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During the last years, we have observed a progressive and continuous expansion of human-centered mobile wireless networks. The advent of these networks has encouraged the researchers to think about new solutions in order to ensure ecient evaluation and design of communication protocols. In fact, these networks are faced to several constraints as the lack of infrastructure, the dynamic topology, the limited resources and the decient quality of service and security. We have been interested in the dynamicity of the network and in particular in human mobility. The human mobility has been widely studied in order to extract its intrinsic properties and to harness them to propose more accurate approaches. Among the prominent properties depicted in the literature, we have been specially attracted by the impact of the social interactions on the human mobility and consequently on the structure of the network. To grasp structural information of such networks, many metrics and techniques have been borrowed from the Social Network Analysis (SNA). The SNA can be seen as another network measurement task which extracts structural information of the network and provides useful feedback for communication protocols. In this context, the SNA has been extensively used to perform link prediction in social networks relying on their structural properties.

Motivated by the importance of social ties in human-centered mobile wireless networks and by the possibilities that are brought by SNA to perform link prediction, we are interested by designing the rst link prediction framework adapted for mobile wireless networks as Mobile Ad-hoc Networks (MANETs) and Delay/Disruption Tolerant Networks (DTN). Our proposal tracks the evolution of the network through a third-order tensor over T periods and computes the sociometric Katz measure for each pair of nodes to quantify the strength of the social ties between the network entities. Such quantication gives insights about the links that are expected to occur in the period T + 1 and the new links that are created in the future without being observed during the tracking time. To attest the eciency of our framework, we apply our link prediction technique on three real traces and we compare its performance to the ones of other well-known link prediction approaches. The results prove that our method reaches the highest level of accuracy and outperforms the other techniques. One of the major contributions behind our proposal highlights that the link prediction in such networks can be made in a distributed way. In other words, the nodes can predict their future links relying on the local information (onehop and two-hop neighbors) instead of a full knowledge about the topology of the network.

Furthermore, we are keen to improve the link prediction performance of our tensor-based framework. To quantify the social closeness between the users, we take into consideration two aspects of the relationships: the recentness of the interactions and their frequency. From this perspective, we wonder if we can consider a third criterion to improve the link prediction precision. Asserting the heuristic that stipulates that persistent links are highly predictable, we take into account the stability of the relationships (link and proximity stabilities). To measure it, we opt for the entropy estimation of a time series proposed in the Lempel-Ziv data compression algorithm. As we think that our framework measurements and the stability estimations complement each other, we combine them in order to provide new link prediction metrics. The simulation results emphasize the pertinence of our intuition. Providing a tensor-based link prediction framework and proposing relative enhancements tied to stability considerations represent the main contributions of this thesis. Along the thesis, our concern was also focused on mechanisms and metrics that contribute towards improving communication protocols in these mobile networks. Nevertheless, our eorts were not limited to the major contributions previously mentioned and we had the opportunity to propose two other approaches that can be useful to improve the design and the evaluation of protocols in mobile multi-hop networks. Firstly, we propose a joint model for the IEEE 802.15.4 physical and medium access control layers. Secondly, we advance a self-learning repeated game framework, inspired by "The Weakest Link" TV game, to enforce cooperation in non-cooperative ad-hoc networks.
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Chapter 1 Introduction

The advent of mobile wireless networks, in last decades, has encouraged researchers to think about new solutions to ensure communication between the users of the network. The deployment of a centralized architectures can be costly which limits mobile wireless networks to densely populated area. As devices are carried by humans and the mobility is not restricted to the deployment areas, alternatives are needed to ensure the connectivity. To address this problem, Mobile Ad-hoc Networks (MANETs) [START_REF] Corson | Mobile ad hoc networking (manet): Routing protocol performance issues and evaluation considerations[END_REF] and Delay/Disruption Tolerant Networks (DTNs) [START_REF] Fall | A delay-tolerant network architecture for challenged internets[END_REF][START_REF] Erramilli | Diversity of forwarding paths in pocket switched networks[END_REF] have been proposed. In ad-hoc networks and especially in MANETs, each pair of nodes can be connected by a wireless link or by multi-hop paths. Then, source and destination nodes can be out of range of each other and even though communicate. The network topology can evolve over time as nodes are expected to move. Nonetheless, the MANET routing protocols tend to maintain end-to-end paths between all the nodes. This property highlights the dierence with opportunistic networks as the DTNs. Indeed, in DTNs, it is assumed that no end-to-end paths exist and forwarding a packet from a source to a destination relies only on the mobility of the nodes and the contacts occurred between them.

These networks are then characterized by a multi-hop communication to maintain connectivity between nodes and are faced to several constraints.

1.1

Constraints and Challenges in Mobile Multi-Hop Networks Mobile ad-hoc and delay tolerant networks are faced to specic constraints on top of those related to wireless communication. In the following, we try to depict an overview on some constraints observed in such networks and we highlight the topo-Chapter 1. Introduction logical evolution due to the human mobility.

1.1.1 Major Problems Encountered Some major problems that these networks can be faced with are summarized in the following points:

• Lack of centralized infrastructure: as previously stated, the multi-hop networks are not based on a centralized infrastructure. The network entities have to communicate in a distributed manner (end-to-end or opportunistic communication) to ensure the connectivity.

• Dynamic topology: the nodes in such networks are expected to move, to appear or to disappear. Hence, the topology is rather dynamic than static and is brought to evolve as time goes on. Therefore, it is important to understand this dynamicity and especially when it is tied to human mobility. Identifying structural information of the network through the human behavior can be very useful in order to accurately evaluate and design communication protocols for human-based networks.

• Resource limitation: generally, the nodes that form the network have limited resources in terms of energy, processing capacity and memory which may induce negative impacts on guaranteeing the delivery of messages. Then, these nodes may be non-cooperative in order to preserve their resources for their own benet. Consequently, the communication protocols have to be ecient and adapted to these limitations in order to maximize the lifetime of the networks and its entities.

• Quality of service and security: the quality of service can be needed in order to ensure a fair access to the shared resources. The security also is an important aspect to take into consideration given that the collaboration to carry the information is distributed and the the wireless communication leads to unintentional accessibility (message broadcast).

The topology of such networks, as mentioned, is expected to be dynamic. This evolution can be explained by the appearance of new nodes in the networks, the disappearance of some nodes due to failures or resource limitations or the mobility pattern that characterize people who carry the nodes. This last detail has caught the attention of many researches and it has been shown that the human mobility has high impacts on the network and consequently on its performance [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF]. We give some details about this human mobility in the following section. The Human Mobility: Understanding it to Harness its Properties Human mobility is considered as an important property of human-centered mobile wireless networks [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF]. Therefore, understanding its intrinsic properties is imperative to evaluate and/or to design communication protocols. For this purpose, many initiatives has targeted to collect information about the moves of several users in a network into traces [5,[START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Kim | Extracting a Mobility Model from Real User Traces[END_REF][START_REF] Scott | CRAWDAD trace cambridge/haggle/imote/infocom2006[END_REF][START_REF] Leguay | Opportunistic content distribution in an urban setting[END_REF][START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Nordström | Experiences from measuring human mobility using bluetooth inquiring devices[END_REF]. The data collected gives indications of the locations visited by the users, the time they spend in these locations and sometimes details about their encounters. These traces have been used in many studies and some properties have been pointed out. We cite the skewed location visiting preferences [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF], the time-dependent mobility behavior [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF], the spatio-temporal regularity [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mcnamara | Media sharing based on colocation prediction in urban transport[END_REF], the power-law property of the contact and inter-contact times between nodes [START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF][START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Karagiannis | Power law and exponential decay of inter contact times between mobile devices[END_REF] and the high predictability of human mobility [START_REF] Song | Limits of Predictability in Human Mobility[END_REF]. Some other works have demonstrated that the human mobility is inuenced by the social interactions that exist between the network entities and is directed by social intentions [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mtibaa | Are you moved by your social network application[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF]. These ndings attest that the users of the networks are strongly interdependent and their interactions govern the structure of the network. Hence, stressing on the social ties in such networks will considerably contribute in understanding how the network topology evolves. Consequently, several works have borrowed concepts from the Social Network Analysis (SNA) [111] to harness such a feedback for designing communication protocols [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF] or proposing new techniques to improve these protocols [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF].

The use of the Social Network Analysis has been favored by the lack of infrastructure and the opportunistic aspect that can characterize the communication between nodes. The SNA can be seen as another network measurement task as stressed in [START_REF] Katsaros | Social network analysis concepts in the design of wireless Ad Hoc network protocols[END_REF] which focus on analyzing the relationships between the network entities et interpreting the ndings to extract network properties as the network robustness, the most cental nodes or the emerging communities. These properties describes the structural information of the network which can be used to design communication protocols as [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF] or to perform link prediction in GSM networks as made in [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF].

Having investigated several works based on SNA and particularly those aiming at performing link prediction in social networks [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] and believing that it is possible to harness the social interactions in human-centered mobile wireless networks, one of our motivations in this thesis aims at proposing a framework which is able to perform link prediction in such networks. In the following section, we detail in deep the major motivations that brought us to provide the contributions of this thesis Chapter 1. Introduction

Motivations and Contributions

In last decades, mobile multi-hop wireless networks and especially those which are human-centered have been widely studied and many approaches have been proposed in order to understand the properties of these networks and propose adapted communication protocols.

As discussed in the previous section, the topology in these network is dynamic and the human mobility has been highlighted as one of the key parameters which has an important impact on the structure of the network and consequently on the performance of the communication protocols [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF]. Also, it has been shown that the human mobility is dependent on the interactions between the nodes carried by the users which form a social network [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mtibaa | Are you moved by your social network application[END_REF]. Therefore, it is crucial to understand the properties for the human mobility to create more realistic mobility models to mimic real human-centered wireless networks and to design more ecient communication protocols. For this aim, many researchers have borrowed centrality metrics [111, [START_REF] Page | The PageRank Citation Ranking: Bringing Order to the Web[END_REF][START_REF] Hwang | Bridging centrality: Graph mining from element level to group level[END_REF] and community detection techniques [111,[START_REF] Bollobas | Modern Graph Theory[END_REF][START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF][START_REF] Newman | Modularity and community structure in networks[END_REF] of the Social Network Analysis (SNA) [111] to propose, for example, new designs for communication protocols [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF].

In data-mining, the Social Network Analysis tool has been used to introduce the link prediction problem [START_REF] Liben | The link-prediction problem for social networks[END_REF]. Moreover, many other works [START_REF] Wang | Local Probabilistic Models for Link Prediction[END_REF][START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Backstrom | Supervised random walks: predicting and recommending links in social networks[END_REF][START_REF] Shin | Multi-scale link prediction[END_REF] have highlighted the eectiveness of link prediction in social networks as the co-authorship networks [4,6] or social network websites as Facebook. The link prediction concept has been used in mobile phone networks [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] and has shown interesting results.

These ndings have motivated us to design a link prediction framework which can be used in MANETs and in DTNs. To do so, we propose the following salient steps for our framework inspired by the data-mining works [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF]. First, it tracks the evolution of the topology or the neighborhood through a third-order tensor (a set of adjacency matrices tracking contacts over successive time periods). Then, it collapses the collected data by allocating a weight to each link according to its lifetime and its recentness. Finally, it applies the Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] on the collapsed data to obtain prediction scores that express the strength of the social ties for each pair of nodes. For the best of our knowledge, we are the rst to propose such a link prediction technique for mobile multi-hop wireless networks. Moreover, instead of data-mining approaches which assume that there is a central entity which has full knowledge of the topology evolution, we propose to perform link prediction in a distributed way. That is to say that each node constructs its own tensor and performs link prediction relying on local information (the detected neighbors) which is more adapted to the context of mobile wireless networks.

Motivations and Contributions

Furthermore, we aim to improve the performance of our link prediction framework by considering a new criterion that characterizes the interactions between nodes. In our framework, we have designed link prediction using the recentness and the lifetime of contacts and we wonder if the stability of the interactions can be useful for our task. We derive this intuition from the following heuristic: if two nodes have been related through a stable link during a tracking period, this link expected to be persistent in the future. To full this requirement and to quantify stability, we use the entropy estimator used in Lempel-Ziv data compression [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF] as it estimates well the entropy of a time series. Afterwards, we propose to combine the outputs of our link prediction framework with the stability quantication in order to promote new entropy-based link prediction metrics.

In this thesis, we have been concerned by providing an ecient link prediction technique for these mobile networks as we strongly believe that the feedback provided by this framework can be helpful for communication protocols. In MANETs, link prediction can be used to detect the robustness of the routes and estimate the time needed to refresh routing tables. For DTNs, where communication is rather opportunistic, link prediction can be benecial in detecting possible future interactions which may enhance the message delivery.

Providing a tensor-based link prediction framework and proposing relative enhancements tied to stability considerations represent the main contributions of this thesis. As we have emphasized, our concern has focused on mechanisms and metrics that contribute towards improving communication protocols in these mobile networks. Nevertheless, our concern has not been limited to this major contributions and we have had the opportunity to propose two other approaches that can be useful to improve the design and the evaluation of protocols in mobile multi-hop networks. Firstly, we have been interested in the IEEE 802.15.4 standard [2]. Many works have been proposed to model the physical layer (PHY layer) [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF] and the medium access layer (MAC layer) [START_REF] Pollin | Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer[END_REF][START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]. These models have been designed to mimic the processing in the PHY and MAC layers and to estimate performance indicators as the probability of a packet loss. In the literature, the models have been distinct: they are reproducing either the PHY layer or the MAC layer. From this perspective, we have been motivated to provide a comprehensive model which is able to mimic more faithfully the functionalities of the standard by considering both PHY and MAC layers of IEEE 802. 15.4. We propose a combination of two relevant models for the two layers. The PHY layer behavior is reproduced by a mathematical framework, which is based on radio and channel models, in order to quantify link reliability [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF]. Regarding the MAC layer, it is mimed by an enhanced Markov chain [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]. This contribution allows us fully and more precisely to estimate the network performance with dierent network sizes, as well as dierent metrics such as node reliability and delay. Our contribution enables us to track possible failures at both layers.

Secondly, we have pointed out that the nodes in multi-hop networks and especially for MANETs have limited energy resources. Thus, a node tends to behave selshly when it is asked to forward the packets of other nodes. Indeed, it would rather reject a forwarding request in order to save its energy. To overcome this problem, the nodes need to be motivated to cooperate. To this end, we propose a self-learning repeated game framework, as designed in [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF][START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF], to enforce cooperation between the nodes of a network. This framework is inspired by the concept of "The Weakest Link" TV game. Each node has a utility function whose value depends on its cooperation in forwarding packets on a route as well as the cooperation of all the nodes that form this same route. The more these nodes cooperate the higher is their utility value. This would establish a cooperative spirit within the nodes of the networks. All the nodes will then more or less equally participate to the forwarding tasks which would then eventually guarantee a more ecient packets forwarding from sources to respective destinations. In the same time, defecting nodes are automatically punished which causes a dramatic decrease of their benets and encourages them to be more cooperative.

Dissertation Organization

The rest of the dissertation is organized in two major parts. The rst part is dedicated to the tensor-based link prediction framework and its relative improvements. It is built around three chapters.

In Chapter 2, we explain how human mobility is crucial for human-centered mobile wireless networks. To do so, we give an overview on the mobile wireless networks based on human interactions and we emphasize the importance of human mobility as a key parameter which may impact the structure of the network and consequently its performance. Then, we depict the major properties of the human mobility presented in the literature and we stress how social interactions between the users inuence their mobility patterns. From this perspective, we present the Social Network Analysis (SNA) which concepts and mechanisms have been borrowed to extract structural information about the network. We point out the implication of SNA in data-mining and especially in performing link prediction in social networks and our motivation to address the problem of link prediction in the case of humancentered mobile wireless networks.

Dissertation Organization

Then, we present in Chapter 3 a tensor-based link prediction framework devoted to our context, human-centered wireless networks. We detail in this chapter the salient steps followed by this framework in order to perform link prediction: collecting the contact occurrences during an historical, collapsing the data and applying a sociometric measure which is the Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] for each link. The obtained link scores are used to interpret if a link is expected to occur in the future. After presenting our link prediction framework, we assess its eciency by performing link prediction on three real traces and comparing its performance to other well-known link prediction techniques.

In Chapter 4, we highlight our motivation to improve the performance of our tensor-based link prediction framework. We emphasize our belief that measuring the stability of interactions between nodes is helpful to enhance the prediction performance of our framework. Indeed, we explain how quantifying such a stability can improve link prediction eciency and how we design measuring such a parameter with applying an entropy estimator used in Lempel-Ziv data compression [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF]. Afterwards, we advance some combinations between the outputs of our framework and the stability estimation to express new link prediction measures. In order to verify the contribution of our proposal and as done in the previous chapter, we evaluate our advanced metrics using real traces and we compare them to some other well-known link prediction metrics.

Regarding the second part, it consists of two chapters in which we present two other contributions proposed in the thesis. It expresses our concern to provide other techniques and metrics towards improving the evaluation and the conception of communication protocols in mobile multi-hop wireless networks.

In Chapter 5, we depict a joint model for IEEE 802.15.4 physical (PHY) and medium access control (MAC) layers for the Smart Grid project. We detail the approaches that have inspired us to design the PHY and MAC layers and how we join them to obtain a more comprehensive model. The joint model considers errors at both levels which enables us to reach better precision in estimating network performance. We present also some simulation scenarios to point out the precision provided by our joint model compared to a relevant model [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF] that mimics the MAC layer only.

In Chapter 6, we present a self-learning repeated game dedicated to non-cooperative MANETs in order to maintain the network connectivity. We describe the system model based on the concept of the famous "Weakest Link" TV game and the problem formulation. Then, we explain why we have opted for a repeated game and how we have employed a self-learning mechanism joined to punishment threats. Moreover, we evaluate our proposal by comparing it to two other self-learning repeated Chapter 1. Introduction games proposed in the literature [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF][START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF].

Finally, we conclude this dissertation, in Chapter 7, by summarizing the contributions of this thesis and proposes future directions of research.

We provide all the thesis publications in Appendix A. This dissertation is written in English and for the sake of accessibility, we provide a summary in French language in Appendix B. 

Introduction

In this chapter, we present the state of the art about the studies that have focused on the human mobility in human-centered mobile wireless networks (MANETS, DTNs,. . . ). The human mobility in this context is a key parameter as it has an impact on the structure of the network. Understanding the properties of the human mobility is crucial to evaluate and improve communication protocols in such networks. For this aim, many techniques used in Social Network Analysis (SNA) have been borrowed by the researchers. The information extracted through these techniques has notably contributed in providing solutions and insights for the link prediction in social networks problem. These ndings widely used in data-mining have motivated us to propose our tensor-based link prediction in mobile wireless networks. In this chapter, we detail how human mobility impacts on an underlying social network and how to exploit the Social Network Analysis. The SNA enables us to extract intrinsic properties of the network and we use them to perform link prediction.

Mobile Wireless Networks

We propose in this section to study various mobile ad-hoc networking architectures. There are three main categories and each category is dened by the mobility of the nodes and by the network dynamicity. The three categories are:

• Mobile ad-hoc networks (MANETs).

• Delay or disruption tolerant networks (DTNs).

• Opportunistic networks.

Mobile Ad-Hoc Networks

Wireless networks can be classied into two categories: infrastructure-based networks and ad-hoc networks (Sensor networks, MANETs, DTNs). When the network is deployed with an infrastructure, the nodes communicate with one or many base stations. The set of all base stations (such as access points) are connected to a backbone. On the other hand, the ad-hoc networks have no infrastructure and are totally decentralized. Indeed, the networks consists of autonomous mobile nodes that are connected through wireless links and which may play the role of routers to ensure communication between any pair of source-destination [START_REF] Corson | Mobile ad hoc networking (manet): Routing protocol performance issues and evaluation considerations[END_REF]. In ad-hoc networks and especially in MANETs, each pair of nodes can be connected by a wireless link or by multi-hop paths. Then, source and destination nodes can be out of range of each other and even though communicate. The network topology can evolve over time as nodes are expected to move. Nonetheless, the MANET routing protocols tend to maintain end-to-end paths between all the nodes. This property highlights the dierence with opportunistic networks where it is assumed that no end-to-end paths exist and forwarding a packet from a source to a destination relies only on the mobility of the nodes and the contacts occurred between them.

Delay Tolerant Networks

The Delay or Disruption Tolerant Network (DTN) architecture is a paradigm that has been advanced in order to provide services for challenging networks [START_REF] Fall | A delay-tolerant network architecture for challenged internets[END_REF] (ensuring connectivity in rural areas [START_REF] Doria | Providing Connectivity to the Saami Nomadic Community[END_REF][START_REF] Seth | Low-cost communication for rural internet kiosks using mechanical backhaul[END_REF], military networks [START_REF] Rigano | Mitigating naval network instabilities with disruption toler[END_REF], underwater networks [START_REF] Partan | A survey of practical issues in underwater networks[END_REF], . . . ). The DTNs are deployed in environments where the connectivity is intermittent or scheduled and may undergo high error rates, long delays and low data rates. These networks cannot maintain end-to-end paths between nodes due to the mentioned constraints. Nevertheless, forwarding a packet from a source to a destination in these networks relies on the store-and-forward multi-hop routing based on the occurrence of contacts between intermediate nodes.

Opportunistic Networks

Opportunistic networks have the same characteristics as DTNs in terms of delay and disruption tolerance but designed with the consideration of more unpredictable mobility (the connectivity is not really scheduled) [START_REF] Erramilli | Diversity of forwarding paths in pocket switched networks[END_REF]. From this perspective, the opportunistic networks can be viewed as a generalization of DTNs. The Pocket Switched Networks (PSN) [START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF] represent an example of opportunistic networks.

A Key Parameter for Mobile Wireless Networks: Human

Mobility

With the growth of these mobile networks and the sophistication of portable computation and communication devices, the human mobility becomes a paramount phenomenon that impacts the structure of the network as shown in [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF]. Hence, it is important to understand the human mobility to ensure accurate evaluations and analyses of the performance of communication protocols and applications. In the following section, we give a more deep information about human mobility and list its major properties detailed in the literature.

Human Mobility

Human Mobility

Human mobility represents a key property of mobile wireless networks. Then, it is crucial to study it in order to understand its intrinsic characteristics and exploit these ndings to design and/or evaluate communication mechanisms in such networks.

In this section, we provide a related work about analyzing human mobility and designing models that mimic the human behavior.

Towards Understanding Human Mobility

To reproduce human mobility, two rst individual models have been proposed: the Random Walk or Brownian motion [START_REF] Einstein | Investigations on the theory of the brownian movement[END_REF] and the Random Waypoint model [START_REF] Johnson | Dynamic Source Routing in Ad Hoc Wireless Networks[END_REF].

Nodes that use Random Walk move, at each step, with a speed chosen from a distribution towards a random position on a moving area. When a node reaches its destination, it xes a new speed and picks new random position to which it have to move and the process is repeated. When the Random Waypoint model is considered, the same process as Random Walk is reproduced with adding pause times between each step. Many other mobility models that are similar to two cited approaches are detailed in [START_REF] Camp | A Survey of Mobility Models for Ad Hoc Network Research[END_REF][START_REF] Musolesi | Mobility Models for Systems Evaluation[END_REF]. There are also group mobility models proposed in the literature, such as [START_REF] Hong | A Group Mobility Model for Ad Hoc Wireless Networks[END_REF], where the movement of nodes are correlated to the one of the clusterhead. Such models have been widely used in simulations to attest the eciency of communication protocols in the context of intermittent connections. Despite the popularity of such synthetic models, it has been shown that they are unable to really reproduce the complexity of human behavior [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Musolesi | Mobility Models for Systems Evaluation[END_REF]. From these perspective, many researchers have focused on collecting data and especially encounters between nodes from real life scenarios (conferences, student campuses, meetings,. . . ). Relaying on real traces, it is possible to identify salient properties of human mobility and perform more accurate simulations and more reliable evaluations.

Encounter Traces

In last years, many data collections about encounters in intermittently connected wireless networks have been led [START_REF]Community resource for archiving wireless data at dartmouth[END_REF]. The corresponding traces are divided into two categories according to the encounters between mobile devices: the traces with derived encounters and those with direct encounters. The derived encounters are deduced from data sets that describe the correspondences between mobile devices and access points in the network. In the literature, we nd several traces of this type [5,[START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Kim | Extracting a Mobility Model from Real User Traces[END_REF]. The encounters between Chapter 2. Human-Centered Mobile Wireless Networks: Human Mobility in the Service of Link Prediction access points and mobile devices are used to analyze mobility and evaluate communication protocols by assuming that two nodes are direct neighbors if they are connected to the same access point at the same time [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF]. As done in [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Song | Mobile Opportunistic Networks, chapter Routing in Mobile Opportunistic Networks[END_REF], we use parts of the traces [5] and [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF] to derive encounters from the correspondences between access points and nodes connected to.

On the other hand, many initiatives [START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF][START_REF] Scott | CRAWDAD trace cambridge/haggle/imote/infocom2006[END_REF][START_REF] Leguay | Opportunistic content distribution in an urban setting[END_REF][START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Nordström | Experiences from measuring human mobility using bluetooth inquiring devices[END_REF] have targeted to collect direct encounters in various environments. The studies [START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF][START_REF] Scott | CRAWDAD trace cambridge/haggle/imote/infocom2006[END_REF][START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Nordström | Experiences from measuring human mobility using bluetooth inquiring devices[END_REF] have asked people to carry iMotes (Intel Motes) [START_REF] Nordström | Experiences from measuring human mobility using bluetooth inquiring devices[END_REF] in limited areas (conferences, campuses, city locations, . . . ) and the one proposed by Leguay et al. [START_REF] Leguay | Opportunistic content distribution in an urban setting[END_REF] in wide areas (cityscale measurements). In our work, we use also this kind of traces and we have been interested in a part of the trace of Infocom 2006 [START_REF] Scott | CRAWDAD trace cambridge/haggle/imote/infocom2006[END_REF].

Human Mobility Properties

Using the encounter traces has enabled researchers to highlight interesting properties of the human properties. Indeed, the studies [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mcnamara | Media sharing based on colocation prediction in urban transport[END_REF] have observed and analyzed the periodic aspect of human mobility. It has been shown that people move between well dened locations and that the time spent in dierent locations follows power-law [START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF]. These observation has been used to design new mobility models as the TVC model (Time-Variant Community mobility model) proposed in [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF]. This mobility model is based on two human mobility properties: the skewed location visited preferences and the time-dependent mobility behavior. Many other works [START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF][START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Karagiannis | Power law and exponential decay of inter contact times between mobile devices[END_REF] have also emphasized the power-law property of the contact and inter-contact times between nodes. Also, Song et al. [START_REF] Song | Limits of Predictability in Human Mobility[END_REF] have been interested in mobility patterns of cellular network users and have demonstrated that human mobility is highly predictable. They have found a 93% potential predictability in user mobility which is typically characterized by a lack of variability and which predictability is independent of the distance that can be covered by any user.

Recently, some studies have been interested in the impact of the social interactions on human mobility [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mtibaa | Are you moved by your social network application[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF]. Eagle and Pentland [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF] have outlined how a common context (work, hobby,. . . ) in which two users evolve can be used to deduce their social relationship. Mtibaa et al. [START_REF] Mtibaa | Are you moved by your social network application[END_REF] have shown correlations between the contact graph and the social graph of mobile users participating in a conference. Thakur et al. [START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] have highlighted that the characteristics of the traces obtained through the Time-Variant Community mobility model (TVC model) are not similar to those collected in real scenarios. The major cause behind this observation is that the TVC model reproduces the individual behavior (location preferences and timedependent mobility behavior (circadian rhythm for example)) without correlating it with other behaviors. In other words, using such a model generate users that have not preferred contacts (strong friends) and consequently no consistent social interactions. To emphasize these ndings, Thakur et al. have proposed to compute a similarity metric. It measures the degree of similarity of the behaviors of two mobile nodes and the behavior of each node is expressed by an association matrix. The columns of the matrix represent the possible locations that a node can visit and the rows express time granularity (hours, days, weeks, etc.). The dominant behavioral patterns are tracked using the Singular Value Decomposition (SVD) [START_REF] Horn | Matrix Analysis[END_REF]. For more details about the similarity metric computation, we refer the reader to [START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF].

From this perspective, the nodes in such networks are strongly interdependent and the interactions between them govern the structure of the network. This fact has motivated researchers to apply the Social Network Analysis (SNA) [111] to extract intrinsic properties of the network and to exploit them to design more ecient communication protocols.

2.4

Social Network Analysis and Link Prediction Given that many of wireless opportunistic networks are human-centered and due to the lack of infrastructure and/or the opportunistic forwarding, the use of SNA has been favored. The SNA tends to analyze the social interactions in a network and to exploit the underlying ndings in order to ensure a better packet delivery. Instead of network measurements tied to the network performance (latency, throughput, . . . ), the SNA can be viewed as another technique to grasp other network characteristics.

