
HAL Id: tel-00789724
https://theses.hal.science/tel-00789724

Submitted on 18 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed and cooperative intrusion detection in
wireless mesh networks

Anderson Morais

To cite this version:
Anderson Morais. Distributed and cooperative intrusion detection in wireless mesh networks.
Economics and Finance. Institut National des Télécommunications, 2012. English. �NNT :
2012TELE0046�. �tel-00789724�

https://theses.hal.science/tel-00789724
https://hal.archives-ouvertes.fr

DOCTORAT EN CO-ACCREDITATION
TELECOM SUDPARIS ET L’UNIVERSITE EVRY VAL D’ESSONNE

Spécialité : Informatique

 Ecole doctorale : Sciences et Ingénierie

Présentée par
Anderson Morais

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Distributed and Cooperative Intrusion Detection in

Wireless Mesh Networks

Soutenue le 28 Novembre 2012

devant le jury composé de :

Directeur de thèse : Prof. Ana Cavalli - Télécom SudParis
Rapporteurs : Prof. Patrick Sénac - ISAE et LAAS-CNRS
 Prof. Marcelo Dias de Amorim - LIP6-UPMC
Examinateurs : Jean-Luc Richier - LIG
 Michel Bourdellès - THALES
 Prof. Stéphane Maag - Télécom SudParis
 Prof. Nina Yevtushenko - Tomsk State University

Thèse n° 2012TELE0046

ii

iii

Acknowledgements
In the first place, I would like to thank my advisor, Prof. Ana Cavalli, for accepting me in

her research group and providing me inestimable guidance throughout my doctoral study. I

especially appreciated her precious advices and inputs during my research work.

Special thanks to Prof. Patrick Sénac and Prof. Marcelo Dias de Amorim for carefully

reviewing my thesis manuscript and providing valuable comments. Also thanks to Jean-Luc

Richier, Michel Bourdellès, Prof. Stéphane Maag, and Prof. Nina Yevtushenko for taking

the time to check my thesis.

I also thank my friends in LOR department for their cherished friendship and the good

time we passed in these three years: Anis Laouiti, Iksoon, Pramila, Pablo, Felipe, Mazen,

Fayçal, Alessandra, Xiaoping, Khalifa, and Brigitte Laurent. With special thanks to friends

Dario and Elisangela who helped me during my arrival in France.

Here I would like to express my sincerest thanks and deepest appreciation to my wife,

Klicia, for her encouragement and support during this period. Without her company and

assistance, I could not accomplish this mission.

Thanks are also extended to Prof. Eliane Martins who put me in contact with Prof. Ana

Cavalli and encouraged me to start the PhD thesis.

Finally, I would like to express my profound gratitude to my family for their constant

and generous support always believing in me. And I would like to thank Lord Jesus Christ

for all spiritual strength, comfort in darkest hours, and constant presence.

iv

v

Abstract
Wireless Mesh Network (WMN) is an emerging technology that is gaining importance

among traditional wireless communication systems. WMNs are becoming popular as a way

of providing Internet access in a cost-effective, easy, and fast manner. However, WMNs are

particularly vulnerable to external and insider attacks due to their inherent attributes such as

open communication medium and decentralized architecture. A compromised mesh device,

for instance, can launch attacks by fabricating malicious routing information to disrupt the

network routing operation, then putting the entire mesh network at risk. In WMNs, the

mesh nodes cooperate and forward packets from each other in order to enlarge their

communication range and reach nodes outside their transmission range. Nonetheless,

internal malicious nodes may refuse to cooperate by intentionally dropping packets in order

to violate the integrity of the network communication system.

In this research, we propose a complete distributed and cooperative intrusion detection

system for efficient and effective detection of WMN attacks in real-time. Our intrusion

detection mechanism is based on reliable exchange of network events and active

cooperation between the participating nodes. In our distributed approach, Intrusion

Detection Systems (IDSs) are independently placed at each mesh node to passively monitor

the node routing behavior and concurrently monitor the neighborhood behavior. This is

suitable since we do not have a centralized point of traffic concentration in the mesh

network where a central IDS can be deployed to aggregate all of the traffic for analysis.

Based on that, we first implement a Routing Protocol Analyzer (RPA) that accuracy

generates Routing Events from the observed traffic, which are then processed by the own

node and exchanged between neighboring nodes. Second, we propose a practical

Distributed Intrusion Detection Engine (DIDE) component, which periodically calculates

accurate Misbehaving Metrics by making use of the generated Routing Events and pre-

defined Routing Constraints that are extracted from the protocol behavior. The DIDE

component is able to efficiently signalize malicious activities in real-time on the own node

communication link or in the neighborhood with low computational overhead. Third, we

propose a Cooperative Consensus Mechanism (CCM), which is triggered among the

neighboring nodes if any malicious behavior is detected. The CCM module analyzes the

vi

Misbehaving Metrics and shares Intrusion Detection Results among the neighbors to track

down the source of intrusion, i.e., the malicious node, and decide on its culpability. In,

addition, a threshold-based approach is developed to improve the analysis of Misbehaving

Metrics so we can achieve a higher detection rate and lower false positive rate.

To validate our research, we implemented the distributed intrusion detection solution

using a virtualized mesh network platform composed of virtual machines (VMs)

interconnected, which represent the network topology. We also implemented several

routing attacks that are representative of common WMN security threats to evaluate the

performance of the intrusion detection mechanisms. Our experiments show very

encouraging results on detecting different types of routing attacks and properly identifying

the attacker nodes while incurring small computation cost.

vii

Résumé
Les réseaux maillés sans fil (WMNs - Wireless Mesh Networks) sont une technologie

émergente qui prend de l'importance parmi les traditionnels systèmes de communication

sans fil. WMNs sont de plus en plus populaires comme un moyen de fournir l'accès à

l’Internet d'une manière rentable, facile et rapide. Toutefois, WMNs sont particulièrement

vulnérables à des attaques externes et internes en raison de leurs attributs inhérents tels que

le moyen de communication ouverte et l'architecture décentralisée. Un appareil sans fil

mesh compromis, par exemple, peut lancer des attaques en fabriquant des informations de

routage malveillants pour perturber les opérations de routage du réseau, puis mettre

l'ensemble du réseau mesh en danger. Dans WMNs, les nœuds mesh coopèrent et

transmettent les paquets les uns des autres afin d'élargir leur gamme de communication et

d'atteindre autres nœuds en dehors de leur sphère de transmission. Néanmoins, des nœuds

malveillants internes peuvent refuser de coopérer en supprimant des paquets

intentionnellement afin de violer l'intégrité du système de communication réseau.

Dans cette recherche, nous proposons un système complet de détection d'intrusion

distribué et coopératif qui détecte efficacement et effectivement des attaques au WMN en

temps réel. Notre mécanisme de détection d'intrusion est basé sur l'échange fiable des

événements du réseau et la coopération active entre les nœuds participants. Dans notre

approche distribuée, systèmes de détection d'intrusion (IDS - Intrusion Detection System,)

sont indépendamment installé dans chaque nœud mesh pour surveiller passivement le

comportement de routage du nœud et en même temps surveiller le comportement de son

voisinage. Ceci est approprié puisque nous ne disposons pas d’un seul point de

concentration du trafic dans le réseau mesh dans lequel un IDS centralisé peut être déployé

pour analyser le trafic du réseau.

Sur cette base, nous avons d'abord développé un Analyseur de Protocole de Routage

(APR) qui génère avec précision des événements de routage à partir du trafic observée, qui

sont ensuite traités par le propre nœud et échangés entre les nœuds voisins. Deuxièmement,

nous proposons un Mécanisme de Détection d'Intrusion Distribué (MDID) pratique, qui

calcule périodiquement des Métriques de mal comportement précises en faisant usage des

événements de routage générés et des Contraintes de Routage prédéfinies qui sont extraites

viii

à partir du comportement du protocole. Le module de MDID est capable de signaler

efficacement les activités malveillantes en temps réel sur le lien de communication du

propre nœud ou dans le voisinage avec un coût de calcul bas. Troisièmement, nous

proposons un Mécanisme de Consensus Coopérative, qui est déclenché parmi les nœuds

voisins si tout comportement malveillant est détecté. Le Mécanisme de Consensus

Coopérative analyse les Métriques de mal comportement et partage les Résultats de

Détection d'Intrusion parmi les voisins pour traquer la source de l'intrusion, c'est à dire, le

nœud malveillant, et décider de sa culpabilité. En, outre, une approche basée sur seuil a été

développé pour améliorer l'analyse des Métriques de mal comportement afin que nous

puissions atteindre un taux de détection plus élevé et un taux de faux positifs inférieur.

Pour valider notre recherche, nous avons mis en œuvre la solution de détection

d'intrusion distribuée en utilisant une plate-forme de réseau mesh virtualisée composé de

machines virtuelles (VM - Virtual Machines) interconnectés, qui représentent la topologie

du réseau. Nous avons également implémenté plusieurs attaques de routage, qui sont

représentatifs des menaces communes à la sécurité du WMN, pour évaluer la performance

des mécanismes de détection d'intrusion. Nos expériences montrent des résultats très

encourageants sur la détection des différents types d'attaques de routage et l’identification

des nœuds attaquant alors que les coûts de calcul sont bas pour le nœud.

ix

x

Table of Contents

Acknowledgements .. iii

Abstract ... v

Résumé ... vii

List of Figures .. xiv

List of Tables ... xv

1 Introduction .. 1

1.1 Motivation ... 3

1.2 Contributions ... 5

1.3 Results ... 8

1.4 Organization of the Dissertation .. 10

2 Background and Related Work .. 12

2.1 Intrusion Detection .. 12

2.2 Intrusion Detection in Wireless Mesh Networks ... 16

2.3 Distributed and Cooperative Intrusion Detection .. 20

2.4 Conclusion ... 25

3 Attack Analysis ... 28

3.1 System Model .. 29

3.2 Attacker Model .. 30

3.2.1 Attacking Methods .. 31

3.3 BATMAN .. 34

3.3.1 Protocol Overview ... 34

3.3.2 Flooding Mechanism ... 35

3.3.3 BATMAN Advanced ... 37

3.4 Routing Manipulation Attack .. 38

xi

3.4.1 Attack Methods ... 38

3.4.2 Example of Attack Scenario .. 39

3.4.3 Attack Model ... 40

3.5 Experiment and Results ... 41

3.5.1 Experiment Environment ... 42

3.5.2 Attack Implementation .. 43

3.5.3 Attack Emulation in Scenario 1 ... 43

3.5.4 Attack Emulation in Scenario 2 ... 46

3.6 Attack Detection .. 50

3.6.1 Results for Scenario 1 .. 51

3.6.2 Results for Scenario 2 .. 54

3.7 Conclusion ... 55

4 Distributed and Cooperative Intrusion Detection ... 58

4.1 System Model .. 59

4.2 Attacker Model .. 60

4.3 Distributed Intrusion Detection Architecture .. 60

4.3.1 Bro IDS .. 61

4.3.2 Routing Protocol Analyzer .. 62

4.3.3 Distributed Intrusion Detection Engine ... 64

4.3.4 Cooperative Consensus Mechanism .. 65

4.3.5 Response Mechanism .. 69

4.4 Threshold Approach .. 71

4.5 Distributed Detection of Message Fabrication Attacks ... 73

4.5.1 RPA: Routing Events .. 73

4.5.2 DIDE: Routing Constraints ... 75

4.5.3 DIDE: Misbehaving Metrics ... 75

4.5.4 CCM: Consensus Algorithm ... 77

4.6 Performance Evaluation .. 79

4.6.1 Experiment Platform ... 79

4.6.2 Defining the Threshold .. 80

xii

4.6.3 Emulation of Message Fabrication Attack .. 82

4.6.4 Results ... 84

4.7 Performance Analysis .. 87

4.7.1 CPU and Memory Consumption ... 87

4.7.2 Communication Overhead ... 91

4.8 Discussion .. 93

4.8.1 Security .. 93

4.8.2 Complexity and Limitations .. 95

4.9 Conclusion ... 97

5 Distributed Detection of Packet Dropping Attacks ... 100

5.1 System Model .. 101

5.2 Attacker Model .. 101

5.3 Distributed Detection of Malicious Packet Dropping ... 102

5.3.1 Routing Protocol Analyzer .. 102

5.3.2 Distributed Intrusion Detection Engine ... 103

5.3.3 RPA: Routing Events .. 103

5.3.4 DIDE: Routing Constraints ... 105

5.3.5 DIDE: Misbehaving Metrics ... 106

5.4 Cooperative Consensus Mechanism .. 107

5.5 Performance Evaluation .. 111

5.5.1 Experiment Platform ... 111

5.5.2 Defining the Threshold .. 111

5.5.3 Emulation of Packet Dropping Attack... 114

5.5.4 Results ... 115

5.6 Performance Analysis .. 119

5.6.1 CPU and Memory Consumption ... 120

5.6.2 Communication Overhead ... 123

5.7 Discussion .. 126

5.7.1 Security .. 126

5.7.2 Complexity and Limitations .. 127

xiii

5.8 Conclusion ... 129

6 Conclusion and Perspectives.. 132

6.1 Conclusion ... 132

6.2 Future work ... 135

References.. 140

xiv

List of Figures

1.1 Wireless mesh network architecture ... 2

3.1 BATMAN flooding scheme ... 36

3.2 Route manipulation attack .. 39

3.3 State machine for routing manipulation attack ... 41

3.4 Mesh network topology for scenario 1 ... 44

3.5 Routing table updates for target nodes ... 45

3.6 Mesh network topology for Scenario 2 .. 47

3.7 Routing table updates for Scenario ... 48

3.8 Detection results for Scenario 1 .. 52

3.9 Sequence Number tree for node O1 .. 53

3.10 Detection results for node O1 ... 54

3.11 Detection results for Scenario 2 .. 55

4.1 Distributed intrusion detection architecture .. 61

4.2 Mesh topology emulated for the experiment .. 81

4.3 Misbehaving Metrics calculated by node O1 ... 81

4.4 Routing redirection attack ... 83

4.5 Misbehaving Metrics calculated by nodes O1, O2, and O3 84

4.6 CPU usage for the IDS at node O1 ... 88

4.7 Memory usage for the IDS at node O1 ... 90

5.1 Mesh topology emulated for threshold definition .. 112

5.2 Packet Dropping Metrics calculated by node O4 ... 112

5.3 Malicious node executing packet dropping attack .. 114

5.4 Packet Dropping Metrics calculated for Scen 1 ... 115

5.5 Packet Dropping Metrics calculated for Scen 2... 117

5.6 CPU utilization for the IDS at node O1 .. 121

5.7 Memory utilization for the IDS at nodeO1 ... 122

xv

List of Tables

4.1 Thresholds estimated for nodes O1, O2, and O3 .. 82

4.2 CPU statistics for the IDS at node O1 .. 88

4.3 Memory statistics for the IDS at node O1 .. 90

5.1 Thresholds calculated for nodes O2, O3, and O4 ... 113

5.2 CPU consumption statistics for the IDS at node O1 ... 121

5.3 Memory consumption statistics for IDS at node O1 ... 122

xvi

1

Chapter 1

1 Introduction

Wireless Mesh Network (WMN) has emerged as a new technology to cope with the

challenges of next-generation wireless networks, such as providing flexible, adaptive, and

reconfigurable network architecture while offering inexpensive solutions to wireless

Internet service providers (ISPs). ISPs are choosing WMNs to provide Internet connectivity

to costumers as it allows a fast, easy, and cost-efficient network deployment.

WMNs are typically self-organized, self-configured, and self-healed networks [1]

whereas the mesh nodes automatically establish a multi-hop ad hoc network and maintain

the connectivity among the participating nodes. The mesh nodes transmit traffic from

others nodes to reach a destination which they could not reach by themselves. This multi-

hop routing strategy widens the wireless service area and enables the network self-

managing and self-healing properties, e.g., if a mesh node can no longer operate or has a

temporary loss of connection, its neighbors simply find an alternative route through one or

more intermediate nodes and the network continues operating. Unlike traditional wireless

networks, WMNs do not rely on dedicated wireless infrastructure, but the nodes count on

each other to maintain the network fully connected and transmit traffic to destination. As a

result, the network is very reliable and has a good wireless coverage since there is often

more than one path between a source node and a destination node in the network.

WMN can be considered as a particular type of wireless ad hoc network. As Mobile ad

hoc networks (MANETs), WMNs also offer improved services and lower infrastructure

costs than conventional wireless networks since both architectures use multi-hop routing

strategy. Therefore, MANETs and WMNs are similar, but MANETs also have to deal with

the problems introduced by the constant mobility of nodes and frequent changes of network

topology. There are basically two types of mesh nodes: mesh routers and mesh clients [2],

as shown in Figure 1.1. The core nodes are the mesh routers, which constitute a wireless

mesh backbone among them and offer multi-hop wireless Internet connectivity to the mesh

Chapter 1. Introduction 2

clients. As the mesh routers provide rich radio mesh connectivity, the up-front deployment

cost and subsequent maintenance costs are significantly reduced. Mesh routers can be

assigned as gateway routers, which are then connected to the high-speed backhaul network,

i.e., to the Internet, in order to provide Internet connection to all nodes in the network. The

mesh routers have limited or no mobility and perform the role of routing traffic received

from stationary or mobile clients, who normally have no routing functionality, to the

gateway router that is connected to the Internet. Mesh clients are often mobile wireless

devices such as cell phones and laptops.

Figure 1.1: Wireless mesh network architecture.

WMNs generally use IEEE 802.11 technology to communicate between wireless mesh

routers. Since 2004, IEEE 802.11 Task Group ‘S’ [6] has been developing an amendment

to IEEE 802.11 standard to address the issue of multi-hop communication in WMNs

defining how wireless mesh devices can interconnect to create a WLAN mesh network

without having an Access Point (AP) between them. Wireless community networks and

municipal wireless networks are good examples of real-life WMNs offering multi-hop

paths between the wireless clients and gateway nodes. This type of network architecture

provides low-cost Internet access via Wi-Fi technology to whole neighborhoods and a

Mesh clients

Gateway routers

Internet routerInternet router

Mesh routers

Internet

Wireless mesh backbone
 (mesh cloud)

Chapter 1. Introduction 3

municipal area by using inexpensive IEEE 802.11 wireless routers to deploy the WMN.

1.1 Motivation
Unlike wired networks, which possess sophisticated security defenses for gateways and

routers to circumvent threats such as firewalls, antivirus, and complex cryptographic

systems, in a wireless network environment, the radio nodes are continuously threatened by

security intrusions. A WMN is highly vulnerable to several types of attacks due to its

inherit characteristics such as shared wireless communication channel, lack of physical

protection of nodes, absence of a centralized administration authority, high dependence of

cooperation of all nodes, and devices with limited resources. The lack of fixed

infrastructure and a reliable medium access mechanism make the mesh nodes potentially

vulnerable to external attacks, such as passive eavesdropping and jamming attacks.

In WMNs, the nodes need to trust each other since a node depends on intermediate

nodes to reach the other nodes in the network and eventually the Internet. Consequently, the

routing mechanism of WMN assumes that each participating node provides accurate

routing information and cooperatively forwards packets for its neighbors as specified by the

routing protocol with no malicious intention. By taking advantage of this assumed trust, a

malicious node can in practice adulterate routing paths of the network easily by

disseminating incorrect routing information through the mesh network.

Insider attacks against the routing protocol, such as node impersonation and routing

misbehavior attacks, are particularly a serious issue for the mesh network because they not

only compromise the integrity of paths but also the availability of the entire mesh network.

Attackers performing flooding and resource depletion attacks generate malicious packets,

which uses valuable network and hardware resources and puts the mesh devices at risk. As

a consequence, WMNs are exposed to a broad variety of active attacks, including routing

loop attack, selfishness, black hole attack, wormhole attack, routing table poisoning, route

manipulation or link spoofing attack, and Denial of Service (DoS) attacks.

Many research efforts have been conducted to conceive security methods for the

existing routing protocols of WMNs. In this case, many secure routing protocols have been

designed such as ARAN [3], Ariadne [4], and SAODV [5]. Most of these approaches rely

on key management, public key infrastructure (PKI), and encryption technologies to protect

Chapter 1. Introduction 4

the integrity and authenticity of routing messages as well as prevent unauthorized nodes

from joining the network. Outsider attacks can be avoided by applying cryptographic

techniques, including authentication and encryption mechanisms, in which the transmitted

messages are protected from modifications. Nevertheless, a compromised device owning a

legitimate key, or even a non-authenticated mobile node that have access to the network,

can generate malicious traffic, intercept and modify packets, and refuse to forward traffic

by discarding packets received from neighboring nodes. Furthermore, cryptographic

schemes usually require high computational overhead, which consume a significant portion

of hardware resources, such as CPU and memory, and can be exploited by DoS attacks.

Malicious nodes disrupt the integrity of routes and compromise the whole network

operation when they propagate fake routing messages to manipulate the network routes, or

behave in a selfish manner by dropping legitimate routing and/or data packets that are

expected to be relayed by the node. Selfish nodes can choose to drop packets in a selective

or random fashion, or drop all the packets without forwarding any traffic. Hence, message

fabrication and packet dropping attacking techniques represent a serious threat to the

normal routing functioning and data transmission of WMNs.

Satisfactory security solutions and attack detection mechanisms in this emerging

wireless network environment have not been sufficiently studied. Therefore, a distributed

and cooperative Intrusion Detection System (IDS) is essential for wireless ad-hoc networks

to defend against malicious behavior, to secure the routing of WMN, and to cope with the

limitations of cryptographic systems. IDSs, which have been successfully used in wired

networks to detect attacks, can provide an appropriate second line of defense to identify

malicious traffic and misbehaving nodes in hostile wireless environments.

Intrusion detection task comprises data collection by monitoring the various system

activities such as system logs or captured packets from the network, and subsequent

analysis of the data to identify possible security breaches such as intrusions and misuses.

However, designing IDS for WMNs is a difficult task because of the intrinsic properties

and physical limitations of WMNs. First, since all nodes are expected to be well-behaved

and highly cooperative, malicious nodes can exploit this assumption to launch different

attacks targeting any node in the mesh network. Then, the IDS design must cover the

largest possible number of attacks that can be executed by misbehaving insider nodes.

Chapter 1. Introduction 5

Second, detecting insider attacks in a mesh network requires intense collaboration

between the neighboring nodes and a broader view of the network activity in order to track

down the source of intrusion, i.e., each node needs sufficient monitoring information from

the neighbors to detect intrusions. A distributed intrusion detection approach is more

convenient than exclusively relying on local observation of individual nodes since the node

can only see a portion of the network traffic: the packets it sends or receives. Therefore,

local data auditing is intrinsically inaccurate, and cannot detect some type of routing

attacks, for instance, byzantine attacks, due to the absence of a centralized point of traffic

concentration in the ad-hoc network topology.

Moreover, the communication links between nodes are more unstable in a wireless

environment than a wired network because of interferences and congested channels, then

causing loss of messages between nodes. Therefore, the intrusion detection mechanism

must take into account the link quality in terms of packet loss rate in order to have a

minimum amount of traffic information to analyze, and maintain a precise intrusion

detection accuracy with reduced false positive and false negative rates.

In addition, mesh devices, such as netbooks and mobile phones, commonly have

constrained hardware resources, such as memory, CPU, and battery power, and restricted

bandwidth usage. Then, this diversity of mesh nodes with scarce resources may affect the

effectiveness and efficiency of the IDS they support. For instance, a node can silently drop

packets to conserve resources then encumbering the IDS task of distinguishing overloaded

nodes from selfish nodes. Thus, the IDS should be efficient in the matter of producing

minimum communication overhead and low computational overhead during the intrusion

detection process. Therefore, intrusion detection for WMNs remains a complex and

challenging issue for security researchers.

1.2 Contributions
The main contribution of this work is the implementation of a complete distributed and

cooperative intrusion detection solution for WMNs. We focus on efficiently detecting

insider intrusions in real-time by collaboratively monitoring the network activity of the

mesh nodes and by exchanging suspected traffic information. We also study routing attacks

against the nodes of the WMN, which reveal security breaches of the routing protocol. In

Chapter 1. Introduction 6

particular, the key contributions of this dissertation include as follow.

In a first part, we present routing manipulation attacks against Better Approach To

Mobile Ad hoc Network (BATMAN) [7], a proactive routing protocol especially designed

for WMNs but also applicable to MANETs. We provide analysis of routing manipulation

attacks and demonstrate the attack feasibility in detail. We show how a unique

compromised node is capable of manipulating the routes of the rest of the mesh nodes and

redirect the traffic to the compromised node. In order to validate our analysis, we

implemented the routing manipulate attack in an emulated mesh network environment

composed of virtual machines (VMs), which represent the mesh nodes executing

BATMAN protocol. We perform routing attacks by using a network traffic generator,

which emulates the malicious node behavior that fabricates routing packets to mislead the

target nodes. Then, we perform extensive experiments on emulating routing manipulation

attacks to check BATMAN security mechanism. We also present an efficient mechanism to

detect routing manipulation attacks and identify the source of attack, i.e., the malicious

node, which makes use of the BATMAN traces produced by each mesh node.

Therefore, we provide insights into how to emulate routing attacks against the real

routing protocol implementation, in our case we utilize BATMAN protocol, in a controlled

virtualized mesh network environment since most of previous ad-hoc network security

approaches, including intrusion detection solutions for WMNs, have been validated using

simulation-based studies and network simulators. Our analysis and experimental results of

routing attack emulation expose the security vulnerabilities of BATMAN protocol.

