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Abstract

During the last years, we have observed a progressive and continuous expansion of

human-centered mobile wireless networks. The advent of these networks has en-

couraged the researchers to think about new solutions in order to ensure e�cient

evaluation and design of communication protocols. In fact, these networks are faced

to several constraints as the lack of infrastructure, the dynamic topology, the limited

resources and the de�cient quality of service and security. We have been interested

in the dynamicity of the network and in particular in human mobility. The human

mobility has been widely studied in order to extract its intrinsic properties and to

harness them to propose more accurate approaches. Among the prominent prop-

erties depicted in the literature, we have been specially attracted by the impact of

the social interactions on the human mobility and consequently on the structure of

the network. To grasp structural information of such networks, many metrics and

techniques have been borrowed from the Social Network Analysis (SNA). The SNA

can be seen as another network measurement task which extracts structural infor-

mation of the network and provides useful feedback for communication protocols.

In this context, the SNA has been extensively used to perform link prediction in

social networks relying on their structural properties.

Motivated by the importance of social ties in human-centered mobile wireless

networks and by the possibilities that are brought by SNA to perform link prediction,

we are interested by designing the �rst link prediction framework adapted for mobile

wireless networks as Mobile Ad-hoc Networks (MANETs) and Delay/Disruption

Tolerant Networks (DTN). Our proposal tracks the evolution of the network through

a third-order tensor over T periods and computes the sociometric Katz measure for

each pair of nodes to quantify the strength of the social ties between the network

entities. Such quanti�cation gives insights about the links that are expected to

occur in the period T + 1 and the new links that are created in the future without

being observed during the tracking time. To attest the e�ciency of our framework,

we apply our link prediction technique on three real traces and we compare its

performance to the ones of other well-known link prediction approaches. The results

prove that our method reaches the highest level of accuracy and outperforms the

other techniques. One of the major contributions behind our proposal highlights

that the link prediction in such networks can be made in a distributed way. In other

words, the nodes can predict their future links relying on the local information (one-

hop and two-hop neighbors) instead of a full knowledge about the topology of the

network.

Furthermore, we are keen to improve the link prediction performance of our



tensor-based framework. To quantify the social closeness between the users, we take

into consideration two aspects of the relationships: the recentness of the interac-

tions and their frequency. From this perspective, we wonder if we can consider a

third criterion to improve the link prediction precision. Asserting the heuristic that

stipulates that persistent links are highly predictable, we take into account the sta-

bility of the relationships (link and proximity stabilities). To measure it, we opt for

the entropy estimation of a time series proposed in the Lempel-Ziv data compres-

sion algorithm. As we think that our framework measurements and the stability

estimations complement each other, we combine them in order to provide new link

prediction metrics. The simulation results emphasize the pertinence of our intuition.

Providing a tensor-based link prediction framework and proposing relative en-

hancements tied to stability considerations represent the main contributions of this

thesis. Along the thesis, our concern was also focused on mechanisms and met-

rics that contribute towards improving communication protocols in these mobile

networks. Nevertheless, our e�orts were not limited to the major contributions pre-

viously mentioned and we had the opportunity to propose two other approaches

that can be useful to improve the design and the evaluation of protocols in mobile

multi-hop networks. Firstly, we propose a joint model for the IEEE 802.15.4 physi-

cal and medium access control layers. Secondly, we advance a self-learning repeated

game framework, inspired by "The Weakest Link" TV game, to enforce cooperation

in non-cooperative ad-hoc networks.

Keywords: Human-centered mobile wireless networks, link prediction, tensor,

social ties, Katz measure, link and proximity stabilities, entropy.
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Chapter 1

Introduction

The advent of mobile wireless networks, in last decades, has encouraged researchers

to think about new solutions to ensure communication between the users of the

network. The deployment of a centralized architectures can be costly which limits

mobile wireless networks to densely populated area. As devices are carried by hu-

mans and the mobility is not restricted to the deployment areas, alternatives are

needed to ensure the connectivity. To address this problem, Mobile Ad-hoc Net-

works (MANETs) [33] and Delay/Disruption Tolerant Networks (DTNs) [43, 42]

have been proposed.

In ad-hoc networks and especially in MANETs, each pair of nodes can be con-

nected by a wireless link or by multi-hop paths. Then, source and destination nodes

can be out of range of each other and even though communicate. The network topol-

ogy can evolve over time as nodes are expected to move. Nonetheless, the MANET

routing protocols tend to maintain end-to-end paths between all the nodes. This

property highlights the di�erence with opportunistic networks as the DTNs. Indeed,

in DTNs, it is assumed that no end-to-end paths exist and forwarding a packet from

a source to a destination relies only on the mobility of the nodes and the contacts

occurred between them.

These networks are then characterized by a multi-hop communication to main-

tain connectivity between nodes and are faced to several constraints.

1.1 Constraints and Challenges in Mobile Multi-Hop Net-

works

Mobile ad-hoc and delay tolerant networks are faced to speci�c constraints on top

of those related to wireless communication. In the following, we try to depict an

overview on some constraints observed in such networks and we highlight the topo-
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logical evolution due to the human mobility.

1.1.1 Major Problems Encountered

Some major problems that these networks can be faced with are summarized in the

following points:

• Lack of centralized infrastructure: as previously stated, the multi-hop

networks are not based on a centralized infrastructure. The network entities

have to communicate in a distributed manner (end-to-end or opportunistic

communication) to ensure the connectivity.

• Dynamic topology: the nodes in such networks are expected to move, to

appear or to disappear. Hence, the topology is rather dynamic than static and

is brought to evolve as time goes on. Therefore, it is important to understand

this dynamicity and especially when it is tied to human mobility. Identifying

structural information of the network through the human behavior can be very

useful in order to accurately evaluate and design communication protocols for

human-based networks.

• Resource limitation: generally, the nodes that form the network have lim-

ited resources in terms of energy, processing capacity and memory which may

induce negative impacts on guaranteeing the delivery of messages. Then, these

nodes may be non-cooperative in order to preserve their resources for their own

bene�t. Consequently, the communication protocols have to be e�cient and

adapted to these limitations in order to maximize the lifetime of the networks

and its entities.

• Quality of service and security: the quality of service can be needed in

order to ensure a fair access to the shared resources. The security also is an

important aspect to take into consideration given that the collaboration to

carry the information is distributed and the the wireless communication leads

to unintentional accessibility (message broadcast).

The topology of such networks, as mentioned, is expected to be dynamic. This

evolution can be explained by the appearance of new nodes in the networks, the

disappearance of some nodes due to failures or resource limitations or the mobility

pattern that characterize people who carry the nodes. This last detail has caught

the attention of many researches and it has been shown that the human mobility

has high impacts on the network and consequently on its performance [29, 59]. We

give some details about this human mobility in the following section.
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1.1.2 The Human Mobility: Understanding it to Harness its Prop-

erties

Human mobility is considered as an important property of human-centered mobile

wireless networks [29]. Therefore, understanding its intrinsic properties is impera-

tive to evaluate and/or to design communication protocols. For this purpose, many

initiatives has targeted to collect information about the moves of several users in

a network into traces [5, 16, 52, 106, 58, 39, 66, 95, 72, 29, 82]. The data col-

lected gives indications of the locations visited by the users, the time they spend

in these locations and sometimes details about their encounters. These traces have

been used in many studies and some properties have been pointed out. We cite the

skewed location visiting preferences [57], the time-dependent mobility behavior [57],

the spatio-temporal regularity [16, 52, 106, 39, 77], the power-law property of the

contact and inter-contact times between nodes [58, 29, 63] and the high predictabil-

ity of human mobility [101]. Some other works have demonstrated that the human

mobility is in�uenced by the social interactions that exist between the network en-

tities and is directed by social intentions [39, 78, 105]. These �ndings attest that

the users of the networks are strongly interdependent and their interactions govern

the structure of the network. Hence, stressing on the social ties in such networks

will considerably contribute in understanding how the network topology evolves.

Consequently, several works have borrowed concepts from the Social Network Anal-

ysis (SNA) [111] to harness such a feedback for designing communication protocols

[35, 59] or proposing new techniques to improve these protocols [110].

The use of the Social Network Analysis has been favored by the lack of infrastruc-

ture and the opportunistic aspect that can characterize the communication between

nodes. The SNA can be seen as another network measurement task as stressed

in [64] which focus on analyzing the relationships between the network entities et

interpreting the �ndings to extract network properties as the network robustness,

the most cental nodes or the emerging communities. These properties describes the

structural information of the network which can be used to design communication

protocols as [35, 59] or to perform link prediction in GSM networks as made in [110].

Having investigated several works based on SNA and particularly those aiming

at performing link prediction in social networks [8, 38, 110] and believing that it is

possible to harness the social interactions in human-centered mobile wireless net-

works, one of our motivations in this thesis aims at proposing a framework which is

able to perform link prediction in such networks. In the following section, we detail

in deep the major motivations that brought us to provide the contributions of this

thesis
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1.2 Motivations and Contributions

In last decades, mobile multi-hop wireless networks and especially those which are

human-centered have been widely studied and many approaches have been pro-

posed in order to understand the properties of these networks and propose adapted

communication protocols.

As discussed in the previous section, the topology in these network is dynamic

and the human mobility has been highlighted as one of the key parameters which

has an important impact on the structure of the network and consequently on the

performance of the communication protocols [29, 59]. Also, it has been shown that

the human mobility is dependent on the interactions between the nodes carried by

the users which form a social network [39, 78]. Therefore, it is crucial to understand

the properties for the human mobility to create more realistic mobility models to

mimic real human-centered wireless networks and to design more e�cient commu-

nication protocols. For this aim, many researchers have borrowed centrality metrics

[111, 84, 60] and community detection techniques [111, 20, 85, 81] of the Social Net-

work Analysis (SNA) [111] to propose, for example, new designs for communication

protocols [35, 59].

In data-mining, the Social Network Analysis tool has been used to introduce the

link prediction problem [74]. Moreover, many other works [109, 8, 38, 15, 98] have

highlighted the e�ectiveness of link prediction in social networks as the co-authorship

networks [4, 6] or social network websites as Facebook. The link prediction concept

has been used in mobile phone networks [110] and has shown interesting results.

These �ndings have motivated us to design a link prediction framework

which can be used in MANETs and in DTNs. To do so, we propose the following

salient steps for our framework inspired by the data-mining works [8, 38]. First,

it tracks the evolution of the topology or the neighborhood through a third-order

tensor (a set of adjacency matrices tracking contacts over successive time periods).

Then, it collapses the collected data by allocating a weight to each link according

to its lifetime and its recentness. Finally, it applies the Katz measure [65] on the

collapsed data to obtain prediction scores that express the strength of the social ties

for each pair of nodes. For the best of our knowledge, we are the �rst to propose

such a link prediction technique for mobile multi-hop wireless networks. Moreover,

instead of data-mining approaches which assume that there is a central entity which

has full knowledge of the topology evolution, we propose to perform link prediction

in a distributed way. That is to say that each node constructs its own tensor and

performs link prediction relying on local information (the detected neighbors) which

is more adapted to the context of mobile wireless networks.
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Furthermore, we aim to improve the performance of our link prediction

framework by considering a new criterion that characterizes the interactions be-

tween nodes. In our framework, we have designed link prediction using the recent-

ness and the lifetime of contacts and we wonder if the stability of the interactions

can be useful for our task. We derive this intuition from the following heuristic: if

two nodes have been related through a stable link during a tracking period, this link

expected to be persistent in the future. To ful�l this requirement and to quantify

stability, we use the entropy estimator used in Lempel-Ziv data compression [127] as

it estimates well the entropy of a time series. Afterwards, we propose to combine the

outputs of our link prediction framework with the stability quanti�cation in order

to promote new entropy-based link prediction metrics.

In this thesis, we have been concerned by providing an e�cient link prediction

technique for these mobile networks as we strongly believe that the feedback pro-

vided by this framework can be helpful for communication protocols. In MANETs,

link prediction can be used to detect the robustness of the routes and estimate the

time needed to refresh routing tables. For DTNs, where communication is rather op-

portunistic, link prediction can be bene�cial in detecting possible future interactions

which may enhance the message delivery.

Providing a tensor-based link prediction framework and proposing relative en-

hancements tied to stability considerations represent the main contributions of

this thesis. As we have emphasized, our concern has focused on mechanisms and

metrics that contribute towards improving communication protocols in

these mobile networks. Nevertheless, our concern has not been limited to this major

contributions and we have had the opportunity to propose two other approaches

that can be useful to improve the design and the evaluation of protocols in mobile

multi-hop networks.

Firstly, we have been interested in the IEEE 802.15.4 standard [2]. Many works

have been proposed to model the physical layer (PHY layer) [128, 116] and the

medium access layer (MAC layer) [89, 87]. These models have been designed to

mimic the processing in the PHY and MAC layers and to estimate performance

indicators as the probability of a packet loss. In the literature, the models have been

distinct: they are reproducing either the PHY layer or the MAC layer. From this

perspective, we have been motivated to provide a comprehensive model which

is able to mimic more faithfully the functionalities of the standard by considering

both PHY and MAC layers of IEEE 802.15.4. We propose a combination of

two relevant models for the two layers. The PHY layer behavior is reproduced by

a mathematical framework, which is based on radio and channel models, in order

to quantify link reliability [128, 116]. Regarding the MAC layer, it is mimed by an
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enhanced Markov chain [87]. This contribution allows us fully and more precisely to

estimate the network performance with di�erent network sizes, as well as di�erent

metrics such as node reliability and delay. Our contribution enables us to track

possible failures at both layers.

Secondly, we have pointed out that the nodes in multi-hop networks and espe-

cially for MANETs have limited energy resources. Thus, a node tends to behave

sel�shly when it is asked to forward the packets of other nodes. Indeed, it would

rather reject a forwarding request in order to save its energy. To overcome this

problem, the nodes need to be motivated to cooperate. To this end, we propose

a self-learning repeated game framework, as designed in [51, 86], to enforce

cooperation between the nodes of a network. This framework is inspired by the con-

cept of "The Weakest Link" TV game. Each node has a utility function whose value

depends on its cooperation in forwarding packets on a route as well as the cooper-

ation of all the nodes that form this same route. The more these nodes cooperate

the higher is their utility value. This would establish a cooperative spirit within the

nodes of the networks. All the nodes will then more or less equally participate to

the forwarding tasks which would then eventually guarantee a more e�cient pack-

ets forwarding from sources to respective destinations. In the same time, defecting

nodes are automatically punished which causes a dramatic decrease of their bene�ts

and encourages them to be more cooperative.

1.3 Dissertation Organization

The rest of the dissertation is organized in two major parts.

The �rst part is dedicated to the tensor-based link prediction framework and its

relative improvements. It is built around three chapters.

In Chapter 2, we explain how human mobility is crucial for human-centered

mobile wireless networks. To do so, we give an overview on the mobile wireless

networks based on human interactions and we emphasize the importance of human

mobility as a key parameter which may impact the structure of the network and

consequently its performance. Then, we depict the major properties of the human

mobility presented in the literature and we stress how social interactions between the

users in�uence their mobility patterns. From this perspective, we present the Social

Network Analysis (SNA) which concepts and mechanisms have been borrowed to

extract structural information about the network. We point out the implication of

SNA in data-mining and especially in performing link prediction in social networks

and our motivation to address the problem of link prediction in the case of human-

centered mobile wireless networks.
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Then, we present in Chapter 3 a tensor-based link prediction framework de-

voted to our context, human-centered wireless networks. We detail in this chapter

the salient steps followed by this framework in order to perform link prediction: col-

lecting the contact occurrences during an historical, collapsing the data and applying

a sociometric measure which is the Katz measure [65] for each link. The obtained

link scores are used to interpret if a link is expected to occur in the future. After

presenting our link prediction framework, we assess its e�ciency by performing link

prediction on three real traces and comparing its performance to other well-known

link prediction techniques.

In Chapter 4, we highlight our motivation to improve the performance of our

tensor-based link prediction framework. We emphasize our belief that measuring

the stability of interactions between nodes is helpful to enhance the prediction per-

formance of our framework. Indeed, we explain how quantifying such a stability

can improve link prediction e�ciency and how we design measuring such a parame-

ter with applying an entropy estimator used in Lempel-Ziv data compression [127].

Afterwards, we advance some combinations between the outputs of our framework

and the stability estimation to express new link prediction measures. In order to

verify the contribution of our proposal and as done in the previous chapter, we eval-

uate our advanced metrics using real traces and we compare them to some other

well-known link prediction metrics.

Regarding the second part, it consists of two chapters in which we present two

other contributions proposed in the thesis. It expresses our concern to provide

other techniques and metrics towards improving the evaluation and the conception

of communication protocols in mobile multi-hop wireless networks.

In Chapter 5, we depict a joint model for IEEE 802.15.4 physical (PHY) and

medium access control (MAC) layers for the Smart Grid project. We detail the

approaches that have inspired us to design the PHY and MAC layers and how we

join them to obtain a more comprehensive model. The joint model considers errors

at both levels which enables us to reach better precision in estimating network

performance. We present also some simulation scenarios to point out the precision

provided by our joint model compared to a relevant model [87] that mimics the

MAC layer only.

In Chapter 6, we present a self-learning repeated game dedicated to non-cooperative

MANETs in order to maintain the network connectivity. We describe the system

model based on the concept of the famous "Weakest Link" TV game and the prob-

lem formulation. Then, we explain why we have opted for a repeated game and how

we have employed a self-learning mechanism joined to punishment threats. More-

over, we evaluate our proposal by comparing it to two other self-learning repeated
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games proposed in the literature [51, 86].

Finally, we conclude this dissertation, in Chapter 7, by summarizing the contri-

butions of this thesis and proposes future directions of research.

We provide all the thesis publications in Appendix A. This dissertation is written

in English and for the sake of accessibility, we provide a summary in French language

in Appendix B.
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2.1 Introduction

In this chapter, we present the state of the art about the studies that have focused

on the human mobility in human-centered mobile wireless networks (MANETS,

DTNs,. . . ). The human mobility in this context is a key parameter as it has an

impact on the structure of the network. Understanding the properties of the hu-

man mobility is crucial to evaluate and improve communication protocols in such

networks. For this aim, many techniques used in Social Network Analysis (SNA)

have been borrowed by the researchers. The information extracted through these

techniques has notably contributed in providing solutions and insights for the link

prediction in social networks problem. These �ndings widely used in data-mining

have motivated us to propose our tensor-based link prediction in mobile wireless

networks. In this chapter, we detail how human mobility impacts on an underlying

social network and how to exploit the Social Network Analysis. The SNA enables

us to extract intrinsic properties of the network and we use them to perform link

prediction.

2.2 Mobile Wireless Networks

We propose in this section to study various mobile ad-hoc networking architectures.

There are three main categories and each category is de�ned by the mobility of the

nodes and by the network dynamicity. The three categories are:

• Mobile ad-hoc networks (MANETs).

• Delay or disruption tolerant networks (DTNs).

• Opportunistic networks.

2.2.1 Mobile Ad-Hoc Networks

Wireless networks can be classi�ed into two categories: infrastructure-based net-

works and ad-hoc networks (Sensor networks, MANETs, DTNs). When the network

is deployed with an infrastructure, the nodes communicate with one or many base

stations. The set of all base stations (such as access points) are connected to a

backbone. On the other hand, the ad-hoc networks have no infrastructure and are

totally decentralized. Indeed, the networks consists of autonomous mobile nodes

that are connected through wireless links and which may play the role of routers to

ensure communication between any pair of source-destination [33].
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In ad-hoc networks and especially in MANETs, each pair of nodes can be con-

nected by a wireless link or by multi-hop paths. Then, source and destination nodes

can be out of range of each other and even though communicate. The network topol-

ogy can evolve over time as nodes are expected to move. Nonetheless, the MANET

routing protocols tend to maintain end-to-end paths between all the nodes. This

property highlights the di�erence with opportunistic networks where it is assumed

that no end-to-end paths exist and forwarding a packet from a source to a desti-

nation relies only on the mobility of the nodes and the contacts occurred between

them.

2.2.2 Delay Tolerant Networks

The Delay or Disruption Tolerant Network (DTN) architecture is a paradigm that

has been advanced in order to provide services for challenging networks [43] (ensuring

connectivity in rural areas [37, 96], military networks [93], underwater networks [88],

. . . ). The DTNs are deployed in environments where the connectivity is intermittent

or scheduled and may undergo high error rates, long delays and low data rates. These

networks cannot maintain end-to-end paths between nodes due to the mentioned

constraints. Nevertheless, forwarding a packet from a source to a destination in these

networks relies on the store-and-forward multi-hop routing based on the occurrence

of contacts between intermediate nodes.

2.2.3 Opportunistic Networks

Opportunistic networks have the same characteristics as DTNs in terms of delay

and disruption tolerance but designed with the consideration of more unpredictable

mobility (the connectivity is not really scheduled) [42]. From this perspective, the

opportunistic networks can be viewed as a generalization of DTNs. The Pocket

Switched Networks (PSN) [58] represent an example of opportunistic networks.

2.2.4 A Key Parameter for Mobile Wireless Networks: Human

Mobility

With the growth of these mobile networks and the sophistication of portable com-

putation and communication devices, the human mobility becomes a paramount

phenomenon that impacts the structure of the network as shown in [29, 59]. Hence,

it is important to understand the human mobility to ensure accurate evaluations

and analyses of the performance of communication protocols and applications. In

the following section, we give a more deep information about human mobility and

list its major properties detailed in the literature.
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2.3 Human Mobility

Human mobility represents a key property of mobile wireless networks. Then, it is

crucial to study it in order to understand its intrinsic characteristics and exploit these

�ndings to design and/or evaluate communication mechanisms in such networks.

In this section, we provide a related work about analyzing human mobility and

designing models that mimic the human behavior.

2.3.1 Towards Understanding Human Mobility

To reproduce human mobility, two �rst individual models have been proposed: the

Random Walk or Brownian motion [41] and the Random Waypoint model [62].

Nodes that use Random Walk move, at each step, with a speed chosen from a

distribution towards a random position on a moving area. When a node reaches

its destination, it �xes a new speed and picks new random position to which it

have to move and the process is repeated. When the Random Waypoint model

is considered, the same process as Random Walk is reproduced with adding pause

times between each step. Many other mobility models that are similar to two cited

approaches are detailed in [26, 79]. There are also group mobility models proposed

in the literature, such as [53], where the movement of nodes are correlated to the

one of the clusterhead.

Such models have been widely used in simulations to attest the e�ciency of

communication protocols in the context of intermittent connections. Despite the

popularity of such synthetic models, it has been shown that they are unable to really

reproduce the complexity of human behavior [29, 79]. From these perspective, many

researchers have focused on collecting data and especially encounters between nodes

from real life scenarios (conferences, student campuses, meetings,. . . ). Relaying on

real traces, it is possible to identify salient properties of human mobility and perform

more accurate simulations and more reliable evaluations.

2.3.2 Encounter Traces

In last years, many data collections about encounters in intermittently connected

wireless networks have been led [3]. The corresponding traces are divided into

two categories according to the encounters between mobile devices: the traces with

derived encounters and those with direct encounters.

The derived encounters are deduced from data sets that describe the correspon-

dences between mobile devices and access points in the network. In the literature,

we �nd several traces of this type [5, 16, 52, 106, 39, 66]. The encounters between
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access points and mobile devices are used to analyze mobility and evaluate com-

munication protocols by assuming that two nodes are direct neighbors if they are

connected to the same access point at the same time [29]. As done in [29, 103], we

use parts of the traces [5] and [16] to derive encounters from the correspondences

between access points and nodes connected to.

On the other hand, many initiatives [58, 95, 72, 29, 82] have targeted to collect

direct encounters in various environments. The studies [58, 95, 29, 82] have asked

people to carry iMotes (Intel Motes) [82] in limited areas (conferences, campuses,

city locations, . . . ) and the one proposed by Leguay et al. [72] in wide areas (city-

scale measurements). In our work, we use also this kind of traces and we have been

interested in a part of the trace of Infocom 2006 [95].

2.3.3 Human Mobility Properties

Using the encounter traces has enabled researchers to highlight interesting properties

of the human properties. Indeed, the studies [16, 52, 106, 39, 77] have observed and

analyzed the periodic aspect of human mobility. It has been shown that people

move between well de�ned locations and that the time spent in di�erent locations

follows power-law [106]. These observation has been used to design new mobility

models as the TVC model (Time-Variant Community mobility model) proposed in

[57]. This mobility model is based on two human mobility properties: the skewed

location visited preferences and the time-dependent mobility behavior. Many other

works [58, 29, 63] have also emphasized the power-law property of the contact and

inter-contact times between nodes. Also, Song et al. [101] have been interested

in mobility patterns of cellular network users and have demonstrated that human

mobility is highly predictable. They have found a 93% potential predictability in

user mobility which is typically characterized by a lack of variability and which

predictability is independent of the distance that can be covered by any user.

Recently, some studies have been interested in the impact of the social interac-

tions on human mobility [39, 78, 105]. Eagle and Pentland [39] have outlined how a

common context (work, hobby,. . . ) in which two users evolve can be used to deduce

their social relationship. Mtibaa et al. [78] have shown correlations between the

contact graph and the social graph of mobile users participating in a conference.

Thakur et al. [105] have highlighted that the characteristics of the traces obtained

through the Time-Variant Community mobility model (TVC model) are not similar

to those collected in real scenarios. The major cause behind this observation is that

the TVC model reproduces the individual behavior (location preferences and time-

dependent mobility behavior (circadian rhythm for example)) without correlating it
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with other behaviors. In other words, using such a model generate users that have

not preferred contacts (strong friends) and consequently no consistent social inter-

actions. To emphasize these �ndings, Thakur et al. have proposed to compute a

similarity metric. It measures the degree of similarity of the behaviors of two mobile

nodes and the behavior of each node is expressed by an association matrix. The

columns of the matrix represent the possible locations that a node can visit and the

rows express time granularity (hours, days, weeks, etc.). The dominant behavioral

patterns are tracked using the Singular Value Decomposition (SVD) [54]. For more

details about the similarity metric computation, we refer the reader to [105].

From this perspective, the nodes in such networks are strongly interdependent

and the interactions between them govern the structure of the network. This fact has

motivated researchers to apply the Social Network Analysis (SNA) [111] to extract

intrinsic properties of the network and to exploit them to design more e�cient

communication protocols.

2.4 Social Network Analysis and Link Prediction

2.4.1 Overview on the Social Network Analysis

Given that many of wireless opportunistic networks are human-centered and due to

the lack of infrastructure and/or the opportunistic forwarding, the use of SNA has

been favored. The SNA tends to analyze the social interactions in a network and to

exploit the underlying �ndings in order to ensure a better packet delivery. Instead of

network measurements tied to the network performance (latency, throughput, . . . ),

the SNA can be viewed as another technique to grasp other network characteristics.

As highlighted by Katsaros et al. [64], the SNA relies on the centrality metrics in

order to identify which are the most important and in�uent nodes in the network.

Moreover, it provides manifold community detection mechanisms. Such metrics

and mechanisms contribute in the analysis of the social aspects in the network. In

fact, they provide structural information of the network: existence and strength of

communities, central nodes, network robustness to dynamicity, topology evolution

as time goes on, . . .

Several algorithm have been based on SNA to increase the reliability of mobile

wireless networks. These algorithms closely rely on human mobility and then sen-

sitive to human social interactions. Hui et al. [59] have proposed BubbleRap, a

social based forwarding algorithm. It combines two major aspects of society. In-

deed, Bubble takes into consideration the knowledge of community structure and

the betweenness centrality characterization (fraction of shortest paths crossing a
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node). Given that a node belongs at least to one community and has two rank-

ing parameters (a global ranking, in the whole system, related to global centrality

parameter and a local ranking, within the local community), the algorithm is as

following: when a node has a message to deliver to another one, it bubbles it up the

hierarchical ranking tree based on centrality (nodes called hubs) until it is received

by a node belonging to the same community as the destination. After that, the local

ranking (inside the community) is considered and the message is forwarded till it

reaches the destination. In the same way, Daly and Haahr present SimBet Routing

[35] based on small world dynamics [112]. This proposition addresses the problem

of di�cult communication in sparse mobile ad hoc networks. To overstep the cited

di�culty, the authors lean on discovering a route that maximize the delivery rate

and minimize the end-to-end delay. This challenge is raised even if the network is

assimilated to a disconnected graph. To do this, they de�ne a forwarding metric

that relies on node's centrality (or ego-centrality) within the network and on node's

social similarity (common neighbors) to the destination. Hossmann et al. [56] high-

light the crucial impact of e�cient mappings of mobility contacts on aggregated

social graphs, used by DTN algorithms to determine forwarding decisions. They

note that social DTN routing protocols BubbleRap [59] and SimBet [35], that we

have detailed, contribute to achieve better performances compared to not explic-

itly social ones. They target to identify what are the conditions that improve the

performances and why.

The SNA has been also exploited in link prediction in social networks and es-

pecially in data-mining, for co-authorship networks. We detail in the following

subsection how the problem of link prediction has been stated and we detail which

are the di�erent categories of techniques used to perform link prediction.

2.4.2 Link Prediction in Social Networks

Social networks are dynamic as they can grow and change very rapidly as time goes

on. These variations can be translated by the creation of new edges in the network

which matches with the apparition of new interactions in the social relationships.

Meanwhile, strong social ties are expected to "resist" to these changes and infer per-

sistence and stability. Therefore, understanding the mechanisms that in�uence the

evolution of the social networks is a fundamental question. From this perspective,

in order to understand how social networks evolve, Liben-Nowell and Kleinberg [74]

have focused on the link prediction problem. In fact, they have de�ned this basic

computational problem: given a snapshot of a social network at time t, how can we

accurately predict the edges that will be added in the network in the time interval
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t′ − t where t′ is a given future time?

Liben-Nowell and Kleinberg have advanced an interesting insight about the so-

cial networks. Indeed, they have stated that the link prediction problem is about

identifying the extent of the social network using intrinsic properties of the network

itself. Hence, they have considered features based on the common neighborhood

and the link structure of the network and they have highlighted the importance of

the link prediction in improving the applications in social networks. In the same

way, Lü and Zhou [70] proposed a detailed presentation of the features that can be

used to perform link prediction in social networks. They have classi�ed them into

three di�erent categories:

• Local Similarity Indices which are built on the common direct neighbors that

two nodes can have.

• Global Similarity Indices that relies on the paths that connect two nodes.

• Quasi-Local Similarity Indices which correspond to measures that take into

consideration local paths (limited number of hops).

In our major contribution, we have been interested in some of these indices. We

de�ne them brie�y:

Common Neighbors : for a node i, let Γ(i) be the set of direct neighbors of i.

When two nodes i and j have several common neighbors, it is expected that a link

occurs between them. The number of common neighbors between the nodes i and

j is de�ned as:

Common_Neighbors(i, j) = |Γ(i)
⋂

Γ(j)| (2.1)

Salton Index [94]: it also called cosine similarity in the literature. Given that ki
is the degree of the node i, the Salton Index is expressed by:

Salton_Index(i, j) =
|Γ(i)

⋂

Γ(j)|
√

ki × kj
(2.2)

Jaccard's Coe�cient [61]: is de�ned as the ratio of the number of common

neighbors of two nodes i and j and the cumulative number of all their neighbors. Is

expressed as following:

Jaccard′s_Coefficient(i, j) =
|Γ(i)

⋂

Γ(j)|

|Γ(i)
⋃

Γ(j)|
(2.3)

Sørensen Index [104]: the use of this index is generally limited to ecological
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community data. It is de�ned as:

Sorensen_Index(i, j) =
2|Γ(i)

⋂

Γ(j)|

ki + kj
(2.4)

Hub Promoted Index (HPI) [92]: this measure is used to quantify the topological

overlap of pairs of substrates in metabolic networks [92]. It expressed as follows:

HPI(i, j) =
|Γ(i)

⋂

Γ(j)|

min(ki, kj)
(2.5)

Hub Depressed Index (HDI): this index, which is analogous to the previous mea-

sure, was advanced by Lü and Zhou [70]. It is de�ned by:

HDI(i, j) =
|Γ(i)

⋂

Γ(j)|

max(ki, kj)
(2.6)

Adamic-Adar Index [10]: Adamic and Adar have de�ned their similarity index

by giving weights to all common neighbors of a pair of nodes (i, j). The lower the

degree of the common neighbor is, the higher its weight gets. The Adamic-Adar

Index is given by:

Adamic−Adar_Index(i, j) =
∑

z∈Γ(i)
⋂

Γ(j)

1

log kz
(2.7)

Resource Allocation Index [126]: it is exploited in the resource allocation in

dynamic networks [83]. It is similar to the Adamic-Adar Index and de�ned by:

Resource_Allocation_Index(i, j) =
∑

z∈Γ(i)
⋂

Γ(j)

1

kz
(2.8)

Rooted PageRank Index [102]: this index is considered as an application of the

PageRank algorithm [23]. The score matrix is given by:

PageRank_Score_Matrix = (1− β)(I − βT )−1 (2.9)

where β is the probability that a random walk moves from a node to one of its

random neighbors and T = DA with A is the adjacency matrix of the network and

Dii = 1/
∑

Aij , Dij = 0 when i 6= j.