As highlighted by Katsaros et al. [START_REF] Katsaros | Social network analysis concepts in the design of wireless Ad Hoc network protocols[END_REF], the SNA relies on the centrality metrics in order to identify which are the most important and inuent nodes in the network. Moreover, it provides manifold community detection mechanisms. Such metrics and mechanisms contribute in the analysis of the social aspects in the network. In fact, they provide structural information of the network: existence and strength of communities, central nodes, network robustness to dynamicity, topology evolution as time goes on, . . . Several algorithm have been based on SNA to increase the reliability of mobile wireless networks. These algorithms closely rely on human mobility and then sensitive to human social interactions. Hui et al. [START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF] have proposed BubbleRap, a social based forwarding algorithm. It combines two major aspects of society. Indeed, Bubble takes into consideration the knowledge of community structure and the betweenness centrality characterization (fraction of shortest paths crossing a Chapter 2. Human-Centered Mobile Wireless Networks: Human Mobility in the Service of Link Prediction node). Given that a node belongs at least to one community and has two ranking parameters (a global ranking, in the whole system, related to global centrality parameter and a local ranking, within the local community), the algorithm is as following: when a node has a message to deliver to another one, it bubbles it up the hierarchical ranking tree based on centrality (nodes called hubs) until it is received by a node belonging to the same community as the destination. After that, the local ranking (inside the community) is considered and the message is forwarded till it reaches the destination. In the same way, Daly and Haahr present SimBet Routing [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF] based on small world dynamics [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF]. This proposition addresses the problem of dicult communication in sparse mobile ad hoc networks. To overstep the cited diculty, the authors lean on discovering a route that maximize the delivery rate and minimize the end-to-end delay. This challenge is raised even if the network is assimilated to a disconnected graph. To do this, they dene a forwarding metric that relies on node's centrality (or ego-centrality) within the network and on node's social similarity (common neighbors) to the destination. Hossmann et al. [START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF] highlight the crucial impact of ecient mappings of mobility contacts on aggregated social graphs, used by DTN algorithms to determine forwarding decisions. They note that social DTN routing protocols BubbleRap [START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF] and SimBet [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF], that we have detailed, contribute to achieve better performances compared to not explicitly social ones. They target to identify what are the conditions that improve the performances and why.

The SNA has been also exploited in link prediction in social networks and especially in data-mining, for co-authorship networks. We detail in the following subsection how the problem of link prediction has been stated and we detail which are the dierent categories of techniques used to perform link prediction.

Link Prediction in Social Networks

Social networks are dynamic as they can grow and change very rapidly as time goes on. These variations can be translated by the creation of new edges in the network which matches with the apparition of new interactions in the social relationships. Meanwhile, strong social ties are expected to "resist" to these changes and infer persistence and stability. Therefore, understanding the mechanisms that inuence the evolution of the social networks is a fundamental question. From this perspective, in order to understand how social networks evolve, Liben-Nowell and Kleinberg [START_REF] Liben | The link-prediction problem for social networks[END_REF] have focused on the link prediction problem. In fact, they have dened this basic computational problem: given a snapshot of a social network at time t, how can we accurately predict the edges that will be added in the network in the time interval t ′ -t where t ′ is a given future time? Liben-Nowell and Kleinberg have advanced an interesting insight about the social networks. Indeed, they have stated that the link prediction problem is about identifying the extent of the social network using intrinsic properties of the network itself. Hence, they have considered features based on the common neighborhood and the link structure of the network and they have highlighted the importance of the link prediction in improving the applications in social networks. In the same way, Lü and Zhou [START_REF] Lü | Link prediction in complex networks: A survey[END_REF] proposed a detailed presentation of the features that can be used to perform link prediction in social networks. They have classied them into three dierent categories:

• Local Similarity Indices which are built on the common direct neighbors that two nodes can have.

• Global Similarity Indices that relies on the paths that connect two nodes.

• Quasi-Local Similarity Indices which correspond to measures that take into consideration local paths (limited number of hops).

In our major contribution, we have been interested in some of these indices. We dene them briey:

Common Neighbors: for a node i, let Γ(i) be the set of direct neighbors of i.

When two nodes i and j have several common neighbors, it is expected that a link occurs between them. The number of common neighbors between the nodes i and j is dened as:

Common_N eighbors(i, j) = |Γ(i) Γ(j)| (2.1)
Salton Index [START_REF] Salton | Introduction to Modern Information Retrieval[END_REF]: it also called cosine similarity in the literature. Given that k i is the degree of the node i, the Salton Index is expressed by:

Salton_Index(i, j) = |Γ(i) Γ(j)| k i × k j (2.2)
Jaccard's Coecient [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et des jura[END_REF]: is dened as the ratio of the number of common neighbors of two nodes i and j and the cumulative number of all their neighbors. Is expressed as following:

Jaccard ′ s_Coef f icient(i, j) = |Γ(i) Γ(j)| |Γ(i) Γ(j)| (2.3)
Sørensen Index [START_REF] Sørensen | A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons[END_REF]: the use of this index is generally limited to ecological 

Sorensen_Index(i, j) = 2|Γ(i) Γ(j)| k i + k j (2.4)
Hub Promoted Index (HPI) [START_REF] Ravasz | Hierarchical organization of modularity in metabolic networks[END_REF]: this measure is used to quantify the topological overlap of pairs of substrates in metabolic networks [START_REF] Ravasz | Hierarchical organization of modularity in metabolic networks[END_REF]. It expressed as follows:

HP I(i, j) = |Γ(i) Γ(j)| min(k i , k j ) (2.5) 
Hub Depressed Index (HDI): this index, which is analogous to the previous measure, was advanced by Lü and Zhou [START_REF] Lü | Link prediction in complex networks: A survey[END_REF]. It is dened by:

HDI(i, j) = |Γ(i) Γ(j)| max(k i , k j ) (2.6) 
Adamic-Adar Index [START_REF] Lada | Friends and neighbors on the Web[END_REF]: Adamic and Adar have dened their similarity index by giving weights to all common neighbors of a pair of nodes (i, j). The lower the degree of the common neighbor is, the higher its weight gets. The Adamic-Adar Index is given by:

Adamic -Adar_Index(i, j) = z∈Γ(i) Γ(j) 1 log k z (2.7)
Resource Allocation Index [START_REF] Zhou | Predicting missing links via local information[END_REF]: it is exploited in the resource allocation in dynamic networks [START_REF] Ou | Power-law strengthdegree correlation from resource-allocation dynamics on weighted networks[END_REF]. It is similar to the Adamic-Adar Index and dened by:

Resource_Allocation_Index(i, j) = z∈Γ(i) Γ(j) 1 k z (2.8)
Rooted PageRank Index [START_REF] Han | Scalable proximity estimation and link prediction in online social networks[END_REF]: this index is considered as an application of the PageRank algorithm [START_REF] Brin | The anatomy of a large-scale hypertextual Web search engine[END_REF]. The score matrix is given by:

P ageRank_Score_M atrix = (1 -β)(I -βT ) -1 (2.9)
where β is the probability that a random walk moves from a node to one of its random neighbors and T = DA with A is the adjacency matrix of the network and

D ii = 1/ A ij , D ij = 0 when i = j.
connect two nodes i and j. It is expressed by:

Katz_M easure(i, j) = ∞ l=1 β l • |paths <l> ij | (2.10)
where paths <l> ij denotes the set of all paths of length l that connect i to j and β represents the damping factor (the value of β is between 0 and 1 and then the longer a path is, the lower its weight gets).

Many studies such as [START_REF] Liben | The link-prediction problem for social networks[END_REF][START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Backstrom | Supervised random walks: predicting and recommending links in social networks[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Shin | Multi-scale link prediction[END_REF] have demonstrated that using intrinsic properties of the network leads to predict the links in a social network. Liben-Nowell and Kleinberg [START_REF] Liben | The link-prediction problem for social networks[END_REF] have demonstrated that measuring network proximity is able to give insights on link prediction in co-authorship networks [4,6]. Acar et al. [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF] and Dunlavy et al. [START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF] have explored dierent matrix-and tensor-based techniques that track the evolution of the network during a number of periods and predict the social network topology in the following period(s). These techniques and especially the tensor-based one have been coupled to the Katz measure as this measure quantify the network proximity of a pair of nodes based on the paths that connects them. Social network services and websites have interested researches about link prediction in social networks. Backstrom and Leskovic [START_REF] Backstrom | Supervised random walks: predicting and recommending links in social networks[END_REF] have developed an algorithm based on Supervised Random Walks to grasp the structure of the social network and to assign weights to the edges. Applied notably on Facebook, the proposed algorithm predicts for each user a list of potential "friends". Shin et al. [START_REF] Shin | Multi-scale link prediction[END_REF] have proposed a general framework for multi-scale link prediction (MSLP) which handles large-scale social networks as LiveJournal, Flickr and MySpace. This algorithm constructs low-rank approximations of a social network for dierent scales. At each scale, the approximated network proximity of each pair of users is determined and Shin et al. have opted for the Katz measure. Afterwards, the MSLP algorithm combines the approximative network proximity scores for all scales and make the prediction based on combined scores.

It is important to mention that most of the cited works have highlighted that the link prediction performance of the Katz measure outperforms the ones of the other indexes. We have used this metric in our work and we will give more details about it in the following chapter.

Concerning link prediction in mobile wireless networks, we have remarked the work of Wang et al. [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF]. Through their study on records of 6 million mobile phone users, they have aimed to highlight the relationship between the individual mobility patterns and the social network formed by the users. They have proposed to measure the behavior similarity of two users through two categories of metrics: Chapter 2. Human-Centered Mobile Wireless Networks: Human Mobility in the Service of Link Prediction the network proximity metrics (Common Neighbors, Adamic-Adar, Jaccard's Coecient, Katz Measure) and the mobility homophily metrics such as the Spatial Cosine Similarity and the Co-Location Rate [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF]. On top of nding that the similarity of movements of two users is highly correlated to their proximity in the network, Wang et al. have shown that all these measures have an interesting predictive power and that combining them through a supervised learning improves signicantly the link prediction performance.

We have been interested in the two mobility homophily metrics cited above to compare our work to other link prediction techniques in chapter 4. Wang et al. dened the most likely location of a mobile phone user i as:

M L(i) = arg max l∈Loc P V (i, l) (2.11)
where Loc designates the set of all locations which are cell phone towers. and

P V (i, l) = n(i) a=1 δ(l, L a (i))/n(i)
(2.12) represents the probability that user i is in the location l. The function δ has two inputs x and y. If x = y then δ(x, y) = 1 and 0 otherwise. The parameter a represents the step number and L a (i) returns the location visited by the user i at the step a.

Using this probability, Wang et al. dened many homophily metrics and we have retained the two following metrics: Spatial Cosine Similarity : it is used to capture the cosine similarity of the trajectories of two users i and j. If these two users share similar visited locations, the cosine similarity tends to be high and a link is expected to occur as these two users seem to be close. The spatial cosine similarity is expressed as follows:

SCos(i, j) = l∈Loc P V (i, l) × P V (j, l) P V (i, l) × P V (j, l) (2.

13)

Co-Location Rate : this metric computes the probability that two users i and j appear in the same location l during approximatively the same time:

CoL(i, j) = n(i) a=1 n(j) b=1 Θ(∆T -|T a (i) -T b (j)|)δ(L a (i), L b (j)) n(i) a=1 n(j) b=1 Θ(∆T -|T a (i) -T b (j)|) (2.14)
where Θ(x) is the Heaviside step function and ∆T is the maximum delay between of two nodes i and j visiting timestamps in the same location l which enables us 2.5. Conclusion to say that these two nodes can be considered as co-located in l. The parameters a and b correspond to the step numbers that characterize the nodes i and j. The function δ(L a (i), L b (j)) returns 1 if the node i in the step a of its move is in the same location as node j during its moving step b.

Conclusion

In this chapter we have shown how interactions between the entities in a social network can be important to perform link prediction. In this way, we want to exploit such interactions in human-centered mobile wireless networks as MANETs and DTNs to perform ecient link prediction. In the following chapter, we present a detailed description about our tensor-based link prediction framework which is inspired from data-mining and adapted to the context of human-centered mobile wireless networks. 

Introduction

In recent years extensive research has addressed challenges and problems raised in mobile, sparse and intermittently connected networks (i.e. DTN). In this case, forwarding packets greatly depends on the occurrence of contacts. Since the existence of links is crucial to deliver data from a source to a destination, the contacts and 3.1. Introduction their properties emerge as a key issue in designing ecient communication protocols [START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF]. Obviously, the occurrence of links is determined by the behavior of the nodes in the network [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF]. It has been widely shown in [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] that human mobility is directed by social intentions and reects spatio-temporal regularity. A node can follow other nodes to a specic location (spatial level) and may bring out a behavior which may be regulated by a schedule (temporal level). The social intentions that govern the behavior of mobile users have also been observed through statistical analyses in [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Karagiannis | Power law and exponential decay of inter contact times between mobile devices[END_REF] by showing that the distribution of inter-contact times follow a truncated power law.

With the intention of improving the performance of intermittently connected wireless network protocols, it is paramount to track and understand the behavior of the nodes. We aim to propose an approach that analyzes the network statistics, quanties the social relationship between each pair of nodes and exploits this measure as a score which indicates if a link would occur in the immediate future. We strongly believe that the social ties between nodes govern the status of a link and establish an indication for the link prediction: it would not occur if two nodes have no common interactions or willingness and would be eective and persistent with more correlated moving patterns.

In this chapter, we adapt a tensor-based link prediction algorithm successfully designed for data-mining [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF]. Our proposal records the network structure for T time periods and predicts all link occurrences for the (T + 1) th period and estimates the birth of new links (that have not occurred during the preceding T recording periods). This link prediction technique is designed through two steps. First, tracking time-dependent network snapshots in adjacency matrices which form a third-order tensor (two dimensions for nodes as adjacency matrices and one dimension for time to obtain the evolution of the network structure). Second, applying of the Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] inspired by sociometry. The link prediction technique computes the degree of behavioral similarity of each pair of nodes relying on the tensor obtained in the rst step. A high degree of behavior similarity means that the two nodes have the same "social" intentions. These common intentions are expressed by the willingness to meet each other and/or by similar moving patterns to visit the same location. They also promote the link occurrence between two socially similar nodes in the immediate future (prediction for the period T +1 after tracking the behavior of nodes during T time periods).

We discuss how we have designed the tensor-based prediction method and detail the two main steps in order to achieve link prediction. On the one hand, we describe how to track the network topology over time with a tensor. On the other hand, we explain how to compute and interpret the Katz measure. We then evaluate the Chapter 3. Tensor-Based Link Prediction Framework for Mobile Wireless Networks eectiveness of predictability through several simulation scenarios depending on the trace, the number of recording periods and the similarity metric computation which can be used in a centralized or a distributed way. To the best of our knowledge, this work is the rst to perform the prediction technique in a distributed way. By "distributed way", we mean that each node in the network uses local information (the contacts with neighbors) to predict future links. The assessment of its eciency can be benecial for the improvement of the design of communication protocols in mobile, sparse and intermittently connected networks.

This chapter is organized as follows: Section 3.2 presents the related work that highlights the growing interest in social analysis and justies the recourse to the tensors and to the Katz measure to perform predictions. In Section 3.3, we detail the two main steps that characterize our proposal. Section 3.4 details simulation scenarios used to evaluate the tensor-based prediction approach, analyzes the results obtained, assesses its eciency and proposes a discussion about the described link prediction technique. Finally, we conclude the chapter in Section 3.5.

Related Work

Social Network Analysis (SNA) [111,[START_REF] Katsaros | Social network analysis concepts in the design of wireless Ad Hoc network protocols[END_REF] and ad-hoc networking have provided new perspectives for the design of network protocols [START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF][START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hossmann | Know thy neighbor: Towards optimal mapping of contacts to social graphs for dtn routing[END_REF]. These protocols aim to exploit the social aspects and relationship features between the nodes. Studies conducted in the eld of SNA have mainly focused on two kinds of concepts: the most well-known centrality metrics suggested in [111,[START_REF] Page | The PageRank Citation Ranking: Bringing Order to the Web[END_REF][START_REF] Hwang | Bridging centrality: Graph mining from element level to group level[END_REF][START_REF] Fan | Spectral Graph Theory[END_REF] and the community detection mechanisms proposed in [START_REF] Bollobas | Modern Graph Theory[END_REF][START_REF] Newman | Modularity and community structure in networks[END_REF][START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF]111]. From this perspective, several works have tried to develop synthetic models that aim to reproduce realistic moving patterns [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF][START_REF] Lee | Slaw: A new mobility model for human walks[END_REF]. Nonetheless, the study done in [START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF] has underlined the fact that synthetic models cannot faithfully reproduce human behavior because these synthetic models are only location-driven and they do not track social intentions explicitly.

In their survey, Katsaros et al. [START_REF] Katsaros | Social network analysis concepts in the design of wireless Ad Hoc network protocols[END_REF] have underlined the limits of these protocols when the network topology is time-varying. The main drawback comes down to their inability to model topology changes as they are based on graph theory tools. To overcome this limit, tensor-based approaches have been used in some works to build statistics on the behavior of nodes in wireless networks over time as in [START_REF] Günay Acer | Random walks in time-graphs[END_REF]. Thakur et al. [START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] have also developed a model using a collapsed tensor that tracks user's location preferences (characterized by probabilities) with a considered time granularity (week days for example) in order to follow the emergence of "behavioraware" delay tolerant networks closely.

As previously mentioned, tracking the social ties between network entities enables us to understand how the network is structured. Such tracking has led to the design of techniques for link prediction. Link prediction in social networks has been addressed in data-mining applications as in [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF]. In the same context, Wang et al. [START_REF] Wang | Local Probabilistic Models for Link Prediction[END_REF] have advanced a method based on a local probabilistic graphical model that can be used for large graphs. This method is led by a supervised learning to predict if a link will occur between two nodes through the computation of the co-occurrence probability. Also, Backstrom and Leskovic [START_REF] Backstrom | Supervised random walks: predicting and recommending links in social networks[END_REF] have developed an algorithm which uses Supervised Random Walks to learn the structure of the social network and to set the edge weights. Applied notably on Facebook, such an algorithm estimates for each user a list of people with whom ties are likely to be created. Concerning link prediction in community-based communication networks, [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] has highlighted salient measures that allow link occurrence between network users to be predicted. These metrics determine if a link occurrence is likely by quantifying the degree of proximity of two nodes (Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF], the number of common neighbors, Adamic-Adar measure [START_REF] Lada | Friends and neighbors on the Web[END_REF], Jaccard's coecient [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et des jura[END_REF][START_REF] Salton | Introduction to Modern Information Retrieval[END_REF], . . . ) or by computing the similarity of their mobility patterns (spatial cosine similarity, co-location rate, . . . ).

Through their exhaustive study, Liben-Nowell and Kleinberg [START_REF] Liben | The link-prediction problem for social networks[END_REF] have presented several similarity measures based on node neighborhoods, the ensemble of all paths and higher-level approaches. They have compared the prediction performance of these measures applied as predictors on ve co-authorship networks. In the same way, Lü and Zhou [START_REF] Lü | Link prediction in complex networks: A survey[END_REF] have described in detail well-known metrics used in link prediction and they have classied them into three categories: the local metrics (computed from common neighbors and/or node degree), the global metrics (determined from the set of paths that connect two nodes) and the quasi-local metrics (a mix of the two previous categories). The eciency of the Katz measure has been emphasized and compared to other prediction metrics in [START_REF] Liben | The link-prediction problem for social networks[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF].

In this chapter, we propose a link prediction technique that tracks the temporal network topology evolution in a tensor and computes a metric in order to characterize the social-based behavior similarity of each pair of nodes. Some approaches have addressed the same problem in data-mining in order to perform link prediction. Acar et al. [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF] and Dunlavy et al. [START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF] have provided detailed methods based on matrix and tensor factorizations for link prediction in social networks such as the DBLP data set [6]. These methods have been successfully applied to predict a collaboration between two authors relying on the data set of the structure of relationships over time. Moreover, they have highlighted the use of the Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF], which can be seen as a behavior similarity metric, by assigning a link prediction score for each pair of nodes. The eciency of the Katz measure in link prediction Chapter 3. Tensor-Based Link Prediction Framework for Mobile Wireless Networks has been also demonstrated in [START_REF] Wang | Local Probabilistic Models for Link Prediction[END_REF][START_REF] Liben | The link-prediction problem for social networks[END_REF].

3.3

Description of the Tensor-Based Link Prediction Method

It has been highlighted that a human mobility pattern shows a high degree of temporal and spatial regularity, and each individual is characterized by a time-dependent mobility pattern and a trend to return to preferred locations [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF]. In order to improve the design of wireless network protocols, and especially the intermittently connected networks, it is important to exploit this knowledge since these interactions usually have an impact on the network structure and consequently on the network performance. Thus, we propose an approach that aims to exploit the similar behavior of nodes in order to predict link occurrence referring to the social closeness.

Predicting future links based on their social closeness is a challenge that is worth an investigation. Indeed, a good link prediction technique contributes to improving the opportunistic forwarding of packets and also enhances the delivery rate and/or decreases latency. Moreover, it helps avoid situations where packets encumber the queue of the nodes that are not able to forward these packets towards their nal destinations.

To quantify the social closeness between each pair of nodes in the network, we use the Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] inspired by sociometry. This measure aims at quantifying the social distance between people inside a social network. We also need to use a structure that records link occurrence between each pair of nodes over a certain period of time in order to perform the similarity measure computation. The records represent the network behavior statistics in time and space. To this end, a thirdorder tensor is considered. A tensor Z consists of a set of slices and each slice corresponds to an adjacency matrix of the network tracked over a given period of time p. After the tracking phase, we reduce the tensor into a matrix (or collapsed tensor) which expresses the weight of each link according to its lifetime and its recentness. A high weight value in this matrix denotes a link whose corresponding nodes share a high degree of closeness. We apply the Katz measure to the collapsed tensor to compute a matrix of scores S that not only considers direct links but also indirect links (multi-hop connections). The matrix of scores expresses the degree of similarity of each pair of nodes according to the spatial and the temporal levels. The higher the score is, the better the similarity pattern gets. Therefore, two nodes that have a high similarity score are more likely to have a common link in the future. The r th column of a matrix A is denoted by a r . Higher-order tensors are denoted by bold Euler script letters, e.g., T . The n th frontal slice of a tensor T is denoted by T n . The i th entry of a vector a is denoted by a(i), element (i, j) of a matrix A is denoted by A(i, j), and element (i, j, k) of a third-order tensor T is denoted by T i (j, k).

Matrix of Scores Computation

The computation of the similarity scores is modeled in two distinct steps. First, we store the inter-contact between nodes in a tensor Z and reduce it to a matrix X called the collapsed tensor. In the second step, we compute the matrix of similarity scores S relying on the matrix X (cf. Fig. 4.1).

Collapsing the data from the tensor

We consider that the data is collected into the tensor Z. The slice Z p (i, j) describes the status of a link between a node i and a node j during a time period between [(p -1) • t, p • t[ (p>0) where Z p (i, j) is 1 if the link exists, even for few instants, during the time period p and 0 otherwise. The tensor is formed by a succession of adjacency matrices Z 1 to Z T where the subscript letters designate the observed period. The simplest way to collapse these records into a single N × N matrix X is to sum all the entries over the tracked time as in the following:

X(i, j) = T p=1 Z p (i, j) (3.1) 
We follow another alternative, motivated by [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF], to collapse the data into one matrix. This alternative consists in damping backward the structure of the network.

The links are considered over time and the more recent the adjacency matrix, the more weighted the structure. Collapsing the tensor records in this way is applied using the following expression:

X(i, j) = T p=1 (1 -θ) T -p Z p (i, j) (3.2)
where the matrix X is called collapsed weighted tensor of Z, and θ is a parameter used to adjust the weight of recentness and is between 0 and 1. According to the results for the evaluation of the Katz measure prediction performance in [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF], collapsing the data relying on Eq. (4.1) gives better prediction results (compared to collapsing the records by using Eq. (3.1)). As we aim to perform a prediction using the Katz measure, we opt to collapse the tensor using Eq. (4.1). Below, we dene the Katz measure and we explain how to compute it after determining the collapsed weighted tensor.
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Katz Measure

The Katz measure, which is aliated to sociometry, was rst proposed by Leo Katz in [START_REF] Katz | A new status index derived from sociometric analysis[END_REF]. He considered a social network as a directed graph G = (V, E) where each vertex v i ∈ V represents a person i and each edge (v i , v j ) ∈ E connects the vertex i to the vertex j when a person i votes for (or endorses) a person j. We denote the subset P ℓ (v i , v j ) as the set of paths of length ℓ that connect vertex v i to vertex v j . The status that characterizes the couple (v i , v j ) is dened by the weight and the number of paths of length ℓ, |P ℓ (v i , v j )|, connecting vertex v i to vertex v j .

Katz dened the score S(i, j) of a pair of nodes (i, j) as depicted in Eq.(3.3):

S(i, j) = +∞ ℓ=1 β ℓ |P ℓ (v i , v j )| (3.3)
Where β is a user dened parameter, also called the damping factor, strictly superior to 0 and strictly inferior to 1. The expression β ℓ denotes the weight of a path of This score is dependent on a function that proportionally decreases with the path length ℓ. The weight of such paths is β ℓ and it is clear that the longer the path is, the lower the weight gets.

The Katz centrality of a person i, which is the sum of Katz measures involving the person i, can be seen as a generalization of the in-degree measure (like followers in Twitter). The status of the node according to the in-degree centrality measures the number of direct neighbors. The Katz centrality goes beyond that and measures the number of all nodes that are connected through one or multiple paths (these paths can be a direct link and/or multi-hop paths). Nevertheless, the contribution provided by a distant node is penalized by the damping factor β. Hence, the Katz centrality can be viewed as an extension of the in-degree measure to long paths. By reconsidering the social network dened by Katz, the Katz centrality takes into account the number of votes that a person can receive through direct or indirect endorsements (respectively paths of length 1 and those of length ℓ with ℓ > 1). The damping factor, as mentioned, is used in order to emphasize that the strength of the endorsements fades over a chain of recommendations.

This metric is widely used in studies whose aim is to predict the occurrence of links [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Liben | The link-prediction problem for social networks[END_REF], especially in social networks like co-authorship communities such as the DBLP [6] and arXiv [4] databases. Given that there are "social relationships" between nodes in networks with intermittent connections, it is challenging to exploit this measure and to apply it to collected data.

There is also another formulation to compute Katz scores by means of collapsed weighted tensor as detailed previously. Then, the score matrix S can be rewritten as:

S = +∞ ℓ=1 β ℓ • X ℓ = (I -β • X) -1 -I (3.4)
where I is the identity matrix and X is the obtained collapsed weighted tensor.

The computation of matrix S, as described before, is done in a centralized way. It means that the matrix S is computed based on the full knowledge of the network topology over time. This may not be suitable with ad-hoc wireless networks where no central entity is considered and could in addition be very costly.

A distributed mechanism should then be examined. In a distributed mechanism, each node would apply the prediction method relying only on information related to its nearest neighbors. It is paramount to remember that a Katz formulation gives more weight to short paths and assigns low scores to long paths. Therefore, the scores with neighbors located a few hops away should be sucient and strong enough compared to scores with further ones.

In the next section, in order to evaluate the eciency of our proposal to perform prediction relying only on local information, we consider two ways to compute Katz measures:

• The Centralized Computation: The centralized way assumes that there is a central entity which has full knowledge of the network structure at each period and applies the Katz measure to the global adjacency matrices.

• The Distributed Computation: Each node has a limited knowledge of the network structure. We assume that a node is aware of its two-hop neighborhood. Hence, computation of Katz measures is performed on a localinformation-basis.

The validity of the distributed mechanism will be discussed in Section 3.4.

Matrix of Scores Interpretation

The relationship between each pair of nodes is expressed by a score S(i, j), which reects the degree of similarity between node i and node j. As mentioned in the Katz measure analysis, shorter paths lead to higher scores. Thus, two nodes that share a high score are nodes that are connected through short paths during some period of time and therefore have similar behavior (similar social intentions). The similarity here is related to common preferences in spatial and temporal space. Two nodes maintain their connectivity when they move in the same direction and at the same time. Therefore, these scores can be considered as indicators to a possible link existence in the future. Thus, the link prediction is done through measuring behavior similarity for each pair of nodes in the matrix S.

Performance Evaluation and Simulation Results

To evaluate the eciency of the tensor-based link prediction in intermittently connected wireless networks, we consider three dierent real traces. For each trace, we compute the corresponding scores matrix S as described earlier and assess the performance of the link prediction method through evaluation techniques. In the following, we rstly present the traces used for the link prediction evaluation. Then, we give the corresponding results and analyze the eectiveness of the prediction method.

Performance Evaluation and Simulation Results

Simulation Traces

We consider three real traces to evaluate the link prediction approach. We exploit them to construct the tensor by generating adjacency matrices (with dierent tracking periods t: 5, 10 and 30 minutes). For each case, we track the required statistics about the nodes' behavior within T periods. We consider the adjacency matrix corresponding to the period T +1 as a benchmark to evaluate the Katz scores matrix in predicting the occurrence of links in the immediate future. We also take into account some periods beyond the period T to check the ability to predict links that have not occurred during the tracking phase and that have been tracked starting from the period T +1. We detail, in the following, the traces used.

• First Trace: Dartmouth Campus trace: We choose the trace of 01/05/2006 [5] from 8 a. m. to 6 p. m. We construct the tensor slices relying on SYSLOG traces between 8 a.m. and 3 p.m. (7 hours). The encounters that took place in the three remaining hours are considered as future events. The number of nodes is 1018.

• Second Trace: MIT Campus trace: We focus on the trace of 07/23/2002 [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF] and also consider the same time slots as for the previous trace. The number of nodes is 646.

