids as complementary
technologies. StratusLab proposes three methods to integrate them:

� Deploy a grid site (based on EGEE 6 software) within a public cloud
(Amazon's).

� Apply clouds for resource provisioning in grids.
� Add IaaS-like interfaces to existing grid services.
The second method lies close to the approach introduced in this work.

But StratusLab goal is to virtualize an entire grid site for dynamic provision
of worker nodes, while this proposal rather connects a grid system (DIET)
to one or more clouds to get a supply of VMs in the same dynamic mode.
StratusLab, on the other hand, does not apply economic models to ensure fair
resource sharing.

Economy-based Grid Systems

Applying an economic approach in a grid system is hardly a new idea.
Buyya et al. [75] already introduced a market based framework for grids,
with an analysis of di�erent market approaches such as auctions, posted price,
tendering/contract-net, etc. In [94] the authors further discuss how economy

5. http://stratuslab.eu

6. http://www.eu-egee.org
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can be applied to e�ciently manage resources on grid environments and the
advantages of such solutions (automatic regulation of supply and demand,
scalability...).

It is not our intention to make a complete survey of all economy-based
grid proposals (see [83, 76] for such overview of market-oriented grid systems).
But in the remaining of this section we will comment how some of those works
relate to two main aspects of the system proposed here, i.e. price computation
and currency distribution.

Price Computation

Regarding proposals for resource price computation, Libra [95] and Li-
bra+$ [86] suggest mechanisms for setting resource prices depending on de-
mand. However they depend on some parameters whose values are arbitrary
(must be tuned depending on the system and tasks). In contrast, our pricing
solution does not requires such parameter values guessing.

G-commerce [96] proposes a formal pricing solution based on markets the-
ory that aims to get the equilibrium prices of all resources. The equilibrium
price is a market concept. In a market scenario, if the price of a commodity
is low the demand will grow, in turn if the price of a commodity is high the
demand will decrease. The equilibrium price in a market is the price reached
when supply is equal to the demand. Unfortunately, such solution cannot be
applied here. To compute the equilibrium price is required to have knowl-
edge of the global demand of all resources in all SeDs, which we assume is not
feasible in many scenarios.

On the other hand auction systems such as Bellagio [97], Mirage [84], and
Tycoon [98] do not need providers to compute the price of resources. Users are
the ones who must compete for the resources they require by bidding, so the
resource is assigned to the highest bids. But then is the users who must decide
policies to set the initial bid, how much increase the bid each time, what is
the maximum bid, etc. So an auction approach is not easier to implement, it
simply assigns more responsibility to users.

Other proposals such as FirstPrice [99], FirstReward [100] or FirstOppor-
tunity [101] do not propose any resource price computation mechanism.

Distribution of Virtual Currency

Currency creation and circulation is an important concept in any market
system. An option suggested in some works is to use real currency instead of
virtual one [97], so users will take real care when demanding resources. Also,
this solution frees the system from having to inject virtual currency and assign
it to users. However, this approach has several inconveniences. For example,
users with more economic means (e.g. better funding) will get more resources,
leading to unfair situations. Also, in scienti�c environments users could be
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reluctant to spare real currency for resources as they often work in other kind
of settings were resources, even if scarce, are freely available. Thus, using
virtual currency, created and distributed by the system seems to be the most
feasible solution.

There are several options to inject and circulate virtual currency:
� Each provider (SeD) periodically reports to some central entity (Virtual
Bank) about the value of all the resources it can deliver, taking into
account their updated price. This would represent the 'wealth' of the
system. This amount is then split and send to the users. However this
solution would cause permanent in�ation.

� The Virtual Bank periodically sends a certain amount to all users. Providers
do not hoard money. But it is then necessary to decide how much as-
sign to users, i.e. how much currency inject to the system. Arbitrary
amounts could cause arti�cial in�ation or de�ation.

� The SeD/Cloud does not hoard neither drops the currency it gathers.
Instead, it sends it to the Virtual Bank which will forward it to the users.
This approach seems the more suitable.

In fact, the third approach is similar to the idea proposed in Mirage [84].
Also, to avoid hoarding by users, Mirage implements a taxing system that
periodically reduces users budget so they do not tend to store currency too
long. The currency obtained thorough this taxing system is then distributed
back to user, as in the case of the clouds income. A similar mechanism could
be used in our proposal.

Other works do not shed light to this problem, at least in the scenario
proposed here. In Bellagio [97] users receive a budget proportional to the
resources they provide, but this cannot be applied here as for the sake of �ex-
ibility DIET users are not assumed to be providers as well (although they
could be). G-commerce [96] follows a similar approach to the one de�ned in
the second point of the list above. They do not set any mechanism to decide
how much to assign to users at each iteration. Tycoon [98] does not make any
assumption, users �... are funded at some regular rate. The system adminis-
trators set their income rate based on exogenously determined priorities�, or
�... bring resources ... must earn funds by enticing other users to pay for their
resources�. FirstPrice [99] does not say anything about the subject. FirstRe-
ward [100] proponents explicitly state that they do not address how currency
is injected or recycled. FirstPro�t, FirstOpportunity [101] and Aggregate Util-
ity [102] do not say anything about the subject (Aggregate Utility [102] in fact
encourages using real currency).

4.6 Conclusions

The current chapter presents a proposal to combine grid and cloud systems
through a market-based approach. Grids can bene�t from clouds by requesting
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and releasing resources from them, thus not being forced to have their own pool
of resources. However, the grid system needs some criteria to know when to
take resource scaling decisions. This criteria must of course take into account
the demand induced by the tasks sent by the users.

By applying the pricing adaptation mechanism here proposed, grids can
now scale resources automatically, while at the same time ensuring fairness in
resource sharing. Future work will consist on implementing this on a real sys-
tem: adapting DIET, programming the Virtual Bank and TAM, and connect-
ing the TAM to some IaaS cloud provider, based for example on OpenNebula.
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Chapter 5

Running work�ow-based

applications in Cloud

environments

Having explored the direction of resource management for IaaS Cloud plat-
forms, we now focus on more concrete applications suitable for Cloud environ-
ments.

Many scienti�c applications are described through work�ow structures. Due
to the increasing level of parallelism o�ered by modern computing infrastruc-
tures, work�ow applications now have to be composed not only of sequential
programs, but also of parallel ones. Cloud platforms bring on-demand resource
provisioning and pay-as-you-go payment charging. Then the execution of a
work�ow corresponds to a certain budget.

The current chapter focuses on running work�ow applications in IaaS envi-
ronments. We have chosen the non-deterministic worlk�ow application model
because it is the most general. We will address the problem of resource alloca-
tion for this type of work�ow, given budget constraints. We will present a way
of transforming the initial problem into sub-problems that have been studied
before. We will also detail two new allocation algorithms that are capable of
determining resource allocations under budget constraints and we present ways
of using them to address the problem at hand.

Towards the end of this chapter, we will present a practical validation of
the current work. We have tested our approach by using a scienti�c work�ow
application used for cosmological simulations.

95



5.1 Introduction

Many scienti�c applications from various disciplines are structured as work-
�ows. Informally, a work�ow can be seen as the composition of a set of basic
operations that have to be performed on a given input set of data to produce
the expected scienti�c result. The interest for work�ows mainly comes from the
need to build upon legacy codes that would be too costly to rewrite. Combin-
ing existing programs is also a way to lead to new results that would not have
been found using each component alone. For years, such program composition
was mainly done by hand by scientists, that had to run each program one after
the other, manage the intermediate data, and deal with potentially tricky tran-
sitions between programs. The emergence of Grid Computing and the devel-
opment of complex middleware components [103, 104, 105, 106, 107, 108, 109]
automated this process.

The evolution of architectures with more parallelism available, the gen-
eralization of GPU, and the main memory becoming the new performance
bottleneck, motivate a shift in the way scienti�c work�ows are programmed
and executed. A way to cope with these issues is to consider work�ows com-
posing not only sequential programs but also parallel ones. This allows for the
simultaneous exploitation of both the task- and data-parallelisms exhibited
by an application. It is thus a promising way toward the full exploitation of
modern architectures. Each step of a work�ow is then said to be moldable as
the number of resources allocated to an operation is determined at scheduling
time. Such work�ows are also called Parallel Task Graphs (PTGs), as depicted
in Figure 5.1(b).
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(c) Functional

Figure 5.1: Work�ow types

In practice, some applications cannot be modeled by classical work�ows or
PTGs. For such applications the models are augmented with special seman-
tics that allow for exclusive diverging control �ows or repetitive �ows. This
leads to a new structure called a non-deterministic or functional work�ow, as
depicted in Figure 5.1(c). For instance, we can consider the problem of gene
identi�cation by promoter analysis [110, 111] as described in [107], or the GE-
NIE (Grid ENabled Integrated Earth) project that aims at simulating the long
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term evolution of the Earth's climate [112].
The scalability and �pay for what you use� billing model inherent in Cloud

platforms make them a good candidate for running work�ow applications.
While the elasticity provided by IaaS Clouds gives way to more dynamic ap-
plication models, it also raises new issues from a scheduling point of view.
An execution now corresponds to a certain budget, that imposes certain con-
straints on the scheduling process. In this chapter we detail a �rst step to
address this scheduling problem in the case of non-deterministic work�ows.
Our main contribution is the design of an original allocation strategy for non-
deterministic work�ows under budget constraints. We target a typical IaaS
Cloud and adapt some existing scheduling strategies to the speci�cs of such
an environment in terms of resource allocation and pricing.

5.2 Related Work

The problem of scheduling work�ows has been widely studied by the afore-
mentioned work�ow management systems. Traditional work�ows consists in a
deterministic DAG structure whose nodes represent compute tasks and edges
represent precedence and �ow constraints between tasks. Some work�ow man-
agers support conditional branches and loops [113], but neither of them target
elastic platforms such as IaaS Clouds nor address their implications.

Several algorithms have been proposed to schedule PTGs, i.e., determinis-
tic work�ows made of moldable tasks, on various non-elastic platforms. Most
of them decompose the scheduling in two phases: (i) determine a resource
allocation for each task; and (ii) map the allocated tasks on the compute re-
sources. Among the existing algorithms, we based the current work on the
CPA [114] and biCPA [115] algorithms. We refer the reader to [115] for details
and references on other scheduling algorithms.

The �exibility provided by elastic resource allocations o�ers great improve-
ment opportunities as shown by the increasing body of work on resource man-
agement for elastic platforms. In [116], the authors give a proof of concept for
a chemistry-inspired scienti�c work�ow management system. The chemical
programming paradigm is a nature-inspired approach for autonomous service
coordination [117]. Theirs results make this approach encouraging, but still
less performing than traditional work�ow management systems. In contrast
to the current work, they do not aim at conditional work�ows or budget con-
straints. An approach to schedule work�ows on elastic platforms under budget
constraints is given in [118], but is limited to work�ows without any conditional
structure.
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5.3 Problem Statement

Platform and Application Models

An IaaS Cloud can be seen as a virtually in�nite set of resources that are
reserved and instantiated by users according to their needs. We consider that
users have access to a catalog that comprises di�erent types of resources, each
corresponding to a unique combination of characteristics. Such a catalog is
inspired by the o�ers of major providers such as Amazon EC2. A resource, or
virtual machine instance, vm, can be described by:

� A number of equivalent virtual CPUs, nCPU . The number of virtual
CPUs does not correspond to the number of physical CPUs in the in-
stance, but allows users to easily compare the relative performance of
di�erent instances;

� A computing speed per virtual CPU, s. This corresponds to the amount
of computing operations a single CPU can process per second.

� A monetary cost per running hour, cost, expressed in a currency-independent
manner. As most providers do, we also consider that each started hour
has to be entirely paid even when not fully used. This cost is then pro-
portional to the number of full hours the instance runs since it becomes
usable.

In our study, we consider that every virtual CPU in the IaaS Cloud have
the same computing speed. Instances of the same type are then homogeneous,
while the complete catalog is a heterogeneous set of resources. Thus, we do
not include this speed in our formal de�nition of the catalog C that is

C = {vmi = (nCPUi, costi)|i ≥ 1}.

We also consider that a virtual CPU can communicate with several other
virtual CPUs simultaneously under the bounded multi-port model. All the
concurrent communication �ows share the bandwidth of the communication
link that connects this CPU to the remaining of the IaaS Cloud.

