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Cette thèse s'inscrit dans le domaine de la vérification du logiciel. Le but de la vérification du logiciel est d'assurer qu'une implémentation, un programme, répond aux exigences, satisfait sa spécification. Cela est particulièrement important pour le logiciel critique, tel que des systèmes de contrôle d'avions, trains ou centrales électriques, où un mauvais fonctionnement pendant l'opération aurait des conséquences catastrophiques.

Les exigences du logiciel peuvent concerner la sûreté ou le fonctionnement. Les exigences de sûreté, tel que l'absence d'accès à la mémoire en dehors des bornes valides, sont souvent implicites, dans le sens que toute implémentation est censée être sûre. D'autre part, les exigences fonctionnelles spécifient ce que le programme est censé faire. La spécification d'un programme est souvent exprimée informellement en décrivant en anglais la mission d'une partie du code source. La vérification du programme se fait alors habituellement par relecture manuelle, simulation et tests approfondis. Par contre, ces méthodes ne garantissent pas que tous les possibles cas d'exécution sont capturés.

La preuve déductive de programme est une méthode complète pour assurer la correction du programme. Ici, un programme, ainsi que sa spécification formalisée à l'aide d'un langage logique, est un objet mathématique et ses propriétés désirées sont des théorèmes logiques à prouver formellement. De cette façon, si le système logique sous-jacent est cohérent, on peut être complètement sûr que la propriété prouvée est valide pour le programme en question et pour n'importe quel cas d'exécution.

La génération de conditions de vérification est une technique censée aider le programmeur à prouver les propriétés qu'il veut sur son programme. Ici, un outil (VCG) analyse un programme donné avec sa spécification et produit une formule mathématique, dont la validité implique la correction du programme vis à vis de sa spécification, ce qui est particulièrement intéressant lorsque les formules générées peuvent être prouvées automatiquement à l'aide de solveurs SMT.

Cette approche, basée sur des travaux de Hoare et Dijkstra, est bien comprise et prouvée correcte en théorie. Des outils de vérification déductive ont aujourd'hui acquis une maturité qui leur permet d'être appliqués dans un contexte industriel où un haut niveau d'assurance est requis. Mais leurs implémentations doivent gérer toute sorte de fonctionnalités des langages et peuvent donc devenir très complexes et contenir des erreurs elles mêmes -au pire des cas affirmer qu'un programme est correct alors qu'il ne l'est pas. Il se pose donc la question du niveau de confiance accordée à ces outils.

Le but de cette thèse est de répondre à cette question. On développe et certifie, dans le système Coq, un VCG pour des programmes C annotés avec ACSL, le langage logique pour la spécification de programmes ANSI/ISO C. Notre première contribution est la formalisation d'un VCG exécutable pour le langage intermédiaire Whycert, un langage impératif avec boucles, exceptions et fonctions récursives, ainsi que sa preuve de correction par rapport à la sémantique opérationnelle bloquante à grand pas du langage. Une deuxième contribution est la formalisation du langage logique ACSL et la sémantique des annotations ACSL dans Clight de Compcert. De la compilation de programmes C annotés vers des programmes Whycert et sa preuve de préservation de la sémantique combiné avec une axiomatisation en Whycert du modèle mémoire Compcert résulte notre contribution principale : une chaîne intégrée certifiée pour la vérification de programmes C, basée sur Compcert. En combinant notre résultat de correction avec celui de Compcert, on obtient un théorème en Coq qui met en relation la validité des l'obligations de preuve générées avec la sûreté du code assembleur compilé.

1. http://www.cs.tau.ac.il/~nachumd/horror.html 2. http://www.

Abstract

This thesis belongs to the domain of software verification. The goal of verifying software is to ensure that an implementation, a program, satisfies the requirements, the specification. This is especially important for critical computer programs, such as control systems for air planes, trains and power plants. Here a malfunctioning occurring during operation would have catastrophic consequences.

Software requirements can concern safety or functioning. Safety requirements, such as not accessing memory locations outside valid bounds, are often implicit, in the sense that any implementation is expected to be safe. On the other hand, functional requirements specify what the program is supposed to do. The specification of a program is often expressed informally by describing in English or some other natural language the mission of a part of the program code. Usually program verification is then done by manual code review, simulation and extensive testing. But this does not guarantee that all possible execution cases are captured.

Deductive program proving is a complete way to ensure soundness of the program. Here a program along with its specification is a mathematical object and its desired properties are logical theorems to be formally proved. This way, if the underlying logic system is consistent, we can be absolutely sure that the proven property holds for the program in any case.

Generation of verification conditions is a technique helping the programmer to prove the properties he wants about his programs. Here a VCG tool analyses a program and its formal specification and produces a mathematical formula, whose validity implies the soundness of the program with respect to its specification. This is particularly interesting when the generated formulas can be proved automatically by external SMT solvers.

This approach is based on works of Hoare and Dijkstra and is well-understood and shown correct in theory. Deductive verification tools have nowadays reached a maturity allowing them to be used in industrial context where a very high level of assurance is required. But implementations of this approach must deal with all kinds of language features and can therefore become quite complex and contain errors -in the worst case stating that a program correct even if it is not. This raises the question of the level of confidence granted to these tools themselves.

The aim of this thesis is to address this question. We develop, in the Coq system, a certified verification-condition generator (VCG) for ACSL-annotated C programs.

Our first contribution is the formalisation of an executable VCG for the Whycert intermediate language, an imperative language with loops, exceptions and recursive functions and its soundness proof with respect to the blocking big-step operational semantics of the language. A second contribution is the formalisation of the ACSL logical language and the semantics of ACSL annotations of Compcert's Clight. From the compilation of ACSL annotated Clight programs to Whycert programs and its semantics preservation proof combined with a Whycert axiomatisation of the Compcert memory model results our main contribution: an integrated certified tool chain for verification of C programs on top of Compcert. By combining our soundness result with the soundness of the Compcert compiler we obtain a Coq theorem relating the validity of the generated proof obligations with the safety of the compiled assembly code.

Introduction

This thesis belongs to the domain of software verification. The goal of verifying software is to ensure that an implementation, a program, satisfies the requirements, the specification. This is especially important for critical computer programs, such as control systems for air planes, trains and power plants. Here a malfunctioning occurring during operation would have catastrophic consequences. There are numerous examples of software failures in the past. The interested reader may refer to a very comprehensive list composed by Nachum Dershowitz. 1 Software requirements can concern safety or functioning. Safety requirements, such as not accessing memory locations outside valid bounds, are often implicit, in the sense that any implementation is expected to be safe. Many high-level programming languages ensure the main safety requirements by providing to the programmer an abstraction of the machine that disallows unsafe operations. On the other hand low-level languages, like the C programming language, grant the programmer the full access to the machine exposing him also to the full risk. Unfortunately the use of low-level languages can often not be avoided -especially in the implementations of aforementioned control systems. Indeed the C language remains nowadays the language of choice for developing critical embedded software.

The C language and its semantics

The C programming language was initially developed by Dennis M. Ritchie at Bell Labs starting from 1969. Only 10 years later its semantics was informally specified and one has to wait until 1989/1990 for C to become an ANSI/ISO standard. Nevertheless, the C norm is still ambiguous and leaves a certain degree of freedom to the compiler. For instance the evaluation order of function arguments is "unspecified", i.e. code like f(g(),h()) is completely legal but the compiler may call g() and h() in any order. More subtle, the semantics of multiple side-effects between two sequence points is "undefined", i.e. code like ++i + i++ is illegal but the compiler doesn't have to reject it and may interpret it arbitrarily. Moreover the notion of sequence point is quite complex and disputed. 2 C programs containing such problematic code should generally ruled out by a static analyser. But apart from issues coming from the lack of precise semantics, the most important issues come from the low-level nature of the language itself. Aliasing is such an issue and defines the situation in which a memory location can be accessed through different symbolic names in the program. For instance, the following assertion is not generally true: 10 CHAPTER 1. INTRODUCTION ically: Automatic provers systematically explore the state space of logical formulas to return a "yes/no/don't know" answer to the satisfiability or validity of logical formulas. When automatic provers fail to prove a valid verification condition, proof assistants provide a way to complete the proof. Proof assistants provide a mechanical support for manually proving hard theorems, usually requiring expert users.

This approach is based on works of Hoare and Dijkstra and is well-understood and shown correct in theory. Deductive verification tools have nowadays reached a maturity allowing them to be used in industrial context where a very high level of assurance is required. This is illustrated by experiments done in the context of avionics by Airbus France [START_REF] Randimbivololona | Applying formal proof techniques to avionics software: A pragmatic approach[END_REF] and Dassault Aviation [START_REF] Pariente | Formal verification of industrial C code using Frama-C: a case study[END_REF]. But implementations of this approach must deal with all kinds of language features like pointer aliasing as explained above and can therefore become quite complex and contain errors -in the worst case stating that a program correct even if it is not. This raises the question of the level of confidence granted to these tools themselves. The aim of this thesis is to address this question.

Short History, Overview of the State of the Art

Early Works The pioneer implementation of a tool for deductive verification was made in ESC/modula 3 [START_REF] Detlefs | Extended static checking[END_REF] introducing the notion of function contracts. These works are in turn based on works for the Simplify theorem prover performed as early as 1981 [START_REF] Nelson | Techniques for Program Verification[END_REF]. The vocabulary of "contract" comes from the Eiffel [START_REF] Meyer | Eiffel: The Language[END_REF] language developed in the same period, whose aim was to perform runtime checking of the requirements given by those contracts.

Verification of Purely Functional Programs At approximately the same period of time there were a lot of works about proving of purely functional programs inside theorem proving environments, as in PVS [START_REF] Owre | PVS: A prototype verification system[END_REF], ACL2 [START_REF] Kaufmann | Computer-Aided Reasoning: An Approach[END_REF], HOL88, Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL -A Proof Assistant for Higher-Order Logic[END_REF], HOL4, HOL-light and Coq [START_REF] Parent-Vigouroux | Verifying programs in the calculus of inductive constructions[END_REF].

Verification of Non Purely Functional Programs in General Purpose Proof Assistants Probably the first attempt to prove non purely functional programs inside a general purpose proof assistant was the SunRise system in 1995 [START_REF] Homeier | A mechanically verified verification condition generator[END_REF] where a simple imperative language is defined in HOL, with a formal operational semantics. A set of Hoare-style deduction rules are then shown valid. A SunRise program can then be specified using HOL assertions and proved in the HOL environment. What has to be noticed is that the programming language is deeply embedded in the logical framework, i.e. the abstract syntax of the language is defined as a data type. A program is then an object of the logical system one can state properties about. On the other hand the specifications are not deeply, but shallowly embedded: they are formulas of the framework. As a consequence proof of a program must be done inside the HOL proof assistant without the help of any external automatic program prover like Simplify.

Later Norrish formalised the C programming language [START_REF] Norrish | C Formalised in HOL[END_REF] in HOL including a set of Hoare style deduction rules allowing to prove properties of C programs inside HOL. The Isabelle/HOL formalisation used in the L4-verified project [START_REF] Klein | seL4: Formal verification of an OS kernel[END_REF] was based on this work and allowed to certify a C implementation of a highly secured OS kernel.

Other works proposed proofs of non purely functional programs on top of general purpose proof assistants, like Mehta/Nipkow [START_REF] Mehta | Proving pointer programs in higher-order logic[END_REF] and Schirmer [START_REF] Schirmer | Verification of Sequential Imperative Programs in Isabelle/HOL[END_REF] on top of Isabelle/HOL, Ynot [START_REF] Nanevski | Ynot: Reasoning with the awkward squad[END_REF][START_REF] Chlipala | Effective interactive proofs for higher-order imperative programs[END_REF] and CFML [START_REF] Charguéraud | Characteristic formulae for the verification of imperative programs[END_REF] on top of Coq, which can deal with "pointer" programs via separation logic, and also support higher-order functions.

This gives a very high level of confidence about the program's soundness but theorem provers are usually not well suited for program proving as they don't give much assistance for proving programs and most proofs must be carried out manually. Also, using a theorem prover would make us dependent of that particular system, whereas we would like to mix different systems, playing on each system's strengths.

Standalone Dedicated Verification Tools A different approach for program verification has leaded to the implementation of dedicated tools, not based on proof assistants but in the spirit of ESC/Modula 3.

These approaches provide standalone verification condition generators automatically producing verification conditions, usually by means of variants of Dijkstra's weakest precondition calculus. This is the case of ESC/Java [START_REF] Cok | ESC/Java2: Uniting ESC/Java and JML[END_REF], B [START_REF]The B-Book, assigning programs to meaning[END_REF] ; the Why platform [START_REF] Filliâtre | The Why/Krakatoa/Caduceus platform for deductive program verification[END_REF] and its Java [START_REF] Marché | The KRAKATOA tool for certification of JAVA/JAVACARD programs annotated in JML[END_REF] and C [START_REF] Filliâtre | Multi-Prover Verification of C Programs[END_REF][START_REF] Moy | Jessie Plugin Tutorial, Beryllium version[END_REF][START_REF] Cuoq | Experience report: Ocaml for an industrial-strength static analysis framework[END_REF] front-ends (Jessie) ; and Spec# [START_REF] Barnett | The Spec# Programming System: An Overview[END_REF] and VCC [START_REF] Dahlweid | VCC: Contract-based modular verification of concurrent C[END_REF] which are front-ends to Boogie [START_REF] Barnett | Boogie: A Modular Reusable Verifier for Object-Oriented Programs[END_REF]. The role of these front-ends is to transform input programs, where pointer aliasing is allowed, into the alias-free intermediate languages, like Why, using a so-called memory model, which typically encodes the operations on the memory heap by functional updates [START_REF] Marché | Reasoning about Java programs with aliasing and frame conditions[END_REF]. Being independent of any underlying proof assistant, these tools analyse programs where formal specifications are given in ad-hoc annotation language such as JML [START_REF] Burdy | An overview of JML tools and applications[END_REF][START_REF] Burdy | An overview of JML tools and applications[END_REF] and ACSL [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language, version 1.4[END_REF].

Trusted Code Base Up to now the aforementioned standalone tools have never been formally proved to be sound. In other words proving a program with such a tool means proving it up to the soundness of the implementation of the tool itself. The implementation needs thus to be trusted, even if it can become quite complex. We say it does not always respect the "de Bruijn criterion", which Freek Wiedijk defines as having the correctness of the system as a whole depends on the correctness of a very small kernel. If we call the trusted code base (TCB) the part of the implementation of a tool on which the soundness depends on, then we can say that the standalone approach has a large TCB whereas the approaches on top of proof assistant have a significantly smaller one.

For VCC, recent works [START_REF] Böhme | HOL-Boogie -an interactive proverbackend for the verifying C compiler[END_REF] aim at validating the axiomatisation, that the generated proof obligations refer to, with respect to an ad-hoc formalisation of a C memory model (CVM). The original axiomatisation contained 900 axioms, some of which where discovered inconsistent, showing the importance of such a work.

To summarise, one can distinguish two main kinds of deductive verification approaches. The first kind is characterised by the use of a deep embedding of the input programming language in a general purpose proof assistant, whereas the second kind takes the form of dedicated standalone tools, offering a higher degree of proof automation but with a larger TCB.

Certifying versus Certified Compilers A formal certification of the correctness of the source program is even more desirable in presence of technologies permitting to relate this to the correctness of the compiled assembly program.

A famous line of work is the Proof Carrying Code approach (PCC) [START_REF] Necula | Proof-carrying code[END_REF][START_REF] Appel | Foundational proof-carrying code[END_REF]. The general idea is to have executable code accompanied with a certificate which guarantees that this code will not make any runtime errors (such as invalid memory access) or satisfy particular functional properties (like respect of safety policies). Such a certificate must be produced by the compiler, thus called a certifying compiler. Originally this is limited to simple properties that can be established directly by the compiler, for instance, type and memory safety.

To go beyond simple properties, one should be able to take into account requirements given in the source by means of code contracts. This was proposed by Barthe et al. [START_REF] Barthe | Certificate translation for optimizing compilers[END_REF][START_REF] Barthe | Certificate translation for optimizing compilers[END_REF][START_REF] Barthe | Preservation of proof obligations from java to the java virtual machine[END_REF] for the case of Java programs annotated using JML, compiled to Java byte code annotated using BML.

A way to go even further is to develop a certified compiler, i.e. a compiler that is proved to preserve the semantics of the source code during the compilation towards assembly code. This therefore guarantees the preservation of any general property from the source code to the assembly code.

The Verisoft project 3 formalises a subset of C, called C0, and develops both a certified compiler and a proof environment on top of Isabelle/HOL [START_REF] Leinenbach | Towards the formal verification of a C0 compiler: Code generation and implementation correctness[END_REF]. Independently, a certified optimising compiler for C has been developed and proved in Coq by Leroy, Blazy et al. [START_REF] Leroy | Formal certification of a compiler back-end, or: programming a compiler with a proof assistant[END_REF][START_REF] Blazy | Formal verification of a C compiler front-end[END_REF][START_REF] Leroy | A formally verified compiler back-end[END_REF] within the Compcert project 4 . As this compiler covers a sufficiently large part of the C language and moreover produces a sufficiently efficient executable code, its use is considered for production in an industrial context.

Towards Certified Verification Tools The Compcert project showed that it is nowadays possible to develop real-world applicable tools inside a theorem prover. Similarly there are attempts to develop certified verification tools, such as certified abstract interpreters developed in Coq by Besson et al. [START_REF] Besson | Certified static analysis by abstract interpretation[END_REF]. The Verasco project 5 precisely aims at developing certified static analysis tools on top of Compcert operational semantics .

The question of trusting formal methods was addressed in work package 5 of the U3CAT project 6 . This thesis was in part in the framework of that project.

Contributions of this thesis

In this work we develop, in the Coq system, a certified verification condition generator for ACSL-annotated C programs.

Our first contribution is the formalisation of an executable verification-condition generator for the Whycert intermediate language, an imperative language with loops, exceptions and recursive functions and its soundness proof with respect to the blocking big-step operational semantics of the language (Chapter 3).

Our second contribution is the formalisation of the ACSL logical language and the semantics of ACSL annotations of Compcert's Clight (Chapter 4).

From the compilation of ACSL annotated Clight programs to Whycert programs and its semantics preservation proof combined with a Whycert axiomatisation of the Compcert memory model results our main contribution (Chapter 5): an integrated certified tool chain for verification of C programs on top of Compcert. By combining our soundness result with the soundness of the Compcert compiler we obtain a Coq theorem relating the validity of the generated proof obligations with the safety of the compiled assembly code.

With respect to the state of the art presented above, our work aims at combining the advantages of the two families of approaches of deductive verification: we have a standalone verification tool able to interact with external automated provers which is, at the same time, proved formally correct with a small TCB.

The predicate is defined by the least fixed point over these four rules. That is, among all the predicates that satisfy the four clauses above, there is one smaller than all the others (i.e. contains less pairs of lists). The existence of this smallest fixed point is guaranteed by the positivity conditions that are checked by the Coq kernel.

CHAPTER 2. PRELIMINARIES

Coq offers the notion of co-induction, which is the dual of induction where least fixed points are replaced by greatest fixed points. A typical example found in tutorials about co-induction is the data type of infinite lists, also known as streams. In this thesis we will not use any co-inductive data types, only co-inductive predicates, to talk about non terminating computations.

We illustrate the definition of co-inductive predicates and proofs by co-inductions on a variant of the Collatz problem [START_REF] Lagarias | The 3x + 1 problem and its generalizations[END_REF]. We define a sequence of natural numbers as follows. Given an arbitrary starting number x 0 , we pose

x n is even → x n+1 = x n /2
x n is odd → x n+1 = 5x n + 1 If x n is 1 the sequence stops.

In the original Collatz problem, the coefficient 5 is replaced by 3 and the still open conjecture is that for every starting number the sequence is finite.

For coefficient 5 there are infinite sequences, e.g.

13, 66, 33, 166, 83, 416, 208, 104, 52, 26, 13, . . . Now we can formalise in Coq the predicate P x that is true when x starts an infinite sequence, by a co-inductive definition:

CoInductive P n: Prop := | Even: n > 1 → even n → P (div2 n) → P n | Odd: n > 1 → odd n → P (5 * n+1) → P n.

In other words, P n holds if either n is even and P(n/2) holds, or n is odd and P(5 * n+1) holds.

Proving a goal about P typically involves the use of the cofix tactic, which introduces the current goal as an hypothesis with the given name. However this hypothesis can be used only after having applied a constructor of the predicate. For example the following proof attempt is rejected by the Coq type checker (on the Qed command):

Notations

In order to improve the visual aspect of our development, we make use of several notations. Notations make Coq definitions more readable which is particularly important in case of specifications as they need to be agreed on and thus belong to the trusted code base.

In order to conveniently deal with partial functions, i.e. functions returning a value of type option A , we define a notation for the error monad.

Notation "'let?' x := e1 'in' e2" := (match e1 with None ⇒ None | Some x ⇒ e2 end).

Notations for Inference Rules

A class of notations particularly involved in making specifications more readable are our notations for inference rules. It is clear that when defining type systems or operational semantics by an inductive or co-inductive type then this can be seen as inference system the rules are given by the constructors. To make this even clearer we just need to write the conclusions of the rules under a line. For instance the permutation relation over lists of the Coq standard library can be rewritten as follows:

Inductive Permutation A: list A → list A → Prop := | perm_nil: ø - ------------------- -----------------------------Permutation (x::l) (x::l')

| perm_swap x y l : ø - ----------------------------------Permutation (y::x::l) (x::y::l)

| perm_trans l l' l'' :

Permutation l l' • Permutation l' l'' ------------------------------------------- Permutation l l'' .
For co-inductive definitions we also provide a double-line notation. 

These notations are defined as any other Coq notation:

Notation "x ' • ' y" := (x → y). Notation "x --------------y" := (x → y). Notation "'ø' --------------y" := (y).

In order to support horizontal lines of variable lengths we just add one of such declaration per length between 5 and 100.

Thanks to these notations the rules given in this thesis are directly copied from the Coq development.

Scopes

The same notation can have different meanings according to the current interpretation scope. For instance, the + infix symbol denotes integer addition in the Z_scope and real addition in the R_scope .

Scopes can be opened and closed globally using Open Scope and Close Scope . To change scope within sub-expressions, these can be suffixed with a scope delimiter using the % syntax.

Definition vhd A n (v: vector

A (1 + n)) := match v with | Vcons x n x0 ⇒ x end.
Notice that the definition does not need to handle the case where there is no first element, as this situation is excluded by typing.

The Program Environment

The definition of the previous example is especially simple because Coq's type checker can automatically infer the type of the expression and the absurd branch of the case expression. This is not always possible, as it may be necessary to prove that a given case is absurd or that two types are equivalent. The Program environment aims at automatically inserting these proofs. Consider the following examples, which are automatically completed:

Program Fixpoint lhd {A} (l: list A) (_ : List.length l = 0) := match l with | [] ⇒ ! | h::q ⇒ h end. Program Fixpoint mk_vector {A} n (l: list A) (_ : List.length l = n) : vector A n := match l with | [] ⇒ Vnil | h::q ⇒ Vcons h (mk_vector (pred n) q _) end.
In the first example, the ! marked case is absurd as it contradicts the hypothesis that the length of the list is not zero. In the following the return type is not trivial. In each case Program automatically inserts a cast to the desired return type.

Extraction to OCaml Programs

The Coq extraction mechanism [START_REF] Letouzey | Programmation fonctionnelle certifiée: l'extraction de programmes dans l'assistant Coq[END_REF][START_REF] Letouzey | A new extraction for Coq[END_REF] creates executable OCaml or Haskell implementations from Coq definitions. This is a mostly syntactic translation, as Coq definitions are lambda terms as usual in functional programming languages. However non computational contents and unsupported typing features are removed by the extraction. For instance this is the extracted code for the above examples:

Notice that the hypotheses about the length of the lists have been removed. Similarly the type definition of vector does not depend on its length. In general it is therefore not safe to call Coq-extracted functions by hand-written OCaml code.

Compcert

In this thesis we consider the Coq formalisation of C provided by the Compcert project. This formalisation addresses some of the issues explained in the introduction.

In particular Compcert formalises two front-end languages: Clight, a normalised version of C with side-effect free expressions, and CompcertC, aiming to allow ambiguous expressions and to formalise the notion of sequence point. In this work we refer to the former. Many aspects of C are shared between the front-end languages so the following considerations are true for both of them.

Several semantic elements are more precise in Compcert than in generic C. Currently Compcert fixes the word size to 32-bits and arithmetic operations are all defined modulo this word size. Also the order of the fields in a structure is fixed and fields aligned using alignment bits. The function computing the offset for a given field is thus completely defined.

On the other hand, more importantly, the Compcert memory model formalises some of the abstract aspects of the C memory. First, the Compcert memory model defines memory states as collections of blocks, where each block is associated an array of atomic bytes. Compared with a more hardware-like view of memory as a single, big array of bytes, this allows capturing the fact that blocks of memory resulting from different allocations are necessarily separate and the corresponding pointers incomparable. Also, a byte is formalised as being either a real 8-bit integer or a portion of a pointer. This captures the fact that bit-level access to portions of machine integers and floats is possible, whereas pointers should be atomic and their representation opaque.

To summarise the Compcert memory model is a perfect base to abstractly reason about memory operations in program proofs.

The ACSL Specification Language

ACSL is specified in the reference manual [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language, version 1.4[END_REF]. It can express a wide range of functional properties: from low-level properties, e.g. about the validity of some given pointer, to high-level properties, e.g. that a given list is sorted. Figure 2.1 shows an example of an annotated program for sorting a given array.

The specification employs the user-defined predicates Swap , Sorted and Permut . These logical predicates refer to one, respectively two, memory states, which must be noted as explicit parameters in their definitions. Swap specifies that in a given array pointed by a the elements at positions i and j are swapped between the memory states L1 and L2 (lines 2 and 3) and that all the remaining positions are unchanged (lines 4 and 5). The predicate Sorted states that at memory state L in a given array pointed by a the sequence of elements between positions l and h is sorted. Notice that as this predicate refers to only one memory state, this is implicit in the dereferences a[i] and a[j] , i.e. a[i] is here equivalent to \at(a[i],L) . This is different within code annotations where dereferences always refer to the memory state at the current program point (e.g. line 47). In code annotations \at expressions can refer to previous, labelled memory states (e.g. line 75). Permut is defined inductively, similar to the Coq predicate shown above, except that it is over an array in two memory states.