In the second part of the thesis, we propose a distributed and cooperative intrusion

detection approach for WMNs. In our approach, an IDS tool runs individually on each node

to passively monitor the network traffic and eventually detect routing attacks in

collaboration with the neighboring nodes. We implement specific traffic filters for the IDS

tool in order to select the appropriate routing packets being transmitted on the node network

interface. Then, each node IDS tool concurrently analyses the collected routing traffic and

generates routing protocol events, which are processed by the own node and subsequently

exchanged with direct neighbors to minimize the message overhead when monitoring the

neighborhood behavior. For that purpose, we developed a Routing Protocol Analyzer

(RPA) module which examines each routing packet and produces respective Routing

Chapter 1. Introduction 7

Events according to the protocol behavior. In this work, we make use of BATMAN routing

protocol as case study, and therefore BATMAN specification is used to define the Routing

Events. However, the RPA module is quite customizable and flexible, and can easily

accommodate other routing protocols as well.

After, we implement the core part of the distributed intrusion detection architecture,

the Distributed Intrusion Detection Engine (DIDE) component. This module processes the

Routing Events produced by the RPA module and also the Routing Events received from

neighboring nodes to cooperatively detect routing misbehavior intrusions. We define

Routing Constraints which are extracted from the routing protocol behavior and are

integrated into DIDE component. Again, we use BATMAN specification to formulate the

Routing Constraints, nevertheless additional routing protocols are similarly supported. We

also implement part of the routing attack detection algorithms in the DIDE. Based upon the

Routing Constraints, the DIDE component periodically calculates Misbehaving Metrics.

The Misbehaving Metrics indicate if possible malicious routing behavior is occurring on

the node network interface or in the neighborhood, i.e., if the node or a neighbor is

originating malicious routing traffic, for instance, the malicious node is transmitting fake

routing packets to its neighbors. Our collaborative intrusion detection procedure, which is

carried out by the DIDE component, is executed in real-time by the IDS tool having low

computational overhead and reasonable message overhead, and it is quite efficient with

regard to hardware resources consumption.

We propose a Cooperative Consensus Mechanism (CCM) module that is triggered by

the node IDS if any evidence of malicious routing information is found by the IDS agent.

The CCM module inspects the Misbehaving Metrics provided by the DIDE component,

such as rate of inconsistent routing packets received by the node, and confirms if abnormal

routing behavior detected by DIDE is a routing attack or not based on thresholds. Then, the

node IDS warns the neighboring nodes about the detected routing intrusion. Before making

the final decision, the node IDS consults its neighbors. Thus, the CCM module shares

Intrusion Detection Results with neighboring CCM modules to confirm that its neighbors

diagnosed the same routing attack to finally make a collective decision about the suspicious

node. If the majority of nodes detected the intrusion, a consensus is reached among the

neighboring nodes on the suspected node. The proposed Consensus Algorithm coordinated

Chapter 1. Introduction 8

among neighboring nodes is able to efficiently detect malicious routing traffic in a

neighborhood and the source of the intrusion with good precision in real-time.

Furthermore, we propose a threshold-based scheme that is used along with CCM

module to enhance the accuracy of analysis of Misbehaving Metrics. The threshold

mechanism takes into consideration the rate of packet loss between communication links of

nodes to differentiate attack detection rate from false alarm rate in order to achieve a better

true positive rate and low false positives. Our threshold-based mechanism results in smaller

false positives and also provides better efficiency in terms of intrusion detection rate.

We demonstrate the efficacy of our distributed intrusion detection approach by

applying a virtualized mesh network environment that consists of VMs interconnected. The

VMs connected with each other are equivalent to mesh nodes executing our distributed

intrusion detection solution in a mesh topology. In this platform, we represent the adversary

nodes by using VMs which execute attack injector tools. We employ these attacking tools

to implement the most common routing misbehavior attacking techniques such as routing

message fabrication and packet dropping attack variants. In that manner, we satisfactorily

evaluate the performance of our distributed intrusion detection algorithms. Our

experimental results show that our distributed intrusion detection method achieves high

detection rate for different types of message fabrication and packet dropping attacks with

no false negatives and low false positive rate.

We show the our IDS implementation presents good effectiveness and high level of

reliability in the role of detecting different routing attacks, and yet incurs small computation

overhead, i.e., CPU and memory overhead, and acceptable communication overhead for the

mesh devices. Then, our intrusion detection solution achieves scalability having good

performance in terms resources consumption with practical assumptions.

1.3 Results
The constant pursuit of publishing the obtained results conducted the development of this

work. Therefore, as soon as we obtained preliminary results on the intrusion detection

approach we published the first article in a relevant conference. Thus, the listing below

shows in ascending order by date of publication the articles which have been resulted from

this thesis work and provides a quick description about each one.

Chapter 1. Introduction 9

• A. Morais, and A. Cavalli, Route Manipulation Attack in Wireless Mesh Networks,

In Proceedings of the 25th IEEE International Conference on Advanced Information

Networking and Applications (AINA 2011), pp. 501-508, March 2011, Biopolis,

Singapore.

This paper presents detailed security analysis of routing manipulation attacks

against Better Approach To Mobile Ad hoc Network (BATMAN) routing protocol.

In this paper, we demonstrate the attack practicability through a virtualized network

environment where we perform several attacks by using an attack injector tool.

• A. Morais, and A. Cavalli, Detection of Attacks in Wireless Mesh Networks, In

Proceedings of 5th Latin-American Symposium on Dependable Computing (LADC

2011), pp. 45-54, April 2011, Sao Jose dos Campos, Brazil.

This paper analyzes routing attacks against the proactive routing protocol Better

Approach To Mobile Ad hoc Network (BATMAN). We demonstrate the impact of

these attacks by using an emulated mesh network platform that consists of virtual

nodes executing BATMAN protocol. Then, we show how to detect this type of

attack by making use of BATMAN traces produced by the mesh nodes.

• A. Morais, and A. Cavalli, A Distributed Intrusion Detection Scheme for Wireless

Ad Hoc Networks, In Proceedings of 27th Annual ACM Symposium on Applied

Computing (SAC'12), pp. 556-562, March 25-29, 2012, Riva del Garda, Italy.

This paper introduces the distributed intrusion detection approach which is based

upon exchange of events and cooperation between the mesh nodes. The proposed

mechanism relies on non-intrusive traffic monitoring at each node, which generates

network events. These events are processed by the intrusion detection system that is

able to signalize malicious activities in real-time. We demonstrate the approach

efficiency for detecting misbehaving nodes through the virtualized network

environment that consists of virtual nodes interconnected.

Chapter 1. Introduction 10

• A. Morais, and A. Cavalli, An Event-Based Packet Dropping Detection Scheme for

Wireless Mesh Networks, In Proceedings of 4th International Symposium on

Cyberspace Safety and Security (CSS 2012), pp. 309-323, December 12-13, 2012,

Melbourne, Australia.

In this paper, a distributed and cooperative approach for detection of packet

dropping attacks is provided. An intrusion detector placed at each node monitors the

node behavior and shares routing events and detection results with neighboring

nodes. Based on these events, each node is capable of detecting malicious dropping

behavior on the own node or in the neighborhood. A virtualized mesh network

environment is used to implement the distributed packet drooping detection

approach and to execute packet-dropping attacks.

1.4 Organization of the Dissertation
The rest of the dissertation is organized as follows. In Chapter 2, we discuss related

concepts of intrusion detection in wireless ad-hoc networks and WMNs, and compare our

work with other related work. Chapter 3 presents the routing manipulation attack against

BATMAN routing protocol and provides a trace-based method to detect this type of routing

attack and malicious nodes in the WMN. Chapter 4 describes the proposed distributed and

cooperative intrusion detection architecture and its main modules for collaborative

detection of routing attacks and the corresponding adversarial nodes. In this chapter, we

focus on detecting message fabrication attacks variations. Chapter 5 applies the distributed

intrusion detection architecture for detection of packet dropping attack variants. In Chapters

3, 4 and 5, we demonstrate the effectiveness of our attack detection and distributed

intrusion detection mechanism in a virtualized mesh network environment through

extensive experimental evaluation. Finally, Chapter 6 concludes this work and points

toward some future research directions.

Chapter 1. Introduction 11

12

Chapter 2

2 Background and Related Work

Many studies have been focused on providing security schemes to WMNs. Cryptography

tools such as authentication services and access control mechanisms can improve the level

of security of WMNs. However, these attack prevention approaches alone cannot avoid all

possible attacks, such as internal attackers. Therefore, it is indispensable to have additional

security schemes to deal with misbehaving mesh nodes that have a valid key and access

rights. In this case, various intrusion detection approaches for WMNs and wireless ad-hoc

networks have come to existence. In this chapter, we discuss background and related work

to our research.

2.1 Intrusion Detection
Intrusion refers to an incident of unauthorized access to data or a computing service.

Intrusion Detection System (IDS) is a device or software application that collects data by

monitoring the different system activities, and subsequently analyzes the gathered data to

detect possible unauthorized activities, such as malicious activities or security policy

violations. The collected data can be audit logs created by the operating system or packets

captured from the network interface. When an intrusion is detected, a passive or active

response is triggered by the IDS according to the response policy.

IDSs are primarily focused on identifying potential security threats, logging

information related to the observed events, producing security reports, and notifying

security administrators of suspected events so that the attack can be contained to minimize

the system damage and the attacker can be properly identified. The accuracy of the IDS is

usually estimated in terms of false positives, i.e., false alarms triggered by the IDS when no

attack has happened, and false negatives, i.e., attacks not detected by the IDS. Then, IDSs

seek to reduce both false positive rate and false negative rate to improve the IDS

performance and its efficiency. IDSs can be classified into two categories according to the

Chapter 2. Background and Related Work 13

monitored events, i.e., the collected audit data.

• Host-based IDS (HIDS): HIDS monitors and analyzes internal events of the

computing system such as system calls, application logs, and file system activities

to identify intrusions. Basically, HIDSs checks the dynamic behavior and the state

of the computer system, which is stored in RAM, in the file system, or in log files.

• Network-based (NIDS): NIDS monitors the network traffic. This can be achieved

by putting the network interface into promiscuous mode, so all the packets are

captured and are subsequently examined to detect malicious activity.

An example of HIDS is OSSEC [8]. OSSEC is an open-source HIDS that performs log

analysis, checking of file integrity, policy monitoring, rootkit detection, time-based

alerting, and active response. OSSEC is composed of a central manager that stores file

integrity checking databases, logs, events, and system auditing entries, and it receives

information from agents, syslog, databases, and from agentless devices. Agents are

programs installed on systems in which they collect information and forward it to the

central manager for analysis and correlation. Agentless perform file integrity monitoring on

systems without an agent installed, for instance, firewalls, switches, and routers.

A popular NIDS is the open-source Snort [9]. Snort can operate as a packet sniffer,

which reads packets traversing the network link, and display them on the console, as a

packet logger to dump complete packets into a log file for later analysis, or as NIDS which

monitors the network traffic and checks the packets against a set of rules defined by the

user. A Snort rule set is a file of attack signatures with respective actions that tells Snort

what to do in case packets match the rule criteria. It works basically as an attack pattern

matching technique. However, Snort does not provide communication mechanisms which

allows Snort instances deployed in different nodes to share attack detection information. As

a result, Snort does not support distributed intrusion detection and collaboration between

the participating nodes to identify malicious nodes in a consensual manner.

Bro [10] is a representative NIDS that passively watches traffic on the network link for

detecting network intruders. Bro is divided into an event engine that transforms the filtered

Chapter 2. Background and Related Work 14

network traffic stream into a series of higher-level events, and a policy script interpreter

that runs these events by performing event handlers, which are written in a specialized Bro

language. Event handlers are used to express security policies, and are capable of updating

the global state information, synthesizing new events, scheduling events, recording

information to disk files, and generating alerts.

Since Bro provides a flexible and extensible monitoring architecture, we take

advantage of Bro structure to implement our distributed intrusion detection architecture for

WMNs, as explained in Section 4.2. Then, we apply Bro monitoring engine in the proposed

intrusion detection solution to capture and filter network traffic. In addition, we employ Bro

enriched language to implement a set of attack detection algorithms for identifying

malicious routing behavior. Moreover, we make use of Bro communication mechanism to

maintain intrusion detectors connected and implement the scheme of exchange of network

events and intrusion detection results between nodes, so we can monitor local vicinities

independently and perform collaborative diagnosis of routing attacks in the neighborhood.

We provide more details on our distributed intrusion detection architecture in Section 4.2.

More recently, Suricata [11], an open-source NIDS developed by Open Information

Security Foundation (OISF) was released. The novelty of Suricata is it employs a multi-

threaded architecture allowing the detection engine to take advantage of multiple core and

multiple processor host architecture to increase the speed and efficiency of traffic analysis

using hardware acceleration. As Snort, Suricata is a rule-based IDS then it matches a set of

pre-defined rules to the captured traffic to recognize attacks. Nonetheless, Suricata presents

the same architectural limitations as Snort by not providing a cooperative scheme between

nodes to share intrusion data for mutually detection of attacks.

IDSs are also classified depending on the detection engine, i.e., the detection technique

used to identify malicious behavior, into three main categories as follows.

• Signature-based or misuse IDS: The IDS compares the collected traffic with a pre-

defined set of attack patterns, known as signatures/rules, to identify intrusions. If an

intrusion pattern matches, then that attack is detected. The advantage of signature-

based detection is its accuracy. For that reason, signature-based IDSs are widely

preferred for commercial use. One limitation of this technique is it can only detect

Chapter 2. Background and Related Work 15

known attacks, not being able to detect new attacks or even variants of known

attacks, then presenting many false negatives. Therefore, IDS signatures must be

constantly updated to not leave the system vulnerable to new attacks, which can

take a significant time.

• Anomaly-based IDS [12]: The IDS uses profiles of normal behavior of the system,

usually defined statistically through automated training, to match against the actual

system activity, and it signalizes any significant deviation as anomalous behavior,

but not necessarily malicious. The underlying assumption is that malicious activities

will considerably deviate from normal behavior. The advantage of anomaly-based

IDSs is they are able to detect unknown attacks without prior experience. The major

drawback is the high false positive rate since normal behavior has large deviations

and it changes over time. Thus, false alarms must be investigated by the system

administrator, which is a time consuming job.

• Specification-based IDS [13]: The IDS relies on a set of constraints or rules that

specify the correct behavior of a program/protocol, and monitor the actual behavior

of the program/protocol in execution regarding these constraints. The intrusions,

which generally make the program/protocol behave in an incorrect manner, will be

identified without exact knowledge about the nature of the intrusion. This technique

combines the strengths of anomaly-based detection and signature-based detection

techniques, and it is able to detect known and unknown attacks with low false

positives. However, this approach cannot detect some type of attacks, such as DoS

attacks because they do not directly violate the program/protocol specification.

Snort and Suricata NIDS are good examples of signature-based IDS, which rely

exclusively on rule-based detection to inspect the network traffic. Bro policy script engine

also incorporates a signature matching facility that searches for specific traffic content as

Snort pattern matching. However, for Bro, these signatures are expressed as regular

expressions rather than fixed strings.

Chapter 2. Background and Related Work 16

2.2 Intrusion Detection in Wireless Mesh Networks
The current IDS tools for wired networks cannot be directly applied to WMNs. Building

IDS for inspecting the mesh network activity is not an easy task because of the intrinsic

characteristics and physical restrictions of WMNs. However, an IDS for WMNs is essential

to secure the network routing functionality and to cope with the limitations of

cryptographic systems, then providing a second line of defense. Consequently, researchers

have been working hard to develop new IDSs for WMNs or adapt the existing IDSs to suit

the characteristics of WMNs. Most of the research in intrusion detection pertains to

MANETs because WMN is a relatively recent development. Nonetheless, in principle, all

of the intrusion detection approaches of MANETs can be applicable to WMNs.

There have been few signature-based detection approaches proposed for WMNs and

little research on attack pattern matching techniques for this type of network. The constant

need of updating the signature database is a difficult process in mesh network architectures

and each node IDS signature database has to be individually updated each time. Attack

databases cannot be easily updated without a central administration.

Anomaly-based detection engines for WMNs rely on particular models of node

expected behavior, that are mainly based on statistical approaches, and label those nodes

that deviate from the behavior model as malicious nodes. However, there is no clear

separation between normal and abnormal network activities in mobile wireless scenarios.

Since nodes can join or leave the network arbitrarily and communication links can be quite

unreliable, e.g., with significant packet losses, then fluctuations on the transmission of

routing information can be attributed to a malicious node, or a node that has a poor wireless

connection, or a mobile node moving independently. As a consequence, the problem of

false positives becomes worse for the IDS in this environment with different scenarios.

A number of specification-based intrusion detection approaches have been proposed to

detect attacks against Ad hoc On-Demand Distance Vector (AODV) and Optimized Link

State Routing Protocol (OLSR) traditional routing protocols. Tseng et al. [14] proposed the

first specification-based intrusion detection approach for MANETs. The approach uses

Finite State Machines (FSMs) for specifying the correct routing behavior of AODV.

Network Monitors (NMs), which are assumed to cover all nodes, employ these FSMs for

detecting run-time violation of AODV operations, especially during the route discovery

Chapter 2. Background and Related Work 17

process. NMs analyze request-reply flows, i.e., Route Request (RREQ) and Route Reply

(RREP) messages, to identify attacks on AODV. NMs can ask neighbors about previous

messages or other node information. However, the approach does not take into account

natural packet loss present in wireless networks and cannot distinguish between lost

messages and packets dropped on purpose. Moreover, some of the assumptions used in this

work are not very realistic, e.g., MAC addresses and IP addresses of all nodes are registered

in the NMs and remain unchanged, and MAC addresses cannot be forged. In addition, the

approach requires adding additional field in the protocol original message RREQ to keep

track of the RREQ path, which certainly will cause incompatibility issues with other nodes

executing the unmodified routing protocol version.

Huang et al [15] propose to model AODV protocol behavior by decomposing it into

normal basic events and modeling these events by using Extended Finite State Automaton

(EFSA). The EFSA can detect anomalous basic events, such as fabrication of routing

messages or modification of routing messages, which are direct violations of the protocol

specification. They also use statistics on the states and transitions of EFSAs for building a

detection model to identify anomalous basic events that are temporal and statistical in

nature, i.e., not violate directly the specification, such as flooding of routing messages. The

approach combines the advantages of specification-based and statistical-based intrusion

detection. However, the protocol behavior is only analyzed from the point of view of a

single node with no communication between neighboring nodes for sharing collected

data/detection results, which makes the intrusion detection process inaccurate due to the

distributed and cooperative nature of WMNs and the constant instability of wireless links.

Orset et al. [16] provide a formal specification of correct behavior of OLSR protocol

by applying Extended Finite State Machines (EFSM) in order to detect run-time violations

of protocol implementation, i.e., some typical OLSR attacks and conformance anomalies.

The approach is similar to EFSA-based detection approach and therefore it has the same

limitations as it, i.e., the approach only monitors the correct behavior of each node

separately and do not considers the point of view of neighboring nodes for cooperative

detection of attacks. Moreover, the approach does not provide additional methods, for

instance, statistical schemes, to circumvent the main limitation of specification-based IDS:

detect attacks that do not immediately violate the protocol specification, e.g., message

Chapter 2. Background and Related Work 18

flooding attacks. In addition, building detailed formal specification for complex routing

protocols can be a very time consuming job.

Our IDS approach is mainly based on specification-based intrusion detection since we

specify Routing Constraints, which define the correct protocol behavior, so we can detect

malicious behavior that violate these constraints. The reason for using Routing Constraints

is they are optimized to cover the most common routing attacking methods of WMNs:

message fabrication, packet dropping, and message flooding. However, we essentially rely

on routing events, that are defined based upon the protocol specification, and are generated

as a result of the analysis of each routing message. By making use of routing events

together with Routing Constraints, we can identify most of attacks of WMNs in a reliable

and collaborative way since routing events are analyzed in parallel by the node and its

neighboring nodes to compute misbehaving metrics. Furthermore, we integrate a threshold-

based mechanism to distinguish between accidental packet loss of links and malicious

packet dropping. Hence, our intrusion detection approach provides better detection

accuracy with no false negatives while limiting the number of false positives. Moreover,

the approach is able to identify any new attack that makes use of these common attacking

methods without the need of updating the intrusion detection engine.

IDSs can also be classified according to the architecture employed for intrusion

detection in the network environment as follows.

• Stand-alone IDS: In this architecture, the IDS is installed at each node and strictly

utilizes node’s local audit data for detecting network intruders without collaborating

with other nodes. Nevertheless, the fact that the IDS architecture relies exclusively

on local audit data to recognize malicious behaviors the IDS performance is limited

in respect of detection accuracy and type of attacks that the IDS is able to detect

because of the distributed nature of WMNs. This architecture is more suitable for

flat network infrastructure.

• Distributed and cooperative IDS: To resolve the problem of absence of a single

point of traffic concentration in WMNs, where the IDS can be deployed for traffic

analysis, distributed and cooperative IDS architecture is proposed. Similarly to

Chapter 2. Background and Related Work 19

stand-alone architecture, a IDS installed in each node processes node’s audit data

locally but they also communicate with other nodes to exchange audit data and/or

detection results, examine the neighbors behavior, make agreed decisions about

inconclusive intrusion detection and suspected nodes, and provide responses to

attacks. This IDS architecture is more appropriate for flat networks.

• Hierarchical IDS: This architecture adopts a multilayer approach that divides the

network into clusters or zones. Some nodes are selected, based on specific criteria,

to perform as cluster-heads and have more responsibilities and roles in the intrusion

detection, such as communication with other clusters, that are different from those

of nodes that are part of the cluster, i.e., the cluster members. Cluster members

usually execute lightweight IDSs that only analyze local audit data, while cluster-

heads run a more complete intrusion detection engine that function as a second layer

of IDS using audit data from the cluster members to carry out global detection and

response. Hierarchical IDSs perform somehow cooperatively to detect intrusions.

Hierarchical architecture is preferred for multi-layered networks. However, the

process of creating and maintaining clusters often imposes extra processing load

and communication overhead to the network nodes.

Snort, Bro, and Suricata IDSs have per default a stand-alone IDS architecture.

However, Bro provides a communication system for exchanging intrusion detection

information that can be perfectly applied for distributed and cooperative detection, then

making Bro a distributed and cooperative IDS as well. That is the main reason why we

employ Bro for implementing our distributed intrusion detection solution for WMNs.

Since nodes in WMNs have partial view of network data, a distributed and cooperative

IDS architecture is preferable than stand-alone architecture in order to provide sufficient

traffic data to each node’s detection engine to reach the correct decision about detected

intrusions and malicious nodes. Moreover, relying on local data auditing is essentially

inaccurate and cannot detect some specific attacks, such as coordinated/collusion and

byzantine attacks, due to the absence of a central point of traffic concentration in the WMN

topology. Detection of internal attacks implies strong collaboration between neighboring

Chapter 2. Background and Related Work 20

nodes and wider view of network operation in order to locate the source of attack, i.e., each

node IDS requires enough traffic information from neighboring IDSs to diagnose such

intrusions. Therefore, the majority of the most recent intrusion detection approaches for

WMNs relies on distributed and cooperative IDS architecture.

2.3 Distributed and Cooperative Intrusion Detection
Since the network data is forward by the nodes of WMN in a cooperative manner which is

analogous to the mode that Internet routers relay IP packets, intrusion detection in Internet

routing environment is directly related to intrusion detection in wireless ad-hoc networks.

WATCHERS [17] is one of the first intrusion detection approaches proposed for Internet

routing environments, which makes use of a distributed intrusion detection scheme running

concurrently and independently in each router. Subsequent intrusion detection approaches

proposed for ad-hoc networks and WMNs adopt similar ideas from WATCHERS. In the

approach, routers check incoming packets to identify any routing anomalies. In addition,

each router keeps track of the amount of data received and transmitted to neighboring

routers. A link-state routing protocol is assumed since each router is aware of other routers

and the network topology. Then, routers periodically exchange their respective collected

metrics by using a flooding protocol, and start the analysis phase for doing the

comparisons. The purpose is detecting in a distributed manner misbehaving routers, which

can be compromised by an attacker and are selectively dropping packets above a given

threshold, or can be malfunctioning and are misrouting too many packets. If misbehaving

routers are detected, the other routers will change their routing tables to avoid forwarding

packets through these bad routers. However, computational costs can be high in this type of

Internet environment since each router must keep packet metrics for all of its neighboring

routers and share this information by flooding. In addition, certain conditions must be

respected, for instance, the majority of routers must be good, and each good or bad router

must be connected to at least one good router.

Zhang et al. [18] proposed one of the earliest distributed and cooperative intrusion

detection architecture for ad-hoc networks. In the architecture, IDS agents are placed

individually on each node. The IDS agent model is composed of six modules. The local

data collection module gathers audit data, such as communication activities within the node

Chapter 2. Background and Related Work 21

radio range. Then, this collected data is analyzed by the local detection engine module for

evidence of anomalies. If an anomaly is detected with strong evidence, the IDS agent can

independently determine that the network is under attack and can initiate a response action

by triggering the local response module, which raise an alert, or starting the global response

module. If an anomaly is detected with inconclusive evidence, IDS agents request the

cooperation of neighboring IDS agents for global detection using the cooperative detection

engine module, which communicates to other agents through a secure communication

module to exchange relevant data. However, the authors do not present the details of the

cooperative detection algorithm, i.e., which type of data is exchanged. In addition, they

only evaluate the local detection engine module for detecting intrusions locally.