• Third Trace: Infocom 2006 trace: We consider the encounters which happened on 04/25/2006 [START_REF] Scott | CRAWDAD trace cambridge/haggle/imote/infocom2006[END_REF] between 8 a.m. and 6 p.m among the 98 nodes involved in the trace (70 of them were carried by humans). We construct the tensor relying on the events that have happened from 8 a.m. to 2 p.m. The remaining time is used to identify new links that were not pointed out during the tracking phase and that occurred between 2 p.m. and 6 p.m.

For each scenario, we generate adjacency matrices corresponding to a dierent period t: 5, 10 and 30 minutes. Then, to record the network statistics over each trace historical, we use the tensor to track the encounters. The number of periods T depends on the trace (the retained historical) and on the length of the tracking period t. For example, for the Infocom 2006 trace, the tensor has respectively a number of slices T equal to 72, 36 and 12 periods (for the case where t=5 minutes, it is necessary to have 72 periods to cover 6 hours). Our aim behind considering this set of traces is to evaluate the eciency of our proposal (predicting using local information) in predicting the links that would occur in the immediate future (at the period T +1) and new links that would occur for the rst time after the period T .

Chapter 3. Tensor-Based Link Prediction Framework for Mobile Wireless Networks

Concerning the two rst traces, we have to underline that the data represent records that describe the association or the disassociation of a device (identied with its MAC address) with an access point at a corresponding timestamp. In such a case, the tracked contacts are not involved in a mobile ad-hoc network. Nevertheless, we assumed that two users can communicate with each other when they are aliated to the same access point. Chaintreau et al. [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF] made the same assumption with the Dartmouth Campus trace in order to analyze, with a theoretical model, the impact of human mobility on the opportunistic forwarding algorithms. Song and Kotz [START_REF] Song | Mobile Opportunistic Networks, chapter Routing in Mobile Opportunistic Networks[END_REF] stated that this assumption may not be accurate but remains a good rst approximation. The last trace (Infocom 2006 trace) was proposed to focus on the user mobility characterization and the content distribution evaluation. In particular, this trace was registered during an event in which encounters between people are frequent and repetitive. Hence, they can be viewed as a more faithful benchmark to evaluate our proposal.

As mentioned earlier, we take into account both centralized and distributed cases for the computation of scores. In both cases, we x θ and β to 0.2 et 0.001 respectively. Later, in the Section 3.4.2, we explain the impact of these parameters and why we chose these values.

Performance Analysis

As described in the previous section, we apply the link prediction method to the three traces while considering the dierent tensor periods both for centralized and distributed cases. In order to assess the eciency of the proposed method, we consider several link prediction scenarios (according to the trace, the tensor period and the way to compute scores) and we use dierent evaluation techniques (ROC curves, AUC metric, top scores ratio at T +1, accuracy and F-measure). Below we detail in the following the results obtained with each evaluation technique and analyze the link prediction eciency.

Analysis of the ROC Curves

First of all, we aim to evaluate the performance of the prediction in a distributed way and compare this performance to that of the centralized approach. As a rst evaluation step, we use the ROC curves (Receiver Operating Characteristic curves) [START_REF] Fawcett | An introduction to ROC analysis[END_REF].

A ROC curve is a graphical plot highlights the performance of a binary classier (which is the prediction technique in this context) with varying the discrimination threshold. For us, the threshold takes values from the minimum to the maximum scores provided by the matrix of scores S. To determine the points that form the ROC curve, we compare all the obtained scores with the current value of the threshold. If a score is higher to the threshold, it means that the prediction is positive. Otherwise, the prediction is negative. Hence, the ROC curve represents the evolution of the true positive rate (given by the ratio of true positive predictions among all positive predictions) expressed by T P T P +F N according to the false positive rate (given by the ratio of false positive predictions among all negative predictions) expressed by F P F P +T N . The meaning of the variables T P , F P , T N and F N are detailed in the table of confusion given by Tab. 3.1. The ROC curve indicates a good prediction method if the bend of the curve is tending to be close to the upper left corner of the plot. The analysis of the obtained results will detail this appreciation.

Performance Evaluation and Simulation Results

Table 3.1: Table of confusion of a binary prediction technique h h h h h h h h h h h h h h h h h h

The Fig. 3.2, 3.3 and 3.4 depict the ROC curves for both distributed and centralized computing approaches respectively obtained from the Dartmouth Campus trace, the MIT Campus trace and the Infocom 2006 trace. For each trace gure, (a), (b) and (c) the curves correspond to a tensor tracking period of 5, 10 and 30 minutes respectively.

We rst notice that, for all scenarios, the prediction of all links is quite ecient, compared to the random guess (the curve's bends are in the upper left corner). Moreover, two other observations have to be mentioned. First, it is highlighted that the smaller the tensor tracking period, the more reliable the prediction. This observation is obvious for two reasons. On the one hand, with a short tensor period, tracking a short and occasional contact between two nodes is less likely compared to the case where the tensor periods are longer. On the other hand, if we take the example of the Infocom 2006 trace, recording 6 hours of encounters requires 72 adjacency matrices of 5-minute periods, instead of 12 matrices when the tracking is considered over periods of 30 minutes. Thus, tracking a short contact between two nodes has less inuence when the tensor slices are more numerous. Moreover, short periods enable us to appreciate better short contacts as well as long ones, whereas predicting using long periods is not able to clearly estimate the length of a contact. As an example, in the case where the tensor slice time is 5 minutes, a eeting contact can be tracked by one adjacency matrix among 72. However, for the case where the slice time is 30 minutes, the eeting contact is tracked by one tensor slice among 12, which gives it signicantly more weight compared to the former case. Hence, short tensor slice periods enable us to minimize the probability of tracking a short contact and to restrict its impact. On the other hand, they allow the short and long encounters to be discerned more accurately.

Short tensor slice periods also allow us to better track the social interactions (meetings in a cafeteria, courses in an lecture theater, etc) between nodes which determine the occurrence of links. Successive adjacency matrices of 5 minutes give a more accurate description of the network structure over time as both analyzing and identifying these social events are easier through shorter periods.

The second observation concerns the similar results obtained at the centralized and distributed matrix of scores computation. In fact, the similarity is higher when the paths considered between a pair of nodes are short. Therefore, paths that have more than two hops have weaker scores and so are less weighted compared to shorter ones. The distributed case assumes that each node knows its neighbors at most at two hops. That is why distributed scores computation presents performances which are so similar to the centralized ones.

On top of that, we can highlight that the link prediction performance is better when the tensor-based technique is applied on the Dartmouth Campus and the MIT Campus traces than than the one obtained with the Infocom 2006 trace. This observation can be explained by the dierent natures of the traces. Indeed, the Dartmouth Campus and the MIT Campus traces are collected from access points and we adopted the same assumption as Chaintreau et al. [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF] (detailed in the Section 3.4.1). Meanwhile, the Infocom 2006 trace is obtained after recording all the encounters between several mobile nodes which is impacted by lower range and density of nodes.

Evaluation of the Link Prediction Technique through Performance Metrics

In this subsection, we consider another evaluation step. We use adapted evaluation metrics in order to further weigh the performance of the proposed link prediction technique. At this step, as well as evaluating the prediction of all links in the period T +1, we also try to assess the eciency of our technique in predicting new links that occurred for the rst time after the period T . For both link prediction cases, we compute a set of metrics:

• Area Under the ROC Curve metric (AUC) [START_REF] Fawcett | An introduction to ROC analysis[END_REF]: which is considered as a good performance indicator in our case. It consists in computing the area we extract the links having the L highest scores found after applying the prediction technique and determine the percentage of existing links in both sets.

• Accuracy (ACC): this measure is dened in [START_REF] Fawcett | An introduction to ROC analysis[END_REF] as the ratio of correct prediction (true positive and true negative predictions) over all predictions (true positive, true negative, false positive and false negative predictions). In other words, it is computed by the ratio T P +T N T P +F P +T N +F N (see Table 3.1). We identify for each scenario the maximum value of the accuracy which indicates the degree of precision that can reach each prediction metric.

• F-Measure or balanced F1 score: the F-Measure [START_REF] Van Rijsbergen | Information Retrieval[END_REF] is the harmonic mean of precision 1 and recall 2 . The F-Measure is expressed by 2. precision.recall precision+recall . The higher the F-Measure is, the better the tradeo of precision and recall gets and the more ecient the prediction metric is.

On top of doing the evaluation for the centralized and distributed ways to perform prediction, we compare their performances with those of some well-known prediction metrics: Common Neighbors, Salton Index [START_REF] Salton | Introduction to Modern Information Retrieval[END_REF], Jaccard Index [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et des jura[END_REF], Sørensen Index [START_REF] Sørensen | A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons[END_REF], Hub Promoted Index (HPI) [START_REF] Ravasz | Hierarchical organization of modularity in metabolic networks[END_REF], Hub Depressed Index (HDI), Adamic-Adar Index [START_REF] Lada | Friends and neighbors on the Web[END_REF], Resource Allocation Index [START_REF] Zhou | Predicting missing links via local information[END_REF] and Rooted PageRank Index [START_REF] Han | Scalable proximity estimation and link prediction in online social networks[END_REF]. We also include in the comparison the weights obtained through the computation of the Collapsed Weighted Tensor (CWT). The results corresponding to all links prediction at the period T +1 and those corresponding to new links prediction are listed in Table 6.2 (Dartmouth Campus trace), Table 6.3 (MIT Campus trace) and Table 6.4 (Infocom 2006 trace).

Also, we propose to use all the evaluation metrics, in each prediction scenario, to compute the distance (denoted Dist.) with the "perfect" prediction performance (AUC=1, TSR=100%, ACC=100% and F1=1). For a prediction approach p, this distance is expressed by:

Distance(p) = (1 -AU C(p)) 2 + (1 -T SR(p)) 2 + (1 -ACC(p)) 2 + (1 -F 1(p)) 2 (3.5)
By computing such a distance, we can have an idea about the performance closeness compared with the perfect case and assess how much the tradeo of having simultaneous good evaluations is ensured.

Regarding all links prediction results at the period T +1 and based on the high values of AUC metric (more than 0.9 at most cases), top scores ratio obtained 1 represents to the proportion of links with positive prediction (occurring in the future) which are correctly identied [START_REF] Fawcett | An introduction to ROC analysis[END_REF]. Based on Table 3.1, the precision is equal to T P T P +F P . This value is determined according to the deduced accuracy value.

2 quanties the ratio of correctly identied links over the occurring links in the future [START_REF] Fawcett | An introduction to ROC analysis[END_REF]. Referring to Table 3.1, the recall is dened by the expression T P T P +F N . This value is also computed according to the retained accuracy value.

Table 3.2: Evaluation metrics for the prediction of all links applied on Dartmouth Campus trace h h h h h h h h h h h h h h h h h

Prediction Cases

Metrics

All Links Prediction at at T +1, accuracy, F-Measure and consequently the distance from the best performance, we note that the prediction using the Katz measure (both in centralized and distributed ways) and the collapsed weighted tensor achieve the best performances. It is trivial that links that occur during the period T are the most expected to be eective at T +1. This property is well captured by the collapsed weighted tensor as it gives higher weights to recent links. This observation is well interpreted by the top score ratio in period T +1 metric. Computing the Katz measure (for the two treated cases) from the collapsed weighted tensor ensures that the links occurring at the period T are identied as the Katz measure gives highest scores to most recent and persistent links. Hence, we clearly observe that performing a prediction using the Katz measure achieves a similar prediction eciency to estimate occurring links Table 3

.3: Evaluation metrics for the prediction of all links applied on MIT Campus trace h h h h h h h h h h h h h h h h h

Prediction Cases

Metrics

All Links Prediction at at the period T +1 (similar distances with the perfect prediction). Meanwhile, the other prediction metrics show a lower performance in the context of predicting such links. Indeed, they quantify the relationship of a pair of nodes without seeing if a direct link connects them. For example, two isolated neighbors (or having few common neighbors) would have a weak score even if they were connected. On the other hand, two other nodes can be 2-hop neighbors and share several common neighbors which means that the score in this case is relatively high even if no link connects the corresponding pair of nodes.

Nevertheless, these prediction approaches depict an interesting capacity to predict future links (which have occurred for the rst time after the period T ) as they allocate the highest values to nodes which are relatively close in terms of hops and Table 3

.4: Evaluation metrics for the prediction of all links applied on Infocom 2006 trace h h h h h h h h h h h h h h h h h

Prediction Cases

Metrics

All Links Prediction at consequently social ties (if two nodes share a high number of common neighbors or an important proportion of common neighbors, they are expected to be close and then a link may occur between them in the future). We can notice that the prediction performance of such links is obviously less ecient than predicting all links. This observation is highlighted by a higher distance with the perfect prediction. The Katz measure follow a similar way to predict future links. The highest scores in this case are for pairs of nodes which are connected through 2-hop paths (as a direct link has never existed). The score gets higher with a more important set of common neighbors for two given nodes. This information totally agrees with the result advanced by Wang et al. [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] which stipulates that a new link has more chance to occur between two nodes if they are separated by a distance of 2 hops. From this perspective, the use of the Katz measure enables us to reach one of the best performances in predicting new links. The performance of predicting such links is slightly impacted by the length of the tracking period (compared to the all links prediction in T +1 where the shorter the tracking period is, the better the prediction gets). This observation can be interpreted by the weak proportion of new links (that occur beyond the period T ) compared to the overwhelming potential links (which never occurred during T periods and can occur starting from the period T +1). It is also important to mention that the collapsed weighted tensor has no ability to predict new links as it allocates weights only for links that have been tracked in the historical data. Then, any potential new link has no weight.

After evaluating both link prediction abilities, it is clear that performing the prediction using the Katz measure is the only way to simultaneously guarantee high eciency in predicting all links in the period T +1 and estimating new links that have not occurred during the historical, compared to all the other approaches involved in the evaluation. Moreover, according to all the evaluation metrics and in particular the distance with the perfect performance, the results conrm that the proposal of computing the Katz measure relying only on the local information achieves similar or even better performance than the centralized case.

The Importance of the Parameters θ and β

It is important to underline that the eciency of our mechanism is dependent on the values of the parameters θ (a parameter used to adjust the weight of recentness and is between 0 and 1 to compute the collapsed weighted tensor in eq. (4.1)) and β (a damping factor used in the computation of the Katz scores matrix S expressed by eq. (4.2)). We depict in Fig. 3.5(a) and Fig. 3.5(b) the top scores ratio at T + 1 and the AUC, respectively, obtained for dierent values of θ and β. We can note that the values set to θ (i.e. 0.2) and to β (i.e. 0.001) enable us to reach quite an ecient level of prediction. These results are relative to a prediction set performed on the MIT Campus trace with the distributed version of the prediction framework.

After the investigation into the value to be chosen for the parameter β, we found that the convergence of the Katz measure is closely tied to the spectral radius of the adjacency matrix, as mentioned in [START_REF] Franceschet | Pagerank: standing on the shoulders of giants[END_REF]. In fact, β must be greatly inferior to the reverse of the latter value. In our case, we use the collapsed weighted tensor which can be considered as an adjacency matrix with weights of links. If we take the example of the collapsed weighted tensor of the scenario where we use the Infocom 2006 trace, with a period of tracking t equal to 5 minutes and a number of tracking periods equal to 72, we nd that the lowest reverse of the spectral radius is around 0.01. This lowest value is observed when θ tends to 0. With higher values of θ, the interval of values of β with good performance is larger (AUC higher than 0.8 and TSR higher than 0.6). Indeed, when the parameter θ is important, taking into consideration the past event is less signicant. Then, the weights in the collapsed weighted tensor get lower which decreases the value of the spectral radius and increases the value of the highest β which ensures convergence. Hence, the interval of satisfying values of β is larger. In wireless networks and specically in intermittently connected ones, it is important to exploit social relationships that inuence the nodes' mobility. Taking advantage of the social aspect within these networks could ensure a better routing strategy and therefore improve the packet delivery rate and reduce latency. Through our proposal, we aim to track eventual similarities between mobility patterns of nodes and exploit them intelligently for a better link prediction.

As seen earlier, a link occurrence between two nodes is more likely when they have similar social behavior. Then, identifying nodes that have a similar mobility pattern could help to predict eective links between nodes in the future. The more accurate the link prediction is, the more optimized the routing scheme could become. In fact, an ecient link prediction would help to make better decisions in the forwarding process. For example, a node would rather decide to postpone sending a packet to a current next hop because the link prediction scheme estimates that a better forwarder (closer to the destination for example) is going to appear in the immediate future. Also, link prediction could prevent buer overloading. Indeed, an overloaded node would rather drop a packet if the link prediction scheme indicates that there will be no possible route toward the destination in the future and before the packet's TTL expires. Through this approach, we can get quite ecient prediction results.

The results detailed previously show that the tensor-based link prediction framework can identify more than 90% of links (with a tracking period of 5 minutes). The link prediction relies on measuring the similarity of the mobility of nodes. Song et al. [START_REF] Song | Limits of Predictability in Human Mobility[END_REF] investigated the limits of predictability in human mobility. Relying on data collected from mobile phone carriers, they found that 93% of user mobility is potentially predictable. The best predictability percentage reached by our approach analogously joins the conclusion of Song et al.

We have also shown through simulations that prediction eciency is similar whether the Katz measures are computed in a centralized and distributed manner. As we have explained, the distributed scheme is only able to maintain high scores (link occurrence is likely) as nodes record neighbors at one and two hops. The seeming lack of information does not impact on predicting eectiveness. This observation also tallies with the conclusion of Acar and al. [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF]. Indeed, in the data mining context, they tried to make the method scalable and proposed the Truncated Katz technique (expressed by eq. ( 11) in [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF]). It consists in determining Katz scores replacing the collapsed weighted tensor by a low-rank approximation one. The results show that this latter technique retains a high prediction eciency. Hence, restricting the scores computation on most weighted links (in terms of recentness and duration) does not incur dramatic consequences on the prediction eciency.

Performance Evaluation and Simulation Results

Table 3.5: Evaluation metrics for the prediction of all links in T +1 applied on Infocom 2006 trace h h h h h h h h h h h h h h h h h

To perform prediction with local information, we assumed for the computation of scores that nodes know their 2-hop neighbors. It is obvious that exchanging information between nodes about neighbors causes additional overhead and consequently more solicited resources. From this perspective, a question can be highlighted: would the tensor-based link prediction method remain eective if the knowledge of nodes is limited to the direct neighbors? To answer this question, we take into consideration the scenario where the distributed computation of scores is based on knowledge of 1-hop neighbors and we compare it to the scenario which uses the 2-hop knowledge when the prediction is interested in the links in the period T +1. We also considered the prediction performance of the collapsed weighted tensor. We used the Infocom 2006 trace and kept the same parameters used in the previous simulations (see subsection 3.4.1). The comparison is made with the evaluation metrics described in the subsection 3.4.2. The results are reported in Table 3.5.

When the knowledge is limited to the neighbors at one hop, the closeness only means that there is a direct link between two nodes. Thereby, computing the scores through the tensor-based link prediction framework becomes too similar to determining weights of links with the collapsed weighted tensor. Then, limiting the knowledge to 1-hop neighbors deprive our proposal of its ability to estimate the occurrence of new links beyond the period T . Nonetheless, such knowledge allows better link prediction in the period T +1 compared to the other prediction methods involved in the comparison, especially with 5-minute and 10-minute tracking periods. As a reminder, the collapsed weighted tensor allocates a weight for a pair of nodes considering the recentness and the persistence of their contacts. Meanwhile, our proposal, in the case of knowledge of 1-hop neighbors, computes the scores in the same way and includes an additive value if there are paths connecting the same pair of nodes. That is the reason behind obtaining a similar TSR metric with the collapsed weighted tensor. Moreover, the lack of the 2-hop knowledge enables the tensor-based link prediction framework to achieve better accuracy by setting the scores of all potential links (which did not exist between period 1 and period T and that can occur starting from period T +1) to 0. Indeed, the majority of potential links are not expected to occur as the contacts are inuenced by the social ties (a node would meet a low percentage of the other nodes). That's why the accuracy and the F-Measure (F1) are better than the other case (and especially the case of distributed computation of scores with knowledge of 2-hop neighbors) which brings about shorter distance with the perfect performance. With longer tracking periods, the prediction with such knowledge loses precision and becomes very similar to those of the other approaches (similar distance).

From this perspective, it is not clear which is the best scenario to be retained if we compare the cost of exchanging local information between nodes to the cost of ignoring prediction of new links. Future simulations and real deployments will enable us to determine which setting is preferable.

Conclusion

Human mobility patterns are mostly driven by social intentions and correlations appear in the behavior of people forming the network. These similarities highly govern the mobility of people and then directly inuence the structure of the network. The knowledge about the behavior of nodes greatly helps in improving the design of communication protocols. Intuitively, two nodes that follow the same social intentions over time promote the occurrence of a link in the immediate future.

In this chapter, we presented a link prediction technique inspired by data-mining and exploit it in the context of wireless networks. Our contribution in this chapter, a new link prediction technique for the intermittently connected wireless networks, is designed through two major steps. First, the network topology is tracked over several time periods in a tensor. Secondly, after collapsing the structural information, a Katz measure is computed for each pair of nodes as a score. A high score means similar moving patterns implying the closeness of the nodes and indicates that a link occurrence is likely in the future.

Through the link prediction evaluation, we obtained relevant results that attest the eciency of our contribution. We can summarize them in the following points:

• The tensor-based link prediction technique is quite ecient. The result are supported by the ROC curves and the evaluation metrics (AUC metric, top scores ratio (at T +1 or in the future), accuracy, F-Measure and consequently the distance with the perfect prediction).

• Applied on real traces, the proposed prediction technique provides more accurate results with shorter tensor tracking periods. In fact, short periods make the tracking more sensitive in terms of identifying eeting and persistent contacts. Predicting through long tracking periods is mostly ecient with only long contacts.

• The link prediction framework guarantees good performance when prediction is applied to all links in the period T +1. Moreover, it has the capacity to identify some future links which never occur during the tracking of contacts in order to build the tensor.

• Applying the prediction technique in a distributed way (nodes only know their neighbors at most at two hops) achieves similar predicting performance compared to the use of the same framework in a centralized way (an entity has full-knowledge about network structure over time).

• The temporal tensor-based link prediction described in this chapter is based on an encounter metric which takes into account the occurring contacts at the same location and at the same time. We provided a performance comparison with other similar approaches and we found that our proposal is the only one that is able to ensure the tradeo of reaching the highest performances for both predicting all links at the period T +1 and estimating some new links that would appear in the future.

Good link prediction oers the possibility to further improve opportunistic packet forwarding strategies by making better decisions in order to enhance the delivery rate or limit latency. Therefore, it will be relevant to supply some routing protocols with prediction information and to assess the contribution of our approach in enhancing the performance of the network especially as we propose an ecient distributed version of the prediction method. The proposed technique also motivates us to inquire into future enhancements as a more precise tracking of the behavior of nodes and a more ecient similarity computation. This willingness is rigorously detailed in the following chapter. 

Introduction

Disruption Tolerant Networks (DTN) paradigm is an emerging wireless networking application where we have to deal with sparse and intermittent connectivity. In order to achieve a reasonable packet delivery rate, we have to rely on opportunistic or mobility-assisted routing, where messages are forwarded only when two nodes are in contact. Consequently, the packet delivery rate at the destination is strongly tied to the network structure during the forwarding process. Basically, as these networks are human-centered, the mobility patterns are governed by human behavior. Such a behavior highly impacts on the structure of the network as shown in [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF].

Moreover, it has been demonstrated in [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF][START_REF] Yang | Using social network theory for modeling human mobility[END_REF] that the human mobility is directed by social intentions that the network users share at the spatial and temporal levels. When the intentions of some people are correlated (to be present in the same locations at the same time), this favors their meeting and thereby the occurrence of links between them. In this way, mathematical models have been proposed to characterize the inter-contact time between two people through statistical analysis [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Karagiannis | Power law and exponential decay of inter contact times between mobile devices[END_REF]. Thus, it is crucial to better understand how links are created and to track their properties in order to design ecient communication protocols.

To analyze the network topology evolution, it is important to rely on records that describe the status of each link over time during a tracking period [START_REF] Braha | From centrality to temporary fame: Dynamic centrality in complex networks: Research articles[END_REF]. Extracting information about correlations between the willingness of people carrying the nodes is an important support which provides insights for predicting links. From this perspective, we have proposed in the previous chapter and in [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF] a tensor-based link prediction technique. Our approach is based on a spatio-temporal framework that tracks the contacts between nodes. Hence, tracking the occurrence of links over successive time periods has enabled us to detect the degree of spatial closeness between the network users and then quantify their behavior similarity. Afterwards, this parameter has been used as an indicator to predict the occurrence of links in the immediate future.

In this chapter, we aim to improve the performance of the tensor-based link prediction technique by rening the measure of behavior similarity. As we are convinced that link prediction enhances the performance of communication protocols, we want the feedback provided by our framework to be the most reliable possible. We nd that the link and the proximity (at two hops) stabilities can also be considered as parameters to predict future links. Indeed, when some network users are related by strong social ties, the link between them tends to be persistent. In other words, when two network users have high correlated behaviors, their closeness is expected to lengthen and to remain stable. When nodes have information about their neighbors at two hops, the stability of such proximity, joined to the tensor-based link prediction method, also leads to the performance of more ecient link prediction.

We detail how proximity stability can be benecial later. Besides, measuring such stability measures is a key parameter which is interesting to exploit. To quantify them, we propose a metric inspired by the Lempel-Ziv estimator [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF] which converges to the entropy of a time series. To enhance the prediction performance of the tensor-based link prediction framework, we join the stability measures with its outputs by designing new prediction measures that identify future links as the ones which are relative to users that have strong (behavior similarity) and stable (proximity stability) closeness. Afterwards, we assess if our proposal really contributes to improve the prediction performance of the tensor-based link prediction method.

The chapter is organized as follows: Section 4.2 briey presents the related work.

In Section 4.3, we give an overview of the tensor-based link prediction technique. Section 4.4 introduces the measurement of the link and the proximity stabilities, presents the estimator used to approximate them and details some combinations of the stability measures with our link prediction technique in order to provide new prediction metrics. In section 4.5, we present the simulation scenarios used to evaluate the contribution of these stability measures, dene how to evaluate them and we analyze the obtained results. Finally, we conclude the chapter in Section 4.6.

Related Work

Due to the opportunistic aspect of forwarding in intermittently connected wire- Tracking the social ties between the network entities has led to the design of techniques for link prediction. The link prediction in social networks has been addressed in the data-mining context [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Wang | Local Probabilistic Models for Link Prediction[END_REF][START_REF] Liben | The link-prediction problem for social networks[END_REF] and recently for the communitybased communication networks [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF]. These works have highlighted salient measures that make possible to predict wireless links between network users. These metrics determine if an occurrence of a link is likely by quantifying the degree of proximity of two nodes (Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF], the number of common neighbors, the Adamic-Adar measure [START_REF] Lada | Friends and neighbors on the Web[END_REF], the Jaccard's coecient [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et des jura[END_REF][START_REF] Salton | Introduction to Modern Information Retrieval[END_REF], . . . ) or by computing the similarity of their mobility patterns (through such metrics as the spatial cosine similarity, the co-location rate, . . . ). The eciency of the Katz measure has been especially emphasized compared to other prediction metrics in [START_REF] Liben | The link-prediction problem for social networks[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF]. Thanks to the SNA, it has been highlighted that the relationships between individuals has a major impact on the structure of the network [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF].

For the human-centered wireless networks, the social closeness between some people inuences their mobility patterns. In [START_REF] Song | Limits of Predictability in Human Mobility[END_REF], Song et al. have demonstrated that human mobility is potentially predictable in 93% of cases by using the traces of mobile users of a cellular phone network. This limit has been investigated through an estimation of the entropy proposed by Ziv and Lempel [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF]. The entropy estimation has been applied on the sequence of visited locations for each mobile phone user during a tracking period. Song et al. have been motivated by the ndings of [START_REF] Navet | On predictability and protability: Would gp induced trading rules be sensitive to the observed entropy of time series?[END_REF] which has highlighted that the entropy is a very appropriate metric to measure the degree of predictability of such sequences.

In this chapter, we aim to stress that quantifying the degree of proximity of two nodes joined to the stability of their relationship enables us to enhance the link prediction performance of our method [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF] presented in the previous chapter. For this objective, we redesign the tensor-based link technique by taking into consideration the feedback provided by measuring the link and the proximity at two hops stabilities. Hence, we describe how to quantify the stability and we propose some designs for new prediction metrics.

4.3

Tensor-Based Link Prediction Framework: A Reminder

The human mobility patterns highlight correlations in the behavior of network users. The researches done in [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF] have emphasized that the human mobility depicts a spatio-temporal regularity and the claims advanced in [START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] have demonstrated that social ties characterizing the relationships between users are translated by correlations between human mobility patterns. From the perspective that these relationships govern how the network is structured, the tensor-based link prediction framework aims at identifying and exploiting these correlations to perform prediction. This is made by tracking and quantifying the degree of proximity of each pair of nodes. If two nodes have common intentions at the spatio-temporal level, they tend to be closer to each other and then nearby. Thus, a link occurrence between them is likely.

Predicting future links based on their social closeness is a challenge that is worth an investigation. Indeed, a good link prediction technique contributes to improving the opportunistic forwarding of packets and also enhances the delivery rate and/or decreases latency. Moreover, it helps to avoid situations where packets overload the queue of the nodes that are unable to forward these packets towards their nal destinations. Motivated by the enhancement that can provide the prediction to communication protocols, we propose the tensor-based link prediction framework which we describe and explain in this section.

