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Résumé

Contexte Général

Aujourd’hui, quand la communication est essentielle et qu’un nombre trés important
de services est disponible en ligne, les réseaux informatiques continuent & croitre et
de nouveaux protocoles de communication sont constamment développés. Dans
ce domaine, les normes de communication sont essentielles pour permettre l'inter-
fonctionnement des systémes. Tandis que les techniques de vérification formelle sont
utilisées pour établir si les normes sont correctes [Woodcock 2009], la conformité de
leurs implémentations aux exigences de la norme est habituellement évaluée par des
techniques de test.

Le test de conformité est le processus qui controle qu’un systéme posséde un
ensemble des propriétés souhaitées et se comporte conformément & certaines exi-
gences prédéfinies. On connait son importance et 'impact pour le déploiement et
l'utilisation future des logiciels et des systémes. Ceci est notamment observée dans
les nombreux travaux dans le domaine du test; travaux fournis par la communauté
recherche [Hierons 2009], mais aussi par I'industrie [ETSI/ES 201 873-1 2007] et les
instituts de standardisation [ETSI/ETR 022 1993, ISO/IEC 9646 1994].

Une partie importante des approches de test sont basées sur des méthodes
formelles. Ces méthodes s’appuient sur des spécifications formelles, des modéles
mathématiques construits en utilisant les exigences informelles du systéme au cours
de la phase de spécification. La spécification formelle est utilisée pour soutenir le
processus de test, par exemple, avec des techniques automatisées de génération des
cas de test et des métriques de couverture, il est possible par des expériences de
déterminer de maniére fiable si une implémentation d’un protocole satisfait ses exi-
gences. Dans un contexte de test de conformité, des méthodes boite-noire (black-box
en anglais) son habituellement utilisées, ou la structure interne de I'implémentation
est inconnue et toute évaluation se fait par ’observation des entrées, sorties et
Ienvironnement de [implémentation sous test (IUT pour Implementation Under
Test). Deux mécanismes principaux sont habituellement distingués a cet effet en
fonction de leur niveau d’interaction avec I'lUT: le test passif et le test actif.

Le test actif est basé sur I'exécution des séquences de test spécifiques contre une
implémentation sous test. Des séquences de test sont générées & partir d’une spécifi-
cation formelle du protocole sur la base de multiples critéres de satisfaction de cou-
verture et de conformité. Les tests peuvent étre générés automatiquement ou semi-
automatiquement en fonction de différentes hypothéses quant a I'implémentation et
des objectifs de test différents. L’exécution des tests est effectuée par le biais des
points de contréle et d’observation (PCOs pour Points of Control and Observation),
c.-a-d. des interfaces d’exécution. Ces PCOs sont définis dans le cadre d’une ar-



chitecture test, une distribution des testeurs particuliére qui leur permet d’interagir
avec la plate-forme ainsi que de communiquer entre eux si nécessaire.

Le test passif est basé sur 'observation d’événements d’entrée et de sortie d'une
implémentation sous test en cours d’exécution. Le terme “passif”’ implique que
les tests ne perturbe pas le fonctionnement naturel du systéme étant donné que
I'implémentation n’est pas stimulée. La suite d’observations d’événements s’appelle
une trace. Afin de vérifier la conformité de I'IlUT, cette trace sera comparée a un en-
semble de comportements attendus, définis soit par un modéle formel (si disponible)
ou par une ou plusieurs propriétés fonctionnelles (de conformité). Le test passif
fournit une alternative au test actif, lorsque les exigences de ce dernier (définition
d’architectures de test et accés aux interfaces du systéme pour controler les entrées)
sont inaccessibles ou indésirables.

Dans le test passif, des méthodologies de test a base d’invariants peuvent étre
distinguées. La, un ensemble de propriétés (critiques) de conformité est défini, soit
automatiquement a partir d’une spécification formelle, ou manuellement & partir
des exigences du systéme. Ces propriétés spécifient des séquences d’événements qui
doivent étre observées dans la trace pour établir la conformité de I'implémentation.
Le principe est basé sur la relation d’implémentation de pré-ordre dans la trace
(trace preorder en anglais), c’est-a-dire, si une trace est observée depuis I'TUT qui
ne peut pas étre produite par la spécification, alors ceci est indicatif d’une faute
dans I'implémentation. Dans le test & base d’invariants, le comportement qui doit
étre observé est défini par les propriétés de conformité (les invariants).

Les méthodologies de test & base d’invariants ont certains avantages par rap-
port aux techniques de test passif basées sur des spécifications. Les techniques de
test passif compare le comportement observé (dans la trace) avec le comportement
attendu de la spécification, pour déterminer si le premier peut étre produit par ce
dernier. Cela exige la vérification de chaque état de la spécification au pire des
cas. Les méthodologies liées aux invariants fournissent une méthode pour la déter-
mination rapide de la conformité de propriétés critiques. Ces techniques peuvent
aussi étre utiles pour le test lorsque la spécification n’est pas disponible, ce qui est
souvent le cas pour de grands systémes. Finalement, des techniques basées sur des
invariants fournissent aussi des perspectives intéressantes pour la surveillance des
propriétés de conformité lors de I’exécution de I'IUT. Dans ce dernier contexte, un
domaine connexe est devenue trés populaire cette derniére décennie au sein de la
communauté vérification, appelé runtime verification |Leucker 2009].

Le runtime verification est une discipline, dérivée du model checking, qui s’occupe
de I'étude des techniques de vérification qui permettent de vérifier si une exécution
d’un systéme répond & une propriété de correction particuliére. Contrairement au
test passif, les traces d’exécution en runtime verification ne sont pas limitées qu’aux
événements entrée/sortie de 'TUT, et sont généralement décrits comme une séquence
d’états du systéme. Comme avec le model checking, le runtime verification se con-
centre majoritairement aux aspects techniques de ’évaluation des propriétés et de



la génération des moniteurs. Néanmoins, un bon nombre des techniques et des
concepts du runtime verification peut également étre utilisé pour le test passif.

Contributions

L’Internet Multimedia Subsystem (IMS) est un systéme standardisé fournissant des
services IP multimédia aux utilisateurs mobiles. Il offre une architecture centralisée
pour les opérateurs de télécommunication pour intégrer et fournir 'acceés aux multi-
ples services 3G, comme les services de voix et communication multimédias, tout en
fournissant des fonctionnalités de contréle de qualité de service (QoS pour quality of
service) et de tarification pour les opérateurs. Les services IMS s’appuient fortement
sur les normes de 'TETF, en particulier le Session Initiation Protocol (SIP), utilisé
pour le controle de session et la communication.

Differemment des autres protocoles, la spécification SIP ne décrit pas un ser-
vice, mais un ensemble de primitives extensibles pour 1’établissement des sessions,
la configuration et I'interruption des services, avec plus de 200 standards'. Les ser-
vices IMS intégrent généralement de nombreuses extensions, offrant ainsi des défis
intéressants en matiére du test de conformité.

Le test de conformité s’occupe généralement d’établir la concordance de
I'implémentation d’un protocole par rapport a son standard, néanmoins certaines
techniques de test de conformité peuvent aussi étre applicables pour tester des
implémentations de services. Dans le cas des services IMS, des fonctionnalités
de protocoles multiples ainsi que de services multiples sont intégrés et leur in-
tégration est décrite dans des documents standards [Open Mobile Alliance 2006,
Open Mobile Alliance 2010]. Le test de conformité dans le cas des services IMS doit
alors tenir compte de deux aspects distincts: 1) conformité de chaque protocole
et extension mise en ceuvre par le service a sa spécification particuliere, 2) et la
conformité de l'intégration des extensions aux exigences du service.

En outre, le manque d’implémentations ouvertes pour les services IMS et la
difficulté habituelle de 'acceés aux interfaces de service de lopérateur limitent les
possibilités pour leur test actif. Dans ce travail on fournit des améliorations aux
techniques de test passif pour le test des services IMS et SIP.

Les techniques traditionnelles de test passif dérivent de techniques de tests basés
sur des modeles, comme celles basées sur des machines a états finis (FSM pour Finite
State Machine), machines a états finies étendues (EFSM pour Extended FSM) et
systémes de transitions étiquetées (LTS pour Labelled Transition System). Ces
modéles présument souvent une relation causale entre les parties de controle des
entrées et sorties dans les transitions du modéle, en raison de leur utilisation pour

des systémes réactifs, ce qui signifie que les traces (observations) a partir du systéme

"Pour obtenir une liste a jour le lecteur peut consulter http://www.packetizer.com/ipmc/sip/
standards.html



prennent la forme d’'une séquence de couples d’entrée / sortie. Cela permet aux
techniques de test, et en particulier aux techniques de test basées sur invariants,
de faire usage de la causalité comme pour définir des propriétés, des séquences
d’entrées / sorties, qui doivent étre vues sur la trace pour établir la conformité de
I'implémentation. Pour les traces de nombreux protocoles, telle causalité n’est pas
toujours applicable, puisque plusieurs sorties peuvent étre attendues pour une entrée
et vice-versa. De plus, dans la collecte de traces réelles, en particulier dans le cas des
services centralisés, la trace peut contenir des interactions avec de clients multiples,
ce qui rend encore plus difficile ’établissement de causalité sur la base de parties de
controle.

Dans ce type de traces la causalité entre les événements dans une trace peut
souvent n’étre établie que par les parties de données de messages. Cependant,
comme les approches traditionelles de test (et vérification) dérivent de travaux avec
des modeles a états finis (ou & transition étiquetée), elles sont généralement de nature
propositionnelle, ce qui signifie qu’elles prennent d’abord en compte les parties de
controle, avec les parties de données comme une extension de parties de controle,
généralement sous la forme des paramétres ajoutés aux parties de controle. Cela
signifie une expressivité réduite des formules pour établir des relations sur la base des
données, ou 'expressivité au dépens de la briéveté des formules. Cela devient encore
plus critique lorsque des contraintes autres que I’égalité des parameétres de données
sont nécessaires. Méme si certains travaux avec des approches & base d’invariants
ont été proposées pour traiter les données sous la forme de contraintes [Ladani 2005],
ils exigent 1'usage d'une spécification afin de déterminer les contraintes, ce qui limite
I’aspect practique de I’approche, car une spécification n’est pas toujours disponible,
en particulier pour les grands systémes.

Un dernier point doit étre pris en compte lorsque la causalité entre événements
est supprimé. Lors du test avec des propriétés sur des traces finies, pour une pro-
priété telle que “si I’événement x se produit alors un événement y doit étre observé
sur la trace”, il peut se produire que I’événement x est observé, mais I’événement y ne
I’est pas. Avec quelques hypothéses au sujet d’exécution, il peut ne pas étre possible
de distinguer les cas: “l’événement y n’a jamais été produit par 'implémentation”
et “la collecte de la trace a fini avant que y a pu étre observé”. Cette question
avait déja été notée pour des propriétés nommeées backward [Bayse 2005 (“si x est
observé, alors y doit avoir été observé avant”), et une solution basée sur I'utilisation
de la technique de homing phase du test passif a été proposée pour détecter si I’état
initial de la spécification figurait dans la trace. Toutefois, si une spécification n’est
pas immédiatement disponible, cette solution n’est pas réalisable, et aucune solution
équivalente n’existe pour les propriétés nommeées forward. Des questions similaires
ont été identifiées dans la littérature du runtime verification [Bauer 2006].

Dans le travail présenté dans cette thése, nous proposons des solutions & ces
problémes avec une approche basée sur les messages centrée sur les données pour
le test de conformité. Dans notre travail, les événements dans une trace sont des
messages, c.-a-d. des rassemblements des champs de données structurés, avec une



partie de contrdle définie en fonction des données?. Une définition formelle d’un

message est fournie et des fonctions pour le traitement des valeurs des champs de
données également. Des observations spécifiques sont définies par des contraintes
ou restrictions sur les messages, par exemple que certains champs de données dans
le message contiennent une valeur ou un intervalle des valeurs, et les relations a
observer entre messages multiples sont également définies de cette maniére, ex. que
les champs de données entre deux messages correspondent (ou ne correspondent pas)
selon leurs valeurs. Ces restrictions sur les messages sont définies sous la forme de
clauses de Horn, qui présente ’avantage de permettre la réutilisation des clauses.

Des relations temporelles entre des événements sont définies par la quantification
(3, V) sur les messages, et la direction de recherche (avant, arriére) est spécifiée
par des relations d’ordre explicites, ex. V,<,, : condition indique que condition
doit étre vraie pour chaque message apparaissant avant m dans la trace. Cela
permet non seulement de définir des événements forward et backward, mais aussi
un mélange des deux. Puis la syntaxe et la sémantique pour la logique utilisée pour
exprimer les propriétés et un algorithme pour I’évaluation des propriétés sur des
traces offline sont définies. L’algorithme permet d’observer des occurrences multiples
d’une propriété dans une trace et retourne une valeur de vérité dans {T, L, 7} (pass,
fail ou inconclusive) pour I’évaluation de la propriété. Un résultat ‘T’ indique que la
propriété est satisfaite sur la trace, un résultat ‘L’ indique que la propriété n’est pas
satisfaite et ‘?” indique que la satisfaction de la propriété ne peut pas étre établie,
la fin de la trace étant atteinte.

En utilisant cette sémantique, le probléme de tester les propriétés sur des traces
finies devient le probléme de déterminer si un verdict fail ou un verdict inconclusive
devrait étre donné comme résultat de satisfaction ‘7. En d’autres termes, est-ce que
le défaut d’observation d'un comportement attendu signifie que le comportement n’a
jamais été produit? (trace suffisamment longue?). Quatre solutions alternatives sont
proposées dans notre travail pour faire face & cette question.

1. Supposer que la trace n’est jamais assez longue, c’est-a-dire, seulement des
verdicts inconclusive peuvent étre fournis si un resultat ‘?’ est observé. Bien
que cette hypothése est trés stricte, et peut ne pas fournir d’informations utiles
dans la plupart des cas, une analyse plus approfondie des verdicts le pourrait.
Par exemple, si le nombre et la distribution des verdicts inconclusive sont
significatifs, cela peut étre un indice d’une faute dans I'implémentation.

2. Supposer que la trace est toujours suffisamment longue, c’est-a-dire, que
chaque résultat ‘?’ est une indication d’une défaillance. Si des traces avec
un grand nombre de messages sont utilisées, cela peut étre une solution ac-
ceptable. Toutefois, certains résultats faux positifs peuvent étre produits aux
bords de la trace.

2Ceci est inspiré, bien sir, par des traces réelles, oil les événements sont des paquets (packets).
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3. Préciser un comportement alternatif, conditionnel & observer. Si lors de la
tentative d’observer une propriété particuliére, un comportement conditionnel
est observé en premier, alors un verdict fail est rendu, sinon, un verdict in-
conclusive est rendu. Ceci est similaire & identifier I’état initial ou final d’une
spécification dans la trace dans des autres approches basés sur invariants. Mal-
heureusement, la condition pourrait ne pas exister, ou il pourrait étre difficile
a définir, car la causalité avec les critéres dans la propriété attendue doit étre
spécifiée.

4. Définir explicitement un comportement qui ne doit pas étre observé, ou com-
portement négatif. Comme la question est de déterminer quand l’absence
d’observation d’'un comportement attendu est indicative d’une défaillance, il
n’y a pas de probléme pour détecter quand le comportement a effectivement
eu lieu. Si un comportement négatif est défini comme une propriété, donc
la satisfaction de la propriété (un résultat ‘T’) doit produire un verdict fail.
Cependant, le comportement négatif peut ne pas étre toujours facile de définir
a partir des exigences du service.

Avec ces solutions alternatives une nouvelle définition des invariants est fournie
dans notre travail. Des invariants sont définies comme une paire (test, condition).
Le test est la propriété effective qui doit étre observée dans la trace et la condi-
tion est une observation alternative qui permet de déterminer si un résultat ‘7’
par algorithme est une réelle défaillance dans I'IUT ou qu’aucun verdict ne peut
étre produite, ce qui offre une solution possible a la question précédemment décrit.
Deux types d’invariants sont définis: positifs et négatifs, pour tester des séquences
qui doivent étre observées dans la trace, mais aussi pour celles qui ne devraient
jamais étre observées.

Une procédure pour fournir des verdicts de conformité (pass, fail, inconclu-
sive) sur une paire (test, condition) d’un invariant est fournie ainsi.

Nous avons également mis en oeuvre les concepts décrits dans un prototype, afin
de montrer 'applicabilité du travail et pour tester les algorithmes sur des traces IMS
réelles.

Organisation du manuscrit

Le présent manuscrit de thése est organisé comme suit:

1. Dans le deuxiéme chapitre, nous présentons un état de ’art des techniques
de test de conformité. Nous allons des concepts généraux de test de confor-
mité, méthodes formelles et le test formel de conformité, a un bref apercu des
techniques de test actif et une vue plus détaillée des approches de test passif
pour la conformité. Nous fournissons également un apercu général du runtime



verification en tant que discipline, ses objectifs, certains travaux pertinents &
I’approche présentée dans cette oeuvre ainsi que la relation du runtime verifi-
cation avec le test passif.

Dans le troisiéme chapitre, nous présentons SIP et 'TMS. On commence par
un apercu du SIP, ses entités et leur comportement, ainsi que la syntaxe des
messages et des données pertinentes menées par les messages SIP. Pour I'IMS,
nous décrivons briévement quelques-unes de ses entités centrales ainsi que cer-
tains des comportements de deux services IMS, le Push-to-talk Over Cellular
et le service Presence.

Dans le quatriéme chapitre, nous présentons notre approche initiale pour le test
de conformité des services I'IMS, par une étude de cas industrielle. L’approche
sert & décrire quelques-unes des limites du test avec des propriétés centrées
sur parties de controle et fournit une partie de la motivation pour le travail
présenté dans cette these.

Le cinquiéme chapitre contient notre contribution principale. Nous détail-
lons d’abord les limites des approches des invariants actuelles, a travers des
questions sur la causalité des entrées et sorties, ainsi que les exigences d’une
approche centrée sur les données. Ensuite, nous commencons le détail de
chaque partie de la contribution: la définition des traces comme une séquence
des messages et la formalisation des messages comme des structures de don-
nées, la description de la syntaxe et la sémantique des formules, tant pour
les clauses basées sur Horn et I’établissement de relations temporelles. Puis
nous décrivons l’algorithme pour ’évaluation des formules dans les traces, et
nous détaillons sur la complexité de ’algorithme. Finalement, nous détaillons
la procédure d’évaluation des invariants positifs et négatifs et I’'évaluation de
leur partie de test et condition. Nous finissons par donner un exemple de
définition d’un service basé sur SIP, ainsi que des expériences sur des traces
réelles du protocole.

Sur le dernier chapitre, nous concluons la présentation de notre travail, en
fournissant un résumé de nos contributions, ainsi que d’un ensemble de per-
spectives pour des extensions futures et des améliorations pour notre approche,
en particulier en termes d’évaluation en temps réel et de 1’évaluation des pro-
priétés en cours de I'exécution.
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CHAPTER 1

Introduction

1.1 General Context

In current times, when communication is essential and an immense array of ser-
vices is available online, computer networks continue to grow and new communica-
tion protocols and services are continuously being developed. Regarding this area,
communication standards are essential to enable interworking of systems and cor-
rectness of the standard definitions and their implementations is fundamental to
ensure that platforms can communicate. While formal verification techniques are
used to evaluate correctness of standards [Woodcock 2009], the conformance of their
implementations to the standard requirements is usually evaluated through testing
techniques.

Conformance testing is the process of checking that a system possesses a set of
desired properties and behaves in accordance with some predefined requirements.
There is a high level of consciousness of its importance and impact for the future
deployment and use of software and systems. This is notably observed with the
numerous works tackling the testing areas; works provided by the research commu-
nities of course [Hierons 2009] but also by the industry [ETSI/ES 201 873-1 2007]
and the standardization institutes [ETSI/ETR 022 1993, ISO/IEC 9646 1994].

An important subset of testing approaches is based on formal methods. These
methods rely on formal specifications, mathematical models constructed using the
informal requirements of the system during the specification phase of the develop-
ment. The formal specification is used to support the testing process, for instance,
with automatic test case generation techniques and specification coverage metrics, it
is possible to experimentally and reliably determine whether a protocol implementa-
tion satisfies its requirements. In a conformance testing context, black-box methods
are generally used, where the internal structure of the implementation is unknown
and all evaluation is done through observation of inputs, outputs and environment
of the implementation under test (IUT). Two main mechanisms are usually distin-
guished for this purpose according to their level of interaction with the IUT: passive
and active testing.

Active testing is based on the execution of specific test sequences against an im-
plementation under test. Test sequences are generated from a formal specification
of the protocol according to different coverage and conformance satisfaction criteria.
The tests may be generated automatically or semi-automatically based on various
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hypotheses about the implementation and different test goals. Test execution is per-
formed through points of control and observation (PCQOs), i.e. execution interfaces.
These PCOs are defined in the context of a testing architecture, a particular distri-
bution of testers that allows them to interact with the platform and communicate
with each other if necessary.

Passive testing is based on the observation of input and output events of an im-
plementation under test during runtime. The term “passive” means that the tests do
not disturb the natural operation of the system as the implementation is not stim-
ulated. The record of the event observation is called a trace. In order to check the
conformance of the IUT, this trace will be compared to a set of expected behaviors,
defined either by a formal model (whenever available) or by one or more functional
(conformance) properties. Passive testing provides an alternative to active testing,
whenever the requirements of the latter (definition of testing architectures and ac-
cess to the system interfaces for controlling the inputs) are unfeasible or undesired.
Passive testing also provides a useful alternative when the implementation cannot
be shutdown or stopped for a long period of time.

Within passive testing, invariant-based testing methodologies can be distin-
guished. There, a set of (critical) conformance properties is defined, either auto-
matically from a formal specification, or manually from the system’s requirements.
Such properties specify sequences of events that must be observed in the trace to
establish conformance of the implementation. The principle is based on the trace
preorder implementation relation, that is, if a trace is observed from the IUT that
cannot be produced by the specification, then this is indication of a fault in the
implementation. In invariant-based testing, the behavior that must be observed is
defined by the conformance properties (the invariants).

Invariant-based testing methodologies have some advantages over specification-
based passive techniques. Passive testing techniques compare the observed behavior
(in the trace) with the expected behavior from the specification, in order to deter-
mine whether the former can be produced by the latter. This requires verification of
every state in the specification in the worst case. Invariant methodologies provide a
method for rapid determination of conformance to critical properties. These tech-
niques can also be useful for testing when the specification is not available, which is
often the case for large systems. Finally, invariant-based techniques provide inter-
esting perspectives for monitoring conformance properties during the execution of
the IUT. In this last context, a related area has gained popularity in the last decade
from the verification community, called runtime verification [Leucker 2009].

Runtime verification is a discipline, derived from model checking, that deals with
the study of verification techniques that allow checking whether a run of a system
satisfies a given correctness property. Differently from passive testing, execution
traces in runtime verification are not limited to input/output events and are gen-
erally described as a set of states of the system. As with model checking, runtime
verification deals to a great extent with the technical aspects of property evalua-
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tion and monitor generation. Nevertheless, many of the techniques and concepts of
runtime verification may also be used for passive conformance testing.

1.2 Contributions

The Internet Multimedia Subsystem (IMS) is a standardized framework for deliver-
ing IP multimedia services to users in mobility. It provides a centralized architecture
for telecommunication operators to integrate and provide access to multiple 3G voice
and multimedia services, while also providing Quality of Service (QoS) control and
charging features for operators. IMS services rely heavily on IETF standards, in
particular the Session Initiation Protocol (SIP), for their session control and com-
munication.

Differently from other protocols, the SIP specification [Rosenberg 2002] does not
describe a service, but a set of extensible primitives for session establishment, con-
figuration and termination of services, with over 200 related standards' between
extensions and complements. IMS services usually integrate multiple of these ex-
tensions, thus providing interesting challenges in terms of conformance testing.

Conformance testing is generally about establishing compliance of a partic-
ular protocol implementation to its standard, however, some of the techniques
of conformance testing may also be applicable for testing of service implementa-
tions. In the case of IMS services, features from multiple protocol and service
specifications are integrated, and their integration described in standardized docu-
ments [Open Mobile Alliance 2006, Open Mobile Alliance 2010]. Conformance test-
ing in the context of IMS services then must consider two separate aspects: 1) con-
formance of each protocol and extension implemented by the service to its particular
specification, 2) and conformance of the integrated extensions to the requirements
of the service.

Furthermore, lack of open implementations for IMS services, and usual lack of
access to the operator’s service interfaces restricts the possibilities for their active
testing. In this work we provide improvements to passive testing techniques for the
testing of IMS and SIP-based services, that we also believe may provide useful for
other application-layer protocols and services.

Traditional passive testing techniques derive from model-based testing tech-
niques, usually based on Finite State Machine (FSM), Extended FSM (EFSM) and
Labeled Transition System (LTS) specifications. These models usually presume a
causal relation between the control parts of inputs and outputs in the transitions of
the model, due to their original use for reactive systems, meaning that traces (ob-
servations) from the system take the form of a sequence of input/output pairs. This
allows testing techniques, and in particular invariant-based techniques, to make use

'"For an up-to-date list the reader can refer to http://www.packetizer.com/ipmc/sip/
standards.html
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of such causality for defining properties, sequences of inputs/outputs, that must be
seen on the trace to establish conformance of the implementation. For traces of
many protocols, such causality is not always applicable, since many outputs can be
expected for an input and vice versa. Moreover, in collection of real traces, par-
ticularly for centralized services, the trace may contain interactions with multiple
clients, which makes establishing causality based on control parts even more difficult
to determine.

In such type of traces, causality between events in a trace can many times be es-
tablished only through data parts of messages. However, as traditional testing (and
verification) approaches derive from works with finite state (or labeled transition)
models, they are usually propositional in nature, meaning that they first take into ac-
count control parts, with data parts as an extension of control parts, generally in the
form of parameters added to the control parts. This means a reduced expressiveness
of formulas to establish data relations or expressiveness in expense of succinctness
of formulas. This becomes even more critical when constraints other than equality
of data parameters is needed. Although some works in invariant-based approaches
have been proposed to deal with data in the form of constraints [Ladani 2005], they
require the use of a specification to determine constraints, which limits the practi-
cality of the approach, since a specification is not always available, particularly for
large systems.

One last issue has to be considered when causality between events is removed.
When testing with properties on finite traces, when testing a property such as “if
event x happens then event y must be observed on the trace”, it may occur that
event x is observed, but event y is not observed. Unless some assumptions about
the execution are made, it may not be possible to distinguish between the cases:
“the event y was never produced by the implementation” and “the trace collection
finished before y could be observed”. This issue had already been noted for backward
properties [Bayse 2005] (“if x is observed, then y must have been observed before”)
and a solution based on passive testing homing phase to detect if the initial state of
the specification was contained in the trace was proposed. However, if a specification
is not immediately available, such solution is not feasible, and no equivalent solution
exists for forward properties. Similar issues have been identified in the literature of
runtime verification [Bauer 2006].

