
N° d’ordre: 4643

THÈSE

PRÉSENTÉE À

L’UNIVERSITÉ BORDEAUX I
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

Par Jérôme SOUMAGNE

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ: INFORMATIQUE

An In-situ Visualization Approach for Parallel
Coupling and Steering of Simulations through

Distributed Shared Memory Files

Soutenue le : 14 décembre 2012

Après avis de :

M. Gabriel ANTONIU Research Director, INRIA Rennes

M. Witold DZWINEL Professor, AGH UST Krakow

Devant la commission d’examen formée de :

M. Gabriel ANTONIU Research Director, INRIA Rennes Président & Rapporteur

M. John BIDDISCOMBE Visualization Scientist, CSCS Lugano Co-directeur de Thèse

M. Olivier COULAUD Research Director, INRIA Bordeaux Examinateur

M. Witold DZWINEL Professor, AGH UST Krakow Rapporteur

M. Aurélien ESNARD Assistant Professor, University of Bordeaux Co-directeur de Thèse

M. Jean ROMAN Professor, INRIA & Universiy of Bordeaux Directeur de Thèse

ii

iii

Abstract

As simulation codes become more powerful and more interactive, it is increas-
ingly desirable to monitor a simulation in-situ, performing not only visualiza-
tion but also analysis of the incoming data as it is generated. Monitoring or
post-processing simulation data in-situ has obvious advantage over the conven-
tional approach of saving to—and reloading data from—the file system; the
time and space it takes to write and then read the data from disk is a signifi-
cant bottleneck for both the simulation and subsequent post-processing steps.
Furthermore, the simulation may be stopped, modified, or potentially steered,
thus conserving CPU resources.

We present in this thesis a loosely coupled approach that enables a simu-
lation to transfer data to a visualization server via the use of in-memory files.
We show in this study how the interface, implemented on top of a widely used
hierarchical data format (HDF5), allows us to efficiently decrease the I/O bottle-
neck by using efficient communication and data mapping strategies. For steer-
ing, we present an interface that allows not only simple parameter changes but
also complete re-meshing of grids or operations involving regeneration of field
values over the entire computational domain to be carried out. This approach,
tested and validated on two industrial test cases, is generic enough so that no
particular knowledge of the underlying model is required.

Keywords—Parallel I/O, Distributed Shared Memory, Communication Mod-
els, Computational Modeling, Data Models, Synchronization.

iv

v

Résumé

Les codes de simulation devenant plus performants et plus interactifs, il est im-
portant de suivre l’avancement d’une simulation in-situ, en réalisant non seule-
ment la visualisation mais aussi l’analyse des données en même temps qu’elles
sont générées. Suivre l’avancement ou réaliser le post-traitement des données de
simulation in-situ présente un avantage évident par rapport à l’approche con-
ventionnelle consistant à sauvegarder—et à recharger—à partir d’un système de
fichiers; le temps et l’espace pris pour écrire et ensuite lire les données à partir du
disque est un goulet d’étranglement significatif pour la simulation et les étapes
consécutives de post-traitement. Par ailleurs, la simulation peut être arrêtée,
modifiée, ou potentiellement pilotée, conservant ainsi les ressources CPU.

Nous présentons dans cette thèse une approche de couplage faible qui per-
met à une simulation de transférer des données vers un serveur de visualisa-
tion via l’utilisation de fichiers en mémoire. Nous montrons dans cette étude
comment l’interface, implémentée au-dessus d’un format hiérarchique de don-
nées (HDF5), nous permet de réduire efficacement le goulet d’étranglement
introduit par les I/Os en utilisant des stratégies efficaces de communication et
de configuration des données. Pour le pilotage, nous présentons une interface
qui permet non seulement la modification de simples paramètres, mais égale-
ment le remaillage complet de grilles ou des opérations impliquant la régénéra-
tion de grandeurs numériques sur le domaine entier de calcul d’être effectués.
Cette approche, testée et validée sur deux cas-tests industriels, est suffisamment
générique pour qu’aucune connaissance particulière dumodèle de données sous-
jacent ne soit requise.

Mots-clefs—I/Os Parallèles, Mémoire Partagée Distribuée, Modèles de Com-
munication, Modélisation Informatique, Modèles de Données, Synchronisa-
tion.

vi

vii

Acknowledgments

This thesis work was supported by the NextMuSE project receiving funding from the European
Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement 225967.
It has been realized in collaboration between the Swiss National Supercomputing Centre (CSCS)
and the HiePACS1 project-team, which is a joint project of Inria, University of Bordeaux and
CNRS (LaBRI UMR 5800).

Of the many people who deserve thanks, some are particularly prominent. I would first like to
thank my thesis co-supervisor, John Biddiscombe, who gave me the possibility to realize this work
at CSCS within the NextMuSE European project. I thank him for all the advice and directions
he has been giving to me and for the excellent working environment provided during these three
years. I would also like to thankmy thesis supervisor, Jean Roman, and Aurélien Esnard, my second
co-supervisor, for all the guidance, corrections and reading work of this thesis. Thanks also to all the
CSCS staff and particularly Neil Stringfellow, Jean-Guillaume Piccinali, Nina Suvanphim (Cray)
and Sadaf Alam for the help and directions in obtaining some of the results that are presented in
this thesis. Thanks also to Thomas Schulthess and Michele de Lorenzi who extended my contract
and let me have an extra time to finalize this work.

I would also like to thank my CSCS neighbors and former neighbors from via al Ponte, Jeff
and Tim, for all the help in improving my English and for the good laughs.

Finally I apologize for anyone I forgot to mention in these acknowledgments and who con-
tributed to this work.

Jérôme Soumagne

1http://hiepacs.bordeaux.inria.fr

http://hiepacs.bordeaux.inria.fr

viii

Contents

Abstract iii

Résumé v

Acknowledgments vii

1. Introduction 3
1.1. Numerical Simulation and Scientific Visualization 3
1.2. Multidisciplinary Environment and ICARUS Approach 4
1.3. Objectives . 6
1.4. Outline . 6

2. In-situ Visualization and Steering Approaches 7
2.1. From Traditional Visualization… . 7

2.1.1. Parallel File Interfaces and Data Formats 8
2.1.2. Limitations of the Traditional Approach 10
2.1.3. Solutions to Minimize Cost of I/Os 11

2.2. …To In-situ Visualization . 13
2.2.1. Tightly Coupled Approach . 14
2.2.2. Loosely Coupled Approach . 16
2.2.3. Hybrid Approach . 20

2.3. Our Push-driven and Loosely Coupled Approach 21
2.3.1. Push-driven Transfers . 21
2.3.2. In-memory File Exchanges . 22
2.3.3. Distributed Shared Memory for Data Staging 22
2.3.4. Extension to I/O Libraries . 23
2.3.5. Methodology . 24

3. A Loosely Coupled Model: Architecture and Requirements 25
3.1. Communication Interface . 27

3.1.1. Communicators . 27

ix

x Contents

3.1.2. Two-sided Interface . 28
3.1.3. One-sided Interface . 32
3.1.4. In-Memory File Access . 34
3.1.5. Event Notifications . 34

3.2. DSM Mapped Files . 36
3.2.1. File Memory Space Considerations 36
3.2.2. Redistribution Methods . 37

3.3. Exchange Interface . 40
3.3.1. I/O Interface and Hierarchical Data Model 40
3.3.2. Required Steering Properties . 41
3.3.3. Steering Interface . 42
3.3.4. Timing of Interactions and Operating Modes 44

3.4. Deployment . 47
3.4.1. Available Configurations . 47
3.4.2. Ideal Configuration . 49

3.5. Application Integration . 49
3.6. Conclusion . 51

4. A Parallel HDF5 Interface: Implementation and Integration 53
4.1. DSM Virtual File Driver . 53

4.1.1. Driver Implementation . 54
4.1.2. Driver Usage and Restrictions . 55
4.1.3. Platform Optimization and Inter-Communicators 58
4.1.4. Impact of Redistribution Strategies 65
4.1.5. Implementation Conclusions . 69

4.2. ICARUS ParaView Plug-in . 70
4.2.1. ParaView Client/Server Architecture 70
4.2.2. Parallel Visualization of DSM files 73
4.2.3. Parallel Steering and Analysis . 78
4.2.4. Integration Conclusions . 83

5. Application on SPH Simulations: Model Validation 85
5.1. Integrating ICARUS into SPH-flow . 86

5.1.1. In-situ Visualization . 87
5.1.2. Computational Steering . 92
5.1.3. Conclusion and Future Developments 97

5.2. Integrating ICARUS into an ALE-SPH code 99
5.2.1. In-situ Visualization . 100

Contents xi

5.2.2. Computational Steering . 103
5.2.3. Conclusion and Future Developments 106

5.3. NextMuSE Objectives and Validation . 107

6. Conclusion and Perspectives 111
6.1. Using a PGAS Model . 111
6.2. Towards a Virtual Object Layer . 112
6.3. Storing Multiple Files . 113
6.4. Conclusion . 114

A. Cray Gemini Interconnect and uGNI-Based Communicator 115
A.1. Architecture . 115

A.1.1. One-sided Transfers . 116
A.1.2. uGNI Microbenchmark . 118

A.2. uGNI-Based DSM Communicator . 118

B. Server API 121

C. Steering API 127

D. Application Integration 129
D.1. Fortran Code Example: SPH-flow . 129
D.2. C++ Code Example: SPH-ALE Code . 133

Bibliography 139

List of Refereed Publications 147

Index 149

xii

List of Figures

1.1. Different approaches to model a body floating in water. 4
a. Classical mesh-based approach. 4
b. Mesh-free particle approach. 4

1.2. NextMuSE problematic and ICARUS concept. 5

2.1. Traditional workflow. 8
2.2. HDF5 file structure. 9
2.3. Pure parallelism. 12
2.4. Multiresolution. 12
2.5. Out-of-core processing. 13
2.6. Tightly coupled approach. 14
2.7. VisIt workflow. 15
2.8. Loosely coupled approach. 16
2.9. Hybrid approach. 20
2.10. Two approaches for in-transit processing. 21

a. Pull-driven approach. 21
b. Push-driven approach. 21

2.11. In-memory file exchanges. 22
2.12. DSM approach. 23
2.13. I/O library extension. 24

3.1. Architecture overview. 26
3.2. Two-sided interface. 29
3.3. Two-sided event and data synchronization mechanism. 30

a. Two-sided communication channels. 30
b. Two-sided data stream. 30

3.4. One-sided interface. 32
3.5. File locking mechanism. 34
3.6. Notification mechanism. 35
3.7. DSM memory space. 36

xiii

xiv List of Figures

3.8. Mask redistribution. 37
3.9. Block-cyclic redistribution. 38
3.10. Random block redistribution. 39
3.11. Hierarchical representation for storing data. 40
3.12. Steering architecture. 41
3.13. Steering interface. 42
3.14. Interaction operating modes. 45

a. Wait mode. 45
b. Free mode. 45

3.15. Timing of interactions. 46
3.16. Three available configurations. 48

a. First configuration. 48
b. Second configuration. 48
c. Third configuration. 48

3.17. Parallel post-processing. 49
3.18. Hierarchical approach representation. 50

4.1. HDF5 virtual file layer. 54
4.2. DSM virtual file driver. 55
4.3. HDF5 collective operations. 57
4.4. Inter-node micro-benchmark using POSIX socket transfers. 59

a. InfiniBand QDR 4X cluster. 59
b. Cray XK6 system. 59

4.5. Inter-node micro-benchmark using point-to-point MPI transfers. 60
a. InfiniBand QDR 4X cluster. 60
b. Cray XK6 system. 60

4.6. Inter-node micro-benchmark using passive MPI RMA transfers. 61
a. InfiniBand QDR 4X cluster. 61
b. Cray XK6 system. 61

4.7. Passive MPI synchronization restriction. 62
a. Concurrent locking. 62
b. Serial locking. 62

4.8. Contiguous distribution using MPI transfers. 63
a. InfiniBand QDR 4X cluster. 63
b. Cray XK6 system. 63

4.9. DMAPP communicator benchmark on a Cray XK6 system. 64
a. Micro-benchmark. 64
b. Single dataset write transfer rate using a contiguous distribution. 64

List of Figures xv

4.10. Single dataset write transfer rate using MPI. 66
a. Block-cyclic redistribution. 66
b. Comparison between block-cyclic and contiguous distributions (difference). 66

4.11. Single dataset write transfer rate using DMAPP. 66
a. Block-cyclic redistribution. 66
b. Comparison between block-cyclic and contiguous distributions (difference). 66

4.12. Multiple dataset write transfer rate using MPI and DMAPP. 67
4.13. Multiple dataset read transfer rate using MPI and DMAPP. 69
4.14. ParaView client/server architecture. 70
4.15. ICARUS workflow. 71
4.16. Parallel visualization of DSM files. 73
4.17. Specialized DSM readers. 76

a. Standard XDMF reader. 76
b. Adding an H5Part reader. 76

4.18. Read time on Cray XK6 using the H5Part reader. 77
4.19. Generated control example. 79
4.20. Steering usage example between a simulation code and ParaView. 80
4.21. 3D transform widget example. 81
4.22. Amount of time spent in the various components of the interface. 82

5.1. SPH-flow test case. 86
a. ECN wave tank, 50 × 30 × 5 m. 86
b. 48 independent flap wave-maker. 86

5.2. Hierarchical approach representation of SPH-flow data. 87
5.3. Compute and write time on Cray XK6 of 20 × 10􀁳 particles using SPH-flow. . . 89
5.4. In-situ visualization of SPH-flow data. 92
5.5. Animation view with SPH-flow. 95
5.6. SPH-flow computing loop with mesh reload capability. 96
5.7. ICARUS reload interface generated for SPH-flow. 96
5.8. SPH-flow sphere reload sequence. 97

a. 𝑡􀁭. 97
b. 𝑡􀁮. 97
c. 𝑡􀁯. 97

5.9. A custom control for shaping a wave maker in ParaView. 98
5.10. SPH-flow wave paddle oscillation sequence 98

a. 𝑡􀁭. 98
b. 𝑡􀁮. 98
c. 𝑡􀁯. 98

xvi List of Figures

5.11. Pelton turbine. 100
a. Two-jet horizontal Pelton turbine in its casing. 100
b. Horizontal Pelton test rig in operation. 100

5.12. Hierarchical approach representation of SPH-ALE simulation data. 101
5.13. Pelton runner visualized in-situ using ICARUS. 102
5.14. Pelton runner visualization sequence. 103

a. 𝑡􀁭. 103
b. 𝑡􀁮. 103
c. 𝑡􀁯. 103

5.15. Steered jet radius from Pelton runner. 105
5.16. Damages on Pelton runner, Malana, India. 107

6.1. Distributed shared object approach. 112

A.1. Gemini NIC. 116
A.2. Inter-node micro-benchmark using uGNI (blocking) put operations. 118
A.3. Single dataset write transfer rate using uGNI and a contiguous distribution. . . . 119

List of Tables

2.1. Historical peak performance of supercomputers and associated I/O rates. 10

xvii

xviii

“Computational science and engineering encompass a
broad range of applications with one common
denominator: visualization.”

— Bruce H. McCormick

1

2

Chapter 1.

Introduction

In science and engineering, mathematical modeling aims at creating abstract representations for
the understanding and prediction of physical phenomena. For observation of the phenomenon

or validation of the defined model an experimentation phase can generally be defined; however, in
most cases, experimentation is expensive and not always feasible (e.g., galaxy collision). In addition
to this, modeling a system implies solving complex equations, for which in several cases no analytic
solutions can be found. In this context, numerical simulation can allow one to find approximate
solutions and understand a phenomenon under controlled conditions.

1.1. Numerical Simulation and Scientific Visualization

A numerical simulation program consists of solving a system numerically by iterating over time or
space (depending on what needs to be solved) until the system reaches a convergence point. At
each iteration step, a data output that contains a representation of the physical state of the system
may be produced and further post-processed for analysis of the simulation results. Note that as
the accuracy of the solution produced is an important factor, one may need to increase the model
resolution to get more accurate results, although this may in turn lead the simulation to consume
more resources. For example in figure 1.1a, in a mesh-based representation, increasing the mesh
resolution (and hopefully the accuracy of the representation) requires more resources in terms of
space to store the data and more resources in terms of computing power to be able to process a
larger amount of data in a still reasonable amount of time.

As the amount of data that is to be produced by the simulation is generally too large to be
humanly readable, data must be post-processed before one can conclude anything about the results.
This step, called scientific visualization, allows scientists to get a relevant representation of the data
and highlight specific data regions or variables (e.g., velocity, pressure, etc). While this process

3

4 Introduction

has been used for decades, it requires definition of a common and well-suited interface between
simulation and visualization applications.

In addition to this process, it may also be useful for an engineer or a scientist to directly interact
with the simulation code while visualizing data and change parameters and variables and/or data
objects, and see the corresponding effects and evolution as the simulation carries on computation.
This process, called computational steering , is used in several applications and can allow one to
recreate a fully simulated environment bymodifying the right parameters and hence the simulation
dynamics during computation (removing the need to relaunch computation from modified initial
conditions).

1.2. Multidisciplinary Environment and ICARUS Approach

Different approaches can be used to simulate a single phenomenon and data models of simulation
codes can therefore be structured in various ways, depending on the representation that is to be
defined. For example, in CFD (Computational Fluid Dynamics) one can simulate a fluid using
a standard mesh-based method. However because the interface between air, water, and bodies is
variable and needs to be modeled (which can be very complex), mesh-free particle methods like
SPH (Smooth Particle Hydrodynamics [51]) have emerged as an alternative to classical mesh-based
methods. As illustrated in figure 1.1, instead of modeling the material with a fixed spatial mesh,
the fluid (and the solid) can be modeled with moving particles. Particles have no explicit connec-
tivity, but interact with neighbors within a specified range. This approach brings advantages in the
treatment of complex physics with interfaces for moving bodies.

Floa
ting

Body

air

interface

water

(a) Classical mesh-based approach.

Floa
ting

Body

air does not
need to be
modeled

no explicit
model of
interface

water
particles

(b)Mesh-free particle approach.

Figure 1.1. Different approaches to model a body floating in water.

As an illustrative example that we will use in this thesis (see chapter 5), the NextMuSE [24] Eu-
ropean project defines a multidisciplinary environment between different simulation codes, which

Introduction 5

may use different data representations, in various domains such as energy, transport and health-
care. The objective of NextMuSE is to initiate a paradigm shift in Computational Fluid Dynam-
ics (CFD) and Computational Multi-Mechanics (CMM) simulation software, which is used to
model physical processes. Relying on SPH methods (fundamentally different from mesh-based
techniques as explained in figure 1.1), the project offers the possibility of a novel and adaptive
framework for user interaction, and has the potential for integrated multi-mechanics modeling in
applications where traditional methods fail.

Wave Generator
(Nantes, France)

Mathematical
Modeling

Initialize

Compute
Analyze Render

Update

Steer

Figure 1.2. NextMuSE problematic and ICARUS concept.

In this context, we define objectives and research axes to create a framework and platform, ca-
pable of interfacing multiple simulation codes that use different data models to a visualization and
analysis application at a minimal cost for the user. We define the concept of ICARUS—Initialize
Compute Analyze Render Update Steer [24]—which is illustrated in figure 1.2.

Based on experimental observations, one may define a mathematical model. From this model,
a simulation code is implemented and the computation occurs on a large high-performance comput-
ing (HPC) machine. This composes the simulation part, represented in blue1. Depending on the
use case, data output may be sent to other resources (machine or set of nodes) for analysis, which
may even be connected to a visualization client. This is represented in green1 and must be generic
enough to be able to support the different simulation codes and data models. The visualization
client may produce images but a user must also be able to steer the simulation by dynamically mod-
ifying parameters or meshes/data, so that he can explore and understand the effects of the different
1color used in the different figures of this discussion.

6 Introduction

component modifications onto the simulation. This may in turn lead the simulation developer to
update the mathematical model, and improve the correctness or accuracy of the simulation.

1.3. Objectives

To follow the ICARUS concept, the first objective of this work is to create an interface that allows
one to re-route simulation data output to a post-processing server for analysis and visualization
without any significant rework of the simulation codes. As described above, the interface must be
generic enough to be used with any data model. The second objective is to define a comprehensive
steering interface so that not only parameters or simple scalars can be exchanged but also complete
meshes and data objects.

To respond to these two main objectives, it is necessary to define an interface that is flexible
enough to allow two-way communications between simulation and post-processing applications
and generic enough to allow transfers of various data structures. As we want also to be able to
run on large HPC machines, the interface needs to be able to scale up to thousands of proces-
sors and therefore avoid overhead wherever possible, neither on the simulation side nor on the
post-processing side; hence communications must also execute as fast as possible.

1.4. Outline

In chapter 2 we present the existing architectures, interfaces and means of exchange between sim-
ulation and post-processing applications that can respond to our problem and see how we can
position ourselves to determine the best suitable architecture that can ensure an efficient interfac-
ing of the different simulation codes with post-processing applications. In chapter 3, we explain
the different architectural choices that we make2, which sub-problems this leads us to, which so-
lutions or compromises we find and more importantly, which key concepts our architecture needs
to achieve the best performance. We present our implementation in chapter 4 and validate the
different concepts introduced and used in our architecture through unit test cases. In chapter 5, we
apply this work to two different test cases from the NextMuSE project and validate our approach
as well as our architectural and implementation choices. Finally, we conclude on the work that has
been achieved and present how the different problems encountered can lead in the future to new
improvements and implementation solutions.

2Note that most of the work that we will present in the next chapters has been published in [80–84].

Chapter 2.

In-situ Visualization and Steering
Approaches

Consuming more and more resources, simulations also generate larger and larger amounts
of data. The significant bottleneck introduced by the analysis or the visualization of the

data produced requires digging for new post-processing methods and techniques. In this chapter
we show how the limitations of the original model, referred to as traditional model , lead to new
approaches to reduce the amount of data that is to be processed by a given post-processing element.
While choosing a technique may restrict the operations that can be applied to the data, the degrees
of freedom for steering the simulation may vary accordingly.

2.1. From Traditional Visualization…

As illustrated in figure 2.1, in a traditional approach, a simulation writes data sequentially or in
parallel to disk using a defined file format. A post-processing or visualization application is then
used to read from the file system and visualize the generated data. This approach, used by several
tools, presents the advantage of giving to the user a generic solution to post-process his data and,
as simulation and post-processing are entirely decoupled, it does not interfere in any way with the
simulation, potentially still running.

Several visualization applications such as ParaView [15, 70] or VisIt [19], based on the VTK
library [39], make use of this approach. Filters are applied to a source object (in this case, the
data read from the file system), which create from the original raw data a new set of data that is to
be visualized. This new set of data is then converted into geometric objects (mappers), which are
then rendered and displayed onto a screen. One can therefore create a complex post-processing

7

8 In-situ Visualization and Steering Approaches

Simulation
Parallel

File System Filters Mappers Renderer

Post-processing

Figure 2.1. Data is read from a parallel file system, the analysis and visualization steps are performed using
a post-processing pipeline composed of filters, mappers and renderer.

pipeline, composed of several filters and mappers, the complexity of the data and the number of
operations requested increasing the time needed by the analysis to complete.

2.1.1. Parallel File Interfaces and Data Formats

Parallel file interfaces are now used in several applications and achieve a reasonable good perfor-
mance onwell-known parallel file systems such as GPFS [38], Lustre [59], etc. Among the different
parallel interfaces available, some have distinguished themselves for their flexibility, performance,
and reliability.

MPI I/O

MPI I/O, defined in the MPI-2 standard [2, 33], is a parallel I/O interface. Implementations,
ROMIO [71] or more recently OMPIO [16], have been designed on top of abstract I/O device
layers that enable portability to underlying I/O systems. One of the most important implemented
features is collective I/O operations, which can even be non-blocking now. Collective I/O oper-
ations adopt a two-phase I/O strategy and improve the parallel I/O performance by significantly
reducing the number of I/O requests that would otherwise result in many small, non-contiguous
I/O requests. However, MPI I/O reads and writes data in a raw format without providing any
functionality to effectively manage the associated metadata (see below), and thus does not guaran-
tee data portability. It is therefore not the most convenient file format for scientists who need to
organize, transfer, or share their application data.

HDF5

HDF5 [72] is a widely used portable file format and library developed by the HDFGroup for stor-
ing, retrieving, analyzing, visualizing (assuming an appropriate reader is provided) and converting
data. HDF5 stores multidimensional arrays along with metadata in a file. It supports hierarchical

In-situ Visualization and Steering Approaches 9

file structures providing users with a high degree of flexibility for data management. As illustrated
in figure 2.2, a dataset is mapped onto a file and its memory description and layout is stored in
metadata. This allows users to define and organize their data into different groups and datasets
and build an hierarchical tree of data, all the file mapping being taken care of by the library.

Application memoryDataset header
…

Datatype

Dataspace
…

Attributes
…

Metadata cache

File Dataset data

Dataset data

Figure 2.2. HDF5 stores multidimensional arrays (datasets) along with metadata in a file. In this case, a
dataset is contiguously mapped from the application memory to a file, its data structure being
described in the metadata cache.

HDF5 supports parallel data access built on top of MPI I/O (which is best suited for parallel
file systems as previously described). HDF5 also provides its own ways of tuning parallel data
writes. For instance, the chunking mechanism allows files and particularly datasets to be stored in
a non-contiguous form (i.e., in equally sized chunks); this can be helpful for parallel file systems,
over which datasets can be striped. Additional optimization has also been made in the HDF5
library for specific file systems, such as the Lustre file system [37], and features such as variable-size
arrays and data compression are made possible by partitioning the storage space into chunks.

NetCDF

TheNetwork CommonData Form (NetCDF) [63] format is another portable file format and pro-
gramming interface used in the scientific community (especially atmospheric science community)
for data access and storage of structured datasets. NetCDF uses a linear data layout in which data
arrays are contiguous or interleaved in a regular pattern. Parallel NetCDF (PnetCDF) [42] is a
parallel version of NetCDF developed by Argonne National Laboratory and Northwestern Uni-
versity and is built on top of MPI I/O to provide efficient parallel file accesses through the use of
collective I/Os. One of the goals of NetCDF is to support efficient access to small subsets of large
datasets. To support this goal, NetCDF uses direct access rather than sequential access. This can
be much more efficient when the order in which data is read is different from the order in which it

10 In-situ Visualization and Steering Approaches

was written, or when it must be read in different orders for different applications. NetCDF4 [64]
uses HDF5 as a data storage layer, HDF supports n-dimensional datasets and each element in
the dataset may itself be a complex object. Therefore the use of HDF5 as a data format adds a
significant overhead in metadata operations as creation of multiple objects implies multiple meta-
data accesses. NetCDF does not support compression directly but allows users to use the HDF5
interface for data compression.

2.1.2. Limitations of the Traditional Approach

As previously mentioned, simulation codes become nowadays more complex, use more and more
resources, and produce larger and larger data. Even with smart file formats, the conventional ap-
proach of saving to—and reloading data from—the file system now shows its limitations. This is
illustrated by table 2.1, which shows an historical overview of different existing large systems [29,
47,55,68] such as Cray XT5 systems, now decommissioned systems such as ASCI machines [67],
and upcoming systems such as the OLCF Cray XK6 [56] or ASC IBM BG/Q [41]. It is clear from
this table that, as the peak performance grows, the gap between the amount of memory available
on the system and the file system bandwidth increases. Therefore, assuming that a simulation runs
on the full system, the time required to perform a whole system checkpoint to disk increases as
well. A few exceptions in this table, such as the RIKEN K computer or Roadrunner, show lower
checkpoint times, bringing a faster file system compared to the others for the same period. How-
ever the overall trend, even for these systems, is not to get a smaller ratio (System Memory) / (File
System Bandwidth).

Table 2.1. Historical peak performance of supercomputers and associated I/O rates.

Machine Year
Peak

(TFlops)
System

Memory (TB)
File-System
BW (GB/s)

Whole System
Checkpoint (s)

ASCI Red 1997 1.8 1.1 4 ≃ 280
ASCI White 2001 12 6 12 ≃ 510
ASC Red Storm 2005 41 33 50 ≃ 680
Roadrunner 2008 1344 104 216 ≃ 490
CSCS XT5 2009 212 29 16 ≃ 1860
NCCS XT5 2009 2332 292 240 ≃ 1250
RIKEN K Computer 2011 11550 1377 ≃ 1024 ≃ 1380
OLCF XK6 201𝑥 ≃ 15360 584 ≃ 600 ≃ 1000
ASC Sequoia 201𝑥 ≃ 20480 1638 ≃ 650 ≃ 2580

In-situ Visualization and Steering Approaches 11

As a direct consequence of these I/O limitations, post-processing applications suffer heavily,
as they pay twice the accesses to the file system: one is introduced by the simulation writing to
disk and the other by the post-processing application reading from it (and the bandwidth from
the compute nodes to the file system may be substantially better than from the file system to the
post-processing nodes).

Besides this, computational steering, which can also be applied in a traditional approach by
visualizing and analyzing every time step as it is written to disk, may suffer from interaction issues
as the frequency of data outputs diminishes. For example, InSt [48] is a framework that allows
one to steer a simulation remotely. First the simulation output is written to the file system and
a service sends it via the network to a remote machine. Visualization is then performed and a
steering action may be sent back. Whereas this approach is useful when a simulation can only run
on a specific site for security reasons, if the amount of data produced by the simulation drastically
increases, the interaction and data exploration capabilities brought by the steering approach will
be considerably reduced.

Still, the previous statement of this section does not mean that codes should not produce out-
puts to disk any more, as one may need to save his data for a future usage and data post-processing
may only be feasible from the original raw data; but more specifically, this means that in a regular
use, when data archiving is not necessary, other solutions must be sought to minimize the usage
of disks.

2.1.3. Solutions to Minimize Cost of I/Os

Several solutions exist to minimize the costs of I/Os1. Some of these solutions are presented in [18]
where post-processing systems have to meet petascale simulation systems requirements and they
are already used by many applications such as ParaView, VisIt, etc. We present in the following
points three of these techniques, which follow a traditional post-processing model.

Pure Parallelism

The first natural technique to minimize I/O costs is to have several processes reading in parallel
(see figure 2.3), so that each of them can work on its own subset.

This technique is still one of the most used techniques but presents some limitations. Assuming
that a significant number of nodes are used to access the file-system, the I/O bottleneck may be

1Note that I/Os is here an abuse of terminology and specifically refers (unless specified) in most of this document to
“disk I/Os”.

12 In-situ Visualization and Steering Approaches

…
1

N

2
Post-processing

Figure 2.3. Data pieces are read and treated in parallel.

proportionally reduced. However, the main issue one may need to consider is that the size of the
cluster used to post-process data is usually not as large as the one used for the simulation. While the
simulation may minimize the I/O costs by writing in parallel, the post-processing machine, when
reading in parallel, will have to pay at a larger extent the size of the data. This technique presents
therefore an important limitation, as the simulation may scale to a high number of processes, but
post-processing may still be limited by parallel I/Os from disk.

Multiresolution

The second idea one may have is to work on a simplified version of the data for post-processing by
temporarily decreasing the resolution (see figure 2.4). When the coarse representation is no longer
needed, one may switch back to the full resolution representation and run the analysis again if
necessary.

Decrease
Resolution

Post-processing

Figure 2.4. Data resolution is temporarily decreased for post-processing.

For example in [43], the authors construct a multiresolution hierarchy based on subdivisions
and make use of downsampling filters for high quality data approximation on each level of detail.
Whereas this can be seen as a good alternative (particularly for data exploration), the main draw-
back of this technique is the consequence of operating on a simplified version of data. It may not
be always meaningful as one may miss details or get different results from the analysis and therefore
may need to go back to higher resolutions.

In-situ Visualization and Steering Approaches 13

Out-of-core Processing

Subsetting or out-of-core processing [69] consists of operating on a unique partitioned data subset,
fitting in the main memory. Each subset is then processed, one at a time (see figure 2.5).

Post-processingPost-processingPost-processing
Figure 2.5. Post-processing occurs serially onto partitioned data subsets.

This method obviously reduces the accesses to disk as only small blocks of data are read. Addi-
tionally post-processing application components can bemultithreaded or distributed over different
nodes and in this context, task parallelism can allow the current subset to be post-processed while
the next subset is being read.

One issue remains: depending on the data that is to be analyzed/visualized, partitioning the
data so that only a very small subset of data is used and analyzed may not always be applicable, and
I/O costs may still be high as depending on the size of data, a significant number of I/O operation
will still be necessary.

2.2. …To In-situ Visualization

As data becomes ever larger [66], techniques presented above do not allow sufficient reduction
of I/O costs. To decrease the I/O bottleneck even further, the concept of in-situ visualization
or in-situ processing is re-introduced2. Generally speaking, in-situ visualization of a simulation
is a technique where a simulation is coupled with a visualization interface and visualization (or
post-processing) occurs while the simulation is running. The expression “in-situ processing” can
be ambiguous as several methods use the same terminology for different modes of operation. We
will separate in the next sections in-transit processing [52] (also commonly called staged process-
ing)—where data movement between different nodes occurs—from in-position processing—where
no data movement occurs and memory spaces are shared between simulation and post-processing
applications.

2Not completely new [50], even though a lot of interest has been shown for this technique in the last few years and
particularly because of the increase of I/O constraints.

14 In-situ Visualization and Steering Approaches

More generally, in-position processing is a synchronous approach (i.e., a tightly coupled ap-
proach) and in-transit is asynchronous (i.e., a loosely coupled approach). As we will see further
in details, each of these approaches has its own advantages and drawbacks. As these different ap-
proaches imply a different level of coupling, we also present what this implies in terms of steering
capabilities that can be associated to the simulation.

2.2.1. Tightly Coupled Approach

In a tightly coupled approach, as illustrated in figure 2.6, simulation and post-processing share
the same memory. A post-processing application that uses this method can therefore have direct
access to the requested memory regions without having to do any additional memory copies and
of course, any data transfer with the simulation (i.e., data movement costs are close to zero).

Simulation Post-processing

Memory

PE (0)

… Simulation Post-processing

Memory

PE (𝑁 − 1)

𝑁 processing elements (PEs)

Figure 2.6. Simulation and post-processing applications share the same memory.

For instance, VisIt [19] provides users with the libsim [76] in-situ visualization library, a light-
weight library that is portable enough to be executed on a large variety of HPC systems. The
library defines an API so that one can simply interface to the VisIt environment. This implies for
the user annotation of the code with the required functions. The VisIt libsim also provides a way
of dynamically connecting to a simulation already running so that one can monitor results, remov-
ing the need to launch both applications at the same time. This is ensured by periodically calling
VisitDetectInput from the simulation main loop (see figure 2.7) so that when requested, new
connections between the VisIt client and the libsim library are created.

On the other hand, ParaView proposes a similar approach with the coprocessing library [28].
At the end of a simulation time step, the simulation makes a function call to pass the current
simulation/solution state to the ParaView coprocessor. The coprocessor reads then instructions
from a Python script to build a filter pipeline for analysis of the data. The post-processed data,
which may even be at the end of this process a simple image, can be directly saved using disk I/Os.