Notation

Scalars are denoted by lowercase letters, e.g., a. Vectors are denoted by boldface lowercase letters, e.g., a. Matrices are denoted by boldface capital letters, e.g., A.

The r th column of a matrix A is denoted by a r . Higher-order tensors are denoted by bold Euler script letters, e.g., T . The n th frontal slice of a tensor T is denoted T n . The i th entry of a vector a is denoted by a(i), element (i, j) of a matrix A is denoted by A(i, j), and element (i, j, k) of a third-order tensor T is denoted by

T i (j, k).

Overview on Tensor-Based Link Prediction Technique

In order to quantify the degree of spatial closeness of two nodes, we compute the Katz measure [START_REF] Katz | A new status index derived from sociometric analysis[END_REF]. It is used in sociometry and, in the case of wireless networks, expresses the similarity of the behavior (i.e. mobility patterns) or the degree of proximity of two nodes. The Katz measure is dependent on the lengths of paths (one-hop or multi-hop paths) that separate these two nodes. It is computed from a third-order tensor which records the network statistics (i.e. occurrence of links between each pair of nodes during dierent tracking periods). Hence, a tensor Z consists in a set of adjacency matrices which form successive slices. Each slice corresponds to the contacts which occurred during a period of time t (∀t, 1 ≤ t ≤ T where T is the total number of periods). Then, we determine a collapsed weighted 4.3. Tensor-Based Link Prediction Framework: A Reminder tensor X which allocates weights to the links according to the frequency of their occurrence and their recentness. The use of such a collapsing way is motivated by the results highlighted in [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF]. Indeed, predicting links in the period T +1 using such a method to aggregate the data achieved best link prediction performance. Applying the Katz measure on the collapsed weighted tensor allows us to obtain the matrix of scores S which quanties the behavior similarity or the degree of proximity for each pair of nodes. An example provided by Fig. 4.1 details how the network structure is tracked and how the prediction scores are determined for the period T +1.

Matrix of Scores Computation

For each node, computing the matrix of scores is performed through two salient steps. Firstly, the link prediction framework records the adjacency matrices in a tensor Z and determines the collapsed weighted tensor (or matrix) X. Secondly, it applies the Katz measure on the matrix X to obtain the matrix of Katz scores S.

We consider that the data is collected into the tensor Z. The slice Z p (i, j) describes the status of a link between a node i and a node j during a time period between [(p -1) • t, p • t[ (p>0) where Z p (i, j) is 1 if the link exists during the time period p and 0 otherwise. The tensor is formed by a succession of adjacency matrices Z 1 to Z T where the subscript letters designate the observed period. To determine the collapsed weighted tensor, we apply the following expression:

X(i, j) = T p=1 (1 -θ) T -p Z p (i, j) (4.1)
where the matrix X is the collapsed weighted tensor of Z, and θ is a parameter used to adjust the weight of recentness and its value is between 0 and 1.

The matrix X can be seen as a generalized adjacency matrix with weighted links. A node can determine the behavior similarity with the other nodes by computing the Katz measure. This similarity between two nodes i and j is determined by the length of paths that connect i to j and is impacted by the weight of each path length.

Then, Eq.(4.2) is used to compute matrix of Katz scores S as following:

S = +∞ ℓ=1 β ℓ • X ℓ = (I -β • X) -1 -I (4.2)
where β is a user dened parameter which is strictly positive and β ℓ is the weight of a ℓ hops path length. It is clear that the longer the path is, the lower its weight gets. The matrix I is the identity matrix and X is the obtained collapsed weighted As detailed previously, to predict links in intermittently connected wireless networks, we have used a tensor-based framework to record network structure for a number of periods and have measured Katz scores for each pair of nodes to quantify their behavior similarity. In [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF], we have shown that the tensor-based link prediction framework achieves similar performance either when done in a centralized way (i.e. assuming that a central unit records the network statistics and performs prediction) or in a distributed way (i.e. the nodes predict links relying on local information).

Obviously, we are interested in the distributed application of the prediction framework as we are concerned by the intermittently connected wireless networks and the eectiveness of our proposal in this case is strongly prominent. Nonetheless, we strongly conceive that we can further improve the prediction eciency. We think that the prediction becomes more precise if we take into consideration other salient characteristics of ties between nodes. Indeed, we guess that focusing on the stabilities of links and of proximity at two hops are worth investigating and the predictability of human mobility made in [START_REF] Song | Limits of Predictability in Human Mobility[END_REF] has further motivated us to continue in this direction. Regarding link stability, when two nodes have strong social ties, a link occurrence between them is likely. If a link between them occurs, it is expected to be persevering and then stable. Indeed, they are expected to be close for a fairly substantial time as they share similar behavior. On the other hand, when the proximity at two hops between two nodes is stable, it can be interpreted in two separate manners. When the stability is expressed by the absence of proximity at two hops, this means that the two nodes are either tied by a link or separated by more than two hops. In this case, the outputs of the tensor-based link prediction technique can be used to identify if the corresponding nodes are directly tied. When this stability is expressed by two nodes constantly separated by two hops, the information provided by the tensor-based link prediction technique is able to attest that a link occurrence is unlikely. Moreover, the corresponding Katz score is expected to be lower than those of pair of nodes having a link between them. If the proximity is unstable, it is obvious to conclude that the link occurrence is unlikely. Indeed, even if there is a link between the two nodes, its occurrence is intermittent and then the link is unstable. The information provided by the Katz measure gives indications about the real state of the link.

Hence, measuring such stability parameters is paramount to enhance the performance of the tensor-based link prediction framework. Therefore, we should rene the tensor-based link prediction framework to make it sensitive to these parameters. To measure stability and predictability in complex networks, the entropy measure has been widely used in the literature.

4.4.2

The Entropy Measure

The measure of entropy has been used in several works. Its denition has varied from one work to another. We will expose a little overview on the origin of entropy and a brief description of works having used this measure especially in the context of social and community-based networks.

Original Denition of Entropy

The concept of entropy was introduced for the rst time by Clausius [START_REF] Clausius | Ueber die bewegende kraft der wärme und die gesetze, welche sich daraus für die wärmelehre selbst ableiten lassen[END_REF] as a unique measure of reversible change in thermal energy concerning the absolute temperature. He focused on the macroscopic behavior of chemical microscopic reactions and proposed thermodynamic entropy. Based on Clausius works, Boltzmann dened the combination microstates statistic entropy [START_REF] Boltzmann | Uber die beziehung zwischen dem zweiten hauptsatz der mechanischen warmetheorie und der wahrscheinlichkeitsrechnung respektive den satzen uber des warmegleichgewicht[END_REF] as:

S = -k B i p i ln p i (4.3)
where p i is the probability that the microstate i is veried during system uctuations and k B is the constant of Boltzmann. This denition is applied to characterize the order in the system and how the system self-organizes among dierent entities. Later, Shannon introduced the concept of information entropy H [START_REF] Shannon | A mathematical theory of communication[END_REF]. This measure has been used to quantify the capacity of a transmission channel and has been extended to other domains.

Using Entropy to Characterize the Information in a Network

Many works propose the use of entropy, for dierent aims. In [START_REF] Lu | Quantifying organization by means of entropy[END_REF], Lu et al. have presented, rstly, the principles of self-organization. Indeed, wireless networks use the self-organization to minimize conguration needs, to facilitate the deployment of the network and to support applications and services. The recourse to selforganization schemes permits to improve the order in the network. This organization take place on two levels: microscopic (logic links between nodes) and macroscopic (formation of exible structure). Secondly, Lu et al. justify the use of entropy with three major reasons:

• The organization in a wireless network is similar to a thermal dynamic system.

• Many metrics have been proposed to evaluate self-organization strategies (protocol overhead, algorithmic complexity, . . . ) but they do not give any idea on order degree.

• The statistic entropy used in thermodynamics is a key measure because it describes the behavior of self-organization protocols compared to changes of inherent parameters in the network as the reliability of links and nodes.

Lu et al. consider the entropy as a system macroscopic description taking into consideration microscopic interactions. Similarly, the equilibrium between two perfect gazes (macroscopic level) is the result of molecular interactions (microscopic level). Since self-organization limits interactions, so it limits also the entropy. Then, high entropy values indicate an important disorder, whereas low ones signify a better organization. This analysis is inspired from thermodynamics: when the entropy is low, the equilibrium is more stable and the disorder is less signicant at molecular level.

In [START_REF] Sneppen | Measuring information networks[END_REF], Sneppen et al. use measures applied on network topologies. These measures characterize the ability of a node to lead and send a signal to its destination(s). The entropy is considered and is described as the capacity to predict from which neighbor the message arrives. It quanties the predictability (or the order/disorder) of a trac around a node. The probabilities represent the fraction of messages received from each neighbor. In [START_REF] Sneppen | Hide and seek on complex networks[END_REF], they present measures the investigation on constraints posed by the network structure on communication. They dene two measures of entropy: the predictability relative to messages targeting a specied node (Target Entropy) and the predictability relative to messages crossing a specied node and one of its neighbors. The analysis of theses measures lead to some conclusions:

• When the entropy values are high, the predictability is low. In the opposite case, a little number of links is used.

• The trac to nodes with high degrees is unpredictable.

• Low values of entropy show that the trac is concentrated. It is more distributed and logically more robust when the entropy is higher.

In [START_REF] Van Dyke | Entropy and self-organization in multi-agent systems[END_REF], Van Dyke Parunak and Brueckner try to show that the relationship between self-organization in multi-agent systems and the second law of thermodynamics is not a metaphor and that this relation can provide analytic and quantitative directives in the aim of the conception and the deployment of these systems. The self-organizing model is inspired from [START_REF] Kugler | Information, natural law, and the self-assembly of rhythmic movement[END_REF], which suggests that the key idea permitting to reduce the disorder in a multi-agents system is to copulate it with an another where the disorder increase. For a system, the self-organization is done at macroscopic level. Considering this, such behavior contradicts the second law of thermodynamics. Nevertheless, the system includes a microscopic level which dynamic increase the disorder. To reproduce a system with the two levels, the example of the pheromones used by ants is considered. The movements of ants constitute the macroscopic level while the molecules of pheromones represent the microscopic level. The movements of ants permit to dene a little number of ways between the nest and the source of food. The disorder at macroscopic level is inconspicuous. The latter observation is the result of coupling macroscopic level agents with microscopic level, where the evaporation of molecules of pheromones takes place according to random mobility which increases the disorder.

The entropy, inspired from Shannon entropy and thermodynamic entropy, denes a disorder measure describing the trend of a system to be chaotic. This measure is applied at two levels: localization (microscopic level) and direction (macroscopic level). The results show that the two measures are antagonist which conrms that the second law of thermodynamics can be applied to multi-agent systems.

Another approach [START_REF] Wei | Classication of access network types: Ethernet, wireless lan, adsl, cable modem or dialup?[END_REF] tries to provide a schema able to classify a connection by three categories: Ethernet, WLAN or connection with low bandwidth. An algorithm is proposed to identify the connection type using the sending of packets pairs. This choice is led by the motivation to follow the random aspect at the reception of the pairs and use this aspect to identify the type of connection. The measure of random aspect is done by Shannon entropy. The major reason of this recourse instead the use of variance is that entropy is a better metric catching the random aspect of a random variable. As nal note, it is interesting to mention that some works have used entropy to determine path stability in MANET and wireless sensor networks for their respective routing protocols. EQMGA (Entropy-based model to support QoS Multicast routing Genetic Algorithm) [START_REF] Chen | Qos multicast routing algorithm in manet: an entropy-based ga[END_REF], ERPM (Entropy-based Routing Protocol using Mobility) [START_REF] Beongku An | An entropy-based routing protocol using mobility in mobile ad-hoc wireless sensor networks[END_REF], the An and Papavassiliou model [START_REF] An | An entropy-based model for supporting and evaluating route stability in mobile ad hoc wireless networks[END_REF], ELMR (Entropy-based Long-life Multipath Routing algorithm) [START_REF] Gui | An entropy-based long-life multipath routing algorithm in manet[END_REF] and QARPE (QoS-Aware Routing Protocol based on Entropy) [START_REF] Lian | A qos-aware routing protocol based on entropy for mobile ad hoc network[END_REF] share the same idea of constructing a new entropy and select the most stable path relying on the entropy to reduce the number of route reconstruction when the topology is continuously changing.

How To Quantify Link and Proximity Stabilities and How To Use

Them?

In the context of dynamical social networks, Zhao et al. [START_REF] Zhao | Entropy of dynamical social networks[END_REF] have been interested in human-based networks. These social networks encode information and are highly adaptive. From this perspective, Zhao et al. advance the entropy of dynamical social networks to describe the information about the dynamics of social interactions. Through a large dataset of interactions of cellular network users, it has been shown that the entropy that characterizes the dynamical social network is closely dependent on the time of a typical week-day (circadian rhythms) and that the social networks are extremely adaptive and whose structures are sensitive to the used technologies. In the same context, Bianconi et al. [START_REF] Bianconi | Assessing the relevance of node features for network structure[END_REF] have highlighted, by using entropy measures, how much important the annotated features of the nodes (age, gender, . . . ) or of the links (social ties, common attributes, . . . ) impact the structure of the network.

4.4.3

Quantifying Link and Proximity Stabilities by Means of Time

Series Entropy Estimation

In order to measure these stabilities, we opt for the entropy metric. For our approach, we have been interested in the entropy estimator used for the Lempel-Ziv data compression [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF][START_REF] Kontoyiannis | Nonparametric entropy estimation for stationary processesand random elds, with applications to english text[END_REF]. This tool enables us to estimate the entropy of a time series [START_REF] Navet | On predictability and protability: Would gp induced trading rules be sensitive to the observed entropy of time series?[END_REF]. It has been applied by Song et al. [START_REF] Song | Limits of Predictability in Human Mobility[END_REF] to demonstrate that the human mobility is highly predictable. For this purpose, they have analyzed traces of several cellular phone network users and they have constructed for each user a sequence of letters and each letter corresponds to the label that designates a specic location (a cell). After that, they applied the entropy estimator on the sequences of locations visited by several cellular network clients and they have obtained low values for the entropies which indicates a high predictability. Then, for a record of n steps, the entropy is estimated by:

S est = 1 n i Λ i -1 ln n (4.4)
where Λ i is the length of the shortest substring starting at position i which does not previously appear between position 1 and i -1.

Before exploiting this estimator in link prediction, we have to dene the time sequences in order to measure the stability of each link. Instead of Song's et al. approach which consists in lling in the user's location labels for each step, we rely on statistics of the link state between each pair of nodes. To construct this sequence, each node has to record the state of a link with every detected neighbor and at each period. Tracking the status of each link through a third order tensor accurately Chapter 4. Improving Link Prediction in Mobile Wireless Networks by Considering Link and Proximity Stabilities achieves this requirement and for each link we obtain a sequence of zeros and/or ones. Therefore, we propose the entropy estimator E l T (i, j) which quanties the stability of the link between the nodes i and j over T periods. This is given by:

E l T (i, j) = 1 n T t=1 Λ t (Z t (i, j)) -1 ln n (4.5)
where Λ t (Z t (i, j)) is the length of the shortest substring (consisting of a sequence of zeros and/or ones) starting at position t which does not previously appear between position 1 and t -1. The parameter n corresponds to the number of substrings which are identied.

In the same way, we dene E p T (i, j) as estimator of the entropy which quanties the stability of the proximity at two hops of the pair of nodes (i, j). It is computed as in Eq. (4.5) but by substituting, for the value Z t (i, j), the state of proximity at two hops at period t (1 if i and j are separated by 2 hops at the period t and 0 otherwise).

The Lempel-Ziv entropy estimator identies at each step the shortest sequence which is not detected before. Therefore, we are tracking the length of the substrings step by step. If the shortest substrings become quickly too long, this means that there is redundancy. Indeed, the rst chains added in the set of shortest substrings are repetitive in the whole sequence and it is necessary to concatenate new strings to make new shortest chains. Then, redundancy matches with stability as long chains decrease the value of the estimator. Otherwise, if the shortest substrings too often take the smallest possible length, this means that there vastly dierent combination of zeros and ones. This remark suggests that the ties highlight randomness and variation rather than regularity. So, the status of a tie is more unstable and the entropy estimation gets higher (due to short length of the substrings). In Fig. 4.2, we depict an example of the application of the algorithm used to identify the shortest substrings in the Lempel-Ziv data compression mechanism.

In the following subsection, we present new prediction scores. They are determined by joining the entropy estimations to the tensor-based link prediction framework.

4.4.4

Joining the Entropy Estimations to the Tensor-Based Link Prediction Framework

We have shown that the measures that we advance can be used to quantify the stability of a link or the proximity at two hops. Nevertheless, these measures, as mentioned previously, are unable to determine if the stability is quantied for an Them? occurring tie (series of ones in the tensor) or for a tie that is occasionally or never created (series of zeros in the tensor). Then it is important to combine them to a metric that expresses the lifetime or the perseverance of a link. From this perspective, we propose the combination with the Katz measure and/or the weight provided by the collapsed weighted tensor. Therefore, after evaluating several ways to combine the entropy estimations with the tensor-based link prediction framework, we propose four dierent techniques to join them. Our aim is to demonstrate that mea-suring the stability and exploiting it are really benecial to improve the prediction performance. In this work, we want to prove that considering the stability of ties between nodes improves the link prediction of our framework. We are not seeking the design that ensures the best prediction eciency. This investigation will be the aim of a future work. In the following, we detail how we design the combinations in order to predict better a link occurrence between a node i and a node j through new metrics.

• Combining the collapsed weighted tensor value X(i, j) with the link entropy estimation E l T (i, j) (XE scores): We suggest to join the entropy estimation E l T (i, j) (as expressed in Eq. (4.5) and where (i, j) is a pair of nodes) to the weight collected by the matrix X(i, j) (Eq. (4.1)) as we are seeking the most stable occurring links. In other words, we want to identify the links that have high weight and in the same time low estimation of the entropy. We use normalized values for E l T (i, j) and X(i, j).

• Combining the Katz measure S(i, j) with the link entropy estimation

E l
T (i, j)(SE scores): We proceed as for the previous suggestion but we join the entropy estimation with the behavior similarity metric S(i, j) (Eq. (4.2)). We aim to check and assess that joining sociometric and stability measures can be helpful to make more precise predictions. As in the previous combination, we use normalized values for both parameters.

• Computing the Katz measure S(i, j) from the combination of the collapsed weighted tensor value X(i, j) with the link entropy estimation E l T (i, j) (XES scores): We propose to apply the tensor-based link prediction technique but combining the collapsed weighted tensor X with the link entropy estimation. Indeed, we combine each weight X(i, j) (Eq. (4.1)) with the measure E l T (i, j) (Eq. (4.5)) and we apply the Katz formulation on the described combination in order to obtain a new matrix of scores. Also, we use normalized values for the entropy estimation and the collapsed weighted tensor values.

• Computing the Katz measure S(i, j) with the denition of the new collapsed weighted tensor value X new (i, j) (XNS scores): We also propose to apply the tensor-based link prediction technique but with a new collapsed weighted tensor denoted X new . To determine it, we compute a coefcient, at each period p and for each pair of nodes (i, j), that combines the occurrence weight obtained from X (i. e. lifetime and recentness) with the link stability and/or the proximity stability. Afterwards, we apply the Katz

How To Quantify Link and Proximity Stabilities and How To Use
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formulation on the new collapsed weighted tensor X new in order to obtain a new matrix of scores. The matrix X new can be expressed in dierent ways which are detailed in the following.

Among the scores involving the entropy estimation that we have tested, we hold from each category the metric/metrics which highlights/highlight regularity and eciency for all simulation scenarios. Then, for T tracking periods, we dene the following matrices of scores:

XE_Score = ([1] N ×N -X) • ×E l T (4.6) SE_Score = ([1] N ×N -S) • ×E l T (4.7) XES_Score = (I -β • [E l T • × (4.8) ([1] N ×N -X)]) -1 -I XN S_Score = (I -β • X new ) -1 -I (4.9)
where N is the number of nodes involved in the statistics and, for two nodes i and j, X new (i, j) is given by:

X new (i, j) = T t=1 (1 -θ) 2(T -t) • (Z t (i, j) • (4.10) [max t (E t ) -E t (i, j)])
The parameter E t (i, j) and max t (E t ) respectively correspond to the current entropy estimation (whether for link stability or proximity stability) and the maximum entropy value that we can obtain for t periods.

We derive three variants of the XN S_Score. When E l t (i, j) is used to compute X new (i, j), we dene the measure XN S1_Score. If E p t (i, j) is chosen, we express the metric XN S2_Score. In addition, we consider the case in which we compute X new (i, j) using the link and the proximity stabilities. In this case, we propose the measure XN S3_Score where X new (i, j) is given by:

X new (i, j) = T t=1 (1 -θ) 3(T -t) • (Z t (i, j) • [max t (E t ) -E l t (i, j)] • [max t (E t ) -E p t (i, j)]) (4.11) 
In the following section, we detail the dierent scenarios to evaluate all these metrics and we assess their ability to achieve better performance in link prediction.

Simulations Scenarios and Performance Evaluation

To evaluate the eciency of the tensor-based link prediction method joined to the entropy estimations, we consider two real traces. We present them in the following subsection. Then, we analyze the results obtained and we assess the eciency of our contribution.

Simulation Traces

We consider three real traces to evaluate the contribution of the entropy estimations. We exploit them to construct the tensor by generating adjacency matrices with dierent time periods lengths. We detail, in the following, the traces used for the evaluation:

• First Trace: MIT Campus trace: We take the trace of 07/23/02 [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF] and consider the events between 8 a.m. and 4 p.m. (8 tracking hours) to build up the tensors. The number of nodes is 646 and the number of locations (i.e. access points) is 174.

• Second Trace: Dartmouth Campus trace: We choose the trace of 01/05/06 [5] and construct the tensor slices relying on SYSLOG traces between 8 a.m. and 4 p.m. also. The number of nodes is 1018 and the number of locations (i.e. access points) is 128.

• For each scenario (a xed tracking period length), we track the occurrences of contacts during T periods. We also consider the adjacency matrix corresponding to the period T +1 as a benchmark to evaluate the eectiveness of our proposal. We construct tensors for the following period lengths: 5, 10, 30 and 60 minutes. That is to say that we record the network statistics for respectively a number of periods T equal to 96, 48, 16 and 8 slices (for the case where t=5 minutes, it is necessary to have 96 periods to cover 8 hours, 48 periods are needed to do the same when t=10 minutes, . . . ). We consider the distributed case for the computation of scores. We assume that each node has the knowledge about its 1-hop and 2-hop neighbors to To asses if the proposed metrics enhance the prediction performance of the tensorbased link prediction framework, we consider three evaluation measures detailed in the previous chapter:

• Top Scores Ratio at the period T +1 (TSR)

• Accuracy (ACC)

• F-Measure or balanced F1 score Link Prediction of Links Occurring in T +1

We compare the prediction eciency of the proposed prediction metrics with the one of the tensor-based link prediction technique [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF] based on the Katz measure.

To propose a comprehensive comparison, we also consider well-known prediction metrics presented in the literature. On the one hand, we consider behavioral-based link prediction metrics such as the similarity metric of Thakur et al. [START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] and two metrics expressing mobile homophily proposed by Wang et al. in [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF]: the spatial cosine similarity and the co-location rate. On the other hand, we take two link prediction metrics based on measuring the degree of proximity such as the Katz measure. They are the Adamic-Adar measure [START_REF] Lada | Friends and neighbors on the Web[END_REF] and the Jaccard's coecient [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et des jura[END_REF][START_REF] Salton | Introduction to Modern Information Retrieval[END_REF]. All the metrics that we propose are involved in the latter category. The evaluation metrics are computed for all traces with dierent tracking periods lengths. Regarding the MIT Campus trace, the results are reported in Fig. 4.3. For the Dartmouth Campus trace, the prediction results are listed in Fig. 4.4. Also, a performance comparison is depicted in Fig. 4.5 between proximity-based link prediction metrics applied on the Infocom 2006 trace. For each gure, the plots (a), (b) and (c) respectively represent the top scores ratio in T +1, the accuracy (the percentage exceeding 99% for the two rst traces and the percentage exceeding 96% for the last trace) and the F-Measure obtained for each prediction technique with dierent tracking periods.

The results obtained enable us to attest that the use of the Katz measure has been one of the best choices to perform prediction through the tensor-based technique. Using this metric achieves better performance than those of the other link prediction metrics proposed in the literature. Hence, the Katz measure is the best metric that we can use to interpret the meaning of the entropy estimations. The other well-known prediction metrics show a lower performance in the context of predicting such links. Indeed, instead of the Katz measure, they quantify the relationship of a pair of nodes without seeing if a direct link connects them. For example, two isolated neighbors (or having few common neighbors) would have a weak score even if they were connected. On the other hand, two other nodes can be 4.5. Simulations Scenarios and Performance Evaluation 2-hop neighbors and share several common neighbors which means that the score in this case is relatively high even if no link connects the corresponding pair of nodes.

Comparing the performance of the tensor-based link prediction technique with those of the proposed metrics based on link and/or proximity entropy estimations leads us to assess that our proposal of combining our prediction technique with stability measures is coherent and eective. We remark that for each scenario, there is at least three among the six proposed metrics that achieve better prediction performance (better top scores ratio at T + 1, accuracy and F-Measure) than the Katz measure. The Katz measure quanties the social ties between two nodes by a score. Nevertheless, such a score sometimes cannot indicate if the contacts between these two nodes are stable or interspersed over time. The contribution of the entropy estimation is to identify the stable and persistent links but not only them. Also, the entropy allocates low values when a link never or rarely occurs between two nodes (long sequences of 0 for the status of a link). Hence, combining the Katz measure and the entropy estimation enables us to distinguish more clearly a stable link (low entropy estimation and high Katz measure). Such a combination highlights more clearly how nodes are tied which makes the prediction of the topology more ecient in the period T +1.

Considering all traces, we nd that it is better to opt for the SE, the XE and the XES scores when the tracking periods are long (30 and 60 minutes). When these periods are shorter (10 and 5 minutes), the XN S scores are the most suitable metrics. In fact, shortening the length of the tensor period leads to obtaining a more precise tracking of the properties of the links (i.e. better distinction between persistent and eeting links), more faithful estimation of the stability and then more ecient link prediction (more information about the impact of the tracking period length is provided in [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF]). Meanwhile, when we use long tensor periods, tracking become less precise as the method considers long and short contact as the same. For example, if we consider a tracking period of 30 minutes, a contact that occurs during all this period is considered as the same as a contact that only lasts a few seconds during the same period (the status of the link is set to 1). It is clear that we lose precision when the contacts tend to be short. Moreover, we divide the historical data into T periods and when the tracking period are longer, the number of total periods T becomes less. Therefore, the sequence of 0 and 1 that characterizes a link over time becomes shorter and tends to be unstable (due to the lack of precision). Afterwards, the Katz measure, as well as the entropy estimation, is less ecient to characterize the relationship between nodes, especially for short contacts.

In these simulations, we have assumed that each node has knowledge about its one-hop and two-hop neighbors. Limiting the local information to one hop is not compromising the performance either of the tensor-based link prediction technique or of the proposed metrics based on entropy estimation. It is true that we are not able, in this case, to compute the XN S2 and the XN S3 scores. Nevertheless, the Katz measure is no longer aected with this limitation. In fact, we have proved in [START_REF] Zayani | Tensor-based link prediction in intermittently connected wireless networks[END_REF] that the prediction eciency of the tensor-based link prediction technique achieves similar performance in predicting links in the period T +1 whether the knowledge is limited to one-hop neighbors or extended to the two-hop neighbors. Fig. 4.6 depicts the Top Scores Ratio in T +1, the accuracy and the F-Measure obtained from the MIT Campus trace when prediction is performed by the Katz measure and by the proposed link stability based measures using only the knowledge of direct neighbors (XE, SE, XES and XN S1 scores). The results conrm the ndings cited above: the performance of each prediction technique is similar in both scenarios. Obviously, the contribution of the entropy estimation is always eective. This eectiveness is maintained for link prediction in the period T +1.

Link Prediction of New Links

We have shown in the previous chapter that the Katz measure is able to predict some future new links (that have never occurred during the historical). We have tried to see if the prediction metrics that we propose are able to predict new links and we found that only the SE score is able to exactly achieve the same performance as the one of the Katz measure. This observation is trivial to explain : in fact, the entropy measures of all new links are the same as they are never occurring in the historical and then characterized by a sequence of zeros in the link status over time. The other proposed metrics depict limited or no ability to detect such links.

From this perspective, we wonder what would be the performance of the SE score if we substitute the link stability between two nodes by the one of proximity at 2 hops. Hence, we express the matrix of scores SE 2hops Score as follows:

SE 2hops _Score = ([1] N ×N -S) • ×E p T (4.12)
where N denes the number of nodes involved in the statistics, S is the Katz scores matrix (normalized scores) and E p T represents the entropy estimations matrix of the proximity at two hops stability of each pair of nodes (i, j).