In the work presented in this thesis, we propose solutions to these issues with a
message-based /data-centric approach to conformance testing. In our work, events
in a trace are messages, i.e. collections of structured data fields, with control part
defined as a function of the data®?. A formal definition of a message is provided
and functions for dealing with data field values are defined. Specific observations
are defined through constraints or restrictions on messages, e.g. that some data
field in the message contains a specific value or range of values, and relations to be
observed between multiple messages are also defined in that way, e.g. that data fields

2This is inspired of course, by real traces, where events are packets.
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between two messages match (or do not match) in their values. These restrictions
on messages are defined in the form of Horn clauses, which has the added benefit of
allowing re-usability of clauses.

Temporal relations between events are defined through quantification (3, V) over
messages, and search direction (forward, backward) is specified by explicit order
relations, e.g. V., : condition indicates that condition must be true for every
message appearing before m in the trace. This allows not only to define forward
and backward events, but also a mix of both. Both the syntax and semantics for the
logic used to express properties and an algorithm for evaluation of the properties on
off-line traces are defined. The algorithm allows to observe multiple occurrences of a
property in a trace and returns a truth value in {T, L, 7} (true, false or inconclusive)
for the evaluation of the property.

Invariants are defined using these definitions as a pair (test, condition). The test
is the actual property that needs to be observed in the trace and the condition is an
alternative observation that allows to determine if an ‘?’ result from the algorithm
is an actual failure or that no verdict can be produced, offering a possible solution
to the previously described issue. Two types of invariants are defined: positive and
negative, to test for sequences that must be observed in the trace, but also for those
that should never be observed. A procedure for providing conformance verdicts
(pass, fail, inconclusive) on an invariant’s (test,condition) pair is provided as
well.

We have also implemented the concepts described in this work into a framework,
in order to show the applicability of the work and tested the algorithms on actual
IMS traces.

1.3 Thesis plan

This manuscript is organized as follows:

1. In the second chapter we present a state of the art of conformance testing
techniques. We go from the general concepts of conformance, formal methods
and formal testing for conformance, to a brief overview of active techniques
and more detailed view of passive testing approaches for conformance. We also
provide a general overview of runtime verification as a discipline, its objectives,
some relevant works to the approach presented and the relation with passive
testing.

2. In the third chapter we present SIP and the IMS. We begin by an overview
of SIP, its entities and some of their behavior, along with the message syntax
and the relevant data carried by SIP messages. For IMS, we briefly describe
some of the entities in its core as well as some of the behavior of two IMS
services, the Push-to-talk Over Cellular and the Presence service.
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3. In the fourth chapter we present our initial approach for conformance testing of
IMS services, through an industrial real-case study. The approach there serves
to describe some of the limitations of testing with control-centric properties,
and provides some of the motivation and inspiration for the present work.

4. The fifth chapter contains our main contribution. We first detail on the limi-
tations of the current invariant approaches, through the issues of causality of
inputs and outputs, as well as the requirements of a data-centric approach.
We then begin the detail of each part of the contribution: the definition of
traces as sequence of message events and the formalization of messages as data
structures, the description of the syntax and semantics of formulas, both for
the Horn-based clauses and the establishment of temporal relations. Then we
describe the algorithm for evaluation of formulas in traces, and describe the
complexity of the algorithm. Finally we detail on the evaluation procedure for
positive and negative invariants and the evaluation of their test and condition
parts. We finally provide an example definition for a SIP-based service, as
well as experiments on real protocol traces.

5. On the final chapter we conclude the presentation of our work, providing
a summary of our contributions, as well as a set of perspectives for future
extensions and improvements for our approach, particularly in terms of real
time evaluation and runtime evaluation of properties.
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2.1 Testing of communication protocols

Testing is the process of operating a system or component under specified condi-
tions, to observe the results and provide an evaluation of such system or compo-
nent [IEEE Std 610.12-1990 1990]. Many types of testing exist, depending on the
property being evaluated, for instance, it is possible to test for performance, usabil-
ity, scalability, etc. Testing for correctness, the main concern of the current work,
is testing as a means of checking that a system’s (or component’s) behavior corre-
spond with a predefined, desired behavior. More specifically, testing for correctness
is the process of detecting faults or defects in a system implementation, either by
identifying errors (incorrect internal states) during the execution of the system, or
by the observation of an incorrect external behavior (a failure). Testing can only
show the presence of faults and never their absence [Dijkstra 1970].

In this section we develop the concepts related to testing of communication
protocols, or conformance testing and provide an overview of the literature regarding
this area. Although this section intends to provide a general view of conformance
testing methodologies, it will also detail particularly the subset of conformance
testing known as passive testing, which directly relates to the work in this document.

2.1.1 Conformance testing

Protocol conformance testing is a branch of testing designed to determine compli-
ance of protocol implementations to their standards. More precisely, the objective
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of conformance testing is to determine compliance of a particular implementation
under test to a set of conformance requirements defined directly or indirectly by the
protocol standard documents. Although a distinction can be drawn with (general)
conformance testing, many concepts are common and therefore through the rest of
this work we will use both concepts as equivalents.

Protocol conformance testing is a type of black-box testing, or functional testing,
meaning that the internal structure of the implementation is ignored (or unknown),
and the evaluation is done based on the observation of inputs, outputs and execution
conditions during the execution of the test (or during normal runtime in passive test-
ing). In contrast, in white-box testing or structural testing, usually used in software
testing, tests are derived taking into account the internal structure of the system or
program. The independence between test and implementation in black-box testing
is of great importance in removing biases from the testing process.

The first step in protocol conformance testing is identifying the conformance
requirements from the standard document. The ISO/IEC standard for conformance
testing [ISO/IEC 9646 1994] (a good overview is provided in [Tretmans 2001]), iden-
tifies two types of conformance requirements. Static conformance requirements de-
fine the capabilities and interdependence between capabilities to be supported by
implementation of the protocol. Dynamic conformance requirements specify the
observable behavior permitted and/or required by the protocol standard.

Static conformance requirements are used for capability testing. The Protocol
Information Conformance Statement (PICS), a document provided by the developer
stating the capabilities of the implementation, is reviewed along with the static
conformance requirements to check consistency in the implemented capabilities in a
process called the static conformance review.

Dynamic conformance requirements are used for behavior testing of the imple-
mentation. A test case, an individual definition of the input/output conditions
required to satisfy a requirement, are derived from dynamic conformance require-
ments. The standard defines a several step process in order to go from requirements
to executable tests. Although intermediate steps are also defined, the three defined
below describe in general terms the process.

1. One or more test purposes, are derived from each dynamic conformance re-
quirement. A test purpose is a precise, natural language description of what
needs to be tested in order to determine the satisfaction of a particular con-
formance requirement.

2. From the test purposes, a set of abstract test cases is defined. An abstract
test case is a test case that specifies the conditions for satisfaction of a
particular requirement in a way that is independent of the protocol imple-
mentation. Abstract test cases are written in some test notation, Tree and
Tabular Combined Notation (TTCN) [ISO/IEC 9646 1994, part 3] being the
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one recommended by the standard, which has since been updated in TTCN-
3 [ETSI/ES 201 873-1 2007].

3. In the last step, an ezecutable test suite is derived from the abstract test cases
taking into account the particular implementation and environment that will
be used.

Finally, tests are executed individually in the implementation, which in this step
is referred to as implementation under test (IUT). In the standard, different testing
architectures are proposed, in accordance with the OSI network model. Each tester is
placed in a Point of Control and Observation (PCO), located in the communication
interfaces of the IUT, and depending on the architecture, coordination between
testers is also laid out. The concept of System Under Test (SUT) is also defined
for some architectures, where the SUT includes the IUT as well as the local testers.
The execution of each test provides one of the following three possible wverdicts:
pass, meaning the implementation conforms to the test, fail, meaning that the
implementation does not conform to the test and inconclusive, meaning that no
definite conclusion can be drawn from the test.

An implementation conforms (in terms of ISO/IEC 9646) to the standard if the
verdict for every test is a pass.

2.1.2 Formal testing

Testing techniques are applicable in every stage in the software development process
(specification, design, code), and particularly when used together with formal meth-
ods, they can help identifying problems much earlier in the development, when the
cost of modification is low. Formal methods [Hierons 2009| provide a means not only
to verify the results during the system definition, but can also support the testing
process. Figure 2.1 shows some of the possible relations between formal methods
and testing techniques at different development stages.

The methodology used by formal methods starts with the specification phase,
where the informal requirements for the system are used to construct a formal
specification of the system behavior, a mathematical model written using a for-
mal specification language. Different types of languages exist, depending on the
paradigm used (model-based, process algebra-based, etc.). Finite state-based lan-
guages, as those based in FSM and EFSM |[Lee 1996|, e.g. SDL [ITU-T Z.100 1999],
are particularly popular with conformance testing of protocols, given the similarities
between the FSM models and the control structure of a protocol [Hierons 2009].

The formal specification of the system is used to guide the implementation pro-
cess. The implementation can be done through successive refinements of the spec-
ification, or by direct coding. The specification is usually used in the wverification
process, where the code is checked against the specification in order to determine
satisfaction. The specification itself can also be wverified, by checking that specific



10 Chapter 2. State of the Art

Early test by animation

| Acceptance Test ‘

Model )
Checking Test Case Generation

Test
Specification Adequacy <—| System Test |
Criteria
Veri Derive Oracle
Ver&

Proof <—| Code | | Unit Test |

Static
analysis

Proof

| Integration Test |

Dynamic
Test analysis
Adequacy
Criteria

Model Other
Checking Models

Figure 2.1: Formal methods and testing.

critical properties of the system are included. Verification should not be confused
with walidation. While the former deals with satisfaction of a product of a devel-
opment phase with respect to a previous phase, the latter deals with satisfaction of
the finished product, the system, with the intended behavior.

The specification can finally be used to support the testing process. Assuming
(or having verified) that the specification is correct with respect to the requirements,
testing in a formal context means simply experimentation to validate that the im-
plementation supports all the behavior defined by the specification. In other words,
to determine conformance of the implementation to the formal specification.

2.1.3 Conformance testing with formal specifications

Protocol conformance testing with formal specifications follows a similar method-
ology to the one described in Section 2.1.1. A formal specification is defined in
accordance to the protocol requirements and used during the testing phase in order
to determine the conformance of an IUT. The meaning of conformance, between a
given specification S and an implementation I, is critical for the understanding of
the area and as such it is discussed below.

The most general definition of conformance is provided in [Tretmans 1999|, and
we reproduce it here. Conformance relates to specifications and implementations.
The universe of specifications is defined by the set SPEC'S and the universe of all
IUTs is denoted by IM PS. Considering this, conformance is defined as the relation

conforms-to C IMPS x SPECS

where given an IUT IUT € [IMPS and a specification S € SPECS,
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IUT conforms-to S expresses that IUT is a correct implementation of the specifi-
cation S.

In order to relate real implementations (in M PS) with specifications, the as-
sumption is made that every IUT IUT € IMPS can be modeled by a (possibly
unknown) formal object Ity € MODS, where MODS is the universe of formal
objects. This assumption is known as a test hypothesis [Bernot 1991, Gaudel 1995].
Under this assumption, an implementation relation is defined between models and
specifications as imp C MODS x SPECS. An implementation IUT € IMPS is
said to conform to an specification S € SPECS if and only if the model of the
implementation Iyr € MODS is implementation related with S

IUT conforms-to S < Iyrimp S

Different implementation relations can defined, depending on the model or spec-
ification language used, an overview of those most relevant to our work is provided
below.

2.1.3.1 Equivalence relations

The most general type of implementation relation is equivalence, traditionally used
for testing with state-based specifications, in particular Finite State Machines
(FSM). FSMs can be deterministic (DFSM) or non-deterministic (NDFSM), how-
ever we will use the general term FSM to denote a deterministic finite state machine.

Definition 2.1.1. A Finite State Machine FSM is a 6-tuple (S, so, I, O, d, \), where

e S is a finite set of states, with sy € S the initial state

I is a finite set of input symbols

O is a finite set of output symbols
e §:5 x I — S is the state transition function

e \: S5 x 1 — O is the output function

When the machine is in a current state s € S and receives an input 7 € I it moves
to the next state specified by d(s,7) and produces the output specified by A(s, ).

The FSM of an IUT I conforms to a specification S if I,S are equiva-
lent [Lee 1996], meaning that they have the same number of states and transitions
(they are isomorph). In terms of external behavior, and under the assumption that
both FSMs have the same number of states, I and S are equivalent if they can-
not be distinguished by any sequence of inputs, i.e. both the specification S and
the implementation I will generate the same outputs for identical input sequences.
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This type of equivalence is also called trace equivalence, where a trace is a sequence
of input/output pairs. For NDFSMs, other types of conformance relations exist,
including equivalence (although with a different definition), quasi-equivalence and
reduction relation [Bochmann 1994].

In testing with process algebra specifications, inputs and outputs are generally
not distinguishable, and non-observable transitions are possible. Here, a different
set of equivalences can be used as implementation relations, depending on the type
of observations that are possible during testing. A commonly used formalism in this
area are Labeled Transitions Systems (LTS), that we define below.

Definition 2.1.2. A Labeled Transition System is a 4-tuple (S, %, T, sg), where

e S is a countable, non-empty set of states
e X is a countable set of observable actions

e T'C SxXU{r} x Sis a transition relation, and 7 ¢ ¥ is an unobservable
action

e 5 is the initial state

A transition between states s,s’ € S and action a € ¥ is denoted as s — s'. Given
a sequence of actions o € ¥*, s = s’ denotes the set of transitions taking from s to
s’ after applying the sequence o, including transitions with unobservable actions.

The trace equivalence relation between LTS, requires the trace sets of two models
I and S to be identical, denoted as traces(I) = traces(S)'. A stronger version is
testing equivalence [De Nicola 1984|, defined as equality between observations during
testing, denoted as runs(t,I) = runs(t,S) for every test t. The term observation
in LTS considers tests that end in a lock (dead or alive), as well as successful tests,
making it a stronger relation than trace equivalence. Other types of equivalence
relations are also possible, as bisimulation equivalence, observation equivalence and
failure equivalence |[Fernandez 1991].

2.1.3.2 Other implementation relations

Other types of relations different from equivalence are also shown in the literature
to be suitable as implementation relations for testing and test case generation. The
work of J. Tretmans |Tretmans 1992] for LTS is fundamental in this area. Preorder
relations are useful when it is only desired to express inclusion or ordering between
models. Trace preorder, is a weaker requirement than trace equivalence, where an
implementation I has a trace preorder implementation relation with a specification
S, denoted by I < S if and only if traces(I) C traces(8). Testing preorder (<)

'For S = (S,%, T, s0), traces(S) = {0 € ¥*|s > §',Vs,s' € S}



2.1. Testing of communication protocols 13

is defined in a similar way with respect to tests, where observations about the
implementation have to be a subset of observations about the specification.

Non-preorder relations are also described in the literature. The authors of
[Brinksma 1988] define the conf relation for LTL, which improves on the testing
preorder relation by restricting the domain (or language) of the tests to the one de-
fined by the specification. The ioconf relation [Tretmans 1996b], extends the conf
relation to deal with Input Output Transition Systems (IOTS). Other extensions
for real-time systems [Krichen 2004] and symbolic systems [Frantzen 2004] have also
been proposed.

2.1.3.3 Implementation relations and test generation

Implementation relations guide the testing process by providing formal conformance
satisfaction criteria for an implementation under test. Evaluation of such criteria can
be done either by actively controlling the IUT through test execution, or through
passive observation of the normal operation of the IUT. These two methods are
usually distinguished as active testing and passive testing, the latter of which
will be discussed in detail in the next section, since it concerns the current work.
An overview of active techniques is provided below.

Active testing techniques rely on test execution for conformance evaluation, and
through the use of formal specifications, automated test generation methods are
possible. The problem of conformance testing is reduced to finding a test sequence or
test suite that allows to determine whether an IUT conforms with the specification
w.r.t. a particular implementation relation. If the IUT passes the test suite, is
declared conformant, otherwise, it is declared non-conformant. Figure 2.2, shows
the traditional active testing methodology.

‘ Specification I test generation Test Suite

conformance | test case

test execution )
IuT Tester ——— verdict

Figure 2.2: Active testing methodology.

For FSM based testing, the most used implementation relation is equivalence,
which in the context of FSMs means isomorphism, i.e. equivalence of states and
transitions. Two types of errors are possible under this definition of equivalence.
Output errors occur when the machine returns the wrong output to a given input.
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Transfer errors occur when the machine is left in the wrong state after executing a
transition. Test case generation techniques for FSM-based specifications, attempt to
characterize states after the execution of a test. Different methodologies have been
developed, depending on different assumptions about the machine. State character-
ization through distinguishing sequences [Hennine 1964]|, characterization sets (W-
method) [Chow 1978], unique input/output sequences (UIO-method) and transition
tours |[Naito 1981], are some of the techniques available in the literature. Detailed
reviews of the different methodologies are provided in [Ural 1992, Lee 1996].

Test generation methods for the conf implementation relation [Tretmans 1996a],
and the ioco implementation relation [Brinksma 1997] have also been developed.

2.1.4 Passive testing for conformance

Passive testing, as previously defined, is based of the observation of inputs/outputs
to the IUT during normal runtime. Although it has some disadvantages with respect
to active techniques, the most important being lack of control of the execution, it
also has important advantages, particularly the ability to test an implementation
without disturbing normal operation and in its natural environmental conditions. It
is also the only option available under some circumstances, when the interfaces of the
system are inaccessible, or when active testing is impractical due to the complexity
of the system. Online and Offline approaches can be distinguished. In the former,
the tester attempts to detect a fault during the execution of the system. In the
latter, the evaluation of the system is done in recorded traces. A trace is a record
of input/output events of the IUT. Figure 2.3 shows the traditional passive testing
methodology. A description of some of the most important works and methodologies
in this area are provided in the rest of the section.

Point of
Observation

trace

IUT lf\l

observed trace

[ Specification ]— Passive tester |——— Verdict

Figure 2.3: Passive testing methodology.

2.1.4.1 Testing with FSMs

One of the earliest works regarding passive testing for protocol testing is provided in
[Lee 1997] in order to detect network faults. In their work, the network is modeled



2.1. Testing of communication protocols 15

by an FSM and observational equivalence is used as a conformance relation. Obser-
vational equivalence considers the implementation I as faulty if there is a behavior
that cannot be observed in the specification S. Observations of the implementation
are input/output pairs (a trace), each one assumed to represent one transition. A
two stage algorithm is defined:

1. The passive homing sequence stage is designed to determine the state of the
implementation at the beginning of the trace. At the beginning all states
in S are considered candidates. The homing stage rules out one by one the
states from which the next input/output pair in the trace cannot be produced,
starting by the beginning of the trace. At the end of the stage we either end
up with one candidate, which provides the starting point for the second stage,
or we rule out all states, in which case, there is a fault in the implementation
and testing ends.

2. The second stage, or fault detection stage, continues the comparison between
the observed behavior (the trace), and the specified behavior. If an observation
does not match the expected behavior, then a fault has been found, if the end
of the trace is reached, no verdict can be given.

2.1.4.2 Testing with Extended FSMs

Finite state machines are a useful mode for specifying simple systems, however they
quickly become unpractical to use as the size of the system grows. Extended Finite
State Machines (EFSMs) provide a generalization of FSM with the incorporation of
variables, predicates (conditions) and actions over the variables, allowing for more
succinct specifications. The EFSM model provides the semantics for the Specifica-
tion and Description Language (SDL) [ITU-T Z.100 1999].

Definition 2.1.3. An FEztended Finite State Machine (EFSM) is a 6-tuple
(S’ 807 ‘[7 O’ f? T)7 Where

e S is a finite set of states, with sy € S the initial state

I is a finite set of input symbols with or without parameters

O is a finite set of output symbols with or without parameters
e T is a variable vector

T is a finite set of transitions

Each transition ¢ € T is a 6-tuple (s, ft, it, o¢, P, Ay) where

e s, € S is the beginning state of the transition

e f; € S is the ending state of the transition
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14 € I is the input for the transition

o; € O is the output of the transition
e P (%) is a predicate on the variable values

e A;(Z) is an action on the variable values

When the machine is in a current state s € S with variable values ¥ = T and receives
an input 4, it will follow the transition (s, f,i,0, P, A) if P(Zs) holds. In such case
the machine will output o, update the variable values by the action # := A(Z) and
leave the machine in state f.

Notice that input and output symbols can also contain parameters, in which
case the parameters are represented by a vector /. For a given transition, the input,

output, predicate and actions may depend on the parameters, denoted as (%), o(¥),
P(Z,7), A( and 7).

When testing with EFSM-based methods, two dimensions are distinguishable in
the model. The control portion is defined by the observable behavior of the model.
The data portion is defined by the variable and parameter values. Although an
EFSM can be converted into an equivalent FSM for testing, doing so usually causes
the state explosion problem. Testing with EFSMs then, must test both control and
data portions.

Passive testing by value determination The work in [Tabourier 1999], pro-
vides one of the first approaches for passive testing with EFSM specifications. Fig-
ure 2.4(a) provides an illustration for the principle behind the algorithm. Assuming
that the current state s; is known and the value of variable x unknown, a similar
procedure as with the previous FSM approach can be used. Upon observation of
transition a/1, it can be deduced that the machine ends in state s, and that z
becomes x = 0. The new value of x can be used later in a predicate to determine if
a transition should be fired.

It can occur, however, a case like the one shown in Figure 2.4(b), where the
value of z is already known (suppose x = 3) and the value of y is unknown. Upon
observation of a/0, both transitions are followed. The left side results in z = 0 and
y unknown, the right side results in y = 5 and « = 0, however, since both transitions
have the same I/O pair (evaluation is nondeterministic), the algorithm cannot decide
what value to assign to the variables, and therefore x becomes undefined.

The algorithm is also divided in a homing phase and a fault detection phase.
The homing phase follows the two rules illustrated before

1. For a given I/O pair, if several candidate transitions are possible, leading to
different values for a variable, then the variable stays (or becomes) undefined.
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Action  Action /Y

|x = O| |x = O|

(a) Variable value determination. (b) Loss of information due to non-
determinism.

Figure 2.4: Alternative cases in testing by value determination

2. If a variable appearing in a predicate is unknown, then the predicate is ignored

and only I/O observations are used to decide on transition execution.

The homing phase finishes when an unique state is determined and all vari-

able values are known. The fault detection phase evaluates the rest of the trace

attempting to detect an erroneous I/O behavior with respect to the specification.

Passive testing by interval determination In the homing phase of the previous

algorithm, variable values are calculated by using the actions, whenever a transition

can be fired deterministically, or when the value determined by alternative actions
is identical. The work in [Lee 2002] (and its extended version in |Lee 2006]) im-
proves on the previous work by also including implicit information from predicate

constraints, and keeping track of constraints and candidate values. Three resources

are used for value determination.

e Intervals are maintained about integer variables, in order to keep record of

the possible variable values. An interval about a variable v is denoted as
R(v) = [a,b], indicating that a < v < b. Information in the predicates is
used to refine the interval. Intervals are used to determine the satisfaction of
predicates later in the evaluation. When the value of variable v is found, the
interval is represented as R(v) = [a, al, for v = a, in which v is said decided.

Assertions keep record of the constraints on variables. An assertion, denoted
as assert() is a boolean formula which contains the record of the constraints
on variables up to the current point in the evaluation. When a transition
is fired, the predicate is assumed to be true and added to the assert(Z).
Actions with unknown right side values are also used to maintain the list of
assertions (e.g. after an action x; := w9 all references to x; can be replaced
by x2). During the process the consistency of the predicates in the assertion
is confirmed to discard states and valuations.

Candidate Configuration Sets (CCS) represent possible statuses of
the machine. A candidate configuration set is represented by the triple



18 Chapter 2. State of the Art

(s, R(Z),assert(Z)), where s is a state, R(Z) is the set of intervals for the
different variables and assert(Z) is an assertion on &.

The algorithm maintains a list of CCS at any point in the evaluation of the trace.
The list starts empty and during the observation of a new event e in the trace, a
new list of candidates is created with all possible machine statuses. We denote the
current list of candidates as Lo and the list of candidates to evaluate in the next
trace event as Ly. Each candidate (s, R(Z), assert(Z)) is evaluated according to
the following criteria.

e A transition with event e is possible from state s.

e If the predicate can be evaluated, the evaluation of the predicate holds. Oth-
erwise, the predicate needs to be consistent with R(Z) and assert(Z).

If the criteria are fulfilled, a new CCS is created for each new possible state and
added to L. The actions are executed and the interval is refined to calculate the
R(Z) and assert(¥) for each new candidate. This procedure is repeated for every
candidate in Lo. The algorithm ends when there is only one candidate left, at which
point the fault detection phase starts.

Other methodologies The authors of [Alcalde 2004, provide a similar method-
ology to the one described above, however in their approach, they follow the trace
backwards in order to obtain a set of CCS at the beginning of the trace. In a second
stage, they detect faults by attempting to find a path from the initial state of the
EFSM that leads to one of the candidate sets at the beginning of the trace (the end
of stage 1). If none are found, then it means there is a fault in the specification. An
application to the Simple Connection Protocol is also evaluated.

In [Benharref 2007], the backwards and forward methods are combined for online
passive testing of web services. Once an input or output appears in the trace, the
algorithm attempts to find a set of candidates in the past of the trace that match
the observed event. That information is then used for detection of faults, using the
forward approach, upon reception of new events.

2.1.4.3 Invariant-based passive testing

The passive testing techniques discussed earlier are all based on comparison of the
observed behavior (in the trace) with the expected behavior from the specification.
These approaches require, in the worst case, to verify every state and transition in
the specification for each trace evaluated, leading to low performance issues. The
work in [Cavalli 2003| presented a first work on invariant-based testing. The principle
is the following: i) from the specification (EFSM is used in the work), sequences of
I/O pairs are extracted, i) sequences are selected because of their uniqueness, i.e.
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only one such sequence can occur in the specification (hence invariant). ) If an
invariant does not appear integrally on the trace (before the end is reached), then
a fault has been detected.

An overview of the different invariant-based testing approaches is provided as
follows.

