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���������	
�	��	�������

���������� 	��
������

�����������	��	�	


�����	
����������	

���

�������������

���������	
������� ���������� ������ ���

������������� ���������� ������ ���

�������������������� �!� 
��� "����
���� ��� �� ������ ���	
���

#�$%���&%�������" 
��� "����
���� ��� �� ������ ���	
���

������'��!�� ���������� ������ ���

������'������" 
��� "����
���� ��� �� ������ ���	
���

'���������()��
 ���������� ������ ���

'�*�����+� ! 
��� "����
���� ��� �� ������ ���	
���

,�������������"�� ���������� ������ ���

�������
�����

%��������-.�� �/"���
�� ���)��� �� ������� ���

��������������

(�����0��1�+����� �����������)�)��"� ����	�	 ���

,��������)� ���������� ����	�	 ���

���������������

��%��������+����� �/"���
�� ���)��� �� ��� ���

*����������������� �����������)�)��"� ��� ���

*������*�"��� ���������� ��� ���

*�����'����!��	�"� ���������� ��� ���

*��''�����*���
 ���������� ��� ���

*�'-�������� �/"���
�� ���)��� �� ��� ���

������	
�!�*!�2 �/"���
�� ���)��� �� ��� ���

������	���

������0������')3�!4�� ���������� ��� ���

������������+����� �/"���
�� ���)��� �� ��� ���

(���������)
)�� ���������� ��� ���

(�(�������!�� �/"���
�� ���)��� �� ��� ���

(����(��'�*� ��! 
��� "����
���� ��� �� ��� ���	
���

(��0�-�*� ��! 
��� "����
���� ��� �� ��� ���	
���

(������(���.�4.� 
��� "����
���� ��� �� ��� ���	
���

%�����(���(�5 
��� "����
���� ��� �� ��� ���	
���

#��6��-#�'"���!� 
��� "����
���� ��� �� ��� ���	
���

���������7.���  ��3)�
���� ��� �� ��� ���	
���

�8��������� ���������� ��� ���

+%�����(��������*3!� ���������� ��� ���

�����%�-.�� ���������� ��� ���

'�����(����'�(��!!���  ��3)�
���� ��� �� ��� ���	
���

'��''��������"�� 
��� "����
���� ��� �� ��� ���	
���

 !�"������
���������#��!$!"����%��!�!���������&'��&'������
��"��%�$(�&�$��	��"��$����� )��



'����-���0��!��� 
��� "����
���� ��� �� ��� ���	
���

���0-�� 9��� 
��� "����
���� ��� �� ��� ���	
���

,�#����,���%�+����� 
��� "����
���� ��� �� ��� ���	
���

������� ��*

�%��������3 ���������� ����	 ���

0�,�0����"��
 ���������� ����	 ���

����� ������

�����-������"���� ���������� ���� ���

�����(��������+����� 
��� "����
���� ��� �� ���� ���	
���

������������+��!���� 
��� "����
���� ��� �� ���� ���	
���

��(�-������"����  ��3)�
���� ��� �� ���� ���	
���

��*�����!�
� 
��� "����
���� ��� �� ���� ���	
���

���������+��!���� 
��� "����
���� ��� �� ���� ���	
���

�%�*+��''������!�
� �����������)�)��"� ���� ���

��*����������3���.�4.�� �����������)�)��"� ���� ���

������0�+� ! 
��� "����
���� ��� �� ���� ���	
���

(�����0�*�������� 2 ���������� ���� ���

(�0����0��	��� 
��� "����
���� ��� �� ���� ���	
���

(���#%�,'#��*�2��! ���������� ���� ���

%���-�0���! 
��� "����
���� ��� �� ���� ���	
���

����0���0���� ���������� ���� ���

��,��0���! ���������� ���� ���

������������"������  ��3)��
���� ��� �� ���� ���	
���

����������� �� ���������� ���� ���

+��#��'��� ��
 ���������� ���� ���

��(���*� ��! ���������� ���� ���

'�������!�� ���������� ���� ���

'%������3 
��� "����
���� ��� �� ���� ���	
���

'�*���'�'��3�  ��3)�
���� ��� �� ���� ���	
���

������������	�!!� �/"���
�� ���)��� �� ���� ���

����� �+���,

����-����'")���� ���������� ��	 ���

��*���������
 ���������� ��	 ���

��1������������
 �/"���
�� ���)��� �� ��	 ���

0���'����!�:�
�� �/"���
�� ���)��� �� ��	 ���

���,�-�'��3���
  ��3)�
���� ��� �� ��	 ���	
���

(���(�'�����*��� �����������)�)��"� ��	 ���

(����������5�"�!!�  ��3)�
���� ��� �� ��	 ���	
���

%�����0�����9�� ��" ��	 ���

��%�%���*����
 ���������� ��	 ���

����1��������� ���������� ��	 ���

��,��0��5�� ��3)������
���� ��� �� ��	 ���

#�+'��+��!���� 
��� "����
���� ��� �� ��	 ���	
���

��������!�� 
��� "����
���� ��� �� ��	 ���	
���

������������� 
��� "����
���� ��� �� ��	 ���	
���

*����������*� ��! ���������� ��	 ���

*��%�������� 
��� "����
���� ��� �� ��	 ���	
���

*���-���0���� ���������� ��	 ���

+����������0�����;! �/"���
�� ���)��� �� ��	 ���

'��,���*� ��!!� �/"���
�� ���)��� �� ��	 ���

'�0������������� ���������� ��	 ���

'���������� 9��� ���������� ��	 ���

'���*'0�������(�5 ���������� ��	 ���



�%��,������	�� � ���������� ��	 ���

���%��7�0���! ���������� ��	 ���

,�����'���� �/"���
�� ���)��� �� ��	 ���

����� �����-

��"!�%
����� ��





Acknowledgments

I would firstly like to express my sincere gratefulness to my supervisors Prof. Bernard Troclet
and Prof. Mohamed Ichchou. It is thanks to them that I spent three particularly constructive as
well as enjoyable years completing this work. Our productive discussions and their guidances at a
professional as well as at a personal level will always be in my mind.

A particular acknowledgement has to be made to all of my colleagues at EADS Astrium and
the Ecole Centrale de Lyon, for the particularly useful discussions and the pleasant moments we
spent together during all these years.

It should not be forgotten that the funding of this work was fully supported by the European
Commission FP7 Marie Curie ITN project under the name MID-FREQUENCY. A great thank
you is addressed to the coordinators of the project, as well as the academic and the industrial
participants which with their essential experience and expertise contributed significantly to the
professional and research education of the young researchers. I would like to express my gratitude
to the European Commission for this multidisciplinary experience and my hope that many more
young researchers will have a similar opportunity in the future.

Last but not least, I would like to express my thankfulness to my parents and all of my friends,
who stood by me throughout these years, throughout all the bad and the good times.

iii



Preface - Industrial context

Launch vehicles are subject to a variety of aeroacoustic excitations, especially during lift-off and
the first stages of their mission. These solicitations can particularly endanger parts that have
their fist resonance modes within the excitation frequency bands, with the most important of them
being the electronic equipment of the spacecraft and the payload. In order for the success of the
mission not to be endangered, accurate and time efficient models for the vibroacoustic behaviour
prediction of the spacecraft structures have to be available for a broadband frequency range.

This work was conducted in cooperation with EADS Astrium Space Transportation. EADS
Astrium, responsible for a variety of parts integrated on the Ariane 5 launch vehicle has con-
ducted a series of research projects on the vibroacoustic of aerospace structures since many years.
In [Hiverniau, 2006], an SEA-like approach for the prediction of the dynamic behaviour of an en-
semble of structures subject to realistic aerodynamic loads was proposed. Extending this work,
in [de Rochambeau, 2010] the SEA-like approach was extended to coupled structural-acoustic
systems based on analytic expressions of their modal data.

The methods typically used within EADS Astrium for the research, design and homologation
of spacecraft structures and the payload are principally conventional deterministic methods for
the low frequency range. For the prediction in the high frequency domain, an SEA software
named SEALASCAR was recently developped in the Mureaux site. This software actually includes
classical analytical models for the description of the energy characteristics of composite structures,
which cannot always reflect with accuracy their vibrational behaviour. The work included in this
thesis, is entirely oriented towards extending the SEALASCAR software or being implemented in
a new mid-frequency software of EADS Astrium.

Part of the work presented in this thesis can be found in relevant publications. The reader is
prompted to:

- The peer reviewed publications: [Chronopoulos et al., 2012f], [Chronopoulos et al., 2012e]
and [Chronopoulos et al., 2012d]

- The international conference proceedings: [Chronopoulos et al., 2012a], [Chronopoulos et al.,
2012c], [Chronopoulos et al., 2011b] and [Chronopoulos et al., 2012b]

- The national conference proceedings: [Chronopoulos et al., 2011a].
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Abstract

During its mission, a launch vehicle is subject to broadband, severe, aeroacoustic and structure-
borne excitations of various provenances, which can endanger the survivability of the payload and
the vehicles electronic equipment, and consequently the success of the mission. Aerospace struc-
tures are generally characterized by the use of exotic composite materials of various configurations
and thicknesses, as well as by their extensively complex geometries and connections between dif-
ferent subsystems. It is therefore of crucial importance for the modern aerospace industry, the de-
velopment of analytical and numerical tools that can accurately predict the vibroacoustic response
of large, composite structures of various geometries and subject to a combination of aeroacoustic
excitations.

Recently, a lot of research has been conducted on the modelling of wave propagation charac-
teristics within composite structures. In this study, the Wave Finite Element Method (WFEM)
is used in order to predict the wave dispersion characteristics within orthotropic composite struc-
tures of various geometries, namely flat panels, singly curved panels, doubly curved panels and
cylindrical shells. These characteristics are initially used for predicting the modal density and the
coupling loss factor of the structures connected to the acoustic medium. Subsequently the broad-
band Transmission Loss (TL) of the modelled structures within a Statistical Energy Analysis (SEA)
wave-context approach is calculated.

Mainly due to the extensive geometric complexity of structures, the use of Finite Element
(FE) modelling within the aerospace industry is frequently inevitable. The use of such models
is limited mainly because of the large computation time demanded even for calculations in the
low frequency range. During the last years, a lot of researchers focus on the model reduction of
large FE models, in order to make their application feasible. In this study, the Second Order
ARnoldi (SOAR) reduction approach is adopted, in order to minimize the computation time for a
fully coupled composite structural-acoustic system, while at the same time retaining a satisfactory
accuracy of the prediction in a broadband sense. The system is modelled under various aeroacoustic
excitations, namely a diffused acoustic field and a Turbulent Boundary Layer (TBL) excitation.

Experimental validation of the developed tools is conducted on a set of orthotropic sandwich
composite structures. Initially, the wave propagation characteristics of a flat panel are measured
and the experimental results are compared to the WFEM predictions. The later are used in order
to formulate an Equivalent Single Layer (ESL) approach for the modelling of the spatial response
of the panel within a dynamic stiffness matrix approach. The effect of the temperature of the
structure as well as of the acoustic medium on the vibroacoustic response of the system is exam-
ined and analyzed. Subsequently, a model of the SYLDA structure, also made of an orthotropic
sandwich material, is tested mainly in order to investigate the coupling nature between its various
subsystems. The developed ESL modelling is used for an efficient calculation of the response of
the structure in the lower frequency range, while for higher frequencies a hybrid WFEM/FEM
formulation for modelling discontinuous structures is used.
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Resumé

Pendant sa mission, un lanceur est soumis à des excitations large bande, sévères, aérodynamiques,
de provenances diverses, qui peuvent mettre en danger la survivabilité de la charge utile et de
l’équipement électronique du véhicule, et par conséquent le succès de la mission. Les structures
aérospatiales sont généralement caractérisées par l’utilisation de matériaux composites exotiques
des configurations et des épaisseurs variantes, ainsi que par leurs géométries largement complexes.
Il est donc d’une importance cruciale pour l’industrie aérospatiale moderne, le développement
d’outils analytiques et numériques qui peuvent prédire avec précision la réponse vibroacoustique des
structures larges, composites de différentes géométries et soumis à une combinaison des excitations
aéroacoustiques.

Récemment, un grand nombre de recherches ont été menées sur la modélisation des caractéris-
tiques de propagation des ondes au sein des structures composites. Dans cette étude, la méthode
des éléments finis ondulatoires (WFEM) est utilisée afin de prédire les caractéristiques de disper-
sion des ondes dans des structures composites orthotropes de géométries variables, nommément
des plaques plates, des panneaux simplement courbés, des panneaux doublement courbés et des
coques cylindriques. Ces caractéristiques sont initialement utilisées pour prédire la densité modale
et le facteur de perte par couplage des structures connectées au milieu acoustique. Par la suite,
la perte de transmission (TL) à large bande des structures modélisées dans le cadre dune analyse
statistique énergétique (SEA) dans un contexte ondulatoire est calculée.

Principalement en raison de la complexité géométrique importante de structures, l’utilisation
des éléments finis (FE) au sein de l’industrie aérospatiale est souvent inévitable. L’utilisation de
ces modèles est limitée principalement à cause du temps de calcul exigé, même pour les calculs
dans la bande basses fréquences. Au cours des dernières années, beaucoup de chercheurs travaillent
sur la réduction de modèles FE, afin de rendre leur application possible pour des systèmes larges.
Dans cette étude, lapproche de SOAR est adoptée, afin de minimiser le temps de calcul pour
un système couplé de type structurel-acoustique, tout en conservant une précision satisfaisante
de la prédiction dans un sens large bande. Le système est modélisé sous diverses excitations
aéroacoustiques, nommément un champ acoustique diffus et une couche limite turbulente (TBL).

La validation expérimentale des outils développés est réalisée sur un ensemble de structures
sandwich composites orthotropes. Ces derniers sont utilisés afin de formuler une approche couche
équivalente unique (ESL) pour la modélisation de la réponse spatiale du panneau dans le contexte
dune approche de matrice de raideur dynamique. L’effet de la température de la structure ainsi
que du milieu acoustique sur la réponse du système vibroacoustique est examiné et analysé. Par
la suite, un modèle de la structure SYLDA, également fait d’un matériau sandwich orthotrope,
est testé principalement dans le but d’enquêter sur la nature de couplage entre ses divers sous-
systèmes. La modélisation ESL précédemment développée est utilisé pour un calcul efficace de
la réponse de la structure dans la gamme des basses et moyennes fréquences, tandis que pour
des fréquences plus élevées, une hybridisation WFEM / FEM pour la modélisation des structures
discontinues est utilisé.

vi



Contents

Acknowledgments iii

Preface - Industrial context iv

Abstract v

Resumé vi
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Introduction

Scientific context

The research conducted in this work was aimed to extend the precedent work developed by the
researchers of EADS Astrium and can be related to three main axes:

i) The peculiarities of composite structures and shell geometries: The vast majority of parts
used on the Ariane 5 spacecraft are made of thick composite materials and have a great variety
of geometries ranging from flat panels to curved, cylindrical and conical shells. Consequently,
analytical modal and wave dispersion data are rarely available for such complicated structures,
which makes the use of costly FE modelling inevitable. Therefore, efficient models that can take
into account for the complex modelling of these materials and geometries are needed.

ii) A broadband frequency range modelling: In the low frequency range an FE modelling is
typically used in order to model the dynamic behaviour of the structure. However as frequency
increases, this approach quickly becomes extensively costly in terms of time and computational
effort, especially for large aerospace structures. The application of FE modelling is also limited
by pollution errors which also increase very fast with respect to frequency. Efficient models are
therefore needed for reducing the duration and the intensity of the calculations. On the other side,
in the high frequency range, when the variability of the response diminishes and the modal overlap
is high, the SEA is used for predicting the average. However accurate modelling of composite
structures having various geometries using the SEA is still under question and has to be examined.
There is a category of systems, for which the FE and the SEA applicability ranges do not overlap.
These systems present what is called as a mid-frequency range. It is therefore necessary to satisfy
the predictions in this range, either by creating new models, or by extending the already developed
ones.

iii) The modelling of aeroacoustic excitations: As aforementioned, a large variety of aeroacoustic
excitations is applied on the upper part of launch vehicles. These can include a diffused sound
field, a TBL noise, or a jet noise field. These types of excitation have to be taken into account.
The previous researchers of EADS Astrium proposed an approach for including these excitations
within FE, SEA and SEA-like models by using their equivalent coherence functions.

Outline of the thesis

In the first chapter, the results of the conducted literature survey are presented. The survey con-
cerns the presentation of the existing approaches on the calculation of modal and wave propagation
data in composite structures and for various geometries, on the modelling of the vibroacoustic be-
haviour of systems in a broadband frequency range, on the modelling of aerodynamic excitations
and other aspects that will be helpful for the rest of the thesis.
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In the second chapter of the thesis, the application of the WFEM for the modelling of flat
composite panels in a broadband frequency range is presented. The results are used as an input to
an SEA model. The calculation of the modal density, the radiation efficiency and eventually the
TL of the structures is exhibited. Moreover, experimental results are presented for the mechanical
characteristics and the dynamic behaviour of a sandwich panel with respect to temperature. The
impact of the temperature factor on the vibroacoustic behaviour of the structure is subsequently
examined.

In the third chapter the WFEM results for a sandwich structure are used in order to update
a classical plate theory, resulting in an ESL modelling of the sandwich structure, through a dy-
namic stiffness approach. The wave dispersion characteristics of the structure are experimentally
measured using the IWC method and are compared to the WFEM results. The application of the
presented method in a cylindrical sandwich shell is also presented.

In the fourth chapter, the WFEM is applied to composite structures of curved geometries, such
as singly curved shells, doubly curved shells and cylindrical shells. In a similar manner as done in
the second chapter, the TL of the structures under a diffused acoustic excitation is calculated in
an SEA wave-context, and is compared to experimental results.

In the fifth chapter of the thesis the SOAR method is used in order to reduce a fully coupled
structural acoustic system in the low and medium frequency range under a variety of aeroacoustic
excitations. The system can be of arbitrary geometry and mechanical properties and a stiffened
double panel structure is also modelled. The results in terms of time efficiency and accuracy of
the reduced model are presented.

In the sixth chapter an industrial validation case is presented. A model of the SYLDA struc-
ture comprising two conical and one cylindrical part is presented. The structure is made of an
orthotropic sandwich material. Experimental analysis is conducted on the composite shell using
point excitation shakers. For the numerical modelling, the ESL approach introduced in the third
chapter is used in the low frequency range. In the higher frequency domain, a WFEM/FEM
approach is exhibited, with the WFEM calculated wave propagation characteristics of the sub-
structures being coupled to a FE model of the connecting structure.

Finally in the seventh chapter the main conclusions of the presented work, as well as some
ideas on possible prospective work are presented.
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1.1 Introduction

The modelling of the vibroacoustic behaviour of aerospace composite structures presents a variety
of peculiarities. In the low frequency range classical deterministic approaches such as the Finite
Element (FE) or the Boundary Element (BE) method are used for modelling the system. The
main advantage of such methods is their ability to accurately predict the response of complex
systems having arbitrary geometrical and/or mechanical characteristics. However at higher fre-
quency ranges where the vibrational wavelength becomes smaller, deterministic methods become
computationally unaffordable and their interpolation and pollution errors affect the accuracy of the
solution. A first challenge is therefore the development of new approaches which will extend the
applicability of deterministic techniques to higher frequencies while maintaining their advantages.
This mainly involves the use of reduction methods to retain the computational effort to realistic
levels. The modelling of wave propagation characteristics within these composite structures of
various geometries can offer a key to decode their vibrational behaviour.

On the other hand, in the high frequency range Statistical Energy Analysis (SEA) is the
method typically used. However, taking into account for the peculiar characteristics of layered
structures and their geometries as well as for the correlated aeroacoustic excitations applied on a
launch vehicle within SEA is not always straightforward. It is again shown that calculating the
SEA subsystem characteristics within a wave context can provide an interesting approach for an
accurate modelling of the system and for extending the SEA method towards lower frequencies.

Throughout the rest of this chapter the results of a bibliographic survey are exhibited. The
survey is based on three main axes:

• The modelling of wave propagation in layered structures.

• The modelling of the vibroacoustic behaviour of a structural acoustic system at frequencies
where FEM is inefficient.

• The aeroacoustic excitations applied on a launch vehicle.

1.2 Wave dispersion in composite structures

1.2.1 Introduction

In this section the most important approaches on modelling the wave propagation in laminated
composite panels will be summarised. It should be noted that during the last century there has
been a significant amount of conducted research on the topic. Various ’exact’ and approximate
approaches have been developped for modelling the wave dispersion characteristics in the low
as well as in the higher frequency ranges, for homogeneous, as well as for stratified structures.
Citing and presenting all of these techniques is a particularly intensive task and beyond of the
scope of this work. The most important and widely used methods will therefore be summarised.
In sec.1.2.2 analytical laminated plate theories are presented, followed by an also analytical thin
layer approach. Subsequently, in sec.1.2.4 and 1.2.5 more recently developed semi-analytical and
numerical techniques are reviewed.
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1.2.2 Laminated plate theories

1.2.2.1 Introduction

Towards the end of the 19th century, the work of Kirchhoff and Love, concluded in developping an
elementary theory for the prediction of the dynamic behaviour of an isotropic plate. This approach,
similar to the Euler-Bernoulli hypotheses for beams is limited in terms of frequency applicability
because of its assumptions and can solely predict the principal transverse and longitudinal dis-
placements in the low frequency range.

In 1917, Lamb suggested an exact theory for isotropic plates based on the study conducted in
1887 by Lord Rayleigh on surface waves (see [Graff, 1991]). The author analyzed guided waves
(P, SV and SH) in a doubly bounded structural medium, that is to say a plate. To build his
theory, Lamb used elastodynamic equations by imposing on the width of the plate a plane strain
assumption and a hypothesis on the stress field to take into account for the free surfaces of the plate.
From the proposed theory, it is observed that there exists an infinite number of waves that can be
distinguished according to the distribution of their displacement fields in the thickness direction
of the plate. The author distinguishes between longitudinal and transverse waves which have a
displacement field symmetrically and antisymmetrically parallel to the direction of propagation.
Moreover, there are also shear waves whose displacement field is perpendicular to the direction of
propagation. To reflect the fact that there are several waves of the same type, the notations Sn,
An and SHn are used which denote respectively the longitudinal, transverse and shear waves. It is
also noted that there exist primary and secondary waves. They can be identified simply through
the notation system with the principal waves corresponding to waves for which the parameter n is
zero.

After 1950, the researchers again tried to develop approximate theories in order to analyze the
propagation of waves in plates. To do this, the general approach of Mindlin based on an approx-
imation of the displacement field in Taylor series was successfully applied to isotropic plates. A
first-order theory proposed in [Mindlin, 1951] was used to characterize high frequency transverse
waves. Similarly, the authors in [Mindlin and Medick, 1959] developped a second-order theory to
study Sn wave propagation. Compared to the Classical Plate Theory (CPT), it is observed that
for the A0 wave, the asymptotic value of the phase velocity is now finite and that the dispersion
of the S0 wave is now taken into account. Finally, it is noted that both theories account for sec-
ondary waves and two correction coefficients are introduced so that the predictions asymptotically
approach the experimental values.

With respect to plates consisting of a laminated composite material, the first suggested ap-
proaches were essentially extensions of previous theories. It is noted as an example the Classical
Laminate Plate Theory (CLPT) in [Stavsky, 1961] which reconsiders the basic assumptions of the
Kirchhoff-Love theory and the First order Shear Deformation theory (FSDT) by [Whitney and
Pagano, 1970] which is an extension of the first-order theory proposed by [Mindlin, 1951] to study
the transverse waves. For each of these approximate theories, the composite laminate is completely
homogenized and that is the reason for which they are often referred to as Equivalent Single Layer
(ESL) theories. In this class of theories, there is also the Effective Modulus Theory introduced
in [Sun and Liao, 1990] and whose predictions were compared with the exact theory in [Sun et al.,
1996].

During the last thirty years, significant improvements were made to approximate theories so
that they can more accurately predict the dynamic response in the thickness sense of a panel, that
is to say the field distribution of stress, strain and displacement. As a first example the theo-
ries based on a Reissner-Heillinger type formulation are cited, such as the theory of [Muller and
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Figure 1.1: Schematical representation of the considered forces and moments according to the CLPT

Touratier, 1995]. These theories predict correctly the wave dispersion while avoiding the introduc-
tion of correction coefficients, as is the case for the FSDT. In addition, a second class of theories
referred to as Layer-Wise (LW), eliminated the assumption of homogeneity and consider each
layer independently [Reddy, 2004]. Unfortunately, these theories can, for certain stratifications, be
very computationally intensive because the number of degrees of freedom needed, depends on the
number of layers in contrast to ESL theories. To get an idea of the improvements introduced by
these new theories, one can refer to the work exhibited in [Carrera, 2000], which shows that the
global predictions (eigenmodes) as well as the local ones (field distribution of strain and stress in
the thickness direction) are better predicted than by ESL theories such as the CLPT or FSDT.
Finally, it is important to mention the exact theory developed by [Nayfeh, 1995] for layered struc-
tures, which generally adopts the same approach as Lamb, that is to say the reflection of waves in
a medium bounded by several planes.

It is noted that each time, the appropriate theory has to be chosen in order to efficiently
compromise between accuracy and computational effort.

1.2.2.2 The CLPT

The Classical Laminate Plate Theory (CLPT) presented in [Stavsky, 1961] is analogous to the
Kirchhoff-Love theory, developed for isotropic plates, based on the assumptions used in conven-
tional mechanics of materials, namely:

• The thickness h is small compared to the length and the width of the plate.

• The displacement along the thickness is assumed linear.

• The cross section perpendicular to the mid-plane of the plate remains perpendicular after
deformation.

To account for these assumptions, the displacement field is formulated as follows:

u(x, y, z, t) = u0(x, y, t) − z
ϑw0

ϑx

v(x, y, z, t) = v0(x, y, t) − z
ϑw0

ϑy

w(x, y, z, t) = w0(x, y, t)

(1.1)
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with u0,v0,w0 the displacements of the mid-plane of the plate.

From the above displacement field, the strain field can be deduced. The linear theory of
elasticity is therefore used, resulting in:
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(1.2)

with: ǫ0
xx,ǫ

0
yy,γ

0
xy the membrane deformations and κx, κy, κxy standing for the curvatures. From

the expressions of eq.(1.2), it is observed that the transverse shear strains γxz, γyz are neglected in
the CLPT. Then the variational expressions of the kinetic and the potential energies of the plate
are written as:

δU =
∫

v(σxxδǫxx + σyyδǫyy + σxyδγxy)dv

δT =
∫

v ρ(u̇δu̇ + v̇δv̇ + ẇδẇ)dv
(1.3)

By integrating in the sense of thickness the expressions (1.3), we obtain:

δU =
∫

s

((

ϑNxx

ϑx
+

ϑNxy

ϑy

)

δu0 +

(

ϑNxy

ϑx
+

ϑNyy

ϑy

)

δv0 +

(

ϑ2Mxx

ϑx2
+ 2

ϑ2Mxy

ϑxϑy
+

ϑ2Myy

ϑy2

)

δw0

)

dS

δT =
∫

s ρs(ü0δu0 + v̈0δv0 + ẅ0δw0)dS
(1.4)

with: Nij the resulting membrane forces, Mij the bending moments and ρs the surface density
defined as:
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zdz

ρs =
n
∑

k=1

∫ hk

hk−1

ρkdz

(1.5)

where: h is the total thickness of the plate and n the total number of layers of a stratified
structure (see fig.1.2). From the energy expressions (1.4), the equations of motion of the plate
are determined via the Hamiltons principle. In the absence of external forces, these equations are
expressed as:
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Figure 1.2: Layer stacking within a stratified panel

δu0 :
ϑNxx

ϑx
+

ϑNxy

ϑy
= ρs

ϑ2u0

ϑt2
,

δv0 :
ϑNxy

ϑx
+

ϑNyy

ϑy
= ρs

ϑ2v0

ϑt2
,

δw0 :
ϑ2Mxx

ϑx2
+ 2

ϑ2Mxy

ϑxϑy
+

ϑ2Myy

ϑy2
= ρs

ϑ2w0

ϑt2

(1.6)

The equations (1.6) depend on the forces Nij and the moments Mij . However, performing a
dispersion analysis based on these equations means that they have to be expressed only in terms
of the displacements u0,v0,w0. For this reason, the expression of the forces and the moments as
a function of the panel’s displacements have to be introduced into eq.(1.5). Beginning with the
laminar stress-strain relations:
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(1.7)

and introducing eq.(1.7) into eq.(1.5) we get the desired expressions of the forces and moments
as a function of the displacements and the so called ABD matrix written as:
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(1.8)

with A the membrane stiffness matrix, B the flexural/membrane coupling matrix and D the
flexural stiffness matrix. The stiffness coefficients contained in the A,B,D matrices are related to
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the stress-strain coefficients of eq.(1.7) through the relations:

Aij =
n
∑

k=1

(hk − hk−1)(Qij)k

Bij =
1

2

n
∑

k=1

(h2
k − h2

k−1)(Qij)k

Dij =
1

3

n
∑

k=1

(h3
k − h3

k−1)(Qij)k

(1.9)

It is now possible to study the scattering of waves by assuming the displacement field as a
harmonic plane wave as follows:







u0

v0

w0







=







U
V
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eik(cos(θ)+sin(θ))~re−iωt (1.10)

By introducing the expression (1.10) in the equations of motion, a third order system is deduced
whose determinant is equal to:

∣

∣

∣

∣

∣

∣

α1k
2 + α2 α3k

2 α4k
3

α3k
2 α5k

2 + α2 α6k
3

α4k
3 α6k

3 α7k
4 − α2

∣

∣

∣

∣

∣

∣

= 0 (1.11)

Finally, we calculate the characteristic polynomial of the determinant to obtain the desired
dispersion relation. This relationship is expressed as:

(α1α5α7 − α1α
2
6 − α2

3α7 + 2α3α4α6 − α2
4α5)k

8

+(α2α5α7 + α1α2α7 − α2α
2
6 − α2

4α2)k
6

+(α2
2α7 + α2

3α2 − α1α5α2)k
4 − (α5α

2
2 + α1α

2
2)k

2 − α3
2 = 0

(1.12)

with

α1 = A11(icosθ)2 + 2A16(icosθ)(isinθ) + A66(isinθ)2

α2 = −ρs(−iω)2

α3 = A16(icosθ)2 + (A12 + A66)(icosθ)(isinθ) + A26(isinθ)2

α4 = −B11(icosθ)3 − 3B16(icosθ)2(isinθ) − (B12 + 2B66)(icosθ)(isinθ)2 − B26(isinθ)3

α5 = A66(icosθ)2 + 2A26(icosθ)(isinθ) + A22(isinθ)2

α6 = −B16(icosθ)3 − 3B26(icosθ)(isinθ)2 − (B12 + 2B66)(icosθ)2(isinθ) − B22(isinθ)3

α7 = D11(icosθ)4 + 4D16(icosθ)3(isinθ)
+2(D12 + 2D66)(icosθ)2(isinθ)2 + 4D26(icosθ)(isinθ)3 + D22(isinθ)4

(1.13)

The solutions of the relation (1.13) are eight in number and correspond to wavenumbers ki

associated with the principal waves S0, A0, SH0 and the secondary wave A1. In general, the
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expressions of wavenumbers are complex because they reflect a variety of coupling effects existing
within a laminated composite plate. However, as an illustration example we consider a laminated
plate whose stacking sequence is symmetrical about the mid-plane of the plate, which will let us
ignore the flexural/membrane coupling effect. Moreover for the Sn and SHn waves, the expression
of wavenumbers can become complicated depending on the direction of propagation. Indeed,
according to [Prosser and Gorman, 1994], for Sn waves, the displacement field is purely longitudinal
when the wave propagates along the axes of orthotropy of the material while in other directions
the displacement field is quasi-longitudinal, that is to say mainly longitudinal with a transverse
component. For SHn waves, the properties are identical, except this time the displacement field is
purely transverse to the axes of orthotropy and quasi-transverse everywhere else. Considering that
0o is the axis of orthotropy of the material, then the wavenumbers associated with the different
waves S0, A0, SH0 in this direction are expressed as follows:

c1 =

√

A11

ρs

c2 =

√

A22

ρs

c3 =

√

√

D11

ρs
ω

(1.14)

1.2.2.3 FSDT

The CLPT theory is mainly used for the prediction of wave dispersion characteristics of thin plates
and within the low frequency range. Another theory has to be utilized when someone needs to
characterize the principal and secondary waves at higher frequencies. For this reason the FSDT
proposed in [Whitney and Pagano, 1970] can be used, that reviews the assumption of the CLPT
taking account of deformations associated with transverse shear and the rotational inertia of the
cross section. Because of the new assumptions, the displacement field must be reformulated as
follows:

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t)

w(x, y, z, t) = w0(x, y, t)

(1.15)

As it can be seen, the displacement field now depends on five degrees of freedom. The two
new degrees of freedom φx, φy correspond to the rotations along the axes Ox and Oy. From the
displacement field in (1.15) and using linear elasticity theory, the new strain field of the plate is
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calculated as follows:
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(1.16)

From eq.(1.16), it is observed that, now strains γxz, γyz related to transverse shear deformation
are taken into account by the FSDT. Subsequently, we can calculate the variational expressions of
the kinetic and the potential energies as follows:

δU =
∫

v (σxxδǫxx + σyyδǫyy + σxyδγxy + σyzδγyz + σxzδγxz) dv

δT =
∫

v ρ(u̇δu̇ + v̇δv̇ + ẇδẇ)dv
(1.17)

and by integrating in the sense of thickness we have:

δU =
∫

s

((

ϑNxx

ϑx
+

ϑNxy

ϑy

)

δu0 +

(

ϑNxy

ϑx
+

ϑNyy

ϑy

)

δv0 +

(

ϑQx

ϑx
+

ϑQy

ϑy

)

δw0

+

(

ϑMxx

ϑx
+

ϑMxy

ϑx
− Qx

)

δφx +

(

ϑMxy

ϑx
+

ϑMyy

ϑy
− Qy

)

δφydS

δT =
∫

s((ρsü0 + J1φ̈x)δu0 + (ρsv̈0 + J1φ̈y)δv0

+(J1ü0 + J2φ̈x)δφx + (J1v̈0 + J2φ̈y)δφy + ρsẅ0δw0)dS

(1.18)

with: Qx, Qy the forces associated to shear deformations and J1, J2 the first and second
moments of inertia respectively defined as:

{

Qx

Qy

}

=
n
∑

k=1

∫ hk

hk−1

{

σxz

σyz

}

k

dz

{

J1

J2

}

=
n
∑

k=1

∫ hk

hk−1

{

z
z2

}

ρkdz

(1.19)

To determine the equations of motion, the Hamiltons principle is applied. In the absence of
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external forces, eq.(1.19) takes the following form:

δu0 :
ϑNxx

ϑx
+

ϑNxy

ϑy
= ρsü0 + J1φ̈x,

δv0 :
ϑNxy

ϑx
+

ϑNyy

ϑy
= ρsv̈0 + J1φ̈y,

δw0 :
ϑQx

ϑx
+

ϑQy

ϑy
= ρsẅ0,

δφx :
ϑMxx

ϑx
+

ϑMxy

ϑy
− Qx = J1ü0 + J2φ̈x,

δφy :
ϑMyy

ϑy
+

ϑMxy

ϑx
− Qy = J1v̈0 + J2φ̈y

(1.20)

The solution of the system is very similar to the one of the CLPT case, the major difference
being that this time the system leads to a fifth order determinant, resulting in a solution set of S0,
A0, SH0 waves as with the CLPT, plus two secondary waves A1, SH1. The analytical expression
of the plate wavenumbers involves a large algebraic effort and the presentation of the system’s
solution is outside the scope of this thesis.

1.2.2.4 Higher order theories

When a thick layered panel, with its layers having significantly different mechanical characteristics
is to be modelled, FSDT may result in erroneous predictions, especially in the higher frequency
range. Sandwich panels comprising stiff facesheets and a softer compressible core is a typical
example. For these cases, Higher Shear Order Deformation (HSDT) theories were developed by
adding higher order terms to account for the shear deformation within the panel. Description and
application of such HSDT approaches can be found in [Reddy, 1997,Meunier and Shenoi, 2001].

In [Frostig and Thomsen, 2004], the Higher-Order Sandwich Panel Theory (HSAPT) was de-
rived to model the behaviour of sandwich plates with a flexible core based on the assumption of a
nonlinear through-the-thickness displacement field of the core in both longitudinal and vertical di-
rections. The corresponding acceleration field in the core is however assumed to vary linearly with
height, a fact that introduces inconsistency in the formulation. To overcome this disadvantage,
in [Sokolinsky and Nutt, 2004,Wang et al., 2008] a consistent higher-order theory was proposed
for modelling the free vibration of beams and plates having a compressible core. This approach
was also used in [Wang et al., 2010] to model the vibroacoustic behaviour of flat plates in an SEA
approach.

1.2.2.5 Shell structures

A summary of the general form of the strain displacement equations, the stress strain equations
and the equations of motion for layered shell structures is given in [Leissa, 1969,Soedel, 1993,Qatu,
2004]. The analogous of both the Kirchhoff-Love and the Mindlin type theories (usually named
after Donnell-Mushtari and Flügge respectively) are presented.