Our work�ow model is inspired by previous work [112, 119]. We de�ne
a non-deterministic work�ow as a directed graph G = (V, E), where V =
{vi|i = 1, . . . , V } is a set of V vertexes and E = {ei,j |(i, j) ∈ {1, . . . , V } ×
{1, . . . , V }} is a set of E edges representing precedence and �ow constraints
between tasks. Without loss of generality we assume that G has a single entry
task and a single exit task. The vertexes in V can be of di�erent types. A
Task node represents a (potentially parallel) computation. Such nodes can
have any number of predecessors, i.e., tasks that have to complete before the
execution of this task can start, and any number of successors, i.e., tasks
that wait for the completion of this task to proceed. Traditional deterministic
work�ows are made of task nodes only. The relations between a task node and
its predecessors and successors can be represented by control structures, that
we respectively denote by AND-join and AND-split transitions.
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Task nodes are moldable and can be executed on any numbers of virtual
resource instances. We denote by Alloc(v) the set of instances allocated to
task v for its execution. The total number of virtual CPUs in this set is then:
p(v) =

∑
j nCPUj |vmj ∈ Alloc(v). It allows us to estimate T (v,Alloc(v)) the

execution time of task v if it were to be executed on a given allocation. In
practice, this time can be measured via benchmarking for several allocations,
or it can be calculated via a performance model. In this work, we rely on
Amdahl's law. This model claims that the speedup of a parallel application is
limited by its strictly serial part α. The execution time of a task is given by

T (v,Alloc(v)) =

(
α+

(1− α)

p(v)

)
× T (v, 1),

where T (v, 1) is the time needed to execute task v on a single virtual CPU.
The overall execution time of G, or makespan, is de�ned as the time between
the beginning of G's entry task and the completion of G's exit task. The total
number of CPUs needed to achieve this makespan is p =

∑V
i=1 p(vi).

In our model, we consider that each edge ei,j ∈ E has a weight, which
is the amount of data, in bytes, that task vi must send to task vj . We do
not impose any type of restrictions for inter-task communications. The actual
communication time may be higher than the time needed to transfer the data,
as the source and destination tasks might be mapped to a di�erent number of
virtual resources, which might cause an overhead.

To model the non-deterministic behavior of the considered work�ows, we
add the following control nodes to our model. A OR-split node has a single
predecessor and any number of successors, that represent mutually-exclusive
branches of the work�ow. When the work�ow execution reaches an OR-split
node, it continues through only one of the successors. The decision of which
successor to run is taken at runtime. Then in the scheduling phase, all the
sub-work�ows deriving from an OR-split node have to be considered as equally
potential execution paths. Conversely an OR-join node has any number of
predecessors and a single successor. If any of the parent sub-work�ows reaches
this node, the execution continues with the successor.

Finally, our model of non-deterministic work�ows can also include Cy-
cle constructs. This is an edge joining an OR-split node and one OR-join
ancestor. A cycle must contain at least one OR-join node to prevent dead-
locks. Figure 5.2 gives a graphical representation of these control nodes and
constructs.

Figure 5.2(e) is a simple representation of the Cycle construct. p2,3 and
p4,2 are not edges of the work�ow, but paths leading from v2 to v3 and from v4
to v2 respectively. These paths are a weak constraint that ensure the creation
of a cycle in the graph, in combination with the OR-join and OR-split nodes
v2 and v4. However, a Cycle can contain any number of OR-split or OR-join
nodes and even an unbound number of edges leading to other parts of the
work�ow.
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(a) AND-split (b) AND-join (c) OR-split (d) OR-join (e) Cycle

Figure 5.2: Non-deterministic work�ow control nodes and constructs.

Figure 5.3: A more complex work�ow example.

We give a more complex example of functional work�ow in Figure 5.3, in
which the path deriving from the edge e6,2 comprises a OR-split node (v4). This
implies that the Cycle construct does not determine the number of iterations
of the cycle path by itself, as in a loop construct for instance. Decisions taken
at runtime for v4 may make the execution �ow exit the cycle before reaching
v6.

Metrics and Problem Statement

We consider the problem of determining allocations for a single non-deterministic
work�ow on an IaaS Cloud. It amounts to allocate resource instances to the
tasks of this work�ow so as to minimize its makespan while respecting a given
budget constraint. Targeting an IaaS Cloud indeed implies such a constraint,
as using more resources is likely to lead to smaller makespans but also in-
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creases the monetary cost associated to the execution of the work�ow. An
additional issue is to deal with the non-determinism of the considered work-
�ows. At scheduling time, all the possible execution paths have to be con-
sidered. But at runtime, some sub-work�ows will not be executed, due to
the OR-split construct, while others may be executed several times, due to
the Cycle construct. This raises some concerns relative to the respect of the
budget constraint. Our approach is to decompose the work�ow into a set of
deterministic sub-work�ows with non-deterministic transitions between them.
Then, we fall back to the well studied problem of determining allocations for
multiple Parallel Task Graphs (PTGs).

In the following we de�ne the makespan as C = maxiC(vi) where C(vi)
is the �nish time of task vi. We denote by B the budget allocated to the
execution of the original work�ow and by Bi the budget allocated to the ith

sub-work�ow. These budgets are expressed in a currency-independent manner.
Finally, Costi is the cost of a schedule Si built for the ith sub-work�ow on

a dedicated IaaS Cloud. It is de�ned as the sum of the costs of all the resource
instances used during the schedule. Due to the pricing model, we consider all
started hour as fully paid.

Costi =
∑

∀vmj∈Si
dTendj − Tstartje × costj ,

where Tstartj is the time when vmj is launched and Tendi=j the time when
this resource instance is stopped.

5.4 Allocating a Non-Deterministic Work�ow

Our algorithm is decomposed in three steps: (i) Split the non-deterministic
work�ow into a set of deterministic PTGs; (ii) Divide the budget among the
resulting PTGs and (iii) Determine allocations for each PTG. The following
sections details these steps. We also discuss some runtime issues.

Splitting the Work�ow

Transforming a non-deterministic work�ow into a set of PTGs amounts
to extract all the sequences of task nodes without any non-deterministic con-
struct. A similar approach to decompose a work�ow into smaller parts is
taken by DagMan [103]. It allows users to split nested work�ows by hand and
is considered as part of the work�ow de�nition.

Figure 5.4 shows how we extract sub-work�ows in presence of OR-split
and OR-join nodes. For the sake of simplicity we have omitted edge labels
in this �gure. These control nodes de�ne boundaries between sub-work�ows
and do not belong to any of them. An OR-split node leads to n + 1 sub-
work�ows, one ending with the predecessor of the node and n starting with
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each of the successors of the OR-split node. If two OR-split nodes share a
common successor, we consider the two resulting sub-work�ows as di�erent,
even though they have the same structure. Indeed these sub-work�ows come
from di�erent non-deterministic transitions and therefore di�erent contexts.

(a) OR-split (b) OR-join

Figure 5.4: Extracting sub-work�ows from OR-split and OR-join nodes.

Splitting a work�ow that contains an OR-join node can lead to as many
sub-work�ows as there were predecessor sub-work�ows of the OR-join node.
The successors of the OR-join node are replicated for all of its predecessors,
including the ones that are part of the same sub-work�ow. It is worth noting
that OR-join nodes do not actually lead to the creation of new sub-work�ows
since they do not have a non-deterministic nature and therefore they do not
lead to non-deterministic transitions. What they actually do is preserve the
number of sub-work�ows that they have from their inwards transitions.

Extracting sub-work�ows from a Cycle node is more complex as shown
in Figure 5.5. Here we extract three sub-work�ows. Two of them include an
instance of task v3. One comes as a result of the execution of task v1, while the
other derives from following the cycle branch. Task v5 is then the predecessor
of this second instance.

Figure 5.5: Extracting sub-work�ows with regard to a Cycle construct.
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Figure 5.6 details how we decompose the complex work�ow given in Fig-
ure 5.3. It is worth noting that a Cycle constructs does not necessarily corre-
spond to a unique sub-work�ow. In this example, the Cycle e6,2 is split into
two di�erent sub-work�ows v3 and v5 that both belong to the cycle path. This
will have an impact on budget distribution as detailed in the next section.

Figure 5.6: Extracting sub-work�ows from a more complex work�ow.

Distributing Budget to Sub-Work�ows

As we target an IaaS Cloud, we have to decide how much money we can ded-
icate to each sub-work�ow obtained after the split of the original application to
determine its resource allocation. Because of the non-deterministic transitions
between sub-work�ows, we �rst have to estimate the odds to execute each of
them. Moreover, as cycle paths may comprise several sub-work�ows, we have
to estimate how many times each sub-work�ow could be executed at runtime.

Each sub-work�ow, apart from the entry sub-work�ow, has one and only
one non-deterministic transition that triggers its execution. This is the tran-
sition from its parent OR-split node to its starting task. We can therefore
conclude that the number of executions of a sub-work�ow is described com-
pletely by the number of transitions of the edge connecting its parent OR-split
to its start node. We model this behavior by considering that the number of
transitions of each outwards edge of an OR-split, and therefore the number of
executions of a sub-work�ow Gi is described by a random variable according to
a distinct normal distribution Di. Moreover we use a parameter that express
the Con�dence the algorithm has that a given sub-work�ow will not be exe-
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cuted more than a certain number of time. This parameter takes its value in
the [0, 1) interval. This way, we aim at guaranteeing that the whole work�ow
will be able to �nish while respecting the budget constraint. More formally,
the expected maximum number of executions of a Gi is

nExeci ← CDF−1(Di)(Confidence)

where CDF−1(Di) is the reverse Cumulative Distribution Function (CDF) for
distribution Di. Figures 5.7(a) and 5.7(b) illustrate our approach.

Figure 5.7(a) displays the normal distribution N (10, 3) of a random vari-
able. The distribution median is µ = 10 and its variance is σ2 = 3. In
our context, it correspond to the probability that the sub-work�ow execution
modeled by this random variable is repeated a certain number of times.
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Figure 5.7: Estimation of the maximum number of executions of a sub-
work�ow, described by a normal distribution, with a certain con�dence.

Figure 5.7(b) shows the CDF of this distribution. It allows to estimate, for
a given con�dence, how many time we will repeat the considered sub-work�ow
at most. For instance, with a con�dence of 0.9 (or 90%), this sub-work�ow is
likely to not be executed more than 13.8 times. With a higher con�dence of
0.99 (or 99%), this estimation raises up to 16.9 executions at most.

This estimation of the number of times a sub-work�ow could be executed
is not the only metric to consider to distribute the budget as best as possible.
Indeed, it may be more important to give an important share of the budget to a
sub-work�ow with many time-consuming tasks that may be executed only once
than to a sub-work�ow with a few short tasks that is repeated several times. To
�nd a good balance, we include the contribution of a sub-work�ow with regard
to the whole application in the determination of the budget distribution. We
determine the contribution ωi of sub-work�ow Gi as the sum of the average
execution times of its tasks multiplied by the number of times this sub-work�ow
could be executed. As the target platform is virtually in�nite, we compute the
average execution time of a task over the set of resource instances in the catalog
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C. This allows us to take the speedup model into account, while reasoning on
a �nite set of possible resource allocations. We denote by ω∗ the sum of the
contribution made by all the sub-work�ows.

Algorithm 3 Share_Budget(B,G, Confidence)
1: ω∗ ← 0
2: for all Gi = (V i, E i) ⊆ G do
3: nExeci ← CDF−1(Di, Confidence)

4: ωi ←
∑
vj∈Vi

 1

|C|
∑

vmk∈C
T (vj , vmk)

× nExeci
5: ω∗ ← ω∗ + ωi

6: end for

7: for all Gi ⊆ G do

8: Bi ← B × ωi

ω∗ ×
1

nExeci

9: end for

Algorithm 3 describes how we distribute the global budget B among the
sub-work�ows. Once we have estimated the number of execution of each work-
�ow and its relative contribution, the budget Bi assigned to one iteration of
the sub-work�ow Gi is simply obtained by multiplying the global budget by
the ratio ωi/ω∗ and dividing by the estimated number of executions of the
work�ow nExeci (line 8).

Determining PTG allocations

Once the non-deterministic work�ow has been split into a set of determin-
istic sub-work�ows, and that a budget has been assigned to each sub-work�ow,
our algorithm has to �nd an allocation for each of them. In other words, we
have to determine which combination of virtual instances from the resource cat-
alog leads to the best compromise between the reduction of the makespan and
the monetary cost for each sub-work�ow, i.e., a PTG. We base our work upon
the allocation procedures of seminal two-step algorithms, named CPA [114]
and biCPA [115], that were designed to schedule PTGs on homogeneous com-
modity clusters. We adapt these procedures to the speci�cs of IaaS Cloud
platforms.