Input/output invariants An I/O invariant consists of two parts, a preamble
and test. The preamble is a sequence of events that needs to be found on the trace
before the test can be evaluated. Three types of such invariants are defined in
[Cavalli 2003].

e QOutput invariants allow to express properties such as ‘immediately after the
sequence preamble, the output test must be observed’. The following are
examples of output invariants

— i1/ o1 denotes the property: “each time that input ¢; is observed,
~—~ ~—~
preamble  test
then the output o7 must be also observed”
— i1/01,i2/ 02 denotes the property: “each time that the pair i;/0; and
\“/—/ v

preamble  test
the input 79 are observed, then the output o2 must be also observed”

e Input invariants describe properties such as "immediately before the sequence
preamble, the input test must be observed". Some examples of input invari-
ants are

i1 / 01 denotes the property: “the output oy must always be pre-
~— ~—
test  preamble
ceded by input "
— 41 /o1,i2/02 denotes the property: “the sequence o1, i9/02 must always
~

test  preamble

be preceded by input i;”

e Succession invariants describe more complex requirements such as those es-
tablished by loops. For instance the sequence

i1/01,11/01,11/ 02

preamble test
requires that the sequence i1 /0; is repeated twice before returning the output

02. This would allow to test, for instance, a connection sequence, where two
attempts are allowed before refusing.
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Simple and Obligation invariants The work in [Arnedo 2003] extends the con-
cept of invariants by introducing simple invariants, which are a generalization of the
previously defined output invariants, allowing for wild-card characters to represent
sequences of inputs or a single input/output. Since the most complex operation in
testing with invariants is the generation of the invariant from the specification, for
the described work, invariants are defined manually first (from the requirements),
and later verified in the specification. A verification algorithm is provided. A simple
invariants are defined to be consistent with the FSM formalism (definition 2.1.1)

as follows

Definition 2.1.4. Let M = (S, s9,Z,0,6,\) be an FSM. A sequence [ is a simple
inwvariant for M if the following two conditions hold

1. I is defined according to the following Extended Backus-Naur Form (EBNF):
I:=i/O|*1I|i/o,1
wherei € Z, 7 € ZU{?}, 0 OU{?} and O C O

2. I is correct with respect to M

The wild-card character ‘x’ represents any sequence of input/output pairs, and
the wild-card character ‘7’ represents any single input or output. Notice that ‘7’ is
not allowed in the final pair of the invariant.

In |Bayse 2005], the authors provide an extension for the previous work, where
obligation invariants are defined to allow the description of obligation properties
(“if Y is observed then X must have been observed before”). Obligation invariants
are defined below as well as an example for both types of invariants after that.

Definition 2.1.5. Let M = (S,s0,Z,0,0,A) be an FSM. A sequence I is an obli-
gation invariant for M if the following two conditions hold

1. I is defined according to the following EBNEF:
I:=i/O|*1]ijo, I
where i € ZU{?},0€ OU{?} and O C O
2. I is correct with respect to M
The set O denotes the obligation part of the invariant.
Example 2.1.1. The simple invariant

I =req connect/connected, *,req disconnect /{disconnected}
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expresses the following property: “A disconnect should be seen every time a discon-
nection is requested (by req disconnect) if a connection had been granted previ-
ously”

The obligation invariant
I = req_connect/connected, x,?/{data__sent}

expresses the following property: “Before data can be sent, a connection MUST have
been successfully granted”

Data parts in invariant testing Most of the described invariant testing ap-
proaches are derived from the FSM formalism, meaning that they only take into
account control parts. The first work discussed (|Cavalli 2003|) in addition to ex-
traction of control sequences, it extract separately the constraint information from
the involved transitions. In order to test the property then, the correct sequence
must be found and the constraints must hold, otherwise a fault is declared.

The authors of the second work [Arnedo 2003] propose a small modification to
the obligation invariant approach, in order to deal with constant data parameters.
Such proposal is taken as a starting point by the authors of [Ladani 2005], where
concept of simple and obligation invariants is extended to match the EFSM for-
malism. Invariants are defined manually from the requirements, and input/output
events can contain parametric variables. The invariants are then verified in the spec-
ification in order to check correctness, but also to extract the required constraints
that will be evaluated during the validation of the invariant.

2.2 Runtime verification

Although the wverification and testing communities have usually dealt with different
issues and through different methodologies, in the last couple of decades there has
been increased work in using verification techniques for testing [Fraser 2009]. In
the context of passive testing, a parallel can be drawn between invariant-based
techniques and those of runtime verification.

Runtime verification is a discipline, derived from model checking, that deals with
the study, development and application of verification techniques that allow checking
whether a run of a system under evaluation satisfies or violates a given correctness
property [Leucker 2009]. It is portrayed in the literature as a lightweight verification
technique, dealing only with the aspects of the system that can be evaluated during
runtime, in opposition to traditional verification, which deals with all possible runs
of a system.

In general terms, the methodology for runtime verification is the following: the
system or implementation is assumed to behave as some model, M, some part of
which is available during runtime (states, transitions, variable values, etc). As with
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model checking, satisfiability of a given correctness property ¢, must be determined
on the runtime observations of the visible part of the model (the trace). Verification
of a property can be done either online, i.e. during system execution, or offline, i.e.
in recorded traces.

Similar issues to those in model checking are dealt with in runtime verification:
definition of suitable logics for expressing properties, satisfiability (or monitorability)
and verification of properties. However, while model checking deals with infinite
runs of the system, runtime verification deals with finite executions. This means
that many aspects and techniques of the former cannot be directly applied to the
latter.

Determining the satisfaction of a correctness property (i.e. the verification part),
involves the creation of a monitor. The monitor incrementally reads the trace of the
system and yields a verdict, usually in the form of a truth value in some range (e.g.
{true, false} or a probability [0, 1]). A big part of works in this area deal with the
generation of monitors for different type of properties and systems. An overview of
different works in this area is provided by the authors of [Delgado 2004].

As in model checking, correctness properties are usually written in some vari-
ant of LTL [Vardi 1996] as it can bee seen in the works by [Havelund 2002,
Giannakopoulou 2001, Havelund 2003], however the semantics of the formulas and
the methods for generation of monitors differ. In terms of semantics, a work relevant
to ours, is presented in [Bauer 2006], where a three valued semantics (true, false,
inconclusive) is introduced for evaluation of properties.

Definition 2.2.1. Let u € ¥*, where X is an alphabet, denote a finite trace. The
truth value of an LTL formula ¢ w.r.t. u denoted by [u F ¢], is an element of
{T,L,?} and is defined as follows.

T ifVo e X% uocF ¢
[uF¢gl=¢ L ifVoeX¥ uokop
? otherwise
Put into words, this indicates that a T result can be provided for a formula ¢ in a
trace u, only if for every future extension of the trace uo, the formula remains true.
The set ¥ denotes the set of all infinite sequences that can be formed from the
values in the alphabet X.

From the semantics defined in that work, it is easy to see that results are related
to the evaluation of border cases. For instance, for an LTL formula X¢ (¢ must hold
in the next state), if the evaluation is performed at the end of the trace, the next
state is unknown, therefore, the truth value of the formula can only be inconclusive.
Only after the next state is observed (if evaluating in performed online), then the
monitor can decide the value.

Interesting approaches related to the present work are those dealing with data.
In [Stolz 2008], the concept of parameterized propositions is introduced. Proposi-
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tions contain data variables and quantifiers can be defined by the introduction of
a ‘—’ operator. A property “every opened file must be closed” is described by the
formula G[Vz : open(z) — Fclose(z)], where the formula can only be true if the
temporal relation between events {open, close} holds for every possible value of z.
In [Halle 2008, Halle 2009], a logic for evaluation in message-based work-flows is
defined. Here, data is a more central part of the definition of formulas and LTL
temporal operators are used to indicate temporal relations between messages in a
trace. A formula G[3,z : © = ‘A — F(Jy : y = 200)], indicates that each time a
message appears, where the value of the field a of the message is ‘A’, then a future
message where the field b has a value of 200 must also be found. Some more details
on these and other works, and their comparison with the approach presented in this
thesis are provided in Chapter 5.

Another important aspect of runtime verification is monitorability of properties.
The traditional classification of properties from verification into safety, invariance
and liveness [Bérard 2001, part II], is not generally applicable in runtime verification,
since the set of monitorable properties is smaller than in model checking. Issues
related to monitorability of properties are discussed in [Bauer 2007a, Falcone 2010a,
Falcone 2010b| and alternative classifications are proposed.

Finally, some differences and similarities can be pointed between the concepts of
runtime verification and the objectives of passive testing described in the previous
section. In general terms, the application of runtime verification techniques can be
considered as a form of testing, in particular, since the behavior of the system is
being evaluated against some correctness property. The general objectives, how-
ever, are slightly different. While testing techniques (and particularly conformance
testing) have as objective to provide an evaluation of the system with respect to
its requirements, runtime verification in general deals with the technical aspects of
evaluation of properties on particular executions and generation of monitors, with-
out necessarily attempting to provide a specific verdict on the system. Nevertheless,
this does not exclude the fact that monitors may be designed and used to test con-
formance properties. One last difference can also be mentioned, particularly in the
context of conformance testing described before, which is the fact that techniques
in testing treat the system as a black-box, limiting the trace to contain only observ-
able events (inputs/outputs). In contrast, a trace in runtime verification can be any
sequence of states of the system.
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3.1 The Session Initiation Protocol

The purpose of the current chapter is to provide an overview on the IMS before
going into a study of methodologies for testing IMS services (in Chapter 4). As
it will be explained in the next section, the main protocol used for signaling and
session establishment in the IMS is the Session Initiation Protocol (SIP) and many
entities in the IMS architecture behave partly as SIP entities. Therefore an overview
of this protocol, its objectives and mode of operation, is necessary for understanding
concepts of the IMS.

3.1.1 Overview

The Session Initiation Protocol (SIP) is an application-layer control (signaling) pro-
tocol specified by the IETF (RFC 3261 [Rosenberg 2002]) for creating, modifying
and terminating multimedia sessions with one or more participants, independently
of the underlying transport. It is the protocol chosen by 3GPP to be the session
control protocol for the IMS [3rd Generation Partnership Project (3GPP) 2008],
choice that coincided with the IETF work to update SIP from the previous RFC
2543 [Handley 1999] in order to support wireless environments. Although SIP does
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not provide services, it provides a flexible and extensible set of primitives which

are ideal for the implementation of different services, as it will be seen later in this
chapter, when describing the Presence and Push-to-talk Over Cellular services in
the IMS.

A typical SIP session is established as follows, where a user (Alice) calls an-

other user (Bob). A diagram of the entities in the communication and the message

exchange are provided in 3.1. A more detailed description of this example can be
found on the Section 4 of the RFC 3621.

10.

. Alice uses a SIP client software on her PC, which can act as a User Agent Client

(UAC, when sending a request) or User Agent Server (UAS, when receiving a
request). Alice calls Bob using his SIP identity, a type of Uniform Resource
Identifier (URI).

The client, acting as a UAC, generates a SIP INVITE message, similar to an
HTTP message, containing a request line indicating the method (INVITE) the
callee identifier (sip:bob@domainB.org) and version, followed by a number
of headers, as shown in the Figure 3.2. The message also contains a body
characterizing the preferred session configuration expressed using the Session
Description Protocol (SDP).

If the software client does not know the IP address of Bob, it locates a proxy
server inside own domain (domainA.org), where the message is transmitted.

The proxy from the calling domain, sends a 100 Trying response to the UAC
to let it know that it is processing the request.

The proxy locates a proxy in the reception domain (domainB.org), where it
sends the message, first adding its own address to the Via header, to keep
track of the transmission path.

The proxy in the receiving domain, sends a 100 Trying response to the proxy
in the sending domain to let it know that is processing the request.

The proxy locates the address of Bob by consulting, for instance, a location
server (database mapping SIP identifiers to IP addresses) and transmits the
message to that address, again adding its own address in the Via header.

The client on Bob’s end receives the message and returns a 180 Ringing re-
sponse, indicating that it is waiting for Bob to answer the call. The response
follows the same path that the original INVITE request, thanks to the infor-
mation in the Via header.

When Bob answers the call, the client software sends a 200 0K to indicate
that the call has been answered, the response message also contains an SDP
body, indicating the parameters of the session that Bob is willing to establish.

Once the client on Alice’s side receives the 0K response, it immediately sends
an ACK request to acknowledge the reception of the message, and starts the
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media session.

11. When the media session is over, the terminating client sends a BYE message,
which is replied with a 200 OK response.

Alice Bob
[ ] [ ]
—) =
| — | —
—) [ —)
oQo oQo
SIP Client A Proxy Proxy SIP Client B
(domainA.org) (domainB.org)

— 1. INVITE ——

<«—2.100 Trying —
— 3. INVITE—>

4.100 Trying —
- Y=L 5 INVITE —
7,180 Ringing—| [°" 180 Ringing—
l«—28. 180 Ringing—

. 10. 200 OK—] [*—9- 200 OK—

l«—11. 200 OK——

12. ACK

Media Session

13. BYE
14. 200 OK

Figure 3.1: SIP entities and message exchange in a typical session establishment.

INVITE sip:bob@domainB.org SIP/2.0

Via: SIP/2.0/UDP pcA.domainA.org;branch=z9hG4bK776asdhds
Max-Forwards: 70

To: Bob <sip:bob@domainB.org>

From: Alice <sip:alice@domainA.com>;tag=1928301774
Call-ID: a84b4c76e66710C@pcA.domainA.org

CSeq: 10 INVITE

Contact: <sip:alice@pcA.domainA.com>

Content-Type: application/sdp

Content-Length: 142

(SDP body not shown)

Figure 3.2: Example of the call initiating INVITE message from Alice to Bob

In what follows, we provide a brief description of the behavior of the different
entities in the SIP protocol, focusing particularly on the exchanges of messages
required for establishing communication, and how the data inside the messages
provides the information that allows user agents to decide the course of action on a
particular event. Since the focus of the work in this thesis is on passive testing, our
main interest is the reflection of the internal behavior of entities in the messages in
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the trace.

3.1.2 Entities and Network Elements

Some of the entities and elements that take part in a SIP session are described as
follows, as these concepts will be used during the rest of the document.

User Agent or UA is the endpoint in the STP communication in charge of generat-
ing requests and responses, therefore in charge of the communication. A UA
can take the role of either an User Agent Client (UAC), which is in charge of
creating and sending requests, or an User Agent Server (UAS) which generates
the responses.

Proxy Server An intermediary entity that acts as both a server and a client for
the purpose of making requests on behalf of other clients. A proxy server
primarily plays the role of routing, which means its job is to ensure that a
request is sent to another entity "closer" to the targeted user.

Registrar is a SIP server that receives SIP REGISTER requests and stores the infor-
mation in those requests, i.e. the SIP URI and IP pair, to the location service
for its domain so other entities can locate the user later.

Redirect Server A redirect server is a user agent server that generates 3xx (redi-
rect) responses to requests it receives, directing the client to contact an alter-
nate set of URIs.

3.1.3 Message Syntax

As said previously, the syntax for SIP messages is similar to that of HT'TP. Each
message begins by a start line, called the request line (if the message is a request)
or a status line (if a response). The start line is followed by a number of headers
and the message body.

The request line is composed by the method of the request, indicating the type of
operation requested, the request URI, indicating the user or service being addressed,
and the version of SIP used in the message. A short description of the methods
defined in RFC 3621 is provided as follows.

e REGISTER: used by the UA to indicate its current SIP address and the SIP
URI being used as identifier.

e INVITE: used to initiate a media session between UAs. It is the most important
method for SIP communication.

e ACK: used to acknowledge the reception of a message, usually a 2xx response.
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e CANCEL: used to terminate a previous request, e.g. to hangup the call before
having a response.

e BYE: used to terminate an ongoing media session.

e OPTIONS: used to query a server of its capabilities.

As mentioned earlier, the SIP protocol allows extensions, which introduce new
modes of session control by addition of new methods and/or headers. For instance
for the Publish service, RFC 3265 |[Roach 2002| introduces the SUBSCRIBE, NOTIFY
methods for subscription and notification of events, and RFC 3903 [Niemi 2004]
introduces the PUBLISH method for providing updated information to a server.

A response’s status line, is composed by a status code, a 3-digit integer indicating
the outcome of a request, and a reason code, providing a short textual description of
the status code intended for a human user. Status codes define six different classes
of response.

e 1xx. Provisional: indicating that the request has been received and the process
is being continued.

e 2xx. Success: indicating that the action was successfully received, understood
and accepted.

e 3xx. Redirection: further action needs to be taken in order to complete the
request.

e 4xx. Client error: the request contains bad syntax or cannot be fulfilled.
e 5xx. Server error: the server failed to fulfill an apparently valid request.

e 6xx. Global failure: the request cannot be fulfilled at any server.

SIP headers follow similar grammar rules to HT'TP headers. A header line starts
by the header name, followed by a colon and the header value, ending in a carriage-
return line-feed sequence (CRLF). Groups of headers with the same header name
are considered equivalent to one header followed by a comma separated list. The
following six header fields are the mandatory minimum for any request formulated
by a UAC according to the RFC.

e To: specifies the desired logical recipient for the request in the form of a SIP
URI or another URI scheme. It is usually composed of the contact display
name (optional), as information for the human-user, the identifier of the target,
as well as other optional parameters.

e From: indicates the logical identity of the user initiating the request. It also
contains an URI as the identity and an optional display name. It is used to
determine the processing rules to apply to a request (e.g. for call rejection).
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e CSeq: serves as a way to identify and order transactions (described in the next
section). It consists of a sequence number and a method, where the method
matches the method from the request line or, if the message is a response, it
matches the method of the request being responded.

e Call-ID: acts as a unique identifier to group together a series of messages. It
identifies uniquely a particular invitation or all registrations of a particular
client.

e Max-Forwards: serves to limit the number of hops a request can transit on
its way to a destination. It is an integer that is decreased at each hop. If the
value of the header reaches 0 before reaching its destination, a 483 response is
produced.

e Via: indicates the transport and addresses of each location where the message
has gone through in order to arrive at its destination. Each time a request
goes through a hop, the local UAC inserts new address in the Via header of
the request. That way, the response can use the same path as the request did
in the opposite direction.

The message format requires that a blank line is used to indicate the end of the
header section in a message, and the beginning of the message content section. Other
headers and more detailed description of data inside each header will be provided
in the rest of the work, as necessary for examples.

3.1.4 SIP Transactions and Dialogs

In SIP, multiple messages are exchanged during session establishment, for negoti-
ation of media properties and also to maintain peers informed of the status of the
setup (trying, ringing, ok, etc.). As seen on Section 3.1.1, the particular sequence of
messages, starting with an INVITE and finishing with an 200 0K, allows to effectively
establishing a call. Such sequence of messages, starting by a request, followed by
a series of provisional responses, and one or more final responses, is called a trans-
action in SIP, and is an essential concept for understanding the behavior of SIP
user agents. In the following, we briefly describe the different types of transactions
defined by SIP and the relation to the behavior of user agents, the identification of
transactional data in messages, as well as the grouping of transaction into dialogs.

In addition to identifying a particular sequence of independent message ex-
changes, the term transaction also identifies the logical component or layer inside
the UA that handles such sequence of messages. This component is called a client
transaction when it sends the requests (in the UAC), or a server transaction, when
it sends the responses (in the UAS). Transactions maintain the status of the com-
munication, handle retransmissions (e.g. when the underlying transport does not)
and timeouts. The behavior for the client and server transactions are formally spec-
ified as state machines in the RFC. It should also be mentioned that in the case of
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stateful proxies, two transactions are created, one server transaction to process the
requests, and one client transactions to generate the new requests for the next hop
in the transmission.

Two types of transactions are defined by the SIP specification: INVITE and non-
INVITE, each with client and server sides. INVITE transactions handle the three-
way handshake (INVITE — OK — ACK) described on the example in Section 3.1.1, and
include the generation of the ACK message (on the client side), and retransmissions of
the 0K (on the server side) while waiting reception of ACK. Non-INVITE transactions
do not make use of ACK, they only handle simple request-response interactions, as
the BYE — 200 OK transaction in the previous example.

The INVITE client transaction, as illustrated by Figure 3.3 is created by the
UAC! and the INVITE message created by the client is provided as an initial input
to the transaction, leaving the machine in the ‘Calling’ state and prompting the
machine to send the message (described with the action in the starting transition,
denoted by ‘A’). In the figure, the timer A controls retransmissions when underly-
ing transport is unreliable, timer B controls the transaction timeout and timer D
defines the maximum time that the state machine can be in the ‘Completed’ state.
The actions taken by the transaction upon different events are denoted by ‘E’ in
each transaction text and are described in detail on Section 17.1.1.2 of the RFC,
therefore we will not further explain here. Similar descriptions are also provided in
the specification for INVITE server transaction and non-INVITE server and client
transactions. Most behavior in SIP communication can be described by these four
transactions.

When a UA receives a request or a response, it has to determine which trans-
action the response belongs to, so the processing of the message can take place (or
continue) in the appropriate state machine. The UA uses the following rules from
the data in the headers to match a transaction

1. The branch parameter in the top Via header (added in the last hop) in the
request or response must match the one from the request that created the
transaction.

2. The method in the CSeq header of a response (or request, except for ACK) must
match the method of the request that created the transaction.

3. For requests, the value of the sent-by parameter in the top Via header must
be equal to the one of the request that created the transaction.

These rules will be useful when we get into passive testing for SIP services, in
Chapter 4.

In addition to the grouping established by a transaction in SIP, a higher level
grouping also exists in the concept of a dialog. A dialog represents a peer-to-peer

!Specifically transactions are created by the Transaction User or TU, the layer right above the
transaction layer which deals with creation and management of transactions.



32 Chapter 3. The IMS and the Session Initiation Protocol
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Figure 3.3: INVITE client transaction.

SIP relationship between two user agents that persists for some time. The dia-
log facilitates sequencing of messages between the user agents and proper routing
of requests between both of them. In the example from Section 3.1.1, the IN-
VITE transaction establishes a dialog, and the information from the Record-Route,
Route and Contact headers is used in the BYE — 200 OK transaction, in order to
transmit end-to-end between the UAs. Other methods can also create dialogs (e.g.
SUBSCRIBE), however only the dialog created by INVITE is described in RFC 3621.
A dialog is recognized in the messages by the Call-ID header and the local and
remote tag parameters in the From and To headers, where the local tag is placed on
the From header in the request, and moved to the To header in the response. The
Figure 3.4 illustrates the relation between dialog and transaction in a call.

3.2 Overview of the IMS

The IP Multimedia Subsystem [Camarillo 2005, Ahson 2008] (IMS) is a standard-
ized framework for delivering TP multimedia services to users in mobility. It was
originally intended to deliver Internet services over GPRS connectivity. This vision
was extended by 3GPP, 3GPP2 and TISPAN standardization bodies to support
more access networks, such as Wireless LAN, CDMA2000 and fixed access net-
works. The IMS aims at facilitating the access to voice or multimedia services in
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Figure 3.4: Relation between transactions and dialogs in SIP session establishment.

an access independent way, in order to develop the fixed-mobile convergence. To
ease the integration with the Internet world, the IMS heavily makes use of IETF
standards (e.g. SIP).

In the current section we provide an overview of the architecture of the IMS,
briefly describing the different entities that interact during a session establishment
in the IMS, as well as the protocol used for communication. Then we provide a
description of two of the services that will be used during the rest of the work, the
Presence service and the Push-to-talk Over Cellular (PoC).

3.2.1 Core architecture

The core of the IMS network consists on the Call Session Control Functions (CSCF),
that redirect requests depending on the type of service, the Home Subscriber Server
(HSS), a database for the provisioning of users, and the Application Server (AS),
where the different services run and interoperate. Most communication with the
core network and between the services is done using the Session Initiation Proto-
col [Rosenberg 2002|. Figure 3.5 shows the core functions of the IMS framework
and the protocols used for communication between the different entities.

3.2.1.1 Call/Session Control Functions

The call/session control functions (CSCFs) act as SIP servers and are the nodes
that process the SIP signaling in the IMS. Depending on the function and the
type of session, they handle authentication, compression, encryption and routing of
messages. They can be located either in the visited network (when roaming) or the
home network.
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Figure 3.5: Core functions of the IMS framework.

3.2.1.2 Home Subscriber Server

The Home Subscriber Server (HSS) is the central repository/database containing
all user related information, including between others, location information, autho-
rization and authentication information, and the S-CSCF allocated to the user. A
network may contain more than one HSS, but all the information of a particular user
is stored in a single HSS. When this is the case, a Subscription Locator Function
(SLF) is used to map users to particular HSS.

3.2.1.3 Application Server

The Application Server (AS) is the SIP entity where services are hosted and ex-
ecuted. Depending on the service the AS can act as a SIP proxy, SIP UA (User
Agent) or SIP B2B2UA (Back-to-Back User Agent). The AS interfaces the S-CSCF
and the I-CSCF using SIP and the HSS using Diameter. It can be located either
in the home network or in an external third-party network to which the operator
maintains a service agreement. Only ASs located in the home network can interface
the HSS.
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3.2.2 IMS Services

One of the main objectives of the IMS is to provide an architecture for deployment
and integration of multimedia services, in the following we will describe in general
terms two of these services: Presence and Push-to-talk Over Cellular.

3.2.2.1 Presence

The Presence service is a system to disseminate presence information, allowing a user
of the service be informed of another contact’s connection status (online, offline) as
well as their availability status (idle, busy, in a meeting, etc.). It also allows users
to give details of their communication capabilities (e.g., whether they have audio,
video, instant messaging, etc.).

The Presence specification (RFC 3856 [Rosenberg 2004]) proposes the usage of
SIP as a presence protocol. As such, it assigns user agents for performing the tasks of
the different roles in the presence information exchange, roles defined in accordance
with the model for presence defined in RFC 2778 [Day 2000]. This is illustrated in
the Figure 3.6 and described in the following.

e The user (Alice) sharing his presence information is called the presentity, who
performs the task by means of one or more Presence User Agents (PUAs).

e The updated information is sent by the PUA to a Presence Agent (PA), where
the general picture of the user’s presence is kept. A PA can be part of a
Presence Server (PS) which is an entity that can act either as a PA or as a
SIP proxy for subscription requests.

e Users interested in Alice’s presence status, called watchers, can subscribe to
the PA to be notified of updates to Alice’s status.

The watchers subscribe to the PA by wusing the pair of messages
SUBSCRIBE/NOTIFY, defined in the RFC 3265 |Roach 2002|, where the utilization
of SIP for event notification is specified. Between other things, the Event header
is introduced to indicate the type of event to which the subscription/notification
is made. In the case of presence, the value of this field is the string “presence”.
The actual presence information is included in the body of the message, in a format
depending on the application, which for the IMS is an extension of PIDF (Presence
Information Data Format [Sugano 2004]) defined by the Open Mobile Alliance. For
updating information to the PA, the presence service uses the SITP PUBLISH request.
As this request can be used in general for publishing any type of information, then
“presence” must be used as value for the Event header, among other conditions.

For the IMS the main specification for the Presence service is provided in the
OMA Presence SIMPLE specification [Open Mobile Alliance 2010].
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Figure 3.6: SIP entities in the Presence service

3.2.2.2 Push-to-talk Over Cellular

The IMS Push over Cellular (PoC) service, standardized by the
OMA [Open Mobile Alliance 2006], is also known as Push-to-Talk, Push-to-
View or Push-to-Share, depending on the main media type of the communication.
It enables multiple IMS users to connect with each other in a single communication
session, where any authorized user may talk simultaneously to every other partic-
ipants. It is a walkie-talkie communication paradigm (half-duplex), meaning that
only one user can speak at a time.

For the service two planes are defined: the control plane, which deals with session
setup using SIP, and the user plane, dealing with the assignation of talking rights,
described by the specification as media bursts (or talk bursts in earlier versions of the
documents), and specified in the protocol MBCP (Media Burst Control Protocol).
From an architecture point of view, two roles or functions are specified on the server
side: the controlling function, providing centralized session handling and media
distribution, and the participating function, providing session handling and media
distribution on the side of the client (the home network). The communication
between two clients is illustrated in Figure 3.7.