In their general form the strain displacement relations contain shape dependent coefficients,
also referred as the Lamé coefficients. The general fundamental form of a shell of revolution is
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written as in [Qatu, 2004]:

(ds)2 = (Radφ)2 + sin2(φ)(Rbdθ) (1.21)

with Ra and Rb the curvatures of the shell in the directions φ and theta respectively. The
Lamé coefficients as well as the specific fundamental forms for various shell geometries are also
given in [Soedel, 1993,Qatu, 2004].

The extraction of the wave propagation characteristics of shell structures from their equations
of motion is analogous to the process followed for the flat panels, however forming the wavenumber
determinant and solving for the possible wavenumbers propagating within the shell is usually a
much more complicated process. Rationally accurate approximations of the Flügge equations of
motion for cylindrical shells have been given in [Karczub, 2006]. Other works that have studied
the problem of wave propagation in composite cylindrical shells using the exact threedimensional
elasticity theory include [Armenakas, 1970,Markus and Mead, 1995,Yuan and Hsieh, 1998], however
wave propagation in layered shells of arbitrary geometries is still a subject of intensive research.

1.2.3 Discrete laminate approach

Introduced in [Lysmer, 1970] and usually referred to as the Thin Layered Method (TLM) this
approach involves the discretization of the panel in the sense of lamination. The motion within
each sublayer is assumed to be in the form of harmonic wave propagation. The interlaminar
equilibrium is preserved by applying appropriate conditions to each layer. A variational approach
is then generally used to derive the governing equations of the cross section.

In [Ghinet and Atalla, 2006, Ghinet et al., 2005] the authors introduced a discrete laminate
method for the prediction of wave propagation characteristics in flat and singly curved panels.
The core of a sandwich panel as well as the layers of a stratified structure are considered to be
homogeneous and are modelled using a Mindlin type theory. The facesheets of sandwich structures
are considered to be thin and vibrating in a bending motion; therefore a Kirchhoff-Love theory
was used for describing their displacement fields. The interlayer stress continuity relations are
then applied to acquire the dynamic equilibrium relations along each direction of propagation.
Assuming time harmonic wave propagation within the laminate eventually results in a fourth
order polynomial eigenvalue problem, which can either be solved by linearization or numerical
manipulation. In [Ghinet and Atalla, 2011] the same authors developed a similar model of equations
to account for the symmetric vibrational motion of the core within a sandwich panel.

1.2.4 The SAFE method

The Semi-Analytical Finite Element (SAFE) method first appeared in [Dong and Nelson, 1972]
and [Shah and Datta, 1982] under the name ’Ritz extended technique’ or ’Infinite Layer method’.
These relationships have since then been used for the calculation of modes in multilayer plates, in
particular in [Liu et al., 1991]. Then a method derived by the ’Strip Element method’ was developed
in [Liu and Achenbach, 1994] and was also applied to the case of laminate structures. This method
was then renamed to SAFE and has been studied for applications on various structures.

In the SAFE approach, the displacement field is formulated following a decomposition into plane
waves (sinusoidal interpolation functions) in the direction of propagation, and using finite elements
(piecewise polynomial interpolation functions) in the directions perpendicular to propagation one.
Therefore, it can approximate the exact field where the wavelengths are small without having to
use a large amount of elements.
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More precisely if a semi-analytical element i is considered, for which the displacement at a
point P is:

ui(x, y, z, t) = N(y, z)qi(t)e
i(kx−ωt) (1.22)

with N the polynomial interpolation functions matrix, qi the vector of nodal displacements
associated with the element i and k is the wavenumber. Then one proceeds as with the FEM,
that is to say the elastodynamic equations will be transformed in a matrix system. If the external
forces applied to the system are ignored, the obtained system matrix is as follows:

(

K1 − ikK2 + k2K3 − ω2M
)

U = 0 (1.23)

where K1,K2,K3 and M are respectively the global stiffness and mass matrices. The vector U
stands for the displacement of the ensemble of the mesh. Generally, the system is transformed as
follows:

(A − kB) {Q} = 0 (1.24)

with:

A =

[

0 K1 − ω2M
K1 − ω2M −iK2

]

,B =

[

K1 − ω2M 0
0 −K3

]

, {Q} =

[

U
kU

]

(1.25)

The above system can be solved using simple numerical methods since it is an eigenvalue
problem. The solutions of this system allow for the determination of phase velocities (eigenvalues)
and deformations (eigenvectors) of the different waves that can propagate in the x direction. The
number of these waves depends directly on the number of elements used for meshing the system.
The numerical model can therefore be adapted, based on the expected number of waves propagating
in the structure for the studied frequency bands.

1.2.5 The 2D WFEM method

As aforementioned, in the SAFE method, the displacement field is formulated using sinusoidal
functions in the direction of propagation. Furthermore it is necessary to develop semi-analytical
elements, which greatly limits its use. A numerical method will be presented hereby, the Wave
Finite Element Method (WFEM) which attempts to overcome these limitations by combining the
Periodic Structural Theory (PST) introduced in [Mead, 1973] to the FEM.

1.2.5.1 Formulation of the problem

A rectangular composite panel is considered hereby (see fig.1.3) with Lx, Ly its dimensions and h
its thickness. A periodic segment of the panel with dimensions dx and dy (see fig.1.4) is modelled
using FE.

Initially, the mass and stiffness matrices of the segment M and K are extracted using classical
FEM algorithms. The entries for each Degree of Freedom (DoF), of every node laying on the same
edge of the segment, say edges Q, R, S and T, are placed in the mass and stiffness matrices so
that the vector of displacements can be written as: u = {uQ uR uS uT}T . Following the analysis
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Figure 1.3: A composite panel modelled within the present approach

presented in [Manconi and Mace, 2007, Inquiété, 2008] the time-harmonic equation of motion of
the segment assuming uniform and structural damping for all the DoF can be written as:

(

K (1 + ηi) − ω2M
)

u = F (1.26)

where η is the structural damping coefficient, ω is the angular frequency and F the vector of
the nodal forces. Then the dynamic stiffness matrix can be written as:

D = K (1 + ηi) − ω2M (1.27)

therefore eq.(1.26) may be written as:









DQQ DQR DQS DQT

DRQ DRR DRS DRT

DSQ DSR DSS DST

DTQ DTR DTS DTT























uQ

uR

uS

uT















=















FQ

FR

FS

FT















Using the Floquet theory for a rectangular segment and assuming a time-harmonic response
the displacements of each edge can be written as a function of the displacements at one single
edge. Taking edge Q as the edge of reference we have:

uR = λxuQ, uS = λyuQ, uT = λxλyuQ (1.29)

Using the same theory, the force vectors can be written as:

FR = λxFQ, FS = λyFQ, FT = λxλyFQ (1.30)

With λx and λy the phase constants which are related to the wavenumbers κx and κy through
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Figure 1.4: View of the modeled periodic segment with its edges Q, R, S and T

the relation:

λx = e−iκxdx , λy = e−iκydy (1.31)

The displacement vector can therefore be written as:















uQ

uR

uS

uT















=















I
λxI
λyI

λxλyI















uQ

Assuming no external excitation, equilibrium along edge Q implies that:

{

I λ−1
y I λ−1

x I λ−1
x λ−1

y I
}















FQ

FR

FS

FT















= 0

Eventually, substituting eq.(1.32,1.33) in eq.(1.26) we end up with the eigenproblem:

{

I λ−1
y I λ−1

x I λ−1
x λ−1

y I
}

D















I
λxI
λyI

λxλyI















uQ = 0
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which can be written in the form:





(DQQ + DRR + DSS + DTT) + (DQR + DST) λx + (DRQ + DTS) λ−1
x

+ (DQS + DRT) λy + (DSQ + DTR) λ−1
y + DQTλxλy+

DTQλ−1
x λ−1

y + DSRλxλ−1
y + DRSλ−1

x λy



uQ = 0

1.2.5.2 Solving the eigenproblem

Various methods exist for the solution of the eigenproblem and are discussed extensively in
[Manconi and Mace, 2007, Inquiété, 2008]. For the particular case where the frequency and the
wavenumber towards y direction are considered as fixed or known (e.g wavenumber corresponding
to a mode of the full panel) the non-linear eigenproblem of eq.(1.35) is reduced to:

(

A2λ
2
x + A1λx + A0

)

uQ = 0 (1.36)

where:

Ai =























DQTλ2
y + (DQR + DST)λy + DSR , i=2

(DQQ + DRR + DSS + DTT + DQS + DRT)λy + DSQ + DTR , i=1

DRSλ2
y + (DRQ + DTS)λy + DTQ , i=0

(1.37)

The above quadratic eigenproblem can also be converted as shown in [Tisseur and Meerbergen,
2001] into an ordinary linear generalized eigenproblem of twice the size, by defining a new vector
z = λyuQ :

[

−A0 0
0 I

]{

uQ

z

}

= λy

[

A1 A2

I 0

]{

uQ

z

}

with I the identity matrix. The propagating wavenumbers are then calculated as:

κx =
log (λx)

−idx
and κy =

log (λy)

−idy
(1.39)

Throughout the applications of the WFEM, simplicity is exhibited as its main advantage com-
pared to other semi-analytical methods such as SAFE or the Spectral Element Method (SEM).
Indeed, it suffices to develop the numerical model of the cell using a computer code capable of
extracting the mass and stiffness matrices of the model and then exploit them using an ordinary
mathematical software. On the other hand, the use of a finite element discretization of a cell
can lead to numerical errors. Recently, an amount of research has been conducted (see [Akrout,
2005], [Waki et al., 2009] for the 1D-periodic structures and [Manconi and Mace, 2007] for 2D-
periodic structures) on the prediction of these numerical errors.
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Mode 1 Mode 2

Mode α Mode σ

Mode n1 Mode n2

sous-système 1 sous-système 2

Figure 1.5: Modal coupling between two SEA subsystems

1.3 Predicting the vibroacoustic response in the high and the
mid-frequency range

1.3.1 Introduction

In this section the principal approaches for modelling a structural-acoustic system at frequencies
where deterministic numerical methods are inefficient are presented. A frequency-wise inverse
sequence is adopted, with the SEA method firstly presented as the most classical and developped
one. Subsequently more recently developped approaches aiming at covering the so called ’mid-
frequency’ gap are presented.

1.3.2 The SEA method

1.3.2.1 Introduction

The Statistical Energy Analysis (SEA) method (see [Lyon and DeJong, 1995]), is an energy method
commonly used in the high frequency domain. A its name implies it is not a deterministic method
which describes precisely the characteristics of a particular system. The SEA is applied to subsys-
tems whose frequency averaged parameters serve as an input to the model. The subsystems are
not described by their spatial response which becomes complicated to manage in high frequencies
but by their energies.

In [Lyon and DeJong, 1995], the authors made an exhaustive description of the SEA method,
starting with the energy equation between two coupled systems with one degree of freedom and
which forms the basis of the SEA, and concluding with industrial applications.

In the low frequency domain, the first modes of a system are sufficient to describe its dynamic
behaviour. For years, studies of mechanical systems have attempted to describe the low frequency
behaviour of complicated systems. The SEA method was developed in the early 60’s when large
sized structures subjected to random excitations at high frequencies were to be studied, mainly
in the aeronautical field. At high frequencies, the modes become very sensitive to parametric
uncertainties. Moreover, the large number of degrees of freedom to be considered when modelling
this type of systems makes the calculation cost prohibitive. Thus, a new method was introduced,
whose characteristics could overcome the disadvantages mentioned above.

The SEA is based on a simple principle: the power exchanged between two oscillators with one
degree of freedom is proportional to the energy difference between the two subsystems. This prin-
ciple is established in [Lyon and DeJong, 1995] and is exhibited when certain specified conditions
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Figure 1.6: Graphical representation of the energy exchange between three SEA subsystems

are established.

1.3.2.2 SEA parameters

The SEA is based on an analogy frequently used in the study of heat transfer between systems.
It consists in decomposing a complex structure into coupled substructures or subsystems and in
performing a power balance between these subsystems. The expression of this power balance
requires the estimation of the power injected in the sub-systems, the power exchanged between the
subsystems and the power dissipated by them. The power injected in a subsystem is equal to the
power dissipated by the subsystem plus the sum of powers exchanged with subsystems that are
coupled to it.

In schematic form, the power balance between the subsystems is illustrated in fig.1.6, with Pi,inj

the injected power in subsystem i, Pij the power exchanged between subsystem i and subsystem j
and Pi the power dissipated by subsystem i.

Writing the power balance, allows for introducing the SEA parameters, such as the Dissipation
Loss Factors (DLF) and the Coupling Loss Factors (CLF) to express the various power exchanges.
The characterization of these parameters as well as the knowledge of the injected power within
the subsystems allow for the solution of the power balance system, and thus the estimation of the
averaged vibrational energies of the SEA subsystems.

The powers needed to write the SEA equilibrium are expressed in terms of average total energies
of the considered subsystems. The benefit of this approach when studying a large system is the
reduction of the DOF of the system to the energy variables, whose number is equal to the number
of subsystems. The resolution is therefore less computationally intense compared to conventional
methods such as the FEM.

1.3.2.3 The Dissipation Loss Factor

The DLF is involved in writing the power dissipated by a subsystem. The dissipated power can
be written as:

Pdiss,i = ωηiEi (1.40)
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where ω is the central angular frequency of the frequency band under consideration and ηi is
the DLF of subsystem i.

This factor characterizes the different sources of dissipation of energy within the subsystem
such as structural damping or the effects of internal friction and the effect of radiation in the case
of a structural subsystem surrounded by an acoustic fluid.

1.3.2.4 The Coupling Loss Factor

The relationship between the exchanged power and the average total energies of the subsystems
can be written so as to introduce the couplings terms:

Pij = ωηij(Ei − ni/njEj) (1.41)

The terms ηij and ηji are the CLF between the two subsystems i and j, and ni, nj are the
modal densities of the subsystems. This form allows us to introduce the reciprocal relationship
linking the CLF between subsystems, provided that the necessary assumptions are satisfied:

niηij = njηji (1.42)

This reciprocal relationship is of practical interest because it allows for a complex system to
determine one sole part of the coupling loss factors. The parameters introduced can allow for
expressing the SEA power balance. In the simple case of two subsystems, the system is written as
follows:

{

Pi,inj = Pi,diss + Pij

Pj,inj = Pj,diss + Pji
(1.43)

Using the previous relations the system in now written as:

[

ηi + ηij −ηji

−ηij ηj + ηji

]{

Ei,tot

Ej,tot

}

=

{

Pi,inj/ω
Pj,inj/ω

}

(1.44)

The total energies are obtained by a matrix inversion. The presented approach can be gener-
alized to the case of n subsystems and the SEA factors matrix will be now of dimension n2:





















η1 +
n
∑

i=2
η1i −η21 . . . −ηn1

−η12 η2 +
n
∑

i=1,i6=2

η2i . . . −ηn2

. . . . . . . . . . . .

−η1n . . . . . . ηn +
n−1
∑

i=1
ηni



































E1

E2

. . .
En















=















P1,inj/ω
P2,inj/ω

. . .
Pn,inj/ω















(1.45)

The SEA matrix is symmetric if we consider the verified reciprocal relationships. Solving an
SEA system thus requires knowledge of the CLF and the DLF for each subsystem. These factors
can be obtained in various ways which will be detailed later in this thesis. A summary of the main
quantities essential to the calculation of the SEA matrix is presented below.
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1.3.2.5 The modal density

The SEA method involves frequency averaged characteristics of the subsystems in order to calculate
the vibrational response at high frequencies. The natural frequencies of the modes are assumed
equi-probable within the frequency band considered. This assumption implies that we consider
that the number of modes within the band is quite large and that the modal overlap is high. It
is often assumed that a sufficient number of modes within the frequency band justifies the proper
application of the SEA method. In practice, most researchers assume that a number of five modes
per frequency band is enough.

The estimated number of modes per band generally requires the concept of modal density. This
concept is used in the law of reciprocity and a poor estimate of the modal density may cause great
discrepancies in the coupling loss factors calculated for the subsystems.

The calculation of the analytical modal density is done by considering the resonance frequencies
of the subsystems in the case where the edges are simply supported, in order to simplify the
mathematical formulations. It is usually considered that the modal density obtained using this
assumption on the boundary conditions can be applied in the high frequency range. The calculation
of the modal density for various composite structural components is exhibited in the following
chapters of this thesis.

1.3.2.6 Fluid/structure interaction in SEA

To apply the SEA method for a system presenting a fluid/structure coupling nature, we should
study especially the phenomena governing the coupling between the acoustic fluid and the structure
in the high frequency domain. Two representative cases are considered: i) an academic one where
an infinite panel is radiating in a semi-infinite acoustic cavity and ii) a realistic case where two
finite rooms are separated by a finite panel.

1.3.2.7 Radiation from an infinite panel in an acoustic cavity

The radiation of a plate in a semi-infinite fluid is a phenomenon which depends on the frequency
of the wave incident on the panel and which involves the notion of the coincidence frequency of
the plate. This frequency depends on the properties of the plate and the ones of the surrounding
fluid.

An infinite panel is considered situated on the plane z = 0, having a surface mass of ρs,
connected to a rigid baffle for z < 0, and connected to an acoustic fluid having a sound velocity

equal to c0 for z > 0. The plate is subject to a harmonic excitation of ω =
f

2π
. The structural

wavenumber of the panel can be calculated following the approaches described in sec.1.2.

The acoustic pressure within the fluid is described by the Helmholtz equation:

∆p + k2p = 0 (1.46)

where k = ω/c0. The boundary condition at z = 0 is :

∂p

∂z
= −ρ0ω

2w (1.47)

The normal displacement of the plate is written as w = w0exp(ikxx+ ikyy) with the wavenum-
bers verifying the relation k2

x + k2
y = k2

s . Thus, according to eq.(1.46) and eq.(1.47), the pressure
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Figure 1.7: The configuration to be modelled by SEA analysis.

inside the cavity is written as:

p =
iω2

γ
w0e

i (kxx + kyy + γz) (1.48)

with γ the wavenumber towards z in the cavity, given by the equation:

γ =

{

(

k2 − k2
s

)1/2
si k > ks

i
(

k2
s − k2

)1/2
si k < ks

(1.49)

Three possible cases are distinguished with respect to the value of ks:

a) if k > ks, p is described by a propagating wave towards z and the panel radiates,

b) if k < ks, p is described by an evanescent wave towards z, and the panel does not radiate,

c) if k = ks, the pressure becomes infinite and the phenomenon is called coincidence.

The acoustic wavenumber is equal to the structural wavenumber when the excitation frequency
f becomes equal to the coincidence frequency.

1.3.2.8 SEA formulation for the finite system

In the case of a finite plate, when the excitation frequency is below the critical frequency, there
is acoustic radiation from the edges of the panel. From a modal point of view, this reflects the
fact that the modes of the plate radiate beyond a frequency, whose value depends on their reso-
nance frequency. Therefore, even below the coincidence frequency, some modes having a resonance
frequency below the excitation frequency will radiate.

The considered system now consists of two cavities separated by a plate. One of the cavities
is acoustically excited. The objective is to calculate the power transmitted to the other cavity
through the plate. To do this, the system is modelled using an SEA approach and is divided in:
i)the excited cavity (subsystem 1), ii) the plate (subsystem 2) and iii) the second cavity (subsystem
3) (see fig.1.7).

22



Literature survey Chapter 1

The transmission of energy between the two cavities involves the phenomenon of acoustic
transmission. There exist two types of transmission: the resonant and the non-resonant ones.

Resonant transmission involves the resonant modes of the plate. In this case, the plate stores
energy from the excited cavity and then radiates this energy in subsystem 3. This phenomenon
greatly depends on the characteristics of the panel.

Non-resonant transmission involves the non-resonant modes of the plate. These modes do not
accumulate energy, thus in SEA modelling, the plate is not involved in energy exchange between
the two cavities.

If the excitation frequency is greater than the coincidence frequency of the plate, the dominant
contribution in the calculation of the transmission coefficient is the one of resonant modes (for
which the frequency is close to the excitation frequency) since these modes have a significant
radiation efficiency. This phenomenon is called resonant transmission. On the other hand, if the
excitation frequency is below the coincidence frequency, the radiation efficiency of resonant modes
is negligible. Therefore the contribution of non-resonant modes has to be taken into account.

The SEA matrix of the cavity-plate-cavity system is then written as follows:







〈P1,inj〉
〈P2,inj〉
〈P3,inj〉







= ω





η1 + η12 −η21 −η31

−η12 η2 + η21 + η23 −η32

−η13 −η23 η3 + η32











〈E1〉
〈E2〉
〈E3〉







(1.50)

η12 and η23 stand for the resonant transmission coefficients between the cavities and the plate
and η13 corresponds to the non-resonant transmission coefficient.

The CLF η12 is expressed in terms of the radiation efficiency of the panel:

ηsa =
ρ0c0

ωρshs
σ (1.51)

where ρ0 and c0 stand for the density and the acoustic velocity inside the medium, ρs and hs are
the area density and the thickness of the plate and ω is the central angular frequency of the studied
frequency band.

The radiated power from a structure can be calculated through its radiation efficiency, which
takes into account for the radiation of each mode of the structure:

σ =
Prad

ρ0c0As〈v2〉 (1.52)

where Prad is the radiated power, As is the radiation area and 〈v2〉 is the averaged square vibrational
velocity.

Some of the most classical and important studies on the calculation of the radiation efficiency
of plates are exhibited in [Maidanik, 1962], [Crocker and Price, 1969] and [Leppington, 1988].

1.3.2.9 Limitations of the SEA applicability

The principal SEA hypotheses are reviewed in [Soize, 1987]:

• The method is applied in a permanent regime.

• The system under study is partitioned into subsystems. Each subsystem considered sepa-
rately is weak-dissipating and it has a countable number of modes.
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• The subsystems are considered weakly coupled, meaning that no global modes are present
in the studied frequency range. Indirect coupling between subsystems is also ignored.

• The coupling between two subsystems is conservative. It is performed by mass, stiffness and
gyroscopic bahaviours. Coupling losses are not taken into account. This means that damping
is small.

• The excitations are statistically independent (uncorrelated) and randomly stationary.

• The mean number of resonant modes of each subsystem must be large for a given frequency
band. This guarantees the statistical representation of the mean computed values. The main
assumption is that any subsystem has to be reverberant.

• The averaged total energy in a frequency band is due to the contributions of the resonant
modes in the band.

• The energy transmission between two coupled subsystems in a frequency band is performed
only by the resonant modes of the two subsystems in this frequency band.

• The behaviour of a group of modes of a subsystem may be described by an average mode.
These modes have the same energy level and have sensibly the same behaviour.

The assumptions of the SEA method are verified only under the above conditions. These con-
ditions strongly depend on two parameters: the diffuseness of the vibrational field within each
subsystem (spatial modal overlap) and the number of modes in the frequency band considered
(spectral modal overlap). High modal overlap serves in validating the hypothesis of equal proba-
bility of natural frequencies of the modes within the frequency band considered.

Another important hypothesis to consider when applying the SEA method, which also depends
on the modal overlap, is the assumption of weak coupling. Several criteria were presented in order
to define the weak coupling between the subsystems:

• In [Chandiramini, 1978] it is considered that the coupling is weak if the DLF of the subsystem
is much larger than the coupling loss factor.

• In [Wester and Mace, 1996] the authors introduced two parameters that depend on the
coefficients of reflection and transmission at the junction between the two subsystems and
on the modal overlap, and which allow for determining the strength of coupling between two
subsystems.

• Fahy indicated that the coupling is weak between two subsystems if the modes of the coupled
system present similar characteristics compared to the modes of the decoupled subsystems.

• The coupling is also considered as weak if the coupling of two modes of the same subsystem
via a mode of the coupled subsystem is negligible compared to the direct coupling between
the modes of the same subsystem.

When the coupling is strong, it is necessary to study the indirect coupling between two sub-
systems not physically connected. When applying an SEA modelling, the indirect coupling is
neglected (except for some special cases such as the study of coupling between two cavities sep-
arated by a plate). In [Langley, 1989,Langley, 1990] Langley shows that for weakly coupled and
reverberant systems the indirect coupling can be neglected. In [Finnveden, 1995], Finnveden ex-
hibits similar conclusions for a system comprising three subsystems.
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1.3.3 The EIC method

The Energy Influence Coefficient approach (EIC) was introduced in [Lesueur et al., 1988]. It is a
deterministic energy method, based on a modal analysis of the studied system. The SEA tends to
overestimate the structural coupling in the low and medium frequency ranges. The EIC method
was therefore developed to provide a more accurate modelling of structural coupled systems in
these frequency domains. The use of modal analysis allows the reduction of calculation times with
respect to an FE modelling. However, the modal data are difficult to obtain for certain complex
structures, which limits the use of the method.

We consider several coupled linear vibrating systems, whose characteristics are time indepen-
dent. No assumptions are made on the nature or the coupling of the systems, which can be
structural or acoustic. These systems are subject to excitations which are assumed:

• decorrelated for two different systems,

• separable in space and time,

• in steady-state.

The EIC Cij gives the kinetic energy in the system i when the system j is excited with an
excitation PSD equal to Sj(ω). This coefficient is expressed in terms of the function of spatial
dependence βj(M

′
j ,M

′′
j ) of the forces exciting the system j and of the frequency response function

Hij(Mi,M
′
j , ω) between the point Mi of system i and the point M ′

j of system j. Hij is the Fourier
transform of the velocity response at point Mi for a unit impulse force at point M ′

j . The coefficient
Cij corresponding to the frequency band ∆ω is given as:

Cij(∆ω) =
1

2

∫

∆ω

∫

Ωi

∫∫

Ωj

ρi(Mi)Hij(Mi,M
′
j , ω)H∗

ij(Mi,M
′′
j , ω)βj(M

′
j ,M

′′
j )dM ′

jdM ′′
j dMidω

(1.53)

where ρi is the density of system i. If system j is subject to an excitation of PSD Sj and
constant throughout ∆ω, the energy of system i averaged in ∆ω is written as :

〈Eci〉 = CijSj (1.54)

Because of the presence of the term βj in the expression of Cij, the EIC depends on the energy
applied to the excitation system j. For a δ-correlated excitation applied on system j, the spatial
correlation function of the excitation can be written:

βj(M
′
j ,M

′′
j ) = δ(M ′

j − M ′′
j ) (1.55)

The expression of the EIC is simplified:

Cij(∆ω) =

∫

∆ω

∫

ωi

∫

ωj

ρi|Hij(Mi,Mj , ω)|2dMidMjdω (1.56)

A symmetrical relationship relates then the coefficients Cij and Cji, with the hypothesis that
densities ρi et ρj are constants throughout the systems i and j :

Cij

ρi
=

Cji

ρj
(1.57)
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The frequency response functions Hij are calculated by conducting a modal analysis on the
ensemble of the coupled systems. With the introduction of ωk, Φk and mk, the resonance frequency,
the deformation and the modal mass respectively for mode k, the EIC are written as :

Cij =
∑

k,p

Ψ
(i)
kp

Bkp

mkmp
G

(j)
kp (1.58)

Ψ
(i)
k,p is expressed in terms of mode shapes k and p of system i and represents the spatial coupling

between modes k and p within system i. Bkp is expressed in terms of the resonance frequencies
and the damping of modes k and p and represents the spectral coupling between modes k and p.

Finally G
(j)
kp represents the spatial coupling between modes k and p of system j and depends on the

excitation. This formulation allows separating the different mechanisms of energy transfer. These
mechanisms are discussed in more detail in the case of the SEA-like method in sec.1.3.6.2.

In [Boisson et al., 1985], [Boisson et al., 1982] and [Guyader et al., 1982], the EIC method
is applied to various plate configurations. Notably in [Boisson et al., 1982], the EIC method is
applied to two coupled plates in L shape, one of which is subject to a δ-correlated excitation.
The model is then compared to the SEA. It is observed that the SEA overestimates the energy
transfer between the two plates relative to the EIC method. This discrepancy occurs when the
two plates are different. In this case, the difference decreases as the frequency increases and the
SEA modelling is again correct in the high frequency domain.

1.3.4 The Wave Based Method

More recently, a Wave Based prediction Method (WBM) adopting an indirect Trefftz approach
has been presented in [Desmet, 1998, Desmet et al., 2001, Desmet et al., 2002] and has received
a lot of attention. The WBM is a deterministic technique, however in contrast to the element
based approaches, this technique expands the dynamic response variables in terms of selected
wave functions which are exact solutions of the governing differential equations. Thus, no fine
discretization of the considered domains is required resulting in much smaller model sizes and
an increased computational efficiency. For instance, within an acoustic cavity the steady-state
pressure p(x, y, z) can be approximated as a solution expansion:

p(x, y, z) ≈ p̂(x, y, z) =
na
∑

a=1

paΦa(x, y, z) (1.59)

with each function Φa(x, y, z) being an acoustic wave function satisfying the Helmholtz equation
and having the general form:

Φa(x, y, z) =























Φar(x, y, z) = cos(kxarx)cos(kyar y)e−jkzarz

Φas(x, y, z) = cos(kxasx)e−jkyasycos(kzasz)

Φat(x, y, z) = e−jkxatxcos(kyaty)cos(kzatz)

(1.60)

In the same sense, for a structural subsystem the steady-state normal displacement w(x, y) can
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be approximated as an expansion:

w(x, y) ≈ ŵ(x, y) =
ns
∑

b=1

wsΨs(x, y) + ŵFi(x, y) (1.61)

with the wave functions Ψs(x, y) having the general form:

Ψs(x, y) = e−j(kxsx+kysy) (1.62)

The sole requirement for the selection of the acoustic wavenumbers kxai
, kyai

and kzai
with

(i = r, s, t) is that:

k2
xi

+ k2
yi

+ k2
zi

= k2 (1.63)

with k = ω/c. Respectively, for the selection of the structural wavenumbers the condition that
has to be fulfilled is:

(k2
xs + k2

ys)
2 = k2

b (1.64)

with kb the bending wavenumber of the structural panel. Therefore, an infinite number of
wave functions can be found for applying them to the expansions in eq.(1.59),(1.61). However,
as proposed in [Desmet, 1998] the following wavenumber components are usually selected for an
acoustic system:

(kxar , kyar , kzar ) = (a1π/Lx, a2π/Ly,±
√

k2 − (a1π/Lx)2 − (a2π/Ly)2)

(kxas , kyas , kzas) = (a3π/Lx,±
√

k2 − (a3π/Lx)2 − (a4π/Lz)2, a4π/Lz)

(kxat , kyat , kzat) = (±
√

k2 − (a5π/Ly)2 − (a6π/Lz)2, a5π/Ly, a6π/Lz)

(1.65)

and for a structural system:

(kxs, kys) =























































(s1π/Lxs,±
√

k2
b − (s1π/Lxs)2)

(s1π/Lxs,±j
√

k2
b + (s1π/Lxs)2)

(±
√

k2
b − (s2π/Lys)2, s2π/Lys)

(±j
√

k2
b + (s2π/Lys)2, s2π/Lys)























































(1.66)

with Li the dimensions of the smallest bounding surface or volume enclosing the considered
convex domain. It is shown in [Desmet, 1998] that the convexity of the considered domains is a
sufficient condition for the proposed expansions in eq.(1.59),(1.61) to converge in their limits for
a1,2,3,4,5,6 → ∞ and s1,2 → ∞ respectively, towards the exact solution. The WBM has already
been successfully applied to a variety of systems including two and three dimensional bounded and
unbounded acoustic domains [Desmet et al., 2001,Desmet et al., 2000] as well as flat,curved and
acoustically coupled structural panels [Desmet, 2002,Van Genechten et al., 2011].
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1.3.5 The PIM method

The SEA coefficients are usually calculated using wave-context approaches, which can generally
be applied only on simple systems with high modal overlaps. For more complex systems, methods
based on FE modelling of the studied systems or on experimental measurements can be used to
calculate the SEA coefficients [Bies and Hamid, 1980,Shorter and Mace, 1998,Mace and Shorter,
2000,Cotoni et al., 2008].

The Power Injected Method (PIM) allows for the calculation of the SEA coefficients, either
by an FE low frequency modelling, or by experimental measurements. In all cases, the system
is subjected to an ROR excitation, that is to say a set of forces reproducing a white noise, by
being randomly placed on the system and randomly phase-shifted relative to each other. In [Bies
and Hamid, 1980], it is exhibited that five forces are generally sufficient to reproduce an ROR
excitation. In [Troclet et al., 2009], the Influence Circle Method (ICM) was used in order to decide
the number of applied loads, while an OLH (Optimal Latin Hypercube) approach was adopted to
place the forces on the subsystems. The ROR excitation allows also for the decorrelation of modes
of the excited system, a necessary condition for the application of SEA.

The coupling loss factors can be determined by the PIM method, by inverting the system of
energy equations under the desired excitations. In [Hiverniau, 2006] the author measured the
SEA coefficients of two coupled plates using the PIM method. The measurement of the internal
loss factor of the decoupled plates was performed using the injected power method as well as the
reverberation time method [Bies and Hamid, 1980], which gave similar results. He also studied the
influence of the number of excitation points and the number of measurement points on the results.
The coupling loss factor was then calculated by three different methods: i)the PIM method applied
to experimental measurements, ii) the same method applied to aN FEM, and iii) a wave approach.
The values of the experimentally measured coefficients presented many discrepancies compared to
the FE approach and the wave approach when the intrinsic loss factors of the plates introduced
to the numerical models did not match the experimental ones. When the experimental damping
loss factors were introduced into the FE model, the coupling loss factors calculated by the two
approaches conforms well to the experimental values.

The PIM is more accurate than the wave approaches in the frequency domain [Hiverniau,
2006] where the SEA assumptions are no longer verified e.g. in the case of low modal overlap.
However, outside the SEA validity domain, the coefficients obtained by this method can present
inconsistencies, such as the dependence of coupling loss factors to subsystems damping.

The SEA-like method, presented below, is also based on low-frequency methods. However
unlike the PIM, the SEA-like approach is not an inverse energy method, being closer to the EIC
approach.

1.3.6 The SEA-like method

The SEA-like method is a modal based energy method; as the EIC method it relates the energy
vector to the injected power vector by the SEA-like coefficient matrix (see the approach proposed
by Mace in [Mace, 2003,Mace, 2005a]).

1.3.6.1 Presentation of the SEA-like approach

The SEA provides a statistical modelling of the system pertinent in the high frequency domain,
where the modal overlap is high in the various subsystems and when the coupling between the
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subsystems is weak. However, the assumptions of SEA - including loose coupling - are no longer
verified for lower frequencies. In this case, the system’s behaviour is sensitive to the characteristics
of each mode. It is therefore no longer pertinent to model a particular system with a statistical
method.

Frëdo in [Fredö, 1997] introduced an energy method relaxing some of the restrictive conditions of
SEA. The method was named SEA-Like. The assumptions used in SEA are not necessarily verified
during the application of the SEA-like. In SEA, the modal energy is assumed equi-distributed
between the modes and entirely contained within the frequency band considered. The non-resonant
modes are neglected. The modal energies of resonant modes are considered incoherent to each other
and of spatially homogeneous density within the subsystem.

These assumptions are suitable to describe a set of systems in the high frequency domain. But
when the modal overlap of a system is low, the system has a more intense modal behaviour. It can
no longer be described as a sum of equi-energized modes. The SEA-like method, developped from
the analytical modal data or by an FE modelling of the system, is used to describe this particular
modal behaviour of the system.

In [Fredö, 1997] it is shown that the coefficients of the energy flow may be negative, indicating
that the power flow is directed from a low energy subsystem to a subsystem of higher energy. This is
the case for example when the excited subsystem has a non-resonant behaviour, while an attached
subsystem contains a resonant mode. In SEA, only the resonant behaviour of the subsystems is
taken into account and such a phenomenon can not be modelled. In the same reference a criterion
of validity of the use of SEA is also presented: the modal densities should verify the reciprocity
condition, which relates the modal densities to the CLF:

n1η12 = n2η21 (1.67)

In [Mace, 2005a] Mace used a similar approach for deriving the SEA-like method.

He introduced the SEA equation, which expresses the injected power vectors as a function of
the energy vectors for each of the subsystems :

Pinj = LE (1.68)

where the SEA coefficients can be rewritten as:

Lii = ω(ηi +
∑

j 6=i

ηij) (1.69)

Lij,i6=j = −ωηji (1.70)

with ηi and ηij the DLF and the CLF of the subsystems respectively.

Generally, matrix L is considered as an SEA matrix if it verifies two conditions:

1. The energy conservation condition :
∑

i Lij = ωηj

2. The reciprocity condition: niηij = njηji

There is a third condition, which is validated in most cases, but is not required for the matrix to
be considered as an SEA one: this is that the CLF are positive and independent of the damping of
subsystems, and that they are equal to zero between subsystems that are not physically connected.
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There are some cases where the third hypothesis is not verified, especially when the modal
overlap is low. When all three conditions are verified, the matrix X = A−1 is an SEA matrix.
We can therefore write the proportionality relation as given by Lyon which relates the energy flow
between two subsystems.

If only the first two conditions are satisfied the matrix is called a ’quasi-SEA matrix’. The
system therefore has to be modelled with an SEA-like approach. The energy flow between two
subsystems no longer depends solely on the energies of the two subsystems considered but may
also depend on the energy of a third subsystem.