In-situ Visualization and Steering Approaches 15

Both libraries require some re-working of the code so that memory addresses can be passed to
the interface; while the interface conversion is basically the same for each simulation code (and
similar to that of most I/O libraries), it does require a detailed knowledge of the simulation and
visualization tool interface. Inmost cases, post-processing operations have to be well defined before
running the simulation, which means that only a specific sequence of events can be called during
a post-processing request.

As described in [77] where a full in-situ visualization pipeline is applied to combustion simula-
tions at large scale, making use of these approaches for in-situ visualization means that the analysis
will run on the same computing cores as the simulation, placing additional memory demands on
them. It is also likely that as the simulation algorithm scales up to a high number of cores, the
analysis algorithms that need to be applied to the simulation output do not scale as well, leading
to either additional communication overheads or computation bottlenecks.

Consequently, since post-processing and simulation access the same memory, post-processing
must operate synchronously with the simulation (and this can be a potential drawback as while the
analysis is being processed, the simulation must wait). In other terms, as illustrated by figure 2.7,
a new simulation time step can be computed only when the local post-processing of the current
time step is completed (if post-processing was requested).

Initialize

VisitDetectInput

Serve a Visualization
Request

Complete VisIt
Connection

Process VisIt
Commands

Process Con-
sole Input

Solve Next Step

Check for
Convergence,
End of Loop

Exit

Figure 2.7. Simulation control flow after introducing in-situ processing with VisIt libsim.

While the restrictions cited above affect the overall computation time, they also reduce the
degrees of freedom one may require to steer a simulation. Memory constraints have a high impact

16 In-situ Visualization and Steering Approaches

and one may need to pass back to the simulation different memory objects or even new objects;
depending on the use case, this may be very complex to handle with this approach. Furthermore,
because simulation and post-processing are tightly coupled (and pipeline is pre-defined), the level of
interactivity one may require to explore the data—and add potential analysis and specific steering
actions—may be more limited or more complex to handle.

2.2.2. Loosely Coupled Approach

In a loosely coupled approach, visualization and analysis run concurrently on different resources,
as illustrated in figure 2.8. When a new time step is computed, output is sent via the network to
another set of nodes (or machine3).

Simulation

Memory

PE (0)

…

Simulation

Memory

PE (𝑀 − 1)

𝑀 processing
elements (PEs)

Post-processing

Memory

PE (0)

…

Post-processing

Memory

PE (𝑁 − 1)

𝑁 post-processing
elements (PEs)

Network

Figure 2.8. Simulation and post-processing run on separate physical nodes and data is transferred from one
application to the other through the network.

A first example of tools that uses this approach is the EPSN library [65], which defines a
parallel high level loosely coupled model by manipulating and transferring distributed objects
such as parameters, grids, meshes and points between different applications across the network,
using a CORBA [57] communication protocol. A user can ask for objects and these objects are
automatically mapped (and redistributed) using the EPSN model to VTK sources (in-memory),
or any other output format (e.g., HDF5 for which a module in the library is provided as is a

3But in this case, the term of in-situ processing is not really appropriate as the internal network is no longer used.

In-situ Visualization and Steering Approaches 17

ParaView plug-in for visualization). EPSN includes a mesh redistribution layer that maps grids
from 𝑁 simulation processes to 𝑀 post-processing processes. One can then easily interface the
simulation or visualization code to one of themappers, and define steerable parameters and actions.
The EPSN library also makes use of XML files to describe the data and interactions and provides
task descriptions that can be used to define synchronization points at which codes can wait for each
other.

Another in-transit (and therefore loosely coupled) approach has been introduced in the ADapt-
able I/O System (ADIOS) framework [44]. ADIOS has been designed to separate the I/O API
from the actual implementation of the I/Omethods. It implements a new file format called the BP
format, which can easily be converted into common formats such as HDF5, NetCDF or ASCII.
Using the same implementation and an XML description file, one can switch between the differ-
ent services that the library provides the user with, and also select specific I/O services that can for
example be used to map the data output to a remote memory (with no code changes). Particularly,
ADIOS defines the DataSpaces method [26] to create a virtual shared memory space, a staging area
that can be asynchronously accessed using one-sided communication protocols. Multiple time-
steps can be stored in this staging area and are automatically deleted depending on space demands
or user requests. Advanced mapping and advanced redistribution mechanisms using PGAS mod-
els [1] are also being developed [78]. For visualization, a ParaView reader has been created to take
advantage of the different ADIOS methods. Steering simulations with ADIOS does not seem to
be supported as of today. However this I/O library does not present any theoretical limitations in
its design for a possible extension.

A similar approach is provided with GLEAN [74]. The framework uses a client/server archi-
tecture to re-route data from a simulation to staging nodes. In this approach, the simulation is
the client and the staging part receiving data is the server; the client runs on compute nodes or on
dedicated I/O nodes and the server runs on staging or visualization nodes that are connected to
the compute nodes via a local network.

Themain advantage in these approaches is to have a staging area or coupled application located
on concurrent resources, adding a minimal or null overhead on the simulation side (but effectively
requiring an additional amount of resources to host the staging server or post-processing applica-
tion, which is also the main issue of this approach). However, while in a tightly coupled approach,
simulation has to wait for post-processing to finish before being able to compute the next time
step, in a loosely coupled approach, since data is duplicated and staged into a remote memory,
data analysis and visualization can be processed asynchronously. This is also interesting as het-
erogeneous architectures can be used together, one dedicated to the simulation and one to the
post-processing, assuming that a relatively good network links both machines or node partitions
together and that a common communication protocol can be used. Additionally, when a fault in

18 In-situ Visualization and Steering Approaches

the post-processing application is detected, it can be guaranteed that the simulation will carry on
computation and not be stopped.

Steering Considerations

As simulation and post-processing operate on their own copy of the data and in an asynchronous
manner, several possibilities can be offered in terms of steering. While we have enumerated some
of the possibilities that are offered by frameworks such as EPSN, other existing frameworks rely
on a loosely coupled setting; they have been largely studied in [53] already.

One of the first computational steering environments that has been developed was the visu-
alization and application steering environment (VASE) [14]. The VASE framework consists of
a collection of programming tools and system software. Designed to work with existing codes
written in Fortran and based on simple annotations in the source code, VASE tools construct a
high-level model from the application, enabling the user to work with this model rather than at
the detailed source-code level. Monitoring and steering are performed through break-point scripts.
Scripts can read and write variables in the application, control the flow of data between processes
(e.g., to send data to a visualization process), and call subroutines defined in the application pro-
gram.

SCIRun [60, 61], a problem-solving environment, is another well-known framework. It uses
an object-oriented data flow approach to enable the user to control scientific simulations inter-
actively (synchronously or asynchronously) by varying boundary conditions, model geometries,
and computational parameters. SCIRun was designed for the development of new applications,
although it is possible to incorporate existing applications into the system. An application in
SCIRun resides in one or more modules, implemented in C++. Writing a new module involves
writing a new C++ class. The user interface of SCIRun includes several predefined modules for
data visualization and program monitoring (progress meters, thread display, memory usage statis-
tics). For user input, modules can integrate a Tcl/Tk user interface with which the steerable items
of that module are controlled. SCIRun2 [79] now relies on a more loosely coupled setting and
supports distributed computing through distributed objects. SCIRun2 is based on SCIRun and
on the Common Component Architecture (CCA) [8], which aims at defining a minimal and stan-
dard set of interfaces for interoperability between components. Parallel components are managed
transparently over an𝑀×𝑁 method invocation and data redistribution subsystem.

CUMULVS [40] is another library that, in addition to providing access to distributed data
at runtime (runtime tracking), also supports fault-tolerance to failures by using check-pointing
mechanisms. The steering capabilities of CUMULVS include model exploration and performance
optimization. CUMULVS originally aims at interfacing PVM programs but interoperates well

In-situ Visualization and Steering Approaches 19

with simulations that use MPI or other parallel environments (and CUMULVS has also been in-
tegrated with the Global Arrays PGAS model [54] for distributed shared-memory programming).
The basic principle of CUMULVS is to have the user declare in the application how an array or
field of variables has been decomposed over a collection of parallel processors and specify which
parameters are allowed to be modified or steered during the computation. To allow steering, the
user interface process creates a loosely synchronized connection with the application, which guar-
antees that all tasks in the application will apply the steering updates at the same time or point in
the application. To prevent multiple viewers from steering the same parameter simultaneously, a
viewer can lock a steerable parameter by obtaining the steering token of that parameter.

Similarly, RealityGrid [12], which is mainly used for grid computing, provides an interface
for computational steering. One can connect dynamically to the simulation, monitor values of
parameters and edit them if necessary. Once a client is connected to the simulation component,
it can send steering messages to the simulation, which in turn transmits data to the visualization
component. To make use of the steering library, an application must satisfy certain requirements.
In particular, the application must have a logical structure such that there exists a point within
a control loop at which it is possible to carry out steering tasks such as pause, resume, detach
and stop, but also get and set values of steerable parameters. The computational steering API
defined in RealityGrid is quite exhaustive and provides additional functionality, such as the ability
of checkpointing/rewinding from a registered control point. A connected steering client may then
instruct the application to create a checkpoint and later restart from that particular checkpoint.

These frameworks all provide a comprehensive interface and several features such as steering of
parameters, boundary conditions, model geometries. The loosely-coupled approach allows these
operations to be performed synchronously or asynchronously without interfering with the sim-
ulation, allowing even fault-tolerance in the case of CUMULVS. However, it is worth noting
that all share one common drawback, the data model used and user interface does not follow the
original data model used to perform I/Os and in most cases, the simulation code will require sig-
nificant rework (by defining steering modules, etc). Again, it is possible to go further and define
a generic interface for both the simulation output and computational steering, allowing data to
be exchanged over the same existing interface, thus minimizing the modifications in the source
code and allowing compatibility with existing data models and file formats (which is critical for
visualization purposes, interoperability, etc).

20 In-situ Visualization and Steering Approaches

2.2.3. Hybrid Approach

In a hybrid approach, tightly coupled and loosely coupled techniques are intertwined so that one
benefits from both approaches by first reducing data into a tightly coupled setting before sending
it to a concurrent resource for final post-processing and visualization.

Simulation
Post-

processing

Memory

PE (0)

…

Simulation
Post-

processing

Memory

PE (𝑀 − 1)

𝑀 processing
elements (PEs)

Post-
processing

Memory

PE (0)

…

Post-
processing

Memory

PE (𝑁 − 1)

𝑁 post-processing
elements (PEs)

Network

Figure 2.9. Both previous techniques are combined and only a tightly coupled setting is sent through the
network.

A good illustration of this approach is made by using both ParaView co-processing andGLEAN
frameworks [28], removing the need to use disk I/Os to write (partly) post-processed data. By using
a GLEANwriter in the in-situ post-processing pipeline, the GLEAN client (on the simulation side)
re-routes data to staging nodes. The staging nodes host both a ParaView server and a GLEAN
server. A VTK GLEAN reader is used to read data from the GLEAN server, and convert it into
VTK objects, without copying memory. Additional ParaView filters can then be applied to convert
data into the final post-processed data that is to be visualized.

To a lesser extent, this approach shares the drawbacks of both previous techniques, a non-
negligible overhead is present on the simulation side (memory and code annotation) and data
transfers depend on network capabilities and communication protocols. Additionally, depending
on the framework used, it may be complex for a non-expert user to implement. This approach
however gives a good compromise if transferring the whole raw data is not possible or if the data
analysis needs to be done on the same nodes as the simulation.

In-situ Visualization and Steering Approaches 21

2.3. Our Push-driven and Loosely Coupled Approach

The approach that we propose to define uses a loosely coupled model and can be defined as an
in-transit visualization approach (as opposed to an in-position visualization approach since data is
sent to concurrent resources). Even on recent systems, memory consumption is an important issue
and transferring data to a remote system or node partition may be the only way (depending on the
analysis algorithms that are to be performed) of not decreasing the solver performance. Therefore
the simulation pipeline in our approach is split into three different components, the simulation
that outputs data, the staging area that receives data from the simulation, and the post-processing
application that analyzes data coming from the staging area.

2.3.1. Push-driven Transfers

Simulation
Staging
Area

Post-processing

1. Request
new time step

2. Send data to
remote server

3. Start
post-processing

(a)The simulation receives a post-processing request,
a new time step is sent that updates the pipeline.

Simulation
Staging
Area

Post-processing

1. Put data onto
remote server

2. Start
post-processing

(b) A new time step sent from the simulation updates
the post-processing pipeline automatically.

Figure 2.10. Two approaches for in-transit processing.

To transfer data between simulation and post-processing applications asynchronously, we dis-
tinguish two techniques, push-driven from pull-driven. In a pull-driven model, as shown in fig-
ure 2.10a, it is common to have the simulation defined as the server and the post-processing and
staging application defined as the client. The post-processing application sends a request to the
simulation, asking for a new time step. At the end of a computation step, when the simulation sees
that a request is present, data results are sent to the staging area (or to the post-processing appli-
cation). To be able to handle the different requests and transactions, an additional service (thread
or process) needs to run on the server, as all the requests must be non-blocking for the simulation.
To go further in the direction that we have chosen, and not interfere at all with the solver (i.e., not
create any additional overheads), we choose to adopt a push-drivenmodel where data is pushed and
put into a remote memory. In this case (see figure 2.10b) the post-processing/staging application
is the server and the simulation is the client. At the end of a time step, data is pushed and staged to

22 In-situ Visualization and Steering Approaches

remote nodes and is then automatically post-processed. Note that if post-processing data is slower
than computing a time step, simulation may be slowed down but in this case one can imagine to
store multiple time steps in the staging area or potentially skip some of them. In the following
sections, only the case for storing a single time step will be considered.

2.3.2. In-memory File Exchanges

Simulation

Staging Area

In-memory File

Data

Steering
Objects

Post-processing

1. Push
data to

remote server
2. Start post-
processing

3. Put
steering
objects

4. Get
steering
objects

Figure 2.11. Transfers between post-processing and simulation occur through in-memory files where data
but also steering data can be stored.

As we want to be able to interface with multiple codes that can potentially use different data
models and different data representations, we decide to use in-memory files (that follow a hierar-
chical pattern) as a generic interface, to exchange and store data in the staging area. For steering
the simulation, this approach will also allow us to exchange not only parameters but also blocks
of data using a reserved section of the memory mapped file, which is illustrated in figure 2.11.
Memory files are here represented in a very simple form but they have to be actually mapped onto
a more complex memory system so that exchanges and transfers are performed as fast as possible
between the different components (the main bottleneck of this approach must be minimized). To
map the files and handle the transfers, different strategies and techniques will be presented in the
next chapter.

2.3.3. Distributed Shared Memory for Data Staging

The staging area in our approach is a distributed shared memory (DSM) [17], which we also use
as a steering interface as presented in the previous section, and is distributed among 𝑁 processes.
This is not a novel idea, other recent approaches such as the one from Lorenz et al. [46] make

In-situ Visualization and Steering Approaches 23

Simulation

0

…

𝑀− 1

DSM

0

…

𝑁 − 1

Post-processing

0

…

𝑃 − 1
1. 𝑀 × 𝑁
redistribution

2. 𝑁 × 𝑃
redistribution

Figure 2.12. Parallel data transfers between the DSM interface and the post-processing application follow
a𝑀×𝑁 × 𝑃 redistribution.

use of the DSM concept and have formalized consistency models and protocols to ensure data
integrity within a steering environment. However the novelty and originality of our model differs
from theirs by the push-driven architecture and the hierarchical file approach used to map data
and steering objects onto the DSM.

As described in figure 2.12, the solver component is distributed among𝑀 processes, the staging
area among 𝑁 processes and the post-processing among 𝑃 processes, and it is common to have
𝑀 ≫ 𝑁 (for the reasons explained in 2.1.2). This results in a𝑀×𝑁 × 𝑃 data mapping between
the different components and we will present in the next chapter the different approaches used to
map and transfer data between them. Note also that whereas the staging area and post-processing
components can be located on different sets of nodes or machines, they may also be part of the
same post-processing server application and in most cases, 𝑁 may be equal to 𝑃.

2.3.4. Extension to I/O Libraries

Generally, from an implementation point of view, simulation users and developers spend a non-
negligible effort in implementing interfaces for outputting data, making use of I/O libraries such
as HDF5 or NetCDF, as described in 2.1.1. In a loosely coupled approach I/Os need to be re-
routed to a staging area and as a consequence, the simulation I/O interface may be subject to
several modifications.

In our approach, we want these modifications to be as minimal as possible and not have to
rewrite the whole I/O interface of the simulation code. This objective can be reached by extending
the I/O library itself, so that the user may be able to use the same API and I/O interface but, as

24 In-situ Visualization and Steering Approaches

Simulation I/O Library

Staging Area

Parallel
File System

Post-processing

Figure 2.13. Using a unique I/O library, a given simulation code can switch from writing to a parallel file
system to another I/O mode, which is to re-route data to a staging area.

illustrated in figure 2.13, will see its data being re-routed to the staging area. This also presents
two advantages: keeping the ability to archive data, so that one can potentially combine both
approaches, traditional and in-situ processing, and keeping the hierarchical approach provided by
I/O libraries so that data can be easily accessed. We will present in section 4.1 how we make use
in our implementation of the existing and widely adopted HDF5 library to achieve this goal.

2.3.5. Methodology

Based on the previous statements, we present in chapter 3 the detailed architecture of this approach
and its inner mechanisms: in section 3.1 the communication system along with the synchroniza-
tion and notification mechanism, in section 3.2 the in-memory file space layout and redistribution
techniques used to transfer data to the DSM, in section 3.3 the exchange interface and required
steering properties (i.e., the mechanisms used to exchange steering commands and data) and in
section 3.4 how we deploy the different components of our architecture.

In chapter 4, we discuss the implementation choices that we make to achieve our architectural
objectives: in section 4.1 we describe how we make use of the HDF5 library to re-route data
in parallel and show, based on the communication and redistribution strategies, the performance
achieved on different types of systems. In section 4.2, we describe the post-processing part of
the implementation, necessary to read and interact from/with the DSM, as well as the associated
performance.

Validation test cases are then studied in chapter 5. We present in 5.1 and in 5.2 the integration
of both in-situ visualization and steering features of our framework into two simulation codes
from the NextMuSE European project [24]. We demonstrate how our DSM approach extends
the capabilities of these codes in order to solve genuine engineering problems.

Chapter 3.

A Loosely Coupled Model: Architecture
and Requirements

As described in 2.3, the approach that we chose follows a loosely coupled model. In this chapter,
we discuss the different architectural choices that we make to meet our two main require-

ments: one, avoid overhead on the simulation side; and two, provide a two-way communication
model for the exchange of data. Whereas one would only need one-way exchanges for simple in-
situ visualization, for simulation steering a two-way communication system allows the reception of
commands from the simulation and therefore the definition of a comprehensive steering interface.

Architecture Overview

As illustrated in figure 3.1, the architecture we wish to define is organized as follows: a simulation
is coupled to a post-processing application through a distributed shared memory (DSM); the data
itself is stored in an in-memory file that is distributed over the network. To be able to generically
use and read data stored in the file (see 2.1.1), information about the internal data hierarchy and
layout must be cached: this piece of information is called metadata. An in-memory file must be
consequently composed of two separate parts, one containing the data itself and one containing
the metadata. Additionally, steering commands and steering data can be stored into a separate
chunk of the file.

Simulations can generally be decomposed into four main steps: an initialization step, a solving
step, an I/O step and a finalization step. The I/O step may write results of the previous solving
step before looping back to the next computation step depending on the number of steps requested
(which may be time steps if the simulation loops over time). In a typical processing loop, instead
of writing to disk during the I/O step, the simulation may reroute data in parallel through the
network to the DSM. This is the critical point of the architecture: data must be sent using very

25

26 A Loosely Coupled Model: Architecture and Requirements

Simulation

Initialize

Get Commands

Solve

Write Data

Finalize

Post-processing

File in DSM

Steering
Data

Meta-
data

Data

Initialize

Read Data

Analyze

Set Commands

Finalize

1. Steering interface
and backward

inter-communication

2. Efficient data
redistribution and

inter-communication

3. Push-driven
notification

4. Synchronous
or asynchronous

interaction

Figure 3.1. Data from the simulation is re-routed to an in-memory file stored in DSM, analysis starts in a
push-driven fashion, steering data is sent back throughDSMand read back from the simulation.

efficient communication techniques so that the network bandwidth is maximized. This will be
more detailed in section 3.1. Additionally to be more efficient, data stored in the DSM is sent and
stored using different mapping and redistribution patterns. This is detailed in section 3.2.

When the simulation writes new data into the DSM, we want the post-processing application
to automatically start analysis without having to do anyDSM status polling. Thismeans that a fully
push-driven structure must be used instead, along with a complete notification system to forward
possible events to the post-processing application; more details are presented in section 3.1.5.
When data from the simulation is sent to the DSM (synchronously or asynchronously depending
on the communication system used), the simulation can carry on computing without waiting for
the analysis or visualization steps to be completed, as another copy of data is remotely created and
stored in the DSM.

Once the data is analyzed, a user may—or may not—give new steering orders to the simula-
tion. To achieve this goal, we present a comprehensive steering interface in 3.3 allowing simple
commands and more complex data to be sent back to the simulation. Steering orders are generally
received by the simulation at the beginning of a new time step but we will see in section 3.3.4
that we can also define two different modes of interaction depending on user demands, one syn-
chronous and the other asynchronous.

A Loosely Coupled Model: Architecture and Requirements 27

Finally, it is important to note that depending on the system and configuration that are to be
used for running the simulation and the post-processing applications, different options for deploy-
ing the components of the architecture may be chosen. This is detailed in 3.4. To optimize the use
of resources on the systems and not do unnecessary memory copies, as illustrated in figure 3.1, the
DSMmay be co-located with the post-processing application, or on separate computation nodes if
the data cannot be stored on same nodes as the post-processing application.

3.1. Communication Interface

The communication interface defined in this section is one of the crucial points of the architecture
as all the exchanges and operations between the simulation and the post-processing application
must be executed as fast as possible. The simulation writes data packets in parallel to the DSM,
which become distributed not only spatially but also temporally as the different pieces may transit
at various speeds through the network. Therefore the operation order between the simulation and
the post-processing application must be preserved to ensure not only event ordering but also data
integrity.

3.1.1. Communicators

TheDSM, which is the staging area that we previously defined in 2.3, can be seen as an addressable
remote memory space from the simulation point of view. To transfer data in an efficient manner
from a given parallel simulation code that uses𝑀 processing elements to a DSM that uses𝑁 pro-
cessing elements, we need𝑀×𝑁 links so that the local simulation data can be sent to any address
of the remote memory. This point-to-point communication model may also be the only way of
maximizing the network bandwidth depending on the number of physical links available between
the simulation and the DSM. For communication within or between processes, we distinguish
two types of communicators1:

1. An intra-communicator represents the communicator used for internal communications
performed by a given application;

2. An inter-communicator links two different applications or two different sets of processes
together.

1The concept of communicator is very close here to the notion of communicator objects defined in MPI, where the
basic group object can be seen as the application.

28 A Loosely Coupled Model: Architecture and Requirements

In our approach, the simulation uses its own intra-communicator for all the internal data ex-
changes and an inter-communicator to communicate with the DSM. The DSM has also its own
intra-communicator, which may be used for internal synchronization purposes or may be shared
with the post-processing application if the DSM and the post-processing application share the
same global communicator.

If we consider the simulation code and the DSM as two distinct SPMD (Single ProgramMul-
tiple Data) codes, the inter-communicator linking these two codes together must be dynamically
created at run-time and must use a connection procedure so that one code may try to reach the
other one to create a new inter-communicator. However if we consider the two codes as a unique
MPMD (Multiple Program Multiple Data) code, the inter-communicator is statically created and
shared during an initialization phase.

Once the inter-communicator is created, the simulation may send the actual data that needs
to be written and stored remotely, but also commands or events, which may be requested for
different reasons (which we will detail in 3.3). As one of our objectives is to interfere as little as
possible with the simulation code by using a push-driven approach, we define the simulation as
the client and the DSM as the server (note that as explained in the previous overview, the DSM
may be combined with the post-processing application). To be able to communicate to the server
and send commands at any time, a thread—referred as service thread—must be listening on the
inter-communicator. This thread may therefore receive a command, treat it and carry on listening
for new commands until disconnection.

To send the actual data we distinguish two communication modes, two-sided and one-sided.
In a two-sided approach, the sender and the receiver must participate to the communication op-
eration. In a one-sided approach, (as the name suggests it) only one side needs to issue a write or
read call to achieve the communication. This communication mode has been introduced more
recently and is exploited in libraries such as MPI [2].

3.1.2. Two-sided Interface

In a two-sided approach, as the nature of the events and transactions received by the DSM is not
known in advance, data transfers (using communication libraries such as MPI) can only be per-
formed in two phases, which creates a synchronous operation. As shown in figure 3.2, in the first
phase, the sender sends a send data command to the DSM with the size of data to be transferred.
In the second phase, the sender sends the data and the DSM receives it. For communication from
the DSM to the simulation, the simulation sends a receive data command and the DSM sends

A Loosely Coupled Model: Architecture and Requirements 29

the requested data back to the simulation. The same mechanism applies for the post-processing
application that queries data from the DSM.

Simulation DSM

(0. Wait for message)
1. Send data command

2. Send data

Figure 3.2. A service thread listens for incoming messages and data is transmitted in two phases.

This communication mode can be well-suited for a one-way communication approach (i.e.,
from the simulation to the DSM). However for a two-way communication approach where data
needs also to be sent back to the simulation, it is necessary to be able to listen on the two commu-
nicators (inter-communicator and intra-communicator) at the same time, as requests may come
from both ends. Therefore this requires another thread or an additional polling mechanism, which
can forward the requests coming from the intra-communicator to the service thread (assuming the
service thread is listening on the inter-communicator).

As we want to be able to preserve the order of the requests and not mix up commands and
data, we need to define a synchronizationmechanism that preserves the ordering of the commands,
notifications and data, since one message sent in parallel from one link can possibly arrive before
messages that were sent earlier on different links.

Synchronization

Compared to a traditional DSM architecture, the architecture that we define is required to handle
not only a distributed shared memory for data staging but also commands and notifications used
for our push-driven mechanism. Therefore in this two-sided approach, at anytime for each DSM
process as shown in figure 3.3b, data and events may come from the 𝑀 simulation links (see
figure 3.3a). For instance, when the simulation has finished writing/sending data to the DSM, it
may send a notification (see 3.1.5) to tell the DSM (and in turn the post-processing application)
that new data has been produced. This notification event must be forwarded to all the DSM
processes to become a global event, as every process must have knowledge of the global state of
the DSM. Moreover, as data can arrive from the 𝑀 simulation links to any DSM process, it is
important to note that separating data from events does not change anything in this approach as
the parallel message ordering would still not be guaranteed. Therefore an event sent to the DSM
must be a global and synchronizing event.

30 A Loosely Coupled Model: Architecture and Requirements

Simulation

0

…

𝑀− 1

DSM

0

…

𝑁 − 1

(a) Each DSM process has𝑀 communication chan-
nels to receive data and/or events from the simu-
lation.

𝑷𝟎 𝐸􀁭 𝐷􀁭 𝐷􀁭

𝑷𝟏 𝐷′
􀁮 𝐷′

􀁮 𝐸􀁮

𝑷𝒊 … 𝐸𝑖 …

𝑷𝑴−𝟏 𝐷′
𝑀−􀁮 𝐸𝑀−􀁮 𝐷𝑀−􀁮

(b) Data stream coming from the simulation to one
process of the DSM; only the ordering of events
on a single communication channel can be guar-
anteed.

Figure 3.3. Two-sided event and data synchronization mechanism.

Algorithm 3.1 Synchronization of DSM communication channels.
Require: 𝑥 ← 𝐸𝑎 and 𝑎 ∈ {0, … ,𝑀 − 1}
Ensure: 𝑅 = ∅ and DSM data integrity is preserved
1. 𝑝 ← 𝑎
2. 𝑅 ← {0,… ,𝑀 − 1} {set of processes from which events must be received}
3. while 𝑅 ≠ ∅ do
4. if 𝑥 = 𝐸𝑝 then
5. 𝑅 ← 𝑅 ⧵ {𝑝}
6. (𝑥, 𝑝) ← receiveData(𝑅) {receive new data from any process in 𝑅}
7. else
8. process(𝑥)
9. 𝑥 ← receiveData(𝑝) {continue to receive data from 𝑝}
10. end if
11. end while

A Loosely Coupled Model: Architecture and Requirements 31

We note 𝐸𝑖 the received events (which can be notifications or commands), 𝐷𝑖 and 𝐷′
𝑖 the dis-

tributed data pieces that belong to different data blocks 𝐷 and 𝐷′. As illustrated in figure 3.3b,
each channel may receive a different number of data chunks, for instance in blue from the simu-
lation and in green from the post-processing application, and events may arrive at different times.
Note that, to guarantee a global ordering between events and data, the same event is sent to the
DSM at the same time on every channel so that data chunks that belong to different data sources
are not mixed up between events.

This synchronization problem can be seen in several parallel and distributed algorithms and
a very similar approach is for example presented to aggregate multiple associated events through
a hierarchical communication structure in TBONs [36] (Tree Based Overlay Networks). Algo-
rithm 3.1 allows us to synchronize the DSM communication channels and preserve event order-
ing. To aggregate the global event 𝐸 that is to be received by every communication channel, we
construct a set 𝑅 that contains the different process identifiers and take out from this set the pro-
cess (here 𝑎) that has received the event 𝐸𝑎. We then wait for new messages coming from other
processes that belong to 𝑅 until we receive data from a new process 𝑝. We receive and process data
requests coming from this process 𝑝 until the same event 𝐸𝑝 is encountered. We repeat this oper-
ation until all the processes have been treated and the set 𝑅 is reduced to ∅. The communication
channels are then synchronized and the global event is received.

Limitations

This approach is obviously not the best approach one can find to stage data in a push-driven
fashion since it requires: an extra thread or message polling mechanism to handle two-way com-
munications; the sending for every data transaction of an additional data request command; the
synchronization of the communication channels in a tedious (but simple) way between the events.

Adding a thread to maintain a dynamic two-way mechanism is not an important limitation
in the sense that processors and operating systems can now support several concurrent threads
running at the same time without any real performance penalty. However the two other limiting
factors of this approach may create a performance drop, especially at scale. While running on a
few processors, the additional synchronization and transactions may only have a little impact and
create a small overhead, but scaling up to thousands of processors will proportionally increase this
overhead, which may become a real bottleneck.

32 A Loosely Coupled Model: Architecture and Requirements

3.1.3. One-sided Interface

In a one-sided approach, data transfers can be directly issued from the simulation to the memory of
the remote DSM without any prior exchange request (as opposed to a two-sided exchange proto-
col). However to be remotely accessible, depending on the implementation used, remote memory
descriptors need to be gathered from the DSM so that the simulation has knowledge of where
to put the data to (note that this step may sometimes be hidden by the API implementation).
Once the sender has gathered this information, data can be transferred and put at the requested
address in a one-sided manner. As opposed to the previous approach, transfers can even be asyn-
chronous, allowing the simulation to carry on computation without needing to wait for reception
of messages, as no handshaking is required. The additional thread used in the two-sided approach
for handling two-way accesses to the DSM is here no longer required as the remote end (i.e., the
DSM) does not need to be contacted before sending (except for memory descriptor exchanges as
explained above).

Simulation DSM

(0. Get remote memory descriptors)

1. Put data

Figure 3.4. One-sided data transfer mechanism, remote memory descriptors may be gathered before put
operations can be executed.

Also it is important to note that one-phase transfers presuppose that the remote DSM allo-
cation remains the same during a simulation run, as re-allocating the memory would otherwise
result in multiple memory descriptor exchanges, which may be an expensive operation depending
on the underlying implementation. As a consequence, this one-sided communication protocol
is more likely to be used for the exchange of data (single large memory allocation for the whole
simulation run) and not for the transfer of notifications and events (multiple small memory allo-
cations). Moreover transfer of events would require active participation of the remote end, as a
received event must trigger an action specific to this event (see 3.1.5), which would imply memory
polling or active synchronization mechanisms to be used. Therefore making use of a one-sided
approach for the transfer of notifications and events does not bring any strong advantage to our
model and is not considered in the following sections.

A Loosely Coupled Model: Architecture and Requirements 33

Synchronization

The remotely allocated memory needs to remain in a coherent state and remote put and get op-
erations to the file previously created and distributed among the different DSM nodes cannot
happen without any synchronization or locking mechanism. Part of this synchronization and
locking mechanism can be implemented in the one-sided communication protocol itself, but the
other part must be taken care of by the DSM architecture.

Before starting an access epoch, the defined remote memory window2 is locked so that other
processes that do not participate to the transfer cannot access it at the same time. Every operation
that involves file modification or that is subsequent to a file modification will require a collective
window synchronization, so that the file metadata and the data (being modified or read) are valid.
Hence, when the in-memory file is opened or created, a global synchronization on the memory
window is performed if the previous operation has modified the file metadata. With this synchro-
nization mechanism, transfers only need to complete when the memory lock is released, and this
creates a potential asynchronicity of operations (depending on the implementation used), which
gives the simulation the ability to carry on computation and not waste time in transfers.

Whereas it is necessary, using send and receive operations, to guarantee that every process has
finished sending or receiving data before the effective close of the file and the beginning of another
operation; being able to synchronize on the entire window gives us here a much more flexible
solution than a two-sided approach.

Limitations

Although this approach seems to be a more scalable approach compared to a two-sided approach, it
requires the remote memory to be already allocated. This can be a potential implementation issue
as it imposes a static memory model and not a dynamic one. If the post-processing application and
the DSM run on separate resources, the DSM will be likely allocated as a static object. However
if the DSM and the post-processing application share the same resources, it may be useful to have
a dynamic allocation model where memory objects are automatically allocated and shared with
the post-processing application so that memory descriptors and addresses can be shared between
both applications. We will not consider this model in the following section (mainly because of the
constraints imposed by the one-sided model) and instead consider a static DSM model.

Moreover, an inner limitation of this approach exists in its implementation, especially with the
current MPI 2 one-sided interface that does not provide a very strong flexibility (mainly to prevent
2We use here the term of window [2] as only memory subsets may be accessed, even if most of the time this subset
may be equal to the size of the entire memory that is allocated in the DSM.

34 A Loosely Coupled Model: Architecture and Requirements

users from non-coherent accesses) and we will see in more details in section 4.1.3 what the current
issues are.

3.1.4. In-Memory File Access

For in-situ visualization and analysis, it is assumed that the simulation will write to the DSM and
the post-processing application only read from it. For steering, the simulation may write to the
DSM and at the same time, the post-processing application may try to send user data. When
post-processing and DSM are decoupled and located on separate resources, the restriction im-
posed by the communication and synchronization system is sufficient to prevent the DSM from
multiple and concurrent memory accesses. However, if post-processing and DSM share the same
resources (which is the most common use case), multiple memory accesses to the same resource im-
ply addition of a locking mechanism, completing the communication and synchronization system
previously introduced.