Katz Measure [65]: it is de�ned as the weighted sum of the number of paths that
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connect two nodes i and j. It is expressed by:

Katz_Measure(i, j) =
∞
∑

l=1

βl · |paths<l>
ij | (2.10)

where paths<l>
ij denotes the set of all paths of length l that connect i to j and β

represents the damping factor (the value of β is between 0 and 1 and then the longer

a path is, the lower its weight gets).

Many studies such as [74, 8, 15, 38, 98] have demonstrated that using intrinsic

properties of the network leads to predict the links in a social network. Liben-Nowell

and Kleinberg [74] have demonstrated that measuring network proximity is able to

give insights on link prediction in co-authorship networks [4, 6]. Acar et al. [8] and

Dunlavy et al. [38] have explored di�erent matrix- and tensor-based techniques that

track the evolution of the network during a number of periods and predict the social

network topology in the following period(s). These techniques and especially the

tensor-based one have been coupled to the Katz measure as this measure quantify

the network proximity of a pair of nodes based on the paths that connects them.

Social network services and websites have interested researches about link prediction

in social networks. Backstrom and Leskovic [15] have developed an algorithm based

on Supervised Random Walks to grasp the structure of the social network and to

assign weights to the edges. Applied notably on Facebook, the proposed algorithm

predicts for each user a list of potential "friends". Shin et al. [98] have proposed a

general framework for multi-scale link prediction (MSLP) which handles large-scale

social networks as LiveJournal, Flickr and MySpace. This algorithm constructs

low-rank approximations of a social network for di�erent scales. At each scale, the

approximated network proximity of each pair of users is determined and Shin et al.

have opted for the Katz measure. Afterwards, the MSLP algorithm combines the

approximative network proximity scores for all scales and make the prediction based

on combined scores.

It is important to mention that most of the cited works have highlighted that

the link prediction performance of the Katz measure outperforms the ones of the

other indexes. We have used this metric in our work and we will give more details

about it in the following chapter.

Concerning link prediction in mobile wireless networks, we have remarked the

work of Wang et al. [110]. Through their study on records of 6 million mobile

phone users, they have aimed to highlight the relationship between the individual

mobility patterns and the social network formed by the users. They have proposed

to measure the behavior similarity of two users through two categories of metrics:
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the network proximity metrics (Common Neighbors, Adamic-Adar, Jaccard's Coe�-

cient, Katz Measure) and the mobility homophily metrics such as the Spatial Cosine

Similarity and the Co-Location Rate [110]. On top of �nding that the similarity of

movements of two users is highly correlated to their proximity in the network, Wang

et al. have shown that all these measures have an interesting predictive power and

that combining them through a supervised learning improves signi�cantly the link

prediction performance.

We have been interested in the two mobility homophily metrics cited above to

compare our work to other link prediction techniques in chapter 4. Wang et al.

de�ned the most likely location of a mobile phone user i as:

ML(i) = argmax
l∈Loc

PV (i, l) (2.11)

where Loc designates the set of all locations which are cell phone towers. and

PV (i, l) =

n(i)
∑

a=1

δ(l, La(i))/n(i) (2.12)

represents the probability that user i is in the location l. The function δ has two

inputs x and y. If x = y then δ(x, y) = 1 and 0 otherwise. The parameter a

represents the step number and La(i) returns the location visited by the user i at

the step a.

Using this probability, Wang et al. de�ned many homophily metrics and we have

retained the two following metrics:

Spatial Cosine Similarity : it is used to capture the cosine similarity of the tra-

jectories of two users i and j. If these two users share similar visited locations, the

cosine similarity tends to be high and a link is expected to occur as these two users

seem to be close. The spatial cosine similarity is expressed as follows:

SCos(i, j) =
∑

l∈Loc

PV (i, l)× PV (j, l)

‖PV (i, l)‖ × ‖PV (j, l)‖
(2.13)

Co-Location Rate: this metric computes the probability that two users i and j

appear in the same location l during approximatively the same time:

CoL(i, j) =

∑n(i)
a=1

∑n(j)
b=1 Θ(∆T − |Ta(i)− Tb(j)|)δ(La(i), Lb(j))
∑n(i)

a=1

∑n(j)
b=1 Θ(∆T − |Ta(i)− Tb(j)|)

(2.14)

where Θ(x) is the Heaviside step function and ∆T is the maximum delay between

of two nodes i and j visiting timestamps in the same location l which enables us
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to say that these two nodes can be considered as co-located in l. The parameters

a and b correspond to the step numbers that characterize the nodes i and j. The

function δ(La(i), Lb(j)) returns 1 if the node i in the step a of its move is in the

same location as node j during its moving step b.

2.5 Conclusion

In this chapter we have shown how interactions between the entities in a social

network can be important to perform link prediction. In this way, we want to

exploit such interactions in human-centered mobile wireless networks as MANETs

and DTNs to perform e�cient link prediction. In the following chapter, we present

a detailed description about our tensor-based link prediction framework which is

inspired from data-mining and adapted to the context of human-centered mobile

wireless networks.
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3.1 Introduction

In recent years extensive research has addressed challenges and problems raised in

mobile, sparse and intermittently connected networks (i.e. DTN). In this case, for-

warding packets greatly depends on the occurrence of contacts. Since the existence

of links is crucial to deliver data from a source to a destination, the contacts and
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their properties emerge as a key issue in designing e�cient communication protocols

[56]. Obviously, the occurrence of links is determined by the behavior of the nodes

in the network [29]. It has been widely shown in [57, 105] that human mobility

is directed by social intentions and re�ects spatio-temporal regularity. A node can

follow other nodes to a speci�c location (spatial level) and may bring out a behav-

ior which may be regulated by a schedule (temporal level). The social intentions

that govern the behavior of mobile users have also been observed through statistical

analyses in [29, 63] by showing that the distribution of inter-contact times follow a

truncated power law.

With the intention of improving the performance of intermittently connected

wireless network protocols, it is paramount to track and understand the behavior

of the nodes. We aim to propose an approach that analyzes the network statistics,

quanti�es the social relationship between each pair of nodes and exploits this mea-

sure as a score which indicates if a link would occur in the immediate future. We

strongly believe that the social ties between nodes govern the status of a link and

establish an indication for the link prediction: it would not occur if two nodes have

no common interactions or willingness and would be e�ective and persistent with

more correlated moving patterns.

In this chapter, we adapt a tensor-based link prediction algorithm successfully

designed for data-mining [8, 38]. Our proposal records the network structure for T

time periods and predicts all link occurrences for the (T +1)th period and estimates

the birth of new links (that have not occurred during the preceding T recording pe-

riods). This link prediction technique is designed through two steps. First, tracking

time-dependent network snapshots in adjacency matrices which form a third-order

tensor (two dimensions for nodes as adjacency matrices and one dimension for time

to obtain the evolution of the network structure). Second, applying of the Katz

measure [65] inspired by sociometry. The link prediction technique computes the

degree of behavioral similarity of each pair of nodes relying on the tensor obtained

in the �rst step. A high degree of behavior similarity means that the two nodes

have the same "social" intentions. These common intentions are expressed by the

willingness to meet each other and/or by similar moving patterns to visit the same

location. They also promote the link occurrence between two socially similar nodes

in the immediate future (prediction for the period T+1 after tracking the behavior

of nodes during T time periods).

We discuss how we have designed the tensor-based prediction method and detail

the two main steps in order to achieve link prediction. On the one hand, we describe

how to track the network topology over time with a tensor. On the other hand, we

explain how to compute and interpret the Katz measure. We then evaluate the
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e�ectiveness of predictability through several simulation scenarios depending on the

trace, the number of recording periods and the similarity metric computation which

can be used in a centralized or a distributed way. To the best of our knowledge,

this work is the �rst to perform the prediction technique in a distributed way. By

"distributed way", we mean that each node in the network uses local information

(the contacts with neighbors) to predict future links. The assessment of its e�ciency

can be bene�cial for the improvement of the design of communication protocols in

mobile, sparse and intermittently connected networks.

This chapter is organized as follows: Section 3.2 presents the related work that

highlights the growing interest in social analysis and justi�es the recourse to the

tensors and to the Katz measure to perform predictions. In Section 3.3, we detail

the two main steps that characterize our proposal. Section 3.4 details simulation

scenarios used to evaluate the tensor-based prediction approach, analyzes the results

obtained, assesses its e�ciency and proposes a discussion about the described link

prediction technique. Finally, we conclude the chapter in Section 3.5.

3.2 Related Work

Social Network Analysis (SNA) [111, 64] and ad-hoc networking have provided new

perspectives for the design of network protocols [59, 35, 55]. These protocols aim

to exploit the social aspects and relationship features between the nodes. Studies

conducted in the �eld of SNA have mainly focused on two kinds of concepts: the

most well-known centrality metrics suggested in [111, 84, 60, 31] and the community

detection mechanisms proposed in [20, 81, 85, 111]. From this perspective, several

works have tried to develop synthetic models that aim to reproduce realistic mov-

ing patterns [57, 71]. Nonetheless, the study done in [56] has underlined the fact

that synthetic models cannot faithfully reproduce human behavior because these

synthetic models are only location-driven and they do not track social intentions

explicitly.

In their survey, Katsaros et al. [64] have underlined the limits of these protocols

when the network topology is time-varying. The main drawback comes down to

their inability to model topology changes as they are based on graph theory tools.

To overcome this limit, tensor-based approaches have been used in some works to

build statistics on the behavior of nodes in wireless networks over time as in [9].

Thakur et al. [105] have also developed a model using a collapsed tensor that tracks

user's location preferences (characterized by probabilities) with a considered time

granularity (week days for example) in order to follow the emergence of "behavior-

aware" delay tolerant networks closely.
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As previously mentioned, tracking the social ties between network entities en-

ables us to understand how the network is structured. Such tracking has led to the

design of techniques for link prediction. Link prediction in social networks has been

addressed in data-mining applications as in [8, 38]. In the same context, Wang et al.

[109] have advanced a method based on a local probabilistic graphical model that

can be used for large graphs. This method is led by a supervised learning to predict

if a link will occur between two nodes through the computation of the co-occurrence

probability. Also, Backstrom and Leskovic [15] have developed an algorithm which

uses Supervised Random Walks to learn the structure of the social network and to

set the edge weights. Applied notably on Facebook, such an algorithm estimates

for each user a list of people with whom ties are likely to be created. Concerning

link prediction in community-based communication networks, [110] has highlighted

salient measures that allow link occurrence between network users to be predicted.

These metrics determine if a link occurrence is likely by quantifying the degree

of proximity of two nodes (Katz measure [65], the number of common neighbors,

Adamic-Adar measure [10], Jaccard's coe�cient [61, 94], . . . ) or by computing the

similarity of their mobility patterns (spatial cosine similarity, co-location rate, . . . ).

Through their exhaustive study, Liben-Nowell and Kleinberg [74] have presented

several similarity measures based on node neighborhoods, the ensemble of all paths

and higher-level approaches. They have compared the prediction performance of

these measures applied as predictors on �ve co-authorship networks. In the same

way, Lü and Zhou [70] have described in detail well-known metrics used in link

prediction and they have classi�ed them into three categories: the local metrics

(computed from common neighbors and/or node degree), the global metrics (deter-

mined from the set of paths that connect two nodes) and the quasi-local metrics (a

mix of the two previous categories). The e�ciency of the Katz measure has been

emphasized and compared to other prediction metrics in [74, 110].

In this chapter, we propose a link prediction technique that tracks the temporal

network topology evolution in a tensor and computes a metric in order to charac-

terize the social-based behavior similarity of each pair of nodes. Some approaches

have addressed the same problem in data-mining in order to perform link predic-

tion. Acar et al. [8] and Dunlavy et al. [38] have provided detailed methods based

on matrix and tensor factorizations for link prediction in social networks such as

the DBLP data set [6]. These methods have been successfully applied to predict a

collaboration between two authors relying on the data set of the structure of rela-

tionships over time. Moreover, they have highlighted the use of the Katz measure

[65], which can be seen as a behavior similarity metric, by assigning a link prediction

score for each pair of nodes. The e�ciency of the Katz measure in link prediction
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has been also demonstrated in [109, 74].

3.3 Description of the Tensor-Based Link Prediction Method

It has been highlighted that a human mobility pattern shows a high degree of tempo-

ral and spatial regularity, and each individual is characterized by a time-dependent

mobility pattern and a trend to return to preferred locations [29, 57, 105]. In order

to improve the design of wireless network protocols, and especially the intermit-

tently connected networks, it is important to exploit this knowledge since these

interactions usually have an impact on the network structure and consequently on

the network performance. Thus, we propose an approach that aims to exploit the

similar behavior of nodes in order to predict link occurrence referring to the social

closeness.

Predicting future links based on their social closeness is a challenge that is worth

an investigation. Indeed, a good link prediction technique contributes to improving

the opportunistic forwarding of packets and also enhances the delivery rate and/or

decreases latency. Moreover, it helps avoid situations where packets encumber the

queue of the nodes that are not able to forward these packets towards their �nal

destinations.

To quantify the social closeness between each pair of nodes in the network, we

use the Katz measure [65] inspired by sociometry. This measure aims at quantifying

the social distance between people inside a social network. We also need to use

a structure that records link occurrence between each pair of nodes over a certain

period of time in order to perform the similarity measure computation. The records

represent the network behavior statistics in time and space. To this end, a third-

order tensor is considered. A tensor Z consists of a set of slices and each slice

corresponds to an adjacency matrix of the network tracked over a given period of

time p. After the tracking phase, we reduce the tensor into a matrix (or collapsed

tensor) which expresses the weight of each link according to its lifetime and its

recentness. A high weight value in this matrix denotes a link whose corresponding

nodes share a high degree of closeness. We apply the Katz measure to the collapsed

tensor to compute a matrix of scores S that not only considers direct links but also

indirect links (multi-hop connections). The matrix of scores expresses the degree of

similarity of each pair of nodes according to the spatial and the temporal levels. The

higher the score is, the better the similarity pattern gets. Therefore, two nodes that

have a high similarity score are more likely to have a common link in the future.
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3.3.1 Notation

Scalars are denoted by lowercase letters, e.g., a. Vectors are denoted by boldface

lowercase letters, e.g., a. Matrices are denoted by boldface capital letters, e.g., A.

The rth column of a matrix A is denoted by ar. Higher-order tensors are denoted

by bold Euler script letters, e.g., T . The nth frontal slice of a tensor T is denoted

by Tn. The ith entry of a vector a is denoted by a(i), element (i, j) of a matrix A

is denoted by A(i, j), and element (i, j, k) of a third-order tensor T is denoted by

Ti(j, k).

3.3.2 Matrix of Scores Computation

The computation of the similarity scores is modeled in two distinct steps. First, we

store the inter-contact between nodes in a tensor Z and reduce it to a matrix X

called the collapsed tensor. In the second step, we compute the matrix of similarity

scores S relying on the matrix X (cf. Fig. 4.1).

Collapsing the data from the tensor

We consider that the data is collected into the tensor Z. The slice Zp(i, j) describes

the status of a link between a node i and a node j during a time period between

[(p − 1) · t, p · t[ (p>0) where Zp(i, j) is 1 if the link exists, even for few instants,

during the time period p and 0 otherwise. The tensor is formed by a succession

of adjacency matrices Z1 to ZT where the subscript letters designate the observed

period. The simplest way to collapse these records into a single N ×N matrix X is

to sum all the entries over the tracked time as in the following:

X(i, j) =

T
∑

p=1

Zp(i, j) (3.1)

We follow another alternative, motivated by [8, 38], to collapse the data into one

matrix. This alternative consists in damping backward the structure of the network.

The links are considered over time and the more recent the adjacency matrix, the

more weighted the structure. Collapsing the tensor records in this way is applied

using the following expression:

X(i, j) =
T
∑

p=1

(1− θ)T−p
Zp(i, j) (3.2)

where the matrix X is called collapsed weighted tensor of Z, and θ is a parameter

used to adjust the weight of recentness and is between 0 and 1.
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(1) Collect the adjacency matrix over successive periods of time

(2) Collapse the different slices into one matrix (3) Compute the Katz  Scores 

 

 

 1 2 3 4     1 2 3 4     1 2 3 4     1 2 3 4 

1 0 1 1 1    1 0 0 1 1    1 0 0 1 0    1 0 1 1 1 

2 1 0 0 0    2 0 0 0 1    2 0 0 1 1    2 1 0 0 1 

3 1 0 0 1    3 1 0 0 1    3 1 1 0 0    3 1 0 0 0 

4 1 0 1 0    4 1 1 1 0    4 0 1 0 0    4 1 1 0 0 

 

 

 

 

 1 2 3 4 

1 0 1.512 2.952 2.152 

2 1.512 0 0.8 2.44 

3 2.952 0.8 0 1.152 

4 2.152 2.44 1.152 0 

 1 2 3 4 

1 0 0.0015 0.003 0.0022 

2 0.0015 0 0.0008 0.0024 

3 0.003 0.0008 0 0.0012 

4 0.0022 0.0024 0.0012 0 

1 2 

3 4 

t=1 

1 2 

3 4 

t=2 

1 2 

3 4 

t=3 

1 2 

3 4 

t=4 

Figure 3.1: Example of the matrix S computation

According to the results for the evaluation of the Katz measure prediction per-

formance in [8, 38], collapsing the data relying on Eq. (4.1) gives better prediction

results (compared to collapsing the records by using Eq. (3.1)). As we aim to per-

form a prediction using the Katz measure, we opt to collapse the tensor using Eq.

(4.1). Below, we de�ne the Katz measure and we explain how to compute it after

determining the collapsed weighted tensor.

Katz Measure

The Katz measure, which is a�liated to sociometry, was �rst proposed by Leo Katz

in [65]. He considered a social network as a directed graph G = (V,E) where each

vertex vi ∈ V represents a person i and each edge (vi, vj) ∈ E connects the vertex i

to the vertex j when a person i votes for (or endorses) a person j. We denote the

subset Pℓ(vi, vj) as the set of paths of length ℓ that connect vertex vi to vertex vj .

The status that characterizes the couple (vi, vj) is de�ned by the weight and the

number of paths of length ℓ, |Pℓ(vi, vj)|, connecting vertex vi to vertex vj .

Katz de�ned the score S(i, j) of a pair of nodes (i, j) as depicted in Eq.(3.3):

S(i, j) =
+∞
∑

ℓ=1

βℓ|Pℓ(vi, vj)| (3.3)

Where β is a user de�ned parameter, also called the damping factor, strictly superior

to 0 and strictly inferior to 1. The expression βℓ denotes the weight of a path of
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length ℓ.

This score is dependent on a function that proportionally decreases with the

path length ℓ. The weight of such paths is βℓ and it is clear that the longer the path

is, the lower the weight gets.

The Katz centrality of a person i, which is the sum of Katz measures involving

the person i, can be seen as a generalization of the in-degree measure (like followers

in Twitter). The status of the node according to the in-degree centrality measures

the number of direct neighbors. The Katz centrality goes beyond that and measures

the number of all nodes that are connected through one or multiple paths (these

paths can be a direct link and/or multi-hop paths). Nevertheless, the contribution

provided by a distant node is penalized by the damping factor β. Hence, the Katz

centrality can be viewed as an extension of the in-degree measure to long paths.

By reconsidering the social network de�ned by Katz, the Katz centrality takes into

account the number of votes that a person can receive through direct or indirect

endorsements (respectively paths of length 1 and those of length ℓ with ℓ > 1). The

damping factor, as mentioned, is used in order to emphasize that the strength of

the endorsements fades over a chain of recommendations.

This metric is widely used in studies whose aim is to predict the occurrence of

links [8, 38, 74], especially in social networks like co-authorship communities such as

the DBLP [6] and arXiv [4] databases. Given that there are "social relationships"

between nodes in networks with intermittent connections, it is challenging to exploit

this measure and to apply it to collected data.

There is also another formulation to compute Katz scores by means of collapsed

weighted tensor as detailed previously. Then, the score matrix S can be rewritten

as:

S =
+∞
∑

ℓ=1

βℓ ·Xℓ = (I− β ·X)−1 − I (3.4)

where I is the identity matrix and X is the obtained collapsed weighted tensor.

The computation of matrix S, as described before, is done in a centralized

way. It means that the matrix S is computed based on the full knowledge of

the network topology over time. This may not be suitable with ad-hoc wireless

networks where no central entity is considered and could in addition be very costly.

A distributed mechanism should then be examined. In a distributed mechanism,

each node would apply the prediction method relying only on information related

to its nearest neighbors. It is paramount to remember that a Katz formulation

gives more weight to short paths and assigns low scores to long paths. Therefore,

the scores with neighbors located a few hops away should be su�cient and strong

40



Chapter 3. Tensor-Based Link Prediction Framework for Mobile
Wireless Networks

enough compared to scores with further ones.

In the next section, in order to evaluate the e�ciency of our proposal to perform

prediction relying only on local information, we consider two ways to compute Katz

measures:

• The Centralized Computation: The centralized way assumes that there

is a central entity which has full knowledge of the network structure at each

period and applies the Katz measure to the global adjacency matrices.

• The Distributed Computation: Each node has a limited knowledge of the

network structure. We assume that a node is aware of its two-hop neigh-

borhood. Hence, computation of Katz measures is performed on a local-

information-basis.

The validity of the distributed mechanism will be discussed in Section 3.4.

3.3.3 Matrix of Scores Interpretation

The relationship between each pair of nodes is expressed by a score S(i, j), which

re�ects the degree of similarity between node i and node j. As mentioned in the

Katz measure analysis, shorter paths lead to higher scores. Thus, two nodes that

share a high score are nodes that are connected through short paths during some

period of time and therefore have similar behavior (similar social intentions). The

similarity here is related to common preferences in spatial and temporal space. Two

nodes maintain their connectivity when they move in the same direction and at the

same time. Therefore, these scores can be considered as indicators to a possible

link existence in the future. Thus, the link prediction is done through measuring

behavior similarity for each pair of nodes in the matrix S.

3.4 Performance Evaluation and Simulation Results

To evaluate the e�ciency of the tensor-based link prediction in intermittently con-

nected wireless networks, we consider three di�erent real traces. For each trace,

we compute the corresponding scores matrix S as described earlier and assess the

performance of the link prediction method through evaluation techniques. In the fol-

lowing, we �rstly present the traces used for the link prediction evaluation. Then,

we give the corresponding results and analyze the e�ectiveness of the prediction

method.
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3.4.1 Simulation Traces

We consider three real traces to evaluate the link prediction approach. We exploit

them to construct the tensor by generating adjacency matrices (with di�erent track-

ing periods t: 5, 10 and 30 minutes). For each case, we track the required statistics

about the nodes' behavior within T periods. We consider the adjacency matrix cor-

responding to the period T+1 as a benchmark to evaluate the Katz scores matrix

in predicting the occurrence of links in the immediate future. We also take into

account some periods beyond the period T to check the ability to predict links that

have not occurred during the tracking phase and that have been tracked starting

from the period T+1. We detail, in the following, the traces used.

• First Trace: Dartmouth Campus trace: We choose the trace of 01/05/2006

[5] from 8 a. m. to 6 p. m. We construct the tensor slices relying on SYSLOG

traces between 8 a.m. and 3 p.m. (7 hours). The encounters that took place

in the three remaining hours are considered as future events. The number of

nodes is 1018.

• Second Trace: MIT Campus trace: We focus on the trace of 07/23/2002

[16] and also consider the same time slots as for the previous trace. The

number of nodes is 646.

• Third Trace: Infocom 2006 trace: We consider the encounters which

happened on 04/25/2006 [95] between 8 a.m. and 6 p.m among the 98 nodes

involved in the trace (70 of them were carried by humans). We construct the

tensor relying on the events that have happened from 8 a.m. to 2 p.m. The

remaining time is used to identify new links that were not pointed out during

the tracking phase and that occurred between 2 p.m. and 6 p.m.

For each scenario, we generate adjacency matrices corresponding to a di�erent

period t: 5, 10 and 30 minutes. Then, to record the network statistics over each

trace historical, we use the tensor to track the encounters. The number of periods

T depends on the trace (the retained historical) and on the length of the tracking

period t. For example, for the Infocom 2006 trace, the tensor has respectively a

number of slices T equal to 72, 36 and 12 periods (for the case where t=5 minutes,

it is necessary to have 72 periods to cover 6 hours). Our aim behind considering

this set of traces is to evaluate the e�ciency of our proposal (predicting using local

information) in predicting the links that would occur in the immediate future (at

the period T+1) and new links that would occur for the �rst time after the period

T .

42



Chapter 3. Tensor-Based Link Prediction Framework for Mobile
Wireless Networks

Concerning the two �rst traces, we have to underline that the data represent

records that describe the association or the disassociation of a device (identi�ed with

its MAC address) with an access point at a corresponding timestamp. In such a case,

the tracked contacts are not involved in a mobile ad-hoc network. Nevertheless, we

assumed that two users can communicate with each other when they are a�liated

to the same access point. Chaintreau et al. [29] made the same assumption with

the Dartmouth Campus trace in order to analyze, with a theoretical model, the

impact of human mobility on the opportunistic forwarding algorithms. Song and

Kotz [103] stated that this assumption may not be accurate but remains a good

�rst approximation. The last trace (Infocom 2006 trace) was proposed to focus

on the user mobility characterization and the content distribution evaluation. In

particular, this trace was registered during an event in which encounters between

people are frequent and repetitive. Hence, they can be viewed as a more faithful

benchmark to evaluate our proposal.

As mentioned earlier, we take into account both centralized and distributed

cases for the computation of scores. In both cases, we �x θ and β to 0.2 et 0.001

respectively. Later, in the Section 3.4.2, we explain the impact of these parameters

and why we chose these values.

3.4.2 Performance Analysis

As described in the previous section, we apply the link prediction method to the

three traces while considering the di�erent tensor periods both for centralized and

distributed cases. In order to assess the e�ciency of the proposed method, we

consider several link prediction scenarios (according to the trace, the tensor period

and the way to compute scores) and we use di�erent evaluation techniques (ROC

curves, AUC metric, top scores ratio at T+1, accuracy and F-measure). Below

we detail in the following the results obtained with each evaluation technique and

analyze the link prediction e�ciency.

Analysis of the ROC Curves

First of all, we aim to evaluate the performance of the prediction in a distributed

way and compare this performance to that of the centralized approach. As a �rst

evaluation step, we use the ROC curves (Receiver Operating Characteristic curves)

[44].

A ROC curve is a graphical plot highlights the performance of a binary classi�er

(which is the prediction technique in this context) with varying the discrimination

threshold. For us, the threshold takes values from the minimum to the maximum
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Table 3.1: Table of confusion of a binary prediction technique
h

h
h

h
h
h

h
h

h
h
h
h

h
h
h

h
hh

Prediction outcome

Actual value
Positive Negative

Positive True Positive
(TP )

False Positive
(FP )

Negative False Negative
(FN)

True Negative
(TN)

scores provided by the matrix of scores S. To determine the points that form

the ROC curve, we compare all the obtained scores with the current value of the

threshold. If a score is higher to the threshold, it means that the prediction is

positive. Otherwise, the prediction is negative. Hence, the ROC curve represents

the evolution of the true positive rate (given by the ratio of true positive predictions

among all positive predictions) expressed by TP
TP+FN

according to the false positive

rate (given by the ratio of false positive predictions among all negative predictions)

expressed by FP
FP+TN

. The meaning of the variables TP , FP , TN and FN are

detailed in the table of confusion given by Tab. 3.1. The ROC curve indicates

a good prediction method if the bend of the curve is tending to be close to the

upper left corner of the plot. The analysis of the obtained results will detail this

appreciation.

The Fig. 3.2, 3.3 and 3.4 depict the ROC curves for both distributed and cen-

tralized computing approaches respectively obtained from the Dartmouth Campus

trace, the MIT Campus trace and the Infocom 2006 trace. For each trace �gure,

(a), (b) and (c) the curves correspond to a tensor tracking period of 5, 10 and 30

minutes respectively.

We �rst notice that, for all scenarios, the prediction of all links is quite e�cient,

compared to the random guess (the curve's bends are in the upper left corner).

Moreover, two other observations have to be mentioned. First, it is highlighted

that the smaller the tensor tracking period, the more reliable the prediction. This

observation is obvious for two reasons. On the one hand, with a short tensor period,

tracking a short and occasional contact between two nodes is less likely compared

to the case where the tensor periods are longer. On the other hand, if we take

the example of the Infocom 2006 trace, recording 6 hours of encounters requires 72

adjacency matrices of 5-minute periods, instead of 12 matrices when the tracking is

considered over periods of 30 minutes. Thus, tracking a short contact between two

nodes has less in�uence when the tensor slices are more numerous. Moreover, short

periods enable us to appreciate better short contacts as well as long ones, whereas

predicting using long periods is not able to clearly estimate the length of a contact.

As an example, in the case where the tensor slice time is 5 minutes, a �eeting contact

can be tracked by one adjacency matrix among 72. However, for the case where the
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slice time is 30 minutes, the �eeting contact is tracked by one tensor slice among

12, which gives it signi�cantly more weight compared to the former case. Hence,

short tensor slice periods enable us to minimize the probability of tracking a short

contact and to restrict its impact. On the other hand, they allow the short and long

encounters to be discerned more accurately.

Short tensor slice periods also allow us to better track the social interactions

(meetings in a cafeteria, courses in an lecture theater, etc) between nodes which

determine the occurrence of links. Successive adjacency matrices of 5 minutes give

a more accurate description of the network structure over time as both analyzing

and identifying these social events are easier through shorter periods.

The second observation concerns the similar results obtained at the centralized

and distributed matrix of scores computation. In fact, the similarity is higher when

the paths considered between a pair of nodes are short. Therefore, paths that have

more than two hops have weaker scores and so are less weighted compared to shorter

ones. The distributed case assumes that each node knows its neighbors at most at

two hops. That is why distributed scores computation presents performances which

are so similar to the centralized ones.

On top of that, we can highlight that the link prediction performance is better

when the tensor-based technique is applied on the Dartmouth Campus and the

MIT Campus traces than than the one obtained with the Infocom 2006 trace. This

observation can be explained by the di�erent natures of the traces. Indeed, the

Dartmouth Campus and the MIT Campus traces are collected from access points

and we adopted the same assumption as Chaintreau et al. [29] (detailed in the

Section 3.4.1). Meanwhile, the Infocom 2006 trace is obtained after recording all

the encounters between several mobile nodes which is impacted by lower range and

density of nodes.