The SEA-like matrix coefficients are calculated in the same way as with the PIM method, using
the expression:

Ars =
〈Er〉

〈Pinj,s〉
(1.71)

where 〈〉 stands for the spatial average.

The calculation of subsystem energies and of injected powers is made with methods such as
classic modal analysis or FE analysis. As aforementioned, we can model a coupled problem in two
ways: either by using the modes of the entire system or by using the modes of each subsystem
considered as decoupled.

1.3.6.2 Projection on the coupled system modes

Hereby, the SEA-like coefficient between a subsystem r and a subsystem s is calculated based
on the coupled system modes. This approach, presented in [Mace, 2003,Mace, 2005a], allows for
highlighting two modal coupling phenomena: the spatial coupling and the spectral coupling. After
presenting the calculations leading to the expression of the SEA-like coefficient, the influence of
these coupling phenomena on the SEA-like coefficients calculation will be studied.

1.3.6.3 Calculation of the energy influence coefficients

We consider a system divided in various subsystems with the subsystem s being excited by a ROR
pressure field pext. With Φj standing for the j-th mode of the complete system, the associated
response function αj is given by the following expression:

αj(ω) =
1

ω2
j (1 + iη) − ω2

(1.72)

The velocity field of subsystem r is therefore written in the following way:

v(xr;ω) = iω
∑

j

Φj(xr)αj(ω)

∫

Vs

Φj(xs)pext(xs;ω)dxs (1.73)

which allows for the expression of the total energy density at point xr of the subsystem r:

δE(xr;ω) =
1

2
ρ(xr)v(xr;ω)v∗(xr;ω) (1.74)

being:
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δE(xr;ω) =
1

2
ρ(xr)ω

2
∑

j

∑

k

Φj(xr)Φk(xr)αj(ω)α∗
k(ω)

∫∫

Vs

Φj(xs)pext(xs;ω)Φj(x
′
s)p

∗
ext(x

′
s;ω)dxsdx

′
s (1.75)

The joint-acceptance is therefore introduced in the expression of the energy density of subsystem
r as:

δE(xr;ω) =
1

2
ρ(xr)ω

2
∑

j

∑

k

Φj(xr)Φk(xr)αj(ω)α∗
k(ω)Spext(ω)j

(s)
jk (ω) (1.76)

Considering:

Ψ
(r)
jk =

∫

Vr

ρ(xr)Φj(xr)Φk(xr)dxr (1.77)

The frequency averaged energy of subsystem r is written as:

〈Er〉 =
1

2

1

∆ω

∑

j

∑

k

Ψ
(r)
jk

∫

∆ω
ω2αj(ω)α∗

k(ω)Spext(ω)j
(s)
jk (ω)dω (1.78)

Considering an ROR excitation, the joint-acceptance expression verifies the eq.(1.93), therefore
using a variable change:

Γjk =
1

∆ω

∫

∆ω
ω2αj(ω)α∗

k(ω)Spext(ω)dω (1.79)

we can eventually write:

〈Er〉 =
1

2

∑

j

∑

k

ΓjkΨ
(r)
jk Ψ

(s)
jk (1.80)

The injected power in subsystem s is written as:

Pinj,s(ω) = ℜ
(

1

2

∫

Vs

pext(xs;ω)v∗(xs;ω)dxs

)

(1.81)

and substituting for the velocity field we have:

Pinj,s(ω) = ℜ





1

2
iω

∫

Vs

pext(xs;ω)

∫

Vs

∑

j

Φj(xs)αj(ω)Φj(x
′
s)p

∗
ext(x

′
s;ω)dxsdx

′
s



 (1.82)

Assuming a constant modal damping factor we can write:

Pinj,s(ω) =
1

2
ω
∑

j

ηω2
j‖αj(ω)‖2

∫∫

Vs

Φj(xs)Φj(x
′
s)pext(xs;ω)p∗ext(x

′
s;ω)dxsdx

′
s (1.83)
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and taking into account for the joint-acceptance term as before we have:

Pinj,s(ω) =
1

2
ω
∑

j

ηω2
j‖αj(ω)‖2Spext(ω)j

(s)
jj (ω) (1.84)

Eventually the frequency averaged expression of the injected power in system s becomes:

Pinj,s(ω) =
1

2

∑

j

ηω2
j

1

∆ω

∫

∆ω
ω‖αj(ω)‖2Spext(ω)j

(s)
jj (ω)dω (1.85)

Considering ωc as the central frequency of the studied frequency band we have:

Pinj,s(ω) =
1

2
ηωc

∑

j

ΓjjΨ
(s)
jj (1.86)

Combination of eq.(1.80) and eq.(1.86) provides the expression of the EIC as a function of the
modes of the system:

Ars =
1

ηωc

∑

j

∑

k ΓjkΨ
(r)
jk Ψ

(s)
jk

∑

j ΓjjΨ
(s)
jj

(1.87)

Spectral coupling term Γjk

The term Γjk describes the spectral coupling between modes j and k. It depends on the transfer
functions of modes j and k, therefore on the natural frequencies and the damping of the two modes
and provides information on the resonant character and the overlap between them. Thus if one
of the modes j or k is non resonant the Γjk term is negligible. If both modes are resonant, Γjk is
high as the two modes become superposed when their natural frequencies come closer.

Spatial coupling term Ψ
(r)
jk

The term Ψ
(r)
jk indicates the spatial correlation between modes j and k. It can be observed from

eq.(1.87) that when the terms Ψ
(r)
jj and Ψ

(s)
jj become important the modes are well coupled between

subsystems r and s. More precisely, the term Ψ
(r)
jj indicates the proportion of kinetic energy of

mode j in the subsystem r. We can therefore distinguish two types of modes: the local modes and

the global ones. A mode j is considered as global when the term Ψ
(r)
jj is of same order in every

subsystem. The kinetic energy is therefore distributed throughout the system. On the other hand

a mode j is considered as a local mode when the term Ψ
(r)
jj is considerable in subsystem r and

negligible for the rest of the subsystems. In this case the kinetic energy is localized in subsystem
r.
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1.3.6.4 Modal coupling approach

Using the modes of the complete system can give a simple expression of the SEA-like matrix coef-
ficients. However, when the studied system is complex, these modes can be particularly expensive
to calculate. Then it is better to use a more local approach and to decompose the equations of the
system on the modes of the decoupled subsystems.

Calculating the SEA-like coefficients depends on the characteristics of the studied system and
will therefore not be exhibited here. The reader is referred to Chapter 3 in [de Rochambeau, 2010]
for calculating the SEA-like coefficients of a plate-cavity coupled system by a modal coupling
method.

1.4 Aeroacoustic excitations on a launch vehicle

1.4.1 Introduction

Launch vehicles are subject to aeroacoustic excitations of broadband random nature during the
lift-off phase and their flight within the atmosphere. There are three main types of aeroacoustic
excitations [Troclet, 2006a,Troclet, 2007]:

• A jet noise, produced and propagating along the launcher when the kinetic energy of the
exhaust jet is converted into acoustic energy while mixing with the atmospheric air.

• A diffused noise field due to the reverberation of the produced sound waves around the launch
pad.

• An aerodynamic Turbulent Boundary Layer (TBL) noise that occurs during the transonic and
supersonic phases of the flight. This excitation is produced by turbulence in the boundary
layers formed around the launcher. During the transonic phase, the discontinuities in the
external structures of the launch vehicle induce detachments of the flow and turbulence can
be particularly high. This turbulence produces strong pressure fluctuations perceived as noise
in the payload cavity.

Hereby the principles of a δ-correlated Rain On the Roof (ROR) excitation will be exhibited.
Then two aeroacoustic random excitations assumed to be stationary ergodic will be presented: i)
a diffused noise field and ii) a TBL excitation.

These excitations are random and broadband. They are therefore statistically modelled by the
product of a spatial correlation function (which describes the spatial distribution of the excitation
spectrum) and of the spectral density (which describes the intensity of the excitation as a function
of frequency). The spatial correlation functions are generally obtained in a semi-empirical way.

1.4.2 Rain On the Roof excitation

It is assumed that the system is subject to a particular type of excitation, called Rain On the Roof
(ROR). This excitation is of random nature, ergodic broadband and spatially uncorrelated. To
characterize this excitation, it is necessary to introduce the term of joint-acceptance.

We consider a structural-acoustic system subject to a pressure p of a Power Spectral Density
(PSD) Spp. We call Φp the pth mode shape of the system and αp the associated transfer function.
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The velocity at a point x of the structure is therefore written as:

v(x;ω) = iω
∑

p

Φp(x)αp(ω)

∫

sys
Φp(x

′)p(x′;ω)dx′ (1.88)

We can therefore write the velocity spectral density as:

Svv(x;ω) = ω2
∑

p

∑

q

Φp(x)Φq(x)ℜ (αp(ω)αq(ω)∗)

∫∫

sys
Φp(x

′)Φq(x
′′)Spp′(x

′ − x′′;ω)dx′dx′′ (1.89)

The term Spp′ in eq.(1.89) is the interspectral density of the excitation and is commonly used
to describe the aeroacoustic excitation. It can be decomposed into a frequency term Sp called PSD
and a spatial term C called correlation function, which depends on ω and the distance between
the points x and x′:

Spp′(x − x′;ω) = Sp(ω)C(x − x′;ω) (1.90)

The double integration in eq.(1.89) can then be expressed in terms of the spectrum of pressure
and of a term that describes the spatial distribution depending on the modes of the system, the
so-called joint-acceptance. The latter term is defined as follows:

jpq(ω) =

∫∫

sys
Φp(x

′)Φq(x
′′)C(x′ − x′′;ω)dx′dx′′ (1.91)

The velocity spectral density is therefore written as:

Svv(x;ω) = ω2
∑

p

∑

q

Φp(x)Φq(x)ℜ (αp(ω)αq(ω)∗) jpq(ω)Sp(ω) (1.92)

The main characteristic and advantage of an ROR excitation is that it causes the joint-
acceptance function to become independent of ω and can therefore be expressed in the following
way:

j(s)
pq =

∫

Vs

ρ(xs)Φp(xs)Φq(xs)dxs (1.93)

with j
(s)
pq not dependent on ω. The ROR excitation is ergodic. Moreover, the integral in eq.(1.93)

depends only on one spatial variable. The spatial correlation function C(x−x′) is therefore equal
to zero if x 6= x′. The ROR excitation in therefore spatially uncorrelated.

1.4.3 Diffused sound field excitation

1.4.3.1 Description of the excitation

The diffused noise field is a pressure field where at a given point the pressure waves have a direction
of incidence of equal probability. In a Cartesian coordinate system, the spatial correlation function
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corresponding to a diffused noise is written as follows:

C(ζ, η;ω) =
sin(k0ζ)

k0ζ

sin(k0η)

k0η
(1.94)

where ζ = x−x′ and η = y−y′ are the distances separating the two points in x and y directions
respectively and k0 is the acoustic wavenumber defined by the excitation.

This function can also be expressed in the wavenumber space using a Fourrier transform F
given as:

F(kx, ky;ω) =

∫∫

∞

f(ζ, η;ω)e−ikxζ−ikyηdζdη (1.95)

The result is a low-pass function:

C(kx, ky) =







π2

k2
0

, if ‖kx‖ < k0 and ‖ky‖ < k0

0, otherwise

(1.96)

From eq.(1.96) it can be deduced that the modes that respond well to the diffused noise ex-
citation are the modes whose wavenumbers are inferior to k0, called acoustically fast modes and
whose radiation area occupies the whole surface of the structure. Modes whose wavenumbers are
greater than k0 are called acoustically slow modes and respond less efficiently to the excitation.

When studying a rectangular plate excited by a diffuse noise, Maidanik distinguished three
categories in [Maidanik, 1962]: i) acoustically fast modes, ii) edge modes and iii) corner modes.
The acoustically slow modes having a wavenumber component greater than k0 are called edge
modes. These modes radiate at the edges of the structure. Modes whose both components of
the wavenumber are inferior to k0 only radiate at the corners of the structure and respond very
inefficiently. The later are also called corner modes.

1.4.3.2 Equivalent coherence function

The equivalent coherence functions for various aeroacoustic excitations were presented in [Ichchou
et al., 2009]. The aerodynamic excitations are of random broadband nature and spatially cor-
related. A term commonly used to describe them is the spectral density, which is written for a
pressure field p(x, y;ω) as:

Spp(x − x′, y − y′;ω) = Sp(ω)C(x − x′, y − y′;ω) (1.97)

where Sp is the frequency spectrum of the excitation and C a spatial term describing the correlation
of the excitation between two points of coordinates (x, y) and (x′, y′).

The aerodynamic excitations applied to the structure modify the modal equations describing the
system, namely the term joint-acceptance which describes the interaction between the excitation
and the structural modes. We recall that the general expression of the joint-acceptance term
corresponding to modes m and n of the structure is written as:

jm,n(ω) =

∫∫

As

Φs
m(x, y)Φs

n(x′, y′)C(x − x′, y − y′;ω)dxdx′dydy′ (1.98)
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For an ROR excitation, which is δ-correlated, the expression of joint acceptance is simplified:

jror
m,n =

∫∫

As

ρshsΦ
s
m(x, y)Φs

n(x′, y′)δ(x − x′)δ(y − y′)dxdx′dydy′ (1.99)

This expression leads to simplifications in the calculation of averaged energies and injected pow-
ers, which simplifies the calculation of SEA and SEA-like coefficients. In the case of aerodynamic
excitations, the expression of joint-acceptance terms is generally complicated. The calculation of
averaged energy in the system must be simplified, hence the need to develop a model of equivalent
excitations.

An equivalent spatial correlation function Ceq is therefore introduced, verifying the expression:

C(x − x′, y − y′;ω) ≈ Ceq(ω)δ(x − x′)δ(y − y′) (1.100)

The expression of the equivalent joint-acceptance, jaero
m,n is then related to the term jror

m,n as:

jaero
m,n = δm,n

Ceq(ω)

hsρs
jror
m,n (1.101)

In [Hiverniau, 2006] two main approaches are adopted in order to calculate the equivalent spatial
coherence function. The ’spatial extent’ approach originally developped in [Maidanik, 1961], and
the equivalence in the wavenumber space presented in [Ichchou et al., 2009]. For a diffused field
excitation, both approaches lead to the same results. Using eq.(1.94) or the equivalent eq.(1.96),
the equivalent correlation function for a diffused sound field is written as:

Ceq,diff (ω) =
π2

k2
0

(1.102)

1.4.4 Turbulent Boundary Layer excitation

1.4.4.1 Description of the excitation

This type of excitation is produced by the airflow along the launch vehicle during its atmospheric
flight. The fluid forms a boundary layer in the vicinity of the structure, where the velocity of the
flow varies and induces a pressure field that excites the structure.

The relative fluid velocity in the turbulent boundary layer has a profile variation which depends
on the characteristics of the fluid. This velocity is equal to zero in the vicinity of the structure
and equal to U∞ outside the TBL (see fig.1.8). The TBL is characterized by its thickness δ and
its convection velocity Uc, which is the average flow velocity within the TBL.

The most commonly used model to describe the pressure field induced by a TBL is the Corcos
model [Corcos, 1964]. It gives the spatial correlation function of the pressure field in the form of
a product of two functions between the spatial variables x and y describing the structure:

C(ζ, η;ω) = e
−αxω

|ζ|
Uc e

−αyω
|η|
Uc e

iω
(ζ)

Uc (1.103)

where αx and αy are correlation coefficients along the directions ex and ey, and ζ = x− x′ and
η = y − y′ are the distances separating the two points in the propagation and the perpendicular
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Figure 1.8: Representation of a TBL excited panel

directions respectively. The values of αx and αy can be found in the open literature as in [Blake,
1986].

Applying the same Fourrier transform as with the diffused sound field, the spatial coherence
function can be expressed in the wavenumber space as:

C(kx, ky;ω) =
4αxαy

(α2
x + (kx/kc − 1)2)(α2

y + k2
y/k

2
c )

(1.104)

where kc = ω/Uc is the convection wavenumber.

The high frequency range is characterized by surface interactions between the structure and
the acoustic medium. In the low frequency range, also referred to as viscous range, the energy
exchange between the fluid and the structure is mainly due to edge interactions. In the viscous
domain, the modal receptance function which characterizes the energy exchange between the plate
and the cavity is highly dependent on the boundary conditions of the panel [Hambric et al., 2004].

1.4.4.2 Equivalent coherence function in the wavenumber space

The spatial correlation function expressed in the wavenumber space and the calculation of the
equivalent function is based on the equality of the integration of the functions in a finite wavenum-
ber space:

∫ k2

k1

∫ 2π

0
Ceq,tbl(k cos(θ), k sin(θ), ω) dk dω =

∫ k2

k1

∫ 2π

0
Ctbl(k cos(θ), k sin(θ), ω) dk dω (1.105)

with Ceq,tbl being spatially δ-correlated, eq.(1.105) becomes:

Ceq,tbl(ω) =
4π

k2
2 − k2

1

∫ k2

k1

∫ 2π

0
Ctbl(k cos(θ), k sin(θ), ω) dk dω (1.106)
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in which the expression of the correlation function in the wavenumber space as exhibited in
eq.(1.104) can be replaced.
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2.1 Abstract

A robust model for the prediction of the dynamic response of layered panels within a Statistical
Energy Analysis (SEA) wave-context approach is proposed hereby. The dispersion characteristics
of composite orthotropic structures are predicted using a Wave Finite Element (WFE) method.
By manipulating the mass and stiffness matrices of the modelled structural segment a polynomial
eigenvalue problem is formed, the solutions of which correspond to the propagation constants of the
waves travelling within the structure. The wavenumbers and group velocities for waves comprising
out of plane structural displacements can then be calculated. Using the numerically extracted
wave propagation data the most important SEA quantities of the structure, namely the modal
density and the radiation efficiency of each wave type are calculated. The vibroacoustic response
of the structure under a broadband diffused excitation is then computed within an SEA approach.
The impact of the symmetric and the antisymmetric vibrational motion of the panel on its sound
transmission loss is exhibited and the approach proves robust enough for thin as well as for thick
layered structures.

2.2 Introduction

Complex, non-isotropic stratified and sandwich type constructions are widely used in engineering
applications such as in the aerospace and automotive industries, mainly because of their high
stiffness-to-mass ratio and the fact that their mechanical characteristics can be designed to suit the
particular purposes. Unluckily this high stiffness-to-mass ratio being responsible for the increased
mechanical efficiency, imparts as well efficient vibration transmission and acoustic radiation. The
modelling of the vibrational behaviour of complex composite structures has been a field of extensive
study in modern mechanical engineering. The knowledge of the wave propagation characteristics
within a structure seems to provide a key to decode and model its vibrational behaviour.

Analytic formulas for the dispersion characteristics in orthotropic thin plates can be found
in classical books [Graff, 1991, Reddy, 2004] starting with the Classical Laminate Plate Theory
(CLPT) [Stavsky, 1961], developped as an extension of the Kirchoff-Love theory for isotropic
plates and suitable for thin panels. Furthermore, the First-order Shear Deformation theory
(FSDT) [Whitney and Pagano, 1970] takes into account the transverse shear deformation of the
panel and can be used for predicting the dispersion characteristics at higher frequencies. Such
classical theories have been successfully used by many authors, as in [Leppington et al., 1982]
in order to model the radiation efficiency and the vibroacoustic response under a reverberant
field [Leppington et al., 2002] of thin orthotropic panels.

Kurtze and Watters [Kurtze and Watters, 1959] were the first to develop an asymptotic model
for the wave dispersion into symmetric flat thick sandwich structures. They divided the flexural
wave speed of a sandwich panel (frequency-wise) into three sections, the first characterized by the
panel vibrating as a whole, the second by the core’s shear wave speed and the third by each of
the two facesheets vibrating separately and loaded with half of the core mass. Nevertheless, the
model assumed the core to be incompressible, and the deformation of the panel in the thickness
sense could not be modelled. Dym and Lang [Dym and Lang, 1974] were the first to develop a
structural model for an infinite sandwich panel by using the kinematic assumptions of [Ford et al.,
1967] and derived the five equations of motion corresponding to the symmetric and antisymmetric
motion of the panel. Moore and Lyon [Moore and Lyon, 1991] extended this structural model
to symmetric sandwiches with an orthotropic core. A consistent Higher-order Shear Deformation
Theory (HSDT) taking into account the core’s shear deformation was developped in [Sokolinsky
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and Nutt, 2004] and used in [Wang et al., 2010,Wang et al., 2005] to construct a structural model of
an infinitely long sandwich panel and calculate its vibroacoustic response within an SEA context.

In [Cotoni et al., 2008], the authors calculated the phase constant surfaces of periodic com-
posite and stiffened structures using FE and periodic structure theory (PST). The authors gave
an expression of the radiation efficiency of the panels based on the calculated wave displacement
shapes. The STL of the panels was expressed through the radiation and mechanical impedances of
the structures. An insight to the calculation of the same quantities by a modal approach was also
given. In [Renji et al., 1997] the authors have used the Mindlin plate theory to derive the flexural
wave speed and modal density of composite sandwich panels. The authors in [Ghinet and Atalla,
2006,Ghinet et al., 2005] used a multi-layer analytical model based on Mindlin theory to compute
the dispersion characteristics within layered structures. They also computed the vibroacoustic
response of layered panels under a diffused sound field using SEA.

A variety of applications of the Wave Finite Element Method (WFEM) has been conducted to
predict the wave speeds of one-dimensional [Mencik and Ichchou, 2005,Mace et al., 2005] and two-
dimensional structures [Inquiété, 2008,Manconi and Mace, 2007]. Introduced by in [Mead, 1973]
the main underlying assumption of the method is the periodicity of the structure to be modelled.
The PST is then coupled to the FEM. A set of structures including a vehicle’s chassis [Houillon,
1999], and a stiffened plate [Ichchou et al., 2008b, Ichchou et al., 2008c] has been modelled using
the WFE method. The two-dimensional technique was successfully used in [Manconi and Mace,
2007] and [Inquiété, 2008] to model the wave propagation in orthotropic thin panels and sandwich
structures.

In this chapter the two-dimensional WFEM is employed in order to compute the Sound Trans-
mission Loss (STL) of thick layered structures by accounting for their symmetric and antisymmetric
wave motion. Anisotropic, multi-layered panels can be accurately modelled using this generic ap-
proach for a broadband frequency range. The resonant transmission coefficient of the panels is
directly expressed in relation to the SEA quantities. A way for computing the reverberant field
STL of the structures directly derived by their SEA properties is also exhibited. The results are
successfully compared to experimental measurements encountered in the open bibliography. A
parametric study considering the vibroacoustic behaviour of layered panels as a function of tem-
perature is also conducted. Results from experiments conducted on a honeycomb sandwich panel
are used within the developped SEA approach in order to calculate the temperature and altitude
dependent STL of the layered panel.

The work presented in this paper is part of a research project first started in 2000 by EADS
Astrium. To tackle the problem of the prediction of the response of composite structures within
the mid-frequency range, an SEA-Like method was chosen (see [Troclet et al., 1999]). Taking
into account for the energy transmission and dissipation characteristics of composite structures
within the mid-frequency domain, is an important challenge. At first, the work was focused on
structure-borne transmission [Troclet et al., 2009, Ichchou et al., 2009]. Then, the fluid/structure
interaction was investigated [Rochambeau et al., 2008]. The results of the current approach will
eventually be used to improve the predictions of the developped models.

The paper is organized as follows: In sec.2.3 the process of solving the resulting polynomial
eigenproblem as well as the post-processing of the occurring solutions is discussed. In sec.2.4 the
calculation of the main SEA quantities, namely the modal density and the radiation efficiency of
the layered panels is presented. In sec.2.5 some numerical applications are exhibited in order to
validate the conducted work. In sec.2.6 the temperature and altitude dependent STL of a sandwich
honeycomb panel is computed. The conclusions are eventually given in sec.2.7.
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2.3 The WFE method

2.3.1 The Wave Finite Element method

A rectangular layered panel is considered hereby. A periodic segment of the panel with dimensions
dx and dy is modelled using conventional FE. Using the dynamic stiffness matrix of the segment, a
nonlinear eigenvalue problem is formulated whose eigenvalues correspond to propagation constants
of the various structural wave types. The formulation and the solution of the eigenproblem is
discussed in sec.1.2.5.

2.3.2 Post-processing the results of the solution

Once the eigenproblem is resolved the results corresponding to real and propagating waves in the
structure have to be distinguished from the ones being computational artifacts or corresponding
to evanescent waves. A second task is correlating the eigenvalues corresponding to the same wave
type for each frequency and for each direction of propagation. The direction dependent wave
mode shapes are mainly caused when coupling highly orthotropic materials (e.g. in sandwich
constructions) together. This causes different proportions between the layer deflections (different
wave mode shapes) for each direction of propagation, making correlation of wave types sometimes
delicate.

In order to distinguish the propagating from evanescent waves an evanescent wave rejection
criterion is used. Supposing that a calculated wavenumber is in the form κ = α + βi, we consider
that under the condition: |α|/|β| > p the wave is propagating, with p a parameter chosen according
to the characteristics of each structure. Typical empirical values of p for composites are between 3
and 10. The selection attempt generally starts with a low p value. If all eigenvalues are categorized
into wave types through the correlation process (see below), the attempt is considered successful.
Otherwise a higher p value is used until all the selected eigenvalues correspond to a set of wave
types.

In order to categorize the eigenvalues and eigenvectors corresponding to the same wave type
together, in the present study each propagating wave mode shapes was compared to the whole
set of wave mode shapes for each angle and frequency. The Modal Assurance Criterion (MAC)
criterion which expresses the correlation of two vectors Φi and Φj was used for this purpose and
can be written as:

MAC =

(

ΦT
i Φ̄j

)

(

ΦT
j Φ̄i

)

(

ΦT
i Φ̄i

)

(

ΦT
j Φ̄j

) (2.1)

where T stands for the transpose and − for the conjugate of each vector. Typical empirical
values for the MAC criterion for orthotropic sandwich structures are between 0.4 and 0.8. On
the other hand for isotropic structures, correlation can be achieved with values as high as 0.99.
Contrary to p parameter, a high MAC value should firstly be attempted. If no correlated wave
modes are found, a lower MAC value is used until all selected eigenvalues are correlated to a set of
wave types. A schematic representation of the process followed in order to select the propagating
wavenumbers for each frequency and direction is shown in fig.2.1.

As already stated, for some configurations (e.g. coupling a highly orthotropic layer to an
isotropic one in a sandwich construction) the wave mode shapes can be strongly direction depen-
dent, making correlation of wave types difficult. In these cases a particularly small angular step has
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Figure 2.1: A schematic representation of the algorithmic procedure of correlating the wave types
with respect to frequency and direction of propagation.
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to be used, in order to minimize the difference of wave mode shapes between consecutive calculated
angles.

2.4 Computation of the energy analysis quantities

2.4.1 Calculation of the modal density

Using the Courant’s formula [Courant and Hilbert, 1989], the modal density of each propagating
wave type w can be written for each angle φ as a function of the propagating wavenumber and its
corresponding group velocity cg:

nw (ω, φ) =
A κw (ω, φ)

2π2 |cg,w (ω, φ) | (2.2)

where A is the area of the panel and the group velocity is expressed as:

cg (ω, φ) =
dω

dκ (ω, φ)
(2.3)

The angularly averaged modal density of the structure is eventually given as a function of
frequency:

nw (ω) =

∫ π

0
nw (ω, φ) dφ (2.4)

2.4.2 Calculation of the radiation efficiency

In order to calculate the radiation efficiency σ (κ (ω)) for each propagating wave type w, relations
presented in the open bibliography are employed. For continuous structures mode shapes of sinu-
soidal form can be assumed in order to avoid any FE discretization errors in the solution. After
employing the Rayleigh’s formula for calculating the induced pressure and the time-averaged power
flow radiated from the vibrating panel, σ (κ (ω)) can be written as in [Leppington et al., 1982]:

σrad,w =
2ω2

c2πA

∫ Lx

0

∫ Lx

0

∫ Ly

0

∫ Ly

0
sin(κx,wx)sin(κx,wx′)sin(κy,wy)sin(κy,wy′)

sin(k0r)

k0r
dydy′dxdx′

(2.5)

with r =
√

(x − x′)2 + (y − y′)2. For a periodic discontinuous structure the assumption of
sinusoidal mode shapes is no longer valid, therefore the radiation efficiency should be calculated
directly from the WFEM derived wave mode shapes. The radiation efficiency expression given
in [Cotoni et al., 2008] can therefore be employed.

2.4.3 Calculation of the Sound Transmission Loss (STL) of a panel by an SEA
approach

The STL (or TL) is one of the most important indices of the vibroacoustic performance of a
structure. The system to be modelled comprises two reverberant chambers separated by the
modelled composite panel attached to a rigid baffle. No flanking transmission is considered in the
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Figure 2.2: The configuration to be modelled by SEA analysis.

SEA model. A graphical representation of the modelled subsystems is given in fig.2.2. The energy
balance of the subsystems as it is considered within an SEA approach (see [Lyon and DeJong,
1995]) is illustrated in fig.2.3, in which E1, E3 stand for the acoustic energy of the source room and
the receiving room respectively and E3 for the vibrational energy of the composite panel. Moreover
Pin is the injected power in the source room, P1d, P2d and P3d stand for the power dissipated by
each subsystem and P13 is the non-resonant transmitted power between the rooms. Considering
each wave type w = a, b, c...n propagating within the composite panel as a separate SEA subsystem
we have:

P12 =
n
∑

w=a
P12,w

P23 =
n
∑

w=a
P23,w

(2.6)

where P12 and P23 stand for the power flow between the rooms and the panel.

The STL is defined as:

STL = 10 log10

(

1

τ

)

(2.7)

where τ is the transmission coefficient which represents the ratio between the transmitted and
the incident sound powers. It can be written as the sum of the resonant and the non-resonant
transmission coefficient:

τ =
P23 + P13

Pinc
=

n
∑

w=a

P23,w

Pinc
+

P13

Pinc
(2.8)

where Pinc stands for the acoustic power incident on the layered panel, which for a reverberant
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Figure 2.3: A schematic representation of the SEA power exchanges and energies for the modelled
system.

sound field can be written as:

Pinc =

〈

p2
1

〉

A

4ρc
(2.9)

where
〈

p2
1

〉

the mean-square sound pressure. An attempt to calculate the resonant coefficient
for each wave type w is hereby made. Assuming no energy exchanges between different wave types
within the structure, the energy balance of a structural wave subsystem can be written as:

P12,w = P2d,w + P23,w (2.10)

The power dissipated can be written as:

P2d,w = E2,wωη2,w (2.11)

with η2,w the structural loss factor of the wave type w. The vibrational energy of the panel
due to wave type w can be written as:

E2,w = ρsA
〈

υ2
w

〉

(2.12)

where ρs is the mass per unit of area, A is the total area of the panel and
〈

υ2
w

〉

is the mean-
square panel vibration velocity due to wave type w.

46



The transmission loss of layered panels by a 2D WFEM approach Chapter 2

The power flow P12,w can be written using the SEA reciprocity rule, as:

P12,w = ωη12,wn1

(

E1

n1
− E2,w

n2,w

)

= ωη21,wn2,w

(

E1

n1
− E2,w

n2,w

)

(2.13)

where n1,n2,w are the modal density of the source room and of the wave type w respectively
and η21,w the coupling loss factor between the receiving room and the wave type w which can be
written as:

η21,w = η23,w =
ρcσrad,w

ρsω
(2.14)

Where ρ is the acoustic medium density of the room. The total acoustic energy of the source
room can be written as:

E1 =

〈

p2
1

〉

V

ρc2
(2.15)

A generally acceptable approximation for the modal density of the source room is made as:

n1 =
V1ω

2

2π2c3
(2.16)

then the modal energy of the source room can be written as:

E1

n1
=

2π2c
〈

p2
1

〉

ρω2
(2.17)

Using the SEA reciprocity rule again, the power flow from the composite panel to the receiving
room can be written as:

P23,w = ωη23,wn2,w

(

E2,w

n2,w
− E3

n3

)

= ωη23,w

(

E2,w − E3n2,w

n3

)

(2.18)

It is hereby assumed that n3 >> n2,w (reasonable for typically sized cavities and especially for
medium and high frequencies) and it is also logical that E2,w > E3 for an acoustically efficient, out

of plane wave. Therefore presuming that E2,w >>
E3n2,w

n3
, eq.(2.18) can be written as:

P23,w = E2,wωη23,w (2.19)

Eventually, after manipulating eq.(2.9) and eq.(2.11)-(2.19) and substituting them into eq.(2.10)
we get:

〈

υ2
w

〉

〈

p2
1

〉 =
2πc2σrad,wn2,w

ρsω2A(ρsωη2,w + 2ρcσrad,w)
(2.20)

Using eq.(2.12),(2.14),(2.19),(2.20),(2.9) and substituting them into eq.(2.8) we get the expres-
sion for the transmission coefficient of the wave type w:

τw =
8ρ2c4πσ2

rad,wn2,w

ρsω2A(ρsωη2,w + 2ρcσrad,w)
(2.21)
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Table 2.1: Mechanical properties of materials
Material I Material II Material III Material IV Material V Material VI Material VII

ρ = 9740 kg/m3 ρ = 1600 kg/m3 ρ = 160 kg/m3 ρ = 1550 kg/m3 ρ = 110.44 kg/m3 ρ = 629.9 kg/m3 ρ = 16 kg/m3

vxy = 0.028 vxy = 0.15 vxy = 0.15 vxy = 0.3 vxy = 0.45 vxy = 0.15 -
Ex = 2023.7 GPa Ex = 49 GPa − Ex = 48 GPa Ex = 0.1448 GPa Ex = 8.3 GPa Ex = 0.0083 GPa
Ey = 31375 GPa Ey = 49 GPa − Ey = 48 GPa Ey = 0.1448 GPa Ey = 8.3 GPa Ey = 0.0083 GPa

Gxy = 888.79 GPa − − Gxy = 18.1 GPa Gxy = 0.05 GPa - Gxy = 0.0031 GPa
Gyz = 888.79 GPa − Gyz = 0.09 GPa Gyz = 2.76 GPa Gyz = 0.05 GPa - Gyz = 0.0031 GPa
Gxz = 888.79 GPa − Gxz = 0.14 GPa Gxz = 2.76 GPa Gxz = 0.05 GPa - Gxz = 0.0031 GPa

The total transmission coefficient of the panel τ can now be written as:

τ =

n
∑

w=a

τw +
P13

Pinc
(2.22)

The non resonant transmission coefficient τnr = P13/Pinc for a diffused acoustic field can be
written as in [Ghinet and Atalla, 2006]:

P13

Pinc
=

∫ 2π
0

∫ θmax

0

4Z2
0σ(θ, φ, ω) sin θ cos2 θ

|iωρs + 2Z0|2
dθdφ

π(1 − cos2 θmax)
(2.23)

in which θ and φ are the incidence angle and the direction angle of the acoustic wave respectively,
and Z0 = ρc/ cos θ is the acoustic impedance of the medium. The term θmax stands for the
maximum incidence angle, accounting for the diffuseness of the incident field. It is considered that
θmax = pi/2 for all the results presented in the current work. The term σ(θ, φ, ω) is the corrected
radiation efficiency term. It is used in order to account for the finite dimensions of the panel
by accounting for the radiation of the mass controlled non-resonant modes, and it is calculated
using a spatial windowing correction technique presented in [Allard, 1993]. In eq.(2.22) the total
transmission coefficient of the layered panel is expressed merely as a function of its SEA quantities
and independently of the room dimensions and modal energies.

2.5 Numerical examples

In this section numerical applications of the approach described above will be presented. In order
to validate the proposed models, four structures were chosen to be computed; the first being a thin
stratified orthotropic composite panel. Subsequently, two honeycomb sandwich structures as well
as a particularly thick sandwich panel comprising a soft core are modelled. It should be noted that
experimental results for the response of layered panels under a reverberant acoustic field are rare
to find in the open bibliography. Consequently, the available options of composite structures to
be modelled while concurrently having test data to compare with were not a lot. The mechanical
static characteristics of each material used for the validation process are mentioned in Table 2.1,
in which ρ is the density of the material, Ei the Young modulus in direction i, Gij stands for the
shear modulus in direction j on the plane whose normal is in direction i and vij for the Poisson’s
ratio that corresponds to a contraction in direction j when an extension is applied in direction i.
The extraction of the FE matrices for each structural segment was carried out using a commercial
FE software package, the eigenproblems were solved within a commercial mathematics software
package and the results were then post processed as described in sec.2.3.2.
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Figure 2.4: Comparison of the WFEM calculated dispersion curves (–) with CPT analytical formu-
las for: flexural (�), shear (⋄) and membrane (∗) propagating wavenumbers for a thin orthotropic
panel

2.5.1 Validation on an orthotropic thin monolithic structure

The wavenumbers for the bending, shear and membrane wave types were identified for a thin,
stratified type structure for propagation towards x direction. The panel is made of material I. Its
thickness is equal to h=0.5mm and its dimensions are 1.4m x 0.9m. The resulting dispersion curves
are presented in fig.2.4, and the results are compared with the CPT analytic solutions (see [Graff,
1991]). Excellent accordance is observed for the shear and the membrane wave types. Concerning
the flexural wave type, the WFE predictions are very much in agreement with the analytical formula
even for the high frequency range. To give an idea for the discrepancy between the two models,
a difference of 0.09% is observed at 10kHz. Under an acoustic excitation, antisymmetric wave
modes are responsible for the transmission of the vast majority of energy through the structure,
therefore they will be the main wave type to be considered in the SEA analysis.