The specification of the program is organised around function contracts which relate the prestate with the post-state of the function. For instance, the pre-condition of the function swap expresses that the given array t must be valid at least for the positions i and j . Its postcondition specifies that the memory locations may be modified at these positions (line 28). This / * @ predicate Swap{L1,L2}(int * a, integer i,

integer j) = @ \at(a[i],L1) == \at(a[j],L2) && @ \at(a[j],L1) == \at(a[i],L2) && @ \forall integer k; k != i && k != j @ ==> \at(a[k],L1) == \at(a[k],L2); @ * / / * @ predicate Sorted{L}(int * a, integer l, integer h) = @ \forall integer i,j; l <= i <= j < h ==> a[i] <= a[j] ;
@ * / / * @ inductive Permut{L1,L2}(int * a, integer l, integer h) { @ case Permut_refl{L}: @ \forall int * a, integer l, h; Permut{L,L}(a, l, h) ; @ case Permut_sym{L1,L2}: @ \forall int * a, integer l, h; @ Permut{L1,L2}(a, l, h) ==> Permut{L2,L1}(a, l, h) ; @ case Permut_trans{L1,L2,L3}: @ \forall int * a, integer l, h; @ Permut{L1,L2}(a, l, h) && Permut{L2,L3}(a, l, h) ==> @ Permut{L1,L3}(a, l, h) ; @ case Permut_swap{L1,L2}: @ \forall int * a, integer l, h, i, j; @ l <= i <= h && l <= j <= h && Swap{L1,L2}(a, i, j) ==> @ Permut{L1,L2}(a, l, h) ; @ } @ * / The Frama-C platform provides parsing, type-checking and AST creation of ACSL annotated C source files. Its plug-in architecture allows the definition and dynamic loading of OCaml written analysers of such annotated programs. Currently two plug-ins, the Jessie plug-in [START_REF] Moy | The Jessie plugin for Deduction Verification in Frama-C -Tutorial and Reference Manual[END_REF] and the WP plug-in 1 , allow verifying a program with respect to its specification by generating proof obligations and sending them to external provers. With the Jessie plug-in all the generated proof obligations are proved automatically.

/ * @ requires \valid(t+i) && \valid(t+j); @ assigns t[i],t[j]; @ ensures Swap{Old,Here}(t,i,j);

@ * / void swap(int t[], int i, int j) { int tmp = t[i]; t[i] = t[j];
t[j] = tmp; } / * @ requires \valid_range(t,0,n-1); @ behavior sorted: @ ensures Sorted(t,0,n); @ behavior permutation: @ ensures Permut{Old,Here}(t,0,n-1);

@ * / void min_sort(int t[], int n) { int i,j; int mi,mv; if (n <= 0) return; / * @ loop invariant 0 <= i < n; @ for sorted: @ loop invariant @ Sorted(t,0,i) && @ (\forall integer k1, k2 ; @ 0 <= k1 < i <= k2 < n ==> t[k1] <= t[k2]) ;
@ for permutation: @ loop invariant Permut{Pre,Here}(t,0,n-1); @ loop variant n-i; @ * / for (i=0; i<n-1; i++) { // look for minimum value among t[i..n-1] mv = t[i]; mi = i; / * @ loop invariant i < j && i <= mi < n; @ for sorted:

@ loop invariant @ mv == t[mi] && @ (\forall integer k; i <= k < j ==> t[k] >= mv);
@ for permutation: @ loop invariant @ Permut{Pre,Here}(t,0,n-1); @ loop variant n-j; @ * / for (j=i+1; j < n; j++) {

if (t[j] < mv) { mi = j ; mv = t[j]; } } L:
swap(t,i,mi); //@ assert Permut{L,Here}(t,0,n-1); } } 

Whycert: A Certified Verification Condition Generator

The purpose of this chapter is to develop a certified VC generator able to produce VCs for multiple provers. We implement and prove sound, in the Coq proof assistant, a VC generator inspired by the former Why tool, called Whycert. To make it usable with arbitrary theorem provers as back-ends, we make it generic with respect to a logical context, containing arbitrary abstract data types and axiomatisations. Such a generic aspect is suitable to formalise memory models needed to design front-ends for mainstream programming language, as it is done for C by VCC above Boogie or Frama-C/Jessie above Why. The input programs of our VC generator are imperative programs written in a core language which operates on mutable variables of types declared in the logical context. The output logic formulas are built upon the same logical context. This certified Coq implementation is crafted so it can be extracted into a standalone executable as explained in Section 2.1.6. Section 3.1 informally describes the core programming language and shows an example. Section 3.2 formalises our notion of generic logical contexts. Section 3.3 formalises our core language and defines its operational semantics. Section 3.4 defines the weakest precondition computation WP and proves its soundness. Section 3.5 aims at the extraction of an executable plug-in for the Why3 platform. We introduce a variant wp of the calculus which produces concrete formulas instead of Coq ones.

A significant part of this chapter has been published at the VSTTE conference in 2012 [START_REF] Herms | A certified multi-prover verification condition generator[END_REF]. The main increments are a more general notion of logical contexts and the Why3 back-end.

Informal Description of the core programming language

Our core language follows most of the design choices of the input language of Why and we use the Why3 concrete syntax for the examples and explications in this chapter. Indeed we reduce to an even more basic set of constructs, nevertheless remaining expressive enough to encode higherlevel sequential algorithms. We follow an ML-style syntax; in particular there is no distinction between expressions and instructions. Following again the Why design, our core language contains an exception mechanism, providing powerful control flow structures. As we will see these can be handled by weakest pre-condition calculus without major difficulty. As a difference to the Why programming language, we allow only global references: Local references and references as function parameters are not supported, excluding thus any form of aliasing by construction, whereas Why excludes aliasing by typing. For instance, in the following Why program the call to f is rejected: type array function select array int : int function store array int int : array axiom select_eq: forall a :array, i x :int. select (store a i x) i = x axiom select_neq : forall a :array, i j x: int. i = j → select (store a i x) j = select a j predicate sorted array int axiom sorted_def: forall a : array,n:int. sorted a n ↔ forall i j:int. 0 A program in this language is defined by a logical context and a finite set of function definitions, which can be mutually recursive. A logical context provides a fixed set of abstract types, logical symbols, global references and exceptions that may be used in the program.

≤ i && i ≤ j && j < n → select a i ≤ select
The core programming language of Whycert contains a language of logical terms, which will also be the output of the WP calculus. The following concrete syntax illustrates Whycert logic terms and predicates.

t ::= s logical symbol | t1 t2 term application | let v = t in t local binding | forall v:T, t quantification | v local name | !r dereference | at !r l dereference at label | t && t | t → t connectives
These logic expressions always have an associated type and we will call predicates the logic terms that have a propositional type and also proposition if the term doesn't contain dereferences.

Only the conjunction and implication connectives are built-in, as they are the only ones needed for the WP calculus. Other connectives may be included as logical symbols which can have higher order types and are applied in a curried way. The only particularity are the infinite loops which have an associated invariant. The only way to exit them is by using exceptions.

A definition of a function follows the structure

let f(x1:T1) ... (xn:Tn) : T = { p } e { q }
where the predicates p and q are the pre-and the post-condition. In the post-condition, the reserved name result is locally bound and denotes the result of the function of type T and label old is bound to denote the pre-state. Note that exceptions are not supposed to escape function bodies. We could easily support such a feature by adding a family of post-conditions indexed by exceptions as in Why [START_REF] Filliâtre | Verification of non-functional programs using interpretations in type theory[END_REF].

Example 1 Fig. 3.1 presents, in Why3 concrete syntax, an appropriate axiomatisation for specifying a program sorting an array. An abstract type array is introduced to model arrays of integers indexed by integers. It is axiomatised with the well-known theory of arrays. We also define predicates sorted t i meaning that t[0], . . . , t[i -1] is an increasing sequence, and permut t1 t2 meaning that t 1 is a permutation of t 2 . The latter is axiomatised: it is an equivalence relation that contains all transpositions swap of two elements. All the constants in the example like select , store , but also 0 , 1 , + and < , are logical symbols belonging to the appropriate logical context as formalised below. Fig. 3.2 shows a program that sorts the global array t by the classical selection sort algorithm. Note the use of the exception Break to exit from the infinite loops. Note also the use of labels in annotations, allowing to specify assertions, loop invariants and post-conditions that link up various states of execution.

Logical Contexts

Our background logic is multi-sorted. Models for specifying programs can be defined by declaring types, constant, function and predicate symbols, and axioms. In Coq this is formalised using section variables which all the following definitions depend on. Example 2 The logical signature of example 1 can be given by the definitions in Figure 3.3 1 . Notice that in addition to the required abstract symbols, we also need to declare some standard types and symbols as they are not built-ins of our language.

Logical Signatures

) : unit = { n ≥ 1 } i := 0; 'Pre: try loop invariant { 0 ≤ !i && !i < n && sorted !t !i && permut !t (at !t 'Pre) n && forall k1 k2 : int. 0 ≤ k1 && k1 < !i && !i ≤ k2 && k2 < n → select !t k1 ≤ select !t k2 } if !i ≥ n-1 then raise Break else (); ( * look for minimum value among t[i..n-1] * ) mv := select !t !i; mi := !i; j := !i+1; try loop invariant { !i < !j && !i ≤ !mi && !mi < n && !mv = select !t !mi && forall k:int. !i ≤ k && k < !j → select !t k ≥ !mv } if !j ≥ n then raise Break else (); if select !t !j < !mv then (mi := !j ; mv := select !t !j; ())
Note that the axioms of Figure 3.1 do not belong to the logical signature as needed to define the program. They are listed here to illustrate the symbols which are completely abstract to our WP calculus. They will be needed only by the provers to reason about the symbols when proving the verification conditions generated by the calculus.

Dependently Typed De-Bruijn Indices

A design choice in our formalisation is to define terms and expressions such that they are well typed by construction. This simplifies the definition of the semantics and the weakest precondition calculus on such expressions, as we don't need to handle malformed constructions at those points. To begin we need to ensure that occurrences of variables actually correspond to bound variables in their current scopes and that they are used with the correct type. Here we use so-called dependently typed de Bruijn indices following the preliminary approach of Herms [START_REF] Herms | Certification of a chain for deductive program verification[END_REF] as documented in Chlipala [START_REF] Chlipala | Certified Programming with Dependent Types[END_REF].

Dependent indices are like regular de-Bruijn indices, in that HI0 refers to the innermost bound variable, HIS HI0 to the second innermost bound variable, etc. Additionally they carry information about their typing environment and about the type of the variable they represent. We use indices of type lidx A E to represent variables of type A under a typing environment E , that is the list of the types of the bound variables. The type of the innermost bound variable is stored at the first position in the typing environment, the type of the second innermost bound variable at the second position, etc. In Coq we can formalise this constraint using a parametrised annotated inductive type. The following polymorphic definition constrains the type of the first index to match the first element in the type list and recursively for the other elements.

In such a heterogeneous list each element may have a different type. The type hlist E of heterogeneous lists then depends on the list of types E of their elements. Thanks to the constraints on the type parameters, if an index i : lidx A E references an element within a heterogeneous list l : hlist E , we are sure to find an element of type A at i -th position of l . This allows us to define the function accslidx : lidx A E → hlist E → T A which given an index and an hlist returns the element in the list pointed by the index. In Coq, thanks to the Program environment its definition is straightforward.

Program Fixpoint accslidx A E (i:lidx A E) (l:hlist E) : T A := match l with | Hnil ⇒ ! | Hcons _ _ h q ⇒ match i with | HI0 _ ⇒ h | HIS _ _ i1 ⇒ accslidx i1 q end end.
We will use these heterogeneous lists to give semantics to our languages. Precisely, heterogeneous lists, specialised with T:=dentype , are the representation of evaluation environments which associate a value to each variable in the current typing environment. The function accslidx is then used in the semantics rule for variable access. are well-typed and can be used to access their values in l , e.g. accslidx HI0 l = 5 : Z and accslidx (HIS (HIS HI0)) l = pred : nat → nat .

Terms and Propositions

The formal syntax of logic terms is given in Fig. 3.4. Terms depend on the parameters L , E and A , denoting respectively the highest index of a valid label, the typing environment and the type of the value they denote, which is Tprop in case of propositional terms. Variables are Figure 3.4: Inductive definitions of logic terms represented by our dependent indices lidx A E . The constructor Tlet expresses let-blocks at the term level. As usual with de Bruijn indices, no variable name is given and the body of the block is typed in a typing environment that is enriched by the type of the term to be remembered. Similarly Tforall binds a new de Bruijn variable but generalising it instead of assigning a value to it. The symbol application is formalised in a curryfied style.

Logical Contexts, Semantics

The semantics of our generic language depends on an interpretation given to types and symbols. From such an interpretation, any term or proposition can be given a value, in a given evaluation environment for variables and given state for references.

Given a logical signature, an interpretation consists of a function denutype of type utype → Type assigning a semantics to the user types, and a function densym assigning a semantics to the introduced function and predicate symbols. Given denutype we define dentype to interpret all the types. The semantics of a term of type term L E A is defined under an evaluation environment G of type env E , a state S of type state and a history of previous states SS of type states L . As described above, env E is a heterogeneous list with one element for each entry of the typing environment E . state is a mapping from references ref A to values of type dentype A and states L is a vector of size L of state , whose nth element denotes the state memorised at the nth enclosing label. As a special case a term of type term 0 E A cannot refer to any previous labels. The semantics of terms defined by structural recursion is shown in Figure 3.5. Note that evalterm is a total function: the semantics is defined for every term as correct typing is ensured by construction.

The programs formalised in the next section will assume a given logical signature and the verification conditions generated from such a program will be logical propositions concerning the types and symbols of that logical signature. Recall that our goal is to prove these formulas with the aid of automatic SMT provers so it is of crucial importance that the semantics these provers give to the formulas is the same as in our Coq formalisation. Except the dereferences which will be output as universally quantified variables, our logical language is very basic, so every reasonable prover should agree on its semantics -provided that they agree on the interpretation of the symbols.

Many symbols can remain abstract to the provers. This means that a prover doesn't make any assumption about the interpretation of such a symbol. E.g. in the example this is the case for select , store , sorted , etc. To allow provers reasoning about abstract symbols, the user can specify axioms in the form of propositions in our logical language which will be sent to the provers along with the verification conditions. In Coq these logical terms can be evaluated to values of type Prop and proving these Coq propositions correct using tactics corresponds to validating the axiomatisation. Indeed the interpretation given by the Coq functions dentype and densym can be seen as a model for the axiomatisation. If a prover, or a combination of several provers, succeeds in proving the verification conditions about the abstract symbols using only information from the axiomatisation, i.e. for any interpretation of the abstract symbols, then we are sure the conditions are valid also for the particular interpretation given in Coq.

Some symbols however can not be treated as abstract symbols. Either because they correspond to higher order connectives of the logic of the prover, like disjunction or negation, or because they belong to some built-in theory for which the prover is optimised, like integer or real arithmetic. In these cases, it is up to the user to make sure that the semantics the provers give to these symbols is the same as in our Coq formalisation. Example 4 A possible interpretation of the logical types and symbols for the sorting example is shown in Figure 3.6. Note that starting from SYMeq , all the symbols make use of definitions from the Coq standard library: all these symbols will correspond to built-in symbols for the provers as well, whereas the first five stay non interpreted.

The axioms can then be proved in Coq, thus proving the axiomatisation consistent.

Recall that such an interpretation and proof of consistency is not needed for the WP calculus: when a program is proved with the WP calculus, it is proved with respect to any model of the axiomatisation.

The Core Programming Language

Formal Syntax of Expressions

Like terms of the logic, expressions of programs are formalised by an inductive type expr L E A depending on the parameters A , E and L , denoting respectively the evaluation type, the typing environment and the highest index of a valid label, as shown in Figure 3.7. Notice that variables and labels are left implicit in the inductive definition thanks to De-Bruijn representation.

Additionally expressions depend on the parameter F , the list of signatures of the functions a sub-expression can refer to. Unlike L , E and A this parameter does not change within subexpressions, so we can say F is a parameter of the program. A signature is a pair of the return type of the function and the list of the function's parameters. A function identifier, as used in function calls, of type lidx (signature A P) F is an index pointing to an element with the signature signature A P within a heterogeneous list of functions with types F . Such heterogeneous lists of type hlist (func F) F are precisely the representation of a program Figure 3.7: Inductive definition of expressions prog F . Notice that in the definition of programs the parameter F appears twice: once as parameter of hlist , to define the signatures of the functions in the program, and once as parameter of func to constrain expressions in function bodies to refer only to functions with a signature appearing in F . This way we ensure the well-formedness of the graph structure of programs: it is impossible to refer to an unexisting function.

A function definition func F (signature A P) consists of a body of type expr F 1 E A and a contract, i.e. a pre-condition of type prop 0 P and a post-condition prop 1 (A::P) . In the pre-condition no labels may appear, hence its type has the parameter 0 . In the post-condition we allow referring to the pre-state of a function call: in the syntax this corresponds to using the label old. The post-condition may additionally refer to the result of the function, hence its type environment is enriched by A .

A last parameter of programs is par , the set of program parameter names. Like functions, program parameters can be called with a list of arguments, but their implementations are abstract: the only available information about a program parameter is its specification, that is its functional contract and its effects, i.e. the set of potentially modified references. Variable get_parspec :> ∀P A, par P A → parspec P A.

Like with abstract symbols, the interpretation of program parameters is given in terms of a Coq function den_par , which, unlike densym , can modify the current state. To ensure soundness of the language we require that the abstract interpretation respects the given specification for every parameter. 

Operational Semantics

The operational semantics is defined in big-step style following the approach of Leroy and Grall [START_REF] Leroy | Coinductive big-step operational semantics[END_REF]. A first set of inference rules inductively defines the semantics of terminating expressions (Figs. 3.8 and 3.9) and a second set defines the semantics of non-terminating expressions, co-inductively (Fig. 3.10 and 3.11). Judgement G/SS/S/ e =⇒ S'/o expresses that in environment G , history of states SS and state S , the execution of expression e terminates, in a state S' with outcome o : either a normal value Outval v or an exception Outexn ex v where v is the value held by it. There are two rules for let e1 in e2 depending on the outcome of e1 ( semlet and semletexn ). The rule for assignment semassign uses the update operation update S r a on states which replaces the mapping for r in S . A labelled expression is evaluated in an enriched state S::SS where the current state is copied on top of the vector SS (rule semlab ). The rule for function calls semcall requires the pre-condition to be valid in the current state and the post-condition to be valid in the returning state. Note that there is an implicit coercion from the function identifier to its definition.

Judgement G/SS/S/ e =⇒ ∞ states that the execution of expression e is non terminating in environment G , history of states SS and state S . Its definition is straightforward: the execution of an expression diverges if the execution of a sub-expression diverges. The interesting cases are for the execution of a loop: starting from a given state S , it diverges either if its body diverges or if its body terminates on some state S' and the whole loop diverges starting from this new state. Of course, non-termination may be caused by infinite recursion of functions, too.

The main feature to notice is that execution blocks whenever an invalid assertion is met: the rules for assertions, loops and function calls are applicable only if the respective annotations are valid. Conversely, as everything is well-typed by construction, the only reason why an expression wouldn't execute is that one of its annotations isn't respected. ----------------------------------------------------- ---------------------------------------------------------- --------------------------------------- --------------------------------------------------------------- ----------------------------------------G/SS/S/ Elet e1 e2 =⇒ S'/Outexn ex a | semassign r (t:term L E A) : let a := evalterm t G SS S in øcallpar pa ps =⇒ S' / Outval a where "G / SS / S / e =⇒ S' / o" := (@sem _ _ G SS S _ e S' o). -------------------------- --------------------------------------------------G/SS/S/ Eseq e1 e2 =⇒ ∞ -------------------------- ----------------------------------------------------- ------------------------------------ -------------------------------------- ----------------------------------------G/SS/S/ Eif p e1 e2 =⇒ ∞ --------------------------------------------G/SS/S/ Eloop (A:=A) P e =⇒ ∞ | seminftry (e1:expr _ _ A) Aex (e2:expr L (Aex::E) A) ex: G/SS/S/ e1 =⇒ ∞ - ------------------------------G/SS/S/ Etry e1 ex e2 =⇒ ∞ | seminftry2 e1 Aex (ex ex': exn Aex) e2 S' (a:dentype Aex): ---------------------------------------- ----------------------- ------------------------------------------------------------G/SS/S/ Ecall f ps =⇒ ∞ where "G / SS / S / e '=⇒ ∞'" := (@seminf _ _ G SS S _ e). A program respects its annotations if every function can execute safely.

| seminfloop P A1 (e:expr L E A1): valid P G SS S • G/SS/S/ e =⇒ ∞ ------------------------------------ G/SS/S
G/SS/S/ e1 =⇒ S'/ Outexn (A:=A) ex a • (a::G)/SS/S'/ e2 =⇒ ∞ • ex '=== ex' -
forall P A (fi: lidx (signature A P) F) G S, let f := accsfunc fi in evalterm f.(pre) G [] S → G/[S]/S/ f.(body) =⇒ ∞ ∨ ∃S' a, G/[S]/S/ f.(body) =⇒ S'/Outval a ∧ evalterm f.(post) (a::G) [S] S'.
Our semantics is quite unusual, in particular it is not executable. Although, if annotations are removed and if the propositional guards in if-then-else blocks and loops are decidable then it becomes executable and coincides with a natural semantics. This approach makes a distinct set of rules for axiomatic semantics à la Hoare obsolete: the soundness of the verification condition generator will be stated using this definition of safe execution. Moreover this notion of safe execution is indeed stronger than the usual notion of partial correctness: a safe program that does not terminate will still satisfy its annotations forever. 2

Weakest Precondition Calculus

Effect Inference

To carry out the weakest precondition calculus we need to know the effect of each expression, i.e. the references it may modify. This is necessary to avoid too verbose loop invariants and function contracts: without effect inference a user would have to specify all the references that do not change between loop iterations or function calls.

Expressions with effects are assignments r := t , which modify the reference r , and parameter calls, which declare the set of modified references in their specification, so given an expression we need to recursively collect all the references modified by sub-expressions. Because of function calls, this recursion is not structural. Calling a function means possibly modifying all the references appearing in assignments inside the function's body, so we need to know them. Since the functions can be mutually recursive, we compute their effects by iterating a function writes collecting additional effects, until it reaches a fixed point. Termination of this algorithm is proven in Coq.

Definition 6

The effects of a program associates a finite set of references to each function.

Given the current effects , the function writes recursively collects the references modified by the given expression assuming accslist f as the references modified by the function f . Because of the type parameter, references are collected in existential pairs (syntax (A & r) ). The function infer_1 , which returns a new effects by calling writes for each function's body, is recursively called by infer_n until a fixed point is reached. In Coq it is defined by wellfounded recursion based on a given decreasing measure. It is not detailed here, but informally the total number of modified references for every function increases and is bounded.

Variable

: effects.

Fixpoint writes L E A (e:expr L E A) : rset

:= match e with | Eterm _ | Eraise _ _ _ ⇒ empty | Eassign r _ ⇒ singleton (A & r) | Eassert _ e | Eloop _ _ e | Elab e ⇒ writes e | Eseq _ e1 e2 | Elet _ e1 e2 | Eif _ e1 e2 | Etry _ e1 _ e2 ⇒ union (writes e1) (writes e2) | Ecall _ i _ ⇒ accslist i | Ecallpar _ pa _ ⇒ pa.(par_effects) end.
Definition infer_1 : effects := smap (fun s (f : func s), writes f.(body)) pg.

Program Fixpoint infer_n { measure ... } : effects := let ' := infer_1 in if == ' then else infer_n '.
Definition infer := infer_n 0.

Lemma infer_correct: forall s (f:fidx s), accslist f infer === writes infer f.(body).

In the following we will simply write writes for writes (infer pg) , as the effects are computed once and for all for a given program.

We define assigns which relates two states that differ only in the references appearing in the given set. An intermediate result shows that the execution of an expression e really modifies only the references computed by writes e . This result helps us in generating less restrictive proof obligations: whenever we need to generalise a state, we can include this syntactic information about which references are modified in the new state and which are not.

Definition of the WP-calculus

We calculate the weakest pre-condition of an expression given a post-condition by structural recursion over expressions (Fig. 3.12). We take as inputs a post-condition Q for normal behaviour and a family of post-conditions R for exceptional behaviour -one for each exception. In the case of a loop, the pre-condition is calculated using the loop invariant and in the case of a function call we use the pre-and post-condition of that function. In both cases, as customary in WP calculi, we The False as exceptional post-conditions requires that no function body exits with an exception.

Definition NOP L A := states L → state → dentype A → Prop. Definition EOP L := states L → state → ∀Aex, exn Aex → dentype Aex → Prop. Program Fixpoint WP L E A (e:expr L E A) (Q:NOP L A) (R:EOP L) (G:env E) (SS:states L) (S:state) := match e return _ with | Eterm t ⇒ Q SS S (evalterm t G SS S) | Eseq A1 e1 e2 ⇒ WP e1 (fun SS S a, WP e2 Q R G SS S) R G SS S | Elet A1 e1 e2 ⇒ WP e1 (fun SS S a, WP e2 Q R (a::G) SS S) R G SS S | Eassign r t ⇒ let a := (evalterm t G SS S) in Q SS (update S r a) a | Eraise Aex ex t ⇒ R SS S Aex ex (evalterm t G SS S) | Eassert P e ⇒ evalterm P G SS S ∧ WP e Q R G SS S | Eif p e1 e2 ⇒ (evalterm p G SS S → WP e1 Q R G SS S) ∧ (¬evalterm p G SS S → WP e2 Q R G SS S) | Eloop _ Inv e1 ⇒ evalterm Inv G SS S ∧ ∀S', assigns S (writes e1) S' → evalterm Inv G SS S' → WP e1 (fun SS S'' tt, evalterm Inv G SS S'') R G SS S' | Etry Aex e1 ex e2 ⇒ WP e1 Q (fun SS S' Aex' ex' result, if ex' '== ex then WP e2 Q R (cast result::G) SS S' else R SS S' Aex' ex' result) G SS S | Elab e ⇒ WP e (dnlab; Q) (dnlab; R) G (S::SS) S | Ecall P f ps ⇒ let G_args := evaltermlist G [] S ps in evalterm f.(pre) G_args [] S ∧ forall S'

Soundness Results

A preliminary property to establish is that after a terminating execution, post-conditions are respected if the weakest pre-condition is valid.

Lemma WP_correct L E A G SS S (e : expr L E A) S' o: G/SS/S/ e =⇒ S'/o → forall (Q : NOP L A) (R : EOP L), WP e Q R G SS S → match o with | Outval a ⇒ Q SS S' a | Outexn Aex ex a ⇒ R SS S' Aex ex a end.

Proof. by induction over the derivation of G/SS/S/ e =⇒ S'/o

We now state that if the VCs hold for all functions then any expression having a valid WP executes safely.