Evaluation of the Link Prediction Technique through Performance Met-

rics

In this subsection, we consider another evaluation step. We use adapted evaluation

metrics in order to further weigh the performance of the proposed link prediction

technique. At this step, as well as evaluating the prediction of all links in the period

T+1, we also try to assess the e�ciency of our technique in predicting new links

that occurred for the �rst time after the period T . For both link prediction cases,

we compute a set of metrics:

• Area Under the ROC Curve metric (AUC) [44]: which is considered as

a good performance indicator in our case. It consists in computing the area
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(a) 5 minutes tensor slice period

(b) 10 minutes tensor slice period

(c) 30 minutes tensor slice period

Figure 3.2: ROC Curves for di�erent prediction cases applied on Dartmouth Campus
trace

under the ROC curve. The closer the value of the area is to 1, the better the

prediction gets.
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(a) 5 minutes tensor slice period

(b) 10 minutes tensor slice period

(c) 30 minutes tensor slice period

Figure 3.3: ROC Curves for di�erent prediction cases applied on MIT Campus trace

• Top Scores Ratio at the period T+1 (TSR): we compute the number

of occurring links in the period T+1 (the �rst period coming after the record

of the network statistics). We call the number of existing links L. Then,
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(a) 5 minutes tensor slice period

(b) 10 minutes tensor slice period

(c) 30 minutes tensor slice period

Figure 3.4: ROC Curves for di�erent prediction cases applied on Infocom 2006 trace

we extract the links having the L highest scores found after applying the

prediction technique and determine the percentage of existing links in both

sets.
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• Accuracy (ACC): this measure is de�ned in [44] as the ratio of correct

prediction (true positive and true negative predictions) over all predictions

(true positive, true negative, false positive and false negative predictions). In

other words, it is computed by the ratio TP+TN
TP+FP+TN+FN

(see Table 3.1). We

identify for each scenario the maximum value of the accuracy which indicates

the degree of precision that can reach each prediction metric.

• F-Measure or balanced F1 score: the F-Measure [108] is the harmonic

mean of precision1 and recall2. The F-Measure is expressed by 2. precision.recall
precision+recall

.

The higher the F-Measure is, the better the tradeo� of precision and recall

gets and the more e�cient the prediction metric is.

On top of doing the evaluation for the centralized and distributed ways to per-

form prediction, we compare their performances with those of some well-known pre-

diction metrics: Common Neighbors, Salton Index [94], Jaccard Index [61], Sørensen

Index [104], Hub Promoted Index (HPI) [92], Hub Depressed Index (HDI), Adamic-

Adar Index [10], Resource Allocation Index [126] and Rooted PageRank Index [102].

We also include in the comparison the weights obtained through the computation

of the Collapsed Weighted Tensor (CWT). The results corresponding to all links

prediction at the period T+1 and those corresponding to new links prediction are

listed in Table 6.2 (Dartmouth Campus trace), Table 6.3 (MIT Campus trace) and

Table 6.4 (Infocom 2006 trace).

Also, we propose to use all the evaluation metrics, in each prediction scenario, to

compute the distance (denoted Dist.) with the "perfect" prediction performance

(AUC=1, TSR=100%, ACC=100% and F1=1). For a prediction approach p, this

distance is expressed by:

Distance(p) =
√

(1−AUC(p))2 + (1− TSR(p))2 + (1−ACC(p))2 + (1− F1(p))2

(3.5)

By computing such a distance, we can have an idea about the performance

closeness compared with the perfect case and assess how much the tradeo� of having

simultaneous good evaluations is ensured.

Regarding all links prediction results at the period T+1 and based on the high

values of AUC metric (more than 0.9 at most cases), top scores ratio obtained

1represents to the proportion of links with positive prediction (occurring in the future) which
are correctly identi�ed [44]. Based on Table 3.1, the precision is equal to TP

TP+FP
. This value is

determined according to the deduced accuracy value.
2quanti�es the ratio of correctly identi�ed links over the occurring links in the future [44].

Referring to Table 3.1, the recall is de�ned by the expression TP
TP+FN

. This value is also computed
according to the retained accuracy value.
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Table 3.2: Evaluation metrics for the prediction of all links applied on Dartmouth
Campus trace

h
h
h

h
h
h
h

h
h

h
h
h

h
h

h
hh

Prediction Cases
Metrics All Links Prediction at T+1 New Links Prediction

AUC TSR ACC F1 Dist. AUC TSR ACC F1 Dist.

t=
5
m
in
s

Distributed Case 0.9932 93.70% 99.90% 0.9407 0.0868 0.6834 7.14% 99.81% 0.0063 1.3964

Centralized Case 0.9905 93.61% 99.90% 0.9416 0.0871 0.5920 7.04% 99.81% 0.0063 1.4206

Collapsed Weighted Tensor 0.9932 93.48% 99.90% 0.9428 0.0870 � � � � �

Common Neighbors 0.9911 83.48% 99.57% 0.6946 0.3474 0.6836 7.46% 99.81% 0.0063 1.3942

Salton Index 0.9923 86.96% 99.77% 0.8692 0.1849 0.6834 5.46% 99.81% 0.0042 1.4091

Jaccard Index 0.9921 87.38% 99.78% 0.8741 0.1785 0.6830 5.67% 99.81% 0.0042 1.4078

Sørensen Index 0.9922 85.88% 99.76% 0.8591 0.1996 0.6834 5.67% 99.81% 0.0042 1.4077

Hub Prom. Index 0.9922 86.36% 99.77% 0.8612 0.1948 0.6834 5.57% 99.81% 0.0042 1.4084

Hub Depr. Index 0.9919 84.12% 99.73% 0.8404 0.2253 0.6832 5.25% 99.81% 0.0041 1.4107

Adamic-Adar Index 0.9923 87.88% 99.79% 0.8787 0.1717 0.6835 8.09% 99.81% 0.0021 1.3931

Resource Alloc. Index 0.9926 91.87% 99.85% 0.9176 0.1160 0.6837 7.14% 99.81% 0.0021 1.3993

Rooted PageRank Index 0.9889 90.53% 99.81% 0.8864 0.1483 0.5638 3.99% 99.80% 0.0041 1.4505

t=
1
0
m
in
s

Distributed Case 0.9915 90.26% 99.84% 0.9093 0.1334 0.6831 6.09% 99.81% 0.0063 1.4035

Centralized Case 0.9883 90.19% 99.84% 0.9091 0.1343 0.6097 6.30% 99.81% 0.0164 1.4134

Collapsed Weighted Tensor 0.9900 93.48% 99.84% 0.9032 0.1171 � � � � �

Common Neighbors 0.9890 80.41% 99.52% 0.6575 0.3947 0.6837 6.41% 99.81% 0.0063 1.4012

Salton Index 0.9904 84.20% 99.73% 0.8427 0.2232 0.6835 5.36% 99.81% 0.0042 1.4098

Jaccard Index 0.9902 83.85% 99.71% 0.8349 0.2312 0.6830 5.46% 99.81% 0.0144 1.4020

Sørensen Index 0.9903 83.24% 99.72% 0.8351 0.2353 0.6836 5.46% 99.81% 0.0144 1.4019

Hub Prom. Index 0.9903 83.46% 99.73% 0.8317 0.2362 0.6835 5.04% 99.81% 0.0041 1.4120

Hub Depr. Index 0.9899 81.17% 99.69% 0.8144 0.2646 0.6834 4.73% 99.81% 0.0041 1.4141

Adamic-Adar Index 0.9904 83.87% 99.71% 0.8377 0.2290 0.6838 6.30% 99.81% 0.0063 1.4019

Resource Alloc. Index 0.9908 88.34% 99.80% 0.8857 0.1636 0.6838 5.78% 99.81% 0.0063 1.4054

Rooted PageRank Index 0.9871 87.67% 99.74% 0.8439 0.1994 0.5855 3.57% 99.80% 0.0020 1.4483

t=
3
0
m
in
s

Distributed Case 0.9813 82.31% 99.69% 0.8261 0.2488 0.6860 5.57% 99.81% 0.0042 1.4078

Centralized Case 0.9764 82.56% 99.69% 0.8272 0.2467 0.6180 6.51% 99.81% 0.0042 1.4183

Collapsed Weighted Tensor 0.9742 81.49% 99.70% 0.8343 0.2498 � � � � �

Common Neighbors 0.9782 71.25% 99.52% 0.5450 0.5387 0.6871 6.83% 99.81% 0.0042 1.3991

Salton Index 0.9799 76.00% 99.57% 0.7535 0.3447 0.6867 5.78% 99.81% 0.0021 1.4077

Jaccard Index 0.9796 75.12% 99.55% 0.7454 0.3566 0.6866 5.88% 99.81% 0.0021 1.4071

Sørensen Index 0.9797 75.47% 99.56% 0.7471 0.3529 0.6866 5.67% 99.81% 0.0021 1.4085

Hub Prom. Index 0.9798 76.02% 99.58% 0.7573 0.3418 0.6865 5.15% 99.81% 0.0021 1.4120

Hub Depr. Index 0.9793 73.89% 99.52% 0.7321 0.3747 0.6867 5.78% 99.81% 0.0021 1.4077

Adamic-Adar Index 0.9800 74.16% 99.52% 0.7374 0.3690 0.6874 6.83% 99.81% 0.0042 1.3991

Resource Alloc. Index 0.9806 80.32% 99.64% 0.7976 0.2830 0.6878 7.14% 99.81% 0.0021 1.3984

Rooted PageRank Index 0.9750 78.24% 99.56% 0.7826 0.3086 0.6076 4.52% 99.80% 0.0021 1.4358

at T+1, accuracy, F-Measure and consequently the distance from the best perfor-

mance, we note that the prediction using the Katz measure (both in centralized and

distributed ways) and the collapsed weighted tensor achieve the best performances.

It is trivial that links that occur during the period T are the most expected to be

e�ective at T+1. This property is well captured by the collapsed weighted tensor

as it gives higher weights to recent links. This observation is well interpreted by the

top score ratio in period T+1 metric. Computing the Katz measure (for the two

treated cases) from the collapsed weighted tensor ensures that the links occurring at

the period T are identi�ed as the Katz measure gives highest scores to most recent

and persistent links. Hence, we clearly observe that performing a prediction using

the Katz measure achieves a similar prediction e�ciency to estimate occurring links
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Table 3.3: Evaluation metrics for the prediction of all links applied on MIT Campus
trace

h
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h
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h
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h
h

h
h

h
hh

Prediction Cases
Metrics All Links Prediction at T+1 New Links Prediction

AUC TSR ACC F1 Dist. AUC TSR ACC F1 Dist.

t=
5
m
in
s

Distributed Case 0.9907 91.48% 99.84% 0.9243 0.1144 0.6668 12.47% 99.45% 0.0071 1.3649

Centralized Case 0.9929 91.48% 99.84% 0.9223 0.1155 0.6865 11.93% 99.45% 0.0071 1.3637

Collapsed Weighted Tensor 0.9883 91.48% 99.84% 0.9234 0.1152 � � � � �

Common Neighbors 0.9864 79.27% 99.43% 0.6489 0.4080 0.6668 12.47% 99.45% 0.0071 1.3649

Salton Index 0.9886 82.87% 99.65% 0.8274 0.2435 0.6666 10.49% 99.45% 0.0053 1.3791

Jaccard Index 0.9886 82.31% 99.65% 0.8194 0.2531 0.6662 10.58% 99.45% 0.0053 1.3786

S/orensen Index 0.9885 81.00% 99.64% 0.8169 0.2641 0.6665 10.67% 99.45% 0.0053 1.3779

Hub Prom. Index 0.9884 81.19% 99.63% 0.8128 0.2657 0.6667 9.96% 99.42% 0.0051 1.3826

Hub Depr. Index 0.9883 79.93% 99.60% 0.7867 0.2931 0.6665 10.76% 99.45% 0.0071 1.3760

Adamic-Adar Index 0.9886 84.89% 99.63% 0.8080 0.2446 0.6669 11.57% 99.45% 0.0071 1.3707

Resource Alloc. Index 0.9891 87.04% 99.75% 0.8803 0.1768 0.6665 11.57% 99.45% 0.0071 1.3708

Rooted PageRank Index 0.9918 86.24% 99.67% 0.8551 0.2000 0.6885 8.79% 99.44% 0.0035 1.3864

t=
1
0
m
in
s

Distributed Case 0.9797 85.18% 99.70% 0.8609 0.2043 0.6685 12.11% 99.45% 0.0071 1.3668

Centralized Case 0.9809 85.14% 99.70% 0.8609 0.2045 0.6859 11.93% 99.45% 0.0071 1.3639

Collapsed Weighted Tensor 0.9725 85.14% 99.70% 0.8624 0.2044 � � � � �

Common Neighbors 0.9752 74.86% 99.33% 0.5921 0.4798 0.6687 12.29% 99.45% 0.0071 1.3656

Salton Index 0.9774 77.07% 99.54% 0.7676 0.3273 0.6686 9.96% 99.45% 0.0089 1.3794

Jaccard Index 0.9775 77.03% 99.54% 0.7654 0.3291 0.6681 10.31% 99.45% 0.0089 1.3773

S/orensen Index 0.9774 76.04% 99.53% 0.7620 0.3385 0.6686 10.40% 99.45% 0.0089 1.3766

Hub Prom. Index 0.9773 76.98% 99.53% 0.7559 0.3363 0.6684 9.60% 99.43% 0.0035 1.3857

Hub Depr. Index 0.9771 75.09% 99.49% 0.7344 0.3649 0.6686 10.67% 99.45% 0.0106 1.3736

Adamic-Adar Index 0.9776 79.95% 99.50% 0.7417 0.3278 0.6685 11.75% 99.45% 0.0071 1.3692

Resource Alloc. Index 0.9780 81.71% 99.62% 0.8176 0.2593 0.6685 11.03% 99.45% 0.0036 1.3763

Rooted PageRank Index 0.9730 80.59% 99.50% 0.7922 0.2857 0.6777 8.61% 99.44% 0.0035 1.3900

t=
3
0
m
in
s

Distributed Case 0.9589 73.31% 99.41% 0.7131 0.3940 0.6751 10.13% 99.45% 0.0054 1.3793

Centralized Case 0.9578 73.76% 99.41% 0.7545 0.3619 0.6816 10.22% 99.45% 0.0054 1.3772

Collapsed Weighted Tensor 0.9316 73.51% 99.41% 0.7149 0.3952 � � � � �

Common Neighbors 0.9544 64.20% 99.11% 0.4664 0.6442 0.6757 10.76% 99.45% 0.0036 1.3764

Salton Index 0.9563 68.04% 99.30% 0.6411 0.4826 0.6755 8.52% 99.45% 0.0071 1.3885

Jaccard Index 0.9565 68.94% 99.33% 0.6799 0.4482 0.6747 7.89% 99.45% 0.0107 1.3903

S/orensen Index 0.9563 67.96% 99.30% 0.6634 0.4668 0.6754 8.43% 99.45% 0.0107 1.3866

Hub Prom. Index 0.9563 66.45% 99.29% 0.6231 0.5065 0.6755 7.71% 99.44% 0.0053 1.3952

Hub Depr. Index 0.9559 66.98% 99.29% 0.6702 0.4688 0.6750 8.52% 99.45% 0.0124 1.3849

Adamic-Adar Index 0.9567 68.73% 99.26% 0.6107 0.5013 0.6752 10.67% 99.45% 0.0054 1.3758

Resource Alloc. Index 0.9573 71.47% 99.36% 0.6868 0.4259 0.6753 9.96% 99.45% 0.0124 1.3753

Rooted PageRank Index 0.9290 63.67% 98.98% 0.6274 0.5253 0.6608 4.84% 99.42% 0.0017 1.4203

at the period T+1 (similar distances with the perfect prediction). Meanwhile, the

other prediction metrics show a lower performance in the context of predicting such

links. Indeed, they quantify the relationship of a pair of nodes without seeing if a

direct link connects them. For example, two isolated neighbors (or having few com-

mon neighbors) would have a weak score even if they were connected. On the other

hand, two other nodes can be 2-hop neighbors and share several common neighbors

which means that the score in this case is relatively high even if no link connects

the corresponding pair of nodes.

Nevertheless, these prediction approaches depict an interesting capacity to pre-

dict future links (which have occurred for the �rst time after the period T ) as they

allocate the highest values to nodes which are relatively close in terms of hops and
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Table 3.4: Evaluation metrics for the prediction of all links applied on Infocom 2006
trace

h
h
h

h
h
h
h

h
h

h
h
h

h
h

h
hh

Prediction Cases
Metrics All Links Prediction at T+1 New Links Prediction

AUC TSR ACC F1 Dist. AUC TSR ACC F1 Dist.

t=
5
m
in
s

Distributed Case 0.9675 63.97% 98.27% 0.6147 0.5288 0.6927 10.84% 97.14% 0.0682 1.3261

Centralized Case 0.9686 63.24% 98.25% 0.6145 0.5339 0.6963 9.64% 97.10% 0.0233 1.3651

Collapsed Weighted Tensor 0.9650 64.71% 98.33% 0.6400 0.5056 � � � � �

Common Neighbors 0.8770 36.76% 97.20% 0.2766 0.9691 0.6835 10.84% 97.07% 0.0870 1.3151

Salton Index 0.9082 43.38% 97.28% 0.0959 1.0710 0.6810 10.84% 97.03% 0.0860 1.3164

Jaccard Index 0.9068 42.65% 97.32% 0.1216 1.0535 0.6857 10.84% 96.86% 0.0217 1.3608

Sørensen Index 0.9085 43.38% 97.26% 0.0828 1.0821 0.6841 12.05% 96.93% 0.0222 1.3529

Hub Prom. Index 0.8991 36.76% 97.22% 0.1401 1.0725 0.6792 10.84% 96.96% 0.0440 1.3464

Hub Depr. Index 0.9054 41.91% 97.26% 0.1074 1.0695 0.6841 10.84% 97.00% 0.0444 1.3449

Adamic-Adar Index 0.8956 37.50% 97.34% 0.1783 1.0380 0.6825 10.84% 97.14% 0.1277 1.2874

Resource Alloc. Index 0.9092 42.65% 97.38% 0.3420 0.8780 0.6819 10.84% 97.14% 0.1087 1.3005

Rooted PageRank Index 0.9282 22.06% 97.34% 0.1103 1.1853 0.6548 9.64% 96.19% 0.0180 1.3789

t=
1
0
m
in
s

Distributed Case 0.9260 48.81% 97.30% 0.4279 0.7717 0.7137 10.84% 96.86% 0.0625 1.3254

Centralized Case 0.9234 48.81% 97.30% 0.4279 0.7720 0.6740 9.64% 96.89% 0.0220 1.3712

Collapsed Weighted Tensor 0.9144 49.40% 97.38% 0.4502 0.7525 � � � � �

Common Neighbors 0.8464 19.64% 96.58% 0.0349 1.2657 0.7017 9.64% 96.82% 0.0215 1.3653

Salton Index 0.8612 27.38% 96.58% 0.1443 1.1314 0.6992 9.64% 96.82% 0.0215 1.3658

Jaccard Index 0.8589 25.00% 96.60% 0.1451 1.1465 0.7048 8.43% 96.65% 0.0204 1.3735

Sørensen Index 0.8611 27.98% 96.58% 0.1616 1.1145 0.7057 9.64% 96.86% 0.0217 1.3642

Hub Prom. Index 0.8559 23.21% 96.37% 0.0330 1.2437 0.6945 7.23% 96.89% 0.0220 1.3825

Hub Depr. Index 0.8589 26.79% 96.58% 0.0349 1.2200 0.7087 9.64% 96.75% 0.0211 1.3641

Adamic-Adar Index 0.8506 22.62% 96.60% 0.0884 1.2055 0.6946 9.64% 96.86% 0.0217 1.3667

Resource Alloc. Index 0.8695 31.55% 96.62% 0.1458 1.1029 0.6891 9.64% 97.03% 0.0230 1.3670

Rooted PageRank Index 0.9259 43.45% 96.70% 0.1011 1.0651 0.6194 10.84% 95.36% 0.0148 1.3830

t=
3
0
m
in
s

Distributed Case 0.8435 26.70% 95.60% 0.0184 1.2358 0.6620 7.23% 96.86% 0.0217 1.3903

Centralized Case 0.8420 26.21% 95.60% 0.0184 1.2389 0.6365 7.23% 96.58% 0.0200 1.3980

Collapsed Weighted Tensor 0.8420 28.64% 95.60% 0.0184 1.2246 � � � � �

Common Neighbors 0.7768 09.71% 95.49% 0.0352 1.3409 0.6471 7.23% 96.82% 0.0215 1.3941

Salton Index 0.7959 11.17% 95.57% 0.0092 1.3470 0.6428 6.02% 97.00% 0.0227 1.4024

Jaccard Index 0.7925 10.68% 95.67% 0.0094 1.3506 0.6459 4.82% 96.79% 0.0213 1.4107

Sørensen Index 0.7956 11.65% 95.61% 0.0093 1.3438 0.6501 7.23% 97.00% 0.0227 1.3925

Hub Prom. Index 0.7920 10.19% 94.29% 0.0546 1.3217 0.6439 4.82% 96.72% 0.0208 1.4116

Hub Depr. Index 0.7915 12.62% 95.65% 0.0186 1.3312 0.6451 7.23% 96.86% 0.0217 1.3945

Adamic-Adar Index 0.7891 10.68% 95.67% 0.0094 1.3511 0.6399 7.23% 96.82% 0.0215 1.3960

Resource Alloc. Index 0.8050 12.62% 95.71% 0.0095 1.3358 0.6464 8.43% 96.79% 0.0213 1.3865

Rooted PageRank Index 0.4589 15.53% 95.86% 0.0474 1.3840 0.4905 4.82% 95.84% 0.0165 1.4610

consequently social ties (if two nodes share a high number of common neighbors

or an important proportion of common neighbors, they are expected to be close

and then a link may occur between them in the future). We can notice that the

prediction performance of such links is obviously less e�cient than predicting all

links. This observation is highlighted by a higher distance with the perfect predic-

tion. The Katz measure follow a similar way to predict future links. The highest

scores in this case are for pairs of nodes which are connected through 2-hop paths

(as a direct link has never existed). The score gets higher with a more important

set of common neighbors for two given nodes. This information totally agrees with

the result advanced by Wang et al. [110] which stipulates that a new link has more

chance to occur between two nodes if they are separated by a distance of 2 hops.
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From this perspective, the use of the Katz measure enables us to reach one of the

best performances in predicting new links. The performance of predicting such links

is slightly impacted by the length of the tracking period (compared to the all links

prediction in T+1 where the shorter the tracking period is, the better the prediction

gets). This observation can be interpreted by the weak proportion of new links (that

occur beyond the period T ) compared to the overwhelming potential links (which

never occurred during T periods and can occur starting from the period T+1). It

is also important to mention that the collapsed weighted tensor has no ability to

predict new links as it allocates weights only for links that have been tracked in the

historical data. Then, any potential new link has no weight.

After evaluating both link prediction abilities, it is clear that performing the

prediction using the Katz measure is the only way to simultaneously guarantee high

e�ciency in predicting all links in the period T+1 and estimating new links that have

not occurred during the historical, compared to all the other approaches involved in

the evaluation. Moreover, according to all the evaluation metrics and in particular

the distance with the perfect performance, the results con�rm that the proposal of

computing the Katz measure relying only on the local information achieves similar

or even better performance than the centralized case.

The Importance of the Parameters θ and β

It is important to underline that the e�ciency of our mechanism is dependent on

the values of the parameters θ (a parameter used to adjust the weight of recentness

and is between 0 and 1 to compute the collapsed weighted tensor in eq. (4.1)) and

β (a damping factor used in the computation of the Katz scores matrix S expressed

by eq. (4.2)). We depict in Fig. 3.5(a) and Fig. 3.5(b) the top scores ratio at T +1

and the AUC, respectively, obtained for di�erent values of θ and β. We can note

that the values set to θ (i.e. 0.2) and to β (i.e. 0.001) enable us to reach quite an

e�cient level of prediction. These results are relative to a prediction set performed

on the MIT Campus trace with the distributed version of the prediction framework.

After the investigation into the value to be chosen for the parameter β, we found

that the convergence of the Katz measure is closely tied to the spectral radius of

the adjacency matrix, as mentioned in [46]. In fact, β must be greatly inferior to

the reverse of the latter value. In our case, we use the collapsed weighted tensor

which can be considered as an adjacency matrix with weights of links. If we take

the example of the collapsed weighted tensor of the scenario where we use the

Infocom 2006 trace, with a period of tracking t equal to 5 minutes and a number of

tracking periods equal to 72, we �nd that the lowest reverse of the spectral radius
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(a) Area Under the ROC Curve

(b) Top Scores Ratio at T+1

Figure 3.5: Prediction performance of the tensor-based technique distributed version
for di�erent values of β and θ

is around 0.01. This lowest value is observed when θ tends to 0. With higher

values of θ, the interval of values of β with good performance is larger (AUC higher

than 0.8 and TSR higher than 0.6). Indeed, when the parameter θ is important,

taking into consideration the past event is less signi�cant. Then, the weights in

the collapsed weighted tensor get lower which decreases the value of the spectral

radius and increases the value of the highest β which ensures convergence. Hence,

the interval of satisfying values of β is larger.
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3.4.3 Discussion

In wireless networks and speci�cally in intermittently connected ones, it is important

to exploit social relationships that in�uence the nodes' mobility. Taking advantage

of the social aspect within these networks could ensure a better routing strategy

and therefore improve the packet delivery rate and reduce latency. Through our

proposal, we aim to track eventual similarities between mobility patterns of nodes

and exploit them intelligently for a better link prediction.

As seen earlier, a link occurrence between two nodes is more likely when they

have similar social behavior. Then, identifying nodes that have a similar mobility

pattern could help to predict e�ective links between nodes in the future. The more

accurate the link prediction is, the more optimized the routing scheme could be-

come. In fact, an e�cient link prediction would help to make better decisions in the

forwarding process. For example, a node would rather decide to postpone sending

a packet to a current next hop because the link prediction scheme estimates that

a better forwarder (closer to the destination for example) is going to appear in the

immediate future. Also, link prediction could prevent bu�er overloading. Indeed,

an overloaded node would rather drop a packet if the link prediction scheme indi-

cates that there will be no possible route toward the destination in the future and

before the packet's TTL expires. Through this approach, we can get quite e�cient

prediction results.

The results detailed previously show that the tensor-based link prediction frame-

work can identify more than 90% of links (with a tracking period of 5 minutes). The

link prediction relies on measuring the similarity of the mobility of nodes. Song et

al. [101] investigated the limits of predictability in human mobility. Relying on

data collected from mobile phone carriers, they found that 93% of user mobility is

potentially predictable. The best predictability percentage reached by our approach

analogously joins the conclusion of Song et al.

We have also shown through simulations that prediction e�ciency is similar

whether the Katz measures are computed in a centralized and distributed manner.

As we have explained, the distributed scheme is only able to maintain high scores

(link occurrence is likely) as nodes record neighbors at one and two hops. The

seeming lack of information does not impact on predicting e�ectiveness. This ob-

servation also tallies with the conclusion of Acar and al. [8]. Indeed, in the data

mining context, they tried to make the method scalable and proposed the Truncated

Katz technique (expressed by eq. (11) in [8]). It consists in determining Katz scores

replacing the collapsed weighted tensor by a low-rank approximation one. The re-

sults show that this latter technique retains a high prediction e�ciency. Hence,
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Table 3.5: Evaluation metrics for the prediction of all links in T+1 applied on
Infocom 2006 trace

h
h

h
h
h
h
h

h
h
h

h
h
h

h
h
hh

Prediction Cases
Metrics All Links Prediction at T+1

AUC TSR ACC F1 Dist.

t=5mins

Distributed Case and 1-hop knowledge 0.9722 64.71% 98.51% 0.6870 0.4728

Distributed Case and 2-hop knowledge 0.9675 63.97% 98.27% 0.6147 0.5288

Collapsed Weighted Tensor 0.9650 64.71% 98.33% 0.6400 0.5056

t=10 mins

Distributed Case and 1-hop knowledge 0.9142 49.40% 97.40% 0.4769 0.7333

Distributed Case and 2-hop knowledge 0.9260 48.81% 97.30% 0.4279 0.7717

Collapsed Weighted Tensor 0.9144 49.40% 97.38% 0.4502 0.7525

t=30 mins

Distributed Case and 1-hop knowledge 0.8265 28.16% 95.65% 0.0094 1.2367

Distributed Case and 2-hop knowledge 0.8435 26.70% 95.60% 0.0184 1.2358

Collapsed Weighted Tensor 0.8420 28.64% 95.60% 0.0184 1.2246

restricting the scores computation on most weighted links (in terms of recentness

and duration) does not incur dramatic consequences on the prediction e�ciency.

To perform prediction with local information, we assumed for the computation

of scores that nodes know their 2-hop neighbors. It is obvious that exchanging infor-

mation between nodes about neighbors causes additional overhead and consequently

more solicited resources. From this perspective, a question can be highlighted: would

the tensor-based link prediction method remain e�ective if the knowledge of nodes is

limited to the direct neighbors? To answer this question, we take into consideration

the scenario where the distributed computation of scores is based on knowledge of

1-hop neighbors and we compare it to the scenario which uses the 2-hop knowledge

when the prediction is interested in the links in the period T+1. We also considered

the prediction performance of the collapsed weighted tensor. We used the Infocom

2006 trace and kept the same parameters used in the previous simulations (see sub-

section 3.4.1). The comparison is made with the evaluation metrics described in the

subsection 3.4.2. The results are reported in Table 3.5.

When the knowledge is limited to the neighbors at one hop, the closeness only

means that there is a direct link between two nodes. Thereby, computing the scores

through the tensor-based link prediction framework becomes too similar to deter-

mining weights of links with the collapsed weighted tensor. Then, limiting the

knowledge to 1-hop neighbors deprive our proposal of its ability to estimate the

occurrence of new links beyond the period T . Nonetheless, such knowledge allows

better link prediction in the period T+1 compared to the other prediction methods

involved in the comparison, especially with 5-minute and 10-minute tracking peri-

ods. As a reminder, the collapsed weighted tensor allocates a weight for a pair of

nodes considering the recentness and the persistence of their contacts. Meanwhile,

our proposal, in the case of knowledge of 1-hop neighbors, computes the scores in

the same way and includes an additive value if there are paths connecting the same
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pair of nodes. That is the reason behind obtaining a similar TSR metric with the

collapsed weighted tensor. Moreover, the lack of the 2-hop knowledge enables the

tensor-based link prediction framework to achieve better accuracy by setting the

scores of all potential links (which did not exist between period 1 and period T and

that can occur starting from period T+1) to 0. Indeed, the majority of potential

links are not expected to occur as the contacts are in�uenced by the social ties (a

node would meet a low percentage of the other nodes). That's why the accuracy

and the F-Measure (F1) are better than the other case (and especially the case of

distributed computation of scores with knowledge of 2-hop neighbors) which brings

about shorter distance with the perfect performance. With longer tracking periods,

the prediction with such knowledge loses precision and becomes very similar to those

of the other approaches (similar distance).

From this perspective, it is not clear which is the best scenario to be retained

if we compare the cost of exchanging local information between nodes to the cost

of ignoring prediction of new links. Future simulations and real deployments will

enable us to determine which setting is preferable.

3.5 Conclusion

Human mobility patterns are mostly driven by social intentions and correlations ap-

pear in the behavior of people forming the network. These similarities highly govern

the mobility of people and then directly in�uence the structure of the network. The

knowledge about the behavior of nodes greatly helps in improving the design of com-

munication protocols. Intuitively, two nodes that follow the same social intentions

over time promote the occurrence of a link in the immediate future.

In this chapter, we presented a link prediction technique inspired by data-mining

and exploit it in the context of wireless networks. Our contribution in this chapter, a

new link prediction technique for the intermittently connected wireless networks, is

designed through two major steps. First, the network topology is tracked over several

time periods in a tensor. Secondly, after collapsing the structural information, a

Katz measure is computed for each pair of nodes as a score. A high score means

similar moving patterns implying the closeness of the nodes and indicates that a

link occurrence is likely in the future.

Through the link prediction evaluation, we obtained relevant results that attest

the e�ciency of our contribution. We can summarize them in the following points:

• The tensor-based link prediction technique is quite e�cient. The result are

supported by the ROC curves and the evaluation metrics (AUC metric, top
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scores ratio (at T+1 or in the future), accuracy, F-Measure and consequently

the distance with the perfect prediction).

• Applied on real traces, the proposed prediction technique provides more accu-

rate results with shorter tensor tracking periods. In fact, short periods make

the tracking more sensitive in terms of identifying �eeting and persistent con-

tacts. Predicting through long tracking periods is mostly e�cient with only

long contacts.

