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Abstract

As simulation codes become more powerful and more interactive, it is increas-
ingly desirable to monitor a simulation iz-situ, performing not only visualiza-
tion but also analysis of the incoming data as it is generated. Monitoring or
post-processing simulation data iz-situ has obvious advantage over the conven-
tional approach of saving to—and reloading data from—the file system; the
time and space it takes to write and then read the data from disk is a signifi-
cant bottleneck for both the simulation and subsequent post-processing steps.
Furthermore, the simulation may be stopped, modified, or potentially steered,

thus conserving CPU resources.

We present in this thesis a loosely coupled approach that enables a simu-
lation to transfer data to a visualization server via the use of in-memory files.
We show in this study how the interface, implemented on top of a widely used
hierarchical data format (HDF5), allows us to efficiently decrease the I/O bottle-
neck by using efhicient communication and data mapping strategies. For steer-
ing, we present an interface that allows not only simple parameter changes but
also complete re-meshing of grids or operations involving regeneration of field
values over the entire computational domain to be carried out. This approach,
tested and validated on two industrial test cases, is generic enough so that no

particular knowledge of the underlying model is required.

Keywords—Parallel I/O, Distributed Shared Memory, Communication Mod-
els, Computational Modeling, Data Models, Synchronization.






Résumeé

Les codes de simulation devenant plus performants et plus interactifs, il est im-
portant de suivre 'avancement d’une simulation #z-situ, en réalisant non seule-
ment la visualisation mais aussi 'analyse des données en méme temps qu’elles
sont générées. Suivre 'avancement ou réaliser le post-traitement des données de
simulation 7z-situ présente un avantage évident par rapport a 'approche con-
ventionnelle consistant a sauvegarder—et a recharger—a partir d’un syst¢me de
fichiers; le temps et 'espace pris pour écrire et ensuite lire les données a partir du
disque est un goulet d’étranglement significatif pour la simulation et les étapes
consécutives de post-traitement. Par ailleurs, la simulation peut étre arrétée,

modifiée, ou potentiellement pilotée, conservant ainsi les ressources CPU.

Nous présentons dans cette these une approche de couplage faible qui per-
met 2 une simulation de transférer des données vers un serveur de visualisa-
tion via l'utilisation de fichiers en mémoire. Nous montrons dans cette étude
comment l'interface, implémentée au-dessus d’un format hiérarchique de don-
nées (HDF5), nous permet de réduire efficacement le goulet d’étranglement
introduit par les I/Os en utilisant des stratégies efficaces de communication et
de configuration des données. Pour le pilotage, nous présentons une interface
qui permet non seulement la modification de simples paramétres, mais égale-
ment le remaillage complet de grilles ou des opérations impliquant la régénéra-
tion de grandeurs numériques sur le domaine entier de calcul d’étre effectués.
Cette approche, testée et validée sur deux cas-tests industriels, est suffisamment
générique pour qu'aucune connaissance particuliere du modeéle de données sous-

jacent ne soit requise.

Mots-clefs—I/Os Paralléles, Mémoire Partagée Distribuée, Modéles de Com-
munication, Modélisation Informatique, Mode¢les de Données, Synchronisa-

tion.
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“Computational science and engineering encompass a
broad range of applications with one common

denominator: visualization.”
— Bruce H. McCormick






Chapter 1.

Introduction

N science and engineering, mathematical modeling aims at creating abstract representations for
I the understanding and prediction of physical phenomena. For observation of the phenomenon
or validation of the defined model an experimentation phase can generally be defined; however, in
most cases, experimentation is expensive and not always feasible (e.g., galaxy collision). In addition
to this, modeling a system implies solving complex equations, for which in several cases no analytic
solutions can be found. In this context, numerical simulation can allow one to find approximate

solutions and understand a phenomenon under controlled conditions.

1.1. Numerical Simulation and Scientific Visualization

A numerical simulation program consists of solving a system numerically by iterating over time or
space (depending on what needs to be solved) until the system reaches a convergence point. At
each iteration step, a data output that contains a representation of the physical state of the system
may be produced and further post-processed for analysis of the simulation results. Note that as
the accuracy of the solution produced is an important factor, one may need to increase the model
resolution to get more accurate results, although this may in turn lead the simulation to consume
more resources. For example in figure 1.1a, in a mesh-based representation, increasing the mesh
resolution (and hopefully the accuracy of the representation) requires more resources in terms of
space to store the data and more resources in terms of computing power to be able to process a

larger amount of data in a still reasonable amount of time.

As the amount of data that is to be produced by the simulation is generally too large to be
humanly readable, data must be post-processed before one can conclude anything about the results.
This step, called scientific visualization, allows scientists to get a relevant representation of the data

and highlight specific data regions or variables (e.g., velocity, pressure, etc). While this process
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has been used for decades, it requires definition of a common and well-suited interface between

simulation and visualization applications.

In addition to this process, it may also be useful for an engineer or a scientist to directly interact
with the simulation code while visualizing data and change parameters and variables and/or data
objects, and see the corresponding effects and evolution as the simulation carries on computation.
This process, called computational steering, is used in several applications and can allow one to
recreate a fully simulated environment by modifying the right parameters and hence the simulation
dynamics during computation (removing the need to relaunch computation from modified initial

conditions).

1.2. Multidisciplinary Environment and ICARUS Approach

Different approaches can be used to simulate a single phenomenon and data models of simulation
codes can therefore be structured in various ways, depending on the representation that is to be
defined. For example, in CFD (Computational Fluid Dynamics) one can simulate a fluid using
a standard mesh-based method. However because the interface between air, water, and bodies is
variable and needs to be modeled (which can be very complex), mesh-free particle methods like
SPH (Smooth Particle Hydrodynamics [51]) have emerged as an alternative to classical mesh-based
methods. As illustrated in figure 1.1, instead of modeling the material with a fixed spatial mesh,
the fluid (and the solid) can be modeled with moving particles. Particles have no explicit connec-
tivity, but interact with neighbors within a specified range. This approach brings advantages in the

treatment of complex physics with interfaces for moving bodies.

N air does not
need to be
modeled
{\‘\%
( Y\\osoé‘i no explicit
S~ model of
// interface
water
particles
(a) Classical mesh-based approach. (b) Mesh-free particle approach.

Figure 1.1. Different approaches to model a body floating in water.

As an illustrative example that we will use in this thesis (see chapter 5), the NextMuSE [24] Eu-

ropean project defines a multidisciplinary environment between different simulation codes, which
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may use different data representations, in various domains such as energy, transport and health-
care. The objective of NextMuSE is to initiate a paradigm shift in Computational Fluid Dynam-
ics (CFD) and Computational Multi-Mechanics (CMM) simulation software, which is used to
model physical processes. Relying on SPH methods (fundamentally different from mesh-based
techniques as explained in figure 1.1), the project offers the possibility of a novel and adaptive
framework for user interaction, and has the potential for integrated multi-mechanics modeling in

applications where traditional methods fail.

Wave Generator
(Nantes, France)

M —
i T
Pressures
. 400 | 800 1200 1600 2000

s—
8562195 2070.383

Update
Mathematical %
@7 S

L
Modeling V
Compute _ . . Render

Figure 1.2. NextMuSE problematic and ICARUS concept.

Initialize

In this context, we define objectives and research axes to create a framework and platform, ca-
pable of interfacing multiple simulation codes that use different data models to a visualization and
analysis application at a minimal cost for the user. We define the concept of ICARUS—Initialize
Compute Analyze Render Update Steer [24]—which is illustrated in figure 1.2.

Based on experimental observations, one may define a mathematical model. From this model,
a simulation code is implemented and the computation occurs on a large high-performance comput-
ing (HPC) machine. This composes the simulation part, represented in blue'. Depending on the
use case, data output may be sent to other resources (machine or set of nodes) for analysis, which
may even be connected to a visualization client. This is represented in green' and must be generic
enough to be able to support the different simulation codes and data models. The visualization
client may produce images but a user must also be able to szeer the simulation by dynamically mod-

ifying parameters or meshes/data, so that he can explore and understand the effects of the different

Lcolor used in the different figures of this discussion.
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component modifications onto the simulation. This may in turn lead the simulation developer to

update the mathematical model, and improve the correctness or accuracy of the simulation.

1.3. Objectives

To follow the ICARUS concept, the first objective of this work is to create an interface that allows
one to re-route simulation data output to a post-processing server for analysis and visualization
without any significant rework of the simulation codes. As described above, the interface must be
generic enough to be used with any data model. The second objective is to define a comprehensive
steering interface so that not only parameters or simple scalars can be exchanged but also complete

meshes and data objects.

To respond to these two main objectives, it is necessary to define an interface that is flexible
enough to allow two-way communications between simulation and post-processing applications
and generic enough to allow transfers of various data structures. As we want also to be able to
run on large HPC machines, the interface needs to be able to scale up to thousands of proces-
sors and therefore avoid overhead wherever possible, neither on the simulation side nor on the

post-processing side; hence communications must also execute as fast as possible.

1.4. Outline

In chapter 2 we present the existing architectures, interfaces and means of exchange between sim-
ulation and post-processing applications that can respond to our problem and see how we can
position ourselves to determine the best suitable architecture that can ensure an efficient interfac-
ing of the different simulation codes with post-processing applications. In chapter 3, we explain
the different architectural choices that we make?, which sub-problems this leads us to, which so-
lutions or compromises we find and more importantly, which key concepts our architecture needs
to achieve the best performance. We present our implementation in chapter 4 and validate the
different concepts introduced and used in our architecture through unit test cases. In chapter 5, we
apply this work to two different test cases from the NextMuSE project and validate our approach
as well as our architectural and implementation choices. Finally, we conclude on the work that has
been achieved and present how the different problems encountered can lead in the future to new

improvements and implementation solutions.

2Note that most of the work that we will present in the next chapters has been published in [80-84].