Theorem 8 (Soundness) If VCGEN holds then the program respects its annotations

Hypothesis VC_prog : VCGEN. Proof. by co-induction, using the axiom of excluded middle to distinguish whether the execution of an expression does or does not terminate, following the guidelines of Leroy and Grall [START_REF] Leroy | Coinductive big-step operational semantics[END_REF].

Theorem soundness L E A (e:expr

L E A) SS S G Q R: WP e Q R G SS S → G/SS/S/ e =⇒ ∞ ∨ ∃S' o, G/SS/S/ e =⇒ S'/o.
Notice that this means that it is enough to prove the verification conditions for each function separately, even if functions can be mutually recursive, there is no circular reasoning. The important corollary below states that if the VCs hold for all functions then their bodies all execute safely. By definition of the semantics, this implies that all assertions, invariants and preand post-conditions in a given program are verified if the verification conditions are valid.

Extraction of a Certified Verification Tool

The obtained Coq function for generating verification conditions is not extractible, i.e. it cannot be extracted to executable OCaml code: given a program pg we obtain a Coq term VCGEN pg of Coq type Prop which must be proved valid to show the correctness of the program. The process thus remains based on Coq for making the proofs. In this section we show how to extract the calculus into a separate tool so that proofs can be performed with other provers, e.g. SMT solvers.

Concrete WP computation

To achieve this we need the WP calculus to produce a formula in the abstract syntax of Fig. 3.4 instead of a Coq Prop . We thus define another function wp (Fig. 3.13) which, given an expression e , a normal post-condition q and a family of exceptional post-conditions r , returns a

Program Fixpoint wp L E A (e:expr L E A) (q:prop L (A::E)) (r: ∀Aex, exn Aex → prop L (Aex::E)): prop L E := match e return _ with | Eterm t ⇒ Tlet t q | Eseq A1 e1 e2 ⇒ wp e1 (lift_term (E1:=[]) (wp e2 q r)) r | Elet A1 e1 e2 ⇒ wp e1 (wp e2 (lift_term (E1:=[A]) q) (fun A ex, lift_term (E1:=[A]) (r A ex))) r | Eassign r t ⇒ Tlet (t) (subst_term q r (Tvar HI0)) | Eraise Aex ex t ⇒ Tlet t (r Aex ex)
| Eassert P e ⇒ Pand_asym P (wp e q r) | Eif p e1 e2 ⇒ Pand (Pimply p (wp e1 q r))

(Pimply (Pimply p Pfalse) (wp e2 q r)) | Eloop A1 Inv e1 ⇒ Pand Inv (abstr (Pimply Inv (wp e1 (lift_term weakest pre-condition. It is defined recursively on e similarly to WP in Fig. 3.12, but this time q , r and the result are syntactic propositions which are concretely transformed. Everywhere in WP we easily made a semantical operation, like enriching the environment or updating the global state now we need to concretely lift De-Bruijn indices or substitute inside terms. This requires several term operators, and for each a commutation lemma, which we don't show here. Other than that, the concrete wp calculus is similar to WP , the most notable difference is that quantification over states is now replaced by quantifications over modified references:

(E1:=[ ]) Inv) r)) (writes e1)) | Etry Aex e1 ex e2 ⇒ wp e1 q (fun Aex' ex' ⇒ if ex' '== ex then cast (T:=prop L) ((wp e2 ((lift_term (E1:=[A]) q)) (fun Aex'' ex'', (lift_term (r Aex'' ex''))))) else r Aex' ex') | Elab e ⇒ dnlab_term (
Definition abstr L E: rset → prop L E → prop L E := fold (fun (r:sigT ref) q, Tforall (subst_term (lift_term (E1:=[]) q) (dsnd r) (Tvar HI0))).
Lemma abstr_correct L E (q:prop L E) G SS (s : rset) S: evalterm (abstr q s) G SS S → ∀S', assigns S s S' → evalterm q G SS S'.

For each reference r in the given set, the function abstr precedes the given proposition by Tforall , substituting the occurrences of r by the newly bound variable. As ensured by the lemma, this leads to the desired result of generalising the term with respect to all the references in s .

We prove that the wp calculus is correct w.r.t. the WP calculus.

Lemma wp_correct L E A (e:expr L E A) (q:prop L (A ::E)) r G SS S: evalterm (wp e q r) G SS S → WP e (fun SS S a, evalterm q (a::G) SS S) (fun SS S Aex ex a, evalterm (r Aex ex) (a::G) SS S) G SS S.

Proof. By induction over expression e , where in each case some commutation lemmas are applied to exchange updates in the state and pushes in the environment by substitutions of references and concrete liftings of De-Bruijn indices.

From wp we now define a concrete verification-condition generator vcgen . Definition vcgen := ' (smap vcgen_f pg).

Theorem 9 An important corollary of wp_correct is that the concrete verification condition is correct: if the generated concrete conditions are valid then so are the logical ones:

Definition valid_list (l: list (prop 0 [])) := ∀S, List.Forall (fun p, evalterm (A:=Tprop) p [] [] S) l.
Theorem vcgen_correct: valid_list vcgen → VCGEN.

That is, the hypothesis of Definition 8 is established if we prove the formulas generated by vcgen valid in any state. Notation "'let!' x := e1 'in' e2" := (iobind e1 (fun x, e2)). 

Extract Inductive IO ⇒ "" [ "" ]. Extract Inlined Constant ioreturn ⇒ "". Extract Inlined Constant iobind ⇒ " (fun x f → f x) ".

Producing Concrete Syntax with Explicit Binders

Still, formulas of vcgen are represented by a De-Bruijn-style abstract syntax. To print out such formulas we need to transform them into concrete syntax with identifiers for variables by generating new names for all the binders. This could be done on the fly in an unproven prettyprinter. Though, being a non trivial transformation it is better to do it in a certified way directly after the generation.

The Why3 language allows to define logical formulas and theories. To be able to directly interface with the Why3 platform we formalise the Why3 logical language as exposed by the Why3 API. This will allow us generating Why3 theories from a list of verification conditions in a certified way.

The Input-Output Monad

The main difficulty consists in handling local variables. In order to translate our logical language with De-Bruijn indices to a language with explicit binders we need to generate fresh variable names. Similarly to many OCaml libraries, the Why3 API relies on the fact that a record value as created by the syntax { f1 = e1; ...; fn = en} is physically distinct from any other value created before. Therefore a function like let create_vsymbol name ty = { vs_name = name; vs_ty = ty } returns a fresh vsymbol at every call because its implicit side effect is to modify the OCaml heap. In order to model such a function with side effects in Coq we define the input-output monad as in Haskell (Fig. 3.14). A value of type IO A is essentially a function from the abstract type sys , representing the current state of the system, to A * sys , i.e. a value of type A and the resulting state. A function that returns a value of type IO A thus actually takes an extra argument, the current state, and returns a new state in addition to its actual result. The iobind Figure 3.15 shows a small example program using the IO monad. Using the OCaml reference type and its operators declared as Coq parameters we can define a counter generator -a standard first exercise in imperative OCaml programming. The result of its extraction is shown below. Notice how erasing the monadic operators leads to a rather natural OCaml program. However, it would be more readable if the fun x f → f x could be replaced by a let x = .. in .. syntax.

type nat = O | S of nat let new_counter x = (fun x f → f x) (ref O) (fun r → let next = fun x0 → (fun x f → f x) ((!) r) (fun x1 → (fun x f → f x) ((:=) r (S x1)) (fun x2 → (!) r)) in next)
In order to prove properties about such a program with references we would need to axiomatise their behaviour, stating for instance that if we write to a reference then the contents of all the others remain untouched. Notice that to apply this second axiom one would need to prove that two references are distinct. Intuitively a newly created reference is distinct from all the references created before. The best way to formalise this is to postulate an order relation over references and to assume that a reference is greater than another if is created at a later moment.

Parameter ref_lt: relation (sigT ref).

Axiom ref_SO: StrictOrder ref_lt eq. Axiom mkref_fresh: forall A1 (a1:A1) A2 (a2:A2) z1 z2, z1 < z2 → (&ioget (mkref a1) z1) < (&ioget (mkref a2) z2).

The notion of "later" is formalised with an order over system states and the definition of the IO monad guarantees that the state resulting of an execution of an IO operation is greater than the input state (see ioprop , Fig. 3.14), which corresponds to the natural notion of "later". Notice that these order relations are not and don't need to be decidable. The only way to establish hypotheses about the ordering of two elements is using information of this axiomatisation. Technically, notice that because of their type parameter references are compared as existential pairs ( sigT ). Also notice that as StrictOrder is a type class, we can use the natural < infix notation which automatically refers to the appropriate instance of an order relation.

Strings

Some functions of the API take a string arguments, e.g. the name of a symbol. In order to call such a function from Coq we declare the OCaml string type and a function from Coq strings to OCaml strings as parameters. 

Symbolic Reals

The Why3 logical language provides for built-in types for integers and reals, as well as constructions to express integer and real constants. Whereas integer constants can be concretely represented with the Coq type Z , this is not the case for real constants, as the Coq type R is currently axiomatised in Coq. If we tried to include the Coq library Reals providing this axiomatisation in the part of our development that will be extracted, then we would have to implement all the axioms of that library in OCaml -or at least provide some dummy implementation. Instead we just declare an abstract type of symbolic reals as a parameter.

Parameter real : Type.

In a different Coq module we then declare that the denotational semantics of a real is given as a R . This module, and by transitivity Reals , is included only in the specifications of the semantics of our various languages and the proofs about them, but not in the calculus, and need thus not to be extracted.

The Why3 API

With these ingredients we can formalise the logical language as exposed by the Why3 API (Fig. 3.16) and its semantics (Fig. 3.17). We use the IO monad to formalise a generator of fresh variable symbols vsymbol . Notice that in contrary to its counterpart in OCaml, it has a parameter of type ty representing the type of the variable. This is to simplify the proofs about the semantics of variables. Like with a phantom type the functions in the interface ensure the correctness of this type parameter. Similarly lsymbol , the type of logical constants, functions and predicates, has two type parameters, representing the types of its arguments and its return type. An lsymbol can be created using make_lsymbol or obtained accessing the Why3 standard library given the path and the name of the theory and the name of the symbol. For simplicity stdlib_ls is formalised as a total function, even if it is clear that it won't succeed if such a symbol does not exist. Also, it should fail if the given argument type list and return type do not match with the ones of the symbol. In this case the OCaml implementation would just raise an exception.

Terms are specified as an inductive, again with a phantom type parameter to ensure correct typing by construction. This allows to specify the semantics in a denotational style (Fig. 3.17): given a term and an environment assigning a value to every local variable the function den_term returns the Coq denotation of that term. The semantics of logical symbols is given as a function from a list of arguments to a result value. Here we distinguish between local and global symbols. The semantics of global symbols is assumed as a global parameter while the semantics of local symbols is to be given as an argument to the semantics. With this we try to capture the intended difference between built-in symbols, that provers associate some well known behaviour to, and user defined abstract symbols (see discussion in Section 3.2.4). This way we can define the notion of valid theory as the fact that the validity of a list of axioms implies the validity of a list of goals for any interpretation of the local symbols, which is precisely what the external SMT solvers will prove.

A weakness of this semantics is the requirement of the axiom of decidability of any property, used in the semantics of t_if , which is generally false. However, this is justified by the fact that the semantics of terms is used only to give semantics to proposition and thus in a Prop context. The axiom could possibly be avoided in a more laborious specification making use of inhabited or by resigning to a rule based specification.

Generation of Why3 Theories

In order to generate Why3 theories from Whycert verification conditions we essentially need to compile Whycert terms to Why3 terms. As the former may contain some constructions that are not representable in first-order logic, like quantification over functions or partial application of logical symbols, this compilation may fail. We use the following notations to combine the IO monad with the error monad: Definition IOx A := IO (option A). Notation "'return' x" := (ioreturn (Some x)). Notation "'let!?' x := e1 'in' e2" := (iobind e1 (fun x, match x with Some x ⇒ e2 | None ⇒ ioreturn None end)). For convenience we extend the type of variable symbols, which must have a first-order type, to variable symbols of any type and accordingly the functions operating over variable symbols: Similarly we define t_var' and t_forall' . De-Bruijn indices are then compiled using a map that assigns such a vsym to every valid index:

Definition varmap E := forall ty, var ty E → vsym ty.

In order to compile successive curryfied applications we compile terms based on their type. If a given sub term has an arrow type, this means that it needs to be applied further, so in this case the compilation returns a function from terms to terms. Otherwise it returns a term, whose type is the compilation of the type of the original term: The compilation is shown in Figure 3.18. For simplicity we do not try to compile let blocks in case of a higher order type, even if could be possible inlining the term. compwterm relies on the compilation of references and symbols: it takes as an argument a function ref_name: ∀ty, ref ty → ocamlstring , assigning a name to every reference, as well as a function comp_sym: ∀ty, sym ty → termcons ty , mapping every symbol either to some Why3 built-in construction or to an application of a logical symbol, either from some Why3 library or newly created. Figure 3.19 shows the compilation of the symbols for the sorting example as well as some helper functions. Notice that when looking up or creating an lsymbol , the appropriate list of parameter types and the appropriate value type is obtained by the type of the symbol.

Intuitively the compilation is correct because every time it goes under a binder adding a variable to the variable mapping, this variable is necessarily fresh. This is formalised with the predicate vm_before (Fig. 3.20). Under this hypothesis and the hypothesis that the evaluation environments are related accordingly to the varmap ( rel_vm_G ), we prove that the compiled Definition comp_sym ty (s: sym ty) : termcons ty := match s with term is equivalent by rel_termcons . This relation simplifies to standard equality in case of a propositional type, so it is an easy corollary that a compiled proposition is valid if and only if the original proposition is valid ( compwprop_correct ).

| SYMeq ty ⇒ t_equ | SYMconst_int x ⇒ t_int_const x | SYMlt ⇒ stdlib_tc "int" "Int" "infix <" | SYMplus ⇒ stdlib_tc "int" "Int" "infix +" | SYMopp ⇒ stdlib_tc "int" "Int" "prefix -" | SYMconst_unit ⇒ make_ls_tc "tt" | SYMselect ⇒ make_ls_tc "select" | SYMstore ⇒ make_ls_tc "store" | SYMsorted ⇒ make_ls_tc "sorted" | SYMswap ⇒ make_ls_tc "swap" | SYMpermut ⇒ make_ls_tc "permut" end.
Finally we then prove the main soundness theorem of the generation of Why3 theories: 

Extraction and Experimentation

For experimentation purposes we also defined a compilation in the opposite direction, i.e. from programs in a front-end syntax to the corresponding program in De-Bruijn syntax, provided that the former is well typed.

We then use the extraction mechanism of Coq to extract an OCaml function that, given an AST of our front-end syntax representing a program, produces a theory.

We finally combine this with the Why3 parser to produce such an AST from concrete input programs in Why3 syntax resulting in a Why3 plugin that can be dynamically loaded by Why3ide allowing us to call automated provers on the proof task. This is illustrated by the diagram in Figure 3.21. We made experiments to validate this process. On our selection sort example, the two VCs for functions swap and selection_sort are generated in a fraction of a second by the standalone VC generator. These are sent to the Why3 tool, and they are proved automatically, again in a fraction of a second, by a combination of SMT solvers (i.e. after splitting these formulas, which are conjunctions, into parts [START_REF] Bobot | Why3: Shepherd your herd of provers[END_REF]).

Conclusions

We formalised a core language for deductive verification of imperative programs. Its operational semantics is defined co-inductively to support possibly non-terminating functions. The annotations are taken into account in the semantics so that validity of a program with respect to its annotations is by definition the progress of its execution. We used an original formalisation of binders so that only well-typed programs can be considered, allowing us to simplify the rest of the formalisation. Weakest precondition calculus is defined by structural recursion, even in presence of mutually recursive functions, assuming the given function contracts. Even if there is an apparent cyclic reasoning, this approach is proved sound by a co-inductive proof. By additionally formalising an abstract syntax for terms and formulas, and relating their semantics with respect to the Coq propositions, we defined a concrete variant of the WP calculus which can be extracted to OCaml code, thus obtaining a trustable and executable VC generator close to Why or Boogie.

In the following chapters we show the certification of the remaining part of a complete chain from ACSL-annotated C programs to proof obligations. Just like the front end described above we will generate Whycert programs but starting from annotated Clight programs. The next chapter starts by formally specifying the semantics of ACSL expressions and ACSL annotated Clight programs.

Chapter 4

Formalisation of C and ACSL

The purpose of this chapter is to formally specify the abstract syntax and the semantics of ACSL terms and propositions and to integrate them into some semantics of Compcert's Clight.

Section 4.1 formalises the ACSL language. One of the characteristics of ACSL is that every logical function, including access to memory, is total, but not necessarily fully specified. Thus in ACSL every well-typed term and predicate has a semantics [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language, version 1.4[END_REF]. We propose a formalisation of such under-specified functions in Coq. We formalise a type system for the ACSL logical language and define a total semantics for well-typed formulas.

Section 4.2 adds ACSL annotations to the Clight abstract syntax and its big-step semantics, in a blocking style as in the previous chapter.

ACSL

ACSL is informally presented in Section 2.3.

ACSL Types

ACSL types are either C types or the mathematical types integer, real and boolean or arrays. Unlike arrays at the level of C types, which in the Compcert C formalisation necessarily carry their size (constructor Tarray ), ACSL array types (constructor Larray ) represent arrays of any size. In ACSL this is different from a pointer type, because arrays exist also as right values. Furthermore, ACSL arrays can contain any type of elements, even logic types. Not treated are structures containing logical elements. 1 In the following variables denoted cty and ty will implicitly have type ctype and type , respectively. As a difference to the concrete syntax, we distinguish between logic variables and program variables. Logic variables are introduced by quantification or local \let blocks. In function contracts, the functions' formal parameters are considered as logic variables, too. Program variables lie in the C memory and will be evaluated by accessing their address in the memory. For program variables their type has to be given in the abstract syntax. This is to simplify the typing rules so they don't have to depend on the C environment. In both cases variable identifiers are Compcert identifiers. Another difference to the concrete syntax is the lack of array and structure initialisers. They can still be expressed by successive functional updates starting from an empty array or structure, i.e. an array, structure in which every element, field is uninitialised. The most important feature not yet formalised is user-defined logic functions and predicates. 

Typing

This section formalises the typing of ACSL terms and predicates. In this formalisation, we tried to stay as close as possible to the requirements informally described in the reference manual. The typing is very important, as it will guide the denotational semantics of ACSL terms and predicates. More precisely, their evaluation will be defined by recursion over the typing rules.

The typing rules shown in Figs. 4.3 to 4.5 state which terms are well typed under a given typing environment te , attributing them a type ty and a boolean lr , indicating whether the term is a valid left value. We use the notations te l t : ty and te r t : ty to state that term t is well typed with type ty as a left value or, respectively, a right value, as well as the notation te (lr) t : ty stating that t is a left or a right value, depending on the value of lr .

A value "lies in the C memory", according to the notion used in the reference manual, if it is a valid left value after these rules. A left value can be used as a right value in any context (rule term_typed_lval ) or under the Tat operator to access a previous, labelled state (rule term_typed_at ). Additionally, its address can be taken (rule term_typed_addrof ).

Examples of left values are occurrences of program variables and pointer dereferenciations. An access to an element of an array or to the field of a structure also is a left value if the base array or structure is a left value. Notice that in addition to pointers we also allow to dereference terms of an array type, as long as the array lies in the C memory, i.e. is a left value (rule term_typed_deref ). This is formalised using the following predicate. Typing environments are finite maps from identifiers to types which contain all the logical variables defined in the current scope (rule term_typed_var ). They are enriched at local definitions or quantifications (rule term_typed_let ). The typing environment does not contain information about C program variables. Indeed, occurrences of program variables and labels are not checked for being declared in the current skope by the typing rules (rules term_typed_progvar and term_typed_at ). This design choice concerning the difference in treatment of logical and program variables is motivated by the different semantics of logical variables with respect to program variables. The former denote some value kept in a logical, type-safe environment that is enriched by local \let blocks and \forall quantifications, whereas the latter denote a memory access, which can fail in some circumstances even if the variable is declared. The evaluation function of ACSL terms which specifies the semantics of ACSL (Section 4.1.4) would thus have to handle the failure case even if had a typing environment for program variables and labels at its disposal. On the contrary not having to consider such a Inductive term_typed (te: tenv) : term → bool → type → Type := | term_typed_lval t ty: te l t : ty ---------------te r t : ty | term_typed_at l t ty: te l t : ty - ----------------------te r Tat l t : ty | term_typed_addrof t cty: te l t : cty - ------------------------------------ -----------------------------------------------te l Tunop Uderef t : cty

Inductive

| term_typed_progvar i cty: te.[i] = None -----------------------------
te l Tprgvar i cty : cty | term_typed_var i ty: te.

[i] = Some ty - --------------------te r Tvar i : ty | term_typed_let i t1 ty1 t2 ty2: te r t1 : ty1 • te.[i <-ty1] r t2 : ty2 ------------------------------------------------te r Tlet i t1 t2 : ty2

| term_typed_promote t ty1 ty2: te r t : ty1 • subtype * ty1 ty2 ---------------------------------------te r t : ty2

| term_typed_cast t ty1 ty2: te r t : ty1 • explicit_cast ty1 ty2 ------------------------------------------- --------------------------------------------------------te (lr2) Tcast ty2 t : ty2 ------------------------------------------- -------------------------------------- -------------------------------------------- -----------------------------------------------op ∈ [ Bplus; Bminus ] → te r Tbinop op t1 t2 : Tpointer cty | term_typed_unop_integer op t: te r t : Linteger -------------------------------op ∈ [ Uplus; Uminus; Ubw_compl ] → te r Tunop op t : Linteger | term_typed_unop_real op t: te r t : Lreal ----------------------------op ∈ [ Uplus; Uminus ] → te r Tunop op t : Lreal | term_typed_unop_boolean op t: te r t : Lboolean ------------------------------op ∈ [ Uneg ] → te r Tunop op t : Lboolean | term_typed_relop op t1 t2 ty: te r t1 : ty • te r t2 : ty ---------------------------------- -------------------------------------------------------te r Tcomp op t1 t2 : Lboolean | term_typed_condition t0 t1 t2 ty: te r t0 : Lboolean • te r t1 : ty • te r t2 : ty -----------------------------------------------------------te r Tcondition t0 t1 t2 : ty ---------------------------------------------te l Tarray_access ta ti : cty | term_typed_array_access_r ta ti ty: te r ta : Larray ty • te r ti : Linteger ------------------------------------------------- ---------------------------------------------te (lr) Tfield_access t fi : cty | term_typed_array_update ta ti tx ty: te r ta : Larray ty • te r ti : Linteger • te r tx : ty ------------------------------------------------- -------------------------------------------------te r Tstruct_update ts fi tx : Tstruct si fld | term_typed_empty_array ty tl: te r tl : Linteger --------------------------------------- --------------------------------------------- ------------------------------te r Tintconst z : Linteger | term_typed_real r : ø - --------------------------- --------------------------------- ------------------------------te r Tnull : Tpointer Tvoid where "te ( lr ) t : ty" := (@term_typed te t lr ty) and "te r t : ty" := (@term_typed te t false ty) and "te l t : ty" := (@term_typed te t true ty). In ACSL logical expressions we want arithmetic operations to have exact semantics. In the logical expression i + * p the value of the C variable i and the value loaded from memory * p need to be promoted to mathematical integers or reals. The rules for arithmetic operations and comparisons (all shown in Fig. 4.4) therefore require the operands to have mathematical types. Promotions are formalised as coercive subtyping: a term with type ty can be typed ty' if ty is a subtype of ty' (rule term_typed_promote ). The subtype relation (Fig. 4.6) formalises the subtyping as described by the informal specification: machine integrals are subtypes of integer which itself is subtype of real but also of boolean . Floating point types are subtypes of real . Furthermore subtyping recursively applies to elements inside arrays. Notice that subtyping is considered up to transitivity; subtype therefore does not need to contain the transitive cases. Also notice that there is no implicit promotion between arrays and pointers. We just allow pointer arithmetic and dereferences for left-valued arrays, as explained above.

Similarly the predicate explicit_cast relates any two types ty1 and ty2 such that a term of type ty1 can be explicitly cast to type ty2 (rule term_typed_cast ). Also this relation is recursive to allow casts between array types if the element types are castable to each other. Note that there can be a sequence of implicit promotions before an explicit cast, so the relation does not contain all the possible cases. Also note that any type can of course be cast to itself, which justifies the base case of the relation. Casts between structure types, which are supposed to be applied recursively based on the order of their fields, are currently not supported. Also, we omit support for casts between integers and pointers, for reasons explained in Section 4.1.4.

All these casts are intended to convert right values and correspond to actual transformations of the representation of the value. A second class of casts are pointer casts (rule term_typed_cast_pointer ) which are neutral in representation. In addition to casts between two pointers of different types, in ACSL we want to allow casting pointers to aggregate types and back if the array or structure lies in C memory, i.e. is a left value. A term of type ty1 , that is a left value or not depending on lr1 , may thus be cast to type ty2 such that the resulting term is a left or right value depending on lr2 , if both pairs respect the following predicate. A last set of rules concern access to structure fields and array elements. As anticipated above arrays and structures are values in ACSL and an access a[i] or s.f act as accessing the required element of the aggregate value. But if the original array a or structure s is a left value then so is a[i] , respectively s.f .

Definition

For arrays, in addition to the straightforward rule term_typed_array_access_r we thus also have the extra rule term_typed_array_access_l for the latter case because a[i] is well typed also if a is a pointer. Concerning structures, rule term_typed_field handles both cases, stating that the type of a field access is computed by the following function.

Definition unrolled_field_type fi si fld : option ctype := field_type fi (unroll_composite_fields si (Tstruct si fld) fld).

The remaining rules are straightforward, as well as the typing rules for ACSL predicates shown in Fig. 4.7.

Typing Ambiguities

A weakness of these typing rules is that they are ambiguous: the same term can be typed by different typing derivations. This is essentially due to the flexibility introduced by implicit promotions, but also it is not determined by the rules when to apply the term_typed_lval rule to get a right value from a left value.

Examples are (with i integer and a array):

1. i1 + i2 implicit conversion of i1 and i2 to real and then real addition or direct integer addition 2. (int) i1 implicit conversion to boolean before cast from boolean to int or direct cast from integer to int 3. a.

[i] array access on the left value of a or lval to get the right value of a and the array access on the logical array This issue is particularly problematic if the different derivations lead to different semantical evaluations, which is the case in example 2. So it is up to the typing algorithm to "do the right thing", that is to respect certain conventions like not applying unnecessary promotions and applying the lval -rule as late as possible. An interesting property that remains to be proved is that the typing rules are non ambiguous up to the same height of derivations.