• The link prediction framework guarantees good performance when prediction

is applied to all links in the period T+1. Moreover, it has the capacity to

identify some future links which never occur during the tracking of contacts

in order to build the tensor.

• Applying the prediction technique in a distributed way (nodes only know their

neighbors at most at two hops) achieves similar predicting performance com-

pared to the use of the same framework in a centralized way (an entity has

full-knowledge about network structure over time).

• The temporal tensor-based link prediction described in this chapter is based

on an encounter metric which takes into account the occurring contacts at the

same location and at the same time. We provided a performance comparison

with other similar approaches and we found that our proposal is the only one

that is able to ensure the tradeo� of reaching the highest performances for

both predicting all links at the period T+1 and estimating some new links

that would appear in the future.

Good link prediction o�ers the possibility to further improve opportunistic packet

forwarding strategies by making better decisions in order to enhance the delivery

rate or limit latency. Therefore, it will be relevant to supply some routing proto-

cols with prediction information and to assess the contribution of our approach in

enhancing the performance of the network especially as we propose an e�cient dis-

tributed version of the prediction method. The proposed technique also motivates

us to inquire into future enhancements as a more precise tracking of the behavior

of nodes and a more e�cient similarity computation. This willingness is rigorously

detailed in the following chapter.
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4.1 Introduction

Disruption Tolerant Networks (DTN) paradigm is an emerging wireless networking

application where we have to deal with sparse and intermittent connectivity. In

order to achieve a reasonable packet delivery rate, we have to rely on opportunistic

or mobility-assisted routing, where messages are forwarded only when two nodes are

in contact. Consequently, the packet delivery rate at the destination is strongly tied

to the network structure during the forwarding process. Basically, as these networks

are human-centered, the mobility patterns are governed by human behavior. Such

a behavior highly impacts on the structure of the network as shown in [29, 56].

Moreover, it has been demonstrated in [57, 105, 115] that the human mobility is

directed by social intentions that the network users share at the spatial and temporal

levels. When the intentions of some people are correlated (to be present in the same

locations at the same time), this favors their meeting and thereby the occurrence

of links between them. In this way, mathematical models have been proposed to

characterize the inter-contact time between two people through statistical analysis

[29, 63]. Thus, it is crucial to better understand how links are created and to track

their properties in order to design e�cient communication protocols.

To analyze the network topology evolution, it is important to rely on records that

describe the status of each link over time during a tracking period [22]. Extracting

information about correlations between the willingness of people carrying the nodes

is an important support which provides insights for predicting links. From this

perspective, we have proposed in the previous chapter and in [117] a tensor-based

link prediction technique. Our approach is based on a spatio-temporal framework

that tracks the contacts between nodes. Hence, tracking the occurrence of links

over successive time periods has enabled us to detect the degree of spatial closeness

between the network users and then quantify their behavior similarity. Afterwards,

this parameter has been used as an indicator to predict the occurrence of links in

the immediate future.

In this chapter, we aim to improve the performance of the tensor-based link pre-

diction technique by re�ning the measure of behavior similarity. As we are convinced

that link prediction enhances the performance of communication protocols, we want

the feedback provided by our framework to be the most reliable possible. We �nd
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that the link and the proximity (at two hops) stabilities can also be considered as

parameters to predict future links. Indeed, when some network users are related

by strong social ties, the link between them tends to be persistent. In other words,

when two network users have high correlated behaviors, their closeness is expected

to lengthen and to remain stable. When nodes have information about their neigh-

bors at two hops, the stability of such proximity, joined to the tensor-based link

prediction method, also leads to the performance of more e�cient link prediction.

We detail how proximity stability can be bene�cial later. Besides, measuring such

stability measures is a key parameter which is interesting to exploit. To quantify

them, we propose a metric inspired by the Lempel-Ziv estimator [127] which con-

verges to the entropy of a time series. To enhance the prediction performance of

the tensor-based link prediction framework, we join the stability measures with its

outputs by designing new prediction measures that identify future links as the ones

which are relative to users that have strong (behavior similarity) and stable (prox-

imity stability) closeness. Afterwards, we assess if our proposal really contributes

to improve the prediction performance of the tensor-based link prediction method.

The chapter is organized as follows: Section 4.2 brie�y presents the related work.

In Section 4.3, we give an overview of the tensor-based link prediction technique.

Section 4.4 introduces the measurement of the link and the proximity stabilities,

presents the estimator used to approximate them and details some combinations

of the stability measures with our link prediction technique in order to provide

new prediction metrics. In section 4.5, we present the simulation scenarios used to

evaluate the contribution of these stability measures, de�ne how to evaluate them

and we analyze the obtained results. Finally, we conclude the chapter in Section

4.6.

4.2 Related Work

Due to the opportunistic aspect of forwarding in intermittently connected wire-

less networks and as these networks are basically human-centered networks, Social

Network Analysis (SNA) [111] has been used in order to provide more e�cient com-

munication protocols. It has been applied to track and understand the relationships

between the network entities and to extract structural information about the net-

work (network robustness, topology variance, emerging communities, . . . ). Several

communication protocols such as [59, 35, 55] have been based on SNA: they have

used the centrality metrics proposed in [111, 84, 60, 31] and/or have exploited com-

munity detection mechanisms such as [111, 20, 81, 85]. These two categories of

�social tools� have been de�ned as the two major concepts of SNA in the design of

61



4.3. Tensor-Based Link Prediction Framework: A Reminder

wireless ad-hoc network protocols by Katsaros et al. [64].

Tracking the social ties between the network entities has led to the design of

techniques for link prediction. The link prediction in social networks has been

addressed in the data-mining context [8, 38, 109, 74] and recently for the community-

based communication networks [117, 110]. These works have highlighted salient

measures that make possible to predict wireless links between network users. These

metrics determine if an occurrence of a link is likely by quantifying the degree of

proximity of two nodes (Katz measure [65], the number of common neighbors, the

Adamic-Adar measure [10], the Jaccard's coe�cient [61, 94], . . . ) or by computing

the similarity of their mobility patterns (through such metrics as the spatial cosine

similarity, the co-location rate, . . . ). The e�ciency of the Katz measure has been

especially emphasized compared to other prediction metrics in [74, 110]. Thanks to

the SNA, it has been highlighted that the relationships between individuals has a

major impact on the structure of the network [29, 56].

For the human-centered wireless networks, the social closeness between some

people in�uences their mobility patterns. In [101], Song et al. have demonstrated

that human mobility is potentially predictable in 93% of cases by using the traces of

mobile users of a cellular phone network. This limit has been investigated through an

estimation of the entropy proposed by Ziv and Lempel [127]. The entropy estimation

has been applied on the sequence of visited locations for each mobile phone user

during a tracking period. Song et al. have been motivated by the �ndings of [80]

which has highlighted that the entropy is a very appropriate metric to measure the

degree of predictability of such sequences.

In this chapter, we aim to stress that quantifying the degree of proximity of two

nodes joined to the stability of their relationship enables us to enhance the link

prediction performance of our method [117] presented in the previous chapter. For

this objective, we redesign the tensor-based link technique by taking into consider-

ation the feedback provided by measuring the link and the proximity at two hops

stabilities. Hence, we describe how to quantify the stability and we propose some

designs for new prediction metrics.

4.3 Tensor-Based Link Prediction Framework: A Re-

minder

The human mobility patterns highlight correlations in the behavior of network users.

The researches done in [29, 57] have emphasized that the human mobility depicts a

spatio-temporal regularity and the claims advanced in [56, 105] have demonstrated
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that social ties characterizing the relationships between users are translated by cor-

relations between human mobility patterns. From the perspective that these re-

lationships govern how the network is structured, the tensor-based link prediction

framework aims at identifying and exploiting these correlations to perform predic-

tion. This is made by tracking and quantifying the degree of proximity of each pair

of nodes. If two nodes have common intentions at the spatio-temporal level, they

tend to be closer to each other and then nearby. Thus, a link occurrence between

them is likely.

Predicting future links based on their social closeness is a challenge that is worth

an investigation. Indeed, a good link prediction technique contributes to improving

the opportunistic forwarding of packets and also enhances the delivery rate and/or

decreases latency. Moreover, it helps to avoid situations where packets overload

the queue of the nodes that are unable to forward these packets towards their �nal

destinations. Motivated by the enhancement that can provide the prediction to

communication protocols, we propose the tensor-based link prediction framework

which we describe and explain in this section.

4.3.1 Notation

Scalars are denoted by lowercase letters, e.g., a. Vectors are denoted by boldface

lowercase letters, e.g., a. Matrices are denoted by boldface capital letters, e.g., A.

The rth column of a matrix A is denoted by ar. Higher-order tensors are denoted

by bold Euler script letters, e.g., T . The nth frontal slice of a tensor T is denoted

Tn. The ith entry of a vector a is denoted by a(i), element (i, j) of a matrix A

is denoted by A(i, j), and element (i, j, k) of a third-order tensor T is denoted by

Ti(j, k).

4.3.2 Overview on Tensor-Based Link Prediction Technique

In order to quantify the degree of spatial closeness of two nodes, we compute the

Katz measure [65]. It is used in sociometry and, in the case of wireless networks,

expresses the similarity of the behavior (i.e. mobility patterns) or the degree of

proximity of two nodes. The Katz measure is dependent on the lengths of paths

(one-hop or multi-hop paths) that separate these two nodes. It is computed from

a third-order tensor which records the network statistics (i.e. occurrence of links

between each pair of nodes during di�erent tracking periods). Hence, a tensor Z

consists in a set of adjacency matrices which form successive slices. Each slice

corresponds to the contacts which occurred during a period of time t (∀t, 1 ≤ t ≤ T

where T is the total number of periods). Then, we determine a collapsed weighted
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tensor X which allocates weights to the links according to the frequency of their

occurrence and their recentness. The use of such a collapsing way is motivated by

the results highlighted in [8]. Indeed, predicting links in the period T+1 using such a

method to aggregate the data achieved best link prediction performance. Applying

the Katz measure on the collapsed weighted tensor allows us to obtain the matrix of

scores S which quanti�es the behavior similarity or the degree of proximity for each

pair of nodes. An example provided by Fig. 4.1 details how the network structure

is tracked and how the prediction scores are determined for the period T+1.

4.3.3 Matrix of Scores Computation

For each node, computing the matrix of scores is performed through two salient

steps. Firstly, the link prediction framework records the adjacency matrices in a

tensor Z and determines the collapsed weighted tensor (or matrix) X. Secondly, it

applies the Katz measure on the matrix X to obtain the matrix of Katz scores S.

We consider that the data is collected into the tensor Z. The slice Zp(i, j)

describes the status of a link between a node i and a node j during a time period

between [(p− 1) · t, p · t[ (p>0) where Zp(i, j) is 1 if the link exists during the time

period p and 0 otherwise. The tensor is formed by a succession of adjacency matrices

Z1 to ZT where the subscript letters designate the observed period. To determine

the collapsed weighted tensor, we apply the following expression:

X(i, j) =
T
∑

p=1

(1− θ)T−p
Zp(i, j) (4.1)

where the matrix X is the collapsed weighted tensor of Z, and θ is a parameter

used to adjust the weight of recentness and its value is between 0 and 1.

The matrix X can be seen as a generalized adjacency matrix with weighted links.

A node can determine the behavior similarity with the other nodes by computing

the Katz measure. This similarity between two nodes i and j is determined by the

length of paths that connect i to j and is impacted by the weight of each path

length.

Then, Eq.(4.2) is used to compute matrix of Katz scores S as following:

S =

+∞
∑

ℓ=1

βℓ ·Xℓ = (I− β ·X)−1 − I (4.2)

where β is a user de�ned parameter which is strictly positive and βℓ is the weight

of a ℓ hops path length. It is clear that the longer the path is, the lower its weight

gets. The matrix I is the identity matrix and X is the obtained collapsed weighted
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(1) Collect the adjacency matrix over successive periods of time

(2) Collapse the different slices into one matrix (3) Compute the Katz  Scores 

 

 

 1 2 3 4     1 2 3 4     1 2 3 4     1 2 3 4 

1 0 1 1 1    1 0 0 1 1    1 0 0 1 0    1 0 1 1 1 

2 1 0 0 0    2 0 0 0 1    2 0 0 1 1    2 1 0 0 1 

3 1 0 0 1    3 1 0 0 1    3 1 1 0 0    3 1 0 0 0 

4 1 0 1 0    4 1 1 1 0    4 0 1 0 0    4 1 1 0 0 

 

 

 

 

 1 2 3 4 

1 0 1.512 2.952 2.152 

2 1.512 0 0.8 2.44 

3 2.952 0.8 0 1.152 

4 2.152 2.44 1.152 0 

 1 2 3 4 

1 0 0.0015 0.003 0.0022 

2 0.0015 0 0.0008 0.0024 

3 0.003 0.0008 0 0.0012 

4 0.0022 0.0024 0.0012 0 

1 2 

3 4 

t=1 

1 2 

3 4 

t=2 

1 2 

3 4 

t=3 

1 2 

3 4 

t=4 

Figure 4.1: Reminder of the steps followed for matrix S computation

tensor.

We depict as previously mentioned in Fig. 4.1 an example which details the

two major steps described before. We take into consideration a network consisting

of 4 nodes and having a dynamic topology over 4 time periods and we highlight

how similarity scores are obtained (θ and β are respectively set to 0.2 and 0.001, as

motivated in the previous chapter, for the example and later for the simulations).

In this example, we assume that all nodes have the full knowledge of the network

structure.

4.3.4 Matrix of Scores Interpretation

The social ties between each pair of nodes are quanti�ed by the similarity measure

given by S(i, j). When two nodes share an important score, this means that the

paths that connect them tend to be short. Two nodes separated by few hops rimes

with a geographical closeness which underlines a correlation between their behavior

and emphasizes a spatial proximity. Therefore, the link occurrence between these

two nodes is strongly plausible. Otherwise, if the similarity score is low or null, the

two corresponding nodes share occasional or even no correlation in their behavior.
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4.4 How To Quantify Link and Proximity Stabilities and

How To Use Them?

As detailed previously, to predict links in intermittently connected wireless networks,

we have used a tensor-based framework to record network structure for a number

of periods and have measured Katz scores for each pair of nodes to quantify their

behavior similarity. In [117], we have shown that the tensor-based link prediction

framework achieves similar performance either when done in a centralized way (i.e.

assuming that a central unit records the network statistics and performs prediction)

or in a distributed way (i.e. the nodes predict links relying on local information).

Obviously, we are interested in the distributed application of the prediction frame-

work as we are concerned by the intermittently connected wireless networks and

the e�ectiveness of our proposal in this case is strongly prominent. Nonetheless,

we strongly conceive that we can further improve the prediction e�ciency. We

think that the prediction becomes more precise if we take into consideration other

salient characteristics of ties between nodes. Indeed, we guess that focusing on the

stabilities of links and of proximity at two hops are worth investigating and the

predictability of human mobility made in [101] has further motivated us to continue

in this direction.

4.4.1 How Can Link and Proximity Stabilities Improve Link Pre-

diction?

Regarding link stability, when two nodes have strong social ties, a link occurrence

between them is likely. If a link between them occurs, it is expected to be persevering

and then stable. Indeed, they are expected to be close for a fairly substantial time

as they share similar behavior. On the other hand, when the proximity at two hops

between two nodes is stable, it can be interpreted in two separate manners. When

the stability is expressed by the absence of proximity at two hops, this means that

the two nodes are either tied by a link or separated by more than two hops. In

this case, the outputs of the tensor-based link prediction technique can be used to

identify if the corresponding nodes are directly tied. When this stability is expressed

by two nodes constantly separated by two hops, the information provided by the

tensor-based link prediction technique is able to attest that a link occurrence is

unlikely. Moreover, the corresponding Katz score is expected to be lower than those

of pair of nodes having a link between them. If the proximity is unstable, it is

obvious to conclude that the link occurrence is unlikely. Indeed, even if there is

a link between the two nodes, its occurrence is intermittent and then the link is
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unstable. The information provided by the Katz measure gives indications about

the real state of the link.

Hence, measuring such stability parameters is paramount to enhance the perfor-

mance of the tensor-based link prediction framework. Therefore, we should re�ne

the tensor-based link prediction framework to make it sensitive to these parameters.

To measure stability and predictability in complex networks, the entropy measure

has been widely used in the literature.

4.4.2 The Entropy Measure

The measure of entropy has been used in several works. Its de�nition has varied

from one work to another. We will expose a little overview on the origin of entropy

and a brief description of works having used this measure especially in the context

of social and community-based networks.

Original De�nition of Entropy

The concept of entropy was introduced for the �rst time by Clausius [32] as a unique

measure of reversible change in thermal energy concerning the absolute tempera-

ture. He focused on the macroscopic behavior of chemical microscopic reactions and

proposed thermodynamic entropy. Based on Clausius works, Boltzmann de�ned the

combination microstates statistic entropy [21] as:

S = −kB
∑

i

pi ln pi (4.3)

where pi is the probability that the microstate i is veri�ed during system �uctuations

and kB is the constant of Boltzmann. This de�nition is applied to characterize the

order in the system and how the system self-organizes among di�erent entities.

Later, Shannon introduced the concept of information entropy H [97]. This

measure has been used to quantify the capacity of a transmission channel and has

been extended to other domains.

Using Entropy to Characterize the Information in a Network

Many works propose the use of entropy, for di�erent aims. In [75], Lu et al. have

presented, �rstly, the principles of self-organization. Indeed, wireless networks use

the self-organization to minimize con�guration needs, to facilitate the deployment

of the network and to support applications and services. The recourse to self-

organization schemes permits to improve the order in the network. This organization

take place on two levels: microscopic (logic links between nodes) and macroscopic
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(formation of �exible structure). Secondly, Lu et al. justify the use of entropy with

three major reasons:

• The organization in a wireless network is similar to a thermal dynamic system.

• Many metrics have been proposed to evaluate self-organization strategies (pro-

tocol overhead, algorithmic complexity, . . . ) but they do not give any idea on

order degree.

• The statistic entropy used in thermodynamics is a key measure because it

describes the behavior of self-organization protocols compared to changes of

inherent parameters in the network as the reliability of links and nodes.

Lu et al. consider the entropy as a system macroscopic description taking into

consideration microscopic interactions. Similarly, the equilibrium between two per-

fect gazes (macroscopic level) is the result of molecular interactions (microscopic

level). Since self-organization limits interactions, so it limits also the entropy. Then,

high entropy values indicate an important disorder, whereas low ones signify a bet-

ter organization. This analysis is inspired from thermodynamics: when the entropy

is low, the equilibrium is more stable and the disorder is less signi�cant at molecular

level.

In [100], Sneppen et al. use measures applied on network topologies. These

measures characterize the ability of a node to lead and send a signal to its desti-

nation(s). The entropy is considered and is described as the capacity to predict

from which neighbor the message arrives. It quanti�es the predictability (or the

order/disorder) of a tra�c around a node. The probabilities represent the fraction

of messages received from each neighbor. In [99], they present measures the inves-

tigation on constraints posed by the network structure on communication. They

de�ne two measures of entropy: the predictability relative to messages targeting a

speci�ed node (Target Entropy) and the predictability relative to messages crossing

a speci�ed node and one of its neighbors. The analysis of theses measures lead to

some conclusions:

• When the entropy values are high, the predictability is low. In the opposite

case, a little number of links is used.

• The tra�c to nodes with high degrees is unpredictable.

• Low values of entropy show that the tra�c is concentrated. It is more dis-

tributed and logically more robust when the entropy is higher.
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In [107], Van Dyke Parunak and Brueckner try to show that the relationship

between self-organization in multi-agent systems and the second law of thermody-

namics is not a metaphor and that this relation can provide analytic and quantitative

directives in the aim of the conception and the deployment of these systems. The

self-organizing model is inspired from [68], which suggests that the key idea per-

mitting to reduce the disorder in a multi-agents system is to copulate it with an

another where the disorder increase. For a system, the self-organization is done at

macroscopic level. Considering this, such behavior contradicts the second law of

thermodynamics. Nevertheless, the system includes a microscopic level which dy-

namic increase the disorder. To reproduce a system with the two levels, the example

of the pheromones used by ants is considered. The movements of ants constitute

the macroscopic level while the molecules of pheromones represent the microscopic

level. The movements of ants permit to de�ne a little number of ways between the

nest and the source of food. The disorder at macroscopic level is inconspicuous. The

latter observation is the result of coupling macroscopic level agents with microscopic

level, where the evaporation of molecules of pheromones takes place according to

random mobility which increases the disorder.

The entropy, inspired from Shannon entropy and thermodynamic entropy, de�nes

a disorder measure describing the trend of a system to be chaotic. This measure

is applied at two levels: localization (microscopic level) and direction (macroscopic

level). The results show that the two measures are antagonist which con�rms that

the second law of thermodynamics can be applied to multi-agent systems.

Another approach [113] tries to provide a schema able to classify a connection by

three categories: Ethernet, WLAN or connection with low bandwidth. An algorithm

is proposed to identify the connection type using the sending of packets pairs. This

choice is led by the motivation to follow the random aspect at the reception of

the pairs and use this aspect to identify the type of connection. The measure of

random aspect is done by Shannon entropy. The major reason of this recourse

instead the use of variance is that entropy is a better metric catching the random

aspect of a random variable. As �nal note, it is interesting to mention that some

works have used entropy to determine path stability in MANET and wireless sensor

networks for their respective routing protocols. EQMGA (Entropy-based model

to support QoS Multicast routing Genetic Algorithm) [30], ERPM (Entropy-based

Routing Protocol using Mobility) [12], the An and Papavassiliou model [13], ELMR

(Entropy-based Long-life Multipath Routing algorithm) [50] and QARPE (QoS-

Aware Routing Protocol based on Entropy) [73] share the same idea of constructing

a new entropy and select the most stable path relying on the entropy to reduce the

number of route reconstruction when the topology is continuously changing.
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In the context of dynamical social networks, Zhao et al. [124] have been in-

terested in human-based networks. These social networks encode information and

are highly adaptive. From this perspective, Zhao et al. advance the entropy of

dynamical social networks to describe the information about the dynamics of social

interactions. Through a large dataset of interactions of cellular network users, it

has been shown that the entropy that characterizes the dynamical social network is

closely dependent on the time of a typical week-day (circadian rhythms) and that

the social networks are extremely adaptive and whose structures are sensitive to the

used technologies. In the same context, Bianconi et al. [19] have highlighted, by

using entropy measures, how much important the annotated features of the nodes

(age, gender, . . . ) or of the links (social ties, common attributes, . . . ) impact the

structure of the network.

4.4.3 Quantifying Link and Proximity Stabilities by Means of Time

Series Entropy Estimation

In order to measure these stabilities, we opt for the entropy metric. For our ap-

proach, we have been interested in the entropy estimator used for the Lempel-Ziv

data compression [127, 67]. This tool enables us to estimate the entropy of a time

series [80]. It has been applied by Song et al. [101] to demonstrate that the human

mobility is highly predictable. For this purpose, they have analyzed traces of several

cellular phone network users and they have constructed for each user a sequence of

letters and each letter corresponds to the label that designates a speci�c location (a

cell). After that, they applied the entropy estimator on the sequences of locations

visited by several cellular network clients and they have obtained low values for the

entropies which indicates a high predictability. Then, for a record of n steps, the

entropy is estimated by:

Sest =

(

1

n

∑

i

Λi

)−1

lnn (4.4)

where Λi is the length of the shortest substring starting at position i which does not

previously appear between position 1 and i− 1.

Before exploiting this estimator in link prediction, we have to de�ne the time

sequences in order to measure the stability of each link. Instead of Song's et al.

approach which consists in �lling in the user's location labels for each step, we rely

on statistics of the link state between each pair of nodes. To construct this sequence,

each node has to record the state of a link with every detected neighbor and at each

period. Tracking the status of each link through a third order tensor accurately
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achieves this requirement and for each link we obtain a sequence of zeros and/or

ones. Therefore, we propose the entropy estimator El
T (i, j) which quanti�es the

stability of the link between the nodes i and j over T periods. This is given by:

El
T (i, j) =

(

1

n

T
∑

t=1

Λt(Zt(i, j))

)−1

lnn (4.5)

where Λt(Zt(i, j)) is the length of the shortest substring (consisting of a sequence of

zeros and/or ones) starting at position t which does not previously appear between

position 1 and t − 1. The parameter n corresponds to the number of substrings

which are identi�ed.

In the same way, we de�ne Ep
T (i, j) as estimator of the entropy which quanti�es

the stability of the proximity at two hops of the pair of nodes (i, j). It is computed

as in Eq. (4.5) but by substituting, for the value Zt(i, j), the state of proximity at

two hops at period t (1 if i and j are separated by 2 hops at the period t and 0

otherwise).

The Lempel-Ziv entropy estimator identi�es at each step the shortest sequence

which is not detected before. Therefore, we are tracking the length of the substrings

step by step. If the shortest substrings become quickly too long, this means that

there is redundancy. Indeed, the �rst chains added in the set of shortest substrings

are repetitive in the whole sequence and it is necessary to concatenate new strings to

make new shortest chains. Then, redundancy matches with stability as long chains

decrease the value of the estimator. Otherwise, if the shortest substrings too often

take the smallest possible length, this means that there vastly di�erent combination

of zeros and ones. This remark suggests that the ties highlight randomness and

variation rather than regularity. So, the status of a tie is more unstable and the

entropy estimation gets higher (due to short length of the substrings). In Fig. 4.2,

we depict an example of the application of the algorithm used to identify the shortest

substrings in the Lempel-Ziv data compression mechanism.

In the following subsection, we present new prediction scores. They are de-

termined by joining the entropy estimations to the tensor-based link prediction

framework.

4.4.4 Joining the Entropy Estimations to the Tensor-Based Link

Prediction Framework

We have shown that the measures that we advance can be used to quantify the

stability of a link or the proximity at two hops. Nevertheless, these measures, as

mentioned previously, are unable to determine if the stability is quanti�ed for an
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Figure 4.2: Example of an application of the algorithm used to identify the shortest
substrings in the Lempel-Ziv data compression mechanism

occurring tie (series of ones in the tensor) or for a tie that is occasionally or never

created (series of zeros in the tensor). Then it is important to combine them to a

metric that expresses the lifetime or the perseverance of a link. From this perspec-

tive, we propose the combination with the Katz measure and/or the weight provided

by the collapsed weighted tensor. Therefore, after evaluating several ways to com-

bine the entropy estimations with the tensor-based link prediction framework, we

propose four di�erent techniques to join them. Our aim is to demonstrate that mea-
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suring the stability and exploiting it are really bene�cial to improve the prediction

performance. In this work, we want to prove that considering the stability of ties

between nodes improves the link prediction of our framework. We are not seeking

the design that ensures the best prediction e�ciency. This investigation will be the

aim of a future work. In the following, we detail how we design the combinations

in order to predict better a link occurrence between a node i and a node j through

new metrics.

• Combining the collapsed weighted tensor value X(i, j) with the link

entropy estimation El
T (i, j) (XE scores): We suggest to join the entropy

estimation El
T (i, j) (as expressed in Eq. (4.5) and where (i, j) is a pair of

nodes) to the weight collected by the matrix X(i, j) (Eq. (4.1)) as we are

seeking the most stable occurring links. In other words, we want to identify

the links that have high weight and in the same time low estimation of the

entropy. We use normalized values for El
T (i, j) and X(i, j).

• Combining the Katz measure S(i, j) with the link entropy estimation

El
T (i, j)(SE scores): We proceed as for the previous suggestion but we join

the entropy estimation with the behavior similarity metric S(i, j) (Eq. (4.2)).

We aim to check and assess that joining sociometric and stability measures can

be helpful to make more precise predictions. As in the previous combination,

we use normalized values for both parameters.

• Computing the Katz measure S(i, j) from the combination of the

collapsed weighted tensor value X(i, j) with the link entropy esti-

mation El
T (i, j) (XES scores): We propose to apply the tensor-based link

prediction technique but combining the collapsed weighted tensor X with the

link entropy estimation. Indeed, we combine each weight X(i, j) (Eq. (4.1))

with the measure El
T (i, j) (Eq. (4.5)) and we apply the Katz formulation on

the described combination in order to obtain a new matrix of scores. Also, we

use normalized values for the entropy estimation and the collapsed weighted

tensor values.

• Computing the Katz measure S(i, j) with the de�nition of the new

collapsed weighted tensor value Xnew(i, j) (XNS scores): We also pro-

pose to apply the tensor-based link prediction technique but with a new col-

lapsed weighted tensor denoted Xnew. To determine it, we compute a coef-

�cient, at each period p and for each pair of nodes (i, j), that combines the

occurrence weight obtained from X (i. e. lifetime and recentness) with the

link stability and/or the proximity stability. Afterwards, we apply the Katz
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formulation on the new collapsed weighted tensor Xnew in order to obtain a

new matrix of scores. The matrix Xnew can be expressed in di�erent ways

which are detailed in the following.

Among the scores involving the entropy estimation that we have tested, we hold

from each category the metric/metrics which highlights/highlight regularity and

e�ciency for all simulation scenarios. Then, for T tracking periods, we de�ne the

following matrices of scores:

XE_Score = ([1]N×N −X) • ×El
T (4.6)

SE_Score = ([1]N×N − S) • ×El
T (4.7)

XES_Score = (I− β · [El
T • × (4.8)

([1]N×N −X)])−1 − I

XNS_Score = (I− β ·Xnew)
−1 − I (4.9)

where N is the number of nodes involved in the statistics and, for two nodes i and

j, Xnew(i, j) is given by:

Xnew(i, j) =
T
∑

t=1

(1− θ)2(T−t) · (Zt(i, j) · (4.10)

[max
t

(Et)− Et(i, j)])

The parameter Et(i, j) and maxt(Et) respectively correspond to the current entropy

estimation (whether for link stability or proximity stability) and the maximum en-

tropy value that we can obtain for t periods.

We derive three variants of the XNS_Score. When El
t(i, j) is used to compute

Xnew(i, j), we de�ne the measure XNS1_Score. If Ep
t (i, j) is chosen, we express

the metric XNS2_Score. In addition, we consider the case in which we compute

Xnew(i, j) using the link and the proximity stabilities. In this case, we propose the

measure XNS3_Score where Xnew(i, j) is given by:

Xnew(i, j) =

T
∑

t=1

(1− θ)3(T−t) · (Zt(i, j) ·

[max
t

(Et)− El
t(i, j)] ·

[max
t

(Et)− Ep
t (i, j)]) (4.11)
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In the following section, we detail the di�erent scenarios to evaluate all these

metrics and we assess their ability to achieve better performance in link prediction.

4.5 Simulations Scenarios and Performance Evaluation

To evaluate the e�ciency of the tensor-based link prediction method joined to the

entropy estimations, we consider two real traces. We present them in the following

subsection. Then, we analyze the results obtained and we assess the e�ciency of

our contribution.

4.5.1 Simulation Traces

We consider three real traces to evaluate the contribution of the entropy estimations.

We exploit them to construct the tensor by generating adjacency matrices with

di�erent time periods lengths. We detail, in the following, the traces used for the

evaluation:

• First Trace: MIT Campus trace: We take the trace of 07/23/02 [16] and

consider the events between 8 a.m. and 4 p.m. (8 tracking hours) to build

up the tensors. The number of nodes is 646 and the number of locations (i.e.

access points) is 174.

• Second Trace: Dartmouth Campus trace: We choose the trace of 01/05/06

[5] and construct the tensor slices relying on SYSLOG traces between 8 a.m.

and 4 p.m. also. The number of nodes is 1018 and the number of locations

(i.e. access points) is 128.

• Third Trace: Infocom 2006 trace: We consider the encounters which

happened on 04/25/2006 [95] between 8 a.m. and 4 p.m among the 98 nodes

involved in the trace (70 of them were carried by humans).