For signaling, several IETF standards are used as extensions or complements to
SIP. The RFC 4354 |Garcia-Martin 2006] defines the ‘poc-settings’ event, for pub-
lication and notification of configuration changes in the PoC client (using the SIP no-
tification extension described for presence [Roach 2002]), as well as the XML schema
for distribution of the settings. RFC 5363 [Camarillo 2008]| specifies the framework
for URI-list services, which permits to clients to perform operations that involve
several users (as an invitation to a conference call), by specifying them in URI-lists,
an XML document included in the body of the SIP message (defined also in RFC
5363). Finally, the headers P-Answer-State, Answer-Mode and Priv-Answer-Mode
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are defined in RFCs 4964 and 5373.
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Figure 3.7: Controlling and Participating functions in a PoC session

Different types of sessions are possible in PoC. A One-to-One session allows
communication between two users. An Ad-hoc PoC Group session is established
when the inviting user choses a group of contacts from the address book and invites
them to a multi-party PoC session. A Pre-Arranged PoC Group is similar to an
ad-hoc group however group have been selected in advance. A Chat PoC Group is
a multi-party session where a user can join or leave the communication as desired.

The figure 3.8 shows the session setup for an ad-hoc group session with confirma-
tion (the invitees respond with 180 Ringing and wait for the user to accept before
sending the 200 OK response), and illustrates the number of message exchanges
required for setting up some sessions. The figure does not include the exchange
between entities of the SIP Core (the CSCF servers) and we also omitted the 100
Trying messages generated each time a server receives an INVITE request, and the
ACK request sent for acknowledgement by inviting user after the 200 0K has been
received. As shown in the figure, the INVITE from the inviting user contains an
URI-1list with the list of invitees. When the controlling PoC server receives the
message, it generates an invitation for every client in the list. In terms of SIP enti-
ties, this means that the PoC server creates a new client transaction for every client
in the URI-list,

Once the session has been established, the user plane takes control of the commu-
nication. As mentioned earlier, the floor control is provided by the MBCP protocol,
an extension of RTCP (Real Time Control Protocol). Once the 200 0K has been re-
ceived, a MBCP Media Burst Granted message is sent to the client that initiated the
call in order to grant him the floor. Other clients can request authorization to speak
by sending a MBCP Media Burst Request to the server. Other messages are also
used to acknowledge a message, to deny a request or to inform the clients that the
floor is free. The final media communication is done using RTP (Real Transmission
Protocol) with the media configuration negotiated during session setup.
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4.1 Introduction

As the number of inter-operated IMS implementations grows, the number of complex
IMS applications and services is also increasing |Tsagkaropoulos 2007]. Moreover,
the fact that people rely on computers in practically every aspects of their lives
(e.g. in ATMs, smartphones, netbooks, cars, etc.) makes the cost of unreliable
design higher [Hoffman 2008|. Even given the importance of IMS applications for
the commercial success of the framework, and the important requirements of inter-
operability between platforms established by the IMS (IMS core, application server,
client applications across multiple networks), few works have been done with re-
gards to conformance testing of IMS services. There are different reasons that could
explain this. One of them is the necessity for the industrials to quickly provide
new services to their clients in this new competitive race which is the fixed-mobile
convergence. Another reason is the specific black-box nature of IMS implementa-
tions. Due to many issues, but mainly due to commercial aspects, the access to
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available interfaces (with little available knowledge about them) to actively test the
implementations is usually limited.

Some works can be mentioned related to testing for the IMS. Modeling of SIP
services has been done by the authors of [Chan 2003b, Chan 2003a| showing that
SDL is a suitable language for modeling SIP services and introduce an approach
to reduce services feature interactions. Concerning IMS testing, many works have
been done for IMS testbeds. A couple of examples can be cited, for instance, in
[Blum 2007], aimed at studying the impact of new access networks, or [Panwar 2007]
to test IMS clients by simulating server functionality. Most works make use of
the Open IMS Playground of Fraunhofer Fokus'. More recently, some works have
been introduced regarding testing of IMS services using TTCN-3 [Bormann 2009].
Finally tests definitions can be found for testing different IMS core requirements in
the TTCN-3 website?.

As seen in Chapter 3, IMS services integrate multiple protocols and protocol
extensions in order to provide features of the service. For instance in the case of the
Push-to-talk Over Cellular (PoC) service, SIP is used for session establishment, PoC
settings exchanges is defined using RFC 4354 [Garcia-Martin 2006|, conference sta-
tus notifications are used according to the definitions in RFC 4575 [Rosenberg 2006]
(an extension of RFC 3265 [Roach 2002]). Conformance testing of IMS services must
consider then two separate aspects:

1. That each protocol and protocol extension implemented by the service is con-
formant to its specification. For instance, it should be validated that, when
the PoC server behaves as a SIP UAC for contacting invitees of a confer-
ence, the observed behavior of the server is consistent with the INVITE client
transaction, as specified by RFC 3261.

2. That the integration of the different protocol extensions conforms to the re-
quirements of the service. In the PoC, for example, if a client subscribes to
conference status (RFC 4575), then upon change of subscription state (e.g.
another client joined the conference), the server must send a NOTIFY message
to the subscribed user [Open Mobile Alliance 2009].

We presented an approach to deal with some of these testing chal-
lenges [Lalanne 2009b, Lalanne 2009a|, through an industrial case study performed
as part of our participation in the ExoTICus?® project. There, an invariant-based
passive testing methodology was used for testing the behavior of server and client in a
specific session scenario of the PoC service, the Ad-hoc Group session establishment.
The presented approach consisted of the following steps: first the properties to be
tested are defined as invariants, properties are defined from the information provided

"http://www.openimscore.org/
*http://www.ttcn-3. org/PublicTTCN3TestSuites.htm
*http://www.systematic-paris-region.org/en/projets/exoticus



4.2. An Invariant-based passive testing approach 41

in the description of the session and example of Message Sequence Charts (MSCs)
provided by the PoC control plane specification [Open Mobile Alliance 2009, Sec-
tions 7.2.1.2 and F.5.1] Secondly, these requirements are verified on a formal speci-
fication for the PoC, using the SDL specification language. Finally, these properties
are evaluated in execution traces of the service, obtained from the IMS implemen-
tation of an industrial partner, Alcatel-Lucent.

In this chapter, a partial description of that work is provided, particularly fo-
cusing on the property definition. Although the work described is a first approach,
it served to raise interesting question that motivated the research presented in this
thesis, that will be detailed in Chapter 5, particularly in relation to the importance
of data in invariant-based approaches. These motivational ideas are described in
4.4.2.

4.2 An Invariant-based passive testing approach

4.2.1 Obligation Invariants

Given the constraints of the platform, obligation invariants [Bayse 2005] (Definition
2.1.5) were used as part of the testing methodology proposed for IMS services. Since
SIP communication is dependent of the data inside the message headers, the concept
of invariant used is closer to that of backwards invariants in [Ladani 2005|. The main
difference is that input/output symbols in invariants from the latter approach can
optionally contain parameters, as input/outputs in an EFSM (Definition 2.1.3). Let
us define invariants for an EFSM and briefly recall some of the ideas of this approach.

According to Definition 2.1.5, an invariant I is described by I ::=i/O | ,1 |
i/o,I, where i € ZU{?} is an input, o € O U {?} is an output and O C O is a set
of obligation outputs. Intuitively, a sequence such as {i1/01,...,in—1/0n—1,0n/0n}
is an obligation invariant for M if each time i,/0, is observed, then the trace
i1/01, ..., in—1/0pn—1 happens before. An invariant that expresses a property, such
as “if y happens then we must have that = has happened before”, is an obligation
invariant. They may be used to express properties where the occurrence of an event
must be necessarily preceded by a sequence of events.

In addition to sequences of input and output symbols, the wild-card characters
“?” and ‘x” are allowed, where ‘7’ represents any single symbol and ‘*’ represents any
sequence of symbols.

In this work, invariants are checked both on the specification and on the IUT,
allowing to determine whether the property is correct according to the formal model
and that the IUT behavior is as defined by the standard. An adaptation of a
classical string pattern matching strategy |[Knuth 1977| is performed to match the
trace and the invariants. The complexity of the resulting algorithm is in the worst
case in O(m-n) (n being the invariant length and m the trace length), in particular
because we must check all occurrences of the pattern in the trace making it difficult
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to optimize the complexity to O(m). Nevertheless, since the invariant length is
often (not to say "always") much smaller than the extracted trace, the complexity
is almost linear with respect to the trace length.

4.2.2 The Conformance Passive Testing approach

In the current approach to conformance testing, we attempt to test the correctness
of an implementation through the evaluation of a set of invariants (or properties)
and a set of captured traces (extracted from the running implementation’s points
of observation). Four steps are followed during the conformance passive testing
procedure.

Step 1 Definition of properties. The relevant protocol properties to be tested are
provided from the standard documents or by protocol experts.

Step 2 Formalization of properties as invariants. Properties have to be formulated
by means of obligation invariants that express a requirement regarding the
local entity under observation. Moreover, the properties are formally verified
on the formal specification ensuring that they are correct with respect to the
requirements.

Step 3 Extraction of execution traces. In order to obtain such traces, different PO
are set up by means of a network sniffer installed on one of the nodes. The
captured traces are in XML format.

Step 4 Test of the invariants on the traces. The traces are processed in order
to obtain information concerning particular events as well as relevant data
(e.g. token owner, source and destination address, origin of data to initialize
a variable, etc.). During this processing, the test of the expected properties is
performed and a verdict is emitted (Pass, Fail or Inconclusive). An inconclu-
sive verdict may be obtained if the trace does not contain enough information
to allow a Pass or a Fail verdict.

4.2.3 The PoC Service

The Push-to-talk Over Cellular service (Section 3.2.2.2) is provided by a PoC server.
Session establishment is done using SIP, while the media communication is trans-
mitted via RTP directly between terminals. Floor control is provided via the Talk
Burst Control Protocol* (TBCP), an extension of RTCP. In the user plane, a PoC
token is assigned to the client with the floor. The floor is requested /released by the
different clients of the session through TBCP REQUEST and RELEASE messages, and
information advertising the status of the token is provided through TBCP GRANTED,
DENY, IDLE and REVOKE messages. Once the token is granted to a PoC participant,

“TBCP becomes Media Burst Control Protocol (MBCP) from version 2.0 of the PoC service
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this latter has the opportunity to send media packets while all other participants to
the session can only receive them. The PoC token is automatically released after a
predefined duration.

For simplicity, a single scenario from the PoC requirements was chosen both for
modeling and definition of the properties: The Ad-hoc Group session, or as referred
in the PoC requirements document [Open Mobile Alliance 2006], the Selective Dy-
namic Group Call. This feature provides a way for a service user to quickly set up a
one-to-one group call in a dynamic way, without need to specifically define a group
in the provisioning server. The normal flow of the session is the following.

e The initiating user selects one or more persons from a contact list user inter-
face, that he would like to establish a call with. The user can use the contact
list’s presence information to decide who to include in the call.

e After finishing selecting the group members, the user presses and holds the
POC button/key, initiating a call with the network, the user will receive a
notification to talk (usually by an audio tone) when the first invitee joins the
call, indicating that the user can begin to talk.

e Each one of the invitees will receive a notification indicating an incoming group
call, and will have the chance to take or reject the call. If they choose to take
the call, then they will receive a wait-to-talk indication.

e The session remains active as long as two or more members are engaged in the
call.

The general PoC functionality is divided into two planes. The control plane
and the user plane. The control plane deals with the media communication and
floor control, or talk burst control. The control plane deals with session establish-
ment and control using SIP. Nevertheless, since our approach is black-box, we can
only distinguish the two planes through the messages they produce. The Message
Sequence Chart (MSC) in Figure 4.1 shows a detailed view of the Ad-Hoc session
establishment, also described in the previous chapter (Figure 3.8). After the session
establishment, through the INVITE — OK messages, an ACK message is sent from the
original client to the PoC server, which prompts the user plane to grant the floor to
the original user (through TB_Granted) and deny the floor to the rest of the partic-
ipants (through TB_Taken), before sending the corresponding ACK messages to the
rest of the participants.

4.3 Experiments

4.3.1 Experimental architecture

The Exoticus IMS core network, provided by Alcatel-Lucent, is a full-featured IMS
infrastructure designed to support 10,000 users. The mandatory IMS services are
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Figure 4.1: Message exchange for an Ad-hoc Group Session.
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available from Alcatel-Lucent portfolio, running on the A5400 IMS Application
Server:

e The XDM server is the OMA 1.1 standardized network address book manager.
It provides one of the most interesting IMS features, which is the centralization
of the users’ address books. Whatever terminal the user will use to access
the IMS, an up-to-date address book will be available. It is stored on an
XML documents management server, which can be accessed using the XCAP
protocol.

e The second IMS key service is the Presence Server that delivers the OMA 1.1
standardized service for users’ presence and status management.

e The voice communication service is not based on circuit switching but on IP
packets exchange, and depending on the IMS clients supported audio/video
support the communications can be enriched with video.

e The voice mail server provides IMS users with the must have voice and video
messaging system.

e The PoC server implements the OMA 1.1 PoC service.

The Figure 4.2 depicts the architecture. The Point of Observation, indicated in
the figure, illustrates the interface for capture of the PoC service traces.

4.3.2 Invariants

From the OMA PoC requirements, six obligation properties have been provided, to
test the behavior of the PoC server as well as some of the behavior of the clients.
Each one of these properties describes a step in the session establishment for a PoC
Ad-hoc session and allows to ensure that the sequences of messages defined by the
protocol appears in the trace. Although the initialization sequence is clearly defined
by the PoC, the exchange of messages is asynchronous, and during this process, the
server can also exchange SIP messages with other IMS applications and peers of the
session. The invariants are described in the following.

4.3.2.1 Invariant 1

The first invariant evaluates the case where a particular user initiates an Ad-Hoc
call. The originating user sends an INVITE request to the PoC server, identifying
it by the conference URI, a constant identifier defined in the client. The INVITE
message must contain a list indicating the invitees to the session (identified by their
URIs), in agreement with the Ad-Hoc session requirements. For each of the users in
the list, the PoC server creates a new INVITE request, using the originating user’s



46 Chapter 4. Testing for IMS Services

’ Point of Observation l

Application
Server
— -~ PoC Server
% ______ +--- Presence Server

1:- --- XDM Server
i-- - VoiceMail Server

diameter

Access
Network

IMS Core Network

IMS Client

Figure 4.2: IMS testing architecture.

URI as value for the From header. The property is defined as the following obligation
invariant

INVITE(CSeqo,Userg, ‘ConferenceURI’, Calll Dy, {User1})/?, *,
?/INVITE(CSeq,Usery, Usery,Calll Dy, ()

where the input symbol is represented by INV ITE(CSeq, From,To,Callld, Invitees)
where CSeq, From, To, CallID, Invitees respectively represent the CSeq, From,
To, Call-ID and list of URISs for the invitees. Although it is not specifically denoted
in the formula, the last output corresponds to the obligation part of the invariant.

It should be mentioned also that the last type of variable, representing a list of
elements, is not technically supported by the definition of invariant given previously.
Nevertheless it was supported by the tool used for the experiments. The property
is illustrated by the MSC in Figure 4.3.

4.3.2.2 Invariants 2 and 3

These invariants illustrate another step in the initialization sequence. After a SIP
client receives an INVITE request, it replies with a Ringing response, to indicate
that the message was received and that it is waiting for confirmation of the user to
accept the call. In the case of the Ad-hoc session, reception of Ringing response
prompts the sending of an equivalent response for the original INVITE, to inform the
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IMS Core PoC Server

INVITE(CSeqq,Userg, ‘ConferenceURI’ , Calll Dy, {User})

INVITE(CSeq,Userg, Usery, CallIDy,0)

Figure 4.3: MSC of Invariant 1.

client that at least one of the recipients has received the invitation. Property 2 is
designed to test the behavior of the clients, and although the traces were gathered
at the server, this can be achieved by reversing inputs and outputs in the trace. The
property is defined as follows.

INVITE(CSeq,Usery, Usery, Calll D1,0)/?, x,
?/Ringing(CSeq1, Usergy, Usery, Calll D)

Indicating that if a Ringing message should not be sent without a corresponding
INVITE being previously received. Property 3 is defined with the invariant

INVITE(CSeqp,Userg, ‘ConferenceURI’, Calll Dy, {Usery})/?, *,
?/Ringing(CSeqq, Usery, ‘ConferenceURI’, Calll Dy)

and indicates that if a Ringing message is sent, a corresponding INVITE message
must have been received previously. These properties are illustrated in Figure 4.4.

IMS Core PoC Server

INVITE(CSeqo, Userq, ‘ConferenceURI" , Calll Dy, {User; })

INVITE(CSeqy,Userg, Usery, CallI Dy, 0)

Ringing(CSeqy, Usery, Usery, CallI Dy)

Ringing(CSeqo, Usery,‘ConferenceURI’, Calll Dy)

Figure 4.4: MSC of Invariant 2 and 3.

4.3.2.3 Invariant 4, 5

These invariants illustrate the acceptance steps during session initialization. When
the PoC client for the invited user accepts the call, an 0K message is sent to the
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PoC server, informing that the client is waiting to listen, which in turn prompts the
server to send an OK response for the originating INVITE request, to inform the caller
that at least one invitee has accepted the call. The sequence of messages evaluated
by these invariants is shown in Figure 4.5. Invariant 4 is defined to test the behavior
of the clients as

INVITE(CSeq,Usery, Usery, CalllD1,0)/7, x,
?7/OK(CSeqi,Usery, Usery,Calll D)

and invariant 5 is defined with the following formula

INVITE(CSeqp,Userg, ‘ConferenceURI’, Calll Dy, {Usery})/?, *,
?/OK(CSeqy,Userg, ‘ConferenceURI’, Calll Dy)

IMS Core PoC Server

INVITE(CSeq, Userq, ‘ConferenceURI’ , Calll Dy, {User; })

INVITE(CSeqy,Userg, Usery, CallIDy,0)

OK (CSeqy,Usery, Usery,CallI Dy)

OK (CSeqq, Usery, ConferenceURI’, Calll D)

Figure 4.5: MSC of Invariants 4 and 5.

4.3.2.4 Invariant 6

This invariant evaluates the acknowledgement of an OK message by a PoC client.
An ACK message indicates the PoC server that the OK message was successfully
received and that the client is ready to initiate the media session. It prompts the
PoC server to move to give control to the user plane and grant the floor to the
initiating client. This invariant validates the behavior of the client, requiring that
before an ACK message is received by the server, an 0K message must have been sent.
This property is defined in the following and illustrated by Figure 4.6

OK (CSeqoy, Usery, ‘ConferenceURI’, Calll Dy) /7, *,
?7/ACK (CSeqq,Usery, ‘ConferenceURI’, Calll Dy)

Notice that, in principle, there is no relation between the CSeq fields in the property
between the 0K and ACK messages. Although the messages are required to belong to
the same dialog, as defined by the Call-ID header, there is no other guarantee that
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the messages are actually related. Nevertheless, given the conditions of test and
trace capture, this property is sufficient to evaluate the requirement. A strongest
version of the same property can be defined by

?/INVITE(< ‘INVITE’, Seqy >, Usery, ‘ConferenceURI’, Calll Dy, {Useri }), *
OK (< ‘INVITE’, Seqp >, Userg, ‘ConferenceURI’, Calll Dy)/?, *,
?7/ACK (< ‘ACK’, Seqp >, Usery, ‘ConferenceURI’, Calll Dy)

where the CSeq part of the INVITE event is described by the pair <
Method, Seq >, where the Method represents the part of the CSeq header con-
taining the method, and the Seq contains the sequence part of the header. This
also serves to illustrate how the effectiveness of the property relates to number of
data variables that need to be compared.

IMS Core PoC Server

INVITE(CSeq, Userg, ‘ConferenceURI" , CallI Dy, {User; })

OK(CSeqq, Usery, ConferenceURI’, Calll Dy)

ACK (CSegq, Usery,'ConferenceURI’, Calll Dy)

Figure 4.6: MSC of Invariant 6.

4.3.3 Testing tool

The testing tool used, called TestInv and developed by the company Montimage’,
allows automated analysis of the captured traces to determine if the given invariants
are satisfied or not. The tool takes as input the information on the protocols under
observation, the traces and the invariants for evaluation. Invariants for the tool,
in addition to defining the sequences of events that need to be observed, can also
specify maximum time limits (¢imeouts) between events. The verdict obtained for an
invariant can be either PASSED, FAILED or INCONCLUSIVE meaning respectively
that: all events where satisfied; at least one event was not satisfied in the trace in
the time delimited by the tzmeout; or, it is not possible to give a verdict because
there is not sufficient information in the trace. The Figure 4.7, shows a high level
description of the tool as it was defined at the time of the work.

4.3.4 Results

The defined invariants were defined using the XML syntax for the tool TestInv,
specifying the types of packets to observe and the events to evaluate. This file,

Shttp://www.montimage . com
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Figure 4.7: The TestInv Tool

along with the trace files and protocol information were provided as input for the
tool. The definition of invariants and interpretation of the results is not difficult
for someone with knowledge of the protocol requirements. Applying the tool to the
traces was very fast (less than 1 sec.) since the traces did not need to be very long
for the purpose of testing the PoC service. Some calibration is necessary to find a
convenient timeout value to use but this did not present many problems.

The verdicts obtained were PASSED for the majority of the invariants previously
described. This means that for each invariant, meaning that in most of the cases,
the preamble of the invariant was found for each time that the obligation part of the
invariant was observed. For instance for the Invariant 1, after finding an obligation
packet

timestamp = Nov 17, 2008 14:30:20.054048000
sip.Request-Line = INVITE sip:fabrice@mediacom.net SIP/2.0
sip.to.addr = sip:fabrice@mediacom.net

sip.from.addr = sip:ronan@mediacom.net

sip.CSeq = 1000 INVITE

sip.Call-ID = 001cc4600e68-29206744931200764419

the tool reports finding the preamble packet

timestamp = Nov 17, 2008 14:30:19.939698000

sip.Request-Line = INVITE sip:Conference-Factory@mediacom.net SIP/2.0
sip.to.addr = sip:Conference-Factory@mediacom.net

sip.from.addr = sip:ronan@mediacom.net

sip.CSeq = 20 INVITE

sip.Call-ID = 3040056629@172.25.70.116

Nevertheless, several FAILED results were also found for the invariants, partic-
ularly for property 4. Upon inspection of the traces, these results were determined
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to be false positive results, i.e. behavior incorrectly detected as a fault during the
trace observation. A two part explanation can be provided: 1) valid behavior from
the PoC server, not indicated in the MSC used for the specified scenario, was not
considered during property definition, therefore leading to 2) an invariant not re-
strictive enough, in terms of data parameters, to correctly target the particular case
under observation.

A description of the specific reasons for the false positive result, and a discussion
on possible solutions and research ideas, that will be studied in the next chapter,
are provided in the following section.

4.4 Discussion

4.4.1 False positive results

An important IMS feature is that different applications may share some information
to avoid duplicating functionalities. In this way, for example, the XDM server man-
ages the address book of the user, and the Presence Server manages the user status
and availability information. The PoC server, as well as other applications, makes
use of both of these capabilities while managing its own sessions. Furthermore, the
PoC server also provides features of the SIP notification framework for conference
state [Roach 2002, Rosenberg 2006] in order to transmit information about the con-
ference status to subscribed clients by means of NOTIFY messages. Due to this mix
of features, most traces collected will contain packets for all different procedures
performed by the server during the communication. For this reason, and since most
of the communication in the IMS is done using SIP, the definition of invariants
suitable for evaluation becomes more difficult.

Let us take as an example the case of invariant 4 previously defined. Con-
sidering the session sequence showed in the Figure 4.1, the invariant is correctly
defined. Indeed, when finding an 0K message, it indicates that a session initializa-
tion parameters established by an INVITE has been accepted. However the expected
observation OK (CSeq, From,To,CalllD) is too general, and matches acceptance
of other types of requests, such as SUBSCRIBE, NOTIFY or BYE, that are also found
on the trace. This is shown in the following example.

Example 4.4.1. For invariant 4, on inspection of the trace shown in Figure 4.8,
and starting from the end of the trace, upon observation of the last 0K message, it
will declare a match for the preamble of the invariant, and will start to look for an
INVITE message, with (C'Seq(yy, F'romy, To(y, Calll D(yy) as parameters. However,
since the last OK message is a response to the NOTIFY request, as indicated by the
parameters, then the evaluation of the invariant returns a FAIL result.

In case of controlled experiments, where the information in the traces is expected
to be limited to a defined number of clients or sessions, manual analysis may separate
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IMS Core PoC Server

I]\TVITE'(C’SG(](O)7 FT‘OT)’L(O), TO(O), CallID(()), @)

OK (CSeqqoy, Fromy, To(y, Calll D))

NOTIFY (CSeqqy, Fromy, To(y, Calll D(1y)

OK(C’Seq(l),From(l),Tom, C’allID(l))

Figure 4.8: A trace including a NOTIFY — OK pair.

the expected results from the false positives. In the best case scenario, false positive
results constitute noise in the results that should be avoided. However, in the worst
case, such results may also be indicative that there are alternative behaviors not
being tested. A discussion on alternative approaches and research ideas is provided
in the following.

4.4.2 Motivating research ideas

In this particular case there is a simple solution, to further restrict the invariant,
using the sub-values of the C'Seq header (as described for the invariant 6). The
following formula

INVITE(< ‘INVITE', Seq(g) >, Fromg), To(o), CallI Dy, 0)/?, *,
7/OK(< ‘INVITE’, Seq(o) >, FT‘OTTl(O), TO(O), C’allID(O))

specifies that each time that an 0K message is observed as a response to an INVITE
message (defined by the CSeq.method field), then a corresponding INVITE must also
appear in the trace. However, it is possible that due to the specificity of a given
property, invalid behavior goes untested, leading to a false negative, or PASSED
verdicts being provided for invalid behavior. One such case could occur, for instance,
with invariant 6, where the evaluation of

?/INVITE(< ‘INVITE', Seqy >, Usery, ‘ConferenceURI’, C'alll Dy, {Useri }), *
OK (< ‘INVITE’, Seqy >, Usery, ‘ConferenceURI’, Calll Dy)/?, *,
?7/ACK (< ‘ACK’, Seqy >, Usery, ‘ConferenceURI’, Calll Dy)

does not take into account that other SIP 2xx responses (success responses including
the 0K, with code 200) also must be acknowledged. Even more, error responses to
an INVITE, with codes 300 to 699, also require an ACK reply. However, testing
such possibilities would require an invariant that can match alternative preamble
sequences for a given output, which is not supported by the current invariant syntax.
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Other point to be considered is that the current invariant syntax derived from
the EFSM, i1 /01,i2/02, ... ,in/0n, is not always suitable for testing some protocols,
where the causal relations between inputs and outputs are not directly known, or
where there may be multiple outputs for a single input (as with SIP). When captur-
ing traces for system where multiple clients can interact, this becomes more critical,
since the trace is simply a mix of multiple input and output packets, where a par-
ticular input 4 can only be related to an output o through the data parameters they
contain.