Typing Algorithm

Given an ACSL expression in abstract syntax possibly constructed by a Frama-C plugin we need to make sure it is well typed according to the present typing rules. We thus define a Coq function type_term that given an ACSL term t and a typing environment for the logical variables te returns a type ty and a derivation of the typing rules proving that t is well-typed ----------------te Pfalse

| pred_typed_true : ø - ----------------te Ptrue | pred_typed_not p: te p - --------------te Pnot p

| pred_typed_relop op t1 t2 ty: te r t1 : ty • te r t2 : ty - --------------------------------- ------------------------------------------------------ --------------------- --------------------- -----------------------------------te Plet i t p

where "e x" := (pred_typed e x). That is right ty creates an existential triple, such that the third component of type te r t : ty must be inferred by Coq; similarly for left ty . These notations allows us specifying only how a given term should be typed with Coq automatically constructing the appropriate typing derivation. In most cases Coq would be able to infer the type automatically, too. For the above considerations it is however better to keep the control. The case of arithmetic operations suggests that subtyping must be decidable: we use the infix notation ty1 ≤ ty2 for a function that returns true if subtype * ty1 ty2 is valid. Fig. 4.9 shows the way we define that function. By the use of tactics we define a first function get_subtype_scalar which returns a proof of subtype * ty1 ty2 if eauto can find it automatically, which is the case if ty1 and ty2 are scalar types, None otherwise. This function is called from is_subtype , a boolean function that is proved correct separately. Besides being correct, is_subtype should also be transitively complete, i.e. if ty1 is a subtype of ty2 , then it should return true . This is important because it would lead to hardto-debug typing errors if there were some tya , subtype of some tyb , itself subtype of some tyc , such that is_subtype tya tyc = false . Notice that we would have had to prove transitive completeness even if we had wanted to include the transitive cases directly inside the relation subtype .

A second case where subtyping comes into play is the ternary condition t ? t1 : t2 , but also in comparisons < , <= , == , etc. Here we need to unify the types of t1 and t2 by finding their least upper bound in the subtyping hierarchy. As shown in Fig. 4.10 an upper bound of ty1 and ty2 is a type ty' such that both ty1 and ty2 are subtypes. Just as for the decisional function for subtyping, we define a first function to find an such an upper bound of two types by the use of tactics. Setting ty' to an existential variable, the eauto tactic tries to find two appropriate subtyping derivations. As a side effect, the existential variable is instantiated to the actual upper bound. Since eauto performs a breadth-first search the found upper bound happens to be minimal, i.e. the least upper bound (cf. get_ub_minimal ). In order to handle array types, we then define the main function get_ub , which if get_ub_scalar fails tries to unify the two given types as arrays. Notice that here we need to duplicate some code to satisfy Coq's structural-decrease condition. The following, more direct definition is invalid: In the case where ty1 is a Tarray ty1' and ty2 is a Tarray ty2' , the function would call itself recursively with the arguments ty1' and ty2' which both have the type ctype and As for is_subtype we prove that get_ub is complete, but also that the returned upper bound is minimal. This ensures that the typing algorithm does not introduce unnecessary implicit promotions when calling unify to handle ternary conditions or comparisons.

Similarly implicit promotions may be necessary to type explicit casts. The term (ty2) t is well typed if t has type ty1 which is a subtype of some ty' such that there is an explicit cast from ty' to ty2 : We have to be able to infer this ty' , so we define a helper function similar to get_ub Definition get_explicit_cast ty1 ty2 : option (indirect_explicit_cast ty1 ty2).

Its definition is similar to the one of get_ub and similarly we prove that it is complete and minimal. We use this function in the following way, additionally checking if it is a pointer cast: This concludes the presentation of the typing algorithm for ACSL terms. ACSL predicates are typed in a similar way:

Program Fixpoint type_pred te p : option (te p) := match p with ... end.

Semantics of Terms and Predicates

ACSL semantics is informally specified in the reference manual. Some important semantical guidelines for formal semantics are however given in this document. First, all the functions used in logical terms shall be total. Even naturally partial functions, like arithmetic division, shall never be undefined. Every function must return an output value for every input, even if the output can be unspecified for some input. These functions are called underspecified. Typically, the only thing one knows about an unspecified value is that it is equal to itself. For instance the ACSL predicate x/0 = x/0 is valid for every x, but cannot say anything about 5/0 = 4/0. Other examples for partial functions are operations involving memory, like pointer dereference or pointer comparison.

Underspecified total functions in Coq

The semantics of ACSL logic expressions is supposed to be based on mathematical first-order logic. A natural way to formally specify the semantics of terms is by mapping them to the firstorder fragment of the logic of Coq. To this purpose we want to map arithmetic operations and functions and predicates concerning the memory with their Coq implementations in ZArith and Compcert. But in Coq there is no such thing as an underspecified function. A Coq function with the type Z → Z → Z , like for instance ZOdiv , returns a well specified integer for every combination of arguments. If this function implements some mathematical operation that is not defined for some particular input, like division, then this means that it returns just some default value for such an input. In the case of the division, the Coq function Zdiv returns 0 for every 0 divisor. Thus the Coq proposition ZOdiv 4 0 = ZOdiv 5 0 is valid. This cannot be the semantics of the division operator in ACSL.

Similarly many functions implementing operations on the memory model are not total functions. Their result type is often an option type to model failure of this operation. For the sake of example consider a Coq function mem_load_int : mem → pointer → option int which given the current state and a pointer returns the integer read in the pointed memory cell, if the pointer is valid and we have the permission for a read access in that cell. This may be the semantics of a pointer dereference in the case of an int pointer, but we need a total function that returns some value even if we cannot read one using the given pointer. To this purpose we could define Definition mem_load_int_complete m p := match mem_load_int m p with | Some i ⇒ i | None ⇒ Int.zero end.

But just as for ZOdiv we would have that mem_load_int_complete m p1 = mem_load int_complete m p2 for each p1 , p2 invalid in m and we don't want this for ACSL. Instead, to get as close as possible to the concept of underspecified functions, we use the Coq mechanisms of subset types and opaque definitions. A subset type { x:A | P x } , denotes the subset of elements of the type A that satisfy the predicate P . It is used to specify properties about the result of a function inside its type. The ' notation is available for the projection from such a subset type to the full type of elements A . On the other hand, opaque definitions are mostly used for proofs of theorems, where the actual implementation of the type does not matter. In Coq an opaquely defined reference is not reducible and cannot be proved equal to its definition. With these ingredients we can define the following:

Definition mem_load_int_spec m p : { i : int | forall i', mem_load_int m p = Some i' → i = i' }. Proof.
exists (match mem_load_int m p with | Some i ⇒ i | None ⇒ Int.zero end). destruct (mem_load_int m p); inversion 1; auto. Save.

Definition mem_load_int_complete m p := ' (mem_load_int_spec m p).

Having terminated the definition of mem_load_int_spec with Save , its definition is opaque and everything we will ever know about its result is the specification in its type. Hence, the obtained function has exactly the property we want: if mem_load_int m p returns some well defined value, then mem_load_int_complete m p is provably equal to that value. On the other hand, if mem_load_int m p is None then we cannot say anything about the result. In particular we cannot prove it equal to Int.zero .

We can generalise this approach to all partial functions whose return type is inhabited. Using type classes we can declare the needed default value once and for all for any needed type. The Program mechanism simplifies the definition by finding the required proof automatically. 

Denotational semantics

We are now ready to formally specify the semantics of ACSL terms and predicates, that is their denotation in the logic of Coq. As ACSL terms are multi-sorted, we start by giving the semantics of C types and ACSL types as Coq types (Fig. 4.12). The semantics of a type establish the semantical representations of a value of that type. It should precisely define the range of values that an term of a given type can assume.

For instance a term of type signed int32 should assume no other values than integers of the range [-2 31 ...2 31 -1] and term of type char , integers of the range [0..255]. We thus use bounded integers as type for machine integers to precisely capture the limits in their size. The bounds of the integer they can hold are calculated in function of a given intsize and signedness . For floats we use their axiomatisation of Compcert. Pointers are represented by the address type, which is a pair of a block and an offset, just like in Compcert. As in Compcert a valid pointer can never have its block equal to zero, we decide that such an address with adr_block = 0 represents a pointer that has been casted from an integer, e.g. the null pointer is represented by as mk_address 0 Int.zero . Values of type array are essentially mappings from integers to elements, but we also keep the size indicated at creation of the array. Structures and unions are mappings from field names to elements. Precisely their semantical Definition den_lrtype lr ty := if lr then address else den_type ty.

The denotational semantics are then defined as a fixed point over the well-typing relation:

Fixpoint evalterm te (G_e: Env te) t lr ty (tty: term_typed te t lr ty) : den_lrtype lr ty := match tty in term_typed _ t lr ty return den_lrtype lr ty with | ... end.

Inside the match the return type den_lrtype lr ty simplifies to whatever type is required as a result for the logic term in question and we can concisely express its denotation without worrying about typing issues in most cases. The whole definition of evalterm is shown in Figs. [START_REF] Barnett | The Spec# Programming System: An Overview[END_REF].13 and 4.14. It depends on a given evaluation environment G_e which assigns a value to each logic variable declared in the typing environment te and which is updated in case of a local definition ( \let x = t1; t2 ). Additionally, the semantics is defined under the current memory state m , the set of previous, labelled memory states lm and the global and current local C environments cge and ce which contain the memory allocations of the global and local C variables, respectively.

These environments and the memory model are the same used in the specification of the standard Clight semantics. We just add the finite map from labels to memory states lm for the semantics of logical expressions referring to previous states. When evaluating a post-condition lm will contain a binding for the label \old . Inside the body of a function it is possible to enrich lm with user-defined labels which can then be referred to in any assertion or loop annotation inside its scope.

In the definition of the semantics we use the Program environment to automatically resolve the contradictions, indicated by a ! , due to cases of inner matches that can be excluded by typing.

Most of the functions referred to in these semantics are taken from the Coq standard library or obvious variations. Notably exceptions are the functions interfacing with the Compcert memory model accs_progvar and logic_load . The former looks up the given identifier in the local and then in the global C evaluation environment and checks if the given type coincides with the one registered for that identifier: It is, appropriately completed to a total function, the semantics of a program variable occurrence term_typed_progvar which, being a left value, is just a memory address. Note that also a pointer dereference just evaluates to the pointer's address as a left value. The actual right value is then read from memory when needed (typing rule term_typed_lval ).

The definition of logic_load is a bit more involved. Given a memory m , an address a and a type ty , which might be an aggregate type, it should return the value of type den_type ty that resides in m at address a . It should refer to Compcert's Csem.load_value_of_type That is a sum type that represents any kind of basic value. The result of a load is thus potentially in no relation with the requested type. As we want the above described constraints to hold about values denoting ACSL terms, we need to check them on such low-level values returned by load_value_of_type . We therefore define a function from these untyped basic values, to dependently typed values of the desired type: where bZ_of_int is a partial function returning the integer that is represented by a given machine integer if it respects the bounds. type_val will be used in the following everywhere we need to relate Compcert output values with well-typed logical values.

The formal semantics of a logical memory access is given in Fig. 4.15. We first define a csimple_load which reads one basic value from memory and is used inside clogic_load which collects aggregate values from memory. To finally define logic_load , which is supposed to handle any ACSL type, we need to restrict them to types actually being able to reside in memory, that is C types or logic arrays of C types. This is the purpose of the predicate Valid_left_type , which is true for types of terms well-typed as left values:

Remark term_ltyped_valid te t ty: te l t : ty → Valid_left_type ty.

This concludes the specification of denotational semantics of ACSL terms. The semantics of ACSL predicates are specified in Fig. 4.16. It gives the denotation of an ACSL predicate as a Coq predicate referring to the semantics of terms when needed. For instance the semantics of an universal quantification in ACSL over a given identifier is a universal quantification in Coq over a value of the given type which is assigned to the identifier in the evaluation environment for the sub term.

To be integrated into Clight whose semantics are given for the untyped abstract syntax we say that an untyped ACSL predicate is valid for a given logical typing environment te and an appropriate logical evaluation environment G_e , if it is well-typed under te and it evaluates to a valid Coq predicate G_e . 

Formalisation of Annotated Clight

The purpose of this section is to formalise the abstract syntax and semantics of ACSLannotated Clight. It will be the front end of our certified tool chain as annotated Clight will be directly generated by a Frama-C plugin. Clight is a simplified C with only pure expressions and used to be the front end of the certified part of the Compcert compiler before the introduction of Compcert C. 

Abstract Syntax

We extend the abstract syntax of Clight statements with assertions and loop invariants. Clight function definitions are extended with function contracts. The resulting abstract syntax is shown in Fig. 4.17. The only changes with respect to Clight are Sassert , which is new, and the looping statements Swhile , Sdowhile and Sfor' , where we add a predicate for a loop invariant and an optional list of logic terms representing the loop assigns clause, that is a list of left values that may be modified inside the loop.

Function contracts are represented by a pre-and a post-condition predicate and the names of the \old label and the \result variable to be referred to in the post-condition. Additionally, a function contract can have an assigns clause, similarly to loop invariants.

Semantics

The semantics of annotated Clight is given in a blocking big-step style. During execution, every encountered annotation must be valid in the current state, otherwise the execution blocks. The concerned rules are shown in Figs. 4.18 and 4.19. The only rule that allows executing an assertion exec_Sassert requires the asserted predicate to be valid. Similarly, the loop invariants need to be valid at every loop iteration. The loop assigns clause is currently not considered in the semantics. Its purpose is to strengthen the loop invariant for the WP calculus as explained in the next chapter. It would however be better to clearly specify the semantics of the loop assigns clause.

Intuitively the given list of left values should determine the set of memory locations that are allowed to be modified by an iteration of the loop. The difficulty comes from the fact that the evaluation of the given terms could change between two iterations. Consider for instance a loop assigns clause containing p and * p . As p may be modified, * p denotes a different memory location at each iteration. So the set of memory locations to be modified by the loop should be the evaluation of the list of left values before the first loop iteration. This is not trivial to express in the semantics of statements as at a generic loop iteration, the memory state before the first iteration is not available anymore.

The simplest solution is probably to consider a loop assigns clause as syntactic sugar for an enriched loop invariant referring to a label that is an implicitly introduced in front of the whole loop. This could be achieved by adding a semantical rule for while loops with an assigns clause, that declares the label and integrates the clause into the loop invariant using some built-in predicate Ppreserve : For the execution of a function call to be successful, the pre-condition must be valid in the pre-state, that is before the local variables are allocated on the stack, and the post-condition must be valid in the post-state, that is after the local variables are freed. Note that the formal parameters are considered as logic variables in the function contract. This avoids the need to specify that they should refer to their values interpreted in the pre-state as in the reference manual. On the contrary inside the function's body the formal parameters are considered program variables to their full effect.

With these semantics if a program succeeds to execute without blocking then it is guaranteed to respect all of its annotations and notably its function contracts.

Another change with respect to the semantics of Clight is the additional parameter of type lmem , that is a finite map from identifiers to memory states. When executing a labelled statement, the current memory state is added to the map with the name of the label (rule exec_Slabel ). Annotations under the label can refer to that memory state using this name.

Annotated C programs in the Compcert Chain

A first simple but important property we prove about our annotated Clight is that if we erase all annotations from a program to obtain a standard Clight program, then the semantics are preserved. Erasure of annotations is defined by an obvious recursion over statements. The only particularity is that we also erase labels: a statement node Slabel l s simply becomes s . This is necessary because the standard Clight semantics don't handle labels as usually their only purpose is to act as entry points for goto jumps which are not supported by big-step semantics. Proof. This is the theorem erase_program_terminates of our Coq development. The proof proceeds by induction over the derivation of the semantics of statements and function calls. This theorem chains up with the preservation properties of the Compcert compiler and guarantees that if we compile an annotated Clight program after having erased the annotations, then the compiled assembler program has the same semantics and therefore respects the annotations.

Conclusions

We have formalised the ACSL logic language as informally specified in the reference manual and we integrated it in form of code annotations into the Clight language and its big-step operational semantics to obtain formal semantics for ACSL annotated normalised C programs as produced by the FramaC parser.

As requested by the informal specification, we cover array types with logical elements, which are currently missing in the Frama-C implementation. Their formalisation require the duplication of the array type but thanks to its integration into the subtyping system, this does not lead to too many difficulties.

We contribute a concise formalisation of formal parameters inside function contracts, which were not well specified.

Chapter 5

Development of a Certified Verifier for C+ACSL

The purpose of this chapter is to define a certified compilation from ACSL annotated C programs to Whycert programs. Section 5.1 instantiates Whycert by a particular logical context suitable for compilation of annotated Clight: it defines the set of "objects" on which C programs operate, notably machine integers and memory heap. Section 5.2 presents the compilation of basic entities that are variables and labels shared between the compilation of terms and expressions. Section 5.3 presents the compilation of terms and predicates and Section 5.4 presents the compilation of expressions. Section 5.5 presents the compilation of statements and functions, then states and proves the main result of this chapter, i.e. the soundness of the verification condition generation for annotated Clight programs. Section 5.6 explains how we extract a Frama-C plugin independent from Coq and presents some representative examples. Section 5.7 discusses about some choices made and difficulties encountered during this development.

A Whycert Logical Context for Annotated C Programs

Whycert as defined in Chapter 3 is very generic. It depends on a logical context containing the abstract types and abstract symbols which are the atoms of the language. We thus begin by instantiating Whycert to the target language of our compilation of C.

Types and Symbols

As described in Section 3.2, Whycert types are second order types depending on a user defined set of first order types utype : Infix "-->" := Tarrow.

For our compilation of C programs we instantiate utype as follows That is types used in logical symbols can be any ACSL type, including C types, with the addition of types for the C memory, C temporary variable mappings, lists of integers and identifiers. The constructors Tatype and Tuser are declared as coercions so that we can omit them and write an ACSL type in any context a Why type is expected.

In the same way it is generic over types, Whycert is generic over a set of abstract symbols. The symbols needed for the compilation of C programs are shown in Fig. 5.2 with auxiliary constants in Fig. 5.1. They include propositional operators, constants, integer arithmetic and symbols for the memory model.

Notice that some symbols like SymEq or SymLoad depend on a type. They can be used like polymorphic symbols but as Whycert doesn't have any abstract syntax for type variables they can be used only instantiated. Unlike with fully polymorphic symbols, we can specify over which subclass of types such a symbol is polymorphic, i.e. SymLoad is polymorphic over C-types and SymCmp over comparable types.

In Coq subtyping is formalised with coercions. An important subtype is mtype , that is C types of values that can be written to memory: Being as coercion we can usually omit ctype_of_mtype and directly use a mtype in every context a ctype is expected. In the following we will use mty and cty variables to bind values of type mtype and ctype , respectively.

Implicit Type mty : mtype. Implicit Type cty : ctype.

Interpretation of Types and Symbols

The verification condition generator has been proved correct for any interpretation of these abstract types. It is however required to provide one, as the semantics of the language depends on the semantics of the types and symbols. The semantics of Whycert types are expressed in terms of Coq types: Here Clight.temp_env , Mem.mem and ident are Compcert types respectively for temporary variable mappings, memory states and identifiers.

In the following we will consider dentype instantiated with denutype .

Notation dentype := (dentype denutype).

The semantics of symbols are given as Coq terms whose type depend on the symbol's type. Figure 5.3 shows only some examples of how symbols are mapped to Coq terms in a natural way thanks to the dependent typing. The semantics of the remaining symbols will be shown when needed in the following sections. Notice here the use of our complete operators to give semantics to logical symbols that naturally wouldn't be defined for all inputs. Concerning the memory model, whereas clogic_load is defined in order to recursively load aggregate types (Fig. 4.15), we define simple_store as a simple operation only for basic types, referring to the implementation of Compcert's front end formalisation Csem.store_value_of_type . This requires to make a basic val of our dependently typed values, that is the converse of what does type_val (defined on page 76):

Lemma type_val_untype mty (x: den_ctype mty) : type_val mty (val_untype x) = Some x.

Lemma untype_val_type cty v x: type_val cty v = Some x → val_untype x = v.

Notice that the first one is valid only for mty : mtype . The interpretation of the symbols concerning permissions SymValidStore and SymMemPreservePermissions directly interface with the Compcert memory model, which provides a detailed formalisation of permissions. We just add some information about validity of the offset. On the other hand, for SymValidLoad we chose a stronger interpretation which doesn't only state that loading from at given address is permitted but also guarantees that the given address is correctly initialised. However, this predicate is currently only useful for basic types, support for aggregate types should be implemented in the future.

Axioms

The sense of giving the semantics for types and symbols is twofold. First, they influence the semantics of the whole language, which must be preserved by the compilation from C + ACSL using these symbols. But second, they justify the axiomatisation we define to accompany the proof obligations sent to external provers in order to allow them to reason about the symbols that are completely abstract for them. More precisely we distinguish two classes of symbols: symbols that are built-in the external provers, like the propositional combinators and the arithmetical constants and operators, and symbols that are abstract for them. The first class is more critical because we need to trust the fact that the external provers interpret the symbols the same way. For the second class we can state and prove inside Coq that the "axioms" that are sent to the provers are effectively valid.

As an example for such an axiom consider the following property:

Lemma load_store_eq mty m a (x: den_ctype mty): m_valid_store m mty a → clogic_load mty a (simple_store m a x) = x. This is proven in Coq and ensures that if we have the right to store a value of a given memory type at a given address, then we can read back the stored value at that address. This lemma can be expressed in abstract syntax as a Whycert term: This term can be extracted out of Coq and sent to external provers to be used as an axiom, as we have the proof that it is valid:

Goal forall S mty, evalterm (axiom_load_store_eq mty) [] [] S. Proof. intro. exact load_store_eq. Qed.

Notice that this axiom is valid for any mty . To be sent to external provers it needs to be instantiated to a closed term once for each type the prover will need to reason about, which is at ExcBreak and ExcContinue don't need to carry a value, so its type is Tunit . ExcReturn carries a value of any type, which may also be Tunit .

Abstract Program Parameters

A last generic feature of Whycert is abstract parameters. By declaring a set of parameters along with their specification, including pre-and post-condition and effects, and their interpretation, we can use them inside expressions applying them to some arguments. The WP calculus then simply replaces them with their specification. For the moment, we don't make a very extensive use of parameters, we only use them for integer casts and memory allocations (Fig. 5.4). In the future they could however be used to model external functions like system calls. The parameter PAR_degrade_int takes as argument a logical integer and returns a machine integer of the given size. More precisely it is a family of parameters, one for each intsize and signedness . Its specification says that if the argument respects the bounds of the machine integer type, then the result is, promoted to a logical integer, equal to the argument. In Why3 concrete syntax this abstract parameter (instantiated for signed 32-bit integers) would be declared as

degrade_int_32_signed (i: integer) : { -2^31 ≤ i < 2^31 } int32 { result = conv_int32_integer i }
Notice that this parameter is similar to the logical conversion symbol conv_integer_int . Using the abstract parameter has the advantage of producing convenient proof obligations.

The other family of parameters PAR_mem_alloc , one for each C type, modifies the memory and returns a pointer to the newly allocated block. Its post-condition contains all the properties of Compcert's memory model we need to reason about the new block as explained in Section 5.6.3. In any case, Coq forces us to prove that the specification matches the implementation of the symbol. For PAR_mem_alloc we directly use the function of Compcert's memory model and to prove the specified properties we use the axiomatisation Compcert's memory model.

Compilation of Variables and Labels

To compile annotated Clight to Whycert we need to provide support for the leaves of the syntax tree, notably variables and labels. We have three different types of variables: global program variables, local function variables and, inside annotations, also logical variables.

Occurrences of global variables are simply mapped to symbols SymCGlobal which carry the identifier and the type of the variable. This symbol represents the pointer to the memory block that will be allocated for that global variable. Notice that at time of compilation we do not assume that the Clight program is well typed so the compilation may fail on typing errors. For a global variable the compilation checks that the global environment of the C program cge contains a binding for that variable and that type. This global environment will be the same at execution time but can be computed statically and we suppose to know it during the compilation.

For the different kinds of local objects, namely local C variables, logical ACSL variables and labels, we use mappings to De-Bruijn indices, respectively cvarmap , lvarmap and labmap . Such mappings are constructed at the beginning of the compilation of C functions and are lifted as necessary while descending into the syntax tree. Recall that these De-Bruijn indices are typed. In particular, indices corresponding to local C variables have a pointer type, whereas indices for logical ACSL variables have the type of the value they represent in the current logical environment. These maps are constructed at the beginning of the compilation of a function, which simulates allocation and deallocation of local variables and formal parameters.

Relating C and Whycert environments

To prepare the proof of soundness of the compilation we define relations between C environments and the generated Whycert environments. These re-lations are hypotheses for the preservation of semantics by the compilation of ACSL expressions, C expressions and statements and are established by the compilation of functions.

Each of the above variable mappings relates several semantical objects of the source and the target of the compilation. These relations require some additional properties that need to be invariant during the compilation.

For C variables we need to be sure that the variable mapping contains the same entries as the current C environment and that the corresponding Whycert environment contains the correct pointer: Similarly for logical variables we require that the current logical environment is mapped to the corresponding Whycert environment:

Definition rel_Gs E te (lvm : lvarmap E te) (G : env E) (G_e : Env te) := forall (i : ident) (ty : atype) (e : (te.

[i] = Some ty)), accsvar (lvm i ty e) G = G_e i ty e.

This relation can be written more concisely than rel_Gce by taking advantage of the typing environment for logical environments. At last we require that the mapping for labels contains all and only the labels for that currently exists a labelled memory state: These relations are hypotheses for the preservation of semantics by the compilation of ACSL expressions, C expressions and statements and are established by the compilation of functions.

Compilation of Logical Expressions

Compilation of ACSL terms and predicates is defined by recursion over the respective typing rules. Recall that an ACSL term can be typed either as a left or as a right value. In the former case the term evaluates to a memory address from which the actual value can be loaded. In the compilation of terms we take over this idea: for a left-value input the type of the resulting Whycert term is a pointer type Tpointer cty , where cty is the type of the input term. Also recall that in some cases the typing rules allow logical arrays as left values. Such a term represents the address of the first element of the array, which is necessarily a C type. For convenience we define the argument of Tpointer as follows: The function compiling an ACSL term takes as arguments a mapping for logical variables lvm with respect a given Whycert typing environment E and a ACSL typing environment te , a mapping for C variables vm , a well typed ACSL term t of type aty which is either a left-value or a right-value depending on lr and its typing derivation tty . The return type of a compiled term of type aty is then Definition lr_type lr aty : atype := if lr then Tpointer (pt_type aty) else aty.