Simulation DSM Post-processing

1. Acquire lock

2. Write data

3. Release lock

1. Acquire lock

2. Write data

3. Release lock

Figure 3.5. Additional file locking mechanism, any access locks the file to prevent the shared memory from
concurrent memory accesses.

As described in figure 3.5, we therefore operate using a file lock (mutex) that either side may
acquire to block access from the other until it is released. After the simulation finishes writing, it
will close the file, releasing its lock and the file will become available to the coupled process.

3.1.5. Event Notifications

In a common scenario, the simulation makes periodic writes to the DSM and can, when using
the steering API, make reads to see if any new data or instructions are available. The notification
mechanism is illustrated in figure 3.6 describing the most common use case where the DSM and
the post-processing server share the same resources.

In a pull-driven system, the analysis code must query whether new data is present and if so
update its analysis pipelines. Instead in a push or event-driven approach, notifying the post-
processing application when new data is produced works in several stages as follows. Each DSM
server process has a constantly listening service thread (see 3.1.1) that receives and treats internal

A Loosely Coupled Model: Architecture and Requirements 35

GUI

Notification
Thread

Service
Thread
(DSM)

Main Thread

Notification
Channel

Wait For
Notification

Signal
NotificationUser

Commands

Data
Transactions

New
Notification

Parallel Post-processing/Visualization Application Simulation Code

Figure 3.6. Thread and push-driven notification mechanism used to inform the GUI and the DSM of new
events. When a new data or new information notification is received, the task relative to this
event is performed and/or the associated post-processing pipeline is updated.

data transactions. When the file is closed by the simulation, a notification is sent to the DSM server
and is picked up immediately by the service thread. This notification may then be forwarded to
the main post-processing application process (if the post-processing application is parallel) or/and
to the GUI process to trigger specific actions (see 4.2.1). To achieve this, depending on the post-
processing application architecture, another thread, referred as notification thread, may be woken
(only on rank 0 of the parallel post-processing application or application hosting the DSM servers,
as events are globally visible) to then send a notification event to the GUI. When the GUI is noti-
fied, the task corresponding to the received notification code is then performed in the DSM user
interface.

Note that in some cases (examples are detailed in 4.2.1), it may be useful for a user to send
notifications/events from the simulation code to the DSM (and in turn to the post-processing
application) not only when the file is being closed but also when the simulation reaches specific
points, so that corresponding actions can be performed in the GUI. While the post-processing
application may be busy performing other tasks, this two step process from notification thread to
GUI and back to post-processing main thread ensures that the we do not trigger the execution of
post-processing tasks during another user-driven event on the same post-processing main thread
inside the analysis tasks (which would in this case create a bottleneck in the post-processing work-
flow). It is important to note also that the notification mechanism is one-way only. When the
post-processing application writes data to the DSM, no signal should be triggered in the simu-
lation as there is no service thread running on the simulation side (we do not want to create any
overhead of any kind on the simulation side).

36 A Loosely Coupled Model: Architecture and Requirements

3.2. DSM Mapped Files

Data and steering objects are stored in a file that is mapped onto a distributed shared memory.
While the previous communication system and the notification and synchronization mechanisms
allow us to exchange data and steering objects, we show in this section how one can dynamically
redistribute data that is sent to the DSM so that the network bandwidth is maximized.

3.2.1. File Memory Space Considerations

In our architecture the DSM is distributed among 𝑁 processes, each process allocating 𝑙 bytes
of data, which gives a total DSM length of 𝐿 = 𝑙 × 𝑁 . Using a linear addressing, the DSM is
contiguously filled from process rank 0 to process rank (𝑁 − 1).

Simulation

0

…

𝑀− 1

DSM

0

…

𝑁 − 1

𝑙

𝐿
𝑆

Data

Figure 3.7. The DSM is distributed among 𝑁 processes and has a total length of 𝐿 = 𝑙 × 𝑁 , each process

allocating 𝑙 bytes of data. Using a linear addressing, only 􀉱𝑆𝑙 􀉴 processes are used to receive data
chunks of size 𝑆.

As shown in figure 3.7, if a simulation writes a file of size 𝑆, the actual number of processes used
to receive data will thus be 􀉰𝑆

𝑙
􀉳 with 𝑆 ≤ 𝐿. This method can provide relatively good performance

when 𝑆 ≃ 𝐿; if the file written is composed of several different datasets (each much smaller than 𝐿),
which are contiguously (and sequentially) mapped onto the DSM, individual simulation processes
will waste bandwidth by using only a small partition of the network links available. Then the
simulation may write either a single large data chunk, which will be sent in parallel to the DSM
using all the links available, or multiple data chunks, each one at a time using a partition of the
links available. We therefore sought better strategies that can be enabled on demand.

A Loosely Coupled Model: Architecture and Requirements 37

3.2.2. Redistribution Methods

In this section, we focus on three different redistribution strategies, from the most simple to the
most complex strategy: mask redistribution, block-cyclic and random block. These strategies are
general strategies and only affect the redistribution of data packets, and thus only modify the DSM
address mapping. Note that more advanced and specific strategies that would apply to the dataset
objects themselves could be defined as well but this is not the purpose of this section.

Mask Redistribution

When 𝑆 ≪ 𝐿, a first simple strategy is to automatically re-size the DSM window to the requested
file size without any concrete memory free or reallocation. As described in figure 3.8, if 𝑆 is the
size of the data that is to be written, 𝑁 the number of DSM processes and 𝑙 the local buffer size,
a mask of size 𝑙 − 􀉰 𝑆

𝑁
􀉳 will be applied to each buffer, which reduces the overall DSM size to ≃ 𝑆.

Since the data that is sent fits into the memory perfectly, all the DSM links between the simulation
and the DSM will be used for receiving.

𝟎 … 𝑵 − 𝟏

𝑆

𝑆􀁭 𝑆… 𝑆𝑁−􀁮

𝟎 … 𝑵 − 𝟏

𝑆

Mask of size 𝑙 − 􀉱 𝑆
𝑁 􀉴

Equivalent to

Figure 3.8. Using a mask redistribution, the DSM memory space of size 𝐿 is virtually reduced to ≃ 𝑆.

However, as shown in figure 3.8, even if applying a mask to every local DSM buffer can effec-
tively improve the overall bandwidth by making the local buffer size 𝑙 equal to 􀉰 𝑆

𝑁
􀉳, which in turns

makes 𝐿 ≃ 𝑆; it does bring two main drawbacks: the most evident one is that it wastes mem-
ory allocated on the DSM, the second one is that it does not solve the multiple dataset problem
mentioned above as the newly created memory space can be seen as a contiguous memory space
where data is linearly mapped. Therefore, writing multiple datasets of size 𝑆 (where 𝑆 ≪ 𝐿) means
again writing to only a small portion of the DSM processes available at the same time. Hence this
solution can only be optimal when only one large dataset is being written.

38 A Loosely Coupled Model: Architecture and Requirements

Block-Cyclic Redistribution

The second strategy to be considered is a block-cyclic redistribution [75]. It is a simple strategy
and it potentially allows a good data load balance between DSM processes. A block size 𝑠 being
fixed, the DSM address mapping is decomposed into 𝐿

𝑠
blocks. For convenience, the DSM length

𝐿 is adapted so that it becomes a multiple of 𝑠. Blocks are distributed in a round-robin fashion:
the 𝐵th block is assigned to the process rank (𝐵 mod 𝑁). Hence every address 𝑎 is associated to
the following triplet (𝑛, 𝑜, 𝑖), which can be written as

𝑎 ↦ 􀊄𝐵 mod 𝑁, 􀉸
𝐵
𝑁 􀉻 , 𝑎 mod 𝑠􀊇

the first term 𝑛 being the process index within the DSM, 𝑜 the local block offset in a process and
𝑖 the local address offset within a block.

𝟎 𝟏 𝟐 𝟑

𝑆 = 18

𝑁 = 4, 𝐿 = 40

0 1 2 3 4 5 6 7 8

0 1 2 34 5 6 78

𝑠 = 2

Blocks assigned to

Figure 3.9. With a block-cyclic redistribution, data distribution is load balanced over the entire DSM using
all the network links available.

As illustrated in figure 3.9, a block of size 𝑆 written to the DSM (according to a block-cyclic
addressing) is decomposed into smaller data chunks of size 𝑆

𝑠
. In this example, with 𝑆 = 18 and

𝑠 = 2, 9 data chunks are created. These chunks are then redistributed in a cyclic manner between
the DSM processes. With 4 DSM processes, block 0 gets mapped to process 0, block 1 to process
1, ..., block 4 to process 0, etc. This method presents two main advantages: bandwidth is not
wasted even if 𝑆 ≪ 𝐿; data chunks are well load balanced, which is especially beneficial when
multiple datasets are written. However this method can potentially create a huge number of data
transactions, which can result in a performance drop (as we will see in section 4.1.4) depending
on the network communication protocol and block size that are used.

A Loosely Coupled Model: Architecture and Requirements 39

Random Block Redistribution

The third strategy considered consists of re-using the algorithm previously described, scattering the
DSM address space into pieces of size 𝑠. Another step is then added to the redistribution pipeline,
shuffling the blocks using a mapping vector (so that blocks can be retrieved). As described in
figure 3.10, in this example, 9 blocks of size 2 are created from a data chunk of size 18 (which would
be written using only a half of the DSM links available with a standard contiguous redistribution).
In this strategy, instead of redistributing blocks in a cyclic manner (as opposed to the previous
solution), blocks are shuffled before they get sent to the DSM processes, which gives the following
mapping: block 0 gets mapped to process 0, but then block 1 gets mapped to process 0 as well
and then block 2 gets mapped to process 1, etc.

𝟎 𝟏 𝟐 𝟑

𝑆 = 18

𝑁 = 4, 𝐿 = 40

0 1 2 3 4 5 6 7 8

0 1 4 2 56 3 7

𝑠 = 2

Blocks assigned to

Figure 3.10. With a random block redistribution, data is randomly balanced over the entire DSM, poten-
tially using all the network links available and potentially avoiding distinct simulation pro-
cesses to write to the same DSM processes at the same time.

This method can present some advantages compared to the previous solution (but keeps the
samemain drawback): it may avoid a possible network congestion if two simulation processes were
sending data to the same DSM process using the block cyclic redistribution algorithm. This may
occur with a periodic frequency introduced by certain communication patterns and data distribu-
tions in the file, especially when the DSM makes use of a small number of processes compared to
the number of simulation processes.

With these two last strategies we are effectively able to well load balance data over the DSM
processes, even when multiple datasets are being written. However, as we will see in section 4.1.4,
the performance of these methods is highly dependent on the architecture and on the underlying
network protocol that is used.

40 A Loosely Coupled Model: Architecture and Requirements

3.3. Exchange Interface

Based on the previous mechanisms, data can be mapped and sent to the DSM in an efficient and
optimized manner. In 2.3.4, we proposed to model the DSM I/Os as an extension to existing I/O
libraries. In this section, we show how we take advantage of this property and use a hierarchical
approach to store data into the DSM. While in-situ visualization is straightforward as data is au-
tomatically re-routed to the DSM, application steering is not possible without some fundamental
changes of the simulation code to respond appropriately to changes being sent in. We present in
this section which requirements need to be defined to send a comprehensive set of steering or-
ders back and forth between the simulation and the post-processing application. We also present
in 3.3.4 two different operating modes, one synchronous and the other asynchronous.

3.3.1. I/O Interface and Hierarchical Data Model

To write and read data, simulation and post-processing applications make heavy use of existing I/O
libraries such as HDF5, netCDF, which are presented in 2.1.1. Using a hierarchical data model
such as the one that exists in these I/O libraries, data can be organized so that complex meshes
or data along with their associated values can be easily written and retrieved. Therefore a given
data structure or grid can be represented using groups along with datasets, multidimensional arrays
of data elements, which may for example represent connectivity and coordinates of a mesh, etc.
Typically data stored in a file can be represented using the following pattern:

Group 1

Dataset 1 Dataset …

Group …

Dataset …

File

Figure 3.11. Hierarchical representation for storing data.

A file can be composed of multiple groups, which can contain themselves multiple datasets.
Using the existing hierarchical data model of I/O libraries, one can organize data into groups and
datasets. Applying this to our DSM interface, a simulation code can perform reads and writes using
the existing I/O API (but all the traffic is re-routed to the DSM as we described in 2.3.4), which
basically consists of the following calls: create file, create group, write data, read data, etc. Assuming
that a description of the hierarchical representation is provided (see 4.2.2), the post-processing

A Loosely Coupled Model: Architecture and Requirements 41

application, when told that new data has been written, will use the same I/O interface to read data
back from the DSM.This low-level interface allows simple exchange of any type of data structure.
For simulation steering, specific control on the type of data that is to be exchanged and on its
location needs to be given. In this case, a higher level interface will be used as we will see in 3.3.3.

3.3.2. Required Steering Properties

One of the first requirements when steering an application is the ability to change a simple scalar
parameter. As previously described, since our interface is built on top of existing I/O interfaces
that follow a hierarchical data model, it is trivial to store such a parameter as an attribute or as a
singleton in a dataset within the file. However, to be easily retrieved by the simulation, we want
this parameter to be stored in a special section of the file, which we call Interaction Group. Adding
support for vectors requires only the use of a dataset in the file. Once the ability to write back a
dataset exists, it is easy to extend support to handle point arrays, scalar/vector arrays and all other
types that are used within post-processing applications to represent objects. We are thus able to
read from the simulation any structure that is stored in the file. Moreover, because data written by
the simulation is stored in a file that follows a hierarchical data model, objects or existing datasets
can be easily and independently modified from the post-processing application.

Simulation

DSM

In-memory File

Data

Metadata

Steering
Objects

Command

Vector

Mesh

Post-processingSteering
interface

1. Send
command
(e.g., pause)

2. Write
vector array

3. Write
mesh data

Figure 3.12. We need to be able to send back commands to the simulation (a pause command for example),
simple arrays such as scalars and vectors to control simple parameters, but also entire meshes
or complex data arrays to allow complete re-meshing of simulation objects.

As illustrated in figure 3.12, the post-processing application can transmit commands and data
back to the DSM using either implementation specific calls (for all the commands that are specific
to the steering implementation such as pause/play) or using the lower level I/O interface that
performs reads and writes directly to the file. The simulation can then pick up these commands

42 A Loosely Coupled Model: Architecture and Requirements

or read the modified/new data using a steering interface that we define below. To be able to pick
up a command, a parameter or a dataset, one crucial factor is that both sides of the transaction
must be able to refer to the same shared/steerable parameter or dataset by a unique name, and
find the correct value from the file. The developer is therefore required to assign unique names to
all parameters and commands and use them in the simulation code. The steering environment is
supplied these names in the form of an XML document which is described in section 4.2.3.

3.3.3. Steering Interface

In the context of in-situ visualization, while the simulation and post-processing applications can
use existing I/O interfaces to access the DSM, we define for steering a higher level interface that
can provide users with a comprehensive set of operations. As shown in figure 3.13, the interface
directly interacts with the DSM interface and the I/O interface, wrapping lower level operations
into higher level operations.

Abstraction
Level

DSM Interface

I/O Interface

Steering Interface

Simulation

Figure 3.13. To access the DSM, a simulation code can make use of the I/O interface for direct read/write
operations or can make use of the steering interface for more complex steering operations.

While most of the accesses are abstracted by the steering interface, it is possible in most cases to
perform steering operations and send back data by using the lower I/O and DSM interfaces, but
would require knowledge by the user of several internal DSM mechanisms (to send notifications
etc). As one of our objectives is to provide users with a comprehensive interface that can hide
the complexity of the underlying architecture and implementation, a more general and abstracted
interface is defined for specific steering operations that can be directly used by the simulation code.

A Loosely Coupled Model: Architecture and Requirements 43

Interface Definition

To ensure most possible combinations and steering capabilities, we define the following opera-
tions:

(1) init()
(2) update()
(3) wait()
(4) scalar_get/set()
(5) vector_get/set()
(6) is_set()
(7) begin_query()
(8) end_query()
(9) get_handle()
(10) free_handle()

As previously mentioned, all new parameters and arrays sent back for steering are stored by
default at a given time step in an Interaction section, which is a group (see 3.3.1) created in the file
that will contain all the interaction objects (commands, data, etc). In contrast with a visualization
only use of the interface, when steering the simulation needs to be able to read from the file at
any time (including at start-up for initialization data) and we therefore provide a steering library
initialization call (1), which can be used to establish a connection between simulation and DSM
before it may otherwise take place (i.e., at file creation, when accessing the I/O interface).

Once the environment is initialized, (4) and (5) allow the writing of scalar and vector param-
eters respectively, while (6) checks their presence in the file. The get functions are primarily used
for getting arrays that have been passed from the GUI to the simulation, but the set functions
may also be used by the simulation to send additional information to the GUI (such as time value
updates at each step). Note again that raw calls to the underlying I/O library could also be used
to read and write data but these higher level calls provide a more convenient and elegant way of
accessing the steering data.

(7) and (8) are used when several consecutive operations are necessary, keeping the file opened
between accesses. When accessed from the simulation side, file open and data requests result in
inter-communicator traffic, which can be minimized. Particularly when the file is open in read
only mode, metadata may be cached already by the underlying I/O library. In other words, by
minimizing the number of file access requests, traffic may be correspondingly reduced.

(9) and (10) allow direct access to the I/O library dataset handle to the requested object (as the
file follows a hierarchical approach) and this handle may be used with the conventional library API
to perform I/O. The advantage of this is that a user can perform steering operations using the I/O
library directly. For instance in the implementation described in 4 the full range of parallel I/O

44 A Loosely Coupled Model: Architecture and Requirements

operations and existing I/O features may be manually used by a user to improve the performance
of read operations, which is particularly important if a very large array is modified (in parallel) by
a post-processing application and returned to the simulation (e.g., object re-meshing).

Additional Synchronization

We also need to provide two different synchronization mechanisms, one using (2) and the other
using (3). (2) allows the user to get and synchronize steering commands with the host GUI at any
point of the simulation. It is a notification that can trigger updates and receive commands from
the GUI and making use of this command actually sets synchronization points in the simulation
code. For instance, when a pause request is set in the GUI, the code will stop at one of these
points. Therefore, this synchronization is seen as user dependent.

(3) can also be used to coordinate the work-flow, making the simulation pause until some
steering instructions are received. Additionally it is possible to forcefully pause and resume the
controlled simulation, by locking and unlocking the file from the post-processing application side,
thereby blocking the application at the next attempt to access it. The use of (3) can be preferred as it
offers the chance to add wait and resume matching pairs of calls to the codes at arbitrary positions
where the simulation should automatically pause to pick up new instructions. Therefore, this
synchronization is seen as implementation dependent.

3.3.4. Timing of Interactions and Operating Modes

Using the synchronization mechanism previously introduced, the simulation may wait either for
its data to be post-processed or for new commands and data to be returned. It may also check for
commands (without waiting) to see if anything (such as steering commands and data) has been
set for it to act upon while it was calculating. The two operation modes, referred to as wait mode
and free mode are illustrated in figures 3.14a and 3.14b.

In wait mode, as shown in figure 3.14a, the simulation writes data (1) after each iteration and
an analysis task is automatically triggered (2). Here the simulation waits for the analysis task to
complete using a wait command so that the user can set new instructions and data (3). Finally
the simulation re-opens the file and collects the commands set by the user (4). The wait mode
can be considered as the most intuitive for a direct coupling of applications and will be used
when a calculation explicitly depends upon a result of the analysis before it can continue. The
actual amount of time the simulation waits will depend upon the workload and complexity of the
analysis pipelines set up by the user to analyze the data read from the DSM and send commands
or data back to it. Note that although the diagram in figure 3.14a shows no user interaction

A Loosely Coupled Model: Architecture and Requirements 45

Simulation

Compute Wait Compute

Post-processing

DSM

Analyze +
Interact

1. Write
Data

4. Get
command

2. Start
analysis

3. Set
interaction

(a)Wait mode.

Simulation

Compute

Post-processing

DSM

Analyze Inter-
act

1. Write
Data

4. Get
command

2. Start
analysis

3. Set interaction

(b) Free mode.

Figure 3.14. Two principal modes of operation for timing of steering interactions.

taking place during the computation, the user interface is not blocked at this point and arbitrary
operations may be performed by the user (including setup and initialization steps prior to the next
iteration). Similarly, the calculation may perform multiple open/read/write/close cycles to the DSM
with different datasets prior to triggering a notification that makes the analysis start and is not
limited to a single access as hinted by the diagram.

In free mode, as shown in figure 3.14b, the simulation computes without waiting and regularly
writes data to the DSM (1), which triggers analysis tasks to be performed by the post-processing
application (2). The user interacts via GUI controls (3) and new data is picked up whenever the
simulation checks for it (4). The analysis is here overlapped with the simulation, which does not
prevent it from accessing the file; the file locking and synchronization mechanism described in 3.1
ensures that either side can access it. The simulation is therefore delayed only by the time taken to
check for new commands and data. In the absence of any new instruction, this time is of the order
of milliseconds (see 4.2.3). Usually data will be read and the file will be unlocked immediately after,
so that analysis will take place asynchronously. Based on this freemode of operation, the calculation
can loop indefinitely issuing write commands, checking for new data using read commands. It is
permitted to open, close the file in the DSM at any time (unless locked by the post-processing side)
the simulation reaches a convenient point in its algorithm where new data can be transmitted. The
post-processing side meanwhile, may receive a new data notification and immediately open the file
to read data and perform its own calculations. Creating the interaction between post-processing
and simulation is now entirely under the designer’s control. A simulation that is operating in
free mode must be capable of receiving new commands and data, and know that this data may
not be directly related to the current calculation. As shown in figure 3.15, when a simulation

46 A Loosely Coupled Model: Architecture and Requirements

writes data of time step 𝑇 into the DSM, the post-processing application starts analysis of this
time step while the simulation has begun computing step 𝑇 + 1 (assuming that we are talking
about a simulation that iterates over time). During the post-processing phase, the user may set up
different interactions, which are written into the DSM. There is no guaranty (in free mode) for
those interactions to be picked up at time step 𝑇 +1 as commands may for instance be checked by
the simulation only at the beginning of a new time step. At this point, the ability to send specific
commands to the simulation that have specialmeanings or that contain time information becomes
important (this is discussed further in chapter 5). Moreover as data sent back to the simulation is
written into the same DSM file (and we only consider in this approach a DSM composed of one
single file, see chapter 4), the user must take care in this mode of not erasing the file content when
a new time step from the simulation is written. Note that although this problem could be solved
if interactions were written into a separate DSM file adding meanings or time information to the
commands would still be necessary to be sure that these commands are picked up when they need
to be.

Simulation 𝑇 𝑇 + 1 𝑇 + 2

DSM

Post-processing 𝑇 − 1 𝑇 𝑇 + 1

Write data

Read data Set interaction

Get interaction

Figure 3.15. Timing of interactions in free mode.

In summary, the wait mode is a synchronous transmission mode of user interactions that
makes the simulation stop at user defined points. The free mode is an asynchronous operation
mode that allows the simulation to run freely, picking up interaction commands on-the-fly. A
final consideration is that while the wait mode may waste resources and the free mode may be
difficult to synchronize, the developer may switch to wait mode every 𝑁 iterations to force some
user interactions and then revert to free mode again for a period. Alternatively, the switch between
modes may be user-driven as a custom command (see chapter 4) and toggled by the user in the
GUI. This flexibility allows the user to let the simulation run freely for a while, enable wait mode
when wanting to change something and then have the simulation pick up new data and go back
to free mode until the next time a change seems necessary.

A Loosely Coupled Model: Architecture and Requirements 47

3.4. Deployment

While in the previous sections we have defined a set of architectural properties and constraints,
we define here different configurations available to deploy the components of our architecture.
Providing the best compromises, the approach chosen will be used in the next chapter to define
our implementation and the way it will be integrated.

3.4.1. Available Configurations

As simulation and post-processing applications interact together, the amount of time and resources
allocated to compute or steer tasks has a significant impact on the overall performance of the sys-
tem. For example, a simulation with very good scalability may be run on many cores using a
standard amount of memory per core and efficient communications. However, the analysis re-
quired to control or steer this simulation may not scale well, or may require much more memory
per node, but with a smaller number of cores. The DSM interface handles this by being quite
flexible in how resources are allocated; let us consider figure 3.16, which shows general configura-
tion types that may be used, the work-flow can be distributed between different machines or set
of nodes in a rather arbitrary manner. It is important to note and remember that our approach is
defined as a loosely-coupled approach (see 2.3) and to achieve our objective (avoid overhead on
the simulation side as much as possible), the DSM component is never deployed on the simulation
nodes themselves.

The first configuration (figure 3.16a) may be commonly adopted if a local cluster is consid-
ered as a simple extension of the simulation machine. 𝑀 nodes run the simulation code and 𝑁
perform analysis. Tasks are coupled using the DSM in parallel, it is assumed that the network
switch connecting machines has multiple channels so that traffic from 𝑀 to 𝑁 using the inter-
communicator can take place in parallel and there is no significant communication bottleneck.
The final post-processing stage can then happen on this machine (or on another machine depend-
ing on the architecture of the post-processing application). Using separate machines makes it easy
to ensure that optimized nodes (e.g., GPU accelerated nodes) are used where needed.

The second configuration (figure 3.16b) is more likely when large amounts of data are produced
by the simulation. If a hybrid machine is available, or if the simulation and analysis make use of
similar node configurations, a single machine may be used for both tasks. Note that separate nodes
are used for the two tasks, so a judicious choice for the 𝑀 and 𝑁 values is still permitted so
that enough DSM nodes are used to maximize the speed of the transfers and keep a good ratio
between the amount of data that is generated and the number of links/processes that are used to
receive data. As the two sets of nodes are linked together by using the internal system network (or

48 A Loosely Coupled Model: Architecture and Requirements

Simulation
Machine

(InfiniBand)
Switch

D
SM Analysis

Machine

𝑁 nodes𝑀 nodes

(a) Simulation and analysis on separate machines.

Simulation
Nodes

Interconnect

D
SM Analysis

Nodes

𝑁 nodes𝑀 nodes

(b) Simulation and analysis on the same machine.

Simulation
Machine

(InfiniBand)
Switch

D
SM (InfiniBand)

Switch
Analysis
Machine

𝑁 nodes𝑀 nodes 𝑃 nodes

(c) Simulation on one machine, DSM on a second machine and analysis on another.

Figure 3.16. Three available configurations.

interconnect), this configuration can provide the best performance and ensure that transfers are
performed at maximum speed.

The third configuration (figure 3.16c) is likely when the data generated by the simulation is
smaller than in figure 3.16b and can be handled on a separate machine entirely dedicated to the
analysis. While in the previous configurations DSM and analysis were tightly-coupled, in this
configuration DSM and analysis stand on separate machines. The main advantage provided by
this configuration is that one can dedicate a machine with a large amount of memory to host the
DSM and another machine to run the analysis. While in the previous configurations, data locality
could be an advantage for the analysis to reduce the amount of transfers (assuming that analysis
processes need to access data from other DSM processes during a post-processing operation); in
this configuration an additional 𝑁 × 𝑃 redistribution must be performed. This may be beneficial
in some cases when data is small and analysis is well optimized on the other machine but may
decrease performance in most cases because of the additional transfers and memory copies that are
necessary.

Additional configurations could be created by combining for instance figures 3.16b and 3.16c.
However the drawbacks and advantages previously stated would remain the same.

A Loosely Coupled Model: Architecture and Requirements 49

3.4.2. Ideal Configuration

From the three previous configurations, the one that is more likely to be used is the configuration
of figure 3.16b. Again, one of our main objectives in this work is to avoid any overhead on
the simulation side as much as possible, thereby transferring and staging data to other nodes for
analysis and visualization. It is therefore crucial to send data to different nodes as fast as possible
to avoid any bottleneck on the simulation side. Considering the simulation may run on a very
large system using thousands of nodes, sending data to a different machine may not be efficient
enough as external inter-connection networks are usually not as fast as the internal network that
links the internal nodes together (and placing additional very high speed network switches may
not be always feasible). Therefore, the best choice is to dedicate a subset of nodes (the same HPC
machine used to run the simulation on) and have a staging DSM server running on these nodes.

Simulation
Nodes

Interconnect

D
SM Analysis

Nodes

R
ender

G
U
I

Work-
station

𝑁 nodes𝑀 nodes

Figure 3.17. Common parallel post-processing applications use a client/server architecture.

Once this configuration set up, the post-processing application must be located as close as pos-
sible to the staged data to reduce extra data movement costs and run analysis algorithms. Parallel
post-processing applications such as ParaView [15,70] or VisIt [19] are composed of a client/server
architecture. For that reason, as shown in figure 3.17, the post-processing and analysis part of the
pipeline can be represented and split into two different pieces, creating a more distributed config-
uration: a server acts as a host for the DSM in a multi-threaded fashion so that post-processing
algorithms can take advantage of data locality; a client hosts the GUI located on a separate work-
station to gather visualization results and send user interactions from/to the post-processing server.

We will focus on this type of configuration in the next section (3.5) and for our implementation
in chapter 4.

3.5. Application Integration

For a better understanding of the mechanisms that are used by the different components of the
architecture and to highlight the features brought by our approach, we focus in this section on a
simulation example where the main object that needs to be steered is composed of a regular mesh
(i.e., two different types of data arrays, point and connectivity arrays along with associated attribute

50 A Loosely Coupled Model: Architecture and Requirements

arrays that can be pressure, velocity, etc). For clarity, we focus on the configuration introduced
in 3.4.2.

As we illustrated in the introduction of chapter 3, a simulation may write out data every time
step (or every time step, data coming from the simulation needs to be saved). These results are
saved using an hierarchical I/O interface (see 3.3.1) so that they can be written and read easily,
a name being associated to each data array. At every time step, the structure of the data may
follow the configuration illustrated in figure 3.18 (the same data can be organized in various ways
depending on user needs).

Mesh

Points Connectivity

Interaction

Force

File

Figure 3.18. Arrays that represent the mesh are stored using an hierarchical approach (for clarity, other
attribute arrays such as pressure, velocity, etc, are not represented but are stored at the same
level as the point and connectivity arrays).

As previously said, the I/O interface can access the underlying DSM interface and data can
be directly mapped to the DSM. Using the communication interface and synchronization mech-
anism introduced in 3.1, when the simulation writes data, opening the in-memory file results in
locking the file from the post-processing application. Data is then sent using a two-sided or one-
sided approach to the DSM processes and mapped using one of the redistribution mechanisms
described in 3.2.2; depending on the size of the data that is to be sent, all the DSM processes are
used to receive data. When the file is closed, using the notification system introduced in 3.1.5, a
notification can be sent in a push-driven fashion to tell the post-processing side that new data has
been written (more complex notifications can also be used if other types of simulation events need
to be reported to the post-processing application) and the simulation can carry on computing the
next simulation step.

When the post-processing application receives the notification, it opens the file and reads the
data (assuming that a description of the data structure is provided to the application). In this
configuration, where DSM and post-processing application share the same nodes, communication
between theDSMprocesses and post-processing processes is performed only if data that needs to be
gathered is located on a different process. When data is read, the file is closed and post-processing
operations can start.

A Loosely Coupled Model: Architecture and Requirements 51

If we iterate this process over time, the user is able to analyze data in-situ while the simulation is
computing. At a certain point, the user may decide to modify simulation parameters or modify the
structure of the mesh that is being used by the simulation. As illustrated in figure 3.18, a parameter
or a simple vector (such as a force) sent back by the post-processing application to the DSM can
be stored in an Interaction group, which is added to the file data structure. Moreover because of
the hierarchical structure of the file, modifying a mesh only requires modification of the point
and connectivity arrays that are stored in the in-memory file, and which can be accessed through
the hierarchical I/O interface. As this has been highlighted in section 3.3.4, modifying a mesh or
a parameter in the simulation can be realized asynchronously or synchronously (by pausing and
resuming the simulation at pre-defined points).

Once data has been written back to the DSM, data stored in the Interaction group can be easily
retrieved from the DSM by the simulation using the higher level steering interface introduced
in 3.3. When the file is re-opened to read values stored in the DSM, the same communication
pattern introduced for writing data can be applied and modified mesh values can be read back
using either the high level steering interface or the lower level I/O interface. All the structure
changes that are read back by the simulation must be properly handled by the simulation so that
no brutal change in the solver happens (which would likely crash the simulation).

As a final note, during all these operations no additional overhead (memory consumption or
high-demanding CPU operation) is required to be handled at the simulation level as the various
operations only require network communication.

3.6. Conclusion

In this chapter, we defined the main pillars of our architecture to create a distributed shared mem-
ory interface for the exchange of data between simulations and post-processing applications in a
loosely coupled and push-driven fashion.

In 3.1, we defined a communication layer that allows transfers of in-memory file to a DSM,
handling concurrent accesses and push-driven event notifications. To transfer data, we saw that a
traditional two-sided interface does not allow us to take full advantage of the approach at scale, due
to synchronization mechanisms and number of requests that are necessary to handle the transfers.
Using a one-sided interface, data can be remotely transferred from one end to the other (assum-
ing that the DSM remote addresses are known by the simulation), reducing the synchronization
costs and number of requests as data can be sent without any participation of the DSM remote
target. However, we will see in the next chapter that this communication mode can present some
implementation limitations.

52 A Loosely Coupled Model: Architecture and Requirements

Once data can be sent using the communication interface previously described, we showed
in 3.2 how one can optimize the use of the DSM memory space by redistributing data pieces so
that all the processes that host the DSM are used to receive data and hence the network links
that connect the simulation processes to the DSM. We will show in 4.1.4 the impact of these
redistribution methods on the overall communication performance.

While the first two parts of this chapter were mainly focused on the efficiency of the data
transfers and on the synchronization and notification mechanisms, we showed in 3.3 how we can
take advantage of the existing I/O libraries that follow a hierarchical data model to easily transfer,
retrieve and modify data and commands to/from the DSM. This also presupposes that the hierar-
chical representation of the data that is stored in the DSM is known from either side that needs to
access it (simulation or post-processing). Its implementation will be further detailed in the next
chapter. Using a high level interface we showed how users can be provided with a comprehensive
steering interface that allows transfers and exchanges of commands and data. Moreover we showed
how one can set additional synchronization points using the steering interface to create two differ-
ent modes of operation, one synchronous and the other asynchronous. An implementation based
on the ParaView framework will be presented in the next chapter and illustrations of this feature
will be presented in chapter 5.

Finally, as the different components of our architecture can be placed and deployed in various
ways, we showed in 3.4.2 that the ideal configuration consists of using a supercomputing machine
with a set of nodes dedicated to the simulation and a set of nodes dedicated to hosting the DSM,
which can be shared with post-processing servers so that they can access DSMdata more easily. The
two sets of nodes are linked together through a very high speed interconnect while a post-processing
client, located on a remote machine or workstation, is connected using a standard network so that
simple GUI commands can be sent to the post-processing servers.