In current invariant approaches |Ladani 2005|, dealing with data requires ex-
tracting constraint information from the specification in order to evaluate constraints
along control part. This approach limits somewhat the practicality of the invariant
utilization, since a specification is required in order to evaluate data relations in the
trace. It is interesting to explore the inverse approach then, invariants defined with
control and data constraints, that can then be verified into the specification.

Finally, for IMS services, it might be interesting to test more complex require-
ments of the service, as described in the beginning of the chapter. For the PoC, for
instance, when a client joins a conference, a notification must be sent to all clients
subscribed for the ‘conference’ event [Rosenberg 2006]. The following sequence of
events should be matched to test such a feature

1F subscribed(usery, con ference)
AND  joins(usery, conference)
THEN notify(usery,usersy)

where subscribed requires observing a SUBSCRIBE — 0K pair, joins require observing
INVITE OK messages, and notify, requires observing a NOTIFY 0K pair.

All of these issues related to testing provide the motivation for the work described
in the following.

4.5 Conclusion

In this chapter, we described our work for passive testing of IMS services, focus-
ing particularly on a Push-to-talk Over Cellular (PoC) service implementation, as
presented in |Lalanne 2009b, Lalanne 2009a|. This work was motivated by the fact
that active testing techniques are not always possible to apply in testing of already
deployed systems, particularly for proprietary implementations. In our work, an
approach based on evaluation of invariants is presented, where six properties to test
were chosen from the PoC specification document, in order to evaluate them into
service traces.

Although the approach in general showed positive results, some false positive
results were also found during the evaluation. Although these results are partly due
to definition of properties considering only partial information from the specification
documents, they can also be related to the limitations of the invariant approach for
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evaluation of more complex traces, as those of IMS services, where multiple message
exchanges can appear, and the only relation between inputs and outputs is through
data contained in the messages.

Several motivating ideas, some of them related to the work in this thesis, are
proposed as improvement to the invariant approach, dealing with definition of more
general properties through the consideration of data relations, and the utilization
of such an approach to test integration of features in IMS services. In the following
chapter, several of these ideas will be developed, into what constitutes the main
contribution of the present work.
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5.1 Introduction

Passive testing is based on the observation of input and output events of an imple-
mentation under test in run-time. The term “passive” means that the tests do not
disturb the natural run-time of a protocol as the implementation under test is not
stimulated. The record of the event observation is called a trace. In order to check
the conformance of the IUT, this trace will be compared to its expected behavior,
defined either by a formal model (whenever available) or by one or more expected
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functional properties (called invariants). The objective of passive testing is to pro-
vide a verdict about the conformance of an IUT, through the behavior observed in
the trace.

Passive testing and runtime verification (or runtime monitoring) approaches are
often conflated [Brzezinski 2009]. They both observe a run of the system (con-
tained in a trace) and attempt to determine the satisfaction of a given correctness
property [Leucker 2009]. However, while passive testing has the specific purpose
to deliver a verdict with respect to the conformance of black-box implementations
(IUT), verdicts in runtime verification are related to the satisfaction of any prop-
erty that can be verified in a trace'. Generally, runtime verification approaches deal
with the technical aspects of property evaluation and monitor generation, without
necessarily attempting to provide a verdict about the system.

Both passive testing and runtime monitoring methodologies derive, respectively,
from model-based testing and model checking techniques. Due to this, they are
usually propositional in nature, that is, they are designed to focus primarily in the
control part of the observation, and consider data only as an extension of the control
part, usually by the addition of parameters. However, as previously described, such
approach is not ideal when modern (e.g. application-layer) protocols are evaluated.
It is the premise of the current work that a message-based /data-centric approach,
i.e. a bottom-up definition of properties, starting from expected relations between
message data fields to express properties of incremental complexity, provides a more
effective solution for invariant-based testing of such protocols. This is inspired by
the fact that events in a communication trace are usually collected in the form of
messages or packets, i.e. collections of data, which are used for the extraction of
both control and data parts.

In this chapter we present our approach for data-based invariant testing of pro-
tocol implementations. Invariants in our work are defined as a pair I(¢,1), where
¢ is a formula specifying a test behavior, i.e. a behavior that needs to be observed
in the trace in order to provide a pass verdict. The formula v specifies a condi-
tional behavior, i.e. the behavior that needs to be observed in the trace to provide
a fail verdict when the evaluation of the test behavior does not produce conclusive
information. The conditional behavior is required since lack of observation of the
test behavior does not necessarily imply failure of the IUT to produce it. This issue
is reflected in our semantics for satisfaction of formulas in the context of a trace,
where evaluation of each formula can be determined within the truth values: ‘T’
(true), ‘L’ (false), and ‘7’ (inconclusive), respectively indicating that the formula
is satisfied, not satisfied and that there is no sufficient information to determine
satisfaction.

Several elements are presented as part of our approach: i) a formal definition of
messages as collections of labelled data is provided, i) a syntax/semantics for formu-
las is defined. The syntax provides a way to establish required behavior with respect

!The term #race in runtime verification is not restricted to observable events
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to data relations between messages, instead of control parts. 4ii) An algorithm to
determine satisfaction of a given formula in a trace is defined. v) An algorithm to
provide a verdict for an invariant, I(¢,1), with respect to the observations in the
trace is also provided. Finally, some clarifying examples and experiments are also
provided.

All of the concepts introduced here will be detailed in the following sections.
Part of the work in this chapter was published [Lalanne 2011a] and a more complete
version has been submitted to the Information Processing Letters® journal.

5.2 Motivation

Some of the following considerations regarding existing invariant-based techniques, a
few of them introduced in previous chapters of this document, provide a motivation
for the presented work.

Causality between inputs and outputs. Tracesin the FSM and EFSM formal-
ism, consist of a sequence of input/output pairs (ij/0;). However causal relations
between inputs and outputs are not always evident in real traces. In many proto-
cols, it is common to observe multiple outputs for a single input, or to expect several
inputs before providing an output (as in the case of provisional responses in SIP).

When dealing with centralized protocols and services, this issue becomes even
more critical, since observations in the trace may contain interactions between the
IUT and multiple clients, making causal relations become even more difficult (or
impossible) to determine based on control information alone.

Assumptions in invariant evaluation. For obligation invariants, the assump-
tion or condition that the trace is “long enough” is made prior to evaluation. For
instance, in the invariant ¢/7,%,7/0, it is required that the collection of the trace
started from a point in the execution of the IUT before i/? could be observed, oth-
erwise it may not be possible to provide a verdict, since the trace may have been
collected too late. Such assumption is not very strong in the case of a short invariant
or for testing under controlled conditions, but it may not be valid otherwise.

For simple (or forward) invariants, as currently defined, such assumption is not
required. For example, an invariant i1/7, %, i2/02 requires the observation of the
input 4o prior to the verification of og; if i9 is not observed, then no verdict is
given, therefore no further assumptions are necessary. However, as previously stated,
causality between inputs and outputs may not always be established, therefore re-
ducing the utility of the forward approach. If the input 75 is allowed to be a wild-card
character ‘7, as in i1 /7, %, 7 /o9, then the assumption that the trace is “long enough”

*http://www.journals.elsevier.com/information-processing-letters/
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must also be made, otherwise the cases “the output oo was never produced”, and
“the output oy has not been observed yet”, can not be distinguished.

The meaning of the trace being “long enough” is not necessarily clear in the
general case. If the model for the IUT contains an initial state, then it suffices to
identify the initial state in the trace to verify the assumption®. The same could be
established, for the case of simple invariants, if the model for the IUT contains a
final state. However, these requirements may not always hold, and the condition
must be defined and verified case by case.

Evaluation based on data Assuming that causality of events (inputs/outputs)
cannot be determined through control parts, then all causality must be determined
through data. This provides the main motivation for our approach. Expressiveness
of formulas is important, in order to avoid redundant evaluations, since the trace
may be long. Succinctness of formulas is also desired, in order to make properties
maintainable by the experts.

One further observation should be taken into account for the evaluation based
on data. Let us suppose that the following forward invariant is being tested:
i(x)/?,%,7/o(x). If the output o(x + 1) is captured in the trace, how can we dis-
tinguish the cases, “no output was returned” and “an output with the wrong data
was returned”? Although both cases are indicative of a fault, the second case might
be more indicative of the location of the fault in the implementation. Not much
emphasis is given to this distinction in the present chapter, however is is important
to consider when performing evaluation based on data.

Availability of the specification In general, invariant techniques require that
the invariant is verified on the specification to determine its correctness. The spec-
ification is also required as part of the validation of the trace in [Bayse 2005], to
determine the state of the IUT at the beginning of the trace. For constrained invari-
ants [Ladani 2005], the specification is required to determine the constraints that
will be evaluated in the trace along with the invariant.

Since a specification of the system is rarely available, particularly for large sys-
tems, requiring a specification for validation of the properties in the trace limits the
practicality of the invariant approach. It is thus desirable to limit the utilization of
the specification just for the verification of the properties, and use as much possible
the information in the specification documents and from experts of the protocol for
their definition.

3This is done in [Bayse 2005] through use of the specification, with UTO method or by a homing
phase.
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5.3 Preliminaries

5.3.1 Definitions

Invariants Let us detail on the definition of invariants from the work in
[Bayse 2005] before introducing a generalization.  Given a EFSM M =
(S,80,Z,0,%,T), a forward invariant is defined as F(P, PI,TO), where

e P is a preamble sequence defined as P ::=i/o,P | x,P | ¢, where i € ZU {7}
is an input, 0 € O U {7} and ¢ is the null sequence
e PJ € T is the preamble input.

e T'O C O is the test output set.

The forward invariant is true if, whenever the sequence P is observed, then a pair
PI/o (with o € TO) is observed.

Similarly, a backward invariant is defined as B(T'S,T1, PO), where

e TS :=1i/o,TS|* TS | e is the test sequence.
o TI € TU{?} is the test input.

e T'O C O is the test output.

The backward invariant is true if, whenever the I/O pair T'I/o (with o € TO) is
observed on the trace, then it is preceded by the sequence T'S.

Event-driven Extended Finite State Machine Given that causality between
inputs and outputs cannot be assumed, then a model more suitable with the obser-
vations in a trace is the Event-driven EFSM (EEFSM)

Definition 5.3.1. An Ewvent-driven Eztended Finite State Machine (EEFSM) is a
6-tuple (S, s, X, Z, ¢, T), where

e S is a finite set of states with sy € S as the initial state

e Y is a finite set of events, where for each e(y) € X, e is the event name and
Y= (y1,...,Yq) is a vector of event parameters

e I = (x1,...,xp) is variable vector

e T is a finite set of transitions

Each transition t € T is a T-tuple (s, s', e(y), P(Z,9), A(Z, 7)), where
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e 5 € S is the beginning state of the transition

s’ € S is the ending state of the transition

e(y) € ¥ is the triggering event

—

e P(Z,7) is a predicate
(Z,9) is an action

o A

When the machine is in a current state s € .S with internal variable values &5, upon
reception of event e with parameters i, it will follow the transition (s, s, e(.), P, A)
if the predicate P(Zs, ¥.) holds. In such case the machine will update the internal
variables by the action ¥ = A(Zs, 7.) and finally leave the machine in state s'.

A sequence e1(91),e2(%2),...,en(¥n) is a trace for an EEFSM M =

(S,80,%,Z,4,T) if there exist states s,$1,...,8,-1,8 € S, such that the
e1(41);P1(Zo,91);41(Zo,51)

following sequence of transitions is possible in M:

en(Gn)iP1(Zn—1,9n);An(Zn—1,9n) o . .
81y.0.y8p ] —— T R nT 7 ') where T is the internal variable state

before the first transition and Pi,..., P, and Ay,..., A, are the respective predi-
cates and actions for each transition.

Messages on real traces When observing a real traces, the collected information
is in the form of messages or packets. A message is a collection of data as exchanged
by the peers of the communication, with a format defined by the protocol specifica-
tion. Both the control and data parts of the messages for testing in the specification
are extracted from such messages. A formal definition of messages will be provided
later in this chapter, however, for the rest of the work, the following proposition is
used.

Proposition 5.3.1. Let the EEFSM M = (5,50, %,%,%,T), be a model for an
implementation of the protocol P. Let Mp be the set of all messages allowed by
the protocol. It is assumed that a function v : Mp — 3 exists, where for every
message m € Mp, v(m) maps a message to its control part. This function is called
the control function of a protocol P.

5.3.2 Preliminary Analysis

Using formulas to describe invariants For the previous definition of invariants,
let us assume that for each combination of inputs and outputs (such as those defined
by P, PI and TO), there exists an equivalent formula ¢, in some logic, such that
for a given combination 7', the evaluation of its corresponding formula ¢ in a trace
is ‘T’ (true), if and only if T' is observed in the trace. Using this equivalence, then
the following combinations are possible, taking into account wild-cards and null
sequences.
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The observation an input followed by optional outputs, PI/TO, can be de-
termined by the evaluation of the formula ¢p; — ¢ro., with ¢pr, ¢pro the
corresponding formulas for PI and 70O

The observation of P, PI/TO, an input/output sequence followed by an input
and alternative outputs, can be determined by the evaluation of the formula

op N opr — ¢T0-

In backwards invariants the alternatives are

The observation of TO, a set of outputs, can be determined by evaluation of
the formula ¢po

The observation of TI/TO an input and a set of possible outputs, can be
determined by ¢71 A dro

The observation of T'S;TO a set of possible outputs and a preceding in-

. b b .
put/output sequence is defined by: ¢ro e—foie—> ¢rs, where e—foie—> is only

used to denote that the formula ¢pg must be satisfied at a preceding point in
the trace than ¢7o

The observation T'S,T1/TO, an input, a set of possible outputs and a preced-

before

ing input/output sequence, is defined by: ¢rr A dro ———— drg

If causality is removed, it does not make sense to differentiate between inputs

and output sequences, then the available combinations are reduced to a preamble
formula ¢p and a test formula ¢p. The range of formulas is then simplified to:

If the semantics of formulas includes the semantics of operators ‘—’ and *

e ¢, for evaluating a test formula on a trace

e ¢p — ¢r for forward evaluation

b .
e ¢p before, ¢ for backwards evaluation.

before_,
o

i.e. forwards and backwards implication, then the behavior to be observed may be

defined by the satisfaction of a general formula ¢p. Expressiveness, temporal prece-

dence of evaluation and causality based on data will all depend on the syntax used
to define ¢p. Formulas defined this way provide a generalization of the traditional
forward /backwards invariants, allowing also to define more expressive properties

depending on the chosen syntax.
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Conditions on the trace As previously described, when causality is removed, the
condition that the trace is “long enough” must be validated along with the invariant.
If a specification is not available then three different strategies are possible:

e Assume that the trace is never long enough. In other words, if the test behavior
defined by a formula ¢ is not observed, then nothing can be said about the
validity of the trace and an inconclusive result must be returned. Although
this alternative may not provide useful information in most cases, analysis of
the verdicts might. For instance, if the number of inconclusive verdicts for
a formula is significant, then this may be indication of a fault in the trace.

e Assume that the trace is long enough. If the test behavior (¢r) is not observed,
then it is an indication of a fault and a fail must always be returned. This
might not be the correct strategy in every case, however it may be a safe
assumption if enough events in the trace have been analyzed. It might however
produce some false positive results in border cases.

e For forward and backwards invariants, a formula ¢ might be used as a con-
dition to distinguish between inconclusive and fail verdicts. If while evalu-
ating the test formula ¢7, the sequence defined by the formula ¢¢ is observed
instead, then a fail verdict is returned, otherwise the result is inconclusive.
Unfortunately, the formula ¢¢ is not guaranteed to exist, and since causality
with the observations specified by ¢ is also a requirement, it may not always
be simple to define.

Taking into account these strategies, an invariant is defined as follows.

Definition 5.3.2. Let ¢ and v be formulas (in some logic) identifying sequences
of messages. An invariant is defined as the pair I(¢,v), where ¢ represents the
expected or test behavior and v represents the conditional behavior. The evaluation
of an invariant I(¢, ) must return the verdict pass if the behavior defined by ¢
is observed, fail if the behavior specified by ¢ is not observed and the behavior
specified by 1) is observed, and inconclusive if none are observed.

As a convention, I(¢, T) represents an invariant where the condition is true, i.e.
a fail verdict must be returned if the sequence defined by ¢ is not observed. I(¢, 1)
represents an invariant where the condition is false, i.e. an inconclusive verdict
must be returned if the sequence defined by ¢ is not observed.

Positive and negative properties Invariants, with the new definition intro-
duced, are designed to validate ezpected behavior on a trace (through formulas),
and failure to observe such behavior is used as indication of a fault. In this sense,
the invariant represents a positive property, since it defines an expected behavior.

While the issue with testing on a finite trace is the difficulty to distinguish
between lack of observation of a behavior and failure of the implementation to
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produce it, determining satisfaction of a property does not share the same issues.
An interesting alternative is then to test for negative properties, i.e. attempt to
directly observe erroneous behavior. A negative invariant is defined in the following.

Definition 5.3.3. Let ¢ and ¢ be formulas (in some logic) identifying sequences of
messages. A negative invariant is defined as I~ (¢, 1)), where ¢ represents the nega-
tive test behavior and v is the conditional behavior. The evaluation of an invariant
I~ (¢,1) must return the verdict fail if the behavior defined by ¢ is observed, pass
if the behavior specified by ¢ is not observed and the behavior specified by v is
observed, and inconclusive if none are observed. Analogously to positive invari-
ants, I~ (¢, T) returns a pass verdict if ¢ is not observed, and I~ (¢, L) returns an
inconclusive verdict if ¢ is not observed.

5.4 Details of the proposed approach

As described in the preliminary analysis, testing of an invariant I(¢,1) in our ap-
proach requires establishing whether the sequences of messages defined by ¢ and
are present in the trace. This requirement closely relates to the objectives of run-
time verification and concepts from some works in that area have been used for our
approach [Halle 2008, Stolz 2008, Bauer 2007a]. Some more detailed information on
these works and the relation to ours is provided in Section 5.7.

In what follows, we describe the different aspects related to the definition of
the syntax, semantics and evaluation of properties for our approach. In our work,
events on the trace are messages, therefore the syntax is designed to specify expected
relations between messages and message data fields, as well as temporal precedence
between messages. Control parts are not considered as part of the definition, however
through the assumption introduced in Proposition 5.3.1, messages can be related to
their control part. Many of the ideas presented here are have a basis on our earlier
work for passive testing based with first-order logic [Lalanne 2011b].

5.4.1 Formal definition of protocol messages

In network protocols, communication peers decide the course of action on the basis
of two things: locally stored state information (including internal data), and data
contained in received messages from different peers. In passive testing, state infor-
mation and internal data are unknown and only the message data is available to the
tester. In the following, a definition of messages as data structures is provided.

A message in a communication protocol is, using the most general possible view,
a collection of data fields belonging to multiple domains. For a given protocol, the
format of the message, the way the data is arranged and grouped in order to be
parsed, and the domains of the different data fields are defined by the requirements
specification of the protocol.
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Data fields in messages, are usually either atomic, i.e. the information they
provide comes from using their value as a whole (e.g. timestamp, packet number,
name, port), or compound, i.e. they are composed of multiple elements (e.g. an URI
sip:name@domain.org). Due to this, we also divide the types of domains in atomic
or compound.

In atomic data domains each element is an atomic value, in our work limited to
numeric or string values?. In compound data domains each element (or compound
value) is represented by a pair (label,value), where label is used to indicate the
functionality of the piece of data contained in value. An example is given in the
following to clarify.

Example 5.4.1. The URI sip:name@domain.org can be represented by the com-
pound value

{(protocol, ‘sip’), (user, ‘name’), (domain, ‘domain.org’)}

where protocol, user and domain are labels that indicate the functionality of the
atomic values ‘sip’, ‘name’ and ‘domain.org’, respectively.

Formal definitions of compound value and compound domain are provided below.

Definition 5.4.1. Let L = {l1,...,l} be a set of labels and Dy, ..., Dy a sequence
of data domains (not necessarily disjoint), with & > 0. A compound value of length
kisaset {(l;,v;) |Vi=1...kAv;€ D;U{e}}.

A compound domain is then the set of all compound values with the same set of
labels L and sequence of domains Dy, ..., D;. Notice that for a given domain, all
elements of the domain must have length k, however undefined elements are defined
by using the null value represented by ¢.

Definition 5.4.2. A compound domain is defined by the labels and domains of its
elements. Given L a set of labels and Dy,..., Dy, data domains (not necessarily
disjoint), with & > 0. A compound domain C is represented by the (k + 1)-tuple
(L, D, ...,Dy). Each element v € C is a compound value {(l;,v;) | 1 <i < k} with
labels I; € L and values v; € D; U {e}. Each D; is called an element domain.

Definition 5.4.3. Let C = (L, D1, ..., Dy) be a compound domain. Then a func-
tion 6 : C x L — UE_ D; U {e} is defined, where given a compound value v € C
then, for each pair (I;,v;) € v, v; = d¢c (v, ;).

It should be observed that element domains D; are not required to be atomic do-
mains, making it possible to define recursive structures by using compound domains
within compound domains.

*Without loss of generality we restrict to numeric and string values, although the approach does
not prevent treating other domains, for instance dates, as atomic.
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Finally, given a network protocol P, a compound domain Mp is assumed to
exist, where the set of labels and element domains derive from the message format
defined in the protocol specification. A message of a protocol P is any element
m € Mp, that is, a message is any data value which is valid with respect to the
protocol specification.

Example 5.4.2. A possible message for the SIP protocol, specified using the pre-
vious definition is

m = {(method, ‘INVITE’),
(status, e),

(from,‘alice@domain.org’),

(to, ‘bob@domain.org’),

(cseq, {(seq, 10), (method, ‘INVITE’) })}

representing an INVITE request from alice@domain.org to bob@domain.org. No-
tice that the value associated to the label cseq is also a compound value,

{(seq, 10), (method, INVITE’)}.

In the example, given the message m € M, the domain of all SIP mes-
sages, it might be desirable to extract the value associated with the label method
inside the value associated with cseq. This would require the function call
Seseq(Sr1(m, cseq), method)®. Accessing data inside messages is a basic requirement
for the current approach. In order to simplify this type of nested calls, the function

A is defined.

Definition 5.4.4. Given a compound value v, let dom(v) denote the domain set
of v. Let £ be a sequence (ly,l2,...,l,) of labels, pop(L) a function that returns
and removes the first element of the sequence and len(L£) a function that returns
the length of the sequence®. The function A is then defined recursively as:

v if len(£) =0
Av, L) =< AW, L) if v = ddom(w) (v, pop(L)) is a compound value
€ otherwise

Intuitively, the function A receives a compound value, and a sequence of labels
and returns the value pointed by the labels, or £ (null) if the pointed value does not
exist. In order to ease the reading of formulas in the rest of the paper, the notation
vdida. .. .. l,, is used to represent the call A(v, (I1,l2,...,1,)). For instance for the
message defined in Example 5.4.2, the value accompanying the method label for
cseq element in message m, would be represented by ‘m.cseq.method’. This is the
notation that will be used through the rest of the paper.

®Since the value accompanying cseq in m is also a compound value of some domain Ceseq, We
use deseq to indicate dc,,., -
5The names of functions pop and len come from their analogues in the stack data structure.
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5.4.2 Traces

A trace is a collection of messages of the same domain (i.e. using the same protocol)
containing the observed interactions of an entity of a network (the point of obser-
vation) with one or more peers during an indeterminate period of time. In other
words, the trace is the collection of all messages exchanged by the P.O within its
life. Depending on the interpretation of life, such definition makes a trace poten-
tially infinite. Testing of properties, however, can only occur in a finite segment of
the trace.

Definition 5.4.5. Given the domain of messages Mp for a protocol P. A trace is
a sequence I' = mq,mag, ... of potentially infinite length, where m; € Mp.

Definition 5.4.6. Given a trace I' = my,mo, ..., a trace segment is any finite sub-
sequence of I, that is, any sequence of messages p = m;, mit1,...,mj—1,m; (j > 1)
where p is completely contained in I" (same messages in the same order).

The order relations {<, >} are defined in a trace, where for m,m’ € p, m <
m’ < pos(m) < pos(m’) and m > m' < pos(m) > pos(m’) and pos(m) = i, the
position of min p (i € {1,...,len(p)}).

In practical terms, the trace extraction process should assign each collected
message to its position and time of observation, therefore the function pos will
simply return that value. Since it is only possible to capture trace segments, in the
rest of the document, trace will be used to refer to a trace segment, unless otherwise
specified.

5.4.3 A Horn-based logic to express data-aware properties
5.4.3.1 Syntax

In order to describe properties, a syntax based on Horn clauses is used. The syntax is
closely related to that of the query language Datalog, described in [Abiteboul 1995],
for deductive databases. Formulas in this logic can be defined with the introduction
of terms and atoms. A term is either a constant, a variable or a pointer to a
sub-element of a variable, as obtained with the A function.

Definition 5.4.7. A term is either a constant, a variable or a selector variable. In
Backus-Naur form (BNF):

to=clz|zdld. .1
where ¢ is a constant in some domain (e.g. a message in a trace), x is a variable, [

represents a label, and x.l.[.. .l is called a selector variable, equivalent to evaluating
Az, < l,1,...,l >) from Definition 5.4.4.
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Definition 5.4.8. An atom is defined as

A .
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where ¢ represents a term, p(t,...,t) is a predicate of label p and arity k. The

symbols =, # and < respectively represent the binary relations “equals to”, “not
equals to” and “lower than” (numeric comparison).

In this logic, relations between terms and atoms are stated by the definition of
clauses. A clause is an expression of the form

Ag+— A1 N...NA,

where Ag = p(t7,...,t}), called the head of the clause, defines a predicate of label p
and arity k. Elements of the predicate (¢}) are called head terms, and restrict general
terms for the head of the clause, where each head term can only be constant or a
variable (t* ::= c|x). The expression A1 A...A Ay, is called the body of the clause,
where A; are atoms. Notice that, in the clause definition, if £ = 0 the predicate
becomes a proposition (a predicate with no parameters). The body of the clause
can also be empty and in that case, the clause represents a simple relation between
the concrete terms in the head atom.

Example 5.4.3. The clause sibling(‘alice’, ‘bob’) specifies a relation only between
“elements” alice and bob. The clause sibling(x,y) + parent(z,x) A parent(z,y)
establishes a generic sibling relation: “elements” sharing a parent.

Disjunction in this logic is provided by overloading predicate declarations, i.e.
defining multiple clauses with the same head. The following set of declarations

Ay Al,l VAN /\1417n1
Ay A271 VAN /\A27n2

Ag + Ap,l VANPIAN Ap,np
is equivalent to
Ag +— (A171 VAN Al,nl) V (A271 VAN ‘AQ,TLQ) V...V (Ap71 VAN Apﬂ’bp)

Example 5.4.4. The relation p, defined as follows

p(z) < x.method = ‘REGISTER’
p(z) + x.method = ‘INVITE’

accepts all messages  with method REGISTER or INVITE.
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Finally, a formula is defined as follows

o If Aj,..., A, are atoms, with n > 1, then (A; A ... A A,) is a formula (an
atomic formula).

e If ¢ and v are formulas, then so is ¢ — 2.