The flexural wavenumbers are presented as a function of direction and frequency in fig.2.5.
The directional dependence of the wavenumber within a highly orthotropic panel is observed. It
is known that each mode of the panel corresponds to an exact set of wavenumbers depending
on the panels boundary conditions. For a simply supported panel this set is: kx = mπ/Lx and
ky = nπ/Ly where m,n are integers and Li the length and width of the panel. Eventually, with the
dispersion characteristics of the structure known for every direction of propagation, the frequency
of occurrence and the corresponding wavenumbers for each mode can be found by interpolating
the values in fig.2.5.

The modal density of the monolithic orthotropic panel is subsequently calculated using the an-
tisymmetric wave propagation characteristics presented in fig.2.5 and eq.(2.4). Small discrepancies
are observed between the values calculated using the WFEM and the CPT because of the fact
that the latter approach does not account for the shear effects within the laminate. As expected,
the two predictions are very similar for the low frequency range. The largest divergence for the
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Figure 2.6: Comparison of the predicted modal density for a monolithic panel: present approach
(–), CPT (- -)

two predictions is 4.1% and is observed at the highest frequency range of the analysis. It is seen
that taking into account for the shear effects within the laminate becomes important as frequency
increases.

The radiation efficiency of the monolithic orthotropic panel is calculated using the Leppington’s
asymptotic and transition formulas. The results are shown in fig.2.7. The beginning of the coin-
cidence range (approximately 2kHz) is marked by an intensive increase of the radiation efficiency,
which continues rising steadily throughout the coincidence region. The end of the coincidence range
(approximately 9.5kHz) is marked with a peak of the radiation efficiency curve. Fluctuations of
the curve throughout the coincidence range were expected and are discussed in [Leppington et al.,
1982]. The individual modal radiation efficiencies are also calculated using the formulas given
in [Wallace, 1972] and presented in the same figure. Each mode is separately attributed to a
different category depending on its individual characteristics namely the directional wavenumbers
kx and ky and its occurrence frequency. It can be clearly observed that the corner modes are the
less radiating ones, while the surface modes are the most efficient with regard to sound radiation.
The frequency average of the modal radiation values is calculated using the relations presented
in [Anderson and Bratos-Anderson, 2005]. The result is presented in the same figure. Very good
agreement is observed comparing with the calculations.

The STL of the orthotropic thin panel under a reverberant acoustic field is presented in fig.2.8.
On the same figure experimental data for the same quantity, published in [Leppington et al., 2002]
are shown. The results of an asymptotic TL calculation model presented in [Leppington et al., 2002]
are also compared in the same figure. Excellent agreement between the experimental and predicted
results is observed for the sub-coincident frequency range as well as for the whole coincidence range.
The radiation efficiency is not overestimated -in contrast to the asymptotic model- at the beginning
of the coincidence area. The fluctuations of the TL curve throughout the coincidence range are
due to the radiation efficiency formulas used and are discussed in [Leppington et al., 1982]. A
structural loss factor equal to 0.01 is used. The discrepancy between the numerical prediction
and the experimental results at the end of the coincidence range can either be attributed to an
overestimation of the radiation efficiency or to a higher structural damping coefficient (probably
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Figure 2.7: Comparison of the radiation efficiency of a monolithic orthotropic panel using: the
present methodology (–), modal radiation formulas in [Wallace, 1972] (surface modes ’o’, x-edge
modes ’+’, y-edge modes ’*’, x-y edge modes ’x’, corner modes ’⋄’), frequency averaged radiation
efficiency according to [Anderson and Bratos-Anderson, 2005] (- -)

due to large deflections) for the panel in this frequency range. Fast convergence of the predicted
values towards the experimental data is observed in the post-coincident frequency range.

2.5.2 Validation on honeycomb sandwich panels

A sandwich panel is subsequently considered. It comprises a core made of material V and facesheets
made of material IV. The thickness of the core is equal to 12.7mm while the thickness of the
facesheets is equal to 1.2mm. The dimensions of the panel are equal to 1.37m x 1.65m. The
calculated antisymmetric wavenumbers of the panel in x direction are presented in fig.2.9. The
results in [Ghinet and Atalla, 2006] for the same panel using a LW approach are exhibited in the
same figure and are in excellent agreement with the presented approach. The frequency ranges
of the dynamic behaviour of the sandwich panel are clearly distinguished (see also [Wang et al.,
2010]). A low-frequency region where the panel vibrates as a whole, an intermediate region where
the shear stiffness of the panel dominates its vibrational behaviour and a high-frequency region
where the flexural wavenumber for the panel is converging to the wavenumber of each facesheet
vibrating separately, loaded with half of the core mass. The dispersion relation predicted by a
Mindlin type model proposed for thick sandwich panels in [Renji et al., 1997] which takes into
account the shear deformation of the panel is depicted in the same figure. The Mindlin theory
diverges quickly when the sandwich panel enters the shear deformation dominated region. As a
result a misguiding coincidence frequency for the antisymmetric wave (fc1 = 560Hz) is predicted,
which is far from the one predicted by the WFEM (fc1 = 1190Hz). At higher frequencies the
Mindlin model further diverges, having a difference of 250% at 40kHz. The asymptotic Kurtze and
Watters (KW) model implemented as presented in [Davis, 1999] is also shown in the same figure.
It is seen that the KW prediction agrees asymptotically with the WFEM model, with the three
regions of the panel clearly distinguished. However discrepancies between the two models occur at
the transition regions of the KW model.

In order to validate the WFEM predicted values for the modal density of a sandwich panel, a
structure presented in [Zhou and Crocker, 2010] was modelled. It comprises a honeycomb foam
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Figure 2.8: Comparison of the diffused field TL of an orthotropic thin panel: present methodology
(–), model in [Leppington et al., 2002] (∗), experimental results in [Leppington et al., 2002] (- -)
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Figure 2.10: Comparison of the predicted modal density for a sandwich panel: present approach
(–), model in [Clarkson and Ranky, 1983] (- -), experimental results in [Zhou and Crocker, 2010]
(o)

core made of material III and facesheets made of material II. The thickness of the core is equal
to 6.35mm while the thickness of the facesheets is equal to 0.5mm. The dimensions of the panel
are equal to 1.12m x 0.62m, but were reduced to 0.84m x 0.42m when the panel was fixed to the
baffle. The results of the modal density are shown in fig.2.10. An excellent agreement between the
calculations and the experimental measurements is observed. Within the lower frequency range
the present approach seems to correctly predict the mean value around which the measured modal
density is dispersed.

The radiation efficiency of the honeycomb foam core sandwich is calculated using the same set
of asymptotic formulas as before and is compared to the predictions of the Crocker’s model and
the experimental data presented in [Zhou and Crocker, 2010]. It is observed that the Leppington’s
formula combined with the WFEM predictions leads to more accurate results in a broadband fre-
quency range. Furthermore, the used set of formulas does not overestimate the radiation efficiency
of the panel at the coincidence range.

Furthermore, the diffused field STL of the foam filled honeycomb sandwich structure is cal-
culated. The result is depicted in fig.2.12 along with experimental data presented in [Zhou and
Crocker, 2010]. The results demonstrate a very good correlation. The low-frequency response
seems to be very well simulated. The coincidence frequency band is very well predicted and above
coincidence discrepancies of less than 2dB are observed between the experimental results and the
SEA models. Higher experimental STL values around the coincidence frequency are probably due
to an increase of damping for the panel. In the same figure the results of the SEA model presented
in [Zhou and Crocker, 2010] are also shown. The discrepancies between the two SEA models are
due to the better prediction of the radiation efficiency by the current approach and the spatial
windowing correction hereby used. Above coincidence, the results of the two SEA models are very
well correlated.
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Figure 2.11: Comparison of the predicted radiation efficiency for a sandwich panel: Leppington’s
set of formulas (–), model in [Zhou and Crocker, 2010] (- -), experimental results in [Zhou and
Crocker, 2010] (o)
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Figure 2.12: Comparison of the diffused field TL of a sandwich panel: present methodology (–),
model in [Zhou and Crocker, 2010] (- -), experimental results in [Zhou and Crocker, 2010] (o)
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Figure 2.13: Predicted wavenumbers for the out of plane motion of the thick panel: WFEM anti-
symmetric (–), WFEM symmetric (- -), results in [Wang et al., 2010] (�)

2.5.3 Validation on a thick layered panel

For layered panels comprising a thick and soft core, the dilatational motion of the soft layer (also
referred to as symmetric motion) can contribute significantly to the resonant acoustic transmission
of the panel (see [Dym and Lang, 1974]). In order to exhibit the robustness of the presented
approach considering the modelling of arbitrarily thick panels a sandwich structure comprising a
38.1mm core made of material VII, coupled to 6.35mm thick facesheets made of material VI is
hereby modelled. The WFEM computed phase velocities for the propagating, out of plane wave
motions are shown in fig.2.13 and are compared to predictions of an analytic HSDT derived model,
presented in [Wang et al., 2010]. Excellent correlation is observed between the two predictions.

A cut on frequency is observed for the symmetric motion above which the wave starts propa-
gating within the panel. Below this cut on frequency the dilatational motion is not expected to
influence the transmission coefficient of the panel due to the particularly low modal density of the
wave mode. A lock-up of the symmetric and the antisymmetric wave motion is observed for higher
frequencies. The total transmission coefficient of the panel is calculated using eq.(2.22) and the
STL of the structure is exhibited in fig.2.14 along with experimental results provided in [Wang
et al., 2010].

Very good correlation between the computed values and the measurements is observed below
the coincidence range. It is noted that the acoustic coincidence frequency for the antisymmetric
motion of the panel occurs at 2900Hz. At 2000Hz the impact of the dilatational motion of the
panel on its TL becomes evident with the values presenting a sudden decrease of 14dB at the cut
on frequency of the symmetric wave. The coincidence range is extended up to 3000Hz because
of the antisymmetric coincidence phenomenon and because of the fact that the symmetric phase
velocity remains very close to the one of the acoustic medium. A closer look to the contribution
of each acoustic transmission path to the total transmission coefficient is shown in fig.2.15.

The mass controlled phenomena dominate the low frequency range of the total transmission
coefficient. Approaching the coincidence range, the resonant contribution becomes the most im-
portant one. The symmetric motion of the panel dominates its acoustic transmission at the dilata-
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Figure 2.14: Comparison of the diffused field TL of the thick sandwich panel: present approach
(–), experimental results in [Wang et al., 2010,Narayanan and Shanbhag, 1982] (o)
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Figure 2.16: Comparison of the diffused field TL of a sandwich panel: present methodology (–),
SEALASCAR prediction (--), experimental results in [Zhou and Crocker, 2010] (o)

tional motion cut on, while close to the antisymmetric coincidence frequency both wave motions
contribute to the transmission. In the post coincidence frequency range the contribution of the two
wave motions is almost equal due to fact that the corresponding phace velocities are very close. It
is therefore shown that thick and heavy layers do not always reduce the acoustic transmission of a
panel because of the fact that they also reduce its dilatational cut on frequency. It is observed that
the effect of the symmetric motion on the acoustic transparence of a panel may not be neglected.
Care has to be taken therefore when designing an insulating structure for the existence of more
than one out of plane propagating wave modes.

2.5.4 Comparison to SEALASCAR predictions

The software daily used for high frequency vibroacoustic computations within EADS Astrium is
SEALASCAR. It makes use of analytical formulas for the calculation of the SEA CLF of thin and
layered panels. The STL of the sandwich panel presented above is modelled using SEALASCAR
and the predictions are compared to the presented approach and to experimental results in fig.2.16.

It is observed that in the high frequency range the response of the panel is correctly modelled.
Slight discrepancies are due to the different estimations on the modal density of the panel. It is
clear however that the coincidence frequency of the structure is not well predicted using classic
analytic formulas. As in fig.2.12, the Crocker radiation efficiency model overestimates the radiation
efficiency of the panel in the acoustic coincidence range, resulting in very low STL values. In the
lower frequency range SEALASCAR again underestimates the STL of the panel mainly because it
does not take into account for the panel’s finite dimensions.
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2.6 The impact of temperature on the vibroacoustic response of
layered panels

2.6.1 Introduction

An aerospace structure operates within a broad temperature range, typically varying between -100
oC to 200 oC for launch vehicles. With regard to aircrafts, their mission usually involves narrower
temperature ranges (typically -60 oC to +50 oC) as is the case for automotive structures. A very
little amount of research (to the best of the author’s knowledge) has been conducted on predicting
the effect of temperature on the vibrational behaviour of layered structures. Hereby an attempt is
made in order to exhibit the sensitivity of the vibroacoustic behaviour of the previously considered
system to the ambient flight temperature.

The mechanical characteristics of a sandwich panel are experimentally measured using a Ther-
mal Mechanical Analysis (TMA) configuration. The TMA measured modula are injected in a
WFEM model in order to predict the temperature dependent wave propagation characteristics of
the sandwich panel. These characteristics are validated by the results of an experimental FRF
analysis of the entire sandwich panel for various temperatures. Initially the system will be con-
sidered to be laying on the sea level. In this case temperature has significant influence on the
mechanical characteristics of the panel, the density of the acoustic medium and the celerity of
sound. The effect of the modification of these parameters on the TL of the structure will be in-
vestigated. Subsequently the structure will be considered to operate at an altitude greater than
zero. In this case the modified system parameters have to be expressed as a function of altitude,
in order to compute the altitude dependent TL of the layered panel.

2.6.2 Accounting for temperature dependent parameters

An orthotropic sandwich panel is hereby considered. Its facesheets are made of a 1mm thick carbon
epoxy composite comprising four layers of 1-1 twilled weaves. Its core is made of an orthotropic
12.7mm thick Nomex honeycomb material. The technique used for the panel’s fabrication is to
impregnate the carbon fabric within the resin, then drape it over the mold, add the honeycomb
and then put the system in vacuum. The polymerization takes place at all parts at the same time
and the honeycomb absorbs some of the resin included in the tissues and thus adheres thereto.
The same kind of resin therefore serves as the facesheets matrix and as an adhesion agent. The
mechanical characteristics of the panel are exhibited in Table 2.2. Its facesheets are made of
material I, while its core is made of material II.

Table 2.2: Mechanical properties of materials

Material I Material II

ρ = 1410 kg/m3 ρ = 48 kg/m3

Ex = 54 GPa Ex = 85 MPa
Ey = 54 GPa Ey = 85 MPa

vxy = 0.09 vxy = 0.23
Gxy = 8.5 GPa −

− Gyz = 44 MPa
− Gxz = 24 MPa

A segment of the panel is used to measure its temperature dependent characteristics at the TMA
device. A constant 1Hz motion is selected for all the TMA measurements. A 0.1% deformation
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Figure 2.17: Aspect of the facesheet clamped in the TMA machine

was imposed as displacement to the segment during the tests. Initially a longitudinal traction test
of the facesheet of the structure was conducted (see fig.2.17). The dissipation of the segment is
measured by the phase lag between stress and strain δ for which we have tan δ = E′′/E′, with E′′

the Loss modulus and E′ the Storage modulus. The results are shown in fig.2.18. It is noted that
the measurements were conducted in a temperature range of -10 oC to 160 oC due to the limits
of the apparatus used. Results for temperatures below -10 oC are extrapolated assuming smooth
quadratic expansion of the curves which is generally acceptable for composite materials having no
significant transitions (e.g crystallization) in their structure at low temperatures. It is observed
that a smooth nearly linear behaviour with regard to both the Young modulus and the tan(δ) is
observed up until 90 oC. Thereafter the resin included in the structure enters its glass transition
region (see [Angell, 1988]). A high peak is observed for the dissipation of the material, typical for
most materials in the glass transition range. The Young modulus is also decreased by 45% in the
range of 90 oC to 110 oC. After the glass transition region the Young modulus keeps decreasing
with a steady rate, while the tan(δ) quantity after a short decrease starts increasing again due to
the high viscosity of the melting resin.

In order to measure the temperature dependent shear modulus of the honeycomb core the
configuration shown in fig.2.19 was adopted. An aluminium layer was adhered to the facesheets of
the segment in order for the elasticity of the later (especially after the glass transition range) not to
affect the measured results on the shear deformation of the segment. Traction forces were applied
to opposite facesheets of the panel, allowing for deforming the core shear-wise. The obtained
results are shown in fig.2.20. A similar behaviour is observed as with the facesheet measurements.
As aforementioned the same type of resin is used for forming the facesheets and as an adhesive
agent between the facesheets and the core, therefore the glass transition of the resin is responsible
for the decrease of the shear modulus of the core. An overall decrease of 38% of the shear modulus
is observed throughout the glass transition range.

Temperature has a severe impact on the characteristics of the acoustic medium which directly
influences the radiation efficiency and therefore the TL of the panel. A constant 50% humidity
factor is considered. The system is initially considered at a sea level altitude. Relations between
temperature and the density ρ0 as well as the celerity c0 of the acoustic medium can be found in
the open bibliography such as in [Everest, 1994]. The temperature dependent characteristics of the
acoustic medium that will be taken into account during the following calculations are exhibited in
fig.2.21
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Figure 2.18: Experimentally obtained temperature dependent Young modulus and the corresponding
tan(δ) for the facesheet of the sandwich panel: Young modulus (–), tan(δ) (--)

Figure 2.19: Aspect of the core shearing configuration clamped in the TMA machine
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Figure 2.20: Experimentally obtained temperature dependent shear modulus and the corresponding
tan(δ) for the core of the sandwich panel: shear modulus (–), tan(δ) (--)
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Figure 2.21: The temperature dependent density and celerity of the acoustic medium: ρ0 (–), c0

(--)
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Figure 2.22: Experimentally obtained acceleration FRF of the sandwich panel for different temper-
atures: 10 oC (--), 25 oC (–), 47 oC (· · · )

2.6.3 Experimental validation of the WFEM predictions

The TMA measured quantities can be injected in a WFE model of the sandwich panel in order to
predict its temperature dependent wave dispersion characteristics. In order to validate the WFEM
results the sandwich panel is freely suspended in a climatic test chamber and is excited with a
pseudo-random broadband noise. Further details on the experimental procedure as well as the
calculation of the experimental structural wavenumbers through the measured natural frequencies
of the panel in discussed in sec.3.5. The temperature in the test chamber is initially regulated at
its extreme low at 10 oC, then at 25 oC and finally at its upper limit at 47 oC. The results of the
acceleration FRF at the excitation point for the three different temperatures are shown in fig.2.22.

It is observed that for the very low frequency range, the results are very similar and the flexural
stiffness presents no significant differences with respect to temperature. For higher order modes
however, it seems that the ’cold’ panel presents a greater damping coefficient compared to the
’hot’ one. It is also observed that the same modes occur at lower frequencies for the ’hot’ panel,
suggesting a lower flexural stiffness as proposed by the TMA results. It is noted as an example
that the seventh flexural mode occurs at 1470Hz with a damping ratio equal to 2.1% for the panel
at 10 oC, while the same mode occurs at 1425Hz with a damping ratio equal to 1.4% for the
panel at 47 oC. The growing damping difference of the ’hot’ and the ’cold’ panel with respect to
frequency, suggests a higher radiation efficiency for the ’cold’ panel, which will be verified later in
this section. The same observations are valid for the higher frequency range. It is evident that
these differences will be even greater for real aerospace structures which are exposed to larger
temperature variations during their operation cycle.

Subsequently, the WFEM results calculated using the TMA measured values are compared
to the experimental flexural wavenumbers as derived by fig.2.22. The comparison is exhibited in
fig.2.23. A very good correlation is observed between the WFEM and the experimentally measured
wavenumbers for all the three temperatures. It is clearly shown that the difference between the
wavenumbers increases with frequency reaching 3.3% at 1800Hz between 10 oC and 47 oC. It is
evident that this difference will be much greater for higher frequencies and larger temperature
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Figure 2.23: Comparison between the experimental and the WFEM predicted wavenumbers of the
sandwich panel: experimental 10 oC (∗), 25 oC (�), 47 oC (O), WFEM 10 oC (· · · ), 25 oC (–),
47 oC (--)

ranges.

In order to more accurately exhibit the correlation between the experimental and the WFEM
results, the predicted resonance frequencies for the (7,0) and the (8,0) modes of the panel are shown
in fig.2.24 for the three tested temperatures. The observed divergencies between the WFEM and
the experimental results vary from 0.2% to 0.3%. Very good agreement is therefore observed.

2.6.4 The influence of temperature on the modal density of the panel

In order to exhibit the effect of ambient temperature on the SEA quantities of a panel, the already
calculated sandwich panel used in sec.2.5.2 is hereby considered. The same panel will be used for
calculating its temperature dependent loss factor, radiation efficiency and TL. The evolution of the
mechanical characteristics of its facesheets and core with respect to temperature is considered to be
analogous to the TMA measurements shown in fig.2.18, 2.20. The wave dispersion characteristics
of the panel are calculated using the WFEM for five temperatures: -100 oC, 25 oC, 90 oC, 110 oC
and 160 oC. The modal density for the flexural modes of the panel is computed using eq.(2.4) and
the results are presented in fig.2.25.

It is observed as expected that the modal density increases when stiffness decreases and the
panel softens. Before the glass transition relatively small differences are observed e.g the modal
density between -100 oC and 90 oC presents a constant discrepancy of 7.5%. However when it
comes to glass transition the modal density of the panel rapidly increases resulting in a difference
of 46% between -100 oC and 160 oC. Such discrepancies can have an important impact on the TL
calculation of the panel.
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Figure 2.24: Comparison of the predicted (7,0) and (8,0) modes of the panel for the three testing
temperatures: experimental predictions (�) and WFEM (∗)
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Figure 2.25: Temperature dependent modal density of the sandwich panel: -100 oC (∗), 25 oC (–),
90 oC (△), 110 oC (--), 160 oC (· · · )
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2.6.5 The influence of temperature on the loss factor of the panel

The measurement of the tan(δ) quantity allows for expressing the stiffness matrix of the facesheets
and the core Kf ,Kc, as well as the global stiffness matrix of the panel K as:

Kf = K
′

f + iK
′′

f

Kc = K
′

c + iK
′′

c

K = K
′
+ iK

′′
=

3
∑

n=1
K

′

n + i
3
∑

n=1
K

′′

n

(2.24)

In order to compute the global intrinsic loss factor of the sandwich panel, a similar approach
as the one presented in [Manconi and Mace, 2010] is hereby adopted. It is assumed that the
shear modulus of the facesheets retains the same proportion to the Young modulus throughout the
temperature range. The same assumption is made for the mechanical characteristics of the core.
Using WFEM analysis, the loss factor at each direction of propagation can be expressed as:

η(ω, T, θ) =
Q∗(ω, T, θ)K

′′
(T )Q(ω, T, θ)

Q∗(ω, T, θ)K′(T )Q(ω, T, θ)
(2.25)

with η the loss factor for the flexural wave motion, Q = [ΦT
Q ΦT

Qe−ikxLx ΦT
Qe−ikyLy ΦT

Qe−ikxLxe−ikyLy ]T

the modal displacements of the segment’s nodes for the flexural wave mode, K
′

the real part of
the segment’s stiffness matrix and K

′′
its imaginary part. The expression of the global loss factor

is eventually given by averaging over all directions of propagation and taking into account for the
mode count of the panel in each direction as:

η(ω, T ) =

π
∫

0

η(ω, T, θ)dN(ω, T, θ)

π
∫

0

dN(ω, T, θ)

=

π
∫

0

η(ω, T, θ)k(ω, T, θ)
∂k(ω, T, θ)

∂ω
dθ

π
∫

0

k(ω, T, θ)
∂k(ω, T, θ)

∂ω
dθ

(2.26)

The calculated global loss factors of the sandwich panel for each temperature are shown in
fig.2.26. As expected, very high values of the loss factor are observed at 110 oC where the glass
transition takes place. It is also observed that the loss factor is much more affected by the local loss
factor of the facesheets. This was expected as the facesheets are the ones that offer the greatest part
of the panel’s rigidity and therefore influence much more the formulation of the stiffness matrix.

2.6.6 Influence on the acoustic radiation efficiency of the panel

The Leppington’s formula is used hereby in order to calculate the radiation efficiency of the sand-
wich panel for each considered temperature. The flexural wavenumbers, as well as the acoustic
medium characteristics of fig.2.21 are injected in the model. The resulting radiation efficiencies
are presented in fig.2.27.

It is observed that temperature has a significant impact on the radiation efficiency of the
structure. The coincidence frequency utterly depends on the wave phase velocity inside the acoustic
medium and the the structure. When temperature increases, phase velocity in the acoustic medium
increases, while the one of the waves propagating inside the layered panel decreases, which results
in a higher coincidence frequency. The observation made in sec.2.6.3 on the radiation damping
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Figure 2.26: Temperature dependent intrinsic loss factor of the sandwich panel: -100 oC (∗), 25
oC (–), 90 oC (△), 110 oC (--), 160 oC (· · · )
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Figure 2.27: Temperature dependent acoustic radiation efficiency of the sandwich panel: -100 oC
(∗), 25 oC (–), 90 oC (△), 110 oC (--), 160 oC (· · · )
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Figure 2.28: Temperature dependent Transmission Loss of the sandwich panel at sea level: -100 oC
(∗), 25 oC (–), 90 oC (△), 110 oC (--), 160 oC (· · · )

is therefore verified; at lower frequencies, a ’cold’ panel has a higher radiation efficiency as its
coincidence frequency is closer than the one for a ’hot’ panel.

2.6.7 Influence on the TL of the panel

The TL of the panel, is calculated using the approach presented in sec.2.4.3, and the results
computed for each temperature are compared to the ones of fig.2.12. The temperature dependent
TL is shown in fig.2.28.

As was expected, the first noticeable difference between the compared temperatures is regarding
to the coincidence frequency of the panel, which ranges from 850Hz at -100 oC up to 7500Hz at
160 oC. For results below the glass transition temperature, the TL is generally divided into three
ranges. The sub-coincident range where the non-resonant transmission dominates and the results
are close, the coincidence range where the TL mainly depends on the radiation efficiency prediction
and the damping loss factor and the post-coincident damping controlled range where the inclination
of the TL curve mainly depends on the damping of the panel. When it comes to the results for the
panel within the glass transition region, the TL values are much greater throughout these three
bands. This is principally due to the much greater loss factor of the panel in those temperatures.
In the sub-coincident range, lower radiation efficiency also contributes to the higher TL. It can
generally be concluded that operation in or after the glass transition temperature of the panel can
result is improved acoustic insulation performance. Once more it is observed that the mechanical
and acoustic performances of the structure need to be compromised. It seems finally that the
higher modal density values of the panel at higher temperatures cannot counterbalance the effect
of radiation efficiency and damping.

2.6.8 The impact of altitude on the TL of the panel

In the previous section it was verified that the impact of the operating and ambient temperature
on the TL of a layered panel can be significant. The operation of aerospace structures however is
not only conducted at sea level. Therefore in this section, the TL will be expressed as a function of
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Figure 2.29: Altitude dependent parameters: Ambient temperature (–), density (· · · ) and celerity
(--) of the acoustic medium

altitude. The temperature, the air density and the sound speed inside the troposphere are shown
as a function of altitude in fig.2.29.

It is noted that in order to get a global idea of the operating conditions for a launch vehicle
the whole atmospheric range should be verified. However outside the troposphere the relation
of temperature and air pressure to altitude becomes more complicated. The resulting TL of the
sandwich panel at 0m, 5000m and 10000m is shown in fig.2.30.

It is observed that at 10000 meters the panel has a higher TL with a difference approaching
9dB compared to the same panel at sea level. This divergence is mainly attributed to the lower
atmospheric air density at higher altitudes which radically reduces the resonant transmission con-
tribution. The effect on the radiation efficiency is also noticeable, with the coincidence frequency
varying from 1800Hz at sea level to 1100Hz at 10000m.

2.7 Conclusions

The modelling of the vibroacoustic behaviour of composite layered structures with orthotropic
material characteristics, was accomplished through a wave-context SEA approach. Summarizing
the most important points of the presented work: 1) A description of the formulation of the
WFE approach was given. The process followed for post-processing the results of the resulting
eigenproblem was described. 2) The WFEM was applied to composite, arbitrarily layered panels
in order to predict their dispersion characteristics. The predicted dispersion characteristics were
successfully compared to bibliographic results. The advantage of the WFEM with respect to
classical analytical models, especially with regard to predicting the correct coincidence frequency
of composite structures is of great importance for a proper vibroacoustic analysis. 3) The main
SEA quantities, namely the modal density and the radiation efficiency of the panels were computed
following the calculation of their dispersion characteristics. The calculation was done using analytic
formulas in a wave context. The results showed an excellent correlation between a variety of
bibliographic models and the current approach. 4) For the calculation of the STL of the panels
a classic SEA approach was adopted. A formula for computing the STL derived directly by the
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Figure 2.30: Altitude dependent Transmission Loss of the sandwich panel: sea level (–), 5000
meters (--), 10000 meters (· · · )

characteristics of the structures, with no dependence on the room properties was given. A generally
very good agreement between the experimental measurements and the STL predictions of the
presented method was observed throughout the frequency band, validating the effectiveness and
the robustness of the later. 5) Care has to be taken when modelling the dissipation characteristics
of composite structures especially around the coincidence frequency, as it can be increased enough
to cause misleading STL predictions. 6) The symmetric and the antisymmetric wave motion within
a thick layered panel was well predicted. It was shown that adding mass to a panel does not always
reduce its acoustic transmission and that the effect of the symmetric motion on the STL especially
during its cut-on frequency range should not be neglected. 7) The temperature and altitude
dependent STL of a sandwich orthotropic panel was also investingating following the measurement
of its temperature dependent characteristics within a TMA. It can generally be concluded that
operation within or beyond the glass transition temperature of the panel can result is improved
acoustic insulation performance.

70



Chapter 3

Modelling the response of composite
panels by a dynamic stiffness
approach

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Wave propagation in layered structures . . . . . . . . . . . . . . . . . . 74

3.3.1 The Wave Finite Element method . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 The Inhomogeneous Wave Correlation method . . . . . . . . . . . . . . . 75

3.4 Calculating the dynamic response of composite panels . . . . . . . . . 75

3.5 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Experimental configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.2 Validation of the computed natural frequencies . . . . . . . . . . . . . . . 79

3.5.3 Validation of the computed structural wavenumbers . . . . . . . . . . . . 80

3.5.4 Structural damping modelling . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.5 Structural response validation . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Comparison to refined shell theories . . . . . . . . . . . . . . . . . . . . 85

3.7 Discussion on the computational efficiency of the approach . . . . . . 85

3.8 Application of the ESL approach to a shell structure . . . . . . . . . . 88

3.8.1 Homogenization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8.2 Expressions for the dynamic characteristics . . . . . . . . . . . . . . . . . 89

3.8.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8.4 Computational efficiency of the approach . . . . . . . . . . . . . . . . . . 92

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

71



Dynamic stiffness modelling of a layered structure Chapter 3

3.1 Abstract

A dynamic stiffness approach for the prediction of the vibratory response of thick laminates and
sandwich panels is hereby proposed. Initially, the wave dispersion characteristics of a two dimen-
sional periodic medium are numerically predicted using a Wave Finite Element Method (WFEM).
The effects of layer coupling on wave propagation within the laminate are therefore captured
through a full three dimensional Finite Element (FE) modelling for a wide frequency range. The
computed dispersion characteristics are used in order to update classical plate theories and calcu-
late a dynamic stiffness matrix for the modelled laminate. The resulting updated Equivalent Single
Layer (ESL) modelling proves to be time efficient and accurate for a wide frequency range. An
experimental validation of the presented approach is also conducted. The response of a honeycomb
orthotropic sandwich panel is measured and is successfully compared to the prediction of the ESL
model. The WFEM computed wavenumbers are also validated by experimental measurements.
The accuracy and the computational efficiency of the approach are discussed and compared to the
ones of modern refined shell theories.

3.2 Introduction

Composite structures are widely used in the aerospace and automobile industry [Prel, 1999]. These
often include anisotropic layered constructions which further complicate the prediction of the
dynamic response of the industrial product. Moreover, the extensive use of layered structures
implies a reduced acoustic performance at higher frequencies where composites have higher modal
densities [Ghinet and Atalla, 2006]. Thus, the modelling of the vibroacoustic response for layered
structures of arbitrary anisotropy is of great importance for the modern industry. The options
offered within Finite Element (FE) software packages for the simulation of layered structures are
usually limited. They typically include Classical Laminated Plate Theory (CLPT) or First-order
Shear Deformation Theory (FSDT) modelling options, which result in fast, nevertheless inaccurate
results for frequencies higher than the first resonance of the structure. On the other hand, modelling
each layer of the structure separately using solid FE may offer good quality results even for higher
frequencies; it implies however great calculation costs, especially when very thin layers are to
be modelled. Thus, introducing a very fine mesh to maintain interpolation [Desmet, 2002] and
pollution [Babuska et al., 1997] errors to acceptable levels can be prohibitive. It is hereby shown
that calculating the wave propagation characteristics for composite structures provides a key for
modelling their dynamic response.

The prediction of the vibratory response of thick layered panels has been a popular field of
research. The CLPT is based on the Kirchhoff-Love theory, neglecting the transverse shear de-
formation and the transverse normal effects of the structure. This hypothesis usually leads to
poor results for thick laminates, for which the ratio of the shear modulus to the in-plane elastic
modula is sometimes very low. The shear deformation effect must therefore be taken into account
in the analysis. This was firstly attempted by [Mindlin, 1951] who introduced the panels shear
effect in the kinematic assumptions. The work in [Whitney and Pagano, 1970] presented an exten-
sion of the Mindlin’s theory, the FSDT. More recently, Higher-order Shear Deformation Theories
(HSDT) have been developped in the literature [Vinson and Sierakowski, 2002] introducing refined
kinematic assumptions which render more accurate predictions. The higher order of the theory
however also increases the mathematical complexity and computational cost of the solution. The
aforementioned theories are also referred as Equivalent Single Layer (ESL) approaches, or global
approaches, which aim to reduce a 3D structural model into a 2D one. More accurate predictions
for a multilayered structure can be provided by a Layer-Wise (LW) modelling, which considers the
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individual displacement field of each lamina separately allowing for a discontinuous strain field and
a continuous transverse stress field at the interfaces of different materials [Reddy, 2004]. LW mod-
elling usually results in very accurate predictions, however it also implies significant computational
effort, as each lamina is modelled through a separate mathematical layer. A good compromise
between accuracy and computational effort is achieved through the so called zig-zag or partially
layer-wise theories [Carrera, 2003], in which an expansion of the displacement field is conducted
using a zig-zag variation through the thickness. Higher order zig-zag theories have also been in-
troduced [Lee et al., 1990]. Moreover, hybridization between zig-zag and LW methods [Aitharaju
and Averill, 1999], as well as between zig-zag and ESL methods [Sulmoni et al., 2008] seem to offer
superior features over the individual models.

The authors in [Kurtze and Watters, 1959] were the first to develop an asymptotic set of equa-
tions to model the wave propagation into symmetric flat thick sandwich structures. The authors
in [Ghinet and Atalla, 2006,Ghinet et al., 2005] used a multi-layer analytical model based on Midlin
theory to compute the dispersion characteristics of layered structures. A consistent HSDT was de-
veloped in [Wang et al., 2008] and used in [Wang et al., 2005] to predict the wave propagation
characteristics within an infinitely long sandwich panel. Lately, the Wave Finite Element Method
(WFEM) has received great attention. The method was introduced by Mead [Mead, 1973] and was
derived as an expansion of the Bloch’s theorem. Its main underlying assumption is the periodicity
of the structure to be modelled. The Periodic Structure Theory (PST) is then coupled to the
FEM. The WFEM has been applied to one-dimensional [Mace et al., 2005,Mencik and Ichchou,
2005] and two-dimensional structures [Mace and Manconi, 2008, Chronopoulos et al., 2012f]. A
similar approach was also used in [Cotoni et al., 2008] to model the wave propagation in arbitrary
periodic structures. The work of [Finnveden, 2004] provided an FE approach for the evaluation of
wave propagation within structural waveguides.

Experimental identification of wave propagation characteristics has proved to be a complicated
task for two dimensional structures. The methods most often used to measure the propagating
flexural wavenumbers within a structure include least squares methods [McDaniel and Shepard Jr.,
2000], discrete Fourier Transforms [Bolton et al., 1998] and Prony series [Grosh and Williams,
1993]. The authors in [Ferguson et al., 2002] proposed a method dealing with a windowed field
of the normal displacement of a plate. The Inhomogeneous Wave correlation (IWC) method was
lately proposed [Berthaut et al., 2005,Ichchou et al., 2008a], extending the two-dimensional spatial
Fourier transform methods by including the structural loss factor in the inhomogeneous wave.