By following this approach, we respect the two main objectives of this chapter: minimization
of the overheads on the simulation side by making use of push-driven and one-sided paradigms;
definition of a two-way communication model with a synchronization mechanism capable of han-
dling concurrent accesses to the DSM.

Chapter 4.

A Parallel HDF5 Interface:
Implementation and Integration

Reading from and writing to a distributed shared memory for data staging and command pass-
ing requires making use of an efficient and robust communication system, which we defined

in chapter 3. In 2.3.4, we proposed to integrate our architecture directly within the hierarchical
I/O library itself, so that codes that already make use of this library do not need to be reworked. In
our implementation work, we decide to implement the DSM through the HDF5 library [72] (see
section 4.1) and make use of the ParaView [70] framework for post-processing/GUI integration
(see section 4.2). In this context, we define three main objectives: the first one is to be able to
exchange data as fast as possible between the simulation and the DSM (as data movement is the
potential issue of our approach, see 2.2.2); the second one is to define an interface that is portable
enough to run on the widest range of systems; and the third one is (as described in 2.3.4) to mini-
mize the required code modifications (which are necessary to be able to re-route data to the DSM),
as well as proposing a generic interface that can be applied to various types of simulations.

4.1. DSM Virtual File Driver

To implement our framework, we make use of the HDF5 library [72] which is already widely
adopted by the scientific community. HDF5 already provides users with several different file
drivers. They act as an abstraction layer between the high level HDF5 API and the lower level
I/O protocols. As shown in figure 4.1, the drivers provided by the HDF5 package include es-
sentially the sec2 (POSIX compliant serial I/O), core (memory based), and mpio (MPI I/O)
drivers. In this section, we present the implementation of a dsm driver.

53

54 A Parallel HDF5 Interface: Implementation and Integration

sec2

POSIX I/O

family

File Family

core

Memory

mpio

MPI I/O

dsm

Network

HDF5

Figure 4.1. The HDF5 library defines a virtual file layer allowing users to switch between different I/O
methods (e.g., MPI I/O, POSIX I/O, etc).

4.1.1. Driver Implementation

The HDF5 virtual file layer follows a modular architecture and it is worth mentioning that addi-
tional virtual file drivers have already been developed such as the stream driver [5], which has
been created to provide live access to simulation data by transfer to remote grid servers or via
sockets to a waiting application. Whereas this driver could be used for data staging purposes, it is
unfortunately a serial driver (as opposed to a parallel driver) and only allows serial transfers of data
to the memory of a remote application.

The original DSM implementation (upon which this work is based), referred to as theNetwork
Distributed Global Memory (NDGM), was created by ARL [20,22]; it was used for code coupling
between CFD applications, modeling fluid-structure interactions [23] using very different models
(and hence partitioning schemes). Separate codes may write their data using any HDF5 structures
suitable for the representation, providing the other coupled processes are able to understand the
data and read it with their own partitioning scheme. The original NDGM implementation sup-
ported the transfer of data between processes using only a single channel (as the stream driver
does) to a DSM distributed among processes of a tightly coupled application and therefore had
a limited capacity. Taking it as a basis, we enhanced this driver to support parallel data trans-
fers between loosely coupled applications (that effectively stand on different resource partitions as
opposed to the original implementation), creating a new driver called the dsm driver.

The dsm driver that we implement is a parallel driver (i.e., all the internal intra-communication
is based onMPI transfers; this is imposed by theHDF5 virtual file layer). For inter-communication
and remote exchanges, we define different communicator types, two-sided and one-sided, as de-
scribed in section 3.1. We detail the implementation of these communicators in 4.1.3.

A Parallel HDF5 Interface: Implementation and Integration 55

File in DSM 𝟎 𝟏 … 𝑵 − 𝟏

start = 0 local length eoa = end
of allocated
size marker

end = eof ≈
N×(local length)

File Metadata File Data DSM Metadata

Figure 4.2. Every DSM file can be seen as a contiguous memory space that can be filled using different
redistribution patterns. For readability, we represent here a uniform redistribution: HDF5
metadata is stored along with data and DSM metadata is stored in a reserved section of the
memory space.

As described in figure 4.2, the DSM memory space can be seen as a contiguously distributed
memory space. Each of the DSM processes effectively allocates a buffer of size local length; the
DSM is filled from rank 0 to rank 𝑁 − 1 as the library writes data pieces contiguously (by de-
fault) but may use different redistribution strategies as explained in 3.2.2. Whereas all the HDF5
metadata (see figure 2.2) is stored and managed in the memory space reserved for the HDF5 file
itself, we additionally reserve a section at the end of the file to store DSMmetadata. This metadata
contains the start and end of allocation (eoa) addresses of the memory mapped file (which are
described in figure 4.2) as well as potential steering commands or steering information that do not
need to be seen in the file (from a user point of view, e.g., pause, etc).

4.1.2. Driver Usage and Restrictions

When writing in parallel using the HDF5 API, it is necessary to select a parallel file driver from
within the application code. The only one currently available is the mpio driver, which would
normally be selected by setting a file access property list using the function:

herr_t H5Pset_fapl_mpio(hid_t fapl_id, MPI_Comm comm, MPI_Info info);

h5pset_fapl_mpio_f(prp_id, comm, info, hdferr)
INTEGER(HID_T) prp_id
INTEGER comm, info, hdferr

To use the dsm driver from C or Fortran, one may change the previous lines with the corre-
sponding dsm driver calls:

56 A Parallel HDF5 Interface: Implementation and Integration

herr_t H5Pset_fapl_dsm(hid_t fapl_id, MPI_Comm intra_comm, void *
local_buf_ptr, size_t local_buf_len);

h5pset_fapl_dsm_f(prp_id, intra_comm, hdferr)
INTEGER(HID_T) prp_id
INTEGER intra_comm, hdferr

Doing this effectively modifies the virtual file driver used by the HDF5 library so that all the
following calls redirect data to the DSM.We define two operation modes: client and server modes.
In a common scenario (which also corresponds to the configuration of section 3.4.2), a simulation
that wants to offload its data to a remote DSM operates as a client while the post-processing
application hosting the DSM server reads back from it. In client mode, it is worth noting that
setting the local_buf_ptr variable to NULL or using the Fortran API instructs the library to
operate on a remote DSM buffer (so no memory buffer is locally allocated in this mode); this is
illustrated in the following example (which is also what one would typically do in its simulation
code):

int main()
{

...
/* HDF5 calls that follow H5Pset_fapl_dsm() use the dsm driver. */
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_dsm(fapl_id, MPI_COMM_WORLD, NULL, 0);
/* Create HDF5 file/groups/datasets collectively. */
file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
H5Pclose(fapl_id);
file_space_id = H5Screate_simple(rank, count, NULL);
dataset_id = H5Dcreate(file_id, ”dataset_name”, H5T_NATIVE_DOUBLE,

file_space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
mem_space_id = H5Screate_simple(rank, localdim, NULL);
/* Writes can be independent. */
H5Sselect_hyperslab(file_space_id, H5S_SELECT_SET, offset,

NULL, localdim, NULL);
H5Dwrite(dataset_id, H5T_NATIVE_DOUBLE, mem_space_id, file_space_id,

H5P_DEFAULT, data);
/* Release IDs. */
H5Sclose(mem_space_id);
H5Dclose(dataset_id);
H5Sclose(file_space_id);
H5Fclose(file_id);
...

}

A Parallel HDF5 Interface: Implementation and Integration 57

In server mode, setting this same variable to NULL instructs the library to auto-allocate and
manage a singleton DSM for the user. For both modes, the communicator intra_comm is used
as the MPI intra-communicator. Note also that in server mode we define two ways of initializing a
DSM buffer: either by supplying a pointer to a memory buffer that has been previously allocated,
or (for advanced controls) by supplying a pointer to a C++ class object called H5FDdsmManager
(see annex B).

HDF5 Restrictions

When writing using a parallel virtual file driver, HDF5 imposes all the metadata operations to be
collective. As illustrated in figure 4.3, one must therefore create, open the in-memory file collec-
tively and create a new group or dataset collectively as well before being able to issue independent
write operations. This may be a potential restriction for simulation code developers as it requires
all the processes to collectively gather data information (size of data chunks, etc) before being able
to create HDF5 data structures (collectively). The HDF5 library requires DSM metadata infor-
mation (i.e., the eoa size marker of figure 4.2) to be synchronized so that two different processes do
not write to the same memory space. As this is more an HDF5 issue than a dsm driver issue, this
point will not be further discussed here, but one of the solutions that is going to be implemented
in the HDF5 library is the definition of dedicated server processes for the collection of metadata.

Process 1 Process 2

H5Fcreate

H5Dcreate

H5Dwrite H5Dwrite

H5Dclose

H5Fclose

Collective

Collective

DSM

𝟎 … 𝑵 − 𝟏

𝟎 … 𝑵 − 𝟏

𝟎 … 𝑵 − 𝟏

𝟎 … 𝑵 − 𝟏

𝟎 … 𝑵 − 𝟏

Figure 4.3. When using a parallel virtual file driver, HDF5 requires metadata operations to be issued col-
lectively. For clarity, only a contiguous data distribution is represented.

Nonetheless if the in-memory file is opened in read-only mode, metadata will not be subject to
any modifications and collective metadata synchronization steps can therefore be skipped. When

58 A Parallel HDF5 Interface: Implementation and Integration

write access is given, these synchronization steps are necessary again so that as soon as the file struc-
ture is modified, all the processes keep their metadata (and hence eoa size marker) synchronized.

4.1.3. Platform Optimization and Inter-Communicators

To write and transfer data from the simulation to the DSM, we can define and implement differ-
ent inter-communicators, two-sided and one-sided (see 3.1). While the fundamental difference
between these two categories is the mode of transfer and the synchronization algorithm, we also
distinguish two different forms of communicator creation: static and dynamic. The static com-
municator creation requires the two applications to be launched within the same job whereas
the dynamic creation is more flexible and (if the system supports it) allows the applications to
be connected/disconnected dynamically at the cost of additional handshakings. We present three
different approaches: one that uses POSIX sockets and allows heterogeneous systems to be con-
nected together, one based onMPI andMPI RemoteMemory Access1 (RMA) [2,33] that provides
better performance as it uses network specific communication layers underneath but presents API
limitations, and one based on a Cray API called DMAPP [13] that offers high throughput but is
limited to Cray systems.

Systems used for testing. For testing and comparison we will make use of two systems: an
InfiniBand QDR 4X cluster with MVAPICH2 1.8 [73] composed of 12 core AMDMagny-Cours
(i.e., 12 nodes, 144 cores) and a Cray XK6 system composed of two 16-core AMD Interlagos cab-
inets (i.e., 176 compute nodes, 2816 cores) with Cray MPT 5.4 (derived from MPICH2 [7,62]),
which features a Gemini interconnect [6]. For reference, the theoretical inter-node bandwidth of
the InfiniBand cluster is 4GB/s. For the Gemini interconnect used in the Cray XK6, as differ-
ent transfer methods can be selected (see annex A), we take for reference the maximum bandwidth
reached for large messages using the RDMA (Remote DirectMemory Access) BTE (Block Transfer
Engine, see annex A) mechanism, 7GB/s.

Socket

To allow our driver to be used on heterogeneous systems, we have introduced a socket inter-
communicator. It uses a single socket to initialize the connection (dynamically) between both
applications, then creates additional sockets to link every node of one application to every node of

1Similar to the concept of one-sided communication defined in 3.1.3. Note that the term RDMA (Remote Direct
Memory Access) is not explicitly used here, as the underlying MPI implementation may involve the operating
system to perform the transfers.

A Parallel HDF5 Interface: Implementation and Integration 59

the other. As this is a two-sided approach, transfers are realized using POSIX send/recv. Many
operating systems currently limit the number of open socket connections to around 1024, placing
a (configurable) limit on the number of descriptors that can bemaintained at any given time. In the
case where this limit can be configured, the array of file descriptors that needs to be stored grows as
much as the number of processes increases. To handle this problem, a solution would be to manage
connections created on-the-fly but this implies an additional maintenance cost. Another solution
could also be to make use of hierarchical communication schemes, performing communications
only between smaller subsets of processes.

The main advantage currently given by this inter-communicator is that it does not depend on
the MPI implementation used within the connected applications; therefore it is possible to create
connections between any combination of clusters or machines. Although this solution is not a
scalable solution, it does provide a reliable way of coupling heterogeneous systems.

0

1000

2000

3000

4000

5000

6000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

POSIX send
Max

(a) InfiniBand QDR 4X cluster.

0

2000

4000

6000

8000

10000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

POSIX send
Max

(b) Cray XK6 system.

Figure 4.4. Inter-node micro-benchmark using POSIX socket transfers.

Using the system internal network, one may consider to use sockets as well, but as shown in
figure 4.4, the point-to-point bandwidth obtained between two nodes is much lower than the
theoretical network bandwidth. For this reason (see 3.4.2), we will not study this communicator
further and focus on the other communicator types that take advantage of system specific com-
munication layers.

MPI and MPI RMA

TheMPI inter-communicator is intended to be used when the simulation code and the DSM are
on the same machine, or on machines that have compatible MPI process managers. To estab-
lish the connection dynamically between the applications, we make use of the MPI_Comm_con-

60 A Parallel HDF5 Interface: Implementation and Integration

nect and MPI_Comm_accept function calls. Unfortunately, some large machines such as Cray
XT/XE/XK or IBM Blue Gene systems are unable to use the dynamic process management set
of functions and hence the MPI_Comm_connect and MPI_Comm_accept functions (which is
mainly due to limitations in the resource allocation systems). In this case the two applications must
be launched as part of the same job (MPMD) and the global communicator MPI_COMM_WORLD
must be split between the applications using an MPI_Comm_split call. Note that this forbids
the use of MPI_COMM_WORLD within the applications. Once the global communicator split, a call
to MPI_Intercomm_create creates an inter-communicator to communicate between the two
applications.

0

1000

2000

3000

4000

5000

6000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

MPI_Send
Max

(a) InfiniBand QDR 4X cluster.

0

2000

4000

6000

8000

10000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

MPI_Send
Max

(b) Cray XK6 system.

Figure 4.5. Inter-node micro-benchmark using point-to-point MPI transfers.

For reference, the bandwidth between two nodes using MPI point-to-point communication
is represented in figure 4.5. On both systems, one may note that single MPI_Send calls present
good performance as they take advantage of RDMA (Remote Direct Memory Access), bypassing
the OS for direct access to the remote memory. On the Cray XK6, one may note a performance
drop point for message sizes of 8 kB (this limit may vary with the number of processes in the job).
This point corresponds to the standard offload thresholds, making use of the block transfer engine
for large messages (more details on the different offload mechanisms are presented in annex A).

MPI one-sided communication has been introduced in MPI 2 and is particularly appropriate
to situations where the remote memory target is already known by the source processes, avoiding
extra and unnecessary point-to-point operations to be issued (see section 3.1.3). The MPI RMA
communicator that we define makes use of the passive MPI RMA synchronization mechanism,
which means that no active participation of the remote target is requested (or necessary) between
distinct access epochs. When the DSM is allocated, we make a call to MPI_Alloc_mem, which
effectively allows the library to make memory optimization for further accesses. We then define a
window, set as the size of the requested HDF5 file. MPI_Put can then be issued in a one sided

A Parallel HDF5 Interface: Implementation and Integration 61

manner using MPI_Win_lock and MPI_Win_unlock between transactions; as defined in the
MPI specification, transactions complete when the window is unlocked. In figure 4.6 that shows
simple transactions between two nodes, note that the MPI one-sided interface on the Cray XK6
does not perform as well as expected; the implementation (which is based on MPICH2) does not
support large message transfer (LMT) optimization for one-sided protocols and this issue should
be corrected with future RMA implementations that follow the MPI 3 specification [32].

0

1000

2000

3000

4000

5000

6000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

MPI_Put (lock)
Max

(a) InfiniBand QDR 4X cluster.

0

2000

4000

6000

8000

10000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

MPI_Put (lock)
Max

(b) Cray XK6 system.

Figure 4.6. Inter-node micro-benchmark using passive MPI RMA transfers.

While this approach may seem to be the best approach [34], the current MPI 2 API presents
serious restrictions [10]. One of them is illustrated in figure 4.7. When data is sent to the DSM
from a source process, it is important to be able to performmultiple put operations to multiple tar-
get processes (particularly so when using a block-cyclic redistribution) though the MPI 2 standard
does not allow this type of operation, and RMA operations on a given window can only access the
memory of a single process during an access epoch. This is an important restriction for our DSM
approach, as data mapped (contiguously or following a certain redistribution pattern) to the entire
DSM forces the simulation processes to access the local memory of multiple target processes. This
therefore leads us to serialize transfers, locking and unlocking remote targets between memory
accesses (as described in figure 4.7b). As an alternative, one may wish to create memory windows
dynamically or separate memory windows mapped onto distinct processes. However window cre-
ation is a collective operation where the source and target processes that intend to use that window
must be included. This solution is therefore complex to handle and fortunately the upcoming
MPI 3 specification will address these issues by providing dynamic window creation and multiple
target locking.

DSM single dataset benchmark. Using a contiguous data redistribution, bandwidth results
are presented in figure 4.8. In this benchmark, write bandwidth tests can be seen as typical clien-

62 A Parallel HDF5 Interface: Implementation and Integration

ORIGIN
PROCESS

lock(0)

lock(1)

put(0)

put(1)

unlock(0)

unlock(1)

TARGET
PROCESS 0

lock

put

unlock

TARGET
PROCESS 1

lock

put

unlock

(a)Multiple targets are concurrently accessed.

ORIGIN
PROCESS

lock(0)

put(0)

unlock(0)

lock(1)

put(1)

unlock(1)

TARGET
PROCESS 0

lock

put

unlock

TARGET
PROCESS 1

lock

put

unlock

(b)Multiple targets are serially accessed.

Figure 4.7. One of the passive MPI synchronization restrictions is the inability of locking multiple target
processes of the same window per access epoch.

t/server tests: a first set of processes (servers) hosts the DSM and waits for incoming data, a second
set of processes (clients) writes HDF5 data in parallel to the DSM using the dsm driver. The
aggregate bandwidth that we measure corresponds to the amount of data sent during a complete
file write (HDF5 create, write and close operations). The DSM is distributed among 4 nodes (16
processes, 4 processes per node) on the InfiniBand cluster and among 40 nodes (160 processes,
4 processes per node) on the XK6. To keep a certain consistency between the systems, the local
buffer size allocated per node is kept to 1GB, which creates a DSM of 4GB on the InfiniBand
cluster and a DSM of 40GB on the XK6. Given this fixed DSM (file) size, a single dataset of the
matching size is written from the combined send nodes (smaller pieces per process as the number
of processes increases, i.e., each process sends pieces of the DSM size divided by the total number
of processes sending data).

For writing, the number of processes on the XK6 is 4 per send node until 128 nodes are used
(512 processes), at which point to saturate the bandwidth the number of processes per send node
is increased up to 16 (giving 2048 processes writing data in total). On the InfiniBand cluster, 8
send nodes are available and 4 processes per node are used initially and then incremented to 12 per
send node to saturate the bandwidth giving a maximum of 96 send processes. As we are limited
here by the number of network adapters and not by the number of processes per node, keeping

A Parallel HDF5 Interface: Implementation and Integration 63

0

2

4

6

8

10

12

14

4 8 16 32 64 96

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processes

MPI_Send
MPI_Put (lock)

(a) InfiniBand QDR 4X cluster—DSM size of 4GB
and distributed among 16 processes (4 nodes).

0

10

20

30

40

50

60

70

16 32 64 128 256 512 1024 2048

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processes

MPI_Send
MPI_Put (lock)

(b) Cray XK6 system—DSM size of 40GB and dis-
tributed among 160 processes (40 nodes).

Figure 4.8. Write transfer rate of an (in-memory) HDF5 file composed of one single dataset using a con-
tiguous distribution—Comparison between MPI point-to-point and passive RMA transfers.

initially a low number of processes per node allows us to reach higher bandwidth results. The
effect of bandwidth saturation is then shown when the number of processes per node is maxed
out. This configuration may reflect a typical usage of the dsm driver where a small partition of
nodes is dedicated to hosting the DSM and post-processing the data while a larger partition is
dedicated to running the simulation.

As shown in figure 4.8, for smaller number of processes, the performance reached using two-
sided communication is better than the one reached using one-sided communication (as point-
to-point communications have been highly tweaked in MPI implementations). However when
reaching larger number of processes, one-sided communication provides better performance. As
we described in 3.1.2 and in 3.1.3, the synchronization algorithm used for the two-sided approach
as well as the number of requests that need to be issued to transfer data makes this two-sided com-
municator less scalable than the one-sided communicator. This behavior is more visible on the
Cray XK6 where a larger number of processes can be easily reached.

DMAPP

The DMAPP communicator is derived from the aforementioned MPI RMA communicator. On
Cray XE/XK systems that support the latest generation of interconnect Gemini [6], Cray defines
the Distributed Memory Application API, referred as DMAPP [13]. This API is used on these
systems to implement one-sided libraries such as Cray SHMEM [25] and is also used by PGAS [1]
compilers (Co-array Fortran and UPC).

64 A Parallel HDF5 Interface: Implementation and Integration

We have implemented a communicator that takes direct advantage of this lower level one-sided
communication library. On the simulation side, to avoid memory overheads created by symmet-
ric memory usage (see annex A), we allocate memory from the private heap and register it to the
DMAPP API on the DSM hosts only. This registration step provides memory segment informa-
tion, which is then exchanged with the simulation (only once at initialization time, assuming that
the DSM size is fixed between time steps), as shown in 3.1.3. dmapp_put calls can then be issued
to transfer data into the DSM, theMemory Relocation Table (MRT) on the Gemini NIC mapping
the memory references contained in the incoming network packets to the physical memory on the
local node. dmapp_put calls are blocking calls, but DMAPP provides users with a smarter mech-
anism called non-blocking implicit put operations (dmapp_put_nbi). This allows non-blocking
put to be issued to any remote target, as memory access concurrency is here handled at the DSM
library level. When the DSM file is closed and the file lock is released, all the remote transfers
must complete (which is handled by g_sync_wait). This mechanism is particularly useful when
several small messages are issued to different remote targets as the bandwidth is used more effi-
ciently. While we lose here portability, the DMAPP communicator allows us to work around the
previously described MPI RMA restrictions.

0

2000

4000

6000

8000

10000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

dmapp_put_nbi
Max

(a) Inter-node micro-benchmark using DMAPP put
operations (blocking) with an FMA/BTE switch
at 4 kB, which effectively corresponds to a band-
width drop point.

0

10

20

30

40

50

60

70

16 32 64 128 256 512 1024 2048

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processes

dmapp_put_nbi

(b)Write transfer rate of an (in-memory) HDF5 file
composed of one single dataset using a contigu-
ous distribution—DSM size of 40GB and dis-
tributed among 160 processes (40 nodes).

Figure 4.9. DMAPP communicator benchmark on a Cray XK6 system.

As illustrated in figure 4.9a, DMAPP enables optimization of one-sided transfers. In fig-
ure 4.9b, we make use of the same configuration described in the previous section. When writing a
single large dataset using a contiguous distribution, one may however notice that the performance
does not reach the one obtained using MPI RMA (because of internal optimization within the
MPI library itself). However the DMAPP API still provides in this case a scalable solution and

A Parallel HDF5 Interface: Implementation and Integration 65

will show its strength when writing multiple datasets, which corresponds to a more realistic test
case as we will see in the next section.

4.1.4. Impact of Redistribution Strategies

In the previous section, we showed how the different communicator types that we implemented
allow us to optimize transfers depending on the system that is used and depending on the number
of processes that write to the DSM. We also showed that one-sided communicators were a more
scalable solution compared to a two-sided approach. However as we showed in 3.2, having data
written in parallel to a contiguous memory space does not allow us to make use of all the receiving
nodes, particularly so if several small datasets are written. In this section, we show how one can
combine different communicator systems and redistribution strategies to improve the efficiency of
the communications, which will guarantee that data exchanges made in parallel are realized as fast
as possible. Therefore we only focus in this section on one-sided communicators.

Block Redistribution

In a first time, using a block-cyclic redistribution, we want to evaluate the block sizes that can
allow transfers to be maximized. For different block sizes, we run the same benchmark as the
one used in the previous sections, using a single large dataset. For clarity, we only show results
on the Cray XK6 system in figures 4.10 and 4.11 (additional results are presented in [84]). As a
reminder, for writing, the number of processes on the XK6 is 4 per send node until 128 nodes
are reached (512 processes), at which point to saturate the bandwidth the number of processes per
send node is increased up to 16 (giving 2048 processes writing data in total). Bandwidth drop
points highlighted in the previous sections can be observed in these figures: at 8 kB and above
256 kB for the MPI one-sided communicator, and at 4 kB for the DMAPP communicator (only
visible in this figure after a careful examination). While these drop points had a small effect on the
micro-benchmark, they can lead to a significant slow-down in the HDF5 write operations when
those block sizes are used repeatedly.

As one may notice from figures 4.10b and 4.11b, writing a single large dataset using a block-
cyclic redistribution is not beneficial when several processes are involved and when (like in this case)
the number of nodes used to send data is larger than the number of receiving nodes. However,
on this XK6 system, a significant improvement compared to the contiguous write is noticeable
for block sizes belonging to the [16 kB, 64 kB] interval with the MPI RMA communicator and
for block sizes below 4 kB for the DMAPP communicator. We will re-use these block sizes in the
next sections as they obviously provide the best performance. Random block results are not shown

66 A Parallel HDF5 Interface: Implementation and Integration

16 32 64 128256
5121024

2048

256
1K

4K
16K

64K
256K

1M
4M
0

20
40
60

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processesBlock size (Bytes)

Tr
an

sf
er

R
at
e
(G

B/
s)

0
15
30
45
60
75

(a) Block-cyclic redistribution.

16 32 64 128256
5121024

2048

256
1K

4K
16K

64K
256K

1M
4M
0
5

10
15

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processesBlock size (Bytes)
Tr
an

sf
er

R
at
e
(G

B/
s)

0
4
8
12
16
20

(b) Comparison between block-cyclic and contigu-
ous distributions (difference).

Figure 4.10. Write transfer rate on Cray XK6 of an (in-memory) HDF5 file composed of one single dataset
using MPI passive RMA transfers—DSM size of 40GB and distributed among 160 processes
(40 nodes).

16 32 64 128256
5121024

2048

256
1K

4K
16K

64K
256K

1M
4M
0

20
40
60

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processesBlock size (Bytes)

Tr
an

sf
er

R
at
e
(G

B/
s)

0
15
30
45
60
75

(a) Block-cyclic redistribution.

16 32 64 128256
5121024

2048

256
1K

4K
16K

64K
256K

1M
4M
0
5

10
15
20

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processesBlock size (Bytes)

Tr
an

sf
er

R
at
e
(G

B/
s)

0
5
10
15
20
25

(b) Comparison between block-cyclic and contigu-
ous distributions (difference).

Figure 4.11. Write transfer rate on Cray XK6 of an (in-memory) HDF5 file composed of one single dataset
using non-blocking implicit DMAPP transfers—DSM size of 40GB and distributed among
160 processes (40 nodes).

A Parallel HDF5 Interface: Implementation and Integration 67

here for clarity, but can globally increase the bandwidth and avoid possible congestion issues in
the DSM.

Writing Multiple Datasets

We showed in 3.2.1 that when using a contiguous redistribution, writing multiple datasets results
in distinct transfers through a partition of the DSM links that are available (whereas writing a single
large dataset always makes use of all the DSM links at the same time). To reflect the behavior
of a common simulation code, the previous benchmark is reused here, this time creating a file
composed of 10 datasets instead of a single one. The same configuration is used as the previous
tests; each of the datasets has the same fixed size and their sum is the size of the allocated DSM.
Results are shown in figure 4.12.

0

10

20

30

40

50

60

70

16 32 64 128 256 512 1024 2048

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processes

MPI RMA (contiguous)
MPI RMA (block-cyclic 􀁰􀁯 kB)

DMAPP (contiguous)
DMAPP (block-cyclic 􀁯 kB)

Figure 4.12. Write transfer rate on Cray XK6 using MPI RMA and DMAPP communicators of an (in-
memory) HDF5 file composed of 10 datasets—DSM size of 40GB and distributed among
160 processes (40 nodes).

Before commenting on the real advantage that the block-cyclic redistribution offers here, it
is worth noting the real gain that the DMAPP interface provides with compared to MPI RMA,
even on a contiguous redistribution (when writing multiple datasets). Because of the flexibility
of the DMAPP API, datasets can be asynchronously sent to different remote targets as opposed
to the MPI RMA implementation where transfers are serialized due to consecutive lock/unlock
operations. This therefore leads to a more even use of the remote links, which concretely increases
the bandwidth.

68 A Parallel HDF5 Interface: Implementation and Integration

Using previously determined block sizes that improve the write performance (in this case 32 kB
forMPI RMA and 2 kB forDMAPP), one can see from figure 4.12 that writing using a block-cyclic
redistribution is much more efficient than linear mapping. Since each dataset in the linear HDF5
memory space is contiguous, writing 10 datasets in parallel but sequentially in time, causes only
one tenth of the links to become active for each individual dataset. By redistributing blocks for
each of the much smaller datasets across all processes, we make use of all of the links for all of
the transfers. Whereas the performance reached using DMAPP was considerably better than MPI
RMA using a contiguous redistribution, when using a block-cyclic redistribution, results between
DMAPP and MPI RMA are much closer. DMAPP even in this case performs slightly better and
reaches 68GB/s for 256 processes (64 sending nodes), point where the number of sending nodes
is close to the number of receiving nodes.

Reading Multiple Datasets

In the ideal configuration of section 3.4.2, the simulation writes to the DSM through the net-
work and the post-processing application reads back from it. It is important to note that in this
configuration the DSM and the post-processing application share the same nodes. To understand
what the resulting bandwidth can be when reading back from the DSM to the post-processing
application, we make use of the same configuration as for writing and replace senders by receivers.
The measured bandwidth is the bandwidth of processes that are co-located with the DSM and read
from the DSM hosts. Note that in this case, a higher bandwidth than the one we can get for write
operations can be reached as depending on data location, getting data from the DSM is either a
local memory copy from the DSM to the host memory (e.g., of the post-processing application)
or a get operation from a remote DSM node. Note also that only blocking operations are used
here as when reading the in-memory HDF5 file, HDF5 structures must be created on-the-fly and
therefore need to have access to the data at the time they are actually created2. For block-cyclic
redistribution, we make use of the same block sizes that are used for writing data (i.e., 32 kB for
MPI RMA and 2 kB for DMAPP) as making use of a given size of block for writing imposes the
same size of block to be used for reading (so that one can retrieve data from the DSM, see 3.2.2).

Results are shown in figure 4.13. As expected, using a block-cyclic redistribution is here again
more efficient and allows us to almost double the transfer bandwidth on large number of pro-
cesses. While using MPI RMA seems to be more efficient, the bandwidth starts to flatten for a
large number of processes whereas DMAPP continues to scale, overtaking MPI RMA. This can
be explained by very low latency of DMAPP operations and lack of optimization in the MPI one-

2Another solution could also be to make non-blocking operations block earlier when needed.

A Parallel HDF5 Interface: Implementation and Integration 69

0

10

20

30

40

50

60

70

80

90

100

16 32 64 128 256 512 1024 2048

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processes

MPI RMA (contiguous)
MPI RMA (block-cyclic 􀁰􀁯 kB)

DMAPP (contiguous)
DMAPP (block-cyclic 􀁯 kB)

Figure 4.13. Read transfer rate on Cray XK6 using MPI RMA and DMAPP communicators of an (in-
memory) HDF5 file composed of 10 datasets using a DSM size of 40GB—160 send processes
(40 nodes).

sided implementation. Using an appropriate post-processing reader, we will see in section 4.2.2
what the actual and corresponding read performance one can get within ParaView.

4.1.5. Implementation Conclusions

Implementing a distributed shared memory interface within the HDF5 library offers multiple
advantages. As we showed in 4.1.2, codes that already make use of the HDF5 interface only need
a single line of code to be changed to make use of our driver and see the data being re-routed in
parallel to the staging area. The in-memory file stored in the DSM can then be accessed as a normal
file from the user point of view and all the existing HDF5 capabilities can be re-used to read from
and write to the DSM. It is worth mentioning that only one file can be stored for now in the DSM,
but there is no restriction for implementing a more advanced mechanism capable of managing
multiple files, giving more flexibility to simulations that write data to different destinations. An
alternative could also be to store and even mount (see H5Fmount) multiple files into separate
HDF5 groups, simulating a real file system.

Themapping betweenHDF5memory objects and the actual DSM storage can be highly tuned
so that one can optimize the redistribution on a given system configuration. In a common scenario,
it is assumed that the simulation will write files composed of multiple datasets and being able to
take advantage of all the DSM links for every write operation is an imperative requirement for our

70 A Parallel HDF5 Interface: Implementation and Integration

interface. Using specific communication protocols such as DMAPP allows the current restriction
imposed by MPI passive RMA to be bypassed and the DSM interface can therefore achieve high
speed transfers, reducing the main overhead introduced by the approach as all the data (or a subset)
must be copied from the simulation to the staging area (i.e., here the DSM).

In the next section, we show how this interface is integrated into the well known visualization
and post-processing application, ParaView.

4.2. ICARUS ParaView Plug-in

While any HDF5 based applications may be coupled together with an implied assumption that
one will be the master and the others the slaves, we describe in this section the enhancements
that we have made to the ParaView package to allow flexible creation of a customized visualization
and steering environment. A plug-in, called ICARUS (Initialize Compute Analyze Render Update
Steer), has been developed to allow ParaView to interface through the dsm driver to the simulation.

4.2.1. ParaView Client/Server Architecture

ParaView follows a client/server architecture and mainly supports two different modes: a built-
in mode where all the components stand on the same machine and a client/server mode where
components can be distributed among multiple machines.

Client Manager

GUI

Server Manager

Server

Data
Server

Render
Server

Proxy

Property

Info
Property

Widget VTK
Class

Server Plug-inClient Plug-in

Figure 4.14. ParaView follows a client/server architecture where client and server communicate through a
proxy interface.

As described in figure 4.14, in client/server mode, the GUI client part connects (using sockets)
to a server part, which executes the different processing steps of the visualization pipeline (see
section 2.1). The server can be itself decomposed into data and render servers to distribute and
optimize the various stages of the post-processing workflow. Images or data are then transmitted

A Parallel HDF5 Interface: Implementation and Integration 71

to the GUI client using a proxy layer, which manages the message flow between the server and the
client. When sending a command from theGUI to the server, the remote ParaView server instances
are updated so that data and orders are received and processed. The proxy layer mechanism and
server manager properties (property and info property in figure 4.14) ensure that information and
data between a given GUI widget (e.g., GUI button, check box, etc) and the corresponding VTK
class server object are correctly transmitted and synchronized.