Chapter 2.

In-situ Visualization and Steering
Approaches

ONSUMING more and more resources, simulations also generate larger and larger amounts
C of data. The significant bottleneck introduced by the analysis or the visualization of the
data produced requires digging for new post-processing methods and techniques. In this chapter
we show how the limitations of the original model, referred to as mraditional model, lead to new
approaches to reduce the amount of data that is to be processed by a given post-processing element.
While choosing a technique may restrict the operations that can be applied to the data, the degrees

of freedom for steering the simulation may vary accordingly.

2.1. From Traditional Visualization...

As illustrated in figure 2.1, in a traditional approach, a simulation writes data sequentially or in
parallel to disk using a defined file format. A post-processing or visualization application is then
used to read from the file system and visualize the generated data. This approach, used by several
tools, presents the advantage of giving to the user a generic solution to post-process his data and,
as simulation and post-processing are entirely decoupled, it does not interfere in any way with the

simulation, potentially still running.

Several visualization applications such as ParaView [15,70] or Vislt [19], based on the VTK
library [39], make use of this approach. Filters are applied to a source object (in this case, the
data read from the file system), which create from the original raw data a new set of data that is to
be visualized. This new set of data is then converted into geometric objects (mappers), which are

then rendered and displayed onto a screen. One can therefore create a complex post-processing
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Post-processing

Parallel
File System

Figure 2.1. Data is read from a parallel file system, the analysis and visualization steps are performed using
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a post-processing pipeline composed of filters, mappers and renderer.

pipeline, composed of several filters and mappers, the complexity of the data and the number of

operations requested increasing the time needed by the analysis to complete.

2.1.1. Parallel File Interfaces and Data Formats

Parallel file interfaces are now used in several applications and achieve a reasonable good perfor-
mance on well-known parallel file systems such as GPES [38], Lustre [59], etc. Among the different
parallel interfaces available, some have distinguished themselves for their flexibility, performance,

and reliability.

MPI 1/0

MPI I/O, defined in the MPI-2 standard [2, 33], is a parallel I/O interface. Implementations,
ROMIO [71] or more recently OMPIO [16], have been designed on top of abstract I/O device
layers that enable portability to underlying I/O systems. One of the most important implemented
features is collective I/O operations, which can even be non-blocking now. Collective I/O oper-
ations adopt a two-phase 1/O strategy and improve the parallel I/O performance by significantly
reducing the number of I/O requests that would otherwise result in many small, non-contiguous
I/O requests. However, MPI I/O reads and writes data in a raw format without providing any
functionality to effectively manage the associated metadata (see below), and thus does not guaran-
tee data portability. It is therefore not the most convenient file format for scientists who need to

organize, transfer, or share their application data.

HDF5

HDFS5 [72] is a widely used portable file format and library developed by the HDF Group for stor-
ing, retrieving, analyzing, visualizing (assuming an appropriate reader is provided) and converting

data. HDFS5 stores multidimensional arrays along with metadata in a file. It supports hierarchical
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file structures providing users with a high degree of flexibility for data management. As illustrated
in figure 2.2, a dataset is mapped onto a file and its memory description and layout is stored in
metadata. This allows users to define and organize their data into different groups and datasets

and build an hierarchical tree of data, all the file mapping being taken care of by the library.

___________________________________________________________________

! 1
! 1
! Dataset header Metadata cache Application memory
! 1
! 1
: Datatype :
1

' D || Dataset data '
1 ataspace 1
' :
1

' Attributes !
1

1 500 — :
! 1

File Dataset data

Figure 2.2. HDF5 stores multidimensional arrays (datasets) along with metadata in a file. In this case, a
dataset is contiguously mapped from the application memory to a file, its data structure being
described in the metadata cache.

HDFS5 supports parallel data access built on top of MPI I/O (which is best suited for parallel
file systems as previously described). HDF5 also provides its own ways of tuning parallel data
writes. For instance, the chunking mechanism allows files and particularly datasets to be stored in
a non-contiguous form (i.e., in equally sized chunks); this can be helpful for parallel file systems,
over which datasets can be striped. Additional optimization has also been made in the HDF5
library for specific file systems, such as the Lustre file system [37], and features such as variable-size

arrays and data compression are made possible by partitioning the storage space into chunks.

NetCDF

The Network Common Data Form (NetCDF) [63] format is another portable file format and pro-
gramming interface used in the scientific community (especially atmospheric science community)
for data access and storage of structured datasets. NetCDF uses a linear data layout in which data
arrays are contiguous or interleaved in a regular pattern. Parallel NetCDF (PnetCDF) [42] is a
parallel version of NetCDF developed by Argonne National Laboratory and Northwestern Uni-
versity and is built on top of MPI I/O to provide eflicient parallel file accesses through the use of
collective I/Os. One of the goals of NetCDF is to support eflicient access to small subsets of large
datasets. To support this goal, NetCDF uses direct access rather than sequential access. This can

be much more efficient when the order in which data is read is different from the order in which it
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was written, or when it must be read in different orders for different applications. NetCDF4 [64]
uses HDF5 as a data storage layer, HDF supports n-dimensional datasets and each element in
the dataset may itself be a complex object. Therefore the use of HDF5 as a data format adds a
significant overhead in metadata operations as creation of multiple objects implies multiple meta-
data accesses. NetCDF does not support compression directly but allows users to use the HDF5
interface for data compression.

2.1.2. Limitations of the Traditional Approach

As previously mentioned, simulation codes become nowadays more complex, use more and more
resources, and produce larger and larger data. Even with smart file formats, the conventional ap-
proach of saving to—and reloading data from—the file system now shows its limitations. This is
illustrated by table 2.1, which shows an historical overview of different existing large systems [29,
47,55,68] such as Cray XT5 systems, now decommissioned systems such as ASCI machines [67],
and upcoming systems such as the OLCF Cray XK6 [56] or ASC IBM BG/Q [41]. It is clear from
this table that, as the peak performance grows, the gap between the amount of memory available
on the system and the file system bandwidth increases. Therefore, assuming that a simulation runs
on the full system, the time required to perform a whole system checkpoint to disk increases as
well. A few exceptions in this table, such as the RIKEN K computer or Roadrunner, show lower
checkpoint times, bringing a faster file system compared to the others for the same period. How-

ever the overall trend, even for these systems, is not to get a smaller ratio (System Memory) | (File

System Bandwidth).

Table 2.1. Historical peak performance of supercomputers and associated 1/O rates.

Machine Year Peak System File-System ~ Whole System

(TFlops) Memory (TB)  BW (GB/s)  Checkpoint (s)
ASCI Red 1997 1.8 1.1 4 ~ 280
ASCI White 2001 12 6 12 ~ 510
ASC Red Storm 2005 41 33 50 ~ 680
Roadrunner 2008 1344 104 216 =~ 490
CSCS XT5 2009 212 29 16 ~ 1860
NCCS XT5 2009 2332 292 240 ~ 1250
RIKEN K Computer 2011 11550 1377 ~ 1024 ~ 1380
OLCF XK6 201x ~ 15360 584 =~ 600 ~ 1000

ASC Sequoia 201x =~ 20480 1638 =~ 650 =~ 2580
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As a direct consequence of these I/O limitations, post-processing applications suffer heavily,
as they pay twice the accesses to the file system: one is introduced by the simulation writing to
disk and the other by the post-processing application reading from it (and the bandwidth from
the compute nodes to the file system may be substantially better than from the file system to the

post-processing nodes).

Besides this, computational steering, which can also be applied in a traditional approach by
visualizing and analyzing every time step as it is written to disk, may suffer from interaction issues
as the frequency of data outputs diminishes. For example, InSt [48] is a framework that allows
one to steer a simulation remotely. First the simulation output is written to the file system and
a service sends it via the network to a remote machine. Visualization is then performed and a
steering action may be sent back. Whereas this approach is useful when a simulation can only run
on a specific site for security reasons, if the amount of data produced by the simulation drastically
increases, the interaction and data exploration capabilities brought by the steering approach will

be considerably reduced.

Still, the previous statement of this section does not mean that codes should not produce out-
puts to disk any more, as one may need to save his data for a future usage and data post-processing
may only be feasible from the original raw data; but more specifically, this means that in a regular

use, when data archiving is not necessary, other solutions must be sought to minimize the usage

of disks.

2.1.3. Solutions to Minimize Cost of 1/0s

Several solutions exist to minimize the costs of I/Os'. Some of these solutions are presented in [18]
where post-processing systems have to meet petascale simulation systems requirements and they
are already used by many applications such as ParaView, Vislt, etc. We present in the following

points three of these techniques, which follow a traditional post-processing model.

Pure Parallelism
The first natural technique to minimize I/O costs is to have several processes reading in parallel
(see figure 2.3), so that each of them can work on its own subset.

This technique is still one of the most used techniques but presents some limitations. Assuming

that a significant number of nodes are used to access the file-system, the I/O bottleneck may be

'Note that I/Os is here an abuse of terminology and specifically refers (unless specified) in most of this document to

“disk I/Os”.
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Post-processing

Figure 2.3. Data pieces are read and treated in parallel.

proportionally reduced. However, the main issue one may need to consider is that the size of the
cluster used to post-process data is usually not as large as the one used for the simulation. While the
simulation may minimize the I/O costs by writing in parallel, the post-processing machine, when
reading in parallel, will have to pay at a larger extent the size of the data. This technique presents
therefore an important limitation, as the simulation may scale to a high number of processes, but
post-processing may still be limited by parallel I/Os from disk.

Multiresolution

The second idea one may have is to work on a simplified version of the data for post-processing by
temporarily decreasing the resolution (see figure 2.4). When the coarse representation is no longer
needed, one may switch back to the full resolution representation and run the analysis again if

necessary.

Decrease Post-processing

Resolution

Figure 2.4. Data resolution is temporarily decreased for post-processing.