For each scenario (a �xed tracking period length), we track the occurrences of con-

tacts during T periods. We also consider the adjacency matrix corresponding to

the period T+1 as a benchmark to evaluate the e�ectiveness of our proposal. We

construct tensors for the following period lengths: 5, 10, 30 and 60 minutes. That

is to say that we record the network statistics for respectively a number of periods

T equal to 96, 48, 16 and 8 slices (for the case where t=5 minutes, it is necessary to

have 96 periods to cover 8 hours, 48 periods are needed to do the same when t=10

minutes, . . . ). We consider the distributed case for the computation of scores. We

assume that each node has the knowledge about its 1-hop and 2-hop neighbors to
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(a) Top Scores Ratio in T+1

(b) Accuracy (percentage exceeding 99%)

(c) F-Measure

Figure 4.3: Evaluation metrics for the prediction applied on the MIT Campus trace
for di�erent tracking periods

compute the Katz measure for the tensor-based link prediction technique and the

proposed measures of stability.
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(a) Top Scores Ratio in T+1

(b) Accuracy (percentage exceeding 99%)

(c) F-Measure

Figure 4.4: Evaluation metrics for the prediction applied on the Dartmouth Campus
trace for di�erent tracking periods
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(a) Top Scores Ratio in T+1

(b) Accuracy (percentage exceeding 96%)

(c) F-Measure

Figure 4.5: Evaluation metrics for the prediction applied on the Infocom 2006 trace
for di�erent tracking periods

4.5.2 Simulation Results and Performance Analysis

To asses if the proposed metrics enhance the prediction performance of the tensor-

based link prediction framework, we consider three evaluation measures detailed in
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the previous chapter:

• Top Scores Ratio at the period T+1 (TSR)

• Accuracy (ACC)

• F-Measure or balanced F1 score

Link Prediction of Links Occurring in T+1

We compare the prediction e�ciency of the proposed prediction metrics with the

one of the tensor-based link prediction technique [117] based on the Katz measure.

To propose a comprehensive comparison, we also consider well-known prediction

metrics presented in the literature. On the one hand, we consider behavioral-based

link prediction metrics such as the similarity metric of Thakur et al. [105] and two

metrics expressing mobile homophily proposed by Wang et al. in [110]: the spatial

cosine similarity and the co-location rate. On the other hand, we take two link

prediction metrics based on measuring the degree of proximity such as the Katz

measure. They are the Adamic-Adar measure [10] and the Jaccard's coe�cient

[61, 94]. All the metrics that we propose are involved in the latter category.

The evaluation metrics are computed for all traces with di�erent tracking periods

lengths. Regarding the MIT Campus trace, the results are reported in Fig. 4.3. For

the Dartmouth Campus trace, the prediction results are listed in Fig. 4.4. Also,

a performance comparison is depicted in Fig. 4.5 between proximity-based link

prediction metrics applied on the Infocom 2006 trace. For each �gure, the plots (a),

(b) and (c) respectively represent the top scores ratio in T+1, the accuracy (the

percentage exceeding 99% for the two �rst traces and the percentage exceeding 96%

for the last trace) and the F-Measure obtained for each prediction technique with

di�erent tracking periods.

The results obtained enable us to attest that the use of the Katz measure has

been one of the best choices to perform prediction through the tensor-based tech-

nique. Using this metric achieves better performance than those of the other link

prediction metrics proposed in the literature. Hence, the Katz measure is the best

metric that we can use to interpret the meaning of the entropy estimations. The

other well-known prediction metrics show a lower performance in the context of

predicting such links. Indeed, instead of the Katz measure, they quantify the re-

lationship of a pair of nodes without seeing if a direct link connects them. For

example, two isolated neighbors (or having few common neighbors) would have a

weak score even if they were connected. On the other hand, two other nodes can be
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2-hop neighbors and share several common neighbors which means that the score in

this case is relatively high even if no link connects the corresponding pair of nodes.

Comparing the performance of the tensor-based link prediction technique with

those of the proposed metrics based on link and/or proximity entropy estimations

leads us to assess that our proposal of combining our prediction technique with

stability measures is coherent and e�ective. We remark that for each scenario,

there is at least three among the six proposed metrics that achieve better prediction

performance (better top scores ratio at T + 1, accuracy and F-Measure) than the

Katz measure. The Katz measure quanti�es the social ties between two nodes by a

score. Nevertheless, such a score sometimes cannot indicate if the contacts between

these two nodes are stable or interspersed over time. The contribution of the entropy

estimation is to identify the stable and persistent links but not only them. Also, the

entropy allocates low values when a link never or rarely occurs between two nodes

(long sequences of 0 for the status of a link). Hence, combining the Katz measure

and the entropy estimation enables us to distinguish more clearly a stable link (low

entropy estimation and high Katz measure). Such a combination highlights more

clearly how nodes are tied which makes the prediction of the topology more e�cient

in the period T+1.

Considering all traces, we �nd that it is better to opt for the SE, the XE and

the XES scores when the tracking periods are long (30 and 60 minutes). When

these periods are shorter (10 and 5 minutes), the XNS scores are the most suitable

metrics. In fact, shortening the length of the tensor period leads to obtaining a

more precise tracking of the properties of the links (i.e. better distinction between

persistent and �eeting links), more faithful estimation of the stability and then more

e�cient link prediction (more information about the impact of the tracking period

length is provided in [117]). Meanwhile, when we use long tensor periods, tracking

become less precise as the method considers long and short contact as the same.

For example, if we consider a tracking period of 30 minutes, a contact that occurs

during all this period is considered as the same as a contact that only lasts a few

seconds during the same period (the status of the link is set to 1). It is clear that we

lose precision when the contacts tend to be short. Moreover, we divide the historical

data into T periods and when the tracking period are longer, the number of total

periods T becomes less. Therefore, the sequence of 0 and 1 that characterizes a link

over time becomes shorter and tends to be unstable (due to the lack of precision).

Afterwards, the Katz measure, as well as the entropy estimation, is less e�cient to

characterize the relationship between nodes, especially for short contacts.

In these simulations, we have assumed that each node has knowledge about its

one-hop and two-hop neighbors. Limiting the local information to one hop is not
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compromising the performance either of the tensor-based link prediction technique

or of the proposed metrics based on entropy estimation. It is true that we are not

able, in this case, to compute the XNS2 and the XNS3 scores. Nevertheless, the

Katz measure is no longer a�ected with this limitation. In fact, we have proved

in [117] that the prediction e�ciency of the tensor-based link prediction technique

achieves similar performance in predicting links in the period T+1 whether the

knowledge is limited to one-hop neighbors or extended to the two-hop neighbors.

Fig. 4.6 depicts the Top Scores Ratio in T+1, the accuracy and the F-Measure

obtained from the MIT Campus trace when prediction is performed by the Katz

measure and by the proposed link stability based measures using only the knowledge

of direct neighbors (XE, SE, XES and XNS1 scores). The results con�rm the

�ndings cited above: the performance of each prediction technique is similar in both

scenarios. Obviously, the contribution of the entropy estimation is always e�ective.

This e�ectiveness is maintained for link prediction in the period T+1.

Link Prediction of New Links

We have shown in the previous chapter that the Katz measure is able to predict

some future new links (that have never occurred during the historical). We have

tried to see if the prediction metrics that we propose are able to predict new links

and we found that only the SE score is able to exactly achieve the same performance

as the one of the Katz measure. This observation is trivial to explain : in fact, the

entropy measures of all new links are the same as they are never occurring in the

historical and then characterized by a sequence of zeros in the link status over time.

The other proposed metrics depict limited or no ability to detect such links.

From this perspective, we wonder what would be the performance of the SE

score if we substitute the link stability between two nodes by the one of proximity

at 2 hops. Hence, we express the matrix of scores SE2hops Score as follows:

SE2hops_Score = ([1]N×N − S) • ×Ep
T (4.12)

where N de�nes the number of nodes involved in the statistics, S is the Katz scores

matrix (normalized scores) and Ep
T represents the entropy estimations matrix of the

proximity at two hops stability of each pair of nodes (i, j).

To verify the e�ectiveness of this metric in improving the prediction of new links,

we extract all the contacts happened during a tracking time and we consider the

contacts that have occurred after this tracking time in order to assess the ability

of detecting the birth of new links. The contacts are extracted as explained in the

Table 4.1. In Table 4.2, we compare the performance of predicting new links of the
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(a) Top Scores Ratio in T+1

(b) Accuracy (percentage exceeding 99%)

(c) F-Measure

Figure 4.6: Evaluation metrics for the prediction applied on the MIT Campus trace
for di�erent tracking periods and with knowledge limited to direct neighbors

proposed metric with the one of the Katz measure (it is assumed that the nodes

have the knowledge of their neighbors at one and two hops). For that aim, we
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Table 4.1: Settings for each trace to assess the e�ciency of the SE2hops score in
improving the prediction of new links

Trace Tracking time Time in which
contacts are

considered as future

MIT Campus
(07/23/02)

from 8 a.m. to 2 p.m. 2 p.m to 6 p.m.

Dartmouth Campus
(01/05/06)

from 8 a.m. to 2 p.m. 2 p.m to 6 p.m.

Infocom 2006
(04/25/06)

from 8 a.m. to 1:30 p.m. 1:30 p.m to 6 p.m.

Table 4.2: Top Scores Ratio in the future: comparison between the e�ciency of the
SE2hops score and the one of the Katz measure in predicting new links

Trace Tracking Period t
Length

Prediction Score TSR in the future

MIT Campus
5 minutes

Katz Measure 13,49%
SE2hops Score 14,09%

10 minutes
Katz Measure 13,22%
SE2hops Score 13,44%

Dartmouth Campus
5 minutes

Katz Measure 9,10%
SE2hops Score 8,36%

10 minutes
Katz Measure 9,28%
SE2hops Score 8,55%

Infocom 2006
5 minutes

Katz Measure 16,96%
SE2hops Score 18,75%

10 minutes
Katz Measure 9,82%
SE2hops Score 9,82%

perform prediction on the three traces and with considering two di�erent tracking

periods t (5 and 10 minutes periods). The results obtained for the Katz measure

match with the ones analyzed in the previous chapter: the links created between

two nodes which have been separated by 2 hops are identi�ed which represent a

respectable percentage of all new links occurred. Then, we have thought to exploit

the proximity stability and to assess if it contributes in enhancing the prediction

of new links. On top of the previous analysis, we have also been motivated by the

�ndings in [110] which highlights that a majority of new links is occurring between

two nodes that have been within two hops of each other in a GSM network. Hence,

we express the SE2hops score with an estimation of the stability of proximity at 2

hops as we expect that such a stable proximity increases the possibility of a new

link occurrence. Considering the results obtained, we clearly remark that using

the entropy estimation at two hops improves the prediction of new links when it is

performed for the MIT Campus and Infocom 2006 traces. The performance of our

proposed metric is slightly worse when the prediction is applied on the Dartmouth

Campus trace. Nevertheless, it remains that using the proximity stability looks

promising to better predict new links and is worth investigate for future works.
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4.6 Conclusion

In this chapter, we highlighted that the prediction e�ciency of the tensor-based

technique that we have advanced can be improved by taking into consideration other

aspects on top of measuring social closeness. We proposed to make the prediction

sensitive to the link and proximity stabilities. We showed that a strong relationship

between two nodes matches also with a stable link between them. Indeed, when

similar intentions are shared for a period of time, the link between the corresponding

individuals is expected to be stable. We also outlined that considering proximity

stability can also be bene�cial to improving the prediction performance. To express

the stability itself, we proposed an entropy estimator inspired from data compression

and which converges to the expected value of entropy for a time series. In our case,

the time series is the sequence of the state of the links in the adjacency matrices

(sequence of zeros and/or ones).

To assess the e�ciency of our contribution, we tried to join the stability feed-

back to the tensor-based link prediction framework through proposing new predic-

tion metrics. We assessed that we can improve the performance of the prediction

technique especially when the tensor time period tend to be short. In other words,

using shorter tensor periods favors more precise tracking of contacts between nodes,

which leads to a better estimation of the entropy estimations and then more faithful

link prediction. Above all, we identi�ed, according to the length of tracking period,

the set of metrics that can be used to enhance, as much as possible, the performance

of the tensor-based link prediction technique.

We presented in this �rst part a tensor-based link prediction framework for

human-centered mobile wireless networks and some proposed improvements. These

contributions have been advanced as we aspire to propose mechanisms and tech-

niques that can be useful in order to evaluate or improve/design communication

protocols dedicated to such networks. In this thesis, on top of proposing link pre-

diction techniques, we have provided two other contributions that match with our

aim and that we will present in Part II. Indeed, we have designed a joint model for

the IEEE 802.15.4 physical and medium access control layers in order to evaluate

more accurately the relative performance when N nodes try to communicate. This

joint model is presented in chapter 5. As a second contribution, we design a self-

learning repeated game framework inspired by the concept of "The Weakest Link"

TV game and dedicated to promote the cooperation among nodes in non-cooperative

MANETs. This framework is detailed in chapter 6.
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Other Contributions Proposed in
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A Joint Model for IEEE 802.15.4

Physical and Medium Access

Control Layers
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5.1 Introduction

Wireless sensor networks have been closely studied in recent years. Several studies

have investigated behaviors and performances of these networks. Some of them have

highlighted such networks properties by relying on empiric results [27, 123, 114, 49,
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28] whereas others have focused on reproducing a standard or mechanism functional-

ities tied to sensors by proposing analytical models [18, 120, 36, 87]. Empirical stud-

ies have shown that wireless communication networks are radically di�erent from

some simulation models (disc-shaped nodes range for example). Analytical studies

have attempted to reproduce mechanisms and technical aspects widely used/seen in

these networks in order to track network performances. Among these approaches,

those of Zuniga and Krishchnamachari [128, 116] stand out. They emphasize the

limits of disc-shaped node range models that are used in simulators, and highlight

the existence of a transitional region between the connected and disconnected areas.

This observation, based on experiments, enables us to understand clearly the reason

behind link unreliability in low power wireless networks. Moreover, Zuniga and Kr-

ishchnamachari underline the impact of asymmetry in transitional region expansion

and its negative e�ect on reliability [116]. Meanwhile, lot of the performance analy-

sis of MAC layer protocol are derived from the Markov model proposed by Bianchi

[18] for the IEEE 802.11 standard [1]. This model consists in a Markov chain that

reproduces the functionalities of the IEEE 802.11 standard while assuming saturated

tra�c and ideal channel conditions. This approach has inspired many others, for in-

stance the Park et al. model [87]. It presents itself as a relevant contribution which

aims to measure reliability, delay and energy consumption in a wireless network

based on IEEE 802.15.4 standard [2]. In this chapter, we develop an IEEE 802.15.4

model that takes into consideration the interactions on PHY and MAC layers. The

model, at the PHY layer level, is derived from the Zuniga and Krishnamachari

mathematical framework for quantifying link unreliability. The MAC layer model is

inspired from an enhanced Park et al. Markov chain. The joint model that combines

both PHY and MAC models enables us to consider the causes behind packet losses

either at PHY or MAC levels. Indeed, in the Park et al. model, collisions appear

to be the only reason for losses, whereas, our model includes constraints posed by

SNR (signal-to-noise ratio), modulation and encoding.

The remainder of this chapter is as follows. In Section 5.2, we present the related

work which gives an overview of approaches that inspire our model. We focus on

our contribution by giving details on the combined PHY and MAC layers models

in Section 5.3. In Section 5.4, we compare our proposition to the enhanced Park

et al. approach and estimate nodes performances with di�erent network densities.

Finally, Section 5.5 concludes the chapter.
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5.2 Related Work

Many studies have aimed to understand and to evaluate standards and protocols.

The works that tried to identify the properties of these networks mechanisms fall

into two categories: i.e. simulations-based [27, 123, 114, 49, 28] relying on empiric

observations, or analytical works [18, 120, 36, 87]. Most of analytical studies are

based on the Markov model proposed by Bianchi [18] for the IEEE 802.11 standard.

This model consists in a Markov chain that mimics the functionalities of the IEEE

802.11 standard while assuming a saturated tra�c and ideal channel conditions.

Zhai et al. [119] and Daneshgaran et al. [36] exploit the Bianchi model and ex-

tend it through more realistic assumptions. These approaches have inspired Gri�th

and Souryal [7] to develop a model for the IEEE 802.11 MAC layer that adds a

frame queue to each node. This contribution enables us to estimate the packet re-

ception rate, the delay, the medium access control layer (MAC layer) service time

and the throughput. Similar studies have been developed for the wireless sensor

networks, and more especially the IEEE 802.15.4 standard. Hence, we note the

models developed by Pollin et al. [89] and Park et al. [87]. The two approaches

provide a generalized analysis that allows to measure reliability, delay and energy

consumption. In each proposed model, the exponential backo� process is modeled

by a Markov chain. Retry limits and acknowledgements in an unsaturated tra�c

scenario are also taken into consideration.

Park et al. propose a generalized analytical model of the slotted CSMA/CA

mechanism with beacon enabled mode in IEEE 802.15.4. This model includes retry

limits for each packet transmission. The scenario of a star network in which N

nodes try to send data to a sink has been considered and de�ning the state of a

single node through a Markov model has been proposed. Each state of the Markov

chain is characterized by three stochastic processes: the backo� stage s(t), the state

of the backo� counter c(t) and the state of the retransmission counter r(t) at time t.

The described modeling allows us to analyze of the link reliability, delay and energy

consumption.

In another context, several works focus on the physical layer modeling. For

instance, Zuniga and Krishnamachari [128, 116] have analyzed the major causes

behind unreliability [128, 116] and the negative impact of asymmetry on link e�-

ciency [116] in low power wireless links. Instead of the binary disc-shaped model

these models reproduce the called transitional region [123, 114, 49] in order to

model the transmission range. The packet reception rate and the upper-layer pro-

tocol reliability are highly instable when a neighbor is located in this region. To

understand it, two models have been proposed: a channel model that is based on
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the log-normal path loss propagation model [91] and a radio reception model closely

tied to the determination of packet reception ratio. Through these models, it is

possible to derive the expected distribution and the variance of the packet reception

ratio according to the distance.

5.3 Developed IEEE 802.15.4 Model for Smart Grid

Our contribution joins the initiative of Smart Grid [7] to provide tools that evaluate

wireless communications standards. The developed model that we propose analyzes

an IEEE 802.15.4 PHY and MAC layer channel in which multiple non-saturated

stations compete in communicating with a sink. The aim is to combine two relevant

models: A PHY model that bypasses the disk shaped node range and takes into

consideration the called transitional region and a MAC model that reproduces the

CSMA/CA mechanism. The model described enables us to add the impact of PHY

layer errors onto the MAC layer and to provide some improvements for the adopted

MAC model, in order to obtain more precise output estimations. Our developed

model is available at the SGIP NIST Smart Grid Collaboration website [7].

5.3.1 IEEE 802.15.4 PHY Model Description

To model the PHY layer, we have adopted the Zuniga and Krishnamachari approach

[128, 116]. The main objective is to identify the causes of the transitional region

and quantify their in�uence on performance without considering interferences (as-

sumption of a light tra�c or static interference). To do this, the expressions of the

packet reception rate as function of distance are derived. These expressions take into

account radio and channel parameters such as the path loss exponent (log-normal

shadowing path loss model [91]), the channel shadowing variance, the modulation,

the coding and hardware heterogeneity. They describe how the channel and radio

in�uence transitional region growth. We use mathematical frameworks provided to

compute packet delivery rate independently of interferences.

The approach followed by Zuniga and Krishnamachari in which we have been

interested in describes how the channel and the radio determine the transitional

region. On the one hand, for the wireless channel, the log-normal shadowing path

loss [91] model is adopted (can be used for small and large coverage systems and its

accuracy is demonstrated in comparison with other models). It is given by:

PL(d) = PL(d0) + 10η log10
d/d0
+

N(0, σ) (5.1)

Where d is the transmitter-receiver distance, d0 is a reference distance, PL(d0)
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is the power decay for the reference distance d0, η is the path loss exponent and

N(0, σ) is a zeromean Gaussian random variable with standard deviation σ.

Hence, for an output power Pt, the received power Pr in dB is expressed by:

Pr(d) = Pt − PL(d0)− 10η log10
d/d0
+

N(0, σ) (5.2)

On the other hand, for the radio, the packet reception rate Ψ of successfully

receiving of a packet, using a modulation M is:

Ψ(γ) = (1− βM (γ))f (5.3)

Where γ is the SNR (Signal-to-Noise Ratio), βM is the biterror rate and a

function of the SNR and f is the frame size. The SNR at a distance d can be

expressed from (5.2):

γ(d)dB = Pr(d)− Pn = N(µ(d), σ) (5.4)

Where N(µ(d), σ) is a Gaussian random variable with mean µ(d), variance σ2

and Pn is the noise �oor. Moreover, the expression of µ(d) can be determined from

(5.2) into (5.4):

µ(d) = Pt − PL(d0)− 10η log10
d/d0
+

N(0, σ)− Pn (5.5)

Denoting the bit-error rate for the SNR in dB as BERM (γdB) = βM (10
γdB
10 ) ,

the packet reception rate Ψ can be expressed by:

Ψ(γdB) = (1−BERM (γdB))
f (5.6)

5.3.2 Operation Details for the IEEE 802.15.4 MAC Model and

the Interactions with the PHY Model

We believe that joining the PHY model described previously with a MAC model

is an interesting challenge. Indeed, collisions are the major factor behind frame

losses. Nonetheless, considering errors that can happen at the PHY layer includes

constraints imposed by SNR (signal-to-noise ratio), modulation, encoding and asym-

metry (heterogeneous hardware). Therefore, our contribution allows us to have a

more realistic estimation by taking into account the causes of failures at both layers.

The model of IEEE 802.15.4 MAC layer that we have considered is inspired from

Park et al. Markov chain [87]. It captures the state of the station backo� stage, the

backo� counter and the retransmission counter. We insert into Park et al. model an
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M/M/1/K queuing model that endows a �nite bu�er to a station. On the one hand,

the Markov model determines the steady state probability when a station senses the

channel in order to transmit a frame and the probability that a frame experiences a

failure (due to a collision or to PHY layer failure). On the other hand, the queuing

model gives as output some measurements such as the throughput or the probability

that the station is idle.

The Park et al. approach, inspired from [89], consists in a generalized analytical

model of the slotted CSMA/CA mechanism of beacon enabled IEEE 802.15.4 with

retry limits for each packet transmission (the complete description is provided in

[87]). The model takes the scenario of N stations that try to communicate with a

sink. Park et al. de�ne the probabilities for the following events: a node attempts

a �rst carrier sensing to transmit a frame, a node �nds the channel busy during

CCA1 or a node �nds the channel busy during CCA2. They are denoted by the

variables τ , α and β respectively. These three probabilities are related by a system

of three non-linear equations that arises from �nding the steady state probabilities.

Our model, described by the �owchart presented in Fig. 6.2 (the main PHY and

MAC inputs are listed in Table I and Table II respectively), aims to solve the non-

linear system that expresses these probabilities. In addition, it estimates p0, the

probability of going back to the idle state by considering the o�ered load per node

parameter λ. In this way, our contribution enables the MAC model to determine

this probability, in opposition to [87] (p0 is taken as an input for the performances

analysis).

We start from equations (16), (17) and (18) in [87] and make changes in some

of these expressions to enhance the model. The equations (17) and (18) are ex-

pressed with probability τ to mention that a node is transmitting. In our mind, this

consideration is insu�cient because a transmitting node must not be idle, that is

why we substitute τ by (1-p0)τ . Thereby, τ is the probability that a node tries to

transmit and 1-p0 is the probability that a station has a frame to send. The system

considered is given by equations (5.7), (5.8) and (5.9):

91



5.3. Developed IEEE 802.15.4 Model for Smart Grid

τ =

(

1− xm+1

1− x

)(

1− yn+1

1− y

)

b0,0,0 (5.7)

α =

(

L+
N(1− p0)τ(1− τ(1− p0))

N−1

1− (1− τ(1− p0))N
LACK

)

(

1− (1− (1− p0)τ)
N−1

)

(1− α)(1− β) (5.8)

β =
1− (1− τ(1− p0))

N−1

DV
+

N(1− p0)τ(1− (1− p0)τ)
N−1

DV
(5.9)

where DV = 2− (1− (1− p0)τ)
N +

N(1 − p0)τ(1 − (1 − p0)τ)
N−1, x = α + (1 − α)β and y = Pfail(1 − xm+1). The

parameter Pfail represents the probability of a failed transmission attempt, m is

the maximum number of backo�s the CSMA/CA algorithm will attempt before

declaring a channel access failure, n is the maximum number of retries allowed after

a transmission failure, L is the length of the data frame in slots (a slot has a length

of 80 bits), LACK is the length of an acknowledgement in slots, N is the number of

stations and b0,0,0 is the state where the state variables of the backo� stage counter,

the backo� counter and the retransmission counter are equal to 0 (an approximation

is proposed in [87]).

The mechanism that computes these probabilities (using the MATLAB fsolve

function) allows us to determine the probability of failed transmission Pfail, given

by:

Pfail = 1− (1− Pcol)(1− Pe) (5.10)

where Pcol = 1− (1− τ(1− p0))
N−1.

In the above expressions, Pe is the probability of loss due to channel and radio

constraints (computed by the PHY model) and Pcol is the probability of a collision

occurring (modi�ed as done with (17) and (18) in [87]).

This mechanism is embedded in a loop that updates p0. The developed model

solves the system of non-linear equations to determine τ , α, β and therefore Pfail.

Then, Pfail, α and β are used to estimate the mean MAC service time, or the mean

time to process a frame, expressed also as Expected Time or ET (in [87], Section V.B

details how to compute this time. We substitute, of course, Pcol by Pfail to catch

errors that can occur at PHY and MAC layers). So, a new value for p0 is generated

and the updated p0 is used in the next iteration. It is possible to determine p0 since

each device has a bu�ering capacity. Every node is modeled as an M/M/1/K queue
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Figure 5.1: IEEE 802.15.4 PHY and MAC model �owchart
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and each queue receives frames following a Poisson arrival process λ frames/s. The

queue utilization ρ is the product of the arrival rate λ and the inverse of the mean

MAC service time ET . The steady state probability that there are i frames in the

queue is:

pi = ρi/
K
∑

j=0

ρj (5.11)

Hence, the value of p0 is given by:

p0 =





K
∑

j=0

ρj





−1

(5.12)

The process continues until the value of p0 converges to a stable value. Once p0

converges, all outputs concerning queuing analysis can be computed for each value

of λ (the per-node load o�ered). Four outputs are considered in this study: the

average waiting time to receive a frame (Eq. (7)), the failure probability (probability

of packet loss due to collisions or link constraints)(Eq. (4)), the reliability of a node

(the probability of a good frame reception)(Eq. (8)) and the average throughput

per node(Eq. (9)).

D =
L

λ (1− pk)
(5.13)

R = (1− pk) (1− Pcf ) (1− Pcr) (5.14)

Savg = λRLp (5.15)

where pk is the probability of having full bu�er, Pcf is the probability that the frame

is discarded due to channel access failure (Eq. (19) in [87]), Pcr is the probability

that the packet is discarded due to retry limits (Eq. (20) in [87]), L is the payload

size and Lp is the application data size.

Therefore, this contribution enables us to enhance Park and al. model at two

levels:

• Providing a more precise computation of failure probability by considering

possible errors at PHY and MAC layers (link unreliability and collisions).

• Enhancing the MAC model of Park et al. by estimating the probability p0

for the resolution of non-linear equations (this probability is an input in Park

et al. model), modifying some expressions to more e�cient estimations and

determining outputs relative to a precise scenario (number of nodes and per-
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Table 5.1: Main Parameters used in MAC Layer

Parameter Value Parameter Value

Number of Nodes 5, 10, 50 Queue Size 51 Frames

Smallest Backo� Win 8 Data Rate 250 kbit/s

Max Frame Retries 3 ACK Size 88 bits

Max CSMA Backo� 4 Shadowing STD 4

Max Backo� Exponent 5 IFS 640 µs

Min Backo� Exponent 3 Max TX-RX Time 192 µs

MAC Frame Payload 800 bits PHY Overhead 48 bits

Table 5.2: Main Parameters used in PHY Layer

Parameter Value Parameter Value

Noise Figure 23dB Bandwidth 30kHz

Pathloss exp 4 STD Tx power 5dBm

Noise 15dB Preamb. Length 40 bits

Max Tx range 15 m Min Tx Range 1 m

node load o�ered).

5.4 Simulation and Results

First of all, we propose to check the validity of our model. Then, we advance two

scenarios for the simulations in order to appreciate our joint model. After that, we

compare the performances of a node obtained in two di�erent ways. On one hand,

we use the Park et al. Markov chain (MAC layer) and on the other hand we test

our model. Then, we expose the same performances, using our developed model, for

di�erent densities. All the simulations test di�erent values for the o�ered per-station

load, measured in units of frame/s. We choose to start from 0.5 frame/s and increase

the o�ered load to 50 frames/s with a step of 0.5 frame/s (or from 400 bits/s to

40000 bits/s). We select four outputs to illustrate node performances: the average

waiting time for a frame reception, the failure probability (probability of frame loss

due to collisions or link constraints), the reliability of a node (the probability of a

good frame reception) and the throughput. Table 6.1 presents the main inputs at

the MAC layer and Table 6.2 enumerates the main ones at the PHY layer.
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5.4.1 Cheking the Validity of the Joint Model

As mentioned, The MAC layer model proposed by Park et al. [87] is strongly

inspired by the Markov model provided by Pollin et al. [89]. In [89], the authors

have proposed to measure the probabilities α and β, through their model, according

to a growing number of nodes in a network with saturated tra�c. Then, their have

compared the obtained values with those provided by simulation. The results have

shown that the probabilities obtained in both cases are similar and this observation

enable them to validate their model. To do the same for our model, we consider the

same simulation scenario and we compare the results obtained by our joint model

with the ones obtained by the model of Pollin et al. Table 6.3 details the values

obtained for the probabilities α and β with both models according to the growing

star network density.

We remark that our model show very similar values of α and β in the case

of saturated tra�c. This indicates that the two model mimic the behavior of the

802.15.4 standard in the same way. This result enables us to conclude that our

model is e�ective and valid even if the impact of the PHY layer model is not visible

due to the saturation tra�c condition. To appreciate the contribution of this model,

we propose in the following to compare our joint model to the model of Park et al.

5.4.2 Comparison between Combined PHY and MAC Layers and

Simple MAC Layer Models

As previously described, when we include the constraints at the physical layer, de-

livery failures happen more often. There are many reasons for this: weak SNR

and modulation and/or encoding errors. We run simulation for a star network with

10 nodes. The results con�rm a notable degradation of node performances. In

Fig. 5.2(a), the average waiting time is for the the combination of the PHY and

MAC models. Inserting link constraints increases the number of retransmissions.

Thus, the delay increases. The delay di�erence between the two approaches is not

obvious through this �gure. So, we propose to zoom in the �gure to show the dif-

ference between the two models. We highlight this di�erence through Fig. 5.3. Fig.

5.2(b) compares the evolution of failure probability for the two approaches. With

light o�ered loads, the impact of the PHY model is conspicuous, especially since

the number of collisions is likely to be low. The collisions are more frequent with

heavier loads and the probability of occurrences grows quickly, generating network

saturation. Meanwhile, the probability of losses due to link conditions remains con-

stant (this probability is determined independently of interferences and computed

through an integration over the distance covered by the maximum range and over
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Table 5.3: Comparison of the values for α and β obtained through the joint model
and the one of Pollin et al. according to a growing density with saturated tra�c

Joint Model Model of Pollin
et al.

Number
of nodes

α β α β

10 0.8620 0.5054 0.8043 0.4539

12 0.8631 0.5024 0.8173 0.4794

14 0.8636 0.5010 0.8282 0.4941

16 0.8638 0.5004 0.8347 0.5058

18 0.8639 0.5000 0.8413 0.5130

20 0.8639 0.5000 0.8467 0.5166

22 0.8639 0.5000 0.8500 0.5228

24 0.8639 0.5000 0.8543 0.5245

26 0.8639 0.5000 0.8576 0.5294

28 0.8639 0.5000 0.8597 0.5264

30 0.8639 0.5000 0.8630 0.5274

32 0.8639 0.5000 0.8652 0.5274

34 0.8639 0.5000 0.8663 0.5254

36 0.8639 0.5000 0.8684 0.5245

38 0.8639 0.5000 0.8695 0.5225

40 0.8639 0.5000 0.8706 0.5215

42 0.8639 0.5000 0.8728 0.5215

44 0.8639 0.5000 0.8728 0.5196

46 0.8639 0.5000 0.8739 0.5166

48 0.8639 0.5000 0.8750 0.5137

50 0.8639 0.5000 0.8760 0.5127

asymmetry variations). So, the di�erence between the two approaches is less sig-

ni�cant. The same interpretation can be used for reliability evolution, presented

in Fig. 5.2(c). Reliability also undergoes the frame discards due to the reaching

of maximum frame retries or maximum CSMA backo�s. The rejected frames due

to full node queue represent also a possible interpretation with high o�ered loads.