Marti et al. [19] proposed watchdogs and pathraters. A watchdog runs on each node to

monitor the behavior of neighboring nodes by listening promiscuously the neighbors’

transmissions. When a node forwards a packet, then the node’s watchdog verifies that the

next node in the path also forwards the packet. Since it is assumed Dynamic Source

Routing (DSR) as routing protocol, the watchdog is aware of which route the packet will

follow through the network. If the watchdog detects a neighboring node is dropping packets

more than a certain threshold bandwidth, the node is considered as misbehaving one and a

message is sent to the source node. The pathrater mechanism avoids routing packets

through the detected misbehaving nodes. Each node maintains a rating for all the other

nodes between 0 and 1. Then, it calculates a path metric by averaging the nodes ratings in

the path. A neutral rating value of 0.5 is initially given for each node. The rating of nodes

on all actively used paths is periodically incremented, but if a node is suspected of

misbehaving, it will have its rating drastically decreased. But, the approach has serious

limitations, e.g., since the watchdog must have knowledge of the route it is limited to

source routing protocols. In addition, the watchdog cannot detect a misbehaving node in the

presence of ambiguous and receiver collisions, neighbors with limited transmission power,

false misbehaving report (blackmail attack) [41], collusion between nodes (coordinated

attacks), and partial dropping, i.e., a node dropping packets below the threshold.

Kachirski and Guha [20] introduced a multi-sensor intrusion detection system based on

mobile agent concept. The IDS is divided into three levels of mobile agents (sensors) with

certain functions: monitoring, decision-making, and action. Mobile agents, which monitor

Chapter 2. Background and Related Work 22

the network packets, are only executed in certain nodes that are chosen by vote within a

cluster. In addition, these nodes, i.e., the cluster-heads, execute decision-making agents,

which make collective decisions about network intrusions and also collect host-based

intrusion information from the cluster members. Every node executes an action agent that is

responsible for resolving intrusion situation on the node, e.g., locking out a node. The

advantages of this structure are reduced communication cost and the security analysis

computation is restricted to a few key nodes. Nonetheless, the feasibility of proposed multi-

sensor IDS, via simulation or implementation, is not studied for attack detection scenarios

with malicious nodes. Therefore, we cannot verify the approach efficiency.

Sterne et al. [21] proposed a general cooperative intrusion detection architecture for

MANETs. The architecture is organized as a dynamic hierarchy using multiple-layering

clustering. Intrusion detection observations are obtained from leaf nodes and cluster-heads,

which are responsible for collecting data by promiscuous monitoring or direct participant

reporting. Then, leaf nodes report the detection metrics to cluster-heads periodically. These

cluster-heads can be part of a second cluster, then reporting respective detection data to

their cluster-heads. The intrusion detection data is incrementally analyzed, consolidated,

correlated, and summarized as it flows upward towards the nodes in the top of the

hierarchy. The infrastructure also allows dissemination of intrusion response. The proposed

architecture is well formulated and it claims reducing communication overhead through

hierarchy. However, the practicability of the approach is not demonstrated via simulation or

implementation, so it is difficult to estimate the cost of operation and maintenance of the

architecture. Moreover, the approach does not differentiate between link packets loss and

malicious packet dropping, it can only detect a significant number of packets dropped.

Yang et al. [22] introduced SCAN, a network layer security solution for detecting and

reacting to misbehaving nodes. In SCAN, each node monitors the routing and packet

forwarding behavior of its neighboring nodes by promiscuously overhearing the neighbor

transmissions, and independently detects any misbehavior in its own neighborhood. A

distributed consensus scheme is implemented, in which a node is convicted of being

malicious only after multiple neighbors have reached that consensus. Nonetheless, SCAN

has the same disadvantages of Marti’s watchdogs approach since SCAN approach is limited

to AODV routing protocol that is similar to source routing protocol. Detection of routing

Chapter 2. Background and Related Work 23

misbehavior is only possible by adding new fields to AODV RREQ and RREP routing

messages so each node can maintain part of the routing table of its neighbors. In addition,

SCAN cannot detect packet forwarding misbehavior in the presence of neighbors with

weak signal transmission, and is not able to distinguish packet loss due to collision from

intentional packet dropping. Another limitation of SCAN is the need for multiple

neighboring nodes to collaborate in order to make a decision about a suspicious node.

Razak et al. [23] proposed a cooperative two-tier IDS architecture. In the first-tier, a

local-level IDS collects local audit data by overhearing network activities in promiscuous

mode and analyze these data firstly using a signature-based detection engine and then an

anomaly-based detection engine. If the IDS at first-tier cannot decide whether the

suspicious activity is malicious, the second-tier of the architecture is triggered. The second-

tier IDS of the node applies a global detection mechanism, which gathers audit data from

neighboring nodes and examines these data by using signature-based and anomaly-based

detection, similarly to the first-tier. The second-tier IDS maintains a list of friends to ensure

that nodes exchanging audit data with the IDS are trustful. This friendship mechanism

reduces the problem of false data transmission, i.e., blackmail attacks, since only trustful

nodes are allowed to send audit data to the second-tier IDS. However, the exchange of audit

data, the use of multiple detection engines for local and global detection, and the use of

trust management increases the IDS complexity and imposes a considerable computational

and communication overhead for the nodes that have constrained resources. In addition, the

accuracy of the IDS in detecting common routing attacks is not evaluated.

Komninos and Douligeris [24] proposed a layered intrusion detection framework

(LIDF) to detect compromised nodes in ad-hoc networks. LIDF consists of collection,

detection, and alert modules, which operates locally in every node in the network. The

collection module collects audit data at OSI link layer, for checking one-hop connectivity

and frame transmission, and at network layer, for checking routing and data packet

forwarding. The detection module processes the most relevant audit data collected from

these different layers to perform anomaly-based layered intrusion detection. Once

malicious activity is detected on a node, the alert module is responsible for notifying the

neighboring nodes which can request additional audit data from neighbors in order to reach

a more precise decision regarding the suspicious node. However, the approach does not

Chapter 2. Background and Related Work 24

specify in which attack scenarios the cooperative detection scheme is triggered. In addition,

the cooperative scheme requires that each node have at least three neighbors for functioning

in reliable way, but it is vulnerable to blackmail attacks. The authors claim the approach is

able to detect malicious packet dropping, but details of packet dropping detection

mechanism are not given neither experimental evaluation is presented.

The recent approach [25] proposed by Zhang et al. introduces an anomaly-based

detection system, termed RADAR, to detect and handle anomalous nodes in WMNs.

Monitor agents running on each mesh node gather local traffic observations, which are fed

to a reputation management system to calculate trust values for deriving the node

reputation. These agents exchange their opinions periodically or as required. Managers,

which can be deployed on mesh routers, run a dual anomaly detection engine, which uses

observations from the agents as input, i.e., the calculated node reputation that represents the

node behavior, in order to measure deviations between normal and anomalous behavior for

each node. Response policies handle the anomalies reported by the two detection engines.

However, the authors have not specified when the nodes decide to request the neighbors’

cooperation for exchanging detection information, e.g., the trust values of node, and how

this cooperation is achieved. Moreover, authors are vague about how monitor agents and

managers are deployed in the network, i.e., what type of the IDS architecture is employed.

Consequently, we cannot estimate the communication and computational overhead added

by the intrusion detection architecture. Nevertheless, the use of two detection engines at

each node increases the processing overhead.

More recently, Saxena et al. [26] propose a hierarchical architecture for detecting

selfish behavior in WMNs and enforcing cooperation among mesh routers. The architecture

adopts a decentralized detection scheme by dividing the mesh routers into clusters.

Monitoring Agents (MAs) installed on specific mesh routers watch the behavior of

neighboring mesh routers in the cluster by collecting periodic traffic reports from the mesh

routers and sending them to Sink Agents (SAs) hosted at the mesh gateways. SAs process

the reports and detect the presence of selfish mesh routers. Malicious packet dropping is

detected by counting the packets that the mesh router was supposed to forward and the

packets that it actually forwarded. A reputation mechanism is used to punish selfish mesh

routers. As opposed to the preceding approaches, the IDS architecture considers the

Chapter 2. Background and Related Work 25

wireless link quality to differentiate between intentional packet dropping and packet loss

due to poor link quality in order to decrease the number of false positives. The authors

claim the hierarchical reporting architecture reduces the communication overhead.

However, the constant transmission of traffic reports from mesh routers to MAs in the

cluster and from MAs to SAs incurs an extra communication overhead to these nodes. In

addition, mesh routers elected as cluster-heads and mesh gateways are unfairly overloaded,

which imposes a high processing cost since these nodes must frequently process traffic

reports, and they are vulnerable to man in the middle attack and blackmail attacks.

Moreover, cluster-heads may become critical point of failures in the IDS architecture.

2.4 Conclusion
The carried analysis reveals the most important strengths and weaknesses of current

cooperative and distributed IDSs for ad-hoc networks. It is hard to judge which IDS

approach is the best solution since none of them are complete and they primarily focus on

addressing specific issues of wireless ad-hoc networks. A key point in the existing

approaches is that they have been exclusively validated using simulation-based studies or

theoretical models, then lacking experience in real WMNs. Simulation is useful to estimate

the performance of intrusion detection engines, which are complex to implement as IDS

tools and difficult to deploy at nodes in an ad-hoc network infrastructure. However,

simulation cannot fully represent the implementation details and performance requirements

of the IDS capturing network traffic, analyzing the collected data, and exchanging intrusion

detection information with neighboring nodes, all that at real-time in the mesh device with

constrained hardware resources. As a result, these approaches can be shown to be

unpractical in real WMN scenarios due to unforeseen factors.

The majority of the approaches do not demonstrate the viability of the cooperative

detection scheme where neighbors are supposed to share audit data and/or detection results

in order to make collective/local decisions about malicious traffic and suspicious nodes.

Monitoring the behavior of neighboring nodes by overhearing transmissions in

promiscuous mode is not reliable since wireless interferences and periods of congestion are

frequent between nodes in this type of environment. However, no approach, except the

recent work [26], has taken into consideration the effect of the wireless link quality, more

Chapter 2. Background and Related Work 26

precisely packet loss, on the performance of the intrusion detection engine, that certainly

affects the number of false positives and accuracy of detection rate. Existing solutions are

not well suited for WMNs as they assume the existence of reliable end-to-end

communication path between every pair of nodes in network infrastructure. While this

assumption is typically valid in wired networks, it generally does not hold in WMNs.

Therefore, we have decided to validate our approach on a virtualized mesh network

platform composed of VMs interconnected by virtual switches that represent the wireless

links. The virtual switch allows emulating packet transmission degradations, e.g., packet

loss rate and loss burst. The VMs possess hardware configuration equivalent to a common

mesh device and the unmodified routing protocol implementation is installed on each VM.

Each VM executes our distributed intrusion detection solution as a IDS tool, which

independently monitor the network interface and actively exchange traffic information and

detection results with neighboring VMs for concurrent monitoring of neighborhood

behavior and collaborative detection of attacks. This virtualized environment allows

demonstrating how a cooperative and distributed IDS architecture can be applied to detect

routing attacks and malicious nodes in a more realistic WMN scenario. To the best of our

knowledge, there is no similar cooperative IDS architecture reported in the open literature.

Chapter 2. Background and Related Work 27

28

Chapter 3

3 Attack Analysis

In this chapter, we introduce routing manipulation attack targeting BATMAN routing

protocol. We provide comprehensive analysis of routing manipulation attack and illustrate

the attack viability. We demonstrate that a malicious node is capable of adulterating the

routing table of target mesh nodes in order to redirect the network traffic from these nodes

to the malicious node. This is achieved by simply fabricating routing packets from the

malicious node which are then diffused through the entire network.

We first perform analysis on the impact of routing manipulation attack on the node’s

routing behavior in detail, and show that this attack can result in severe consequences to the

data routing that depends not only on the network topology but also on the location and

strategy of the attacker node. Then, we implement routing manipulate attack in a virtual

mesh network environment consisting of Virtual Machines (VMs) which correspond to the

mesh nodes. Routing attacks are emulated by a network traffic generator in a VM, which

represents the malicious node. We carry out extensive experiments on routing attack

emulation in different example scenarios. We then propose a precise mechanism that

unequivocally identifies routing manipulation attack and the attacker node by using nodes’

traces that are based on BATMAN protocol behavior. Our systematic analysis and

experimental evaluation with routing attacks reveals security vulnerabilities of BATMAN.

These breaches can be exploited by an attacker to degrade the network performance.

The rest of the chapter is organized as follows. Sections 3.1 and 3.2 describe the

general system model and attacker model under which we study routing attacks in WMNs.

In Section 3.3, we introduce BATMAN routing protocol. In Section 3.4, we provide a

description of routing manipulation attack. In Section 3.5, we present the experiments with

the routing attack. In Section 3.6, we describe the proposed method to detect the routing

attack and the malicious node. Finally, Section 3.7 concludes this chapter.

Chapter 3. Attack Analysis 29

3.1 System Model
A WMN is comprised of a set of static wireless mesh routers and a set of wireless mesh

clients. Each mesh router is equipped with one IEEE 802.11g wireless card operating in ad-

hoc mode. Since the transmission power of a mesh router is not sufficient to cover the

entire deployment area, thus, to achieve more coverage with the same transmission power,

mesh routers form a multi-hop wireless network and forward traffic for each other

providing a rich multi-hop radio connectivity for the mesh clients.

Mesh nodes use externally mounted omnidirectional antennas to broadcast wireless

transmission in all directions. Omnidirectional antennas are largely applied for radio

broadcasting antennas in mobile devices that use radio and for the deployment of wireless

networks. Compared to directional antennas, omnidirectional antennas are very easy to

install, and we do not need to care about the antenna position since it radiates and receives

equally well in all directions. In addition, with mesh nodes equipped with omnidirectional

antennas, it is possible to overhear transmissions from other nodes on the compass.

Each mesh client is attached to a mesh router and communicates with other mesh

clients via the multi-hop network established among the mesh routers. A mobile mesh

client may join the network, and its state is maintained by each mesh node in the network

using the client announcement mechanism of the routing protocol [36] in order to make this

client reachable from any given point in the mesh network when it moves from one mesh

node to the next, i.e., a roaming client. However, to keep the wireless scenario simpler, we

assume all mesh nodes in the network are static without mobility.

The network interface card of each mesh node is identified by unique MAC address,

and the card is set into promiscuous mode, so we can capture all packets for subsequent

analysis. Mesh nodes are identified by their MAC address and IP address. We assume all

mesh nodes, including attacker nodes, have the same transmission power, and all wireless

links have bidirectional, i.e., symmetric, communication capability. All nodes have

minimum computational capabilities and enough hardware resources compared to any

wireless mesh router with limited resources. We assume any node may be malicious and

any packet sent by a given malicious node is broadcasted to all neighboring nodes.

We assume the network card of nodes does not fail, and consequently the mesh nodes

do not present a faulty behavior. However, the communication channels between nodes are

Chapter 3. Attack Analysis 30

susceptible to faults due to performance impairments such as packet loss caused by

congestion, interference, collision, and packet corruption.

We assume that each node authorized to be part of the mesh network owns a pair of

public and private keys and a client certificate that binds its public key to a unique user

identifier. We assume that each mesh node can authenticate its messages by making use of

security mechanisms such as digital signatures or message authentication codes (MAC).

We also assume that each node has an authenticated communication channel with its

neighboring nodes, which assures confidentiality, authenticity, and integrity of exchanged

messages. These security techniques prevent external attacks, such as spoofing attacks and

message injection attacks from outsider nodes.

3.2 Attacker Model
Normally, adversarial nodes can be either external attackers, e.g., a malicious wireless card

trying to interfere with the transmissions, or insider attackers, e.g., a legitimate mesh node

compromised by the attacker. We assume that adversarial nodes are insider attackers and

have full control of the compromised node. The adversarial node has access to the

cryptographic keys kept by the node, i.e., public and private keys. The adversarial node can

perform passive attacks, such as eavesdropping, and active attacks, such as fabricating,

modifying, or dropping packets. Adversarial nodes can carry out attacks either individually

or coordinated with other adversarial nodes, i.e., collusion.

In this work, we focus on attacks at network layer, which is responsible for packet

forwarding and routing operations. We assume that attackers do not exploit vulnerabilities

of physical layer and data link layer, i.e., MAC layer. Attacks on the physical layer can be

avoided by using anti-jamming broadcast communication techniques such as uncoordinated

direct-sequence spread spectrum (UDSSS) [27] or delayed seed-disclosure direct-sequence

spread spectrum (DSD-DSSS) [28]. And the security of MAC layer can be enforced by

employing secure MAC protocols such as IEEE 802.11i [29], implemented as Wi-Fi

Protected Access II (WPA2).

Chapter 3. Attack Analysis 31

3.2.1 Attacking Methods
The adversarial node utilizes specific attacking methods to achieve its objectives. The

attacker goals are: (i) to disrupt the routing service by violating the integrity of routing

tables of mesh nodes and also routing messages; (ii) to cause DoS on data delivery, i.e.,

disrupt the data forwarding service; and (iii) to violate the network service and nodes

availability. We analyzed common attacking methods for routing protocols of WMNs and

summarized them as four basic attacking methods.

1. Message Fabrication: The attacking node uses this method to illegally inject forged

routing messages into the network in order to violate the routing table of target

nodes and consequently the network routing functionality. Usually, the injected

messages follow the routing protocol specification, i.e., the message content is

legitimate and messages interval and sequence are respected. The consequences are

redirection of routes, corruption of routing tables, routing loops, and

impersonification/spoofing of nodes.

2. Packet Dropping: The malicious node drops selectively/randomly forwarded routing

messages and/or received routing messages in order to violate the routing table of

target nodes and the routing service. The consequences are isolation of nodes from

rest of network, invalidation of routes, and selfish behavior of nodes not serving as

relay point to other nodes, and therefore DoS on the transmission of routing packets.

Alternatively, the attacker can drop forwarded and/or received data packets to

disrupt the integrity of data delivery service. For instance, in black hole attack, all

data traffic is redirected to the malicious node i.e., the black hole, which do not

forward any data traffic at all, then discarding all data packets. The consequence is

obviously DoS on data delivery service for the affected nodes.

3. Message Flooding: This attacking method uses the same technique as message

fabrication but with some essential differences, which makes it much more

aggressive. The fabricated messages, that are injected by one or more malicious

nodes, can contain one or more different source addresses, which can be randomly

Chapter 3. Attack Analysis 32

generated, and the interval between each forged message is very short, e.g., some

milliseconds. Therefore, the entire mesh network is flooded with an excessive

number of forged routing messages and/or data packets that violate the network

availability and integrity of routing tables. The consequence of this attacking

method is DoS on nodes, where a node is prevented from receiving and sending

data packets to other nodes, overflow of routing tables, consumption of valuable

network resources, congestion of communication channels, and sleep deprivation in

case of reactive routing protocols.

4. Message Modification: In this attacking method, also known as man in the middle

attack, the attacker adulterate either the content of routing messages exchanged

between nodes to disrupt the routing service integrity, or the content of data packets

to disrupt the data transmission service. The consequences are corruption of routing

tables and DoS on distribution of data packets for the concerned nodes.

In this work, we do not consider message modification attacks because we assume the

cryptographic system ensures authenticity and integrity of exchanged messages. However,

man in middle attacks can be easily identified by our intrusion detection approach. Since

each node IDS shares routing information, which contain key routing parameters, with

neighboring nodes for checking the routing behavior of neighbors, then any modification

on these key routing parameters by the attacker would be promptly detected by the IDS.

We also do not take into consideration message flooding attacks since tracking down

the source of the intrusion for certain types of attacks might be a difficult task if the attack

is carried out through intermediaries nodes. For example, distributed denial of service

(DDoS) attack is basically a message flooding attack. However, the malicious flooding

traffic comes from innocent nodes that are simply rebroadcasting the phony messages

received from neighboring nodes, as expected by the protocol behavior, that are received

from other neighbors, and that were primarily originated by the malicious nodes. Thus, the

IDS would obviously identify these intermediate nodes as the flooding nodes but it cannot

trace the attack further back to the remote source nodes that firstly created the malicious

traffic since the IDS communication is limited to local neighborhoods.

Chapter 3. Attack Analysis 33

We do not consider routing loop attacks, where the attacker introduces a loop in the

route path between two nodes by forging routing messages from a legitimate node in order

to alter the route of target nodes, then violating the routing table of nodes and the normal

routing operation. This attack causes data packets from nodes to flow between two or more

nodes without being forwarded to the correct destination. Since routing loop attack is based

on message fabrication technique, our solution can suitably identify this attack.

We also do not consider wormhole attacks. In this attack, two malicious nodes collude

to create a virtual link between each other, i.e., a hidden tunnel that is alleged to be the best

path between two points in the network, to secretly transmit packets from other nodes. As a

consequence, intermediate nodes in the correct path between these two network points are

unable to participate in the network operations since routes through these node are

permanently denied, and then the attacker can drop all packets or conditionally forward

packets from the other nodes. Several works [30][31] address this type of attack. However,

with our intrusion detection solution is possible to detect such wormholes since attackers

basically employ message fabrication and/or packet dropping attacking methods to violate

the routing table of target nodes so that these nodes choose the route passing through the

malicious node as best option to the destination. In addition, if the two malicious nodes are

neighbors, the intrusion detection approach precisely detects the wormhole attack.

Moreover, coordinated attacks, such as byzantine attacks, which are carried out by a

group of attackers, can be detected by using our solution since there is high cooperation

between nodes IDSs for analyzing the routing behavior of local neighborhoods. This type

of attack essentially use message fabrication or message flooding attacking methods to

concurrently compromise the integrity and availability of network operations and nodes.

The aforementioned attacking methods are realistic and cover most of the attacking

techniques of WMNs. In addition, they can be implemented in our virtualized mesh

network platform without great difficulty. Routing manipulation attack, which is based on

message fabrication attacking method, is detailed in this chapter. Detection of message

fabrication attacking method is studied in Chapter 4, and packet dropping attacking method

detection is introduced in Chapter 5.

Chapter 3. Attack Analysis 34

3.3 BATMAN
In this work, we make use of Better Approach To Mobile Ad hoc Networking (BATMAN)

[7], a proactive routing protocol for wireless ad-hoc mesh networks. We opted for

BATMAN as routing protocol since results from practical experiments with BATMAN and

other routing protocols [32][33], such as OLSR, have shown that BATMAN outperforms

these protocols on most of performance metrics such as route trip delay (in terms of number

of hops), route convergence latency, and packet loss rate. BATMAN achieves higher level

of stability and packet delivery ratio presenting a lower route change frequency compared

to traditional routing protocols. However, BATMAN presents a higher message overhead

to achieve the lowest packet loss. To overcome this problem, BATMAN designers are

developing a new scheme to optimize BATMAN message flooding algorithm [34].

3.3.1 Protocol Overview
The majority of routing protocols employed in WMNs were designed based on traditional

routing protocols from ad-hoc networks, which were conceived taking into consideration

the high mobility of nodes. Common routing protocols such as OLSR, DSR, and AODV

are good examples, which were developed built on the assumption that the network is

constantly modifying its topology because of nodes mobility and signal losses over the

wireless communication medium. Mesh networks can be seen as a special type of ad-hoc

network where little or no mobility is expected and only occasional route fluctuations

happen. BATMAN protocol attempts to maximize traffic throughput and minimize packet

delay in the network instead of just keeping basic connectivity among the nodes.

BATMAN routing protocol was designed as a response to OLSR drawbacks. A

community wireless network known as Freifunk in Berlin (Germany) noticed that OLSR

suffered from many performance limitations when the mesh network grew very large, e.g.,

more than 300 nodes [35]. These limitations include routes going up and down regularly

due to routing tables being unnecessary flushed because of routing loops, and it took

several seconds, for a small router device, to recalculate the whole topology graph in a

mesh network with hundreds of nodes. Then, they decided to develop a new routing

algorithm for large static WMNs to fulfill these requirements.

Chapter 3. Attack Analysis 35

BATMAN algorithm’s approach is to share the information of best paths between

nodes in the network to all participating nodes. Each node keeps only the information of the

best next-hop for every destination in the WMN. BATMAN algorithm is only concerned

with learning about the best next-hop through which it can find the best path since every

node in the path knows the best next-hop it has to use to send messages. Therefore, it is not

necessary to find or calculate the complete route for all destination nodes in the mesh

network. BATMAN implements a flooding mechanism based on sequence numbers which

avoids propagating contradicting topology information and limits the amount of topology

messages flooded in the mesh network. BATMAN algorithm is designed to deal with

unreliable links of the WMN by performing statistical analysis of packet loss and

propagation speed in order to select the most reliable route upon the next-hop.

3.3.2 Flooding Mechanism
The BATMAN routing algorithm [7] is detailed as follows.

1. Each node (also known as Originator) periodically broadcasts hello messages,

referred as Originator Messages (OGMs), to tell its neighbors about its existence.

An OGM contains: the Originator Address, the Source Address, the Previous

Sender address, a Time To Live (TTL) value, a unique Sequence Number value, a

Transmission Quality (TQ) value, Translation Table (TT) count, and Gateway

Flags.

2. Following a neighboring node receives an OGM: it modifies the Source Address to

its own address and rebroadcast this OGM in accordance to BATMAN forwarding

rules to tell its neighboring nodes about the existence of the node that originated the

OGM, and so on and so forth.

3. Hence, the mesh network is flooded with OGMs until every node has received it at

least once, or until they got lost because of the packet loss of wireless links, or until

their TTL value has expired. Upon receiving a self-originated OGM, the Originator

performs a bidirectional link check to verify that the detected link to a given

neighbor can be used in both directions.

4. The Sequence Number value of an OGM is utilized to verify the message freshness,

Chapter 3. Attack Analysis 36

i.e., to distinguish between new OGMs and duplicated OGMs in order to guarantee

that each OGM is only counted once. The amount of OGMs, i.e., the total number

of Sequence Numbers, received from a given Originator via each neighboring node

is used as a metric to estimate the route quality. Thus, BATMAN chooses as best

next-hop to this Originator, the neighboring node from which it has received the

highest amount of OGMs within a Sliding Window (a packet count metric).

(a) Mesh network.