Fixpoint comp_acsl_term E te (lvm: lvarmap E te) (vm: cvarmap E) t lr aty (tty: term_typed te t lr aty) : option (term L E (lr_type lr aty)) := match tty with ... end.

A part of the compilation is shown in Fig. 5.5. Notice the way the De-Bruijn mappings are lifted when the compilation descends under a binder (case term_typed_let ). Also notice that in several cases ( deref , addrof and conversions between arrays and pointers) the compilation just returns the recursively computed term without adding anything, whereas in other cases ( cast_ptr_arr , promote_arr_arr ) some "identitary" pointer cast is needed to fix the typing of the generated terms. The definition of pr_type tries to minimise such casts. We could have avoided pointer casts altogether by using a common pointer type without parameter, but we think the type parameter could be helpful for SMT provers to automatically prove goals involving pointers by giving useful hints to which axiom to apply.

We prove that the semantics is preserved by this compilation. More precisely, we prove that Theorem 11 a compiled term evaluates, according to the semantics of Whycert, to the value to which evaluates the original term according to the semantics of ACSL terms.

A simple cast is needed to state the equality. Proof. by induction on the typing derivation and application of the hypotheses in the base cases. ACSL predicates are compiled similarly, by recursion on the typing rules and by referring to the compilation of terms where necessary.

Theorem 12 A compiled predicate is logically equivalent, according to the semantics of Whycert, to the original predicate according to the semantics of ACSL predicates.

Program Fixpoint comp_acsl_prop E te (lvm: lvarmap E te) (vm: cvarmap E) p (pty: pred_typed te p): option (prop L E) := match pty with | ... end.

Lemma comp_acsl_prop_correct:

forall te t (pty: pred_typed te t) E (lvm: lvarmap E te) (vm: cvarmap E) G (G_e: Env te): rel_lm_S SS lm lmp → rel_Gs lvm G G_e → rel_Gce ce vm G → forall wt, comp_acsl_prop cge lmp lvm vm pty = Some wt → (evalterm wt G SS S ↔ ClightACSLSemantics.evalpred cge ce cm lm G_e pty).

Compilation of Expressions

Compilation of Clight expressions is more involved than the compilation of logical expressions, as expressions may not execute safely, e.g. arithmetic overflow or invalid memory access may occur. These errors have to be excluded by appropriate assertions inserted into the compiled Whycert expressions. More precisely, given a Clight expression we want to generate a Whycert expression, such that if the latter executes to a value without blocking then the former can be evaluated to the same value without any errors. We thus need to rule out invalid memory accesses, arithmetic operations on invalid values and anything else that may go wrong at execution time. In addition we want to avoid arithmetic overflows, even if they wouldn't lead to execution errors, for the reason we detail below. 1 

Integer Arithmetic

C integer arithmetic has a semantics modulo the maximum representable integer, 2 32 in Compcert. This means that an operation, whose result wouldn't be representable as a machine integer, does not fail but silently return the result modulo 2 32 . The following examples leads to such overflows (with MAX_INT = 2 31 -1):

int a = MAX_INT; int b = a + 1; unsigned c = 1; unsigned d = c -2;
Here b and d do not contain the result of the logical operations a + 1 and c -2, respectively.

The situation is complicated by the fact that the semantics of integer operations depend on the types of the operands. More precisely, a combination of the types of the operands define how they are interpreted: if one of them has the type unsigned int (32-bits) then both are interpreted as unsigned. Consider the following example where the semantics is not as expected:

1. To be precise, only for the Compcert semantics, overflows do not lead to errors. The ANSI/ISO norm still considers overflowing arithmetic operations as "undefined" except for operands of type unsigned int Because of these subtleties in the evaluation of C arithmetic expressions, in a context of critical software, overflows are usually considered as errors. Thus a typical design choice of static analysers is to detect and signal possible overflows and we make the same choice in this development. More precisely we define the absence of overflow as the following property: the evaluation of an arithmetic expression must give the same result as if it was evaluated assuming exact arithmetic on Z.

We rule out overflows by inserting appropriate assertions into the compiled expressions. The compilation scheme for arithmetic expressions is shown in Fig. 5.6. Given an operator op and two compiled expressions e1 and e2 of integer types with size sz1 , sz2 and signedness sg1 , sg2 , respectively, the function Ezbop returns an expression that simulates the operation ensuring the absence of overflows. If one of the operands is an unsigned int then it checks that the other one is not less than zero. In case of a division it also checks that the divisor is not equal to zero. The operands are then promoted to logical integers and the operator to its mathematical counterpart. In order to convert the result back to a machine integer the parameter PAR_degrade_int checks that it respects the bounds of the return type. Notice that this return type needs to be specified: Ezbop returns an expression of type Tint sz sg for any given sz and sg . There is some flexibility in choosing them, in particular we don't want to force the return type to be equal to the type of the C expression to be compiled, e.g. In Compcert, there is no overflow in the example and even if the type of a + a is signed int , when it is used in contexts that expect an unsigned int we want to allow it to assume values of the whole range and avoid generating too restrictive proof obligations. C expressions are therefore compiled to Whycert expressions with information about the expected type.

The function comp_zbop (Fig. 5.7) compiles a binary integer Clight expression to a Whycert expression and is part of a generic compilation of C expressions comp_expr which it assumes to be recursively defined. These functions accepts the additional argument hint of type option mtype as an optional suggestion for the return type of corresponding Whycert expression, e.g. the type of the variable the original C expression is assigned to. comp_zbop adopts the suggestion if given for the case of binary integer expressions and computes a suggestion for the recursive compilation of sub-expressions.

Equivalence Relation and Compilation

In order to prepare the compilation of C to Whycert we start by relating a subset of Clight expressions with Whycert expressions that have the same semantics. Any C expression will then be compiled to a related Whycert expression. The relation, defined by the two mutually recursive inductives rel_expr and rel_lexpr is shown in Figs. 5.8 and 5.9. The latter relates a Clight l-value expression e with a Whycert expression of type Tpointer (typeof e) , whereas the former relates a Clight r-value expression e with a memory type mty and a Whycert expression of type mty , which is in general independent from the type of e .

Notice that, for the reasons above, Ebinop zbopc ce1 ce2 (Tint sz' sg') is in relation with the Whycert expression Ezbop zbopc sz sg e1 e2 for any sz and sg . The remaining cases of C expressions that we treat so far are simpler to compile than arithmetic expressions. Notice however that in some cases subtle conditions are imposed to the equivalence, for instance implicit typing of the variable mty ensures that the Clight expression for a temporary variable Etempvar i cty has a counterpart in Whycert only if the type of the variable cty ------------------------------------------------------------------- ------------------------------------------------------------------Econst_float f (Tfloat sz) =∼= r Eterm (Tsym (SymConstFloat sz f))

| relexpr_tempvar idt mty: ø - ------------------------------------------Etempvar idt mty =∼= r Eetempvar idt mty

| relexpr_addrof e we: e =∼= l we - ------------------------------------------ ------------------------------------------------------------------------------- -------------------------------------------------------------Ebinop Oadd ce1 ce2 (Tpointer cty) =∼= r Eptrarith e1 e2

| relexpr_lvalue e we mty (Heq:typeof e = mty): e =∼= l we - ------------------------------------------------------e =∼= r Eload (cast_eq Heq (T:=(Tpointer;exp)) we)

| relexpr_lvalue_arr e we cty l (Heq: typeof e = Tarray cty l) : e =∼= l we - --------------------------------------------------------------------------------e =∼= r Elet (cast_eq Heq (T:=(Tpointer;exp)) we) (Eterm (Tsymapp (conv_pointer_pointer (Tarray cty l) cty) (Tvar HI0)))

where "e =∼= r we" := (rel_expr (E:=_) _ e we) -------------------------------------- -------------------------------------------------------------------------Evar i gv.(gvar_info) =∼= l Eterm (Tsym (SymCGlobal i gv.(gvar_info)))

| rellexpr_deref e cty (we: exp (Mpointer cty)) : e =∼= r we - -------------------------------------------------------------------Ederef e cty =∼= l Elet we (Eassert ((TnotNullBlock (Tvar HI0))) (Eterm (Tvar HI0)))

| rellexpr_field e si fi fld we cty (Heq: typeof e = Tstruct si fld): e =∼= l we • unrolled_field_type fi si fld = Some cty - ----------------------------------------------------------------------------Efield e fi cty =∼= l Elet (cast_eq Heq (T:=(Tpointer;exp)) we) (Eterm (Tsymapp (SymField si fld cty fi) (Tvar HI0)))

where "e =∼= l we" := (@rel_lexpr _ _ e we). to prove the equivalence with its modulo-semantics.

This intermediate result guarantees us that the inserted assertions establish the sufficient conditions for the evaluation of the given C expression to succeed.

To actually compile C code we define a function that given a Clight expressions returns a Whycert expression that is in relation with it. This compilation function also needs to decide whether to compile the given Clight expression as a left value or as a right value. It therefore returns the following sum type:

Definition left_or_right_expr E e := (expr L E (Tpointer (typeof e))) + {mty : mtype & expr L E mty }.

Obviously we can turn a left value into a right value by loading it from memory, while the converse is not true. Not much more difficult but with two arguments is the compilation of C sequences s1; s2 which has its direct counterpart in Whycert:

Definition Esseq E ty1 ty2 (e1: expr E ty1) (e2: expr E ty2) := Eseq e1 e2.

To simulate the setting of a temporary Clight variable we assign an updated mapping to the reference for temporary variables. A Whycert assignment returns the assigned value and thus has the type of the assigned expression. As we want all compiled expressions to have type void , we use the Eignore operator to ignore the returned value:

Definition Eignore E ty (we: exp ty) : expr E Tvoid := Eseq we Esskip.

Definition Esset E mty idt (e: exp mty) : expr E Tvoid := Eignore (Elet e (Eassign Rtmp (Tsymapp (SymMapSet mty) (Tsym (SymIdent idt)) (Tderef (Rtmp)) (Tvar HI0)))).

The equivalent of Esset is (let v0 = e in tmp := mapset idt !tmp v0); skip

Similarly a C assignment becomes a Whycert assignment with an updated memory. However, here we need to make sure that the simulated C assignment does not fail at execution time, e.g. because of missing permissions. This is ensured by the abstract predicate SymValidStore . Also, as the C semantics provides for the assigned expressions to be casted to the type of the pointer, which is the type that will determine size of the memory chunk to be written, we want to make sure that this cast is neutral, i.e. that is does not change the value to be stored. We thus require the type of the assignment and the type of the assigned expression to be in the relation neutral_cast , which determines an expression that performs the necessary conversion, as formalised in Encast . which is equivalent in Why3 concrete syntax to able maps and establish all the hypotheses described at the beginning of this chapter (Section 5.2) which we made use of to prove the soundness of the compilation of logic expression and C expressions, namely rel_Gce and rel_Gs .

The following example illustrates the compilation scheme for C functions. Given is the following function with two parameters and two local variables: In the example this would be the following list:

[ C_pointer_array_int_5; C_pointer_float; C_pointer_pointer_int; C_pointer_int; C_int; C_pointer_int ]
The design choice of dependently typed expressions forces us to be this precise but it guarantees that every generated De-Bruijn index is correct by construction. Fig. 5.11 shows the definition of the helper functions needed for the compilation of function bodies. As explained above, we need to construct a nesting of let blocks, one for each local variable to be allocated (including formal parameters). This is the role of alloc_vars which, given an expression e , recursively constructs the blocks around e . Notice that for a list of variables el , e has type expr (mk_El el E) A , i.e. it is any expression that can refer to the allocated pointers that are bound by the let blocks.

The first thing we need to do with these pointers is binding the formal parameters. For each parameter we need to pick, using two De-Bruijn indices, its value and the pointer, that we just allocated for it, to store the former into the latter. Considering the list of parameters split into two parts, a reversed prefix pelr and a suffix pel , these indices refer to a typing environment defined by prefinal_E pelr pel vel , where vel is the list of local variables. The functions geti1 and geti2 respectively compute these two indices, as illustrated by the following graphic, where the red, big box represents the portion of typing environment corresponding to vel , the blue, medium box represents the portions of typing environment corresponding to pel and the green, smallest box represents the portions of typing environment corresponding to pelr : t * t prefinal_E pelr ((i,t)::pel) vel geti2 i t pelr pel vel geti1 i t pelr pel vel

The function bind_pars traverses the list of parameters and, starting from the current memory, stores each geti1 at the pointer geti2 to obtain a memory in which every parameter is bound to its memory block.

Eventually the function free_vars traverses the list of parameters and local variables to construct a sequence of memory updates representing the release of all allocated blocks. The respective De-Bruijn indices are computed by geti3 which given a list of variables and a reversed prefix, returns the index of the pointer to the allocated block at that position, similarly to geti2 but without discriminating between formal parameters and local variables, as all of them need to be freed. The implementations of geti1 , geti2 and geti3 are not shown in the figure as they are quite tedious and not very interesting, quite the contrary: as in general the types of the variables and parameters are all different from each other, there should be only one way to construct an index that respects the required type. 2This concludes the compilation scheme for function bodies, Ebody (Fig. 5.11), which given the C function in question cf and the compiled body of the function of type expr (body_E cf) cf.(fn_return) , i.e. able to refer to all the allocated pointers and whose type is the return type of cf . Notice that most of the statements are compiled to expressions of type Tvoid . The only statement compiled to a non-void expression is return e which is thus necessary and the end of a non-void function.

At last, to simulate a call to such a function, we must construct a list of terms for the arguments because Whycert supports only pure terms as function arguments. As the global reference Rtmp for the current temporary variables is shared and will be overwritten by the called function, we must also store its current contents in a local let and then restore it after the function call, possibly updated with the result of the function. For instance, the compilation of tmp1 = f(a, b, c) looks like this: To be able to define a convenient compilation scheme like for all the other statements, we use a supplementary data structure for the list of compiled argument expressions exprlist (see Fig. 5.12). It is essentially a heterogeneous list of expressions (heterogeneous with respect to types of the expressions), but where the typing environment of each expression contains the types of all the previous ones. This is to simplify the construction of the nesting of let-blocks as illustrated by the example. Another dependent data structure set_result cty oid indicates whether the result of the function of type cty should be set to an identifier Some id or not ( None ). In the first case, cty is constrained to be a memory type. Escall formally defines the compilation scheme for function calls, given a C function cf , a heterogeneous list of expressions whose types coincide with the types of the parameters of cf , a set_result to indicate whether to store the result respecting the return type of cf and the De-Bruijn index corresponding to cf in the list of functions of the program.

let ttmp = !

Compilation function and Proof Approach

Given all these compilation snippets we can define a structurally recursive function mapping Clight statements to Whycert expressions, say comp_stmt of type statement → option Why.expr . As we saw with the compilation of logical terms and Clight expressions, a next step is to prove that this function preserves the semantics of a given statement. Roughly, we need to prove that for every statement s that can be compiled to where we should not worry about the free variables, neither the non-terminating case at the moment. =⇒ (denoting Why.sem ) and exec_stmt are defined by the inference rules shown in Figs.

3.8 and 4.18, respectively.

In the previous proofs an induction over the syntactic structure produced for each syntactic case the inductive hypotheses that were needed to prove the correct evaluation in this case. Such proofs by structural induction were possible because the evaluation of expressions and logical terms is structural, i.e. the evaluation of any expression or term depends only on the evaluation of sub-expressions, respectively sub-terms. This is clearly not the case for the execution of C statements: the execution of a loop depends on the execution of the same loop if the side conditions are valid and the execution of a function call depends on the execution of the body of the given function. In these cases an induction over the structure of the syntax of statements does not lead to sufficient inductive hypothesis. This is not really surprising as we need hypotheses about the execution, the semantics of a program, not about its structure. Recall that the semantics of our languages are inductively defined in a big-step style. A next attempt is thus a proof by induction over the structure of derivations of the operational semantics. As shown in [START_REF] Leroy | A formally verified compiler back-end[END_REF] and [START_REF] Bertot | A certified Compiler for an Imperative Language[END_REF] with this approach it is rather easy to prove the forward simulation of a compilation, which in our case would be stated as forall s e, comp_stmt s = Some e → exec_stmt ce cle cm clm s t cle' cm' co → G/SS/S/ e =⇒ S'/o Such a proof of forward simulation can be made easy thanks to an induction over the semantic rules of the source language, in our case exec_stmt , replaces, for each rule, s by the concrete statement occurring in the conclusion of the rule. Consequently the hypothesis comp_stmt s = Some e simplifies according to the definition of comp_stmt similarly to what happens during a structural induction. Additionally the appropriate inductive hypotheses about the execution of sub-statements of s are provided. However, that's not our desired result. By proving the verification conditions we obtain a hypothesis about the execution of the target language and what we want to obtain is a conclusion about the execution of the source language, so what we need to prove is the reverse implication, i.e. reverse forward simulation. Moreover, forward simulation does not necessarily hold as for simplicity or any other reason the compilation may need to introduce assertions that are stronger than actually required by the semantics. One important example is the encoding of loop-assigns clauses which are currently not considered in the semantics (see Section 4.2.2).

But reverse forward simulation cannot not be proved directly by induction over the semantic rules of the target language, in our case Why.sem , as this replaces, for each rule, e by the expression occurring in the conclusion of the rule leaving s and thus comp_stmt s unchanged. More importantly, the inductive hypotheses are about the execution of sub-expressions of e which do not generally correspond to compilations of sub-expressions of s .

There are several approaches to work around this problem, some of which will be discussed in Section 5.7.1. We chose the following one which will be detailed below: Roughly we inductively define the sub-language of Whycert expressions that are target of the compilation of Clight statements gexpr . We then inductively define the terminating semantics of this sub-language gensem with an (almost) exact one-to-one correspondence with the semantics of Clight statements: for each rule of the latter there is exactly one rule of the former, with an exception for the while loops. The compilation now produces expressions of gexpr and the soundness proof is split into two stages: one showing that Why.sem includes gensem and another one showing that gensem includes exec_stmt . The latter can now make profit of a convenient induction scheme as the two inductive predicates have the same structure and we can focus on the important details that make that the Whycert program actually simulates the Clight program. On the other hand, the former should be obvious as it's a matter of an equivalence between semantics of a language and its own sub-language. forall e, Why.sem G SS S e S' o → gensem G SS S e S' o However this can still not be proved by a direct induction over Why.sem as this suffers from the same problem as above, i.e. the inductive hypotheses would not be the right ones. Instead we inductively define the absence of semantics of a Whycert expression in a given state Why.nsem and prove that Why.sem , Why.seminf and Why.nsem form a partition for any expression and state, i.e. they are mutually exclusive and collectively exhaustive. By determinism of the semantics and principle of excluded middle our goal is equivalent to The definition of the compilation function is then easy (Fig. 5.17): we simply have to recurse over the structure of statements compiling all the sub-terms and sub-expressions if possible to construct such a gexpr . Given a mapping for label names lm , a mapping for variable names vm , a boolean brk indicating whether the expression is allowed to raise a break or a continue , the return type of the currently compiled function rtt , a C statement cs and a type ty , the function comp_stmt returns a value of type { e : expr F L E ty & gexpr e } or fails. Recall that statements can only be compiled to expressions of type Tvoid , so we use the In the case of while loops, the invariant is enriched with information about permissions and with an encoding of the loop assigns clause relating the current memory ( Tderef Rmem ) with the memory at the enclosing label ( Tat B0 Rmem ), i.e. outside the loop. The compiled invariant is thus stronger than the original one and also stronger than needed to prove the preservation of semantics as the assigns clause is currently not considered by the semantics of annotated Clight. This strengthening is required to make the generated proof obligations practical, as explained in Section 5.6.3.

We currently don't handle do{}while() and for(,,) loops as well as well-structured Clight switch clauses, even if these cases could be easily encoded in Whycert. On the other hand, goto jumps are excluded as they would require a different kind of WP calculus.

With the ability to compile statements we can finally compile C functions and whole programs (Fig. 5.18). For convenience, we define a data structure for the compiled C functions prefunc to be generated by precomp_func which compiles the body of a given function along with its pre-and post-condition using appropriately initialised variable mappings for the formal parameters and local variables. Notice that, similarly to while loops, the function contract is strengthened according to its assigns clause. Furthermore we strengthen the pre-conditions with information about the global program variables (see Sections 5.6.3 and 5.6.3).

Whole programs are compiled by compiling the list of functions and mapping them to their final form ( mkcfunc ) where the compiled body is embedded into an expression that simulates the allocation and deallocation of the local variables ( Ebody ). We however check certain conditions required by the semantics of whole programs, such as the existence and correct type of the main function and the possibility to construct the initial memory according to initialisers of the global variables. In addition to the compiled program, comp_prog returns also the pre-condition of the main function, such that it can be added to the list of verification conditions to be proved valid in the initial memory. This finally allows us to define the verification condition generator for a whole annotated Clight program vcgen : given the list of types appearing in the program ctypes it returns the list of needed axioms (cf. Section 5.1.3) and the list of concrete verification conditions (cf. Section 3.5.1) enriched by the pre-condition of the main function in the initial state (cf. Section 5.6.3). This proof is done by co-induction towards seminf and case analysis of ge . Similarly to the proof of soundness of the WP calculus in Whycert, for each case it proceeds by analysis of the execution of sub-expressions and evaluation of the side-conditions: by excluded middle any condition is either true or false, any sub-expression either executes or does not, so depending on the case we try either to contradict one of the hypotheses or to co-inductively, i.e. using the coinductive hypothesis, construct an infinite execution according to seminf . But due to important restrictions inside a co-inductive proof, this can be rather tricky, especially when an additional lemma is needed to proceed. Consider the case of a function call where we have to prove that As shown in Section 5.5.1, fold_exprlist is defined by recursion over el to build nested Elet blocks around the given expression ( Ecall ... ). To proceed here, we may want to generalise the expression Ecall (mk_fidx fi) into any function mk returning an expression from a list of terms and define the following lemma and the proof can be completed as described above. However, it is not accepted by Coq's typechecker which finds that the co-recursive definition of the completed proof is ill-formed. The proof term looks roughly like this: The problem is that the second argument of seminf_arglist is constructed using the coinductive hypothesis CO , so the proof term of seminf_arglist must be transparent and respect the guard restrictions of co-inductive proofs, which is not the case as nested inductions are not allowed. A next attempt would be to prove this lemma by co-induction towards seminf and case analysis over sempurelist , as nested co-inductions are allowed. This proof is as easy as the direct induction of the first attempt, but again it prevents seminf_arglist from being used in our main goal. This time the problem is that the critical second argument is a recursive argument of the co-fixpoint, what is not allowed. It must stay outside the recursion forcing us to generalise all the variables appearing in it. The final attempt for this proof is through the following additional lemma which can be proved by co-induction without including its first hypothesis into the recursion and is therefore safe to be used in our main proof.

To conclude, this proof is much less routine than expected and much more involved than it morally deserves.

In the second part we need to prove that the compilation actually preserves the semantics: Here the three additional hypotheses relate run-time elements between the specialised Whycert semantics and the Clight semantics: As explained above, this cannot be proved by induction over the structure of statements as this would lack information about the execution of loops and function calls. Rather the proof should be by induction over the specialised semantics rules gensem , followed by a case analysis of the structure of statements. For each rule, this should exclude all the cases except one, as we specialised the semantics such that there would be one rule for each rule of the operational semantics of Clight. However there is one exception: recall that we have to introduce a label around the compilation of while loops in order to encode the loop assigns clause: for appropriately chosen t_inv , e_cnd and e , such a loop is compiled to Obviously this label should be added on top of the stack only once before the first iteration of the loop, so this cannot be simulated by a rule that loops itself. Instead, as already shown in Section 5.5.1, the compilation of loops is given as a core part which actually loops with an external label around. Just as the Clight semantics the specialised Whycert semantics gensem provides for three rules to execute this looping core expression plus an additional rule for the label. This extra rule forces us to generalise the goal with respect to the compilation function. We define an auxiliary relation between statements and Whycert expressions which are compiled one towards the other, either directly or with an additional label around: Then our proof goes through the following lemma, where an induction over gensem followed by a case analysis of rel_stmt and s issues exactly the required inductive hypotheses for each case. However this approach introduces a technical complication: for each rule (17 cases), Coq must perform one inversion (2 cases), which is already quite costly, followed by a destruct (16 cases). This leads to 544 sub-goals, in each of which Coq must simplify an equation like comp_stmt cge fm lmp brk (Sxxx ...) ty = Some (Exxx .. & gexx ..)

That is computing the left-hand side expression, identifying the sub-cases and performing an injection or discrimination. All this can be done automatically using tactics but it is quite time consuming. In order to separate these computations from the proofs of the sub-goals, which need to be done manually, we define a generic induction scheme. This can be done automatically, thanks to our self-defined tactic admit as hypothesis . It works like admit , except that the admitted sub-goal is not stored as an axiom, but as a section hypothesis. On closing the current section, all the admitted hypotheses then become formal parameters to the lemma in question. 

Extraction and Experimentations

Generation of Why3 Theories

Using the Why3 Back-end described in Section 3.5.2 we can directly generate Why3 theories containing the axioms and goals computed by vcgen . The back-end is parametrised by functions to compile types and symbols to Why3 types and symbols, either by reusing symbols from the Why3 standard library or by generating new, abstract symbols. Our Why3 interface provides for functions accessing the standard library and creating new symbols: The latter two require a name for the new symbol or type, we thus need to define functions that assign distinct strings to each constructor of several inductive types. In order to avoid doing this manually we define a small Coq plugin providing a Coq command Generate StringOf that, given an inductive type, tries to generate a possibly recursive function assigning to each constructor a string containing its name and a sub-string based on its arguments. For the types of the arguments it tries to reuse previously defined stringof functions or to recursively define them.

For instance the command Generate StringOf Csyntax.type.

defines the functions mkstring_of_floatsize , mkstring_of_signedness , mkstring_of_intsize , mkstring_of_typelist , mkstring_of_fieldlist and mkstring_of_Csyntax'type , if mkstring_of_Z and mkstring_of_ident are already present in the current environment. The latter may be pretty printed in a more appropriate way than just by their constructors.

We use this mechanism to generate functions printing types and symbols. See Figures 5.19 and 5.20 for how we map elements of our Whycert instantiation to Why3 types and symbols. Given this mapping and a small function ref_name assigning names to the references, we can instantiate the Why3 theory generation back-end and define the verification condition generator for C programs to Why3 theories: Definition cvcgen3 ctypes cp : IOx theory := let? (ax, gl) := Whygen.vcgen ctypes cp in comptheory comp_sym ref_name ax gl.