To verify the eectiveness of this metric in improving the prediction of new links, we extract all the contacts happened during a tracking time and we consider the contacts that have occurred after this tracking time in order to assess the ability of detecting the birth of new links. The contacts are extracted as explained in the Table 4.1. In Table 4.2, we compare the performance of predicting new links of the proposed metric with the one of the Katz measure (it is assumed that the nodes have the knowledge of their neighbors at one and two hops). For that aim, we 4.6. Conclusion

Conclusion

In this chapter, we highlighted that the prediction eciency of the tensor-based technique that we have advanced can be improved by taking into consideration other aspects on top of measuring social closeness. We proposed to make the prediction sensitive to the link and proximity stabilities. We showed that a strong relationship between two nodes matches also with a stable link between them. Indeed, when similar intentions are shared for a period of time, the link between the corresponding individuals is expected to be stable. We also outlined that considering proximity stability can also be benecial to improving the prediction performance. To express the stability itself, we proposed an entropy estimator inspired from data compression and which converges to the expected value of entropy for a time series. In our case, the time series is the sequence of the state of the links in the adjacency matrices (sequence of zeros and/or ones).

To assess the eciency of our contribution, we tried to join the stability feedback to the tensor-based link prediction framework through proposing new prediction metrics. We assessed that we can improve the performance of the prediction technique especially when the tensor time period tend to be short. In other words, using shorter tensor periods favors more precise tracking of contacts between nodes, which leads to a better estimation of the entropy estimations and then more faithful link prediction. Above all, we identied, according to the length of tracking period, the set of metrics that can be used to enhance, as much as possible, the performance of the tensor-based link prediction technique.

We presented in this rst part a tensor-based link prediction framework for human-centered mobile wireless networks and some proposed improvements. These contributions have been advanced as we aspire to propose mechanisms and techniques that can be useful in order to evaluate or improve/design communication protocols dedicated to such networks. In this thesis, on top of proposing link prediction techniques, we have provided two other contributions that match with our aim and that we will present in Part II. Indeed, we have designed a joint model for the IEEE 802.15.4 physical and medium access control layers in order to evaluate more accurately the relative performance when N nodes try to communicate. This joint model is presented in chapter 5. As a second contribution, we design a selflearning repeated game framework inspired by the concept of "The Weakest Link" TV game and dedicated to promote the cooperation among nodes in non-cooperative MANETs. This framework is detailed in chapter 6.

Part II

Other Contributions Proposed in the Thesis

Introduction

Wireless sensor networks have been closely studied in recent years. Several studies have investigated behaviors and performances of these networks. Some of them have highlighted such networks properties by relying on empiric results [27, 123, 114, 49, 28] whereas others have focused on reproducing a standard or mechanism functionalities tied to sensors by proposing analytical models [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF][START_REF] Zhai | Performance analysis of IEEE 802.11 MAC protocols in wireless LANs[END_REF][START_REF] Daneshgaran | Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Eects[END_REF][START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]. Empirical studies have shown that wireless communication networks are radically dierent from some simulation models (disc-shaped nodes range for example). Analytical studies have attempted to reproduce mechanisms and technical aspects widely used/seen in these networks in order to track network performances. Among these approaches, those of Zuniga and Krishchnamachari [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF] stand out. They emphasize the limits of disc-shaped node range models that are used in simulators, and highlight the existence of a transitional region between the connected and disconnected areas. This observation, based on experiments, enables us to understand clearly the reason behind link unreliability in low power wireless networks. Moreover, Zuniga and Krishchnamachari underline the impact of asymmetry in transitional region expansion and its negative eect on reliability [START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF]. Meanwhile, lot of the performance analysis of MAC layer protocol are derived from the Markov model proposed by Bianchi [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF] for the IEEE 802. The remainder of this chapter is as follows. In Section 5.2, we present the related work which gives an overview of approaches that inspire our model. We focus on our contribution by giving details on the combined PHY and MAC layers models in Section 5.3. In Section 5.4, we compare our proposition to the enhanced Park et al. approach and estimate nodes performances with dierent network densities. Finally, Section 5.5 concludes the chapter.

Related Work

Related Work

Many studies have aimed to understand and to evaluate standards and protocols. The works that tried to identify the properties of these networks mechanisms fall into two categories: i.e. simulations-based [START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Zhao | Understanding Packet Delivery Performance In Dense Wireless Sensor Networks[END_REF][START_REF] Woo | Taming the underlying challenges of reliable multihop routing in sensor networks[END_REF][START_REF] Ganesan | Complex Behavior at Scale : An Experimental Study of Low-Power Wireless Sensor Networks[END_REF][START_REF] Cerpa | Temporal properties of low power wireless links: modeling and implications on multi-hop routing[END_REF] relying on empiric observations, or analytical works [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF][START_REF] Zhai | Performance analysis of IEEE 802.11 MAC protocols in wireless LANs[END_REF][START_REF] Daneshgaran | Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Eects[END_REF][START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]. Most of analytical studies are based on the Markov model proposed by Bianchi [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF] for the IEEE 802.11 standard. This model consists in a Markov chain that mimics the functionalities of the IEEE 802.11 standard while assuming a saturated trac and ideal channel conditions. Zhai et al. [START_REF] Zhai | Physical Carrier Sensing and Spatial Reuse in Multirate and Multihop Wireless Ad Hoc Networks[END_REF] and Daneshgaran et al. [START_REF] Daneshgaran | Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Eects[END_REF] exploit the Bianchi model and extend it through more realistic assumptions. These approaches have inspired Grith and Souryal [START_REF]SGIP NIST Smart Grid Collaboration Site, PAP02: Wireless Communications for the Smart Grid (6.1.5)[END_REF] to develop a model for the IEEE 802.11 MAC layer that adds a frame queue to each node. This contribution enables us to estimate the packet reception rate, the delay, the medium access control layer (MAC layer) service time and the throughput. Similar studies have been developed for the wireless sensor networks, and more especially the IEEE 802.15.4 standard. Hence, we note the models developed by Pollin et al. [START_REF] Pollin | Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer[END_REF] and Park et al. [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]. The two approaches provide a generalized analysis that allows to measure reliability, delay and energy consumption. In each proposed model, the exponential backo process is modeled by a Markov chain. Retry limits and acknowledgements in an unsaturated trac scenario are also taken into consideration. Park et al. propose a generalized analytical model of the slotted CSMA/CA mechanism with beacon enabled mode in IEEE 802.15.4. This model includes retry limits for each packet transmission. The scenario of a star network in which N nodes try to send data to a sink has been considered and dening the state of a single node through a Markov model has been proposed. Each state of the Markov chain is characterized by three stochastic processes: the backo stage s(t), the state of the backo counter c(t) and the state of the retransmission counter r(t) at time t. The described modeling allows us to analyze of the link reliability, delay and energy consumption.

In another context, several works focus on the physical layer modeling. For instance, Zuniga and Krishnamachari [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF] have analyzed the major causes behind unreliability [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF] and the negative impact of asymmetry on link eciency [START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF] in low power wireless links. Instead of the binary disc-shaped model these models reproduce the called transitional region [START_REF] Zhao | Understanding Packet Delivery Performance In Dense Wireless Sensor Networks[END_REF][START_REF] Woo | Taming the underlying challenges of reliable multihop routing in sensor networks[END_REF][START_REF] Ganesan | Complex Behavior at Scale : An Experimental Study of Low-Power Wireless Sensor Networks[END_REF] in order to model the transmission range. The packet reception rate and the upper-layer protocol reliability are highly instable when a neighbor is located in this region. To understand it, two models have been proposed: a channel model that is based on the log-normal path loss propagation model [START_REF] Rappaport | Wireless Communications: Principles and Practice[END_REF] and a radio reception model closely tied to the determination of packet reception ratio. Through these models, it is possible to derive the expected distribution and the variance of the packet reception ratio according to the distance. To model the PHY layer, we have adopted the Zuniga and Krishnamachari approach [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF]. The main objective is to identify the causes of the transitional region and quantify their inuence on performance without considering interferences (assumption of a light trac or static interference). To do this, the expressions of the packet reception rate as function of distance are derived. These expressions take into account radio and channel parameters such as the path loss exponent (log-normal shadowing path loss model [START_REF] Rappaport | Wireless Communications: Principles and Practice[END_REF]), the channel shadowing variance, the modulation, the coding and hardware heterogeneity. They describe how the channel and radio inuence transitional region growth. We use mathematical frameworks provided to compute packet delivery rate independently of interferences. The approach followed by Zuniga and Krishnamachari in which we have been interested in describes how the channel and the radio determine the transitional region. On the one hand, for the wireless channel, the log-normal shadowing path loss [START_REF] Rappaport | Wireless Communications: Principles and Practice[END_REF] model is adopted (can be used for small and large coverage systems and its accuracy is demonstrated in comparison with other models). It is given by:

P L(d) = P L(d 0 ) + 10η log 10 d/d 0 + N (0, σ) (5.1)
Where d is the transmitter-receiver distance, d 0 is a reference distance, P L(d 0 )

M/M/1/K queuing model that endows a nite buer to a station. On the one hand, the Markov model determines the steady state probability when a station senses the channel in order to transmit a frame and the probability that a frame experiences a failure (due to a collision or to PHY layer failure). On the other hand, the queuing model gives as output some measurements such as the throughput or the probability that the station is idle.

The Park et al. approach, inspired from [START_REF] Pollin | Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer[END_REF], consists in a generalized analytical model of the slotted CSMA/CA mechanism of beacon enabled IEEE 802.15.4 with retry limits for each packet transmission (the complete description is provided in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]). The model takes the scenario of N stations that try to communicate with a sink. Park et al. dene the probabilities for the following events: a node attempts a rst carrier sensing to transmit a frame, a node nds the channel busy during CCA1 or a node nds the channel busy during CCA2. They are denoted by the variables τ , α and β respectively. These three probabilities are related by a system of three non-linear equations that arises from nding the steady state probabilities. Our model, described by the owchart presented in Fig. 6.2 (the main PHY and MAC inputs are listed in Table I and Table II respectively), aims to solve the nonlinear system that expresses these probabilities. In addition, it estimates p 0 , the probability of going back to the idle state by considering the oered load per node parameter λ. In this way, our contribution enables the MAC model to determine this probability, in opposition to [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF] (p 0 is taken as an input for the performances analysis).

We start from equations ( 16), ( 17) and ( 18) in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF] and make changes in some of these expressions to enhance the model. The equations ( 17) and ( 18) are expressed with probability τ to mention that a node is transmitting. In our mind, this consideration is insucient because a transmitting node must not be idle, that is why we substitute τ by (1-p 0 )τ. Thereby, τ is the probability that a node tries to transmit and 1-p 0 is the probability that a station has a frame to send. The system considered is given by equations (5.7), (5.8) and (5.9): 

τ = 1 -x m+1 1 -x 1 -y n+1 1 -y b 0,0,0
(5.7)

α = L + N (1 -p 0 )τ (1 -τ (1 -p 0 )) N -1 1 -(1 -τ (1 -p 0 )) N L ACK 1 -(1 -(1 -p 0 )τ ) N -1 (1 -α)(1 -β)
(5.8)

β = 1 -(1 -τ (1 -p 0 )) N -1 DV + N (1 -p 0 )τ (1 -(1 -p 0 )τ ) N -1 DV (5.9)
where

DV = 2 -(1 -(1 -p 0 )τ ) N + N (1 -p 0 )τ (1 -(1 -p 0 )τ ) N -1 , x = α + (1 -α)β and y = P f ail (1 -x m+1
). The parameter P f ail represents the probability of a failed transmission attempt, m is the maximum number of backos the CSMA/CA algorithm will attempt before declaring a channel access failure, n is the maximum number of retries allowed after a transmission failure, L is the length of the data frame in slots (a slot has a length of 80 bits), L ACK is the length of an acknowledgement in slots, N is the number of stations and b 0,0,0 is the state where the state variables of the backo stage counter, the backo counter and the retransmission counter are equal to 0 (an approximation is proposed in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]).

The mechanism that computes these probabilities (using the MATLAB f solve function) allows us to determine the probability of failed transmission P f ail , given by:

P f ail = 1 -(1 -P col )(1 -P e )
(5.10)

where

P col = 1 -(1 -τ (1 -p 0 )) N -1 .
In the above expressions, P e is the probability of loss due to channel and radio constraints (computed by the PHY model) and P col is the probability of a collision occurring (modied as done with ( 17) and ( 18) in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]).

This mechanism is embedded in a loop that updates p 0 . The developed model solves the system of non-linear equations to determine τ , α, β and therefore P f ail . Then, P f ail , α and β are used to estimate the mean MAC service time, or the mean time to process a frame, expressed also as Expected Time or ET (in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF], Section V.B details how to compute this time. We substitute, of course, P col by P f ail to catch errors that can occur at PHY and MAC layers). So, a new value for p 0 is generated and the updated p 0 is used in the next iteration. It is possible to determine p 0 since each device has a buering capacity. Every node is modeled as an M/M/1/K queue 5.3. Developed IEEE 802.15.4 Model for Smart Grid and each queue receives frames following a Poisson arrival process λ frames/s. The queue utilization ρ is the product of the arrival rate λ and the inverse of the mean MAC service time ET . The steady state probability that there are i frames in the queue is:

p i = ρ i / K j=0 ρ j (5.11)
Hence, the value of p 0 is given by:

p 0 =   K j=0 ρ j   -1
(5.12)

The process continues until the value of p 0 converges to a stable value. Once p 0 converges, all outputs concerning queuing analysis can be computed for each value of λ (the per-node load oered). Four outputs are considered in this study: the average waiting time to receive a frame (Eq. ( 7)), the failure probability (probability of packet loss due to collisions or link constraints)(Eq. ( 4)), the reliability of a node (the probability of a good frame reception)(Eq. ( 8)) and the average throughput per node(Eq. ( 9)).

D = L λ (1 -p k ) (5.13) R = (1 -p k ) (1 -P cf ) (1 -P cr ) (5.

14)

S avg = λRL p (5.15) where p k is the probability of having full buer, P cf is the probability that the frame is discarded due to channel access failure (Eq. ( 19) in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]), P cr is the probability that the packet is discarded due to retry limits (Eq. ( 20) in [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF]), L is the payload size and L p is the application data size.

Therefore, this contribution enables us to enhance Park and al. model at two levels:

• Providing a more precise computation of failure probability by considering possible errors at PHY and MAC layers (link unreliability and collisions).

• Enhancing the MAC model of Park et al. by estimating the probability p 0 for the resolution of non-linear equations (this probability is an input in Park et al. model), modifying some expressions to more ecient estimations and determining outputs relative to a precise scenario (number of nodes and per- Min Tx Range 1 m node load oered).

Simulation and Results

First of all, we propose to check the validity of our model. Then, we advance two scenarios for the simulations in order to appreciate our joint model. After that, we compare the performances of a node obtained in two dierent ways. On one hand, we use the Park et al. Markov chain (MAC layer) and on the other hand we test our model. Then, we expose the same performances, using our developed model, for dierent densities. All the simulations test dierent values for the oered per-station load, measured in units of frame/s. We choose to start from 0.5 frame/s and increase the oered load to 50 frames/s with a step of 0.5 frame/s (or from 400 bits/s to 40000 bits/s). We select four outputs to illustrate node performances: the average waiting time for a frame reception, the failure probability (probability of frame loss due to collisions or link constraints), the reliability of a node (the probability of a good frame reception) and the throughput. Table 6.1 presents the main inputs at the MAC layer and Table 6.2 enumerates the main ones at the PHY layer.

Simulation and Results

Cheking the Validity of the Joint Model

As mentioned, The MAC layer model proposed by Park et al. [START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF] is strongly inspired by the Markov model provided by Pollin et al. [START_REF] Pollin | Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer[END_REF]. In [START_REF] Pollin | Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer[END_REF], the authors have proposed to measure the probabilities α and β, through their model, according to a growing number of nodes in a network with saturated trac. Then, their have compared the obtained values with those provided by simulation. The results have shown that the probabilities obtained in both cases are similar and this observation enable them to validate their model. To do the same for our model, we consider the same simulation scenario and we compare the results obtained by our joint model with the ones obtained by the model of Pollin et al. Table 6.3 details the values obtained for the probabilities α and β with both models according to the growing star network density.

We remark that our model show very similar values of α and β in the case of saturated trac. This indicates that the two model mimic the behavior of the 802.15.4 standard in the same way. This result enables us to conclude that our model is eective and valid even if the impact of the PHY layer model is not visible due to the saturation trac condition. To appreciate the contribution of this model, we propose in the following to compare our joint model to the model of Park et al.

Comparison between Combined PHY and MAC Layers and

Simple MAC Layer Models

As previously described, when we include the constraints at the physical layer, delivery failures happen more often. There are many reasons for this: weak SNR and modulation and/or encoding errors. We run simulation for a star network with 10 nodes. The results conrm a notable degradation of node performances. In Fig. 5.2(a), the average waiting time is for the the combination of the PHY and MAC models. Inserting link constraints increases the number of retransmissions. Thus, the delay increases. The delay dierence between the two approaches is not obvious through this gure. So, we propose to zoom in the gure to show the difference between the two models. We highlight this dierence through Fig. 5.3. Fig. 5.2(b) compares the evolution of failure probability for the two approaches. With light oered loads, the impact of the PHY model is conspicuous, especially since the number of collisions is likely to be low. The collisions are more frequent with heavier loads and the probability of occurrences grows quickly, generating network saturation. Meanwhile, the probability of losses due to link conditions remains constant (this probability is determined independently of interferences and computed through an integration over the distance covered by the maximum range and over . So, the dierence between the two approaches is less signicant. The same interpretation can be used for reliability evolution, presented in Fig. 5.2(c). Reliability also undergoes the frame discards due to the reaching of maximum frame retries or maximum CSMA backos. The rejected frames due to full node queue represent also a possible interpretation with high oered loads.

The throughput evolution, presented in Fig. 5.2(d), also undergoes the constraints of the PHY layer, and is logically less signicant since it follows the same evolution as reliability (throughput is the product of reliability, oered load and data frame 

Evolution of Node Performance with Growing Densities

We use our model to compare node performances with three densities. We propose a network with 5 nodes, another with 10 nodes and a third with 50 nodes. We take into account the same outputs cited in the previous section. The major observation is that the IEEE 802.15.4 networks do not support heavy trac. The denser the network is, the poorer are the performances are. We note an increasing delay for denser networks, as observed in Fig. 5.4(a) (Fig. 5.5 proposes a zoom in to better appreciate the delay dierence between the three cases). As the number of nodes increases, and with growing oered loads, collisions are more frequent and so the retransmissions are more recurrent. The switching phase to saturated network shows more signicant dierences between the three network scenarios. Each node queue begin to experience congestion problems; with more retransmission requirements, the queues are busier and the delays are longer. At saturation, the frame losses are widespread (collisions, link constraints, frames discarded due to retry limits, etc.) for the three scenarios, but the number of nodes still has an impact because it has a negative inuence on performances and channel availability (more collisions, more retransmissions, channel congestion,. . . ). The same reasoning explains a higher failure probability, as presented in Fig. 5.4(b) and a lower reliability as outlined in Fig. 5.4(c) for denser networks and with increasing oered load. The evolution of throughput, shown in Fig. 5.4(d), also matches with the interpretations cited above.

Conclusion

We presented, in this chapter, a model that mimics the IEEE 802.15.4 functionalities at the PHY and the MAC layers. We aimed to combine two relevant propositions.

On the one hand, we modeled constraints that aect link quality using the Zuniga and Krishnamachari mathematical framework: distance, output power, noise, asym- This observation is quite obvious since this combination joins PHY constraints to collisions. Thus, our contribution improves the Park et al. approach by bypassing the assumption that failures are restricted to collisions. The amelioration of the Park et al. approach is not limited to the above description. We tried also to enhance the estimation of inherent probabilities by adjusting some expressions (as for α, β and P f ail ) and modifying the resolution method to gather new parameters Our contribution proposes to mimic the IEEE 802.15.4 PHY and MAC layers mechanisms. Nonetheless, it is extensible for reproducing more precise wireless networks standards related to IEEE 802.15.4. It is also adjustable to other standards. Indeed, the considered PHY layer model is quite relevant but assumes that interferences are weak and/or stable. Moreover, the probability of an error at the PHY layer is averaged (through integration over maximum range and maximum asymmetry variation). Introduction

In wireless Ad-hoc networks, nodes are self-organizing and autonomous. They manage their own resources and make their own decisions. In order to maintain network Chapter 6. Cooperation Enforcement for Packet Forwarding Optimization in Multi-hop Mobile Ad-hoc Networks connectivity, each node has to forward packets of other nodes. However, since they are known to have limited battery resources, these nodes usually tend to be noncooperative. Indeed, they might sometimes reject forwarding requests in order to save their proper energy. Thus, nodes are reluctant to participate in routing which may lead the network connectivity to break down. It is then necessary to provide a mechanism that enforces cooperation between nodes and maintains the network connectivity. The problem of forwarding packets in a non-cooperative Ad-hoc network is widely studied, as we highlight afterwards, and many approaches have been proposed. The nodes act selshly and tend to maximize their own benets, thus, most of these studies rely on game theory [START_REF] Fudenberg | Game Theory[END_REF] which is a suitable tool to deal with complex interactions between network nodes. From this perspective, the approaches can be classied into two categories depending on the mechanism used to enforce cooperation level between nodes. In the rst category, the propositions use the virtual payment scheme. Zhong et al. [START_REF] Zhong | Sprite: A simple, cheatproof, credit-based system for mobile ad-hoc networks[END_REF] have proposed Sprite, a credit-based system that makes incentives for nodes to cooperate. Eidenbenz et al. have designed COMMIT [START_REF] Eidenbenz | The commit protocol for truthful and cost-ecient routing in ad hoc networks with selsh nodes[END_REF], a routing protocol based on payment with virtual currencies. The requested intermediate nodes will perceive a compensation that is related to their residual energy level. Ad Hoc-VCG [START_REF] Anderegg | Ad hoc-vcg: a truthful and costecient routing protocol for mobile ad hoc networks with selsh agents[END_REF] and incentives modeling advanced by Crowcroft et al. [START_REF] Crowcroft | Modelling incentives for collaboration in mobile ad hoc networks[END_REF] also belong to the rst category. In the second one, the approaches employ mechanisms to enforce and maintain cooperation between nodes communities. Some works use reputation-based mechanisms. In instance, Kwon et al. [START_REF] Kwon | Cooperative strategy by stackelberg games under energy constraint in multi-hop relay networks[END_REF] who have formulated a Stackelberg game where two nodes sequentially estimate the willingness of each other and decide to cooperate or not according to the opponent reputation score. Also, Buchegger and Le Boudec [START_REF] Buchegger | Nodes bearing grudges: towards routing security, fairness, and robustness in mobile ad hoc networks[END_REF][START_REF] Buchegger | Performance analysis of the condant protocol[END_REF] have dened mechanisms taking into consideration reputation system. Other solutions aim to maintain cooperation by considering punishment threat. In this case, Marti et al. [START_REF] Marti | Mitigating routing misbehavior in mobile ad hoc networks[END_REF] have dened "watchdog" and "pathrater" techniques that improve throughput by excluding misbehaving nodes. Felegyhazi et al. [START_REF] Felegyhazi | Equilibrium analysis of packet forwarding strategies in wireless ad hoc networks -the dynamic case[END_REF] have proposed a scheme that enables the nodes to reach the Nash Equilibrium, under topological conditions (i.e. dependence graph), relying on the "Tit-For-Tat" punishment. Altman et al. [11] have highlighted the "aggressive" punishment in [START_REF] Felegyhazi | Equilibrium analysis of packet forwarding strategies in wireless ad hoc networks -the dynamic case[END_REF] and have proposed milder punishment mechanism which guaranties a Nash Equilibrium and helps nodes to consume less energy. Han et al. [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF] have advanced a self-learning repeated game framework based on punishment that determines the nodes optimal packet forwarding probabilities to maintain network connectivity. Pandana et al. [START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF] have considered the same aim as in [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF] and have designed three learning schemes with a punishment mechanism under perfect/imperfect local observation and dependence graph conditions.

Related Work

In this chapter, we propose a self-learning repeated game framework inspired by "The Weakest Link" TV game. In our approach, the set of nodes forming a route are considered as the candidates of the chains in the TV game. Each node forwarding probability can be seen as good answer probability for each candidate. Indeed, the maximization of global collective gains depends strongly on the cooperation between the candidates involved in the game. Thereby, we adopt the TV game concept to design our scheme with the objective of motivating nodes to create the longest chains and maximizing their utility values. This would increase the probability that the packets are delivered to the destination and then would optimize packets forwarding. Moreover, the framework relevance lies in the repeated game that enforces collaboration between nodes and a learning scheme that tends to reach better cooperation level. We consider also a punishment mechanism that would discourage nodes from acting selshly. To asses the eciency of our proposal, we compare our proposal to two other self-learning repeated game schemes proposed in [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF] and [START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF].

The remainder of the chapter is organized as follows: In Section 6.2, we present the self-learning repeated game approaches that have inspired us to design our approach. The proposed model based on "The Weakest Link" TV game principle is illustrated in Section 6.3. The self-learning repeated game framework and punishment scheme are then presented in Section 6.4. Section 6.5 details simulations scenarios used to evaluate our proposal and analyzes the obtained results. Finally, concluding remarks are given in Section 6.6.

Related Work

We have been interested in some self-learning repeated game frameworks based on a punishment mechanism. We have been inspired by the framework proposed by Han et al. in [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF] and those designed by Pandana et al. in [START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF]. They have helped us to design our own frame work. In this section, we propose to give details about these approaches and how the Folk Theorem can solve the problem of the non-cooperative behavior when nding the Nash Equilibrium is not sucient.

Self-Learning Repeated Game Framework proposed Han et al. Han et al. propose their framework in order to distributively obtain the optimal forwarding probability in a wireless network. This approach is characterized by two major steps:

• First, the users apply a repeated game to punish misbehaving nodes in order Chapter 6. Cooperation Enforcement for Packet Forwarding Optimization in Multi-hop Mobile Ad-hoc Networks to maintain and promote the cooperation.

• Second, the users try to adapt their forwarding probabilities by learning the degree of cooperation in the network.

To build their framework, Han et al. suppose that there is a wireless network of K users and each user k has N k routes for its packet transmission. Han et al. have assumed that the routes have been determined with a routing protocol, that it exists an end-to-end mechanism which is able to inform the source node that a packet is successfully delivered and that the routes are determined before the forwarding probability optimization. Each user has a utility function and use it to learn the degree of cooperation in the network. The utility function U k of the user k is expressed by:

U k = N k i=1 P i k GΠ α j , j ∈ I i k -F α k B k (6.1) 
where I i k is the set of nodes on the route i of the user k, α k is the willingness of the user k to forward the packet of another user, B k is the probability that a node generates a packet, G is the benet of a successful transmission and F is the cost of forwarding the packet, P i k is the probability that the user k transmits its packet through the route i, Π represents the probability of a successful transmission of a packet which depends on the forwarding probabilities of the nodes involved in the requested route.

The rst term designates the average benet of the user k which is closely dependent on the willingness of the users that form the set N k . The second term points out the cost engendered by forwarding a packet of another user. Given that a user in the network has not a full knowledge about the behavior of others and can deviates from cooperation to optimize its utility, Han et al. formulate the problem as a non-cooperative game where each user tunes its own forwarding probability to maximize its own utility function:

max 0≤α k ≤1 U k (α k , α -k ) (6.2)
where α -k = [α 1 , α 2 , . . . , α k-1 , α k+1 , . . . , α K ] is the set of forwarding probabilities of all the users in the networks except user k.

In such situation, the Nash Equilibrium enables us to to identify the strategy used by each user that maximizes its outcome when the other users are applying their strategies.

Related Work

Denition1: The Nash Equilibrium is some strategy set α * for all nodes, such that for each node i, the following condition is veried:

U i (α * i , α * -i ) ≥ U i (α i , α * -i ), ∀i, ∀α i ∈ [0, 1] (6.3) 
where

α * -i = (α * 1 , . . . , α * i-1 , α * i+1 , . . . , α * N ).
This condition emphasizes that no node can increase its utility by operating a unilateral change of its forwarding probability, while all other nodes play the Nash Equilibrium strategy. Nevertheless, this equilibrium matches with the strategy where α i = 0, ∀i. Indeed, the outcome of each node is dependent on the cooperation willingness of others meanwhile the cost is tied to its own forwarding probability. Obviously, to maximize its utility, each node would selshly drop the packets of the others. In such situation, no node has the willingness to cooperate and the successful transmission probabilities tend to be close to zero. Applying a game for one step would motivate nodes to use the Nash Equilibrium strategy which is not convenient. Thereby, a repeated game lead a strategy to be sensitive to the past observations. This fact can build the cooperation between the nodes by considering reputation and/or retribution awareness.

The repeated game can enforce any misbehaving player to be more cooperative. This is due to the punishment that can be applied to encounter selshness by fading the greediness benets. Hence, it is preferable to all players to be rather cooperative. To enforce this cooperation and to maintain it, the innitely repeated game rises as the recourse to use as supported by the Folk Theorem [START_REF] Fudenberg | The Folk Theorem in Repeated Games with Discounting or with Incomplete Information[END_REF]. The average utility outcome of a player k in an innitely-repeated game is expressed as following: (6.4) where U k (t) is the utility outcome at period t and β is the discount factor.