Node ࡻ૚ ࡺ૚ࡻ૚ ૚ࡻ૜ࡺ ૚ࡻ૛ࡺ ࢔ࡻ૚ࡺ ࢔ࡻ૜ࡺ ࢔ࡻ૛ࡺ

Broadcasted OGMs 100 - - - - - -
Rebroadcasted OGMs - 100 100 100 - - -

Received OGMs - - - - 90 97 94

(b) OGMs broadcasted by node ܱଵ.

Originator Next-hop Potential next-hop ܱଵ ଶܰை೙ ଷܰை೙

(c) Routing table of node ௡ܱ.

Figure 3.1: BATMAN flooding scheme.

OGMs that travel on bad routes where the wireless link quality is poor will experience

packet loss or delay on their path through the mesh network. On the contrary, OGMs that

follow good routes will be transmitted faster and more reliable. To find out which is the

best route to a destination node, BATMAN counts the number of Sequence Numbers

10 % of
packet loss

3 % of
packet loss

6 % of
packet loss

O1

N1
O1

N2
O1

N3
O1

N1
On

N2
On

N3
On

On

Chapter 3. Attack Analysis 37

originated by that node and received from its different neighboring nodes. Thus, BATMAN

chooses as next hop the mesh nodes in the path to the destination node which possess the

best transmission quality. BATMAN makes use of this information to maintain a routing

table containing the best next-hop towards every Originator in the mesh network.

BATMAN flooding mechanism is illustrated in Figure 3.1. In Figure 3.1 (a), node ௡ܱ will know about the existence of node ܱଵ in distance by receiving the OGMs originated

by node ܱଵ which are rebroadcasted by its single hop neighboring nodes ଵܰைభ, ଶܰைభ, and

ଷܰைభ. Since node ௡ܱ has more than one neighboring node, it has to decide which neighbor it

will select as best next-hop to send data to distant node ଵܱ. This decision is taken based on

the number of OGMs node ௡ܱ has received faster and more reliable via one of its single

hop neighboring nodes ଵܰை೙, ଶܰை೙, and ଷܰை೙, as illustrated in Figure 3.1 (b). Then, node ௡ܱ

chooses node ଶܰை೙ as its current best next-hop, i.e., best ranking neighbor, towards node ܱଵ

because node ଶܰை೙ has forwarded the most number of OGMs originated by node ଵܱ.

Finally, node ௡ܱ updates its routing table accordingly, as seen in Figure 3.1 (c).

3.3.3 BATMAN Advanced
BATMAN advanced, also known as batman-adv [36], is the implementation of BATMAN

routing protocol for MAC Layer, i.e., OSI Layer 2, in form of Linux kernel module. The

majority of ad-hoc network routing protocols are designed for Layer 3, i.e., the network

layer, which means they use UDP packets for exchanging routing information and also

have to manipulate the kernel routing table for updating routing information.

In batman-adv, the routing information and data traffic are transmitted using raw

Ethernet frames. Batman-adv encapsulates and forwards all data traffic until it reaches the

destination, thus emulating a virtual network switch of all participating mesh nodes. Hence,

all nodes seem to be link local, i.e., they are neither aware of the network's topology nor

affected by network changes. The advantages of this design are: the user can execute other

protocols, such as IPv4, IPv6, and DHCP, on top of batman-adv protocol, nodes can

participate in the mesh network without the need of having an IP address, mobile/non-mesh

nodes can easily be attached to the mesh network keeping their connectivity, and the data

flow is optimized through the node mesh interface.

Chapter 3. Attack Analysis 38

3.4 Routing Manipulation Attack
This section describes the routing manipulation attack against BATMAN, where a

malicious node disrupts the network routes by violating the integrity of nodes’ routing

tables. We use a state transition diagram to describe this attack, where the malicious node

manipulates the routes of mesh nodes in order to divert their traffic to itself.

3.4.1 Attack Methods
A malicious node can fabricate and broadcast OGMs, for a legitimate mesh node, with

continuous valid Sequence Numbers, which it actually did not receive, so it can control the

routes of target nodes in order to divert these routes to pass through the malicious node to a

given destination [7]. As routing decisions are based on statistical analysis of the amount of

OGMs received instead of information contained in the packets, the attacker only needs to

generate a number of OGMs that are numerous enough to redirect the routes of target nodes

to the compromised node. In other words, the attacker has to continuously win the neighbor

ranking of target nodes towards the destination, thus overriding the number of legitimate

OGMs broadcasted by the destination node. The attacker can apply two methods to carry

out the attack:

1) Attacking Method 1: Update the neighbor ranking range of target nodes.

In this method, the attacker creates phony OGMs for the Originator containing

Sequence Number values out of the actual Sliding Window size, i.e., the range of

Sequence Number received so far for that Originator. Thus, target nodes will

presume that the Originator has reinitiated and will update their neighbor ranking

range of Sequence Numbers for the Originator. The attacker has to constantly

generate OGMs with valid Sequence Numbers to persuade all target nodes to update

their neighbor ranking range every time they receive the phony OGMs. If the

Sliding Window of the link, via which the attacker’s OGMs have been received, has

the most Sequence Numbers, then this link is considered to be the best link towards

the Originator, which certainly goes through the compromised node.

Chapter 3. Attack Analysis 39

2) Attacking Method 2: Not update the neighbor ranking range of target nodes.

In this method, the attacker generates phony OGMs for the Originator with

Sequence Number values a few counts ahead of the current legitimate Sequence

Numbers broadcasted by the Originator. These fake OGMs will be preferred in the

neighbor ranking range of target nodes. However, the neighbor ranking range for

the Originator is not updated by the target nodes. Anyhow, the malicious node has

to broadcast a sufficient number of fake OGMs to win the neighbor ranking range of

target nodes, so they choose this link as best next hop.

3.4.2 Example of Attack Scenario

Figure 3.2: Example of route manipulation attack.

Route manipulation attack is exemplified in Figure 3.2. We assume that node ܣ is the

attacker, and nodes ଵܶ, ଶܶ, ଷܶ, and ସܶ are the target nodes. Nodes ଵܶ and ܣ are the

neighboring nodes of gateway node ܱଵ. As the link between nodes ܱଵ and ଵܶ has a packet

loss rate lower than the one between nodes ܱଵ and ܣ, then target nodes ଶܶ, ଷܶ, and ସܶ prefer

a route via node ଵܶ toward node ܱଵ. Thus, the compromised node ܣ generates and

broadcasts OGMs for Originator ܱଵ with continued valid Sequence Number values,

therefore applying Attacking Method 2, in order to redirect the routes of target nodes ଶܶ,

A

T1

T4

T2

T3

O1

OGMs broadcasted by O1

Gateway

0,01 % of pacaket loss

0,2 % of pacaket loss

OGMs re-broadcasted for O1

Fake OGMs broadcasted by A
Fake OGMs re-broadcasted for A

A Attacker

T Target node

Chapter 3. Attack Analysis 40

ଷܶ, and ସܶ toward node ܱଵ to node ܣ. The broadcasting rate of fake OGMs used by the

malicious node ܣ is higher than BATMAN default rate defined for the nodes, than attacker

node ܣ always wins the neighbor ranking of target nodes towards the destination node ܱଵ.

In accordance with BATMAN algorithm, the target nodes will choose compromised

node ܣ as the best next-hop to node ܱଵ because node ܣ has rebroadcasted the most number

of OGMs for Originator node ܱଵ. Since node ܣ is the only routing point for the target nodes

to reach gateway node ܱଵ, it can perform the following misuses without being noticed:

• Discard data packets or OGMs that go through it. For example, if node ܣ drops all

OGMs broadcasted by target node ସܶ and at the same time node ଵܶ crashes, then

node ସܶ’s route entry will be deleted from the routing table of node ܱଵ.

Consequently, node ସܶ will be unable to exchange data traffic with gateway node ܱଵ

and it will lose Internet connection being disconnected.

• Modify data packets or OGMs that pass through it. For example, node ܣ can modify

the destination address of data packets from node ସܶ in order to misguide the other

mesh nodes to forward node ସܶ’s packets to wrong destinations.

• Delete some of the content of data packets or OGMs. For instance, node ܣ can

delete the Originator Address of OGMs broadcasted by node ସܶ so that the mesh

nodes cannot find a route to node ସܶ, i.e., the route entry of node ସܶ is permanently

removed from the routing tables of other nodes.

3.4.3 Attack Model
Figure 3.3 illustrates the extended state machine diagram for route manipulation attack. The

state machine is triggered when an OGM is received by the malicious node, and then the

machine moves to initial state “OGM received” and executes “process OGM” action. Thus,

the node processes the OGM having two possibilities, i.e., two transitions can be activated

by “OGM processed” trigger and both return to initial state. The first transition has its

guard condition evaluated as true if the OGM’s Originator Address is the same as the

node’s address. That means the OGM was initially originated by the own node, so “Drop

OGM” action is executed by this transition. In the second transition, the guard condition

evaluates to true if the OGM’s Originator Address is not the same as to the node's address.

Chapter 3. Attack Analysis 41

That implies that the OGM was originated by a different node, so the transition executes

“Rebroadcast OGM” action. If the compromised node executes a malicious action, i.e.,

“Attacker action” trigger is fired, then a third transition of “OGM received” state moves the

machine to “OGM broadcasted” state. That means “Fabricate and broadcast OGM” action

of transition is executed and the guard condition of “OGM’s Originator Address is not the

same as the node's address” is evaluated to true.

Figure 3.3: State machine for routing manipulation attack.

In “OGM broadcasted” state, if the attacker continues fabricating and broadcasting

OGMs with the Originator Address different from the node's address, the state transition is

constantly fired, which basically goes back to “OGM broadcasted” state. Finally, if the

target nodes update their routing tables’ best next-hop for the Originator that is being

broadcasted by the fake OGMs of attacker, then the second transition of “OGM

broadcasted” state is fired. Thus, the state machine goes to final state, which implies that

route manipulation attack has been succeeded.

3.5 Experiment and Results
In this section, we present the experimental results concerning the emulation of routing

manipulation attack targeting BATMAN routing protocol. The attack is implemented in our

virtualized mesh network platform. We performed several experiments by using the

[" "]
"OGM received at node X"/ " "

[OGM's Originator Address != node X's Address]
"OGM processed"/"Rebroadcast OGM"

do/ {process OGM}

OGM received

[OGM's Originator Address != node X's Address]
"Attacker action"/"Fabricate and broadcast OGM"

A route manipulation
attack has happened.

do/ {}
OGM broadcasted

[(OGM's Originator Address != node X's Address) && (Sequence Number is valid)]
"Attacker action"/"Fabricate and broadcast OGM"

[" "]
"Target nodes update their routing tables"/ " "

[OGM's Originator Address == node X's Address]
"OGM processed"/"Drop OGM"

[" "]
"OGM received at node X"/ " "

Chapter 3. Attack Analysis 42

attacking methods described in Section 3.4.1.

3.5.1 Experiment Environment
The routing manipulation attack was implemented in a virtualized network environment,

which emulates the mesh network topology. The mesh network is emulated by VMs

executing BATMAN protocol, which represent the mesh nodes. We performed a series of

experiments in order to verify the damage caused by the attack in the routing service of

nodes. The following virtualized architecture setup has been employed:

• A main machine consisting of Intel(R) Xeon(R) CPU W3550 @ 3.06GHz with 12.0

GB of RAM, executing 64-bit Ubuntu Linux OS with Kernel 2.6.35, is used to run

QEMU emulator [37] instances for virtualization of individual nodes.

• Each QEMU instance, executing a 32-bit Ubuntu Linux OS with kernel 2.6.35, is

attached to a virtual switch (vde_switch tool [38] with some modifications). QEMU

instances are connected with each other by using wirefilter tool [38], which

emulates bi-directional communication links between nodes.

• A QEMU instance consists of standard PC 32Bit computer architecture with one

CPU, that is the default 32Bit CPU type of QEMU, and 256 MB of RAM memory,

supporting Linux OS. We assume each mesh node in the network has the same

hardware configuration as the QEMU instance, particularly a Wi-Fi router.

• The virtual network configuration employs a fixed topology, where each virtual

node is connected to a virtual switch instance, which only allows packets to be sent

if they come from the virtual neighbors of node. In that way, virtual links between

nodes are properly emulated. Link impairments, such as packet loss and packet

delay, are emulated by applying wirefilter tool.

Batman-adv v.2010.1.0 [36] is compiled from source code and loaded into the Linux

kernel of each virtual node as kernel module. BATMAN operates on the network interface

of each virtualized node. We assume each node has only one network interface card which

is used by BATMAN routing protocol. Originator Interval default value of 1000 ms, i.e., a

value in milliseconds that determines how often BATMAN broadcast OGMs, is employed.

Chapter 3. Attack Analysis 43

We use batman-adv event logging and debugging mechanism in order to obtain

BATMAN related debugging information. Debugging information refers to decisions made

by BATMAN about routing, flooding, and message forwarding operations. Then, all

debugging information is saved to log files which are synchronized with a global clock, i.e.,

the time of the main machine that launches the VMs. We assume that each node clock is

synchronized with the global clock of main machine. During collection of debugging data

at each virtual node, the average CPU usage of main machine was about 40% and average

main memory usage was around 60%. Then, there was no performance degradation and

resource contention, which could interfere in the process of results collection.

3.5.2 Attack Implementation
We implemented the attack using packETH tool [39], an Ethernet packet generator. For

that, we added new functionalities to the tool which allows fabricating and broadcasting

OGMs, with continuous valid Sequence Number values, on the virtual node’s network

interface. Since the tool does not allow updating Sequence Number field, that is 32 bit, in

an OGM packet, we added this feature to the tool interface so we can define initial

Sequence Number values and increment the value in conformance with BATMAN flooding

mechanism. In that way, we are able to emulate routing manipulation attacks by executing

the modified tool on the compromised node.

We emulate the routing manipulation attack in two different network mesh scenarios.

In Scenario 1, we add one attacker node in a smaller virtual mesh network. In Scenario 2,

we add two attackers in a more complex mesh network topology.

3.5.3 Attack Emulation in Scenario 1
The emulated mesh network for this scenario has seven mesh nodes, as illustrated in Figure

3.4. Scenario 1 comprises one attacker ܣଶ, one gateway node ଵܱ, and five target nodes ଷܶ, ସܶ, ହܶ, and ଺ܶ. Attacker ܣଶ generates and broadcasts phony OGMs for node ܱଵ to divert the

routes of target nodes toward node ܱଵ to malicious node ܣଶ.

The duration of each experiment is 20 minutes. All virtual nodes take about 4 minutes

to completely initialize, which includes configuring the virtual connections, i.e., setting up

links with neighboring nodes, and establishing routes with the other nodes. After that,

Chapter 3. Attack Analysis 44

malicious node ܣଶ starts broadcasting the forged OGMs.

Figure 3.4: Mesh network topology for Scenario 1.

We applied the two routing manipulation attack techniques introduced in Section 3.4.1.

1. Attacking Method 1: Update the neighbor ranking range of target nodes.

The attacker generates OGMs with Sequence Numbers values at least twice the

values of Sequence Numbers of OGMs broadcasted by node ܱଵ, e.g., when the

attacker launches the attack if current Sequence Number value of node ܱଵ’s OGM is

500, then the attacker generates OGMs with Sequence Numbers values starting

from 1000.

2. Attacking Method 2: Not update the neighbor ranking range of target nodes.

The attacker generates OGMs with Sequence Number values close to current

Sequence Number values broadcasted by node ܱଵ, i.e., the attacker’s Sequence

Number values are a few counts ahead of node ܱଵ’s Sequence Number values.

Furthermore, we take into account different Originator Interval values for broadcasting

the phony OGMs of attacker, so we can verify the effectiveness of the attacking methods.

We used Originator Interval values of 500 ms, 1000 ms, 1500 ms, 2000 ms, and 4000 ms.

T 3

T4

T 6

T 5

O1 Gateway node

0 % of packet loss

20 % of packet loss

Fake OGMs broadcasted by A2

Fake OGMs re-broadcasted for A2

A Malicious node

T Target node

A2

2

Chapter 3. Attack Analysis 45

Before starting the attack, we record the routing tables of target nodes in order to check

Originator ܱଵ’s route entry. In the routing tables, route entry of Originator ܱଵ points to a

route via node ଷܶ since packet loss rate of link between nodes ܱଵ and ଷܶ is lower than the

one between nodes ܱଵ and ܣଶ. We also record the routing tables of target nodes after each

attack execution in order to check if node ܱଵ’s route entry was updated in the routing tables

of target nodes which points to a route via node ܣଶ as a consequence of phony OGMs

broadcasted by the attacker in the network.

(a) Routing table updates concerning Originator Interval values.

(b) Routing table updates concerning the target nodes.

Figure 3.5: Routing table updates for Scenario 1.

0

1

2

3

4

500 ms 1000 ms 1500 ms 2000 ms 4000 ms

up

da
te

d
ro

ut
in

g
ta

bl
es

Originator Interval
Attacking Method 1 Attacking Method 2

0

1

2

3

4

5

node T3 node T4 node T5 node T6

up

da
te

d
ro

ut
in

g
ta

bl
es

Target node
Attacking Method 1 Attacking Method 2

Chapter 3. Attack Analysis 46

Figure 3.5 shows the experiment results obtained for Scenario 1. In Figure 3.5 (a), for

Attacking Method 1 and Originator Interval values of 500 ms, 1000 ms, and 1500 ms, we

can notice that the number of OGMs generated by attacker node ܣଶ easily win the neighbor

ranking of all target nodes ଷܶ, ସܶ, ହܶ, and ଺ܶ. Consequently, target nodes are forced to

update their routing tables, as presented in Figure 3.5 (b). Nevertheless, the routing table of

node ଺ܶ is not updated for Originator Interval values of 2000 ms and 4000 ms because the

Originator Interval value of the phony OGMs broadcasted by the attacker is higher than

node ܱଵ’s default Originator Interval of 1000 ms . That means the number of phony OGMs

fabricated by the attacker cannot override the number of legitimate OGMs of node ܱଵ.

Thereby, node ଺ܶ does not update its current best next-hop towards node ܱଵ.

For Attacking Method 2 and Originator Interval value of 500 ms, we can notice all

target nodes ଷܶ, ସܶ, ହܶ, and ଺ܶ update their routing tables, as presented in Figure 3.5 (a).

Since the Originator Interval of attacker is lower than default Originator Interval value of

node ܱଵ, the phony OGMs continuously win the neighbor ranking of target nodes.

However, none of routing tables of target nodes is updated for Originator Interval of 1000

ms because the number of phony OGMs fabricated by the attacker is not enough to surpass

the number of legitimate OGMs broadcasted by node ܱଵ. Concerning the other Originator

Interval values, at least one routing table is updated by the target node since the phony

Sequence Numbers generated by the attacker differ more than the Sliding Window size for

Originator ܱଵ in the target node.

The experiments results show that a compromised node can efficiently violate the

routing table of any mesh node in the network by simply broadcasting a sufficient number

of fake OGMs for a given legitimate mesh node. So the routes of target nodes toward the

legitimate mesh node will be redirected to the compromised node. To make sure that the

forged OGMs will always overcome the legitimate OGMs, the attacker has to execute

Attacking Method 1 with an Originator Interval value lower than 1500 ms. A second option

is to execute Attacking Method 2 with an Originator Interval value lower than 500 ms, i.e.,

the attacker has to send fake OGMs at a high broadcasting rate.

3.5.4 Attack Emulation in Scenario 2
The emulated mesh network topology used in this scenario is illustrated in Figure 3.6. The

Chapter 3. Attack Analysis 47

mesh scenario comprises eleven nodes: two attackers ܣସ and ܣଽ, two gateway nodes ܱଵ and ܱଵ଴, and seven target nodes ଶܶ, ଷܶ, ହܶ, ଺ܶ, ଻ܶ, ଼ܶ , and ଵܶଵ. Attacker ܣସ generates and

broadcasts fake OGMs for node ܱଵ, and attacker ܣଽ generates and broadcasts fake OGMs

for node ܱଵ଴ in order to divert the routes of target nodes toward nodes ܱଵ and ܱଵ଴ to

malicious nodes ܣସ and ܣଽ respectively.

Figure 3.6: Mesh network topology for Scenario 2.

The duration of each experiment is 20 minutes. After 5 minutes of network initial set-

up for all the mesh nodes, malicious nodes ܣସ and ܣଽ start to generate their respective

phony OGMs. In this scenario, we also apply the two methods of routing manipulation

attack introduced in Section 3.4.1. The attackers ܣସ and ܣଽ applies the same strategy, for

Attacking Methods 1 and 2, as performed for Scenario 1 in Section 3.5.3 when creating and

broadcasting fake OGMs for Originators ܱଵ and ܱଵ଴ respectively. We consider Originator

Interval values of 500 ms, 1000 ms, and 2000 ms for both attacking methods.

Before executing the attacks, we record the route entries of Originators ܱଵ and ܱଵ଴ in

the routing tables of target nodes. The routes entries point to paths via nodes ଶܶ and ଵܶଵ

because these nodes have the best links, i.e., the lower packet loss rate, to gateway nodes

T3

T11

A 9

O1 O10

T2

T 7A4

T 6T 5

T8

Fake OGMs broadcasted by A4
Fake OGMs re-broadcasted for A4

A Attacker T Target node

Gateway Gateway

0 % of packet loss 0 % of packet loss

30 % of packet loss 30 % of packet loss

4

Fake OGMs broadcasted by A9
Fake OGMs re-broadcasted for A9

A Attacker9

Chapter 3. Attack Analysis 48

ܱଵ and ଵܱ଴, respectively. After executing the attacks, we check if the route entries of

Originators ܱଵ and ܱଵ଴ have been updated in the routing tables of target nodes which point

to paths via nodes ܣସ and ܣଽ respectively as a result of the fake OGMs broadcasted by

malicious nodes ܣସ and ܣଽ.

(a) Routing table updates concerning Originator Interval values.

(b) Routing table updates concerning the target nodes.

Figure 3.7: Routing table updates for Scenario 2.

Figure 3.7 shows the experiment results obtained for Scenario 2. In Figure 3.7 (a), for

0

1

2

3

4

500 ms 1000 ms 2000 ms

up

da
te

d
ro

ut
in

g
ta

bl
es

Originator Interval

Attacking Method 1 for node A4 Attacking Method 2 for node A4
Attacking Method 1 for node A9 Attacking Method 2 for node A9

0

1

2

3

node T2 node T3 node T5 node T6 node T7 node T8 node T11

up

da
te

d
ro

ut
in

g
ta

bl
es

Target node
Attacking Method 1 for node A4 Attacking Method 2 for node A4
Attacking Method 1 for node A9 Attacking Method 2 for node A9

Chapter 3. Attack Analysis 49

Attacking Method 1 and Originator Interval values of 500 ms, 1000 ms, and 2000 ms, we

can observe that most of target nodes update their routing tables because of the fake OGMs

fabricated by attackers ܣସ and ܣଽ. In Figure 7 (b), attacker ܣସ forces target nodes ଶܶ, ଷܶ,

and ହܶ to update their best ranking neighbor since these target nodes are the only one-hop

neighbors of gateway node ܱଵ and malicious node ܣସ. However, attacker ܣଽ has more

influence on the routing table of target nodes ଺ܶ, ଼ܶ , and ଵܶଵ because these target nodes are

one-hop neighbors of gateway node ܱଵ଴ and malicious node ܣଽ.

In Figure 3.7 (b), we can observe attacker ܣସ’s fake OGMs had a limited influence on

target nodes ଼ܶ and ଵܶଵ, and attacker ܣଽ’s fake OGMs did not affect target nodes ଶܶ, ଷܶ,

and ଻ܶ then not updating their routing tables. The reason is: since fake OGMs of attackers ܣସ and ܣଽ go through the best ranking neighbors, i.e., nodes ଷܶ and ଼ܶ , which are the same

best next hops of gateway nodes ܱଵ and ܱଵ଴, then there is no need for these target nodes to

update their best ranking neighbor. For the same reason, the routing table of target node ଻ܶ

is updated the smallest number of times. On the contrary, target nodes ହܶ and ଺ܶ are the

only nodes impacted by both attackers ܣସ and ܣଽ since they have more neighboring nodes

to select as best next hop in the neighbor ranking.

In Attacking Method 2 and using Originator Interval value of 500 ms, we can see that

all of target nodes update their routing tables, as illustrated in Figure 3.7 (a). Since the

number of fake OGMs broadcasted by attackers ܣସ and ܣଽ is higher than the number of

legitimate OGMs of nodes ܱଵ and ܱଵ଴, then the attackers continuously win the neighbor

ranking of target nodes as occurred in Attacking Method 1. None of the routing tables is

updated for Originator Interval value of 1000 ms since the fake OGMs are not enough to

exceed the number of legitimate OGMs. Target nodes update their routing tables for

Originator Interval value of 2000 ms because the fake Sequence Numbers sent by attackers

differ more than the Sliding Window size of target nodes.

From the experiments results, we can notice that attackers can easily modify the routes

of target nodes and violate their routing tables by employing Attacking Method 1 using

Originator Interval values of 500 ms, 1000 ms, and 1500 ms, or optionally employing

Attacking Method 2 using Originator Interval values of 500 ms, and 1500 ms.

Chapter 3. Attack Analysis 50

3.6 Attack Detection
In this section, we present an efficient attack detection scheme that is based on analysis of

BATMAN traces collected from different mesh nodes. The detection approach relies on

tracing routing messages flooded by each BATMAN node through the mesh network. The

detection scheme assumes that each node collect sufficient routing-related information so it

can validate the consistency of related routing packets by using constraints.

We implemented the attack detection mechanism into BATMAN Advanced Control

and Management (batctl) tool [36] so we are able to detect routing manipulation attacks.