By chaining up the theorems vcgen_finally_correct and comptheory_correct we obtain the following Theorem cvcgen3_correct ct th z: ioget (cvcgen3 cp ct) z = Some th → theory_valid th → (∃t i, bigstep_program_terminates cp t i) ∨ (∃t, bigstep_program_diverges cp t).

To be precise, this only holds if it is possible to construct a den_local_lsymbol such that the hypotheses in Figure 3.20 hold. Morally, this is possible if comp_sym is injective with respect to the newly generated logical symbols and we currently omit this proof.

Architecture of the Tool Chain

The verification condition generator, along with the compilation to Why3 theories, is then extracted to OCaml code. This results into a certified OCaml library for generation of Why3 verification conditions for annotated Clight programs. The latter can be produced starting from a Frama-C AST and the Frama-C platform provides a plug-in mechanism in order to interface with its API for parsing and analysing of ACSL annotated C source files. Similarly, the Why3 platform accepts plug-ins generating Why3 theories in order to process them further or send them to external provers -either interactively using why3ide or with the command-line interface. We thus define two plug-ins, one for Frama-C to generate the verification conditions for a given C source file and one for Why3 to execute Frama-C and then construct a theory for the resulting conditions. The latter are sent from the Frama-C process to the Why3 process by marshalling them through a UNIX pipe. This architecture is shown in Figure 5.21.

As explained above, these plug-ins are entirely proved in Coq. However, the interfaces with the input and output, i.e. the transformations corresponding to the arrows in the diagram entering and leaving the plug-in boxes, are not certified as they cannot be defined in Coq. The soundness of the whole tool chain thus depends on the correct implementation of theses interfaces -as well as obviously on the correct implementation of Frama-C and Why3.

On the input site, the Frama-C AST has to be transformed into a Clight/ACSL AST making use of the information retrieved by the analysis of the source file performed by Frama-C. The two ASTs are slightly different. For instance, declarations of local variables inside nested blocks have to be moved to the top of the function. Also, occurrences of formal parameters in function contracts have to be recognised in order to treat them as logical variables instead of program variables. A less linear transformation is to extract the code annotations attached to a given statement and to make an assert statement out of them. In general this AST transformation is partial as some features are not yet implemented and others, as termination annotations, goto -jumps, volatile variables, etc., are not supported.

On the output site, no AST compilations are necessary as we formalised the abstract syntax of Why3 terms directly in Coq. However, these terms need to be included into a fresh Why3 theory int main(void) { int __retres; / * @ assert 42+2 ≡ 44; * / ; __retres = 0; return (__retres); } An auxiliary variable is introduced in order to simplify the return statement. When building the Clight AST from this Frama-C AST, we recognise the generated variables and compile them to Clight temporary variables which are provided exactly for this purpose. Our plugin then prints out the Clight AST, omitting the annotations: int main(void) { {{/ * assert ... * /; / * skip * /;} {$2 = 0; return $2;}} } On this small program we already generate 5 proof obligations. 3 The first is the expected one:

goal Goal_2 : (42 + 2) = 44
Its name is due from the fact that it comes from the verification condition generated for the first function, given that Goal_1 is always the name of the pre-condition of the main function, which is trivial in this example and is eliminated by splitting. The following two obligations can be summarized as

-2147483648 ≤ 0 ≤ 2147483647
It results from the conversion from 0 as a logical integer to a bounded 32-bit integer and ensures that this conversion is possible without loss of information.

The next one is a bit more interesting, as the first proof obligation involving abstract symbols: goal Goal_2 : SymMapValidGet_Mint_I32_Signed SymIdent___retres (SymMapSet_Mint_I32_Signed SymIdent___retres SymMapEmpty i)

Notice the type name Mint_I32_Signed inside the name of the symbols, which were polymorphic in Coq but became instantiated by the Why3 back-end. The proof obligation results from the attempt to access the temporary variables environment in the argument of return . This environment, initially SymMapEmpty , is updated in the previous statement with the binding of type int32 from SymIdent___retres to i . We need to prove that this updated environment has a valid binding of type int32 for SymIdent___retres . That's not hard but the external provers need an axiom for that: 3. Strictly speaking there is always exactly one goal per function plus one, but we will consider the total number of goals after an initial split of conjunctions into parts mission check to store into x : axiom H1 : SymValidStore_Tint_I32_Signed m1 p goal Goal_2 : SymValidStore_Tint_I32_Signed (SymStore_Tint_I32_Signed m1 p i) p

Here, m1 is the memory resulting of the allocation for the formal parameter x which ensures that the allocated pointer is writable. However, we need to be sure that this still holds after the initialisation, i.e. that the permissions are preserved by a store operation. This can be proved thanks to the last axiom introduced for the previous example and the following one, providing the specification of SymMemPreservePermissions to the external provers: The next two obligations concern the assertion x==44 and the post-condition x == 42 . As explained above they are not contradictory. The first proof obligation is about loading a value from memory that results from storing a value at the same position, while the second one is a trivial consequence of the pre-condition.

axiom H : conv_int_integer_I32_Signed i = 42 goal Goal_2 : conv_int_integer_I32_Signed i = 42

The last proof obligation again ensures that the permissions are preserved by the function, but this time allocation and deallocation actually modify the permissions in the Compcert memory. However, it is guaranteed that alloc and free modify the permission of the allocated block only, leaving the permissions of all the other blocks unchanged. If thus a given piece of code that preserves the permissions is preceded by the allocation of a pointer and followed by the deallocation of that same pointer, then the resulting piece of code still preserves the permissions according to the definition of m_preserve_permissions . This can be formalised with the following lemma: This property is included into the post-conditions of PAR_mem_alloc , so that proof obligation has the required information in its context: This concludes the proof obligations for forty_two . This function is then called from the main function, which has thus to make sure the pre-condition holds for the given argument.

Toy Example 4: Local variable and initialisation

In this example we show a proof obligation that cannot be proved because of missing initialisation of a local variable. They are generated for the first assertion and the first assignment, respectively. While the former is easy, nothing permits to prove the latter. The point is that, as requested by the ACSL specification, the load operation is modelled as a complete function, i.e. always returning a result. This result is obviously equal to itself, even if nothing else is specified about the function for a given argument. To ensure that the corresponding load operation in Compcert succeeds we need to prove the SymValidLoad predicate, which is only possible if the given pointer has been correctly initialised, which is not the case for fresh local variables. Notice that with most compilers, including Compcert, the execution of this program would still not crash. That's why Jessie does not generate an assertion for this assignment and proves this program safe. However, its semantics according to Compcert is undefined, so we must not be able to prove it safe with our tool.

Toy Example 5: Two local variables, assigns clause / * @ ensures \result == 44; @ assigns \nothing; @ * / int main() { int x; int y; x = 42; y = 2; return x+y; }

The new feature of this example is the use of multiple variables and the assigns clause. The difficulty here is to prove properties about x in a memory where y has been modified, for instance ValidLoad :

Evolution of Compcert

This work refers to the version 1.9 of Compcert. More recent versions add support for several features of the C programming language, notably using structures and unions as r-values, e.g. in assignments and function arguments. Our ACSL formalisation natively supports aggregate values and the compilation towards Whycert naturally encodes them as logical values. However the design choice made in formalising the semantics of composite r-values in Compcert is not compatible with our formalisation and if we tried to naively add support for them to our compilation to Whycert we would break several invariants. In particular, according to Compcert's new semantics composite types are not actually loaded from memory by value but the new access mode "by copy" is introduced. This access mode is more similar to "by reference" than to "by value", as for such a type a dereference simply evaluates to its address in memory. This formalisation is certainly closest to the implementation of the semantics, but we believe that it does not correspond to the expected logical meaning. Furthermore it prevents the support for returning composites by value from a function.

Instead we would suggest a formalisation where the notion of value in the front-end languages (at least CompcertC and Clight) is extended by aggregate values and that a later compilation pass appropriately replaces by-value accesses of composites by explicit copies. In any case support for structures and unions as r-values should not be attempted until this issue has been discussed.

Chapter 6

Conclusions and Perspectives

We have developed a VC generator for ACSL annotated Clight programs. Thanks to the Coq extraction it is a standalone tool able to call external theorem provers to discharge generated proof obligations. It has a relatively small trusted code base:

-the Frama-C front-end that parses C source code and produces a Clight/ACSL abstract syntax tree -the Why3 back-end that translates formulas to provers -the provers themselves -the Coq kernel and the extraction mechanism In particular the set of axioms sent to provers enabling them to reason about the memory is proved correct in Coq with respect to the Compcert semantics.

We conclude by some discussions and perspectives.

ACSL coverage

An important missing feature in the logic language with respect to its informal specification is the possibility to define new logic functions and predicates, which should not be too difficult to add. Also we currently do not support any built-in ACSL predicates like \valid , \fresh , \separated , etc. The semantics of these predicates with respect to the Compcert memory model would have to be discussed. In particular, it seems that \valid is not strong enough to ensure a successful load operation on the given pointer.

Concerning code annotations several ACSL annotation features are missing for the moment. Some, like statement contracts or arbitrary invariants, may be encoded in the proposed solution. An ACSL feature that is not supported at all is loop variants to express termination. To implement this in our tool chain we would need support for this in the verification condition generator first. A whole category of programs we decide not to handle is programs with jump statements. This decision is expressed in the choice of big step semantics for annotated C programs. This is motivated not only by difficulties in formally define and prove a WP calculus on unstructured programs. It is even difficult to formalise the semantics of loop invariants and loop assigns clauses for arbitrary unstructured loops in presence of pointers.

About the Soundness Proof

In Section 5.7.1 we have discussed in detail the technical difficulties we had to perform the proof of soundness of compilation from annotated Clight to Whycert.

Given the difficulties and the amount of time needed to perform the soundness proof of the compilation one may wonder whether it would have been easier to avoid this semantics preser-CHAPTER 6. CONCLUSIONS AND PERSPECTIVES vation proof altogether by proving the soundness of a WP calculus directly with respect to the semantics of Clight. Such a WP calculus could even be defined directly on annotated Clight without going through an intermediate language like Whycert. At least, this would incite focusing on the real issues of the C language.

Difficulties with Dependent Types

A design choice in this development was the use of dependent types to encode typing constrains directly inside the intermediate languages. In particular dependently types De-Bruijn indices ensure that every variable in a term a correctly bound. This obviously facilitates the definition of functions deconstructing such terms, like the weakest precondition calculus, as they don't have to handle typing errors, but complicates the definition of functions constructing such terms, like the compilation from Clight, as they must ensure all the constrains. Whereas forcing the developer to write well-typed functions is probably a good thing, the resulting terms can be quite hard to reason about. In particular case analysis or inductions over dependently typed inductives require to generalise all the terms they depend on to free variables, which often forces to meticulously cut the proof into lemmas. While most of the time there is a solution, this may take some time to find. Most importantly it blocks the proof search of the really interesting results.

To conclude, we believe that dependent types should be used but wisely. For instance, it was an error in the compilation of Clight functions to simulate the allocation of local variables by a series of nested let -blocks, which forced us to handle that complex typing environment. Instead, we should have applied an abstract program parameter allocating all the necessary variables and storing them in an abstract mapping from identifiers to pointers with the properties specified in the post-condition of the parameter.

Alternative Memory Models

All these difficulties took unexpectedly long to resolve and prevented us from inspecting the real issues of the C language. We notably would have wanted to investigate about different memory models in the generated proof obligations. The presented solution adopts a slight abstraction of the Compcert memory model and is therefore the easiest to prove. The generated proof obligations are however as expected too hard to handle by the automatic provers. A next step would be to separate at least the variables which are never accessed by their address and treat them as Hoare variables, as it is done in the Jessie plug-in. Such a change would introduce a more complex relation between the Clight state and the Whycert state. With some effort the proof could be make more generic with respect to this relation by identifying the lemmas that interface with the properties of the relation.

Future Works

As an alternative to introducing separation at the level of the compilation from Clight to Whycert, i.e. switching memory model, it could be investigated whether, while keeping the same memory model, the generated proof obligations can be made more convenient to discharge by automatically adding additional hypotheses. For instance a simple analysis could compute an approximation of the set of memory locations modified between every two program points. With this information at its disposal, an external prover would then only have to prove that a given location is not in such a set when it needs to compare values loaded from memory. The correctness of this additional information could always be guaranteed by Coq. The proposed solution can thus be considered a good base to explore alternative but safe axiomatisations, that would be more convenient for the external provers in discharging proof obligations.
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 31 Figure 3.1: Logical context for sorting
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 32 Figure 3.2: Selection sort in our core language
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 33 Figure 3.3: A formal declaration of a logical signature for sorting

Example 3

 3 The heterogeneous list l defined as [ 5; true; pred ] has type hlist (S:=Type) (T:=id) [Z; bool; nat → nat] . The De-Bruijn indices HI0 : lidx (S:=Type) Z [Z; bool; nat → nat] and HIS (HIS HI0) : lidx (nat → nat) [Z; bool; nat → nat] ,

Fixpoint

  dentype ty : Type := match ty with | Tuser uty ⇒ denutype uty | ty1 --> ty2 ⇒ dentype ty1 → dentype ty2 | Tprop ⇒ Prop end.

Variable

  densym : ∀ty, sym ty → dentype ty. Definition denbuiltin ty (c: builtin ty) : dentype ty := match c with | Bandd ⇒ and | Bimply ⇒ impl | Bfalse ⇒ False end. Fixpoint evalterm L E A (t:term E A) (G:env E) (SS: states L) (S: state) : dentype A := match t with | Tsym _ s ⇒ densym s | Tbuiltin A a ⇒ denbuiltin a | Tvar _ v ⇒ accsvar v G | Tderef A r ⇒ S A r | Tapp _ _ t1 t2 ⇒ (evalterm t1 G SS S) (evalterm t2 G SS S) | Tlet _ _ t1 t2 ⇒ (evalterm t2 (evalterm t1 G SS S::G) SS S) | Tforall _ p ⇒ forall x, evalterm p (x::G) SS S | Tat A l r ⇒ Vnth l SS A r end. Notation valid := (evalterm (A:=Tprop)).
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 35 Figure 3.5: Denotational semantics of terms and propositions
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 36 Figure 3.6: The interpretation of the logical symbols for sorting

Notation

  rset := (set (sigT ref)). Record parspec P A := { par_contract :> contract P A; par_effects: rset }.

  -G/SS/S/ Eassign r t =⇒ update S r a / Outval a | semassert P (e: expr L E A) S' o: valid P G SS S • G/SS/S/ e =⇒ S'/ o -

  -G/SS/S/ Etry e1 ex' e2 =⇒ S''/o | semlab (e:expr (succ L) E A) S' a: G/(S::SS)/S/ e =⇒ S'/a -----------------------------G/SS/S/ Elab e =⇒ S'/a | semcall P (f: fidx (signature A P)) ps S' (a:dentype A): let G_args : env P := evaltermlist G [] S ps in valid f.(pre) G_args [] S • G_args/[S]/S / f.(body) =⇒ S'/Outval a • valid f.(post) (a::G_args) [S] S' -

  -G/SS/S/ Ecall f ps =⇒ S' / Outval a | semcallpar P (pa: par P A) ps S' (a:dentype A): let G_args : env P := evaltermlist G [] S ps in valid pa.(pre) G_args [] S • den_par pa G_args S = (S', a) -
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 39 Figure 3.9: Operational semantics of terminating expressions (continued)
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 310 Figure 3.10: Operational semantics of non-terminating expressions

  -G/SS/S/ Elet e1 e2 =⇒ ∞ | seminfassert P (e:expr L E A): valid P G SS S • G/SS/S/ e =⇒ ∞ -

  -G/SS/S/ Etry e1 ex' e2 =⇒ ∞ | seminflab (e:expr (succ L) E A): G/(S::SS)/S/ e =⇒ ∞ -

  -G/SS/S/ Elab e =⇒ ∞ | seminfcall P (f: fidx (signature A P)) ps: let G_args : env P := evaltermlist G [] S ps in valid f.(pre) G_args [] S • G_args/[S]/S/ f.(body) =⇒ ∞ -
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 311 Figure 3.11: Operational semantics of non-terminating expressions

  Definition assigns (S:state) (rs : rset) (S':state) := forall A (r:ref A), ¬ In (A&r) rs → S' _ r = S _ r. Lemma assigns_correct A E L G SS S (e: expr L E A) S' o: G/SS/S/ e =⇒ S'/o → assigns S (writes e) S'.

  a, assigns S (accslist f F_effects) S' → evalterm f.(post) (a::G_args) [S] S' → Q SS S' a | Ecallpar P pa ps ⇒ let G_args := evaltermlist G [] S ps in evalterm pa.(pre) G_args [] S ∧ forall S' a, assigns S pa.(par_effects) S' → evalterm pa.(post) (a::G_args) [S] S' → Q SS S' a end.
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 3127 Figure 3.12: Recursive definition of the WP-calculus

Corollary

  global_soundness P A (f: fidx (signature A P)) G S: evalterm f.(pre) G [] S → G/[S]/S/ f.(body) =⇒ ∞ ∨ ∃S' a, G/[S]/S/ f.(body) =⇒ S'/Outval a ∧ evalterm f.(post) (a::G) [S] S'.

  wp e (uplab_term q) (fun A ex, uplab_term (r A ex))) | Ecall P f ps ⇒ Pand_asym (uplabn_term (substps_term ps (E1:=[]) (f.(pre)))) (dnlab_term (abstr (Tforall (Pimply (uplabn_term (substps_term (Indexes.map (fun A (t:term 0 E A), uplabx t) ps) (E1:=[A]) (f.(post)))) (uplab_term q))) (accslist f F_effects))) | Ecallpar P pa ps ⇒ Pand_asym (uplabn_term (substps_term ps (E1:=[]) (pa.(pre)))) (dnlab_term (abstr (Tforall (Pimply (uplabn_term (substps_term (Indexes.map (fun A (t:term 0 E A), uplabx t) ps) (E1:=[A]) pa.(post))) (uplab_term q))) pa.(par_effects))) end.
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 313 Figure 3.13: Recursive definition of the concrete WP-calculus

Fixpoint

  abstrv L E : prop L E → prop L [] := match E with | [] ⇒ id | A1::E1 ⇒ fun p, abstrv (Tforall p) end. Definition vcgen_f s (f: func s) := abstrv (Pimply f.(pre) (dnlab_term (wp f.(body) f.(post) (fun _ _, Pfalse)))) .

Parameter

  sys : Type. Parameter sys_lt : relation sys. Parameter sys_consume : sys → sys. Axiom sys_lt_SO : StrictOrder sys_lt eq. Axiom sys_consume_gt : ∀z, z < sys_consume z. Record IO A := { io: sys → A * sys; iosys z := snd (io z); ioget z := fst (io z); io_prop: ∀z, z < iosys z }. Program Definition iobind {A1 A2} (e1: IO A1) (e2: A1 → IO A2) : IO A2 := {| io z := let '(x, z) := io e1 z in io (e2 x) z |}. Program Definition ioreturn {A} (a: A) : IO A := {| io z := (a, sys_consume z) |}.
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 314 Figure 3.14: The Input-Output Monad

Parameter

  ref : Type → Type. Parameter mkref : ∀A, A → IO (ref A). Parameter contents : ∀A, ref A → IO A. Parameter store : ∀A, ref A → A → IO (). Definition new_counter : () → IO (() → IO nat) := fun _, let! r := mkref 0 in let next := fun _, let! x := contents r in let! _ := store r (succ x) in contents r in ioreturn next. Extract Constant ref "'a" ⇒ "'a Pervasives.ref". Extract Inlined Constant mkref ⇒ "ref". Extract Inlined Constant contents ⇒ "(!)". Extract Inlined Constant store ⇒ "(:=)". Recursive Extraction new_counter.
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 315 Figure 3.15: Example for the use of the input-ouput monad

Axiom

  load_store_eq: forall A (r: ref A) a z, ioget (contents r) (iosys (store r a) z) = a. Axiom load_store_neq: forall A1 (r1: ref A1) A2 (r2: ref A2) a z, (&r1) = (&r2) → ioget (contents r1) (iosys (store r2 a) z) = ioget (contents r1) z.

  Parameter ocamlstring : Type. Parameter ocamlstring_of_string :> string → ocamlstring. At extraction Coq strings will be lists of characters, so the implementation of the conversion function simply creates a string and fills it with the characters of the list. Extract Inlined Constant ocamlstring ⇒ "String.t". Extract Constant ocamlstring_of_string ⇒ "fun s → let r = String.create (List.length s) in let rec fill pos = function | [] → r | c::s → r.[pos] <-c; fill (pos + 1) s in fill 0 s".

  Parameter den_ty : ty → Type. Definition denotype ot := match ot with Some x ⇒ den_ty x | None ⇒ Prop end. Definition Env := forall tp (vs: vsymbol tp), den_ty tp. Parameter classicT : forall P : Prop, {P} + {¬P}. Section SEM. Parameter den_global_lsymbol : forall ar vl, lsymbol ar vl → hlist den_ty ar → denotype vl. Variable den_local_lsymbol : forall ar vl, lsymbol ar vl → hlist den_ty ar → denotype vl. Definition den_lsymbol ar vl (ls: lsymbol ar vl) := if is_lsymbol_local ls then den_local_lsymbol ls else den_global_lsymbol ls. Fixpoint den_term (env: Env) tp (t: term tp) : denotype tp := match t in term tp return denotype tp with | t_var _ vs ⇒ (env _ vs) | t_int_const z ⇒ den_int_const z | t_real_const r ⇒ den_real_const r | t_if t t0 t1 t2 ⇒ let P := den_term env t0 in if classicT P then den_term env t1 else den_term env t2 | t_let _ _ vs t1 t2 ⇒ let x := den_term env t1 in den_term (add_env env vs x) t2 | t_forall _ vs t ⇒ forall x, den_term (add_env env vs x) t | t_and t1 t2 | t_and_asym t1 t2 ⇒ den_term env t1 ∧ den_term env t2 | t_or t1 t2 ⇒ den_term env t1 ∨ den_term env t2 | t_implies t1 t2 ⇒ den_term env t1 → den_term env t2 | t_iff t1 t2 ⇒ den_term env t1 ↔ den_term env t2 | t_not t ⇒ ¬ den_term env t | t_true ⇒ True | t_false ⇒ False | t_equ _ t1 t2 ⇒ den_term env t1 = den_term env t2 | t_neq _ t1 t2 ⇒ den_term env t1 = den_term env t2 | t_app _ _ ls tl ⇒ den_lsymbol ls (den_termlist env tl) end with den_termlist env tpl (tl: termlist tpl) : hlist den_ty tpl := match tl with | termlist_nil ⇒ [] | termlist_cons _ _ t tl ⇒ let x : den_ty _ := den_term env t in x :: (den_termlist env tl) end. Definition den_proplist env := List.Forall (den_term env (tp:=None)). End SEM. Definition theory_valid tk := forall den_local_lsymbol env, den_proplist den_local_lsymbol env th.(th_axioms) → den_proplist den_local_lsymbol env th.(th_goals).
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 317 Figure 3.17: Specification of the Semantics of the logical language

  Variable comp_utype: utype → ty. Definition fo_comp_wtype ty := match ty with | Tuser ty ⇒ Some (comp_utype ty) | _ ⇒ None end. Fixpoint termcons ty := match ty with | Tarrow ty1 ty2 ⇒ termcons ty1 → termcons ty2 | _ ⇒ term (fo_comp_wtype ty) end.

  Variable comp_sym: ∀ty, sym ty → termcons ty. Variable ref_name: ∀ty, ref ty → ocamlstring. Definition comp_ref ty: ref ty → option (termcons ty) := match ty return ref ty → option (termcons ty) with | Tuser tp ⇒ fun r, return t_app (make_lsymbol (ref_name r) [] (Some (comp_utype tp))) termlist_nil | _ ⇒ const error end. Definition compwbuiltin ty (wblt: Why.builtin ty) : termcons ty := match wblt with | Why.Band b ⇒ if b then t_and_asym else t_and | Why.Bimply ⇒ t_implies | Why.Bfalse ⇒ t_false end. Fixpoint compwterm E (vm: varmap E) ty (wt: Wterm L E ty): IOx (termcons ty) := match wt return _ with | Why.Tsym _ s ⇒ return comp_sym s | Why.Tbuiltin _ wblt ⇒ return compwbuiltin wblt | Why.Tvar ty v ⇒ return t_var' (vm _ v) | Why.Tderef ty r ⇒ let? t := comp_ref r in return t | Why.Tapp tp1 tp2 wt1 wt2 ⇒ let!? t1 := compwterm vm wt1 in let!? t2 := compwterm vm wt2 in return (t1: termcons (Tarrow tp2 tp1)) (t2:termcons tp2) | Why.Tlet ty ty' wt1 wt2 ⇒ let!? v := create_local_vsymbol' ty' in let!? t1 := compwterm vm wt1 in let!? t2 := compwterm (vm_add vm v) wt2 in (match ty return termcons ty → IOx (termcons ty) with | Tarrow _ _ ⇒ fun _, error | ty ⇒ fun t2, return t_let' v t1 t2 end t2) | Why.Tat _ l r ⇒ False_lab l | Why.Tforall ty wt ⇒ let!? v := create_local_vsymbol' ty in let!? t := compwterm (vm_add vm v) wt in return t_forall' v t end. Fixpoint compwproplist (wpl : list (Wprop L [])) : IOx (list prop) := match wpl with | [] ⇒ return [] | wt::wtl ⇒ let!? t := compwterm wt in let!? tl := compwproplist wtl in return (t::tl) end. Definition comptheory ax gl : IOx theory := let!? ax' := compwproplist ax in let!? gl' := compwproplist gl in return {| th_axioms := ax'; th_goals := gl' |}.
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 318 Figure 3.18: Compilation of Terms
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 319 Figure 3.19: Compilation of symbols for the sorting example
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 320 Figure 3.20: Soundness of the Compilation of Terms

  Figure 3.21: Diagram of the Why3 Plugin

  Notation ctype := Csyntax.type. Inductive type := | Linteger | Lreal | Lboolean | Larray (ty:type) | Tctype :> ctype → type.
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 41 Figure 4.1: ACSL logical terms

Inductive

  pred := | Ptrue | Pfalse | Pnot (p: pred) | Pcomp (op:relop) (t1 t2: term) | Pcomb (op:binop) (p1 p2: pred) | Pforall i ty (p:pred) | Plet i (t:term) (p:pred) .
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 42 Figure 4.2: ACSL logical predicates

  Is_Pointer_To cty: bool → type → Type := | Ptr_ptr : Is_Pointer_To cty false (Tpointer cty) | Ptr_arr z: Is_Pointer_To cty true (Tarray cty z) | Ptr_larr : Is_Pointer_To cty true (Larray cty).
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 43 Figure 4.3: ACSL typing rules for terms

  -op ∈ [ Bplus; Bminus; Bmult; Bdiv; Bmod; Bbwand; Bbwor; Bbwxor ] → te r Tbinop op t1 t2 : Linteger | term_typed_binop_real op t1 t2: te r t1 : Lreal • te r t2 : Lreal

  op ∈ [ Bplus; Bminus; Bmult; Bdiv ] → te r Tbinop op t1 t2 : Lreal | term_typed_binop_boolean op t1 t2: te r t1 : Lboolean • te r t2 : Lboolean -

  op ∈ [ Band; Bor ] → te r Tbinop op t1 t2 : Lboolean | term_typed_binop_pointer op t1 t2 cty lr ty: te (lr) t1 : ty • Is_Pointer_To cty lr ty • te r t2 : Linteger

  ty ∈ [ Lboolean; Linteger; Lreal ] → te r Tcomp op t1 t2 : Lboolean | term_typed_relop_pointer op t1 t2 cty1 cty2: te r t1 : Tpointer cty1 • te r t2 : Tpointer cty2 -
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 44 Figure 4.4: ACSL typing rules (continued)

- te r

  Tarray_access ta ti : ty | term_typed_field t si fld fi lr cty: te (lr) t : Tstruct si fld • unrolled_field_type fi si fld = Some cty -

  te r Tarray_update ta ti tx : Larray ty | term_typed_struct_update ts fi tx si fld cty: te r ts : Tstruct si fld • te r tx : cty • unrolled_field_type fi si fld = Some cty -

- te r

  Tempty_array ty tl : Larray ty | term_typed_empty_struct si fld: ø -

  te r Tempty_struct si fld : Tstruct si fld | term_typed_integer z : ø -

- te r

  Trealconst r : Lreal | term_typed_boolean b: ø -
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 45 Figure 4.5: ACSL typing rules for terms

Figure 4 .