As the biCPA algorithm is an improvement of the original CPA algorithm,
we start by brie�y explaining the common principle of their respective allo-
cation procedures. It starts by allocating one CPU to each task in the PTG.
Then it iterates to allocate one extra CPU to the task that belongs to the crit-
ical path of the application and bene�ts the most of it. The procedure stops
when the average work TA becomes greater than the length of the critical path
TCP . The de�nition of the average work used by the CPA algorithm was
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TA =
1

P

|Vi|∑
i=1

W (vi),

where W (vi) is the work associated to task vi, i.e., the product of its
execution time by the number of CPUs in its allocation, and P the total
number of CPUs in the target compute cluster. In biCPA, the value of P is
iterated over from 1 to the size of the target compute cluster and its semantics
is changed to represent the total number of CPUs that any task can have
allocated to it.

The de�nition of the length of the critical path was

TCP = maxiBL(vi)

where BL(vi) represents the bottom level of task vi i.e., its distance until
the end of the application. For the current work we keep this de�nition for
TCP .

On an IaaS Cloud, the size of the target platform is virtually in�nite.
Then it is impossible to use such a de�nition that includes a total number of
CPUs. Instead, we propose to reason in terms of budget and average cost of
an allocation. Moreover, the pricing model implies that each started hour is
paid, even though the application has �nished its execution. Then, some spare
time may remain on a virtual resource instance at the end of an execution.

When building an allocation, we don't know yet in which order the tasks
will be executed. Then we cannot make any strong assumption about reusing
spare time left behind after executing a task. As we aim at building an alloca-
tion for Gi that costs less than Bi, a conservative option would be to consider
that this spare time is never used. This corresponds to always overestimating
the cost of the execution of a task by rounding its execution time up to the
end of the last started hour. Then we de�ne this cost as

cost(vi) = dT (vi, Alloc(vi))e ×
∑

vmj∈Alloc(vi)

costj .

This, in turn, leads us to a �rst adapted version of the de�nition of TA

T overA =
1

B′
×
|Vi|∑
j=1

(T (vj , Alloc(vj))× cost(vj)) ,

in which we sum the time-cost area of each task, that is its execution time
multiplied by its overestimated monetary cost. We then average the obtained
value over the allowed budget B′. B′ ≤ Bi is the maximum budget that any
task can use in order to run. It is di�erent from the maximum budget for the
whole allocation, Bi, which we will use as the stop condition for the allocation
algorithm.
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Overestimating the costs this way allows us to guarantee that the produced
allocation will not exceed the allowed budget. However, it may have a bad
impact on makespan depending on how much spare time is lost. Consider a
simple example to illustrate this. We want to build an allocation for a chain
of 10 tasks with a budget of 10 units. One hour on a virtual instance costs
1 unit. Unfortunately each task runs for only ten minutes. With the above
formula, each task will be allocated only one virtual instance as the budget
limit is already reached. However, it is likely that, once scheduled, all the tasks
will reuse the same instance for a total running time of 100 minutes and a cost
of two units! A tighter estimation of the cost may have allowed each task to
run for �ve minutes on two virtual CPUs, leading to a makespan divided by
two for the same cost.

To hinder the e�ect of this overestimation, we can assume that the spare
time left by each task has one in two chance to be reused by another task. The
risk inherent to such an assumption is that we do not anymore have a strong
guarantee that the resulting allocation will fall short of the allowed budget
once scheduled. Nevertheless, we modify the de�nition of cost(vi) as follows:

cost(vi) =
dT (vi, Alloc(vi))e+ T (vi, Alloc(vi))

2
×

∑
vmj∈Alloc(vi)

costj .

The de�nition of T overA remains unchanged. However, in the remaining of
this chapter, it relies on this second de�nition of cost(vi).

Based on this de�nition, we propose a �rst allocation procedure detailed
by Algorithm 4. This procedure determine one allocation for each task in
the considered sub-work�ow while trying to �nd a good compromise between
the length of the critical path (hence the completion time) and the average
time-cost area as de�ned by T overA .

Since the purpose of this algorithm is to determine only one allocation, we
cannot simply iterate B′ from 0 to Bi. We need to estimate the value of B′

such that the values of T overA and TCP will reach a trade-o� at the end of the
allocation.

At convergence time, the two values are equal. B′ is the maximum cost
of running any single task at convergence time and Bi is the total cost of
the allocation. As a heuristic to determine B′ we assume that the proportion
between the total work area and the maximum work area is constant. We can
therefore calculate these areas for an initial iteration and determine the value
of B′ when convergence occurs.

B′

Bi
=

∑|Vi|
j=1

(
T (vj , Alloc

init(vj))× costinit(vj)
)

T initCP ×
∑|Vi|

j=1 cost
init(vj)

Allocinit represents the initial allocation in which we give an instance of
the smallest type to every task.
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Algorithm 4 Eager-allocate(Gi = (V i, E i), Bi)

1: for all v ∈ V i do
2: Alloc(v)← {minvmi∈C CPUi}
3: end for

4: Compute B′

5: while TCP > T overA ∩
∑|Vi|

j=1 cost(vj) ≤ Bi do

6: for all vi ∈ Critical Path do
7: Determine Alloc′(vi) such that p′(vi) = p(vi) + 1

8: Gain(vi)← T (vi,Alloc(vi))
p(vi)

− T (vi,Alloc
′(vi))

p′(vi)
9: end for

10: Select v such that Gain(v) is maximal
11: Alloc(v)← Alloc′(v)
12: Update T overA and TCP
13: end while

Each task's allocation set is initialized with the number of CPUs of the
smallest virtual instance in the catalog. Then, we determine which task be-
longing to the critical path would bene�t the most from an extra virtual CPU,
and increase the allocation of this task. We iterate this process until we �nd
a compromise between makespan reduction and estimated cost increase. Note
that the determination of Alloc′(vi) (line 7) may mean either adding a new in-
stance with one virtual CPU to the set of resource instances already composing
the allocation, or switching to another type of instance from the catalog.

Figure 5.8 shows an evolution of the values of T overA and TCP across the
allocation process, for a budget limit of 10 units. We have used a resource
catalog inspired by Amazon EC2's catalog, which can be found in Table 5.1.
There is a single point of convergence between the two, which represents a
good trade-o� between the two values. The allocation process stops if this
point is reached or if the estimated costs of the allocation exceeds the budget
limit. In the current example, a trade-o� is reached after 57 iterations.

In practice it is only worth continuing the allocation process if the value
if TCP continues to decrease. We have added a supplementary stop condition
that is triggered if the value of TCP does not decrease more than one second.
We call this the TCP cut-o�.

As this �rst procedure may produce allocations that do not respect the
budget constraint, we propose an alternate approach based on a similar prin-
ciple as that used by the biCPA algorithm [115]. Instead of just considering the
allocation that is eventually obtained when the trade-o� between the length
of the critical path and the average cost is reached, we keep track of interme-
diate allocations build as if the allowed budget was smaller. Once all these
candidate allocations are determined, we build a schedule for each of them on
a dedicated platform to obtain a precise estimation of their makespan they
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Figure 5.8: The evolution of T overA and TCP

.

achieve and at which cost. Then it is possible to choose the �best� allocation
that leads to the smallest makespan for the allowed budget.

In this second procedure, we can rely on a tighter de�nition of the average
time-cost area that does not take spare time into account. Indeed, if some
spare time exists, it will be reused (or not) when the schedule is built. Since
we select the �nal allocation based on the resulting scheduling, we do not
have to consider spare time in the �rst step. To some extent, it amounts
to underestimate the cost of the execution of a task. Our second allocation
procedure will then rely on T underA , de�ned as

T underA =
1

B′
×
|Vi|∑
j=1

(T (vj , Alloc(vj))× costunder(vj))

This de�nition di�ers from that of T overA by the use of

costunder(vj) = T (vj , Alloc(vj))×
∑

vmk∈Alloc(vj)

costk

that includes the exact estimation of execution time of vj and of a new
variable B′ instead of the allowed budget Bi. This parameter allows us to
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mimic the variable size of the cluster used by the biCPA algorithm, and repre-
sents the maximum budget allowed to determine any one task's allocation. Its
value will grow along with the allocation procedure, starting from the largest
cost of running any task from the initial allocation and up to Bi. The use of
B′ has a direct impact on the computation of the average time-cost area and
will lead to several intermediate trade-o�s and corresponding allocations. We
refer the reader to [115] for the motivations and bene�ts of this approach.

Algorithm 5 Deferred-allocate(Gi = (V i, E i), Bi)

1: for all v ∈ V i do
2: Alloc(v)← {minvmi∈C CPUi}
3: end for

4: k ← 0
5: B′ ← maxv∈Vi costunder(v)
6: while B′ ≤ Bi do

7: T underA = 1
B′ ×

∑|Vi|
j=1 (T (vj , Alloc(vj))× costunder(vj))

8: while TCP > T underA do

9: for all vi ∈ Critical Path do
10: Determine Alloc′(vi) such that p′(vi) = p(vi) + 1

11: Gain(vi)← T (vi,Alloc(vi))
p(vi)

− T (vi,Alloc
′(vi))

p′(vi)
12: end for

13: Select v such that Gain(v) is maximal
14: Alloc(v)← Alloc′(v)
15: Update T underA and TCP
16: end while

17: for all v ∈ V i do
18: Store Allocsi(k, v)← Alloc(v)
19: end for

20: B′ ← maxv∈Vi costunder(v)
21: k ← k + 1
22: end while

This second allocation procedure is detailed in Algorithm 5. The �rst
di�erence is on lines 5 and 20 where we determine and update the value of B′

to be the maximum cost of running any one task. The main di�erence with our
�rst allocation procedure lies in the outer while loop (lines 6-22). This loop
is used to set the value of T underA that will be used in the inner loop (lines 8-
16). This inner loop actually corresponds to an interval of iterations of our �rst
allocation procedure. Each time TCP ≤ T underA , the current allocation is stored
for each task (lines 17-19), and the current allowed budget is updated (line 20).
At the end of this procedure, several candidate allocations are associated with
each task in the PTG.

Figure 5.9 shows an evolution of the values of T underA and TCP across the
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allocation process, for a budget limit of 10 units. In contrast to Figure 5.8,
here we have multiple points of convergence for the two values, each of these
points represents a valid allocation with a good trade-o� between the two.
Since in this algorithm we underestimate the cost, there will be a lot more
iterations than in the previous. The ridges in the values of T underA are caused
by the di�erence in price per CPU of the virtual machines from the catalog.
As a virtual machine has more CPUs, it's price per hour decreases and so does
the value of T underA .

It is worth noting that the value of TCP becomes more and more �at since
the tasks' parallelism starts to become saturated. Here too we have used the
TCP cut-o� strategy in practice.

In a second step, we have to get an estimation of the makespan and total
cost that can be achieved with each of these allocations. To obtain these
performance indicators, we rely on a classical list scheduling function as shown
by Algorithm 6. Tasks are considered by decreasing bottom-level values, i.e.,
their distance in terms of execution time to the end of the application. For
each task, we convert an allocation, i.e., a resource request, into a mapping.
This amounts to �nding out which set of resource instances the task will be
executed on. Two objectives have to be met. First we have to minimize the
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�nish time of the scheduled task. Second, we have to favor reuse of spare time
to reduce the schedule's cost.

To achieve both objectives, we proceed in two steps. First, we estimate the
�nish time a task will experience by launching only new instances to satisfy its
resource request. This set of newly started instances is built so that its cost is
minimum, i.e., favor big and cheap instances from the catalog. However, we
don't make any assumption about spare time reuse for this mapping. Hence,
its cost is computed by rounding up the execution time of the task. This
provides us a baseline both in terms of makespan and cost for the current
task. Second, we consider all the already started instances, i.e., launched by
already scheduled tasks, to see if some spare time can be reused and thus save
money. We sort these instances by decreasing amount of spare time (from the
current time) and then by decreasing size. Then we select instances from this
list in a greedy way until the allocation request is ful�lled, and estimate the
�nish time of the task on this allocation, as well as the cost of it. This cost is
computed as the product of the rounded up execution time of the task by the
cost of each instance used minus the cost of the reused spare time.

Now, we have two possible mappings for the current task with di�erent
�nish times and costs. Our algorithm selects the candidate that leads to the
earliest �nish time for the task. If the two mappings lead to the same �nish
time, we select the cheapest option. This is summarized in Algorithm 6.

At the end of a call to Algorithm 6, we have an estimation of the makespan
and total cost of the schedule of Gi using a given allocation. This algorithm is
called for each Allocsi(k, ∗) as determined by Algorithm 5.