3

o If z,y are variables and ¢ is a formula, then so are (V;¢), (Vy>2®), (Vy<z0)

(Fe0), (3y>x¢) and (3y<z¢)-
We can condense this information using the following EBNF":

pu=ANNA O = D[ Vel | Vot | Vycad | T | Fysad | Fy<ad)

where Aq,..., A, are atoms, n > 1 and x,y are variables. Some more details
regarding the syntax are provided in the following.

e The — operator indicates causality in a formula, and should be read as “if-
then” relation.

e The V and 3 quantifiers, are equivalent to its counterparts in predicate logic.
However, and as it will be seen on the semantics of the logic, the quantifiers
in this logic, only apply to the trace. Then, given a trace p, V, is equivalent
to Vo € p and V<, is equivalent to Vy € p;y < x, with ‘<’ indicating the
order relation from Definition 5.4.6. These type of quantifiers are called trace
quantifiers or trace temporal quantifiers.

5.4.3.2 Semantics

The semantics used on this work is related to the traditional Apt Van Emdem
Kowalsky semantics for logic programs [Van Emden 1976], however some changes
will be introduced to deal with messages and trace temporal quantifiers. We begin
by introducing the concepts of substitutions (as described in |Nilsson 1990]) and of
ground expressions.

Definition 5.4.9. A substitution is a finite set of bindings 0 = {z1/t1,...,zx/tr}
where each t; is a term and each z; is a variable such that x; # t; and z; # x; if

1 7.
The application x0 of a substitution 0 to a variable x is defined as follows.

x@:{t ifz/ted

x otherwise
The application of a substitution 6 to a selector variable x.l;...l; is defined as

tly. . g if x/t € 6 with t a compound value
x.dy. . g otherwise
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The application of a particular binding x/t to an expression E (atom, clause,
formula) is the replacement of each occurrence of x by ¢ in the expression. The
application of a substitution 6 on an expression F, denoted by E# is the application
of all bindings in  to all terms appearing in E.

Example 5.4.5. The application of the substitution § = {z/1,y/2} to the clause
C = p(x) « q(z,y) Ar(y) is the clause CO = p(1) < ¢(1,2) Ar(2).

Two substitutions can also be composed to form a new substitution. Let 8 =
{z1/t1,...,xx/tx} and o = {y1/s1,...,y1/s1} be substitutions. The composition of
0 and «, denoted by O« is obtained from the set

O = {z1/(t1c), ...,z /(tp), y1/51, ..., yi1/s1}

by removing all z;/t;a where z; = t;a (1 <1i < k) and by removing those y;/s; for
which y; € {x1,...,2;} (1 < j <1). In other words, redundant bindings (z/x) and
inconsistent bindings (there cannot be z/1 and x/2 simultaneously in the resulting
substitution) are removed from the composed substitution.

Example 5.4.6. Given substitutions § = {z/y,2/1} and a = {y/2, z/3}, the com-
position of both substitutions is given by 0o = {z/2,y/2, z/1}.

Definition 5.4.10. A ground expression is any expression where only constant
(ground) terms are present. A ground instance of an expression E is the expression
E0O, where 0 is a substitution and every variable z; in the expression E has a binding
to a constant term ¢; in 6.

Given K = {C1,...,Cp} a set of clauses and p = my,...,m, a trace. An

7 is any function I mapping an expression E that can be formed with

interpretation
elements (clauses, atoms, terms) of K and terms from p to one element of {T, L}.

It is said that E is true in I if I(F) =T.

The semantics of formulas under a particular interpretation I, is given by the
following rules.

e The expression t; =t is true, iff ¢; equals t (they are the same term).

The expression t1 # ty is true, iff ¢; is not equal to to (they are not the same
term).

The expression ¢; < c¢o is true, iff ¢; and co are numeric constants, and ¢ is
lower than ¢y

A ground atom A = p(cy,...,cx) is true, iff A € I.

e An atom A is true, iff every ground instance of A is true in [.

"Called a Herbrand interpretation in logic programming.
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e The expression A1 A...A Ay, where A; are atoms, is true, iff every A; is true
in I.

e A clause C': Ag < B is true, iff every ground instance of C' is true in [.

o A set of clauses K = {C1,...,C,} is true, iff every clause Cj is true in 1.

An interpretation is called a model for a clause set K = {C4,...,C,} and a
trace p if every C; € K is true in I. A formula ¢ is true for a set K and a trace
p (true in K, p, for short), if it is true in every model of K, p. It is a known result
[Van Emden 1976] that if M is a minimal model® for K, p, then if M(¢) = T, then
¢ holds in K, p, denoted by K, p F ¢.

The semantics of formulas is then defined as follows. Let K be a clause set, p a
trace for a protocol and M a minimal model, the operator M defines the semantics
of formulas.

T if M(AG A ... NAY)

1 otherwise

M(Al/\.../\An):{

Then, for x and y variables in Mp (the compound domain of a protocol P), we
define the semantics of quantifiers V, and dJ, for a potentially infinite trace
I'=mi,ma,... as

N (,0) = T if M(¢8) =T, V0 where z/m € § and m € T
T L if 36 with 2/m € 6 and m € T, where M () = L
T if 30 with z/m €  and m € T, where M(¢0) = T

M(3.¢) = -
(3:¢) {J_ if M(¢0) = L, V8 where x/m € 6 and m € T’

Since a finite trace p is a finite segment of an infinite execution, it is not possible
to declare a ‘T’ result for V,¢, as in the infinite case, since we do not know if ¢
may become ‘1’ after the end of p. Equivalently, for 3,¢, it is unknown whether ¢
becomes true for future values of x. Similar issues have to be considered in passive
testing (as described in the introduction to this chapter) as well as in runtime
monitoring [Bauer 2006], for evaluations on finite traces. The semantics for trace
quantifiers requires then the introduction of a new truth value ‘?’ (inconclusive) to
indicate that no definite response can be provided. The semantics of quantifiers
for finite traces is defined as

. 1 if 30 with z/m € 6 and m € p, where M (¢6) = L
M(vm):{? / p (#0)

otherwise

N (3,0) = { ?T if 30 with z/m € 0 and m € p, where M(¢) = T

otherwise

8Obtained as NM, the intersection of all models for K, p
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The rest of the quantifiers are detailed in the following, where x is assumed to be
bound as a message previously obtained by V, or 3,

- € if 30 with y/m € 0, where M (¢0) = L and m > z

otherwise

. T if 30 with y/m € 0, where M(é0) = T and m >

otherwise

The semantics for V, <, and 3, is equivalent to the last two formulas, exchanging
> by <. Finally, the truth value for M (¢ — ¢) = M(¢) — M(v), using the truth
table shown in Table 5.1.

Table 5.1: 3-valued truth table for operator ‘—’

I
TIT] T
TIL] L
T|? ?
LT T
L] 7T
L2 T
70T ?
70 1L ?
? ? ?

The semantics of formulas described in the current section is not meant to pro-
vide a method for procedural evaluation of formulas, since it would be quite ineffi-
cient to calculate every model of K and trace p in order to test a particular property.
An algorithm for evaluation of formulas is provided in Section 5.4.5.

5.4.4 Example for the SIP protocol

Before providing the details of an evaluation algorithm, let us first clarify the con-
cepts previously defined through an example for the STP protocol (Chapter 3). The
definitions provided here will also be useful later in this chapter.

For testing rules in the SIP protocol, a SIP message is defined with the fields
described on Table 5.2. With such structure, the following clauses identify a message
as a request or a response.

request(x) < x.method # ¢
response(x) < x.statusCode # ¢

A message x is a response to another message y according to the following statement
in RFC 3261 [Rosenberg 2002, section 8.2.6.2]
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The From field of the response MUST equal the From header field
of the request. The Call-ID header field of the response MUST equal
the Call-ID header field of the request. The CSeq header field of the
response MUST equal the CSeq field of the request. The Via header
field values in the response MUST equal the Via header field values in
the request and MUST maintain the same ordering.

If a request contained a To tag in the request, the To header field in

the response MUST equal that of the request. However, if the To header
field in the request did not contain a tag, the URI in the To header field
in the response MUST equal the URI in the To header field.

which translates into the following predicate

responds(resp,req) <
A

> > > >

A

response(resp)
resp.from = req. from
comparable(req.to, resp.to)

resp.callld = req.callld
resp.cSeq.seq = req.cSeq.seq
resp.cSeq.method = req.cSeq.method

resp.via = req.via

where comparable compares the To headers. If the tag parameter is defined, then

it requires that both the address and tag fields are equivalent, otherwise it only
verifies that the address part of the headers match. It is defined by the following

disjunction

comparable(reqTo, respTo)

(_
A
comparable(reqTo,respTo) <
A

reqlo.tag = ¢

reqTo.addr = respTo.addr
reqlo.tag = reqTo.tag
reqTo.addr = respTo.addr

Using these definitions of clauses allows to express properties as the following:

e The property “every message is either a request or a response" can be tested

defining the additional clauses

sipMsg(zx) < request(x)
sipMsg(x) < response(x)

then results for ¢ = V,sipMsg(x) are answers to the property.

e The property “every request must have a response after it" is defined as

¢ = Vy(request(x) — Jysyresponds(y, x))

e The property “every request except from ACK must have a response after it" is

defined as

¢ = Vy(request(x) A x.method # ‘ACK’ — Iy~ responds(y, x))
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Table 5.2: Structure of a SIP message

Field Label Description

Method method Indicates the request type, i.e. REGISTER,
INVITE, etc. If empty (¢) then message is a
response.

Status-Code statusCode ~ Numeric code for the status. If empty then the
message is a request.

Request-URI reqURI Indicates the URI of the destination of the re-
quest (the invitee address or the location ser-
vice address during registration).

From address  from.addr URI indicating the sender of the message.

From tag from.tag Serves for dialog identification, it is defined by
the UAC and it is always the same for all mes-
sages of a dialog.

To address to.addr URI indicating the recipient of the message.

To tag to.tag Indicates the remote dialog identifier, it is de-
fined by the UAS upon reception of a dialog
initiating request (e.g. INVITE). It can be null
in the initiating request.

Call-1ID callld Unique identifier to group series of messages.

CSeq cSeq Identifies the transaction the message belongs
to with a sequence and a transaction originat-
ing method.

CSeq sequence cSeq.seq Sequence for the transaction.

CSeq method  c¢Seq.method Method that originated the transaction.

Via via Indicates the transport and address where the

responses in the transaction should be sent.
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5.4.5 Evaluation of formulas

In Section 5.4.3.2, a two part semantics was defined for the logic: one for of formulas
of type A1 A ... A A, (atomic formulas), and a second one for formulas including
trace quantifiers. In the current section we intend to provide an algorithm for the
evaluation of formulas, which will also require a two part methodology: 1) resolution
of atomic formulas, where a variant of the classical SLD (Selective Linear Definite-
clause) resolution algorithm [Apt 1982, Lloyd 1984] will be introduced. 2) Evalua-
tion of formulas (including quantifiers) and determination of satisfaction for a given
trace. Both parts are described in the current section, although the most attention
is given to the second part, given that the SLD algorithm is quite documented in
the literature. We begin by introducing the concept of unifiers and unification.

Definition 5.4.11. Two terms ¢t and s are unifiable if either ¢ or s is a variable or
they have the same value. A unifier of two expressions (Definition 5.4.10) E and F’
is a substitution € such that £ = F@. If a unifier exists then the expressions are
said to be unifiable. A substitution 6 is said to be more general than a substitution
o if there exists a substitution « such that ¢ = f«. A unifier 6 is said to be the
most general unifier (mgu) of two expressions E and F' iff 6 is more general than
any other unifier. This is denoted as § = mgu(FE, F).

Example 5.4.7. Atoms p(x,z) and p(1,2) are not unifiable, while the mgu of
p(z,y) and p(1,2) is the set {z/1,y/2}.

As a preliminary to the SLD-resolution algorithm we first define the function
uni fy, that calculates the unification of two expressions, as follows

true Ja substitution such that o = mgu(A16, A20)

uni fy(Ay, Az, 0) == { false otherwise

where A; and Ay are atoms, and 6 is a substitution. If the atoms unify (result is
true), the function unify will also update the substitution given as argument with
a (0 becomes Aa). As atoms are the basis to clauses, only unifications of atoms
are considered for the resolution algorithm. The detailed procedure of unification is
provided in the following.

The Procedure 5.1, iterates over all terms in the provided atoms and, for each
pair of terms in the same position, it verifies that their bindings in 6 and « unify. In
the substitution « the algorithm keeps track of the result of unification of previous
terms, and uses it to check subsequent iterations. For instance, in the unification of
p(z,z) and p(1,2) (using 6 = (), after the first iteration, « will contain the binding
x/1, which will fail on second iteration when trying to unify it with the value 2.

Example 5.4.8. Calling unify with arguments A; = p(z,y), A2 = p(1,z) and
0 = {z/2} will return true and 6 will become {z/2,z/1,y/2}. Using arguments
Ay =p(x,y), Ay = p(1, z) and 0 = (), returns true and 0 = {z/1,y/z}.
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Procedure 5.1 unify(Ai, As,0)
Input: Atoms A, As. Substitution 6 with current bindings.
Output: true if atoms unify and § updated with new bindings.

1: if Ay and A have different predicate label or arity then

2:  return false

3 a0

4: for t < A;[i] term i in 4; do

5: 5+ Ay [’L]

6:  if (t0)c unifies with (sf)a then

7: if (t0)« is a variable then

8: a—aU{(th)a/(sb)a}

9: else /* (sO)a can only be a variable */
10: a < aU{(sd)a/(td)a}

11:  else

12: return false

13: 0 <+ O /* Compose 0 with the result of the unification */

14: return true

5.4.5.1 SLD-resolution

In SLD-resolution, given a set of clauses K = {C1,...,C,}, there exists a solution
for a formula (also called query) A; A ... A A, if, for every atom A;, there exists
a clause By <— B1 A ... By in K where its head By unifies with A; (with a unifier
6), and that the resulting formula (Ay A...ABy A...By A ... N Ap)f, obtained
after replacing A; by By A ... DBy, also has a solution. If in the clause, ¢ = 0 and
the unification succeeds, then A;6 is considered to be true and can be replaced by
the symbol ‘T’ in the resulting formula. This can be summarized by the following
inference rule (borrowed from [Nilsson 1990))

A1/\.../\Ai_l/\Ai/\Ai+1/\.../\Ap B()%Bl/\...Bq
(Al/\.../\Ai_l/\Bl/\...Bq/\AH_l/\.../\Ap)Q

where

1. Aq,..., A, are atoms;

2. By <= B1A\...Bgis aclause in K, with renamed variables, so no conflicts can
occur if the formula and the clause coincide on the variable names;

3. mgu(Ai,Bo) =0.

In the present work, A; can also be of type t1 = to, t1 # t9 or t1 < to. In this
case the algorithm must evaluate the operation t160 = 20, 16 # 2607 or 1160 < t20,

9Tf either ¢10 or t26 are variables, then = is treated as unification (z = a assigns a to z if = is
not bound), however the evaluation of # should return an error unless ¢160 and t26 are the same
variable.
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then replacing A; in the formula by ‘T’ if the evaluation succeeds. If there exist
more than one clause in K that can be unified with A;, the algorithm must test all
alternatives until finding one that replaces every atom in the resulting formula by
‘T’ (we cannot declare false until all alternatives are tested), this is also illustrated
by the Figure 5.1(b) for Example 5.4.9.

As it can be observed in previous examples, the syntax of the logic allows for
reuse of variable symbols, for instance, both a clause p(z) <— B and a query p(x)
can be defined, although both x may not necessarily represent the same value. In
order to perform unification, they must be treated as different variables. For this,
a variable renaming step must also be performed. To evaluate the formula p(z) we
rename x to zg, and when selecting a clause for unification, all x in the clause are
replaced by z1, this way, if the unification succeeds, the binding x¢/z; will be added
to 6 and different symbols are clearly distinguished.

A short example is provided below to illustrate the resolution mechanism.

Example 5.4.9. Let the following be a clause set for the SIP protocol, as defined
in Section 5.4.4, simplified for the purposes of this example

sipMsg(x) < request(x) (5.1)
sipMsg(z) < response(x) (5.2)
request(x) < x.method = ‘INVITE’ (5.3)
response(z) < x.statusCode = 200 (5.4)

The clause set indicates that a valid SIP message is either a request or a response.
A valid request is one with method INVITE and a valid response is one with status
code 200. Again, this is an oversimplification made for the purposes of the example.
Let us test a property stating that only valid messages should be found in the
trace, i.e. ¢ = V,sipMsg(x). However, since the interest is to demonstrate SLD-
resolution, for now we will ignore the quantifiers and assume that the value of z is
already determined to be x = m;, an arbitrary message in the trace. The Figure 5.1
shows the evaluation steps when the query is evaluated for messages m;, a request
and m;, a response. Assuming that clauses are evaluated in the order they are
defined, the resolution for m;, follows the following steps

1. Look for a clause matching sipMsg(zg), i.e. with same predicate label and
arity. This returns clauses 5.1 and 5.2;

2. Unify sipM sg(zo) with the head of clause 5.1, sipM sg(x1) using substitution
0 = {xo/m;}. This results in 0 = {xo/m;,x1/x0};

3. Since unification succeeds, evaluate the body of the clause as a new query.
Look for a clause matching request(zy), i.e. clause 5.3;
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4. Unify request(xy) with the head of clause 5.3, request(xs) and substitution
. This results in 0 = {xg/m;, x1/x0, x2/21};

5. Since unification succeeds, evaluate the body of the clause as a new query;

6. The only atom in the body is of type t; = t9, then evaluate xo.method =
‘INVITE’ using 6 = {xo/m;, x1/x0, v2/21};

7. Assuming that m; is a request: evaluation is true, then T is returned.

Evaluation for m; follows the same procedure, except that it fails on step 7
(since it is a response). As there is still one alternative to analyze from step 1, the
resolution continues until the evaluation of m;.status = 200 and T is returned. If
all branches of the tree end with a ‘1L’, then L is returned for the property.

sipM sg(m;) sipMsg(m;)
request(m;) request(m;) response(m;)
m;.method = ‘INVITE’ mj.method = INVITE'  m;.statusCode = 200
T 1 T
(a) Assumming that x = m; is (b) Assumming that z = m; is a response
a request

Figure 5.1: Alternative resolution trees for query sipMsg(x)

The detailed SLD-resolution algorithm is provided in Procedure 5.2. The reso-
lution starts with a formula A; A ... A A, in the form of a stack (A; at the top of
the stack). For each atom on the stack it looks for a matching clause (a clause with
the same predicate label and arity) and adds the body of the clause to the stack to
recursively call solve. When the stack is empty, a solution has been found and it
notifies it using the procedure useSolution(). Although it is not on the algorithm,

an alternative to line 4 should also check whether A matches ‘=", ‘%’ or ‘<’, and
respectively evaluate the equality, inequality or comparison.

5.4.5.2 Evaluating formulas in a trace

Given a formula ¢, defined using a set of clauses K, it is not necessarily interesting
to attempt to produce a single (general) satisfaction result (‘T’, ‘L’ or ‘?’) for a
particular trace p. Let us take, as example, a property V,(3,p(z,y)). Due to the
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Procedure 5.2 sldSolve(K, S, 6)

Input: Set of clauses K. Stack S containing the atoms remaining for evaluation.
Substitution # with the initial bindings.

Output: T if the formula has a solution.

1: if S is not empty then

2: A <—p0p<S) /* Remove first atom of the stack */
3 solved + L

4:  for (By <~ B1 A... A\ By) € K where By matches with A do

5: renameVars(Bo, By, ... ,Bq) /* Rename variables in the clause */
6: a0

7: if unify(Ao, By, ) then

8: if ¢ > 0 then

9: push({Bl,.. . ,Bq},S) /* B is now at the top of S #*/
10: solved + SldSOlU@(S, a) /* Solve the rest of the stack */
11: pop({Bi,...,Bq}, S)

12: else /* The clause does not have a body */
13: solved <+ sldSolve(S, a)

14: push(A, S) /* Put A back to the top of § */
15:  return solved

16: useSolution(Q) /* If S is empty, a solution has been found */
17: return T

semantics of the logic (Section 5.4.3.2), the truth value of V¢ can only be ‘L’ if the
value of ¢ is also ‘L', otherwise the value defaults to ‘?’. Since 3yp(x¢,y) can never
be ‘L’ (for any zp), then the evaluation of V,(3,p(z,y)), can never yield a result
other than inconclusive. Even though results obtained this way do not provide useful
information, particular values of (x,y) that make p(z,y) true or false, do. Multiple
results will be expected for the evaluation of a formula in a trace and two rules will
be used for reporting a particular result.

1. Given a formula V. ¢, an independent result should be declared for every value
of x. For instance, given V,sipMsg(x), the evaluation sipMsg(xg) for every
xo in the trace p should be provided as a result.

2. Given a formula d,¢, a result should be given only if it exists some value of
2 in the trace that makes the property true. Using an analogous example, for
the property 3,sipMsg(x), an algorithm should only report ‘T’ for the z € p
that makes sipMsg(xo) true. Any other values for x are irrelevant for the
resolution.

A recursive algorithm is defined for evaluation, and a detailed description of the
different cases in the evaluation is provided as follows, where eval(¢,0, p) returns
the evaluation of the formula ¢ using substitution  into trace p. The value of 6 at
the beginning of the evaluation is 6 = ().
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e The evaluation of a formula V,¢ branches the evaluation of ¢ for each possible
value of z in the trace. The result is provided by

[ eval(¢,,p)  VYm € p where a = § U {x/m}
eval(Vz¢, 0, p) = { ? if no L results were found

e Evaluation of a formula 3, looks for a ‘T’ result to the evaluation of ¢.

if 3m € p where eval(¢, a, p) = T with
eval(3;0,0,p) = a=0U{x/m}
? otherwise

e Evaluation of a formula V-, ¢ assumes that a binding x/mg with mg € p already
exists in the substitution 6 and branches the evaluation of ¢ for every message
after the position of my.

[ eval(¢, a, p) Vm € p where m > x6 and a = 0 U {y/m}
eval(Vy>z9,0,p) = { ? if no L results were found

e Evaluation of a formula J,~, looks for a ‘T’ result to the evaluation of ¢ after
the position of z in the substitution

T if 3m € p with m > 20 where eval(¢p,a, p) = T
eval(Jy>z29,0,p) = and o = 0 U {y/m}
? otherwise

e Evaluation of V,;¢ and J,-,¢ are analogous to their equivalents with >’ just
replacing every occurrence of ‘>’ by ‘<.

e Evaluation of a formula ¢ — v first will evaluate ¢ and if the result is ‘T’, then
evaluates 1. If the latter also has the value ‘T’, then the result of evaluation
is ‘T’. Any new bindings defined from the evaluation of ¢ must be used in the
evaluation of 9. If the evaluation of ¢ is ‘1’ or ‘?’, then the result is considered
vacuous (uninteresting) [Fraser 2009, section 5.1, since eval(L — v,0,p) = T
and eval(? — 1,6, p) = 7, independently of the value of ¢). Both those cases are
ignored during the evaluation.

T  if eval(¢,0,p) = T and eval(y,0,p) =T
eval(¢p —1,0,p) =< L if eval(¢,0,p) = T and eval(y,0,p) = L
? if eval(¢,0,p) =T and eval(v,0,p) =7

e Evaluation of a formula A; A ... A Ag, where A; are atoms, returns the value
obtained using SLD-resolution, by using Procedure 5.2

T  if (A1 A... A Ag)0 has a solution

eval(Ay A ... N Ay, 0,p) = { 1 otherwise
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eval(¢,0 U{zx/mi}, p) — 01

eval(¢,0 U {z/ma}, p) ——> v2

eval (V. ¢, 0, p) eval(¢,0 U {x/m;}, p) ——> ¥

eval(¢,0 U {x/my,},p) Un
(a) Evaluation of V,¢ returns ‘?” unless it exists v; = L
eval(,0U {z/m1}, p)
eval(3,0,0, p) eval(¢,0 U {x/ma},p)
eval(6,0U {/m;}, 0) T

(b) Evaluation of 3,¢ returns ‘?’ if no evaluation to ‘T’ of ¢ is found

Figure 5.2: Evaluation of formulas with quantifiers on a trace.

The previous rules define every possible case for the evaluation algorithm. Figure
5.2(a) shows the branching of the evaluation performed for a V,¢ formula. The
evaluation of the V quantifier splits the evaluation and one result is returned for each
independent evaluation. A different case occurs with 3, shown in 5.2(b), evaluation
of the quantifier evaluates the sub-formula for each message in the trace until a ‘T’
result is found, which prompts the algorithm to return.

5.4.5.3 Complexity of the algorithm

As seen in the previous section, the evaluation of formulas can be represented by a
tree. Intuitively, the time complexity of evaluation will depend on the number of
nodes on the tree. The memory complexity, on the other hand, will only depend
on the height of the tree, given that only the part of the tree being evaluated needs
to be kept on memory (top-down resolution). Time complexity is then the most
critical issue, therefore we will focus on that in the current section.

Since each evaluation will eventually arrive to one or more formulas of type
Ay N ... AN A, two times can be recognized for each formula: T,,4(¢) represents
the worst-case time of evaluation of a formula ¢, and T4(1)) represents the time
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required for the SLD evaluation of a formula ¢ = Ay A ... A Ay,. Given a formula
with k quantifiers Q% --- Q% (A1 A ... A Ap), where each Q7 € {V,3} and a trace

p=mi,..., My, then the relation between T, and Ty is described by:
Teval(Qh, -+ Q% (AL N ... A Ap))
n

= 3 3 Tual(Ar A A AL+ 6)

i1=1 =1

where ; = {x;/m;, } is the substitution obtained by the evaluation of the quantifier

?cj. For a simple formula the height of the resolution tree is small compared with
the length of the trace, therefore an upper bound for the SLD resolution time can
be used inside the summation.

Tsld((Al VAP /\Ap)91 Hk) < T,@j = {xj/mi].},Vz'l,... Sk

then, applying this inequality

> Taa((Ar A= NA)OL---0y)
11=1 =1
>

n
-3 T =nfT
=

which shows that the worst case complexity for this type of formula is O(n*), where n
is the length of the trace and k is the number of quantifiers in the formula. Although
it seems large, it should be emphasized that it is the worst case complexity, i.e. the
complexity for a trace where the evaluation of every quantifier returns ‘?’. It should
also be clarified that this corresponds to the complexity of analyzing the whole trace,
and not for obtaining individual solutions, which depends on the type of quantifiers
used. For instance for a property V;p(z), individual results are obtained in O(1),
and for a property V,3,q(x,y), results are obtained in the worst case in O(n).