U k = (1 -β) ∞ t=1 β t-1 U k (t)
The Folk Theorem is generally stated as: "Any strictly individually rational and feasible payo vector of the stage game can be supported as a subgame-perfect equilibrium average payo of the repeated game." The outcome for an innitely repeated game can give better payos than those that can be obtained with Nash Equilibrium, especially for a discount factor close to 1. This parameter is viewed as the future importance or as the probability that game ends. When it is close to zero, the future is not "signicant" and nodes deviations are more attractive against the "forgiveness" of other nodes. On the other hand, when the discount factor is close to one, cooperative nodes are aware of misbehaving ones. A permanent punishment threat corresponds to a discount factor close to 1 and obliges selsh nodes to be Then, to enforce the cooperation in the network, Han et al. design their algorithm to enable the users to learn the optimal packet forwarding probability step by step. The strategy of repeated game is applied to ensure the cooperation by performing a punishment if deviations are detected. The framework proposed by Han et al. for a user k is depicted in Fig. 6.1. The algorithms begins with an initialization phase where all nodes are supposed to be non-cooperative (e.g. their forwarding probabilities are equal to 0). Each user set a cooperation time counter n and the punishment time T to 0 and a trigger threshold V to the utility provided by the non-cooperative strategy (obviously equal to 0). Then, the users launch the repeated game strategy. During this phase, at each step, each user compare its utility value U to the threshold V . When the utility value is higher than the trigger threshold, this means that the cooperation is eective in the network and the cooperation time counter n is increased. Otherwise, when a deviation is detected (V >U), the punishment phase is engaged during a time T which becomes longer with the persistence of the non-cooperative behavior. The punishment comes down to play the non-cooperative strategy. The long periods of punishment are considered as a threat for nodes that act selshly. Indeed, if they keep the non-cooperative strategy, their utility values are being forced to be null. Nevertheless, performing such punishment scheme can be restrictive for the network performance as punishment periods can become too long.

When a user detects that the cooperation is getting stable (the timer n reaches a predened constant N which designates the number periods needed to conclude that the cooperation is enforced), it enters in the self-learning phase through which it tries to adjust its forwarding probability to optimize its own utility. A possible manner to tune this probability is to choose a random value between 0 and 1 and to check if it enables to reach better utilities values. If it is the case, the user updates its trigger threshold V (V =U) and its punishment period T as it expects that the other users are willing to cooperate.

Self-Learning Repeated Game Frameworks advanced by Pandana et al.

Pandana et al. have adopted the same problem formulation as Han et al. As cited previously, in a wireless network, the nodes may behave selshly as they cannot know the degree of cooperation of the other nodes and suggest a self-learning repeated game framework to overcome the non-cooperative situation.

To design their framework, Pandana et al. have chosen to dene a utility function based on energy consumption. First of all, they have supposed that the network is consisting of N nodes and have considered the same assumption as Han et al.

As mentioned, Pandana et al. have chosen to express the utility function of each node by considering the amount of energy spent to transmit and to forward packets. For this purpose, the average power expended in a node i to transmit has been dened as: where µ S(r) is the transmission rate of source node S(r), K is the transmission constant, d(i, j) is the distance that separates node i from node j, n(i, r) represents the neighbor of node i that belongs to route r, γ is the transmission path-loss coecient and V s i denotes the set of routes where node i is the source of the packets. The product K • d(S(r), n(S(r), r)) γ represents the reliable successful transmission power.

P (i) s = r∈V s i µ S(r) • K • d(S(r), n(S(r), r)) γ (6.5) 
Each node i, in this framework, is characterized by its forwarding probability α i . Then, the probability of successful transmission from node i to its destination j is closely tied to the forwarding probabilities of intermediates nodes involved in the route that joins node i to node j. The probability of successful transmission is expressed by:

P i T x,r = j∈(r\S(r)=i,D(r)) α j (6.6) 
where D(r) is the destination of node i on the route r and (r \ S(r) = i, D(r)) is the set of intermediate nodes on the route r.

From the two expressions dened above, it is possible to dene the good power used by a node i which corresponds to the energy consumed to transmit a packet that would be successfully delivered to the destination. Hence, this amount of energy is expressed by:

P (i) s,good = r∈V s i µ S(r) • K • d(S(r), n(S(r), r)) γ • P i T x,r (6.7) 
As node i can also be an intermediate node, it consumes energy when it forwards the packets of other source nodes. This amount of energy is dened by:

P (i) f = α i • K • r∈W i d(i, n(i, r)) γ • µ S(r) • P i F,r (6.8) 
where P i F,r is the probability that node i receives the packet to forward in route r. The expression µ S(r) • P i F,r represents the rate of data received by node i from the source in route r. The probability P i F,r of an intermediate node i in a route r is given by:

P i F,r = j∈f 1 r ,f 2 r ,...,f m-1 r α j (6.9) 
where r = {S(r), f 1 r , . . . , f m-1 r , f m r = i, . . . , f n r , D(r)} is the n + 1 hops from the source S(r) to the destination D(r). In this expression, node i is the m th intermedi-ate node designated by f m r and it is clear that this probability is depending on the forwarding probabilities of all intermediate nodes that precede node i in the route r.

Relying on the node power used for either transmitting its own packets and forwarding the data of other nodes, Pandana et al. dene the self -transmission ef f iciency which is expressed by:

U (i) (α i , α -i ) = P (i) s,good P (i) s + P (i) f (6.10)
where α i denotes the forwarding probability of the node i, α -i represents the following set of probabilities [α 1 , . . . , α i-1 , α i+1 , . . . , α N ], P (i) s,good is the energy consumed by node i to transmit a packet that is successfully delivered to the destination (Eq. (6.7)), P (i) s corresponds to the average power expended in a node i to transmit (Eq. (6.5)) and P (i) f represents the energy consumed by node i when it forwards the packets of other source nodes (Eq. (6.8)).

As stated in the work of Han et al., the Nash Equilibrium consists to play the selsh strategy and propose a self-learning repeated game with a punishment mechanism to enforce cooperation in the network. The punishment relies on monitoring any selsh behavior and decreasing the outcomes of misbehaving nodes by dropping their packets. In such case, the nodes which apply punishment have to announce it to avoid the interpretation of the punishment as a deviation and thereby the spreading of the selsh behavior in the network. Relying on such monitoring enables then to exploit the Folk Theorem. This monitoring assumes that the nodes that detect a deviation exchange their reports on the identity of the misbehaving node and identify this node by intersecting the exchanged information. This process can be not suitable in a dense network.

Pandana et al. have proposed three self-learning repeated game frameworks based on the utility function dened above. The rst one represents a self-learning framework under perfect observability which have been used as a benchmark for performance evaluation. The two others are self-learning frameworks based on local observability, one is based on learning through ooding and the second on learning with utility prediction.

We give some details about the learning through ooding algorithm which we have considered in our evaluation. The only information that a node can observe is the evolution of its own utility function. To learn the forwarding probability, the best way is to gradually increase its forwarding probability and to check if the utility becomes better. If it is the case, the new forwarding probability will be employed. The old probability is kept if the utility is not improved. This algorithm enables the nodes to change at the same time their forwarding probabilities. Then, a better cooperation level would be progressively spread. The algorithm is detailed in the following Algorithm 1 Self-Learning Repeated Game Algorithm based on Learning through Flooding 1: Initialization: t = 0, α t i = α0, ∀i, small increment ξ, normalization factor η, lowest cooperation level αmin 2: for Iteration: t = 1, 2, . . . do 3:

Calculate U (i),t-1 (α t-1 i ) and U (i),t-1 (α t-1 i + ξ) 4: Calculate δU (i),t-1 = U (i),t-1 (α t-1 i + ξ) -U (i),t-1 (α t-1 i ) 5:
for each i such that δU (i),t-1 > 0 do 6:

α t i = α t-1 i + η δU (i),t-1 U (i),t-1 (α t-1 i ) 7:
α t i = max(min(α t i , 1), αmin) end if 13: end for In the next section, we describe a self-learning repeated game framework inspired by "The Weakest Link" TV game. We follow the same concept of repeated game used in the described approaches by taking more simpler assumptions than the approaches of Pandana et al. and a better punishment mechanism than the one used in the work of Han et al.

System Model And Problem Formulation

To optimize packet forwarding in ad-hoc networks, we strongly believe that applying the concept of "The Weakest Link" TV game is an interesting solution. We explain, rstly, the concept of the game that we want to reproduce and then we detail the proposed model.

"The Weakest Link" TV Game Principle

"The Weakest Link" TV game is a game where a group of candidates try to answer correctly, relying on their knowledge, to the questions asked by the TV host. They aim to gather the highest amount of money through successive rounds. In each round, the players try to form a chain of nine correct answers to reach the highest gain. Before answering to a question, a candidate has the possibility to save the collected gain, provided by good answers of precedent candidates, by saying "Bank".

System Model And Problem Formulation

It is obvious that the longer the chain is, the higher the gain gets. Nevertheless, a player who gives a wrong answer to a question and did not save the collected gains shall break the good answers chain and reset the gain to zero. Secondly, if the candidates save rapidly the collected gains, the chains will be too short to reach important amounts of money. Thus, answering wrongly or saving collected money return the chain counter to zero. The candidates have to avoid being frequently in these situations if they want to maximize their gains. The earnings scale expresses the potential round gain according to correct answers chain length. For example, if there are four good answers and the current player decides to save collected money, the total gains grow with the amount that corresponds to the chain length. Then, the candidates try to create another chain of good answers. Therefore, the key parameter that inuences the maximization of earnings is the probability of giving a correct answer.

The Proposed Model: Analogy with "The Weakest Link" TV Game

Our objective is to dene an approach that enforces cooperation in a distributed way. The model we propose is inspired by the principle of the TV game. We note interesting analogies between "The Weakest Link" TV game and the Ad-hoc network. The nodes are assumed to be the candidates of the game and forwarding a packet from a node to the next hop is considered as a good answer. We believe strongly that the TV game concept can be used to encourage nodes to cooperate and therefore to optimize packet forwarding. Hence, the nodes, along a route, aim to create the longest chain of successful forwarded packets to get better utility. Despite of the TV game, when a chain of forwarded packet is broken, only the nodes that form the chain and the node which saves the gains will be rewarded.

The set of all nodes composing the route is rewarded by the collected gains only if the packet reaches destination. To formulate the expected utility of a node in a route, we propose expressions inspired by [START_REF] Ben-Ameur | Plus de mathématiques pour gagner au maillon faible[END_REF]. Let α i and β i be the forwarding and the saving gain (with chain breaking) probabilities, respectively, for each node i. We assume in our work that α i = 1 -β i . Given a route R with N -1 hops (N nodes), we dene in Eq. (1) the average gain that a node i can expect when it plays the role of the n th link of the chain. Let S(i) be the next hop of node i in route R. We mean by C[n] the collected earnings when a chain of (n-1) successful transmissions is transformed in currency and by F the cost of forwarding other's packets. Considering the vector of forwarding probabilities α, the utility of a node i is given by:

U R i (n, α) =                      U R S(i) (1, α) if n = 0 (1 -α i ).C[n]+ α i .(U R S(i) (n + 1, α) -F ) if 0 < n < N C[n] if n = N (6.11)
When the node i is an intermediate node and given that it wants to maximize its gains, it has to choose between saving the collected currency or increasing the chain length (relying on the cooperation of the successor(s) to maximize benets despite of the cost of forwarding). We assume that the source of the packet (i.e. n=0) will send it with the probability equal to 1. Subsequently, the gains depend on the decisions of the next hops. In addition, when the packet reaches the destination (i.e. n=N ), the node will save the collected gains with a probability equal to 1. In the latter case, the chain has the length of the route and the gains are maximized.

Therefore, we can formulate this problem as a non-cooperative game where each node will adjust its forwarding probability in order to maximize its own utility. A node i can belong to more than one route, its own utility is then the sum of each route utility, called U i . To solve this problem, it is necessary to nd the Nash Equilibrium of the game.

However, as mentioned in several works as [11,[START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF][START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF], this equilibrium matches with the strategy where α i = 0, ∀i. To avoid a poor network performance, we propose a self-learning repeated game framework, inspired by the concept of "The Weakest Link" TV game that we call The Weakest Link scheme. The objective of this framework is to enforce cooperation between nodes through learning and punishing threat mechanisms.

6.4

Self-Learning Repeated Game Framework and Punishment Mechanism

As the Nash Equilibrium corresponds to a non-cooperative strategy, it is more suitable to design cooperation under repetitive game. Applying repeated game scheme match perfectly with our proposed model. Indeed, in each game step, along each route, the nodes try to maximize their utilities and would choose to cooperate. In this chapter, we consider an innite repeated game, where the game duration is unknown to all nodes. Relying on the Folk theorem [START_REF] Fudenberg | The Folk Theorem in Repeated Games with Discounting or with Incomplete Information[END_REF], the outcome of an innitely In the initialization step, all nodes are more or less selsh. They can set their forwarding probabilities to 0 (the Nash Equilibrium strategy played with one stage game). We assume that the routes are determined with a routing protocol and that each node knows all the routes to which it belongs, as considered in [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF][START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF]. Then, the nodes start playing repeated game strategy. Note that they are rational and Chapter 6. Cooperation Enforcement for Packet Forwarding Optimization in Multi-hop Mobile Ad-hoc Networks want to make benets. Thus, at each step, each node learns through its utility the cooperation level of other nodes and adjusts its forwarding probability following to the others learnt behavior. It is possible that a node deviates from cooperation, then a punishment scheme is designed to discourage misbehaving nodes and to ask them to be more cooperative in the future. It is applied as soon as a selsh behavior is detected and subsequently the framework satises the Folk theorem.

6.4.1

The Punishment Mechanism

In this section, we present the punishment mechanism through a simple scenario. We assume that A and B are two successive nodes along a route. We suppose that the node B is a misbehaving node. The node A as one among the "closest" nodes to node B (i.e. the predecessor of B) is designed to punish it (if B rejects the request of A). We assume that the node A is able to detect the lack of cooperation of B (able to distinguish between a packet drop and a packet loss); the node A can conclude, by listening the channel, that node B is misbehaving when it does not forward the packet to the next node. To punish the selsh node B, the node A xes its forwarding probability to 0 when the packet has to pass through node B. In this case, the node B will not be able to receive any packet from node A. Thereafter, the node B will be excluded from all chains in which its predecessor is in punishment mode. This punishment cancels the node B benets for a period T and enforces it to cooperate (as its utility decreases). To avoid the propagation of the punishment mode over all nodes, when the node A is designated to punish the node B, the former one informs its predecessor about the execution of the punishment. Then, the punishment act is not interpreted as a deviation. It is important to mention that we assume that the nodes are not malicious.

6.4.2

The Self-Learning Repeated Game Framework Description At each step of the repeated game, each node compares its current utility value with the former value. If the current utility is better, a cooperation enforcement is concluded. Thereby, the forwarding probability is increased proportionally with the enhancement of the utility to promote the cooperation level. The upgrade of the cooperation level is also led by the coecient λ i . It expresses the node sensitivity to the cooperation enforcement. However, when the current utility drops, it is analyzed as a come back to selshness. Thus, the forwarding probability will decrease (proportionally with the dierence). Analogically with "The Weakest Link" TV game, a candidate chooses to break the chain and insures gains if he notices that the following candidate tends to make wrong answers. Hence, cooperative nodes are sensitive to the behavior of the other nodes. As described in the punishment scheme, a node checks if its successor deviates. This deviation can be the result of punishment and an announcement is made to avoid selshness propagation. The deviation without any notication is considered as a selsh behavior and then the punishment procedure is applied on the misbehaving node. Indeed, during a period T , no packet from its punishing predecessor reaches it. This causes a dramatic utility decrease. Therefore, a punished node is encouraged to be more cooperative in order to avoid longer penalization. Indeed, it increases its forwarding probabilities by a step equal to ε i . To make possible the cooperation enforcement, another assumption must be considered. In fact, if the maximum gains that can be collected are lower than the forwarding cost, the nodes would not forward any packet even under punishment threat. Finally, it is important to mention that the proposed scheme work well when the mobility is moderate. In other words, transferring all packets on a route must be faster than route breakage due to mobility. We take into consideration this assumption in our simulations. This framework aims to construct the longest chains on an established route between source and destination nodes, and routes are provided by a routing protocol to all nodes. If a route is not available at any node in the route, the routing tables must be updated. Moreover, the forwarding probability can be used by the routing protocol to determine better routes or to update routes in order to avoid misbehaving nodes to be a part of a route. Also, it is important to mention that this framework is adapted to scenarios where some nodes can either be only sources and/or destinations of packets as a source node forwards its packets to the next hop with a probability equal to 1 (only if the source node apply the punishment mechanism) and a destination node is not involved in the forwarding process.

Performance Evaluation and Simulations Results

In this section, we evaluate the performances of the proposed approach through two scenarios: the widely used ring network and the random network. We compare our proposal to two other approaches which have inspired us: the scheme proposed by Han et al. [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF] and the learning through ooding algorithm designed by Pandana et al. [START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF]. We implement our framework and do scenarios simulations on MATLAB 7.8.0. For the scheme Han et al., we x the parameter N to 50 and for the Learning through Flooding algorithm of Pandana et al., we set ξ to 0.001 and η to 1. As remainder, these algorithms and parameters are dened in Section 6.2. Firstly, we consider a ring network of 25 nodes. The distance between any source and destination is h hops (if a node i is the source, node mod(i + h, 25) is Figure 6.3: The evolution of the average forwarding probability for dierent selflearning repeated game schemes in the case of the ring network the destination). For each intermediate node, it is imperative that the forwarding cost must be less important than the maximum gain along a route. By the way, the nodes must have benets in order to maintain a cooperative behavior. In our simulations, each successful forwarding increments by 1 the gain corresponding to the formed chain. In this scenario, we x h to 6. We consider that one node can be a source or a destination at most one time and an intermediate node at most ve times. The nodes initialize their forwarding probabilities at 0 (i.e. the Nash Equilibrium strategy). We choose also to x the forwarding cost to 3 (i.e. to make benets possible) and the period of punishment T to 3 time steps.

We represent in Fig. 6.3 the evolution of the average forwarding probabilities for the considered self-learning repeated game frameworks over 2000 time steps. For our proposal, we depict two dierent scenarios and each one is characterized by a specic value of ε (where ε i = ε for all nodes and ε takes respectively the values 0.01 and 0.05). The coecient λ i is xed to 0.01 for all nodes. We have also xed the characteristic parameters of the two other schemes as mentioned in the plot. We invite the reader to refer to [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF] and [START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF] in order to understand the meaning of these parameters (we also assume that each two successive nodes in a route are separated by the same distance in order to simplify the computation of the utility functions when the scheme of Pandana et al. is used).

First of all, we remark that the average forwarding probability observed for the scheme of Han et al. converges to a value that turns around 0.6 and we note that Figure 6.4: The evolution of the average forwarding probability for dierent selflearning repeated game schemes in the case of a random network the updates of this average probability become less frequent as time goes on. This nding logically indicates that the cooperation between nodes is limited even if the average cooperation level is rather substantial. The punishment mechanism adopted by the framework of Han et al. is clearly the major cause behind this result and we explain later the reasons behind that. The average forwarding probability obtained for the learning through ooding algorithm designed by Pandana et al. converges to 1 but after too many steps (compared to the Weakest Link scheme result). In their evaluation, Pandana et al. have chosen an initial forwarding strategy for nodes (i.e all forwarding probabilities initialized to 0.5) dierent from the Nash Equilibrium strategy (i.e. non-cooperative strategy). This assumption enables to the nodes of the network that adopt this scheme to reach more rapidly high cooperation levels but leads to a skewed evaluation of the algorithm. Regarding the Weakest Link scheme, the average forwarding probability converges to 1, as the scheme of Pandana et al. but needs less time to reach high cooperation levels. We depict the corresponding evolution for two values of ε: 0.01 and 0.05. We remark that the nodes become cooperative faster as they are more reactive to the punishment mechanisms (i.e. higher increase of the forwarding probability when punishment and utility decrease are detected). Then, the scenario where ε is equal to 0.05 highlights a quicker convergence of the average forwarding probability.

To support these conclusions, we determine for each scheme the average packet delivery rate at the destination and the ratio between the forwarded packets and the delivered packets. Table 6.1 lists the corresponding results for the ring network scenario. It is important to remind that the routes have a length of 6 hops. Then, in the ideal case when the nodes fully cooperate, each packet delivered to the destination needs 5 forwards. The found results reect the eciency of our scheme. This eciency is tuned by the input parameters. As we show, the choice of the parameter ε has an important impact on the convergence speed of the average forwarding probability to 1. The scheme of Pandana et al. shows a limited eciency over the simulation time because of the low convergence to a satisfying cooperation level.

For the two cited schemes, the nodes become cooperative as time goes on. The two algorithms rely on ecient punishment mechanisms. They share the penalty of the misbehaving node instead of all nodes in the network. The values obtained for the ratios of forwarded packets over delivered packets (slightly higher to 5) prove the eectiveness of these solutions to establish cooperation among nodes (even with some delay for the scheme of Pandana et al.). On the contrary, when a node that uses the framework of Han et al. detects a defection, it punishes all other nodes. This reaction engenders the propagation of the non-cooperative strategies and dramatically falls down the network performance.

In the same way, we consider the scenario of a random network consisting of 100 nodes with 1000 source-destination pairs. Fig. 6.4 depicts the evolution of the average forwarding probability for each scheme and Table 6.2 lists the evaluation metrics for the scenario of the random network (the average number of forwarders per route in this scenario is 4.535 nodes). The previous observations and interpretations match with the results obtained for this scenario. We note also that the performance 6.5. Performance Evaluation and Simulations Results Pandana et al. have dened the utility function of a node as its transmission eciency. The transmission eciency is the ratio of successful self-transmission power over the total consumed power (self-transmission and forwarding). We aim to compare our proposal to the algorithm of Pandana et al. using the cited criterion. We consider the same scenario of the ring network, as previously, and we initialize the forwarding probabilities of nodes at 0.5 to be as close as possible to the simulation inputs considered by Pandana et al.

We list in Table 6.3 the average packet delivery rate, the ratio of forwarded packets over delivered packets and the average transmission eciency obtained by the Weakest Link scheme and the learning through ooding algorithm for the ring network scenario (the same scenario as previously). We note that the two frameworks highlight high packet delivery rates at destination (i.e. over 93 % with better performance for the Weakest Link scheme) and strong forwarding eectiveness (i.e. ratios of forwarded packets over delivered packets slightly higher than 5). Regarding the comparison based on the transmission eciency, Table 6.3 emphasizes that the Weakest Link scheme (with the dierent values chosen for ε) reaches higher average transmission eciency than the algorithm of Pandana et al. and then allows nodes to use better their energy. This nding can be explained be the upper packet delivery rate at the destination obtained for the Weakest Link scheme.

We can in addition emphasize that the behavior of nodes under the Weakest Link scheme enables nodes to have more "elastic" behavior towards defections. There-after, it is possible to avoid useless forwards and save energy. In fact, when a node detects a reduction in its utility function, it decreases its forwarding probability and then becomes reluctant to cooperate as the delivery of packets is not accurate. For the algorithm of Pandana et al., the forwarding probability can either increase or remain the same but never decreases. Then, the nodes maintain their cooperation level even if a defection is detected and can uselessly consume their energy.

We compute the same evaluation metrics for the case of a random network which consists of 100 nodes and 1000 source-destination pairs. Each route has at average 4.463 forwarders. We list in Table 6.4 the obtained results for this scenario. We note that the eectiveness of our proposal is veried and that the transmission eciency provided by the Weakest Link scheme is always better than the one of the algorithm of Pandana et al..

We have to mention that Pandana et al. have also proposed another framework based on utility prediction. It was highlighted in [START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF] that this latter scheme enables nodes to have better transmission eciency. Anyway, the behavior of the average forwarding probability follows the same one of the learning through ooding scheme insofar as nodes can only maintain or increase their forwarding probabilities. Nevertheless, a convenient choice of the parameter ε for our scheme enables us to still improve the network performance if necessary.

Conclusion

In wireless ad-hoc networks, nodes are requested to forward trac. However, because of limited energy resources, they might refuse to collaborate in order to save their energy. This can lead to a signicant amount of lost packets and a deterioration of the network performances.

In order to overcome this problem, we have proposed in this chapter a selflearning repeated game framework that aims to enforce cooperation between nodes. Our framework is inspired by "The Weakest Link" TV game concept. Indeed, the amount of the global collective gains strongly depends on the cooperation degree between the candidates involved in the game. The candidates try to form the longest chain in order to reach the highest gain. Analogically, the nodes, along a route, would tend to achieve the longest sequence of successful packet forwarding and therefore assure that the packet reaches the destination. Our approach is designed as a self-learning repeated game framework that enables nodes to learn each others cooperation levels. Therefore, nodes that are in a same route and that have a high cooperation level may encourage the other nodes of the route to get more cooperative. For this aim, a punishment mechanism has been considered. Thereby, 6.6. Conclusion misbehaving nodes are punished and their utility would dramatically decrease. This allows the network to maintain a relatively satisfying cooperation level.

Simulations have been run and the results have shown that our scheme is ecient for the ring network scenario as well as for the random network scenario. It has been also shown that our proposal outperforms other self-learning repeated game frameworks presented in the literature.

Chapter 7

Conclusion

We conclude this dissertation by summarizing the key contributions of the thesis and proposing some directions for future research.

Contributions of the Thesis

In this thesis, we have been interested in mobile wireless networks which are structured around humans. We have aimed to propose mechanisms and metrics which are contributing towards improving the evaluation and the design of communication protocols in such networks.

Proposing a Tensor-Based Link Prediction Framework

As the networks of interest are human-centered, we have been motivated by studying and exploiting the social aspect that characterizes such networks. In fact, social interactions highly impact the structure of a network and the social ties dene how a network is structured. To extract information about social networks, the Social Network Analysis (SNA) has been exploited in data-mining to analyze them and strongly helped in dening the link prediction problem. Motivated by these ndings, we have been the rst to propose our own tensor-based link prediction framework to perform link prediction in mobile wireless networks as MANETs and DTNs. Our framework is based on specic salient steps. First, it tracks the contact occurrences during an historical. The tracking information is recorded in a third-order tensor which corresponds to a succession of adjacency matrices. These matrices represent the detected contacts for successive periods of tracking. Then, after collecting the evolution of the topology/neighboring, the collected data is collapsed to obtain a weight for each link according to its lifetime and its recentness. Finally, the Katz 7.1. Contributions of the Thesis measure, one of the best well-know link prediction metrics, is applied on the weighted graph obtained in order to quantify the strength of social ties between users.

We have assessed the eciency of our framework through dierent evaluation techniques and comparisons with similar link prediction techniques applied on real traces. One of the most important ndings is the successful adaptation of this framework to the context of mobile networks. In fact, we have proposed performing prediction in a distributed way: each node performs prediction relying on its local information. Such a result is an important contribution which provide the opportunity to implement it in a real context.

Improving Link Prediction Eciency by Considering Link and Proximity Stabilities

We have wondered if it is possible to improve the performance of our framework and if we can consider a new criterion that characterizes the interactions between nodes. We have derived a heuristic: if a stable contact or proximity (at two hops) is observed during a period of time, this relationship is expected to be persistent in the future. Hence, we have proposed to take into consideration the stability of the relationship between each pair of nodes and to combine such an information with the one provided by our tensor-based framework. Such combination is expected to improve link prediction eciency. To compute this stability, we have opted for the entropy estimator used in the Lempel-Ziv data compression, as it estimates well the real value of the entropy of a time series, and we have adapted it to the sequences of relationship stored by the third-order tensor. We have designed stability quantications for links and for proximities at two hops. From this perspective, we have proposed to combine the stability measures with the tensor-based link prediction framework outputs in order to provide new link prediction metrics. Our aim has been to show that taking into account the stability of relationship can be benecial to full our aim of improving the eciency of our link prediction framework. The evaluation led to verify the eectiveness of our intuition has shown that considering the stability estimations enable us to improve the eciency of our framework.

Other Works Towards the Improvement of the Evaluation and the Design of Communication Protocols in Human-Centered Wireless Networks

As we have stated, the major contribution of this thesis has been to provide ecient link prediction tools for human-centered wireless networks. Nevertheless, we have been concerned by providing mechanisms or metrics in order to enhance the evaluation of communication protocols in such networks or to propose new mechanisms that are able to overcome some constraints imposed by these networks. Firstly, we have designed a joint model for the IEEE 802.15.4 physical and medium access control layers. This joint model enables us to better estimate the communication performance than the models that are limited to the medium access control layer. This joint model has been proposed for the initiative of Smart Grid to provide tools that evaluate wireless communications standards.

Secondly, we have been interested in the non-cooperative MANETs. In such networks, the nodes can behave selshly and reject any forwarding request which may fall down the network performance. To overcome this constraint, we have proposed a self-learning repeated game framework inspired by "The Weakest Link" TV game. Based on collecting gains by forming longest chains as possible between each pair of source-destination and on punishment threats which highly penalize misbehaving nodes, we have shown that our scheme outperforms two other selflearning repeated game algorithms presented in the literature.

Future Research Directions

We present in this section perspectives which can be pursued on the contributions of this thesis. We have stressed that the tensor-based link prediction framework is perfectly adapted to the mobile wireless networks. We have highlighted the fact that the link prediction can be made in a distributed way (using local information instead of global information). It will be challenging to implement this framework on real devices for two reasons. First, it will be interesting to validate our framework in a real scenario, to measure the additional energy consumption due to recording data and computing Katz scores and to study how the threshold value which determines the decision relative to a score evolves to make better predictions. The threshold value indicates whether the Katz score corresponds to a positive prediction (which means that the score has higher value than the threshold) or a negative prediction (the opposite case).