Algorithm 7 details the three stages of our second allocation procedure:
(i) Determine a set of candidate allocations for each task (lines 1-3 and Algo-
rithm 5); (ii) Compute the respective makespans and costs achieved by map-
ping each allocation on a dedicated IaaS cloud (line 7 and Algorithm 6); and
(iii) Select the allocation that leads to the best makespan while respecting the
budget constraint based on the couples returned by Algorithm 6

Scheduling and work�ow execution

It is worth noting that all the previous steps are all static and are per-
formed before runtime. Currently we do not address the problem of work�ow
execution, as it is not possible to take into consideration the possible state of
the Cloud platform and therefore, the resulting schedule would be based on
false information. However, by using the allocations selected by our approach
we can guarantee that the initial work�ow will be run on the Cloud platform
given the initial budget, with a certain con�dence.

When constructing a schedule by starting from the chosen allocations one
should take into consideration the following points: a) as a result of non-
determinism, two or more sub-work�ows can be ready for scheduling at the
same time, yet it is not trivial to �nd the best order in which they should
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Algorithm 6 List-schedule(Gi = (V i, E i), Allocs(∗) = Allocsi(j, ∗))
1: running_instances ← ∅
2: for all v ∈ V i in decreasing order of bottom-level values do
3: new ← cheapest set of new instances that ful�ll Allocs(v)
4: cost(new) = dT (v,Allocs(v))e ×

∑
vmj∈new costj

5: finish(new)← �nish time of v on new
6: Sort all vmj ∈ running_instances by decreasing spare time and size
7: reuse ← �rst set of instances from running_instances that ful�ll

Allocsv)
8: cost(reuse) = (dT (v,Allocsv))e − reused spare time) ×∑

vmj∈reuse costj
9: finish(reuse)← �nish time of v on reuse
10: if finish(reuse) < finish(new) then
11: map(v)← reuse
12: else if cost(new) < cost(reuse) then
13: map(v)← new
14: else

15: map(v)← reuse
16: end if

17: running_instances ← running_instances ∪map(v)
18: end for

19: cost←
∑

vmj∈VMsdTendj − Tstartje × costj
20: makespan← max(Tendj )−min(Tstartk),∀vmj , vmk ∈ running_instances
21: return (makespan, cost)

be scheduled; b) if scheduling is performed o�ine, there is no possible way
of knowing the state of the platform and therefore it is highly likely that the
estimations used while scheduling would be false.

5.5 Experimental evaluation

Experimental methodology

We use simulations with synthetic PTGs to evaluate our claims. The syn-
thetic PTGs were generated based on three application models: Fast Fourier
Transform (FFT), Strassen matrix multiplication and random workloads that
allow us to explore a wider range of possible applications. For more details
related to the synthetic workloads and their generation we would like to refer
the reader to [115], section V.
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Algorithm 7 Find-allocations(Gi = (V i, E i), Bi)

1: for all vj ∈ V i do
2: Allocsi ← Deferred-allocate(Gi, Bi)
3: end for

4: selected_allocation← ∅
5: best_makespan← +∞
6: for all Allocsi(k, ∗) ∈ Allocsi do
7: (makespan, cost)← List-schedule(Gi, Allocsi(k, ∗))
8: if (makespan < best_makespan) ∧ (cost ≤ Bi) then
9: best_makespan← makespan
10: selected_allocation← Allocsi(k, ∗)
11: end if

12: end for

Platform description

Throughout our experiments we have used Amazon EC2 as our model
IaaS platform. This is visible in the virtual resource catalog that we have
used, inspired by the the available virtual resource instance types of Amazon
EC2 [120] and described in Table 5.1.

Name #VCPUs Network performance Cost / hour
m1.small 1 moderate 0.09
m1.med 2 moderate 0.18
m1.large 4 high 0.36
m1.xlarge 8 high 0.72
m2.xlarge 6.5 moderate 0.506
m2.2xlarge 13 high 1.012
m2.4xlarge 26 high 2.024
c1.med 5 moderate 0.186
c1.xlarge 20 high 0.744
cc1.4xlarge 33.5 10 Gigabit Ethernet 0.186
cc2.8xlarge 88 10 Gigabit Ethernet 0.744

Table 5.1: Amazon EC2's virtual resource types

In our catalog we did not consider instances of type t1.micro as it receives
virtual CPUs in bursts, which makes it di�cult to quantify. We also did
not consider GPU cluster instances (cg1.4xlarge) as their GPU resources are
di�cult to quantify in virtual CPUs.

Given that the network bandwidth information for the m1, m2 and c1 type
instances is not given, we have considered high network performance as being
10 Gigabit Ethernet and moderate network performance as being 1 Gigabit
Ethernet.
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Comparison of running times

We can consider the running time of the two allocation algorithm on a
16-core Intel Xeon CPU running at 2.93GHz. For convenience's sake we have
considered the running time of Eager relative to Deferred for the same PTG
and budget. A plot of the relative running time across all the simulation
scenarios for each type of application can be seen in Figure 5.10. The �rst
quartile has 25% of the total values smaller or equal to it, the second quartile
(median) has 50% and the third quartile has 75%. The range between the �rst
and third quartile is the Inter-Quartile Range (IQR). The whiskers of the plot
extend from the ends of the box to 1.5 times the IQR. For convenience's sake,
outliers are not show.
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Figure 5.10: Relative runtime of the two allocation algorithms
( T ime to compute Eager
T ime to compute Deferred)

Deferred's outside iteration over the budget limit has a visible in�uence,
especially for higher values of the maximum budget. Deferred's running time
is slower than Eager's by at most an order of magnitude. It is worth noticing
that the behavior is as expected, Eager is signi�cantly faster than Deferred
for almost all the allocations performed. In the situation of small PTGs, both
algorithms run considerably fast and in these situations, the resolution of the
internal clock can introduce disturbances, as seen in the case of random PTGs.
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Simulation results

We have varied the budget limit for all the input PTGs from 1 unit to 50
units. By considering the cost per hour of the cheapest VM type (0.0084 units
per CPU per hour) from the catalog in Table 5.1 gives a testing interval from
a minimum of 11 CPU hours to a maximum of 5914 CPU hours. This has the
double role of permitting bigger PTG to manifest their in�uence over time to
produce a more general trend and stressing the algorithms in order to �nd out
their best operating parameters.

Figures 5.11, 5.12, 5.13 and 5.14 shows plots of aggregated results of
makespan and cost after task mapping, for all three application types. We have
used the same semantics for quartiles and whiskers as previously explained.
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Figure 5.11: Makespan using Eager allocation using all work�ow applications

The �rst observation worth noting is that up to a certain budget value
Eager passes the budget limit. This means that our initial assumption of 50%
VM spare time reuse is an optimistic one. After a certain budget limit, Eager
reaches a point of saturation due to the TCP cut-o� strategy. This means that
after a certain budget limit, the same allocation will be produced by Eager
and, consequently, the same task mapping after scheduling.

While the TCP cut-o� strategy also applies to Deferred, it does not try to
estimate the costs, it always underestimates them while performing allocations.
As a result, the actual costs of the allocations given by Deferred will be a
lot higher than the budget limit and the actual saturation level will also be
higher. As expected, Deferred in combination with Algorithm 7 will always
select an allocation that, after task mapping, is within the budget limit. In
combination with a high saturation level this, yields the behavior that we see
in Figure 5.12. The only moment when Deferred produced allocations that are
not in the budget limit is when the budget limit is too low to accommodate
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all the tasks in the work�ow.
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Figure 5.13: Cost using Eager allocation using all work�ow applications

To ease the comparison between the two approaches, we can consider the
plots in Figures 5.15 and 5.16. It can be seen that, in the beginning, the
makespans produced by Eager allocations are shorter than those produced
by Deferred allocations and from a cost point of view, Eager produces more
costly allocations than Deferred. As the budget increases, the balance shifts
slightly in favor of Eager for cost and Deferred for makespan, yet it is not as
unbalanced as in the beginning.

For small values of the budget i.e., before task parallelism starts to be-
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Figure 5.16: Relative cost ( Eager
Deferred) for all work�ow applications

come saturated, Eager outperforms Deferred in terms of resulting makespan
by a median of as much as 12%, but Deferred never passes the budget limit
and outperforms Eager in terms of budget by a median of as much as 26%.
The situation changes once task parallelism begins to appear and the two al-
gorithms yield the same makespan with a median di�erence of 2%, yet Eager
outperforms Deferred in terms of cost by as much as 23%. It it therefore
intuitive that for small applications and small budget values one should use
Deferred, but when the size of the applications increases signi�cantly or the
budget limit approaches task parallelism saturation, using Eager would be the
best strategy.

5.6 Scheduling a concrete work�ow application

This section will present experiments with real-life work�ow applications.
The work�ow pattern is very common amongst scienti�c applications. We
have focused on a work�ow application called RAMSES to test our approach.
RAMSES is an Adaptive Mesh Re�nement (AMR) application that simulates
the interaction of dark matter particles in a 3D region of space. The dark
matter particles represent the backbone of galaxy formations and allows testing
of cosmological models.

The RAMSES work�ow (Figure 5.17) is composed of tasks that:
� generate Initial Condition (IC)
� preprocess the current state of the simulation
� simulate dark matter interactions. This task is an MPI parallel applica-
tion.

� do re�nement by looping to the preprocessing step
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Figure 5.17: The RAMSES work�ow

� extract dark matter halos
� build galaxy trees on the extracted halos
� build galaxies on the generated galaxy trees
RAMSES can perform simulations at two di�erent levels of granularity:

normal simulations and zoom simulations that concentrate on an �interesting�
region of the simulated space.

To facilitate testing we have developed a platform prototype that is able to
schedule a work�ow in an IaaS platform. We have used DIET MADag as the
work�ow engine and a FutureGrid installation of Nimbus as the IaaS provider.

The architecture of the prototype platform can be found in Figure 5.18.
Its main components are:

Nimbus - the open source IaaS provider. Nimbus implements the Amazon
EC2 interface. We have used it as a low level resource provider through
a FutureGrid installation.

Phantom - the open source auto-scaling provider that implements a part of
the functionality of the Amazon AWS auto-scaling service. We have used
it as a high-level resource and availability provider.
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Figure 5.18: System architecture

MADag - work�ow engine that is part of the DIET (Distributed Interactive
Engineering Toolkit) software. It supports DAG, PTG and functional
work�ows. We have used one DIET service per work�ow task and in our
implementation each service launches its a�erent task.

Client that describes his work�ow in an xml format following the Gwen-
dia [121] language. The client is also responsible for implementing the
services and their a�erent tasks. The client has the choice of which IaaS
provider to use and then calls the work�ow engine that will automatically
run his work�ow.

As a �rst stage, we have experimentally compared an estimation of costs
and running times for static allocations versus dynamic allocations of the
RAMSES work�ow while varying the size of the allocation in both cases.
As experimentation testbed we have used the FutureGrid [122] distributed
testbed.

Figure 5.19 shows the real running times for a simulation versus the size
of the allocation. The dynamic runtime is composed of two main parts:

� VM reallocation time that represents the delays needed for the virtual
platform to allocate new VMs and release unused ones.

� actual work time that represents the running time of the simulation
The component �Runtime (dynamic)� represents the total time, i.e. sum of

the two above components, for a dynamic platform. As expected, the dynamic
allocation yields longer total runtime since it includes a reallocation overhead.
An observation worth noting is that the VM reallocation time keeps increasing
with the size of the virtual platform, but with each added VM it increases less.
In other words it stabilizes and for large platforms it has a constant behavior.

Figure 5.20 contains plots of cost estimations for the two cases of static
and dynamic allocation when doing the same simulations. We have considered
that the cost is the same for both types of allocations and have estimated it
in currency-independent units. What is worth noticing is that the cost for a
dynamic allocation is always lower than the cost of a static allocation and for
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Figure 5.20: Estimated costs for a 26 × 26 × 26 box simulation

large platforms, in our experiments, it can be smaller by a factor of 4x. The
di�erence in runtime when comparing the two platforms is considerably below
the price di�erence factor. The most important conclusion of this experiment
is that while the price di�erence is a linear function of the platform size i.e.
it increases linearly with the platform size, the runtime di�erence between the
two allocations is sublinear and has a constant behavior for large platforms,
essentially becoming a constant overhead.

The second stage consists of testing the two budget constrained schedul-
ing algorithms through an implementation on top of the currently described
prototype platform. This work is still ongoing.
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5.7 Conclusions and Future Work

The elastic allocations that Cloud platforms o�er has opened the way for
more �exible data models. Notably, parallel task graph applications with a
more complex structure than classic DAG work�ows are a good match for
the elastic allocation model. There has been lots of work around the topic
of parallel task graph scheduling on grid or Cloud platforms, yet none of the
previous approaches focus on both elastic allocations and non-DAG work�ows.