For a formula such as V,3,~,p(x,y), the analysis of the complexity is similar,
with the exception that the indexes on the summation will no longer be independent,
using the same methodology, the time complexity is found to be

n n 1 1
Teval(vx3y>1p(a7ay)) = Z Z Tsld(p(l', y)e’tej) < §n2T - §nT
i=1 j=i+1

Similarly, for a formula with 3 quantifiers, the time complexity is given by %n?’T —
%n2T+%nT. Following an inductive methodology, it is easy to see that, for a formula
Q2. Qro>ay - Qup>ap o (A1 A ... AN Ap), the complexity is given by a polynomial of
order k.

For a formula with a ‘—’ operator

Q... QQA...QIUAIN...NAY) = Q...QAT A ... NAY))
k l m
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where () represent different quantifiers, it is also simple to show that the time
complexity of the evaluation is O (nFt™e=(bm)) in the worst case.

The last result shows that defining formulas with a ‘—’ operator has advantages
in terms of complexity. For instance, evaluation of the formula V,(3,p(z,y) —
3.¢(z) has complexity O(n?), while the formula V3,3, (p(x, y)Aq(z)) has complexity
of O(n3) in the worst case.

5.5 Evaluating invariants

Having defined a syntax and semantics for formulas, as well as an algorithm to
evaluate them on the trace, the next step is to evaluate them as invariants. Let us
consider the simplest cases first. Given a trace p = my,ma, ..., m, and property ¢.

e For a positive invariant with a true condition, I(¢, T), the following steps are
followed: 1) call the procedure eval(¢,0 = 0, p) (Section 5.4.5.2), 2) for every
“?” or ‘L’ result returned, emit a fail verdict. For every ‘T’ result, emit a
pass verdict. 3) Use the bindings in the resulting substitution € to identify
the messages involved in the failure.

e For a positive invariant with a false condition I(¢, L): 1) call eval(¢,0 = 0, p)
2) for every ‘L’ result, return fail verdict, for every ‘T’ emit a pass verdict.
for every ‘7’ emit an inconclusive verdict. 3) The bindings in the resulting
substitution 6 serve to identify the messages involved in the failure.

e For a negative invariant with a true condition I~ (¢, T): 1) call the procedure
eval(p,0 =0, p), 2) for every ‘T’ result returned, emit a fail verdict. For every
‘17 or ‘7" result, emit a pass verdict, 3) The bindings in 6 serve to identify
the messages involved in the failure.

e For a negative invariant with a false condition I~ (¢, L): 1) call the procedure
eval(¢p,0 = 0, p), 2) for every ‘T’ result returned, emit a fail verdict. For
every ‘L’ result emit a pass verdict, for every ‘7’ result, emit an inconclusive
verdict, 8) The bindings in 6 serve to identify the messages involved in the
failure.

For an invariant (¢, 1) (or its negative version), the conditional behavior defined
by % must also be evaluated if the evaluation of ¢ returns ‘7’. It is not necessary
though, to evaluate v in the whole trace, but only on the last segment checked
during the evaluation of ¢. The evaluation of the conditional part of an invariant is
described in the following.

Given an invariant I(¢,1) and a trace p of length n, the following results are
expected from the application of eval() on ¢

e A result ‘T, ‘L’ or ‘?” of the evaluation.
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e A substitution § with the bindings at the end of the evaluation.

e An interval [b,e], with b > 1 and e < n indicating the last range of messages
reviewed during the evaluation of ¢.

Let pp denote the segment of the trace p starting from the message in the
position b to the message in the position e. The final step in the evaluation of an
invariant I(¢, ) or I~ (¢,1), upon obtaining an ‘?’ result for the evaluation of ¢ is
defined by:

1. Call the procedure eval(i, 8, pp ), where 6 is the substitution resulting from
evaluating ¢.

2. In the positive version of the invariant, if the result of the evaluation of the
condition v is ‘T’, then return a fail verdict, otherwise return an inconclusive
verdict.

3. In the negative case, if the result of the evaluation of ¢ is true, then return a
pass verdict, otherwise return an inconclusive verdict.

5.6 Experiments

The syntax and evaluation algorithms described previously have been implemented
into a framework, briefly described in Appendix A. In this section we provide some
experiments, in order to show real examples of invariant definitions and the capa-
bilities of the algorithm to provide conformance verdicts. The configuration of the
framework for the experiments is provided in Appendix B and the implementation
is available at the address http://www-public.int-evry.fr/"lalanne/thesis.
html.

For the experiments, the traces used in Chapter 4 were used. These traces con-
tain communication between the client and the PoC server, including registrations,
PoC exchanges and subscriptions to presence information. Also, many packets for
protocols different than SIP (TCP, RTCP, TalkBurst) appear as well. Although
the tool provides a means for filtering such type of messages, due to the massive
amount of extra information (in one case, from 137530 messages, only 299 were SIP
messages), filtering was done prior to the tests. In the following subsections, the
invariants used for evaluation, the syntax and the obtained results for each one are
described.

For every request there must be a response

This property can be used for a monitoring purpose, in order to draw further con-
clusions from the results. Due to the nature of the property, false results can never
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be provided for the evaluation of the test part of the invariant. Furthermore, given
the generality of the test part of the invariant, a condition cannot be defined, since
the condition depends on the type of request and response. Finally, due to the fact
that the provided traces are not very long, a ‘1’ condition is used to avoid false
positive verdicts (cf. Section 5.3.2).

Nevertheless, as it will be shown, inconclusive results can also provide interesting
information about the peers of the communication. The invariant I(¢1, 1) is defined
with the following ¢1, ¥1:

01 = Vy(request(x) A xz.method # ‘ACK’
— Jysz(nonProvisional(y) A responds(y, x)))
= 1

where nonProvisional(z) accepts all non provisional responses (responses with sta-
tus > 200) to requests with method different than ACK, which does not require a
response. The results from the evaluation on the traces is shown on Table 5.3. As
expected, most traces show only true results for the property evaluation, however
traces 4 and 10 show an unusual number of inconclusive results. Taking a closer
look at both traces, all of the errors correspond to NOTIFY messages from the PoC
server to the client for the conference event (RFC 4575). Many of the requests are
retransmissions and all of the events occur at the end of trace, which is an indication
that the client closed the connection before receiving the NOTIFY message.

Table 5.3: Results of testing the property “for every request there must be a response”
on the set of traces.

Trace | No. of messages | pass | fail | inconclusive | Time (s)
1 31 6 0 0 0.556
2 62 24 0 0 0.552
3 126 48 0 0 0.423
4 141 95 0 9 0.48
) 189 99 0 0 0.809
6 190 78 0 0 0.504
7 214 93 0 0 0.352
8 331 151 0 0 0.699
9 409 206 0 0 0.985
10 625 281 0 14 1.457

Every session initialization must be acknowledged

As described in Chapter 3, the session initialization procedure is a three-way hand-
shake, composed by the messages INVITE — 0K — ACK. The construction of the ACK
request is detailed in [Rosenberg 2002, section 13.2.2.4]
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The UAC core MUST generate an ACK request for each 2xx received
from the transaction layer. The header fields of the ACK are constructed
in the same way as for any request sent within a dialog (see Section
12) with the exception of the CSeq and the header fields related to
authentication. The sequence number of the CSeq header field MUST
be the same as the INVITE being acknowledged, but the CSeq method
MUST be ACK. The ACK MUST contain the same credentials as the
INVITE.

The complete ACK construction is defined by the following rule

ack Response(ack,inv, ok) < ack.method = ‘ACK’

ack.to = ok.to

ack.callld = inv.callld
ack.from = inv. from
ack.reqU RI = inv.reqU RI
ack.cseq.seq = inv.cseq.seq
ack.cseq.method = ‘ACK’
ack.via.top = inv.via.top

> > > > > > >

The following invariant, I(¢g,12), serves to evaluate the property that every
successful request should be acknowledged.

2 = Vy(request(z) A z.method = ‘INVITE’ —
Jy>e(responds(y, x) A success(y) — I.>yackResponse(z,x,y)))
w2 - Elw>ybye(y7 w)

where success accepts all success responses
success(x) < 199 < x.statusCode N x.statusCode < 300

and the failure criteria for the invariant is based on finding a session terminating
request (BYE), which provides indication that the session was initiated without an
ACK message appearing in the trace. The predicate bye is defined as

bye(ok,bye) < bye.method = ‘BYE’
A bye.callld = ok.callld
A bye.to = ok.to
A bye.from = ok.from

The results of evaluation of the invariant are shown in Table 5.4. Since the
premise of the test property (¢2) is much more restrictive that for the first invariant,
very few pass cases are reported by the tool and most result are vacuous (not shown
in the table). This can be observed in traces 1, 5 and 8, where only vacuous results
were reported, since these traces mostly contain SUBSCRIBE and NOTIFY messages,
and no responses to INVITE messages appear.
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In traces 3 and 6, a fail verdict was produced, meaning that a session was ini-
tiated without acknowledgment from the client, determined by the appearance of a
session termination message BYE as indicated by the condition 5. Since a single fail
verdict was produced in comparison to several pass, the result may be indicative of
an error in the collection of the trace, and it is not necessarily conclusive. Never-
theless it shows the effectiveness of our approach to detect inconsistent behavior.

Table 5.4: Results of testing the property “every session initialization must be ac-

knowledged”
Trace | No. of messages | pass | fail | inconclusive | Time (s)
1 31 0 0 0 0.354
2 62 4 0 0 0.141
3 126 7 1 0 0.323
4 141 6 0 0 0.237
3 189 0 0 0 0.244
6 190 5 1 0 0.410
7 214 7 0 1 0.482
8 331 0 0 0 0.391
9 409 4 0 0 0.445
10 625 4 0 0 0.643

No session can be initiated without a previous registration

This property can be used to test that only users successfully registered with the
SIP Core can initiate a PoC session (or a SIP call, depending on the service). The
test part of the invariant is defined as follows

¢3 = Vi(IysesessionEstablished(x,y)
— Jy<z(Fosuregistration(u,v)))

where sessionF stablished and registration are defined as

sessionEstablished(x,y) < x.method = ‘INVITE’
A y.statusCode = 200
A responds(y, )

registration(z,y) < request(z) A responds(y, )
A x.method = ‘REGISTER’
A y.statusCode = 200

The conditional part of the invariant is, however, not as easy to define in this
case. The analysis of the results depends on the conditions of collections of the trace
and whether the assumption that the trace is “long enough” holds. Unfortunately in
the traces collected, such assumption could not be done, therefore a false condition
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was used as in I(¢s, L). Nevertheless it can be used to demonstrate the detection
capabilities of the approach, as shown by the last row on Table 5.5. From the results
it can be seen that traces 1, 5 and 8 produce only vacuous results. This is due to
the fact that they mostly consist of SUBSCRIBE and NOTIFY messages, and therefore
the condition sessionFEstablished() never holds on the trace.

Table 5.5: Results of testing the property “No session can be initiated without a
previous registration"” on the set of traces.

Trace | No. of messages | pass | fail | inconclusive | Time (s)
1 31 0 0 0 0.744
2 62 0 0 4 1.13
3 126 0 0 8 2.726
4 141 0 0 6 1.869
5 189 0 0 0 1.714
6 190 0 0 6 2.851
7 214 0 0 8 4.494
8 331 0 0 0 4.588
9 409 0 0 4 10.155
10 625 4 0 0 38.874

From the results on Table 5.5, it can also be seen that the evaluation of this
property is much more time consuming than the one on Table 5.3. Although this is
expected given the complexity of evaluation described on Section 5.4.5.3 (n? from the
first property vs. n? in the current one), the current definition of the property is also
quite inefficient, and shows a possible limitation of the syntax. During evaluation,
all combinations of x and y are tested until sessionFEstablished(x,y) becomes true,
and then all combinations of u and v are evaluated until registration(u,v) becomes
true. It would be much more efficient to look first for a message with method
INVITE, then look whether the invitation was validated by the server as a response
with status 200 to then attempt to look for a registration. This could be achieved,
for instance, by allowing quantifiers on the clause definitions, unfortunately, the
syntax as currently specified does not allow that type of definition.

Subscription to events and notifications

As described in Chapter 3, in the presence service, a user (the watcher) can subscribe
to another user’s (the presentity) presence information, this works by using the SIP
messages SUBSCRIBE, PUBLISH and NOTIFY for subscription, update and notification
respectively. These messages also allow the subscription to other types of events
other than presence, which is indicated in the header Event on the SIP message. It
is desirable then to test, that whenever there is a subscription, a notification MUST
occur upon an update event. This can be tested with the following formula for the
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test part of an invariant I(¢4, L).

d1 = Va(Fysa(subscribe(x, watcher, user, event)
A update(y, user, event))
— Jzsynotify(z, watcher, user, event))

where subscribe, update and notify hold on SUBSCRIBE, PUBLISH and NOTIFY events
respectively. Notice that the values of the variables watcher, user and event may
not have a value at the beginning of the evaluation, in that case their value is set
by the evaluation of the subscribe clause, shown in the following

subscribe(x, watcher, user, event)
< x.method = ‘SUBSCRIBE’
A watcher = x.from
N user = x.to
N event = x.event

Here, the = operator, compares the two terms, however if one of the terms is an
unassigned variable, then the operator works as an assignment. In the formula, the
values assigned on the evaluation of subscribe will be then used for comparison in
the evaluation of update. This is another way of defining formulas, different from
just using messages as attributes.

The results of evaluating the formula are shown on Table 5.6. The results show
no inconclusive results, although they also show that the full notification sequence
is not present in most traces, with the exception of traces 9 and 10. Notice that
we are explicitly looking for a sequence subscribe — update — notify, however the
sequence subscribe — notify can also be present for subscription to server events,
therefore SUBSCRIBE and NOTIFY events might also appear on the trace. To test the
capabilities of detection, some SUBSCRIBE messages were manually introduced on a
trace, matching existing PUBLISH messages. The lack of notification for the update
was correctly detected as an inconclusive verdicts by the evaluation algorithm.

Similarly to property defined for registration, this property is quite inefficient in
its evaluation, due to the same nesting of quantifiers. The evaluation time can be
improved by rewriting the property as

Vz(update(x, user, event)
— (Jy<asubscribe(y, watcher, user, event)
— J,s.notify(z, watcher, user, event)))

which can be understood as: “if an update event is found, then if a previous sub-
scription exists to such event, a notification must be provided at some point after
the update event". The results of evaluating this property are shown on Table 5.7.
Notice that for trace 9, a different number of true results are returned. This is due
to the order of search given by the property, in the previous property finding one
pair SUBSCRIBE — PUBLISH was enough to return a result. In the current property,
for each PUBLISH it will look for a matching SUBSCRIBE. Since for every subscription
there can exist multiple updates, the number of true results differs.
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Table 5.6: Results of testing the property “ Whenever an update event happens,
subscribed users must be notified" on the set of traces.

Trace | No. of messages | pass | fail | inconclusive | Time (s)
1 31 0 0 0 0.59
2 62 0 0 0 0.677
3 126 0 0 0 1.157
4 141 0 0 0 0.84
) 189 0 0 0 1.618
6 190 0 0 0 1.418
7 214 0 0 0 1.602
8 331 0 0 0 3.994
9 409 3 0 0 6.033
10 625 4 0 0 14.972

Table 5.7: Results of testing the property “ Whenever an update event happens,
subscribed users must be notified" on the set of traces. Second version.

Trace | No. of messages | pass | fail | inconclusive | Time (s)
1 31 0 0 0 0.416
2 62 0 0 0 0.312
3 126 0 0 0 0.609
4 141 0 0 0 0.365
) 189 0 0 0 0.38
6 190 0 0 0 0.273
7 214 0 0 0 0.338
8 331 0 0 0 0.272
9 409 4 0 0 0.479
10 625 4 0 0 0.563

5.7 Comparison to related work

A number of different approaches to the testing and monitoring of formulas in traces
exist in the literature for passive testing and runtime monitoring. In the following,
we describe works in both categories in relation with their ability to express data
relations for defining properties.

5.7.1 Passive testing

Although most works from passive testing that provide the basis of our ap-
proach have been previously cited [Lee 2002, Cavalli 2003, Arnedo 2003, Bayse 2005,
Ladani 2005]. Some other works are worth mentioning with relation to our approach.

In some recent work, the authors of [Morales 2010] define a methodology for the
definition and testing of time extended invariants, where data is also a fundamental
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principle in the definition of formulas and a packet (similar to a message in our

work) is the base container data. In this approach, the satisfaction of the packets to

. . . When,n,t
certain ewvents is evaluated, and properties are expressed as e ————— €9, where

e and eg are events defined as a set of constraints on the data fields of packets, n is
the number of packets where the event es should be expected to occur after finding
e1 in the trace, and t is the amount of time where event es should be found on the
trace after (or before) event e;. This work served partly as inspiration for the work
in this thesis. However, in our work we improve on it by allowing the definition of
formulas that test data relations between multiple messages/packets.

Although closer to runtime monitoring, the authors of [Cao 2010| propose
a framework for defining and testing security properties on Web Services using
the Nomad [Cuppens 2005] language, based on previous works by the authors of
[Li 2006, Li 2005]. As a work on web services, data passed to the operations of the
service is taken into account for the definition of properties, and multiple events in
the trace can be compared, allowing to define, for instance, properties such as “Op-
eration op can only be called between operations login and logout". Nevertheless,
in web services, operations are atomic, that is, the invocation of each operation can
be clearly followed in the trace, which is not the case with network protocols, where
operations depend on many messages and sometimes on the data associated with
the messages.

5.7.2 Runtime monitoring

Runtime monitoring and runtime verification techniques have gained momentum in
the latest years, particularly using model checking techniques for testing properties
on the trace. The authors of [Leucker 2009] provide a good survey and introduction
of methodologies in this area. The usual approach, consists on the definition of
some logic (LTL is commonly used), which is used to create properties from which
a monitor is defined to test on the trace. The authors of [Bauer 2007a] describe
the definition of monitors as finite state machines for LTL formulas, they introduce
a 3-valued semantics (true, false, inconclusive) in order to test formulas for finite
segments of the trace!®, in [Bauer 2007b] they expand their analysis on inconclusive
results, by proposing a 4-value semantics to distinguish cases where the property is
most likely to become true or become false on the continuation of the trace. The
analysis provided on this work on finite and infinite traces is based on the definitions
from these authors, applied to our logic.

Regarding the inclusion of data, the concept of parameterized propositions is
introduced by the authors of [Stolz 2008]. Propositions can contain data variables
and quantifiers can be defined for the data variables by the introduction of a — op-
erator, formulas of type Q121 -+ - Qm@Tm : p(x1,...,T,) — ¥, where Q1,...,Q,, are

Tn their work, a trace segment is considered a finite word with an infinite continuation, so
formulas that deal with the future of the trace have to take into account that the property can
become true (or false) on the continuation of the trace.
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quantifiers and z1,..., %, ..., x, are variables. In this approach, valid data values
in formulas are fixed, so if p(z) is used on the left side, the set {p(1),p(2),...} with
the valid values must have been defined previously. Although it is an interesting
approach to data testing, it is still propositional in nature, our approach adds flex-
ibility to the definition of formulas by considering data as the central part of the
communication.

A similar approach to ours is presented by the authors of [Roger 2001], for attack
detection in logs. Their work uses a simplified LTL syntax where only the operators
‘A’ and ‘F’ are used. A formula {id = X, result = ‘fail’} A F{id = X, result =
‘pass’} attempts to find a record in the log matching the first part (id and result are
fields in a record), and a future one matching the second part, where the variable
X is assigned using a mechanism similar to unification. However, their approach
focusing on attack detection, only deals with infinite traces, since definite verdicts
are not a requirement.

Another work, defined to test message based work-flows, is provided by the
authors of [Halle 2008] in the definition of the logic LTL-FO™. Here, data is a more
central part of the definition of formulas and LTL temporal operators are used to
indicate temporal relations between messages in the trace. Messages are defined as
a set of pairs (label,value), similarly to our work, and formulas are defined with
quantifiers specific to the labels. As an example, the formula G(3,ethoqz1 @ 1 =
‘INVITE — deqnrde : F(Elstatusyl y1 = 200 A Jeanray2 ;Y2 = .2132)) indicates that
generally, if a message with method INVITE is found, then it exists a field Call-ID
in that message, such that a future message with status 200 exists with the same
Call-ID. Although the syntax of the logic is flexible, it can quickly lose clarity as
the number of variables required increases. Our current work improves on this, by
allowing to group constraints with clause definitions.

Finally, in [Barringer 2004], the authors propose a logic for runtime monitoring
of programs, called EAGLE, that uses the recursive relation from LTL F¢ = ¢V X¢
(and its analogous for the past), to define a logic based only on the operators next
(represented by () and previous (represented by ()). Formulas are defined recur-
sively and can be used to define other formulas. Constraint on the data variables
and time constraints can also be tested by their framework. However, their logic is
propositional in nature and their representation of data is aimed at characterizing
variables and variable expressions in programs, which makes it less than ideal for
testing message exchanges in a network protocol as required in our work.

5.8 Conclusion

In this chapter we described our approach for data-centric invariant-based testing,
motivated by the findings described in previous chapters related to the application
of the invariant approach in modern protocol (and service) traces. There, we found
that, when testing on traces for modern protocols (e.g. SIP), causality between
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events in a trace can rarely be determined through control parts of the communica-
tion and it can only be determined through data parts.

In our work we define an invariant as a pair of formulas I(¢, 1) where ¢ defines
the test behavior and 1 defined the conditional behavior, i.e. the behavior that
needs to be observed on the trace when evaluation of the test behavior does not
produce sufficient information. A trace is considered in our work as a sequence
of messages, i.e. collections of data fields. The syntax of formulas is defined in a
bottom-up fashion: first, expected relations between messages and message data
fields are defined as predicates using a syntax based on Horn clauses. Then the
expected temporal behavior between messages and predicates is defined in order to
test in the trace. The details of the syntax/semantics of formulas is defined in the
chapter, along with an algorithm to determine satisfaction of a formula in a trace
and an algorithm to provide a verdict of an invariant I, with respect to the behavior
in the trace.

An example of definition of formulas for SIP-based services is provided, and the
ability of the approach to detect failures in the trace is shown through experiments.
The experiments also allowed to show some of the limitations of the work, namely
the influence of the property definition in the evaluation time, and the difficulty of
specifying conditional behavior to decide between inconclusive and failed verdicts.
Some perspectives regarding future improvements and research paths are provided
along with the general conclusion of our work in the next chapter.

Nevertheless, the expressibility and flexibility allowed by the used Horn-like defi-
nitions provides interesting perspectives for testing of protocol implementations and
services.



CHAPTER 6

(General Conclusion

The main objective of the presented work was to address some of the issues related
to passive testing for conformance, particularly in the context of SIP-based services,
IMS services and other message-based protocols.

We first presented, in Chapter 2, the state of the art of the most relevant works
in passive testing, within the context of conformance testing with formal specifica-
tions. The definitions of the most commonly used models for passive testing were
provided, and particular emphasis was given to the techniques of invariant-based
passive testing, which are more relevant to our work. In that chapter, we also made
a parallel with the concepts of runtime verification, given the common objective
with invariant-based testing, of determining the satisfaction of a particular property
in a trace. We noted that the general objectives of runtime verification differ with
those of passive testing, however, many of the concepts and techniques can be used
for the latter, and in fact have been used in the definition of our approach.

IMS services and SIP-based services, presented in Chapter 3, provide interesting
challenges for conformance testing, and particularly for testing using traditional
invariant-based testing approaches. In this context, several issues and limitations
of the invariant approach are addressed by our work, some of them described as
part of the work presented in Chapter 4. Invariant techniques are usually based on
Finite State Machine (FSM) and Extended FSM models, and as such, they presume
a causal relation between inputs and outputs (control parts) in the transitions of
the model. In such context, properties (invariants) can be defined, as sequences of
input/output pairs, that must be observed in the trace to determine conformance
of the implementation. If causality between control parts is removed, e.g. when the
implementation under test is the server in a centralized service, then causality can
only be determined through data parts.

As traditional testing and verification approaches derive from finite state and
labelled transition models, they center around control parts, with data parts de-
fined as an extension, usually in the form of data fields or parameters. This means
reduced expressiveness of invariant formulas to describe relations between multiple
data fields, or relations more complex than equality. It also means reduced succinct-
ness of formulas when adding data relations. In captured traces, however, events
are usually messages, i.e. collections of structured data, and control parts are a
function of the data. In the work presented in Chapter 5, we presented the details
of our contribution: a message-based/data-centric approach for invariant testing.
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In our work, to deal with expressiveness and succinctness issues, we define events
in a trace as messages. Messages are defined as collections of data fields of different
domain, where a particular data field value can be accessed through functions defined
in our approach. Expected observations are defined as predicates on a message (or
group of messages) in the form of Horn clauses. Each clause specifies a criteria to
be fulfilled by a message or messages, defined in term of constraints over message
data fields, for instance, that a particular data field of a message has a specific value
or range of values, or that the field A of one message is equal to field B of another
message. Temporal properties are then defined between different criteria, e.g. “if a
message that satisfies criteria x is found, then a message satisfying criteria y must
be found after it”. The use of Horn clauses allows to define high-level criteria to be
evaluated and re-used in multiple formulas. The fact that messages are evaluated,
allows to define more general criteria than through control parts alone, for instance
matching all requests or responses of a certain type.

Our approach defines temporal relations through quantification (V, 3) over mes-
sages, with precedence of messages being specified through order relations. Then,
a property can indicate that certain criteria “must be held for all messages in the
trace”, that exists “at least one message for which a particular criteria holds”, or that
for all messages that satisfy a given criteria, “another message must exist at some
point in the future (after the position of the first message), satisfying a different
criteria”. This provides good temporal expressiveness, allowing to define temporal
relations for the future and past of messages, or a mix of both. Since our approach
has to deal with traces collected asynchronously, no immediate temporal precedence
is defined (e.g. the next operator in LTL), given that it cannot generally be assured
what the next message will be.

Dealing with temporal properties, when specifying that some event must occur
at some point in the future (or past), another issue occurs. For a property such
as “if event x happens, then event y must occur at some point in the future”, if
the event x is observed and y is not observed, distinguishing between the cases: “y
was not produced” and “the trace collection ended before y” could be observed, is
not trivial. The same issue occurs when dealing with events in the past, it cannot
easily be determined if y was not produced or the trace collection started too early.
In other invariant-based works, use of the specification was proposed to determine
whether the initial state is present in the trace, however if the specification is not

available, as it is many times the case, no solution is provided.

In our approach, such issue is directly considered in the design of the semantics
of temporal formulas, where satisfaction of a formula can be determined within the
set of truth values {T, L, 7}, respectively indicating that the formula is satisfied,
not satisfied and that no conclusive satisfaction result can be provided (inconclusive
result). As evaluation of the behavior defined by a property “if x eventually 37, is
usually desired, ‘7’ results are commonly obtained. Several alternatives have been
proposed and implemented in our work for establishing which conformance verdict,
fail or inconclusive, must be provided for a ‘7’ satisfaction result.
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1. Assume that the trace is never long enough, that is, only inconclusive verdicts
can be provided for an ‘?’" observation. Although this assumption is very strict,
and may not provide useful information in most cases, analysis of the verdicts
might. For instance, the number and distribution of inconclusive verdicts is
significant, this may be an indication of a fault in the implementation.