In the work presented hereby, the wave propagation characteristics of a composite panel are
numerically calculated for a wide frequency range and subsequently validated through experimen-
tal measurements. The panel can be of arbitrary layering and anisotropy. The wave propagation
characteristics are subsequently used through a dynamic stiffness approach for updating classic
shell theories in order to predict the dynamic response of the structure. A new ESL approach
is therefore proposed for a computationally efficient and accurate calculation of the dynamic re-
sponse of composite structures for a wide frequency range. The approach is capable of taking into
account for the complex shear deformation effects of the layers of the structures while avoiding the
complicated kinematic assumptions of higher order theories. In the presented validation case, an
orthotropic sandwich panel comprising a honeycomb core is considered. Experimental validation
of the computed wave propagation characteristics and the spatial response of the panel is provided.
The accuracy and the computational efficiency of the approach are also discussed and compared
to the ones of modern refined shell theories. It is shown that while the presented approach can
provide accurate results compared to higher order refined theories, it is also significantly more
efficient than them.

The chapter is organized as follows: In sec.3.3 a numerical as well as an experimental method

73



Dynamic stiffness modelling of a layered structure Chapter 3

�

�

�

�

�
���

���	

�




�

�

�



Figure 3.1: View of the modeled periodic segment with its edges Q, R, S and T

for estimating and measuring the propagation of flexural waves within a laminate are described.
In sec.3.4 the dynamic stiffness approach for the calculation of the response of a layered panel is
formulated. In sec.3.5 the experimental configuration used to validate the presented approach is
exhibited along with comparative results and comments. In sec.3.6 and sec.3.7 respectively, the
accuracy and the computational efficiency of the presented approach is discussed and compared to
a variety of refined shell theories. In sec.3.8 the application of the approach to a layered cylindrical
shell is described. Finally, in sec.3.9 conclusions on the presented work are given.

3.3 Wave propagation in layered structures

3.3.1 The Wave Finite Element method

A rectangular layered panel is considered hereby. A periodic segment of the panel with dimensions
dx and dy (see fig.3.1) is modelled using conventional FE. Using the dynamic stiffness matrix
of the segment, a nonlinear eigenvalue problem is formulated whose eigenvalues correspond to
propagation constants of the various structural wave types. The formulation and the solution of
the eigenproblem is discussed in sec.1.2.5.

For every wave type, a set of two wavenumbers k(θ)+, k(θ)− are calculated, propagating re-
spectively towards the positives and the negatives of the direction θ under consideration. It has
been exhibited [Zhong and Williams, 1995] that: k(θ)+=-k(θ)−. The corresponding wave modes
(eigenvectors corresponding to each eigenvalue) are written as: Φ+,Φ−. For the sake of concise-
ness, only the positive propagating waves will be taken into account throughout the work presented
below. By using a full 3D FE modelling, the effects of layer coupling on wave propagation within
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the laminate are therefore captured for a very wide frequency range.

3.3.2 The Inhomogeneous Wave Correlation method

The IWC method was presented and validated for the measurement of the flexural propagating
wavenumber of two-dimensional structures in [Berthaut et al., 2005, Ichchou et al., 2008a]. An
inhomogeneous wave ôkf ,γ,θ is introduced with kf the apparent flexural wavenumber of the wave,
θ its direction of propagation and γ its attenuation which according to [Lyon and DeJong, 1995]
is related to the structural loss factor as: γ = ηcφ/2cg, with cφ,cg the phase and group velocities
respectively. The propagating wave is therefore defined as:

ôkf ,γ,θ(x, y) = e−ikf (θ)(1+iγ(θ))(x·cos(θ)+y·sin(θ)) (3.1)

Subsequently, the correlation between the inhomogeneous wave of eq.(3.1) and the measured
wave field ŵ(x, y) which is considered to be known at arbitrary points of the structure can be
calculated with a MAC type [Ewins, 2000] criterion:

IWCkf ,γ,θ =

∣

∣

∣

∣

m
∑

1
ŵ · ô∗kf ,γ,θSi

∣
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∣
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√
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1
|ŵ|2 Si ·

m
∑

1

∣

∣ôkf ,γ,θ

∣

∣

2
Si

(3.2)

whereˆsignifies the ω dependence, ∗ the complex conjugate, Si is the surface of the structure
that corresponds to the measurement point, and m is the number of measurement points on the
structure. Using an algorithmic procedure, the angle of propagation θ can be discretized and the
targeted wavenumbers kf (θ) for which the maximum of the IWC criterion occurs can be found.

3.4 Calculating the dynamic response of composite panels

Following classic or modern plate theories, the propagating flexural (kf,x, kf,y), and shear (ks,xy)
wavenumbers can be expressed as a function of the mechanical characteristics of the structure.
Since the values of these propagating wavenumbers are numerically calculated for a wide frequency
range using the WFEM, expressions for the equivalent dynamic mechanical characteristics of the
structures can be derived. If the CLPT is used, these expressions can be written as:

D̂eq,i =
ω2ρs

k4
f,i

B̂eq,xy =
ω2ρs

k2
s,xy

(3.3)

with ρs the mass per unit of area, D̂eq,i the equivalent flexural stiffness of the structure towards
direction i, and B̂eq,xy its equivalent shear stiffness in the x, y plane. The response of the panel can
then be computed using classic methods such as the h- or p- version of the FEM [Schwab, 1998], or
by a modal expansion approach. It is evident that the theory used for the calculation of the response
of the structure should be same theory as the one used for the calculation of the equivalent dynamic

75



Dynamic stiffness modelling of a layered structure Chapter 3

���

���

���

�

Figure 3.2: Deformation of a plate, modelled with the CPT. The mid-surface (---) is highlighted,
while the normal to the mid-surface remains normal after the deformation.

characteristics. For the sake of versatility with respect to geometry and boundary conditions, an h-
version of the FE method is hereby used. A deformed element modelled with the CPT is depicted
in fig.(3.2). The normal to the mid-surface remains normal after deformation, in contrast to
higher order theories. The modelled, equivalent thin panel should have the same ρs as the original
composite one. The energy functions for an element governed by the CPT theory can be derived
by its strain-displacement relation:
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(3.4)

Then the strain and kinetic energies of the element [Petyt, 1990] are written as:

Û =
1

2

∫

A qT D̂qdA

T =
1

2

∫

A ρhẇ2dA
(3.5)
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with A the surface of the element, ρ its density, and:
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(3.6)

Using the equivalence relations, the frequency dependent matrix D̂ is written as:

D̂ = RT





D̂eq,x D̂eq,x · vxy 0

D̂eq,y · vyx D̂eq,y 0

0 0 D̂eq,xy



R (3.7)

where D̂eq,xy = B̂eq,xy · h2
eq/12 with heq the thickness of the ESL, R the transformation matrix

depending on the selected coordinate system and vxy,vxy the Poisson’s ratios of the panel in the
x, y plane.

With the energy functions known, it is straightforward to apply the Hamilton’s principle and
build the FE matrices of the equivalent thin panel. Eventually, the solution of the system under a
harmonic excitation is written as:

x =
[

ω2M + ωĈ + K̂
]−1

F (3.8)

It is noted that in eq.(3.8) frequency dependent damping is assumed. The means by which
damping can be modelled will be exhibited in the following section. The fact that the FE matrices
are formulated in the frequency domain restrains the applicability of the approach to harmonic
analysis. Nevertheless, when the applied loads have fixed coordinates, transient analysis is possible
through an inverse Fourier transform. Moreover, modal analysis for systems having frequency-
dependent stiffness has already been investigated in the literature [Remillat, 1997]. The resulting
accuracy and computational efficiency for other types of analysis using the presented approach is
a current subject of research.

It is evident that all the complex shear deformation effects are accounted for in the dynamic
stiffness matrix through the WFEM homogenization procedure, however they are not included
in the kinematic field of the shell model. To investigate possible inconsistencies caused by the
assumption of a dynamic stiffness matrix, the expression of the response of a one-dimensional
structure formulated in the wave context (very similar to the one formulated in the modal context)
and given in [Langley, 1997] is mentioned:

u̇x=x1
(ω) = (iω/ργ)

∑

r

Fcos(krx0 − φr/2)cos(krx1 − φr/2)

ω2
nr(1 + iη) − ω2

(3.9)

with F the force applied at position x0, and r the considered mode. This wave-mode duality
assures that close to resonance frequencies the predictions of the presented approach will be ac-
curate as the response is dominated by the wave motion associated to the resonant mode. For a
broadband excitation however, if the response is dominated by non-resonant modes, the accuracy
of the prediction is expected to present inconsistencies. It is noted that the objective of this work
is not the prediction of the ’exact’ response of a layered structure, but the development of an
approach combining efficiency, accuracy and numerical simplicity.

77



Dynamic stiffness modelling of a layered structure Chapter 3

Figure 3.3: A caption of the experimental configuration, depicting the intermediate sensors and
signal processing devices.

3.5 Experimental validation

3.5.1 Experimental configuration

The tested structure is a sandwich panel with its facesheets made of a carbon epoxy composite
(Material I), and its core made of a Nomex type honeycomb (Material II). The mechanical charac-
teristics of the materials as given by the manufacturer are shown in Table 3.1. The dimensions of
the panel are Lx=0.8m and Ly=0.2m. The thickness of the facesheets is equal to hf=1mm while
the one of the core is equal to hc=12.7mm. Each facesheet comprises four layers of plain weaved
carbon fibres, resulting in a quasi-isotropic lamina. The mass ratio of carbon fibres to resin is
1.083. The experimental configuration is depicted in fig.3.3.

The panel is suspended by two corners so as to simulate free boundary conditions (FFFF)
around its edges. The test was conducted in a climatic test chamber within which the temperature
and the humidity are kept steady. An LMS data acquisition system (2) was used for the signal
processing. The panel was excited using a PCB exciter (5) adhered to the structure through a force
sensor. An ICP signal conditioner (3), along with a 30W dP power amplifier (4) were used for the
conditioning of the excitation signal. The structural response is measured using a Polytec laser
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Table 3.1: Mechanical properties of materials
Material I Material II Material III Material IV Material V Material VI Material VII

ρ = 1410 kg/m3 ρ = 48 kg/m3 ρ = 1578 kg/m3 ρ = 1578 kg/m3 ρ = 1578 kg/m3 ρ = 1500 kg/m3 ρ = 58 kg/m3

Ex = 54 GPa Ex = 85 MPa Ex = 6.9 GPa Ex = 224.25 GPa Ex = 172.5 GPa Ex = 55 GPa Ex = 78 MPa
Ey = 54 GPa Ey = 85 MPa Ey = 6.9 GPa Ey = 6.9 GPa Ey = 6.9 GPa Ey = 55 GPa Ey = 78 MPa

vxy = 0.09 vxy = 0.23 vxy = 0.25 vxy = 0.25 vxy = 0.25 vxy = 0.10 vxy = 0.20
Gxy = 8.5 GPa − Gxy = 1.38 GPa Gxy = 56.58 GPa Gxy = 3.45 GPa Gxy = 8.7 GPa -

− Gyz = 44 MPa Gyz = 1.38 GPa Gyz = 1.38 GPa Gyz = 1.38 GPa − Gyz = 40.6 MPa
− Gxz = 24 MPa Gxz = 1.38 GPa Gxz = 56.58 GPa Gxz = 3.45 GPa − Gxz = 40.6 MPa

vibrometer (5,6) and is transmitted to the acquisition system in order to compute the structural
impedance at various points of the panel.

3.5.2 Validation of the computed natural frequencies

A first validation between various modelling approaches for thick layered structures will be con-
ducted by computing the first natural frequencies of the suspended panel. The results are compared
to the experimental outcomes in fig.3.4. It is noted that in order to keep a maximal aspect ratio of
5:5:1 for the solid mesh of the panel, an FE model comprising 246024 DoF was obtained. The ESL
theories were applied using the ANSYS 12.1 FE software. Analytic solutions relating the structural
wavenumber of a panel to its natural frequencies have been given in classical textbooks [Leissa,
1969] for a variety of boundary conditions of the panel. For an FFFF configuration, one can
consider the general solution for two-dimensional panel as:

w(x, y) = Asin(kxx) · sin(kyy) + Bsin(kxx) · cos(kyy)
+Ccos(kxx) · sin(kyy) + Dcos(kxx) · cos(kyy)

+Esinh(kxx) · sinh(kyy) + Fsinh(kxx) · cosh(kyy)
+Gcosh(kxx) · sinh(kyy) + Hcosh(kxx) · cosh(kyy)

(3.10)

By applying the appropriate boundary conditions to eq.(3.10) it is derived that the natural
frequencies of the panel correspond to the wavenumber values that satisfy the relations:

cosh(kxLx) · cos(kxLx) = 1
cosh(kyLy) · cos(kyLy) = 1

(3.11)

which has the asymptotic solution [Xie et al., 2004] of:

kxLx = (m − 3

2
)π

kyLy = (n − 3

2
)π for m,n=3,4...

(3.12)

With the structural wavenumbers known, the exact natural frequencies of the panel can be
calculated.

It is observed that the WFEM results are in very good agreement for all the computed natural
frequencies. Slight divergence from the experimental results are due to parametric uncertainties of
the structure with respect to the exact mechanical characteristics of each structural and adhesive
layer. The solid mesh model exhibits the ability of a precise FE model to predict the natural
frequencies of the panel. The large number of DoF needed, as well as the excessive computation
time would however be prohibitive for the application of such an approach to large industrial
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Figure 3.4: The first six flexural natural frequencies of the panel as predicted by: experimental
results (∗), WFEM results (2), solid mesh (•), Mindlin ESL (3), FSDT ESL (o)

system. Moreover, pollution errors are already visible in the calculation after the third flexural
mode. The failure of the FSDT and Mindlin ESL theories to accurately predict the dynamic
behaviour of the panel higher than its first resonance is exhibited.

3.5.3 Validation of the computed structural wavenumbers

The wave propagation characteristics of the sandwich panel are initially calculated for every fre-
quency and direction of propagation by the WFEM. The solutions corresponding to propagating
flexural waves are distinguished by evanescent waves [Chronopoulos et al., 2012f] and computa-
tional artifacts and are presented in fig.3.5.

The natural frequencies of the panel corresponding to out-of-plane modes can be found by
interpolating on fig.3.5 for each determined set of values kx and ky which are solutions of eq.(3.11).
The IWC approach is then applied on the vibratory data measured by the experimental config-
uration. The grid of measured data points comprises 30 points along the x axis and 5 along the
y axis. The response of the structure is measured under a white noise excitation using the laser
vibrometer. The FRF is then obtained through an inverse Fourier transform. The comparison of
the experimentally measured wavenumbers towards x direction versus the WFEM estimation are
presented in fig.3.6.

Oscillations around the WFEM estimation are observed for the experimental results. The
largest divergences are observed in the low-frequency range, where the maximum error between
the results is equal to 17,9% at approximately 450Hz. Fast convergence is observed at higher
frequencies, where the results are in very good agreement.

Following the validation of the calculated flexural wavenumbers, the equivalent dynamic struc-
tural stiffness can then be calculated using eq.(3.3). The results for D̂eq,x are shown in fig.3.7. As
expected, large fluctuations are observed in the low frequency range, while the results converge fast
for higher frequencies. It is noted that comparing the values for 100Hz and 3000Hz, it is observed
that the equivalent flexural stiffness for the CPT has been reduced by 97,2%.
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Figure 3.7: Comparison between the dynamic flexural stiffness predicted by the WFEM (–) and the
IWC approach (--).

3.5.4 Structural damping modelling

When the resonance peaks of the response of a structure are clearly distinguished, the modal
damping ratio of a linear system can be estimated by the half-power method [Torvik, 2011], through
the relation:

ζr =
ω2

a − ω2
b

4ω2
r

(3.13)

with ωr the resonance frequency and ωa, ωb the frequencies around resonance for which the
response is reduced by 3dB. The modal damping ratios of the first modes of the sandwich panel as
calculated by eq.(3.13) are shown in fig.3.8. It is noted that the increase of damping with respect to
frequency is mostly due to additional radiation damping which is included in the overall damping
estimation.

A linear least square fitting curve is shown in fig.3.8 along with the experimental results, in
order to extrapolate the prediction of the structural damping values up to 3kHz. Obviously, more
complicated fitting functions can be applied in the case of a more accurate representation of the
structural dissipation properties being desired. A range of choices exists for implementing these
values in an FE model. Assuming a frequency dependent damping matrix as in eq.(3.8), the
coefficients a,b of a Rayleigh damping model can be chosen for every frequency band, so that the
following relation between the damping ratio and the coefficients is satisfied:

ζr =
1

2

(

a

ωr
+ b · ωr

)

(3.14)

Moreover, the approach presented in [Adhikari, 2000] can be implemented for any type of fitting
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Figure 3.8: The modal damping ratio values (2) and a fitted linear curve (–).

function. Assuming a linear fitting function which is written as a function of frequency as:

f(ω) = α1ω + α2 (3.15)

the damping matrix satisfying the desired modal damping values can be expressed as:

Ĉ = 2M
√

M−1K̂f(ω)

= 2M
√

M−1K̂
(

α1

√

M−1K̂ + α2

) (3.16)

with the coefficients α1, α2 for the present case being equal to 4.7078 · 10−6 and 0.00917
respectively. The second approach was the one adopted throughout the presented results.

3.5.5 Structural response validation

In order to validate the dynamic stiffness approach predictions, the experimentally obtained dy-
namic response of the sandwich panel is compared to the FE results at arbitrary coordinates of
the panel. The results are exhibited in fig.3.9 and fig.3.10. The reference displacement is equal to
dref = 5e−8m.

A very good correlation is observed between the results. Intense fluctuations of the experi-
mental results are due to low coherence of the laser velocimeter’s signal for those frequencies. The
resonance frequencies, the response amplitude, and the modal damping ratios seem to be very
well simulated up to 1,5kHz. Higher order resonances are very sensitive to parametric uncertain-
ties [Ichchou et al., 2011] of the structural characteristics. The exact response becomes therefore
particularly difficult to predict at higher frequencies, especially for sandwich structures whose pre-
cise density and material characteristics are highly uncertain. The updated ESL model seems
however to be accurately predicting the medium of the structural response even for the higher
frequency range. It is noted that care should be taken when applying the FEM at high frequencies
as its accuracy can be dramatically limited by the induced pollution errors.
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Figure 3.9: Velocity FRF at (0.40,0.12): FEM updated by WFEM results (–) and experimental
measurements (--)
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Figure 3.10: Velocity FRF at (0.77,0.07): FEM updated by WFEM results (–) and experimental
measurements (--)
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3.6 Comparison to refined shell theories

In order to compare the accuracy of the presented method to refined shell theories, a layered beam
having an arbitrary lamina layout is used in order to compute its natural frequencies through
various methods. The characteristics of the beam as well as the predictions of the refined theories
are extracted from [Zhen and Wanji, 2008]. The beam is made of materials I, II and III presented
in Table 3.1. The structure is a five-ply beam having a layer stacking of type (0o/0o/0o/0o/0o).
The layer thickness proportions are (0.1h/0.25h/0.15h/0.2h/0.3h) with h the total thickness and
the material sequence is (I/II/III/I/III). The predicted natural frequencies are normalized by
Ω = ωnL2

√

ρ/Eo/h with Eo = 6.9e9, and L the length of the beam. A variety of L/h ratios is
studied, from a very thick beam with L/h=5 up to L/h=20. An analytical solution for the free
vibration of the layered beam as given in [Kapuria et al., 2004] is hereby used as reference. The
predictions of a series of refined shell theories are compared to the presented approach:

• A Global/Local Higher-Order theory (GLHT); initially presented in [Li and Liu, 1997], the
method satisfies displacements and transverse shear stresses continuity conditions at lamina
interfaces with a displacement field expression comprising 6 unknowns.

• A Zig-zag theory (ZZT) proposed in [Cho and Parmerter, 1993] comprising a displacement
field with 3 unknowns.

• A global HSDT presented in [Matsunaga, 2001] assuming a displacement field with 19 un-
knowns.

• A HSDT also published in [Matsunaga, 2001] comprising a displacement field having 11
unknowns.

• A HSDT proposed in [Kant and Swaminathan, 2001] assuming a displacement field with 8
unknowns.

• A HSDT presented in [Reddy, 1984] which can satisfy the transverse shear stress free bound-
ary conditions and assuming a displacement field having 3 unknowns.

The predictions for each approach are given in Table 3.2. A comparison of the error of the
predictions with respect to the reference values is also exhibited in fig.3.11. It is observed that as
the L/h ratio of the beam increases, the ZZT along with the WFEM homogenization tend to be
the most accurate methods, while all HSDT approaches present a greater error for the entirety
of the predicted natural frequencies. On the other hand, when the beam becomes particularly
thick with an L/h ≤5, it seems that the errors of the ZZT, GLHT and WFEM approaches rapidly
increase with frequency, leaving global high order HSDT methods as the most suitable ones for
modelling the laminate. It can therefore be observed that the WFEM homogenization provides
fairly accurate results compared to global HSDT, zig-zag and global-local approaches, especially
for panels having a large L/h ratio.

3.7 Discussion on the computational efficiency of the approach

In order to compare the computational efficiency of the presented dynamic stiffness approach to
classical and refined theories the processing time for each solution step is presented in Table 3 for
three different FE model sizes. All calculations were done using a server of two quadruple core Xeon
E5343 processors with 8Gb of RAM memory available. The WFEM analysis was performed using
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Table 3.2: Comparison between predictions of the current approach and of some refined shell the-
ories on the first four natural frequencies of the layered beam. Brackets include the error compared
to the reference values.

Mode number L/h Reference Present approach GLHT ZZT HSDT-19 HSDT-11 HSDT-8 HSDT-3

5 7.2551 7.3893 7.4686 7.2876 7.5005 7.9849 9.0526 10.7705
(1.82) (2.94) (0.45) (3.38) (10.06) (24.78) (48.45)

1 10 10.152 10.2480 10.3694 10.1828 10.3415 10.7376 11.4181 12.1924
(0.94) (2.14) (0.30) (1.87) (5.77) (12.47) (20.10)

20 11.924 11.9772 12.0327 11.9510 12.0153 12.1764 12.4189 12.6548
(0.44) (0.91) (0.23) (0.77) (2.12) (4.15) (6.13)

5 18.837 19.7118 19.2328 19.4374 19.8072 20.8615 23.8353 31.7068
(4.44) (2.10) (3.19) (5.15) (10.75) (26.53) (68.32)

2 10 29.020 29.5574 29.8747 29.1505 30.0022 31.9398 36.2106 43.0823
(1.82) (2.95) (0.45) (3.38) (10.06) (24.77) (48.46)

20 40.606 40.9920 41.4776 40.7315 41.3661 42.9505 45.6726 48.7696
(0.94) (2.14) (0.30) (1.87) (5.77) (12.48) (20.10)

5 32.769 35.9144 33.9995 36.2256 34.9223 36.3173 39.8386 54.1257
(8.76) (3.76) (10.55) (6.57) (10.83) (21.57) (65.17)

3 10 50.832 52.3341 52.0734 51.4644 53.0128 56.3359 64.9560 83.215
(2.87) (2.44) (1.24) (4.29) (10.83) (27.79) (63.71)

20 76.577 77.6602 78.7483 76.8460 78.6932 83.1366 91.8751 103.771
(1.39) (2.84) (0.35) (2.76) (8.56) (19.97) (35.51)

5 47.602 54.7183 52.1422 58.2790 50.7929 52.6974 55.7109 76.7002
(13.01) (9.54) (22.43) (6.70) (10.70) (17.03) (61.13)

4 10 75.349 78.8472 76.9313 77.7496 79.2289 83.4460 95.3414 126.827
(4.44) (2.10) (3.19) (5.15) (10.75) (26.53) (68.32)

20 116.08 118.2295 119.499 116.602 120.008 127.759 144.842 172.329
(1.82) (2.95) (0.45) (3.38) (10.06) (24.78) (48.46)

MATLAB 7.9.0, while the FE matrices calculation and solution for the structure was done using
ANSYS 12.1. The WFEM analysis is independent of the size of the structure, thus it has a constant
processing burden. It is observed that as the size of the FE model increases, the percentage of
the extra processing time needed for the WFEM analysis and the dynamic calculation of the FE
matrices decreases fast, so that it asymptotically tends to the processing time corresponding to a
CPT solution. In order to compare these results to the efficiency of refined theories some cases are
distinguished and commented:

• Large number of layers: The number of layers in the structure will increase the size and
the processing time of the WFEM analysis. However this accounts only for an insignificant
fraction of the total solution. Moreover, the WFEM homogenization process results in a
constant number of six DoF per node for the FE model, independently of the number of
layers. In contrast, for LW approaches the number of DoF per node directly depends on the
number of layers, making it prohibitive for structures with a large number of laminas. With
regard to global ESL approaches, the number of DoF per node may be independent of the
number of layers, however it is probable that a higher order theory should be used to account
for layers with inhomogeneous characteristics. Considering that for an ESL theory of order p,
the resulting number of DoF per node is equal to 3(p+2) it is clear that the accurate HSDT
approaches will be considerably less efficient than the presented approach. Zig-zag theories
have also the advantage of preserving a predefined number of DoF per node independently
of the number of layers. However, as with the ESL theories a number of DoF per node
larger than six is needed to accurately model a structure composed of many laminas. Mixed
HSDT/zig-zag (see [Sulmoni et al., 2008]) theories are generally more efficient than HSDT
theories, however they also require a large number of DoF per node in order to achieve good
accuracy.
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Figure 3.11: Error of the prediction of the first four natural frequencies for the layered beam
compared to the reference values: Present approach(-x-), GLHT (· · · ), ZZT (–), HSDT-19 (--),
HSDT-11 (-o-), HSDT-3 (−�−)

• Large structure and/or high frequency analysis: Modelling a large aerospace panel and push-
ing the analysis at higher frequencies both result in increasing the total size of the model.
Taking into account for the results presented in Table 3.3 and the aforementioned comments
it is clear that all homogenization theories resulting in more than six DoF per node will
become less efficient than the WFEM homogenization when increasing the size of the model.

• Large number of frequency steps: The additional time needed for the solution with the
presented approach is proportional to the number of frequency steps of the analysis. As shown
in Table 3.3, this additional time will become more evident when modelling particularly small
panels having a small model size for a very large number of frequency steps, which is not
very common for industrial cases. Even for these cases however, when a panel comprising
a large number of laminas is to be modelled, the presented approach will probably be more
efficient than LW and ESL theories.

Table 3.3: Processing times for 100 frequency steps
Model size Procedure Time (in sec) Fraction of the total pro-

cessing time

WFEM matrix calculation (72 DoF), analysis and post-
processing

1.1 1.8%

4875 DoF FE CLPT solution 41 67.1%
Additional time of the dynamic solution 19 31.1%

WFEM matrix calculation (72 DoF), analysis and post-
processing

1.1 0.6%

8355 DoF FE CLPT solution 153 86.4%
Additional time of the dynamic solution 23 13%

WFEM matrix calculation (72 DoF), analysis and post-
processing

1.1 0.2%

32115 DoF FE CLPT solution 575 95.2%
Additional time of the dynamic solution 28 4.6%

It can therefore generally be concluded that the WFEM homogenization becomes significantly
more efficient than HSDT approaches, high order zig-zag theories and LW methods as the size of
the model and the number of laminas for the structure increase.
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Figure 3.12: A composite singly curved panel modelled within the current approach

3.8 Application of the ESL approach to a shell structure

Following the modelling of a flat layered structure, the application of the dynamic stiffness approach
on a layered shell will be investigated. A sandwich cylinder is used as an illustration example.

3.8.1 Homogenization procedure

A singly curved thick shell of arbitrary layering and anisotropy is hereby considered (see fig.4.2).
Following the analysis in [Chronopoulos et al., 2012e], the homogenization procedure for curved
structures would involve the computation of the wavenumbers propagating within the shell using
the WFEM and subsequently the direct comparison of the computed wavenumbers to exact values
for classic shell theories in order to determine the dynamic material characteristics of the ESL.
Such an analysis would give accurate predictions on the purely circumferential modes of the shell,
however with regard to the modelling of the stiffness effects below the ring frequency towards the
axial direction the approach would encounter two major challenges:

• It is particularly difficult to encounter exact relationships between the axially propagating
wavenumbers and the mechanical characteristics of the shell structure. Approximate solu-
tions for the Donnell-Mushtari and the Flügge theories can be found in [Fuller and Fahy,
1982] and [Karczub, 2006] respectively. However, the flexural/axial coupling effects within
a shell imply that the flexural wavenumber cannot be expressed merely as a function of the
flexural stiffness and the mass of the structure, as is the case with flat panels. The use of such
wavenumber relations would therefore imply a source of approximation and a significantly
increased complexity of the problem.

• Even if a ’neat’ expression of the wavenumbers as a function of the mechanical character-
istics of the shell proves feasible, the application of the approach would be hindered by the
geometric stiffening effects. In order to avoid such effects from disturbing the accuracy of
the solution the modelled ESL should present the same ring frequency as the original layered
shell.

Using the aforementioned considerations, the calculation of the dynamic mechanical properties
for the ESL is conducted in the following section.
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3.8.2 Expressions for the dynamic characteristics

The ESL structure should now have an equal flexural stiffness and surficial density as well as a
ring frequency equal to the one of the original layered shell. Considering the relations of the three
aforementioned quantities as a function of the mechanical characteristics for a Donnell-Mushtari
type thin shell we have:

fr =
1

2πR

√

Ea

ρ
ρs = ρh

Da,c =
Ea,ch

3

12(1 − v2)

(3.17)

with fr the ring frequency, Ea,c the Young’s modulus in the axial and circumferential directions,
v the Poisson’s ratio, h the thickness of the ESL, ρ its density and R the radius of the shell.
Considering the equivalence between the Donnell-Mushtari and the Kirchhoff-Love theories it can
be deduced that the axial and circumferential flexural stiffnesses should be related to the flexural
wavenumbers by the relation:

D̂a,c =
ω2ρs

k̂4
f,WFE

(3.18)

with k̂f,WFE the WFEM calculated flexural wavenumbers of the flat layered panel andˆrepre-
sents the frequency dependence. Using eq.(3.17),(3.18) the equivalent mechanical characteristics
for the ESL can be deduced as:

Êa =

√

ρ3
s

12D̂a

ω3
rR

3(1 − v2) =
ρsk̂

2
f,WFE,a√
12ω

ω3
rR

3(1 − v2)

Êc =
12(1 − v2)ω2ρs

k̂4
f,WFE,cĥ

3

ρ̂ =
Êa

ω2
rR

2(1 − v2)
=

ρsk̂
2
f,WFE,a√
12ω

ωrR

ĥ =
ρs

ρ̂

(3.19)

Using eq.(3.19) the dynamic stiffness and mass matrices of the ESL shell can be computed for
every frequency value.

3.8.3 Numerical results

As an illustration the approach will be applied to a sandwich cylindrical shell. The radius of the
shell is equal to R=679.5 mm. Its facesheets are made of material VI and have a thickness equal
to 1 mm, while its core is made of material VII and has a thickness of 12.7 mm. The mechanical
characteristics of the materials are exhibited in Table 3.1. The axis (x = 0, y = 0) corresponds to
the center axis of the shell. The cylinder is considered to be freely suspended at all sides.

The first natural frequencies (corresponding to out-of-plane non rigid modes) as predicted by
a full 3D FE solid model and the equivalent ESL model of the cylinder are compared in fig.3.13.
In the solid model, the cylinder’s facesheets are modelled using shell elements which are attached
to the solid elements representing the core.
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Figure 3.13: Comparison of the predicted natural frequencies for the: 3D FE model (�) and the
ESL model (O). Mode type is given aside.

A very good agreement between the two models is observed for the circumferential, the breath-
ing and the mixed flexural modes. The error of the first twelve predicted natural frequencies varies
from 0.2% to a maximum of 2.3% for the breathing mode of order 7. For the sake of clarification,
a circumferential flexural mode (5,0), the corresponding breathing mode and a flexural mode are
presented in fig.3.14.

In order to give a global idea of the correlation of the response predictions of the two models
the total energy level was calculated for an undamped cylinder with η = 0 as well as for the case
in which the global loss factor of the structure is equal to η = 1%. The results are exhibited in
fig.3.15 and fig.3.16 respectively.

A very good correlation between the predictions of the 3D FE model and the ESL approach is
generally observed. The frequency step of the solution was 2Hz for the 3D FE model and 1Hz for
the ESL model. For the undamped case it is observed that the modal peaks of the ESL prediction

Figure 3.14: The modes (5,0) (left), the breathing mode 5 (center) and the mode (5,1) for the
modelled sandwich cylinder
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Figure 3.15: Left: Comparison between the predicted total energy level of the layered cylinder with
η = 0 by: the 3D FE modelling (--) and the ESL model (–). Right: 1/3 octave band averaged
results.
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Table 3.4: Calculation times for 410 frequency steps in sec

3D FE model ESL model

WFEM homogenization (60 DoF) 0 4
FE solution 1890 822

Additional time for the dynamic FE matrices calculation 0 107

Total 1890 933

are in the most cases higher than the ones of the 3D FE model. This is due to the finer frequency
resolution of the ESL solution. Excellent agreement is observed up to 500Hz. The exact prediction
of resonances at higher frequencies is particularly sensitive to parametric and non parametric
uncertainties. It is therefore more appropriate to describe the structural response using average
values. In fig.3.15,3.16 1/3 octave band averaged results are also given for the total vibrational
energy of the structure. For the undamped case, the averaged response of the ESL prediction
remains within 1.5dB of the results of the 3D FE model throughout the frequency range. For the
damped case an excellent correlation is also observed between the predictions with the averaged
results presenting a maximum difference of 0.9dB.

3.8.4 Computational efficiency of the approach

The computation times for the 3D FE model as well as for the ESL model of the sandwich cylinder
are shown in Table 3.2. It is observed that despite the fact that the FE matrices were calculated for
every frequency step the ESL solution is significantly faster than the 3D FE model. As discussed
in [Chronopoulos et al., 2012e] this reduction of the computational effort will be more significant
-also compared to refined shell theories- for larger industrial structures and for structures compris-
ing more layers through their thickness. In the presented example the 3D FE model comprised
d3D=24600 DOF while the ESL one comprised dESL=12300 DOF. For the modelling of a multi-
layered shell using solid FE the ratio between the number of DoF for the two models will be equal
to d3D/dESL = (n + 1) with n the number of layers of the stratified shell, which will result in a
much greater reduction of the computation time by the ESL.

3.9 Conclusions

In the presented work, a dynamic stiffness approach was adopted in order to compute the dynamic
response of composite panels through an ESL method. The approach was also experimentally
validated using a sandwich orthotropic panel which comprised a honeycomb core and carbon-epoxy
type facesheets. Summarizing the most important points of the work: 1) Excellent correlation
was observed between the experimental resonances and the ones predicted by the WFEM results
for the sandwich panel. 2) In contrast, CLPT and FSDT approaches failed to correctly predict
any resonance higher than the first one. A full three-dimensional modelling of the panel led to
satisfactory results, however it would be prohibitive in terms of computational effort for larger
industrial structures. 3) The propagating flexural wavenumbers predicted by the WFEM were
successfully validated using the experimentally measured vibratory field of the panel. The results
converged very fast with respect to frequency. 4) The dynamic response of the sandwich panel
was successfully predicted at various points. Excellent correlation between the presented dynamic
stiffness approach and the experimental results was observed for the low frequency range. At
higher frequencies, the parametric uncertainties of the sandwich panel make the prediction of its
precise response impossible. Despite these uncertainties however, the ESL approach is still able

92



Dynamic stiffness modelling of a layered structure Chapter 3

to accurately predict the medium of the response for higher frequencies. 5) It was exhibited that
while the WFEM homogenization can provide accurate results compared to higher order refined
shell theories; 6) the presented approach is also significantly more efficient than them. 7) The
suggested ESL approach was also successfully applied to a cylindrical sandwich shell.
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4.1 Abstract

A model for the prediction of the vibroacoustic performance of composite shells of various geome-
tries within a Statistical Energy Analysis (SEA) approach is developped hereby. The dispersion
characteristics of composite orthotropic shell structures of a variety of geometries, namely curved
panels and cylindrical shells are predicted by a Wave Finite Element (WFE) method. The mass
and stiffness matrices of a structural segment are computed by a conventional Finite Element (FE)
modelling and the wave propagation characteristics are derived by forming a polynomial eigenprob-
lem whose eigenvalues correspond to structural wavenumbers. The numerical issues concerning the
formation and the solution of this nonlinear eigenproblem are discussed. The modal density and
the radiation efficiency of the structure are then evaluated using its numerically extracted wave
propagation characteristics. The broadband vibroacoustic response of each configuration under a
reverberant field excitation can then be computed within an SEA approach.

4.2 Introduction

Composite closed and non-closed shell constructions, including curved panels and cylinders are
often encountered in the modern aerospace and automotive industry, mainly due to their advan-
tage of being light and their ability to suit the particular demands of each structure type and
manufacturer. Nevertheless the poor acoustic performance of materials of that type induces high
levels of noise transmission within the payload or passenger compartment. The prediction of the
vibroacoustic behaviour of composite shell structures is therefore a field of extensive study and of
high importance for the modern industrial needs. It is widely known that the knowledge of the
wave dispersion characteristics of such structures is an important characteristic that can facilitate
the prediction of the vibroacoustic behaviour of the structure.