In the current chapter we present our research on the topic of scheduling
with budget constraints for non-DAG work�ow models that target Cloud plat-
forms. Our approach is to transform the original problem into a set of smaller
sub-problems that have been studied before and propose a solution for them.
Concretely, we split the input non-DAG work�ow into DAG sub-work�ows.
Next we present two allocation algorithms, Eager and Deferred, built on the
speci�cs of a typical IaaS Cloud platform and provide an algorithm for se-
lecting the most interesting of these allocations such that the budget limit is
not reached. Eager is designed to be a fast allocation algorithm and uses a
heuristic approach for estimating the real cost of the allocation it produces.
Deferred, on the other hand, is slower in running time, but it produces a set of
allocations, each with a good trade-o� between the time on the critical path
and the total work area (in cost). It does not try to estimate the real cost of
the allocations, but underestimates it instead and delays the decision of which
allocation to choose until scheduling time. The two algorithms di�er in terms
of running time by as much as an order of magnitude in favor of Eager. Under
tight budget constraints, Eager leads to shorter, yet more expensive schedules
and usually passes the budget limit. In contrast, Deferred always results in
schedules that are in the budget limit and longer as makespan. The conclu-
sion is that for small applications or small budget limit sizes, Deferred yields
the best results and for large applications or large budget limit sizes Eager
outperforms Deferred.

As long term goal we plan on integrating the current work into an existing
Open Source IaaS Cloud platform. A good improvement will be to determine
per application which is the tipping point up to which Deferred should be used
and after which Eager would be the best �t.
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Chapter 6

Overall conclusions and

perspectives

In recent years we have witnessed an increase in services labeled as �Cloud�.
Infrastructure as a service Cloud platforms o�er virtual machines from a pre-
de�ned catalog of resource types. Cloud computing brings the ability to dy-
namically scale a virtual platform automatically, without any prior contract
and with a low overhead. This leads to cost saving by only paying for the
resources that are used and only using the resources that are needed. From
a scienti�c point of view, this raises questions related to scheduling strategies
adapted for this type of dynamic platforms.

The current Thesis focuses on determining e�cient mechanisms for resource
management in Cloud platforms. This includes both resource provider point
of view and Cloud user point of view.

In order to clarify the context of the current work, in Chapter 2 we in-
troduce the reader into the general topic of Cloud computing and we present
a detailed study of the state-of-the-art in the �eld. We focus on the most
relevant of Cloud platform features: automatic scaling, load balancing and
platform monitoring. We examine the presence and capabilities of these fea-
tures in commercial and open-source platforms. We also explore how these
features can be implemented by examining research e�orts being done around
these topics.

The �killer feature� that Cloud platforms o�er is ability to automatically
scale a virtual platform without any prior contract, which leads to saving costs
on unused resources as they can be automatically released from the virtual
platform. Automatic scaling or �autoscaling� is achieved by using a scaling
strategy. Determining a good strategy is not a trivial task and there are many
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approaches to this problem. In Chapter 3 we present the problem of automatic
scaling in more detail and we present an algorithm that helps in determining a
good scaling decision. The algorithm that we propose determines repetitive us-
age patterns in the Cloud client's platform and uses these to extrapolate what
the future platform usage will be. The patterns do not have to be periodic,
just repetitive, which is documented behavior in web tra�c and is inherent
to certain applications and usage scenarios. To test our approach we have
used traces from one Cloud client application and several grid workloads. Our
results show that the algorithm we propose is capable of identifying nonpe-
riodic repetitive behavior with a high accuracy and that the accuracy of the
prediction can be improved if we increase the size of the historic database or if
we present the algorithm with a historic database closer to the domain of the
application that we are trying to predict.

A common use-case of Cloud platforms is to extend another, exiting plat-
form with virtual resources in a transparent way. In this type of scenario the
platform manager tries to share resources fairly amongst its users. In Chapter 4
we study the problem of fair virtual resources sharing by extending the DIET
grid middleware. We propose a model of resource sharing based on the free
�ow of value given by markets. We propose these mechanisms as an extension
to DIET where the DIET users have a limited amount of virtual currency that
they use for running their services on virtual resources. Running a service is
done in three steps, following the tender / contract-net model: �rst the DIET
user sends a request to the DIET platform, then each service responds with an
estimation of the user's utility when running the service and �nally the user
chooses one of the o�ers to run his service. The user's utility is a user-de�ned
function that re�ects a metric that is important for him. One example is a
function that minimizes cost and running time of the service. This model is
useful for fair resource sharing.

Many scienti�c applications can be described through work�ow structures.
The reasons for this may vary from building applications on top of legacy code
to modeling phenomena that have an inherent work�ow structure. In Chap-
ter 5 we analyze and describe in details the work�ow class of applications. We
present an approach for virtual resource allocation for this class of applications.
Given that Cloud platforms are advertised as having an in�nite number of re-
sources, the classic approach of resource allocation and scheduling needs to be
adapted. In the current situation we do not have a �xed number of resources
and therefore when performing allocation, both makespan and allocation cost
must be taken into consideration. This leads to a bi-criteria optimization prob-
lem. To address this problem, we have developed two algorithms that perform
resource allocation while keeping a budget limit. Both algorithms are based
on the bi-CPA algorithm.

The �rst algorithms, called �eager� determines only one allocation that
represents a good trade-o� between the length of the critical path of the graph
and the average cost-area per task. Cost estimation is done at allocation time,
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which leads to a fast algorithm, but an inaccurate cost estimation, because
the real costs of virtual resource usage are only known after scheduling is
performed.

The second algorithm is called �deferred�. It does not try to estimate the
�nal cost of the used resources, deferring the decision until scheduling time.
As a result it returns a set of possible allocations, each representing a good
trade-o� between the length of the critical path and the average cost-area.
This second algorithms is slower than the �rst, but cost estimations are more
accurate since they are delayed until scheduling is performed. The decision of
which allocation to choose is only taken when scheduling is performed, thus
guaranteeing that the budget limit is not passed.

In order to validate our claims we have simulated the two algorithms with
synthetic traces that model three application classes. Our results con�rmed
the di�erence in running time of the two algorithms as well as the expected
behavior. Deferred gives allocations that lead to more accurate schedules and
always keeps the budget limit, while Eager is faster in running time, but the
resulting schedules can sometimes pass the budget limit. After a certain budget
limit the two algorithms converge and yield close allocations. The conclusion
here is that Deferred can be used for small budgets and Eager can be used
when budget limit increases.

Perspectives

The work in this Thesis can be extended in several ways. Related to the
Cloud client auto-scaling algorithm that we proposed in Chapter 3 there are
a few open question. First, determining the appropriate length of the search
pattern is a problem in itself. The pattern length is the length of the sliding
window used for prediction. There is no single length that gives accurate
predictions for all application types, in fact the length of the pattern might
not be constant even for the same application. There are many factors that
in�uence this length, most notable are the granularity of the historic database
samples and the volatility of the application's use. This makes the problem
nontrivial and interesting.

Another possible direction of improvement is to isolate per-application his-
toric usage databases and determine how these databases can be composed to
describe a new application type in a relevant manner.

Continuing in the �eld of resource allocation, the market based resource
allocation mechanism in Chapter 4 can be extended with co-allocation ca-
pabilities. There are numerous scenarios where a user needs more than one
resource at the same time in order to complete a task that built on top of all
the resources. This requires coordination in obtaining the multiple resources
at the same time and is know as co-allocation. Achieving this can be done
by adding a layer in between the SeD o�ers and the user. This layer would
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coordinate co-allocations and possible delays between the start time of the
di�erent resources.

For the more specialized VM allocation algorithms presented in Chapter 5,
a possible direction of improvement is to determine formally when an appli-
cation should pass from using the �deferred� algorithm to using the �eager�
algorithm.

Another direction of further research is to automatically determine work-
�ow application pro�les. This can be done by gathering statistics on appli-
cation executions and automatically building a probability distribution model
for the nondeterministic transition inside the work�ow. Once done this will
improve the accuracy of the allocations and in general the performance of the
two algorithms.
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Appendix B

Building Safe PaaS Clouds: a

Survey on Security in

Multitenant Software Platforms

This chapter surveys the risks brought by multitenancy in software plat-
forms, along with the most prominent solutions proposed to address them. A
multitenant platform hosts and executes software from several users (tenants).
The platform must ensure that no malicious or faulty code from any tenant can
interfere with the normal execution of other users' code or with the platform
itself. This security requirement is specially relevant in Platform-as-a-Service
(PaaS) clouds. PaaS clouds o�er an execution environment based on some soft-
ware platform. Unless PaaS systems are deemed as safe environments users
will be reluctant to trust them to run any relevant application. This requires to
take into account how multitenancy is handled by the software platform used
as the basis of the PaaS o�er. This survey focuses on two technologies that
are or will be the platform-of-choice in many PaaS clouds: Java and .NET.
We describe the security mechanisms they provide, study their limitations as
multitenant platforms and analyze the research works that try to solve those
limitations. We include in this analysis some standard container technologies
(such as Enterprise Java Beans) that can be used to standardize the hosting
environment of PaaS clouds. Also we include a brief discussion of Operating
Systems (OSs) traditional security capacities and why OSs are unlikely to be
chosen as the basis of PaaS o�ers. Finally, we describe some research ini-
tiatives that reinforce security by monitoring the execution of untrusted code,
whose results can be of interest in multitenant systems.
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B.1 Introduction

The term multitenancy refers to the ability of a platform to run software
from di�erent users in a safe manner. To some degree, multitenancy is sup-
ported in many software platforms such as OSs or Virtual Platforms (VPs)
such as Java and .NET. However, as this survey shows, none of these plat-
forms o�er a fully secured hosting environment. This problem is relevant even
in controlled environments where only code from trusted users will be run:
faulty code can stall its container for example by allocating too many objects
(so the system runs out of memory). Security concerns are even more pressing
if code from unknown users is hosted.

This work depicts how malicious code can interfere with the container plat-
form that executes it, or with other software also hosted in the same container.
Also, it presents the research works that try to solve the security limitations
of standard platforms regarding multitenancy. As we will see this problem
has not been neglected by the research community, but arguably it has not
received as much attention as other security-related problems so far (e.g. Web
attacks such as denial of service, cross-site scripting or SQL injections have
been deeply studied). This is likely to change due to the growing importance
of cloud systems [11] where multitenancy is specially relevant.

Cloud systems allow organizations to outsource the operation of IT in-
frastructure, both hardware and software. Much attention has been payed
to them due to the potential bene�ts and business opportunities that clouds
could bring [123]. However, there are several concerns that could impede the
adoption of cloud-based solutions [124]. Some of them are uncertain reliabil-
ity (low availability and/or performance dropouts), vulnerability to network
attacks (e.g. Denial of Service attacks), or potential vendor lock-in (users not
being able to migrate their software to other clouds). Those are not addressed
here as they are outside the scope of this work. Another relevant factor to be
considered by potential cloud users is security: if clouds are perceived as risky
environments users will be very reluctant to migrate their systems there [125].
Unfortunately, securing clouds is not a trivial task as they must face several
threats. This survey focuses on the risks induced by multitenancy in Platform-
as-a-Service (PaaS) clouds. A PaaS cloud provides a container platform where
users deploy and run their components. A well known example is Google App
Engine (GAE) 1, which runs Java servlets. In a PaaS cloud components from
di�erent users can be run in the same platform or container system. As we
will see, this implies that malicious users have several straightforward ways to
interfere with the normal execution of other components or with the container
itself. This is emphasized in [126], where the authors specify that providers
are responsible for isolating components so that no user software can interfere
with other users. This chapter further explores this requirement by surveying

1. http://code.google.com/appengine
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the isolation capabilities of potential PaaS platforms. This analysis is due at
three levels representing three possible container systems: Operating System
(OS) level, Virtual Platform (VP) level (i.e. Java and .NET) and container
level. Most emphasis is put on the VP and container levels as, as we will see,
these are more relevant for PaaS clouds.

To avoid confusion, we should clarify that there are some systems also de-
noted PaaS clouds that build a unique environment per user which is hosted
in not shared machines, e.g. provided by an Infrastructure-as-a-Service (IaaS)
cloud. This is the case for example of Stax.net 2 that o�ers pre-packaged disk
images with the software stack that the user demands and where the deploy-
ment and monitoring process is eased thanks to the custom tools provided.
Fig. B.1(a) shows an example of such layout, where the PaaS system deploys
each user's components in di�erent Virtual Machines. In these systems it is
the provider of the VMs (an IaaS provider) who is in charge of implementing
proper isolation (which has its own challenges, see [127]). Hence, this chapter
does not deal with such PaaS systems as they delegate the implementation of
secure isolation to the VM level.