For example in [43], the authors construct a multiresolution hierarchy based on subdivisions
and make use of downsampling filters for high quality data approximation on each level of detail.
Whereas this can be seen as a good alternative (particularly for data exploration), the main draw-
back of this technique is the consequence of operating on a simplified version of data. It may not
be always meaningful as one may miss details or get different results from the analysis and therefore

may need to go back to higher resolutions.
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Out-of-core Processing

Subsetting or out-of-core processing [69] consists of operating on a unique partitioned data subset,

fitting in the main memory. Each subset is then processed, one at a time (see figure 2.5).

s
Post-processing

Figure 2.5. Post-processing occurs serially onto partitioned data subsets.

This method obviously reduces the accesses to disk as only small blocks of data are read. Addi-
tionally post-processing application components can be multithreaded or distributed over different
nodes and in this context, task parallelism can allow the current subset to be post-processed while

the next subset is being read.

One issue remains: depending on the data that is to be analyzed/visualized, partitioning the
data so that only a very small subset of data is used and analyzed may not always be applicable, and
/O costs may still be high as depending on the size of data, a significant number of I/O operation

will still be necessary.

2.2. ...To In-situ Visualization

As data becomes ever larger [66], techniques presented above do not allow sufficient reduction
of I/O costs. To decrease the I/O bottleneck even further, the concept of in-situ visualization
or in-situ processing is re-introduced®. Generally speaking, in-situ visualization of a simulation
is a technique where a simulation is coupled with a visualization interface and visualization (or
post-processing) occurs while the simulation is running. The expression “in-situ processing” can
be ambiguous as several methods use the same terminology for different modes of operation. We
will separate in the next sections in-transit processing [52] (also commonly called szaged process-
ing)—where data movement between different nodes occurs—from in-position processing—where
no data movement occurs and memory spaces are shared between simulation and post-processing

applications.

2Not completely new [50], even though a lot of interest has been shown for this technique in the last few years and
particularly because of the increase of I/O constraints.
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More generally, in-position processing is a synchronous approach (i.e., a tightly coupled ap-
proach) and in-transit is asynchronous (i.e., a loosely coupled approach). As we will see further
in details, each of these approaches has its own advantages and drawbacks. As these different ap-
proaches imply a different level of coupling, we also present what this implies in terms of steering

capabilities that can be associated to the simulation.

2.2.1. Tightly Coupled Approach

In a tightly coupled approach, as illustrated in figure 2.6, simulation and post-processing share
the same memory. A post-processing application that uses this method can therefore have direct
access to the requested memory regions without having to do any additional memory copies and

of course, any data transfer with the simulation (i.e., data movement costs are close to zero).

P
[P

N processing elements (PEs)

Figure 2.6. Simulation and post-processing applications share the same memory.

For instance, Vislt [19] provides users with the libsim [76] in-situ visualization library, a light-
weight library that is portable enough to be executed on a large variety of HPC systems. The
library defines an API so that one can simply interface to the Vislt environment. This implies for
the user annotation of the code with the required functions. The Vislt libsim also provides a way
of dynamically connecting to a simulation already running so that one can monitor results, remov-
ing the need to launch both applications at the same time. This is ensured by periodically calling
VisitDetectInput from the simulation main loop (see figure 2.7) so that when requested, new

connections between the Vislt client and the libsim library are created.

On the other hand, ParaView proposes a similar approach with the coprocessing library [28].
At the end of a simulation time step, the simulation makes a function call to pass the current
simulation/solution state to the ParaView coprocessor. The coprocessor reads then instructions
from a Python script to build a filter pipeline for analysis of the data. The post-processed data,

which may even be at the end of this process a simple image, can be directly saved using disk I/Os.
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Both libraries require some re-working of the code so that memory addresses can be passed to
the interface; while the interface conversion is basically the same for each simulation code (and
similar to that of most I/O libraries), it does require a detailed knowledge of the simulation and
visualization tool interface. In most cases, post-processing operations have to be well defined before
running the simulation, which means that only a specific sequence of events can be called during

a post-processing request.

As described in [77] where a full in-situ visualization pipeline is applied to combustion simula-
tions at large scale, making use of these approaches for in-situ visualization means that the analysis
will run on the same computing cores as the simulation, placing additional memory demands on
them. It is also likely that as the simulation algorithm scales up to a high number of cores, the
analysis algorithms that need to be applied to the simulation output do not scale as well, leading

to either additional communication overheads or computation bottlenecks.

Consequently, since post-processing and simulation access the same memory, post-processing
must operate synchronously with the simulation (and this can be a potential drawback as while the
analysis is being processed, the simulation must wait). In other terms, as illustrated by figure 2.7,
a new simulation time step can be computed only when the local post-processing of the current

time step is completed (if post-processing was requested).

_
Serve a Visualization

Request

Connection
[VisitDetectInput} [Solve Next Step}
Process Vislt
<

Process Con-

sole Input

Check for
«———| Convergence,
End of Loop

Figure 2.7. Simulation control flow after introducing in-situ processing with Vislt libsim.

While the restrictions cited above affect the overall computation time, they also reduce the

degrees of freedom one may require to steer a simulation. Memory constraints have a high impact
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and one may need to pass back to the simulation different memory objects or even new objects;
depending on the use case, this may be very complex to handle with this approach. Furthermore,
because simulation and post-processing are tightly coupled (and pipeline is pre-defined), the level of
interactivity one may require to explore the data—and add potential analysis and specific steering

actions—may be more limited or more complex to handle.

2.2.2. Loosely Coupled Approach

In a loosely coupled approach, visualization and analysis run concurrently on different resources,
as illustrated in figure 2.8. When a new time step is computed, output is sent via the network to

another set of nodes (or machine?).

(_m ' Memory

Network

Simulation K_k'\/*/ Post-processing
M processing N post-processing
elements (PEs) elements (PEs)

Figure 2.8. Simulation and post-processing run on separate physical nodes and data is transferred from one
application to the other through the network.

A first example of tools that uses this approach is the EPSN library [65], which defines a
parallel high level loosely coupled model by manipulating and transferring distributed objects
such as parameters, grids, meshes and points between different applications across the network,
using a CORBA [57] communication protocol. A user can ask for objects and these objects are
automatically mapped (and redistributed) using the EPSN model to VTK sources (in-memory),
or any other output format (e.g., HDF5 for which a module in the library is provided as is a

JBut in this case, the term of in-situ processing is not really appropriate as the internal network is no longer used.



In-situ Visualization and Steering Approaches 17

ParaView plug-in for visualization). EPSN includes a mesh redistribution layer that maps grids
from N simulation processes to M post-processing processes. One can then easily interface the
simulation or visualization code to one of the mappers, and define steerable parameters and actions.
The EPSN library also makes use of XML files to describe the data and interactions and provides
task descriptions that can be used to define synchronization points at which codes can wait for each

other.

Another in-transit (and therefore loosely coupled) approach has been introduced in the ADapt-
able I/O System (ADIOS) framework [44]. ADIOS has been designed to separate the /O API
from the actual implementation of the I/O methods. It implements a new file format called the BP
format, which can easily be converted into common formats such as HDF5, NetCDF or ASCII.
Using the same implementation and an XML description file, one can switch between the differ-
ent services that the library provides the user with, and also select specific I/O services that can for
example be used to map the data output to a remote memory (with no code changes). Particularly,
ADIOS defines the DataSpaces method [26] to create a virtual shared memory space, a staging area
that can be asynchronously accessed using one-sided communication protocols. Multiple time-
steps can be stored in this staging area and are automatically deleted depending on space demands
or user requests. Advanced mapping and advanced redistribution mechanisms using PGAS mod-
els [1] are also being developed [78]. For visualization, a ParaView reader has been created to take
advantage of the different ADIOS methods. Steering simulations with ADIOS does not seem to
be supported as of today. However this I/O library does not present any theoretical limitations in

its design for a possible extension.

A similar approach is provided with GLEAN [74]. The framework uses a client/server archi-
tecture to re-route data from a simulation to staging nodes. In this approach, the simulation is
the client and the staging part receiving data is the server; the client runs on compute nodes or on
dedicated I/O nodes and the server runs on staging or visualization nodes that are connected to

the compute nodes via a local network.

The main advantage in these approaches is to have a staging area or coupled application located
on concurrent resources, adding a minimal or null overhead on the simulation side (but effectively
requiring an additional amount of resources to host the staging server or post-processing applica-
tion, which is also the main issue of this approach). However, while in a tightly coupled approach,
simulation has to wait for post-processing to finish before being able to compute the next time
step, in a loosely coupled approach, since data is duplicated and staged into a remote memory,
data analysis and visualization can be processed asynchronously. This is also interesting as het-
erogeneous architectures can be used together, one dedicated to the simulation and one to the
post-processing, assuming that a relatively good network links both machines or node partitions

together and that a common communication protocol can be used. Additionally, when a fault in
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the post-processing application is detected, it can be guaranteed that the simulation will carry on

computation and not be stopped.

Steering Considerations

As simulation and post-processing operate on their own copy of the data and in an asynchronous
manner, several possibilities can be offered in terms of steering. While we have enumerated some
of the possibilities that are offered by frameworks such as EPSN, other existing frameworks rely
on a loosely coupled setting; they have been largely studied in [53] already.

One of the first computational steering environments that has been developed was the visu-
alization and application steering environment (VASE) [14]. The VASE framework consists of
a collection of programming tools and system software. Designed to work with existing codes
written in Fortran and based on simple annotations in the source code, VASE tools construct a
high-level model from the application, enabling the user to work with this model rather than at
the detailed source-code level. Monitoring and steering are performed through break-point scripts.
Scripts can read and write variables in the application, control the flow of data between processes
(e.g., to send data to a visualization process), and call subroutines defined in the application pro-

gram.