The throughput evolution, presented in Fig. 5.2(d), also undergoes the constraints

of the PHY layer, and is logically less signi�cant since it follows the same evolution

as reliability (throughput is the product of reliability, o�ered load and data frame
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(a) Average wait time versus load o�ered (b) Failure probability versus load o�ered

(c) Reliability versus load o�ered (d) Throughput versus load o�ered

Figure 5.2: Comparison between IEEE 802.15.4 PHY & MAC Model and IEEE
802.15.4 MAC Model

size).

5.4.3 Evolution of Node Performance with Growing Densities

We use our model to compare node performances with three densities. We propose

a network with 5 nodes, another with 10 nodes and a third with 50 nodes. We take

into account the same outputs cited in the previous section. The major observation

is that the IEEE 802.15.4 networks do not support heavy tra�c. The denser the

network is, the poorer are the performances are. We note an increasing delay for

denser networks, as observed in Fig. 5.4(a) (Fig. 5.5 proposes a zoom in to better

appreciate the delay di�erence between the three cases). As the number of nodes

increases, and with growing o�ered loads, collisions are more frequent and so the

retransmissions are more recurrent. The switching phase to saturated network shows

more signi�cant di�erences between the three network scenarios. Each node queue

begin to experience congestion problems; with more retransmission requirements,

the queues are busier and the delays are longer. At saturation, the frame losses are
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Figure 5.3: Zoom in on the average wait time versus load o�ered for IEEE 802.15.4
PHY & MAC and IEEE 802.15.4 MAC models

widespread (collisions, link constraints, frames discarded due to retry limits, etc.)

for the three scenarios, but the number of nodes still has an impact because it has a

negative in�uence on performances and channel availability (more collisions, more

retransmissions, channel congestion,. . . ). The same reasoning explains a higher

failure probability, as presented in Fig. 5.4(b) and a lower reliability as outlined in

Fig. 5.4(c) for denser networks and with increasing o�ered load. The evolution of

throughput, shown in Fig. 5.4(d), also matches with the interpretations cited above.

5.5 Conclusion

We presented, in this chapter, a model that mimics the IEEE 802.15.4 functionalities

at the PHY and the MAC layers. We aimed to combine two relevant propositions.

On the one hand, we modeled constraints that a�ect link quality using the Zuniga

and Krishnamachari mathematical framework: distance, output power, noise, asym-

metry and errors related to encoding and modulation. The PHY model bypasses

the disk-shaped node range and expresses more precisely the degree of link unreli-

ability. The output of this model represents an important outcome for estimating

more faithfully the probability of transmitting frame failure. On the other hand, we

enhanced the Park et al. IEEE 802.15.4 MAC layer model to extract the delay and

the reliability. Our contribution seeks to improve the Park et al. approach in de-
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(a) Average wait time versus load o�ered (b) Failure probability versus load o�ered

(c) Reliability versus load o�ered (d) Throughput versus load o�ered

Figure 5.4: Performances evolutions for di�erent densities using IEEE 802.15.4 PHY
& MAC Model

termining inherent probabilities (frame transmission, free channel in CCA1/CCA2,

failure,...) and combining it with the PHY model to better estimate wireless net-

work parameters. The methodology adopted relies on a Markov chain that follows

the �owchart described in Fig.6.2 and on an M/M/1/K queue that we includes with

the Park et al. approach. The joint model is available at the SGIP NIST Smart

Grid Collaboration website [7] for use.

The simulations showed that more precise estimations are provided by our model

versus that by the Park et al. MAC model. The comparison between the two consid-

erations highlights a notable performance deterioration using the combined model.

This observation is quite obvious since this combination joins PHY constraints to

collisions. Thus, our contribution improves the Park et al. approach by bypass-

ing the assumption that failures are restricted to collisions. The amelioration of

the Park et al. approach is not limited to the above description. We tried also to

enhance the estimation of inherent probabilities by adjusting some expressions (as

for α, β and Pfail) and modifying the resolution method to gather new parameters
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Figure 5.5: Zoom in on the average wait time versus load o�ered for di�erent den-
sities using IEEE 802.15.4 PHY & MAC Model

(such as p0, the probability that a node returns to the idle state, which is considered

as an input in Park et al. work).

Our contribution proposes to mimic the IEEE 802.15.4 PHY and MAC lay-

ers mechanisms. Nonetheless, it is extensible for reproducing more precise wireless

networks standards related to IEEE 802.15.4. It is also adjustable to other stan-

dards. Indeed, the considered PHY layer model is quite relevant but assumes that

interferences are weak and/or stable. Moreover, the probability of an error at the

PHY layer is averaged (through integration over maximum range and maximum

asymmetry variation).
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6.1 Introduction

In wireless Ad-hoc networks, nodes are self-organizing and autonomous. They man-

age their own resources and make their own decisions. In order to maintain network
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connectivity, each node has to forward packets of other nodes. However, since they

are known to have limited battery resources, these nodes usually tend to be non-

cooperative. Indeed, they might sometimes reject forwarding requests in order to

save their proper energy. Thus, nodes are reluctant to participate in routing which

may lead the network connectivity to break down. It is then necessary to provide

a mechanism that enforces cooperation between nodes and maintains the network

connectivity. The problem of forwarding packets in a non-cooperative Ad-hoc net-

work is widely studied, as we highlight afterwards, and many approaches have been

proposed. The nodes act sel�shly and tend to maximize their own bene�ts, thus,

most of these studies rely on game theory [48] which is a suitable tool to deal with

complex interactions between network nodes. From this perspective, the approaches

can be classi�ed into two categories depending on the mechanism used to enforce

cooperation level between nodes. In the �rst category, the propositions use the

virtual payment scheme. Zhong et al. [125] have proposed Sprite, a credit-based

system that makes incentives for nodes to cooperate. Eidenbenz et al. have de-

signed COMMIT [40], a routing protocol based on payment with virtual currencies.

The requested intermediate nodes will perceive a compensation that is related to

their residual energy level. Ad Hoc-VCG [14] and incentives modeling advanced

by Crowcroft et al. [34] also belong to the �rst category. In the second one, the

approaches employ mechanisms to enforce and maintain cooperation between nodes

communities. Some works use reputation-based mechanisms. In instance, Kwon et

al. [69] who have formulated a Stackelberg game where two nodes sequentially esti-

mate the willingness of each other and decide to cooperate or not according to the

opponent reputation score. Also, Buchegger and Le Boudec [24, 25] have de�ned

mechanisms taking into consideration reputation system. Other solutions aim to

maintain cooperation by considering punishment threat. In this case, Marti et al.

[76] have de�ned "watchdog" and "pathrater" techniques that improve throughput

by excluding misbehaving nodes. Felegyhazi et al. [45] have proposed a scheme

that enables the nodes to reach the Nash Equilibrium, under topological conditions

(i.e. dependence graph), relying on the "Tit-For-Tat" punishment. Altman et al.

[11] have highlighted the "aggressive" punishment in [45] and have proposed milder

punishment mechanism which guaranties a Nash Equilibrium and helps nodes to

consume less energy. Han et al. [51] have advanced a self-learning repeated game

framework based on punishment that determines the nodes optimal packet forward-

ing probabilities to maintain network connectivity. Pandana et al. [86] have con-

sidered the same aim as in [51] and have designed three learning schemes with a

punishment mechanism under perfect/imperfect local observation and dependence

graph conditions.
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In this chapter, we propose a self-learning repeated game framework inspired

by "The Weakest Link" TV game. In our approach, the set of nodes forming a

route are considered as the candidates of the chains in the TV game. Each node

forwarding probability can be seen as good answer probability for each candidate.

Indeed, the maximization of global collective gains depends strongly on the coop-

eration between the candidates involved in the game. Thereby, we adopt the TV

game concept to design our scheme with the objective of motivating nodes to cre-

ate the longest chains and maximizing their utility values. This would increase the

probability that the packets are delivered to the destination and then would opti-

mize packets forwarding. Moreover, the framework relevance lies in the repeated

game that enforces collaboration between nodes and a learning scheme that tends

to reach better cooperation level. We consider also a punishment mechanism that

would discourage nodes from acting sel�shly. To asses the e�ciency of our proposal,

we compare our proposal to two other self-learning repeated game schemes proposed

in [51] and [86].

The remainder of the chapter is organized as follows: In Section 6.2, we present

the self-learning repeated game approaches that have inspired us to design our ap-

proach. The proposed model based on "The Weakest Link" TV game principle

is illustrated in Section 6.3. The self-learning repeated game framework and pun-

ishment scheme are then presented in Section 6.4. Section 6.5 details simulations

scenarios used to evaluate our proposal and analyzes the obtained results. Finally,

concluding remarks are given in Section 6.6.

6.2 Related Work

We have been interested in some self-learning repeated game frameworks based on a

punishment mechanism. We have been inspired by the framework proposed by Han

et al. in [51] and those designed by Pandana et al. in [86]. They have helped us to

design our own frame work. In this section, we propose to give details about these

approaches and how the Folk Theorem can solve the problem of the non-cooperative

behavior when �nding the Nash Equilibrium is not su�cient.

Self-Learning Repeated Game Framework proposed Han et al.

Han et al. propose their framework in order to distributively obtain the optimal

forwarding probability in a wireless network. This approach is characterized by two

major steps:

• First, the users apply a repeated game to punish misbehaving nodes in order
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to maintain and promote the cooperation.

• Second, the users try to adapt their forwarding probabilities by learning the

degree of cooperation in the network.

To build their framework, Han et al. suppose that there is a wireless network of

K users and each user k has Nk routes for its packet transmission. Han et al.

have assumed that the routes have been determined with a routing protocol, that

it exists an end-to-end mechanism which is able to inform the source node that

a packet is successfully delivered and that the routes are determined before the

forwarding probability optimization. Each user has a utility function and use it to

learn the degree of cooperation in the network. The utility function Uk of the user

k is expressed by:

Uk =

Nk
∑

i=1

P i
kGΠ

(

αj , j ∈ Iik
)

− FαkBk (6.1)

where Iik is the set of nodes on the route i of the user k, αk is the willingness of

the user k to forward the packet of another user, Bk is the probability that a node

generates a packet, G is the bene�t of a successful transmission and F is the cost

of forwarding the packet, P i
k is the probability that the user k transmits its packet

through the route i, Π represents the probability of a successful transmission of a

packet which depends on the forwarding probabilities of the nodes involved in the

requested route.

The �rst term designates the average bene�t of the user k which is closely de-

pendent on the willingness of the users that form the set Nk. The second term

points out the cost engendered by forwarding a packet of another user. Given that

a user in the network has not a full knowledge about the behavior of others and can

deviates from cooperation to optimize its utility, Han et al. formulate the problem

as a non-cooperative game where each user tunes its own forwarding probability to

maximize its own utility function:

max
0≤αk≤1

Uk (αk, α−k) (6.2)

where α−k = [α1, α2, . . . , αk−1, αk+1, . . . , αK ] is the set of forwarding probabilities

of all the users in the networks except user k.

In such situation, the Nash Equilibrium enables us to to identify the strategy

used by each user that maximizes its outcome when the other users are applying

their strategies.
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De�nition1: The Nash Equilibrium is some strategy set α∗ for all nodes, such

that for each node i, the following condition is veri�ed:

Ui(α
∗
i , α

∗
−i) ≥ Ui(αi, α

∗
−i), ∀i, ∀αi ∈ [0, 1] (6.3)

where α∗
−i = (α∗

1, . . . , α
∗
i−1, α

∗
i+1, . . . , α

∗
N ).

This condition emphasizes that no node can increase its utility by operating

a unilateral change of its forwarding probability, while all other nodes play the

Nash Equilibrium strategy. Nevertheless, this equilibrium matches with the strategy

where αi = 0, ∀i. Indeed, the outcome of each node is dependent on the cooperation

willingness of others meanwhile the cost is tied to its own forwarding probability.

Obviously, to maximize its utility, each node would sel�shly drop the packets of

the others. In such situation, no node has the willingness to cooperate and the

successful transmission probabilities tend to be close to zero. Applying a game for

one step would motivate nodes to use the Nash Equilibrium strategy which is not

convenient. Thereby, a repeated game lead a strategy to be sensitive to the past

observations. This fact can build the cooperation between the nodes by considering

reputation and/or retribution awareness.

The repeated game can enforce any misbehaving player to be more cooperative.

This is due to the punishment that can be applied to encounter sel�shness by fading

the greediness bene�ts. Hence, it is preferable to all players to be rather cooperative.

To enforce this cooperation and to maintain it, the in�nitely repeated game rises

as the recourse to use as supported by the Folk Theorem [47]. The average utility

outcome of a player k in an in�nitely-repeated game is expressed as following:

Uk = (1− β)
∞
∑

t=1

βt−1Uk(t) (6.4)

where Uk(t) is the utility outcome at period t and β is the discount factor.

The Folk Theorem is generally stated as: "Any strictly individually rational

and feasible payo� vector of the stage game can be supported as a subgame-perfect

equilibrium average payo� of the repeated game." The outcome for an in�nitely

repeated game can give better payo�s than those that can be obtained with Nash

Equilibrium, especially for a discount factor close to 1. This parameter is viewed as

the future importance or as the probability that game ends. When it is close to zero,

the future is not "signi�cant" and nodes deviations are more attractive against the

"forgiveness" of other nodes. On the other hand, when the discount factor is close

to one, cooperative nodes are aware of misbehaving ones. A permanent punishment

threat corresponds to a discount factor close to 1 and obliges sel�sh nodes to be
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Figure 6.1: The self-learning repeated game �owchart proposed by Han et al.

more cooperative.

Then, to enforce the cooperation in the network, Han et al. design their algo-

rithm to enable the users to learn the optimal packet forwarding probability step

by step. The strategy of repeated game is applied to ensure the cooperation by

performing a punishment if deviations are detected. The framework proposed by

Han et al. for a user k is depicted in Fig. 6.1. The algorithms begins with an

initialization phase where all nodes are supposed to be non-cooperative (e.g. their

forwarding probabilities are equal to 0). Each user set a cooperation time counter
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n and the punishment time T to 0 and a trigger threshold V to the utility provided

by the non-cooperative strategy (obviously equal to 0). Then, the users launch the

repeated game strategy. During this phase, at each step, each user compare its

utility value U to the threshold V . When the utility value is higher than the trigger

threshold, this means that the cooperation is e�ective in the network and the coop-

eration time counter n is increased. Otherwise, when a deviation is detected (V>U),

the punishment phase is engaged during a time T which becomes longer with the

persistence of the non-cooperative behavior. The punishment comes down to play

the non-cooperative strategy. The long periods of punishment are considered as a

threat for nodes that act sel�shly. Indeed, if they keep the non-cooperative strat-

egy, their utility values are being forced to be null. Nevertheless, performing such

punishment scheme can be restrictive for the network performance as punishment

periods can become too long.

When a user detects that the cooperation is getting stable (the timer n reaches

a prede�ned constant N which designates the number periods needed to conclude

that the cooperation is enforced), it enters in the self-learning phase through which

it tries to adjust its forwarding probability to optimize its own utility. A possible

manner to tune this probability is to choose a random value between 0 and 1 and to

check if it enables to reach better utilities values. If it is the case, the user updates

its trigger threshold V (V=U) and its punishment period T as it expects that the

other users are willing to cooperate.

Self-Learning Repeated Game Frameworks advanced by Pandana et al.

Pandana et al. have adopted the same problem formulation as Han et al. As cited

previously, in a wireless network, the nodes may behave sel�shly as they cannot know

the degree of cooperation of the other nodes and suggest a self-learning repeated

game framework to overcome the non-cooperative situation.

To design their framework, Pandana et al. have chosen to de�ne a utility function

based on energy consumption. First of all, they have supposed that the network is

consisting of N nodes and have considered the same assumption as Han et al.

As mentioned, Pandana et al. have chosen to express the utility function of

each node by considering the amount of energy spent to transmit and to forward

packets. For this purpose, the average power expended in a node i to transmit has

been de�ned as:

P (i)
s =

∑

r∈V s
i

µS(r) ·K · d(S(r), n(S(r), r))γ (6.5)
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where µS(r) is the transmission rate of source node S(r), K is the transmission

constant, d(i, j) is the distance that separates node i from node j, n(i, r) represents

the neighbor of node i that belongs to route r, γ is the transmission path-loss

coe�cient and V s
i denotes the set of routes where node i is the source of the packets.

The product K · d(S(r), n(S(r), r))γ represents the reliable successful transmission

power.

Each node i, in this framework, is characterized by its forwarding probability

αi. Then, the probability of successful transmission from node i to its destination

j is closely tied to the forwarding probabilities of intermediates nodes involved in

the route that joins node i to node j. The probability of successful transmission is

expressed by:

P i
Tx,r =

∏

j∈(r\S(r)=i,D(r))

αj (6.6)

where D(r) is the destination of node i on the route r and (r \ S(r) = i,D(r)) is

the set of intermediate nodes on the route r.

From the two expressions de�ned above, it is possible to de�ne the good power

used by a node i which corresponds to the energy consumed to transmit a packet

that would be successfully delivered to the destination. Hence, this amount of energy

is expressed by:

P
(i)
s,good =

∑

r∈V s
i

µS(r) ·K · d(S(r), n(S(r), r))γ · P i
Tx,r (6.7)

As node i can also be an intermediate node, it consumes energy when it forwards

the packets of other source nodes. This amount of energy is de�ned by:

P
(i)
f = αi ·K ·

∑

r∈Wi

d(i, n(i, r))γ · µS(r) · P
i
F,r (6.8)

where P i
F,r is the probability that node i receives the packet to forward in route r.

The expression µS(r) · P
i
F,r represents the rate of data received by node i from the

source in route r. The probability P i
F,r of an intermediate node i in a route r is

given by:

P i
F,r =

∏

j∈f1
r ,f

2
r ,...,f

m−1
r

αj (6.9)

where r = {S(r), f1
r , . . . , f

m−1
r , fm

r = i, . . . , fn
r , D(r)} is the n + 1 hops from the

source S(r) to the destination D(r). In this expression, node i is the mth intermedi-
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ate node designated by fm
r and it is clear that this probability is depending on the

forwarding probabilities of all intermediate nodes that precede node i in the route

r.

Relying on the node power used for either transmitting its own packets and

forwarding the data of other nodes, Pandana et al. de�ne the self − transmission

efficiency which is expressed by:

U (i)(αi, α−i) =
P

(i)
s,good

P
(i)
s + P

(i)
f

(6.10)

where αi denotes the forwarding probability of the node i, α−i represents the follow-

ing set of probabilities [α1, . . . , αi−1, αi+1, . . . , αN ], P (i)
s,good is the energy consumed

by node i to transmit a packet that is successfully delivered to the destination (Eq.

(6.7)), P (i)
s corresponds to the average power expended in a node i to transmit (Eq.

(6.5)) and P
(i)
f represents the energy consumed by node i when it forwards the

packets of other source nodes (Eq. (6.8)).

As stated in the work of Han et al., the Nash Equilibrium consists to play the

sel�sh strategy and propose a self-learning repeated game with a punishment mech-

anism to enforce cooperation in the network. The punishment relies on monitoring

any sel�sh behavior and decreasing the outcomes of misbehaving nodes by dropping

their packets. In such case, the nodes which apply punishment have to announce it

to avoid the interpretation of the punishment as a deviation and thereby the spread-

ing of the sel�sh behavior in the network. Relying on such monitoring enables then

to exploit the Folk Theorem. This monitoring assumes that the nodes that detect a

deviation exchange their reports on the identity of the misbehaving node and iden-

tify this node by intersecting the exchanged information. This process can be not

suitable in a dense network.

Pandana et al. have proposed three self-learning repeated game frameworks

based on the utility function de�ned above. The �rst one represents a self-learning

framework under perfect observability which have been used as a benchmark for

performance evaluation. The two others are self-learning frameworks based on local

observability, one is based on learning through �ooding and the second on learning

with utility prediction.

We give some details about the learning through �ooding algorithm which we

have considered in our evaluation. The only information that a node can observe

is the evolution of its own utility function. To learn the forwarding probability, the

best way is to gradually increase its forwarding probability and to check if the utility

becomes better. If it is the case, the new forwarding probability will be employed.
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The old probability is kept if the utility is not improved. This algorithm enables

the nodes to change at the same time their forwarding probabilities. Then, a better

cooperation level would be progressively spread. The algorithm is detailed in the

following

Algorithm 1 Self-Learning Repeated Game Algorithm based on Learning through
Flooding
1: Initialization: t = 0, αt

i = α0, ∀i, small increment ξ, normalization factor η, lowest cooperation
level αmin

2: for Iteration: t = 1, 2, . . . do
3: Calculate U (i),t−1(αt−1

i ) and U (i),t−1(αt−1
i + ξ)

4: Calculate δU (i),t−1 = U (i),t−1(αt−1
i + ξ)− U (i),t−1(αt−1

i )
5: for each i such that δU (i),t−1 > 0 do

6: αt
i = αt−1

i + η δU(i),t−1

U(i),t−1(αt−1
i

)

7: αt
i = max(min(αt

i, 1), αmin)
8: end for

9: Keep monitoring the deviation
10: if a deviation is detected then

11: Start the punishment scheme
12: end if

13: end for

In the next section, we describe a self-learning repeated game framework inspired

by "The Weakest Link" TV game. We follow the same concept of repeated game

used in the described approaches by taking more simpler assumptions than the

approaches of Pandana et al. and a better punishment mechanism than the one

used in the work of Han et al.

6.3 System Model And Problem Formulation

To optimize packet forwarding in ad-hoc networks, we strongly believe that applying

the concept of "The Weakest Link" TV game is an interesting solution. We explain,

�rstly, the concept of the game that we want to reproduce and then we detail the

proposed model.

6.3.1 "The Weakest Link" TV Game Principle

"The Weakest Link" TV game is a game where a group of candidates try to answer

correctly, relying on their knowledge, to the questions asked by the TV host. They

aim to gather the highest amount of money through successive rounds. In each

round, the players try to form a chain of nine correct answers to reach the highest

gain. Before answering to a question, a candidate has the possibility to save the

collected gain, provided by good answers of precedent candidates, by saying "Bank".
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It is obvious that the longer the chain is, the higher the gain gets. Nevertheless,

a player who gives a wrong answer to a question and did not save the collected

gains shall break the good answers chain and reset the gain to zero. Secondly, if

the candidates save rapidly the collected gains, the chains will be too short to reach

important amounts of money. Thus, answering wrongly or saving collected money

return the chain counter to zero. The candidates have to avoid being frequently in

these situations if they want to maximize their gains. The earnings scale expresses

the potential round gain according to correct answers chain length. For example, if

there are four good answers and the current player decides to save collected money,

the total gains grow with the amount that corresponds to the chain length. Then,

the candidates try to create another chain of good answers. Therefore, the key

parameter that in�uences the maximization of earnings is the probability of giving

a correct answer.

6.3.2 The Proposed Model: Analogy with "The Weakest Link" TV

Game

Our objective is to de�ne an approach that enforces cooperation in a distributed

way. The model we propose is inspired by the principle of the TV game. We

note interesting analogies between "The Weakest Link" TV game and the Ad-hoc

network. The nodes are assumed to be the candidates of the game and forwarding

a packet from a node to the next hop is considered as a good answer. We believe

strongly that the TV game concept can be used to encourage nodes to cooperate

and therefore to optimize packet forwarding. Hence, the nodes, along a route, aim

to create the longest chain of successful forwarded packets to get better utility.

Despite of the TV game, when a chain of forwarded packet is broken, only the

nodes that form the chain and the node which saves the gains will be rewarded.

The set of all nodes composing the route is rewarded by the collected gains only

if the packet reaches destination. To formulate the expected utility of a node in

a route, we propose expressions inspired by [17]. Let αi and βi be the forwarding

and the saving gain (with chain breaking) probabilities, respectively, for each node

i. We assume in our work that αi = 1 − βi. Given a route R with N -1 hops (N

nodes), we de�ne in Eq. (1) the average gain that a node i can expect when it

plays the role of the nth link of the chain. Let S(i) be the next hop of node i in

route R. We mean by C[n] the collected earnings when a chain of (n-1) successful

transmissions is transformed in currency and by F the cost of forwarding other's

packets. Considering the vector of forwarding probabilities α, the utility of a node
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i is given by:

UR
i (n, α) =






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












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















UR
S(i)(1, α) if n = 0

(1− αi).C[n]+

αi.(U
R
S(i)(n+ 1, α)− F ) if 0 < n < N

C[n] if n = N

(6.11)

When the node i is an intermediate node and given that it wants to maximize

its gains, it has to choose between saving the collected currency or increasing the

chain length (relying on the cooperation of the successor(s) to maximize bene�ts

despite of the cost of forwarding). We assume that the source of the packet (i.e.

n=0) will send it with the probability equal to 1. Subsequently, the gains depend on

the decisions of the next hops. In addition, when the packet reaches the destination

(i.e. n=N), the node will save the collected gains with a probability equal to 1. In

the latter case, the chain has the length of the route and the gains are maximized.

Therefore, we can formulate this problem as a non-cooperative game where each

node will adjust its forwarding probability in order to maximize its own utility. A

node i can belong to more than one route, its own utility is then the sum of each

route utility, called Ui. To solve this problem, it is necessary to �nd the Nash

Equilibrium of the game.

However, as mentioned in several works as [11, 51, 86], this equilibrium matches

with the strategy where αi = 0, ∀i. To avoid a poor network performance, we

propose a self-learning repeated game framework, inspired by the concept of "The

Weakest Link" TV game that we call The Weakest Link scheme. The objective

of this framework is to enforce cooperation between nodes through learning and

punishing threat mechanisms.

6.4 Self-Learning Repeated Game Framework and Pun-

ishment Mechanism

As the Nash Equilibrium corresponds to a non-cooperative strategy, it is more suit-

able to design cooperation under repetitive game. Applying repeated game scheme

match perfectly with our proposed model. Indeed, in each game step, along each

route, the nodes try to maximize their utilities and would choose to cooperate. In

this chapter, we consider an in�nite repeated game, where the game duration is un-

known to all nodes. Relying on the Folk theorem [47], the outcome of an in�nitely
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Figure 6.2: The self-learning repeated game �owchart

repeated game can give better payo�s than those that can be obtained with Nash

Equilibrium, especially when permanent punishment threat obliges sel�sh nodes to

be more cooperative. Therefore, we propose a repeated game that enforces coop-

eration and maintains it through a designed punishment mechanism to encounter

misbehaving forwarders. The framework we propose is presented by the �owchart

in the Fig. 6.2.

In the initialization step, all nodes are more or less sel�sh. They can set their

forwarding probabilities to 0 (the Nash Equilibrium strategy played with one stage

game). We assume that the routes are determined with a routing protocol and that

each node knows all the routes to which it belongs, as considered in [51, 86]. Then,

the nodes start playing repeated game strategy. Note that they are rational and
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want to make bene�ts. Thus, at each step, each node learns through its utility the

cooperation level of other nodes and adjusts its forwarding probability following to

the others learnt behavior. It is possible that a node deviates from cooperation,

then a punishment scheme is designed to discourage misbehaving nodes and to ask

them to be more cooperative in the future. It is applied as soon as a sel�sh behavior

is detected and subsequently the framework satis�es the Folk theorem.

6.4.1 The Punishment Mechanism

In this section, we present the punishment mechanism through a simple scenario.

We assume that A and B are two successive nodes along a route. We suppose that

the node B is a misbehaving node. The node A as one among the "closest" nodes

to node B (i.e. the predecessor of B) is designed to punish it (if B rejects the

request of A). We assume that the node A is able to detect the lack of cooperation

of B (able to distinguish between a packet drop and a packet loss); the node A can

conclude, by listening the channel, that node B is misbehaving when it does not

forward the packet to the next node. To punish the sel�sh node B, the node A �xes

its forwarding probability to 0 when the packet has to pass through node B. In this

case, the node B will not be able to receive any packet from node A. Thereafter, the

node B will be excluded from all chains in which its predecessor is in punishment

mode. This punishment cancels the node B bene�ts for a period T and enforces it

to cooperate (as its utility decreases). To avoid the propagation of the punishment

mode over all nodes, when the node A is designated to punish the node B, the

former one informs its predecessor about the execution of the punishment. Then,

the punishment act is not interpreted as a deviation. It is important to mention

that we assume that the nodes are not malicious.

6.4.2 The Self-Learning Repeated Game Framework Description

At each step of the repeated game, each node compares its current utility value

with the former value. If the current utility is better, a cooperation enforcement

is concluded. Thereby, the forwarding probability is increased proportionally with

the enhancement of the utility to promote the cooperation level. The upgrade

of the cooperation level is also led by the coe�cient λi. It expresses the node

sensitivity to the cooperation enforcement. However, when the current utility drops,

it is analyzed as a come back to sel�shness. Thus, the forwarding probability will

decrease (proportionally with the di�erence). Analogically with "The Weakest Link"

TV game, a candidate chooses to break the chain and insures gains if he notices that

the following candidate tends to make wrong answers. Hence, cooperative nodes
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are sensitive to the behavior of the other nodes. As described in the punishment

scheme, a node checks if its successor deviates. This deviation can be the result of

punishment and an announcement is made to avoid sel�shness propagation. The

deviation without any noti�cation is considered as a sel�sh behavior and then the

punishment procedure is applied on the misbehaving node. Indeed, during a period

T , no packet from its punishing predecessor reaches it. This causes a dramatic

utility decrease. Therefore, a punished node is encouraged to be more cooperative in

order to avoid longer penalization. Indeed, it increases its forwarding probabilities

by a step equal to εi. To make possible the cooperation enforcement, another

assumption must be considered. In fact, if the maximum gains that can be collected

are lower than the forwarding cost, the nodes would not forward any packet even

under punishment threat. Finally, it is important to mention that the proposed

scheme work well when the mobility is moderate. In other words, transferring all

packets on a route must be faster than route breakage due to mobility. We take into

consideration this assumption in our simulations.

This framework aims to construct the longest chains on an established route

between source and destination nodes, and routes are provided by a routing protocol

to all nodes. If a route is not available at any node in the route, the routing

tables must be updated. Moreover, the forwarding probability can be used by the

routing protocol to determine better routes or to update routes in order to avoid

misbehaving nodes to be a part of a route. Also, it is important to mention that

this framework is adapted to scenarios where some nodes can either be only sources

and/or destinations of packets as a source node forwards its packets to the next

hop with a probability equal to 1 (only if the source node apply the punishment

mechanism) and a destination node is not involved in the forwarding process.

6.5 Performance Evaluation and Simulations Results

In this section, we evaluate the performances of the proposed approach through two

scenarios: the widely used ring network and the random network. We compare our

proposal to two other approaches which have inspired us: the scheme proposed by

Han et al. [51] and the learning through �ooding algorithm designed by Pandana et

al. [86]. We implement our framework and do scenarios simulations on MATLAB

7.8.0. For the scheme Han et al., we �x the parameter N to 50 and for the Learning

through Flooding algorithm of Pandana et al., we set ξ to 0.001 and η to 1. As

remainder, these algorithms and parameters are de�ned in Section 6.2.

Firstly, we consider a ring network of 25 nodes. The distance between any

source and destination is h hops (if a node i is the source, node mod(i + h, 25) is
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Figure 6.3: The evolution of the average forwarding probability for di�erent self-
learning repeated game schemes in the case of the ring network

the destination). For each intermediate node, it is imperative that the forwarding

cost must be less important than the maximum gain along a route. By the way,

the nodes must have bene�ts in order to maintain a cooperative behavior. In our

simulations, each successful forwarding increments by 1 the gain corresponding to

the formed chain. In this scenario, we �x h to 6. We consider that one node can

be a source or a destination at most one time and an intermediate node at most

�ve times. The nodes initialize their forwarding probabilities at 0 (i.e. the Nash

Equilibrium strategy). We choose also to �x the forwarding cost to 3 (i.e. to make

bene�ts possible) and the period of punishment T to 3 time steps.