In this chapter we focus instead on PaaS clouds that host and run applica-
tions from several di�erent users in the same platform [128] in a safe manner.
Tenants share PaaS platform resources (hardware, libraries, supporting ser-
vices, IT management, etc.), but this is totally transparent to them. This
way, the provider can host more users' applications in the same resources.
Fig. B.1(b) depicts such a PaaS system, where components from di�erent users
are deployed in the same container systems. To achieve safe multitenancy in
PaaS platform each application must run isolated from the rest, so a malicious
or faulty application cannot impact others. Also, as the code executed by the
PaaS system may be untrusted, it is necessary to �nd mechanisms that can
enforce security policies to decrease the risks involved in running such code.

The rest of this chapter is organized as follows. In Section B.2 we ex-
plore security mechanisms at OS level, while at the same time we discuss the
limitations of the OS as a hosting environment for PaaS applications. Such
limitations seem to signal VPs such as Java as more adequate to build PaaS
systems. The most well-known container systems are based on Java, so em-
phasis is put on this platform. Thus, Section B.3 focuses on studying standard
Java features and its limitations as a PaaS container platform from the point of
view of security, while Section B.4 discusses security on Java container systems.
Section B.5 switches focus to the .NET platform, whose security characteristics
are also analyzed. With a more general approach, Section B.6 comments ex-
ternal code monitoring as a security solution to be applied in PaaS platforms.
Finally, Section B.7 presents some conclusions resulting from this survey.

2. http://stax.net
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(a) Non-shared Resources PaaS (b) Shared Resources PaaS

Figure B.1: PaaS Systems

B.2 Safe Multitenancy through Process Isolation at
Operating System Level

In [129] a complete de�nition of a secure Operating System is given: �A
secure OS provides security mechanisms that ensure that the system's security
goals are enforced despite the threats faced by the system.�. An OS deals with
resources such as devices, network, data, memory and processors. Each re-
source type has di�erent security issues related with it, but to implement safe
resource sharing in a multitenant OS �ve main security areas can be consid-
ered. 1) Access control, an access mechanism should be available to authorize
requests from users or processes to perform OS operations as read, write, etc.,
on OS objects such as �les, sockets, etc. The most well-known solution is
based on ACL (for Access Control List), where each object has a list of per-
missions associated; 2) Integrated �rewall functionality, like IP Filter, IPsec
and VPN techniques; 3) Data encryption for data in transit or stored in the
�le system; 4) Prevention of execution of memory zones, using the No execute
(Nx) page �ag; 5) Isolation is �nally the last (but not least) security area
OSs must provide. Process isolation has been a basic feature of most OSs for
decades. Proper isolation prevents any process to interfere with others or to
access protected resources. This is achieved through well known protection
mechanisms (memory segmentation and page mapping) that build a separated
address space for each process. A process cannot access memory regions out-
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side its address space. Although other ways to implement process isolation
have been proposed [130], this is by far the most common in modern OSs.
[131] shows how to take bene�t of virtual machines to secure an OS. Also,
[132] propose a Mandatory Access Control (MAC) based system to ensure
integrity in OS and VMs.

Other menaces are present, but they are not so related with multitenancy
(which is the main focus of this chapter) or are already dealt with by the
areas depicted above. Techniques like intrusion prevention, authentication
and availability deal with external attacks; data integrity is preserved by ACLs
and data encryption; hidden information �ows, which occur when some user'
software propagates information that should remain con�dential, can happen
if users share critical data (e.g. the same database), but in PaaS systems users
do not share application-level data, which should prevent this kind of risks if
data integrity is properly implemented.

However, typical PaaS systems do not host applications that run right on
top of the OS. Although this is technically feasible, PaaS providers prefer to
o�er other abstractions to users. Reasons may vary:

� Platform standardization and portability. If a PaaS player allowed users
to deploy applications to run on top of the OS, she/he would have to
decide which OS(s) to o�er, which version, and which dynamically linked
libraries (and versions) should be available for applications. This is far
from trivial and could constrain the set of applications that could be run
in the cloud.

� Simpli�ed abstractions. Also, given the domain of the applications that
run in PaaS clouds, providers may prefer to o�er simpli�ed abstractions
that ease the development tasks.

� Dominance of interpreted languages and virtualized platforms in Web
development. Finally, it is foreseeable that future developments in PaaS
clouds will be strongly Web-oriented (as they will be accessed through
the Web). In Web development, scripting languages (Ruby, Python and
others) and virtualized platforms (Java or .NET) are dominant.

There are also several concerns that could be raised if PaaS platforms are
allowed to run applications from several tenants on the same OS, [133] enu-
merates some of them: administration, installation, fault and attack isolation;
along with crash recovery.

Furthermore, as noted in [134], general purpose OSs do not allow for an
appropriate control of scheduling policies and resource management. These
authors already advocated for the utilization of containers, although with an
important di�erence from present container systems: those containers were
an abstraction provided at the OS level. Each container encompassed the
resources associated to a particular task. Each application could use one or
many containers, and through them the OS was able to monitor and manage
the resources (CPU, memory, bandwidth) consumed by each task executed by
the application.
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This same idea of `container' is present in many systems, however they are
implemented at the application level (where any resource management and
tenant isolation task must be implemented).

B.3 Security and Multitenancy in the Java
Platform

Arguably, the best well-known container systems are based on the Java
platform. The Enterprise Java Bean [135] (EJB) and Servlets [136] speci�ca-
tions (part of the J2EE speci�cation [137]), and the OSGi 3 speci�cation [138]
are the most relevant Java container technologies and they can be expected to
have a prominent role in future PaaS platforms. For example, the GAE PaaS
system already provides a runtime engine for Java servlets.

Standard Security Capabilities of Java

This section presents a brief summary of the main security features of the
standard Java platform (for more information on this topic see [139, 140]).
The Java speci�cation includes the Java security model 4, a set of features that
intend to make Java a safe environment. They include: sandbox execution
so potential risks for the hosting system are limited; bytecode veri�cation so
the runtime is not corrupted; and cryptography, PKI, and secure transport
APIs for communications protection. Also, Java implements a class loading
mechanism that can be used to control which classes can be instantiated by
each thread. Typically, in cloud platforms untrusted code will be run by special
threads with speci�c class loaders that limit which classes can be accessed.

Furthermore, Java implements strong access control capabilities to limit
access to resources such as network, �les, system properties, or any logical
entity that the container must protect. The class loader sets for each class the
protection domain it belongs to. This domain carries 1) a set of permissions;
2) the code source, an entity that contains the public certi�cates used to sign
the code (if any). The security policy, which is set when the platform starts, is
used to determine which permissions can be assigned to each class depending
on its code source. Finally, the security manager is the entity that enforces
security.

Resources are usually �wrapped� by speci�c classes. When some function-
ality needs a resource it will call the corresponding class. That class protects
the resource by asking to the service manager to check if a calling thread has
the corresponding permissions by traversing back the method stack. For each
method in the stack, the security manager checks if the permissions carried

3. The term OSGi was originally the acronym of Open Services Gateway initiative, but
today that name is obsolete.

4. http://java.sun.com/javase/technologies/security/
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Figure B.2: Checking of Permissions in Execution Stack

by the protection domain the method class belongs to are enough to grant
the requested access. If it �nds a method in that stack belonging to a class
that does not have the required permission, an exception is thrown. This is
depicted in Fig. B.2.

Previous control is code-centric, but can also be user-centric by using the
standard Java Authentication and Authorization Service (JAAS) APIs. Once
a user is authenticated through JAAS, one or more principals are associated
to her. The security policy used determines which permissions are assigned to
each principal when running a certain code. A more complex authorization
solution (both role-based and hierarchical) oriented to multitenant clouds is
presented in [141].

Security Hazards in Java

Unfortunately, the Java platform also presents certain limitations that hin-
der the construction of secure multitenant environments. In [142] and [143]
the authors analyze the problems and threats to be taken into account when
using Java as a multitenant platform. In [142] the authors also study the
problems derived from running multitenant software as Java threads. As they
explained, even if newer Java versions include protection mechanisms [140] so
that no thread could neither modify nor stop other threads, still many issues
remain:

� Isolation. A proper isolation mechanism must ensure that one tenant
cannot access to components of other tenants. Figure B.3 shows three
di�erent isolation solutions that PaaS platforms can use, ranging from
isolating applications by running them on their own OS process, going
through using already available security devices such as class loaders,
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or using last advances on virtual platforms to provide full applications
isolation in the same container.

(a) Isolation at OS Level

(b) Isolation by Standard Java Security

(c) Isolation at VM Level

Figure B.3: Isolation Options in PaaS Platforms

Fig.B.3(a) shows the most straightforward option, to create a new JVM
per user application. This is a safe approach as it uses OS processes
to isolate di�erent applications. However it is expensive in terms of
resources.
Fig.B.3(b) depicts an approach that enforces security by means of stan-
dard Java technologies. Isolation is reinforced by class loaders. Through
class loaders, a Java runtime can prevent malicious tenants from loading
(and running) not allowed classes or corrupting classes used by other
tenants. However, this is not enough to ensure proper isolation among
tenants running code in the same JVM. Potential problems vary: visi-
bility of object references from mutable parts of classes (specially static
ones), and the possibility for malicious tenants to block other tenants
through shared data structures (such as queues) or static synchronized
methods [142, 144, 143, 145].
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Certain research works have tried to implement the option depicted in
Fig.B.3(c)) by providing better isolation mechanisms to Java. In [144]
the authors introduce the Multitasking Virtual Machine (MVM), a mod-
i�ed JVM that implements the concept of isolates. Each isolate runs a
di�erent application (also denoted task by the authors) with its own
threads in such a way that the application has the illusion of being exe-
cuted in a non-shared VP. In MVM each task has its own memory heap
and so there are no shared objects. Communication between isolates
must use other mechanisms such as sockets. Depending on the amount
of calls among isolates this can induce a considerable overhead. At the
same time, MVM promotes the sharing of as much resources as possible
to enhance performance (e.g. core native methods are shared).
Also, static variables are considered by MVM. In a typical JVM, static
variables of any class are shared by all threads. In MVM, each isolate
keeps its own copy of the static variables, only shared by the threads
inside that isolate. Static synchronized methods in each class can be
another source of trouble. The monitor associated to those methods is
kept by the corresponding instance of java.lang.Class (in fact it is the
own monitor of the instance). But in the JVM there is only one single
instance of Class per class, shared by all threads. Hence, the monitor
of the Class instance is also shared, so if a thread gets the monitor (by
synchronizing on the Class instance or by calling a static synchronized
method of the class) it can block any other thread trying to access it. To
avoid this, MVM keeps for the same class di�erent instances of Class in
each isolate.
Later on, an evolution of the MVM was developed so the same MVM
could support applications of di�erent users at OS level [146]. This
is implemented by controlling access to private �les, allowing the safe
execution of native code and adding a mechanism to ensure the correct
operation of core native libraries by replicating the global state of shared
core classes. Note that this work refers to users at OS level, not to be
confused with the tenants of PaaS systems that will try to run their code
in the VP. In a PaaS environment, it is safe to assume that the platform
will always be started by a single OS level user (admin).
These and other works in�uenced the Java Speci�cation Request 5 (JSR)
121 Java Isolation API [147], which enables Java applications to start
other applications in an isolated manner. This speci�cation de�nes a set
of interfaces for the creation and control of isolated containers for com-
ponents. However, it does not impose any implementation strategy so
each isolated component could be implemented by a whole JVM running
on an OS process of its own, or all isolations could share the same JVM

5. Java Speci�cation Requests are the standard process to de�ne and propose new addi-
tions to the Java platform.
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(as in the case of MVM).
On the other hand, the JSR 121 has not been included yet in any stan-
dard release of the Java platform, and in fact it seems to be a dormant
speci�cation. Also, research project Barcelona 6, that hosted the devel-
opment of the MVM, is no longer active 7.
Ka�eOS is another interesting proposal developed by Back and Hsieh [148].
Ka�eOS is a new JVM that implements support for isolated processes
inside the runtime and manages the CPU and memory resources avail-
able to each process. These processes are similar to the ones given by
typical OSs. They claim that they provide better isolation capacities
that the isolates given by the MVM.
Geo�ray et al. [149, 150] also apply the concept of isolates originated by
the work on MVMs. However, they transform them so that they are not
associated to a running task (i.e. threads can migrate among domains
in contrast to isolates) but to class loaders (classes loaded by the same
class loader are in the same isolation). With this approach they avoid the
overhead caused by inter-task communication in the MVM. As in the case
of MVM, each isolate keeps its own copy of static variables and instances
of Class. In [150] the authors introduce I-JVM, a modi�ed JVM that
implements their concept of isolates. I-JVM is based on VMKit [151], a
software framework to speed up the creation of VPs.
Finally, Sun et al. [145] focus on solving the problems originated by the
sharing of the heap memory, such as memory leaks from faulty software
that can consume all available memory. The heap is split in logical
partitions, so the memory faults caused by a component only a�ect the
partition it resides in. The partition can be repaired without rebooting
the whole system.