 4 Figure 4.6: ACSL casts

  Is_Pointer_Type lr ty := match lr, ty with | false, Tpointer _ | true, Larray (Tctype _) | true, Tarray _ _ | true, Tstruct _ _ ⇒ True | _,_ ⇒ False end.

4. 1

 1 . ACSL Inductive pred_typed (te:tenv) : pred → Type := | pred_typed_false : ø -

  ty ∈ [ Lboolean; Linteger; Lreal ] → te Pcomp op t1 t2 | pred_typed_relop_pointer op t1 t2 cty1 cty2: te r t1 : Tpointer cty1 • te r t2 : Tpointer cty2 -
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 47 Figure 4.7: ACSL typing rules for predicates
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 48 Figure 4.8: The typing algorithm (excerpt)

Figure 4 . 9 :

 49 Figure 4.9: Decidable Subtyping

Fail

  Program Fixpoint get_ub ty1 ty2 : option (ub ty1 ty2) := match get_ub_scalar ty1 ty2, ty2, ty1 return _ with | Some x, _,_ ⇒ Some x | _, (Larray ty2 | Tarray ty2 _), (Larray ty1 | Tcarray ty1 _) ⇒ let? ty := get_ub ty1 ty2 in return Larray (dfst3 ty) | _,_,_ ⇒ error end.

Notation

  ub ty1 ty2 := { ty' : type & subtype * ty1 ty' & subtype * ty2 ty'}. Definition get_ub_scalar ty1 ty2 : option (ub ty1 ty2). Proof. destruct (ty1 == ty2); eauto. destruct ty1 as [| | | |[]], ty2 as [| | | |[]]; eauto 12 || right. Defined. Program Fixpoint get_ubc ty1 (ty2: ctype) : option (ub ty1 ty2) := match get_ub_scalar ty1 ty2, ty2, ty1 with | Some x, _,_ ⇒ Some x | _, Tarray ty2 _, (Larray ty1 | Tcarray ty1 _) ⇒ let? ty := get_ubc ty1 ty2 in return Larray (dfst3 ty) | _,_,_ ⇒ error end. Program Fixpoint get_ub ty1 ty2 : option (ub ty1 ty2) := match get_ub_scalar ty1 ty2, ty2, ty1 with | Some x, _,_ ⇒ Some x | _, Larray ty2, (Larray ty1 | Tcarray ty1 _) ⇒ let? ty := get_ub ty1 ty2 in return Larray (dfst3 ty) | _, Tarray ty2 _, (Larray ty1 | Tcarray ty1 _) ⇒ let? ty := get_ubc ty1 ty2 in return Larray (dfst3 ty) | _,_,_ ⇒ error end. Program Definition unify te t1 lr1 ty1 t2 lr2 ty2 (tty1: te (lr1) t1 : ty1) (tty2: te (lr2) t2 : ty2) : option { ty' : type & (te r t1 : ty') & (te r t2 : ty') } := let? (ty, _, _) := get_ub ty1 ty2 in return ty.Remark get_ub_complete ty2 ty1: ub ty1 ty2 → get_ub ty1 ty2 = None.Remark get_ub_minimal ty2 ty1 x: get_ub ty1 ty2 = Some x → ∀ty', subtype * ty1 ty' → subtype * ty2 ty' → subtype * (dfst3 x) ty'.
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 4 Figure 4.10: Unification

Notation

  indirect_explicit_cast ty1 ty2 := { ty' : type & subtype * ty1 ty' & explicit_cast ty' ty2 }.

Class

  Inhabited A := Inhabited_witness : A. Program Definition unoption A {d: Inhabited A} (o: option A) : { a : A | forall a', o = Some a' → a = a' } := match o return _ with | Some a ⇒ a | None ⇒ d end.

Figure 4 .

 4 11 shows the definition of a family of complete operators, which given a partial Section Complete. Context {A: Type} {B: forall (a:A), Type} {C: forall (a:A) (b: B a), Type} {d1: forall (a:A), Inhabited (B a)} {d2: forall (a:A) (b: B a), Inhabited (C a b)} (f1: forall (a:A), option (B a)) (f2: forall (a:A) (b: B a), option (C a b)) (a:A) (b: B a) . Definition compl1 : { x : B a | ∀x', f1 a = Some x' → x = x' }. Proof unoption (f1 a). Definition compl2 : { x : C a b | ∀x', f2 a b = Some x' → x = x' }. Proof unoption (f2 a b). Definition complete1 := 'compl1. Definition complete2 := 'compl2. End Complete.
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 411 Figure 4.11: Complete operators for functions of arities 1 and 2

Definition

  accs_progvar cge ce i cty : address := match ce.[i], Genv.find_symbol cge i with | Some (b, cty'), _ ⇒ if cty' == cty then return mk_address b Int.zero else error | None, Some b ⇒ let? cty' := type_of_global cge b in if cty' == cty then return mk_address b Int.zero else error | None, None ⇒ error end.

|

  term_typed_unop_integer op t tty1 _ ⇒ match op with| Uplus ⇒ id | Uminus ⇒ Zopp | Ubw_compl ⇒ Znot | _ ⇒ ! end (evalterm G_e tty1) | term_typed_unop_real op t tty1 _ ⇒ match op with | Uplus ⇒ id | Uminus ⇒ Ropp | _ ⇒ ! end (evalterm G_e tty1) | term_typed_unop_boolean op t tty1 _ ⇒ match op with | Uneg ⇒ negb | _ ⇒ ! end (evalterm G_e tty1) | term_typed_condition _ _ _ _ tty0 tty1 tty2 ⇒ if (evalterm G_e tty0) then (evalterm G_e tty1) else (evalterm G_e tty2) | term_typed_let i _ _ _ _ tty1 tty2 ⇒ evalterm (add i (evalterm G_e tty1) G_e) tty2 | term_typed_cast t ty1ty2 tty ec ⇒ den_explicit_cast ec (evalterm G_e tty) | term_typed_cast_pointer t lr1 ty1 lr2 ty2 x1 x2 x ⇒ casT (evalterm G_e x) | term_typed_promote _ _ ty' tty ic ⇒ den_trans_conversion den_implicit_cast ic (evalterm G_e tty) | term_typed_deref t cty lr ty x _ ⇒ casT (evalterm G_e x) | term_typed_lval t ty x ⇒ logic_load ty (evalterm G_e x) m _ | term_typed_at l t ty x ⇒ logic_load ty (evalterm G_e x) (complete2 access_label lm l) _ | term_typed_addrof t cty x ⇒ evalterm G_e x: _ | term_typed_field t ti fld fi lr cty x x0 ⇒ (if lr return den_lrtype lr (Tstruct ti fld) → den_lrtype lr cty then fun pt, address_shift_field pt fi fld else fun str, cast (T:=id) (str fi) ) (evalterm G_e x) | term_typed_array_access_l ta ti cty lr ty x0 _ x1 ⇒ address_shift_array (casT (evalterm G_e x0)) cty (evalterm G_e x1) | term_typed_array_access_r ta ti ty x0 x1 ⇒ (evalterm G_e x0).(array_elements) (evalterm G_e x1) | term_typed_array_update ta ti tx ty x x0 x1 ⇒ array_update (evalterm G_e x) (evalterm G_e x0) (evalterm G_e x1) | term_typed_struct_update ts fi tx si fld cty x x0 x1 ⇒ @struct_update fld (evalterm G_e x) fi (cast (T:=id) (evalterm G_e x0)) | term_typed_empty_array ty tl x ⇒ {| array_length := evalterm G_e x; array_elements := unspecified |} | term_typed_empty_struct si fld ⇒ unspecified d.
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 414 Figure 4.14: Denotational semantics of ACSL terms (continued)

Definition

  type_val cty v : option (den_ctype cty) := match cty,v with | Tint sz sg, Vint i ⇒ bZ_of_int sz sg i | Tfloat _, Vfloat f ⇒ return f | Tpointer _, Vint i ⇒ return mk_address 0 i | Tpointer _, Vptr b ofs ⇒ if b == 0 then error else return mk_address b ofs | _,_ ⇒ error end.

Definition

  csimple_load cty m b ofs := let? v:= Csem.load_value_of_type cty m b ofs in type_val cty v. Fixpoint clogic_load cty b ofs m : den_ctype cty := match cty with | (Tint _ _ | Tfloat _ | Tpointer _ ) as cty ⇒ complete4 csimple_load cty m b ofs | Tvoid ⇒ tt | Tarray cty _ ⇒ {|array_length := Zdiv (Mem.high_bound m b -Int.unsigned ofs) (sizeof cty); array_elements i := clogic_load cty b (ofs_shift_array ofs cty i) m|} | Tfunction _ _ ⇒ mk_address b ofs | Tstruct _ fld ⇒ fun fi, clogic_field_load fi fld b (ofs_shift_field ofs fi fld) m | Tunion _ fld ⇒ fun fi, clogic_field_load fi fld b ofs m | Tcomp_ptr _ ⇒ complete4 csimple_load (Tpointer Tvoid) m b ofs end with clogic_field_load fi fld b ofs m: (den_field_type fi fld) := match fld return (den_field_type fi fld) with | Fnil ⇒ tt | Fcons fi' t fld' ⇒ if ident_eq fi fi' as x return if x then den_ctype t else den_field_type fi fld' then clogic_load t b ofs m else clogic_field_load fi fld' b ofs m end. Program Definition logic_load ty a m (_: Valid_left_type ty) : den_type ty := let b := a.(adr_block) in let ofs := a.(adr_ofs) in match ty with | Tctype cty ⇒ clogic_load cty b ofs m | Larray (Tctype cty) ⇒ clogic_load (Tarray cty 0) b ofs m | _ ⇒ ! end.
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 4 Figure 4.15: Logical load
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 416 Figure 4.16: Denotational semantics of ACSL predicates
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 417 Figure 4.17: Abstract syntax of annotated Clight statements

|

  exec_Swhile_start: forall e le m lm inv assigns a s v, exec_stmt e le m lm.[l_pre <-m] (Swhile (Pcomb Band inv (Ppreserve l_pre assigns)) None a s) t le1 m1 out → exec_stmt e le m lm (Swhile inv (Some assigns) a s) t le1 m1 outIf all the other rules for while loops require that the assigns clause is None , this would lead to the desired result of storing the current state before the first loop iteration. Inductive exec_stmt: env → temp_env → mem → lmem → statement → trace → temp_env → mem → outcome → Prop := | ... | exec_Sassert p e le m lm: valid_closed_acsl e m lm p → exec_stmt e le m lm (Sassert p) E0 le m Out_normal | exec_Swhile_false e le m lm inv assigns a s v: valid_closed_acsl e m lm inv → eval_expr e le m a v → bool_val v (typeof a) = Some false → exec_stmt e le m lm (Swhile inv assigns a s) E0 le m Out_normal | exec_Swhile_stop e le m lm inv assigns a v s t le' m' out' out: valid_closed_acsl e m lm inv → eval_expr e le m a v → bool_val v (typeof a) = Some true → exec_stmt e le m lm s t le' m' out' → out_break_or_return out' out → exec_stmt e le m lm (Swhile inv assigns a s) t le' m' out | exec_Swhile_loop e le m lm inv assigns a s v t1 le1 m1 out1 t2 le2 m2 out: valid_closed_acsl e m lm inv → eval_expr e le m a v → bool_val v (typeof a) = Some true → exec_stmt e le m lm s t1 le1 m1 out1 → out_normal_or_continue out1 → exec_stmt e le1 m1 lm (Swhile inv assigns a s) t2 le2 m2 out → exec_stmt e le m lm (Swhile inv assigns a s) (t1 ** t2) le2 m2 out | exec_Slabel e le m lm l s t le' m' out: exec_stmt e le m lm.[l <-m] s t le' m' out → exec_stmt e le m lm (Slabel l s) t le' m' out
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 418 Figure 4.18: Big-step semantics of annotated Clight statements (assertions, loops and labels)

  forall e le m lm id a al tyargs tyres vf vargs f t m' vres, classify_fun (typeof a) = fun_case_f tyargs tyres → eval_expr e le m a vf → eval_exprlist e le m al tyargs vargs → Genv.find_funct cge vf = Some f → type_of_fundef f = Tfunction tyargs tyres → eval_funcall m f vargs t m' vres → exec_stmt e le m lm (Scall (Some id) a al) t (PTree.set id vres le) m' Out_normal with eval_funcall: mem → fundef → list val → trace → mem → val → Prop := | eval_funcall_internal: forall le m f vargs G_args t e m1 m2 m3 out vres m4 G_post, logic_bind_parameters f.(fn_params) vargs G_args → valid_acsl empty_env m [] G_args f.(fn_pre) → alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 → Coqlib.list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) → bind_parameters e m1 f.(fn_params) vargs m2 → exec_stmt e (PTree.empty val) m2 [].[f.(fn_old) <-m] f.(fn_body) t le m3 out → outcome_result_value out f.(fn_return) vres → Mem.free_list m3 (blocks_of_env e) = Some m4 → logic_bind_result G_args f.(fn_post_result_var) f.(fn_return) vres G_post→ valid_acsl empty_env m4 [].[f.(fn_old) <-m] G_post f.(fn_post) → eval_funcall m (Internal f) vargs t m4 vres
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 419 Figure 4.19: Big-step semantics of annotated Clight statements (function calls)

Theorem 10

 10 Preservation of semantics ClightACSL to Clight forall p tr i, bigstep_program_terminates p tr i → Clight.bigstep_program_terminates (erase_program p) tr i.

Variable

  utype : Type. Inductive type := | Tuser :> utype → type | Tarrow : type → type → type | Tprop.
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 51 Figure 5.1: Types used inside symbols

Inductive

  mtype := | Mint (sz:intsize) (sg:signedness) | Mfloat (sz:floatsize) | Mpointer (cty: ctype) . Coercion ctype_of_mtype mty : ctype := match mty with | Mint sz sg ⇒ Tint sz sg | Mfloat sz ⇒ Tfloat sz | Mpointer cty ⇒ Tpointer cty end.

Fixpoint

  denutype uty : Type := match uty with | Tatype aty ⇒ ClightACSLSemantics.den_type aty | Tmap ⇒ Clight.temp_env | Tmem ⇒ Mem.mem | Tintlist ⇒ list Z | Tident ⇒ ident end.

Definition

  axiom_load_store_eq mty := Tforall (Tforall (Tforall ( let m := Tvar HI2 in let a := Tvar HI1 in let x := Tvar HI0 in Timply (Tsymapp (SymValidStore mty) m a) ((Tsymapp (SymEq mty) (Tsymapp (SymLoad mty) (Tsymapp (SymStore mty) m a x) a) x))))).

Inductive

  par : list type → type → Type := | PAR_degrade_int sz sg: par [Linteger] (Tint sz sg) | PAR_mem_alloc cty: par [] (Tpointer cty). Definition Pbounds {L} E sz sg (t: term E Linteger) : prop L E := Pand (Tsymapp (SymRelZ Cle) (Tsym (SymConstInteger (min_int sz sg))) t) (Tsymapp (SymRelZ Cle) t (Tsym (SymConstInteger (max_int sz sg)))). Definition get_parspec P A (pa: par P A) : parspec P A := match pa with | PAR_degrade_int sz sg ⇒ {| par_contract := {| pre := Pbounds sz sg (Tvar HI0); post := Peq (Tvar HI1) (Tsymapp (conv_int_integer sz sg) (Tvar HI0)) |}; par_effects := {} |} | PAR_mem_alloc cty ⇒ {| par_contract := {| pre := Ptrue; post := post_alloc cty |}; par_effects := { (&Rmem) } |} end. Definition den_par P A (pa: par P A) := match pa in par P A return env P → state → state * dentype A with | PAR_degrade_int sz sg ⇒ fun G S, (S, bZ_of_Z sz sg (accslidx HI0 G)) | PAR_mem_alloc cty ⇒ fun G S, let (m, b) := Mem.alloc (cmem S) 0 (sizeof cty) in (update S Rmem m, b) end. Lemma den_par_correct : forall P A (pa: par P A), ∀G S, evalterm pa.(pre) G [] S → let (S', a) := den_par pa G S in evalterm pa.(post) (a::G) [S] S' ∧ assigns S pa.(par_effects) S'.
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 54 Figure 5.4: Whycert Parameters

Definition

  rel_Gce (ce: Clight.env) E (vm: cvarmap E) (G : env E):= forall i, match ce.[i], vm i with | Some (b, cty), Some (cty'&v) ⇒ cty = cty' ∧ b = 0 ∧ accsvar v G = {| adr_block := b; adr_ofs := Int.zero |} | None, None ⇒ True | _, _ ⇒ False end.

Definition

  rel_lm_S L (SS: states L) (lm: lmem) (lmp: labmap L) := forall idt, match lm.[idt], lmp idt with | Some m, Some l ⇒ At l SS Rmem = m | None, None ⇒ True | _, _ ⇒ False end.

Fixpoint

  pt_type aty := match aty with | Larray aty ⇒ pt_type aty | Tctype cty ⇒ cty | _ ⇒ Tvoid end.

Definition

  cast_lrtype lr aty: den_lrtype lr aty → dentype (lr_type lr aty) := match lr with false ⇒ id | true ⇒ id end. Lemma comp_acsl_term_correct: forall te t lr aty (tty: term_typed te t lr aty) E (lvm: lvarmap E te) (vm: cvarmap E) G (G_e: Env te), rel_lm_S SS lm lmp → rel_Gs lvm G G_e → rel_Gce ce vm G → forall wt, comp_acsl_term cge lmp lvm vm tty = Some wt → evalterm wt G SS S = cast_lrtype (ClightACSLSemantics.evalterm cge ce (cmem S) lm G_e tty).

  signed int a = MAX_INT; unsigned int b = a + a; unsigned int c = (a + a) -b;

Definition

  Eptrarith L E cty (e1: exp (Tpointer cty)) sz sg (e2: exp (Tint sz sg)) : expr L E _ := Elet e1 (Elet e2 (Eassert ((TnotNullBlock (Tvar HI1))) (Eterm (Tsymapp (SymPtrArith cty) (Tvar HI1) (Tsymapp (SymPromoteInteger sz sg) (Tvar HI0)))))). Definition Eetempvar {E} idt mty : expr E _ := (Eassert (Tsymapp (SymMapValidGet mty) (Tsym (SymIdent idt)) (Tderef (Rtmp))) (Eterm (Tsymapp (SymMapGet mty) (Tsym (SymIdent idt)) (Tderef (Rtmp))))).Inductive rel_expr E (vm: cvarmap E): Clight.expr → forall mty, expr L E mty → Prop := | relexpr_constint sz sg i: ø -

  -Econst_int i (Tint sz sg) =∼= r Ecallpar (PAR_degrade_int sz sg) [Tsym (SymConstInteger (sg i))] | relexpr_constfloat sz f: ø -

  -Eaddrof e (Tpointer (typeof e)) =∼= r we | relexpr_arith_zbop (zbopc: integer_binop_or_cmp) sz' sg' ce1 ce2 sz1 sz2 sg1 sg2 sz1' sz2' sg1' sg2' (e1: exp (Mint sz1 sg1)) (e2: exp (Mint sz2 sg2)) sz sg: ce1 =∼= r e1 • ce2 =∼= r e2 • typeof ce1 = Tint sz1' sg1' • typeof ce2 = Tint sz2' sg2' • classify_int_type2 sz1 sg1 sz2 sg2 = classify_int_type2 sz1' sg1' sz2' sg2' -

  -Ebinop zbopc ce1 ce2 (Tint sz' sg') =∼= r Ezbop zbopc sz sg e1 e2 | relexpr_ptr_arith ce1 ce2 cty sz sg sz' sg' (e1: exp (Mpointer cty)) (e2: exp (Mint sz sg)): ce1 =∼= r e1 • ce2 =∼= r e2 • typeof ce1 = Tpointer cty • typeof ce2 = Tint sz' sg'
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 58 Figure 5.8: Equivalence relation between C and Whycert expressions (right values)

  -Evar idt cty =∼= l Eterm (Tvar v) | rellexpr_gvar i b gv: vm i = None • Genv.find_symbol cge i = Some b • Genv.find_var_info cge b = Some gv -
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 59 Figure 5.9: Equivalence relation between C and Whycert expressions (left values)

Program

  Definition get_right E e (x:option (left_or_right_expr E e)) : option { mty : mtype & expr L E mty } := match x with | Some (inr r) ⇒ return r | Some (inl x) ⇒ let? (mty,_) := get_memtype (typeof e) in return (mty & Eload (cast (T:=(Tpointer;exp)) x)) | None ⇒ error end.

Inductive

  neutral_cast : mtype → mtype → Type := | nc_ii sz1 sg1 sz2 sg2: neutral_cast (Mint sz1 sg1) (Mint sz2 sg2) | nc_pp cty: neutral_cast (Mpointer cty) (Mpointer cty). Definition Encast_int {E} sz1 sg1 sz2 sg2 t : expr E _ := Ecallpar (PAR_degrade_int sz2 sg2) [Tsymapp conv_int_integer sz1 sg1 t]. Definition Encast E mty1 mty2 (C: neutral_cast mty1 mty2) we := (Elet we match C in neutral_cast mty1 mty2 with | nc_ii sz1 sg1 sz2 sg2 ⇒ (Encast_int sz2 sg2 (Tvar HI0)) | nc_pp cty ⇒ (Eterm ((Tvar HI0))) end). Definition Esassign E mty1 mty2 (C: neutral_cast mty1 mty2) (e1: exp (Tpointer mty2)) (e2: exp mty1) := Eignore (Elet e1 (Elet (Encast C e2) (Eassert (Tsymapp (SymValidStore _) (Tderef Rmem) (Tvar HI1)) (Eassign Rmem (Tsymapp (SymStore mty2) (Tderef Rmem) (Tvar HI1) (Tvar HI0)))))).

  void cf(int a, int * b){ float c; int d[5]; ... } For clarity, the result is shown in Why3 concrete syntax but using our actual symbols and parameters. let f (a : C_int) (b : C_pointer_int) = { ( * compilation of cf.(pre) * ) } rtmp := SymMapEmpty; let m_a = PAR_mem_alloc_int () in let m_b = PAR_mem_alloc_pointer_int () in let m_c = PAR_mem_alloc_float () in let m_d = PAR_mem_alloc_array_int_5 () in rmem := SymStore_pointer_int (SymStore_int !rmem m_a a) m_b b; let result = try ( * comp. of cf.(body) * ) with Exc_return x → x in rmem := SymFree_int (SymFree_pointer_int !rmem m_b) m_a; result { ( * compilation of cf.(post) * ) } Notice that the compilation of cf.(pre) and cf.(post) can refer to a and b and the compilation of cf.(body) can refer to m_a , m_b , m_c and m_d . It could also refer to a and b , but it doesn't. All these variable names are only for sake of explanation: the actual compilation uses well-typed De-Bruijn indices for which we must formally specify the typing environment they are well typed in. We start by defining the signature of the compiled function. It is deduced directly from the signature of the C function to be compiled cf : Definition mkt (x : ident * ctype) : type := snd x. Definition mapt := List.map mkt. Definition fsignature cf := {| returns := cf.(fn_return); receives := mapt cf.(fn_params) |}. mapt cf.(fn_params) is thus the typing environment for the contract and the body of the Whycert function obtained by a compilation of the Clight function cf . It contains an entry for each formal parameter.In function contracts, an occurrence of a formal parameter with the identifier id will thus be compiled to a De-Bruijn index that refers to the position at which id occurs in the list of formal parameters cf.(fn_params) . On the contrary, inside the body of a C function occurrences of formal parameters are treated like program variables and just like for local variables we allocate a memory block for them. For this we iterate of the list of variables and for each of them call the parameter PAR_mem_alloc which modifies the memory reference Rmem and returns the newly allocated pointer. Every result is kept in a local let as illustrated by the example. Inside the nesting of let blocks, the allocated pointers are thus visible in reverse order: the innermost let block holds the last allocated pointer. Given a generic list of variables el of type list (ident * ctype) and a generic outer typing environment E , we define the typing environment inside the nesting of let blocks mk_El el E as follows:Definition mkpt (x : ident * ctype) : type := Tpointer (snd x). Definition mappt := List.map mkpt. Infix "+<+" := List.rev_append (at level 60, right associativity). Definition mk_El el E := mappt el +<+ E.Given a Clight function cf , its body is thus compiled as a Whycert expression with the following typing environment: Definition body_E cf := mk_El (cf.(fn_params) ++ cf.(fn_vars)) (mapt cf.(fn_params)).