Second, it is important to prove that the link prediction feedback is really help-7.2. Future Research Directions ful to enhance the performance of communication protocols. It will be attractive to design or modify a communication protocol to make it sensitive to such a feedback. This issue seems to be very promising especially for opportunistic networks where identifying suitable contact occurrences may lead to take better decisions to ensure better delivery message for any source-destination pair. It will be also useful to determine the frequency of refreshing the information and computing the link prediction scores for a communication protocol that ensures the tradeo between energy consumption and delivery rate.

It is also crucial to focus on understanding how new links are created (links that are not observed but keenly expected to occur). Some insights are provided in [START_REF] Song | Mobile Opportunistic Networks, chapter Routing in Mobile Opportunistic Networks[END_REF] about characteristics of new links in mobile phone networks. It looks promising to exploit these ndings, conrm and extend them to improve the identication of such links.

Investigating the Contributions of Other Expressions for the

To improve the eciency of our tensor-based link prediction framework, we have proposed to quantify link and proximity stabilities using an adapted entropy estimator of a time series. Investigating other expressions of entropy and study their eciency can be an attractive perspective. It is possible to design this entropy relying on computing some probabilities. For example, if we consider the evolution of a status of a link, it is possible to compute the entropy based on the probability of having a link status change (going from 0 to 1 or inversely).

We have also pointed out that we have aimed to show that the entropy estimation can be useful to obtain more accurate link prediction results without seeking if our proposed entropy-based metrics provide the best performance. It is challenging to study and to test other combinations between current/new entropy estimations and the outputs of the tensor-based link prediction framework and to assess if it is possible to nd the best combination which ensures the highest link prediction performance.

In Chapter 4, we have pointed out the contribution of the proximity stability estimation in enhancing the prediction of new links. We think that working on the design of entropy-based metrics which can provide better prediction performance is promising as we have based our intuition on the ndings of Song et al. [START_REF] Song | Mobile Opportunistic Networks, chapter Routing in Mobile Opportunistic Networks[END_REF]. In the previous subsection, we have proposed to improve the performance of our proposed link prediction framework by quantifying the stability of interactions between nodes. This contribution has also been motivated by our work [START_REF] Zayani | Quantifying spatiotemporal stability by means to entropy: Approach and motivations[END_REF]. In this technical report, we have expressed our motivation to quantify spatiotemporal stability for links and consequently for nodes. Our motivation follows our concern to provide a new metric which is able to improve routing decisions in wireless networks.

The metric that we want to express considers both the social relationship between the nodes and the link quality. We have aimed, for the evaluation of entropy-based metrics, to design a comprehensive model which allows us to make accurate simulations. We have opted for the IEEE 802.15.4 to start our investigations and we have proposed, taking into account our willingness to improve evaluation of wireless networks, the joint model of PHY and MAC layers. To extend this model, we have also thought to combine this joint model to the interference model proposed by Qiu et al. [START_REF] Qiu | A general model of wireless interference[END_REF] to reproduce closest conditions to the reality. Moreover, we have opted for the Time-Variant Community mobility model (TVC model) [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF] to create a dynamic topology. Once ecient metrics are identied, we plan to verify the eectiveness of our ndings on real testbeds and using the biased link sampling [START_REF] Zhang | Link estimation and routing in sensor network backbones: Beacon-based or data-driven?[END_REF] and the algorithm "Learn On Fly" [START_REF] Zhang | On the convergence and stability of data-driven link estimation and routing in sensor networks[END_REF]. The works [START_REF] Zhang | Link estimation and routing in sensor network backbones: Beacon-based or data-driven?[END_REF][START_REF] Zhang | On the convergence and stability of data-driven link estimation and routing in sensor networks[END_REF] have proven the eciency of datadriven link estimation, using biased link sampling, to converge to an ecient routing solution, even with dynamic environment parameters (changing trac, evolving topologies, . . . ).

7.2.4

Enhancing the Self-Learning Repeated Game

It would be challenging to test the Weakest Link framework on real testbeds. From this perspective, we can be motivated by enhancing this framework by considering the dierent channel characteristics among nodes and relaxing the assumption that a node is able to distinguish between a packet drop and a packet loss. We can also take into consideration the residual energy for each node as a parameter in the utility function. All these perspectives would be helpful to design a real cooperation enforcement framework for multi-hop ad-hoc networks. Introduction

Les réseaux sans-l mobiles et particulièrement ceux qui sont centrés sur l'être humain ont connu une expansion importante ces dernières années. Ces réseaux sont dépourvus d'infrastructure et permettent un déploiement dans des environnement où il est dicile voire impossible d'installer une infrastructure centralisée. Dans cette catégorie de réseaux, nous trouvons les réseaux ad-hoc mobiles MANETs [START_REF] Corson | Mobile ad hoc networking (manet): Routing protocol performance issues and evaluation considerations[END_REF] et les réseaux tolérants aux délais DTNs [START_REF] Fall | A delay-tolerant network architecture for challenged internets[END_REF][START_REF] Erramilli | Diversity of forwarding paths in pocket switched networks[END_REF]. Ces réseaux peuvent être sujets à des contraintes multiples. Nous pouvons citer les ressources limitées des dispositifs ou des noeuds. En outre, ces réseaux sont connus pour avoir des topologies très dynamiques à cause notamment de la mobilité humaine. En eet, il a été démontré dans [START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF] que la mobilité humaine a un impact important sur le réseau et par conséquent sur sa performance. Ainsi, il s'avère impératif d'étudier et de maîtriser les propriétés de la mobilité humaine an d'aspirer à concevoir des mécanismes de communications exploitant cette mobilité et à évaluer plus ecacement ces protocoles de communication.

Dans la littérature, nous pouvons trouver un ensemble pertinent de propriétés caractérisant la mobilité humaine: lieux de visite préférés [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF], mobilité dépendant du moment de la journée [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF] et régularité spatio-temporelle [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mcnamara | Media sharing based on colocation prediction in urban transport[END_REF]. Nous avons été particulièrement intéressé par une propriété mettant en exergue l'aspect social. En eet, certains travaux à l'instar de [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mtibaa | Are you moved by your social network application[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] ont démontré que la mobilité humaine est étroitement dépendante des intéractions sociales entre les entités du réseau et que celle-ci est régie par des intentions à caractère social. C'est ainsi que plusieurs travaux tels que [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] se sont basés sur des concepts, métriques et techniques inspirés de l'analyse des réseaux sociaux connue sous l'abréviation SNA (Social Network Analysis) pour proposer de nouveaux protocoles de communications ou des mécanismes capables de prédire les liens dans un réseau social.

L'intérêt prononcé pour la SNA ainsi que les interactions sociales qui caractérisent les réseaux centrés sur l'aspect humain nous ont motivés pour proposer un mécanisme capable de prédire les liens dans ces réseaux et qui soit adapté à l'absence d'infrastructure centralisée. Il s'agit de la principale motivation de cette thèse qui sera détaillée dans la section B. [5,[START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Kim | Extracting a Mobility Model from Real User Traces[END_REF]. D'autre part, d'autres initiatives se sont xées l'objectif de recueillir les rencontres directes entre les dispositifs mobiles pour fournir un traçage plus dèle des interactions entre les noeuds. Ces deux catégories de traces ont été largement uilisées pour extraire des caractéristiques intrinsèques à la mobilité humaine dont nous citons les plus importantes:

• Préférences prononcées pour certains lieux [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF].

• Comportement dépendant du temps [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF].

• Régularité spatio-temporelle [START_REF] Balazinska | Characterizing mobility and network usage in a corporate wireless local-area network[END_REF][START_REF] Henderson | The changing usage of a mature campus-wide wireless network[END_REF][START_REF] Tuduce | A mobility model based on wlan traces and its validation[END_REF][START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mcnamara | Media sharing based on colocation prediction in urban transport[END_REF].

• Distribution en loi de puissance des temps d'inter-contact entre les noeuds [START_REF] Hui | Pocket switched networks and human mobility in conference environments[END_REF][START_REF] Chaintreau | Impact of human mobility on opportunistic forwarding algorithms[END_REF][START_REF] Karagiannis | Power law and exponential decay of inter contact times between mobile devices[END_REF].

Outre ces propriétés, certains travaux tels que [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Mtibaa | Are you moved by your social network application[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF] ont démontré que les interactions sociales entre les utilisateurs du réseau ont un impact sur leur mobilité. Dès lors, ces interactions régissent la structure du réseau. Pour exploiter l'aspect social, extraire des informations structurelles du réseau et concevoir de nouveaux protocoles de communications, plusieurs techniques et métriques ont été empruntées de l'analyse des réseaux sociaux (Social Network Analysis ou SNA) [111].

L'Analyse des Réseaux Sociaux et la Prédiction des Liens

Etant donné que les réseaux sans-l mobiles sont dépourvus d'infrastructures et que l'aspect opportuniste des communications peut prévaloir, l'analyse des réseaux sociaux a été considérée comme une autre technique de mesure pour les réseaux (les techniques de mesure traditionnelles se penchent sur des mesures de performance telles que les délais et la probabilité de livraison des messages). Ainsi, l'analyse des réseaux sociaux décortique les interactions entre les noeuds dans le réseau pour en extraire des propriétés structurelles (évolution de la topologie, robustesse du réseau, les noeuds centraux, les communautes émergentes, . . . ). Cet outil a été largement utilisé pour fournir des protocoles de communication s'inspirant de l'aspect social telles que les approches proposées dans [START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF][START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF].

L'analyse des réseaux sociaux a également inspiré Liben-Nowell et Kleinberg [START_REF] Liben | The link-prediction problem for social networks[END_REF] pour introduire le problème de prédiction de liens dans les réseaux sociaux. En eet, ils se sont posés la question suivante: étant donné une capture d'un réseau social à un instant t, comment pourrait-on prédire, d'une manière sûre, les liens qui vont s'ajouter au réseau durant l'intervalle de temps [t ′ -t] où t ′ représente un instant futur? Introduction Durant les dernières années, plusieurs travaux de recherche se sont intéressés aux dés et challenges posés par les réseaux mobiles sans-l. Dans ces réseaux, les contacts entre les noeuds ainsi que leurs propriétés s'imposent comme des paramètres clés à prendre en compte pour les protocoles de communication [START_REF] Hossmann | Social network analysis of human mobility and implications for dtn performance analysis and mobility modeling[END_REF]. En eet, les interactions sociales entre les utilisateurs du réseau inuent sur leur mobilité et ainsi sur la structure du réseau [START_REF] Hsu | Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks[END_REF][START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF]. Dès lors, il s'avère important de suivre et de comprendre les comportements des utilisateurs pour fournir une base de connaissances protable aux protocoles de communication. C'est dans cette optique que nous proposons de fournir une méthode qui enregistre des données topologiques du réseau durant un temps de suivi de T périodes, qui extrait à partir de ces données la force des relations sociales entre les diérentes entités et utilise ces mesures pour la prédiction des liens pour la période T + 1. Nous détaillons dans ce qui suit la méthode de prédiction des liens basée sur les tenseurs que nous proposons. La méthode de prédiction des liens que nous proposons s'articule autour d'étapes caractéristiques, comme le présente la gure B.1. Si nous considérons un réseau à topologie variable, la première étape consiste à diviser le temps de suivi de l'évolution de la topologie du réseau en T périodes (dans l'exemple de la gure B.1, T =4). À chaque période, la méthode recense tous les contacts dans une matrice d'adjacence (pour une paire de noeuds (i, j), si un contact a eu lieu entre ces deux noeuds, la matrice d'adjacence assignera la valeur 1 à cette paire et 0 si aucun contact n'est détecté). L'ensemble de ces matrices d'adjacence forme le tenseur Z. Ainsi, la matrice Z p du tenseur Z traduit les contacts relevés dans le réseau durant la période p et la valeur Z p (i, j) indique s'il y a eu contact entre les noeuds i et j durant cette période p. Suite à la phase de collecte des données, il s'agit de compresser toutes ces informations dans une matrice appelée tenseur comprimé pondéré et notée X. La matrice X va aecter à chaque lien (i, j) un coecient relatif à sa récence et à sa fréquence. Pour obtenir les valeurs de la matrice X, nous appliquons la formule suivante:

X(i, j) = T p=1 (1 -θ) T -p Z p (i, j) (B.1)
où X désigne le tenseur comprimé pondéré du tenseur Z et θ est un paramètre utilisé pour ajuster le poids relatif à la récence et est compris entre 0 et 1.

Finalement, pour mesurer l'intensité des relations sociales entre les noeuds, nous appliquons la formule de Katz [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] pour obtenir la matrice des scores S. Dans la littérature, la mesure de Katz a été utilisée pour mesurer la proximité dans le réseau d'une paire de noeuds (i, j) [START_REF] Liben | The link-prediction problem for social networks[END_REF][START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Song | Mobile Opportunistic Networks, chapter Routing in Mobile Opportunistic Networks[END_REF] et a été employée pour prédire l'occurrence de liens dans le réseau en se basant notamment sur la proximité (qui exprime une certaine similarité dans la mobilité). Cette mesure sociométrique, pour une paire de noeuds (i, j), s'exprime par la somme pondérée du nombre de chemins qui connectent le noeud i au noeud j. Ainsi, le score de Katz S(i, j) pour la paire de noeuds (i, j) est donné par l'équation suivante:

S(i, j) = +∞ ℓ=1 β ℓ |P ℓ (v i , v j )| (B.2)
où β est un paramètre déni par l'utilisateur, appelé facteur d'amortissement et compris entre 0 et 1 (généralement, ce paramètre est proche de 0 par souci de convergence). L'expression β ℓ dénit le poids d'un chemin de longueur ℓ sauts. Le paramètre |P ℓ (v i , v j )| désigne le nombre de chemins, ayant un nombre de sauts ℓ, B.2. Proposition de Méthode et de Métriques pour la Prédiction des liens dans les Réseaux Mobiles Sans-Fil Centrés sur l'Aspect Humain sans-l, mobiles et dépourvus d'infrastructure, il serait judicieux de penser à une alternative pour pouvoir prédire les liens. À partir de cette perspective, nous proposons d'appliquer la prédiction des liens d'une manière distribuée. En d'autres termes, nous concevons que chaque noeud prédise ses liens à l'aide de l'information locale sur son voisinage (voisins à un et deux sauts).

Evaluation des performances et Résultats de Simulation

Pour évaluer notre méthode de prédiction des liens et notamment l'approche distribuée de la prédiction, nous considérons trois traces réelles: Pour analyser les performances de notre proposition, nous proposons dans un premier temps de représenter les courbes ROC (Receiver Operating Characteristic curve) [START_REF] Fawcett | An introduction to ROC analysis[END_REF] pour la prédiction desn liens à la période T + 1. En considérant les résultats obtenus après l'application de la prédiction des liens sur la trace du campus de Dartmouth par exemple répertoriés dans la gure B.2 (les résultats sont similaires pour les autres traces), nous soulignons les remarques suivantes:

• La méthode de prédiction est ecace vu que les courbures des courbes ROC sont proches du coin supérieur gauche de la gure et qu'ils sont loin de la ligne représentative de la prédiction aléatoire (random guess).

• Le recours a des périodes courtes pour diviser le temps de suivi permet une meilleure appréciation de l'évolution de la topologie et meilleure précision pour eectuer les prédictions.

• L'application de la prédiction des liens, que ce soit pour le cas centralisé ou le cas distribué, atteint les mêmes performances ce qui indique que l'application de la prédictions des liens peut s'eectuer d'une manière distribuée et adaptée aux réseaux sans-l mobiles.

Dans un second temps, nous évaluons notre approche à l'aide de métriques de performance: l'Area Under the ROC Curve notée AUC [START_REF] Fawcett | An introduction to ROC analysis[END_REF], le ratio des tops scores à la période T + 1 noté TSR, l'exactitude notée ACC [START_REF] Fawcett | An introduction to ROC analysis[END_REF] et la F-Measure [START_REF] Van Rijsbergen | Information Retrieval[END_REF]). Pour une évaluation exhaustive, nous comparons notre approche à d'autres métriques utilisées dans la littérature: Voisins Communs, Salton Index [START_REF] Salton | Introduction to Modern Information Retrieval[END_REF], Jaccard Index [61], Sørensen Index [START_REF] Sørensen | A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons[END_REF], Hub Promoted Index (HPI) [START_REF] Ravasz | Hierarchical organization of modularity in metabolic networks[END_REF], Hub Depressed Index (HDI), Adamic-Adar Index [START_REF] Lada | Friends and neighbors on the Web[END_REF], Resource Allocation Index [START_REF] Zhou | Predicting missing links via local information[END_REF] et Rooted PageRank Index [START_REF] Han | Scalable proximity estimation and link prediction in online social networks[END_REF]. Nous utilisons également les poids obtenus à l'aide du tenseur comprimé pondéré X pour la comparaison.

Dans cette évaluation, nous voudrons mettre exergue la capacité de chacune des méthodes à satisfaire deux tâches de prédictions. La première consiste à de prédire les liens durant la période T + 1 à l'instar de l'évaluation avec les courbes ROC. La seconde s'intéresse à l'identication des nouveaux liens. Ce sont des liens potentiels qui n'ont pas été observés durant le temps de suivi et dont l'occurence a été constatée durant la période considérée comme future.

Pour chacune des méthodes de prédiction, nous calculons la distance par rapport au cas parfait (AUC=1, TSR=100%, ACC=100% and F-Measure=1). Pour une approche a, cette distance est exprimée comme suit:

Distance(a) = (1 -AU C(a)) 2 + (1 -T SR(a)) 2 + (1 -ACC(a)) 2 + (1 -F 1(a)) 2 (B.4) La table B.
1 présente les résultats d'évaluation obtenus avec les métrique de performances et la compraison de notre approche par rapport aux autres méthodes de prédiction. Des résultats similaires ont été obtenus pour les autres traces. Ces résultats conrment dans un premier temps les conclusions tirés à l'issue de l'évaluation avec les courbes ROC. Après la vérication des capacités de chacune des méthodes à prédire les liens durant la période T + 1 et ceux qui sont potentiels, il s'avère que 

h h h h h h h h h h h h h h h h

Prediction Cases

Metrics

All Links Prediction at 

Conclusion

Nous avons proposé une méthode capable de prédire les liens dans les réseaux sansl mobilé bâtis autour des communautés haumaines. Cette méthode suit l'évolution de la topologie ou du voisinage et quantie l'intensité des relations sociales entre les entités du réseaux. Une telle quantication, obtenue à l'aide de la mesure de Katz, donne des indications intéressantes quant à l'occurrence des liens dans le futur. Les résultats conrment que notre méthode est capable d'atteindre les meilleures performances.

Cependant, nous pensons que la méthode que nous proposons peut être améliorée Introduction Comme détaillé précédemment, nous avons proposé une méthode de prédiction des liens basée sur le suivi de la topologie du reseau durant un certain nombre de périodes et l'application de la mesure de Katz pour quantier le degré de similarité des modèles de mobilités des entités du réseau. L'une des principales contributions apportées par notre approche est la possibilité d'adapter cette méthode à un contexte distribué, c'est-à-dire que les noeuds peuvent prédire leurs futurs liens en se basant sur l'information recueillie au niveau du voisinage à un et deux sauts. Cette contribution qui est très importante nous a encore incités à améliorer notre méthode. Pour ce faire, nous nous sommes intéressés à la stabilité des relations entre les entités du réseau en y voyant un indicateur crédible capable de nous mener vers des prédictions plus ables. En ce qui concerne la stabilité d'un lien, nous nous sommes basés sur l'heuristique suivante: quand deux entités du réseaux ont des liens sociaux forts, l'apparition d'un lien entre eux est très plausible. En plus, si ce lien existe, il est attendu qu'il soit stable et persévérant. Ainsi, la stabilité d'un lien renforce la possibilité d'observer un tel lien dans le futur. Pour la stabilité de proximité (stabilité de la relation à deux sauts), celle-ci peut renseigner sur l'occurrence d'un lien dans le futur. Si la relation est stable, la mesure de Katz renseigne bien sur la présence du lien, sinon, il est clair que le lien est imprévisible et donc dicile à estimer sa présence dans le futur.

Dès lors, quantier la stabilité peut s'avérer très intéressant pour améliorer les performances de notre méthode de prédiction basée sur les tenseurs. Nous nous sommes inspirés de la thermodynamique [START_REF] Boltzmann | Uber die beziehung zwischen dem zweiten hauptsatz der mechanischen warmetheorie und der wahrscheinlichkeitsrechnung respektive den satzen uber des warmegleichgewicht[END_REF] et de la théorie de l'information [START_REF] Shannon | A mathematical theory of communication[END_REF] pour opter pour l'entropie comme métrique capable de quantier la stabilité. Dans ce qui suit, nous expliquons comment estimer la stabilité d'une relation entre deux noeuds.

Quantier la Stabilité à l'Aide d'une Estimation de l'Entropie de Séries Chronologiques Pour notre approche, nous nous sommes intéressés à l'estimateur d'entropie utilisé dans l'algorithme de compression de données de Lempel-Ziv [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF][START_REF] Kontoyiannis | Nonparametric entropy estimation for stationary processesand random elds, with applications to english text[END_REF]. Cette métrique estime bien l'entropie d'une serie chronologique. Pour une séquence de n étapes, l'entropie est estimée à l'aide de l'expression suivante:

S est = 1 n i Λ i -1
ln n (B.5) où Λ i représente la longueur du plus court mot à partir de la position i et qui n'a pas été observé précédemment dans la séquence (entre la position 1 et i -1).

Cet estimateur a été exploité pour trouver le nombre de bits nécessaires pour coder une séquence de lettres alphabétiques. Dans notre cas, nous nous basons sur les états des liens fournis par la construction des tenseurs. Chaque noeud a ainsi deux séquences qui dénissent sa relation avec chacun des noeuds qu'il a détecté: une séquence pour l'état du lien et une séquence pour l'état de proximité à deux sauts. Ces séquences sont des successions de uns et/ou de zeros relatives à la succession des périodes de suivi de la topologie. Dès lors, nous proposons l'estimateur d'entropie E l T (i, j) qui quantie la stabilité d'un lien entre les noeuds i and j sur T périodes. Il est donné par l'expression suivante:

E l T (i, j) = 1 n T t=1
Λ t (Z t (i, j)) qui quantie la stabilité de proximité. Cet estimateur est calculé en appliquant l'Eq. B.6 tout en substituant la valeur Z t (i, j) par l'état de proximité à deux sauts antre les noeuds i et j à la période t. L'estimateur d'entropie utilisé scrute une séquence et identie les mots les plus courts étape par étape. Si les mots les plus courts tendent à devenir longs, ceci explique qu'il y a redondance. La redondance coïncide dans ce cas avec stabilité puisque les mots longs limitent le nombre de mots trouvés et diminue par la suite l'estimation de l'entropie. D'autre part, si les mots identiés prennent fréquemment B.2. Proposition de Méthode et de Métriques pour la Prédiction des liens dans les Réseaux Mobiles Sans-Fil Centrés sur l'Aspect Humain les combinaisons les plus courtes possibles, ceci indique plutôt une relation imprévisible. En eet, identier des mots qui tendent à être parmi les plus courts possible augmente substantiellement le nombre de mots trouvés et accroît en conséquence l'estimation de l'entropie.

Pour tirer prot de ses mesures de stabilité, il serait judicieux de les exploiter simultanément avec la méthode de prédiction des liens basée sur les tenseurs. Nous proposons dans la suite diérentes techniques de combinaisons entre les estimations d'entropie et les métriques fournies par notre méthode de prédiction an de fournir de nouvelles métriques de prédiction des liens.

Jointure des Mesures de Stabilité avec le Méthode de Prédiction des Liens Basée sur les Tenseurs À travers nos investigations sur la méthode de prédiction des liens, nous avons fourni des métriques caractérisant les liens entre les entités du réseau à travers leur récence et leur fréquence. Nous avons également mis en exergue le critère de stabilité des relations en proposant des métriques construites autour de l'estimation de l'entropie. Nous pensons fortement que ces deux catégories de métriques sont complémentaires et que leur combinaison permet de concevoir de nouvelles métriques de prédiction encore plus performantes. Nous présentons diérents types de combinaisons qui nous ont permis de dénir ces nouvelles métriques:

• Combiner le poids fourni par le tenseur comprimé pondéré X(i, j) avec la stabilité du lien E l T (i, j) relatifs aux T périodes de suivi pour calculer le XE score.

• Combiner l'intensité des relations sociales exprimée par la mesure de Katz S(i, j) avec la stabilité du lien E l T (i, j) relatifs aux T périodes de suivi pour calculer le SE score.

• Combiner le tenseur comprimé pondéré X avec la matrice exprimant les stabilités des liens E l T relatifs à un suivi sur T périodes et appliquer la formulation de Katz sur cette combinaison pour calculer le XES score.

• Appliquer la mesure de Katz sur un nouveau tenseur comprimé pondéré X new pour calculer le XNS score. Plusieurs variantes peuvent être envisagées pour cette nouvelle métrique. En eet, le nouveau tenseur comprimé pondéré va prendre en considération, outre l'état du lien:

La stabilité du lien au niveau de chaque période (XNS1 score).

La stabilité de proximité à deux sauts au niveau de chaque période(XNS2 score).

Les deux mesures de stabilité ensemble (XNS3 score).

À travers ces nouvelles métriques, nous visons à démontrer que considérer le paramètre de stabilité dans les relations entre les entités du réseau participe activement à l'amélioration des performances de prédiction. Nous pratiquons des simulations an de vérier l'exactitude de notre intuition.

Evaluation des Performances et Analyse des Résultats

Nous considérons les mêmes traces détaillées dans la section B.2.2 et nous nous proposons de suivre l'évolution de la topologie du réseau pour toutes ces traces de 8h à 16h. Nous divisons ce temps de suivi sur des périodes de longueurs diérentes: 5, 10, 30 et 60 minutes. Ainsi, il est nécessaire de considérer respectivement un nombre T de périodes égal à 96, 48, 16 et 8 périodes pour couvrir tout le temps de suivi et construire les tenseurs relatifs. Pour l'évaluation, nous avons recours à des métriques déjà utilisées dans la section B.2.2: le ratio des top scores à la période T + 1, l'exactitude des prédictions et la F-Measure. Nous présentons dans la gure B.3 les résultats d'évalution des métriques basées sur l'entropie pour la prédiction des liens à la période T + 1 pour la trace relative au campus de MIT. Les performances de nos propositions sont comparées avec celles de/d'une/des:

• Notre méthode de prédiction basée sur les tenseurs et le calcul de la mesure de Katz.

• Métriques de prédiction de liens exprimant la proximité des noeuds qui sont les mesures d'Adamic-Adar [START_REF] Lada | Friends and neighbors on the Web[END_REF] et le coecient de Jaccard [START_REF] Jaccard | Étude comparative de la distribution orale dans une portion des alpes et des jura[END_REF][START_REF] Salton | Introduction to Modern Information Retrieval[END_REF].

• Métriques de prédiction des liens se basant sur l'homophilie de la mobilité qui sont le spatial cosine similarity et le co-location rate [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF].

• Métrique exprimant la similarité des lieux visités par les entités du réseau [START_REF] Gautam | Similarity analysis and modeling in mobile societies: the missing link[END_REF].

Il est à noter que les résultats obtenus pour les autres traces sont similaires.

Les résultats obtenus nous permettent de tirer deux grandes conclusions:

• La comparaison de la performance de la méthode de prédiction des liens basées sur les tenseurs avec les autres techniques présentées dans la littérature reforce notre conviction sur le choix d'utilisation de la mesure de Katz. intuition et de l'apport indéniable de la considération du critère de stabilité pour améliorer la qualité de la prédiction (au pire des cas, trois métriques sur six basées sur l'estimation d'entropie permettent d'avoir des performances meilleures que celle de notre méthode)

Nous nous sommes également intéressés au potentiel de ces mesures de stabilité pour améliorer la prédiction des nouveaux liens. Motivés par les conclusions avancées dans [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] qui stipulent que la majorité des nouveaux liens se crée entre deux noeuds qui sont régulièrement séparés par deux sauts lors du temps de suivi. Nous nous sommes proposés de fournir une métrique que nous avons appelée SE 2hops score. Il s'agit de combiner la mesure de similarité S(i, j) avec l'estimation de la stabilité de proximité E p T (i, j). En prenant en considération les paramètres de simulation résumés dans la table B.2 et deux longueurs diérentes pour les périodes de suivi (5 et 10 minutes), nous observons que la métrique SE 2hops score est capable d'avoir de meilleures performances par rapport à la méthode de prédiction utilisant la mesure de Katz pour les scénarios relatifs aux traces du campus de MIT et d'Infocom 2006 ce qui indique que le recours à la mesure de stabilité peut également renforcer la qualité de la prédiction des nouveaux liens et que l'investigation sur de futures améliorations s'impose comme une piste de recherche sérieuse.

Conclusion

Nous avons présenté dans cette première partie une méthode capable de prédire les liens entre les entités d'un réseau sans-l mobile caractérisé par des interactions humaines. Cette méthode s'appuie sur l'identication des relations sociales entre ces entités et exploiter ces connaissances pour estimer la topologie du réseau dans le futur. Cette méthode utilise la mesure de Katz qui s'est avérée être l'une des plus puissantes métriques en terme de prédiction des liens dans des réseaux à caractère social. Nos simulations sur des traces réelles nous ont permis entre autres de démontrer que le choix de cette métrique s'impose. La contribution majeure Nous avons également poursuivi nos recherches sur de possibles améliorations quant à la qualité des prédictions. En eet, nous nous sommes basés sur deux critères caractérisant les relations entre les entités du réseau: la récence et la fréquence des interactions. Nous nous sommes demandés s'il serait possible de considérer un troisième critère capable d'apporter plus de précision aux prédictions et nous nous sommes intéressés à la stabilité des relations (lien ou proximité à deux sauts) pour déceler encore mieux les liens susceptibles d'être observés dans le futur. Nous avons proposé de multiples combinaisons entre les mesures de stabilités et le métriques fournies par notre méthode de prédiction et les résultats de simulation nous ont clairement permis de conclure que la considération de ce critère de stabilité est judicieux vues les amélirations notables apportées à la qualité des prédictions.