Batctl is a BATMAN tool used to configure and debug batman-adv kernel module. It also

offers a Layer 2 version of ping, traceroute, and tcpdump tools since all nodes participating

in the virtual switched network are completely transparent for all protocols above Layer 2.

Then, common network diagnosis tools, which are mainly designed for Layer 3, do not

work as expected. Batctl tool analyses BATMAN traces as follow.

1. Batctl makes use of batman-adv debugging output, i.e., log files of BATMAN

nodes, in order to create a small database of all Sequence Numbers broadcasted by

all mesh nodes in the network.

2. Thus, the tool employs this database, for instance, to trace all Sequence Numbers of

a given Originator and build a tree structure of every Sequence Number broadcasted

by this Originator node. The tree structure describes the path a Sequence Number

travel through the network for the moment it is broadcasted by the Originator, then

rebroadcasted by the neighboring nodes of the Originator, and so on, until every

node has receive it at least once.

3. The root node of the tree is the Originator of Sequence Number, the child nodes of

root node are the neighboring nodes of Originator that rebroadcasted the Sequence

Number, and so on.

For example, to detect whether a compromised node ܣ is broadcasting forged

Sequence Numbers for a legitimate node ௡ܱ in the network, we follow the procedure.

1) Firstly, we apply batctl tool to create a tree structure for each Sequence Number

Chapter 3. Attack Analysis 51

broadcasted by node ௡ܱ.

2) After, we check in each tree structure if the following constraint is violated:

 .if any child node is equal to the root node, i.e., the own Originator ௡ܱ :1ܥ -

If we find such mismatch, there are two explanations.

i. The first one means a legitimate OGM of node ௡ܱ was broadcasted back to

node ௡ܱ, what is not possible according to BATMAN flooding mechanism

described in Section 3.3.2.

ii. The other possibility is the compromised node ܣ fabricated and broadcasted

an OGM for ௡ܱ and this OGM was broadcasted back to node ௡ܱ, which is

more realistic.

We implemented constraint 1ܥ into batctl tool in order to check for this type of

inconsistency when creating the tree structure for Sequence Numbers of a given Originator

and also count the number of inconsistencies found for each Originator, i.e., the number of

times constraint 1ܥ is violated. Then, we executed the modified tool version with the log

files captured from all mesh nodes of Scenario 1 in Section 5.1 in order to trace the

Sequence Numbers of all nodes but specially Originator ܱଵ, and with log files of all nodes

of Scenario 2 in Section 5.2 to particularly trace the Sequence Numbers of Originators ܱଵ

and ܱଵ଴. These Originators are the ones the attackers fabricate phony OGMs for.

3.6.1 Results for Scenario 1
We use the improved batctl tool to trace all of the Sequence Numbers broadcasted by each

Originator in Scenario 1 and also counts the number of mismatches found for each node.

Figure 3.8 presents the attack detection results for mesh nodes of Figure 3.4 when attacker ܣଶ broadcasts fake OGMs with Originator Interval of 500 ms.

For both Attacking Methods 1 and 2, we can note Originator ܱଵ has the highest rate of

inconsistencies detected in its Sequence Number trees, i.e., 43% and 33% respectively. In

Attacking Method 1, 43% of OGMs broadcasted for Originator ܱଵ in the network are

malicious, and in Attacking Method 2, 33% of OGMs broadcasted for Originator ܱଵ are

malicious. As next step, we have to look into Sequence Number trees of Originator ܱଵ to

verify who is supposedly broadcasting fake Sequence Numbers for node ܱଵ.

Chapter 3. Attack Analysis 52

Figure 3.8: Detection results for Scenario 1.

In Figure 3.8, we can note that concerning the other mesh nodes the rate of detected

inconsistencies is low having values below 6%. In fact, these inconsistencies do not

properly correspond to attack attempts, and they can be considered as false positives. These

inconsistencies occur at the beginning and at the end of each experiment. They are caused

by the lack of synchronization between the mesh nodes at the time the logging mechanism

of each node starts and stops saving BATMAN debugging information. For instance, at the

time node ଷܶ stops recording debugging output, its log file contains more information about

the broadcasted Sequence Numbers of node ܱଵ than the log files of own node ܱଵ and node ܣଶ which stopped capturing debugging output earlier. Therefore, batctl tool is not able trace

the complete path of certain Sequence Numbers in the log files of these mesh nodes since it

is missing information from other nodes. Then, batctl tool is obliged to build bogus

Sequence Number trees which cause these incorrect inconsistencies, i.e., false positives.

Figure 3.9 illustrates an example of inconsistency detected for Originator ܱଵ in

Scenario 1. The picture shows the Sequence Number tree of a phony OGM broadcasted by

attacker ܣଶ for Originator ܱଵ. In Figure 3.9, the compromised node ܣଶ generates and sends

a Sequence Number for node ܱଵ, which is the root of the tree. Thus, this Sequence Number

is broadcasted on the interface of nodes ܣଶ, ܱଵ, and ସܶ that are the child nodes of root node.

At this time, the tool promptly detects an inconsistency since it violates constraint 1ܥ, i.e.,

“the child node ܱଵ is equal to root node ଵܱ”.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

node O1 node A2 node T3 node T4 node T5 node T6 node T7

%
 d

et
ec

te
d

in
co

ns
is

te
nc

ie
s

Mesh node
Attacking Method 1 Attacking Method 2

Chapter 3. Attack Analysis 53

Figure 3.9: Sequence Number tree for node ܱଵ.

We can remark that the source of attack is node ܣଶ since this phony OGM of

Originator ܱଵ is broadcasted at the same time to nodes ܣଶ, ܱଵ, and ସܶ and according to the

network topology of Figure 3.4 the only one-hop neighbors of node ܣଶ are nodes ܱଵ and ସܶ,

and the inconsistency was found in the Sequence Number tree of node ܱଵ. Therefore, by

using elimination we conclude that node ܣଶ is the malicious node.

Figure 3.10 shows the attack detection results for node ܱଵ at different Originator

Interval values. We can observe that for Attacking Methods 1 and 2 the rate of detected

inconsistencies decreases as the Originator Interval value increases. This decrease in the

rate of detected inconsistencies is considered a normal behavior since if Originator Interval

increases then the broadcasting rate of fake Sequence Numbers decreases accordingly, what

means that the attacker broadcasts less malicious OGMs.

Nonetheless, in Attacking Method 2, the detection rate for Originator Intervals values

of 1000 ms, 1500 ms, 2000 ms, and 4000 ms are even lower than the respective ones of

Attacking Method 1. Since the values of Sequence Numbers of fake OGMs are close to

values of Sequence Numbers of legitimate OGMs, legitimate OGMs of node ܱଵ overlap

with fake OGMs broadcasted by the attacker. Then, batctl tool cannot correctly trace the

Mismatch detected.

T4O1

T3 T 5

T 6

T 7

T3 T4T 6 T 5

O1

O1 T4

A 2

A 2

T3 T 5

T6

Sequence Number path
through the network

Originator

Chapter 3. Attack Analysis 54

path that fake Sequence Numbers follow in the network, so making it difficult for the tool

to identify inconsistencies in the Sequence Number trees.

Figure 3.10: Detection results for node ܱଵ.

The modified version of Batctl tool, for detection of routing manipulation attacks, had

a good performance in the role of detecting fake OGMs broadcasted by a malicious node in

the mesh network with low false positives and high detection rate. The tool was able to

detect most of fake OGMs in Attacking Method 1 with different Originator Intervals, and

most of fake OGMs in Attacking Method 2 when Originator Interval is 500 ms. In those

cases, route manipulation attack is more effective in role of redirecting the routes of target

nodes, as presented in the results of Figure 3.5.

3.6.2 Results for Scenario 2
Figure 3.11 presents the attack detection results for the mesh nodes of Figure 3.6 when

attackers ܣସ and ܣଽ broadcast phony OGMs with Originator Interval of 1000 ms. In Figure

3.11, we can see nodes ܱଵ and ܱଵ଴ have the highest rate of detected inconsistencies in their

Sequence Number trees. We found that 26% of Sequence Numbers broadcasted for

Originator ܱଵ are malicious, i.e., they are invalid, and 31% of Sequence Numbers

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

500 ms 1000 ms 1500 ms 2000 ms 4000 ms

%
 d

et
ec

te
d

in
co

ns
is

te
nc

ie
s

Originator Interval

Attacking Method 1 Attacking Method 2

Chapter 3. Attack Analysis 55

broadcasted for Originator ܱଵ଴ are malicious. These detection rates are close to the

detection rate of Originator ܱଵ in Scenario 1 shown in Figure 3.10.

Figure 3.11: Detection results for Scenario 2.

Concerning the other nodes in Figure 3.11, we can notice that the rate of detected

inconsistencies is below 6%. As explained on Section 3.6.1, these inconsistencies do not

correspond to attack attempts, i.e., they are false positives that are caused by the lack of

synchronization of routing information contained in the log files collected at each node.

The modified batctl tool was able to detect the majority of fake OGMs broadcasted by

malicious node ܣସ for node ܱଵ and the fake OGMs broadcasted by malicious node ܣଽ for

node ܱଵ଴ in Scenario 2. In this scenario, the route manipulation attack poses a serious threat

to the routes of target nodes since the attacker redirects these routes to the malicious node

without great difficulty as showed in the results of Figure 3.7.

3.7 Conclusion
In this chapter, we have studied how an attacker efficiently manipulates the routes of

BATMAN nodes. The attack consists of generating and broadcasting forged OGMs for a

0%

5%

10%

15%

20%

25%

30%

35%

node
O1

node
O10

node
A4

node
A9

node
T2

node
T3

node
T5

node
T6

node
T7

node
T8

node
T11

%
 d

et
ec

te
d

in
co

ns
is

te
nc

ie
s

Mesh node
Attacking Method 1

Chapter 3. Attack Analysis 56

legitimate mesh node in order to divert the routes of other mesh nodes to the malicious

node. We show that this particular routing attack is very effective against BATMAN

routing protocol. The detailed security analysis of attack feasibility establishes bounds on

the real impact of this routing attack in a realistic mesh network scenario.

The experiment results demonstrate that routing operations of mesh network and

routing tables of target nodes can be seriously impacted by the flooding of forged OGMs

throughout the network. In addition, BATMAN protocol has proved to be vulnerable to

route manipulation attack. However, this type of attack can be detected by tracing all the

OGMs broadcasted by each node in the network making use of BATMAN log files

collected for each node. To find the source of attack we rely on the mesh network topology.

Our detection approach to defend against routing manipulation attacks combines

monitoring-based detection and trace-based analysis techniques.

However, two attackers can collude to perform a coordinated routing manipulation

attack. For instance, in Scenario 1 shown in Figure 3.4, if a second attacker is placed at

node ସܶ which coordinates with the first attacker ܣଶ to drop the fake OGMs broadcasted by

attacker ܣଶ at node ସܶ, then the detection scheme, that basically traces malicious OGMs

broadcasted to target nodes, would be not able to identify such type of attack using the

Sequence Number tree structure. To detect such type of collusion attack, it is more

appropriate to use a distributed intrusion detection mechanism which independently

monitors the routing behavior of each node. The cooperative intrusion detection

architecture introduced in Chapter 4 is capable of detecting such collusion attacks.

Chapter 3. Attack Analysis 57

58

Chapter 4

4 Distributed and Cooperative Intrusion

Detection

Many security schemes proposed for wired networks cannot be directly applied in the

wireless environment. Since existing IDSs approaches are not suitable for WMNs, in this

chapter, we propose an efficient and scalable IDS architecture to build distributed and

collaborative intrusion detection for WMN architectures.

We focus on addressing a severe security threat against the correct operation of mesh

network, known as routing misbehavior intrusion. The intrusion detection architecture is

designed to effectively detect routing attacks in real-time. The IDS utilizes a practical and

scalable architecture for collecting sufficient evidence in order to precisely diagnose

routing attacks. In the intrusion detection architecture, cooperative detectors are placed at

each node to promiscuously monitor all routing messages on the node interface, and

exchange local routing events with one-hop neighboring nodes for collaborative analysis of

the neighborhood routing behavior. Then, a tailored intrusion detection engine processes

these generated routing events in conjunction with predefined Routing Constraints to

concurrently calculate misbehaving metrics that indicate the presence of malicious routing

behavior in the local vicinity. If suspected routing behavior is identified a consensus

mechanism is initiated at the node, which analyzes detection results in the neighborhood

and make a collective decision about the culpability of suspicious node.

The cooperative IDS proposed in this chapter has fewer assumptions and greatly

improves the performance and scalability of realistic IDS executing in the WMN. We

demonstrate both routing attacks and our distributed and cooperative intrusion detection

mechanism employing BATMAN proactive routing.

The rest of the chapter is organized as follows. Sections 4.1 and 4.2 present the system

model and attacker model respectively. Section 4.3 introduces our distributed intrusion

Chapter 4. Distributed and Cooperative Intrusion Detection 59

detection architecture. Section 4.4 proposes a threshold mechanism that improves the

detection accuracy. Section 4.5 exemplifies the distributed intrusion detection scheme for

detection of message fabrication attacks. In Section 4.6, we demonstrate the effectiveness

of our intrusion detection approach through implementation. In Section 4.7, we analyze the

performance of the intrusion detection solution in terms of resources consumption. In

Section 4.8, we present additional considerations regarding the intrusion detection

architecture, such as security issues. Finally, Section 4.9 concludes the chapter.

4.1 System Model
We adopt the same WMN model as described in Section 3.1. We assume that wireless

channels are symmetric, and all mesh nodes have the same transmitting power and

consequently the same transmission range. In particular, for performing distributed and

cooperative intrusion detection, nodes taking part in WMN have powerful enough CPU and

sufficient memory resources to run the IDS tool.

We assume that each IDS is trusted and is not corrupted, despite the node itself is

compromised. Thus, the IDS do not provide fake or erroneous information, such as

incorrect detection results, where attackers may collude to falsely accuse a legitimate node

as malicious. We also assume that communication among IDSs is secure and reliable, so

exchange of routing events and detection results cannot be compromised by outsider

attackers. We assume the existence of end-to-end message authentication scheme, such as

traditional digital signature or message authentication code (MAC), which allows each IDS

to efficiently verify the integrity and authenticity of messages exchanged between IDSs.

We assume that cryptographic protection prevents spoofing attacks and external attacks. As

long as the node identity and its public key are cryptographically bound, the attacker cannot

spoof the node’s address unless the private key of the victim is compromised.

We assume that each IDS registers the MAC and IP address of the mesh node which it

resides on and also the MAC and IP addresses from the neighboring nodes, and they are

authentic. We do not consider attacks against the IDS itself, such as DoS attacks, or against

the IDS communication mechanism, which is used to share detection results and traffic

information, such message dropping attacks. We assume IDS instances always exchange

data successfully, and are not compromised. Protecting the IDS is out of our work scope.

Chapter 4. Distributed and Cooperative Intrusion Detection 60

4.2 Attacker Model
We consider the same attacker model as described in Section 3.2. The attacker has full

control of the authenticated node and performs arbitrary behavior to disrupt the

communication of any node in the mesh network, such as injecting or discarding packets at

the mesh node. As described in Section 3.2, we assume that the attacker do not attempt to

violate the security properties of physical layer and MAC layer. In particular, the main

objective of attacker is: (i) violate the integrity of routing tables and routing messages; and

(ii) disrupt the routing and data forwarding operations of the network.

In this chapter, we apply our distributed intrusion detection solution for detecting

message fabrication attacks, which is a common threat to WMNs. Message fabrication

attacking method was detailed in Section 3.2.1. We define message fabrication attack as the

process of creating and injecting legitimate routing packets into the network in order to

violate the network routing services. The consequences of this attack are link spoofing (or

route redirection), poisoning of routing tables, and routing loops.

The attacker can also launch specific attacks by applying message fabrication attacking

method, such as routing manipulation attack which was studied in Chapter 3. In addition,

this type of attack is a precondition for other more serious attacks, for instance, blackhole

(or sinkhole attacks) and grayhole attacks, where data packets are indiscriminately

discarded by the malicious node that previously redirected the network traffic to itself.

4.3 Distributed Intrusion Detection Architecture
An IDS instance resides on each mesh node and monitors all network traffic that passes

through it. The IDS performs independent traffic analysis based on its own observation, and

also collaborates with one-hop away mesh nodes. Since mesh nodes are the unique source

of data in the network, all nodes have to contribute to the process of intrusion detection by:

(i) carrying out local monitoring; (ii) analyzing the collected traffic; and (iii) providing

valuable traffic information and detection results to other nodes when needed. The

proposed intrusion detection architecture is illustrated in Figure 4.1.

Packets sent and received by a node are captured and filtered by a monitoring tool for

further analysis. To that end, we employ Bro [10], a popular network IDS tool, which

Chapter 4. Distributed and Cooperative Intrusion Detection 61

monitors local traffic by sniffing the node’s network interface. We opted for Bro since it

provides a modular architecture that allows adding protocol analyzers. In addition, Bro

provides a specialized language for writing policy scripts. Taking this into consideration,

we implemented the Routing Protocol Analyzer (RPA) module at “detection level” of the

IDS architecture, and policy scripts for intrusion detection in the Distributed Intrusion

Detection Engine (DIDE) component, which is composed of different intrusion detection

modules. We also added a specific packet filter into Bro main analyzer script in order to

select all routing packets we are interested in when monitoring the traffic.

Figure 4.1: Distributed intrusion detection architecture.

4.3.1 Bro IDS
Bro is a NIDS that passively sniffs traffic on the network link and performs protocol

analysis. Bro does packet capturing, message filtering, and content inspection, and invokes

user-specified policy scripts, which contain event handlers that treat protocol events defined

Traffic Monitoring Node Network Interface

Dist ributed Int rusion Detect ion Solut ion

Rout ing Event
Engine

Dist r ibut ed Int rusion
Det ect ion Engine (DIDE)

Ro u t in g P ro t o c o l An a lyze r (RP A)

Co o p e ra t ive Co n s e n s u s M e c h a n is m (CCM)

Exchange ofRouting Events

Exchange of Detection Results and Metrics

Script
level

Detect ion
 tool

Rout ing Event Handlers ()

Pa cke t Dr op p in g
De t e c t ion

Rout ing Event Handlers ()

M e ss a g e F a b r ica t ion
De t e c t ion

Rout ing Event Handlers ()

F lood in g
De t e c t ion

Response Mechanism

Act ive Re sp on s ePa s s ive Re s p on s e

Misbehaving Metrics

Routing Events

Action

Packets

Chapter 4. Distributed and Cooperative Intrusion Detection 62

by Bro. For high performance, Bro relies on the use of libpcap packet filters that captures

only a subset of the traffic that transits the link it monitors, i.e., IP traffic.

Bro is divided into two layers: an “event engine” layer that transforms a stream of

(filtered) packets into a stream of higher-level network events, and a “policy script

interpreter” layer, which executes security policy scripts written in Bro specific language.

Bro provides a distinct separation between the monitoring mechanism and policy script

execution. The policy scripts specify event handlers, which are in charge of processing

network events. A network event is a message containing arguments, which is generated by

a general or specific protocol analyzer of “event engine” as a result of processing one or

more protocol packets, mainly IP packets.

Bro provides a complete programming language. Bro policy scripts contain rules that

describe what types of network activities are considered problematic. Policy scripts

examine the network activity and can initiate specific actions based on that analysis.

Although Bro language takes time and effort to learn, once mastered, the end-user is able to

implement or change a variety of Bro scripts in order to detect and alert any sort of network

activity. In addition, Bro language enables implementing elaborated policy scripts with

timers, data structures, e.g., tables and sets, and connections.

Bro communication mechanism allows independent Bro instances to stay connected in

order to exchange network events containing specific information and share common script

variables between Bro peers, i.e., synchronize variables. Bro communication system uses

typical TCP socket client-server model, which establishes a TCP connection between two

hosts for sending and receiving packets. Bro uses a transparent communication model,

where Bro instances do not differentiate between local and remote network events. In

addition, Bro supports Secure Sockets Layer (SSL) cryptographic protocol for encryption

and authentication of connections in order to secure the communication channel between

two Bro peers and avoid external attacks, such as spoofing attacks and man in the middle

attacks. However, the use of SSL for node communication incurs extra processing

overheard to mesh nodes which has constrained hardware resources.

4.3.2 Routing Protocol Analyzer
In order to detect routing misbehavior, the IDS inspects every routing message transmitted

Chapter 4. Distributed and Cooperative Intrusion Detection 63

on the node interface. In the Routing Event Engine component, the RPA module examines

all incoming and outgoing routing traffic on the node interface and generates respective

Routing Events. The output of RPA module is a stream of Routing Events that describes

the observed activities of the routing protocol in semantically rich, high-level terms. The

Routing Events themselves do not represent security alerts, but rather provide valuable

input for further processing by distributed intrusion detection algorithms.

A Routing Event is a message containing parameters as the result of analysis of one or

more routing packets. The RPA module can generate different sorts of Routing Events

according to the protocol behavior and the type of network activity it desires to signalize.

The Routing Events defined for BATMAN protocol are specified in Section 4.5.1.

Since IDS instances collaborate with immediate neighbors to cooperate, the RPA

module forwards all the node’s Routing Events to its neighboring nodes, which in turn will

also process these Routing Events which represent the routing information generated by the

node. In order to exchange Routing Event messages between nodes, we employ Bro

communication system, introduced in Section 4.3.1. We assume that Routing Event

messages exchanged by the RPA modules of nodes are not violated by attackers, i.e.,

modified or dropped by malicious nodes. More concerns about the IDS security and

vulnerabilities of the communication mechanism are discussed in Section 4.8.1.

The IDS approach only requires RPA modules to exchange Routing Event messages

with neighboring RPA modules within one-hop maximum so that communication and

computation overhead can be reduced for the nodes. Exchanging Routing Events instead of

exchanging local audit data among neighboring nodes achieves cooperativeness with less

communication overhead and processing load for the mesh nodes.

The constant exchange of Routing Events between nodes guarantees a reliable and

robust transmission of routing information between IDSs. Because if messages are lost due

to impairments on the wireless link, still the IDS is able to accurately analyze the routing

behavior of neighboring nodes by making use of the Routing Events received so far, and

calculate the respective Misbehaving Metrics with good precision.

As next step, Routing Events are processed by the distributed intrusion detection

mechanism of IDS at “script level”, i.e., the DIDE component. The architecture of DIDE

component is introduced in next section.

Chapter 4. Distributed and Cooperative Intrusion Detection 64

4.3.3 Distributed Intrusion Detection Engine
The Distributed Intrusion Detection Engine (DIDE) component is implemented at “script

level” of IDS architecture as policy scripts. DIDE component is composed of different

intrusion detection modules, as shown in Figure 4.1. In DIDE component, each intrusion

detection module treats the Routing Events generated by the node and also the Routing

Events received from neighboring nodes for performing cooperative attack detection.

Routing Events received from neighboring nodes are forwarded to individual intrusion

detection modules of DIDE component by RPA module for subsequent treatment. Routing

Event Handlers are defined at each intrusion detection module in order to process the

respective Routing Events, i.e., each type of Routing Event is bound to a particular Routing

Event Handler. The output of DIDE component is Misbehaving Metrics, which indicate the

existence of malicious routing behavior in the own node or in the communication range of

the neighborhood. However, each intrusion detection module calculates individual

Misbehaving Metrics independently, as seen in Figure 4.1.

The attack detection algorithms, i.e., policy scripts, are integrated into DIDE

component. An attack detection algorithm is essentially made up of Routing Event

Handlers that specify what to do whenever a given Routing Event occurs. We make use of

Bro’s customized scripting language for implementing all the attack detection algorithms.

Therefore, each intrusion detection module possess a set of attack detection algorithms that

identify various types of attacks according to the attacking method of adversarial model,

introduced in Section 3.2.1, which is used by the attacker to carry out the intrusions.

The DIDE component architecture is divided into three intrusion detection modules: (i)

Packet Dropping Detection module, that is in charge of detecting malicious packet

dropping behavior of misbehaving nodes; (ii) Message Fabrication Detection module,

which detects forged routing packets in the routing flow; and (iii) Flooding Detection

Module, that identifies fabricated messages flooded through the entire network.

For instance, the Packet Dropping Detection module, which is studied in Chapter 5,

make it possible the detection of a wide range of packet dropping attack variations, such as

selective/conditional packet dropping, probabilistic packet dropping, random packet

dropping, and periodic packet dropping. The Packet Dropping Detection module processes

local and remote Routing Events by making use of specific Routing Event Handlers, which

Chapter 4. Distributed and Cooperative Intrusion Detection 65

in turn implement algorithms for detection of packet dropping misbehavior. These

algorithms compute the Misbehaving Metrics, i.e., Packet Dropping Metrics, which serve

as input to the Cooperative Consensus Mechanism (CCM) module.

The Message Fabrication Detection module is better explained in Sections 4.5.2 and

4.5.3. In Section 4.5.2, we define Routing Constraints on the routing protocol behavior that

are used for the message fabrication detection algorithms. In Section 4.5.3, we show how

Misbehaving Metrics are calculated taking into account the defined Routing Constraints

and Routing Events generated by RPA module. We make use of BATMAN routing

protocol to exemplify the operation of Message Fabrication Detection module.

The Flooding Detection module implements intrusion detection algorithms for

recognizing, for instance, an overflow of routing packets, which may contain legitimate

content or not, for instance, a forged Source Address. The detection algorithms used in this

module are close to the ones of Message Fabrication Detection module, i.e., the Routing

Constraints employed by both modules are similar. However, if the Misbehaving Metrics

calculated by this module exceeds a certain value in a short time period, an Active

Response is promptly requested to the Response Mechanism component without previous

analysis of the Misbehaving Metrics by CCM module, which can also trigger a response.