� Resource Accounting. As commented before, the security manager
and protection domains are the foundation of the Java environment to
implement and assign custom security policies that control access to
resources by code (depending, for example, on the origin of that code).
Unfortunately, once access is granted to some code, that code can use the
resource without limitations. There is no accounting of resource usage
by threads in the Java platform, and, so, there is no way to enforce
a limited utilization of resources. Therefore, a malevolent tenant can,
for example, try to exhaust all available memory just by creating many
instances of objects.
The (somewhat old) Java Virtual Machine Pro�ling Interface 8 (JVMPI)
and its more recent replacement the Java Virtual Machine Tooling In-

6. http://labs.oracle.com/projects/barcelona/

7. We tried to get in touch with Sun/Oracle to access to the last version of the MVM.
We were noti�ed that, although there is a more recent and stable version based on JDK 7,
access to the MVM has been restricted since Oracle acquired Sun.

8. http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

144

http://labs.oracle.com/projects/barcelona/
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html


terface 9 (JVMTI) can be used to support resource accounting as they
allow to inspect the state of applications and the JVM. However, these
interfaces must be used by software written in native code, breaking
Java portability. Also, they introduce a considerable overhead that can
make them unusable in many production environments. Finally, these
interfaces do not aim at accounting of generic resources.
There have been several approaches trying to solve this for di�erent
single resources. For example [152] proposes a system able to account
memory usage by using a modi�ed garbage collector that computes the
total size of objects reachable by each task as it looks for unreachable
objects. They are deemed to be imprecise due to shared references [148].
Other works apply bytecode rewriting (also called program transforma-
tions) to inject some kind of accounting capabilities to the Java platform
in a portable way. This manner, the platform should be able to prevent
threads from using too many resources. The most prominent e�orts
using this approach are JRes [153] and JRAF-2 [154, 155, 156, 157].
As a result of this concern about the lack of a proper resource control
mechanism in Java, Czajkowski and others started to work in a new
Resource Management (RM) API [158]. This work and the MVM [144]
(discussed above) are strongly related. The RM uses MVM's idea of
isolates as the basic accounting entity that can demand or dispense re-
sources, and [158] introduces an implementation of the RM API on top
of the MVM.
Eventually [158] leaded to the creation of the JSR 284 Resource Con-
sumption Management API [159]. This JSR, which has been recently
approved, de�nes a set of interfaces that enable the programming of
resource management policies. This API �will be a framework through
which resources can be uniformly exposed to client programs as entities
subject to management�. Also, JSR 284 includes a set of core resources
that all compliant implementations will have to expose by default. An
implementation is already available, but it is unknown if this API will
be included in future releases of any of the �avors (J2ME, J2SE, J2EE)
of the standard Java platform.
On the other hand, Ka�eOS implements per process resource accounting
and bounds setting (CPU and memory). It does not provide accounting
of other resources neither from the platform nor handled by the users.
Regarding I-JVM, it implements per-isolate accounting of CPU time,
threads created, I/O r/w operations and memory. But as Ka�eOS, it
does not have a general accounting framework for a generic resource.

� Safe Thread Termination. This problem is due to the lack of a safe
way to enforce the termination of a Java thread. The java.lang.Thread.stop()
method was intended for that, but:

9. http://java.sun.com/javase/6/docs/technotes/guides/jvmti
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� It is deprecated because it is deemed unsafe: the terminated thread
would release all its monitors, which could leave some objects in an
inconsistent state.

� The method triggers a java.lang.ThreadDeath exception in the thread
to stop it. The thread can just catch that exception and ignore it to
keep running.

Hence malicious threads can remain alive forever, consuming resources
trying to monopolize resources, block other threads, etc. Another prob-
lem could be caused by the platform trying to run a safe shutdown, which
implies that all threads running inside the platform must be stopped
�rst. If the platform waits for a malicious thread to terminate then it
could be brought to a stall state. Some solutions [160] propose to modify
the untrusted software bytecode to inject termination checks at certain
execution points. These solutions have a drawback: they incur heavy
performance penalties.
MVM does solve this problem. A MVM-aware application can create,
execute, pause, resume and stop other applications. Also, Ka�eOS allows
to stop the processes it is based on.
Finally, in I-JVM, when one isolate is terminated all the threads origi-
nated by it are stopped by a special StoppedIsolateException excep-
tion that can only be caught by objects outside the terminated isolate
(so the exception cannot be ignored by the isolate being stopped).
But I-JVM, on the other hand, does not totally implement safe thread
termination. The problem is that in I-JVM the same thread can traverse
di�erent domains regardless its origin (this cannot happen in MVM nor
in Ka�eOS) as isolations are not based on threads unlike MVM isolates or
Ka�eOS processes. When one thread is stopped all the monitors locked
by it are released, which could leave objects synchronized by those locks
in an inconsistent state. In I-JVM this could happen when releasing
the locks of objects in isolates other than the one being stopped. This is
the same reason because the standard java.Thread.stop() method was
deprecated in Java. The creators of I-JVM estimate that the bene�ts of
light inter-isolation communication outweigh this problem.

B.4 Security in Java Application Containers

It is to be expected that future PaaS clouds will not run user components
right on top of the JVM. It seems more likely they will use container tech-
nologies to provide added standard services. In [161], the authors identify the
security threats that multitenant containers must address and enumerate the
security requirements they must ful�ll:

� Availability : an application shall not use local or connected resources
that prevent other applications from running due to resource starvation.
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The container should have mechanisms to enforce di�erent resource shar-
ing policies. Also, the container must be available regardless of the state
of the applications running inside.

� Con�dentiality and Integrity : an application shall not explore or modify
the platform of other applications if not authorized. Access to other
applications and their data must be controlled.

It is straightforward to see that these requirements would be achieved by
properly addressing the issues listed in Section B.3. Container availability can
be brought by safe thread termination and resource accounting, while con�-
dentiality and integrity would be implemented by full isolation of components.

The remainder of this section focuses on the security features of J2EE and
OSGi technologies, as they are the most prominent relevant Java container
solutions today. Also, the works that try to bring stronger security capabilities
to each container technology are listed.

J2EE Containers

The EJB speci�cation [135], as part of the contract between the EJB and
the container, imposes strong restrictions and limitations to what EJBs can do.
EJBs cannot create threads (to avoid interferences with the container's ability
to control components' life cycle), manipulate �les (�les are not transactional
resources and could also limit the application distributability), modify class
loaders, access non �nal static �elds (such �elds would make a bean di�cult
to distribute), etc.

These restrictions are enforced by the EJB container through the standard
Java security model (see Section B.3), and all together build an interesting
security mechanism. EJB containers combine these constraints with the appli-
cation of class loaders to achieve proper EJBs isolation. Unfortunately, these
restrictions impose a somewhat limited programming model which may not be
appropriate for many development needs. And, more important, they are not
enough to fully achieve the requirements listed in Section B.3.

On the other hand, the Servlet speci�cation, which is also part of the J2EE
platform (as the EJB speci�cation), does not stress isolation among servlets,
nor imposes strict restrictions for servlet programming. In this speci�cation,
security is concerned only with authentication and authorization of servlets'
clients.

It is possible, of course, to apply the standard security Java mechanisms
(such as access control and PKI APIs) to the development of servlets and EJBs
based systems. There are texts available that address this topic [162, 163].
But even in this case, proper Isolation, Resource Accounting and Safe Thread
Termination (Section B.3) would remain as open issues.

Some research works [164, 165] have tried to use MVM (see Section B.3)
to achieve proper isolation among users applications on J2EE environments.
In [164] the authors discuss how to apply MVM's isolates in a J2EE server.
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They propose using application domain isolates, where one application do-
main encapsulates one or more user J2EE applications, including its required
servers. Later on, in [165] the authors used a MVM extended with the Re-
source Management API (de�ned in [158], see Section B.3) and combine it with
application domain isolates, so they can easily monitor the resources used by
each application.

A Servlets-Based PaaS: Google App Engine

Being a prominent PaaS platform, based totally in the Java Virtual Plat-
form, it is worth to discuss how GAE has addressed the security problems of
standard Java.

First, they limit the possible actions that users can perform applying the
Java security model, i.e. they apply custom class loaders and security policies
enforced by the Security Manager. For example, tenants cannot create new
threads, instantiate certain classes, modify system properties or read �les that
do not belong to the user application (a GAE application is basically a set of
Java servlets, Javascript code, con�guration �les and static content like images
or HTML pages).

Regarding isolation, GAE solves it in a quite �naive� manner: users do
not share servers. Each user application runs on its own JVM instance (as
depicted in Fig. B.3(a)).

GAE o�ers accounting data of certain resources: CPU, network bandwidth
and stored data size. Users are billed depending on the amount of resources
used. However, it is not explained how GAE performs this accounting (using
a custom JVM, using the JVM Tooling Interface, at OS level, etc.).

Finally, GAE uses thread termination to control how long it takes to attend
each request. A request in GAE can last up to 30 seconds. When that limit
expires, an exception is thrown by the platform to the servlet processing the
request. If the exception is not caught, the thread will �nish and a HTTP 500

server error message will be sent in response to the HTTP request that
triggered the thread execution. If the exception is caught the runtime engine
will give �the request handler a little bit more time (less than a second) after
raising the exception to prepare a custom response�. After that, the thread is
terminated by force. Google claims that the thread is shutdown �gracefully�,
other threads in the same server are not a�ected. In fact, the whole container
is stopped. To make sure that other threads are not a�ected, the load balancer
in front of the container stops sending requests to it when a thread is to be
stopped. Then, when no more threads are running, the whole container server
can be stopped. This implies that programmers should develop servlets taking
into account that requests should be attended by stateless processes (there is
no concept of session a�nity per user) as consecutive requests from the same
user can be forwarded to di�erent server instances.
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OSGi Containers

The OSGi framework de�nes a platform where loosely coupled software
modules (denoted bundles) can expose and use services; OSGi enforces some
isolation through its Module Layer. This layer de�nes a modularization model
so that packages included in each bundle are shared (exported) or hidden to
other bundles as declared by the developer. Again, this isolation is imple-
mented through class loaders.

Extra security is provided by controlling whether bundles can export/import
certain packages, access resources, etc. Still, OSGi carries several potential se-
curity hazards. In [166] the authors enumerate 25 di�erent security �aws in
di�erent OSGi implementations. And, while 17 of them can be �xed program-
matically by setting proper security measures, there are still 8 vulnerabilities
that need to be addressed at JVM level. All of them are related with the
security limitations of Java mentioned in Section B.3: poor isolation (e.g. a
bundle can modify shared static variables), need for resource accounting (e.g.
a bundle could use all of the memory available) and lack of support for thread
termination (e.g. a bundle can ignore signals to stop and catch all ThreadDeath
exceptions).

Some works try to improve the OSGi framework robustness by providing
better isolation: Gama and Donsez [167] patch an OSGi implementation using
the Isolation API (JSR 121) on MVM to provide service level isolation.

In [150] the authors modify an OSGi implementation to run with I-JVM.
They show how applying I-JVM this new OSGi platform solves the 8 risks
described in [166] tied to the JVM.

Other works try to enhance the tolerance to faulty software, for example
in [168] the authors use light proxies to route calls between bundles that wrap
service objects and handle failures when they occur.

B.5 Security Considerations about the .NET
Platform as a PaaS Enabler Technology

No any other VP has been as intensively studied as the Java platform.
Also, no other VP has reached the same popularity. But Java is not the
only candidate VP that can be used to build a PaaS system. This section
will introduce the main security features of the .NET platform, which can be
regarded as an alternative to the Java platform.

Standard Security Capabilities of .NET

The .NET platform is a development environment created by Microsoft
with several similarities with the Java platform. The Common Language Run-
time (CLR), which would be the equivalent to the JVM in .NET settings,
implements the main security aspects of this platform.
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In .NET, software is contained in libraries denoted assemblies, which are
grouped in code groups. Membership of code groups is ruled by the evidences
that each assembly carries (for example who signs the code). Each code group
has an associated set of permissions. If some assembly belongs to more than
one group, its associated permissions are the union of all the permissions of
all groups it belongs to.

The mapping between code groups and permissions is done through security
policies. Policies are organized in a hierarchy with 4 levels (top-down order):
enterprise, machine, user and application domain. Usually, the permission
associated to each code group is given by the intersection of the permissions
at all levels it belongs to, although more complex settings are possible.