SCIRun [60,61], a problem-solving environment, is another well-known framework. It uses
an object-oriented data flow approach to enable the user to control scientific simulations inter-
actively (synchronously or asynchronously) by varying boundary conditions, model geometries,
and computational parameters. SCIRun was designed for the development of new applications,
although it is possible to incorporate existing applications into the system. An application in
SCIRun resides in one or more modules, implemented in C++. Writing a new module involves
writing a new C++ class. The user interface of SCIRun includes several predefined modules for
data visualization and program monitoring (progress meters, thread display, memory usage statis-
tics). For user input, modules can integrate a T'cl/Tk user interface with which the steerable items
of that module are controlled. SCIRun2 [79] now relies on a more loosely coupled setting and
supports distributed computing through distributed objects. SCIRun2 is based on SCIRun and
on the Common Component Architecture (CCA) [8], which aims at defining a minimal and stan-
dard set of interfaces for interoperability between components. Parallel components are managed

transparently over an M X N method invocation and data redistribution subsystem.

CUMULVS [40] is another library that, in addition to providing access to distributed data
at runtime (runtime tracking), also supports fault-tolerance to failures by using check-pointing
mechanisms. The steering capabilities of CUMULVS include model exploration and performance
optimization. CUMULVS originally aims at interfacing PVM programs but interoperates well
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with simulations that use MPI or other parallel environments (and CUMULVS has also been in-
tegrated with the Global Arrays PGAS model [54] for distributed shared-memory programming).
The basic principle of CUMULVS is to have the user declare in the application how an array or
field of variables has been decomposed over a collection of parallel processors and specify which
parameters are allowed to be modified or steered during the computation. To allow steering, the
user interface process creates a loosely synchronized connection with the application, which guar-
antees that all tasks in the application will apply the steering updates at the same time or point in
the application. To prevent multiple viewers from steering the same parameter simultaneously, a

viewer can lock a steerable parameter by obtaining the steering token of that parameter.

Similarly, RealityGrid [12], which is mainly used for grid computing, provides an interface
for computational steering. One can connect dynamically to the simulation, monitor values of
parameters and edit them if necessary. Once a client is connected to the simulation component,
it can send steering messages to the simulation, which in turn transmits data to the visualization
component. To make use of the steering library, an application must satisfy certain requirements.
In particular, the application must have a logical structure such that there exists a point within
a control loop at which it is possible to carry out steering tasks such as pause, resume, detach
and stop, but also get and set values of steerable parameters. The computational steering API
defined in RealityGrid is quite exhaustive and provides additional functionality, such as the ability
of checkpointing/rewinding from a registered control point. A connected steering client may then

instruct the application to create a checkpoint and later restart from that particular checkpoint.

These frameworks all provide a comprehensive interface and several features such as steering of
parameters, boundary conditions, model geometries. The loosely-coupled approach allows these
operations to be performed synchronously or asynchronously without interfering with the sim-
ulation, allowing even fault-tolerance in the case of CUMULVS. However, it is worth noting
that all share one common drawback, the data model used and user interface does not follow the
original data model used to perform I/Os and in most cases, the simulation code will require sig-
nificant rework (by defining steering modules, etc). Again, it is possible to go further and define
a generic interface for both the simulation output and computational steering, allowing data to
be exchanged over the same existing interface, thus minimizing the modifications in the source
code and allowing compatibility with existing data models and file formats (which is critical for

visualization purposes, interoperability, etc).
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2.2.3. Hybrid Approach

In a hybrid approach, tightly coupled and loosely coupled techniques are intertwined so that one
benefits from both approaches by first reducing data into a tightly coupled setting before sending

it to a concurrent resource for final post-processing and visualization.
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Figure 2.9. Both previous techniques are combined and only a tightly coupled setting is sent through the
network.

A good illustration of this approach is made by using both ParaView co-processingand GLEAN
frameworks [28], removing the need to use disk I/Os to write (partly) post-processed data. By using
a GLEAN writer in the in-situ post-processing pipeline, the GLEAN client (on the simulation side)
re-routes data to staging nodes. The staging nodes host both a ParaView server and a GLEAN
server. A VI'K GLEAN reader is used to read data from the GLEAN server, and convert it into
VTK objects, without copying memory. Additional ParaView filters can then be applied to convert

data into the final post-processed data that is to be visualized.

To a lesser extent, this approach shares the drawbacks of both previous techniques, a non-
negligible overhead is present on the simulation side (memory and code annotation) and data
transfers depend on network capabilities and communication protocols. Additionally, depending
on the framework used, it may be complex for a non-expert user to implement. This approach
however gives a good compromise if transferring the whole raw data is not possible or if the data

analysis needs to be done on the same nodes as the simulation.
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2.3. Our Push-driven and Loosely Coupled Approach

The approach that we propose to define uses a loosely coupled model and can be defined as an
in-transit visualization approach (as opposed to an in-position visualization approach since data is
sent to concurrent resources). Even on recent systems, memory consumption is an important issue
and transferring data to a remote system or node partition may be the only way (depending on the
analysis algorithms that are to be performed) of not decreasing the solver performance. Therefore
the simulation pipeline in our approach is split into three different components, the simulation
that outputs data, the staging area that receives data from the simulation, and the post-processing

application that analyzes data coming from the staging area.

2.3.1. Push-driven Transfers

2. Send data to 3. Start. 1. Put data onto 2. Start.
remote server ~ PoStprocessing remote server  POSt-processing

o T~ o >~ N

‘ Simulation Staging Post-processing ’ ‘ Simulation }—» Staging Post-processing
Area Area
1. Request
new time step

(a) The simulation receives a post-processing request, (b) A new time step sent from the simulation updates

a new time step is sent that updates the pipeline. the post-processing pipeline automatically.

Figure 2.10. Two approaches for in-transit processing.

To transfer data between simulation and post-processing applications asynchronously, we dis-
tinguish two techniques, push-driven from pull-driven. In a pull-driven model, as shown in fig-
ure 2.10a, it is common to have the simulation defined as the server and the post-processing and
staging application defined as the client. The post-processing application sends a request to the
simulation, asking for a new time step. At the end of a computation step, when the simulation sees
that a request is present, data results are sent to the staging area (or to the post-processing appli-
cation). To be able to handle the different requests and transactions, an additional service (thread
or process) needs to run on the server, as all the requests must be non-blocking for the simulation.
To go further in the direction that we have chosen, and not interfere at all with the solver (i.e., not
create any additional overheads), we choose to adopt a push-driven model where data is pushed and
put into a remote memory. In this case (see figure 2.10b) the post-processing/staging application

is the server and the simulation is the client. At the end of a time step, data is pushed and staged to
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remote nodes and is then automatically post-processed. Note that if post-processing data is slower
than computing a time step, simulation may be slowed down but in this case one can imagine to
store multiple time steps in the staging area or potentially skip some of them. In the following

sections, only the case for storing a single time step will be considered.

2.3.2. In-memory File Exchanges
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Figure 2.11. Transfers between post-processing and simulation occur through in-memory files where data
but also steering data can be stored.

As we want to be able to interface with multiple codes that can potentially use different data
models and different data representations, we decide to use in-memory files (that follow a hierar-
chical pattern) as a generic interface, to exchange and store data in the staging area. For steering
the simulation, this approach will also allow us to exchange not only parameters but also blocks
of data using a reserved section of the memory mapped file, which is illustrated in figure 2.11.
Memory files are here represented in a very simple form but they have to be actually mapped onto
a more complex memory system so that exchanges and transfers are performed as fast as possible
between the different components (the main bottleneck of this approach must be minimized). To
map the files and handle the transfers, different strategies and techniques will be presented in the

next chapter.

2.3.3. Distributed Shared Memory for Data Staging

The staging area in our approach is a distributed shared memory (DSM) [17], which we also use
as a steering interface as presented in the previous section, and is distributed among N processes.

This is not a novel idea, other recent approaches such as the one from Lorenz et al. [46] make
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Figure 2.12. Parallel data transfers between the DSM interface and the post-processing application follow
a M X N X P redistribution.
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use of the DSM concept and have formalized consistency models and protocols to ensure data
integrity within a steering environment. However the novelty and originality of our model differs
from theirs by the push-driven architecture and the hierarchical file approach used to map data
and steering objects onto the DSM.

As described in figure 2.12, the solver component is distributed among M processes, the staging
area among N processes and the post-processing among P processes, and it is common to have
M > N (for the reasons explained in 2.1.2). This results in a M X N X P data mapping between
the different components and we will present in the next chapter the different approaches used to
map and transfer data between them. Note also that whereas the staging area and post-processing
components can be located on different sets of nodes or machines, they may also be part of the

same post-processing server application and in most cases, N may be equal to P.

2.3.4. Extension to 1/0 Libraries

Generally, from an implementation point of view, simulation users and developers spend a non-
negligible effort in implementing interfaces for outputting data, making use of I/O libraries such
as HDF5 or NetCDE as described in 2.1.1. In a loosely coupled approach I/Os need to be re-
routed to a staging area and as a consequence, the simulation I/O interface may be subject to

several modifications.

In our approach, we want these modifications to be as minimal as possible and not have to
rewrite the whole I/O interface of the simulation code. This objective can be reached by extending
the I/O library itself, so that the user may be able to use the same API and /O interface but, as
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Figure 2.13. Using a unique 1/O library, a given simulation code can switch from writing to a parallel file
system to another I/O mode, which is to re-route data to a staging area.

illustrated in figure 2.13, will see its data being re-routed to the staging area. This also presents
two advantages: keeping the ability to archive data, so that one can potentially combine both
approaches, traditional and in-situ processing, and keeping the hierarchical approach provided by
I/O libraries so that data can be easily accessed. We will present in section 4.1 how we make use

in our implementation of the existing and widely adopted HDF5 library to achieve this goal.