The ParaView architecture is very modular and new functionality can be added through a
plug-in mechanism. Practically, creation of a plug-in requires definition of the two client and
server parts; the property and info property defined will then transmit commands and data between
the GUI controls and the VTK objects created in the plug-in. To take advantage of the ParaView
architecture and define a generic user interface that can be used with any type of simulation, the
ICARUS plug-in, which must be the interface between the simulation and the ParaView frame-
work, relies on the HDF5 library and dsm driver defined in 4.1. Whenever a command is queried
in the GUI, the associated event is forwarded to the ParaView server through the proxy communi-
cation layer, which transmits it in turn to the defined VTK objects and to the dsm driver library.

GUI

VTK Objects

Notification
Thread

DSM Objects

Service
Thread

Main Thread

HDF5
+

dsm
Driver

Notification
Socket

Wait

Signal
NotificationParaView

Proxy

Data
Transactions

NEW DATA
Notification

ParaView Client ParaView Server Simulation Code

Figure 4.15. Using the notification mechanism described in 3.1.5 with the ParaView framework, when a
new data or new information notification is received, the task relative to this event is performed
and/or the associated visualization pipeline is updated.

As described in figure 4.15, the ParaView client is composed of a GUI panel. From this panel,
a user can send data and/or commands to the ParaView server, which forces the underlying VTK
objects to be updated. These VTK objects trigger in turn updates to the DSM objects and service
thread, which manages communication requests and data transactions with the DSM. In the fol-
lowing section we study common scenarios that have been implemented and are handled by the
plug-in.

72 A Parallel HDF5 Interface: Implementation and Integration

Workflow and Requested Notifications

In 3.1.5, we described how the architecture based on threads allows the transfer of notifications
and events. To apply this architecture to the ParaView framework, we define different types of
notifications:

1. CONNECTED/DISCONNECTED: when the simulation connects or disconnects from theDSM,
this notification tells the user that the simulation has been properly connected or discon-
nected;

2. WAITING: if the simulation is paused using a wait command call (e.g., H5FD_dsm_steer-
ing_wait), this notification tells the user that the simulation is now waiting for a resume
command;

3. NEW_DATA: when the DSM file is closed and new data has been written to the DSM, this
notification tells the ParaView servers to update the whole post-processing and rendering
pipelines;

4. NEW_INFORMATION: when one needs to get time information from the simulation or any
other information that does not require a full pipeline update, this notification can be used
to update only the information part of the pipeline.

The above notifications represent a minimal set of notifications to communicate the different
simulation states or requests to the ParaView servers and GUI; there is no restriction for adding
more notifications if needed.

In a common scenario (as described in figure 4.15) the simulation will connect, send a noti-
fication back to the GUI (CONNECTED), write data, which will in turn send another notification
(NEW_DATA). If this is a new data (as opposed to information) notification, then the GUI sched-
ules the update of the user instantiated pipelines (which can be a set of various source objects
structured or unstructured, on top of which post-processing filters have been applied). Note that
in a pull-driven system, the analysis code must query whether new data is present and if so, update
its analysis pipelines. In a push-driven system, this may not be possible if some user related task
is currently running on the main thread, as this will block other GUI/server requests. Using the
notification thread introduced in 3.1.5, notifications are sent on a separate socket connection so
that ParaView requests and push-driven DSM requests do not interfere with each other.

Then, depending on the notification that is to be received, parallel readers will be triggered and
data will be read back from the DSM, allowing parallel visualization of DSM files.

A Parallel HDF5 Interface: Implementation and Integration 73

4.2.2. Parallel Visualization of DSM files

One of the HDF5’s great strengths is its ability to store data in many ways, but this in turn makes
it difficult to know the layout of a particular simulation output without some help. Data written
into the DSM and stored using the HDF5 API can follow any user defined patterns. A user
may defined his own representation, and therefore choose a unique layout to store his data that
is adapted to a given simulation. Data may thus be stored in multi-dimensional arrays (datasets)
and organized in different groups so that one can easily retrieve data from.

ICARUS Plug-in

<Visualization>
…
</Visualization>

XDMF

HDF5

DSM
(data stored
in HDF5
format)

Generic Reader

Specialized Reader

Figure 4.16. XDMF provides a generic way of reading HDF5 data stored in the DSM, while a specialized
reader can provide higher performance when requested.

As a consequence (as described in figure 4.16) only two different ways of reading data can
be defined, either by implementing a customized reader (which potentially means one reader per
simulation and data layout) or by finding a way of dynamically describing the data (e.g., through
XDMF, the eXtensible Data Model and Format).

XDMF and XDMF Readers

The eXtensible DataModel and Format (XDMF) has been designed towards that goal [21], by pro-
viding users with a comprehensive API and data description format based on XML, the eXtensible
Markup Language. It has been developed and maintained by the US Army Research Laboratory
(ARL) and is used by several HPC visualization tools such as ParaView, VisIt, etc. XDMF dis-
tinguishes heavy data, significant amount of data stored using HDF5, from light data, smaller
amount of data where values (typically less than about a thousand) can be passed using XML.
Data is organized in Grids3, which can be seen as a container for information related to 2D and
3D points, structured or unstructured connectivity, and assigned values (e.g., pressure, velocity,
etc). For each Grid, XDMF defines topology elements (Polyvertex, Triangle, Tetrahedron, …),

3The Grid objects can be also described here as VTK objects [39].

74 A Parallel HDF5 Interface: Implementation and Integration

which describe the general organization of the data, and geometry elements, which describe how
the X, Y and Z coordinates are stored. Attributes (associated values to the mesh nodes or cells) can
be described as well as Grid collections, which enable addition of time information.

Data read fromHDF5 in our plug-in makes use of the XDMF library for flexible import from a
variety of sources and we make use of XDMF as a convenience since it allows a simple description
of data using XML (as shown in figure 4.16, a customized HDF5 reader could equally well be
embedded in ParaView but would need to be configured individually for each simulation to be
used). To read data (grid/mesh/image/…), one can either supply an XDMF description file as
described in [21] or use a simpler XML description file that follows the XDMF syntax, which our
plug-in defines and uses, to generate a complete XDMF file on-the-fly; this point is more detailed
in the following section.

XML Description Templates

To make use of the plug-in, a significant portion of the work goes into the creation of XML
templates, which describe the outputs from the simulation, the parameters that may be controlled,
and the inputs back to it. The XML description templates are divided in two distinct parts, one
called Visualization describing the data for visualization only (see figure 4.16), and one called
Interaction defining the list of steering parameters and commands one can control (and we will
further describe it in section 4.2.3).

The XML template format that we have created does not require the size of datasets to be
explicitly stated, which is particularly useful when the dataset dimensions change over time as
this file is generated and read on-the-fly; only the structure of the data (topology/connectivity)
needs to be specified along with its path to the HDF5 dataset (e.g., if a dataset named Dataset
is stored into a group named Group, its pathname in the file is written as a standard POSIX
pathname: /Group/Dataset). As the file is received, the metadata headers and self-describing
nature of HDF5 datasets allow the missing information (e.g., number of elements in the arrays,
precision, dimensions) to be filled-in by in-memory routines using the HDF5 h5dump utility (that
we modified for this purpose).

The template allows one or more Grids to be defined, which are mapped to datasets. If the
datasets written to the DSM are multi-block datasets, as many grids as the number of blocks
must be defined. Each Grid is defined using the following format example and contains at least
a Topology field with the topology type, a Geometry field with the geometry type and the HDF5
path to access the data representing the geometry.

A Parallel HDF5 Interface: Implementation and Integration 75

<Visualization>
<Xdmf>
...
<Grid>

<Topology TopologyType=Type>
</Topology>
<Geometry GeometryType=Type>
<DataItem>HDF5 path</DataItem>

</Geometry>
<Attribute>
<DataItem>HDF5 path</DataItem>

</Attribute>
</Grid>
...

</Xdmf>
</Visualization>

Several attributes can be added specifying for each the HDF5 path to access the data. Note that
specific XDMF operations such as the JOIN operation can still be provided to combine individual
components (e.g., velocity vector) into multi-dimensional vector arrays, for instance:

<Grid>
...
<Attribute AttributeType=”Vector”

Name=”Velocity”>
<DataItem Function=”JOIN(&0, &1, &2)”

ItemType=”Function”>
<DataItem>/Step#0/VX</DataItem>
<DataItem>/Step#0/VY</DataItem>
<DataItem>/Step#0/VZ</DataItem>

</DataItem>
</Attribute>
...

</Grid>

The ICARUS plug-in generates from the template a complete (in-memory) XDMF file with
all the information about data precision and array sizes. When updates are received, the paral-
lel XDMF reader extracts data directly from the DSM through the usual HDF5 operations (see
figure 4.16). Note that only the ParaView GUI client needs access to the template as the fully
generated XML is sent to the server at initialization time using the ParaView client/server com-
munication layer (presented in section 4.2.1).

76 A Parallel HDF5 Interface: Implementation and Integration

Extending Templates for Specialized Readers

Using the XDMF template description, the XDMF reader is capable of reading blocks from the
DSM in parallel, making it suitable for multi-block simulations. However in some cases (as illus-
trated in figure 4.17a) blocks and grids are unbalanced, particularly so in SPH simulations where
mesh structures and fluid particles are stored in separate grids (and the later can be of several orders
of magnitude bigger than the others). Therefore to solve this potential issue, we present here an
example of extension to the XDMF reader for reading particle data, serving a complementary role,
directly within our plug-in.

DSM

Grid 0

Grid …

Grid 𝑁 − 1

Post-processing

0

…

𝑃 − 1

(a) By default the XDMF reader reads data by block
or grid.

DSM

Grid 0

Grid …

Grid
(𝑁 − 􀁮)􀁷

Grid
(𝑁 − 􀁮)…

Grid
(𝑁 − 􀁮)…

Grid
(𝑁 − 􀁮)𝑃−􀁸

Post-processing

0

…

𝑃 − 1

(b)TheH5Part reader allows redistribution of a given
grid that follows the H5Part format.

Figure 4.17. Adding specialized readers for reading DSM data can effectively improve unbalanced reads of
the original XDMF reader.

H5Part [3] is a library optimized for read/write of HDF5 particle data in parallel, making it
suitable for reading the portion of our data using hyperslab selections4 onto all nodes. To support
two readers working on the DSM, the description of the particles is removed from the XDMF part
of the XML description template and a new <H5Part> XML section is added, which contains
the path to the particle arrays. For instance:

<Visualization>
<Xdmf>

...
</Xdmf>
<H5Part Name=”Particles”>

4A hyperslab selection can be defined as a logically contiguous collection of points, or as a regular pattern of points
or blocks in a memory space.

A Parallel HDF5 Interface: Implementation and Integration 77

<Step Name=”Step”/>
<Xarray Name=”X”/>
<Yarray Name=”Y”/>
<Zarray Name=”Z”/>

</H5Part>
</Visualization>

Providing both readers open the file in read-only mode, there is no danger of data corruption
and the management of file and dataset handles can be left to the HDF5 layer. There is actually no
restriction on how many tools or utility libraries we may use providing they adhere to the HDF5
API. As illustrated in figure 4.17b, the grid that contains particle data is subdivided into 𝑃 blocks,
where 𝑃 is the number of processes that are used for reading.

0.1

1

10

100

16 32 64 128 256 512 1024 2048

Ti
m
e
(s
)

Number of processes

MPI (􀁰􀁯 kB Block)
DMAPP (􀁯 kB Block)

Figure 4.18. Read time on Cray XK6 using the H5Part reader of 4.92 × 10􀁵 particles (40GB) using block-
cyclic redistribution with MPI and DMAPP inter-communicators.

As we read in parallel and as data is better balanced between processes, the performance of
the H5Part library on data in DSM is very good. Figure 4.18 shows the read time for a dataset of
4.92 × 10􀁵 particles on different process counts using theMPI RMA andDMAPP communicators
on Cray XK6. The dataset size is 40GB and can be read from memory in sub-second time for a
number of processes greater than 512. Not using this specialized reader and therefore the XDMF
reader would in this case mean make a serial read of about 40GB, which would not even fit into
the memory of the node receiving the data.

When working live with very large datasets, the read time is a major factor in influencing the
interactive experience and thus being able to read efficiently in parallel is a factor that one should
not consider as negligible.

78 A Parallel HDF5 Interface: Implementation and Integration

4.2.3. Parallel Steering and Analysis

For parallel in-situ visualization, we defined in the previous section an XML description template
that allows generic coupling of any simulation code to the ICARUS plug-in. For steering, we
defined in 3.3.2 an interface (which is implemented on top of HDF5 and of the dsm driver)
that one can use in a simulation code to exchange commands and data with a post-processing
application. In this section we present how a user can modify simulation parameters and data
generically from the plug-in, without any recompilation of the ParaView graphical user interface.

Extending Templates for Steering

To define steering parameters than can be easily set from the ParaView GUI, we follow the existing
model of the ParaView server manager properties (see figure 4.14) to enable automatic generation
of controls on top of the existing mechanism, which are originally used by ParaView to generate
filter and source panels. We therefore add a newXML section into the original description template
called <Interaction> section, so that we define an XML file mainly composed of two different
sections, one for visualization (as we saw in 4.2.2) and one for steering commands:

<Icarus>
<Visualization>

...
</Visualization>
<Interaction>

...
</Interaction>

</Icarus>

Within this <Interaction> section, we allow the following list of properties to be defined:

<IntVectorProperty> </IntVectorProperty>
<DoubleVectorProperty> </DoubleVectorProperty>
<StringVectorProperty> </StringVectorProperty>
<CommandProperty> </CommandProperty>
<DataExportProperty> </DataExportProperty>

Int/Double/StringVectorProperties allow scalar, vector and string parameters to
be defined and generated in the GUI and are exactly the same as the existing ParaView properties
(presented in 4.2.1 and that are used to transfer data between the GUI and the server). Settings for
default values, names, labels, etc, are available so that one may tidy up the automatically generated
user interface. As with the ParaView server manager model, constraint domains can be attached
to these properties; this allows a user to restrict the parameters defined to either a boolean domain,

A Parallel HDF5 Interface: Implementation and Integration 79

which will then generate a check box, or to a range domain using a [𝑚𝑖𝑛,𝑚𝑎𝑥] interval, which
will appear as a slider (see figure 4.19).

Figure 4.19. Generated control example using a range domain of [0, 𝑥], label and documentation can be
customized by the user.

So far two extra properties have been added to the ParaView server manager properties to sup-
port additional steering capabilities. One is a CommandProperty, represented in the GUI as a
button, but without any state. When it is clicked, a flag of the defined name is set in the Interaction
group (see 3.3.3) of the DSM file and can be checked by the simulation. It can be used to tell the
simulation to perform some user defined action (e.g., a reload mesh command) and can be defined
as follows:
<CommandProperty

name=”ReloadMesh”
label=”Reload mesh”>

</CommandProperty>

The other, DataExportProperty, defines an input back to the simulation. It allows a
whole ParaView dataset or a single data array to be exported into the in-memory DSM file. One
may interactively select a pipeline object (i.e., a filter or a source object such as a sphere, cube,
etc, or a more complex object), select the corresponding array (points, connectivity or node/cell
field) and write it back to the DSM. The corresponding HDF5 path must be specified so that
the location of the written array is consistent with the simulation expectations. If the array is
going to be a modified version of the one sent initially to the GUI by the simulation, the user
may reuse the path in which it was originally written to save space in the file. An example of the
GUI generated is visible in figure 4.20. The user defines in a description template the interactions
that the simulation will be able to access; GUI controls are automatically generated and modified
parameters are passed to the DSM library. The simulation gets the parameters and the commands
by reading them from the DSM using the same names as specified in the template. Note that in
this case, a DataExportProperty is generally bound to a CommandProperty, so that data is
written and a command to perform some action with it is sent at the same time.

If a grid exported by the simulation is to be modified directly and then returned back to the
simulation, some action to be performed may be specified in the template and reference the grid
in question (e.g., if one wishes to modify the geometry of a body and we therefore bind a 3D
interactive transform widget to it as shown in figure 4.21). This is done by adding hints to the
properties (as below). Currently, any 3D widget may be created (e.g., box, plane, point, etc) and

80 A Parallel HDF5 Interface: Implementation and Integration

...
H5FD_dsm_steering_init;
...
main loop:
...
H5FD_dsm_steering_is_set

(”ReloadMesh”,flag);
...
if flag:

...
H5Dopen(file_id,

”/Mesh#1/XYZ”, dataset_id);
H5Dread(dataset_id,data_array);
H5Dclose(dataset_id);
...

end if;
...
compute_step;
...

end loop;
...

Simulation Code

DSM

...
<Interaction>

...
<DataExportProperty
name=”ModifiedBodyNodes”
command=”SetSteeringArray”
label=”Modified Body Node Data”>
<DataExportDomain name=”export”
geometry_path=”/Mesh#1/XYZ”
topology_path=”/Mesh#1/Connect”
command_property=”ReloadMesh”>

</DataExportDomain>
</DataExportProperty>
...

</Interaction>
...

Description Template

ICARUS

Figure 4.20. Steering usage example between a simulation code and ParaView.

A Parallel HDF5 Interface: Implementation and Integration 81

for each grid with an attached widget, a mini-pipeline is instantiated containing a set of filters,
which extract the dataset from the multiblock input (if multiple grids exist) and bind the widget
with an associated transform to it.

Figure 4.21. 3D transform widget example bound to a box source.

The GUI implementation and XML description are continually improving and we aim to add
<Constraint> tags to the hints to specify that a grid may not be moved or deformed in some
way, more than a specified amount per time step. A simulation may require certain constraints
to prevent it causing program failure such as preventing an object being moved by more than a
defined amount (such as a CFL condition) or smoothly (continuously differentiable). Constraints
might even be derived from computed values combined with other parameters.
<Hints>

<AssociatedGrid name=”Body” />
<WidgetControl name=”Box” />

</Hints>

Note that the XML templates are loaded at run time and ParaView client/server wrappers
for control properties are generated on the fly (these are then registered with the server manager
and objects instantiated). This means that all simulation controls can be created without any
recompilation of either ParaView or the ICARUS plug-in.

Parallel Steering and Overheads

Once one can generate controls from the GUI, it is necessary to add the corresponding and ap-
propriate calls in the simulation to receive the commands and data that have been sent back. As

82 A Parallel HDF5 Interface: Implementation and Integration

shown in figure 4.20, when a parameter is set in the GUI, one has to check from the simulation
if this same parameter is set and if it is set, read it. In a typical and minimal steered simulation
loop, one would therefore check if commands are set, compute and write data output (if needed).
Therefore the overhead added to a computation step without any specific interaction is the amount
of time spent to check the presence of commands, which requires a DSM file open, followed by a
read and a close (which are all HDF5 operations that make use of the dsm driver presented in sec-
tion 4.1). Note also that checking the presence of one single parameter in parallel may potentially
involve thousands of processes reading data from the DSM distributed among a few hundreds of
processes. As reading data from the in-memory file does not modify metadata, it is allowed in
our implementation to have multiple processes doing independent reads. However this case may
potentially result in thousands of requests sent to the DSM at the same time, which may create a
bottleneck. To prevent this potential issue, one may thus access the file from one process and then
broadcast the retrieved value to the other processes that need this same piece of information.

0.001

0.01

0.1

1

10

Simulation ParaView

Ti
m
e
(s
) Check Command
Compute

Write
Read

Post-process

Figure 4.22. Amount of time spent in the various components of the interface by a simulation writing
40GB files to DSM using block-cylic redistribution and DMAPP with ParaView on Cray
XK6.

By making use of the same large dataset (40GB) that we used in the previous sections (see
section 4.2.2), and which contains 4.92 × 10􀁵 particles, we show in figure 4.22 the amount of time
spent in the different parts of the pipeline using the DMAPP inter-communicator presented in the
previous sections (as this communicator allows the highest transfer rate and lowest latency on Cray
XK6). Again, to be able to steer the simulation, we must add in the simulation code calls (such
as h5fd_dsm_steering_scalar/vector_get) to check for commands and parameters that
have potentially been sent back to the DSM from the ICARUS plug-in. This time corresponds to
the CheckCommand plot and its order of magnitude is the millisecond. Write operations from the

A Parallel HDF5 Interface: Implementation and Integration 83

simulation to the DSM is on the order of the second or sub-second. As we described in 4.2.1, new
data received from the DSM triggers a NEW_DATA notification, which updates asynchronously
the ParaView pipeline (this implies a parallel read followed by post-processing operations). Read
operations from the DSM to ParaView respects the same order of magnitude and is generally faster
(see 4.1.4) than writing to the DSM, as DSM hosts and ParaView servers share the same nodes. In
this particular example the bottleneck of this loop is the Compute time which is here on the order
of 1 × 10􀁮s (the simulation that has been used for this test is presented in more details in 5.1).
Writing and reading to the DSM is an asynchronous operation and this means that simulation
and ParaView servers operate asynchronously on the DSM data. Therefore the total time spent in
updating the visualization pipeline depends here on the time spent by the simulation to compute
a time step.

4.2.4. Integration Conclusions

In this chapter, we presented a plug-in called ICARUS, which enables integration of our frame-
work into the well-known ParaView application. By making use of XML templates, which allow
description of a very large variety of data models and layouts, we showed how one can simply
interface a simulation code that writes data using the HDF5 library to our plug-in, removing also
the need from specifying data dimension and precision. For efficiency and better load balancing
of read operations, we also showed how one can extend XML description templates to make use
of specialized readers, such as the H5Part reader that allows gigabytes of particle data to be read
in sub-second time. The ability to make use of multiple custom readers which have been tuned
for a particular kind of data layout within the same framework demonstrates the flexibility of the
approach and the ease with which it may be extended. Any reader that is implemented on top
of the HDF5 library can be easily modified to make use of the dsm driver (as we did for XDMF,
H5Part) and allows the combination of the usual ParaView filters and post-processing tools in
the ParaView pipeline without any particular restriction. By fine tuning data transfers using Cray
DMAPP libraries as well as the simulation and analysis I/Os, we can therefore minimize the delay
experienced by the user before performing analysis tasks on their data.

For steering, we showed how one can generate different types of controls by extending the
description templates with an Interaction section. Controls are generated on-the-fly and do not
require any recompilation or re-linking of the libraries. The framework is therefore generic enough
and can be used as is with any simulation code. Sending commands back to the simulation requires
a minimal overhead, which depends on the communication system used and can be negligible,
especially for simulations where the computation time of one time step exceeds the order of the
second. More complex controls such as the re-meshing of objects can increase the transfer time

84 A Parallel HDF5 Interface: Implementation and Integration

depending on the resolution of the object that is sent back. In the next chapter we present concrete
usage examples through two different simulation codes.

Chapter 5.

Application on SPH Simulations: Model
Validation

Utilization of a common framework for in-situ visualization within a broad range of sim-
ulation applications was one of the main objectives for this work. While a large effort for

adapting and modifying the structure of the simulation codes can be required for steering and
enabling modification of objects (e.g., a re-meshing operation), we showed in the previous chap-
ter that re-routing data to the DSM for in-transit visualization purposes only requires one line of
code to be modified (for simulation codes that already make use of HDF5). In this chapter, we
show how one can make use of the platform presented in chapter 4 to: visualize and analyze in-
situ data coming from the simulation while removing the disk I/O bottleneck; easily send steering
commands as well as steering data for object modification back to the simulation. We choose in
this chapter two simulation codes from the NextMuSE [24] European project and study in details
in 5.1 and in 5.2 the integration of our framework, as well as the advantages brought by our ap-
proach. We finally illustrate in 5.3 the validation of our model through some of the NextMuSE
project milestones that were to be reached.

Introduction to NextMuSE Test Cases

As explained in 1.2, the NextMuSE [24] European project defines a multidisciplinary environ-
ment between different simulation codes, which may use different data representations, in various
domains such as energy, transport and health-care. In the following sections, we demonstrate the
integration of our framework into two different simulations codes: one capable of running on a
large number of CPUs, producing large amounts of data but at a low frequency; one running on
GPU, producing smaller amounts of data but at a higher frequency. Several computational fluid
dynamic models and particularly SPH models now make use of GPGPU computing (General-
Purpose Computation on Graphics Hardware [35]). This is for example the case of [31] where a

85

86 Application on SPH Simulations: Model Validation

very interactive simulation can be obtained and rendered using shaders or ray-tracing creating the
effect of a real fluid. To obtain such a level of interactivity, the number of particles is generally
decreased or the precision of the results and SPH computation models are less accurate to decrease
the number of computational operations. In the following test cases, as per the NextMuSE ob-
jectives (see 5.3) that are defined for high performance computing, we consider a relatively high
number of particles (i.e., in the order of 10 million particles, even if as we will see, the GPU sim-
ulation test case does not reach this order of magnitude yet). We can therefore keep a reasonably
good level of interactivity (on the current hardware) while having a good degree of accuracy in our
results.

5.1. Integrating ICARUS into SPH-flow

The solver we use here is designed for CPU computing and uses several different models that
provide a high degree of accuracy, which of course have the consequence that the more precision
requested, the lower the interactivity. This solver, called SPH-flow [58] and developed by ECN
(Ecole Centrale de Nantes) and HydrOcean, is able to compute fluid and multi-physic simulations
involving structures, fluid-structure couplings, multi-phasic or thermic interactions on complex
cases. The current version of SPH-flow is mainly dedicated to the simulation of high dynamic
phenomena, possibly involving complex 3D topologies that classical mesh-based solvers cannot
handle easily. A significant effort has been made in the context of NextMuSE to improve the SPH
model towards more accuracy and robustness, together with high performance on thousands of
processors.

48 independent paddles

water basin

absorbing beach

(a) ECN wave tank, 50 × 30 × 5 m. (b) 48 independent flap wave-maker.

Figure 5.1. SPH-flow test case.

Application on SPH Simulations: Model Validation 87

The test case that we use for this code is a wave tank simulation, based on a real model that was
built at ECN. The ECN wave tank [27] is a water basin composed of a 48 independent paddle
wave-maker and of an absorbing beach (see figure 5.1). Several types of waves can be generated,
their amplitude and frequency varying by modifying the position and speed of the paddles to
simulate real sea conditions. Objects such as ship/hull models are usually placed into the tank
so that experiments and measures can be conducted to determine the behavior of the ship under
certain wave patterns.

Using the SPH-flow solver, the same type of experiment can be modeled and one can therefore
compare the real and simulated test cases. We focus in the following section on this experiment:
in 5.1.1, on the in-situ visualization aspects and in 5.1.2, on the steering and re-meshing aspects.
We conclude on the integration of our framework in 5.1.3 and present on-going developments.
However as of the date this thesis is written, the simulation code cannot handle multiple paddles
and instead of a wave maker composed of 48 paddles, we consider in the following sections a
simplified test case that makes use of only one single paddle.

5.1.1. In-situ Visualization

As previously said the test case used here is a wave maker. Three different types of objects are there-
fore defined in the simulation: the particles representing the fluid, the tank (mainly the application
domain boundaries), the paddle of the wave-maker, an object (cube, sphere, etc) falling into the
fluid. For in-situ visualization, as the simulation writes data into HDF5 files, one may therefore
consider the hierarchical structure of figure 5.2.

Particles#𝟎

X/Y/Z/…

Mesh#𝟎

Connectivity/X/Y/Z/…

Mesh#𝟏

Connectivity/X/Y/Z/…

Mesh#𝟐

Connectivity/X/Y/Z/…

Root (/)

Figure 5.2. Hierarchical approach representation of SPH-flow data (for clarity, other attribute arrays such
as pressure, velocity, etc, are not represented but are stored at the same level as the point and
connectivity arrays).

The fluid particles are represented as X, Y, Z coordinates and are stored using the H5Part [3]
description in a group called Particles#0 (so that we can make use of the H5Part reader approach
presented in 4.2.2 to read particle data more efficiently in parallel from the DSM). Other objects

88 Application on SPH Simulations: Model Validation

are stored using regular meshes in separate groups, respectively Mesh#0, Mesh#1 and Mesh#2 so
that we can easily access and modify them if necessary as we will see in 5.1.2. Once this structure
defined, data can be written to the DSM by switching from the regular HDF5 mpio driver to
the dsm driver. As writing to the DSM is an operation that does not involve participation of
the post-processing side for synchronization, the simulation can write data and exit from the I/O
routines without waiting for the post-processing operations to complete.

An overview of the code (Fortran) is given in annex D.1. Since the code was already able to
write data using the HDF5 format, switching to the dsm driver was a quick and easy operation as
it requires only the addition of an h5pset_fapl_dsm_f call. Note that the SPH-flow simula-
tion code can also compute and write inside the main I/O routine isosurfaces (using a marching
cube [45] technique) so that one can easily visualize the surface of the fluid. This extra data was
originally written to a separate file. However, because the dsm driver can only store a single file at
the moment, this unfortunately caused problems. By default, a file created in the DSM triggers
a wipe of the memory (as opposed to a file open). Consequently, the second file written (corre-
sponding to the marching cube output) would remove the first. To solve this problem, calls to
H5Fcreate were replaced by H5Fopen with checks to test if the DSM usage was enabled (as the
code must still operate when no in-situ visualization capability is required). This represented the
only change we add to make to enable in-situ visualization of SPH-flow data. In future versions
of the driver, adding support for multiple file storage would make this operation even easier.

Writing to the DSM

To determine the performance one can get when writing to the DSM using the HDF5 dsm driver
with SPH-flow, the simulation is executed on the same Cray XK6 machine used in the previous
chapter and with the same configuration. To study the scalability (as a reminder), the number of
processes is increased, keeping a constant number of processes per node until the number of nodes
available is exhausted. Therefore the number of processes on the XK6 used in this configuration
for writing is 4 per node until 128 nodes are reached (512 processes), at which point to saturate
the bandwidth the number of processes per simulation node is increased up to 16 (giving 2048
processes writing data in total). TheDSM (which receives data) is distributed among 40 nodes (160
processes, 4 per node). The resulting write time is represented in figure 5.3. Note that the write
time represents the time spent in the I/O routines of the SPH-flow code and cannot be directly
associated to a write bandwidth result (as extra allocations, memory copies, etc, are performed). In
this particular example 20 × 10􀁳 particles are written, which gives a total file size of about 1.8GB.

One can easily notice that writing to the DSM is always a cheaper operation than writing
to the file system, and more importantly than computing a time step. Also while we reach the

Application on SPH Simulations: Model Validation 89

0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048

Ti
m
e
(s
)

Number of processes

Compute (CPU)
Write (DSM)

Write (MPI I/O)

Figure 5.3. Compute and write time on Cray XK6 of 20 × 10􀁳 particles using SPH-flow—Comparison be-
tween I/Os to disk and DSM (block-cyclic redistribution with DMAPP inter-communicator).

maximum number of nodes for 512 processes, we keep a good scalability up to this point. When
the number of processes per node is increased to saturate the bandwidth, one can see that the
performance decreases, but without showing any significant drop point. Also notice that writing
to the file system performs very poorly in this case (which is mainly due to the small number
of Lustre object storage targets available and to configuration/hardware issues). Even in a better
configuration such as the one presented in [81], writing to the file system can still represent a
real bottleneck, particularly so when the file system is saturated, whereas there is no real hardware
limitation (except the total number of nodes available) for the number of DSM nodes used for
receiving data from the simulation. The bottleneck becomes even more visible when the frequency
of outputs is high, as the time spent for writing may become larger than the computation between
two writing operations. Being able to redirect data to a distributed shared memory allows us in
this case to remove a significant bottleneck, as well as giving us the ability to visualize and analyze
data in real-time.

Reading from ICARUS

Once data is written to the DSM, the hierarchical description stored in the HDF5 file metadata
does not allow the reader to distinguish position arrays from velocity arrays (unless specific names
or groups are used, which would require usage of a particular layout, such as the one introduced
by H5Part [3]). To enable the use of the XDMF reader presented in 4.2.2, the following XML
description file (which describes the topology, geometry and attributes defined in the HDF5 file)

90 Application on SPH Simulations: Model Validation

must therefore be passed to the ICARUS ParaView plug-in (only the visualization part of the XML
description is presented here, the interaction part is presented in 5.1.2).

<Icarus>
<Visualization>

<Xdmf>
<Grid Name=”Particles”>
<Topology TopologyType=”Polyvertex”/>
<Geometry GeometryType=”X_Y_Z”>

<DataItem Name=”X”>/Particles#0/X</DataItem>
<DataItem Name=”Y”>/Particles#0/Y</DataItem>
<DataItem Name=”Z”>/Particles#0/Z</DataItem>

</Geometry>
</Grid>
<Grid Name=”Tank”>
<Topology TopologyType=”Triangle” BaseOffset=”1”>

<DataItem Name=”Connectivity”>/Mesh#0/Connectivity</DataItem>
</Topology>
<Geometry GeometryType=”X_Y_Z”>

<DataItem Name=”X”>/Mesh#0/X</DataItem>
<DataItem Name=”Y”>/Mesh#0/Y</DataItem>
<DataItem Name=”Z”>/Mesh#0/Z</DataItem>

</Geometry>
</Grid>
<Grid Name=”Body”>
<Topology TopologyType=”Triangle” BaseOffset=”1”>

<DataItem Name=”Connectivity”>/Mesh#1/Connectivity</DataItem>
</Topology>
<Geometry GeometryType=”X_Y_Z”>

<DataItem Name=”X”>/Mesh#1/X</DataItem>
<DataItem Name=”Y”>/Mesh#1/Y</DataItem>
<DataItem Name=”Z”>/Mesh#1/Z</DataItem>

</Geometry>
</Grid>
<Grid Name=”Wave Maker”>
<Topology TopologyType=”Triangle” BaseOffset=”1”>

<DataItem Name=”Connectivity”>/Mesh#2/Connectivity</DataItem>
</Topology>
<Geometry GeometryType=”X_Y_Z”>

<DataItem Name=”X”>/Mesh#2/X</DataItem>
<DataItem Name=”Y”>/Mesh#2/Y</DataItem>
<DataItem Name=”Z”>/Mesh#2/Z</DataItem>

</Geometry>
</Grid>

</Xdmf>
</Visualization>

Application on SPH Simulations: Model Validation 91

</Icarus>

This description can actually be seen as a simple way of associating the hierarchical structure
of figure 5.2 to the XDMF reader. Four Grids are defined, one per object type; this allows the
definition and usage of different data representations, which can be structured or unstructured.
Data stored in theDSMdoes not have to follow a unique datamodel and one can store particle data
as well as mesh data with different storage layout conventions. As explained in 4.2.2, the XDMF
reader reads data in parallel by grids (i.e., XDMF grids are distributed among processes, which
read pieces of data corresponding to that particular grid). In this case, considering𝑁 processes are
used for parallel visualization, only the first four processes will be used for reading data. By using
the H5Part reader for the particle grid, data from this grid can be read in parallel using each of the
𝑁 processes. The following XML description is therefore preferably used instead:

<Icarus>
<Visualization>
<H5Part Name=”Particles”>

<Step Name=”Particles”/>
<Xarray Name=”X”/>
<Yarray Name=”Y”/>
<Zarray Name=”Z”/>

</H5Part>
<Xdmf>

<Grid Name=”Tank”>
<Topology TopologyType=”Triangle” BaseOffset=”1”>

<DataItem Name=”Connectivity”>/Mesh#0/Connectivity</DataItem>
</Topology>
<Geometry GeometryType=”X_Y_Z”>

<DataItem Name=”X”>/Mesh#0/X</DataItem>
<DataItem Name=”Y”>/Mesh#0/Y</DataItem>
<DataItem Name=”Z”>/Mesh#0/Z</DataItem>

</Geometry>
</Grid>
...