Analytical formulas for the dispersion characteristics within curved and cylindrical shells can be
found in the bibliography, either in the form of classical expressions for thin isotropic shells [Graff,
1991,Leissa, 1969], or various approximate theories [Langley, 1994c,Tyutekin, 2004]. Many modern
studies are dedicated to the calculation of dispersion characteristics using numerical methods, such
as spectral methods. The authors in [Xi et al., 2000] and [Mahapatra and Gopalakrishnan, 2003]
used a spectral finite element method to predict the characteristic equations of composite cylindrical
shells. The Semi-Analytical Finite Element (SAFE) method was used in [Finnveden, 2004] in order
to predict the wave dispersion within curved structures.

In [Heron, 2002] the author conducts an SEA analysis of a composite curved member using
a discrete layer model for the prediction of the dispersion characteristics within sandwich singly
curved panels. It is supposed that the panel’s facesheets behave only flexurally, while the core
retains only its shear effects and bears no bending loads. More recently Ghinetet al developped
a LW model based on Mindlin theory to predict the dispersion relations and the vibroacoustic
behaviour of singly curved composite panels [Ghinet et al., 2005]. A similar model for the calcu-
lation of the dispersion characteristics for sandwich cylinders and the prediction of the cylinder’s
modal transmission coefficients under a diffused field was presented in [Ghinet et al., 2006]. The
vibroacoustic response of composite curved sandwich panels was numerically calculated in [Klos
et al., 2003,Buehrle et al., 2001] using an FEM model coupled with the boundary element method,
however this approach is not appropriate for large scale structures as it requires much computa-
tional effort. A modal method was used in [Cunningham et al., 2003] for the calculation of the
response of doubly curved panels sandwich panels to a random acoustic excitation.

The Wave Finite Element Method (WFEM) was introduced in [Mead, 1973] in order to nu-
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merically predict the wave dispersion characteristics of elastic dissipative structures. The main
underlying assumption of the method is the periodicity of the structure to be modelled. The Peri-
odic Structure Theory (PST) is then coupled to the FEM. A wide variety of structures, including
a vehicle’s chassis [Houillon, 1999], and a stiffened plate [Ichchou et al., 2008c] has already been
modelled using the WFEM. More recently, the WFEM was applied for composite curved and cylin-
drical 2-dimensional panels in [Manconi and Mace, 2009] and for the 1-dimensional case in [Zhou
and Ichchou, 2010].

In this chapter, a robust approach is presented for the prediction of the vibroacoustic perfor-
mance of composite structural shells of various geometries, namely curved panels and cylinders,
within an SEA context. The main SEA quantities for the structures are calculated in a wave-
context approach, following the computation of the dispersion characteristics of the structures by
a WFEM. The main advantage of the present methodology is its ability to accurately model any
kind of heterogeneous (in the sense of thickness), composite panels for a very wide frequency range.

The work presented in this paper is part of a research project which started in 2000 by EADS
Astrium Space Transportation. The objective is the prediction of the vibration levels of the
electronic equipment of the launch vehicle and of the payload at its mounting points within the
mid-frequency range, under the severe and complex aeroacoustic environment embracing the launch
vehicles during lift-off [Ichchou et al., 2009]. Indeed, electronic equipments usually have their first
modes of vibration in the mid frequency domain. They are therefore particularly sensitive to these
excitation bands. To achieve the prediction of mid-frequency response, an SEA-Like method was
chosen by Astrium ST (see [Troclet et al., 1999,Troclet et al., 2009]). The results of the current
work will eventually be used to improve the prediction of the developped approaches with regard
to the response of composite structures.

The chapter is organized as follows: In sec.4.3 the WFEM main equations are presented for
singly and doubly curved panels. The numerical issues that may occur in the case of very light
and stiff composites are also discussed. In sec.4.4 the most important characteristics of the panels
for conducting an SEA, namely their modal density and their radiation efficiency are calculated.
The procedure in order to calculate the Sound Transmission Loss (STL) of the panels is also given.
In sec.4.5 numerical examples are presented for the validation of the presented approach. The
conclusions of the work are given in sec.4.6.

4.3 The WFEM for curved structures

4.3.1 Presentation of the method

The WFEM for two-dimensional flat composite panels was presented and validated in [Manconi
and Mace, 2007, Inquiété, 2008]. Following the extraction of the mass and stiffness matrices M
and K of a segment representing the periodic structure to be modelled, a polynomial eigenvalue
problem can be formed as:

{

I λ−1
a I λ−1

c I λ−1
c λ−1

a I
}

D















I
λcI
λaI

λcλaI















uQ = 0 (4.1)

with D the dynamic stiffness matrix of the modelled structure calculated as D =
(

K (1 + ηi) − ω2M
)

,
uQ the displacements of the DoF of the reference edge Q and λc, λa the wavelengths of the waves
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Figure 4.1: An FE model of the trapezoid segment corresponding to the curved panel

Figure 4.2: A composite singly curved panel modelled within the current approach

propagating in the c and a directions respectively. The dynamic stiffness matrix should be written
as:

D =









DQQ DQR DQS DQT

DRQ DRR DRS DRT

DSQ DSR DSS DST

DTQ DTR DTS DTT









(4.2)

with Q, R, S and T the ensemble of the DoF laying on each of the four edges of the segment.

For the WFEM modelling of a periodic curved composite structure, a method similar to the
one used in [Manconi and Mace, 2009] will be used. We consider a prismatic segment of the flat
composite panel (see fig.4.1) to be modelled with mid-thickness dimensions dc in the curvature
direction and da in the axial direction, and whose properties may vary through the thickness
direction. The extracted mass and stiffness matrices for the prismatic segment are Mflat and Kflat

respectively. The mass and stiffness matrices for the corresponding singly curved structure (see
fig.4.2) can then be written as:

M = TTMflatT (4.3)
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Figure 4.3: A layered doubly curved panel

K = TTKflatT (4.4)

where the transformation matrix T is a block diagonal matrix produced by a repeated pattern
of submatrices of type:





cos La 0 − sin La

0 1 0
sin La 0 cos La



 (4.5)

for the left-side nodes, and:





cos La 0 sin La

0 1 0
− sin La 0 cos La



 (4.6)

for the right-side nodes, where La =
dc

2Ra
, with Ra the mid-thickness curvature radius around

a axis of the curved structure. The analysis can then be conducted using the transformed matrices
and following the same procedure as for the flat panels.

4.3.2 Calculation of doubly curved panels

For the analysis of a doubly curved shell of fixed radii (see fig.4.3), the trapezoid FE model segment
should be modified to a pyramidal frustum and a second transformation matrix Tc should be
applied to the mass and stiffness matrices to account for the double curvature of the shell. The
matrix Tc will be a repeated pattern of submatrices of type:





1 0 0
0 cos Lc − sin Lc

0 sin Lc cos Lc



 (4.7)
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for the lower-side nodes, and:





1 0 0
0 cos Lc sin Lc

0 − sinLc cos Lc



 (4.8)

for the upper side nodes, where Lc =
da

2Rc
, with Rc the mid-thickness curvature radius around

c axis of the curved structure. The new mass and stiffness matrices can be written as:

M = Tc
TTTMflatTTc (4.9)

K = Tc
TTTKflatTTc (4.10)

4.3.3 Numerical issues

When a stiff and light configuration (such as a sandwich material with stiff facesheets coupled to a
light core) is to be modelled, care has to be taken for the discretization of the structural segment.
A particularly small segment may result in the product ω2M being much smaller than the stiffness
matrix K and round-off errors may occur during the calculation of the dynamic stiffness matrix for
low frequencies. In that case the numerical solver may be unable to compute the correct eigenvalues
for the problem. This is the reason for which as large segments as possible should be chosen for
low frequency calculations. On the other hand very large segments will result in poor accuracy of
the solution for higher frequencies.

In order to get a large segment without sacrificing the accuracy of the calculation for higher
frequencies, four piles of elements can be used and unified, resulting in a pile of mid-side nodded
elements with internal nodes as shown in fig.4.4. However the eigenproblem to be solved can get
excessively complex in this way. For that reason the relations given in [Manconi and Mace, 2007],
introducing dependence of the mid-side nodes displacement with respect to the reference edge node
Q will be used:

uU = λ0.5
c uQ, uV = λ0.5

a uQ (4.11)

The errors introduced by this assumption seem to be negligible for the cases of interest. A
validation of this assumption for curved structures will be presented in the section of numerical
examples.

The internal nodes Y can be taken into account by a dynamic condensation method presented
in [Inquiété, 2008]. The dynamic stiffness matrix will now be partitioned as:

























DQQ DQR DQS DQT DQU DQV DQW DQX

DRQ DRR DRS DRT DRU DRV DRW DRX

DSQ DSR DSS DST DSU DSV DSW DSX

DTQ DTR DTS DTT DTU DTV DTW DTX

DUQ DUR DUS DUT DUU DUV DUW DUX

DVQ DVR DVS DVT DVU DVV DVW DVX

DWQ DWR DWS DWT DWU DWV DWW DWX

DXQ DXR DXS DXT DXU DXV DXW DXX

























(4.12)
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Figure 4.4: A trapezoid FE model divided into four stacks of elements

And the new eigenproblem will be given by the equation:

{

I λ−1
c I λ−1

a I λ−1
c λ−1

a I λ−0.5
a I λ−1

c λ−0.5
a I λ−0.5

c I λ−1
a λ−0.5

c I
}

D















































I
λcI
λaI

λcλaI
λ0.5

a I
λcλ

0.5
a I

λ0.5
c I

λaλ
0.5
c I















































uQ = 0

(4.13)

which results in a fifth-degree polynomial eigenvalue problem considering that the frequency
and the wavenumber in one direction are known (e.g wavenumber corresponding to a mode of
the panel). Some ways for solving the present eigenproblem are presented in [Manconi and Mace,
2007] and [Inquiété, 2008]. It can be solved within a commercial mathematics software containing
solution routines for non-linear eigenvalue problems. Once the solutions of the eigenproblem are
known, the wavelengths corresponding to real, propagating in the structure waves are distinguished
from evanescent waves and numerical artifacts by a process described in [Inquiété, 2008]. The
calculated wavelengths can then be converted to wavenumbers for each wave type using eq.(4.14).

κc =
log (λc)

−idc
and κa =

log (λa)

−ida
(4.14)

4.4 Calculation of the energy analysis properties for the struc-

tures

4.4.1 Calculation of the modal density

The Courant’s approach presented in [Courant and Hilbert, 1989] has been adopted by many
authors (see [Ghinet et al., 2005,Wilkinson, 1968,Hart and Shah, 1971]) for the modal density cal-
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Figure 4.5: A composite cylindrical shell modeled within the present approach

culation of shallow shells. This formula can be written as a function of the propagating wavenumber
for each angle φ and its corresponding group velocity cg of each wave type:

n (ω, φ) =
A κ (ω, φ)

2π2 |cg (ω, φ) | (4.15)

where A is the area of the panel and the group velocity is expressed as:

cg (ω, φ) =
dω

dκ (ω, φ)
(4.16)

The modal density of the structure is eventually given as a function of frequency:

n (ω) =

∫ π

0
n (ω, φ) dφ (4.17)

With regard to the composite cylindrical shells (see fig.4.5), it is known that [Manconi and
Mace, 2009,Troclet, 2006b], the circumferential wavenumber can only take discrete values, namely:
kc = n/R , where n is an integer and R the cylinder’s radius. Therefore, the entirety of the
propagating axial wavenumbers ka for each possible kc in the frequency range considered, has
to be calculated. The flexural waves are considered to carry the vast majority of energy for a
vibroacoustic transmission, therefore they will be the only ones to be considered for the analysis.
Once all the propagating wave types and their wavenumbers are calculated, the eigenfrequency for
each mode can be computed, as it is known (see [Troclet, 2006b]), that for a simply supported
cylinder each mode corresponds to an axial wavenumber of ka = mπ/L with m an integer and L
the cylinder’s length. By knowing the resonance frequency for each mode, it is straightforward to
count the number of modes in each frequency band and calculate the cylinder’s modal density.

4.4.2 Calculation of the radiation efficiency

In order to calculate the radiation efficiency σ (κ (ω, φ)) of shallow composite shells the asymptotic
formulas presented in [Leppington et al., 1982] are used. Energy equipartition amongst the resonant
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modes is assumed, so that the radiation efficiency is written as:

σrad (ω) =
1

n (ω)

∫ π

0
σ (κ (ω, φ)) n (ω, φ) dφ (4.18)

The radiation efficiency for cylindrical shells can be estimated using the calculated axial and
circumferential propagating wavenumbers for each mode of the cylinder, as described in [Szechenyi,
1971a]. The modes whose wavenumbers satisfy the relationship:

k2 > k2
c + k2

a (4.19)

-where k is the acoustic wavenumber- are considered to be acoustically fast (AF ) modes, while
the contrary is true for the acoustically slow (AS) modes. Following the same process used for
flat plates, AS modes can be classified into edge modes and corner modes, whose definition can
be found in [Maidanik, 1962] where it is derived that for a cylindrically shaped structure there
is no corner mode radiation. An expression for the radiation efficiency for AS edge modes as a
function of the flexural wavenumbers of each mode is presented in [Szechenyi, 1971a], and will be
used within the current approach. Eventually, the averaged cylinder’s radiation efficiency for a
frequency band is considered as:

• σrad =
NAF

N
in the case of coexistence of AF and AS modes, where NAF is the number of

AF modes in the band and N the total number of modes in the band.

• σrad = 1 in the case that only AF modes exist in the frequency band, and

• σ =rad

∑

σAS

N
where σAS the radiation efficiency of each AS edge mode, in case only AS

modes exist in the frequency band.

4.4.3 Calculation of the Sound Transmission Loss (STL)

A classical SEA approach is used in order to calculate the STL (or TL) of the curved panels under
a reverberant sound field. The configuration to be modelled is presented in fig.4.6 and it comprises
three subsystems. A source room (subsystem 1), the composite panel (subsystem 2) and a receiving
room (subsystem 3).

Following SEA analysis [Lesueur et al., 1988] the Noise Reduction (NR) of the sound power
level occurring inside the receiving room will be given by the relation:

NR = 10 log10









η13 +
n2η

2
rad

n1 (η2 + 2ηrad)

η3 +
n1η13

n3
+

n2ηrad

n3









(4.20)

with 1, 2, 3 the indices representing the source room, the composite panel and the receiving
room respectively, η13 the non-resonant radiation loss factor, ηi the dissipation loss factor for each
subsystem, ηrad the radiation loss factor of the panel, and ni the modal density of each subsystem.
In order to account for the finite dimensions of the panel, a spatial windowing correction technique
will be used to correct the non-resonant transmission η13. The method is detailed in [Ghinet and
Atalla, 2001].
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Figure 4.6: The configuration to be modelled by SEA analysis

Finally the TL of the structure can be calculated as:

STL = NR + 10 log10

(

A

αA3

)

(4.21)

where A is the area of the panel, α is the absorption coefficient of the receiving room and A3

the total area of the receiving room.

For the resonant and non-resonant transmission within and outside a cylindrical shell the
relations presented in [Szechenyi, 1971b] will be used. The non-resonant transmission coefficient
above the shell’s ring frequency is considered equal to the one for flat plates. For frequencies below
the ring frequency the relation for the non-resonant transmission is corrected. As a statistical
conception of the system is adopted, the accuracy of the given expressions depends on the modal
density of the subsystems.

4.5 Numerical examples

In this section numerical applications of the approach described above will be presented. The
examples include a curved sandwich panel as well as cylindrical shells for which the wavenumber,
modal density, radiation efficiency, as well as the sound transmission loss under a reverberant
sound field are calculated. The mechanical characteristics of each material used in the validation
procedure are mentioned in Table 4.1. The directions c and a for a curved panel and a cylindrical
shell are shown in fig.4.5. All validation runs were executed using ANSYS 12.1 software for
the modelling and extraction of segments matrices and MATLAB 7.9.0 for the calculation of
all presented results. All segments were modelled using ANSYS linear SOLID45 type elements,
and all calculations were done with a 3.16GHz, double core processor using 8GB of RAM memory.
The dimensions of each segment were chosen so that at least 10 elements exist per propagating
wavelength. Details on the computation times for each substep of each validation case, as well
as the number of DoF used to model each of the segments are given at the end of the section, in
Table 4.2.
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Table 4.1: Mechanical properties of materials

Material I Material II Material III Material IV Material V

ρ=1550 kg/m3 ρ=110.44 kg/m3 ρ=110.44 kg/m3 ρ=7820 kg/m3 ρ=9740 kg/m3

vca = 0.3 vca = 0.2 vca = 0.45 vca = 0.3 vca = 0.028
Ec = 48 GPa Ec = 0.1448 GPa Ec = 0.1448 GPa Ec = 210 GPa Ec = 2.024 GPa
Ea = 48 GPa Ea = 0.1448 GPa Ea = 0.1448 GPa Ea = 210 GPa Ea = 3.138 GPa

Gca = 18.1 GPa Gca = 0.05 GPa Gca = 0.05 GPa Gca = 80.77 GPa Gca = 0.889 GPa
Gaz = 2.76 GPa Gaz = 0.05 GPa Gaz = 0.05 GPa Gaz = 80.77 GPa Gaz = 0.889 GPa
Gcz = 2.76 GPa Gcz = 0.05 GPa Gcz = 0.05 GPa Gcz = 80.77 GPa Gcz = 0.889 GPa
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Figure 4.7: Comparison of the WFEM calculated wavenumbers for the sandwich singly curved panel
towards direction a (–) with model presented in [Ghinet et al., 2005] (bullets) and model presented
in [Heron, 2002] (�)

4.5.1 Validation of dispersion curve calculations

First and foremost the dispersion characteristics of a singly curved sandwich panel comprising
facesheets made of material I and a core made of material II were computed. The thickness of each
facesheet and of the core are 1.2mm and 12.7mm respectively. The panel has a curvature radius
of 2m, and projected dimensions of 2.43m and 2.03m. The WFEM dispersion curves of the panel
are presented in fig.4.7 and are compared to the results of a Mindlin type LW model presented
in [Ghinet et al., 2005] and a discrete layer model for sandwich-type panels proposed in [Heron,
2002]. It is observed that the wavenumber results correlate excellently. Moreover the predicted
ring frequencies of the panel are very much in agreement. Minor fluctuations are present for the
low-frequency band of the shear wave type curve because of the numerical intricacies discussed in
sec.4.3.3. This however will not affect the vibroacoustic response prediction, as in that case the
flexural wave is the one transmitting the great majority of energy through the partitions.

Next, in order to validate the assumption made for the dependence of the mid-side nodes
displacement with respect to the reference node Q (see eq.(4.11)), the wavenumbers for the same
structure as before will be calculated using a single pile of solid elements and will be compared to
the above presented result, which was computed with a four pile segment comprising mid-nodes.
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Figure 4.8: Comparison of the WFEM calculated wavenumbers for the sandwich singly curved panel
towards direction a using mid-side nodes (–) with a single pile element segment (�)

The result is shown in fig.4.8. No significant differences are observed between the two results,
validating the assumption made for the mid-side nodes displacements. As expected, the results of
the flexural wavenumber calculated with a segment comprising a single pile of elements slightly
fluctuate within the low frequency range due to the numerical issues described in sec.4.3.3.

The dispersion characteristics of a doubly curved sandwich panel are subsequently calculated.
The panel has the same material characteristics and projected dimensions as the singly curved
one. The two radii towards directions a and c are equal to 2m. The results are shown in fig.4.9
and are compared to the axial dispersion curves of the singly curved panels. It is firstly observed
that the cut-on frequency of the first axial wave changes from about 400 Hz to about 700 Hz. This
change shows the effect of the geometry parameters on the longitudinal propagation characteristics.
However the frequency of the flexural behaviour transition towards a flat panel (where the flexural
wavenumber suddenly increases to converge to the one of a flat plate), remains the same at about
380 Hz. It is also observed that the flexural wavenumber for the doubly curved panel below the
transition frequency is greater that the one of the singly curved panel.

Subsequently, the WFEM will be applied to the segment of a cylindrical shell made of highly
orthotropic material. As it was aforementioned in sec.4.4.1 the circumferential wavenumber for
cylindrical shells can only take certain discrete values (kc = n/R, n = 0, 1, ...). The axial wavenum-
bers can therefore be calculated for every discrete value of the circumferential wavenumber. In
order to more properly illustrate the dispersion curves for a cylindrical shell, a 3D wavenumber
surface is plotted. The cylinder is made up of material V. It has a radius curvature of 0.2515 m and
a thickness of h=0.003 m. The resulting k-space figures are plotted as a function of frequency in
fig.4.10. The observations are qualitatively in agreement to the diagrams presented in [Szechenyi,
1971a]. Up until the cylinder’s ring frequency the frequency-constant wavenumber curves are be-
ginning and terminating on the circumferential wavenumber axis. Beyond the ring frequency level,
the curves are terminating on the axial wavenumber axis. We already know that each mode cor-
responds to an axial wavenumber of ka = m pi/L and a circumferential wavenumber of kc = n/R.
Therefore the corresponding frequency and wavenumbers for each mode of the structure can be
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Figure 4.9: Comparison of the WFEM calculated wavenumbers for the doubly curved sandwich
panel (–) and the singly curved one towards direction a (�)

found by interpolating on fig.4.10.

4.5.2 Validation of modal density calculations

Once the propagating wavenumbers for the sandwich curved panel are predicted, its modal density
for the flexural modes can be estimated. The results are shown in fig.4.11 and are compared with
the ones presented in [Ghinet et al., 2005]. The excellent agreement shown is due to the identical
wavenumber prediction for the two models and the use of the same modal density derivation
formula.

The modal density of flexural modes for the doubly curved panel is presented in fig.4.12 and
compared to the modal density of the singly curved one. As it is expected from the observations

Figure 4.10: A three-dimensional aspect of the flexural wavenumbers within a composite orthotropic
cylinder, and four curves resulted from interpolation on the 3D diagram for constant frequencies.
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Figure 4.11: Comparison of the modal density using the present approach (–) with results in [Ghinet
et al., 2005] (*)

regarding the wavenumbers, great differences considering the compared modal densities are pre-
sented below the flexural transition frequency (around 380 Hz), with the modal density of the
doubly curved panel being much smaller that the one of the singly curved one. This observation
implies that the first modes of the singly curved panel under its ring frequency are owed to the high
flexural wavenumber towards its axial direction. It should be noted that the sudden increase of the
modal density of the doubly curved panel is due to the fact that the flexural transition frequency
occurs at the same frequency for all propagating directions (same wavenumbers for all directions of
propagation). On the other hand, a singly curved panel has different transition frequencies for each
propagating direction (see [Ghinet et al., 2005]) which means that the increase of the wavenumbers
and of the modal density occurs progressively.

In order to validate the presented methodology for cylindrical shells a calculation for a metallic
cylinder will firstly be presented due to lack of modal density and radiation efficiency results for
composite cylinders in the open bibliography to the author’s best knowledge. The cylindrical
shell is made of material IV. It has a length equal to L=0.63m, a radius equal to R=0.2515m,
and a thickness of h=0.003 m. The frequency averaged modal density for the cylinder is shown in
fig.4.13. The calculated modal density is compared to the models presented in [Ramachandran and
Narayanan, 2007] and [Langley, 1994b]. Excellent agreement is observed between the compared
results. It is also shown that the ring frequency of the cylinder is very well predicted. Some
fluctuations are present due to the different frequency bands considered in each model.

4.5.3 Validation of radiation efficiency calculations

The radiation efficiency of the curved sandwich is calculated using the Leppington’s asymptotic
formulas; the result is shown in fig.4.14 and it is in accordance with the results presented in [Ghinet
et al., 2005]. Minor differences in the pre-coincidence region are obviously due to the complexity
of the numerical implementation of the Leppington’s asymptotic and transition formulas. The
individual modal radiation efficiencies are also calculated using the formulas given in [Wallace,
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Figure 4.12: Comparison of the modal densities of a doubly curved (–) and a singly curved panel
(�)
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Figure 4.13: Modal density of the cylindrical shell: present methodology(–), model presented in
[Ramachandran and Narayanan, 2007] (∗), model presented in [Langley, 1994b] (o)
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Figure 4.14: Comparison of the radiation efficiency of a sandwich panel using: the present method-
ology (–), results in [Ghinet et al., 2005] (o), modal radiation formulas in [Wallace, 1972] (surface
modes ’o’, x-edge modes ’+’, x-y edge modes ’x’ )

1972] and presented in the same figure. Each mode is separately attributed to different categories
as shown in [Anderson and Bratos-Anderson, 2005]. For frequencies up to 1 kHz the used formulas
seems to provide a fair average radiation efficiency by passing through the modal values for each
frequency. In the post-coincidence region, the modal radiation values seem to gradually diverge
probably due to the untruthful estimations of the modal radiation expressions which are originally
given for the region where the acoustic wavelength is much greater than the panel’s trace wavelength
(see [Fahy and Gardonio, 2007]).

The computed radiation efficiency of the metallic cylinder is presented in fig.4.15 and is com-
pared to the ones predicted by the models proposed in [Ramachandran and Narayanan, 2007]
and [Miller and Faulkner, 1981]. Good agreement is observed between the different models. It
should be noted that the model presented in [Ramachandran and Narayanan, 2007] considers AF
modes with a radiation efficiency higher than unity, in contrast to the other two models where the
radiation efficiency of AF modes is considered equal to unity.

4.5.4 Validation of transmission loss estimations

With the main SEA quantities being calculated, the calculation of the TL is a straightforward
procedure using the equations presented in sec.4.4.3. The TL is one of the most important non-
dimensional vibroacoustic indicators for a structure.

A sandwich curved panel whose facesheets were made up of material I and its core of material
III was tested to measure its TL, and the experimental results are presented in [Ghinet et al., 2006].
The panel has a projected area of 1.37m x 1.65m, its facesheets have a thickness of 1.47mm and its
core a thickness of 12.7mm. The TL predicted by the current approach is presented in fig.4.16 and
it is observed that the results correlate very well. The effect of the ring frequency region on the TL
of the panel is correctly predicted. The coincidence region, one of the most important frequency
bands to predict was also very well modelled both in terms of the coincidence frequency range and
the TL level. Small discrepancies within the coincidence range are probably due to the frequency
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Figure 4.15: Radiation efficiency of the cylindrical shell: present methodology (–), model presented
in [Ramachandran and Narayanan, 2007] (∗), model presented in [Miller and Faulkner, 1981] (o)

dependent damping of the structure. In the post-coincident region the presented approach is also
in perfect agreement with the experimental results. The current model is very much in accordance
with the one presented in [Ghinet et al., 2005].

Subsequently the TL of the doubly curved panel is calculated using the same approach as for
the singly curved one and is presented in fig.4.17. It is shown that the two results are similar
above the ring frequency, as the two panels have similar flexural wavenumbers (converged to a flat
plate flexural wavenumber) above this frequency. Below the ring frequency, the much lower modal
density of the doubly curved wavenumber implies that its resonant transmission coefficient will
also be much lower, therefore its TL will be much higher than the one of the singly curved panel.
The sudden fall of the doubly curved panel TL is due to the sudden rise of its modal density at
the corresponding frequency range. It should be noted that a much lower modal density suggests
a much lower modal overlap factor for the doubly curved panel below the ring frequency. This
means that care should be taken, as the number of modes dominating the response of the structure
could still be too low for an SEA approach to be accurately applied.

The TL within a sandwich type cylinder for a diffused external acoustic field is then calculated
and shown in fig.4.18. The cylinder has facesheets made of material I with a thickness of 1.2mm and
a core made up of material III with its thickness equal to 12.7mm. The radius of the cylindrical shell
is equal to 2m. The result is compared with the model presented in [Ghinet et al., 2006], where the
TL in the cylinder is calculated by computing its mechanical impedance. An excellent agreement
is observed between the two models with regard to the prediction of the occurrence of the ring
frequency and the coincidence region and their impact on the TL. For lower frequencies, a small
difference between the predictions is observed, probably due to the different ways in which the two
models account for the non-resonant transmission effects. It is worth reminding that the model
in [Ghinet et al., 2006] assumes cylinders of infinite length with non-resonant acoustic interior.
Moreover the acoustic transmission is considered as a forced solution problem and thus frequencies
for which the propagating wavenumber in the structure exceeds the acoustic wavenumber are not
considered. On the other hand, within the current approach the relations given in [Szechenyi,
1971b] for the non-resonant transmission are used. The non-resonant transmission above the
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Figure 4.16: Comparison of the transmission loss for the singly curved panel: present approach
(–), experimental results in [Ghinet et al., 2006] (o), model presented in [Ghinet et al., 2005] (�)
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Figure 4.17: Comparison of the transmission loss for the doubly and the singly curved panels:
doubly curved panel (–), singly curved panel (�)
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Figure 4.18: Comparison of the diffused field TL in the cylinder: present approach (–), model
presented in ref [Ghinet et al., 2006] (o)

ring frequency of the cylinder in considered equal to the one for flat plates, while below the ring
frequency the expression is corrected to take into account for the proportions of the acoustic
wavenumber bands that fall into the sub- and super-coincident regions.

The computation times needed for each substep of the validation process as well as the number
of DoF for the segments used in each case, are presented in Table 4.2. It is worth commenting
that calculating a doubly curved panel is slightly more expensive than a singly curved one due to
the extra time needed for the double transformation process. The largest percentage of calculation
time for all types of structures is consumed for the computation of dispersion characteristics for
each desired frequency and direction. Last but not least, the fastest calculation occurs for the
cylindrical shell, mainly due to the fact that the radiation efficiency formulas that are used in this
case are less expensive.

4.6 Conclusions

A robust unified-approach model for the prediction of the vibroacoustic performance of composite
structural shells of various geometries within an SEA wave context approach was presented in
the current work. More precisely: 1) The WFEM was used in order to predict the dispersion
characteristics of arbitrarily layered composite closed and non-closed shells. The wave propagation
characteristics agree very well with results presented in the literature. The ring frequencies of
the curved structures are also successfully predicted. 2) The numerical issues that may arise
for the low-frequency predictions when modelling exotic, light composites are discussed and an
effective solution for increasing the size of the modelled segment without losing the precision
at higher frequencies was proposed. 3) The main energy analysis properties, namely the modal
density and the radiation efficiency of the shells were predicted following the calculation of their
dispersion characteristics. The calculation was done using analytic and asymptotic formulas in a
wave context. The results present a very good correlation between a variety of models presented
in the literature and the current approach, validating the robustness of the later. 4) For the
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Table 4.2: Computation times for validation steps (in seconds)

Singly curved
sandwich (mat.
I,II)

Doubly curved
sandwich (mat.
I,II)

Sandwich cylin-
der (mat. I,III)

Number of segment DoF 156 DoF 156 DoF 168 DoF
Matrices extraction and transforma-
tion

3.1 5.4 3.5

Dispersion characteristics calcula-
tion (for 37 directions and 1/3 oc-
tave bands)

113.4 113.5 121.7

Modal density calculation 1.9 1.9 7.1
Radiation efficiency calculation 7.4 7.4 2.8
Calculation of the finite size correc-
tion integral

19.3 19.3 −

STL calculation 4.4 4.3 3.5
Total 149.5 151.8 138.6

calculation of the STL of the shells a classic SEA approach was adopted. A validated model was
also used to take into account for the finite dimensions of the panel and to correct the non-resonant
transmission coefficient. 5) For the non-closed shells, a generally very good agreement between
the experimental measurements and the prediction of the presented method was observed. Small
discrepancies within the coincidence range are probably due to the frequency dependent dissipation
factor of the composite shell. 6) The results of the current approach for a cylindrical composite
shell are successfully compared to the prediction of a 3D elasticity model. The effectiveness and
robustness of the current approach is therefore demonstrated.
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5.1 Abstract

The problem of the dynamic response of a structural-acoustic system in the mid-frequency range is
considered in this work. The structure is a composite panel of arbitrary thickness and anisotropy.
The dissipation characteristics for both, the structure and the cavity are taken into account. The
system is initially modelled using finite elements, and is subsequently reduced using the Second
Order Arnoldi Reduction method (SOAR) which does not require inversion of large matrices for
every computed frequency, thus resulting in more efficient calculation times. The fully coupled
system is modelled using a Statistical Energy Analysis like (SEA-like) approach, and the energetic
characteristics for each subsystem are computed and compared to the direct FEM solution. The
error of the reduced model calculations for each frequency band is presented and the limits of
the reliability of the reduction are explored. Different strategies concerning the reduction process
parameters are investigated in order to optimize the accuracy with respect to time efficiency. The
loading applied to the model comprises typical random distributed excitations, such as a ’rain-on-
the-roof’ excitation, a diffused sound field and a Turbulent Boundary Layer (TBL) excitation.

5.2 Introduction

Structural acoustic interactions in a broadband frequency range are a regular problem in modern
aerospace and automotive industry. The level of noise induced by structural vibration in a cavity
has to be predicted, in order to optimize the acoustic transparency of a system, such as a payload
cavity of a launch vehicle, or a passenger cavity for a car. The structural loading usually includes
random, distributed excitations, such as diffused acoustic fields and aerodynamic excitations. The
structures are often made of composite non-isotropic materials, complicating the modelling of the
structural response. Moreover, the size of the cavities is often too large, which makes deterministic
techniques such as Finite Elements (FE) excessively expensive in terms of computational time at
higher frequencies [Desmet, 2002]. Statistical methods such as Statistical Energy Analysis (SEA)
are often considered more suitable for the medium frequency range but have limited accuracy,
particularly when the modal overlap of the system is low [Mace et al., 2005]. It is therefore a vital
task, the development of a robust approach for the calculation of the response of large systems, in
that range where deterministic methods are too costly and statistical methods too inaccurate.

Numerous authors have investigated the fluid-structure interaction in the broadband frequency
domain. In the low-frequency range, the system is typically modelled using FE or Boundary El-
ements (BE) as in [Maluski and Gibbs, 2000]. A Component Mode Synthesis (CMS) was used
in [Magalhaes and Ferguson, 2003] in order to predict the low-frequency one-dimension fluid-
structure interaction. The authors in [Pan and Bies, 1990] gave an energetic description of a
panel-cavity coupled system in the mid-frequency range, by considering the modes of each un-
coupled subsystem. The work was extended by Rochambeau et al. using an SEA-like approach
in [de Rochambeau et al., 2011,Rochambeau et al., 2008], in order to give an accurate description
of the fluid-structure interaction problem in the mid-frequency range. The method was initially
introduced and studied by the authors in [Mace et al., 2005, Mace, 2005b, Fredö, 1997, Troclet
et al., 2009]. The impact of the strength of coupling between the structure and the fluid on the
accuracy of the prediction is investigated in [de Rochambeau et al., 2011]. Strong coupling means
that taking into account for the uncoupled modes of the subsystems will lead to inaccurate results
especially for the low frequency range. Furthermore the assumption of analytical expressions of
the modal data of the subsystems used in [Rochambeau et al., 2008] restricts the applicability of
the method to rectangular thin isotropic structures and rectangular cavities.
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In order to reduce the computational effort required to resolve a structural-acoustic system,
several reduction methods have been introduced. Modal reduction techniques have been success-
fully applied in [de Rochambeau et al., 2011, Peretti and Dowell, 1992, Ferguson et al., 2002],
but they usually require analytical expressions of the modal data of the subsystems which are
not always available (e.g for composite structures of arbitrary geometry). Recently, the moment
matching approaches for the reduction of large scale second order systems have received much atten-
tion [Antoulas, 2005,Willcox et al., 2001,Han et al., 2005,Srinivasan Puri et al., 2009]. The method
consists in finding a reduced Krylov subspace to project the initial system and was successfully
applied to a fully coupled structural-acoustic system in the low-frequency range in [Srinivasan Puri
et al., 2009]. Bai and Su in [Bai and Su, 2005] introduced the second-order Krylov subspace and
the Second Order Arnoldi procedure (SOAR) in order for the reduced system to maintain the
second order form of the initial one.

The modelling of pragmatic aerodynamic loads have been a long-term challenge. The author
in [Corcos, 1963] presented one of the first models for a Turbulent Boundary Layer (TBL) excita-
tion. Other models derived from Corcos expression were then suggested by Chase and Efimstov
in order to improve the predictions for the low-frequency range [Chase, 1980,Efimtsov, 1982]. In
order for such loads to be integrated in an SEA type method, δ-correlated equivalent expressions
for the excitations are required. Maidanik was the first to give such an expression, with the spatial-
extent approach in [Maidanik, 1961]. Recently, equivalent approaches were suggested based on a
wavenumber expression of the excitation. The author in [Finnveden, 2004] modelled a TBL excita-
tion using an asymptotic approach for the wavenumber transform of the spatial coherence function.
In [Ichchou et al., 2009], the authors applied the equivalent δ-correlated excitation method on a
rectangular panel and proposed an equivalent model for a TBL excitation.

The main novelty of the work hereby presented is the use of a second order moment matching
method in order to reduce a fully coupled structural-acoustic system, subject to realistic aero-
dynamic distributed excitations, in a broadband frequency range. An expression for the TBL
equivalent coherence function when applied on an orthotropic plate is given. A dynamic scheme
for the number of moments that are taken into account in each frequency range is also presented in
an attempt to optimize the computational efficiency of the approach. The approach is generic and
robust. It drastically reduces the computation time. Moreover the advantages of an FE modelling
are maintained. This implies that the system can have an arbitrary geometry and the structure
can be made of an arbitrary composite material. The coupling between the subsystems can also
be of arbitrary nature.