2.3.5. Methodology

Based on the previous statements, we present in chapter 3 the detailed architecture of this approach
and its inner mechanisms: in section 3.1 the communication system along with the synchroniza-
tion and notification mechanism, in section 3.2 the in-memory file space layout and redistribution
techniques used to transfer data to the DSM, in section 3.3 the exchange interface and required
steering properties (i.e., the mechanisms used to exchange steering commands and data) and in

section 3.4 how we deploy the different components of our architecture.

In chapter 4, we discuss the implementation choices that we make to achieve our architectural
objectives: in section 4.1 we describe how we make use of the HDF5 library to re-route data
in parallel and show, based on the communication and redistribution strategies, the performance
achieved on different types of systems. In section 4.2, we describe the post-processing part of
the implementation, necessary to read and interact from/with the DSM, as well as the associated

performance.

Validation test cases are then studied in chapter 5. We presentin 5.1 and in 5.2 the integration
of both in-situ visualization and steering features of our framework into two simulation codes
from the NextMuSE European project [24]. We demonstrate how our DSM approach extends

the capabilities of these codes in order to solve genuine engineering problems.



Chapter 3.

A Loosely Coupled Model: Architecture
and Requirements

s described in 2.3, the approach that we chose follows a loosely coupled model. In this chapter,

we discuss the different architectural choices that we make to meet our two main require-
ments: one, avoid overhead on the simulation side; and two, provide a two-way communication
model for the exchange of data. Whereas one would only need one-way exchanges for simple in-
situ visualization, for simulation steering a two-way communication system allows the reception of

commands from the simulation and therefore the definition of a comprehensive steering interface.

Architecture Overview

As illustrated in figure 3.1, the architecture we wish to define is organized as follows: a simulation
is coupled to a post-processing application through a distributed shared memory (DSM); the data
itself is stored in an in-memory file that is distributed over the network. To be able to generically
use and read data stored in the file (see 2.1.1), information about the internal data hierarchy and
layout must be cached: this piece of information is called metadata. An in-memory file must be
consequently composed of two separate parts, one containing the data itself and one containing

the metadata. Additionally, steering commands and steering data can be stored into a separate

chunk of the file.

Simulations can generally be decomposed into four main steps: an initialization step, a solving
step, an 1/O step and a finalization step. The I/O step may write results of the previous solving
step before looping back to the next computation step depending on the number of steps requested
(which may be time steps if the simulation loops over time). In a typical processing loop, instead
of writing to disk during the I/O step, the simulation may reroute data in parallel through the
network to the DSM. This is the critical point of the architecture: data must be sent using very
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Figure 3.1. Data from the simulation is re-routed to an in-memory file stored in DSM, analysis starts in a
push-driven fashion, steering data is sent back through DSM and read back from the simulation.

efficient communication techniques so that the network bandwidth is maximized. This will be
more detailed in section 3.1. Additionally to be more efficient, data stored in the DSM is sent and

stored using different mapping and redistribution patterns. This is detailed in section 3.2.

When the simulation writes new data into the DSM, we want the post-processing application
to automatically start analysis without having to do any DSM status polling. This means that a fully
push-driven structure must be used instead, along with a complete notification system to forward
possible events to the post-processing application; more details are presented in section 3.1.5.
When data from the simulation is sent to the DSM (synchronously or asynchronously depending
on the communication system used), the simulation can carry on computing without waiting for
the analysis or visualization steps to be completed, as another copy of data is remotely created and

stored in the DSM.

Once the data is analyzed, a user may—or may not—give new steering orders to the simula-
tion. To achieve this goal, we present a comprehensive steering interface in 3.3 allowing simple
commands and more complex data to be sent back to the simulation. Steering orders are generally
received by the simulation at the beginning of a new time step but we will see in section 3.3.4
that we can also define two different modes of interaction depending on user demands, one syn-

chronous and the other asynchronous.
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Finally, it is important to note that depending on the system and configuration that are to be
used for running the simulation and the post-processing applications, different options for deploy-
ing the components of the architecture may be chosen. This is detailed in 3.4. To optimize the use
of resources on the systems and not do unnecessary memory copies, as illustrated in figure 3.1, the
DSM may be co-located with the post-processing application, or on separate computation nodes if
the data cannot be stored on same nodes as the post-processing application.

3.1. Communication Interface

The communication interface defined in this section is one of the crucial points of the architecture
as all the exchanges and operations between the simulation and the post-processing application
must be executed as fast as possible. The simulation writes data packets in parallel to the DSM,
which become distributed not only spatially but also temporally as the different pieces may transit
at various speeds through the network. Therefore the operation order between the simulation and

the post-processing application must be preserved to ensure not only event ordering but also data

integrity.

3.1.1. Communicators

The DSM, which is the staging area that we previously defined in 2.3, can be seen as an addressable
remote memory space from the simulation point of view. To transfer data in an efficient manner
from a given parallel simulation code that uses M processing elements to a DSM that uses N pro-
cessing elements, we need M X N links so that the local simulation data can be sent to any address
of the remote memory. This point-to-point communication model may also be the only way of
maximizing the network bandwidth depending on the number of physical links available between
the simulation and the DSM. For communication within or between processes, we distinguish
two types of communicators':

1. An intra-communicator represents the communicator used for internal communications

performed by a given application;

2. An inter-communicator links two different applications or two different sets of processes

together.

'The concept of communicator is very close here to the notion of communicator objects defined in MPI, where the
basic group object can be seen as the application.
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In our approach, the simulation uses its own intra-communicator for all the internal data ex-
changes and an inter-communicator to communicate with the DSM. The DSM has also its own
intra-communicator, which may be used for internal synchronization purposes or may be shared
with the post-processing application if the DSM and the post-processing application share the

same global communicator.

If we consider the simulation code and the DSM as two distinct SPMD (Single Program Mul-
tiple Data) codes, the inter-communicator linking these two codes together must be dynamically
created at run-time and must use a connection procedure so that one code may try to reach the
other one to create a new inter-communicator. However if we consider the two codes as a unique
MPMD (Multiple Program Multiple Data) code, the inter-communicator is statically created and

shared during an initialization phase.

Once the inter-communicator is created, the simulation may send the actual data that needs
to be written and stored remotely, but also commands or events, which may be requested for
different reasons (which we will detail in 3.3). As one of our objectives is to interfere as little as
possible with the simulation code by using a push-driven approach, we define the simulation as
the client and the DSM as the server (note that as explained in the previous overview, the DSM
may be combined with the post-processing application). To be able to communicate to the server
and send commands at any time, a thread—referred as service thread—must be listening on the
inter-communicator. This thread may therefore receive a command, treat it and carry on listening

for new commands until disconnection.

To send the actual data we distinguish two communication modes, two-sided and one-sided.
In a two-sided approach, the sender and the receiver must participate to the communication op-
eration. In a one-sided approach, (as the name suggests it) only one side needs to issue a write or
read call to achieve the communication. This communication mode has been introduced more

recently and is exploited in libraries such as MPI [2].

3.1.2. Two-sided Interface

In a two-sided approach, as the nature of the events and transactions received by the DSM is not
known in advance, data transfers (using communication libraries such as MPI) can only be per-
formed in two phases, which creates a synchronous operation. As shown in figure 3.2, in the first
phase, the sender sends a send data command to the DSM with the size of data to be transferred.
In the second phase, the sender sends the data and the DSM receives it. For communication from
the DSM to the simulation, the simulation sends a receive data command and the DSM sends
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the requested data back to the simulation. The same mechanism applies for the post-processing

application that queries data from the DSM.

0. Wait f
1. Send data command ( ait for message)

Figure 3.2. A service thread listens for incoming messages and data is transmitted in two phases.

This communication mode can be well-suited for a one-way communication approach (i.e.,
from the simulation to the DSM). However for a two-way communication approach where data
needs also to be sent back to the simulation, it is necessary to be able to listen on the two commu-
nicators (inter-communicator and intra-communicator) at the same time, as requests may come
from both ends. Therefore this requires another thread or an additional polling mechanism, which
can forward the requests coming from the intra-communicator to the service thread (assuming the

service thread is listening on the inter-communicator).

As we want to be able to preserve the order of the requests and not mix up commands and
data, we need to define a synchronization mechanism that preserves the ordering of the commands,
notifications and data, since one message sent in parallel from one link can possibly arrive before

messages that were sent earlier on different links.

Synchronization

Compared to a traditional DSM architecture, the architecture that we define is required to handle
not only a distributed shared memory for data staging but also commands and notifications used
for our push-driven mechanism. Therefore in this two-sided approach, at anytime for each DSM
process as shown in figure 3.3b, data and events may come from the M simulation links (see
figure 3.3a). For instance, when the simulation has finished writing/sending data to the DSM, it
may send a notification (see 3.1.5) to tell the DSM (and in turn the post-processing application)
that new data has been produced. This notification event must be forwarded to all the DSM
processes to become a global event, as every process must have knowledge of the global state of
the DSM. Moreover, as data can arrive from the M simulation links to any DSM process, it is
important to note that separating data from events does not change anything in this approach as
the parallel message ordering would still not be guaranteed. Therefore an event sent to the DSM

must be a global and synchronizing event.
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Algorithm 3.1 Synchronization of DSM communication channels.

Require: x < E,anda € {0,..., M -1}
Ensure: R = @ and DSM data integrity is preserved
L. pea
2. R« {0, ..., M — 1} {set of processes from which events must be received}
3. while R # @ do
if x = E, then
R < R\ {p}
(x,p) « receiveData(R) {receive new data from any process in R}
else
process(x)
x « receiveData(p) {continue to receive data from p}
10.  end if
11. end while

Al A A
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We note E; the received events (which can be notifications or commands), D; and D; the dis-
tributed data pieces that belong to different data blocks D and D’. As illustrated in figure 3.3b,
each channel may receive a different number of data chunks, for instance in blue from the simu-
lation and in green from the post-processing application, and events may arrive at different times.
Note that, to guarantee a global ordering between events and data, the same event is sent to the
DSM at the same time on every channel so that data chunks that belong to different data sources

are not mixed up between events.