2. Assume that the trace is always long enough, that is, assume that each ‘7’
result is indication of a failure. If traces with large number of messages are
used, this may be an acceptable alternative. However, some false positive may
be produced at the edges of the trace.

3. Define an alternative, conditional, behavior to be observed. If while attempt-
ing to observe a given property, the conditional behavior is observed first, then
a fail verdict is returned, otherwise, an inconclusive verdict is returned. This
is similar to identifying the initial or final state of a specification in the trace
for our more general case. Unfortunately, the condition does not always exist,
or it may not be easy to define, since causality with the criteria in the expected
property must be defined.

4. Explicitly define behavior that should not be observed, or negative behavior.
Since the issue is establishing when the lack of observation of an expected
behavior is indicative of a failure, there are no problems to detect when the
behavior actually takes place. If a negative behavior is defined as a property,
then, satisfaction of the property (a ‘T’ result) must produce a fail verdict.
However, negative behavior may not always be easy to define from the require-
ments of the service.

Our definition of invariants includes all of these alternatives, an invariant can
be positive or negative. A positive invariant, defined by I(test,condition), where
test and condition are temporal formulas defined with our message based syntax,
evaluates the behavior defined by test in the trace, if the result is ‘?” and the behavior
described by condition is observed, evaluation of the invariant provides a fail verdict.
If the condition is ‘T, a fail verdict is returned for each ‘?’" result. If the condition
is ‘1’, an inconclusive verdict is returned for each ‘?’ result. A negative invariant
is defined by I~ (test, condition), if the behavior described by test is observed, then
a fail verdict is returned, otherwise, the condition is used to determine if a pass or
inconclusive verdict should be returned for the evaluation of the invariant.

Our approach has been implemented into a prototype framework, and experi-
ments for IMS service traces have been provided to exemplify how properties are
defined with our message-based methodology, as well to illustrate the effectiveness
of the approach to detect correct and incorrect behaviors.
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6.1 Perspectives

In our work, we have provided a message-based approach for testing with confor-
mance properties, which provides a novel work with respect to testing of data parts in
other passive testing and runtime verification approaches. Considering trace events
as messages, allows to define criteria for evaluation that include multiple control
events, or even requirements over every observed message, no matter the control
part. In the presented work, there is a direct relation between a message and its
control part. It may also be possible to relate a criterion over a message with a
set of control parts, e.g. the criterion ‘all requests’ with a subset of events in an
EEFSM. This may provide useful, for instance, for verification of a property in a
specification. However, it is also interesting to think about the possibility of defining
message-based specifications, with transitions triggered by message reception and
the satisfaction of a predicate over the message. To our knowledge, no such type of
specification exists, and it may provide an alternative paradigm for testing. In the
least, it may provide new directions for testing with message-based properties.

More particularly, in relation to improvements of our approach, as it can be
seen from invariant definition and the results from the experiments in Section 5.6,
inconclusive verdicts are many times unavoidable, and a conditional behavior for the
invariant is not always possible to define. For a formula V,(p(z) — Jy>2q(y,2)),
there is no way to decide when to stop the evaluation of the quantifier 3,~,q(y, ),
if no ‘T’ result for ¢(y,x) is available, other than reaching the end of the trace.
This issue and other possible improvements to the approach are discussed in the

following.

6.1.1 Time constraints

A possible solution to distinguish between fail and inconclusive verdicts is to
incorporate time constraints in the declaration of properties, whenever it might be
required by the specification of the protocol. In this way, if the timeout indicated
by a time constraint is reached before the end of the trace, a fail verdict must be
returned, otherwise an inconclusive result is returned.

Extending the syntax of our logic to include time constraints is straightfor-
ward from the current definition. It would suffice to extend the possible opera-
tions inside trace quantifiers, for instance, something on the lines of Vy~z.y<z4t¢ or
Vy>ay.time<a.time+t® to indicate that the message to look for must occur after the
current position of x and before the time given by the time-stamp of x plus ¢ time
units. Extending the semantics and evaluation algorithm should also be simple, the
main restriction is that it must be able to distinguish between the end of the trace,
in order to provide an inconclusive verdict, and the failure of a time constraint, to
produce a false verdict.
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6.1.2 Online evaluation

In many cases it would be desirable to allow a way to implement online testing
of traces. That is, evaluate properties as the IUT is being run. This could be
particularly interesting for testing security properties, or detecting clients with non-
conforming implementations. In order to achieve this, three issues have to be dealt
with in terms of the algorithm.

1. Storage of traces to disk Since our approach allows to define temporal
quantifiers related to the past of a particular message, as well as the future,
it is necessary that messages already collected and parsed can be accessed
quickly and without the need to reprocessing them. This is actually a minor
issue that can be solved, for instance, by the use of serialization on disk of the
trace already collected. Nevertheless, the question of how far back to store the
trace should be addressed, taking into account that the service may be run
indefinitely and that the resources of the system are limited.

2. Online evaluation of the condition. Given an invariant (¢, ), the cur-
rent evaluation algorithm waits for a ‘7’ result of the evaluation of ¢, to test
the conditional behavior. Since the evaluation of ¢ may run indefinitely, the
conditional behavior must be evaluated along the test behavior, however, it
cannot always be evaluated simultaneously. For instance, given an invariant
I(Vy(p(z) = 3y>2q(y,x)), Jo>ar(2,2)), the evaluation of the condition only
makes sense if the evaluation of p(z) yields a ‘T’ result, since other cases result
in vacuous verdicts, and the evaluation of the condition is dependent on the
value and position of . The issue of when to start evaluating the condition
must be considered.

3. Parallel processing of the properties. With the current evaluation algo-
rithm, the evaluation of an invariant I(V,¢, ) or 1(3,¢,1), runs indefinitely,
until observing the conditional behavior, the end of the trace, or until find-
ing a true evaluation for ¢ in the latter case. This raises a major issue for
online testing, particularly in formulas with nested quantifiers. Let us take
the test behavior defined by the formula V,3,~,p(z,y) (and assuming that
no conditional behavior exists). If for a given message in the trace, bound to
x, no possible value for y exists such that p(z,y) is true, then the evaluation
will run forever without returning any further results, due to the fact that the
trace collection may run indefinitely. A way to run evaluations in parallel, for
instance, evaluating for a different binding for x without having to wait for a
result for 3,~,p(x,y) is necessary. A solution for this may be on the use of an
alternating automata [Vardi 1995|. Nevertheless, the solution requires some
study.
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6.1.3 Improvements on the syntax/semantics

As seen in Section 5.6, and in accordance with the complexity analyzed in Sec-
tion 5.4.5.3, whenever using nested quantifiers, the evaluation time increases pro-
portionally to one order of magnitude with respect to the length of the trace for
each nesting level. Given two equivalent properties, V,3ysz(p(z) A ¢(z,y)) and
Vz(p(z) Ay>zq(x,y)), processing time for the former is much larger than the latter,
due to the fact that the first one tests every combination of values for x and y, and
the latter only starts the search for a suitable value for y, after an z is found that
makes p(x) true.

Unfortunately, the current syntax and semantics does not allow to define for-
mulas such as the one above, given that the separation between the evaluation of
quantifiers and atomic formulas provided the simplest possible syntax to test our
approach. The semantics of such a formula should follow directly from the current
one using the definition of ‘A’, however the desired semantics for formulas of type
“? A¢’ has to be specified in order to produce a correct value. A partial solution can,
however, be provided with the current approach, through the use of ‘—’. Similar re-
sults can be obtained by a formula V,(p(z) — 3y>.q(z,y)). although the semantics
differs.

A simple improvement can also be provided by allowing to define more complex
relations between data fields, currently limited to ‘=", ‘" and ‘<’. Addition of sim-
ple operations, for instance, can allow to test some more complex relations between
data fields.

If a higher level definition of formulas is required, for added clarity and expressive
power, it might be interesting to modify the syntax and semantics to allow quantifi-
cation inside clause bodies. However, this requires a much more complex analysis
and a complete redefinition of the semantics and definition of the evaluation proce-
dure. Nevertheless it is an interesting improvement that is worth studying.

6.1.4 Race conditions in traces

Finally, an issue that also could merit more analysis is the fact that race conditions
may occur on the trace, due to the distributed nature of the tested systems. With
race conditions we refer to two or more messages of the protocol occurring at exactly
the same time, i.e. appearing with the same timestamp on the trace. During the
experiments some messages of this type were found although in this case they did
not affect the evaluation of the properties. However, depending on the type of
property and the testing purpose, it may occur that the same pair of messages
causes a false/inconclusive or true verdict to be returned, depending on the order
on which they are considered. This issue presents an interesting research challenge
for the topic of passive testing.
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APPENDIX A

A Framework for Data-centric
evaluation

The concepts and algorithms described in Chapter 5 have been implemented into
a framework, available in the URL http://www-public.int-evry.fr/"lalanne/
thesis.html, of which some details are provided in the following. The framework
has been implemented in Java, and the general architecture is based on that of the
IRIS reasoner project! | a reasoning engine for Datalog rules. However, most of
the functionality of the different modules has been rebuilt to support compound
domains and message selector variables, along the rest of the functionality (quan-
tified formulas, SLD-resolution, etc.). Three main modules can be identified in the
system: ¢. filtering and conversion of collected traces, 4. evaluation of invariants
and 7. evaluation of formulas. Figure A.1 shows the module interaction and the
inputs/outputs from each one, and a brief description of each module and its con-
figuration is described in the following sections.

A.1 Trace processing module

The trace processing module receives the raw traces collected from network exchange
and converts the messages from the input format to a list of messages, used by the
formula evaluation module. Although the module is designed to be adaptable for any
input format, in our particular implementation, the used format is PDML, an XML
format that can be obtained from Wireshark? traces. The structure of the PDML
is provided in figure A.2. In the XML, data fields are identified by a field tag,
and are grouped by protocol. Each field tag represents an individual data value in a
message (a header, a header sub-element). The field is identified by a name attribute
and its value is hex encoded in the attribute value. Field tags can be nested to
indicate complex data types. This nested structure corresponds quite closely with
the message structure, where data can be grouped in compound domains.

The configuration for the trace conversion is shown in Figure A.3. Each identifier
on the left side of a “:” symbol, indicates a sub-element of a message, and identifiers
on the right, represent a field name in the XML. Notice that identifiers on the left
side can represent compound domains, for instance, the configuration in the figure

"http://www.iris-reasoner.org/
*http://www.wireshark.org
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Figure A.1: Architecture for the framework.

<packet>
<proto name="

sip">

<field name="sip.Method" show="INVITE" value="494e56495445"/>
<field name="sip.From" show="alice@domain.org;tag=123"
value="616c69636540646£6d61696e2e6£72673b7461673d313233">
<field name="sip.from.addr" show="alice@domain.org"
value="616c69636540646£6d61696e2e6£7267" />
<field name="sip.to.tag" show="123" value="313233" />

</field>

</proto>

<proto>...</proto>

</packet>

Figure A.2: Example of a PDML file structure
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indicates that status is a sub-element of message, with two sub-values status.line
and status.code. Although not included in the formal description of the approach,
the framework supports list elements as well. In the figure, the field via defines a list,
where each element of the list is a compound value, with sub-elements transport,
address, port and branch. Elements of the list are identified in the PDML as fields
with identical name. The configuration also allows to provide a main protocol under
test. If a packet in the trace does not contain headers of the protocol indicated by
the identifier PROTOCOL, then the packet is ignored.

define PROTOCOL "sip"

requestURI : sip.r-uri
method : sip.Method
status.line : sip.Status-Line
status.code : sip.Status-Code

to.addr : sip.to.addr
to.tag : sip.to.tag
from.addr : sip.from.addr
from.tag : sip.from.tag
cSeq.seq : sip.CSeq.seq

cSeq.method : sip.CSeq.method

via

{
transport : sip.Via.transport
address : sip.Via.sent-by.address
port : sip.Via.sent-by.port
branch : sip.Via.branch

}

Figure A.3: Example of message configuration

A.2 Formula evaluation module

The formula evaluation module is called during invariant evaluation, although it
can also be used independently. The module receives a trace (the result from the
processing module), a set of predicate definitions, a formula to test, and an optional
set of initial bindings (a substitution). It returns a result for each evaluation of the
formula in the trace, returning the satisfaction result ({T,L,7}) and the variable
bindings at the end of the evaluation.

Predicate definitions are provided as an input file to the tool. Clauses are defined
as described in the Section 5.4.3.1 and the syntax for definition of clauses is similar
to that of Prolog [Apt 1997|, with the exception that variables are not required to
be written in upper case, and strings have to be explicitly indicated between quotes.
For instance, the clauses in the Example 5.4.4, are defined as
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request(x) :- x.method != nil.
response(x) :- x.statusCode != nil.
responds(x,y) :-

response(x),

x.from = y.from,

comparable(y.to, x.to),

x.callld = y.callld,

x.cSeq = y.cSeq,

x.via = y.via.

Notice that the definition of each clause is terminated by a ¢.’, that the ‘A’ symbol
is represented by a ‘,’; equivalently to PROLOG, and ¢ is represented by ‘nil’. For
the definition of queries, the following conventions are used

e The symbol — is represented by ‘->’.

o Vo, Vysp¢, dpdp, Jy>u0, are respectively represented as forall(x, ¢),
forall(y > x, ¢), exists(x, ¢) and exists(y > x, ¢)

The query YV, (request(z) — Jy~zresponds(y, x)) is then written as:

forall(x, request(x) -> exists(y > x, responds(y, x)))

A.3 Invariant evaluation module

The invariant evaluation module works in accordance to the procedure defined in
Section 5.5. The module takes the trace from the trace processing module, as well
as the definition of the invariant from the configuration files. The module gives
first the test part of the invariant to the formula evaluation module and, for each
result, it produces a verdict, pass, fail or inconclusive. If a condition is defined,
then the module uses the bindings from the evaluation of the test to evaluate the
condition. An invariant is defined in the configuration as a triple [positive, test,
condition], where positive is one of + or - and indicates whether the invariant is
positive or negative. The condition can be a formula, or one of the values true or
false. An example is provided as follows.

define INVARIANT [ "+",
"forall(x, request(x) -> exists(y > x, responds(y, x))).",

"false" ]

In Appendix B, the full configuration files for the experiments are provided.



APPENDIX B

Framework Configuration for
Experiments

The configuration files for the framework, message configuration, predicate defini-
tions and invariants used in Section 5.6 are provided in the following sections.

B.1 Tool and Message Configuration

/* The main protocol under test,
* filters any message outside of this protocol */
define PROTOCOL ’sip’

/* Predicate definition files */
define PREDICATES °’sip.kb’

/* List of traces to evaluate */
define TRACE [’traces/patched/E2EIMSSPTT1003.xml’,
’traces/patched/E2EIMSSPTT1001.xml’,
’traces/patched/E2EIMSSPTT1004.xml’,
’traces/patched/E2EIMSSPTW1001 .xml’,
>traces/patched/reg-wM8.0.4.5.xml’,
’traces/patched/E2EIMSSPTT1017 .xm1’,
’traces/patched/E2EIMSSPTT1005.xml’,
’traces/patched/E2EIMSSPTT1018.xml’,
’traces/patched/E2EIMSSPTT1019.xml”,
’traces/patched/E2EIMSSPTT1009.xml’
]

/**
An invariant is a list with three elements.
- The first a "+" or "-" sign,

- The second is the test part of the invariant

*
*
* indicating whether the invariant is positive or negative
*
* - The third one is the condition part of the invariant,

*/
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define INVARIANT [ "+",
"forall(x, request(x), x.method != ’ACK’ ->
exists(y > x, non_provisional(y), responds(y,x))).",

"false" ]

requestURI
method
status.line
status.code
to.addr
to.tag
from.addr
from.tag
cSeq.seq

cSeq.method :

callId
maxForwards

via

transport

address
port
branch

Lists are also
‘via’ field.

sip.
.Method

sip

sip.
sip.
.to.addr
.to.tag
.from.addr

sip
sip
sip

sip.
sip.
.CSeq.method

sip

sip.
sip.

Message configuration.

Each line defines a data field in the message (left) and
its equivalent field in the PDML (right). Notice that
defining a sub-field (status.line), defines the parent (status).

supported. An example is provided with the

r-uri

Status-Line
Status-Code

from.tag
CSeq.seq

Call-ID
Max-Forwards

: /* This indicates that via is a list */

: sip.Via.transport

: sip.Via.sent-by.address
: sip.Via.sent-by.port
: sip.Via.branch

B.2 SIP Predicate Definitions

/* Valid

Status codes */

/* Provisional Responses */
status(100). /* Trying */
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status(180). /* Ringing */

status(181). /* Call is being forwarded */
status(182). /* Queued */

status(183). /* Session progress */

/* Success */

status(200). /* OK */

/* Redirection */

status(300). /* Multiple Choices */
status(301). /* Moved permanently */
status(302). /* Moved temporarily */
status(305). /* Use Proxy */

status(380). /* Alternative service */

/* Client errors */

status(400). /* Bad request */
status(401). /* Unauthorized */
status(402). /* Payment required */
status(403). /* Forbidden */

status(404). /* Not found */

status(405). /* Method not allowed */
status(406). /* Not acceptable */
status(407). /* Proxy Authentication Required */
status(408) . /* Request timeout */
status(410). /* Gone */

status(413). /* Request entity too large */
status(414). /* Request-URI Too Large */
status(415). /* Unsupported Media Type */
status(416). /* Unsupported URI Scheme */
status(420). /* Bad extension */
status(421). /* Extension required */
status(423). /* Interval too brief x/
status(480). /* Temporarily not available */
status(481). /* Call Leg/Transaction Does Not Exist */
status(482). /* Loop detected */
status(483). /* Too Many Hops */
status(484). /* Address Incomplete */
status(485). /* Ambiguous */

status(486). /* Busy Here */

status(487). /* Request terminated */
status(488). /* Not Acceptable Here */
status(489). /* Bad Event */

status(491). /* Request pending */
status(493). /* Undecipherable */

/* Server errors x/

status(500). /* Internal Server Error */



116 Appendix B. Framework Configuration for Experiments

status(501). /* Not implemented */
status(502). /* Bad Gateway */
status(503). /* Service Unavailable */
status(504). /* Server Time-out */
status(505). /* SIP Version not supported */
status(513). /* Message Too Large */

/* Global-Failure */

status(600). /* Busy everywhere */
status(603). /* Decline */

status(604). /* Does not exist anywhere */
status(606). /* Not acceptable */

/* RFC 3621 methods */
method (?REGISTER’) .
method (?’INVITE?) .
method (?ACK?) .

method (’CANCEL’) .
method (°BYE?) .

method (°’0PTIONS?).

/* Other methods (from presence) */
method (’PUBLISH?) .

method (’NOTIFY?’).

method (?SUBSCRIBE?) .

/* Response types */

/* Provisional responses 1lxx */
provisional(x) :-
x.status.code >= 100,
x.status.code < 200.

/* Success reponses: 2xx */
success(x) :-
x.status.code >= 200,
x.status.code < 300.

/* Redirections: 3xx */

redirection(x) :-
x.status.code >= 300,
x.status.code < 400.
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/* Client errors: 4xx */

client_error(x) :-
x.status.code >= 400,
x.status.code < 500.

/* Server errors: 5xx */

server_error(x) :-
x.status.code >= 500,
x.status.code < 600.

/* Global failures: 6xx */

global_failure(x) :-
x.status.code >= 600,
x.status.code < 700.

/* True if the message is a request */

request(x) :- method(x.method) .

/* True if the message is a response */

response(x) :- status(x.status.code).

/* A non-provisional response */

non_provisional(x) :-
x.status.code >= 200,
x.status.code < 700.

/* True if message x is a response to message y.

* Assumes y is a request message */

responds(x,y) :-
response(x),
x.from = y.from,
compareTo(y.to, x.to),
x.callld = y.callld,
x.cSeq = y.cSeq,
x.via = y.via.

/* Compares the to fields from the request

and the response */

compareTo(reqTo, respTo) :- reqTo.tag

reqTo.addr = respTo.addr.

compareTo(reqTo, respTo) :- reqTo.tag

reqTo.addr = respTo.addr.

nil,

respTo.tag,
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/* Session established */

sessionEstablished(x,y) :-
x.method = ’INVITE’,
y.status.code = 200,
responds (y,x) .

/* Subscription */
subscribe(x, watcher, user, event) :-
x.method = ’SUBSCRIBE’,
watcher = x.from,
user = x.to,
event = x.event.

/* Update status */

update(x,user,event) :-
x.method = ’PUBLISH’,
x.from = user,
x.event = event.

/* Notify */
notify(x, watcher, user, event) :-
x.method = ’NOTIFY’,
x.from = user,
x.to = watcher,
X.event = event.

/* Registration */
registration(x,y) :- request(x), responds(y,x),
x.method = ’REGISTER’, y.status.code = 200.

ackResponse(ack,inv,ok) :-
ack.method = ’ACK?,
ack.callld = inv.callld,
ack.cSeq.seq = inv.cSeq.seq,
ack.cSeq.method = ?ACK’,
ack.to = ok.to,
ack.from = inv.from,
head(ackTop, ack.via),
head (invTop, inv.via),
ackTop.address = invTop.address,
ackTop.port = invTop.port,
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ackTop.transport = invTop.transport.

bye (ok, bye) :-
bye.method = ’BYE’,
bye.callld = ok.callld,
bye.to = ok.to,

bye.from = ok.from,
bye.route = ok.recordRoute.

B.3 Invariant definitions

For every request there must be a response

define INVARIANT [ "+",

"forall(x, request(x), x.method != ’ACK’ ->
exists(y > x, non_provisional(y), responds(y,x))).",
"false" ]

Every session initialization must be acknowledged

define INVARIANT [ "+",
"forall(x, request(x), x.method = ’INVITE’ ->
(exists(y > x, responds(y,x), success(y)) ->
exists(z > y, ackResponse(z,x,y)))
)",
"exists(w > y, bye(y,w))." ]

No session can be initiated without a previous registration

define INVARIANT ["+",
"forall(x, exists(y > x, sessionEstablished(x,y)) ->
exists(u < x, exists(v > u, registration(u,v)))).",
"false"]

Subscription to events and notifications

The first version of this property is defined as follows.

define INVARIANT ["+",
"forall(x, exists(y > x, subscribe(x,watcher,user,event),
update (y,user,event)) ->
exists(z > y, notify(z,watcher,user,event))).",
"false"]
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The improved version is defined by the following definition.

define INVARIANT ["+",
"forall(x, update(x, user, event) ->
(exists(y < x, subscribe(y, watcher, user, event)) ->
exists(z > x, notify(z, watcher,user,event)))).",
"false']



Résumé : Le test de conformité est le processus permettant de controler quun
systéme posséde un ensemble de propriétés souhaitées et se comporte conformément
a certaines exigences prédéfinies. Dans ce contexte, les techniques de test passif
sont utilisées lorsque le systéme sous test ne peut étre interrompu ou l'accés aux
interfaces du systéme est indisponible. Le test passif s’appuie sur 'observation
de l'application pendant l'exécution, et la comparaison de l’observation avec le
comportement attendu, défini a travers des propriétés de conformité.

L’objectif de cette thése est la définition d’'une méthodologie de validation des
protocoles communicants par test passif. Les approches existantes sont issues
de travaux basés sur des spécifications & états finis ou de transitions étiquetées
et comme tels, ils présument l’existence d’une relation de causalité entre les
évenements observés dans la trace du systéme. Pour le traitement des protocoles
basés sur des messages, comme le protocole SIP (fondamental pour les services
IMS), telle causalité n’existe pas nécessairement et en outre, elle ne peut étre
déterminée que par la partie données du protocole. Etant donné que les techniques
existantes sont optimisées pour traiter les parties de controle, ils présentent des
limites pour les tests basés sur des parties de données: expressibilité réduite de
propriétés de conformité, entre autres.

Dans ce travail nous présentons une approche sur la base des messages et données
pour traiter ces problémes. Les observations dans une trace sont sous la forme de
messages. Le comportement attendu est défini de maniére ascendante, a partir des
critéres basés sur les relations entre les champs des données des messages. Des
relations temporelles sont définies entre ces critéres, par exemple, une propriété
peut exiger que certains critéres “doit étre reconnu pour tous les messages dans
la trace”. Notre approche permet d’exprimer des formules sur 'avenir et le passé
de la trace, permettant de définir des critéres plus généraux que ceux qui utilisent
uniquement des parties de controle.

Des problémes liés a la satisfaction des propriétés et la déclaration des verdicts
de conformité sont également discutés. Bien que 'observation d’un comportement
défini comme une propriété est un indice de conformité, ’absence d’observation
n’est pas nécessairement indicative d’une faute. Plusieurs solutions a ce probléme
ont été proposées et mises en ceuvre dans ce travail.

Enfin, notre travail présente des perspectives intéressantes en termes d’extensibilité
pour la détection en ligne ou une expressivité améliorée, mais aussi car une
approche basée sur des messages fournit une vision alternative aux techniques de
test traditionnelles.

Mots clés : Test, conformité, passif, données, IMS, protocoles, services




Modeling and Methodologies for the Test of IMS Services

Abstract: Conformance testing is the process of checking that a system possesses
a set of desired properties and behaves in accordance with some predefined
requirements. In this context, passive testing techniques are used when the system
under test cannot be interrupted or access to the system’s interfaces is unavailable.
Passive testing relies on the observation of the implementation during runtime,
and the comparison of the observation with the expected behavior, defined through
conformance properties.

The objective of this thesis is to define a novel methodology to validate communicat-
ing protocols by passive testing. Existing approaches are derived from works with
finite-state and labelled transition specifications and as such, they presume there
exists a causality relation between the events observed in the implementation (the
trace). When dealing with message-based protocols, such as the Session Initiation
Protocol (fundamental for IMS services), such causality does not necessarily exist
and furthermore, it may only be determined through data parts. Since existing
techniques are optimized for dealing with control parts, they present limitations for
testing based on data parts: reduced expressibility and succinctness of conformance
properties, as well as problems to deal with satisfaction of properties including
future conditions.

In this work we present a message-based/data-centric approach for dealing with
these issues. Observations in a trace are in the form of messages. Expected
behavior is defined in a bottom-up fashion, starting from expected criteria that
must be fulfilled by one or more messages, defined as constraints between the
message data fields. Temporal relations by quantification over the criteria, e.g. a
property may require that certain criteria “must be held for all messages in the
trace”. OQur approach allows to express formulas about the future and past of the
trace, allowing to define more general criteria than through control parts alone.
Issues related to satisfaction of properties and declaration of conformance verdicts
are also discussed here. Although observation of a behavior defined as a property
is indication of conformance, lack of observation is not necessarily indicative of a
fault. Several solutions to this issue have been proposed and implemented in this
work.

Finally, our work presents interesting perspectives, in terms of extensibility for
online detection or improved expressiveness, but also since a message-based
approach provides an alternative view to traditional testing techniques.

Keywords: Testing, conformance, passive, data, IMS, protocols, services