</Xdmf>
</Visualization>

</Icarus>

Once this description passed to the ICARUS plug-in, a user can interact with the data, add
analysis filters; the instantiated ParaView pipeline is automatically updated as new data is received.
Figure 5.4 shows an example where a cube is falling into the tank while the wave maker is starting
creating waves. As previously said, one can see in this figure that both mesh and particle data are
used, allowing the model to use the most adapted types of representation.

92 Application on SPH Simulations: Model Validation

Figure 5.4. In-situ visualization of SPH-flow data (and marching cube output) using 20 × 10􀁳 particles on
Cray XK6. Pressure values are represented here.

5.1.2. Computational Steering

Once one can visualize data in-situ, the next step of integration is the insertion of steering capabil-
ities into the simulation code. In the context of SPH-flow several parameters can be modified. It
may for example be interesting to make dynamically vary the frequency and the amplitude of the
wave maker, or experiment the effect of the generated waves onto an object placed into the tank
without having to relaunch the simulation. It may also be interesting for one to modify the original
object during computation, thereby altering its shape or increasing its resolution on demand.

Defining Steering Commands

To define the commands that will be available for a user, the XML template description file (which
needs to be passed to the ICARUS plug-in) must be extended with an <Interaction> section
(see 4.2.3). In this example, we consider the case where an object placed into the tank can be
dynamically re-meshed and the force applied to this object as well as its momentum can be in-
teractively modified (so that the object can be moved in the tank). To modify the force and the
momentum, simple vectors that contain the X, Y and Z components can be sent back, which can
be defined by adding <DoubleVectorProperty> tags into the XML description file. Again,
choosing an appropriate name is important, as this name will be used by the simulation to get data
back from the DSM (therefore this name must be unique). As these vectors are three component
vectors, the number of elements is set to 3. Default values are set to zero. Note that no range

Application on SPH Simulations: Model Validation 93

domain is specified here, so any double value can be sent back to the DSM.The XML sections are
defined below:

<Icarus>
<Visualization>
...

</Visualization>
<Interaction>
...
<DoubleVectorProperty

name=”Force”
command=”SetSteeringValueDouble”
label=”Force on the free body”
number_of_elements=”3”
default_values=”0.0 0.0 0.0”>
<Documentation>
Set the force of the free body

</Documentation>
</DoubleVectorProperty>
<DoubleVectorProperty

name=”Momentum”
command=”SetSteeringValueDouble”
label=”Momentum on the free body”
number_of_elements=”3”
default_values=”0.0 0.0 0.0”>
<Documentation>
Set the momentum of the free body

</Documentation>
</DoubleVectorProperty>
...

</Interaction>
</Icarus>

To modify the object (which is stored in a group called Mesh#1 in figure 5.2), two additional
sections are added. The first one allows the detection of a user command while the second one
defines the HDF5 paths to the new geometry arrays that are to be written into the DSM. In this
case, the same group Mesh#1 is re-used and new data is written into arrays called NewXYZ and
NewConnectivity (which store geometry and connectivity data respectively). The original data
arrays are not overwritten, for implementation reasons it is easier here to simply add new arrays
(that have different dimensions) rather than having to delete the objects from the file and recreate
them (but nothing prevents us from doing it). The XML sections are defined below:

<Icarus>
<Visualization>
...

94 Application on SPH Simulations: Model Validation

</Visualization>
<Interaction>

...
<CommandProperty

name=”ReloadMesh”
label=”Reload mesh”
command=”ExecuteSteeringCommand”
si_class=”vtkSIProperty”>

</CommandProperty>

<DataExportProperty
name=”ModifiedBodyNodes”
command=”SetSteeringArray”
label=”Modified Body Node Data”>
<DataExportDomain name=”data_export”
geometry_path=”/Mesh#1/NewXYZ”
topology_path=”/Mesh#1/NewConnectivity”
command_property=”ReloadMesh”>

</DataExportDomain>
</DataExportProperty>
...

</Interaction>
</Icarus>

Modifying SPH-flow

Once this set of commands is defined in ICARUS, SPH-flow must be modified accordingly.
Adding simple computational steering to the simulation did not require significant effort (see
annex D.1). On start, calls to set the time range of the simulation were inserted, which actually set
the start and end time values of the simulation in ParaView. Passing this information to ParaView
is very important for steering as it allows us to create time dependent interactions using animation
keyframes.

The ParaView animation keyframe editor is a very useful tool that can be used for steering
objects and parameters of the simulation. As illustrated in figure 5.5, setting the time range in the
simulation updates the start and end time values in the animation panel. Then parameters can
be animated depending on the current time value that is picked up from the simulation. If we
consider a simple case where a parameter varies from a value 𝑎 to a value 𝑏 between 𝑡􀁮 and 𝑡􀁯, a
keyframe can be defined, which then automatically interpolates the value of the parameter at the
current time step (using a given interpolation function). More complex scenarios can be defined
and transform filters can be applied to for example modify the position or the shape of an object

Application on SPH Simulations: Model Validation 95

Figure 5.5. Time range is set in the animation view at the initialization of SPH-flow, which allows us to
make use of animation keyframes for steering objects. As the current time value is incremented,
the animation view is updated.

over time. We can therefore create semi-automatic interactions, that allow automatic reexport
of values into the simulation. In the simulation code, modifying parameters such as the wave
maker frequency or object momentum becomes trivial in comparison as it requires only simple
h5fd_dsm_steering_scalar/vector_get calls with the name of the arrays defined in the
XML description.

The largest part of the work has been to allow the code to reload a new geometry from the
DSM when receiving a reload command. This is because this capability did not exist before; it
represents an entirely new development in the simulation code and care must be taken that when
the new geometry appears, the associated variables do not remain uninitialized, which would cause
the simulation to blow up. The strategy of figure 5.6 is used.

Once the simulation is initialized and has started the computation loop, we add a call to
h5fd_dsm_steering_is_set to check the presence of a ReloadMesh command. If this com-
mand is set, data corresponding to the object that is to be reloaded is read from the DSM, and the
object kinematics are redefined (gravity center position, velocities, etc). Faces and normals to the
object are then re-initialized. If the command is not set, the simulation carries on computation
until it reaches convergence (which is in this case the simulation physical end time value defined
by the user) or until a new ReloadMesh command is found.

96 Application on SPH Simulations: Model Validation

Initialize

Check Reload Command

Serve a Reload Mesh
Command

Read Body
Mesh Data

Read Body
Kinematics

Initialize Body
Nodes, Faces
and Normals

Solve Next Step

Check for
Convergence,
End of Loop

Exit

Figure 5.6. SPH-flow computing loop with mesh reload capability.

Figure 5.7. The interface generated for SPH-flow using the previously described XML template. The bot-
tom left panel contains the generated GUI that is used to enter/modify parameters to reload
the sphere into the simulation. The sphere is written into the DSM in parallel.

Application on SPH Simulations: Model Validation 97

(a) 𝑡􀁭. (b) 𝑡􀁮. (c) 𝑡􀁯.

Figure 5.8. Three images from a sequence where a sphere is re-injected by ParaView and written into the
DSM where it is reread by the SPH-flow simulation.

Figure 5.7 shows a screenshot of an SPH-flow steering session. We are able to pause/resume the
simulation (not necessary but more convenient) and place an arbitrary geometry in instead of the
cube, using a reload command. For illustration, we show a sphere generated on 4 processes written
in parallel into the DSM, read in parallel by SPH-flow and used to compute the flow, which is
then exported by SPH-flow and read by ParaView as a particle dataset. The sequence of images
in figure 5.8 shows snapshots from an accompanying animation. At 𝑡􀁭 the cube is falling into the
fluid. At 𝑡􀁮 the sphere has been re-injected into the simulation and starts interacting with the fluid.
Notice that the impression of the cube object that was present in the fluid when the simulation
was initialized is still present and is progressively disappearing. At 𝑡􀁯 the wave created by the wave
maker is interacting with the newly introduced object (i.e., the sphere). As the simulation follows
the model of figure 5.6, nothing prevents us from reloading another object during the same run
or reload the same object from ParaView using animation keyframes (see [81]), the object being
moved or deformed according to predefined paths, which can be adjusted on the fly.

5.1.3. Conclusion and Future Developments

In the previous section, we showed how one can make use of the ICARUS framework to reload a
mesh on the fly and to dynamically replace an object moving in the tank (a real example would be to
replace the cube with a hull). One might argue that operations such as transforming or deforming
meshes should be handled inside the simulation rather than outside of it, and in many cases this
would be true, but as the complexity of operations required (or imagined) grows, it becomes harder
to integrate all the features inside the simulation and it makes more sense to couple an application
(such as ParaView) dedicated to these tasks to it. To this end, we also sought to implement a wave
maker which could be controlled by the user to produce a variety of conditions under which the
models can be tested.

98 Application on SPH Simulations: Model Validation

Figure 5.9. A custom control for shaping a wavemaker in ParaView. The paddle is generated and distributed
on 4 processes and re-loaded into the simulation in parallel.

(a) 𝑡􀁭. (b) 𝑡􀁮. (c) 𝑡􀁯.

Figure 5.10. Three images from the start of sequence of wave paddle oscillations. As the paddle resolution
increases, different types of waves can be created.

Application on SPH Simulations: Model Validation 99

The wave maker module represented in figure 5.9 can be generated in parallel, and each piece
is written to the DSM in parallel, which can be particularly useful when the number of polygons
produced becomes very high. Paddle resolution/count may be dynamically adjusted and each
paddle may be controlled by a frequency, phase and amplitude which may be linked to sliders in
the GUI, or to the animation panel provided by ParaView (see figure 5.5). Patterns of motion may
therefore be created. The engineer may adjust controls on the fly, but certain constraints must be
imposed to prevent overlying large changes in positions of the paddle surfaces between time steps
which can cause the simulation to fail. As shown in figure 5.10, during a short simulation run, the
paddle is only allowed to move using a low amplitude but resolution can be increased on demand
so that different wave types can be experimented. Note that at this stage the simulation does not
support well re-meshing of deformable objects and more work is required to handle this type of
re-meshing operation.

A considerable amount of effort has gone into making the use of the ICARUS plugin as easy as
possible for an engineer to create a custom panel with GUI elements that can be adjusted to control
the simulation, without any knowledge of ParaView or its internals, simply by creating XML to
describe outputs, controls and inputs back to the simulation. There are times however, when it is
necessary to create a custom control for a specific simulation such as a wave maker module and its
associated interface, which are currently being developed.

5.2. Integrating ICARUS into an ALE-SPH code

In this section we focus on another code used for the simulation of water flows inside Pelton tur-
bines. The Pelton turbine (see figure 5.11) is a hydraulic machine consisting of buckets on a rotating
runner driven by high-velocity impinging water jets, used to produce energy from high head wa-
terfalls. Numerical simulation can help in improving the runner design and the turbine efficiency,
but traditional techniques are unable to accurately model the water sheets released from the buck-
ets, because of excessive numerical diffusion. Using SPH, it is possible to study the interactions of
water sheets issued from one jet on the other and the resulting possible perturbations.

The SPH-ALE code used [49] is a well-known SPH code developed by ANDRITZ HYDRO
and ECL (Ecole Centrale de Lyon). The version of the code makes use of GPUs for accelerating the
computation. However at the moment, the code is only capable of running on one single GPU
(the multi-GPU version being still in development), therefore only a small number of particles
(about 2 × 10􀁲 in the following examples) are used. While several models and test cases can be
simulated using this code, we focus in the following sections on the Pelton runner simulation and
see how the integration of our platform into this code can allow an engineer to perform real-time

100 Application on SPH Simulations: Model Validation

(a) Two-jet horizontal Pelton turbine in its casing. (b)Horizontal Pelton test rig in operation.

Figure 5.11. Pelton turbine.

studies. In 5.2.1 we detail the in-situ visualization aspects and in 5.2.2 the steering aspects. We
conclude on the integration of our framework into this simulation in 5.2.3. Also note that complex
data array exchanges (used for object re-meshing), which have been highlighted in the previous
simulation code, may only be integrated into this code in a future work presented in 5.2.3.

5.2.1. In-situ Visualization

An overview of the code (C++) is given in annex D.2. The code follows the usual structure of
simulation codes with a phase of initialization and domain decomposition, and a computation
loop over time. The specificity of this code is the strong usage of C++ template functions that
allow the same code to be used with different data types. At the end of each iteration, data output
is written to disk using the HDF5 format. Note that once the code was extended to make use of
the HDF5 file format for its data output, using it with the dsmHDF5 driver was straightforward
(as, again, switching drivers only requires one line of code to be modified in the simulation code).

On the post-processing side, ParaView is instantiated and the ICARUS plug-in loaded. When
the user enables the DSM (which gets created on the ParaView server, see 3.4.2), a port is opened
on the host, and the DSM service starts waiting for new connections. It also creates a configuration
file that contains the host name, port, and inter-communication method (socket, MPI, DMAPP)
that the simulation has to use for communicating with theDSM.When the simulation is launched,
it reads this configuration file and it can then start sending data, etc, to the DSM.

The hierarchical data representation used by this code is defined in figure 5.12. In this case, the
Pelton turbine is composed of 21 buckets, which are modeled using particles (but could equally
well be modeled using meshes). These buckets are stored into separate HDF5 groups, named

Application on SPH Simulations: Model Validation 101

Solid#0, Solid#1, …, Solid#20 respectively (which contain position, pressure, velocity arrays, etc).
The fluid injected into the turbine is stored into a separate group called Particles#0 (to follow the
H5Part layout and make eventually use of the H5Part reader presented in 4.2.2 for optimized
reading).

Particles#𝟎

X/Y/Z/…

Solid#𝟎

position/…

Solid#𝟏

position/…

Solid#…

position/…

Solid#𝟐𝟎

position/…

Root (/)

Figure 5.12. Hierarchical approach representation of SPH-ALE simulation data (for clarity, other attribute
arrays such as pressure, velocity, etc, are not represented but are stored at the same level as the
geometry arrays).

Note that in this case, as fluid particles are injected into the runner, the number of particles at a
given time is undefined. While the XDMF reader requires by default the size of data to be explicitly
stated, in our case by making use of the XML template format that we defined, dimensions do not
need to be passed directly by the user, which is a very important condition for in-situ visualization.
A shortened template file for reading the turbine data is given below:
<Visualization>

<Xdmf>
<Grid Name=”Particles”>

<Topology TopologyType=”Polyvertex”/>
<Geometry GeometryType=”X_Y_Z”>
<DataItem Name=”X”>/Particles#0/X</DataItem>
<DataItem Name=”Y”>/Particles#0/Y</DataItem>
<DataItem Name=”Z”>/Particles#0/Z</DataItem>

</Geometry>
</Grid>
<Grid Name=”Solid 0”>

<Topology TopologyType=”Polyvertex”></Topology>
<Geometry GeometryType=”XYZ”>
<DataItem>/Solid#0/position</DataItem>

</Geometry>
</Grid>
<Grid Name=”Solid 1”> ... </Grid>
...
<Grid Name=”Solid 20”> ... </Grid>

102 Application on SPH Simulations: Model Validation

</Xdmf>
</Visualization>

As described before, all the different sub-blocks are included and written into XDMF Grid
objects, one Grid for each type (in this case) of solid or fluid particles. When passing this XML
template to the ICARUS plug-in, the XDMF reader will read data in parallel by grid (see 4.2.2).
As illustrated in figure 5.13, which shows data redistribution using a simple Process Id filter, solid
particles are evenly distributed between processes. However if we follow the previous XML tem-
plate, fluid particle data can only be read by a single process. As the number of fluid particles
being injected increases, being able to read the fluid particles in parallel from the DSM is also an
important requirement. To ensure this point, we therefore make use of the same H5Part reader
presented in 4.2.2 to obtain the result of figure 5.13.

Figure 5.13. Pelton runner visualized in-situ using ICARUS.The solids are composed of≃ 5 × 10􀁱 particles
while the fluid is composed of ≃ 1.5 × 10􀁲 particles.

Being able to read all the data in parallel allows the analysis filters applied to the data to also
operate in parallel without any extra data redistribution [4]. The outputs of probes, plots, bar
charts all update automatically when the plugin has loaded new data from the DSM and triggers
pipeline updates in the ParaView GUI. Owing to the fact that a separate DSM service thread is
operating, data is being received even while the user is interacting with the previous result and the
refresh of data happens without any user intervention. In a case like this where the code runs on
GPU, a time step can be computed in sub-second time while the analysis may be performed in the
same order of magnitude (or more depending on the analysis that is to be applied). Therefore being

Application on SPH Simulations: Model Validation 103

(a) 𝑡􀁭. (b) 𝑡􀁮. (c) 𝑡􀁯.

Figure 5.14. Three images from a sequence where water is injected into the Pelton runner. Visualization is
realized on 4 processes.

able to minimize as much as possible the I/O operations from the DSM is an important factor to
guarantee a live and interactive visualization of data, without slowing the simulation code if the
data output frequency is very high.

5.2.2. Computational Steering

The on-line steering of such a computation by using ICARUS can include variation of numerous
upstream parameters in order to simulate different operating modes of the turbine in one sim-
ulation run. We consider in the following section the steering of simple parameters such as the
modification of the runner velocity or the radius of the jet injecting fluid particles into the turbine.

Defining Steering Commands

To create commands in the ICARUS plug-in, users must extend the XML description template
(used for reading data) with an Interaction section (see 4.2.3). To modify parameters such as
the runner velocity or the jet radius, the user only needs to send scalar values (from the plug-in)
back to the DSM. In this particular case, one may define DoubleVectorProperty fields in the
XML description and specify a range domain, which is a constraint to the parameter values that
the simulation cannot exceed. We consider the following template:

<Icarus>
<Visualization>
...

</Visualization>
<Interaction>
<DoubleVectorProperty

104 Application on SPH Simulations: Model Validation

name=”NewRunnerVelocity”
command=”SetSteeringValueDouble”
label=”Runner velocity”
number_of_elements=”1”
default_values=”-62.0” >
<DoubleRangeDomain name=”range” min=”-105.0” max=”10.0”/>
<Documentation>
Set the rotational velocity

</Documentation>
</DoubleVectorProperty>
<DoubleVectorProperty

name=”NewJetDiameter”
command=”SetSteeringValueDouble”
label=”Jet radius”
number_of_elements=”1”
default_values=”1.0” >
<DoubleRangeDomain name=”range” min=”0.0” max=”1.0”/>
<Documentation>
Set the jet radius
</Documentation>

</DoubleVectorProperty>
</Interaction>

</Icarus>

The velocity values can be here positive or negative, leading the runner to rotate in one direction
or the other and setting a value of 0 will even stop the rotation of the turbine. The jet radius can
be reduced proportionally to its initial size and can therefore even be reduced to 0, stopping the
injection of particle fluids into the turbine.

Modifying the Simulation

Without any modification of this simulation, computing a time step using the GPU with a low
number of particles (2 × 10􀁲) and single precision can be achieved in 1 × 10−􀁮 seconds1. There-
fore, adding commands and steering operations without slowing down the simulation is an im-
portant requirement. However as we showed in 4.2.3, checking for commands and new data
from the DSM can be performed in a much lower order of magnitude (i.e., in the order of the
millisecond). As described in annex D.2, the steering calls inserted follow for this code the same
scheme adopted for reloading meshes into SPH-flow and we check for new values using a call
to h5fd_dsm_steering_is_set with the corresponding name of the steered parameter (e.g.,

1The time highly depends on the precision used, on the fluid/structure interaction computations and on various
solving parameters that can be set in the simulation to control the precision of the results.

Application on SPH Simulations: Model Validation 105

NewJetDiameter) at the beginning of an iteration. If new values are found in the DSM, the
requested parameters are modified.

While we are looking in this particular case for a very interactive simulation that can be steered
(as opposed to the SPH-flow test case running on CPUs), adding several analysis and rendering
filters may actually slow down the simulation if the frequency of the outputs is too high. Therefore
the output frequency parameter could also be interactively steered by the user to adapt the visual-
ization and steering experience to his needs. Also, while writing a time step from the simulation
to the DSM does not require waiting for the actual post-processing operations to complete, if the
post-processing side has locked the file (see 3.1.4) and requires access to the DSM multiple times
during the update of the ParaView pipeline, the simulation will have to wait for the file to be un-
locked before being able to write a time step and carry on computation. In other words, making
the post-processing application keep the file lock can stop the simulation from writing data. One
solution that we will implement in a further implementation of the dsm driver will be to query
the status of the lock, so that one can potentially skip the writing of a time step if necessary.

Figure 5.15. Jet radius steered over time using ICARUS.

Figure 5.15 shows an example of a steering session using ParaView analysis filters. In this
example, the jet radius is varying over time and one can easily notice that the injection of particles
decreases when the radius decreases. On the right of figure 5.15 are displayed the actual jet radius
in function of time and the corresponding Shepard coefficient [30]. The Shepard’s Method can be
defined as an inverse distance weighted calculation, which sums contributions from all neighboring
particles to the sample point. The Shepard coefficient has the useful property that within the

106 Application on SPH Simulations: Model Validation

material (when using normalized units), it will be close to unity, outside it falls to zero, and at the
boundary of the fluid takes on values in between (which is then particularly useful for applying
contour filters). In this case, the Shepard coefficient is obtained in ParaView using an SPH line
probe filter [9] (represented in red for clarity), which has been placed in the injected fluid along
the Y-axis. As the jet width is particularly small, placing this line probe filter along the Y-axis allows
us to get values of the Shepard coefficient varying at the same time of the jet radius (as the number
of neighboring particles is small).

As described in annex D.2, other parameters such as the runner velocity, the deflector an-
gles or the bucket position can be steered using the same method. These parameters can also be
steered using the animation panel of ParaView so that a parameter value given by the user can be
incrementally reached over time (see 5.1.2).

5.2.3. Conclusion and Future Developments

In the previous section, we showed how one can make use of the ICARUS framework to modify
parameters of a very interactive simulation on-the-fly. Data can be analyzed by adding analysis
filters to the ParaView post-processing pipeline, these filters being updated as new data is picked up
from the DSM. In a real scenario such as the one we presented, an engineer can enable interactive
modification of a parameter such as the jet radius or the runner velocity with little effort (i.e., by
simply extending an XML description file and adding the corresponding calls in the simulation to
get the data).

However, while we showed that constraints on the parameters can be defined by setting a range
domain, we are not able at the moment to define interactive constraints, which would for example
prevent excessive values from being passed to the system (which would in turn break physics laws).
Even though one can set animation keyframes from ParaView, allowing parameters to be increased
from a limited value over time (by following a ramp/step/... interpolation function), these param-
eters are not directly linked to the simulation results and are only user controlled. Therefore to
go further in our steering approach, additional developments are necessary on the post-processing
side to allow direct interaction and control between the simulation and the GUI entered parame-
ters. When modifying a parameter, the simulation must therefore, for now, compute a value that
is said acceptable for the system, which is of the responsibility of the user or of the simulation code
developer.

It is worth noting that the test case previously presented only realizes at the moment exchanges
of parameters and does not make use of all the features provided by our framework. Further devel-
opments may therefore include re-meshing capabilities such as the ones presented in section 5.1.2.

Application on SPH Simulations: Model Validation 107

While the previous steering requests are only related to the modification of turbine parameters,
another problem, which could be integrated into the simulation, is the erosion impact from sedi-
ments onto the runner buckets (see figure 5.16).

Figure 5.16. Damages on Pelton runner, Malana, India (credit: ANDRITZ HYDRO).

Based on the jet pressure values and the concentration of sediment in the water, one would
apply a Paraview erosion filter onto each bucket (which has direct interaction with the water jet)
and generate deformed buckets (that include erosion results). Note that in this simulation buckets
are composed of particles; therefore these buckets must be composed of a reasonably high number
of particles (so that interpolating a particle displacement due to erosion can actually make sense).
Each of the eroded/modified buckets would then be sent back to the DSM and reloaded into the
simulation (following the scheme of figure 5.6). The simulation would therefore include in the
results another non-negligible factor that can directly impact the Pelton runner; this would define
another scenario that can directly help an engineer in solving another complex type of situation,
the erosion effects being monitored and tweaked using different controls such as the sediment
concentration, etc.

5.3. NextMuSE Objectives and Validation

We showed in the previous examples that making use of the ICARUS interface and of the HDF5
dsm driver requires little effort for an engineer before being able to visualize and interact with a
simulation (as only a few lines of codes need to be modified). Moreover if the simulation code
does not make use of HDF5 already, making this effort will also improve in most cases simulation
I/Os (as HDF5 provides one of the most comprehensive and efficient way of doing I/Os from a
simulation) and this will therefore be of some benefit for the simulation.

108 Application on SPH Simulations: Model Validation

One of the first objectives from the NextMuSE project was to create an interface capable of
processing data at an estimated rate of about 10 × 10􀁳 particles per second. We showed in 5.1.1
that we are in fact capable of processing 20 × 10􀁳 particles in sub-second time (which can actually
be much lower as this time includes memory allocations specific to the SPH-flow code). Note that
this data rate is obtained on a high-bandwidth network and therefore would be much lower on
low-bandwidth networks such as Ethernet networks. The two SPH codes that we presented had
their output modified in order to write out data using the HDF5 format; they operate in this case
as if they were using a normal parallel file system, but instead have traffic re-routed directly to the
post-processing nodes hosting the DSM.

On the post-processing side, when data is read back from the DSM, we showed in 5.2.1 that
all the different steps of the visualization, analysis operations can be performed in parallel. When
new data is written into the DSM from the simulation, notifications are triggered and all the
visualization and analysis filters are automatically updated; all the ICARUS GUI and ParaView
environment is multi-threaded so that user interactions may take place at the same time. When
steering, we showed in 5.1.2 and in 5.2.2 that we are capable of sending back commands, by
simply adding the appropriate sections into the XML description file that is passed to the plug-in,
or more complex types of data such as meshes that can be used for moving or deforming an object
in the simulation. For the specific needs of the application domains, specific GUI widgets can be
created such as the one we presented in 5.1.3 to allow manual control of geometric elements. The
generated elements can then be sent back to the DSM in parallel.

Integrating the ICARUS interface into the two simulation codes that we presented brought
several advantages: one can visualize the time steps produced by the simulation without suffering
from the bottleneck introduced by disk I/Os and it is now possible to interact with the simulation,
modify objects on-the-fly and analyze the results. For SPH-flow, an engineer is able to interactively
modify the paddle amplitude and frequency (and in a future version the paddle resolution) and
generate and observe the behavior of different wave types onto an object placed in the tank. One
can therefore reproduce experimental results observed in the (real) water tank and compare them
with the simulation to improve the model. The object can also be modified on-the-fly and one can
also imagine creating another specific GUI control for generation and modification of hull shapes
(everything happening in parallel). For the SPH-ALE code presented, one can for now interactively
tweak the Pelton runner parameters and observe their impact, using ParaView animation keyframes
for automatic interpolation of the parameter values over time, while doing analysis of the results.
In the future, the interface can make the simulation integrate new parameters, such as the erosion
impact onto the Pelton buckets, by reloading through the DSM a new set of modified particles
into the simulation.

Application on SPH Simulations: Model Validation 109

The interface that we have created is very light and therefore additional parameters can be
easily steered without significant effort. Integrating the interface into a simulation for in-situ
visualization and steering can be summarized in three steps: make the code use of HDF5 and
add a call to our driver; create an XML description file for reading data; define interactions in
the simulation code and in the XML description file. The interface is therefore very adapted
to the work of an engineer, and does not require any strong knowledge in programming or in
computer science. Moreover as previously demonstrated, the interface provides good performance
and scalability, data being transferred at a transfer rate of more than 60GB/s on the Cray XK6
used for our tests.

110

Chapter 6.

Conclusion and Perspectives

Several layers of our approach have been studied in this thesis; we have shown how in-memory
and distributed HDF5 files may be used to loosely couple simulation and post-processing

nodes of a supercomputer to a GUI on the desktop, enabling interactive manipulation of the sim-
ulation. The ability to make use of a single description file, which enables the use of multiple
customized readers that have been tuned for a particular kind of hierarchical data layout demon-
strates the flexibility of the approach and the ease with which it may be extended. By fine tuning
data transfers using one-sided approaches as well as the simulation and analysis I/Os, we have min-
imized the delay experienced by the user before performing analysis tasks on their data, bypassing
the disk I/O bottleneck introduced by the traditional visualization approach. In the following sec-
tions, we present some of the future directions that can improve and remove the current restrictions
imposed by our framework.

6.1. Using a PGAS Model

All the results presented in this thesis appear to be typical for the kinds of system tested, but
can however be affected by the network topology and capabilities, system configuration, number
of nodes used, number of processes per node, and so on. The space of potential combinations
of parameters for plots is beyond what can be presented, so certain decisions as the number of
processes to use per node were made to try to maximize the data injection and network saturation
to give representative results.

The improvements in transfer rates found when using redistribution are broadly in line with
expectations. In fact, the advantages of data redistribution are well known and date back to the
origins of message passing [75]. Many projects have made use of block-cyclic distribution as a
means of improving performance for scattered data. In particular PGAS languages [1] provide

111

112 Conclusion and Perspectives

options for shared array allocation using block cyclic layouts, which can improve algorithmic per-
formance. Our flexible communicator design opens up the possibility that a PGAS based layer
could be used directly instead of MPI or DMAPP as we have presented here and we shall pursue
this in future work.

6.2. Towards a Virtual Object Layer

In our approach, we focused on redistribution strategies (see 3.2) that operate at the memory level.
These redistribution strategies allow transfers to be optimized by making use of all the DSM nodes
available. However when data is received by the DSM, memory copies remain between the DSM
hosts and the ParaView servers, even if they do share the same nodes. In fact the dsmHDF5 driver
that we implement does not allow DSM memory pointers to be externally re-used and therefore
imposes an extra memory copy between DSM buffers and VTK objects; this is because we operate
at the memory level (Virtual File Layer) and not at the object level.

Simulation

0

…

𝑀− 1

DSO

MDS

0

…

𝑁 − 1

Post-processing

0

…

𝑃 − 1

1. Contact MDS
and store object
name, id, …

2. Allocate space
in DSM file

3. Write
data to DSM

4. Contact MDS
and verify object
name, id, …

5. Get data
from DSM

Figure 6.1. The distributed shared object approach can extend the current DSM approach by operating at
the HDF object level.

Future versions of HDF5 can allow us to remove these extra memory copies by implementing
a Virtual Object Layer (VOL). Using the VOL, we can operate from a higher level and map HDF
objects to any memory representation. As described in figure 6.1, we can extend the DSM ap-
proach by storing additional object information; this approach can thus be defined as a distributed
shared object approach. In this case, a node may host a metadata server (MDS), which can store
object information andmap the object to the DSM.The object is then written into the DSM using
the same mechanisms implemented in the approach presented in this thesis, taking advantage of

Conclusion and Perspectives 113

the redistribution strategies and modes of communication that we integrated. Consequently, more
advanced redistribution strategies (operating at the object level) could also be defined, mapping
particular objects to specific nodes.

Making use of this upper layer could therefore improve several aspects of the work that was
presented in this thesis; it would allow us to define a more complex system where objects can be
dynamically allocated and accessed without any extra memory copy, hence removing the main
limitation, from which our framework can currently suffer.

6.3. Storing Multiple Files

The DSM approach that we presented only makes use of a single file for the exchange of data
and, as we saw in 3.3.4, every new in-memory file written into the DSM replaces the file that is
currently stored (i.e., only one simulation time step can be stored at the same time in the DSM).
This is another limitation and being able to store multiple files in the DSM could therefore add
more flexibility to our approach.

Two main reasons can be given for adding this capability and the first reason is that being able
to store multiple files in the DSMmeans that multiple time steps can actually be stored, giving the
opportunity for the simulation to be rerun from a determined time step. If for any reason during
a steered simulation run, a user needs to modify parameters at a given time step, the simulation
could be relaunched from that particular time step. In other words, a user could write a time step
into the DSM, steer parameters, write another time step, visualize the results and if the results were
wrong or were not satisfying some defined criteria, the user would still be able to go back to the
previous time step and modify the parameter he has just changed.

The second reason for adding this capability is that steering commands (used for modification
of user defined parameters) are for now stored in the same DSM file (see 3.3.3) (while commands
such as pause and resume are hidden from the user by the driver implementation). Since these
commands are written into the same file, there is a potential risk for the user to lose these com-
mands; if (see 3.3.4), for example, a user writes a command from the GUI, but checks for these
commands only after the simulation has written a time step, in which case the file will have been
wiped and the steering command will have been lost. One might argue that users could check for
these commands every time before re-creation of the file by the simulation, however this would
not prevent commands from being lost in more complex scenarios where they must be picked up
at a particular time step (and have been written several time steps earlier). Adding this capabil-
ity would therefore remove the constraint where users have to always check for these commands
before they create a new file in the DSM.

114 Conclusion and Perspectives

6.4. Conclusion

Combination of the three previous future directions can greatly improve the flexibility of the ap-
proach by making use of: PGAS models for redistributing data among the DSM processes; the vir-
tual object layer for manipulating HDF objects and avoid extra memory copies when these objects
have to be mapped to different memory structures; multiple files to store multiple time steps of the
simulation and separate steering commands from simulation data. While these developments are
low-level developments, they would have a direct impact on the steering and visualization session
of a simulation code: making use of advanced redistribution strategies can increase the processing
speed of user data; decreasing memory copies can concretely mean that larger amounts of data
can be visualized and accessed; and finally, storing multiple time steps implies more possibilities
of steering without having to restart the simulation, which can be seen as a replay capability.

It is also worth noting that at the moment, the limiting factor that prevents real-time control
of the simulation is usually the simulation speed itself, which is an order of magnitude away from
where it should be to feel truly interactive. We are for example able to control a simulation of
0.5 billion particles on 2048 (or more) cores; however, reaching this precision means that the
corresponding physical time step of the simulation must be reduced accordingly, which can then
become too small to allow the user to perform intuitive operations such as moving objects freehand
on-the-fly (using a standard controller such as a mouse, joystick or haptic controller). When
reaching very high precision and resolution, a latency must therefore be expected before controls
have real impact on the simulation. Consequently improving the simulation so that it can give
real-time response must still be one of the primary objectives of a simulation developer who wants
to have the most interactive session possible, though most of the time compromises will have to be
found between the precision (number of particles, mesh resolution) and the level of interactivity
requested.

Annex A.