This synchronization problem can be seen in several parallel and distributed algorithms and
a very similar approach is for example presented to aggregate multiple associated events through
a hierarchical communication structure in TBONs [36] (Tree Based Overlay Networks). Algo-
rithm 3.1 allows us to synchronize the DSM communication channels and preserve event order-
ing. To aggregate the global event E that is to be received by every communication channel, we
construct a set R that contains the different process identifiers and take out from this set the pro-
cess (here a) that has received the event E,. We then wait for new messages coming from other
processes that belong to R until we receive data from a new process p. We receive and process data
requests coming from this process p until the same event E,, is encountered. We repeat this oper-
ation until all the processes have been treated and the set R is reduced to @. The communication

channels are then synchronized and the global event is received.

Limitations

This approach is obviously not the best approach one can find to stage data in a push-driven
fashion since it requires: an extra thread or message polling mechanism to handle two-way com-
munications; the sending for every data transaction of an additional data request command; the

synchronization of the communication channels in a tedious (but simple) way between the events.

Adding a thread to maintain a dynamic two-way mechanism is not an important limitation
in the sense that processors and operating systems can now support several concurrent threads
running at the same time without any real performance penalty. However the two other limiting
factors of this approach may create a performance drop, especially at scale. While running on a
few processors, the additional synchronization and transactions may only have a little impact and
create a small overhead, but scaling up to thousands of processors will proportionally increase this

overhead, which may become a real bottleneck.
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3.1.3. One-sided Interface

In a one-sided approach, data transfers can be directly issued from the simulation to the memory of
the remote DSM without any prior exchange request (as opposed to a two-sided exchange proto-
col). However to be remotely accessible, depending on the implementation used, remote memory
descriptors need to be gathered from the DSM so that the simulation has knowledge of where
to put the data to (note that this step may sometimes be hidden by the API implementation).
Once the sender has gathered this information, data can be transferred and put at the requested
address in a one-sided manner. As opposed to the previous approach, transfers can even be asyn-
chronous, allowing the simulation to carry on computation without needing to wait for reception
of messages, as no handshaking is required. The additional thread used in the two-sided approach
for handling two-way accesses to the DSM is here no longer required as the remote end (i.e., the
DSM) does not need to be contacted before sending (except for memory descriptor exchanges as

explained above).

(0. Get remote memory descriptors)

Figure 3.4. One-sided data transfer mechanism, remote memory descriptors may be gathered before put
operations can be executed.

Also it is important to note that one-phase transfers presuppose that the remote DSM allo-
cation remains the same during a simulation run, as re-allocating the memory would otherwise
result in multiple memory descriptor exchanges, which may be an expensive operation depending
on the underlying implementation. As a consequence, this one-sided communication protocol
is more likely to be used for the exchange of data (single large memory allocation for the whole
simulation run) and not for the transfer of notifications and events (multiple small memory allo-
cations). Moreover transfer of events would require active participation of the remote end, as a
received event must trigger an action specific to this event (see 3.1.5), which would imply memory
polling or active synchronization mechanisms to be used. Therefore making use of a one-sided
approach for the transfer of notifications and events does not bring any strong advantage to our

model and is not considered in the following sections.
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Synchronization

The remotely allocated memory needs to remain in a coherent state and remote pus and get op-
erations to the file previously created and distributed among the different DSM nodes cannot
happen without any synchronization or locking mechanism. Part of this synchronization and
locking mechanism can be implemented in the one-sided communication protocol itself, but the

other part must be taken care of by the DSM architecture.

Before starting an access epoch, the defined remote memory window? is locked so that other
processes that do not participate to the transfer cannot access it at the same time. Every operation
that involves file modification or that is subsequent to a file modification will require a collective
window synchronization, so that the file metadata and the data (being modified or read) are valid.
Hence, when the in-memory file is opened or created, a global synchronization on the memory
window is performed if the previous operation has modified the file metadata. With this synchro-
nization mechanism, transfers only need to complete when the memory lock is released, and this
creates a potential asynchronicity of operations (depending on the implementation used), which

gives the simulation the ability to carry on computation and not waste time in transfers.

Whereas it is necessary, using send and receive operations, to guarantee that every process has
finished sending or receiving data before the effective close of the file and the beginning of another
operation; being able to synchronize on the entire window gives us here a much more flexible

solution than a two-sided approach.

Limitations

Although this approach seems to be a more scalable approach compared to a two-sided approach, it
requires the remote memory to be already allocated. This can be a potential implementation issue
as it imposes a static memory model and not a dynamic one. If the post-processing application and
the DSM run on separate resources, the DSM will be likely allocated as a static object. However
if the DSM and the post-processing application share the same resources, it may be useful to have
a dynamic allocation model where memory objects are automatically allocated and shared with
the post-processing application so that memory descriptors and addresses can be shared between
both applications. We will not consider this model in the following section (mainly because of the

constraints imposed by the one-sided model) and instead consider a static DSM model.

Moreover, an inner limitation of this approach exists in its implementation, especially with the

current MPI 2 one-sided interface that does not provide a very strong flexibility (mainly to prevent

2We use here the term of window [2] as only memory subsets may be accessed, even if most of the time this subset
may be equal to the size of the entire memory that is allocated in the DSM.
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users from non-coherent accesses) and we will see in more details in section 4.1.3 what the current

issues are.

3.1.4. In-Memory File Access

For in-situ visualization and analysis, it is assumed that the simulation will write to the DSM and
the post-processing application only read from it. For steering, the simulation may write to the
DSM and at the same time, the post-processing application may try to send user data. When
post-processing and DSM are decoupled and located on separate resources, the restriction im-
posed by the communication and synchronization system is sufficient to prevent the DSM from
multiple and concurrent memory accesses. However, if post-processing and DSM share the same
resources (which is the most common use case), multiple memory accesses to the same resource im-
ply addition of a locking mechanism, completing the communication and synchronization system

previously introduced.

1. Acquire lock 1. Acquire lock

Simulation DSM ‘ Post-processing
3. Release lock . Release lock

Figure 3.5. Additional file locking mechanism, any access locks the file to prevent the shared memory from

concurrent memaory accesses.

As described in figure 3.5, we therefore operate using a file lock (mutex) that either side may
acquire to block access from the other until it is released. After the simulation finishes writing, it

will close the file, releasing its lock and the file will become available to the coupled process.

3.1.5. Event Notifications

In a common scenario, the simulation makes periodic writes to the DSM and can, when using
the steering API, make reads to see if any new data or instructions are available. The notification
mechanism is illustrated in figure 3.6 describing the most common use case where the DSM and

the post-processing server share the same resources.

In a pull-driven system, the analysis code must query whether new data is present and if so
update its analysis pipelines. Instead in a push or event-driven approach, notifying the post-
processing application when new data is produced works in several stages as follows. Each DSM

server process has a constantly listening service thread (see 3.1.1) that receives and treats internal
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Figure 3.6. Thread and push-driven notification mechanism used to inform the GUI and the DSM of new
events. When a new data or new information notification is received, the task relative to this
event is performed and/or the associated post-processing pipeline is updated.

data transactions. When the file is closed by the simulation, a notification is sent to the DSM server
and is picked up immediately by the service thread. 'This notification may then be forwarded to
the main post-processing application process (if the post-processing application is parallel) or/and
to the GUI process to trigger specific actions (see 4.2.1). To achieve this, depending on the post-
processing application architecture, another thread, referred as notification thread, may be woken
(only on rank 0 of the parallel post-processing application or application hosting the DSM servers,
as events are globally visible) to then send a notification event to the GUIL. When the GUI is noti-
fied, the task corresponding to the received notification code is then performed in the DSM user

interface.

Note that in some cases (examples are detailed in 4.2.1), it may be useful for a user to send
notifications/events from the simulation code to the DSM (and in turn to the post-processing
application) not only when the file is being closed but also when the simulation reaches specific
points, so that corresponding actions can be performed in the GUI. While the post-processing
application may be busy performing other tasks, this two step process from notification thread to
GUI and back to post-processing main thread ensures that the we do not trigger the execution of
post-processing tasks during another user-driven event on the same post-processing main thread
inside the analysis tasks (which would in this case create a bottleneck in the post-processing work-
flow). It is important to note also that the notification mechanism is one-way only. When the
post-processing application writes data to the DSM, no signal should be triggered in the simu-
lation as there is no service thread running on the simulation side (we do not want to create any

overhead of any kind on the simulation side).
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3.2. DSM Mapped Files

Data and steering objects are stored in a file that is mapped onto a distributed shared memory.
While the previous communication system and the notification and synchronization mechanisms
allow us to exchange data and steering objects, we show in this section how one can dynamically

redistribute data that is sent to the DSM so that the network bandwidth is maximized.

3.2.1. File Memory Space Considerations

In our architecture the DSM is distributed among N processes, each process allocating I bytes
of data, which gives a total DSM length of L = [ X N. Using a linear addressing, the DSM is
contiguously filled from process rank O to process rank (N — 1).

Simulation DSM

YN

_____________________

Figure 3.7. The DSM is distributed among N processes and has a total length of L = [ X N, each process
allocating [ bytes of data. Using a linear addressing, only H-‘ processes are used to receive data

chunks of size S.

As shown in figure 3.7, if a simulation writes a file of size S, the actual number of processes used
to receive data will thus be ’-?I with S < L. This method can provide relatively good performance
when S ~ L; if the file written is composed of several different datasets (each much smaller than L),
which are contiguously (and sequentially) mapped onto the DSM, individual simulation processes
will waste bandwidth by using only a small partition of the network links available. Then the
simulation may write either a single large data chunk, which will be sent in parallel to the DSM
using all the links available, or multiple data chunks, each one at a time using a partition of the
links available. We therefore sought better strategies that can be enabled on demand.
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3.2.2. Redistribution Methods

In this section, we focus on three different redistribution strategies, from the most simple to the
most complex strategy: mask redistribution, block-cyclic and random block. These strategies are
general strategies and only affect the redistribution of data packets, and thus only modify the DSM
address mapping. Note that more advanced and specific strategies that would apply to the dataset
objects themselves could be defined as well but this is not the purpose of this section.