We represent in Fig. 6.3 the evolution of the average forwarding probabilities

for the considered self-learning repeated game frameworks over 2000 time steps. For

our proposal, we depict two di�erent scenarios and each one is characterized by a

speci�c value of ε (where εi = ε for all nodes and ε takes respectively the values

0.01 and 0.05). The coe�cient λi is �xed to 0.01 for all nodes. We have also �xed

the characteristic parameters of the two other schemes as mentioned in the plot.

We invite the reader to refer to [51] and [86] in order to understand the meaning

of these parameters (we also assume that each two successive nodes in a route are

separated by the same distance in order to simplify the computation of the utility

functions when the scheme of Pandana et al. is used).

First of all, we remark that the average forwarding probability observed for the

scheme of Han et al. converges to a value that turns around 0.6 and we note that
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Figure 6.4: The evolution of the average forwarding probability for di�erent self-
learning repeated game schemes in the case of a random network

the updates of this average probability become less frequent as time goes on. This

�nding logically indicates that the cooperation between nodes is limited even if the

average cooperation level is rather substantial. The punishment mechanism adopted

by the framework of Han et al. is clearly the major cause behind this result and we

explain later the reasons behind that. The average forwarding probability obtained

for the learning through �ooding algorithm designed by Pandana et al. converges to

1 but after too many steps (compared to the Weakest Link scheme result). In their

evaluation, Pandana et al. have chosen an initial forwarding strategy for nodes (i.e

all forwarding probabilities initialized to 0.5) di�erent from the Nash Equilibrium

strategy (i.e. non-cooperative strategy). This assumption enables to the nodes of

the network that adopt this scheme to reach more rapidly high cooperation levels but

leads to a skewed evaluation of the algorithm. Regarding the Weakest Link scheme,

the average forwarding probability converges to 1, as the scheme of Pandana et al.

but needs less time to reach high cooperation levels. We depict the corresponding

evolution for two values of ε: 0.01 and 0.05. We remark that the nodes become

cooperative faster as they are more reactive to the punishment mechanisms (i.e.

higher increase of the forwarding probability when punishment and utility decrease

are detected). Then, the scenario where ε is equal to 0.05 highlights a quicker

convergence of the average forwarding probability.

To support these conclusions, we determine for each scheme the average packet

delivery rate at the destination and the ratio between the forwarded packets and
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Table 6.1: Evaluation metrics in the case of the ring network (all forwarding prob-
abilities initialized to 0)

`
`

`
`
`

`
`
`

`
`

`
`
`̀

Schemes
Metrics

Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts

The Weakest Link (ε=0.01) 75.19% 5.1195
The Weakest Link (ε=0.05) 90.30% 5.0452
Pandana et al. 21.29% 5.7362
Han et al. 0.23% 182.7456

Table 6.2: Evaluation metrics in the case of a random network (all forwarding
probabilities initialized to 0)

`
`

`
`
`

`
`
`

`
`

`
`
`̀

Schemes
Metrics

Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts

The Weakest Link (ε=0.01) 92.94% 4.5709
The Weakest Link (ε=0.05) 98.21% 4.5459
Pandana et al. 67.31% 4.7061
Han et al. 1.62% 8.6341

the delivered packets. Table 6.1 lists the corresponding results for the ring network

scenario. It is important to remind that the routes have a length of 6 hops. Then,

in the ideal case when the nodes fully cooperate, each packet delivered to the desti-

nation needs 5 forwards. The found results re�ect the e�ciency of our scheme. This

e�ciency is tuned by the input parameters. As we show, the choice of the parame-

ter ε has an important impact on the convergence speed of the average forwarding

probability to 1. The scheme of Pandana et al. shows a limited e�ciency over the

simulation time because of the low convergence to a satisfying cooperation level.

For the two cited schemes, the nodes become cooperative as time goes on. The

two algorithms rely on e�cient punishment mechanisms. They share the penalty of

the misbehaving node instead of all nodes in the network. The values obtained for

the ratios of forwarded packets over delivered packets (slightly higher to 5) prove the

e�ectiveness of these solutions to establish cooperation among nodes (even with some

delay for the scheme of Pandana et al.). On the contrary, when a node that uses the

framework of Han et al. detects a defection, it punishes all other nodes. This reaction

engenders the propagation of the non-cooperative strategies and dramatically falls

down the network performance.

In the same way, we consider the scenario of a random network consisting of

100 nodes with 1000 source-destination pairs. Fig. 6.4 depicts the evolution of the

average forwarding probability for each scheme and Table 6.2 lists the evaluation

metrics for the scenario of the random network (the average number of forwarders per

route in this scenario is 4.535 nodes). The previous observations and interpretations

match with the results obtained for this scenario. We note also that the performance
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Table 6.3: Evaluation metrics in the case of the ring network (all forwarding prob-
abilities initialized to 0.5)
`
`

`
`
`

`
`
`

`
`
`

`
`̀

Schemes
Metrics

Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts Avg. Trans. E�.

The Weakest Link (ε=0.01) 95.24% 5.0555 0.1617
The Weakest Link (ε=0.05) 97.66% 5.0278 0.1639
Pandana et al. 93.84% 5.0492 0.1581

Table 6.4: Evaluation metrics in the case of the random network (all forwarding
probabilities initialized to 0.5)
`
`

`
`
`

`
`
`

`
`
`

`
`̀

Schemes
Metrics

Avg. PDR @ Dest. Fwd. Pkts / Dlv. Pkts Avg. Trans. E�.

The Weakest Link (ε=0.01) 99.77% 4.4674 0.1832
The Weakest Link (ε=0.05) 99.31% 4.4722 0.1829
Pandana et al. 93.54% 4.525 0.1778

of the Weakest Link and Pandana et al.'s schemes are better. This can be explained

by higher opportunities to improve the utility function (i.e. nodes belong to a higher

number of routes) compared to the case of the ring network.

Pandana et al. have de�ned the utility function of a node as its transmission

e�ciency. The transmission e�ciency is the ratio of successful self-transmission

power over the total consumed power (self-transmission and forwarding). We aim

to compare our proposal to the algorithm of Pandana et al. using the cited criterion.

We consider the same scenario of the ring network, as previously, and we initialize the

forwarding probabilities of nodes at 0.5 to be as close as possible to the simulation

inputs considered by Pandana et al.

We list in Table 6.3 the average packet delivery rate, the ratio of forwarded

packets over delivered packets and the average transmission e�ciency obtained by

the Weakest Link scheme and the learning through �ooding algorithm for the ring

network scenario (the same scenario as previously). We note that the two frame-

works highlight high packet delivery rates at destination (i.e. over 93 % with better

performance for the Weakest Link scheme) and strong forwarding e�ectiveness (i.e.

ratios of forwarded packets over delivered packets slightly higher than 5). Regarding

the comparison based on the transmission e�ciency, Table 6.3 emphasizes that the

Weakest Link scheme (with the di�erent values chosen for ε) reaches higher aver-

age transmission e�ciency than the algorithm of Pandana et al. and then allows

nodes to use better their energy. This �nding can be explained be the upper packet

delivery rate at the destination obtained for the Weakest Link scheme.

We can in addition emphasize that the behavior of nodes under the Weakest Link

scheme enables nodes to have more "elastic" behavior towards defections. There-
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after, it is possible to avoid useless forwards and save energy. In fact, when a node

detects a reduction in its utility function, it decreases its forwarding probability and

then becomes reluctant to cooperate as the delivery of packets is not accurate. For

the algorithm of Pandana et al., the forwarding probability can either increase or

remain the same but never decreases. Then, the nodes maintain their cooperation

level even if a defection is detected and can uselessly consume their energy.

We compute the same evaluation metrics for the case of a random network which

consists of 100 nodes and 1000 source-destination pairs. Each route has at average

4.463 forwarders. We list in Table 6.4 the obtained results for this scenario. We note

that the e�ectiveness of our proposal is veri�ed and that the transmission e�ciency

provided by the Weakest Link scheme is always better than the one of the algorithm

of Pandana et al..

We have to mention that Pandana et al. have also proposed another framework

based on utility prediction. It was highlighted in [86] that this latter scheme enables

nodes to have better transmission e�ciency. Anyway, the behavior of the average

forwarding probability follows the same one of the learning through �ooding scheme

insofar as nodes can only maintain or increase their forwarding probabilities. Nev-

ertheless, a convenient choice of the parameter ε for our scheme enables us to still

improve the network performance if necessary.

6.6 Conclusion

In wireless ad-hoc networks, nodes are requested to forward tra�c. However, be-

cause of limited energy resources, they might refuse to collaborate in order to save

their energy. This can lead to a signi�cant amount of lost packets and a deterioration

of the network performances.

In order to overcome this problem, we have proposed in this chapter a self-

learning repeated game framework that aims to enforce cooperation between nodes.

Our framework is inspired by "The Weakest Link" TV game concept. Indeed, the

amount of the global collective gains strongly depends on the cooperation degree

between the candidates involved in the game. The candidates try to form the longest

chain in order to reach the highest gain. Analogically, the nodes, along a route,

would tend to achieve the longest sequence of successful packet forwarding and

therefore assure that the packet reaches the destination. Our approach is designed

as a self-learning repeated game framework that enables nodes to learn each others

cooperation levels. Therefore, nodes that are in a same route and that have a

high cooperation level may encourage the other nodes of the route to get more

cooperative. For this aim, a punishment mechanism has been considered. Thereby,
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misbehaving nodes are punished and their utility would dramatically decrease. This

allows the network to maintain a relatively satisfying cooperation level.

Simulations have been run and the results have shown that our scheme is e�cient

for the ring network scenario as well as for the random network scenario. It has

been also shown that our proposal outperforms other self-learning repeated game

frameworks presented in the literature.
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Chapter 7

Conclusion

We conclude this dissertation by summarizing the key contributions of the thesis

and proposing some directions for future research.

7.1 Contributions of the Thesis

In this thesis, we have been interested in mobile wireless networks which are struc-

tured around humans. We have aimed to propose mechanisms and metrics which

are contributing towards improving the evaluation and the design of communication

protocols in such networks.

7.1.1 Proposing a Tensor-Based Link Prediction Framework

As the networks of interest are human-centered, we have been motivated by studying

and exploiting the social aspect that characterizes such networks. In fact, social

interactions highly impact the structure of a network and the social ties de�ne how

a network is structured. To extract information about social networks, the Social

Network Analysis (SNA) has been exploited in data-mining to analyze them and

strongly helped in de�ning the link prediction problem. Motivated by these �ndings,

we have been the �rst to propose our own tensor-based link prediction framework

to perform link prediction in mobile wireless networks as MANETs and DTNs. Our

framework is based on speci�c salient steps. First, it tracks the contact occurrences

during an historical. The tracking information is recorded in a third-order tensor

which corresponds to a succession of adjacency matrices. These matrices represent

the detected contacts for successive periods of tracking. Then, after collecting the

evolution of the topology/neighboring, the collected data is collapsed to obtain a

weight for each link according to its lifetime and its recentness. Finally, the Katz
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measure, one of the best well-know link prediction metrics, is applied on the weighted

graph obtained in order to quantify the strength of social ties between users.

We have assessed the e�ciency of our framework through di�erent evaluation

techniques and comparisons with similar link prediction techniques applied on real

traces. One of the most important �ndings is the successful adaptation of this

framework to the context of mobile networks. In fact, we have proposed perform-

ing prediction in a distributed way: each node performs prediction relying on its

local information. Such a result is an important contribution which provide the

opportunity to implement it in a real context.

7.1.2 Improving Link Prediction E�ciency by Considering Link

and Proximity Stabilities

We have wondered if it is possible to improve the performance of our framework

and if we can consider a new criterion that characterizes the interactions between

nodes. We have derived a heuristic: if a stable contact or proximity (at two hops)

is observed during a period of time, this relationship is expected to be persistent in

the future. Hence, we have proposed to take into consideration the stability of the

relationship between each pair of nodes and to combine such an information with

the one provided by our tensor-based framework. Such combination is expected

to improve link prediction e�ciency. To compute this stability, we have opted for

the entropy estimator used in the Lempel-Ziv data compression, as it estimates

well the real value of the entropy of a time series, and we have adapted it to the

sequences of relationship stored by the third-order tensor. We have designed stability

quanti�cations for links and for proximities at two hops.

From this perspective, we have proposed to combine the stability measures with

the tensor-based link prediction framework outputs in order to provide new link

prediction metrics. Our aim has been to show that taking into account the stability

of relationship can be bene�cial to ful�l our aim of improving the e�ciency of our

link prediction framework. The evaluation led to verify the e�ectiveness of our

intuition has shown that considering the stability estimations enable us to improve

the e�ciency of our framework.

7.1.3 Other Works Towards the Improvement of the Evaluation

and the Design of Communication Protocols in Human-Centered

Wireless Networks

As we have stated, the major contribution of this thesis has been to provide e�cient

link prediction tools for human-centered wireless networks. Nevertheless, we have
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been concerned by providing mechanisms or metrics in order to enhance the evalu-

ation of communication protocols in such networks or to propose new mechanisms

that are able to overcome some constraints imposed by these networks.

Firstly, we have designed a joint model for the IEEE 802.15.4 physical and

medium access control layers. This joint model enables us to better estimate the

communication performance than the models that are limited to the medium access

control layer. This joint model has been proposed for the initiative of Smart Grid

to provide tools that evaluate wireless communications standards.

Secondly, we have been interested in the non-cooperative MANETs. In such

networks, the nodes can behave sel�shly and reject any forwarding request which

may fall down the network performance. To overcome this constraint, we have

proposed a self-learning repeated game framework inspired by "The Weakest Link"

TV game. Based on collecting gains by forming longest chains as possible between

each pair of source-destination and on punishment threats which highly penalize

misbehaving nodes, we have shown that our scheme outperforms two other self-

learning repeated game algorithms presented in the literature.

7.2 Future Research Directions

We present in this section perspectives which can be pursued on the contributions

of this thesis.

7.2.1 Implementing the Tensor-based Link Prediction Framework

on Real Testbeds

We have stressed that the tensor-based link prediction framework is perfectly adapted

to the mobile wireless networks. We have highlighted the fact that the link predic-

tion can be made in a distributed way (using local information instead of global

information). It will be challenging to implement this framework on real devices for

two reasons.

First, it will be interesting to validate our framework in a real scenario, to

measure the additional energy consumption due to recording data and computing

Katz scores and to study how the threshold value which determines the decision

relative to a score evolves to make better predictions. The threshold value indicates

whether the Katz score corresponds to a positive prediction (which means that the

score has higher value than the threshold) or a negative prediction (the opposite

case).

Second, it is important to prove that the link prediction feedback is really help-
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ful to enhance the performance of communication protocols. It will be attractive

to design or modify a communication protocol to make it sensitive to such a feed-

back. This issue seems to be very promising especially for opportunistic networks

where identifying suitable contact occurrences may lead to take better decisions to

ensure better delivery message for any source-destination pair. It will be also useful

to determine the frequency of refreshing the information and computing the link

prediction scores for a communication protocol that ensures the tradeo� between

energy consumption and delivery rate.

It is also crucial to focus on understanding how new links are created (links that

are not observed but keenly expected to occur). Some insights are provided in [103]

about characteristics of new links in mobile phone networks. It looks promising to

exploit these �ndings, con�rm and extend them to improve the identi�cation of such

links.

7.2.2 Investigating the Contributions of Other Expressions for the

Stability Measure

To improve the e�ciency of our tensor-based link prediction framework, we have

proposed to quantify link and proximity stabilities using an adapted entropy esti-

mator of a time series. Investigating other expressions of entropy and study their

e�ciency can be an attractive perspective. It is possible to design this entropy re-

lying on computing some probabilities. For example, if we consider the evolution of

a status of a link, it is possible to compute the entropy based on the probability of

having a link status change (going from 0 to 1 or inversely).

We have also pointed out that we have aimed to show that the entropy estimation

can be useful to obtain more accurate link prediction results without seeking if our

proposed entropy-based metrics provide the best performance. It is challenging

to study and to test other combinations between current/new entropy estimations

and the outputs of the tensor-based link prediction framework and to assess if it

is possible to �nd the best combination which ensures the highest link prediction

performance.

In Chapter 4, we have pointed out the contribution of the proximity stability

estimation in enhancing the prediction of new links. We think that working on the

design of entropy-based metrics which can provide better prediction performance is

promising as we have based our intuition on the �ndings of Song et al. [103].
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7.2.3 Exploiting the Joint Model for IEEE 802.15.4 PHY andMAC

Layers for Proposing New Performance Metrics

In the previous subsection, we have proposed to improve the performance of our

proposed link prediction framework by quantifying the stability of interactions be-

tween nodes. This contribution has also been motivated by our work [118]. In this

technical report, we have expressed our motivation to quantify spatiotemporal sta-

bility for links and consequently for nodes. Our motivation follows our concern to

provide a new metric which is able to improve routing decisions in wireless networks.

The metric that we want to express considers both the social relationship between

the nodes and the link quality. We have aimed, for the evaluation of entropy-based

metrics, to design a comprehensive model which allows us to make accurate sim-

ulations. We have opted for the IEEE 802.15.4 to start our investigations and we

have proposed, taking into account our willingness to improve evaluation of wire-

less networks, the joint model of PHY and MAC layers. To extend this model, we

have also thought to combine this joint model to the interference model proposed

by Qiu et al. [90] to reproduce closest conditions to the reality. Moreover, we have

opted for the Time-Variant Community mobility model (TVC model) [57] to create

a dynamic topology.

Once e�cient metrics are identi�ed, we plan to verify the e�ectiveness of our

�ndings on real testbeds and using the biased link sampling [121] and the algorithm

"Learn On Fly" [122]. The works [121, 122] have proven the e�ciency of data-

driven link estimation, using biased link sampling, to converge to an e�cient routing

solution, even with dynamic environment parameters (changing tra�c, evolving

topologies, . . . ).

7.2.4 Enhancing the Self-Learning Repeated Game

It would be challenging to test the Weakest Link framework on real testbeds. From

this perspective, we can be motivated by enhancing this framework by considering

the di�erent channel characteristics among nodes and relaxing the assumption that

a node is able to distinguish between a packet drop and a packet loss. We can

also take into consideration the residual energy for each node as a parameter in the

utility function. All these perspectives would be helpful to design a real cooperation

enforcement framework for multi-hop ad-hoc networks.
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Résumé en Français

B.1 Introduction

Les réseaux sans-�l mobiles et particulièrement ceux qui sont centrés sur l'être hu-

main ont connu une expansion importante ces dernières années. Ces réseaux sont

dépourvus d'infrastructure et permettent un déploiement dans des environnement

où il est di�cile voire impossible d'installer une infrastructure centralisée. Dans

cette catégorie de réseaux, nous trouvons les réseaux ad-hoc mobiles MANETs [33]

et les réseaux tolérants aux délais DTNs [43, 42].

Ces réseaux peuvent être sujets à des contraintes multiples. Nous pouvons citer

les ressources limitées des dispositifs ou des noeuds. En outre, ces réseaux sont

connus pour avoir des topologies très dynamiques à cause notamment de la mobilité

humaine. En e�et, il a été démontré dans [29, 59] que la mobilité humaine a un

impact important sur le réseau et par conséquent sur sa performance. Ainsi, il

s'avère impératif d'étudier et de maîtriser les propriétés de la mobilité humaine a�n

d'aspirer à concevoir des mécanismes de communications exploitant cette mobilité

et à évaluer plus e�cacement ces protocoles de communication.

Dans la littérature, nous pouvons trouver un ensemble pertinent de propriétés

caractérisant la mobilité humaine: lieux de visite préférés [57], mobilité dépendant

du moment de la journée [57] et régularité spatio-temporelle [16, 52, 106, 39, 77].

Nous avons été particulièrement intéressé par une propriété mettant en exergue

l'aspect social. En e�et, certains travaux à l'instar de [39, 78, 105] ont démontré

que la mobilité humaine est étroitement dépendante des intéractions sociales entre

les entités du réseau et que celle-ci est régie par des intentions à caractère social.

C'est ainsi que plusieurs travaux tels que [35, 59, 110] se sont basés sur des con-

cepts, métriques et techniques inspirés de l'analyse des réseaux sociaux connue sous

l'abréviation SNA (Social Network Analysis) pour proposer de nouveaux protocoles
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de communications ou des mécanismes capables de prédire les liens dans un réseau

social.

L'intérêt prononcé pour la SNA ainsi que les interactions sociales qui carac-

térisent les réseaux centrés sur l'aspect humain nous ont motivés pour proposer

un mécanisme capable de prédire les liens dans ces réseaux et qui soit adapté à

l'absence d'infrastructure centralisée. Il s'agit de la principale motivation de cette

thèse qui sera détaillée dans la section B.2. Nous avons également voulu contin-

uer dans l'optique de proposer des métriques et des techniques capables d'améliorer

l'évaluation et la performance des protocoles de communication dans des contextes

bien précis. Nous livrons quelques détails sur ces travaux dans la section B.3. Ce

résumé sera conclu par la section B.4 dans laquelle nous rappelons les contributions

majeures de cette thèse et nous proposons de nouvelles perspectives de recherche.

B.2 Proposition de Méthode et de Métriques pour la

Prédiction des liens dans les Réseaux Mobiles Sans-

Fil Centrés sur l'Aspect Humain

B.2.1 Mobilité Humaine, Analyse des Réseaux Sociaux et Prédic-

tion des Liens

La mobilité humaine représente un paramètre crucial pour les réseaux sans-�l mo-

biles. Ainsi, il est primordial d'étudier cette mobilité a�n de comprendre ses car-

actéristiques intrinsèques et exploiter ces propriétés. Cette étude est réalisée dans

l'optique de concevoir et/ou évaluer les protocoles de communication dans ces réseaux.

Vers la Compréhension de la Mobilité Humaine

Pour reproduire la mobilité humaine, deux modèles individuels ont été proposés: le

Random Walk [41] et le Random Waypoint [62]. Plusieurs autres modèles, décrits

notamment dans [26, 79], s'en sont inspirés. Néanmoins, ces modèles restent peu

�ables quant à la reproduction �dèle de la mobilité humaine [29, 79]. Par souci

d'exhaustivité, plusieurs chercheurs ont procédé à la collecte d'informations sur la

mobilité humaine dans des cas réels (campus universitaires, conférences, . . . ) et

notamment les rencontres entre les utilisateurs du réseau. Dès lors, il est possible

d'extraire des propriétés de cette mobilité humaine et de mettre en oeuvre des

simulations qui se rapprochent indéniablement des cas réels.

Deux catégories de traces ont été considérées. D'une part, nous trouvons les

traces dont les rencontres sont déduites à partir des correspondances avec les mêmes
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points d'accès [5, 16, 52, 106, 39, 66]. D'autre part, d'autres initiatives se sont �xées

l'objectif de recueillir les rencontres directes entre les dispositifs mobiles pour fournir

un traçage plus �dèle des interactions entre les noeuds. Ces deux catégories de traces

ont été largement uilisées pour extraire des caractéristiques intrinsèques à la mobilité

humaine dont nous citons les plus importantes:

• Préférences prononcées pour certains lieux [57].

• Comportement dépendant du temps [57].

• Régularité spatio-temporelle [16, 52, 106, 39, 77].

• Distribution en loi de puissance des temps d'inter-contact entre les noeuds

[58, 29, 63].

Outre ces propriétés, certains travaux tels que [39, 78, 105] ont démontré que les

interactions sociales entre les utilisateurs du réseau ont un impact sur leur mobilité.

Dès lors, ces interactions régissent la structure du réseau. Pour exploiter l'aspect

social, extraire des informations structurelles du réseau et concevoir de nouveaux

protocoles de communications, plusieurs techniques et métriques ont été empruntées

de l'analyse des réseaux sociaux (Social Network Analysis ou SNA) [111].

L'Analyse des Réseaux Sociaux et la Prédiction des Liens

Etant donné que les réseaux sans-�l mobiles sont dépourvus d'infrastructures et

que l'aspect opportuniste des communications peut prévaloir, l'analyse des réseaux

sociaux a été considérée comme une autre technique de mesure pour les réseaux (les

techniques de mesure traditionnelles se penchent sur des mesures de performance

telles que les délais et la probabilité de livraison des messages). Ainsi, l'analyse des

réseaux sociaux décortique les interactions entre les noeuds dans le réseau pour en

extraire des propriétés structurelles (évolution de la topologie, robustesse du réseau,

les noeuds centraux, les communautes émergentes, . . . ). Cet outil a été largement

utilisé pour fournir des protocoles de communication s'inspirant de l'aspect social

telles que les approches proposées dans [35, 59, 56].

L'analyse des réseaux sociaux a également inspiré Liben-Nowell et Kleinberg [74]

pour introduire le problème de prédiction de liens dans les réseaux sociaux. En e�et,

ils se sont posés la question suivante: étant donné une capture d'un réseau social

à un instant t, comment pourrait-on prédire, d'une manière sûre, les liens qui vont

s'ajouter au réseau durant l'intervalle de temps [t′ − t] où t′ représente un instant

futur?
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Pour répondre à cette question, Liben-Nowell et Kleinberg soulignent que les

propriétés intrinsèques du réseaux sont capables de donner des indications sur la

structure future. Pour argumenter cette hypothèse, ils se sont proposés de prédire

les liens dans des réseaux sociaux (réseaux d'auteurs en l'occurrence tels que arXiv

[4] et DBLP [6]) à l'aide de métriques se basant sur les voisins communs et sur la

structure des liens entre chaque paire de noeuds. À travers leurs simulations, Liben-

Nowell et Kleinberg ont démontré que leur hypothèse est fondée. Dans le même

esprit, plusieurs travaux ont mis en exergue la pertinence de certaines métriques

pour appliquer la prédiction dans les réseaux sociaux à l'instar de [8, 15, 38, 70, 110,

98]. En plus, certains parmi eux ont démontré la capacité de la mesure de Katz

[65] à atteindre régulièrement des performances meilleures que les autres métriques

présentées dans la littérature.

Inspirés par l'application de l'analyse des réseaux sociaux pour prédire les liens

dans ces réseaux, nous nous sommes proposés d'exploiter les interactions qui peuvent

exister dans les réseaux mobiles sans-�l comme ils sont bâtis autour d'utilisateurs

humains. Dans la section suivante, nous détaillons notre méthode de prédiction de

liens basée sur les tenseurs. Cette méthode sera utilisée pour analyser les interactions

entre les entités du réseaux, quanti�er la force de leurs liens sociaux et exploiter ces

mesures pour prédire l'occurrence des liens radios dans le futur.

B.2.2 Méthode de Prédiction des Liens Basée sur les Tenseurs pour

les Réseaux Sans-Fil Mobiles

Introduction

Durant les dernières années, plusieurs travaux de recherche se sont intéressés aux

dé�s et challenges posés par les réseaux mobiles sans-�l. Dans ces réseaux, les con-

tacts entre les noeuds ainsi que leurs propriétés s'imposent comme des paramètres

clés à prendre en compte pour les protocoles de communication [56]. En e�et, les

interactions sociales entre les utilisateurs du réseau in�uent sur leur mobilité et ainsi

sur la structure du réseau [57, 105]. Dès lors, il s'avère important de suivre et de

comprendre les comportements des utilisateurs pour fournir une base de connais-

sances pro�table aux protocoles de communication. C'est dans cette optique que

nous proposons de fournir une méthode qui enregistre des données topologiques du

réseau durant un temps de suivi de T périodes, qui extrait à partir de ces données

la force des relations sociales entre les di�érentes entités et utilise ces mesures pour

la prédiction des liens pour la période T + 1. Nous détaillons dans ce qui suit la

méthode de prédiction des liens basée sur les tenseurs que nous proposons.
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Description de la Méthode de Prédiction des Liens Basée sur les Tenseurs

La méthode de prédiction des liens que nous proposons s'articule autour d'étapes

caractéristiques, comme le présente la �gure B.1. Si nous considérons un réseau à

topologie variable, la première étape consiste à diviser le temps de suivi de l'évolution

de la topologie du réseau en T périodes (dans l'exemple de la �gure B.1, T=4). À

chaque période, la méthode recense tous les contacts dans une matrice d'adjacence

(pour une paire de noeuds (i, j), si un contact a eu lieu entre ces deux noeuds,

la matrice d'adjacence assignera la valeur 1 à cette paire et 0 si aucun contact

n'est détecté). L'ensemble de ces matrices d'adjacence forme le tenseur Z. Ainsi, la

matrice Zp du tenseur Z traduit les contacts relevés dans le réseau durant la période

p et la valeur Zp(i, j) indique s'il y a eu contact entre les noeuds i et j durant cette

période p. Suite à la phase de collecte des données, il s'agit de compresser toutes

ces informations dans une matrice appelée tenseur comprimé pondéré et notée X.

La matrice X va a�ecter à chaque lien (i, j) un coe�cient relatif à sa récence et à

sa fréquence. Pour obtenir les valeurs de la matrice X, nous appliquons la formule

suivante:

X(i, j) =

T
∑

p=1

(1− θ)T−p
Zp(i, j) (B.1)

où X désigne le tenseur comprimé pondéré du tenseur Z et θ est un paramètre

utilisé pour ajuster le poids relatif à la récence et est compris entre 0 et 1.

Finalement, pour mesurer l'intensité des relations sociales entre les noeuds, nous

appliquons la formule de Katz [65] pour obtenir la matrice des scores S. Dans

la littérature, la mesure de Katz a été utilisée pour mesurer la proximité dans le

réseau d'une paire de noeuds (i, j) [74, 8, 38, 103] et a été employée pour prédire

l'occurrence de liens dans le réseau en se basant notamment sur la proximité (qui

exprime une certaine similarité dans la mobilité). Cette mesure sociométrique, pour

une paire de noeuds (i, j), s'exprime par la somme pondérée du nombre de chemins

qui connectent le noeud i au noeud j. Ainsi, le score de Katz S(i, j) pour la paire

de noeuds (i, j) est donné par l'équation suivante:

S(i, j) =
+∞
∑

ℓ=1

βℓ|Pℓ(vi, vj)| (B.2)

où β est un paramètre dé�ni par l'utilisateur, appelé facteur d'amortissement et

compris entre 0 et 1 (généralement, ce paramètre est proche de 0 par souci de

convergence). L'expression βℓ dé�nit le poids d'un chemin de longueur ℓ sauts. Le

paramètre |Pℓ(vi, vj)| désigne le nombre de chemins, ayant un nombre de sauts ℓ,
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(1) Collect the adjacency matrix over successive periods of time

(2) Collapse the different slices into one matrix (3) Compute the Katz  Scores 

 

 

 1 2 3 4     1 2 3 4     1 2 3 4     1 2 3 4 

1 0 1 1 1    1 0 0 1 1    1 0 0 1 0    1 0 1 1 1 

2 1 0 0 0    2 0 0 0 1    2 0 0 1 1    2 1 0 0 1 

3 1 0 0 1    3 1 0 0 1    3 1 1 0 0    3 1 0 0 0 

4 1 0 1 0    4 1 1 1 0    4 0 1 0 0    4 1 1 0 0 

 

 

 

 

 1 2 3 4 

1 0 1.512 2.952 2.152 

2 1.512 0 0.8 2.44 

3 2.952 0.8 0 1.152 

4 2.152 2.44 1.152 0 

 1 2 3 4 

1 0 0.0015 0.003 0.0022 

2 0.0015 0 0.0008 0.0024 

3 0.003 0.0008 0 0.0012 

4 0.0022 0.0024 0.0012 0 

1 2 

3 4 

t=1 

1 2 

3 4 

t=2 

1 2 

3 4 

t=3 

1 2 

3 4 

t=4 

Figure B.1: Exemple de calcul de la matrice S

connecte vi à vj .

Ainsi, plus un chemin connectant deux noeuds est long et plus son poids est

faible.