Cray Gemini Interconnect and
uGNI-Based Communicator

Introduced as the successor of Seastar [11], the Gemini interconnect [6] is a router chip for Cray
supercomputer systems that provides low latency and very high bandwidth. It is designed to pro-
vide high performance for global address space programming and enables efficient implementation
of programming languages such as SHMEM [25] and PGAS compilers [1] (UPC, and Co-array
Fortran). Two user interfaces are provided, DMAPP and uGNI. While the first one is designed for
distributed memory programming and one-sided accesses, the second one allows specific commu-
nication domains to be established and more control over the different Gemini communication
mechanisms. As mentioned in 4.1.3, to optimize our communication interface, we developed a
low-level interface that makes use of DMAPP, which allows high throughput but limits us to a
static connection mechanism (see 4.1.3). In this appendix, we show more advanced properties
of the Gemini interconnect and an additional inter-communicator implementation that makes
directly use of the lower level API called uGNI (User level Gemini Network Interface) [62].

A.1. Architecture

To understand how our communicators operate, it is necessary to understand some of the Gemini
internal architecture. Each Gemini card provides two network interface controllers (NICs). Each of
the NICs can support two nodes (as illustrated in figure A.1): the 𝑥 and 𝑧 dimensions have double
links, one corresponding to each node; the 𝑦 dimension has a single link to the neighboring router
chip since the two nodes within the router can be considered connected across the 𝑦 axis. Traffic
between two nodes connected to a single Gemini is routed internally. Gemini can also perform
adaptive routing, distributing traffic over lightly loaded links (multiple paths can be defined by
making use of the multiple NIC links).

115

116 Cray Gemini Interconnect and uGNI-Based Communicator

−𝑥

−𝑦 +𝑦

−𝑧

+𝑧

cpu cpu
+𝑥

Figure A.1. The Gemini NIC can support two nodes and has double links in 𝑥 and 𝑧 directions.

A.1.1. One-sided Transfers

Gemini transfers data in a one-sided manner without any OS intervention. As we showed in 3.1.3,
to be able to transfer data to a remote target, the remote virtual addresses, source addresses and
size of the data that needs to be transferred must be specified.

Transfer Mechanisms

There are two mechanisms for accessing remote memory on another node: Fast Memory Access
(FMA), and Block Transfer Engine (BTE). The first one is dedicated to small messages while the
other one is dedicated to large messages. Note that more time is required to set up data for a
BTE transfer, than for an FMA transfer, but once initiated, there is no further involvement by
the processor core. For some transfer operations, the GNI kernel driver first exchanges datagrams,
which contain messaging parameters, to initialize communication between processes.

As these mechanisms are one-sided, a notification mechanism must be used to track progress
of one-sided requests; this is handled through Completion Queues (CQ). For brevity, we do not
detail here the creation of completion queues and their association to logical end points that have
been defined within the communication domain, more details can be found in the Cray uGNI
documentation.

Address Translation Mechanisms

Two hardware mechanisms can then be used by the Gemini NIC to translate virtual to physical
memory references (N.B.: the following is mainly taken as is from the Cray documentation):

Cray Gemini Interconnect and uGNI-Based Communicator 117

1. The Graphics Address Remapping Table (GART) is a feature of many AMD64 processors that
allows access to virtually contiguous user pages that are backed by non-contiguous physical
pages. The GART mechanism aggregates the Linux standard 4 kB pages into larger virtually
contiguous memory regions. The contiguous pages exist in a portion of the physical address
space known as theGraphics Aperture. The GART’s graphics aperture size is 2GB. Therefore,
the total memory which can be referenced through GART is limited to 2GB per compute
node.

2. TheMemory Relocation Table (MRT) on the Gemini NIC maps the memory references con-
tained in incoming network packets to physical memory on the local node. Memory ref-
erences through the MRT map to a much larger address range than they do through the
GART. Each NIC has its own MRT. MRT page sizes range from 128 kB to 1GB, but all
the entries on a given node must have the same page size. The MRT entries are created by
kGNI (Kernel level Gemini Network Interface) in response to requests from the application,
usually the uGNI library. There are 16 KMRT entries. The default MRT page size is 2MB,
which maps to 32GB (16K × 2MB).

Depending on the size of the allocated memory region and other default behavior, the memory
registration function (of uGNI/DMAPP) asks the kernel to create either GART entries on the
AMD processor, or, in the case of huge pages, create entries in the Memory Relocation Table
(MRT) on the NIC, to span the allocated memory region. The second mechanism is usually
preferred in our case as large memory pages can therefore be mapped to the memory of our DSM
(and large data transfers can be performed).

Memory Allocation and Registration

User virtual memory that has to be read or written across nodes, must be generally first registered
on the node; its physical location and extent loaded into the Gemini Memory Descriptor Table
(MDD) and either the Opteron GART or the Gemini MRT.

Note that when using DMAPP, two different memory allocation mechanisms can be used:
from the symmetric heap or from the private heap (using a normal malloc). DMAPP mmaps the
symmetric heap directly, regardless of its size, to the hugetlbfs file system if it is mounted. When
an application’s memory requirements exceeds the GART aperture size (2GB) on a single node,
the application must be linked with the libhugetlbfs library, to use the larger address range
available with huge pages (again this is generally the behavior one will encounter most of the time
when using the DSM, therefore the application must always be linked to the libhugetlbfs
library when using the DMAPP inter-communicator). Once user memory registered to the node
and memory descriptors exchanged between the sending and the receiving process, transactions

118 Cray Gemini Interconnect and uGNI-Based Communicator

can be issued in a one-sided manner to the remote memory without further involvement of the
remote process.

A.1.2. uGNI Microbenchmark

To illustrate the two different mechanisms, BTE and FMA, we make use here of the same Cray
Gemini system used in 4. The two main mechanisms, GNI_PostFma (FMA, medium size mes-
sages) and GNI_PostRdma (BTE, large size messages), are represented in figure A.2. From this
figure, one can determine a good offload switch point between FMA and BTE mechanisms, which
would be here of 16 kB. But note that this point also depends on other parameters, such as the
latency (not represented here), etc. It is also worth noting that we can almost reach the theoretical
peak bandwidth of 7GB/s using the BTE mechanism when transferring raw data between the two
nodes.

0

2000

4000

6000

8000

10000

4 64 1K 16K 256K 4M

B
an

dw
id
th

(M
ill
io
n
B
yt
es
/s
)

Message Size (Bytes)

GNI_PostRdma
GNI_PostFma

Max

Figure A.2. Inter-node micro-benchmark using uGNI (blocking) put operations. FMA short messaging
(SMSG) is not represented here and can only be used if the message size does not exceed 64 kB.

A.2. uGNI-Based DSM Communicator

There are two main motivations for implementing a uGNI communicator into the DSM: the first
one is to be able to finely control which offloadmechanisms and techniques will be used; the second
one is to restore missing MPI dynamic connection support. As mentioned in section 4.1.3, simply
making use of MPI restricts the usage of the DSM to only launching both sender and receiver as

Cray Gemini Interconnect and uGNI-Based Communicator 119

part of the same job (MPMD). The main reason for this is that Cray ALPS (the Application
Level Placement Scheduler) restricts the use of only one single protection tag and cookie per job,
which prevent two different applications from establishing communication domains (and therefore
interacting) with each other (which would be seen as a security issue). This model is referred as
private protection domain model.

However, using the lower level uGNI interface, flexible communication domains have also now
been introduced, which can allow one to dynamically connect different jobs (that share the same
pre-existing protection domain) together. Applications or sets of applications may therefore use
one of the following protection models (N.B.: the following is mainly taken as is from the Cray
documentation):

1. Multiple cooperating applications owned by the same user may share a communication do-
main. This prevents non-cooperating applications from accessing another application’s mem-
ory regions. A communication domain that is shared between cooperating applications is also
referred to as a shared protection domain.

2. Multiple users of several applications may share the use of a system service, which uses a
system dedicated protection domain.

In our case, we can make use of user-defined shared protection domains. Processes connected
together are then accessed using our own network translation table that maps processes IDs to
target addresses.

0

10

20

30

40

50

60

70

16 32 64 128 256 512 1024 2048

Tr
an

sf
er

R
at
e
(G

B/
s)

Number of processes

uGNI (blocking)
DMAPP (non-blocking)

Figure A.3. Write transfer rate of an (in-memory) HDF5 file composed of one single dataset using uGNI
and a contiguous distribution—DSM size of 40GB and distributed among 160 processes (40
nodes).

120 Cray Gemini Interconnect and uGNI-Based Communicator

Once communication established, one can set up a DSM server on the machine and have
the simulation dynamically launched, connected (and eventually restarted) reading and writing
data from/to the DSM. This is very important for our approach as one can therefore launch the
DSM as a service and use it as a temporary storage, dynamically connecting and disconnecting
from it. Figure A.3 shows early results obtained using this communicator. The same configuration
of 4.1.3 is used. Note that the performance between the DMAPP and uGNI communicators is
very similar in this scenario where data is simply sent to the DSM. More testing and optimization
would however be required in this case to validate our approach and make a more reasonable
comparison with DMAPP.

Although this communicator is still in development, we also aim at using it in the future as the
default communicator for DSM exchanges (on Cray platforms that feature Gemini interconnects
and later versions).

Annex B.

Server API

The H5FDdsmManager class presented below is taken out from the H5FDdsm library available
at https://hpcforge.org/projects/h5fddsm. This class aims at providing basic server
configuration for hosting and accessing a DSM buffer object 1.

H5FDdsmManager Class

1 class H5FDdsm_EXPORT H5FDdsmManager : public H5FDdsmObject
2 {
3 public:
4 H5FDdsmManager();
5 ~H5FDdsmManager();
6

7 // Description:
8 // Get the process rank and communicator size.
9 H5FDdsmGetValueMacro(UpdatePiece, H5FDdsmInt32);
10 H5FDdsmGetValueMacro(UpdateNumPieces, H5FDdsmInt32);
11

12 // Description:
13 // Set/Get the MPI Communicator used by this DSM manager.
14 void SetMpiComm(MPI_Comm comm);
15 H5FDdsmGetValueMacro(MpiComm, MPI_Comm);
16

17 // Description:
18 // Get the DSM buffer used by this DSM manager.
19 H5FDdsmGetValueMacro(DsmBuffer, H5FDdsmBufferService*);
20

21

1While this interface is C++ only, we also aim at providing in future versions of the library a C interface that will be
able to perform the same type of operations.

121

https://hpcforge.org/projects/h5fddsm

122 Server API

22 // Description:
23 // Set/Get the size of the buffer to be reserved on this process
24 // the DSM total size will be the sum of the local sizes from all
25 // processes.
26 H5FDdsmSetValueMacro(LocalBufferSizeMBytes, H5FDdsmUInt32);
27 H5FDdsmGetValueMacro(LocalBufferSizeMBytes, H5FDdsmUInt32);
28

29 // Is the DSMBuffer auto allocated within the driver or not.
30 H5FDdsmGetValueMacro(IsAutoAllocated, H5FDdsmBoolean);
31 H5FDdsmSetValueMacro(IsAutoAllocated, H5FDdsmBoolean);
32

33 // Description:
34 // Set/Get IsServer info.
35 H5FDdsmSetValueMacro(IsServer, H5FDdsmBoolean);
36 H5FDdsmGetValueMacro(IsServer, H5FDdsmBoolean);
37

38 // Description:
39 // Set/Get IsStandAlone info.
40 H5FDdsmSetValueMacro(IsStandAlone, H5FDdsmBoolean);
41 H5FDdsmGetValueMacro(IsStandAlone, H5FDdsmBoolean);
42

43 // Description:
44 // Set/Get IsDriverSerial info.
45 H5FDdsmSetValueMacro(IsDriverSerial, H5FDdsmBoolean);
46 H5FDdsmGetValueMacro(IsDriverSerial, H5FDdsmBoolean);
47

48 // Description:
49 // Set/Get the interprocess communication subsystem
50 // Valid values are H5FD_DSM_TYPE_UNIFORM, H5FD_DSM_TYPE_BLOCK_CYCLIC.
51 H5FDdsmSetValueMacro(DsmType, H5FDdsmInt32);
52 H5FDdsmGetValueMacro(DsmType, H5FDdsmInt32);
53

54 // Description:
55 // Set/Get the DSM block length when using H5FD_DSM_TYPE_BLOCK_CYCLIC.
56 H5FDdsmSetValueMacro(BlockLength, H5FDdsmUInt64);
57 H5FDdsmGetValueMacro(BlockLength, H5FDdsmUInt64);
58

59 // Description:
60 // Set/Get the interprocess communication subsystem
61 // Valid values are: - H5FD_DSM_COMM_MPI
62 // - H5FD_DSM_COMM_SOCKET
63 // - H5FD_DSM_COMM_MPI_RMA
64 // - H5FD_DSM_COMM_DMAPP
65 H5FDdsmSetValueMacro(InterCommType, H5FDdsmInt32);
66 H5FDdsmGetValueMacro(InterCommType, H5FDdsmInt32);

Server API 123

67

68 // Description:
69 // Set/Get UseStaticInterComm -- Force to use static MPI comm model
70 // when dynamic MPI communication is not supported by the system.
71 H5FDdsmSetValueMacro(UseStaticInterComm, H5FDdsmBoolean);
72 H5FDdsmGetValueMacro(UseStaticInterComm, H5FDdsmBoolean);
73

74 // Description:
75 // Set/Get the published host name of our connection.
76 // Real value valid after a Publish call has been made.
77 H5FDdsmSetStringMacro(ServerHostName);
78 H5FDdsmGetStringMacro(ServerHostName);
79

80 // Description:
81 // Set/Get the published port of our connection.
82 // Real value valid after a Publish call has been made.
83 H5FDdsmSetValueMacro(ServerPort, H5FDdsmInt32);
84 H5FDdsmGetValueMacro(ServerPort, H5FDdsmInt32);
85

86 // Description:
87 // Wait for a connection
88 // Only valid after a Publish call has been made.
89 H5FDdsmBoolean GetIsConnected();
90 H5FDdsmInt32 WaitForConnection();
91

92 // Description:
93 // Wait for a notification - notifications are used to trigger user
94 // defined tasks and are usually sent once the file has been closed
95 // but can also be sent on demand.
96 H5FDdsmBoolean GetIsNotified();
97 void ClearIsNotified();
98 H5FDdsmInt32 WaitForNotification();
99 void NotificationFinalize();

100

101 // Description:
102 // Get the notification flag - Only valid if GetIsNotified is true.
103 H5FDdsmInt32 GetNotification();
104 void ClearNotification();
105

106 // Description:
107 // Create a new DSM buffer of type DsmType using a local length of
108 // LocalBufferSizeMBytes and the given MpiComm.
109 // If using inter communicators, additional options may be specified
110 // such as ServerHostname, ServerPort, IsServer, InterCommType, etc.
111 H5FDdsmInt32 Create();

124 Server API

112

113 // Description:
114 // Destroy the current DSM buffer.
115 H5FDdsmInt32 Destroy();
116

117 // Description:
118 // Connect to a remote DSM manager (called by client).
119 H5FDdsmInt32 Connect(H5FDdsmBoolean persist = H5FD_DSM_FALSE);
120

121 // Description:
122 // Disconnect the manager from the remote end
123 // (called by client and server).
124 H5FDdsmInt32 Disconnect();
125

126 // Description:
127 // Make the DSM manager listen for new incoming connection
128 // (called by server).
129 H5FDdsmInt32 Publish();
130

131 // Description:
132 // Stop the listening service (called by server).
133 H5FDdsmInt32 Unpublish();
134

135 // Description:
136 // Open the DSM from all nodes of the parallel application,
137 // all nodes within a communicator must participate
138 // this function must be paired with a matching Close
139 // Use H5F_ACC_RDONLY for queries
140 // Use H5F_ACC_RDWR for read/write.
141 H5FDdsmInt32 OpenDSM(H5FDdsmUInt32 mode);
142

143 // Description:
144 // Close the DSM from all nodes of the parallel application,
145 // all nodes within a communicator must participate
146 // this function must be paired with a matching Open.
147 H5FDdsmInt32 CloseDSM();
148

149 // Description:
150 // Returns 1 if OpenDSM has been called and the fapl and file handles
151 // have been cached. These are released when CloseDSM is called
152 // all nodes within a communicator must participate.
153 // Return 0 otherwise.
154 H5FDdsmBoolean IsOpenDSM();
155

156 // Description:

Server API 125

157 // If the DSM has been opened and handles cached, this returns the
158 // cached handle, otherwise H5I_BADID (-1). Use with great care.
159 hid_t GetCachedFileHandle();
160 hid_t GetCachedFileAccessHandle();
161

162 // Description:
163 // If the .dsm_config file exists in the standard location
164 // $ENV{H5FD_DSM_CONFIG_PATH}/.dsm_config then the server/port/mode
165 // information can be read. This is for use the by a DSM client.
166 // DSM servers write their .dsm_config when Publish() is called
167 // Returns false if the .dsm_config file is not read.
168 H5FDdsmInt32 ReadConfigFile();
169

170 H5FDdsmInt32 WriteSteeredData();
171 H5FDdsmInt32 UpdateSteeredObjects();
172

173 // Description:
174 // Set/Get the current given steering command.
175 // The command is then passed to the simulation.
176 void SetSteeringCommand(H5FDdsmConstString cmd);
177

178 // Description:
179 // Set values and associated name for the corresponding interaction.
180 void SetSteeringValues(const char *name, int numberOfElements,
181 int *values);
182 H5FDdsmInt32 GetSteeringValues(const char *name, int numberOfElements,
183 int *values);
184

185 // Description:
186 // Set values and associated name for the corresponding interaction.
187 void SetSteeringValues(const char *name, int numberOfElements,
188 double *values);
189 H5FDdsmInt32 GetSteeringValues(const char *name, int numberOfElements,
190 double *values);
191

192 // Description:
193 // Return true if the Interactions group exists, false otherwise.
194 H5FDdsmInt32 GetInteractionsGroupPresent();
195

196 // Description:
197 // Set/Unset objects.
198 void SetDisabledObject(H5FDdsmConstString objectName);
199 };

126

Annex C.

Steering API

TheH5FDdsmSteering interface presented below is taken out from the H5FDdsm library available
at https://hpcforge.org/projects/h5fddsm. These routines aim at providing a com-
prehensive steering interface1 for data and parameter exchange between a simulation code and the
DSM (see section 3.3).

H5FDdsmSteering Interface

1 /* Description:
2 * Initialize the steering interface. This must be called before using
3 * the other steering functions.
4 */
5 herr_t H5FD_dsm_steering_init(MPI_Comm intra_comm);
6

7 /* Description:
8 * Refresh and update the state of raw steering commands such as
9 * pause/resume and datasets that have been enabled/disabled through
10 * the GUI. Any simulation code that needs to check for these commands
11 * should make use of this call. In case of a pause command being sent
12 * in, the simulation waits for a resume command at this control point.
13 * Note that creating a new HDF file does not reset these values.
14 */
15 herr_t H5FD_dsm_steering_update();
16

17 /* Description:
18 * Test if a given dataset is enabled or not in the GUI.
19 * Either the HDF path of a particular dataset or the grid object name
20 * can be given (In this last case, it has to match the name given in
21 * the template).

1The Fortran interface is also available but not presented here for clarity.

127

https://hpcforge.org/projects/h5fddsm

128 Steering API

22 */
23 hbool_t H5FD_dsm_steering_is_enabled(const char *name);
24

25 /* Description:
26 * Pause and wait until completion of steering orders, released by a
27 * play.
28 */
29 herr_t H5FD_dsm_steering_wait();
30

31 /* Description:
32 * Begin/End query - Avoid to open and request file lock acquisition
33 * multiple times.
34 */
35 herr_t H5FD_dsm_steering_begin_query();
36 herr_t H5FD_dsm_steering_end_query();
37

38 /* Description:
39 * Get/Free DSM handle to interaction dataset - can be passed
40 * to HDF5 common functions for further read/write.
41 */
42 herr_t H5FD_dsm_steering_get_handle(const char *name, hid_t *handle);
43 herr_t H5FD_dsm_steering_free_handle(hid_t handle);
44

45 /* Description:
46 * Return true if the object exists in the ”Interactions” group.
47 */
48 herr_t H5FD_dsm_steering_is_set(const char *name, hbool_t *set);
49

50 /* Description:
51 * Get/Set the scalar value corresponding to the property name
52 * given in the template.
53 */
54 herr_t H5FD_dsm_steering_scalar_get(const char *name, hid_t mem_type,
55 void *data);
56 herr_t H5FD_dsm_steering_scalar_set(const char *name, hid_t mem_type,
57 void *data);
58

59 /* Description:
60 * Get/Set the vector values corresponding to the property name
61 * given in the template.
62 */
63 herr_t H5FD_dsm_steering_vector_get(const char *name, hid_t mem_type,
64 hsize_t number_of_elements, void *data);
65 herr_t H5FD_dsm_steering_vector_set(const char *name, hid_t mem_type,
66 hsize_t number_of_elements, void *data);

Annex D.

Application Integration

In this annex, we show examples of integration of the ICARUS framework into the simulation
codes presented in chapter 5. For clarity, note that not all the functionality and integration de-
velopment is presented below but only snippets of code that are representative of most common
tasks one would need to perform.

D.1. Fortran Code Example: SPH-flow

1 PROGRAM SPHFLOW
2 use H5
3 #ifdef USE_H5FD_DSM
4 use h5fddsm ! Required module for ”dsm” driver
5 use h5fddsm_steering ! Required module for steering interface
6 #endif
7

8 CALL MPI_Init(ierr)
9 ...
10 CALL H5open_f(error)
11 ...
12 #ifdef USE_H5FD_DSM
13 ! Initialize the steering interface
14 if (enable_DSM) call h5fd_dsm_steering_init_f(MPI_COMM_WORLD, error)
15 #endif
16 ...
17 call setupFromDataFile(h5_filename)
18 ...
19 ! Launch of calculation
20 IF (myrank==0) write(*,*) ’ !Launch of calculation’, myrank
21 ...
22 ! Main loop in time

129

130 Application Integration

23 do while(isInitial .or. &
24 ((numerical_or_physical_dt==’physical’) .and. (t < tmax)).or. &
25 ((numerical_or_physical_dt==’numerical’) .and. (n_time_step < nbdt)))
26 call Read_H5(h5_filename, &
27 isInitial, & ! it’s the initial file to be loaded
28 fsi_enabled, & ! the user uses Aster on some bodies
29 dsm_ReloadBody)! The user has modified a body via the DSM
30

31 #ifdef USE_H5FD_DSM
32 if (enable_DSM) then
33 ! at the first step, write the data to visualize them in-situ and
34 ! initialize the time range
35 if(n_time_step == 0) then
36 save_step = .true.
37 if (myrank == 0) write(*,*) ”write to DSM”
38 ...
39 call h5fd_dsm_steering_vector_set_f(”TimeRangeInfo”,
40 H5T_NATIVE_DOUBLE, numelem, TimeRange, error)
41 ...
42 call Output_Writing(Neighbour_Search_Required,n_time_step)
43 if (myrank == 0) write(*,*) ”end write to DSM”
44 endif
45

46 ! If waitForGui then make the code wait for a resume command
47 if (waitForGui > 0) then
48 call h5fd_dsm_steering_wait_f(error)
49 endif
50 ! cache handles before making queries (avoid excess mpi traffic)
51 call h5fd_dsm_steering_begin_query_f(error)
52 if (myrank == 0) then
53 ! Only check for WaitForGui in the DSM on rank 0 to avoid
54 ! excess traffic to the DSM
55 call h5fd_dsm_steering_is_set_f(”WaitForGui”, modified, error)
56 if (modified > 0) then
57 call h5fd_dsm_steering_scalar_get_f(”WaitForGui”, &
58 H5T_NATIVE_INTEGER, waitForGui, error)
59 endif
60 endif
61 ! Then broadcast the result to the other processes
62 call MPI_Bcast(waitForGui, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, error)
63 ! Make use of DSM steering interface for other parameters
64 call steer_reloadInletVelocity(InletVelocity)
65 call steer_reloadBody(dsm_ReloadBody)
66 call steer_reloadForce(SteeringForce)
67 call steer_reloadMomentum(SteeringMomentum)

Application Integration 131

68 call steer_reloadWaveMaker(amplitude,frequence)
69 ! Close cache handle
70 call h5fd_dsm_steering_end_query_f(error)
71

72 ! recall read_h5 to reload the body if the user has modified it
73 ! via the GUI, make use of HDF5 API for reading data
74 if(dsm_ReloadBody) call Read_H5(h5_filename, &
75 isInitial, & ! it’s the initial file to be loaded
76 fsi_enabled, & ! the user uses Aster on some bodies
77 dsm_ReloadBody)! The user has modified a body via the DSM
78 endif
79 #endif
80

81 istep=floor(t/(dt))
82 PHASE_CREATE_DYNAMIC(tTimeStep, trim(line))
83 PHASE_START(tTimeStep)
84

85 CALL Remove_Wrong_Particles(has_removed_IO)
86 Ns_required = Ns_required .or. has_removed_IO
87 ...
88 CALL Time_Step
89

90 is_verlet_exceeded = Verlet_Condition(Verlet_distance, &
91 Verlet_Ntimestep)
92 Ns_required = Ns_required .OR. is_verlet_exceeded
93

94 PHASE_CREATE_STATIC(tLoadBalance, ’Load Balance/Interactions’)
95 PHASE_START(tLoadBalance)
96

97 CALL Load_Balance(has_load_balanced)
98 Ns_required = Ns_required .or. has_load_balanced
99

100 CALL MPI_Allreduce(Ns_required, Neighbour_Search_Required, 1, &
101 MPI_LOGICAL, MPI_LOR, MPI_COMM_WORLD, ier)
102 IF ((Choice_Time_Integration_Solver==4) .OR. &
103 (Choice_Time_Integration_Solver==5)) THEN
104 Neighbour_Search_Required = .TRUE.
105 ENDIF
106 IF(Neighbour_Search_Required) THEN
107 CALL Interaction_Lists
108 ...
109 ELSE
110 Verlet_Ntimestep = Verlet_Ntimestep + 1
111 ENDIF ! Neighbour_Search_Required
112 PHASE_STOP(tLoadBalance)

132 Application Integration

113

114 iappel=1
115 SELECT CASE (Choice_Time_Integration_Solver)
116 CASE(1)
117 PHASE_CREATE_STATIC(tTimeIntegration, &
118 ’Time Integration with forward Euler’)
119 PHASE_START(tTimeIntegration)
120

121 CALL Explicit_Euler(Neighbour_Search_Required)
122 CASE(2)
123 PHASE_CREATE_STATIC(tTimeIntegration, ’Time Integration with RK4’)
124 PHASE_START(tTimeIntegration)
125

126 CALL RungeKutta4(Neighbour_Search_Required)
127 CASE(3)
128 PHASE_CREATE_STATIC(tTimeIntegration, ’Time Integration with SSP43’)
129 PHASE_START(tTimeIntegration)
130

131 CALL SSP43(Neighbour_Search_Required)
132 CASE(4)
133 PHASE_CREATE_STATIC(tTimeIntegration, &
134 ’Time Integration with explicit incompressible’)
135 PHASE_START(tTimeIntegration)
136

137 CALL Explicit_Incompressible(Neighbour_Search_Required)
138 CASE(5)
139 CALL Semi_Implicit_Incompressible(Neighbour_Search_Required)
140 CASE(6)
141 CALL SSPRK83(Neighbour_Search_Required)
142 END SELECT
143 PHASE_STOP(tTimeIntegration)
144

145 t=t+dtc
146

147 #ifdef USE_H5FD_DSM
148 if (enable_DSM) then
149 if (dsm_ReloadBody) save_step = .true.
150 dsm_ReloadBody = .false.
151 endif
152 #endif
153 call OutputStatistics
154 ! Output_Writing is modified to make use of h5pset_fapl_dsm_f
155 call Output_Writing(Neighbour_Search_Required,n_time_step)
156

157 PHASE_STOP(tTimeStep)

Application Integration 133

158 n_time_step=n_time_step+1
159 enddo !WHILE(t<tmax)
160

161 ! End of calculation
162 CALL deallocations
163

164 ! Calling H5close automatically closes the DSM connection
165 CALL H5close_f(error)
166 call MPI_Finalize(ierr)
167

168 END PROGRAM SPHFLOW

D.2. C++ Code Example: SPH-ALE Code

1 #include <hdf5.h>
2 #include <H5FDdsm.h> // Required for ”dsm” driver
3 #include <H5FDdsmSteering.h> // Required for steering interface
4

5 int
6 main(int argc, char *argv[])
7 {
8 // Check parameters
9 ...
10 //Create a GPU manager object and retrieve the best available device
11 GpuManager gpuManager;
12 ...
13 // Initialize MPI
14 if ((mpiRv = MPI_Init(&argc, &argv)) != MPI_SUCCESS)
15 {
16 fprintf(stderr, ”failed.\n”);
17 error(”Failed to initialize MPI”);
18 goto ExitFunc;
19 }
20 //Set the minimum number of particules per processor
21 parallelObject.setMinimunNumberOfParticulesPerProcessor(10000);
22 // CREATE PARTICLE REPOSITORY THAT WILL BE USED ONLY FOR INITIAL
23 // DOMAIN DECOMPOSITION
24 initPartRepos = new ParticleRepository<opt_tp_dim, opt_tp_order,
25 opt_tp_multiphase, opt_tp_surfaceTension, opt_tp_riemannSolver,
26 opt_tp_riemannSolverMultiphase>
27 (¶llelObject, PARTICLE_MODE_INIT);
28 // CREATE PARTICLE REPOSITORY TO STORE ALL PARTICLES
29 partRepos = new ParticleRepository<opt_tp_dim, opt_tp_order,
30 opt_tp_multiphase, opt_tp_surfaceTension, opt_tp_riemannSolver,

134 Application Integration

31 opt_tp_riemannSolverMultiphase>
32 (¶llelObject, PARTICLE_MODE_REAL);
33

34 // Read configuration
35 fprintf(stderr, ”Read configuration...’%s’ \n”, argv[1]);
36 ...
37 /**/
38 /* INITIAL PARALLEL DOMAIN DECOMPOSITION */
39 /**/
40 ...
41

42 RunSolver:
43

44 // Run the solver
45 iterativSolver<opt_tp_dim,opt_tp_order,opt_tp_multiphase,
46 opt_tp_symmetricInteraction, opt_tp_kernelFunction,
47 opt_tp_reconstruction, opt_tp_riemannSolver,
48 opt_tp_riemannSolverMultiphase, opt_tp_limiter, opt_tp_correctBound,
49 opt_tp_motion, opt_tp_surfaceTension, opt_tp_outputLevel>
50 (partRepos,
51 config,
52 ¶llelObject,
53 parallelTopology,
54 givenPhysicalTime,
55 givenInjectionTime,
56 config->inputConfig.isSuite,
57 givenInjectedMass,
58 givenInjectedVolume,
59 givenOutputTime,
60 asphodeleSHM,
61 savedTimeStepValues,
62 savedStepCount,
63 &config->symetryPlan,
64 &ts_partRepos_0,
65 &ts_partRepos_1,
66 &ts_partRepos_2,
67 &gpuManager);
68

69 ExitFunc:
70 if (initPartRepos) {
71 delete initPartRepos;
72 initPartRepos = NULL;
73 }
74 if (partRepos) {
75 delete partRepos;

Application Integration 135

76 partRepos = NULL;
77 }
78 if (mpiStarted) MPI_Finalize();
79 return rv;
80 }
81

82 template<TP_Dimension tp_dim, TP_Order tp_order,
83 TP_Multiphase tp_multiphase,
84 TP_SymmetricInteractions tp_sym, TP_KernelFunction tp_kernel,
85 TP_Reconstruction tp_reconstruction, TP_RiemannSolver tp_riemann,
86 TP_RiemannSolverMultiphase tp_riemannMulti,TP_Limiter tp_limiter,
87 TP_correctionBoundary tp_correctBound, TP_Motion tp_motion,
88 TP_SurfaceTension tp_surfaceTension, TP_OutputLevel tp_outputLevel>
89 void iterativSolver(ParticleRepository<tp_dim, tp_order, tp_multiphase,
90 tp_surfaceTension, tp_riemann, tp_riemannMulti> *p_partRepos,
91 AsphodeleConfig *p_config,
92 ParallelObject *p_parallelObject, // OK FROM MPI
93 ParallelTopology *p_parallelTopology,
94 asphodouble p_givenPhysicalTime,
95 asphodouble p_givenInjectionTime,
96 bool p_restartComputation,
97 asphodouble p_givenInjectedMass,
98 asphodouble p_givenInjectedVolume,
99 asphodouble p_givenOutputTime,

100 AsphodeleSHM *p_asphodeleSHM,
101 asphodouble *p_savedTimeStepValues,
102 int p_savedStepCount,
103 SymetryPlan *p_symetryPlan,
104 TimeStageParticleRepository<tp_dim, tp_order, tp_multiphase,
105 tp_surfaceTension, tp_riemann, tp_riemannMulti> *p_ts_partRepos_0,
106 TimeStageParticleRepository<tp_dim, tp_order, tp_multiphase,
107 tp_surfaceTension, tp_riemann, tp_riemannMulti> *p_ts_partRepos_1,
108 TimeStageParticleRepository<tp_dim, tp_order, tp_multiphase,
109 tp_surfaceTension, tp_riemann, tp_riemannMulti> *p_ts_partRepos_2,
110 GpuManager* gpumanager)
111 {
112 #ifdef USE_H5FD_DSM
113 // Initialize the steering interface
114 H5FD_dsm_steering_init(MPI_COMM_WORLD);
115 #endif
116 switch(p_config->temporalIntegration)
117 {
118 case EXPLICIT_EULER:
119 break;
120 case HEUN :

136 Application Integration

121 ...
122 break;
123

124 case RK3 :
125 ...
126 break;
127 case RK4 :
128 ...
129 break;
130 default:
131 exit(1);
132 }
133 ...
134 if (p_restartComputation)
135 physicalTime = p_givenPhysicalTime;
136 else
137 physicalTime = 0.;
138

139 iterationCount = 0;
140

141 BeginLoop:
142 fprintf(stderr, ”Begin iterative loop...\n”);
143 /****************************/
144 /* Start of iterative loop */
145 /****************************/
146 endSimulation = false;
147

148 while(!endSimulation) {
149 #ifdef USE_H5FD_DSM
150 // Get user commands (e.g., pause, resume)
151 H5FD_dsm_steering_update();
152 // Check for jet diameter parameter
153 hbool_t isNewJetDiameterSet = 0;
154 H5FD_dsm_steering_is_set(”NewJetDiameter”, &isNewJetDiameterSet);
155 printf(”New Jet diameter: %lf\n”, this->NewJetDiameter);
156 // If the parameter is found in the DSM, pick up the new value
157 if (isNewJetDiameterSet) {
158 H5FD_dsm_steering_scalar_get(”NewJetDiameter”, H5T_NATIVE_DOUBLE,
159 &this->NewJetDiameter);
160 printf(”New Jet Diameter modified to: %lf\n”, this->NewJetDiameter);
161 for (int i = 0; i < p_config->jetCount; i++)
162 p_config->jet[i].radius =
163 this->NewJetDiameter * this->OriginalJetDiameter;
164 }
165 // steering for changeRunnerVelocity

Application Integration 137

166 // steering for moveSolid
167 // steering for turnDeflector
168 #endif
169

170 /**/
171 /* Begin part specific to computations */
172 /**/
173 ...
174 EndIteration:
175 /**/
176 /* End part specific to computations */
177 /**/
178

179 // For HDF use all the processes for write operation
180 if (p_config->outputConfig.type == CONFIG_HDF5_OUTPUT) {
181 MPI_Allreduce(&doOutput,
182 &globaldoOutput,
183 1,
184 MPI_INT,
185 MPI_MAX,
186 MPI_COMM_WORLD);
187 } else {
188 globaldoOutput = doOutput;
189 }
190 if (globaldoOutput) {
191 startTimer(”Write results”);
192 // Write XDMF description template
193 // In this case, the simulation generates the description template
194 // automatically so that HDF5 files can be visualized in-situ
195 if(saveStepIndex == p_savedStepCount &&
196 (p_parallelObject->getMainProcessorIndex() == 0)) {
197 writeLxmfFile(tp_order,
198 tp_dim,
199 tp_multiphase,
200 tp_surfaceTension,
201 tp_outputLevel,
202 tp_riemann,
203 tp_riemannMulti,
204 p_config->solidCount,
205 p_config->jetCount,
206 p_partRepos->virtualFluidParticleArray->getSize() != 0,
207 p_partRepos->virtualWallParticleArray->getSize() != 0,
208 p_partRepos->virtualInletParticleArray->getSize() != 0);
209 }
210

138 Application Integration

211 // Data is written using HDF5, hence make use of H5Pset_fapl_dsm
212 writeAsphodeleResults<opt_tp_dim, opt_tp_order, opt_tp_multiphase,
213 tp_surfaceTension, tp_riemann, tp_riemannMulti, tp_outputLevel>
214 (p_config->outputConfig.type,
215 p_partRepos,
216 p_savedTimeStepValues,
217 &saveStepIndex,
218 physicalTime,
219 p_config->solidCount,
220 p_config->solid,
221 physicalTime,
222 p_config->jet,
223 p_config->jetCount,
224 p_parallelTopology);
225

226 // Set the flag back to 0
227 doOutput = 0;
228 globaldoOutput = 0;
229 }
230 ...
231 }
232 /*************************/
233 /* End of iterative loop */
234 /*************************/
235 ...
236

237 ExitFunc:
238 // Free pointers
239 // Frees the grid memory
240 }

Bibliography

[1] Partitioned Global Adress Space (PGAS). Available from: http://www.pgas.org.