Permissions are used for granting access to resources or to other code.
They have a stack walking semantics very similar to the one found in Java. If
a method demands a certain permission, then all the methods higher than the
current one in the call stack are checked for that permission. This prevents
attacks in which some untrusted software tries to use a trusted piece of code
to run a protected operation.

We can see that the CLR access control mechanism has similarities with
the one used in Java, although it is considered by some [169] as easier to use.

Security Hazards in .NET

� Isolation. The CLR implements the concept of Application Domains
(ADs). Each application is assigned an AD when is run by the CLR
(the same CLR instance can run several ADs with several instances of
di�erent applications). ADs are isolated, so code running in one AD
neither can call, nor can be called from code running in other AD. If
several application instances use the same code, the CLR will handle one
copy of that code per AD where it is used. For intra-process isolation
in .NET, using di�erent application domains is recommended because
they can be dynamically loaded and unloaded during the runtime of the
application.
An interesting feature of the CLR is that it keeps a separate copy of
the static variables maintained for each domain, thus preventing object
references from being leaked across domains as static variables. We can
conclude that, by default, the CLR has more complete (and thus safer)
isolation capabilities than the standard JVM. However, although the
application domain concept provides a straightforward way to achieve
tenancy isolation, the fact is that CLR still su�ers some other limitations
of the Java platform.

� Resource Accounting Just like in the case of Java, .NET does not
implement any generic resource accounting functionality. It does have a
pro�ling mechanism, but it provides information about the state of the
CLR through events (load/unload of classes, threads creation, and oth-
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ers), it cannot be used by components developers to control the resources
they o�er.
There has been some works around resource accounting that target Win-
dows applications. Notably [170] have described a framework that allows
resource accounting. This framework allows the dynamic assignment of
resources to tasks and task management to a �ne granularity that in-
cludes bounding the running context of tasks (for example in CPU and
memory usage) therefore creating a sandboxed context for the task. The
framework described here targets unmanaged code (code that does not
target the .NET framework and is not run by the CLR) but the au-
thors stated it was being extended to allow .NET remote resources to be
used. As such the presented framework is a viable solution for resource
accounting for the .NET framework.

� Safe Thread Termination

CLR's thread termination solution is based on a C#'s method (System.
Threading. Thread. Abort()) that injects an exception in the aborted
thread, as the java. lang. Thread. stop() does in Java. The
Abort() method is not deprecated (as the stop() method is), yet it
is recommended to avoid it 10. But even more important is the fact that
.NET does not guarantee that the thread on which Abort() was called is
stopped. In fact it is easy for the thread to continue its execution by han-
dling the exception and calling System.Threading.Thread.ResetAbort()
or by having unbound computations in its catch or finally statements.
Thus, like Java, .NET does not provide a safe mechanism for thread ter-
mination.
This impacts ADs management. Before unloading an application do-
main all its threads must be stopped, which is implemented by using the
Thread.Abort() method. Note that, given the fact that thread stopping
is not guaranteed neither is the successful unloading of an application
domain.

Security in .NET Application Containers

Regarding container architectures, no container system similar to Java's
EJBs or OSGi exists in .NET. The closest technologies could be ASP.net 11 and
Component Object Model 12 (COM). ASP.net provides a Web framework, but
as in the case of the Servlets speci�cation there is no special reinforcement of
isolation among components (although it uses the concept of ADs). Regarding
the COM platform, it is not built on top of .NET and is not part of the
.NET framework. Also, COM is not a container technology per se, it is more
oriented to enabling the connection of components. COM+ has been developed

10. http://msdn.microsoft.com/en-us/library/system.threading.thread.abort.aspx

11. http://www.asp.net

12. http://www.microsoft.com/com
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as an improvement of COM. Recent versions of COM+ add private / public
component isolation mechanisms whereas previous versions only o�ered role-
based authorization. For its use in the .NET framework, a wrapper library
has been built under the name of .NET Enterprise Services 13.

The compliance and possible implementation of an OSGi-like platform on
the .NET framework has been studied by [171]. To enforce OSGi-like con-
tainers in .NET, the authors recommend applying ADs. They can provide the
necessary isolation mechanisms, yet the only way to communicate between two
non-shared application domains is by using interprocess communication solu-
tions such as .NET remoting. These communication mechanisms come with a
considerable time overhead which would make some applications impractical,
yet the possibility of an OSGi-like platform implemented on top of the .NET
framework exists.

There have been a few projects that aim towards the development of a
PaaS cloud based on the .NET framework. One such project is the Aneka
Cloud Platform described in [172]. The goal of the Aneka project is to provide
a PaaS cloud that enables the deployment of public, private or hybrid clouds.
The Aneka platform is based on Aneka containers. They provide the services
required for platform management and the runtime necessary for the execution
of applications.

Security inside the Aneka platform is handled by providers of authentica-
tion and authorization. The providers have the role of abstracting the concrete
mechanisms that perform the task. As such, Aneka is able to use the underly-
ing authentication and authorization mechanisms of the environment in which
it was deployed if required and also to provide custom ones.

Although the general mechanisms used for application isolation in current
cloud environments have been presented, the speci�cs implemented in Aneka
related to this domain have not been detailed in the referenced work. As a
result, the reader is unsure if Aneka contains implicit isolation or sandboxing
for its deployed applications or if the Aneka user is responsible for developing
her/his own isolation mechanisms.

In a previous work [173] Aneka has been described as an enterprise grid
platform. In addition to the membership-based security approach described
above, [173] also presents the possibility of using a certi�cation-based approach
with X.509 certi�cates for authentication. No further details related to the
application isolation mechanisms used are given.

B.6 Monitoring External Code Execution to
Enforce Security

The security features of VPs and the related research e�orts studied so
far try to build a safe environment by addressing the platform characteristics

13. http://msdn.microsoft.com/en-us/library/Aa286569
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that can be used by malevolent code (e.g. not proper thread termination
mechanisms).

Another complementary approach is to monitor untrusted code execution
to ensure that security policies are ful�lled by tenants' code. For example a
security policy that could be enforced in PaaS systems is to impose tenants
code to apply SSL connections when sockets are used. Relevant research works
related with this approach are analyzed in this section.

The components that monitor code execution and take actions when some
policy is violated are denoted Reference Monitors. Schneider in [174] presents
1) a formalism to determine which security policies can be reinforced by what
he denotes Execution Monitoring (EM); 2) an automata-based mechanism to
de�ne such policies. The formalism uses a set of restrictions: EM only uses
the information obtained by observing the code execution, it does not modify
the code observed. It truncates the code execution when some security policy
is violated.

On the other hand, although Schneider's de�nition of EM does not include
any mechanism that modi�es the executed code, such solutions are also con-
sidered by other authors as EM. Schneider himself states that nothing prevents
using such approach with arbitrary security automata [174].

Security monitors that modify the untrusted code are denoted Inline Ref-
erence Monitors (IRM). Some examples of IRM based solutions are

� SASI [175], it adds code that 1) simulates an automaton that enforces a
certain security policy and 2) it is executed before each untrusted code
instruction.

� Java-MaC [176], an implementation in Java of the Monitoring and Check-
ing architecture, which ensures that the code runs correctly with regards
to a formal speci�cation of requirements.

� Polymer [177], it allows to de�ne monitors in the Polymer language and
translates them to Java bytecode, which is then used to rewrite the
untrusted code.

The idea of weaving security enforcement code inside untrusted modules is
clearly related with Aspect Oriented Programming (AOP). AOP [178] intends
to provide mechanisms to de�ne �crosscutting concerns�, or aspects, that are
present in di�erent components of the same system. Security is one of such
concerns, as many components (if not all) must take into account security
policies and constraints.

Through AOP a PaaS platform could reinforce security rules in a trans-
parent manner [179], like for example log relevant data, implement protection
techniques against bu�er over�ows, etc. The Polymer system is in fact using
an approach similar to AOP. Java-MOP [172] also applies AOP to monitor for-
mal speci�cations in programs. In a recent work [180] the authors present an
XML-based language to express security rules as automata whose edge labels
(i.e. transitions) become AOP pointcuts, that is, places in the code a�ected by
a certain aspect and where the IRMs will be injected. A more straightforward
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application of AOP to security is found in [181]. Here the authors apply AOP
to add role-based access control to a CORBA access control system. Also,
users could apply AOP to point out in which parts of the service some security
policies must be checked.

Rather than injecting extra code to untrusted applications, other solutions
are oriented to the static analysis of software before execution to ensure that
it does not break any security police. For example, Proof Carrying Code [182]
(PCC) carries static information that can be examined before execution to
prove that the code is safe. It is unlikely however that in PaaS systems such
extra information will be available.

Feature JVM CLR MVM I-JVM Ka�eOS

Access
control
mecha-
nisms

Based on
Permis-
sions and
Policies

Based on
Permis-
sions and
Policies

Similar to
JVM

Similar to
JVM

Similar to JVM

Reference
leak

Not �xed Fixed with
ADs

Fixed with
Isolations

Fixed with
Isolations

Fixed with Processes

Shared
static ref-
erences

Not �xed Fixed with
ADs

Fixed with
Isolations

Fixed with
Isolations

Fixed with Processes

Block by
synchro-
nized
static
compo-
nents

Not �xed Fixed with
ADs

Fixed with
Isolations

Fixed with
Isolations

Fixed with Processes

Thread
termina-
tion

Not �xed Not �xed Fixed with
Isolations

Not Fixed Fixed with Processes

Resource
account-
ing

Pro�ling
through
JVMTI.
Resource
accounting
speci�ed
by JSR 284

Pro�ling
mechanism

Generic
resource
manage-
ment
API

CPU,
memory,
#threads,
I/O

CPU and memory

Table B.1: Summary of Security Features of Virtual Platforms

B.7 Discussion and Conclusions

As cloud adoption grows, also there will be an increasing demand for mul-
titenant platforms that allow to run, in a safe manner, untrusted code from
di�erent users in the same container system.
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Figure B.4: Summary of PaaS Security Issues and Solutions at Di�erent Lay-
ers.

But present standard VPs, that could be used as the basic building blocks
of PaaS clouds, still su�er from some important security �aws that must be
taken into account when designing a PaaS system. Figure B.4 summarizes
the main open security issues at each level of a Java PaaS platform. Also, for
each level the �gure brie�y enumerates both the solutions presented in this
survey to address those issues, along with the security mechanisms already
implemented.

Table B.1 summarizes the security features discussed in this chapter for
di�erent VPs. The access control mechanism security feature in that table
refers to the standard security mechanisms explained in Sections B.3 and B.5.
The reference leak, shared static references, block by synchronized static com-
ponents, thread termination and resource accounting features are discussed in
Sections B.3 (for the JVM, MVM, I-JVM and Ka�eOS VPs) and B.5 (for the
CLR VP). From the analysis carried out in those sections it can be concluded
that the standard Java platform still has some limitations that hinder the
safe execution of untrusted code, a capability that we deem necessary for the
construction of PaaS systems. The CLR on the other hand implements more
powerful isolation characteristics that solve some of the problems present in
Java. However it seems that Java is better positioned as a base platform for
building PaaS clouds. First, the CLR still lacks a safe mechanism for thread
termination and a generic resource accounting framework (which is addressed
in Java by JSR 284). Also, remarkable container technologies are based on
the Java platform (J2EE and OSGi) and it is reasonable to expect them to
be the basis of several PaaS platforms (as they are already). Furthermore,
much research e�ort has been put on the JVM to address its security limi-
tations (MVM, Ka�eOS, I-JVM). Of all these works, MVM seems the more
complete solution as it answers all open security issues. I-JVM, on the other
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hand, takes a di�erent approach to isolation, so they allow threads to traverse
di�erent isolates. This way they solve the high costs of inter-isolate commu-
nication present in MVM and Ka�eOS. However, due precisely to its design,
I-JVM does not solve the thread termination issue. Designers of secure PaaS
systems should decide which approach better suits their needs.

Besides the security guarantees achieved by the platform, security in PaaS
clouds must address other aspects. First they must try to enforce security
policies so users do not build applications that are themselves prone to attack.
This can be done through the enforcement of security policies by the code
monitoring techniques studied above. A survey of research in this area shows
that most proposals are based on AOP in the Java platform, which further
positions Java as a good candidate to build secure PaaS clouds.

In any case, future work on VPs and container systems (which will impact
on the security of PaaS clouds) should take into account the risks brought by
multitenancy outlined in this work. They should use or develop artifacts that
bring full isolation among components, blocking access to external references.
Also, it must be possible to stop non-trusted threads without a�ecting the
platform, and mechanisms that allow to implements resource sharing policies
should be available.
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