B.3 Autres Contributions Avancées dans la Thèse

Outre la proposition de techniques et métriques capables de fournir une information utile aux protocoles de communication, nous nous sommes également penchés sur des travaux dans l'optique d'améliorer l'évaluation et la conception des protocoles de communication dans des réseaux sans-l où la mobilité peut être considérée. D'une part, nous nous sommes intéressés à la conception d'un modèle commun pour les couches physique et liaison de données du standard IEEE 802.15.4 [2]. Il s'agit d'un modèle qui joint un sous-modèle de couche physique inspiré des travaux de Zuniga et Krishnamachari [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF][START_REF] Zúñiga | An analysis of unreliability and asymmetry in low-power wireless links[END_REF] (conception de modèles radio et canal) et un sous-modèle construit autour d'une chaîne de Markov [START_REF] Pollin | Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer[END_REF][START_REF] Park | A generalized Markov chain model for eective analysis of slotted[END_REF] et mimant le comportement pouvant être observés au niveau de la couche liaison de données. Nous proposons ce modèle pour mieux estimer les indicateurs de performance car nous avons constaté que les modèles s'intéressant à ce standard se sont limités à une seule couche. D'autre part, nous avons eu l'opportunité de nous focaliser sur les réseau adhoc non coopératifs et nous avons proposé un mécanisme capable de stimuler la coopération dans de tels réseaux. En eet, nous nous sommes inspirés du célèbre jeu télévisé "Le Maillon Faible" pour inciter les noeuds à construire les plus longues chaines sur chaque route entre une source et une destination pour améliorer les taux de livraison. Ce mécanisme s'appuie également sur l'apprentissage du niveau de coopération dans le réseau pour adapter les probabilités de forwarding et sur des punitions qui pénalisent fortement les noeuds à caractère égoïste au niveau de leur fonction d'utilité et les obligent à être plus coopératifs. Les résultats de simulations conrment que notre proposition est capable de surpasser quelques autres mécanismes d'apprentissage similaires proposés dans la littérature [START_REF] Han | A self-learning repeated game framework for optimizing packet forwarding networks[END_REF][START_REF] Pandana | Cooperation Enforcement and Learning for Optimizing Packet Forwarding in Autonomous Wireless Net-Bibliography works[END_REF].

B.4 Conclusion

Pour conclure ce résumé, nous rappelons les majeures contributions apportés dans cette thèse et nous proposons quelques perspectives futures. Dans cette thèse, nous nous sommes intéressés aux réseaux sans-l mobiles centrés sur l'aspect humain. Nous nous sommes xés l'objectif de proposer des métriques et des mécanismes capables d'améliorer l'évaluation et la conception des protocoles de communications. D'abord, nous avons été motivés par l'étude et l'exploitation des relations sociales présentes dans ces réseaux. En s'appuyant sur la mesure sociométrique de Katz et une structure en tenseur capable de donner un aperçu sur la dynamicité du réseau, nous avons été les premier à proposer une méthode distribuée de prédiction des liens pour des réseaux comme les DTNs et les MANETs. L'application de cette méthode sur des traces réelles et l'évaluation à travers des techniques dédiées n'a fait que conrmer l'ecacité de notre proposition.

Ensuite, nous avons continué à porter un intérêt prononcé pour la prédiction des liens dans ces réseaux. En eet, nous nous sommes demandés s'il est possible d'améliorer les performances de notre méthode. Cette dernière se base sur deux critères pour quantier les étendues des relations sociales entre les entités du réseau: la récence et la fréquence des intéractions. À partir de là, nous nous sommes demandés s'il serait possible de considérer un troisième critère qui participerait activement à l'amélioration de la qualité de la prédiction. En se basant sur une heuristique, nous avons choisi d'intégrer le critère de stabilité des relations dans les interactions.

B.4. Conclusion

En quantiant ce critère à l'aide d'un estimateur d'entropie et en le combinant avec les métriques fournies par notre méthode, nous avons proposé de nouvelles métriques de prédiction. La pertinence de notre proposition a été conrmée par les résultats de simulation et le critère de stabilité s'avère judicieux pour la prédiction des liens.

Enn, nous avons également eu l'opportunité d'apporter quelques contributions allant dans le sens de notre souci d'apporter des métriques et techniques capables d'améliorer l'évaluation et le design des protocoles de communication. Dans cette optique, nous avons proposé un modèle commun pour les couches physique et liaison de données du standard IEEE 802.15.4 an d'estimer plus précisément les indicateurs de performances. En outre, nous nous sommes également penchés sur les réseaux ad-hoc non coopératifs et nous avons conçu un mécanisme visant à stimuler les noeuds du réseau à être plus coopératifs et s'inspirant du célèbre jeu télévisé "Le Maillon Faible".

En guise de perspectives, nous songeons à implémenter notre méthode de prédiction des liens dans des cas de déploiements réels et de la joindre à un protocole de communication pour s'assurer que l'information issue de la prédiction est protable à l'amélioration des performances dans le réseau. Nous pensons également à fournir d'autres formulations et combinaisons pour prétendre à fournir des métriques plus ecaces. Il est à signaler que notre objectif a été de démontrer que l'estimation de la stabilité permet d'améliorer les performances de prédiction sans pour autant chercher quelle est la meilleure formulation possible. Il sera intéressant, d'autre part, de voir d'autres formulations d'entropie et vérier si nos choix sont perfectibles. Il sera également motivant de mener des recherches plus approfondies pour améliorer la prédiction des nouveaux liens. Nous proposons d'essayer d'identier de nouveaux indicateurs, outre que les observations faites dans [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF], pour prédire plus ecacement l'apparition de ces liens.
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  less networks and as these networks are basically human-centered networks, Social Network Analysis (SNA)[111] has been used in order to provide more ecient communication protocols. It has been applied to track and understand the relationships between the network entities and to extract structural information about the network (network robustness, topology variance, emerging communities, . . . ). Several communication protocols such as[START_REF] Hui | Bubble rap: social-based forwarding in delay tolerant networks[END_REF][START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF][START_REF] Hossmann | Know thy neighbor: Towards optimal mapping of contacts to social graphs for dtn routing[END_REF] have been based on SNA: they have used the centrality metrics proposed in[111,[START_REF] Page | The PageRank Citation Ranking: Bringing Order to the Web[END_REF][START_REF] Hwang | Bridging centrality: Graph mining from element level to group level[END_REF][START_REF] Fan | Spectral Graph Theory[END_REF] and/or have exploited community detection mechanisms such as[111,[START_REF] Bollobas | Modern Graph Theory[END_REF][START_REF] Newman | Modularity and community structure in networks[END_REF][START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF]. These two categories of social tools have been dened as the two major concepts of SNA in the design of 4.3. Tensor-Based Link Prediction Framework: A Reminder wireless ad-hoc network protocols by Katsaros et al.[START_REF] Katsaros | Social network analysis concepts in the design of wireless Ad Hoc network protocols[END_REF].
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  Third Trace: Infocom 2006 trace: We consider the encounters which happened on 04/25/2006 [95] between 8 a.m. and 4 p.m among the 98 nodes involved in the trace (70 of them were carried by humans).
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  Model for Smart GridOur contribution joins the initiative of Smart Grid[START_REF]SGIP NIST Smart Grid Collaboration Site, PAP02: Wireless Communications for the Smart Grid (6.1.5)[END_REF] to provide tools that evaluate wireless communications standards. The developed model that we propose analyzes an IEEE 802.15.4 PHY and MAC layer channel in which multiple non-saturated stations compete in communicating with a sink. The aim is to combine two relevant models: A PHY model that bypasses the disk shaped node range and takes into consideration the called transitional region and a MAC model that reproduces the CSMA/CA mechanism. The model described enables us to add the impact of PHY layer errors onto the MAC layer and to provide some improvements for the adopted MAC model, in order to obtain more precise output estimations. Our developed model is available at the SGIP NIST Smart Grid Collaboration website[START_REF]SGIP NIST Smart Grid Collaboration Site, PAP02: Wireless Communications for the Smart Grid (6.1.5)[END_REF].

	5.3 Developed IEEE 802.15.4 5.3.1 IEEE 802.15.4 PHY Model Description
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 5 1: Main Parameters used in MAC Layer

	Parameter	Value	Parameter		Value
	Number of Nodes	5, 10, 50	Queue Size	51 Frames
	Smallest Backo Win	8	Data Rate	250 kbit/s
	Max Frame Retries	3	ACK Size		88 bits
	Max CSMA Backo	4	Shadowing STD	4
	Max Backo Exponent	5	IFS		640 µs
	Min Backo Exponent	3	Max TX-RX Time	192 µs
	MAC Frame Payload	800 bits	PHY Overhead		48 bits
	Table 5.2: Main Parameters used in PHY Layer
	Parameter	Value	Parameter	Value
	Noise Figure	23dB	Bandwidth	30kHz
	Pathloss exp	4	STD Tx power	5dBm
	Noise	15dB Preamb. Length 40 bits
	Max Tx range 15 m		

Table 5 .

 5 3: Comparison of the values for α and β obtained through the joint model and the one of Pollin et al. according to a growing density with saturated trac

		Joint Model	Model of Pollin
				et al.	
	Number	α	β	α	β
	of nodes				
		0.8620	0.5054	0.8043	0.4539
		0.8631	0.5024	0.8173	0.4794
		0.8636	0.5010	0.8282	0.4941
		0.8638	0.5004	0.8347	0.5058
		0.8639	0.5000	0.8413	0.5130
		0.8639	0.5000	0.8467	0.5166
		0.8639	0.5000	0.8500	0.5228
		0.8639	0.5000	0.8543	0.5245
		0.8639	0.5000	0.8576	0.5294
		0.8639	0.5000	0.8597	0.5264
		0.8639	0.5000	0.8630	0.5274
		0.8639	0.5000	0.8652	0.5274
		0.8639	0.5000	0.8663	0.5254
		0.8639	0.5000	0.8684	0.5245
		0.8639	0.5000	0.8695	0.5225
		0.8639	0.5000	0.8706	0.5215
		0.8639	0.5000	0.8728	0.5215
		0.8639	0.5000	0.8728	0.5196
		0.8639	0.5000	0.8739	0.5166
		0.8639	0.5000	0.8750	0.5137
		0.8639	0.5000	0.8760	0.5127
	asymmetry variations)				

Table 6 .

 6 1: Evaluation metrics in the case of the ring network (all forwarding probabilities initialized to 0)

	````````````S		
	chemes	Metrics	Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts
	The Weakest Link (ε=0.01)	75.19%	5.1195
	The Weakest Link (ε=0.05)	90.30%	5.0452
	Pandana et al.		21.29%	5.7362
	Han et al.		0.23%	182.7456
	Table 6.2: Evaluation metrics in the case of a random network (all forwarding
	probabilities initialized to 0)	
	````````````S		
	chemes	Metrics	Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts
	The Weakest Link (ε=0.01)	92.94%	4.5709
	The Weakest Link (ε=0.05)	98.21%	4.5459
	Pandana et al.		67.31%	4.7061
	Han et al.		1.62%	8.6341

Table 6 .

 6 3: Evaluation metrics in the case of the ring network (all forwarding probabilities initialized to 0.5) Weakest Link and Pandana et al.'s schemes are better. This can be explained by higher opportunities to improve the utility function (i.e. nodes belong to a higher number of routes) compared to the case of the ring network.

	````````````S chemes	Metrics Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts Avg. Trans. E.
	The Weakest Link (ε=0.01)	95.24%	5.0555	0.1617
	The Weakest Link (ε=0.05)	97.66%	5.0278	0.1639
	Pandana et al.		93.84%	5.0492	0.1581
	Table 6.4: Evaluation metrics in the case of the random network (all forwarding
	probabilities initialized to 0.5) ````````````S chemes Metrics Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts Avg. Trans. E.
	The Weakest Link (ε=0.01)	99.77%	4.4674	0.1832
	The Weakest Link (ε=0.05)	99.31%	4.4722	0.1829
	Pandana et al.		93.54%	4.525	0.1778
	of the			

  2. Nous avons également voulu continuer dans l'optique de proposer des métriques et des techniques capables d'améliorer l'évaluation et la performance des protocoles de communication dans des contextes bien précis. Nous livrons quelques détails sur ces travaux dans la section B.3. Ce résumé sera conclu par la section B.4 dans laquelle nous rappelons les contributions majeures de cette thèse et nous proposons de nouvelles perspectives de recherche. des propriétés de cette mobilité humaine et de mettre en oeuvre des simulations qui se rapprochent indéniablement des cas réels. Deux catégories de traces ont été considérées. D'une part, nous trouvons les traces dont les rencontres sont déduites à partir des correspondances avec les mêmes B.2. Proposition de Méthode et de Métriques pour la Prédiction des liens dans les Réseaux Mobiles Sans-Fil Centrés sur l'Aspect Humain points d'accès

	B.2	Proposition de Méthode et de Métriques pour la
		Prédiction des liens dans les Réseaux Mobiles Sans-
		Fil Centrés sur l'Aspect Humain
	B.2.1	Mobilité Humaine, Analyse des Réseaux Sociaux et Prédic-
		tion des Liens
	La mobilité humaine représente un paramètre crucial pour les réseaux sans-l mo-
	biles. Ainsi, il est primordial d'étudier cette mobilité an de comprendre ses car-
	actéristiques intrinsèques et exploiter ces propriétés. Cette étude est réalisée dans
	l'optique de concevoir et/ou évaluer les protocoles de communication dans ces réseaux.
	Vers la Compréhension de la Mobilité Humaine
	Pour reproduire la mobilité humaine, deux modèles individuels ont été proposés: le
	Random Walk [41] et le Random Waypoint [62]. Plusieurs autres modèles, décrits
	notamment dans [26, 79], s'en sont inspirés. Néanmoins, ces modèles restent peu
	ables quant à la reproduction dèle de la mobilité humaine [29, 79]. Par souci
	d'exhaustivité, plusieurs chercheurs ont procédé à la collecte d'informations sur la
	mobilité humaine dans des cas réels (campus universitaires, conférences, . . . ) et
	notamment les rencontres entre les utilisateurs du réseau. Dès lors, il est possible
	d'extraire

•

  Première Trace: trace du campus de Dartmouth: Nous choisissons la trace du 05/01/2006[5] et nous considérons l'évolution du réseau de 8h à 18h. Nous construisons le tenseur en tenant en compte tous les contacts observés entre 8h et 15h (7 heures). Les rencontres se passant entre 15h et 18h sont considérés comme des évènement futurs. Le nombre total de noeuds détectés dans cette trace est 1018.Pour chaque trace, nous divisons le temps de suivi en périodes et nous envisageons diérentes longueurs pour ces périodes: 5, 10 et 30 minutes. Ce paramètre là va xer la taille du tenseur. Ainsi, Pour la trace du campus de Dartmouth, nous aurons respectivement un nombre de périodes total T égal, respectivement, à 96,48 et 16 pour couvrir les 8 heures de suivi.

	• Troisème Trace: trace d'Infocom 2006: Nous considérons les rencontres
	ayant eu lieu le 25/04/2006 [95] de 8h à 18h entre les 98 noeuds impliqués
	dans la collecte de contacts (70 d'entre eux sont portés par des personnes). La
	construction du tenseur se base sur les évènements se déroulant de 8h à 14h.
	Les évènements entre 14h et 18h sont considérés comme des évènement futurs.

• Seconde Trace: trace du campus de MIT: Nous nous intéressons à la trace du 23/07/2002 [16] et nous retenons les mêmes considérations horaires que pour la trace précédente. Le nombre de noeuds relevé est 646.

Table B .

 B 1: Métriques d'Evaluation pour la Prédiction de tous les Liens Appliquée sur la Trace du Campus de Dartmouth

  48% 99.57% 0.6946 0.3474 0.6836 7.46% 99.81% 0.0063 1.3942 Salton Index 0.9923 86.96% 99.77% 0.8692 0.1849 0.6834 5.46% 99.81% 0.0042 1.4091 Jaccard Index 0.9921 87.38% 99.78% 0.8741 0.1785 0.6830 5.67% 99.81% 0.0042 1.4078 Sørensen Index 0.9922 85.88% 99.76% 0.8591 0.1996 0.6834 5.67% 99.81% 0.0042 1.4077 Hub Prom. Index 0.9922 86.36% 99.77% 0.8612 0.1948 0.6834 5.57% 99.81% 0.0042 1.4084 Hub Depr. Index 0.9919 84.12% 99.73% 0.8404 0.2253 0.6832 5.25% 99.81% 0.0041 1.4107 Adamic-Adar Index 0.9923 87.88% 99.79% 0.8787 0.1717 0.6835 8.09% 99.81% 0.0021 1.3931 Resource Alloc. Index 0.9926 91.87% 99.85% 0.9176 0.1160 0.6837 7.14% 99.81% 0.0021 1.3993 Rooted PageRank Index 0.9889 90.53% 99.81% 0.8864 0.1483 0.5638 3.99% 99.80% 0.0041 1.4505 26% 99.84% 0.9093 0.1334 0.6831 6.09% 99.81% 0.0063 1.4035 Centralized Case 0.9883 90.19% 99.84% 0.9091 0.1343 0.6097 6.30% 99.81% 0.0164 1.4134 Collapsed Weighted Tensor 0.9900 93.48% 99.84% 0.9032 0.1171 Common Neighbors 0.9890 80.41% 99.52% 0.6575 0.3947 0.6837 6.41% 99.81% 0.0063 1.4012 Salton Index 0.9904 84.20% 99.73% 0.8427 0.2232 0.6835 5.36% 99.81% 0.0042 1.4098 Jaccard Index 0.9902 83.85% 99.71% 0.8349 0.2312 0.6830 5.46% 99.81% 0.0144 1.4020 Sørensen Index 0.9903 83.24% 99.72% 0.8351 0.2353 0.6836 5.46% 99.81% 0.0144 1.4019 Hub Prom. Index 0.9903 83.46% 99.73% 0.8317 0.2362 0.6835 5.04% 99.81% 0.0041 1.4120 Hub Depr. Index 0.9899 81.17% 99.69% 0.8144 0.2646 0.6834 4.73% 99.81% 0.0041 1.4141 Adamic-Adar Index 0.9904 83.87% 99.71% 0.8377 0.2290 0.6838 6.30% 99.81% 0.0063 1.4019 Resource Alloc. Index 0.9908 88.34% 99.80% 0.8857 0.1636 0.6838 5.78% 99.81% 0.0063 1.4054 Rooted PageRank Index 0.9871 87.67% 99.74% 0.8439 0.1994 0.5855 3.57% 99.80% 0.0020 1.4483 89% 99.52% 0.7321 0.3747 0.6867 5.78% 99.81% 0.0021 1.4077 Adamic-Adar Index 0.9800 74.16% 99.52% 0.7374 0.3690 0.6874 6.83% 99.81% 0.0042 1.3991 Resource Alloc. Index 0.9806 80.32% 99.64% 0.7976 0.2830 0.6878 7.14% 99.81% 0.0021 1.3984 Rooted PageRank Index 0.9750 78.24% 99.56% 0.7826 0.3086 0.6076 4.52% 99.80% 0.0021 1.4358 par rapport aux cas parfait.

				T +1	New Links Prediction
		AUC TSR ACC	F1	Dist.	AUC TSR ACC	F1	Dist.
	Distributed Case	0.9932 93.70% 99.90% 0.9407 0.0868 0.6834 7.14% 99.81% 0.0063 1.3964
	Centralized Case	0.9905 93.61% 99.90% 0.9416 0.0871 0.5920 7.04% 99.81% 0.0063 1.4206
	Collapsed Weighted Tensor 0.9932 93.48% 99.90% 0.9428 0.0870		
	t=5 mins 0.9911 83.t=10 Common Neighbors mins Distributed Case mins Distributed Case 0.9813 82.31% 99.69% 0.8261 0.2488 0.6860 5.57% 99.81% 0.0042 1.4078 Centralized Case 0.9764 82.56% 99.69% 0.8272 0.2467 0.6180 6.51% 99.81% 0.0042 1.4183 Collapsed Weighted Tensor 0.9742 81.49% 99.70% 0.8343 0.2498 Common Neighbors 0.9782 71.25% 99.52% 0.5450 0.5387 0.6871 6.83% 99.81% 0.0042 1.3991 Salton Index 0.9799 76.00% 99.57% 0.7535 0.3447 0.6867 5.78% 99.81% 0.0021 1.4077 Jaccard Index 0.9796 75.12% 99.55% 0.7454 0.3566 0.6866 5.88% 99.81% 0.0021 1.4071 Sørensen Index 0.9797 75.47% 99.56% 0.7471 0.3529 0.6866 5.67% 99.81% 0.0021 1.4085 0.9915 90.t=30 Hub Prom. Index 0.9798 76.02% 99.58% 0.7573 0.3418 0.6865 5.15% 99.81% 0.0021 1.4120
	Hub Depr. Index	0.9793 73.				

  Λ t (Z t (i, j)) est la longueur du mot le plus court à partir de la période t et qui n'a pas été détecté entre les périodes 1 et t -1.En suivant la même approche, nous dénissons l'estimateur d'entropie E p

	-1	
	ln n	(B.6)

où

T (i, j)

Table B .

 B 2: Paramètres de Simulation pour la Vérication de l'Ecacité de la Métrique SE 2hops score pour l'Amélioration de la Prédiction des Nouveaux Liens

	Trace	Temps de Suivi	Temps durant lequel
			les contacts sont
			considérés comme
			futurs
	Campus de MIT	de 8h à 14h	de 14h à 18h
	(23/07/02)		
	Campus de Dartmouth	de 8h à 14h	de 14h à 18h
	(05/01/06)		
	Infocom 2006	de 8h à 13h30	de 13h30 à 18h
	(25/04/06)		

  B.3. Autres Contributions Avancées dans la ThèseTable B.3: Ratio des Top Scores dans le Futur: Comparaison entre la performance de la métrique SE 2hops score et celle de la mesure de Katz dans la prédiction des nouveaux liens par la proposition d'une telle méthode est sa possible application d'une manière distribuée. Ainsi, les noeuds eux-mêmes peuvent prédire leurs propres liens et l'information locale (relative au voisinage) est susante pour réaliser cette tâche.

	Trace	Longueur de la	Métrique de	TSR dans le futur
		Période de Suivi t	Prédiction	
	MIT Campus	5 minutes 10 minutes	Katz Measure SE 2hops Score Mesure de Katz SE 2hops Score	13,49% 14,09% 13,22% 13,44%
	Dartmouth Campus	5 minutes 10 minutes	Mesure de Katz SE 2hops Score Mesure de Katz SE 2hops Score	9,10% 8,36% 9,28% 8,55%
	Infocom 2006	5 minutes 10 minutes	Mesure de Katz SE 2hops Score Mesure de Katz SE 2hops Score	16,96% 18,75% 9,82% 9,82%

apportée

2.4. Social Network Analysis and Link Prediction

Katz Measure[START_REF] Katz | A new status index derived from sociometric analysis[END_REF]: it is dened as the weighted sum of the number of paths that

3.2. Related Work

(a) 5 minutes tensor slice period (b) 10 minutes tensor slice period (c) 30 minutes tensor slice period

Opportunistic Networking, (MobiOpp '10), pages 93100, 2010.[START_REF] Elizabeth | Social network analysis for routing in disconnected delay-tolerant MANETs[END_REF] 

Acknowledgments

Considering Link and Proximity Stabilities (1) Collect the adjacency matrix over successive periods of time (2) Collapse the different slices into one matrix (3) Compute the Katz Scores

We depict as previously mentioned in Fig. 4.1 an example which details the two major steps described before. We take into consideration a network consisting of 4 nodes and having a dynamic topology over 4 time periods and we highlight how similarity scores are obtained (θ and β are respectively set to 0.2 and 0.001, as motivated in the previous chapter, for the example and later for the simulations). In this example, we assume that all nodes have the full knowledge of the network structure.

Matrix of Scores Interpretation

The social ties between each pair of nodes are quantied by the similarity measure given by S(i, j). When two nodes share an important score, this means that the paths that connect them tend to be short. Two nodes separated by few hops rimes with a geographical closeness which underlines a correlation between their behavior and emphasizes a spatial proximity. Therefore, the link occurrence between these two nodes is strongly plausible. Otherwise, if the similarity score is low or null, the two corresponding nodes share occasional or even no correlation in their behavior. perform prediction on the three traces and with considering two dierent tracking periods t (5 and 10 minutes periods). The results obtained for the Katz measure match with the ones analyzed in the previous chapter: the links created between two nodes which have been separated by 2 hops are identied which represent a respectable percentage of all new links occurred. Then, we have thought to exploit the proximity stability and to assess if it contributes in enhancing the prediction of new links. On top of the previous analysis, we have also been motivated by the ndings in [START_REF] Wang | Human mobility, social ties, and link prediction[END_REF] which highlights that a majority of new links is occurring between two nodes that have been within two hops of each other in a GSM network. Hence, we express the SE 2hops score with an estimation of the stability of proximity at 2 hops as we expect that such a stable proximity increases the possibility of a new link occurrence. Considering the results obtained, we clearly remark that using the entropy estimation at two hops improves the prediction of new links when it is performed for the MIT Campus and Infocom 2006 traces. The performance of our proposed metric is slightly worse when the prediction is applied on the Dartmouth Campus trace. Nevertheless, it remains that using the proximity stability looks promising to better predict new links and is worth investigate for future works. is the power decay for the reference distance d 0 , η is the path loss exponent and N (0, σ) is a zeromean Gaussian random variable with standard deviation σ.

Hence, for an output power P t , the received power P r in dB is expressed by:

On the other hand, for the radio, the packet reception rate Ψ of successfully receiving of a packet, using a modulation M is:

Where γ is the SNR (Signal-to-Noise Ratio), β M is the biterror rate and a function of the SNR and f is the frame size. The SNR at a distance d can be expressed from (5.2):

Where N (µ(d), σ) is a Gaussian random variable with mean µ(d), variance σ 2 and P n is the noise oor. Moreover, the expression of µ(d) can be determined from (5.2) into (5. ) , the packet reception rate Ψ can be expressed by: International Conferences Pour répondre à cette question, Liben-Nowell et Kleinberg soulignent que les propriétés intrinsèques du réseaux sont capables de donner des indications sur la structure future. Pour argumenter cette hypothèse, ils se sont proposés de prédire les liens dans des réseaux sociaux (réseaux d'auteurs en l'occurrence tels que arXiv [4] et DBLP [6]) à l'aide de métriques se basant sur les voisins communs et sur la structure des liens entre chaque paire de noeuds. À travers leurs simulations, Liben-Nowell et Kleinberg ont démontré que leur hypothèse est fondée. Dans le même esprit, plusieurs travaux ont mis en exergue la pertinence de certaines métriques pour appliquer la prédiction dans les réseaux sociaux à l'instar de [START_REF] Acar | Link Prediction on Evolving Data Using Matrix and Tensor Factorizations[END_REF][START_REF] Backstrom | Supervised random walks: predicting and recommending links in social networks[END_REF][START_REF] Daniel | Temporal link prediction using matrix and tensor factorizations[END_REF][START_REF] Lü | Link prediction in complex networks: A survey[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF][START_REF] Shin | Multi-scale link prediction[END_REF]. En plus, certains parmi eux ont démontré la capacité de la mesure de Katz [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] à atteindre régulièrement des performances meilleures que les autres métriques présentées dans la littérature.

Inspirés par l'application de l'analyse des réseaux sociaux pour prédire les liens dans ces réseaux, nous nous sommes proposés d'exploiter les interactions qui peuvent exister dans les réseaux mobiles sans-l comme ils sont bâtis autour d'utilisateurs humains. Dans la section suivante, nous détaillons notre méthode de prédiction de liens basée sur les tenseurs. Cette méthode sera utilisée pour analyser les interactions entre les entités du réseaux, quantier la force de leurs liens sociaux et exploiter ces mesures pour prédire l'occurrence des liens radios dans le futur. Il est également possible d'appliquer la mesure de Katz sur une matrice d'adjacence. Nous proposons de calculer la matrice S à partir du tenseur comprimé pondéré X à l'aide de l'expression suivante:

La détermination de la matrice S permet de quantier l'intensité des relations sociales entre chaque paire de noeuds (i, j). Comme dénie précédemment, la mesure de Katz privilégie les chemins courts entre une paire de noeuds. Ainsi, plus les chemins sont courts et nombreux, plus le score de Katz est élevé ce qui logiquement exprime une proximité prononcée (un nombre de voisins communs assez important) et par suite d'importantes liaisons sociales et une similarité dans la mobilité. Dès lors, la matrice des scores de Katz S donnera des indications sur la relation entre chaque paire de noeuds et par conséquent sur la possibilité d'observer un lien entre eux dans le futur.

Dans le cas où l'on suppose qu'il peut y avoir une entité centrale capable de scruter et de suivre la topologie de tout le réseau, le calcul de la matrice des scores S peut se faire d'une manière centralisée. Cependant, dans le contexte de réseaux