As discussed in Section 4.3.2, the active exchange of Routing Events between IDSs

provides a fault tolerant intrusion detection solution that is capable of maintaining the

detection accuracy at a good level still in the presence of communication failures, such as

corruption and discarding of routing packets at the endpoints. Fault tolerance assumes that

failures are random and are the result of faults introduced in the communication equipment,

which will cause errors in the transmission of packets between hosts. However, failures can

also be caused by external factors such as noisy lines and collisions on shared medium.

4.3.4 Cooperative Consensus Mechanism
We employ a collaborative decision-making [40] (also known as group decision-making)

mechanism, where each node takes active part in giving the verdict of the intrusion

detection process. According to the concept of synergy, decisions made collectively tend to

be more effective than decisions made by a single individual. Collaborative decision-

making systems are more reliable in case of failure of nodes or if particular nodes are

Chapter 4. Distributed and Cooperative Intrusion Detection 66

compromised. If all nodes contribute to the outcome, a few malicious or malfunctioning

nodes cannot easily disrupt the decision-making process. However, if a single node is in

charge of making the decision, it can subsequently trigger, for instance, active actions in

response to a given attack that will affect the entire network operation and can make nodes

vulnerable to internal attacks in case of wrong decision made.

We particularly employ a consensus decision-making [40] scheme, which is a group

decision-making process. Consensus decision-making seeks the agreement of the majority

of participants on a given course of action, but with the consent of the minority on this

course of action since the decision made should meet the concerns of all group members as

much as possible and it is considered the best possible decision for the group and all of its

members. As decision rule, i.e., the level of agreement demanded to finalize a decision, we

use “unanimous agreement minus one vote or two votes” approach. This decision rule is

applied during the consensus process, which collects as much agreement as possible but

allows the decision to be finalized without requiring unanimity, i.e., the consensus is

reached without the consent of all members involved in the decision process. In this case, if

some members do not completely agree or have a strong objection to the choice made, they

will have to accept the decision and live with it. We do not consider modifying the decision

of the majority to generate unanimous agreement or unanimous consent.

In realistic WMNs, all nodes in the neighborhood should detect the same routing

intrusions with equally accuracy, then reaching consensual decisions about those intrusion

attempts with unanimous agreement. However, communication links of a few nodes may

have poor quality due to packet collision and congested channels or because these nodes are

very distant from the other nodes, then resulting in inconsistent intrusion detection results.

Consequently, these nodes will oppose to the decision of the majority. Therefore, to achieve

a consensus in such wireless environment with network fluctuations, we employ the

decision rule, which does not demand unanimous consent from all of the nodes but the

agreement from the majority. This consensus approach is considered fair for WMNs since it

is highly improbable to reach unanimous consent in such unstable wireless scenario, and

the final decision satisfy the expectation of all nodes, i.e., the legitimate nodes.

Nonetheless, if the consensus process of various nodes in the neighborhood, i.e., the

majority of nodes, is compromised, an attacker can induce the legitimate nodes to make

Chapter 4. Distributed and Cooperative Intrusion Detection 67

erroneous decisions, then violating the consensus approach. The security of the consensus

scheme is discussed in Section 4.8.1.

The consensus process together with the decision rule is implemented in CCM module

as the Consensus Algorithm. The CCM module is integrated to the IDS architecture at

“script level” as seen in Figure 4.1. The Consensus Algorithm is implemented in CCM

module in the form of policy scripts. The Consensus Algorithm is detailed as follow.

• The CCM module analyzes Misbehaving Metrics supplied by the different intrusion

detection modules to eventually diagnose if a routing attack is occurring relying on

a threshold scheme. For example, Packet Dropping Metrics provided by the Packet

Dropping Detection module, which represent, for instance, the rate of routing

packets received by a node that are intentionally discarded, are carefully analyzed

by CCM module to identify possible packet dropping attack attempts.

• If strong proof of malicious routing behavior is detected by CMM module, then it

consults neighboring CCM modules for sharing Detection Results, i.e., the

Misbehaving Metrics related to the alleged routing intrusion.

• Based on the analysis of the Misbehaving Metrics from the own node and

neighboring nodes using thresholds, each node makes its individual decision about

the routing intrusion and designates or do not a suspected node as malicious.

• Thus, the CCM module shares the decisions among neighboring CCM modules,

where each node designates a suspicious node or do not designated, if the node

finds any evidence of attack occurrence when analyzing the Misbehaving Metrics.

• If all nodes agree on a common suspected node, then unanimous agreement is

reached and the final decision is made on the inculpation of the malicious node.

• If any node disagrees with the decision of majority, then CCM module applies the

decision rule to achieve consensus, i.e., finalize the decision about the suspicious

node but without unanimous consent. In that case, there are two possibilities:

(i) The majority of nodes make a joint decision on the same node, and then a

consensus is reached on the guiltiness of the suspected node.

(ii) The majority of nodes do not designate any suspicious node, and then a

consensus is also reached, which means no routing attack is occurring in the

Chapter 4. Distributed and Cooperative Intrusion Detection 68

neighborhood and there is no malicious node.

In both cases (i) and (ii), it is likely that a few nodes are suffering from impairments

on their wireless communication links or have reduced transmission power, which

lead these nodes to make such divergent decisions in relation to the majority.

• If half of nodes decide upon the same sentence for a suspected node and the other

half does not point out any suspicious node, there is no consensus among the

participating nodes and no final decision is made. In this particular case, the

Consensus Algorithm evokes a passive action from the Response Mechanism to

request further investigation.

The Consensus Algorithm applies adjustable thresholds, which are based upon the link

quality, in order to improve the analysis of Misbehaving Metrics and prevent nodes from

making incorrect decisions on the detection of malicious routing traffic and malicious

nodes. As explained earlier, inconsistent decisions are mainly caused by degradations in the

node’s communication channel, such as packet loss and packet corruption. Thus, incorrect

decisions made by many nodes will surely corrupt the final decision. The threshold

approach is further explained in Section 4.4. If the consensus reached by the nodes on the

routing attack and malicious node is positive, i.e., the malicious node is properly identified,

the CCM module sends a solicitation of passive and/or active reaction to the Response

Mechanism, which in turn it will raise alerts to users and authorities and/or execute

reactions at the network level, for instance, drop the malicious packets.

The CCM module allows IDS instances to effectively exchange necessary Intrusion

Detection Results for accurate analysis of attack information. Communication between

nodes follows a simple message-based protocol. For example, the consensus messages used

to exchange Misbehaving Metrics and make collective decisions are transmitted by Bro

communication system, presented in Section 4.3.1. Indeed, Detection Results and decisions

are shared between nodes by using Bro variable synchronization mechanism, where

variables of different policy scripts are synchronized across the connected nodes. Then,

each modification a nodes does to a given variable, which is declared as synchronizable, it

is propagated to the same variable in the scripts of neighbors, which likewise defined this

variable as synchronizable. This synchronization scheme provides a global view of

Chapter 4. Distributed and Cooperative Intrusion Detection 69

detection results and individual decisions for all the nodes. Thus, nodes can share

knowledge about local Misbehaving Metrics, which are calculated by individual intrusion

detection modules, and decisions about suspicions nodes with all of the neighbors.

CCM module is exemplified in Sections 4.5.4 where the output of Message Fabrication

Detection module, i.e., the Message Fabrication Metrics, is used as input for the Consensus

Algorithm in order to reach a collective decision on the presumed misbehaving node. We

consider some assumptions for secure message exchange. We assume that Intrusion

Detection Results and decision messages exchanged by CCM modules during the

consensus process are not compromised, i.e., modified or dropped by malicious nodes. The

security of IDS communication mechanism is further discussed in Section 4.8.1.

The consensus approach is considered vulnerable to collusion attacks, where the

majority of nodes are malicious in a neighborhood. So colluding malicious nodes can

incriminate a legitimate node in the same neighborhood, via the consensus protocol, by

violating the content of consensus messages, e.g., Misbehaving Metrics and decisions

made, that are exchanged among nodes. Therefore, we assume that the majority of nodes in

a neighborhood are not compromised. This assumption is mostly reasonable since in realist

WMN scenarios the number of malicious nodes is generally reduced to a few nodes, which

would not interfere in the consensus of the group. Nevertheless, the use of a trust scheme,

which defines the level of trust for each node, can effectively defeat this type of attack.

4.3.5 Response Mechanism
If a routing intrusion is consensually detected by the nodes, a Passive Response and/or

Active Response is requested by the CCM module according to the response policy defined

for this attacking technique. The Response Mechanism specifies response policies taking

into account the attacking methods of adversarial model, described in Section 3.2.1, and

more specifically, the type of routing attack that is identified. For instance, selfishness

misbehavior, which is an attacking technique based on packet dropping attacking method,

would require an passive action since the damage to the routing service and data delivery

service is tolerable and the network administrator has enough time to investigate the attack

cautiously. However, for blackhole attacks, which is also a packet dropping attacking

technique, an active action is demanded because the attack effect on the data delivery

Chapter 4. Distributed and Cooperative Intrusion Detection 70

service is devastating having serious consequences to the network users, therefore an

mitigation action should be rapidly applied.

• Passive Response: In this procedure, the IDS firstly outputs all the intrusion

information to log files, e.g., the Misbehaving Metrics and decisions made by the

nodes, which are subsequently stored on the disk. Then, the IDS raises an alarm,

according to the notification policy, to inform users or network administrators about

the detected attack. For instance, emails are sent to a preconfigured list of email

addresses. The passive Response Mechanism is implemented as policy scripts and it

makes use of Bro notification system to send such alerts.

• Active Response: The IDS tries to mitigate the impact of the attack on the mesh

network or try to deter the attack that is occurring in the compromised node. Active

reactions are executed taking into account the attacking method and attacking

technique utilized by the attacker. For example, if the adversary is employing

message fabrication or message flooding attacking methods, the IDS tries to

mitigate the attack by discarding all the phony routing messages generated by the

malicious node. This attack response can be carried out in the malicious node,

which is more efficient, or in the target nodes, which also works. In case of data

packet dropping attacking technique, the IDS tries to avoid data packets to pass

through the malicious node toward their destinations. This attack response can be

achieved by dropping the routing packets broadcasted by the malicious node, so the

target nodes will choose optional routes to send data packets toward the destination.

The Response Mechanism of the IDS implements a notification policy which checks

the level of dangerousness of each detected routing intrusion, i.e., the priority of the

malicious routing behavior in the notification list, and reports such intrusion to the entities

that might be interested in it, such as end-users or any person responsible for the network

maintenance. For example, if selfishness misbehavior is detected an alert is sent only to the

network administrator, however if selective packet dropping is detected at the node both the

node’s user and the network administrator are notified since the user should be alerted that

the administrator will soon apply an action on the node. We assume the IDS does not

Chapter 4. Distributed and Cooperative Intrusion Detection 71

execute active responses by itself, e.g., trying to mitigate or stop an attack in progress. We

assume the network administrator is in a better position to formulate the most appropriate

corrective action to minimize or eliminate the impact of the attack on the mesh network.

4.4 Threshold Approach
We developed a threshold-based approach to improve the investigation of the Misbehaving

Metrics at CCM module so the IDS can achieve higher detection rate and lower false alarm

rate, i.e., false positives, then enhancing the IDS detection accuracy. The threshold

approach is applied to distinguish between false positives, which are mainly caused by

degradations in the wireless link quality, and true positives, that are the malicious behavior

produced by attackers, when analyzing the Misbehaving Metrics. For instance, the IDS

cannot determine if routing packets are being dropped because of natural packet loss of link

or malicious routing behavior performed by a misbehaving node.

Since we define a border separating detection rate from false positive rate, the false

negatives are automatically eliminated and the range of false positives is delimited and can

be appropriately measured. In our intrusion detection approach, false negatives could only

happen in case of Routing Event messages are accidentally discarded by a faulty node and

the corresponding routing messages are: (i) dropped by the malicious node, then the IDS at

the node and its neighbors are unable to detect these routing intrusions; or (i) fabricated by

the malicious node, then neighboring IDSs of the node are unable to detect these routing

intrusions. The IDS does not fail to detect any type of malicious behavior based on the

adversarial model defined in Section 3.2.1, because mostly Routing Events, which signalize

such type of intrusions, will be properly processed by the distributed intrusion detection

modules of DIDE component, and we assume nodes are not faulty. Moreover, since we

assume that Routing Events messages exchanged between IDSs are not compromised by

attackers, false negatives will not occur during the intrusion detection process.

In addition, the threshold mechanism is used by the Consensus Algorithm in order to

help CCM module of individual nodes to make more precise decisions about routing

intrusions and conviction of suspected nodes. As explained in Section 4.3.4, a few nodes

can be misguided in making decisions on routing attacks and suspicious nodes due to

degradations in their wireless transmissions, consequently a well-behaved node can be

Chapter 4. Distributed and Cooperative Intrusion Detection 72

unfairly accused if several nodes in the vicinity, which have impaired links, make such

inconsistent decisions. Therefore, the threshold scheme assures the majority of nodes will

make the correct decision about a detected intrusion and the corresponding dubious node.

The threshold mechanism takes into consideration the rate of packet loss of

communication links between nodes to define threshold values. The threshold approach,

which quantifies the false positive rate, is explained as follow.

1. For a given mesh network deployed in the open environment, we assume all nodes

are well behaving and do not perform malicious routing behavior. Due to the

intrinsic characteristics of the network, such as noisy areas, some communication

links will undergo quality impairments, such random packet loss or packet

corruption (if checksum is not used).

2. Based on that, some nodes, which are impacted by these transmission limitations,

will be forced to calculate their respective Misbehaving Metrics since Routing

Events are unintentionally dropped or corrupted during transmission. These

calculated Misbehaving Metrics are in fact false positives since no attack is

occurring in network.

3. Then, we calculate individual threshold values, considering a given period of time,

for the respective Misbehaving Metrics computed by the nodes, e.g., the rate of

routing packets received by the node from a neighbor that are discarded.

4. The threshold value, for a given Misbehaving Metric type, is the average number of

violations of the related Routing Constraint within a period.

5. This procedure of threshold calculation is repeated when necessary, e.g., in case of

changes in the network topology caused by mobility of nodes.

Defining a proper threshold is important since the primary measure of effective

intrusion detection in the network is low false positives and no false negatives.

Furthermore, the threshold mechanism makes possible the RPA module to tolerate a certain

level of message loss, which is common in wireless networks, and it certainly affects the

calculation of the Misbehaving Metrics.

The employment of thresholds along with the Consensus Algorithm is demonstrated in

Chapter 4. Distributed and Cooperative Intrusion Detection 73

Section 4.5.4. The procedure for calculating threshold values in the WMN scenario is

presented in Section 4.6.2, where BATMAN is used as routing protocol.

4.5 Distributed Detection of Message Fabrication Attacks
We choose BATMAN as the routing protocol for the current investigation. In particular, we

focus on specifying the routing behavior of the protocol by using Routing Events and

Routing Constraints in order to calculate the respective Misbehaving Metrics. The attack

detection algorithm consists of constraints on the specified routing behavior which is based

upon the protocol routing messages described in the specification.

4.5.1 RPA: Routing Events
Routing packets transmitted on the node link are captured and analyzed by the RPA

module. This component generates Routing Events based on the routing behavior of

protocol, which are subsequently treated by Routing Event Handlers defined in the policy

scripts of DIDE component.

We exemplify this mechanism in the context of BATMAN routing protocol, but the

protocol analyzer can easily accommodate other routing protocols as well. BATMAN

routing algorithm was detailed in Section 3.3.2. The RPA module handles BATMAN

packets and generates Routing Events that represent the protocol semantics:

ሺ൏ݒܿݎ_ܯܩܱ (1 ݏ݉ܽݎܽ݌ ൐ ሻ: it means an OGM was received from one of the

neighbors.

ሺ൏݀ܽ݋ݎܾ_ܯܩܱ (2 ݏ݉ܽݎܽ݌ ൐ ሻ: it means the node broadcasted an OGM to its

neighbors.

ሺ൏݀ݎܾ݁ݎ_ܯܩܱ (3 ݏ݉ܽݎܽ݌ ൐ ሻ: it means the node rebroadcasted an OGM received

from a neighboring node.

In addition, these Routing Events carry in parameters related to local context of node,

such as the node’s MAC address, and parameters extracted from the OGM packet such as

Originator Address, Source Address, Previous Sender address, and Sequence Number

Chapter 4. Distributed and Cooperative Intrusion Detection 74

value. The validation of OGM parameters by the IDS prevents man in the middle attacks,

where an attacker could sniffs and modifies the routing messages exchanged between two

end-points. Then, the Routing Events are treated by the own node and sent to its

neighboring nodes, which in turn will also treat the node’s Routing Events.

The attack detection scripts of DIDE component, more specifically the Message

Fabrication Detection module, implements Routing Event Handlers, which treat both local

and remote Routing Events exchanged with the neighbors.

ݏ݉ܽݎܽ݌ሺ൏ݒܿݎ_ܯܩܱ ሺ ሻ: it extracts parameters from local and remoteݒܿݎ_ܯܩܱ_ܪܧ .1 ൐ሻ and stores the data in sets as follow.

• Local ܱݒܿݎ_ܯܩሺ ൏ ݏ݉ܽݎܽ݌ ൐ሻ: ܵ_ݒܿݎை௥௜௚ௌ௥௖ ൌ ൅ܵ݁݊ݍ

ை௥௜௚ௌ௥௖ݒܿݎ_ܵ - is the set of Sequence Numbers ܵ݁݊ݍ received by the node for

the Originator Address ܱ݃݅ݎ from Source Address ܵܿݎ, which is a

neighbor of the node.

• Remote ܱݒܿݎ_ܯܩሺ ൏ ݏ݉ܽݎܽ݌ ൐ሻ: ܰܵ_ݒܿݎை௥௜௚ேௌ௥௖,௉ௌ௥௖ ൌ ൅ܵ݁݊ݍ

 is the neighbor address which forwarded the Routing ܿݎܵܰ where ,݃݅ݎܱ received by the node’s neighbor for ݊ݍ݁ܵ ை௥௜௚ேௌ௥௖,௉ௌ௥௖ is the set ofݒܿݎ_ܵܰ -

Event to the node. And ܲܵܿݎ is the Previous Sender address, which is a

neighbor of ܰܵܿݎ, i.e., it is the neighbor of the neighbor of the node.

ሺ൏݀ݎܾ݁ݎ_ܯܩܱ ሺ ሻ: it processes local and remote݀ݎܾ݁ݎ_ܯܩܱ_ܪܧ .2 ݏ݉ܽݎܽ݌ ൐ ሻ and

stores the data in sets as follow.

• Local ܱ݀ݎܾ݁ݎ_ܯܩሺ ൏ ݏ݉ܽݎܽ݌ ൐ሻ: ܵ_݀ݎܾ݁ݎை௥௜௚ௌ௥௖ ൌ ൅ܵ݁݊ݍ

ை௥௜௚ௌ௥௖݀ݎܾ݁ݎ_ܵ - is the set of ܵ݁݊ݍ rebroadcasted by the node for ܱ݃݅ݎ that

were previously received from neighbor ܵܿݎ.

• Remote ܱ݀ݎܾ݁ݎ_ܯܩሺ ൏ ݏ݉ܽݎܽ݌ ൐ሻ: ܰܵ_݀ݎܾ݁ݎை௥௜௚ேௌ௥௖ ൌ ൅ܵ݁݊ݍ

 .݃݅ݎܱ for ܿݎܵܰ rebroadcasted by the node’s neighbor ݊ݍ݁ܵ ை௥௜௚ேௌ௥௖ is the set of݀ݎܾ݁ݎ_ܵܰ -

Chapter 4. Distributed and Cooperative Intrusion Detection 75

4.5.2 DIDE: Routing Constraints
We analyze BATMAN specification and defined attack detection constraints in order to

prevent routing attacks which employ message fabrication attacking method. The Routing

Constraints rely on the protocol behavior for detecting malicious routing behavior. They are

implemented in the Routing Event Handlers defined in previous section for making use of

their data sets.

ଵܥ ሺ ሻ: Constraint݀ݎܾ݁ݎ_ܯܩܱ_ܪܧ .1 ՚ ݊ݍ݁ܵ א ை௥௜௚ௌ௥௖ݒܿݎ_ܵ ,
• Check if the ܵ݁݊ݍ rebroadcasted by the node for ܱ݃݅ݎ was received before from

its neighbor ܵܿݎ.

ଶܥ ሺ ሻ: Constraintݒܿݎ_ܯܩܱ_ܪܧ .2 ՚ ݊ݍ݁ܵ א , ை௥௜௚ேௌ௥௖,௉ௌ௥௖ݒܿݎ_ܵܰ
• Check if the ܵ݁݊ݍ received by the node for ܱ݃݅ݎ was firstly received by its

neighbor ܰܵܿݎ which received it from its neighbor ܲܵݒܿݎ_ܯܩܱ_ܪܧ .ܿݎሺ ሻ: Constraint ܥଷ ՚ ݊ݍ݁ܵ א , ை௥௜௚ேௌ௥௖݀ݎܾ݁ݎ_ܵܰ
• Check if the ܵ݁݊ݍ received by the node for ܱ݃݅ݎ was previously rebroadcasted

by its neighboring node ܰܵܿݎ.

Additional Routing Constraints can be specified and added to Message Fabrication

Detection module but respecting the routing protocol behavior and also taking into account

the attacking techniques that IDS seeks to identify. In this chapter, we apply the Routing

Constraints ܥଵ, ܥଶ, and ܥଷ for detecting message fabrication routing attacks.

4.5.3 DIDE: Misbehaving Metrics
In case of any Routing Constraint is violated, the message fabrication detection algorithm

counts the number of inconsistencies ܨ found for each Routing Constraint separately.

݊ݍ݁ܵ ܎ܑ :ଵܥ .1 ב ை௥௜௚ௌ௥௖ݒܿݎ_ܵ , ++ௌ_௥௖௩ܨ ܖ܍ܐܜ
where ܨௌ_௥௖௩ is the number of fake ܵ݁݊ݍ rebroadcasted by the node for ܱ݃݅ݎ, which

are supposed to be firstly received from its neighbor ܵܿݎ but they didn’t.

݊ݍ݁ܵ ܎ܑ :ଶܥ .2 ב , ++ேௌ_௥௖௩ܨ ܖ܍ܐܜ ை௥௜௚ேௌ௥௖,௉ௌ௥௖ݒܿݎ_ܵܰ

Chapter 4. Distributed and Cooperative Intrusion Detection 76

where ܨேௌ_௥௖௩ is the number of fake ܵ݁݊ݍ received by the node from its neighbor ܰܵܿݎ for ܱ݃݅ݎ, which are supposed to be received by ܰܵܿݎ from its neighbor ܲܵܿݎ

but they didn’t.

݊ݍ݁ܵ ܎ܑ :ଷܥ .3 ב , ++ேௌ_௥௘௕௥ௗܨ ܖ܍ܐܜ ை௥௜௚ேௌ௥௖݀ݎܾ݁ݎ_ܵܰ
where ܨேௌ_௥௘௕௥ௗ is the number of fake ܵ݁݊ݍ received by the node for ܱ݃݅ݎ, which

are supposed to be rebroadcasted by its neighboring node ܰܵܿݎ but they didn’t.

Then, the message fabrication detection algorithm calculates the rates of routing

misbehavior ܴ considering the number of inconsistencies ܨ detected, which are basically

the Message Fabrication Metrics output by this module, as follow.

 ܴௌ_௥௖௩ ൌ ை௥௜௚ௌ௥௖݀ݎܾ݁ݎ_ௌ_௥௖௩หܵܨ ห (1)

where ܴௌ_௥௖௩ is the rate of fake ܵ݁݊ݍ rebroadcasted by the node for ܱ݃݅ݎ.

 ܴேௌ_௥௖௩ ൌ ை௥௜௚ௌ௥௖ݒܿݎ_ேௌ_௥௖௩หܵܨ ห (2)

where ܴேௌ_௥௖௩ is the rate of fake ܵ݁݊ݍ received by the node from its neighbor ܰܵܿݎ for ܱ݃݅ݎ that were not received by ܰܵܿݎ from ܲܵܿݎ.

 ܴேௌ_௥௘௕௥ௗ ൌ ை௥௜௚ௌ௥௖ݒܿݎ_ேௌ_௥௘௕௥ௗหܵܨ ห (3)

where ܴௌே_௥௘௕௥ௗ is the rate of fake ܵ݁݊ݍ received by the node for ܱ݃݅ݎ that were not

rebroadcasted by its neighbor ܰܵܿݎ.

These Message Fabrication Metrics are provided to CCM module for further analysis.

In addition, the Message Fabrication Detection module could provide additional

Misbehaving Metrics if necessary since they are essentially calculated based on Routing

Events processed by the Routing Event Handlers.

Chapter 4. Distributed and Cooperative Intrusion Detection 77

4.5.4 CCM: Consensus Algorithm
The nodes in the neighborhood collaborate with each other to make a decision about a

suspicious node. This is performed by a consensus procedure, in which a node is considered

malicious when the majority of its neighbors have reached a consensus as explained in

Section 4.3.4. The reason for such procedure is that Misbehaving Metrics calculated by

only one node may not be precise due to packet loss of wireless links caused by

interferences and noisy channel. Then, a legitimate node transmitting on deficient links may

be erroneously considered as a malicious node. Therefore, the consensus approach assures

with a very high probability that malicious nodes will properly identified.