Fixpoint

  alloc_vars el E A : expr (mk_El el E) A → expr E A := match el with | [] ⇒ id | (idt,cty)::l' ⇒ fun e, Elet (Ecallpar (PAR_mem_alloc cty) []) (alloc_vars e) end. Infix "@" := List.map (at level 15, right associativity) : list_scope. Definition prefinal_E pelr pel vel := mk_El (pelr +<+ pel ++ vel) (mkt @ pelr +<+ mkt @ pel). Definition final_E := prefinal_E []. Definition geti1 idt cty pelr pel vel : var cty (prefinal_E pelr ((idt, cty) :: pel) vel) := ... Definition geti2 idt cty pelr pel vel : var (Tpointer cty) (prefinal_E pelr ((idt,cty)::pel) vel) := ... Fixpoint mk_bind_pars {pel vel} pelr : term (prefinal_E pelr pel vel) Tmem → term (prefinal_E pelr pel vel) Tmem:= match pel with | nil ⇒ id | (idt, cty)::pel' ⇒ fun t, mk_bind_pars ((idt, cty) :: pelr) (Tsymapp (SymStore cty) t (Tvar (geti2 idt cty pelr pel' vel)) (Tvar (geti1 idt cty pelr pel' vel))) end. Definition bind_pars {pel vel} : term (final_E pel vel) Tmem := mk_bind_pars [] (Tderef Rmem). Definition geti3 cty elr idt el E : var (Tpointer cty) (mk_El (elr +<+ (idt, cty) :: el) E) := ... Fixpoint mk_free_vars {el E E'} elr: term (E' ++ (mk_El (elr +<+ el) E)) Tmem:= match el with | nil ⇒ Tderef Rmem | (idt, cty)::el' ⇒ Tsymapp (SymFree cty) (mk_free_vars ((idt, cty)::elr)) (Tvar (lift_idx E' (geti3 cty elr idt el' E))) end. Definition free_vars {A pel vel} : term (A::(final_E pel vel)) Tmem := mk_free_vars (E':=[A]) []. Definition Ebody cf (e: expr (body_E cf) cf.(fn_return)) := (Eseq (Eassign Rtmp (Tsym SymMapEmpty)) (alloc_vars (Eseq (Eassign Rmem bind_pars) (Elet (Etry e (ExcReturn cf.(fn_return)) (Eterm (Tvar HI0))) (Eseq (Eassign Rmem free_vars) (Eterm (Tvar HI0))))))).
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  rtmp in let result = let t1 = ( * compilation of a * ) in let t2 = ( * compilation of b * ) in let t3 = ( * compilation of c * ) in f (t1, t2, t3) in rtmp := SymMapSet "tmp1" ttmp result; ()

Inductive

  exprlist E : list type → Type := | el_nil : exprlist E [] | el_cons ty P: expr E ty → exprlist (ty::E) P → exprlist E (ty::P). Fixpoint fold_exprlist E P (l: exprlist E P) A : expr (P +<+ E) A → expr E A := match l with | el_nil ⇒ id | el_cons ty _ e _ l' ⇒ fun e', Elet e (fold_exprlist l' e') end. Inductive set_result : ctype → option ident → Type := | set_result_yes mty idt: set_result mty (Some idt) | set_result_no cty: set_result cty None. Definition option_mapset E cty oidt (X: set_result cty oidt) : term L E cty → term L E Tmap → term L E Tmap := match X with | set_result_yes mty idt ⇒ fun t tm, Tsymapp (SymMapSet mty) (Tsym (SymIdent idt)) tm t | set_result_no omty ⇒ const id end. Fixpoint mk_arglist P E : hlist (term0 (P +<+ E)) P := match P with | [] ⇒ []%hlist | A::P' ⇒ (Tvar (lift_rev_idx P' HI0) :: mk_arglist P' (A :: E))%hlist end. Definition Escall E cf (l: exprlist (Tmap :: E) (body_P cf)) res (sres: set_result cf.(fn_return) res) (fi: lidx cf cfl) : expr E Tunit:= Elet (Eterm (Tderef Rtmp)) (Elet (fold_exprlist l (Ecall (mk_fidx fi) (mk_arglist (body_P cf) _))) (Eignore (Eassign Rtmp (option_mapset sres (Tvar HI0) (Tvar HI1)))))).

Figure 5 . 12 :
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|

  gensem_ifthenelse mty (e0: exp mty) (pe0: pure e0) x ty1 (e1 e2: exp ty1) (e1: gexpr e1) (e2: gexpr e2) S' b o: sempure_bool G SS S e0 x b → gensem (E:=_) (x::G) SS S (gexpr_bool b e1 e2) S' o → gensem G SS S (geifthenelse pe0 e1 e2) S' o | gensem_return_none ty: gensem G SS S gereturn_none S (Outexn (A:=ty) ExcReturn void) | gensem_return_some mty1 mty2 ty e (pe: pure e) (C: neutral_cast mty1 mty2) x: sempure_ncast G SS S C e x → gensem G SS S (gereturn_some C pe) S (Outexn (A:=ty) ExcReturn x) | gensem_break ty: gensem G SS S gebreak S (Outexn (A:=ty) ExcBreak void) | gensem_continue ty: gensem G SS S gecontinue S (Outexn (A:=ty) ExcContinue void) | gensem_while_false (t_inv: ter Tprop) mty (e_cnd: exp mty) (pe_cnd: pure e_cnd) x (e: exp Tunit) (e: gexpr e): evalterm t_inv G (SS) S → sempure_bool G (SS) S e_cnd x false → gensem G SS S (gewhile t_inv pe_cnd e) S outvoid | gensem_while_stop (t_inv: ter Tprop) mty (e_cnd: exp mty) x (e: exp Tunit) (pe_cnd: pure e_cnd) (e: gexpr e) S' o o': evalterm t_inv G (SS) S → sempure_bool G (SS) S e_cnd x true → gensem (L:=_) (E:=_) (x::G) (SS) S e S' o → outcome_break_or_return o o' → gensem G SS S (gewhile t_inv pe_cnd e) S' o' | gensem_while_loop (t_inv: ter Tprop) mty (e_cnd: exp mty) x (e: exp Tunit) (pe_cnd: pure e_cnd) (e: gexpr e) S' o S'' o': evalterm t_inv G (SS) S → sempure_bool G (SS) S e_cnd x true → gensem (L:=_) (E:=_) (x::G) (SS) S e S' o → outcome_normal_or_continue o → gensem G SS S' (gewhile t_inv pe_cnd e) S'' o' → gensem G SS S (gewhile t_inv pe_cnd e) S'' o' | gensem_label ty (e: exp ty) (e: gexpr e) S' o: gensem (L:=_) G (S::SS) S e S' o → gensem G SS S (gelab e) S' o | gensem_label' ty (e: exp ty) (e: gexpr e) S' o: gensem (L:=_) G (S::SS) S e S' o → gensem G SS S (gelab' e) S' o .
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Figure 5 .

 5 Figure 5.16: Proof Schema

  Lemma ngensem_nnsem_seminf:forall L E G SS S ty (e : expr L E ty) (ge : gexpr e), ¬(∃S' o, gensem G SS S ge S' o) → ¬nsem G SS S e → seminf G SS S e.

cofix

  CO L E G SS S ty (e : expr L E ty) (ge : gexpr e) := match ge with | gecall ... ⇒ ... (seminf_arglist (...) (... (CO ...))) | _ ⇒ ... emd

  rel_fm cge fm pp relates functions in the funmap fm with those in the Clight global environment cge and their compiled counterpart in the Whycert program pp rel_lm_S SS lm lmp relates labels in the labmap lm with their entries in the Clight labelled memory lm and the corresponding one in the Whycert stack of previous states rel_Gce ce vm G relates local Clight variables in the varmap vm with their entries in the local Clight environment ce and the corresponding one in the Whycert execution environment G

  Inductive rel_stmt E vm brk rtt s ty: forall L (lmp: labmap L) (x: expr L E ty), gexpr x → Prop := | rel_stmt_1 L (lmp: labmap L) (x: expr L E ty) (e: gexpr x): comp_stmt cge fm lmp (vm:=vm) brk (rtt:=rtt) s ty = Some (x&e) → rel_stmt E vm brk rtt s ty L lmp x e | rel_stmt_2 L (lmp: labmap L) (x: expr (succ L) E ty) (e: gexpr x): comp_stmt cge fm lmp (vm:=vm) brk (rtt:=rtt) s ty = Some (Elab x & gelab' e) → rel_stmt E vm brk rtt s ty (succ L) (lm_lift lmp) x e.

Figure 5 . 19 :
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Parameter

  stdlib_ls : ocamlstring → ocamlstring → ocamlstring → forall {ar vl}, lsymbol ar vl. Parameter stdlib_ty : ocamlstring → ocamlstring → ocamlstring → list ty → ty. Parameter make_lsymbol : ocamlstring → forall ar vl, lsymbol ar vl. Parameter make_ty: ocamlstring → ty.

Lemma

  m_alloc_free_preserves_permissions cty b m1 m2 m3: sizeof cty < Int.modulus → Mem.alloc m1 0 (sizeof cty) = (m2, b) → m_preserve_permissions m2 m3 → m_preserve_permissions m1 (complete3 Mem.free m3 b 0 (sizeof cty)).

  SymStore_Tint_I32_Signed m1 p i) p i2) p)

  For this function we generate 11 proof obligations. The first two are interesting:goal Goal_2 : conv_int_integer_I32_Signed (SymLoad_Tint_I32_Signed m1 p) = conv_int_integer_I32_Signed (SymLoad_Tint_I32_Signed m1 p)goal Goal_2 : SymValidLoad_Tint_I32_Signed m1 p

  

  Terms may refer to a mutable state associating a value to every global reference. The syntax !r allows dereference r . Additionally terms may refer to previous states by means of their label.Logic terms are used inside program expressions whose concrete syntax is self explanatory:

	e ::= t	term
	| e; e	sequence
	| let v = e in e	local binding
	| f(t,...,t)	function or parameter call
	| if t then e else e	conditional branching
	| r := t	assignment of a reference
	| 'L: e	labelled expression
	| assert {t}; e	local assertion
	| raise (ex t)	exception throwing
	| try e with ex v → e	exception catching
	| loop invariant {t} e	infinite loop

  Definition 5 (Safe execution) An expression e executes safely in environment G and state SS/S if either it diverges or it terminates

	Inductive sem L E (G:env E) (SS:states L) (S:state) A
	: expr L E A → state → outcome A → Prop :=
	| semterm (t:term L E A):
	ø
	-

  Supposing that the list of arguments el can be evaluated correctly, the goal reduces to

	¬(∃S' o, gensem G SS S (gecall el sres fi) S' o) →
	¬nsem G SS S (Escall el sres fi) →
	seminf G SS S (Escall el sres fi)

sempurelist G' SS S el G_args → seminf G' SS S (fold_exprlist el (Ecall (mk_fidx fi) (mk_arglist (body_P cf))))

Note that these definitions, as well as the ones shown in Figs. 3.6 and 3.19 are purely for illustrative purposes; the real example is processed by the Why3 front end as described in Section 3.5.3

Total correctness is not considered in this work; however it is clear that one could add annotations for termination checking: variants for loops and for recursive functions as in ACSL[START_REF] Baudin | ACSL: ANSI/ISO C Specification Language, version 1.4[END_REF].

Parameter den_real : real → R.

Implicit Type cty : ctype. Implicit Type ty : type.1. Aggregate types with logical elements are required by the reference manual, but are currently not supported by the FramaC implementation

This statement is probably not provable in Coq itself and for this development to be fully certified we however prove certain properties about it, but a huge amount of confidence could be given to this kind of index calculation even without such a proof.
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We take advantage of this definition of denotations of types and of the typing rules for terms we previously defined to directly state their denotational semantics as Coq values of the correct type. If a term is a left value, then its denotation is a memory address, and if it's a right value, then its denotation has the type that is the denotation of the type of the term: for simplicity we chose this to be a total function that returns Vundef for non basic values. We have the following two properties to relate this to type_val : most all the types appearing in the program.

Given any list of such polymorphic axioms axioms_mty of type list (mtype → closed_prop) , any list of axioms depending on a ctype axioms_cty of type list (ctype → closed_prop) and any list of non polymorphic axioms axioms0 of type list closed_prop we can compute the list of needed, instantiated axioms based on the list of types appearing in the program. With this mechanism we can add as many axioms as necessary for the provers to prove the generated proof obligations -it is perfectly safe, as long as we can prove in Coq that the axioms' interpretations are valid, that is that:

Lemma needed_axioms_valid ctl : valid_list (needed_axioms ctl).

The axioms needed to process the first examples are introduced as needed in Section 5.6.3.

References and Exceptions

Another generic parameter of our intermediate language is the set of global references. To model the C memory heap we simply chose a reference of type Tmem and a reference of type Tmap for the current function's local temporary variables. The phantomtype operator produces a type with the annotations defined by the given function. That is the above definition is more convenient to be used as an ordered type but otherwise equivalent to the following: [TZBopOrCmp op (Tsymapp (conv_int_integer sz1 sg1) (Tvar HI1)) (Tsymapp (conv_int_integer sz2 sg2) (Tvar HI0))]))). unsigned int c = 2; int r1 = a / b, r2 = a / c; puts (r1 == r2 ? "true" : "false");

The execution will print out "false", because in the second division a / c , the occurrence of a is interpreted as unsigned and evaluates to 2 32 -4 which is then divided by 2.

This example also shows the criticality of the typing of C expressions. The current formalisations of Clight and CompcertC consider expressions as annotated with their types. This assumes that when constructing the AST from concrete syntax the correct types are inserted starting from the types of constants and variables respecting some typing environment. As the semantics of C expressions depend on their typing, the same importance should be attributed to both of their formal specifications. is actually an mtype (see rule relexpr_tempvar ). This is because we want to reuse the type of temporary variable environments as defined in Compcert, i.e. dictionaries from identifiers to basic values val . We apply our operators type_val and val_untype to interface these untyped val with our well-typed world: These will be the interpretations of the symbols SymMapGet , SymMapValidGet and SymMapSet justifying the equivalence relation and the axioms. We prove that this equivalence relation is correct, that is that every two related expressions have the same semantics: The full definition of the compilation of Clight expressions is shown in Fig. 5.10. Besides the treatment of binary integer operations, most cases are easy and only checking of some type constraints is required.

To complete the proof of soundness of the compilation of C expressions, we prove that source and the target expressions are in our equivalence relation: Along with rel_expr_correct and rel_lexpr_correct which prove that equivalence relation is correct, this implies that the compilation of expressions preserves the semantics.

Obviously the presented compilation of C expressions remains incomplete. One could add a missing case by completing the function comp_lrexpr and fill the new hole in proof of complrexpr_correct .

Compilation of Statements and Functions

The intention of the compilation is to produce a Whycert program with the same structure and the same control flow as the C program: the Whycert program must simulate the C program. The Whycert language provides for everything necessary: conditionals, loops, exceptions to encode break and return and functions, that are mutually recursive as in C. Notable exceptions are goto jumps which may introduce unstructured control flow.

Compilation Schemes

We start by defining the compilation schemes for the statements. They are given as Coq functions whose arguments are to be provided by the actual compilation of the sub-expressions or sub-statements.

The easiest one, the Clight skip , is mapped to a constant of type void :

Definition Esskip {E} : expr E Tvoid := Eterm (Tsym SymConsttt). let v1 = e1 in let v0 = cast c e2 in assert { valid_store !mem v1 }; mem := store mty2 !mem v1 v0

To compile C conditionals we need to convert the guard expression, which can be of any memory type, to a predicate stating that it is different from zero. The same predicate is used for the guard of while loops. Here we also need to simulate the handling of the break and continue statements, which is encoded using exceptions. Conforming to the semantics of the C control, the continue exception is caught inside the loop, such that the next cycle can go on, whereas the break exception is caught outside the loop, in fact interrupting the loop. For reasons explained below, the compilation of while loops is split into a core part around which is added a label. The last exception involved in the compilation of C statements is used to encode a return . In the case the C function returns some value, there is an implicit cast to the function's return type, just like in an assignment, so we make use of the neutral cast operator Encast . This exception is caught at the end of the body of the function to properly return the result. In addition the compilation of the body must simulate the memory allocations for parameters and local variables, the initialisation of the newly allocated memory blocks that correspond to formal parameters and, at the end, the release of memory. Here we need to construct the required vari- which can be proved by co-induction and case analysis over e .

The complete proof scheme is illustrated in the diagram in Figure 5.16.

The definition of the sub-language gexpr is shown in Figure 5.13. It as given as a dependently typed inductive with one case for each currently handled C statement plus one, gelab' , for the label around while loops needed to encode the loop assigns clause. The definition makes use of another sub-language, pure , of Whycert expressions that do not have side effects. The compilation of Clight expressions generates pure Whycert expressions and we define the following helper functions that directly return the appropriate proof: 

Soundness Proof

The outlined approach allows performing the proof of semantics preservation as anticipated above. Several details which complicate the actual proof are explained in this section.

The first part to be proved is that the specialised semantics gensem , shown in Figures 5.14 The type of or_ind2 is then

This allows arbitrary generation and simplification of sub-goals which are then included in the induction principle.

In our concrete case, the principle looks like this: It is proved as described generating the 17 desired sub-goals but it takes about 70 minutes on a 3.2GHz CPU consuming up to 2GB memory. For convenience, to avoid rebuilding and rechecking this principle at every minor change, its type can be textually copied and assumed as an axiom which should be updated only when the semantics changes. The proof of rel_stmt_correct then consists in an application of this principle followed by the proofs of the various sub-goals, most of which are trivial after application of rel_expr_correct , rel_lexpr_correct and comp_acsl_prop_correct described above. Only the case of the function call is more involved, as we have to show that the compiled program correctly simulates the allocation and deallocation of local variables and formal parameters establishing the hypotheses rel_lm_S SS lm lmp and rel_Gce ce vm G where a quite tedious reasoning involving De-Bruijn indices is required.

This concludes the soundness proof as it implies safe whole program semantics under the condition that the verification conditions and that the pre-condition of the main function are valid:

Theorem comp_prog_correct pg pre_main m: comp_prog cp = Some (pg, pre_main) → Genv.init_mem cp = Some m → VCGEN pg → evalterm pre_main G0 SS0 (mkstate m) → (∃t i, bigstep_program_terminates cp t i) ∨ (∃t, bigstep_program_diverges cp t).

Theorem vcgen_finally_correct ct ax gl: vcgen cp ct = Some (ax, gl) → (valid_list ax → valid_list gl) → (∃t i, bigstep_program_terminates cp t i) ∨ (∃t, bigstep_program_diverges cp t). printf("Input a valid temperature :"); else printf("input a valid temperature,stupid:"); scanf("%d",&temp); flag='y'; } while (temp<0||temp >100); celsius=(5.0/9.0)*(temp-32); printf("%d degrees F is %6.2f degrees celsius\n",temp,celsius); printf("Cette these n'a pas de sens"); 

Examples

The purpose of the following toy examples is to introduce the basic axioms in the logical context. Unless stated otherwise, the generated verification conditions are proved automatically by Alt-Ergo, CVC3 and Z3.

Toy Example 1: Simple Assert

The first, simplest example aims to test the condition generated for just an assertion int main() { //@ assert 42+2 == 44; return 0; } When parsing this code Frama-C transforms it slightly, so the plug-in prints it after these transformations: This axiom, whose name depends on its current position in the list of axioms and may vary, results from the following entry in axioms_mty (cf. Section 5.1. For the interpretation of SymMapValidGet and SymMapSet given above (page 98), the evaluation of the axiom results in the type of the following lemma, which is proved in Coq hence validating the use of the axiom.

Lemma validget_tmpvar_1 mty idt le (x: den_ctype mty) :

validget_tmpvar mty idt (set_tmpvar idt le x).

The last obligation comes from the post-condition of the main function. It is automatically generated ( PpreservePermissions ) in order to relate the permissions of memory in the pre-state with the one in the post-state. As there isn't any memory update in this example the two memories are the same and this can be proved with the reflexivity axiom, trivially justified by the interpretation of SymMemPreservePermissions (cf. Fig. 5.3). axiom Axiom_15 : forall m1:memory. SymMemPreservePermissions m1 m1

Toy Example 2: A global variable

The next example aims to test our tool in presence of assignments on global variables in several functions:

x = 42; //@ assert x+2 == 44; return; } int main() { forty_two(); x = 40; return 0; } On this example we generate 14 proof obligations: 5 for the function forty_two , 8 for main and one for the pre-condition of main . For the assignment x = 42 to be safe, x must have write permissions for its type int32 and 42 must be small enough to fit into this type. The latter is similar as for 0 in the previous example, whereas the former is new: For every global variable that respects certain criteria we add the predicate SymValidStore to the preconditions of all the functions. To be sure to have safe whole program semantics, we must prove that the pre-condition of main is valid in the initial state, which is guaranteed by the following lemma. The last two proof obligations for the function forty_two concern the memory obtained by performing the store:

The former is generated for the assertion x+2 == 44 and can be solved using the load-store axiom, already shown in Section 5.1.3. On the other hand, just like in the previous example, the latter is generated for the automatic post-condition, except that here the memory has been modified, so we need the following axiom, justified by the Compcert memory model. The former comes from the automatic pre-condition of forty_two and can be proved with the automatic pre-condition of main ( H ) while the latter comes from the assignment x=40 showing the importance of the automatic post-condition of main ( H2 ).

Toy example 3: Function with Formal Parameter, Allocation

In this example we try to use formal parameters and pre-and post-conditions about them but we also for the first time try to actually load values from memory: / * @ requires x == 42; @ ensures x == 42; @ * / void forty_two(int x) {

x += 2; //@ assert x==44; return; } int main() { forty_two [START_REF] Mehta | Proving pointer programs in higher-order logic[END_REF]; return 0; } This example also illustrates the ACSL semantics of formal parameters in function contracts, which are considered as logical variables independent from memory. Thus the given postcondition should be trivially valid and not x == 44 (cf. Section 4.2.2).

For this example our tool generates 16 proof obligations, 9 for forty_two and 7 for main . Most of them are already explained, but the first one is new:

It is generated for the very first statement x += 2 ensuring that x is loadable and correctly initialised. That's not a problem as the current memory has been updated with an allocation for each formal parameter, each of which has been bound to the corresponding value (cf. Fig. Five more obligations are generated for this line: two trivial overflow checks for the expression 2 , two overflow checks for the expression x + 2 , solvable thanks to the pre-condition, and a per-goal Goal_2 : SymValidLoad_Tint_I32_Signed (SymStore_Tint_I32_Signed(SymStore_Tint_I32_Signed m2 p i)p1 i1) p

Here a new predicate comes into play: SymMemPreserveContents . Given a list of blocks, it relates any two memory states with the same contents except possibly in the blocks that are specified in the list. The list of blocks is intended as a first approximation for a generic set of memory locations specified by a set of terms including intervals and aggregates as in ACSL. Its interpretation is given as fun l, m_preserve_contents (except_list l) pragmatically defined as follows: It is easy to see that the following axiom is valid This, together with two axioms for the specification of the predicate, allows CVC3, but not Altergo, neither Z3, to prove the above and all the other proof obligations, except the one concerning the assigns clause, whose encoding is shown in Figure 5.22. Basically, it asserts SymMemPreserveContents with the list of blocks compiled from the given list terms in the clause. In the example, we require assigns \nothing , so the list is empty. In spite of several axioms provided in order to reason about this predicate, including reflexivity, transitivity and monotony, no prover is currently able to solve the concerned proof obligation goal Goal_2 : SymMemPreserveContents (Nil:list int) m (SymFree_Tint_I32_Signed (SymFree_Tint_I32_Signed (SymStore_Tint_I32_Signed (SymStore_Tint_I32_Signed m2 p i) p1 i1) p1) p)

Because of the symmetric allocation and deallocation of local variables, the proof obligation concerning the preserving of permissions is easily proved thanks to the property of PAR_mem_alloc described above.

Toy Example 6: Pointers

The following example is automatically proved //@ assert 0 < i; return i; } There is nothing new to add with respect to the previous examples. Since our memory model is already low-level, that is variables as i above lie in memory with some address. In other words storing into a variable is not different from storing in memory at a given address.

A slightly more realistic example: Integer Square Root

The example shown in Figure 5.23 is typically taught to students when teaching Hoare logic. However this is a real implementation taking into account the size of machine integers. It illustrates the use of loop invariants and loop assigns clauses.

On this example we generate 78 proof obligations. All are proved automatically, except a few similar to the ones explained in Section 5.6.3.

Discussions

About the approach for proving soundness of compilation

A huge part of this work consisted in developing the proof of semantics preservation of the compilation of statements. As observed in other works, the proof of backward simulation is always difficult and reverse forward simulation, as required in this work, is even stronger.

In Bertot [START_REF] Bertot | A certified Compiler for an Imperative Language[END_REF] this proof is approached by defining a decompilation relation between the source and the target language. Such a predicate relates an expression of the source language L S with an equivalent expression of the target language L T . To be useful, it must contain an entry for every expression e T of L T that is the result of a compilation for any expression of L S , but also for every / * @ requires 0 <= x <= 32768 * 32768 -1; @ assigns \nothing; @ ensures \result >= 0 && @ \result * \result <= x && @

x < (\result + 1) * (\result + 1); @ * / int isqrt(int x) { int count = 0, sum = 1; / * @ loop invariant 0 <= count <= 32767 && @ x >= count * count && @ sum == (count+1) * (count+1); @ loop assigns count, sum; @ // loop variant x -count; @ * / while (sum <= x) sum += 2 * ++count + 1; return count; } //@ ensures \result == 4; int test () { int r; r = 0 + isqrt(17); //@ assert r < 4 ==> \false; //@ assert r > 4 ==> \false; return r; } int main () { return 0; } Instead we adopted the approach described in Section 5.5.2 which consists in splitting the proof sem -> exec_stmt , into sem -> gensem and gensem -> exec_stmt but which however poses some difficulties. To begin it is necessary to define specialised semantics for Whycert gensem , with one case for each rule of Clight.exec_stmt , and an inductive predicate for the absence of Whycert semantics nsem . The former predicate is quite long to write, nevertheless it can be seen as a series of lemmas and justified by making the proof easier. The latter is also long, though completely mechanical to define and one could investigate if such a predicate -together with the predicate for diverging semantics -can be generated automatically starting from the inductive definition of big-step terminating semantics.

Both parts of this splitting are however not trivial. Concerning gensem -> exec_stmt , because of the special case of the label in front of the loop, a simple decompilation relation can not be completely avoided and contributes to the exorbitant computation time to generate the induction scheme gensem_rel_stmt_ind . On the other hand, the proof of sem -> gensem by coinduction is certainly simpler than by decompilation but still not as straightforward as it should be. While the forward simulation proof gensem -> sem took 5 minutes, the reverse simulation required a case by case reasoning for the execution of each sub-expression and was complicated by the technical issues about co-induction described.