The chapter is organized as follows: In sec.5.3 the concept of a hybrid FE/SEA method for
a structural acoustic coupling is presented. In sec.5.4 the equivalence relations between a purely
δ-correlated excitation and realistic aeroacoustic excitations are discussed. A reverberant sound
field, as well as a TBL excitation are modelled. In sec.5.5 the reduction of the vibroacoustic
system using a second order Krylov subspace method, along with a dynamic scheme for increased
computational efficiency are presented. Finally, in sec.5.6 numerical examples for the validation of
the above presented models are given.

5.3 Modelling a structural-acoustic system with a hybrid FE/SEA
method

A vibroacoustic system as the one presented in fig.5.1 is to be modelled. In the mid-frequency
domain FE modelling becomes greatly costly in terms of computational times. On the other hand,
the conditions for forming a proper SEA matrix are not always satisfied, mainly because of the
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Figure 5.1: View of the modelled configuration

fact that the weak coupling condition between the subsystems is not satisfied and because of the
indirect coupling between substructures that cannot be neglected. Moreover, in the mid-frequency
range the intrinsic damping of the substructures has a great role on energetic transfer between
them. Consequently, damping cannot be separated from the Coupling Loss Factors (CLF), as it is
in SEA equations.

The Energy Influence Coefficient (EIC) method was presented in [Guyader et al., 1982]. As in
SEA, the system is discretized in distinct n interconnected subsystems. Assuming that the loads
applied to different subsystems are uncorrelated, and that the loads applied to each subsystem
are δ-correlated, the column matrix of subsystems kinetic energies can be written as the product
of the EIC matrix with the matrix of Power Spectral Densities (PSD) of the loads applied to the
subsystems:















E1

E2

...
En















=









A11 A12 ... A1n

A21 A22 ... A2n

... ... ... ...
An1 An2 ... Ann























P1

P2

...
Pn















The SEA-like method used in [Mace, 2005b, Fredö, 1997,Troclet et al., 2009], is very similar
to the EIC method, with the sole difference being that the kinetic energy of the subsystems is
replaced by their total energy. By exciting the subsystems one by one, the above relation can be
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written as:









〈E11〉 〈E12〉 ... 〈E1n〉
〈E21〉 〈E22〉 ... 〈E2n〉

... ... ... ...
〈En1〉 〈En2〉 ... 〈Enn〉









=









A11 A12 ... A1n

A21 A22 ... A2n

... ... ... ...
An1 An2 ... Ann









I

where

〈Eij〉 =
Eij

Pj
(5.3)

with Eij the total energy of subsystem i when subsystem j is excited and Pj the PSD injected
in subsystem j. Finally, the EIC matrix can be written as:









A11 A12 ... A1n

A21 A22 ... A2n

... ... ... ...
An1 An2 ... Ann









=









〈E11〉 〈E12〉 ... 〈E1n〉
〈E21〉 〈E22〉 ... 〈E2n〉

... ... ... ...
〈En1〉 〈En2〉 ... 〈Enn〉









The injected power as well as the subsystem energies can be computed, by an FE modelling.
The spatially averaged calculated values will then be used to estimate the energy of each subsystem
and the energy exchange between them. Classic FE models as in [Everstine, 1997] will be used for
the structural acoustic coupling. The total energy of an acoustic subsystem comprising N nodes
can be written as:

Eac (ω) =

〈

p2
i

〉

V

ρ0c
2
0

(5.5)

with
〈

p2
i

〉

the mean-square sound pressure of subsystem i, V the volume of the cavity, ρ0 the
density of the acoustic medium and c0 the celerity of the medium. The total energy of a structural
subsystem can be written as:

Estr (ω) = ρsS
〈

ṽ2
i

〉

(5.6)

assuming that the potential and kinetic energies in both types of subsystems are equal. In
eq.(5.6),

〈

ṽ2
i

〉

is the mean-square velocity of subsystem i, ρs is the surface density of the structure
and S is the total area of the structural component.

5.4 Random distributed excitations

As mentioned in sec.5.3, in order to calculate the EIC of a system using the SEA-like method, a
δ-correlated ’Rain-On-the-Roof’ (ROR) excitation has to be applied on the subsystems. Moreover,
the excitations applied to different subsystems have to be uncorrelated. Unluckily however, ROR
does not represent real world excitations.

The most commonly encountered random aeroacoustic excitations in the aerospace and auto-
motive fields are either diffused acoustic fields, or TBL excited vibration during high speed cruising.
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In [de Rochambeau et al., 2011] it is shown that the following relationships between an aeroacoustic
excitation and a ROR one are valid:

Eaer
s,s (ω) ≈ Ceq (ω)

ρs
Eror

s,s (ω)

Eaer
a,s (ω) ≈ Ceq (ω)

ρs
Eror

a,s (ω)

P aer
s (ω) ≈ Ceq (ω)

ρs
P ror

s (ω)

(5.7)

in which s stands for the structure and a for the acoustic medium. Therefore:

Aaer
s,s ≈ Aror

s,s

Aaer
a,s ≈ Aror

a,s
(5.8)

Where Ceq (ω) is the equivalent coherence function of the aeroacoustic excitation. The great
advantage of this formulation, is based on the fact that by calculating the energy exchange prop-
erties of the system under a ROR excitation, an aeroacoustic excitation can be simulated through
its equivalent coherence function. Therefore only one simulation is needed for the prediction of the
response of a system, under several simultaneously applied aerodynamic excitations.

5.4.1 Equivalent function for a diffused sound field

An incident diffused sound field comprises an infinite number of uncorrelated plane waves with
incidence angles uniformly distributed over a half space. The equivalence correlation function of a
diffused sound field can be written as in [de Rochambeau et al., 2011]:

Cdiff (ω) =

(

π

k0

)2

σrad (ω) (5.9)

Where k0 is the acoustic wavenumber given by k0 = ω/c0. The radiation efficiency σrad (ω) for
an orthotropic panel having finite dimensions can be calculated using expressions such as the set
of asymptotic formulas given in [Leppington et al., 1982], or the one given in [Cotoni et al., 2008].

5.4.2 Equivalent function for a TBL excitation

Following the wavenumber space equivalence approach presented in [Ichchou et al., 2009], an
equivalent ROR excitation can be calculated. The equivalent correlation function can be expressed
in the wavenumber space as:

Ceq (kx, ky , ω) =
Ceq (ω)

4π2
(5.10)

Comparing the wavenumber-frequency spectrum of the studied excitation with the one of the
equivalent ROR excitation, Ceq can be written in cartesian coordinates as:

∫ kx2

kx1

∫ ky2

ky1

Ceq (kx, ky , ω) dkydkx =

∫ kx2

kx1

∫ ky2

ky1

C (kx, ky , ω) dkydkx (5.11)
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Substituting eq.(5.10) in eq.(5.11) implies that for an orthotropic panel Ceq can be written as:

Ceq (ω) =
4π2

(kx2 − kx1)(ky2 − ky1)

∫ kx2

kx1

∫ ky2

ky1

C (kx, ky , ω) dkydkx (5.12)

A classic model presented in [Corcos, 1963] will be used hereby, according to which the coherence
function for a TBL excitation propagating in the x direction is given as:

CTBL (ζ, η, ω) = e−αx
ω|ζ|
Uc e−αy

ω|η|
Uc e

iωζ
Uc (5.13)

where ζ = x − x′ and η = y − y′. The above expression can be written in the wavenumber
space (see [de Rochambeau et al., 2011]) as:

CTBL (kx, ky, ω) =
αxαyk

2
c

π2(α2
xk2

c + (kx − kc)2)(a2
yk

2
c + k2

y)
(5.14)

Eventually, substituting eq.(5.14) in eq.(5.12) the equivalent coherence function of the TBL
excitation can be obtained:

Ceq (ω) =
4π2

(kx2 − kx1)(ky2 − ky1)

∫ kx2

kx1

∫ ky2

ky1

αxαyk
2
c

π2(α2
xk2

c + (kx − kc)2)(a2
yk

2
c + k2

y)
dkydkx (5.15)

In the above equations ax,ay are empirical coefficients depending on the nature of the TBL
excitation, Uc is the convection velocity and kc = ω/Uc is the convection wavenumber.

5.5 Reduction using a second order moment matching method

Following classical FE formulation for structural-acoustic coupled subsystems [Everstine, 1997,
Craggs, 1971], the discretized system can be written as a system of second order ordinary differential
equations as:

M

{

¨̃x(t)
¨̃p(t)

}

+ C

{

˙̃x(t)
˙̃p(t)

}

+ K

{

x̃(t)
p̃(t)

}

= Fsaũ(t)

ỹ(t) = ℓt

{

x̃(t)
p̃(t)

} (5.16)

For a system with N DoF, M, C, K ∈ ℜN×N are the non-symmetric mass, damping and
stiffness matrices, x̃(t) stands for the structural displacement vector, p̃(t) denotes the nodal pressure
vector in the acoustic fluid, Fsa is the input matrix, ũ(t) signifies the load vector of the system
and ℓt is the transposed output matrix.

5.5.1 The Second Order ARnoldi (SOAR) process

The objective of a model order reduction process is the calculation of a subspace S ∈ C
N×m with

m the size of the reduced model, for which the solution of the original system is written as:

{

x̃
p̃

}

= Sb̃ + ǫ̃ (5.17)

120



Reducing a complex structural-acoustic system Chapter 5

with b̃ ∈ ℜm and ǫ̃ the error of the approximation process. Both m and ǫ̃ have to be minimized,
for the computational cost and the error of the reduced solution to be acceptable. Assuming
harmonic excitation, the system of equations can be written after a Laplace transform as:

s2M

{

x̃
p̃

}

+ sC

{

x̃
p̃

}

+ K

{

x̃
p̃

}

= F̃

ỹ = ℓt

{

x̃
p̃

} (5.18)

After some algebraic manipulation of the above system the variable vector is eliminated and
the transfer function can be written as:

h̃(s) = ℓt
(

s2M + sC + K
)−1

F̃ (5.19)

With s = iω, ω > 0. Assuming K non-singular the system has a Taylor series expansion which
around s = 0 can be written as in [de Villemagne and Skelton, 1987]:

h̃(s) = m̃0 + m̃1s + m̃2s
2 + ... =

∞
∑

i=1

m̃is
i (5.20)

with m̃i the leading moments. The idea of a moment matching method is to find a reduced
system of dimension m, whose transfer function matches as many leading moments of the original
system as possible. The second order Krylov subspace was introduced for this reason in [Su and
Craig Jr., 1991]. It is defined as the subspace, spanned by the vector sequence q̃i, denoted as:

Km (A,B, q̃0) = span (q̃0, q̃1, ..., q̃m−1) (5.21)

with the vector sequence q̃i:

q̃i =







q̃0

Aq̃0

Aq̃i−1 + Bq̃i−2 for i≥ 2
(5.22)

Vector q̃0 is called the starting vector, while vectors q̃i for i > 0 are called basic vectors. It
is shown, [Lampe and Voss, 2005] that for A = −K−1C, B = −K−1M, and q̃0 = K−1F̃ , the
moments of the system can be written with respect to the above vector sequence as:

m̃i = ℓtq̃i (5.23)

Assuming an orthogonal basis S of Km and projecting the initial system on this basis we get
the reduced second order system:

s2Mrb̃ + sCrb̃ + Krb̃ = F̃r

ỹr = ℓt
r b̃

(5.24)

with

Mr = StMS, Cr = StCS, Kr = StKS, F̃r = StF̃ , ℓt
r = ℓtS (5.25)
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In [Salimbahrami and Lohmann, 2006] it is shown that if a matrix S is a basis of the second-

order Krylov subspace Km

(

−K−1C,−K−1M,K−1F̃
)

and Kr is non-singular, then the first m

leading moments of the original and the reduced-order models are matched. The iterative process
followed for finding an orthogonal basis S of the second order Krylov matrix was presented in [Bai
and Su, 2005], and is called a Second Order ARnoldi reduction (SOAR). The main advantage
of SOAR compared to the Arnoldi reduction is the preservation of the nature of a second order
system. It is therefore expected to be at least as accurate as the first order Arnoldi process [Yue
and Meerbergen, 2010].

5.5.2 Expansion about s0 6= 0

If the expansion series of the system’s transfer function is to be calculated around a point s0 6= 0,
eq.(5.19) can be written as:

h̃(s) = ℓt
(

(s + s0)
2M + (s + s0)C + K

)−1
F̃

= ℓt
(

s2M + s(C + 2s0M) + (K + s0C + s2
0M)

)−1
F̃ (5.26)

By comparing eq.(5.19) to eq.(5.26), it can be seen that we can calculate the transfer function
of a system around s0 by substituting K with K+ s0C+ s2

0M and C with C + 2s0M in eq.(5.19).
The modified Krylov subspace can therefore be written as:

Ks0

m =

Km

(

(K + s0C + s2
0M)−1(C + 2s0M), (K + s0C + s2

0M)−1M, (K + s0C + s2
0M)−1F̃

)

(5.27)

and the modified reduced system matrices will be calculated by projecting the initial system’s
matrices to an orthogonal basis of the modified Krylov subspace.

5.5.3 Dynamic dimensioning and sampling processes

As aforementioned the response of the reduced system can be calculated using the reduced transfer
function:

h̃r(s) = ℓt
r

(

s2Mr + sCr + Kr

)−1
F̃r (5.28)

The accuracy of the reduced model depends highly on the number of moments m that are
matched. It is observed [Antoulas, 2005, Srinivasan Puri et al., 2009], that ǫ̃ increases with fre-
quency. It can therefore be concluded that the number of matched moments needed to approximate
a system with a certain ǫ̃ also increases with frequency.

To the best of the authors knowledge, there exist no method for the a priori estimation of the
error bounds for a Krylov subspace reduction process. Hereby, mh is introduced as the minimum
number of matched moments, so that ǫ̃ is acceptable for the highest desired frequency band to be
calculated. In the same sense, the minimum number of moments needed for the approximation error
ǫ̃ to be acceptable for the lowest frequency band is denoted as ml. To minimize the computational
time of the solution, a linear relation is proposed hereby, in order to decide the number of moments
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Table 5.1: Mechanical properties of materials

Material I Material II

ρ=9740 kg/m3 ρ=3500 kg/m3

Ex = 2023.7 GPa Ex = 70 GPa
Ey = 31375 GPa Ey = 70 GPa

vxy = 0.028 vxy = 0.25
vxz = 0 vxz = 0.25

vyz = 0.434 vyz = 0.25
Gxy = 888.79 GPa Gxy = 28 GPa
Gyz = 888.79 GPa Gyz = 28 GPa
Gxz = 888.79 GPa Gxz = 28 GPa

(and therefore the size of the reduced model) mω that will be taken into account for the calculation
at each ω :

mω = ml +
(ω − ωmin)(mh − ml)

ωmax − ωmin
(5.29)

with ωmin,ωmax respectively the minimum and the maximum angular frequencies of the anal-
ysis.

Another computational advantage of the Krylov subspace reduction methods is the possibility of
extracting the solution exclusively for the desired DoF, by truncating the rows of ℓt that correspond
to the discarded DoF. Taking into account that for an SEA-like calculation, it is the spatially
averaged displacement and pressure that are required and in order to further reduce the calculation
burden, a random sampling of the DoF to be calculated can be made. The impacts on accuracy
as well as the computational advantages of this approach will be exhibited in sec.5.6.

5.6 Numerical examples

In this section, numerical applications for the models presented in sec.5.3 to sec.5.5 are exhibited.

5.6.1 ROR excitation

The configuration shown in fig.5.1 is to be modelled. The dimensions a, b and c are 0.7m, 0.6m
and 0.5m respectively. The structure is a layered, highly orthotropic panel made of Material I (see
Table 5.1), with a thickness of 0.5mm . The damping of the system is considered to be Rayleigh
proportional.

The structural-acoustic system is modelled by coupling Mindlin-Reissner type two-dimensional
finite elements for the panel, to three-dimensional acoustic elements for the cavity. The resulting
FE model comprises 3186 structural DOF and 17832 acoustic pressure DoF. A ROR excitation is
initially applied to the structural panel, using loads of equal magnitude and of random phase and
position. In order to excite the entirety of the subsystem modes in each frequency band (necessary
condition for a ROR excitation), the Influence Circle approach exhibited in [Troclet et al., 2009]
will be used to decide the number of applied loads. The error ǫ (ω) between the FE direct solution
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Figure 5.2: Noise transfer function for a central acoustic DoF under a ROR excitation: FE direct
solution (--), SOAR method (–)

and the estimation of the reduced model is computed as:

ǫ̃ (ω) =

∣

∣

∣
h̃r (ω) − h̃ (ω)

∣

∣

∣

∣

∣

∣
h̃ (ω)

∣

∣

∣

(5.30)

Firstly, the noise transfer function for a central cavity node is calculated in order to validate
the ability of the SOAR method to accurately predict the response of a single DoF. The node
coordinates are (0.2m,0.325m,0.072m). The reference pressure is pref = 20µPa. The acoustic
medium’s density is ρ0 = 1.3 kg/m3, its celerity is c0=343m/sec, and the admittance of the
cavity’s boundaries is considered Y =0.1. The resulting Frequency Response Function (FRF) is
shown in fig.5.2. The size of the reduced model is m =2000 and the expansion point of the reduced
transfer function is s0=13200rad/sec for all the results shown below, unless if differently noted.
The results are averaged over one-third octave frequency bands.

Excellent agreement is observed in the low-frequency range of the response prediction. It is
noted that the cavity’s modal overlap Mc is equal to 1 for f = 780Hz. The error for this frequency
band is 2.1e−6. It is observed that the error becomes noticeable only after f = 1200Hz. The largest
divergence of the approximation occurs for the highest frequency band and is equal to 0.3dB.

The transfer function of the displacement amplitude of a structural DoF is then calculated
using the same procedure. The nodal coordinates of the DoF are (0.275m,0.075m). The reference
displacement is considered as dref = 5e−8m. The results are averaged in the same way as before
and are shown in fig.5.3

Again excellent agreement is observed in the low-frequency range of the prediction. The panel’s
modal overlap Mp is equal to 1 for f = 985Hz, where the error of the reduced system calculation
is equal to 2.9e−5. The error becomes perceptible for frequencies higher than f = 1440Hz, where
a cut-off frequency is observed. Just beyond this cut-off frequency, ǫ increases from 0.0087 to
0.043. The sudden increase is apparently due to the lack of higher order moments which contain
information for the solution above that frequency. The largest difference between the approximated
and the FE solutions occurs at the highest frequency band and is equal to 0.15dB.
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Figure 5.3: Displacement transfer function for a structural DoF of the panel for an ROR excitation:
FE direct solution (--), SOAR method (–)

5.6.2 Influence of the calculation parameters on the reduced model accuracy

The most important parameters related to the reduced model are the dimension of the reduced
model m and the expansion point s0. In order to investigate the effect of m on the accuracy of the
reduced model prediction, the error of the noise transfer function presented in fig.5.2 is calculated
for different values of m. The results are presented in fig.5.4 The expansion point is s0=2200rad/sec
for all calculations.

It is observed that the accuracy of the approximation is generally increasing with the dimension
of the reduced model. The extension of m from 250 to 500, reduces ǫ by almost six orders of
magnitude in the low-frequency range. Further extension of m may not be so effective, however it
reduces the error. It is observed that the cut-off frequency (occurring when ǫ increases by several
orders of magnitude in a short frequency range) of the prediction increases with m. Several cut-off
frequencies are observed for m = 1000 and m = 2000. It is observed that higher order moments
contain information on the response of the system in the entire frequency range.

The influence of the choice of the expansion point s0 is then investigated. The results of the
error between the reduced transfer function and the FE calculated one for various expansion points
are shown in fig.5.5. The reduced model dimension is m = 500 for all four cases.

It is observed that solving for s0=1000Hz reduces the error around this region but results
in larger error for higher frequencies. For a very high s0=7000Hz, the error is large in the low
frequency range, however it progressively reduces in the higher frequency range. For an s0 at
the end of the analysis range, a high cut-off frequency is observed. The curve for s0=3500Hz
presents a lower cut-off frequency, however it seems to be more precise than the other predictions
for higher frequencies. For the rest of the analysis, an s0 at the end of the analysis range is chosen
(s0=13200rad/sec).
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Figure 5.4: Error of the reduced model estimation with respect to its dimension m: m=250(--),
m=500(–), m=1000(· · · ), m=2000(-∗-)
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Figure 5.5: Error of the reduced model estimation with respect to the expansion point of the reduced
transfer function: s0=1000 Hz(· · · ), s0=2100 Hz(–), s0=3500 Hz(--), s0=7000 Hz(-∗-)
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Figure 5.6: Injected power in the system by an ROR excitation: FE direct solution (--), SOAR
method (–)
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Figure 5.7: Energy of the panel subsystem under an ROR excitation: FE direct solution (--), SOAR
method (–)

5.6.3 SEA-like analysis for a ROR excitation

An SEA-like analysis of the vibroacoustic system is conducted. The panel is excited with a ROR
load. The resulted injected power is shown in fig.5.6. The reference power is considered to be
Pref = 10−12W. All results are averaged over one-third octave frequency bands.

The results of the direct FE solution and the SOAR estimation present an excellent correlation
throughout analysis range. The lowest of the curve is due to the low structural admittance in
the stiffness controlled region of the panel. The effect of considering a damped system, as well as
averaging the results does not allow the visualization of each mode separately in the low frequency
range. No cut-off frequency is observed. The largest deviation between the two predictions is
0.05dB for f=2100Hz.

The steady-state total energy of the composite panel is presented in fig.5.7. The reference
energy is considered to be Eref = 10−12J.

The results are in excellent agreement up until f=1440Hz. Contrary to fig.5.6 a cut-off fre-
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Figure 5.8: Energy of the cavity subsystem under an ROR excitation: FE direct solution (--),
SOAR method (–)

quency is observed at that point and the error drastically increases. The largest difference between
the two predictions is here 0.8dB for f=2100Hz.

The energy transmitted from the vibrating panel to the cavity under a ROR excitation is
calculated using eq.(5.5) and is presented in fig.5.8.

Once again in the low frequency range no significant discrepancies are observed between the
reduced solution and the FE model. In the medium and higher frequency ranges the SOAR
approach seems to be slightly underestimating the cavity energy with the maximum difference
between the two models being 0.6dB for f=2100Hz.

The EIC under a ROR excitation are presented for the structural and the cavity subsystems
is fig.5.9,5.10. It is noted that Ass stands for the structural EIC when the structure is excited,
while Acs is the EIC for the cavity when the structure is excited. The EIC used as reference is
EICref = 10−12sec.

Similar behaviour as in fig.5.7 is observed for the panel behaviour. The error seems to increase
dramatically after the cut-off frequency, reaching 1.05dB at the end of the analysis range. The
peak of the curve at the very low frequency range is due to the increased impedance of the panel
in that range. For the cavity subsystem the two predictions are very much in accordance with the
maximum divergence being 0.3dB for f=1390Hz.

5.6.4 Diffused field excitation

The results of an SEA-like analysis with the panel excited by a reverberant field on its dry side are
presented hereby. As stated in sec.5.4, a new FE simulation is not needed for the response of the
system to be predicted. The energy quantities of the subsystems under a diffused field excitation,
are directly related to the ones for a ROR (of an equal Power Spectral Density (PSD)) through
the equivalence function presented in eq.(5.9). The radiation efficiency of the panel is computed
using the Leppington’s set of asymptotic formulas, accounting for the finite dimensions, as well as
the orthotropy of the panel. The resulting levels of energy LE for the subsystems are presented in
fig.5.11,5.12.
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Figure 5.9: EIC for the structural subsystem under a ROR excitation: FE direct solution (--),
SOAR method (–)
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Figure 5.10: EIC for the acoustic subsystem under a ROR excitation: FE direct solution (--),
SOAR method (–)
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Figure 5.11: Steady-state energy for the structural subsystem under a reverberant field excitation:
FE direct solution (--), SOAR method (–)
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Figure 5.12: Steady-state energy for the acoustic subsystem under a reverberant field excitation:
FE direct solution (--), SOAR method (–)

The comparison between the FE and SOAR methods are in very good agreement for the entire
frequency range. The maximum difference between the predictions occurs at the end of the analysis
range for both subsystems and is equal to 0.9dB for the panel’s and 0.7dB for the cavity’s energy
level.

5.6.5 TBL excitation

A TBL excitation with empirical values corresponding to Uc =0.9 Mach which is a typical convec-
tion velocity for an aerospace structure, will be modelled using its equivalent coherence function
presented in eq.(5.15). A stream propagating in x, as well as in y direction is hereby modelled.
The resulting acoustic energy inside the cavity subsystem is shown in fig.5.13.

It is shown that the FE results are in a very good agreement with the ones obtained after the
SOAR reduction. The largest discrepancy for both results is 0.6dB at f = 2100Hz. The different
resulting energies for the two propagation directions are due to the orthotropic characteristics of
the panel. The higher induced energy for the stream propagating towards y direction implies
that the convective wavenumber is closer to the panel’s structural wavenumber in this direction,
resulting in better coupling and more efficient energy transmission.

5.6.6 Modelling a stiffened double panel

In order to exhibit the ability of the presented approach to deal with the modelling of complex
systems, the thin panel presented above is replaced with a double, stiffened panel. The panel is
presented in fig.5.14. The dimensions of the cavity subsystem a, b and c are now 0.86m, 0.6m
and 0.55m respectively. The double panel structure comprises Π-shaped stiffeners in between the
facesheets.

The thickness of the facesheets and the stiffening structures is equal to h = 1mm. The distance
between the facesheets is d = 0.02m. The panel comprises five vertical stiffeners with a periodic
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Figure 5.13: Energy of the cavity subsystem under a TBL excitation of 0.9 Mach applied on the
panel: Layer propagating towards x: FE direct solution (· · · ), SOAR method (–), Layer propagating
towards y: FE direct solution (· − −·), SOAR method (--)

Figure 5.14: The modelled stiffened double panel
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Figure 5.15: Energy of the cavity subsystem under an ROR excitation applied on the double panel:
FE direct solution (--), SOAR method (–)

distance of l = 0.16m. The panel is made of material II. The damping of the system is considered to
be Rayleigh proportional with 0.03 and 0.01 the mass and stiffness matrix multipliers respectively.

As with the previous example, the structural-acoustic system is modelled by coupling Mindlin-
Reissner type two-dimensional finite elements for the panel, and three-dimensional linear acoustic
elements for the cavity. The FE model comprises 13707 structural DoF and 38467 pressure DoF.
A δ-correlated (ROR) excitation is initially applied on the dry side of the structural panel, using
loads of equal magnitude and of random phase and position. The dimension of the reduced system
is equal to m = 800. The resulting acoustic energy inside the cavity subsystem is shown in fig.5.15.

Excellent correlation between the results is observed until approximately f = 1450 Hz. The
maximum divergence of the solution from the FE prediction occurs at approximately f = 1600Hz
and is equal to 1.3 dB.

5.6.7 Discussion on the computational efficiency of the approach

The ability of the SOAR reduction method to accurately model a structural acoustic system
was exhibited in the above presented results. However, calculation efficiency is also of essential
importance. For this reason the dynamic scheme presented in sec.5.5.3 is applied hereby. Moreover,
a sampling is applied over the cavity nodes for which the pressure solution is calculated. The
structural-acoustic system system comprising the monolithic orthotropic panel is firstly considered.
A sampling of 10% over the calculated DoF is applied. The results are presented in fig.5.16.

For a 10% sampling the results seem to be in excellent correlation with both the FE and the full
(constant m=2000) SOAR solutions until about f=1440Hz. An interesting observation is that in
the high frequency range the full reduced model underestimates the energy level, while the sampled
one overestimates it. This is apparently due to the chosen sampling pattern. The presented result
involves spatial randomization of the solved acoustic DoF for every frequency range. The maximum
divergence of the dynamic scheme estimation is 1.3dB, while the one of the full calculation is 0.7dB
at the highest frequency band of the analysis.

For the case of the double stiffened panel, the result obtained by the dynamic reduction and
sampling scheme for the acoustic energy level inside the cavity when a ROR excitation is applied
on the panel, is shown in fig. 5.17.

Excellent correlation between the results is observed until about f = 1100 Hz. The maximum
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Figure 5.16: Energy of the cavity estimated by averaging over 10% of the cavity nodes: FE direct
solution (--), SOAR full (–), dynamic scheme (· · · )
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Figure 5.17: Energy of the cavity subsystem for the double panel system, when the dynamic reduc-
tion scheme is used: FE direct solution (--), SOAR method (–)
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Table 5.2: Calculation times
Orthotropic panel
(m=2000)

Double panel
(m=800)

Full FE solution 204 min 709 min
Calculation of the Krylov subspace + full
solution

109 min 113 min

Calculation of the Krylov subspace + dy-
namic dimensioning

28 min

Calculation of the Krylov subspace + dy-
namic dimensioning + 10% sampling

23 min 38 min

divergence of the solution from the FE prediction occurs at approximately f = 1600Hz and is
equal to 1.3 dB. It is observed that compared to the full SOAR solution (when using constantly
m = 800), the low frequency range prediction is slightly affected (discrepancies of 0.03 to 0.8 dB
are exhibited). On the other hand, for the high frequency range where m converges to the one
used for the full solution, the results are hardly affected.

The calculation time for each of the above exhibited calculations is presented in Table 5.2. It
can therefore be concluded that the approach can drastically reduce the computation time while
not having an important impact on the accuracy of the prediction. The total number of computed
frequencies is 523. All calculations were done using a server of two, quadruple core Xeon E5343
processors, with 8Gb of RAM memory available. The direct FEM solution was done using a
Lanczos algorithm within the software ANSYS 12.1, while the calculation of the Krylov subspace
and the reduced solution was done using MATLAB 7.9.0. It is observed that the SOAR method
reduces the demanded calculation time by almost 47% if the solution for all DoF is computed. In
the case of a dynamic dimensioning of the reduced model, coupled with a 10% sampling of the
solved acoustic DoF, the time reduction is almost 89%. For the case of the double stiffened panel,
it is exhibited that the SOAR solution for a full solution of m = 800 reduces the calculation time
by almost 84%. In the case of a dynamic dimensioning of the reduced model, the time reduction
is 95%. This time reduction is expected to be even greater for larger industrial systems.

5.7 Conclusions

Concluding on the presented work, a structural acoustic system modelled with FE was reduced
using the SOAR approach, and its broadband response to distributed aeroacoustic loads was cal-
culated. The energy levels of the subsystems were calculated within an SEA-like approach. Sum-
marizing the most important concluding points: 1) The approach can be used independently of the
geometry and the structural acoustic coupling nature of the system as there is no need for analyti-
cal expressions of the dynamic characteristics of the subsystems. The structure may be composite
and complex. The advantages of a FE modelling are therefore preserved. 2) Excellent agreement
is observed in the low-frequency range for the SOAR estimation and the direct FE solution. The
error of the approximation generally increases with respect to frequency. More vectors should
therefore be added in the Krylov subspace in order to retain the error in a given level. A dynamic
scheme for dimensioning the reduced system in each frequency band was proposed. The maximum
divergence of the reduced model predictions from the FE solution were generally reported at the
highest frequency of the calculation. 3) The approach was also verified for a double stiffened panel
coupled with an acoustic cavity. It was shown that complex systems with regard to materials and
geometry can successfully be modelled and reduced using the presented approach. 4) A cut-off
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frequency range was observed, during which the error of the reduced system approximation raises
by several orders of magnitude. Increasing the dimension of the reduced model can delay the
appearance of this cut-off frequency. 5) The calculation times are drastically reduced when the
proposed dynamic dimensioning of the reduced system is used. Moreover, further reduction can be
achieved by sampling over the acoustic DoF that are calculated for the application of the SEA-like
approach.
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6.1 Abstract

The structural response of an industrial layered structure composed of a combination of conical
and cylindrical shells is hereby modelled. In the low and the mid-frequency ranges a dynamic
stiffness ESL approach coupled to FE analysis is used in order to predict the response of the shell
configuration. The results are validated by experimental measurements on a composite mock-up
of the SYLDA structure, as well as by a full 3D FE modelling. In the high frequency range where
SEA predictions are valid, the WFEM is used in order to revisit the CLF calculation for structural
transmission between the composite shells that are individually considered as SEA subsystems.
Finally the energy ratios between the subsystems is computed and validated by experimental
measurements conducted on the aforementioned industrial structure. The robustness of an SEA
approach is then questioned.

6.2 Introduction

Structures made of composite materials and having complex geometric characteristics are exten-
sively used in the modern aerospace industry. More precisely, composite conical-cylindrical com-
binations of shells are often used as protective payload structures (SYLDA structure of Ariane 5),
rocket booster parts, and fuselage components. Modelling the vibroacoustic behaviour of cylindri-
cal and conical shell structures as well as of their combinations is thus essential during the design
process of modern aerospace products.

The vibrational modelling of coupled conical-cylindrical systems consists a relatively new area
of research. Numerical techniques such as the FEM are still considered as the most pertinent
approach for modelling coupled composite systems of complex geometries. With regard to the
rest of the available models, a number of approaches have been recently published, being roughly
divided into modal approaches which aim to predict the free vibration natural frequencies and
mode shapes of the system and wave approaches which aim to predict the wave dispersion and
transmission between parts of the system that have homogeneous characteristics. The former type
of models is usually used when an accurate description of the global modes of the system is essential
for predicting its vibrational behaviour that is mainly for the low frequency range. On the other
hand, modelling the system in a wave context is more suitable for calculating the SEA coupling
loss factors between subsystems which is more accurate in the high frequency range.

One of the first investigations on the effect of discontinuities on the vibration of thin connected
shells is made in [Kalnins, 1964]. Some years later, in [Hu and Raney, 1967] experimental and
analytical results were given for a truncated cylinder-cone configuration. In [Irie et al., 1984]
the authors modelled a thin conical-cylindrical shell configuration by implementing the Flügge’s
equations of motion in a transfer matrix approach. More recently in [Patel et al., 2000] the problem
was solved using a shell FE for which the variational quantities were calculated using the Mindlin
theory. In [El Damatty et al., 2005] the FE derived results for a thin conical-cylindrical shell
combination were verified through experimental measurements. In [Efraim and Eisenberger, 2006]
a power series solution was applied for the calculation of the natural frequencies of segmented
axisymmetric shells. Moreover in [Caresta and Kessissoglou, 2010] the authors analyzed the free
vibration of thin coupled shells, also by using a power series method to model the displacement field
within the conical part. Both Donnell-Mushtari and Flügge equations of motion were considered.
More recently in [Kang, 2012] the free vibration characteristics of a conical-cylindrical section of
variable thickness were computed through a Ritz method. The structure was however assumed to
be homogeneous through its thickness.
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With regard to modelling the behaviour of coupled shells in a wave-context, the bibliography
is not so broad. In [Rose et al., 1973], the authors included transverse-shear, radial and rotary
inertia effects in a bending theory in order to analyze the wave propagation in cylindrical-conical-
cylindrical shell configuration. Experimental verification of the results was also provided. In
[Langley, 1994a] the coupling loss factors of orthotropic curved panels are calculated using a wave
dynamic stiffness matrix approach initially introduced in [Langley and Heron, 1990].

In this chapter, the WFEM will be employed in order to model the vibroacoustic response
of an industrial composite conical-cylindrical-conical shell structure. In the low frequency range
the dynamic stiffness approach exhibited in Chapter 3 of this thesis is used within an FE context
for predicting the spatial response of the structure. In the higher frequency range the influence
of the global modes on the response is considered as insignificant and the shell configuration is
modelled in a wave-context SEA approach. The WFEM results are again used in order to revisit
the calculation of the CLF between the layered shells. Experimental results are presented for the
verification of the entirety of the numerical models.

The chapter is organized as follows: In sec.6.3 the industrial composite SYLDA structure to
be tested and modelled is presented. In sec.6.4 the WFEM results are used to form an ESL of
the layered SYLDA shell within an FE analysis. The predictions are compared to experimental
results. In sec.6.5 each shell is individually considered as an SEA subsystem. The WFEM results
are used in order to calculate the CLF of the shell combination which are used in order to form
the SEA coefficients matrix. Conclusions on the presented work are exhibited in sec.6.6.

6.3 Presentation of the SYLDA structure

In this section the industrial composite structure to be experimentally and numerically modelled
is exhibited. The configuration to be vibroacoustically analyzed is the SYLDA structure, its name
standing for the french acronym of SYstéme de Lancement Double d’Ariane 5. The SYLDA is
located inside the launcher fairing (see fig.6.1) and allows for multiple payloads to be simultaneously
launched.

The SYLDA structure is roughly an assembly of two cones and a cylindrical central part (see
fig.6.2). The employed materials are of sandwich type with a honeycomb aluminium core and
carbon/epoxy made facesheets. Those parts are either bonded together or connected through py-
rotechnic cordons which allow the expulsion of the SYLDA parts before placing the payload in orbit.
Other connecting elements include springs and Carbon Fibre Reinforced Polymer (CFRP) rings.
The structure also includes holes throughout its circumference for giving access to the payload
and allowing the atmospheric air to escape during the flight of the vehicle towards the exosphere.
All the details regarding the SYLDA structure and its subparts are presented in [EADS Astrium,
2003].