The Consensus Algorithm of CCM module is summarized in Algorithm 1. For a better

understanding of the algorithm, we consider the rates of message fabrication ܴௌ_௥௖௩ை೙ , ܴேௌ_௥௖௩ை೙ , and ܴேௌ_௥௘௕௥ௗை೙ calculated by node ௡ܱ as the Misbehaving Metrics provided to

CCM module for analysis. We assume the neighboring node ଵܰ of node ௡ܱ is advertising

fake routing information in the neighborhood, i.e., broadcasting fabricated routing packets,

so the Consensus Algorithm is initiated by node ௡ܱ based upon that premise. Since remote

Routing Events exchanged by nodes can be lost, the calculated rates of routing misbehavior ܴ are not accurate. Then, a threshold ݄ܶ is necessary to distinguish between false positive

rate and malicious routing behavior rate when analyzing the Misbehaving Metrics, as

explained in Section 4.4. The thresholds ݄ܶை೙ ൌ ሼ݄ܶை೙ௌ_௥௖௩, ݄ܶை೙ேௌ_௥௖௩, ݄ܶை೙ேௌ_௥௘௕௥ௗሽ are

defined for node ௡ܱ, which are based on the packet loss rate of ௡ܱ’s wireless link.

As the rate of routing misbehavior ܴேௌ_௥௖௩ை೙ ൒ ݄ܶை೙ேௌ_௥௖௩, node ௡ܱ suspects a routing

attack is occurring in the vicinity, i.e., neighbor ଵܰ is fabricating packets, and then starts the

consensus procedure by sending its Detection Results ܴܦை೙ ൌ ሼܴௌ_௥௖௩ை೙ , ܴேௌ_௥௖௩ை೙ , ܴேௌ_௥௘௕௥ௗை೙ ሽ

and thresholds ݄ܶை೙ to the set of neighbors ܲ ൌ ሼ ଵܰ, … , ௞ܰሽ and receiving the respective

Detection Results ܴܦேభ, … , ,ேೖ and thresholds ݄ܶேభܴܦ … , ݄ܶேೖ from the neighboring

nodes ௜ܰ , 1 ൑ ݅ ൑ ݇. Thus, node ௡ܱ analyses ܴܦே೔ from the neighboring nodes ௜ܰ,
particularly Detection Results ܴܦேభ from ଵܰ who is supposedly broadcasting fake routing

packets, and decide to indicate neighbor ଵܰ as malicious node ܯ ைܰ೙. Similarly, the

neighbors ௜ܰ execute the same analysis procedure and indicate their malicious nodes ܯ ேܰ೔

Chapter 4. Distributed and Cooperative Intrusion Detection 78

or not. So, node ௡ܱ exchange its individual decision ܯ ைܰ೙ with neighboring nodes ௜ܰ and

reciprocally for the decision of the neighboring nodes ܯ ேܰ೔.

Algorithm 1: Consensus Mechanism
Input: Detection Results ܴܦை೙, thresholds ݄ܶை೙
Output: malicious node ܯ ைܰ೙, ܿݏݑݏ݊݁ݏ݊݋
ேௌ_௥௖௩ை೙ܴ ܎ܑ .1 ൒ ݄ܶை೙ேௌ_௥௖௩
ݏݑݏ݊݁ݏ݊݋ܿ ܎ܑ .2 ് ܖ܍ܐܜ ݁݊݋݀
,ை೙ܴܦሺܿ݊ݕܵ .3 ݄ܶை೙ሻ
௜ܰ ܔܔ܉ ܚܗ܎ .4 א ܗ܌ ܲ
,ே೔ܴܦሺܿ݊ݕܵ .5 ݄ܶே೔ሻ
ேௌ_௥௖௩ே೔ܴ ܔܔ܉ ܎ܑ .6 ൒ ݄ܶே೔ேௌ_௥௖௩ ܌ܖ܉ ܴௌ_௥௖௩ேభ ൒ ݄ܶேభௌ_௥௖௩ ܖ܍ܐܜ
ܯ .7 ைܰ೙ ՚ ଵܰ
ܯሺܿ݊ݕܵ .8 ைܰ೙, ܯ ேܰ೔ሻ
ܯ ܔܔ܉ ܎ܑ .9 ேܰ೔ ൌ ଵܰ ܖ܍ܐܜ
ݏݑݏ݊݁ݏ݊݋ܿ 10 ՚ ܯ ;ݐ݊݁݉݁݁ݎ݃ܽ_ݏݑ݋݉݅݊ܽ݊ݑ ைܰ೙ ՚ ଵܰ
11. Raiseሺ݈ܽ݁ݐݎሻ; Executeሺܽܿ݁ݏ݊݋݌ݏ݁ݎ_݁ݒ݅ݐሻ
ܯ ܡܖ܉ ܎ܑ ܍ܛܔ܍ .12 ேܰ೔ ് ଵܰ ܖ܍ܐܜ
13. Executeሺ݈݀݁ܿ݅݁ݑݎ_݊݋݅ݏሻ
ே೔ܰܯ ܡܜܑܚܗܒ܉ܕ ܎ܑ .14 ൌ ଵܰ ܖ܍ܐܜ
ݏݑݏ݊݁ݏ݊݋ܿ .15 ՚ ܯ ;݁݊݋݀ ைܰ೙ ՚ ଵܰ
16. Raiseሺ݈ܽ݁ݐݎሻ; Executeሺܽܿ݁ݏ݊݋݌ݏ݁ݎ_݁ݒ݅ݐሻ
ܯ ܡܜܑܚܗܒ܉ܕ ܎ܑ ܍ܛܔ܍ .17 ேܰ೔ ൌ ܖ܍ܐܜ ݈݈ݑ݊
ݏݑݏ݊݁ݏ݊݋ܿ .18 ՚ ܯ ;݁݊݋݀ ைܰ೙ ՚ ݈݈ݑ݊
 ܍ܛܔ܍ .19
ݏݑݏ݊݁ݏ݊݋ܿ .20 ՚ ܯ ;݈݂݀݁݅ܽ ைܰ೙ ՚ ݈݈ݑ݊
21. Raiseሺ݈ܽ݁ݐݎሻ
 ܎ܑ ܌ܖ܍ .22
 ܎ܑ ܌ܖ܍ .23
 ܍ܛܔ܍ .24
ܯ .25 ைܰ೙ ՚ ݈݈ݑ݊
 ܎ܑ ܌ܖ܍ .26
 ܚܗ܎ ܌ܖ܍ .27
 ܎ܑ ܌ܖ܍ .28
 ܎ܑ ܌ܖ܍ .29

If all neighboring nodes ௜ܰ indicate the same node as malicious, i.e., ܯ ைܰ೙ ൌ ܯ ேܰ೔,
the final decision is made with unanimity, and an active reaction is requested to Response

Mechanism. If any neighbor ௜ܰ indicates a different malicious node or does not indicate: ܯ ேܰ೔ ് ܯ ைܰ೙, the decision rule is executed. In that case, there are three options: (i) the

Chapter 4. Distributed and Cooperative Intrusion Detection 79

majority of neighbors ௜ܰ indicate ଵܰ as malicious, then consensus is reached and an active

reaction is similarly solicited from Response Mechanism; (ii) the majority of neighbors ௜ܰ
does not indicate any malicious node, then consensus is also reached and no response is

required from Response Mechanism; and (iii) Nearly half of neighbors ௜ܰ designate ଵܰ as

malicious node and the other part of neighbors ௜ܰ indicates no malicious node, then it

means the consensus procedure has failed, but an alarm is triggered for further investigation

since the consensus procedure has been possibly violated by the attacker.

Optionally, CCM module broadcasts intrusion alert messages to all nodes in the

network so each node is aware of the routing attack and the respective malicious node ଵܰ.

Once the malicious node was detected, the IDS tool can react to the routing attack by

discarding the malicious packets broadcasted by ଵܰ or depriving node ଵܰ of network

resources, i.e., isolating node ଵܰ from the rest of the network. However, if the consensus

mechanism of majority of neighbors ௜ܰ is compromised, node ௡ܱ may not be able to

identify any malicious behavior performed by the neighbors ௜ܰ, e.g., in case the neighbors ௜ܰ send incorrect detection results or individual decisions. Apparently the routing behavior

of these malicious nodes is considered normal from the point of view of node ௡ܱ.

To share Detection Results ܴܦ, thresholds ݄ܶ, and decisions ܰܯ, the Consensus

Algorithm utilizes Bro’s synchronization mechanism explained in Section 4.3.4, where

each time a synchronizable variable is updated in the script: ܵܿ݊ݕሺ൏ ݎܽݒ ൐ሻ, its

modification is propagated to all neighbors that use this same variable and the inverse is

true. In that manner, detection information can be easily shared between neighboring nodes.

4.6 Performance Evaluation
In this section, we use a virtualized mesh network environment to evaluate the efficiency of

the distributed intrusion detection approach and demonstrate the feasibility of our solution.

We apply the same virtualized network architecture used in Chapter 3 for emulating the

mesh network and detect routing attacks.

4.6.1 Experiment Platform
The configuration of the virtualized mesh network platform is quite similar to that one

Chapter 4. Distributed and Cooperative Intrusion Detection 80

described in Section 3.5.1. The mesh topology is emulated by VMs, which consists of

QEMU [37] instances, with Linux OS preinstalled, running BATMAN routing protocol

[14]. Batman-adv v.2011.1.0 [36] is compiled from source code and loaded into Linux OS

of each QEMU instance as kernel module. A QEMU instance consists of standard IBM PC

32Bit hardware architecture with one CPU, that is default QEMU 32Bit CPU type, and 256

MB of memory and compatible with Linux OS. We assume each node in the network has

the hardware configuration equivalent to the one of the QEMU VM, for instance, a

common wireless mesh device, precisely a Wi-Fi router, or a mobile device with enough

hardware resources. For convenience, QEMU emulates different types of CPU and

hardware configurations, including resource-constrained hardware platforms, which is very

useful for performance evaluation of security solutions in a controlled environment.

The virtual nodes are interconnected by a virtual switch [38], which implements bi-

directional communication links between nodes and the corresponding degradations in the

quality of links including packet loss rate. For the experiments, we assume a fixed

topology, but node mobility could be emulated as well. The distributed intrusion detection

approach is implemented in Bro v.1.5.3 [42] according to the intrusion detection

architecture described in Section 4.3 and the module of message fabrication attack

detection detailed in Section 4.5. Each node has two configured interfaces for Linux OS,

the first one is used by BATMAN to send routing and data packets and the second interface

is used by the IDS for exchanging intrusion detection related messages.

During the experiment execution, we make use of Bro logging mechanism to collect

the Misbehaving Metrics, routing information, and other intrusion detection data at each

mesh node. Those data are saved to log files, which are synchronized with a global clock,

i.e., the time of the main machine that executes the VMs.

4.6.2 Defining the Threshold
Before we start the experiments for intrusion detection, we execute the distributed intrusion

detection approach in a mesh topology in order to calculate the thresholds ݄ܶ for the rates

of routing misbehavior ܴ, as introduced in Section 4.4. Figure 4.2 presents the emulated

mesh network used in this scenario, which is comprised of four nodes: ܱଵ, ܱଶ, ܱଷ, and ସܱ.

The link between nodes ܱଵ and ܱଶ has a packet loss rate of 15%, which is high. In this

Chapter 4. Distributed and Cooperative Intrusion Detection 81

experiment step, all nodes are well behaving, i.e., no node disseminates malicious routing

messages. Then, we collect the supposed Misbehaving Metrics data calculated by nodes ܱଵ

and ܱଶ for defining the thresholds ݄ܶைభand ݄ܶைమ. The Misbehaving Metrics are caused by

the loss of Routing Event messages exchanged between the nodes.

Figure 4.2: Mesh topology emulated for the experiment.

Figure 4.3: Misbehaving Metrics calculated by node ܱଵ.

The duration of the experiment is 20 mins. Figure 4.3 shows the rates of routing

misbehavior ܴேௌ_௥௖௩ைభ , and ܴேௌ_௥௘௕௥ௗைభ calculated by node ܱଵ during the experiment run,

15% packet loss

 Mesh node

Mesh node
Gateway

node

IDS message (Routing Event)OGM

O4

O1

O2 O3

Mesh node

0 150 300 450 600 750 900 1050
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
at

e
of

 R
ou

tin
g

M
is

be
ha

vi
or

Time (s)

 RO1NS_rcv RO1NS_rebrd

Chapter 4. Distributed and Cooperative Intrusion Detection 82

which are actually false positives. We note that the maximum value of ܴேௌ_௥௖௩ைభ is close to 0.12 and for ܴேௌ_௥௘௕௥ௗைభ is close to 0.13, and the minimum value of both rates ܴேௌ_௥௖௩ைభ and ܴேௌ_௥௘௕௥ௗைభ is close to 0.02, therefore these two rates ܴேௌ_௥௖௩ைభ and ܴேௌ_௥௘௕௥ௗைభ are affected in

the same degree by the packet loss rate between nodes ܱଵ and ܱଶ. The threshold for rate ܴேௌ_௥௖௩ is defined as ݄ܶேௌ_௥௖௩ ൌ ∑ ிಿೄ_ೝ೎ೡே , where ܰ is total number of inconsistencies ܨேௌ_௥௖௩ detected by the node. The threshold ݄ܶேௌ_௥௘௕௥ௗ regarding the rate ܴேௌ_௥௘௕௥ௗ is

determined in the same way, i.e., by calculating the average ܨேௌ_௥௘௕௥ௗ. Table 4.1 presents

the thresholds calculated for nodes ܱଵ, ܱଶ, and ܱଷ.

Table 4.1: Thresholds estimated for nodes ܱଵ, ܱଶ, and ܱଷ.

Threshold ࡻ૚ ࡻ૛ ࡻ૜ ݄ܶௌ_௥௖௩
 0.04 0.01 0.01 ݄ܶேௌ_௥௖௩
 0.03 0.03 0.06 ࢊ࢘࢈ࢋ࢘_ࡿࡺࢎࢀ 0.02 0.02 0.05

Thus, applying the threshold formulas with node ଵܱ’s Misbehaving Metrics we find ݄ܶைభேௌ_௥௖௩ ൌ 0.05 and ݄ܶைభேௌ_௥௘௕௥ௗ ൌ 0.06. Since the loss of remote Routing Events does not

have influence on ܴௌ_௥௖௩ைభ , i.e., the packet loss rate does not impact ܴௌ_௥௖௩ைభ , we fix ݄ܶைభௌ_௥௖௩ ൌ0.04 and ݄ܶைమௌ_௥௖௩ ൌ ݄ܶைయௌ_௥௖௩ ൌ 0.01. For node ܱଶ, we found ݄ܶைమேௌ_௥௖௩ ൌ 0.02 and ݄ܶைమேௌ_௥௘௕௥ௗ ൌ 0.03 using the respective Misbehaving Metrics. The estimated thresholds can

be applied to larger topologies since they rely exclusively on the pack loss rate between

links. Therefore, even if the number of neighboring nodes increases and the amount of

packets transmitted also increases but the packet loss rate undergoes small fluctuations,

then the same calculated thresholds are applicable. Hence, the threshold-based approach is

considered scalable with respect to the number of nodes in the vicinity.

4.6.3 Emulation of Message Fabrication Attack
In this scenario, node ܱଵ is compromised, as shown in Figure 4.4, and disseminates fake

OGMs in the name of gateway node ܱଶ, which in reality it did not receive, in order to

Chapter 4. Distributed and Cooperative Intrusion Detection 83

divert the route of target nodes ܱଷ and ସܱ toward gateway node ܱଶ to the own malicious

node ܱଵ. As routing decisions are based on the statistical analysis of amount of OGMs

received instead of the information contained in packets, the malicious node ܱଵ has to

fabricate a number of fake OGMs that are numerous enough to surpass the legitimate

OGMs of node ܱଶ in order to redirect the route of target nodes ܱଷ and ସܱ to the malicious

node. In other words, malicious node ܱଵ has to continuously win the neighbor ranking of

target nodes ܱଷ and ସܱ towards gateway node ܱଶ, then overriding the legitimate OGMs

broadcasted by gateway node ܱଶ.

Figure 4.4: Routing redirection attack.

Since the link between nodes ܱଵ and ܱଶ has a packet loss rate (15%) higher than the

one between nodes ܱଶ and ସܱ (0%), target nodes ܱଷ and ସܱ normally prefer a route toward

gateway node ܱଶ via node ସܱ. For instance, in the routing table of target node ܱଷ, the route

entry of node ܱଶ has as best next-hop node ସܱ. However, as a consequence of the routing

attack execution, target nodes ܱଷ and ସܱ will choose malicious node ܱଵ as best next-hop to

gateway node ܱଶ because malicious node ܱଵ has broadcasted the most number of OGMs

for gateway node ܱଶ. As a result, in the routing table of target nodes ܱଷ and ସܱ, the route

entry of gateway node ܱଶ will be updated to node ܱଵ as next-hop.

This routing manipulation attack, studied in Chapter 3, aims to disrupt the network

routes by violating the integrity of routing tables of the target nodes. We implement this

15% packet loss
Malicious node

Target node

Target node
Gateway

node

IDS messages(Routing Event + DR + Decision)OGMMalicious OGM

O4

O1

O2 O3

Chapter 4. Distributed and Cooperative Intrusion Detection 84

routing attack by employing the packet generator packETH [39] as introduced in Section

3.5.2, which allow node ܱଵ fabricating and broadcasting fake OGMs with continuous valid ܵ݁݊ݍ on the network interface of own node ܱଵ.

4.6.4 Results

(a) Rate of message fabrication calculated by node ܱଵ.

 (a) Rate of message fabrication calculated
by node ܱଶ.

 (a) Rate of message fabrication calculated
by node ܱଷ.

Figure 4.5: Misbehaving Metrics calculated by nodes ܱଵ, ܱଶ, and ܱଷ.

We carried out several experiments to evaluate the robustness of our distributed intrusion

0 200 400 600 800 1000 1200 1400 1600 1800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RO1

S_rcv >= ThO1

S_rcv

Attacker starts
Fabrication of OGMs

R
at

e
of

 R
ou

tin
g

M
is

be
ha

vi
or

Time (s)

 RO1S_rcv RO1NS_rcv RO1NS_rebrd ThO1
S_rcv ThO1
NS_rcv ThO1
NS_rebrd

0 200 400 600 800 1000 1200 1400 1600 1800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RO2

NS_rcv >= ThO2

NS_rcv

Attacker starts
Fabrication of OGMsR

at
e

of
 R

ou
tin

g
M

is
be

ha
vi

or

Time (s)

 RO2NS_rcv RO2NS_rebrd ThO2
NS_rcv ThO2
NS_rebrd

0 200 400 600 800 1000 1200 1400 1600 1800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RO3

NS_rcv >= ThO
3

NS_rcv

Attacker starts
Fabrication of OGMsR

at
e

of
 R

ou
tin

g
M

is
be

ha
vi

or

Time (s)

 RO3NS_rcv RO3NS_rebrd ThO3
NS_rcv ThO3
NS_rebrd

Chapter 4. Distributed and Cooperative Intrusion Detection 85

detection approach. We take into consideration different broadcasting rates, i.e., Originator

Intervals, for sending the fake OGMs. We used broadcasting rates of 500 ms, 1000 ms,

1500 ms, and 2000 ms. The duration of each experiment is 30 minutes.

Figure 4.5 shows the rates of routing misbehavior ܴை೙ calculated by nodes ܱଵ, ܱଶ, and ܱଷ while node ܱଵ broadcasts fake OGMs at the rate of 1000 ms. As node ܱଵ starts

broadcasting fake OGMs at 3 secs, we can remark a large increase of rate ܴௌ_௥௖௩ைభ in Figure

4.5 (a), and consequently the increase of rates ܴேௌ_௥௖௩ைమ and ܴேௌ_௥௖௩ைయ , as shown in Figures 4.5

(b) and (c), respectively. Since the number of detected inconsistencies ܴௌ_௥௖௩ைభ continues

increasing during the attack execution, at 5 secs ܴௌ_௥௖௩ைభ ൒ ݄ܶைభௌ_௥௖௩ as seen in Figure 4.5 (a).

Moreover, at 7 secs ܴேௌ_௥௖௩ைమ ൒ ݄ܶைమேௌ_௥௖௩, and at 8 secs ܴேௌ_௥௖௩ைయ ൒ ݄ܶைయேௌ_௥௖௩, as seen in

Figures 4.5 (b) and (c). For node ܱଷ, we assume ݄ܶைయ ൌ ݄ܶைమ.

At the moment ܴௌ_௥௖௩ைభ surpasses ݄ܶைభௌ_௥௖௩, node ܱଵ perceives that possibly routing

manipulation attack is happening in the neighborhood and trigger the consensus procedure,

as explained in Section 4.5.4. After exchanging Detection Results ܴܦைభ, ܴܦைమ, and ܴܦைయ

with neighbors ܱଶ and ܱଷ, the Consensus Algorithm of node ܱଵ realizes the own node ܱଵ is

generating phony OGMs for Originator ܱଶ, and designates it as malicious node ܯ ைܰభ ൌܱଵ. Accordingly, nodes ܱଶ and ܱଷ conclude that OGMs received from node ܱଵ for

Originator ܱଶ were not previously received from node ܱଶ, i.e., node ܱଵ is fabricating fake

OGMs for node ܱଶ, and identically indicate it as malicious node ܯ ைܰమ ൌ ܯ ைܰయ ൌ ܱଵ.

Then, the three nodes share their individual decisions. Since all nodes agree on the same

malicious node ܱଵ, at this point, a consensus is reached and node ܱଵ is deemed malicious.

A possible countermeasure for this type of routing redirection attack is the IDS of node ܱଵ

start dropping the fake OGMs broadcasted by node ܱଵ itself for Originator ܱଶ that violate

Routing Constraint ܥଵ, or deny access to node ܱଵ into the access control list of the mesh

routers. Alternatively, the IDS of nodes ܱଶ and ܱଷ can drop the fake OGMs received from

node ܱଵ for Originator ܱଶ that violate Routing Constraint ܥଶ.

In this attacking scenario, false positives are only caused by the dropping of specific

Routing Events resulted from the packet loss of the communication link. In this case, if

remote Routing Events generated by node ܱଵ, which confirm the reception of routing

Chapter 4. Distributed and Cooperative Intrusion Detection 86

packets, are lost during transmission, the node itself has the proof of reception of the

routing packets, i.e., it treats its own local Routing Events generated for these routing

packets. Then, node ܱଵ does not produce false positives. However, the neighboring node ܱଶ detects false positives since it does not receive the remote Routing Events which prove

node ܱଵ received the routing packets. Since own node ܱଵ is in charge of initiating the

consensus mechanism, even if false positives detected by its neighbors are high, those false

positives do not have great impact on the intrusion detection process.

The effective detection rate, i.e., true positive rate, is defined as: ݎܦ ൌ ிିி்்ி , where ܨ

is the number of inconsistencies detected by the node during the attack, i.e., the malicious

traffic, as explained in Section 4.5.3; ܶܨ is the number of inconsistencies, i.e., the false

positives, detected during the phase of threshold definition in the scenario of Section 4.6.2;

and ܶܨ is the total number of fake OGMs broadcasted by the attacker throughout the

attack. Then, we calculate the effective detection rate ݎܦ for nodes ܱଵ, ܱଶ, and ܱଷ taking

into account the malicious scenario of Section 4.6.3, where node ܱଵ fabricates and

broadcasts OGMs for gateway node ܱଶ.

We obtained ݎܦைభ ൌ 100%, which is normal since detection of routing misbehavior in

node ܱଵ relies exclusively on local Routing Events which are not affected by packet loss.

And for the neighbors we found ݎܦைమ ൌ 86%, and ݎܦைయ ൌ 100%. The true positive rate of

node ܱଶ, ݎܦைమ, is lower compared to one of node ܱଵ, ݎܦைభ, because of the high packet loss

rate (15%) between nodes ܱଵ and ܱଶ which seriously impacts the intrusion detection

accuracy at node ܱଶ. Nonetheless, node ܱଷ detects all the fake OGMs broadcasted by node ܱଵ since there is no packet loss in the link between nodes ܱଵ and ܱଷ. The average ݎܦ for

the nodes is 95.3%. However, in realistic wireless environment, where the packet loss rate

of links is not so elevated, it is highly likely that the effective detection rate, i.e., true

positive rate, of the neighboring nodes would be around 96%.

The false positive rate ݎܨ considered for the nodes is the same as the ones defined in

Section 4.6.2: ݎܨைభ ൌ 4%, and ݎܨைమ,య ൌ 2% for nodes ܱଶ, and ܱଷ. The false positive rate

of node ܱଵ is not correct since this node is not affected by packet loss. Nonetheless, the

false positive rate of nodes ܱଶ and ܱଷ are more coherent but not exact for real WMN where

the packet loss rate of links is equitable among the neighbors experiencing congestion.

Chapter 4. Distributed and Cooperative Intrusion Detection 87

The false negative rate is defined as: ܰݎ ൌ 1 െ ி்ி. For that, we employ the same

malicious scenario of Section 4.6.3, where node ܱଵ broadcasts phony OGMs in the

network, but there is no packet loss rate in the link between nodes ܱଵ and ܱଶ since we seek

to estimate the malicious behavior that is not detected by IDS at neighboring nodes ܱଶ and ܱଷ. Then, we obtain ܰݎைభ,మ,య ൌ 0% for the three nodes ܱଵ, ܱଶ, and ܱଷ. As explained in

Section 4.4, since we assume that nodes do not present faulty behavior, then all packets

fabricated and disseminated by malicious node ܱଵ are precisely detected by node ܱଵ itself

and its neighboring nodes ܱଶ and ܱଷ since the packet loss of the links is 0%. Therefore, the

distributed intrusion detection mechanism does not yield false negatives.

4.7 Performance Analysis
In this section, we calculate performance metrics that consist of the memory, CPU, and

communication overhead. These performance metrics are important for the proper

evaluation of the proposed intrusion detection solution showing the efficiency,

effectiveness, and robustness of the approach. Consumption of hardware and

communication resources by the IDS at the node is studied in this section. In addition, we

analyze how our intrusion detection solution copes with the limited bandwidth in WMNs,

and the bandwidth overhead of the approach is evaluated.