[2] Message Passing Interface Forum (1997). MPI-2: Extensions to the message-passing inter-
face. Available from: http://www.mpi-forum.org/docs/docs.html.

[3] Adelmann, A., Gsell, A., Oswald, B., Schietinger, T., Bethel, W., Shalf, J., Siegerist,
C., and Stockinger, K. Progress on H5Part: A Portable High Performance Parallel Data
Interface for Electromagnetics Simulations. In Particle Accelerator Conference, 2007. PAC.
IEEE, pp. 3396–3398 (2007). doi:10.1109/PAC.2007.4440437.

[4] Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Law, C. C., and Papka, M. Large-Scale
Data Visualization Using Parallel Data Streaming. IEEE Computer Graphics and Applications,
21 (2001), 34. doi:10.1109/38.933522.

[5] Allen, G., Benger,W., Goodale, T., Hege, H.-C., Lanfermann, G., Merzky, A., Radke,
T., Seidel, E., and Shalf, J. The Cactus Code: A Problem Solving Environment for the
Grid. In Proceedings of the 9th International Symposium on High Performance Distributed
Computing, HPDC, pp. 253–260. IEEE (2000). ISBN 0-7695-0783-2. doi:10.1109/
HPDC.2000.868657.

[6] Alverson, R., Roweth, D., and Kaplan, L. The Gemini System Interconnect. In IEEE
18th Annual Symposium on High-Performance Interconnects, HOTI, pp. 83–87 (2010). ISBN
978-1-4244-8547-5. doi:10.1109/HOTI.2010.23.

[7] Argonne National Laboratory. MPICH2. Available from: http://www.mcs.
anl.gov/research/projects/mpich2.

[8] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S.,
and Smolinski, B. Toward a Common Component Architecture for High-Performance Sci-
entific Computing. In The Eighth International Symposium on High Performance Distributed
Computing, pp. 115–124 (1999). doi:10.1109/HPDC.1999.805289.

139

http://www.pgas.org
http://www.mpi-forum.org/docs/docs.html
http://dx.doi.org/10.1109/PAC.2007.4440437
http://dx.doi.org/10.1109/38.933522
http://dx.doi.org/10.1109/HPDC.2000.868657
http://dx.doi.org/10.1109/HPDC.2000.868657
http://dx.doi.org/10.1109/HOTI.2010.23
http://www.mcs.anl.gov/research/projects/mpich2
http://www.mcs.anl.gov/research/projects/mpich2
http://dx.doi.org/10.1109/HPDC.1999.805289

140 Bibliography

[9] Biddiscombe, J., Graham, D., and Maruzewski, P. Visualization and
analysis of SPH data. ERCOFTAC Bulletin, 76 (2008), 9. Available
from: http://infoscience.epfl.ch/record/125581/files/
InteractiveVisualizationSPH-Spheric-2007-bid-gra-mar.pdf.

[10] Bonachea, D. and Duell, J. Problems with using MPI 1.1 and 2.0 as compilation targets
for parallel language implementations. International Journal of High Performance Computing
and Networking, 1 (2004), 91. doi:10.1504/IJHPCN.2004.007569.

[11] Brightwell, R., Predretti, K., Underwood, K., and Hudson, T. SeaStar Interconnect:
Balanced Bandwidth for Scalable Performance. Micro, IEEE, 26 (2006), 41. doi:10.
1109/MM.2006.65.

[12] Brooke, J., Coveney, P., Harting, J., Jha, S., Pickles, S., Pinning, R., and Porter, A.
Computational Steering in RealityGrid. In Proceedings of UK e-Science All Hands Meeting
2003, pp. 885–888 (2003). Available from: http://www.nesc.ac.uk/events/
ahm2003/AHMCD/pdf/179.pdf.

[13] Bruggencate, M. and Roweth, D. DMAPP—An API for One-sided Program Models on
Baker Systems. In Proceedings of Cray User Group (2010).

[14] Brunner, J. D., Jablonowski, D. J., Bliss, B., and Haber, R. B. VASE: the visualization
and application steering environment. In Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, SC, pp. 560–569. ACM (1993). ISBN 0-8186-4340-4. doi:10.1145/
169627.169799.

[15] Cedilnik, A., Geveci, B., Moreland, K., Ahrens, J., and Favre, J. Remote Large Data Vi-
sualization in the ParaView Framework. In Eurographics Symposium on Parallel Graphics and
Visualization (edited by B. Raffin, A. Heirich, and L. P. Santos), pp. 163–170. Eurograph-
ics Association (2006). ISBN 3-905673-40-1. doi:10.2312/EGPGV/EGPGV06/
163-170.

[16] Chaarawi, M., Gabriel, E., Keller, R., Graham, R., Bosilca, G., and Dongarra, J.
OMPIO: A Modular Software Architecture for MPI I/O. In Recent Advances in the Message
Passing Interface (edited by Y. Cotronis, A. Danalis, D. Nikolopoulos, and J. Dongarra), vol.
6960 of Lecture Notes in Computer Science, pp. 81–89. Springer Berlin / Heidelberg (2011).
ISBN 978-3-642-24448-3. doi:10.1007/978-3-642-24449-0_11.

[17] Cheriton, D. R. Preliminary Thoughts on Problem-oriented Shared Memory: A Decen-
tralized Approach to Distributed Systems. SIGOPS Operating Systems Review, 19 (1985), 26.
doi:10.1145/858336.858338.

http://infoscience.epfl.ch/record/125581/files/InteractiveVisualizationSPH-Spheric-2007-bid-gra-mar.pdf
http://infoscience.epfl.ch/record/125581/files/InteractiveVisualizationSPH-Spheric-2007-bid-gra-mar.pdf
http://dx.doi.org/10.1504/IJHPCN.2004.007569
http://dx.doi.org/10.1109/MM.2006.65
http://dx.doi.org/10.1109/MM.2006.65
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf
http://dx.doi.org/10.1145/169627.169799
http://dx.doi.org/10.1145/169627.169799
http://dx.doi.org/10.2312/EGPGV/EGPGV06/163-170
http://dx.doi.org/10.2312/EGPGV/EGPGV06/163-170
http://dx.doi.org/10.1007/978-3-642-24449-0_11
http://dx.doi.org/10.1145/858336.858338

Bibliography 141

[18] Childs, H. Architectural Challenges and Solutions for Petascale Postprocessing. Journal
of Physics: Conference Series, 78 (2007), 012012. doi:10.1088/1742-6596/78/1/
012012.

[19] Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M., Whitlock, B., and
Max, N. A Contract Based System For Large Data Visualization. In Visualization, 2005.
VIS 05. IEEE, pp. 191–198 (2005). doi:10.1109/VISUAL.2005.1532795.

[20] Clarke, J. A. Emulating Shared Memory to Simplify Distributed-Memory Programming.
Computational Science Engineering, IEEE, 4 (1997), 55. doi:10.1109/99.590858.

[21] Clarke, J. A. and Mark, E. R. Enhancements to the eXtensible Data Model and Format
(XDMF). In DoD High Performance Computing Modernization Program Users Group Con-
ference, HPCMP-UGC, pp. 322–327 (2007). ISBN 0-7695-3088-5. doi:10.1109/
HPCMP-UGC.2007.30.

[22] Clarke, J. A. and Namburu, R. R. A distributed computing environment for interdis-
ciplinary applications. Concurrency and Computation: Practice and Experience, 14 (2002),
1161. doi:10.1002/cpe.685.

[23] Clarke, J. A. and Namburu, R. R. A Generalized Method for One-Way Coupling of CTH
and Lagrangian Finite-Element Codes With Complex Structures Using the Interdisciplinary
Computing Environment. Tech. rep., US Army Research Laboratory, Aberdeen Proving
Ground, Md. (2004). ARL-TN-230.

[24] Community Research and Development Information Service (CORDIS).
NextMuSE—Next generation Multi-mechanics Simulation Environment (2009–2012).
Available from: http://cordis.europa.eu/fp7/ict/fet-open/
portfolio-nextmuse_en.html.

[25] Cray. SHMEM technical note for C. Tech. rep., Cray Research, Inc. (1994). SG-2516 2.3.

[26] Docan, C., Parashar, M., and Klasky, S. DataSpaces: An Interaction and Coordination
Framework for Coupled SimulationWorkflows. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC, pp. 25–36. ACM (2010).
ISBN 978-1-60558-942-8. doi:10.1145/1851476.1851481.

[27] Ducrozet, G., Bonnefoy, F., Touzé, D. L., and Ferrant, P. A modified High-Order
Spectral method for wavemaker modeling in a numerical wave tank. European Journal of
Mechanics - B/Fluids, 34 (2012), 19. doi:10.1016/j.euromechflu.2012.01.
017.

http://dx.doi.org/10.1088/1742-6596/78/1/012012
http://dx.doi.org/10.1088/1742-6596/78/1/012012
http://dx.doi.org/10.1109/VISUAL.2005.1532795
http://dx.doi.org/10.1109/99.590858
http://dx.doi.org/10.1109/HPCMP-UGC.2007.30
http://dx.doi.org/10.1109/HPCMP-UGC.2007.30
http://dx.doi.org/10.1002/cpe.685
http://cordis.europa.eu/fp7/ict/fet-open/portfolio-nextmuse_en.html
http://cordis.europa.eu/fp7/ict/fet-open/portfolio-nextmuse_en.html
http://dx.doi.org/10.1145/1851476.1851481
http://dx.doi.org/10.1016/j.euromechflu.2012.01.017
http://dx.doi.org/10.1016/j.euromechflu.2012.01.017

142 Bibliography

[28] Fabian, N., Moreland, K., Thompson, D., Bauer, A. C., Marion, P., Geveci, B.,
Rasquin, M., and Jansen, K. E. The ParaView Coprocessing Library: A Scalable, Gen-
eral Purpose In Situ Visualization Library. In IEEE Symposium on Large-Scale Data Analysis
and Visualization, LDAV (2011).

[29] Fujitsu. K computer (2011). Available from: http://www.fujitsu.com/
global/about/tech/k.

[30] Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. A., and Crespo, A. J. C. State-of-
the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, 48 (2010), 6.
doi:10.1080/00221686.2010.9641242.

[31] Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola, R. Interactive SPH Simulation
and Rendering on the GPU. In Eurographics/ ACM SIGGRAPH Symposium on Computer
Animation (edited by Z. Popovic and M. Otaduy), pp. 55–64. Eurographics Association
(2010). ISBN 978-3-905674-27-9. doi:10.2312/SCA/SCA10/055-064.

[32] Graham, R. The MPI 2.2 Standard and the Emerging MPI 3 Standard. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface (edited by M. Ropo,
J. Westerholm, and J. Dongarra), vol. 5759 of Lecture Notes in Computer Science, pp.
2–2. Springer Berlin / Heidelberg (2009). ISBN 978-3-642-03769-6. doi:10.1007/
978-3-642-03770-2_2.

[33] Gropp,W., Lusk, E., and Thakur, R. UsingMPI-2: Advanced Features of theMessage-Passing
Interface. MIT Press, Cambridge, MA (1999). ISBN 0-262-57132-3.

[34] Gropp, W. and Thakur, R. Revealing the Performance of MPI RMA Implementa-
tions. In Recent Advances in Parallel Virtual Machine and Message Passing Interface (edited
by F. Cappello, T. Herault, and J. Dongarra), vol. 4757 of Lecture Notes in Computer
Science, pp. 272–280. Springer Berlin / Heidelberg (2007). ISBN 978-3-540-75415-2.
doi:10.1007/978-3-540-75416-9_38.

[35] Harris, M. Mapping computational concepts to GPUs. In ACM SIGGRAPH 2005 Courses,
SIGGRAPH. ACM (2005). doi:10.1145/1198555.1198768.

[36] Hilbrich, T., Müller, M., Schulz, M., and de Supinski, B. Order Preserving Event Ag-
gregation in TBONs. In Recent Advances in the Message Passing Interface (edited by Y. Cotro-
nis, A. Danalis, D. Nikolopoulos, and J. Dongarra), vol. 6960 of Lecture Notes in Com-
puter Science, pp. 19–28. Springer Berlin / Heidelberg (2011). ISBN 978-3-642-24448-3.
doi:10.1007/978-3-642-24449-0_5.

http://www.fujitsu.com/global/about/tech/k
http://www.fujitsu.com/global/about/tech/k
http://dx.doi.org/10.1080/00221686.2010.9641242
http://dx.doi.org/10.2312/SCA/SCA10/055-064
http://dx.doi.org/10.1007/978-3-642-03770-2_2
http://dx.doi.org/10.1007/978-3-642-03770-2_2
http://dx.doi.org/10.1007/978-3-540-75416-9_38
http://dx.doi.org/10.1145/1198555.1198768
http://dx.doi.org/10.1007/978-3-642-24449-0_5

Bibliography 143

[37] Howison, M., Koziol, Q., Knaak, D., Mainzer, J., and Shalf, J. Tuning HDF5 for
Lustre File Systems. In Proceedings of Workshop on Interfaces and Abstractions for Scientific
Data Storage (2010). LBNL-4803E. Available from: http://www.hdfgroup.org/
pubs/papers/howison_hdf5_lustre_iasds2010.pdf.

[38] IBM. General Parallel File System (GPFS). Available from: http://www.ibm.com/
systems/software/gpfs.

[39] Kitware Inc. The VTK User’s Guide. Kitware Inc. (2010). ISBN 978-1-930934-23-8.

[40] Kohl, J. A., Wilde, T., and Bernholdt, D. E. CUMULVS: Interacting with High-
Performance Scientific Simulations, for Visualization, Steering and Fault Tolerance. Int. J.
High Perform. Comput. Appl., 20 (2006), 255. doi:10.1177/1094342006064502.

[41] Lawrence Livermore National Laboratory. ASC Sequoia Request for Proposals (2008).
Available from: https://asc.llnl.gov/sequoia/rfp.

[42] Li, J., et al. Parallel netCDF: A High-Performance Scientific I/O Interface. In Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, SC. ACM (2003). ISBN 1-58113-695-1.
doi:10.1145/1048935.1050189.

[43] Linsen, L., Hamann, B., Joy, K., Pascucci, V., and Duchaineau, M. Wavelet-Based
Multiresolution with 𝑛√2 Subdivision. Computing, 72 (2004), 129. doi:10.1007/
s00607-003-0052-0.

[44] Lofstead, J., Zheng, F., Klasky, S., and Schwan, K. Adaptable, Metadata Rich IO
Methods for Portable High Performance IO. In IEEE International Symposium on Paral-
lel and Distributed Processing, IPDPS, pp. 1–10 (2009). doi:10.1109/IPDPS.2009.
5161052.

[45] Lorensen, W. E. and Cline, H. E. Marching cubes: A high resolution 3D surface con-
struction algorithm. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, SIGGRAPH, pp. 163–169. ACM (1987). ISBN 0-89791-227-6.
doi:10.1145/37401.37422.

[46] Lorenz, D., Buchholz, P., Uebing, C., Walkowiak, W., and Wismüller, R. Steering of
sequential jobs with a distributed shared memory based model for online steering. Future
Gener. Comput. Syst., 26 (2010), 155. doi:10.1016/j.future.2009.05.016.

[47] Los AlamosNational Laboratory. Roadrunner. Available from: http://www.lanl.
gov/roadrunner.

http://www.hdfgroup.org/pubs/papers/howison_hdf5_lustre_iasds2010.pdf
http://www.hdfgroup.org/pubs/papers/howison_hdf5_lustre_iasds2010.pdf
http://www.ibm.com/systems/software/gpfs
http://www.ibm.com/systems/software/gpfs
http://dx.doi.org/10.1177/1094342006064502
https://asc.llnl.gov/sequoia/rfp
http://dx.doi.org/10.1145/1048935.1050189
http://dx.doi.org/10.1007/s00607-003-0052-0
http://dx.doi.org/10.1007/s00607-003-0052-0
http://dx.doi.org/10.1109/IPDPS.2009.5161052
http://dx.doi.org/10.1109/IPDPS.2009.5161052
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1016/j.future.2009.05.016
http://www.lanl.gov/roadrunner
http://www.lanl.gov/roadrunner

144 Bibliography

[48] Malakar, P., Natarajan, V., and Vadhiyar, S. S. InSt: An Integrated Steering Framework
for Critical Weather Applications. Procedia Computer Science, 4 (2011), 116. Proceedings
of the International Conference on Computational Science, ICCS. doi:10.1016/j.
procs.2011.04.013.

[49] Marongiu, J.-C., Leboeuf, F., Caro, J., and Parkinson, E. Free surface flows simulations
in Pelton turbines using an hybrid SPH-ALE method. Journal of Hydraulic Research, 48
(2010), 40. doi:10.3826/jhr.2010.0002.

[50] McCormick, B. H., DeFanti, T. A., and Brown, M. D. Visualization in Scientific Com-
puting. Computer Graphics, 21 (1987). doi:10.1145/43965.43966.

[51] Monaghan, J. An introduction to SPH. Computer Physics Communications, 48 (1988), 89.
doi:10.1016/0010-4655(88)90026-4.

[52] Moreland, K., et al. Examples of In Transit Visualization. In Proceedings of the 2nd
International Workshop on Petascale Data Analytics: Challenges and Opportunities, PDAC.
IEEE/ACM (2011).

[53] Mulder, J. D., van Wijk, J. J., and van Liere, R. A survey of computational steering
environments. Future Generation Computer Systems, 15 (1999), 119. doi:10.1016/
S0167-739X(98)00047-8.

[54] Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., and Aprà, E.
Advances, Applications and Performance of the Global Arrays Shared Memory Program-
ming Toolkit. Int. J. High Perform. Comput. Appl., 20 (2006), 203. doi:10.1177/
1094342006064503.

[55] Oak Ridge Leadership Computing Facility. Jaguar. Available from: http://www.
olcf.ornl.gov/computing-resources/jaguar.

[56] Oak Ridge Leadership Computing Facility. Titan. Available from: http://www.
olcf.ornl.gov/computing-resources/titan.

[57] Object Management Group. Common Object Request Broker Architecture (CORBA).
Available from: http://www.omg.org/spec/CORBA.

[58] Oger, G., Jacquin, E., Guilcher, P.-M., Brosset, L., Deuff, J.-B., Le Touzé, D., and
Alessandrini, B. Simulations of complex hydro-elastic problems using the parallel SPH
model SPH-Flow. In Proceedings of the 4th SPHERIC (2009).

[59] Oracle. Lustre. Available from: http://www.lustre.org.

http://dx.doi.org/10.1016/j.procs.2011.04.013
http://dx.doi.org/10.1016/j.procs.2011.04.013
http://dx.doi.org/10.3826/jhr.2010.0002
http://dx.doi.org/10.1145/43965.43966
http://dx.doi.org/10.1016/0010-4655(88)90026-4
http://dx.doi.org/10.1016/S0167-739X(98)00047-8
http://dx.doi.org/10.1016/S0167-739X(98)00047-8
http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064503
http://www.olcf.ornl.gov/computing-resources/jaguar
http://www.olcf.ornl.gov/computing-resources/jaguar
http://www.olcf.ornl.gov/computing-resources/titan
http://www.olcf.ornl.gov/computing-resources/titan
http://www.omg.org/spec/CORBA
http://www.lustre.org

Bibliography 145

[60] Parker, S. G. and Johnson, C. R. SCIRun: A Scientific Programming Environment for
Computational Steering. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing,
SC. ACM (1995). ISBN 0-89791-816-9. doi:10.1145/224170.224354.

[61] Parker, S. G., Weinstein, D. W., and Johnson, C. R. Modern Software Tools for Scien-
tific Computing. chap. The SCIRun Computational Steering Software System, pp. 5–44.
Birkhauser Boston Inc., Cambridge, MA, USA (1997). ISBN 0-8176-3974-8.

[62] Pritchard, H., Gorodetsky, I., and Buntinas, D. A uGNI-Based MPICH2 Neme-
sis Network Module for the Cray XE. In Recent Advances in the Message Passing Interface
(edited by Y. Cotronis, A. Danalis, D. Nikolopoulos, and J. Dongarra), vol. 6960 of Lec-
ture Notes in Computer Science, pp. 110–119. Springer Berlin / Heidelberg (2011). ISBN
978-3-642-24448-3. doi:10.1007/978-3-642-24449-0_14.

[63] Rew, R. and Davis, G. NetCDF: An Interface for Scientific Data Access. Computer Graphics
and Applications, IEEE, 10 (1990), 76. doi:10.1109/38.56302.

[64] Rew, R., Hartnett, E., and Caron, J. NetCDF-4: Software Implementing an Enhanced
Data Model for the Geosciences. In 22nd International Conference on Interactive Information
Processing Systems for Meteorology, Oceanography, and Hydrology, AMS (2006). Available from:
http://ams.confex.com/ams/pdfpapers/104931.pdf.

[65] Richart, N., Esnard, A., and Coulaud, O. Toward a Computational Steering Environ-
ment for Legacy Coupled Simulations. In Sixth International Symposium on Parallel and
Distributed Computing, ISPDC, p. 43 (2007). doi:10.1109/ISPDC.2007.55.

[66] Ross, R. B., Peterka, T., Shen, H.-W., Hong, Y., Ma, K.-L., Yu, H., and Moreland,
K. Visualization and parallel I/O at extreme scale. Journal of Physics: Conference Series, 125
(2008), 012099. doi:10.1088/1742-6596/125/1/012099.

[67] Sandia Corporation. ASCI Red Web Site (2003). Available from: http://www.
sandia.gov/ASCI/Red.

[68] Sandia Corporation. Introducing Red Storm (2007). Available from: http://www.
sandia.gov/ASC/redstorm.html.

[69] Silva, C., Chiang, Y., Corrêa, W., El-Sana, J., and Lindstrom, P. Out-Of-Core Algo-
rithms for Scientific Visualization and Computer Graphics. In Visualization’02 Course Notes
(2002).

[70] Squillacote, A. H. The ParaView Guide, A Parallel Visualization Application. Kitware Inc.
(2008). ISBN 1-930934-21-1.

http://dx.doi.org/10.1145/224170.224354
http://dx.doi.org/10.1007/978-3-642-24449-0_14
http://dx.doi.org/10.1109/38.56302
http://ams.confex.com/ams/pdfpapers/104931.pdf
http://dx.doi.org/10.1109/ISPDC.2007.55
http://dx.doi.org/10.1088/1742-6596/125/1/012099
http://www.sandia.gov/ASCI/Red
http://www.sandia.gov/ASCI/Red
http://www.sandia.gov/ASC/redstorm.html
http://www.sandia.gov/ASC/redstorm.html

146 Bibliography

[71] Thakur, R., Gropp, W., and Lusk, E. Optimizing Noncontiguous Accesses in MPI-IO.
Parallel Computing, 28 (2002), 83. doi:10.1016/S0167-8191(01)00129-6.

[72] The HDF Group. Hierarchical Data Format Version 5. Available from: http://www.
hdfgroup.org/HDF5.

[73] The Ohio State University. MVAPICH: MPI over InfiniBand, 10GigE/iWARP
and RoCE. Available from: http://mvapich.cse.ohio-state.edu/index.
shtml.

[74] Vishwanath, V., Hereld, M., Morozov, V., and Papka, M. E. Topology-aware data
movement and staging for I/O acceleration on Blue Gene/P supercomputing systems. In
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, pp. 19:1–19:11. ACM (2011). ISBN 978-1-4503-0771-0. doi:
10.1145/2063384.2063409.

[75] Walker, D. and Otto, S. Redistribution of Block-Cyclic Data Distributions Using
MPI. Concurrency — Practice and Experience, 8 (1996), 707. doi:10.1002/(SICI)
1096-9128(199611)8:9<707::AID-CPE269>3.0.CO;2-V.

[76] Whitlock, B., Favre, J. M., and Meredith, J. S. Parallel In Situ Coupling of Simulation
with a Fully Featured Visualization System. In Eurographics Symposium on Parallel Graphics
and Visualization (edited by T. Kuhlen, R. Pajarola, and K. Zhou), pp. 101–109. Eurograph-
ics Association (2011). ISBN 978-3-905674-32-3. doi:10.2312/EGPGV/EGPGV11/
101-109.

[77] Yu, H., Wang, C., Grout, R., Chen, J., andMa, K.-L. In Situ Visualization for Large-Scale
Combustion Simulations. Computer Graphics and Applications, IEEE, 30 (2010), 45. doi:
10.1109/MCG.2010.55.

[78] Zhang, F., Docan, C., Parashar, M., and Klasky, S. Enabling Multi-physics Coupled
Simulations within the PGAS Programming Framework. In 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid, pp. 84–93 (2011). doi:10.
1109/CCGrid.2011.73.

[79] Zhang, K., Damevski, K., Venkatachalapathy, V., and Parker, S. SCIRun2: a CCA
framework for high performance computing. InNinth International Workshop on High-Level
Parallel Programming Models and Supportive Environments, pp. 72–79 (2004). doi:10.
1109/HIPS.2004.1299192.

http://dx.doi.org/10.1016/S0167-8191(01)00129-6
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://mvapich.cse.ohio-state.edu/index.shtml
http://mvapich.cse.ohio-state.edu/index.shtml
http://dx.doi.org/10.1145/2063384.2063409
http://dx.doi.org/10.1145/2063384.2063409
http://dx.doi.org/10.1002/(SICI)1096-9128(199611)8:9<707::AID-CPE269>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1096-9128(199611)8:9<707::AID-CPE269>3.0.CO;2-V
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.1109/MCG.2010.55
http://dx.doi.org/10.1109/MCG.2010.55
http://dx.doi.org/10.1109/CCGrid.2011.73
http://dx.doi.org/10.1109/CCGrid.2011.73
http://dx.doi.org/10.1109/HIPS.2004.1299192
http://dx.doi.org/10.1109/HIPS.2004.1299192

List of Refereed Publications

[80] Biddiscombe, J., Soumagne, J., Oger, G., Guibert, D., and Piccinali, J.-G. Parallel
Computational Steering and Analysis for HPC Applications using a ParaView Interface and
the HDF5 DSM Virtual File Driver. In Eurographics Symposium on Parallel Graphics and
Visualization (edited by T. Kuhlen, R. Pajarola, and K. Zhou), pp. 91–100. Eurographics
Association (2011). ISBN 978-3-905674-32-3. Honourable Mention Award. doi:10.
2312/EGPGV/EGPGV11/091-100.

[81] Biddiscombe, J., Soumagne, J., Oger, G., Guibert, D., and Piccinali, J.-G. Parallel
Computational Steering for HPC Applications using HDF5 Files in Distributed Shared
Memory. IEEE Transactions on Visualization and Computer Graphics, 18 (2012), 852.
doi:10.1109/TVCG.2012.63.

[82] Soumagne, J. andBiddiscombe, J. Computational Steering and Parallel OnlineMonitoring
Using RMA through the HDF5 DSM Virtual File Driver. Procedia Computer Science, 4
(2011), 479. Proceedings of the International Conference on Computational Science, ICCS.
doi:10.1016/j.procs.2011.04.050.

[83] Soumagne, J., Biddiscombe, J., and Clarke, J. An HDF5 MPI Virtual File Driver for
Parallel In-situ Post-processing. In Recent Advances in the Message Passing Interface (edited by
R. Keller, E. Gabriel, M. Resch, and J. Dongarra), vol. 6305 of Lecture Notes in Computer
Science, pp. 62–71. Springer Berlin / Heidelberg (2010). ISBN 978-3-642-15645-8. doi:
10.1007/978-3-642-15646-5_7.

[84] Soumagne, J., Biddiscombe, J., and Esnard, A. Data Redistribution using One-sided
Transfers to In-memory HDF5 Files. In Recent Advances in the Message Passing Interface
(edited by Y. Cotronis, A. Danalis, D. Nikolopoulos, and J. Dongarra), vol. 6960 of Lec-
ture Notes in Computer Science, pp. 198–207. Springer Berlin / Heidelberg (2011). ISBN
978-3-642-24448-3. doi:10.1007/978-3-642-24449-0_23.

147

http://dx.doi.org/10.2312/EGPGV/EGPGV11/091-100
http://dx.doi.org/10.2312/EGPGV/EGPGV11/091-100
http://dx.doi.org/10.1109/TVCG.2012.63
http://dx.doi.org/10.1016/j.procs.2011.04.050
http://dx.doi.org/10.1007/978-3-642-15646-5_7
http://dx.doi.org/10.1007/978-3-642-15646-5_7
http://dx.doi.org/10.1007/978-3-642-24449-0_23

148

Index

– A –
Animation keyframe, 94, 97, 106

– B –
Block-cyclic redistribution, 38, 65, 111

– C –
Computational steering, 4, 5, 11, 19

– D –
Distributed shared memory, 22
DMAPP, 58, 63, 67, 82, 112, 115
Dynamic communicator, 58

– F –
File striping, 9
Free mode, 45

– G –
Gemini interconnect, 58, 63, 115

– H –
H5Part, 76, 77, 83, 87, 101
HDF5, 8, 53, 69, 73, 107
Hierarchical file structure, 9, 40, 50, 87,

100
Hybrid approach, 20

– I –
ICARUS, 5, 70, 78, 83
In-memory file, 22, 25, 55
In-situ visualization, 13

Inter-communicator, 27, 58, 115
Intra-communicator, 27

– L –
Loosely coupled approach, 14, 16, 21, 23,

54, 111

– M –
Metadata, 8, 10, 25, 55, 57
MPI I/O, 8, 9, 53
MPI RMA, 58, 60, 64, 67
Multiresolution, 12

– N –
NetCDF, 9
Numerical simulation, 3

– O –
One-sided communication, 28, 32, 60, 63,

65, 111, 116
Out-of-core processing, 13

– P –
Parallel I/Os, 11
ParaView, 7, 11, 14, 20, 49, 70
Pull-driven approach, 21, 34, 72
Push-driven approach, 21, 26, 29, 34, 72

– R –
Random block redistribution, 39

– S –
Scientific visualization, 3, 7, 11

149

150 INDEX

SPH, 4, 85, 105
Static communicator, 58

– T –
Tightly coupled approach, 14, 54
Two-sided communication, 28, 59, 63

– U –
uGNI, 115

– V –
Virtual file driver, 53, 54, 112
Visualization pipeline, 7, 70, 72, 91

– W –
Wait mode, 44
Widget, 71, 81, 108

– X –
XDMF, 73, 76, 89, 101

	Abstract
	Résumé
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	Introduction
	Numerical Simulation and Scientific Visualization
	Multidisciplinary Environment and ICARUS Approach
	Objectives
	Outline

	In-situ Visualization and Steering Approaches
	From Traditional Visualization…
	Parallel File Interfaces and Data Formats
	Limitations of the Traditional Approach
	Solutions to Minimize Cost of I/Os

	…To In-situ Visualization
	Tightly Coupled Approach
	Loosely Coupled Approach
	Hybrid Approach

	Our Push-driven and Loosely Coupled Approach
	Push-driven Transfers
	In-memory File Exchanges
	Distributed Shared Memory for Data Staging
	Extension to I/O Libraries
	Methodology

	A Loosely Coupled Model: Architecture and Requirements
	Communication Interface
	Communicators
	Two-sided Interface
	One-sided Interface
	In-Memory File Access
	Event Notifications

	DSM Mapped Files
	File Memory Space Considerations
	Redistribution Methods

	Exchange Interface
	I/O Interface and Hierarchical Data Model
	Required Steering Properties
	Steering Interface
	Timing of Interactions and Operating Modes

	Deployment
	Available Configurations
	Ideal Configuration

	Application Integration
	Conclusion

	A Parallel HDF5 Interface: Implementation and Integration
	DSM Virtual File Driver
	Driver Implementation
	Driver Usage and Restrictions
	Platform Optimization and Inter-Communicators
	Impact of Redistribution Strategies
	Implementation Conclusions

	ICARUS ParaView Plug-in
	ParaView Client/Server Architecture
	Parallel Visualization of DSM files
	Parallel Steering and Analysis
	Integration Conclusions

	Application on SPH Simulations: Model Validation
	Integrating ICARUS into SPH-flow
	In-situ Visualization
	Computational Steering
	Conclusion and Future Developments

	Integrating ICARUS into an ALE-SPH code
	In-situ Visualization
	Computational Steering
	Conclusion and Future Developments

	NextMuSE Objectives and Validation

	Conclusion and Perspectives
	Using a PGAS Model
	Towards a Virtual Object Layer
	Storing Multiple Files
	Conclusion

	Cray Gemini Interconnect and uGNI-Based Communicator
	Architecture
	One-sided Transfers
	uGNI Microbenchmark

	uGNI-Based DSM Communicator

	Server API
	Steering API
	Application Integration
	Fortran Code Example: SPH-flow
	C++ Code Example: SPH-ALE Code

	Bibliography
	List of Refereed Publications
	Index