In order to conduct an experimental validation on the SYLDA and due to the prohibitive cost
of testing an identical to the real SYLDA model, a mock-up of the composite cone-cylinder-cone
structure was acquired (see fig.6.3). To make the application of deterministic methods such as the
FE feasible, the mock-up structure is a 1/4 scale reproduction of the real one. The exact dimensions
of the inner cavity surrounded by the tested structure are shown in fig.6.5. All dimensions are
in mm. The materials used are of sandwich type; employing 1mm thick carbon/epoxy made
facesheets (Material I) and a 12.7mm thick Nomex honeycomb core (Material II). The material
characteristics are given in Table 6.1, with coordinate a coinciding with the axial direction of the
shell, c with the circumferential direction and r with the radial one. No holes and no stiffeners are
included in order to simplify the numerical modelling.
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Figure 6.1: An illustration of the Ariane 5 spacecraft

Figure 6.2: A caption of the real SYLDA structure
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Figure 6.3: A caption of the SYLDA mock-up used for experimental manipulation

Figure 6.4: A caption of the excitation configuration inside the shell
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Figure 6.5: Dimensions of the SYLDA mock-up configuration

Table 6.1: Mechanical properties of materials

Material I Material II

ρ = 1530 kg/m3 ρ = 63 kg/m3

Ea = 47 GPa Ea = 78 MPa
Ec = 47 GPa Ec = 78 MPa

vac = 0.1 vac = 0.2
Gac = 7.4 GPa −

− Gra = 49 MPa
− Grc = 28 MPa

The system to be modelled comprises the SYLDA structure coupled with its inner and outer
acoustic cavities. The structure is freely suspended throughout the considered experimental testing.
The SYLDA is suspended through a metallic cross section which is mounted on a lifting apparatus.
The excitor lays inside the shell’s cavity and is mounted on the same cross section that supports
the shell (see fig.6.4). In order to avoid a simultaneous rigid motion of the excitor device, a
heavy excitor weighting 19kg was chosen. Furthermore, in order to avoid slight revolutions of the
structure during the testing process, part of the structure’s weight was borne by polyurethane
made supports to produce friction with the floor. The analysis is separated into two main parts:
i) A low to mid-frequency deterministic modelling and ii) a high to mid-frequency SEA modelling
approach.

6.4 Low to mid-frequency range modelling

6.4.1 Introduction

In this section, a deterministic numerical modelling of the dynamic response of the SYLDA struc-
ture is attempted. Initially, a full FE model comprising shell elements for the facesheets coupled
to solid elements representing the core is elaborated. The results are compared to experimental
outcomes in order to observe the limits of accuracy of a 3D FE modelling, as well as the impact
of inevitable parametric uncertainties of the manufactured shell on its dynamic response. Subse-
quently, an application of the dynamic stiffness approach presented in Chapter 3 is attempted. The
peculiarities of the conical substructures are discussed and envisaged by considering the structure
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Figure 6.6: The global circumferential mode of order 2: Measured (left) at 61.2 Hz, FE prediction
(right) at 55.3 Hz

Figure 6.7: The global circumferential mode of order 6: Measured (left) at 387.5 Hz, FE prediction
(right) at 386.7 Hz

to be locally cylindrical. The results of the dynamic stiffness ESL are compared to the full 3D
modelling results and the pros and cons of the approach are commented.

6.4.2 Numerical modelling using FE

The SYLDA structure is firstly numerically modelled by a full 3D FE mesh. The mesh comprises
6048 shell elements for the facesheets, coupled to 3024 solid elements which are used to model the
core of the sandwich material. Perfect continuous connections are assumed at the interfaces of
the conical and the cylindrical substructures. A modal numerical analysis of the composite shell
structure is firstly conducted.

Using the experimentally obtained complex FRF of 792 measured points on the SYLDA, the
vibrational motion of the structure was illustrated for each frequency and phase using polar co-
ordinates in MATLAB. By investigating the obtained FRF, the experimentally measured natural
frequencies in the low and mid-frequency ranges were detected and plotted for comparison to the
numerically predicted ones. Some representative natural frequencies along with their mode shapes
are compared in figs.6.6-6.11.

In figs.6.6-6.9 the circumferential global modes of order 2,6,8 and 10 are exhibited. As it is
observed by the FRF curves (see below) these are the most ’responsive’ modes and therefore the
most important ones to be predicted. It can be seen that an excellent agreement exists between
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Figure 6.8: The global circumferential mode of order 8: Measured (left) at 561.2 Hz, FE prediction
(right) at 562.7 Hz

Figure 6.9: The global circumferential mode of order 10: Measured (left) at 741.5 Hz, FE prediction
(right) at 732.2 Hz
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Figure 6.10: The numerically non predicted fundamental mode of order 1: Measured at 8.8 Hz

Figure 6.11: The local circumferential mode of order 2 for the coupled upper cone subsystem:
Measured (left) at 97.1 Hz, FE prediction (right) at 90.3 Hz

the predicted and the measured natural frequencies, with the relative difference being less than
1,5% at all cases except the mode of order 2. The difference in the latter case can be attributed
to the fact that the experimental boundary conditions of the structure were not perfectly free
as assumed for the numerical model. Regarding the mode shapes of the natural frequencies, an
excellent correlation is also observed between the predicted and the measured deformations. It can
also be observed that while the cylindrical part of the structure along with the lower conical part
seem to have a common global motion for all modal displacements, the upper conical part does
not participate in this global structural motion. Thus the upper part presents a local subsystem
behaviour already in the low frequency range.

In fig.(6.10) the circumferential mode resulted by the passage of a single circumferential bending
wave (therefore of order 1) is presented. The particularly responsive fundamental mode is experi-
mentally observed however it is not numerically predicted by the FE model. This difference in the
fundamental frequency prediction can be crucial for low frequency excitations. The fundamental
frequency prediction by analytical models usually raises with the thickness ratio of the shells and
is discussed in [Qatu, 2004]. The fundamental local mode of the upper conical substructure is
exhibited in fig.(6.11).

Following the modal analysis, a harmonic analysis was numerically conducted. In cylindrical
coordinates, the excitation force is fixed at (θ, z)=(0o,494mm) position of the cylindrical part. The
resulting velocity FRF at arbitrary points of the three substructures are presented in figs.6.12-6.17.

The measured and the FE predicted velocity FRF at two arbitrary points of the cylindrical
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Figure 6.12: Velocity FRF level comparison at (180o,508mm) of the cylindrical part: Experimental
results (–), FEM results (- -)
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Figure 6.13: Velocity FRF level comparison at (250o,263mm) of the cylindrical part: Experimental
results (–), FEM results (- -)
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Figure 6.14: Velocity FRF level comparison at (180o,50mm) of the lower conical part: Experimental
results (–), FEM results (- -)

section are presented in figs.6.12,6.13. An excellent agreement between the experimental results
and the numerical predictions is observed within the low frequency range. With the exception of
the fundamental frequency (as discussed above), the entirety of the global modal behaviour of the
structure is very well predicted throughout the presented frequency range. Experimental values
were used for the structural damping loss factor which were measured as discussed in chapter 3.
The modal peaks corresponding to peripheral modes of the cylinder tend to be the most responsive
ones. The impact of the local modes of the conical subsystems is observable at some positions (e.g
around 320 Hz for fig.6.12), while this effect is not observable with regard to the FE results.

The measured and the FE predicted velocity FRF at arbitrary points of the lower conical
section are presented in figs.6.14,6.15 and for the upper conical part in figs.6.16,6.17. For the
lower conical part a fairly good agreement of the response is observed up until 500 Hz with the
predicted resonances and anti-resonances being well correlated with the measured ones. For higher
frequencies however the velocities of both the presented points seem to be underestimated by the
FEM, implying a coupling greater than the one predicted. Observing the high number of peaks of
the experimental curve in this frequency range, this can be attributed to the effect of local modes
of other substructures on the response of the lower cone, including indirect coupling with the upper
cone modes. With regard to the upper conical structure, the response also seems to be generally
well predicted by the FE model with the exception of a frequency range around 600 Hz where
the response seems to have been underestimated. Comparing the FRF of the cylindrical part to
the ones obtained on the conical parts, it is seen that the later contain many more peaks, despite
the fact that conical parts are substantially smaller than the cylindrical one. This stresses the
impact of coupled structures modes on the response of the considered conical shell and indicates
the complicated nature of waves travelling in a conical structure.

In order to get a more global idea of how the predicted response compares to measurements, the
total energy of each subsystem was calculated using the force normalized measured and predicted
velocities. The results are presented in figs.6.18,6.19,6.20, with the subscripts 1,2,3 standing for
the upper cone, the cylinder and the lower cone respectively.

Regarding the cylindrical part is it observed that the FE predicted subsystem energy is very
much in accordance with the measured one throughout the considered frequency band. As afore-

146



Industrial validation on the SYLDA structure Chapter 6

0 100 200 300 400 500 600 700 800 900 1000 1100
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

Frequency (Hz)

L
v
 (

d
B

)

Figure 6.15: Velocity FRF level comparison at (245o,110mm) of the lower conical part: Experi-
mental results (–), FEM results (- -)
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Figure 6.16: Velocity FRF level comparison at (180o,204mm) of the upper conical part: Experi-
mental results (–), FEM results (- -)
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Figure 6.17: Velocity FRF level comparison at (250o,219mm) of the upper conical part: Experi-
mental results (–), FEM results (- -)
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Figure 6.18: Total energy level of the cylindrical subsystem: Experimental results (–), FEM results
(- -)
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Figure 6.19: Total energy level of the upper conical subsystem: Experimental results (–), FEM
results (- -)
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Figure 6.20: Total energy level of the lower conical subsystem: Experimental results (–), FEM
results (- -)
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Figure 6.21: Level of energy ratio E3/E2: Experimental results (–), FEM results (- -)
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Figure 6.22: Level of energy ratio E1/E2: Experimental results (–), FEM results (- -)

mentioned, the FEM seems to be underestimating the effect of local modes of the conical parts
on the energy of the cylindrical part, especially for frequencies between the resonances where this
effect becomes evident. The energy of the upper conical part (along with the impact of the upper
cone local modes) seems to be overestimated up to 150Hz and afterwards underestimated until
400Hz. It is noted as an example that despite the fact that the upper cone local mode of order
3 is well predicted by the FE modal analysis at 217 Hz, in fig.6.19 this mode is not observable.
Better correlation is observed for higher frequencies. With regard to the upper conical part, it can
be seen that it follows a global modal behaviour, influenced by the modes of the cylindrical part
up until 300 Hz. While beyond this frequency the cylindrical modes are apparent on the energy
function, a number of local modes can also be observed, resulting in a local-global behaviour. At
higher frequencies the coupling of the lower cone to the rest of the structure is underestimated by
the FE predictions.

In order to get an idea of the coupling strength between the substructures, the energies of the
three subsystems divided by their mass were considered. In fig.6.21, the ratio of the lower cone
energy divided by the one of the excited cylinder is presented. In the low frequency range the ratio
approaches 1, implying a global response of the system. Local modes hit in for higher frequencies.
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Figure 6.23: Division of the conical substructures into sections of different material characteristics

For frequencies above 700Hz, the coupling of the two subsystems is underestimated as commented
about fig.6.20. In fig.6.22 a similar quantity, this time considering the energy of the upper cone is
given. It is seen that for the low frequency range, while the peaks are frequency wise well predicted,
the impact of local modes to the upper subsystem’s energy is strongly underestimated. On the
other hand, the energy transmission to the conical subsystem during resonances of the cylindrical
system is overestimated as can be seen at approximately 150 Hz and 230 Hz. For higher frequencies,
results are better correlated.

6.4.3 Numerical modelling using a dynamic stiffness ESL approach

An attempt to predict the response of the SYLDA structure using the ESL approach exhibited
in Chapter 3 is hereby conducted through an FE modelling. The equivalence relations between a
layered cylindrical structure and a Donnell-Mushtari single layer model as given in eq.(3.19) will
be employed.

In order to apply the technique to a conical-cylindrical shell combination the structure was
divided into layers each of which was considered cylindrical for the application of eq.(3.19) with
a mean radius equal to R = (Rmin + Rmax)/2. The number of layers N was selected so that the
difference of the ring frequencies of two consecutive layers is approximately 5%. Better accuracy can
effectively be achieved by increasing the number of divisions. The division of the SYLDA structure
into layers of the same material and thickness is illustrated in fig.6.23. The ring frequency for each
of the modelled layers of the composite shell with N=18 is shown in fig.6.24.

It is straightforward to write the dynamic stiffness matrix of the ESL model by adding the
stiffness matrices of each layer as:

K =





















K1,LL K1,LR

K1,RL K1,RR + K2,LL K2,LR

K2,RL K2,RR + K3,LL K3,LR

K3,RL K3,RR + K4,LL ...
...

KN−1,RR + KN,LL KN,LR

KN,RL KN,RR





















(6.1)

The response of the shell is subsequently calculated under an harmonic load. The results are
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Figure 6.24: Relation between the radius and the ring frequency of the modelled curved segment
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Figure 6.25: Displacement FRF level comparison at (180o,508mm) of the cylindrical part: 3D FEM
results (–), dynamic stiffness modelling (- -)
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Figure 6.26: Displacement FRF level comparison at (13o,292mm) of the upper conical part: 3D
FEM results (–), dynamic stiffness modelling (- -)

compared to the 3D FE results in fig.6.25, 6.26 and 6.27. The response at an arbitrary point on
each of the three subsystems is exhibited.

Very good correlation is observed between the ESL and the 3D FE model in the low frequency
range (up to 400Hz) for all three subsystems, with the resonances and the antiresonances being
well predicted both in terms of frequency and displacement level. The local modes of both the
cylindrical and the upper conical shell seem to be well predicted. This fact also suggests that the
coupling strength between the subsystems is also well reproduced by the ESL approach. In the
mid-frequency range (above 500Hz) the prediction of the response of the subsystems becomes very
sensitive to the characteristics attributed to each layer. Regarding the response average however,
it can be observed that the ESL approach is very much in correlation with the 3D FE model.

In order to compare the predictions considering the coupling strength between the two conical
shells and the excited cylindrical substructure, the total vibrational energy of each subsystem is
calculated and the results are presented in figs.6.28, 6.29 and 6.30.

It is observed that the prediction of the energies of the cylindrical and the lower conical sub-
systems is in very good correlation between the two models. In the low frequency range the peaks
and the lows are according to each other both in terms of frequency and energy level. At higher
frequencies discrepancies are observed but the average predictions are very well correlated. The
coupling strength is therefore very well predicted. With regard to the upper conical shell the re-
sults are in good correlation in the low frequency range, where the local modes of the conical shell
are well predicted. Discrepancies between the two models are occurring between 350 and 500Hz
probably due to a global/local behaviour of the composite cone which is not always well predicted
by the ESL model. At higher frequencies -where the behaviour of the conical shell apparently
becomes more ’local’- the average response predictions are again in good agreement.
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Figure 6.27: Displacement FRF level comparison at (205o,56mm) of the lower conical part: 3D
FEM results (–), dynamic stiffness modelling (- -)
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Figure 6.28: Energy level comparison for the cylindrical part: 3D FEM results (–), dynamic stiff-
ness modelling (- -)
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Figure 6.29: Energy level comparison for the upper conical part: 3D FEM results (–), dynamic
stiffness modelling (- -)
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Figure 6.30: Energy level comparison for the lower conical part: 3D FEM results (–), dynamic
stiffness modelling (- -)
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6.5 Statistical Energy Analysis modelling of a composite shell as-
sembly

6.5.1 Introduction

In the high frequency range where the modal overlap of the structural response of a component
is high - mainly due to the increasing modal density of a sandwich structure and the increase of
radiation damping - the response can effectively be represented by medium energy quantities. The
SEA has been traditionally used for the response prediction in the high frequency domain and is to
a large extent based on the accurate calculation of the Coupling Loss Factors (CLF) between the
considered subsystems. In Chapter 2 the WFEM was used to calculate the CLF for a vibroacoustic
system comprising two rooms divided by a layered panel. Hereby, the WFEM will be used in order
to revisit the calculation of the CLF between structural composite subsystems. The experimental
results obtained on the SYLDA structure will be used to validate the developed models.

6.5.2 Coupling Loss Factors calculation for a layered beam assembly

The considered system comprises two layered structural 1D waveguides (see fig.6.31) connected
through a joint. The approach hereby adopted is presented to a large extent in [Mencik and
Ichchou, 2005] in order to calculate the transmission and diffusion coefficients for connected 1D
waveguides. More recently it was also adopted by [Renno and Mace, 2012] for the calculation of
the transmission efficiency and the response of an ensemble of waveguides. The modelled parts
in fig.6.31 include the excited waveguide 1 and the receiver waveguide 2 as well as the connecting
component. A WFEM/FE analysis is therefore adopted in order to predict the transmission
coefficients between the waveguides.

The wave dispersion characteristics within the semi-infinite waveguides are modelled with the
WFEM as described in sec.1.2.5. The resulting 2n eigenvalues can be associated with n incident
waves λinc,1...n and n reflected waves λref,n+1...2n with n the number of DoF on each side of the
modelled segment and the eigenvalues of the same wave type being related as: λref,i = 1/λinc,i.
Along with the eigenvalues, the obtained eigenvectors can be classified as:

Φ =

[

Φinc
q Φref

q

Φinc
f Φref

f

]

with Φinc
q =

[

φinc
q,1 φinc

q,2 ... φinc
q,n

]

(6.2)

where the subscripts q, f and 1 : n correspond to the displacement vectors the force vectors
and the wave type respectively. Similar expressions hold for Φref

q , Φinc
f and Φref

f .

The connecting component (surrounded by the dashed line in fig.6.31) can be modelled using
conventional FE. It is hereby assumed that the DoF of the joint FE model are compatible with
the ones of the WFEM models. The harmonic response of the joint segment can be described as:





Dj11 Dj12 Dj1I

Dj21 Dj22 Dj2I

DjI1
DjI2

DjII











q1
j

q2
j

qI
j







=







f1j
f2j
fIj







(6.3)

with the subscripts L,R and I corresponding to left-side, right-side and internal nodes respec-
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Figure 6.31: Assembly of two layered 1D waveguides. FE modelled segment surrounded by the
dashed line.

tively. Using classical condensation techniques the system of eq.(6.3) is written as:

[

Dj11 − Dj1I
D−1

jII
DjI1

Dj12 − Dj1I
D−1

jII
DjI2

Dj21 − Dj2I
D−1

jII
DjI1

Dj22 − Dj2I
D−1

jII
DjI2

]{

q1
j

q2
j

}

=

{

f1j
f2j

}

(6.4)

Concerning the structural response of the waveguides, it is shown in [Zhong and Williams,
1995] that the state vectors q1

R, f1R,q2
L, f2L can be written as a superposition function of the wave
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eigenvectors and the corresponding wave amplitudes Qinc,i,Qref,i as:

{

q1
R

f1R

}

=

[

Φinc,1
q Φref,1

q

Φinc,1
f Φref,1

f

]

{

Qinc,1

Qref,1

}

{

q2
L

f2L

}

=

[

Φinc,2
q Φref,2

q

Φinc,2
f Φref,2

f

]

{

Qinc,2

Qref,2

}

(6.5)

The continuity conditions at the interfaces of the joint with the waveguides as well as the
equilibrium of the system impose that:

{

q1
j

q2
j

}

=

[

R1 0
0 R2

]{

q1
R

q2
L

}

{

f1j
f2j

}

=

[

R1 0
0 R2

]{

f1R
f2L

}

(6.6)

with R1,R2 the transformation matrices for the waveguides 1 and 2 respectively. Using the
systems in eq.(6.4),(6.5),(6.6) the matrix containing the transmission and reflection coefficients for
each wave type is written as in [Mencik and Ichchou, 2005]:

C = −[RΦref
f − DjRΦref

q ]−1[RΦinc
f − DjRΦinc

q ] (6.7)

with R =

[

R1 0
0 R2

]

, Φref
f =

[

Φref,1
f 0

0 Φref,2
f

]

, Φref
q =

[

Φref,1
q 0

0 Φref,2
q

]

, Φinc
f =

[

Φinc,1
f 0

0 Φinc,2
f

]

, Φinc
q =

[

Φinc,1
q 0

0 Φinc,2
q

]

and Dj =

[

Dj11 − Dj1I
D−1

jII
DjI1

Dj12 − Dj1I
D−1

jII
DjI2

Dj21 − Dj2I
D−1

jII
DjI1

Dj22 − Dj2I
D−1

jII
DjI2

]

.

The CLF between wave type p in the waveguide 1 and wave type z propagating in waveguide
2 can be computed using the classical relation:

ηp1,z2
=

τp1,z2
cg,p1

2ωL1
(6.8)

with L1 the length of waveguide 1, cg,p1
the group velocity of the incident wave and τp1,z2

the
transmission efficiency between the two wave types expressed as:

τp1,z2
=

PT,z2

PI,p1

(6.9)

with PT,z2
the transmitted power in waveguide 2 and PI,p1

the incident power in waveguide
1. Using the expressions presented in [Ichchou et al., 2007] the energy densities for a waveguide
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within which a wave z is propagating are written as:

Einc
K,z =

ω2

4Ls
Re

(

{

Φinc
q,z

λinc
z Φinc

q,z

}H

Ms

{

Φinc
q,z

λinc
z Φinc

q,z

}

)

Einc
P,z =

1

4Ls
Re

(

{

Φinc
q,z

λinc
z Φinc

q,z

}H

Ks

{

Φinc
q,z

λinc
z Φinc

q,z

}

)

Einc
T,z = Einc

K,z + Einc
P,z

(6.10)

with EK,z, EP,z, ET,z the kinetic, potential and total energy densities and Ms,Ks the mass and
stiffness matrices of the modelled segment of the waveguide. The power due to the passage of a
wave z propagating within a waveguide can be written as:

P inc
I,z =

1

2
Re

(

iω(Qinc
z )H

{

Φinc
f,z

}H
Φinc

q,z Qinc
z

)

(6.11)

The transmission efficiency between the two waves can therefore be written as:

τp1,z2
=

Re

(

iω(Qref
z2

)H
{

Φref
f,z2

}H
Φref

q,z2
Qref

z2

)

Re

(

iω(Qinc
p1

)H
{

Φinc
f,p1

}H
Φinc

q,p1
Qinc

p1

) (6.12)

however the ratio of the amplitudes of the two waves can be found in matrix C, therefore
eq.(6.12) becomes:

τp1,z2
=

Re

(

iω
{

Φref
f,z2

}H
Φref

q,z2

)

|Cp1,z2
|2

Re

(

iω
{

Φinc
f,p1

}H
Φinc

q,p1

) (6.13)

The group velocity of the wavetype is written as in [Ichchou et al., 2007]:

cinc
g,z =

P inc
I,z

Einc
T,z

(6.14)

Therefore by introducing eq.(6.13),(6.14) into (6.8) it is straightforward to calculate the CLF
between two waves propagating in the layered 1D waveguides.

6.5.3 Coupling Loss Factors calculation for coupled layered 2D panels

Two layered panels are assumed to be connected through a joint (see fig.6.32). The diffused field
CLF between the two panels are to be calculated. Compared to the methodology described in
sec.6.5.2 the analysis now differs.

A 2D WFE analysis is initially conducted for the two panels. As described in sec.1.2.5 the
wavenumbers propagating in parallel to the joint (say kx) as well as the frequency can be fixed
for the nonlinear eigenproblem. The 3D wavenumber maps (as the one shown in fig.2.5) for the
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Figure 6.32: Assembly of two layered plates in an angle; descritized into the excited panel (subsystem
1), the 2D joint and the inclined panel (subsystem 2).

two connected panels can be plotted. By interpolating on these maps the wavenumber k for every
angle of incidence φ is therefore known.

The diffused field CLF for two anisotropic panels is taken as in [Langley, 1994a]:

ηp1,z2
=

L12

2π2np1

φmax
∫

φmin

cgx,p1
τp1,z2

cp1
cg,p1

dφ (6.15)

with L12, np1
the connection length of the two panels and the modal density of p wave type

in panel 1, cp1
, cg,p1

the phase and group velocities of p wave type in panel 1 and τp1,z2
the angle

dependent transmission efficiency of p wave type in panel 1 to the z wave type in panel 2. Once
the wavenumbers kx,ky for every φ are known the problem can be considered as an 1D problem
described in sec.6.5.2, with the wave mode shapes in waveguide 1 now equal to:

Φinc,1
q,f = RφΦ

inc,1,2D
q,f (6.16)

With Φinc,1,2D
q,f the wave mode shapes as predicted by the 2D WFEM and Rφ a transformation

matrix applied to account for the angle of incidence φ. The transmission and reflection coefficients
can therefore be computed as before:

C(φ) = −[RΦref
f − DjRΦref

q ]−1[RΦinc
f − DjRΦinc

q ] (6.17)
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Figure 6.33: Transmission coefficients for a flexural/flexural coupling of the layered panels with
θ=32,9o and φ=0 (–), φ=30 (�), φ=60 (o)

this time with R =

[

R1,θR1,φ 0
0 R2,θ

]

.

The φ dependent transmission efficiency can therefore be calculated and by introducing it into
eq.(6.15) the diffused field CLF can be predicted. Is is noted that anisotropic panels may actually
carry energy away from the connecting interface. Therefore the integration in eq.(6.15) should be
conducted only for angles for which the cgx,p1

quantity is positive.

Numerical examples of the described approach are then exhibited. The approach is applied to
two layered panels coupled with an angle θ=32,9o (corresponding to the connecting angle of the
upper conical shell) and having the same characteristics as the sandwich material of the SYLDA
model, with directions x and y coinciding with directions c and a respectively. The transmission
coefficients for a flexural/flexural wave coupling are shown in fig.6.33.

The results are qualitatively in agreement with analytical solutions for thin isotropic structures
(see [Cremer et al., 2005]) that suggest that the transmission coefficient increases with frequency
and decreases when increasing the angle of attack. Analytical solutions for coupled layered thick
structures are particularly difficult, if not impossible to find. The reflection coefficients for the same
type of coupling are exhibited in fig.6.34. The same comments apply for the reflection coefficients
for being qualitatively in correlation with analytical results.

6.5.4 SEA analysis of the SYLDA

An SEA analysis of the SYLDA structure is hereby conducted in order to compute the structural
response of each substructure. The three layered shells are considered as separate subsystems. A
qualitative presentation of the power exchange between the subsystems is given in fig.6.35.
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Figure 6.34: Reflection coefficients for a flexural/flexural coupling of the layered panels with θ=32,9o

and φ=0 (–), φ=30 (�), φ=60 (o)
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Figure 6.35: Power exchange between the subsystems, considered for the SEA analysis of the
SYLDA.
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The SEA system of equations is formulated as:





ηd,1 + η12 + ηrad,1 −η21 0
−η12 ηd,2 + η21 + η23 + ηrad,2 −η32

0 −η23 ηd,3 + η32 + ηrad,3











E1

E2

E3







=











0
W2,inj

ω
0











(6.18)

with Ei the spatially averaged total energy of subsystem i, W2,inj the power injected in subsys-
tem 2, ηrad,i the Radiation Loss Factor (RLF) of subsystem i and ηd,i the Dissipation Loss Factor
(DLF) of subsystem i. Writing the solution of the system as:



























ωE1

W2,inj
ωE2

W2,inj
ωE3

W2,inj



























= A−1







0
1
0







(6.19)

with A =





ηd,1 + η12 + ηrad,1 −η21 0
−η12 ηd,2 + η21 + η23 + ηrad,2 −η32

0 −η23 ηd,3 + η32 + ηrad,3



, it is now straight-

forward that the energy ratios will be equal to:

E1

E2
=

B1,1

B2,1

E3

E2
=

B3,1

B2,1

(6.20)

with B = A−1







0
1
0







. The CLF are calculated as described above, with the assumption

that the shells are behaving as flat panels above their maximum ring frequency. It is noted that
the analysis is conducted for a flexural/flexural wave transmission between the structures, as this
produces the vast majority of the out of plane vibration of the shells. Once η21 and η23 are known,
η12 and η32 can be calculated using the reciprocity relationship:

ηij

ηji
=

nj

ni
(6.21)

The modal density of the cylindrical shell is calculated as described in Chapter 4. With
regard to the conical shells the wavenumbers calculated by a WFEM considering their mean radius
(Rmax+Rmin)/2 were used to calculate their modal density given by the relation [Godzevich, 1966]:

n =
dN

df
=

d

∫∫

dkx dky

∆kx ∆ky

df

(6.22)

The radiation efficiency for the cylindrical shell is calculated by separating the modes into
acoustically fast and acoustically slow as done in Chapter 4. For the conical shells the same
approach is used, with the assumption that their radius R is equal to their mean radius.
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Figure 6.36: Energy ratio predictions E1/E2:experimental measurements (1/6 octave averaged) (–
), WFEM/SEA approach (�). Energy ratio predictions E3/E2: experimental measurements (1/6
octave averaged) (- -), WFEM/SEA approach (o)

Comparison of experimental and numerical results

The experimentally measured energy ratios are post-processed as in sec.6.4.3. The predictions of
the WFEM derived CLF approach are then compared to the experimental values in fig.6.36.

As expected, the experimental results present large fluctuations in the low frequency range
where the coupling between the systems varies intensely with the number and type of modes. An
SEA approach can therefore not accurately model the system’s response under these circumstances.
For higher frequencies however, regarding the upper cone’s response the WFEM/SEA approach is
in very good correlation with the experimental results with the discrepancies varying from 0.9 to 1.6
dB above 1500 Hz. The numerical approach seems to underestimate the energy ratio probably due
to parametric uncertainties that are not taken into account and possibly due to the assumptions
adopted in the calculation of the radiation efficiency and the modal density of the conical shells.
With regard to the prediction of the lower cone’s response, discrepancies between 3 and 5 dB
are observed above 1500 Hz. The experimental response of the shell presents intense fluctuations
throughout the frequency range of measurements. This fact suggests that the shell can not be
considered as weakly coupled to the cylindrical structure. As aforementioned the ’weak coupling’
assumption is central to the robustness of the SEA approach. A deterministic approach that takes
into account for the individual modal coupling between the subsystems (such as the SEA-like
method) would therefore be more suitable for modelling the response of subsystem 3.

Comparison to SEALASCAR predictions

The results obtained by the numerical WFEM/SEA approach are now compared to the predictions
directly obtained by the SEALASCAR software in fig.6.37. It is noted that the software computes
the CLF between thin and layered structures using analytical models.

It is evident that the energy ratios E1/E2 and E3/E2 are overestimated by SEALASCAR.
Therefore, while analytical approaches are suitable for modelling the coupling of thin structures
they do not succeed in accurately predicting the modal density and the CLF between layered
shells.
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Figure 6.37: Energy ratio predictions E1/E2: experimental measurements (1/6 octave averaged)
(–), WFEM/SEA approach (�), SEALASCAR (*). Energy ratio predictions E3/E2: experimental
measurements (1/6 octave averaged) (- -), WFEM/SEA approach (o), SEALASCAR (⋄)

6.6 Conclusions

To summarize the most important points of the presented work: 1) With respect to the modal
analysis of the SYLDA model the numerical results were in very good correlation with the experi-
mental measurements for at least up to the first 15 modes of the structure. This suggests that the
parametric uncertainties of a real structure do not influence dramatically its dynamic behaviour in
the low frequency range. 2) The FE modelling failed to predict the first circumferential mode of
the structure. 3) In the mid and the higher frequency ranges, an accurate prediction of the modal
peaks of the structural response by an FE model is no longer feasible and importance is given
to the correct prediction of the medium of the response. 4) A dynamic stiffness ESL approach
coupled to an FE modelling was successfully used in order to predict the dynamic response of the
structure. The conical shells were considered to be divided into locally cylindrical parts in order
for the technique to be applied. The approach can be described as satisfactorily accurate while
being particularly efficient and simple to be applied. 5) In the high frequency range the WFEM
was used in order to revisit the calculation of structural CLF between the shells and the system
was modelled within an SEA approach. The predictions seem to be in very good agreement with
the experimental results for high frequencies. 6) The coupling between the cylindrical and the
lower conical subsystems seems to remain high for a very broad frequency range. The robustness
of an SEA analysis in this range is therefore questioned as the weak coupling assumption seems
not satisfied. 7) The WFEM revisited prediction presented a significant improvement compared
to the predictions of the SEA software nowadays used within EADS Astrium.
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Chapter 7

Conclusions and perspective work

Concluding remarks on the conducted research and the industrial

contribution

The main findings and contributions of the conducted work are summarized below. The benefits
that these findings could have for the design of industrial products are also briefly mentioned:

• The efficient calculation of the response of composite structures of arbitrary layering and
thicknesses. The approach was used to extend the application of FE modelling of layered
structures to higher frequencies. By coupling WFEM and FE analyses the resulting ESL
approach proves to be particularly efficient and accurate compared to 3D FE modelling and
other refined ESL approaches. At the same time the FE modelling preserves the advantage of
modelling structures of arbitrary geometries and damping characteristics. Simplicity is also
an important benefit of the approach as no complicated numerical solutions are employed.
The similar natures of the FE and the WFEM methods is also an advantage concerning the
applicability of the technique in the industrial world.

• The calculation of the CLF for composite configurations. The CLF were revisited using the
WFEM in order to model the vibroacoustic as well as the structural coupling of various
industrial configurations. A great variety of geometries was considered, including flat, singly
curved and doubly curved panels as well as cylindrical shells. Despite the fact that the CLF
of an SEA analysis are generally valid in the high frequency range, the results were also in
excellent agreement with experimental results of the bibliography for lower frequencies. The
results of the current approach are substantially improved compared to the predictions of
the SEA software currently used within EADS Astrium.

• Experimental analyses were conducted for the validation of a number of the presented ap-
proaches. Experimental results that are generally difficult to find in open bibliography were
initially given in order to validate the dynamic ESL modelling approach. Furthermore an
industrial composite shell structure -SYLDA- was tested in order to measure the coupling
nature of connected shell components over a wide frequency range. This was the first time
that such an experimental work was conducted within EADS Astrium. Compared to these
results the developed approaches proved to be robust and accurate, while a number of issues
were determined were further work is needed. Last but not least, experimental work was
conducted on sandwich structures concerning their temperature dependent characteristics.
This parametric survey unveiled the importance of considering the operating temperature
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and altitude of layered structures as parameters of a vibroacoustic analysis of the industrial
product.

• The use of a Krylov subspace approach for reducing a structural acoustic system in a broad-
band frequency range. Besides the dynamic stiffness ESL modelling another approach for
reducing a composite vibroacoustic system was used; this time based on direct mathematical
treatment of the system of second order differential equations. Distributed TBL and diffused
field acoustic excitations were applied to the system and various techniques were discussed
in order to reduce the dimensions of the reduced model. The versatility of such a reduc-
tion technique that can model systems of arbitrary geometry, configuration and damping
characteristics can prove to be very interesting for the industrial world.

Perspective work

The conducted work has the potential to serve as a basis to the development and the extension of
a number of emerging noise and vibration prediction techniques. It would be impossible to present
an exhaustive list of such probable perspective works, however the author attempts to foresee a
number of them below, hoping that they will serve as ideas in the future.

• The inclusion of all propagating and possibly evanescent WFEM wave solutions to the up-
dated ESL approach. This is a straightforward extension that would allow for the full and
accurate vibrational (in and out of plane) response prediction of structures having arbitrary
geometries and fuzzy configurations. The efficiency of such an approach would be very in-
teresting for the industrial world. The extension of the approach for conducting modal and
transient analyses while retaining its efficiency would also be of great interest.

• The calculation of the radiation efficiency of composite conical shells and arbitrary composite
shells of revolution. The knowledge of wave propagation and modal behaviour of composite
shell structures could directly lead to the prediction of the efficiency of their coupling to the
surrounding acoustic medium. If the development of a WFEM wave propagation prediction
for conical structures proves impossible, the shell could be treated as locally cylindrical. This
would be of great interest for the accurate prediction of the CLF in the high frequency range.
The accurate prediction of the modal characteristics of such complicated structures would
also allow for the accurate calculation of the EIC within an SEA-like analysis, much more
robust in the mid-frequency range.

• The dynamic stiffness ESL modelling implemented within an FE approach can lead to ef-
ficient calculation of stiffened multilayered structures of various geometries and boundary
conditions. Moreover, the calculation of the reflection coefficients at structural discontinu-
ities by an FE/WFEM approach can lead to a wave description of the local modes of a
stiffened structure, resulting in a complete wave based prediction of the modal global/local
behaviour of the stiffened structure in a very wide frequency range. A similar approach can
be used in order to reduce composite fuzzy components at their interface with the master
structure resulting in more efficient computation.

• Model the parametric and non-parametric uncertainties in the wave dispersion characteristics
of a structure. Parametric uncertainties would typically include statistical distributions of
the mechanical and geometric characteristics of the modelled structure and some researchers
have already attempted to model them in various ways. Non-parametric uncertainties such
as bounding the pollution errors of the WFEM modelling are also of great importance.
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• Approaches such as the ESL modelling or the calculation of the transmission and reflection
coefficients at structural discontinuities can find straightforward applications at engineering
fields such as the Structural Health Monitoring (SHM), control and design of smart structures.
The versatility and robustness of an FE based approach coupled with the efficiency offered
by the wave context quantities would be of great interest for the industrial world.
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