Il est également possible d'appliquer la mesure de Katz sur une matrice d'adjacence.

Nous proposons de calculer la matrice S à partir du tenseur comprimé pondéré X

à l'aide de l'expression suivante:

S =

+∞
∑

ℓ=1

βℓ ·Xℓ = (I− β ·X)−1 − I (B.3)

où I représente la matrice identité.

La détermination de la matrice S permet de quanti�er l'intensité des relations

sociales entre chaque paire de noeuds (i, j). Comme dé�nie précédemment, la mesure

de Katz privilégie les chemins courts entre une paire de noeuds. Ainsi, plus les

chemins sont courts et nombreux, plus le score de Katz est élevé ce qui logiquement

exprime une proximité prononcée (un nombre de voisins communs assez important)

et par suite d'importantes liaisons sociales et une similarité dans la mobilité. Dès

lors, la matrice des scores de Katz S donnera des indications sur la relation entre

chaque paire de noeuds et par conséquent sur la possibilité d'observer un lien entre

eux dans le futur.

Dans le cas où l'on suppose qu'il peut y avoir une entité centrale capable de

scruter et de suivre la topologie de tout le réseau, le calcul de la matrice des scores

S peut se faire d'une manière centralisée. Cependant, dans le contexte de réseaux
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sans-�l, mobiles et dépourvus d'infrastructure, il serait judicieux de penser à une

alternative pour pouvoir prédire les liens. À partir de cette perspective, nous pro-

posons d'appliquer la prédiction des liens d'une manière distribuée. En d'autres

termes, nous concevons que chaque noeud prédise ses liens à l'aide de l'information

locale sur son voisinage (voisins à un et deux sauts).

Evaluation des performances et Résultats de Simulation

Pour évaluer notre méthode de prédiction des liens et notamment l'approche dis-

tribuée de la prédiction, nous considérons trois traces réelles:

• Première Trace: trace du campus de Dartmouth: Nous choisissons la

trace du 05/01/2006 [5] et nous considérons l'évolution du réseau de 8h à 18h.

Nous construisons le tenseur en tenant en compte tous les contacts observés

entre 8h et 15h (7 heures). Les rencontres se passant entre 15h et 18h sont

considérés comme des évènement futurs. Le nombre total de noeuds détectés

dans cette trace est 1018.

• Seconde Trace: trace du campus de MIT: Nous nous intéressons à la

trace du 23/07/2002 [16] et nous retenons les mêmes considérations horaires

que pour la trace précédente. Le nombre de noeuds relevé est 646.

• Troisème Trace: trace d'Infocom 2006: Nous considérons les rencontres

ayant eu lieu le 25/04/2006 [95] de 8h à 18h entre les 98 noeuds impliqués

dans la collecte de contacts (70 d'entre eux sont portés par des personnes). La

construction du tenseur se base sur les évènements se déroulant de 8h à 14h.

Les évènements entre 14h et 18h sont considérés comme des évènement futurs.

Pour chaque trace, nous divisons le temps de suivi en périodes et nous envis-

ageons di�érentes longueurs pour ces périodes: 5, 10 et 30 minutes. Ce paramètre

là va �xer la taille du tenseur. Ainsi, Pour la trace du campus de Dartmouth, nous

aurons respectivement un nombre de périodes total T égal, respectivement, à 96,48

et 16 pour couvrir les 8 heures de suivi.

Pour analyser les performances de notre proposition, nous proposons dans un

premier temps de représenter les courbes ROC (Receiver Operating Characteristic

curve) [44] pour la prédiction desn liens à la période T + 1. En considérant les

résultats obtenus après l'application de la prédiction des liens sur la trace du campus

de Dartmouth par exemple répertoriés dans la �gure B.2 (les résultats sont similaires

pour les autres traces), nous soulignons les remarques suivantes:
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• La méthode de prédiction est e�cace vu que les courbures des courbes ROC

sont proches du coin supérieur gauche de la �gure et qu'ils sont loin de la ligne

représentative de la prédiction aléatoire (random guess).

• Le recours a des périodes courtes pour diviser le temps de suivi permet une

meilleure appréciation de l'évolution de la topologie et meilleure précision pour

e�ectuer les prédictions.

• L'application de la prédiction des liens, que ce soit pour le cas centralisé ou le

cas distribué, atteint les mêmes performances ce qui indique que l'application

de la prédictions des liens peut s'e�ectuer d'une manière distribuée et adaptée

aux réseaux sans-�l mobiles.

Dans un second temps, nous évaluons notre approche à l'aide de métriques de

performance: l'Area Under the ROC Curve notée AUC [44], le ratio des tops scores à

la période T +1 noté TSR, l'exactitude notée ACC [44] et la F-Measure [108]). Pour

une évaluation exhaustive, nous comparons notre approche à d'autres métriques

utilisées dans la littérature: Voisins Communs, Salton Index [94], Jaccard Index [61],

Sørensen Index [104], Hub Promoted Index (HPI) [92], Hub Depressed Index (HDI),

Adamic-Adar Index [10], Resource Allocation Index [126] et Rooted PageRank Index

[102]. Nous utilisons également les poids obtenus à l'aide du tenseur comprimé

pondéré X pour la comparaison.

Dans cette évaluation, nous voudrons mettre exergue la capacité de chacune des

méthodes à satisfaire deux tâches de prédictions. La première consiste à de prédire

les liens durant la période T +1 à l'instar de l'évaluation avec les courbes ROC. La

seconde s'intéresse à l'identi�cation des nouveaux liens. Ce sont des liens potentiels

qui n'ont pas été observés durant le temps de suivi et dont l'occurence a été constatée

durant la période considérée comme future.

Pour chacune des méthodes de prédiction, nous calculons la distance par rapport

au cas parfait (AUC=1, TSR=100%, ACC=100% and F-Measure=1). Pour une

approche a, cette distance est exprimée comme suit:

Distance(a) =
√

(1−AUC(a))2 + (1− TSR(a))2 + (1−ACC(a))2 + (1− F1(a))2

(B.4)

La table B.1 présente les résultats d'évaluation obtenus avec les métrique de per-

formances et la compraison de notre approche par rapport aux autres méthodes de

prédiction. Des résultats similaires ont été obtenus pour les autres traces. Ces résul-

tats con�rment dans un premier temps les conclusions tirés à l'issue de l'évaluation

avec les courbes ROC. Après la véri�cation des capacités de chacune des méthodes

à prédire les liens durant la période T + 1 et ceux qui sont potentiels, il s'avère que
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(a) Période du tenseur égale à 5 minutes

(b) Période du tenseur égale à 10 minutes

(c) Période du tenseur égale à 30 minutes

Figure B.2: Courbes ROC pour les di�érents cas de prédictions de liens appliqués
sur la trace du campus de Dartmouth

notre méthode est la plus adéquate pour atteindre les meilleures performances pour

les deux cas de prédictions et ceci est clairement souligné par le calcul de distance
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Table B.1: Métriques d'Evaluation pour la Prédiction de tous les Liens Appliquée
sur la Trace du Campus de Dartmouth

h
h
h

h
h

h
h
h
h

h
h
h

h
h

h
hh

Prediction Cases
Metrics All Links Prediction at T+1 New Links Prediction

AUC TSR ACC F1 Dist. AUC TSR ACC F1 Dist.

t=
5
m
in
s

Distributed Case 0.9932 93.70% 99.90% 0.9407 0.0868 0.6834 7.14% 99.81% 0.0063 1.3964

Centralized Case 0.9905 93.61% 99.90% 0.9416 0.0871 0.5920 7.04% 99.81% 0.0063 1.4206

Collapsed Weighted Tensor 0.9932 93.48% 99.90% 0.9428 0.0870 � � � � �

Common Neighbors 0.9911 83.48% 99.57% 0.6946 0.3474 0.6836 7.46% 99.81% 0.0063 1.3942

Salton Index 0.9923 86.96% 99.77% 0.8692 0.1849 0.6834 5.46% 99.81% 0.0042 1.4091

Jaccard Index 0.9921 87.38% 99.78% 0.8741 0.1785 0.6830 5.67% 99.81% 0.0042 1.4078

Sørensen Index 0.9922 85.88% 99.76% 0.8591 0.1996 0.6834 5.67% 99.81% 0.0042 1.4077

Hub Prom. Index 0.9922 86.36% 99.77% 0.8612 0.1948 0.6834 5.57% 99.81% 0.0042 1.4084

Hub Depr. Index 0.9919 84.12% 99.73% 0.8404 0.2253 0.6832 5.25% 99.81% 0.0041 1.4107

Adamic-Adar Index 0.9923 87.88% 99.79% 0.8787 0.1717 0.6835 8.09% 99.81% 0.0021 1.3931

Resource Alloc. Index 0.9926 91.87% 99.85% 0.9176 0.1160 0.6837 7.14% 99.81% 0.0021 1.3993

Rooted PageRank Index 0.9889 90.53% 99.81% 0.8864 0.1483 0.5638 3.99% 99.80% 0.0041 1.4505

t=
1
0
m
in
s

Distributed Case 0.9915 90.26% 99.84% 0.9093 0.1334 0.6831 6.09% 99.81% 0.0063 1.4035

Centralized Case 0.9883 90.19% 99.84% 0.9091 0.1343 0.6097 6.30% 99.81% 0.0164 1.4134

Collapsed Weighted Tensor 0.9900 93.48% 99.84% 0.9032 0.1171 � � � � �

Common Neighbors 0.9890 80.41% 99.52% 0.6575 0.3947 0.6837 6.41% 99.81% 0.0063 1.4012

Salton Index 0.9904 84.20% 99.73% 0.8427 0.2232 0.6835 5.36% 99.81% 0.0042 1.4098

Jaccard Index 0.9902 83.85% 99.71% 0.8349 0.2312 0.6830 5.46% 99.81% 0.0144 1.4020

Sørensen Index 0.9903 83.24% 99.72% 0.8351 0.2353 0.6836 5.46% 99.81% 0.0144 1.4019

Hub Prom. Index 0.9903 83.46% 99.73% 0.8317 0.2362 0.6835 5.04% 99.81% 0.0041 1.4120

Hub Depr. Index 0.9899 81.17% 99.69% 0.8144 0.2646 0.6834 4.73% 99.81% 0.0041 1.4141

Adamic-Adar Index 0.9904 83.87% 99.71% 0.8377 0.2290 0.6838 6.30% 99.81% 0.0063 1.4019

Resource Alloc. Index 0.9908 88.34% 99.80% 0.8857 0.1636 0.6838 5.78% 99.81% 0.0063 1.4054

Rooted PageRank Index 0.9871 87.67% 99.74% 0.8439 0.1994 0.5855 3.57% 99.80% 0.0020 1.4483

t=
3
0
m
in
s

Distributed Case 0.9813 82.31% 99.69% 0.8261 0.2488 0.6860 5.57% 99.81% 0.0042 1.4078

Centralized Case 0.9764 82.56% 99.69% 0.8272 0.2467 0.6180 6.51% 99.81% 0.0042 1.4183

Collapsed Weighted Tensor 0.9742 81.49% 99.70% 0.8343 0.2498 � � � � �

Common Neighbors 0.9782 71.25% 99.52% 0.5450 0.5387 0.6871 6.83% 99.81% 0.0042 1.3991

Salton Index 0.9799 76.00% 99.57% 0.7535 0.3447 0.6867 5.78% 99.81% 0.0021 1.4077

Jaccard Index 0.9796 75.12% 99.55% 0.7454 0.3566 0.6866 5.88% 99.81% 0.0021 1.4071

Sørensen Index 0.9797 75.47% 99.56% 0.7471 0.3529 0.6866 5.67% 99.81% 0.0021 1.4085

Hub Prom. Index 0.9798 76.02% 99.58% 0.7573 0.3418 0.6865 5.15% 99.81% 0.0021 1.4120

Hub Depr. Index 0.9793 73.89% 99.52% 0.7321 0.3747 0.6867 5.78% 99.81% 0.0021 1.4077

Adamic-Adar Index 0.9800 74.16% 99.52% 0.7374 0.3690 0.6874 6.83% 99.81% 0.0042 1.3991

Resource Alloc. Index 0.9806 80.32% 99.64% 0.7976 0.2830 0.6878 7.14% 99.81% 0.0021 1.3984

Rooted PageRank Index 0.9750 78.24% 99.56% 0.7826 0.3086 0.6076 4.52% 99.80% 0.0021 1.4358

par rapport aux cas parfait.

Conclusion

Nous avons proposé une méthode capable de prédire les liens dans les réseaux sans-

�l mobilé bâtis autour des communautés haumaines. Cette méthode suit l'évolution

de la topologie ou du voisinage et quanti�e l'intensité des relations sociales entre

les entités du réseaux. Une telle quanti�cation, obtenue à l'aide de la mesure de

Katz, donne des indications intéressantes quant à l'occurrence des liens dans le futur.

Les résultats con�rment que notre méthode est capable d'atteindre les meilleures

performances.

Cependant, nous pensons que la méthode que nous proposons peut être améliorée
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en considérant un autre critère qui caractérise les relations entre les entités du réseau.

Ce critère est celui de la stabilité. Nous détaillons dans la section suivante comment

la considération de la stabilité peut être pro�table à l'amélioration de la prédiction

des liens, comment la quanti�er et comment l'utiliser avec la méthode de prédiction

des liens basée sur les tenseurs.

B.2.3 Amélioration de la Méthode de Prédiction des Liens en Con-

sidérant les Stabilités de Lien et de Proximité

Introduction

Comme détaillé précédemment, nous avons proposé une méthode de prédiction des

liens basée sur le suivi de la topologie du reseau durant un certain nombre de péri-

odes et l'application de la mesure de Katz pour quanti�er le degré de similarité

des modèles de mobilités des entités du réseau. L'une des principales contributions

apportées par notre approche est la possibilité d'adapter cette méthode à un con-

texte distribué, c'est-à-dire que les noeuds peuvent prédire leurs futurs liens en se

basant sur l'information recueillie au niveau du voisinage à un et deux sauts. Cette

contribution qui est très importante nous a encore incités à améliorer notre méth-

ode. Pour ce faire, nous nous sommes intéressés à la stabilité des relations entre les

entités du réseau en y voyant un indicateur crédible capable de nous mener vers des

prédictions plus �ables.

Comment la Stabilité d'un Lien et la Stabilité de Proximité Peuvent

Améliorer la Prédiction?

En ce qui concerne la stabilité d'un lien, nous nous sommes basés sur l'heuristique

suivante: quand deux entités du réseaux ont des liens sociaux forts, l'apparition d'un

lien entre eux est très plausible. En plus, si ce lien existe, il est attendu qu'il soit

stable et persévérant. Ainsi, la stabilité d'un lien renforce la possibilité d'observer

un tel lien dans le futur. Pour la stabilité de proximité (stabilité de la relation à

deux sauts), celle-ci peut renseigner sur l'occurrence d'un lien dans le futur. Si la

relation est stable, la mesure de Katz renseigne bien sur la présence du lien, sinon,

il est clair que le lien est imprévisible et donc di�cile à estimer sa présence dans le

futur.

Dès lors, quanti�er la stabilité peut s'avérer très intéressant pour améliorer les

performances de notre méthode de prédiction basée sur les tenseurs. Nous nous

sommes inspirés de la thermodynamique [21] et de la théorie de l'information [97]

pour opter pour l'entropie comme métrique capable de quanti�er la stabilité. Dans
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ce qui suit, nous expliquons comment estimer la stabilité d'une relation entre deux

noeuds.

Quanti�er la Stabilité à l'Aide d'une Estimation de l'Entropie de Séries

Chronologiques

Pour notre approche, nous nous sommes intéressés à l'estimateur d'entropie util-

isé dans l'algorithme de compression de données de Lempel-Ziv [127, 67]. Cette

métrique estime bien l'entropie d'une serie chronologique. Pour une séquence de n

étapes, l'entropie est estimée à l'aide de l'expression suivante:

Sest =

(

1

n

∑

i

Λi

)−1

lnn (B.5)

où Λi représente la longueur du plus court mot à partir de la position i et qui n'a

pas été observé précédemment dans la séquence (entre la position 1 et i− 1).

Cet estimateur a été exploité pour trouver le nombre de bits nécessaires pour

coder une séquence de lettres alphabétiques. Dans notre cas, nous nous basons sur

les états des liens fournis par la construction des tenseurs. Chaque noeud a ainsi

deux séquences qui dé�nissent sa relation avec chacun des noeuds qu'il a détecté: une

séquence pour l'état du lien et une séquence pour l'état de proximité à deux sauts.

Ces séquences sont des successions de uns et/ou de zeros relatives à la succession des

périodes de suivi de la topologie. Dès lors, nous proposons l'estimateur d'entropie

El
T (i, j) qui quanti�e la stabilité d'un lien entre les noeuds i and j sur T périodes.

Il est donné par l'expression suivante:

El
T (i, j) =

(

1

n

T
∑

t=1

Λt(Zt(i, j))

)−1

lnn (B.6)

où Λt(Zt(i, j)) est la longueur du mot le plus court à partir de la période t et qui

n'a pas été détecté entre les périodes 1 et t− 1.

En suivant la même approche, nous dé�nissons l'estimateur d'entropie Ep
T (i, j)

qui quanti�e la stabilité de proximité. Cet estimateur est calculé en appliquant l'Eq.

B.6 tout en substituant la valeur Zt(i, j) par l'état de proximité à deux sauts antre

les noeuds i et j à la période t.

L'estimateur d'entropie utilisé scrute une séquence et identi�e les mots les plus

courts étape par étape. Si les mots les plus courts tendent à devenir longs, ceci

explique qu'il y a redondance. La redondance coïncide dans ce cas avec stabilité

puisque les mots longs limitent le nombre de mots trouvés et diminue par la suite

l'estimation de l'entropie. D'autre part, si les mots identi�és prennent fréquemment
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les combinaisons les plus courtes possibles, ceci indique plutôt une relation imprévis-

ible. En e�et, identi�er des mots qui tendent à être parmi les plus courts possible

augmente substantiellement le nombre de mots trouvés et accroît en conséquence

l'estimation de l'entropie.

Pour tirer pro�t de ses mesures de stabilité, il serait judicieux de les exploiter

simultanément avec la méthode de prédiction des liens basée sur les tenseurs. Nous

proposons dans la suite di�érentes techniques de combinaisons entre les estimations

d'entropie et les métriques fournies par notre méthode de prédiction a�n de fournir

de nouvelles métriques de prédiction des liens.

Jointure des Mesures de Stabilité avec le Méthode de Prédiction des

Liens Basée sur les Tenseurs

À travers nos investigations sur la méthode de prédiction des liens, nous avons fourni

des métriques caractérisant les liens entre les entités du réseau à travers leur récence

et leur fréquence. Nous avons également mis en exergue le critère de stabilité des

relations en proposant des métriques construites autour de l'estimation de l'entropie.

Nous pensons fortement que ces deux catégories de métriques sont complémentaires

et que leur combinaison permet de concevoir de nouvelles métriques de prédiction

encore plus performantes. Nous présentons di�érents types de combinaisons qui

nous ont permis de dé�nir ces nouvelles métriques:

• Combiner le poids fourni par le tenseur comprimé pondéré X(i, j) avec la

stabilité du lien El
T (i, j) relatifs aux T périodes de suivi pour calculer le XE

score.

• Combiner l'intensité des relations sociales exprimée par la mesure de Katz

S(i, j) avec la stabilité du lien El
T (i, j) relatifs aux T périodes de suivi pour

calculer le SE score.

• Combiner le tenseur comprimé pondéré X avec la matrice exprimant les stabil-

ités des liens El
T relatifs à un suivi sur T périodes et appliquer la formulation

de Katz sur cette combinaison pour calculer le XES score.

• Appliquer la mesure de Katz sur un nouveau tenseur comprimé pondéré Xnew

pour calculer le XNS score. Plusieurs variantes peuvent être envisagées pour

cette nouvelle métrique. En e�et, le nouveau tenseur comprimé pondéré va

prendre en considération, outre l'état du lien:

� La stabilité du lien au niveau de chaque période (XNS1 score).
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� La stabilité de proximité à deux sauts au niveau de chaque période(XNS2

score).

� Les deux mesures de stabilité ensemble (XNS3 score).

À travers ces nouvelles métriques, nous visons à démontrer que considérer le

paramètre de stabilité dans les relations entre les entités du réseau participe ac-

tivement à l'amélioration des performances de prédiction. Nous pratiquons des

simulations a�n de véri�er l'exactitude de notre intuition.

Evaluation des Performances et Analyse des Résultats

Nous considérons les mêmes traces détaillées dans la section B.2.2 et nous nous

proposons de suivre l'évolution de la topologie du réseau pour toutes ces traces de

8h à 16h. Nous divisons ce temps de suivi sur des périodes de longueurs di�érentes:

5, 10, 30 et 60 minutes. Ainsi, il est nécessaire de considérer respectivement un

nombre T de périodes égal à 96, 48, 16 et 8 périodes pour couvrir tout le temps

de suivi et construire les tenseurs relatifs. Pour l'évaluation, nous avons recours

à des métriques déjà utilisées dans la section B.2.2: le ratio des top scores à la

période T + 1, l'exactitude des prédictions et la F-Measure. Nous présentons dans

la �gure B.3 les résultats d'évalution des métriques basées sur l'entropie pour la

prédiction des liens à la période T +1 pour la trace relative au campus de MIT. Les

performances de nos propositions sont comparées avec celles de/d'une/des:

• Notre méthode de prédiction basée sur les tenseurs et le calcul de la mesure

de Katz.

• Métriques de prédiction de liens exprimant la proximité des noeuds qui sont

les mesures d'Adamic-Adar [10] et le coe�cient de Jaccard [61, 94].

• Métriques de prédiction des liens se basant sur l'homophilie de la mobilité qui

sont le spatial cosine similarity et le co-location rate [110].

• Métrique exprimant la similarité des lieux visités par les entités du réseau

[105].

Il est à noter que les résultats obtenus pour les autres traces sont similaires.

Les résultats obtenus nous permettent de tirer deux grandes conclusions:

• La comparaison de la performance de la méthode de prédiction des liens basées

sur les tenseurs avec les autres techniques présentées dans la littérature reforce

notre conviction sur le choix d'utilisation de la mesure de Katz.
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(a) Ratio des Top Scores à la Période T+1

(b) Exactitude (pourcentage dépassant 99%)

(c) F-Measure

Figure B.3: Métriques d'Evaluation pour Di�érentes Techniques de Prédiction Ap-
pliquées sur la trace du Campus de MIT

• La comparaison des performances des métriques basées sur l'estimation de la

stabilité des relation avec celle de notre méthode souligne le fondement de notre
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Table B.2: Paramètres de Simulation pour la Véri�cation de l'E�cacité de la
Métrique SE2hops score pour l'Amélioration de la Prédiction des Nouveaux Liens

Trace Temps de Suivi Temps durant lequel
les contacts sont
considérés comme

futurs

Campus de MIT
(23/07/02)

de 8h à 14h de 14h à 18h

Campus de Dartmouth
(05/01/06)

de 8h à 14h de 14h à 18h

Infocom 2006
(25/04/06)

de 8h à 13h30 de 13h30 à 18h

intuition et de l'apport indéniable de la considération du critère de stabilité

pour améliorer la qualité de la prédiction (au pire des cas, trois métriques

sur six basées sur l'estimation d'entropie permettent d'avoir des performances

meilleures que celle de notre méthode)

Nous nous sommes également intéressés au potentiel de ces mesures de stabilité

pour améliorer la prédiction des nouveaux liens. Motivés par les conclusions avancées

dans [110] qui stipulent que la majorité des nouveaux liens se crée entre deux noeuds

qui sont régulièrement séparés par deux sauts lors du temps de suivi. Nous nous

sommes proposés de fournir une métrique que nous avons appelée SE2hops score.

Il s'agit de combiner la mesure de similarité S(i, j) avec l'estimation de la stabilité

de proximité Ep
T (i, j). En prenant en considération les paramètres de simulation

résumés dans la table B.2 et deux longueurs di�érentes pour les périodes de suivi (5

et 10 minutes), nous observons que la métrique SE2hops score est capable d'avoir de

meilleures performances par rapport à la méthode de prédiction utilisant la mesure

de Katz pour les scénarios relatifs aux traces du campus de MIT et d'Infocom 2006

ce qui indique que le recours à la mesure de stabilité peut également renforcer la

qualité de la prédiction des nouveaux liens et que l'investigation sur de futures

améliorations s'impose comme une piste de recherche sérieuse.

Conclusion

Nous avons présenté dans cette première partie une méthode capable de prédire

les liens entre les entités d'un réseau sans-�l mobile caractérisé par des interactions

humaines. Cette méthode s'appuie sur l'identi�cation des relations sociales entre

ces entités et exploiter ces connaissances pour estimer la topologie du réseau dans

le futur. Cette méthode utilise la mesure de Katz qui s'est avérée être l'une des

plus puissantes métriques en terme de prédiction des liens dans des réseaux à car-

actère social. Nos simulations sur des traces réelles nous ont permis entre autres

de démontrer que le choix de cette métrique s'impose. La contribution majeure
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Table B.3: Ratio des Top Scores dans le Futur: Comparaison entre la performance
de la métrique SE2hops score et celle de la mesure de Katz dans la prédiction des
nouveaux liens

Trace Longueur de la
Période de Suivi t

Métrique de
Prédiction

TSR dans le futur

MIT Campus
5 minutes

Katz Measure 13,49%
SE2hops Score 14,09%

10 minutes
Mesure de Katz 13,22%
SE2hops Score 13,44%

Dartmouth Campus
5 minutes

Mesure de Katz 9,10%
SE2hops Score 8,36%

10 minutes
Mesure de Katz 9,28%
SE2hops Score 8,55%

Infocom 2006
5 minutes

Mesure de Katz 16,96%
SE2hops Score 18,75%

10 minutes
Mesure de Katz 9,82%
SE2hops Score 9,82%

apportée par la proposition d'une telle méthode est sa possible application d'une

manière distribuée. Ainsi, les noeuds eux-mêmes peuvent prédire leurs propres liens

et l'information locale (relative au voisinage) est su�sante pour réaliser cette tâche.

Nous avons également poursuivi nos recherches sur de possibles améliorations

quant à la qualité des prédictions. En e�et, nous nous sommes basés sur deux critères

caractérisant les relations entre les entités du réseau: la récence et la fréquence

des interactions. Nous nous sommes demandés s'il serait possible de considérer un

troisième critère capable d'apporter plus de précision aux prédictions et nous nous

sommes intéressés à la stabilité des relations (lien ou proximité à deux sauts) pour

déceler encore mieux les liens susceptibles d'être observés dans le futur. Nous avons

proposé de multiples combinaisons entre les mesures de stabilités et le métriques

fournies par notre méthode de prédiction et les résultats de simulation nous ont

clairement permis de conclure que la considération de ce critère de stabilité est

judicieux vues les amélirations notables apportées à la qualité des prédictions.

B.3 Autres Contributions Avancées dans la Thèse

Outre la proposition de techniques et métriques capables de fournir une information

utile aux protocoles de communication, nous nous sommes également penchés sur

des travaux dans l'optique d'améliorer l'évaluation et la conception des protocoles

de communication dans des réseaux sans-�l où la mobilité peut être considérée.

D'une part, nous nous sommes intéressés à la conception d'un modèle commun

pour les couches physique et liaison de données du standard IEEE 802.15.4 [2]. Il

s'agit d'un modèle qui joint un sous-modèle de couche physique inspiré des travaux

de Zuniga et Krishnamachari [128, 116] (conception de modèles radio et canal) et

un sous-modèle construit autour d'une chaîne de Markov [89, 87] et mimant le
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comportement pouvant être observés au niveau de la couche liaison de données.

Nous proposons ce modèle pour mieux estimer les indicateurs de performance car

nous avons constaté que les modèles s'intéressant à ce standard se sont limités à une

seule couche.

D'autre part, nous avons eu l'opportunité de nous focaliser sur les réseau ad-

hoc non coopératifs et nous avons proposé un mécanisme capable de stimuler la

coopération dans de tels réseaux. En e�et, nous nous sommes inspirés du célèbre

jeu télévisé "Le Maillon Faible" pour inciter les noeuds à construire les plus longues

chaines sur chaque route entre une source et une destination pour améliorer les

taux de livraison. Ce mécanisme s'appuie également sur l'apprentissage du niveau

de coopération dans le réseau pour adapter les probabilités de forwarding et sur

des punitions qui pénalisent fortement les noeuds à caractère égoïste au niveau de

leur fonction d'utilité et les obligent à être plus coopératifs. Les résultats de sim-

ulations con�rment que notre proposition est capable de surpasser quelques autres

mécanismes d'apprentissage similaires proposés dans la littérature [51, 86].

B.4 Conclusion

Pour conclure ce résumé, nous rappelons les majeures contributions apportés dans

cette thèse et nous proposons quelques perspectives futures. Dans cette thèse, nous

nous sommes intéressés aux réseaux sans-�l mobiles centrés sur l'aspect humain.

Nous nous sommes �xés l'objectif de proposer des métriques et des mécanismes

capables d'améliorer l'évaluation et la conception des protocoles de communications.

D'abord, nous avons été motivés par l'étude et l'exploitation des relations sociales

présentes dans ces réseaux. En s'appuyant sur la mesure sociométrique de Katz et

une structure en tenseur capable de donner un aperçu sur la dynamicité du réseau,

nous avons été les premier à proposer une méthode distribuée de prédiction des liens

pour des réseaux comme les DTNs et les MANETs. L'application de cette méthode

sur des traces réelles et l'évaluation à travers des techniques dédiées n'a fait que

con�rmer l'e�cacité de notre proposition.

Ensuite, nous avons continué à porter un intérêt prononcé pour la prédiction

des liens dans ces réseaux. En e�et, nous nous sommes demandés s'il est possible

d'améliorer les performances de notre méthode. Cette dernière se base sur deux

critères pour quanti�er les étendues des relations sociales entre les entités du réseau:

la récence et la fréquence des intéractions. À partir de là, nous nous sommes de-

mandés s'il serait possible de considérer un troisième critère qui participerait active-

ment à l'amélioration de la qualité de la prédiction. En se basant sur une heuristique,

nous avons choisi d'intégrer le critère de stabilité des relations dans les interactions.
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En quanti�ant ce critère à l'aide d'un estimateur d'entropie et en le combinant avec

les métriques fournies par notre méthode, nous avons proposé de nouvelles métriques

de prédiction. La pertinence de notre proposition a été con�rmée par les résultats

de simulation et le critère de stabilité s'avère judicieux pour la prédiction des liens.

En�n, nous avons également eu l'opportunité d'apporter quelques contributions

allant dans le sens de notre souci d'apporter des métriques et techniques capables

d'améliorer l'évaluation et le design des protocoles de communication. Dans cette

optique, nous avons proposé un modèle commun pour les couches physique et liaison

de données du standard IEEE 802.15.4 a�n d'estimer plus précisément les indicateurs

de performances. En outre, nous nous sommes également penchés sur les réseaux

ad-hoc non coopératifs et nous avons conçu un mécanisme visant à stimuler les

noeuds du réseau à être plus coopératifs et s'inspirant du célèbre jeu télévisé "Le

Maillon Faible".

En guise de perspectives, nous songeons à implémenter notre méthode de pré-

diction des liens dans des cas de déploiements réels et de la joindre à un protocole de

communication pour s'assurer que l'information issue de la prédiction est pro�table

à l'amélioration des performances dans le réseau. Nous pensons également à fournir

d'autres formulations et combinaisons pour prétendre à fournir des métriques plus

e�caces. Il est à signaler que notre objectif a été de démontrer que l'estimation

de la stabilité permet d'améliorer les performances de prédiction sans pour autant

chercher quelle est la meilleure formulation possible. Il sera intéressant, d'autre part,

de voir d'autres formulations d'entropie et véri�er si nos choix sont perfectibles. Il

sera également motivant de mener des recherches plus approfondies pour améliorer

la prédiction des nouveaux liens. Nous proposons d'essayer d'identi�er de nouveaux

indicateurs, outre que les observations faites dans [110], pour prédire plus e�cace-

ment l'apparition de ces liens.
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