Mask Redistribution

When S < L, a first simple strategy is to automatically re-size the DSM window to the requested
file size without any concrete memory free or reallocation. As described in figure 3.8, if S is the
size of the data that is to be written, N' the number of DSM processes and [ the local buffer size,
a mask of size | — ’-%1 will be applied to each buffer, which reduces the overall DSM size to ~ S.
Since the data that is sent fits into the memory perfectly, all the DSM links between the simulation

and the DSM will be used for receiving.

Mask of size [ — [%—‘ S

Equivalent to So

S

Figure 3.8. Using a mask redistribution, the DSM memory space of size L is virtually reduced to =~ S.

However, as shown in figure 3.8, even if applying a mask to every local DSM buffer can effec-
tively improve the overall bandwidth by making the local buffer size I equal to ’-% -I, which in turns
makes L ~ S; it does bring two main drawbacks: the most evident one is that it wastes mem-
ory allocated on the DSM, the second one is that it does not solve the multiple dataset problem
mentioned above as the newly created memory space can be seen as a contiguous memory space
where data is linearly mapped. Therefore, writing multiple datasets of size S (where S << L) means
again writing to only a small portion of the DSM processes available at the same time. Hence this

solution can only be optimal when only one large dataset is being written.
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Block-Cyclic Redistribution

The second strategy to be considered is a block-cyclic redistribution [75]. It is a simple strategy
and it potentially allows a good data load balance between DSM processes. A block size s being
fixed, the DSM address mapping is decomposed into S blocks. For convenience, the DSM length
L is adapted so that it becomes a multiple of s. Blocks are distributed in a round-robin fashion:
the B® block is assigned to the process rank (B mod N). Hence every address a is associated to
the following triplet (71, 0, i), which can be written as

B
— (B mod N,{N|,a mod s)

the first term 71 being the process index within the DSM, o the local block offset in a process and
i the local address offset within a block.

0 1 2 3 N =4,L=40

cTTroTrTrTr T T T T T
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Figure 3.9. With a block-cyclic redistribution, data distribution is load balanced over the entire DSM using
all the network links available.

As illustrated in figure 3.9, a block of size S written to the DSM (according to a block-cyclic
addressing) is decomposed into smaller data chunks of size E In this example, with S = 18 and
s = 2,9 data chunks are created. These chunks are then redistributed in a cyclic manner between
the DSM processes. With 4 DSM processes, block 0 gets mapped to process 0, block 1 to process

., block 4 to process 0, etc. This method presents two main advantages: bandwidth is not
wasted even if S < L; data chunks are well load balanced, which is especially beneficial when
multiple datasets are written. However this method can potentially create a huge number of data
transactions, which can result in a performance drop (as we will see in section 4.1.4) depending

on the network communication protocol and block size that are used.
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Random Block Redistribution

The third strategy considered consists of re-using the algorithm previously described, scattering the
DSM address space into pieces of size s. Another step is then added to the redistribution pipeline,
shuffling the blocks using a mapping vector (so that blocks can be retrieved). As described in
figure 3.10, in this example, 9 blocks of size 2 are created from a data chunk of size 18 (which would
be written using only a half of the DSM links available with a standard contiguous redistribution).
In this strategy, instead of redistributing blocks in a cyclic manner (as opposed to the previous
solution), blocks are shuffled before they get sent to the DSM processes, which gives the following
mapping: block 0 gets mapped to process 0, but then block 1 gets mapped to process 0 as well
and then block 2 gets mapped to process 1, etc.

0 1 2 3 N =4,L=40

5=2 S =18
01112131415161718!

Blocks assigned to

1011141 216 3 5,7

Figure 3.10. With a random block redistribution, data is randomly balanced over the entire DSM, poten-
tially using all the network links available and potentially avoiding distinct simulation pro-
cesses to write to the same DSM processes at the same time.

This method can present some advantages compared to the previous solution (but keeps the
same main drawback): it may avoid a possible network congestion if two simulation processes were
sending data to the same DSM process using the block cyclic redistribution algorithm. This may
occur with a periodic frequency introduced by certain communication patterns and data distribu-
tions in the file, especially when the DSM makes use of a small number of processes compared to

the number of simulation processes.

With these two last strategies we are effectively able to well load balance data over the DSM
processes, even when multiple datasets are being written. However, as we will see in section 4.1.4,
the performance of these methods is highly dependent on the architecture and on the underlying
network protocol that is used.
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3.3. Exchange Interface

Based on the previous mechanisms, data can be mapped and sent to the DSM in an efficient and
optimized manner. In 2.3.4, we proposed to model the DSM 1/Os as an extension to existing I/O
libraries. In this section, we show how we take advantage of this property and use a hierarchical
approach to store data into the DSM. While in-situ visualization is straightforward as data is au-
tomatically re-routed to the DSM, application steering is not possible without some fundamental
changes of the simulation code to respond appropriately to changes being sent in. We present in
this section which requirements need to be defined to send a comprehensive set of steering or-
ders back and forth between the simulation and the post-processing application. We also present
in 3.3.4 two different operating modes, one synchronous and the other asynchronous.

3.3.1. 1I/0 Interface and Hierarchical Data Model

To write and read data, simulation and post-processing applications make heavy use of existing 1/O
libraries such as HDF5, netCDE which are presented in 2.1.1. Using a hierarchical data model
such as the one that exists in these I/O libraries, data can be organized so that complex meshes
or data along with their associated values can be easily written and retrieved. Therefore a given
data structure or grid can be represented using groups along with datasets, multidimensional arrays
of data elements, which may for example represent connectivity and coordinates of a mesh, etc.

Typically data stored in a file can be represented using the following pattern:

<G>

Group 1 Group ...

Figure 3.11. Hierarchical representation for storing data.

A file can be composed of multiple groups, which can contain themselves multiple datasets.
Using the existing hierarchical data model of I/O libraries, one can organize data into groups and
datasets. Applying this to our DSM interface, a simulation code can perform reads and writes using
the existing I/O API (but all the traffic is re-routed to the DSM as we described in 2.3.4), which
basically consists of the following calls: create file, create group, write data, read data, etc. Assuming

that a description of the hierarchical representation is provided (see 4.2.2), the post-processing
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application, when told that new data has been written, will use the same I/O interface to read data
back from the DSM. This low-level interface allows simple exchange of any type of data structure.
For simulation steering, specific control on the type of data that is to be exchanged and on its

location needs to be given. In this case, a higher level interface will be used as we will see in 3.3.3.

3.3.2. Required Steering Properties

One of the first requirements when steering an application is the ability to change a simple scalar
parameter. As previously described, since our interface is built on top of existing I/O interfaces
that follow a hierarchical data model, it is trivial to store such a parameter as an azribute or as a
singleton in a dataser within the file. However, to be easily retrieved by the simulation, we want
this parameter to be stored in a special section of the file, which we call Inzeraction Group. Adding
support for vectors requires only the use of a dataser in the file. Once the ability to write back a
dataset exists, it is easy to extend support to handle point arrays, scalar/vector arrays and all other
types that are used within post-processing applications to represent objects. We are thus able to
read from the simulation any structure that is stored in the file. Moreover, because data written by
the simulation is stored in a file that follows a hierarchical data model, objects or existing datasets

can be easily and independently modified from the post-processing application.

In-memory File 1. Send
command
Steering (e.g., pause)

[
!
|
|
:
Steerin : Objects /\
. . | - .
Simulation (—L)interface | Data 2. Wiie | POSt-processing
|
|
|
|
!
!

==
Vector
Mesh
Metadata 3. Write
R e e ) mesh data

Figure 3.12. We need to be able to send back commands to the simulation (a pause command for example),
simple arrays such as scalars and vectors to control simple parameters, but also entire meshes
or complex data arrays to allow complete re-meshing of simulation objects.

As illustrated in figure 3.12, the post-processing application can transmit commands and data
back to the DSM using either implementation specific calls (for all the commands that are specific
to the steering implementation such as pause/play) or using the lower level I/O interface that

performs reads and writes directly to the file. The simulation can then pick up these commands
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or read the modified/new data using a steering interface that we define below. To be able to pick
up a command, a parameter or a dataset, one crucial factor is that both sides of the transaction
must be able to refer to the same shared/steerable parameter or dataset by a unique name, and
find the correct value from the file. The developer is therefore required to assign unique names to
all parameters and commands and use them in the simulation code. The steering environment is

supplied these names in the form of an XML document which is described in section 4.2.3.

3.3.3. Steering Interface

In the context of in-situ visualization, while the simulation and post-processing applications can
use existing I/O interfaces to access the DSM, we define for steering a higher level interface that
can provide users with a comprehensive set of operations. As shown in figure 3.13, the interface
directly interacts with the DSM interface and the I/O interface, wrapping lower level operations

into higher level operations.

Abstraction
Level

I/O Interface

DSM Interface

Figure 3.13. To access the DSM, a simulation code can make use of the I/O interface for direct read/write
operations or can make use of the steering interface for more complex steering operations.

While most of the accesses are abstracted by the steering interface, it is possible in most cases to
perform steering operations and send back data by using the lower I/O and DSM interfaces, but
would require knowledge by the user of several internal DSM mechanisms (to send notifications
etc). As one of our objectives is to provide users with a comprehensive interface that can hide
the complexity of the underlying architecture and implementation, a more general and abstracted

interface is defined for specific steering operations that can be directly used by the simulation code.



A Loosely Coupled Model: Architecture and Requirements 43

Interface Definition

To ensure most possible combinations and steering capabilities, we define the following opera-
tions:

init ()

update ()

wait ()

scalar get/set ()
vector_get/set ()

begin query ()
end query ()
get _handle ()

(1
(2
(3
(4
(5
(6
(7
(8
(9
(10) free handle()

)
)
)
)
)
)  1is_set ()
)
)
)
0

As previously mentioned, all new parameters and arrays sent back for steering are stored by
default at a given time step in an Interaction section, which is a group (see 3.3.1) created in the file
that will contain all the interaction objects (commands, data, etc). In contrast with a visualization
only use of the interface, when steering the simulation needs to be able to 7ead from the file at
any time (including at start-up for initialization data) and we therefore provide a steering library
initialization call (1), which can be used to establish a connection between simulation and DSM

before it may otherwise take place (i.e., at file creation, when accessing the I/O interface).

Once the environment is initialized, (4) and (5) allow the writing of scalar and vector param-
eters respectively, while (6) checks their presence in the file. The get functions are primarily used
for getting arrays that have been passed from the GUI to the simulation, but the set functions
may also be used by the simulation to send additional information to the GUI (such as time value
updates at each step). Note again that raw calls to the underlying I/O library could also be used
to read and write data but these higher level calls provide a more convenient and elegant way of

accessing the steering data.

(7) and (8) are used when several consecutive operations are necessary, keeping the file opened
between accesses. When accessed from the simulation side, file open and data requests result in
inter-communicator traffic, which can be minimized. Particularly when the file is open in read
only mode, metadata may be cached already by the underlying I/O library. In other words, by
minimizing the number of file access requests, traffic may be correspondingly reduced.

(9) and (10) allow direct access to the I/O library dataset handle to the requested object (as the
file follows a hierarchical approach) and this handle may be used with the conventional library API
to perform I/O. The advantage of this is that a user can perform steering operations using the I/O
library directly. For instance in the implementation described in 4 the full range of parallel /0
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operations and existing I/O features may be manually used by a user to improve the performance
of read operations, which is particularly important if a very large array is modified (in parallel) by

a post-processing application and returned to the simulation (e.g., object re-meshing).

Additional Synchronization

We also need to provide two different synchronization mechanisms, one using (2) and the other
using (3). (2) allows the user to get and synchronize steering commands with the host GUI at any
point of the simulation. It is a notification that can trigger updates and receive commands from
the GUI and making use of this command actually sets synchronization points in the simulation
code. For instance, when a pause request is set in the GUI, the code will stop at one of these

points. Therefore, this synchronization is seen as user dependent.

(3) can also be used to coordinate the work-flow, making the simulation pause until some
steering instructions are received. Additionally it is possible to forcefully pause and resume the
controlled simulation, by locking and unlocking the file from the post-processing application side,
thereby blocking the application at the next attempt to access it. The use of (3) can be preferred as it
offers the chance to add wait and resume matching pairs of calls to the codes at arbitrary positions
where the simulation should automatically pause to pick up new instructions. Therefore, this

synchronization is seen as implementation dependent.

3.3.4. Timing of Interactions and Operating Modes

Using the synchronization mechanism previously introduced, the simulation may wait either for
its data to be post-processed or for new commands and data to be returned. It may also check for
commands (without waiting) to see if anything (such as steering commands and data) has been
set for it to act upon while it was calculating. The two operation modes, referred to as wait mode

and free mode are illustrated in figures 3.14a and 3.14b.

In wair mode, as shown in figure 3.14a, the simulation writes data (1) after each iteration and
an analysis task is automatically triggered (2). Here the simulation waits for the analysis task to
complete using a wait command so that the user can set new instructions and data (3). Finally
the simulation re-opens the file and collects the commands set by the user (4). The wair mode
can be considered as the most intuitive for a direct coupling of applications and will be used
when a calculation explicitly depends upon a result of the analysis before it can continue. The
actual amount of time the simulation waits will depend upon the workload and complexity of the
analysis pipelines set up by the user to analyze the data read from the DSM and send commands

or data back to it. Note that although the diagram in figure 3.14a shows no user interaction
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Figure 3.14. Two principal modes of operation for timing of steering interactions.

taking place during the computation, the user interface is not blocked at this point and arbitrary
operations may be performed by the user (including setup and initialization steps prior to the next
iteration). Similarly, the calculation may perform multiple open/readfwrite/close cycles to the DSM
with different datasets prior to triggering a notification that makes the analysis start and is not

limited to a single access as hinted by the diagram.

In free mode, as shown in figure 3.14b, the simulation computes without waiting and regularly
writes data to the DSM (1), which triggers analysis tasks to be performed by the post-processing
application (2). The user interacts via GUI controls (3) and new data is picked up whenever the
simulation checks for it (4). The analysis is here overlapped with the simulation, which does not
prevent it from accessing the file; the file locking and synchronization mechanism described in 3.1
ensures that either side can access it. The simulation is therefore delayed only by the time taken to
check for new commands and data. In the absence of any new instruction, this time is of the order
of milliseconds (see 4.2.3). Usually data will be read and the file will be unlocked immediately after,
so that analysis will take place asynchronously. Based on this free mode of operation, the calculation
can loop indefinitely issuing write commands, checking for new data using read commands. It is
permitted to open, close the file in the DSM at any time (unless locked by the post-processing side)
the simulation reaches a convenient point in its algorithm where new data can be transmitted. The
post-processing side meanwhile, may receive a new data notification and immediately open the file
to read data and perform its own calculations. Creating the interaction between post-processing
and simulation is now entirely under the designer’s control. A simulation that is operating in
free mode must be capable of receiving new commands and data, and know that this data may

not be directly related to the current calculation. As shown in figure 3.15, when a simulation
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writes data of time step T into the DSM, the post-processing application starts analysis of this
time step while the simulation has begun computing step T + 1 (assuming that we are talking
about a simulation that iterates over time). During the post-processing phase, the user may set up
different interactions, which are written into the DSM. There is no guaranty (in free mode) for
those interactions to be picked up at time step T + 1 as commands may for instance be checked by
the simulation only at the beginning of a new time step. At this point, the ability to send specific
commands to the simulation that have special meanings or that contain time information becomes
important (this is discussed further in chapter 5). Moreover as data sent back to the simulation is
written into the same DSM file (and we only consider in this approach a DSM composed of one
single file, see chapter 4), the user must take care in this mode of not erasing the file content when
a new time step from the simulation is written. Note that although this problem could be solved
if interactions were written into a separate DSM file adding meanings or time information to the
commands would still be necessary to be sure that these commands are picked up when they need
to be.

Simulation — T T+1 T+2
Get interaction Y,
Write datai o
4
DSM O—C0O O
Read data% Seti '
et interaction %
Post-processing — T -1 T T+1

Figure 3.15. Timing of interactions in free mode.

In summary, the wait mode is a synchronous transmission mode of user interactions that
makes the simulation stop at user defined points. The free mode is an asynchronous operation
mode that allows the simulation to run freely, picking up interaction commands on-the-fly. A
final consideration is that while the wair mode may waste resources and the free mode may be
difficult to synchronize, the developer may switch to wait mode every N iterations to force some
user interactions and then revert to free mode again for a period. Alternatively, the switch between
modes may be user-driven as a custom command (see chapter 4) and toggled by the user in the
GUI. This flexibility allows the user to let the simulation run freely for a while, enable wait mode
when wanting to change something and then have the simulation pick up new data and go back

to free mode until the next time a change seems necessary.
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3.4. Deployment

While in the previous sections we have defined a set of architectural properties and constraints,
we define here different configurations available to deploy the components of our architecture.
Providing the best compromises, the approach chosen will be used in the next chapter to define

our implementation and the way it will be integrated.

3.4.1. Available Configurations

As simulation and post-processing applications interact together, the amount of time and resources
allocated to compute or steer tasks has a significant impact on the overall performance of the sys-
tem. For example, a simulation with very good scalability may be run on many cores using a
standard amount of memory per core and efficient communications. However, the analysis re-
quired to control or steer this simulation may not scale well, or may require much more memory
per node, but with a smaller number of cores. The DSM interface handles this by being quite
flexible in how resources are allocated; let us consider figure 3.16, which shows general configura-
tion types that may be used, the work-flow can be distributed between different machines or set
of nodes in a rather arbitrary manner. It is important to note and remember that our approach is
defined as a loosely-coupled approach (see 2.3) and to achieve our objective (avoid overhead on
the simulation side as much as possible), the DSM component is never deployed on the simulation

nodes themselves.

The first configuration (figure 3.16a) may be commonly adopted if a local cluster is consid-
ered as a simple extension of the simulation machine. M nodes run the simulation code and N
perform analysis. Tasks are coupled using the DSM in parallel, it is assumed that the network
switch connecting machines has multiple channels so that traffic from M to N using the inter-
communicator can take place in parallel and there is no significant communication bottleneck.
The final post-processing stage can then happen on this machine (or on another machine depend-
ing on the architecture of the post-processing application). Using separate machines makes it easy

to ensure that optimized nodes (e.g., GPU accelerated nodes) are used where needed.

The second configuration (figure 3.16b) is more likely when large amounts of data are produced
by the simulation. If a hybrid machine is available, or if the simulation and analysis make use of
similar node configurations, a single machine may be used for both tasks. Note that separate nodes
are used for the two tasks, so a judicious choice for the M and N values is still permitted so
that enough DSM nodes are used to maximize the speed of the transfers and keep a good ratio
between the amount of data that is generated and the number of links/processes that are used to
receive data. As the two sets of nodes are linked together by using the internal system network (or
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Figure 3.16. Three available configurations.

interconnect), this configuration can provide the best performance and ensure that transfers are
performed at maximum speed.

The third configuration (figure 3.16¢) is likely when the data generated by the