4.7.1 CPU and Memory Consumption
The computation overhead of the IDS instance consists of: (i) capturing of routing packets

from network interface by using libpcap on Linux OS; (ii) processing of routing packets;

(iii) generation of Routing Events; and (iv) execution of attack detection scripts. In

addition, the IDS tool, which is connected to the neighbors by TCP sockets, sends Routing

Events to neighboring IDSs through IP packets. Moreover, the IDS instance saves all the

intrusion detection related information to log files in the VM. All these intrusion detection

operations are added to the computation overhead of the intrusion detection solution.

We measure the consumption of IDS resources, i.e., CPU and memory usage, at node ܱଵ during the intrusion detection operations for the two scenarios described in Sections

4.6.2 and 4.6.3 : (i) ܵܿ݁݊1: no malicious node is present; (ii) ܵܿ݁݊2: the attacker performs

Chapter 4. Distributed and Cooperative Intrusion Detection 88

message fabrication attack. For that purpose, we apply sysstat performance measurement

tool [43] to collect the performance log data in the QEMU VM, which has the hardware

configuration described in Section 4.6.1. Sysstat contains utilities to monitor system

performance and usage activity, such as CPU and input/output statistics for devices, in

order to fix performance issues and hardware bottlenecks. Figures 4.6 and 4.7 show the

computation overhead resulting from the execution of IDS tool at node ܱଵ.

Figure 4.6: CPU usage for the IDS at node ܱଵ.

Table 4.2: CPU statistics for the IDS at node ܱଵ.

Scenario Average CPU
usage (%)

Maximum CPU
usage (%)

Minimum CPU
usage (%) ܵܿ݁݊1 21.6 29.6 11.9

 ૛࢔ࢋࢉࡿ
Before Attack 20.6 29.6 13.3
After Attack 14.8 21.8 7.9

All 15.2 29.6 7.9

In Figure 4.6, the CPU utilization for the IDS in the first scenario ܵܿ݁݊1, i.e., the

percentage of CPU time spent by the IDS while executing at the kernel, is fair considering

all the operations executed by the IDS during the intrusion detection process. In this

scenario, the average CPU usage is 21.6% while the highest utilization is 29.6% and the

lowest consumption is 11.9%, as shown in Table 4.2. However, for ܵܿ݁݊2, we observe a

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

Attacker starts
fabricating OGMs

C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

 Scen1
 Scen2

Chapter 4. Distributed and Cooperative Intrusion Detection 89

reduction of CPU usage to 14% at the moment the attacker starts broadcasting fake OGMs

in the network interface of node ܱଵ, i.e., at 88 secs, as shown in Figure 4.6. In ܵܿ݁݊2,

before the attack is initiated, the average CPU usage is 20.6%, having a peak of 29.6% and

the lowest usage is 13.3%, which is very close to the CPU consumption for the IDS in ܵܿ݁݊1, as presented in Table 4.2. Nevertheless, after the attack is triggered the mean CPU

usage is decreased to 14.8% having a minimal utilization of 7.9% and maximal usage of

21.8%. In addition, for the entire experiment duration in ܵܿ݁݊2, the average CPU

utilization is reduced to 15.2%, a difference of 6.4% compared to the average CPU usage

for the IDS in ܵܿ݁݊1, as showed in Table 4.2.

In scenario ܵܿ݁݊2, the CPU should be more occupied by IDS task since the intrusion

detection operations are more intensive, such as the number of routing packets treated per

second, Routing Events generated and exchanged with IDSs, and the intense logging of

intrusion detection information, because of the attack execution at node ܱଵ. Nonetheless,

we perceive an opposite behavior from the IDS, i.e., its average CPU usage decreases when

the traffic load is increased. That unusual behavior is attributed to a “software bug” in Bro

communication framework [44], where the Bro process keeps an initial CPU usage of about

30%, that is high, regardless of whether there is network traffic to analyze, but if the traffic

load increases, the CPU consumption is progressively reduced until it is stabilized.

The computation overhead added by IDS is low since the average CPU utilization

during the attack detection process is 14.8%, and according to Bro communication

framework, the CPU consumption of IDS tends to reduce and stabilize when the network

traffic load is increased, i.e., number of packets processed per second. Therefore, if more

nodes are added in the neighborhood, the IDS is capable of efficiently handle all the traffic

generated by the neighboring nodes maintaining the accuracy of intrusion detection. Thus,

the IDS solution is scalable with respect to the computation overhead.

In Figure 4.7, we note that the memory consumption in both scenarios ܵܿ݁݊1 and ܵܿ݁݊2 gradually increases over the experiment duration. In Table 4.3, the average memory

consumed in the two scenarios is 4.97% of 256MB of main memory that is equivalent to

12393.25 Kbytes (12.10 Mbytes), which is indeed the physical memory used by IDS task.

In ܵܿ݁݊2, the upper limit of memory utilization is 5.34%, that is during the attack

execution, and the lower limit of memory usage is 4.15% which is before the attack

Chapter 4. Distributed and Cooperative Intrusion Detection 90

execution, as presented in Table 4.3. Then, in ܵܿ݁݊2, we notice an increase of 1.19%, i.e.,

2.89 Mbytes, during the intrusion detection process, which is acceptable taking into

consideration all the attack detection operations performed by the IDS. Therefore, the

detection operations performed by the IDS incur a small memory overhead regarding the

size of main physical memory of node. Since common wireless routers are equipped with

32MB of RAM memory, then the memory overhead added by the IDS is low.

Figure 4.7: Memory usage for the IDS at node ܱଵ.

Table 4.3: Memory statistics for IDS at node ܱଵ.

Scenario Average memory
usage (%)

Maximum memory
usage (%)

Minimum memory
usage (%) ܵܿ݁݊1 4.97 5.35 4.2

 ૛࢔ࢋࢉࡿ
Before Attack 4.56 4.62 4.15
After Attack 5 5.34 4.62

All 4.97 5.34 4.15

In Figure 4.7, we can see that memory overhead grows progressively whether or not

malicious traffic is broadcasted on the node interface, then, in theory, if traffic load

increases, i.e., the number of packets processed per second, then the memory utilization of

the IDS does not have a significant increasing. Considering this, we can deduce that in case

of extra nodes are introduced to the vicinity then the memory overhead exhibits a trend of

0 200 400 600 800 1000 1200
4.0

4.5

5.0

5.5

Attacker starts
fabrication of OGMsM

em
or

y
U

til
iz

at
io

n
(%

)

Time (s)

 Scen1
 Scen2

Chapter 4. Distributed and Cooperative Intrusion Detection 91

linear increase as the number of packets transmitted by the neighboring nodes also

increases, and the memory overhead remains at a reduced level. Therefore, the intrusion

detection mechanism of IDS is scalable in relation to memory overhead.

We conclude that both CPU and memory consumption for the IDS does not achieve

high levels even so the number of packets per second is increased on the node interface and

consequently the intrusion detection activities, therefore the intrusion detection mechanism

is scalable in respect to computational overhead. The CPU and memory overhead are

maintained at a stable low level of around 15.2% (CPU time) and 4.97% (12.10 Mbytes)

respectively during the distributed attack detection procedures. According to Bro’s user

manual, if CPU usage is less than 50% and memory usage is less than 70% of physical

memory, then the IDS is able to perform accurate analysis, i.e., the IDS will not drop

packets due to lack of computational resources. Anyhow, our distributed intrusion detection

solution implemented in Bro imposes a small processing cost to the hardware, and yet

incurs little memory overhead to the system.

4.7.2 Communication Overhead
Since BATMAN protocol essentially uses a flooding mechanism to transmit OGMs, the

RPA module of the IDS has to analyze each OGM packet received or broadcasted and

generate a respective Routing Event message to the neighbors. For that reason, Routing

Event messages are the main source of message overhead during the intrusion detection.

We calculate the message overhead using the experiment scenario of Section 4.6.2 that

is used to compute the thresholds for the nodes. The message overhead formula for Routing

Events ܴܧ in terms of average message size (in bytes) is ܯ ௌܱ ൌ ∑|ோா| ேൗ∑|ைீெ| ௡ൗ , which is the ratio

of message overhead for the average ܴܧ message size in relation to OGM packet size for

the entire experiment duration, i.e., 20 mins, where ܰ ൌ ∑ ݊ and ܧܴ ൌ ∑ The .ܯܩܱ

message overhead formula for ܴܧ in terms of message frequency is ܱܯி ൌ ∑ ோா∑ ைீெ, which is

the ratio of message overhead for the number of ܴܧ messages exchanged by the node

compared to the number of OGM packets transmitted by the node during the experiment.

The ܴܧ message overhead ܯ ௌܱ calculated for node ܱଵ is ܯ ௌܱைభ ൌ 8.5%, and for node

Chapter 4. Distributed and Cooperative Intrusion Detection 92

ܱଷ is ܯ ௌܱைయ ൌ 7.2%. We see that ܯ ௌܱைభ ൐ ܯ ௌܱைయ since the average ܴܧ message size: ∑|ೃಶ|ಿ

is smaller for node ܱଷ as there is no packet loss in its links, then a higher number of ܴܧ

messages are processed by node ܱଷ. We perceive that for both nodes the ܴܧ message

overhead ܯ ௌܱ, in terms of average message size, is fair considering that ܴܧ messages are

transmitted using TCP data protocol, which adds considerable packet overhead compared to

BATMAN Ethernet frames on Layer 2. The average size of a ܴܧ TCP packet is 271 bytes

while the size of OGM packet is only 44 bytes, then ܴܧ message overhead is considered

reasonable. The reason for the message overhead ܯ ௌܱ behavior is that a unique TCP packet

transports various ܴܧ messages as the effect of analysis of several OGMs.

The ܴܧ message overhead ܱܯி estimated for node ܱଵ is ܯ ிܱைభ ൌ 5.9%, and for node ܱଷ we found ܯ ிܱைయ ൌ 6.7%. For this message overhead, we note a contrasting behavior ܯ ிܱைభ ൏ ܯ ிܱைయ compared to ܯ ௌܱ, because the number of ܴܧ messages is higher for node ܱଷ, as said before, attributable to the absence of packet loss in the links of node ܱଷ. The ܴܧ

message overhead ܱܯி, with respect to the number of packets, is low considering that

ACK packets are also taken into consideration for the overhead calculation. The reason for

that is the same: various ܴܧ messages are aggregated into a single TCP packet then

reducing the number of TCP packets exchanged between nodes.

However, if we calculated the ratio of message overhead for the total ܴܧ message size: ்ܱܯ ൌ ∑|ோா|∑|ைீெ|, we find ܱܯை்భ ൌ 49.9% for node ܱଵ, and ܱܯை்య ൌ 48.1% for node ܱଷ,

which is considerably high compared to OGM packet overhead, since a priori, as explained

before, ܴܧ messages are essentially exchanged using TPC packets which incurs significant

message overhead in respect to OGM packets exchanged by the node.

 The average transmission rate of ܴܧ messages for node ܱଵ is 0.176 Mbit/sec and the

average transmission rate of OGMs is 0.0035 Mbit/sec, which is 2% of ܴܧ transmission

rate. Then, the average total bandwidth overhead is 0.179 Mbit/sec, which is appropriate for

a WMN where common mesh routers are equipped with wireless cards having the potential

to provide a transfer speed of up to 108 Mbps. Thus, the network communication system

could afford this kind of communication overhead (in megabit per second) imposed by the

IDS communication mechanism along with BATMAN routing protocol. Hence, the IDS

approach is scalable in the matter of communication overhead.

Chapter 4. Distributed and Cooperative Intrusion Detection 93

We also calculated the ܴܧ message overhead ܯ ௌܱ and ܱܯி for the malicious scenario

of Section 4.6.3, where node ܱଵ broadcasts fake OGMs through the network. For node ܱଵ

we found ܯ ௌܱைభ ൌ 7.6% and ܯ ிܱைభ ൌ 5.6%, and for node ܱଷ we obtained ܯ ௌܱைయ ൌ 6.3%

and ܯ ிܱைయ ൌ 6.7%. We can remark that message overhead ܯ ௌܱ calculated for both nodes ܱଵ and ܱଷ presents a low reduction while message overhead ܱܯி exhibits a small increase

for the two nodes ܱଵ and ܱଷ in relation to the first scenario of threshold definition where

there is no attacker. The reason is that excessive number of OGMs is broadcasted by node ܱଵ because of message fabrication attack, causing an increase in the total number of OGMs

processed by the nodes, and consequently the number of ܴܧ messages exchanged by the

nodes. Nonetheless, the communication overhead added by the IDS does not present a

significant increase during the attack detection process then the message overhead is kept

nearly constant. In addition, we calculated the message overhead rates concerning the total ܴܧ message size for nodes ܱଵ and ܱଷ: ܱܯை்భ ൌ 42.4% and ܱܯை்య ൌ 42.3%, where we

note a decrease compared to the first scenario. This is because, in the attacking scenario,

node ܱଵ diffuses additional fake OGM packets, which significantly introduce more OGM

overhead to the node communication link.

4.8 Discussion

4.8.1 Security
Each IDS should not generally assume that other IDS instances are well behaving unless

there is some strong supportive evidence. Assuming that IDS at the node is not

compromised, it is a strong assumption. Security requirements of the IDS architecture

should be satisfied since attackers may also try to disrupt the IDS components and its

communication system. Thus, detection of compromised IDSs is an important security

issue. Optionally, the IDS should be resistant to some kind of intrusions, i.e., it has to

tolerate minor intrusions on a certain level maintaining the good detection accuracy while

detecting more severe attacks, as exemplified in Section 5.6.1.

The functionality of cooperation between nodes creates new security risks. The mesh

network model, described in Section 4.1, assumes that communication between IDSs are

Chapter 4. Distributed and Cooperative Intrusion Detection 94

secure, however communication between nodes is susceptible to main in the middle attacks.

A malicious node may modify, for instance, Detection Results and decision messages

originating from specific nodes in order to hinder or mislead the consensus scheme in the

node so this node will falsely accuse well-behaved nodes. The solution is to encrypt and

authenticate the communication channel of nodes and enforce signature verification by

applying cryptographic solutions. To that end, we can employ Bro secure transmission

mechanism, introduced in Section 4.3.1, which basically uses SSL protocol for key

exchange, confidentiality, and message integrity. Unless the malicious node possesses the

private keys of both end nodes, the attacker is not able to launch main in the middle attacks.

Nevertheless, a malicious node can drop routing information messages, i.e., Routing

Event messages, diffused by the IDS at the node, to mislead neighboring nodes to decide

upon the conviction of a node. One possible countermeasure to prevent this type of attack is

the deployment of a second lightweight IDS at the node to exclusively monitors the IDS

messages concerning traffic information and detection results that are exchanged between

IDSs. Then, each node overhears packets sent and received in its radio range promiscuously

for subsequent analysis and crosschecking of collected data. We choose to monitor the

neighborhood by overhearing packet transmissions in order to not incur extra message

overhead to the network communication system which is already saturated by the intensive

exchange of messages among IDSs.

The premise of trustiness and good reputation for the node IDS is a strong assumption.

Malicious nodes, owning the private key of the node, may transmit false intrusion detection

information upon request, known as blackmail attack [41], and collude with other malicious

nodes to mislead the consensus mechanism of target nodes to incorrectly decide on the

culpability of legitimate nodes. A compromised node, which is supposed to collaborate for

cooperative intrusion detection, might transmit altered routing information, e.g., Routing

Events, or false detection results in order to obstruct the intrusion detection process in the

neighborhood, cover malicious activities of other nodes, or wrongly incriminate benign

nodes as malicious. A potential solution to avoid blackmail attacks is the utilization of a

cooperative trust management system at each node for estimating trust values for nodes in

the neighborhood based on the intrusion detection information and consensus outcome

provided by these nodes at regular intervals. Then, the trust mechanism avoids requesting

Chapter 4. Distributed and Cooperative Intrusion Detection 95

cooperation, e.g., during consensus process, and analyzing routing information from nodes

that have not previously established trusted relationships. However, this approach can have

an impact on the accuracy of IDS consensus scheme, for instance, in a network with limited

trusted relationships among nodes the lack of enough trustful nodes can lead the IDS to

make inconsistent decisions about suspected nodes.

4.8.2 Complexity and Limitations
As discussed in Section 4.7.2, the communication overhead introduced by the IDS message

exchange compared to the OGM overhead is acceptable. However, for restricted bandwidth

networks, communication between IDS instances should be minimized due to the

constrained communication capacity of the wireless links. Therefore, low bandwidth

requirement should be met for the IDS communication mechanism in certain wireless

environments. Moreover, a large amount of traffic load in dense networks could not be

efficiently analyzed by a resource constrained mesh device then causing packets to be

discarded. A remediation solution for this type of wireless scenario is to keep of list of

trusted nodes and watches the traffic of suspected nodes instead of monitoring all the nodes

in the neighborhood. A second alternative is to monitor a random choice of neighboring

nodes at regular intervals. Alternatively, the IDS could monitor routing packets randomly

chosen, or monitor routing packets periodically, in order to reduce the amount of messages,

i.e., Routing Events, exchanged between IDS instances. The use of UDP protocol or other

optimized protocol in place of TPC protocol for the IDS communication mechanism would

likewise reduce the message overhead imposed by the IDS message exchange.

For the IDS to be practical and effective, it has to be scalable. Our collaborative IDS

architecture is considered scalable since it performs well in sparsely populated topologies

as well as in densely populated topologies with low computation overhead. The only

requirement to perform the distributed attack detection is running an IDS tool at each node

for exchanging Routing Event messages with the neighboring IDSs. The IDS is capable of

collecting and analyzing routing traffic in neighborhoods with a large number of neighbors

and maintain the detection efficiency at a good level. However, the communication

overhead also increases accordingly, i.e., additional message overhead is added as number

of nodes increases and consequently more packets and Routing Events are exchanged,

Chapter 4. Distributed and Cooperative Intrusion Detection 96

which can be a problem for bandwidth constrained wireless networks, but it is scale for

networks with sufficient bandwidth resource. The IDS scalability concerning CPU

overhead, memory overhead, and communication overhead is discussed in Section 4.7. The

scalability of proposed threshold mechanism is analyzed in Section 4.6.2.

The consensus scheme, proposed in Section 4.3.4, is considered scalable concerning

the neighborhood size, i.e., the number of participating nodes, since it works suitably

accurate for a reduced group of nodes and also works efficiently when applied to larger

groups of nodes keeping the same detection accuracy. Moreover, our consensus approach

does not have special requirements, for instance, the need for multiple neighboring nodes to

collaborate in order to make a decision about a suspicious node as the consensus approach

proposed by SCAN [22], presented in Section 2.3. Our consensus mechanism always

applies the same decision rule does not matter the group size in order to make a final

decision about the suspicious node. Therefore, the consensus approach does not fail when

the number of nodes in the group increases, thus it do scale.

Our threshold approach pre-calculates thresholds for a given network topology

considering a given time period. However, if the traffic load of the network changes

unexpectedly, i.e., several nodes join the mesh network at the same time and the network

topology is redefined, then the calculated threshold could no more possibly reflect the

actual network performance in terms of link quality, i.e., packet loss rate due to channel

congestion and collision. Then, it is necessary to recalculate the threshold values for all the

nodes, particularly to the ones directly impacted by the topology modification. To avoid

that situation, a possible solution is to apply a dynamic threshold approach, where threshold

values are dynamically calculated for all the nodes at regular intervals, or calculated

separately for neighborhoods where new nodes are added to it.

If a node moves out of the communication range of the node to another node, the IDS

approach has to take this roaming behavior of the node into account since node mobility

has a considerable impact on the detection accuracy and rate of false positives calculated by

the node. Timeout values can be added to the intrusion detection module, which are

triggered before initiating the consensus mechanism, to avoid making incorrect decisions

about a roaming node. In addition, this approach avoids unnecessary exchange of messages

between IDSs and falsely accusing a legitimate node of being malicious. The IDS can make

Chapter 4. Distributed and Cooperative Intrusion Detection 97

use of the mobility management scheme provided by the routing protocol [36] in order to

be aware of current state of each node in the network, i.e., which are the current neighbors

of each node, and if the particular node is roaming or is no more part of the network.

4.9 Conclusion
In this chapter, we presented a distributed intrusion detection methodology for WMNs

which is integrated to a popular IDS tool used in production environment. The IDS is

responsible for monitoring the traffic at the node and exchanging Routing Events with

neighboring nodes in order to identify possible routing misbehavior in the vicinity. We

employ a monitoring based detection approach which precisely detects routing attacks that

violate the routing functionality of nodes, for instance, in case the node is diffusing

incorrect routing packets through the network. The IDS monitors the routing activity of the

neighborhood over a period of time and set thresholds to distinguish malicious routing

behavior from communication failures, i.e., false positives. Then, we propose a consensus

scheme which permits a group of nodes to be flexible enough to make a decision when it is

convenient, e.g., the majority agrees upon a verdict of guilty, while still adopting the main

concepts of consensus decision-making process.

We apply the cooperative approach for detecting message fabrication attacks, which

pose as a generic and potential threat to any node in the network. This attacking technique

allows malicious nodes to gain considerable advantage in attracting traffic in the network to

itself. Thereafter, the malicious node can perform either passive attacks such as

eavesdropping and traffic analysis, or more severe active attacks such as dropping or

selectively dropping data packets in order to deny data delivery services to target nodes.

The intrusion detection approach provides rapid and efficient malicious traffic

detection for collaborative recognition of routing attacks in the neighborhood. It should be

noted that the approach is adaptable to most routing protocols and can be applied to detect a

wide range of attacks. The distributed intrusion detection solution has been validated by

implementation in a virtualized mesh network environment. Experimental results show that

the intrusion detection scheme has very low false positive rate, no false negatives, and high

detection rate. In addition, the attack detection algorithms take into account the limited

hardware resources of the node such as CPU and memory, then appropriately fitting in

Chapter 4. Distributed and Cooperative Intrusion Detection 98

mesh devices owning restricted computational resources. Despite the approach presents a

good efficiency, the message overhead introduced to the communication system is not the

minimum possible message overhead for the communication system.

Therefore, we have implemented a scalable, efficient, and effective intrusion detection

architecture since it overcomes the main challenges of intrusion detection in wireless

scenarios, such as a decentralized network, lack of central point of traffic convergence, and

the limitations of wireless communication, i.e., intrinsic packet loss in the links. All the

intrusion detection modules of the approach including RPA, DIDE, and CCM are

successfully integrated together and are able to precisely identify routing misbehavior

targeting BATMAN routing protocol with practical assumptions, and employing low

computation overhead, i.e., CPU and memory overhead.

Chapter 4. Distributed and Cooperative Intrusion Detection 99

 100

Chapter 5

5 Distributed Detection of Packet

Dropping Attacks

The IDS needs to be practical and have a scalable architecture in order to collect and

process sufficient traffic information to effectively detect malicious traffic. Since the

routing service of WMNs requires strong cooperation among all nodes, then detecting

selfish and misbehaving nodes and enforcing cooperativeness are important in this

collaborative wireless environment.

In Chapter 4, we have defined a complete distributed intrusion detection architecture,

which is exemplified with detection of message fabrication attacks, for instance, a

malicious node disseminating fake routing information through the network. In this chapter,

we apply this intrusion detection architecture for detection of packet dropping attacks.

The approach employs a collaborative intrusion detection mechanism implemented

into the IDS tool at each node, which allows neighboring nodes to cooperatively diagnose

malicious packet dropping behavior, and achieve such consensus on the routing

misbehavior. Consequently, the packet dropping detection mechanism is able to discover

the misbehavior of any node, for example, a node selectively discarding routing packets

from specific neighboring nodes.

The rest of the chapter is organized as follows. In Sections 5.1 and 5.2, we describe the

system model and adversarial model respectively. In Section 5.3, we present the distributed

intrusion detection architecture for detection of packet dropping misbehavior. Section 5.4

proposes the consensus algorithm for malicious packet dropping scenarios. In Section 5.5,

we demonstrate the packet dropping detection approach efficiency by implementation. In

Section 5.6, we analyze the computational and communication overhead added by the

intrusion detection approach. In Section 5.7, we discuss security problems and limitations

of our packet dropping detection method. Finally, Section 5.8 concludes the chapter.

Chapter 5. Distributed Detection of Packet Dropping Attacks 101

5.1 System Model
We consider the same system model for the WMN as introduced in Sections 3.1 and 4.1

since we use the same intrusion detection architecture at the nodes as employed in Chapter

4. We assume all nodes participating in the WMN have suitable hardware resources, such

as CPU and physical memory resources, in order to execute the IDS tool for appropriate

distributed and cooperative detection of packet dropping intrusions. In addition, avoid the

node to discard packets under heavy traffic load because the system it is lacking

computational resources to process all incoming packets.

We also take into consideration the same assumptions for the IDS security and

trustiness as described in Section 4.1. We assume the communication mechanism of the

IDSs is not compromised, then routing information and intrusion detection results shared

between nodes are not violated by adversarial nodes, neither the messages exchanged by

the consensus mechanism are exploited by attackers.

5.2 Attacker Model
We adopt the attacker model as described in Sections 3.2 and 4.2. We do not consider

attacks targeting the physical layer and MAC layer. Defending against such attacks is

complementary to this work. In this chapter, we focus on packet dropping attacks, which is

a generic threat to any node of the mesh network. Since packet dropping attacks target the

routing service and packet forwarding operations of the network, we briefly summarize this

attacking method as follows.

Packet dropping attacking method was introduced in Section 3.2.1. We define packet

dropping attack as intentional drop of legitimate routing packets or data packets by the

misbehaving node, which is supposed to relay such packets, in order to provoke denial of

service for target nodes, i.e., the malicious node impedes the affected nodes of having a

correct participation in the routing or data delivery services of the network. The attack

consequences are disconnection of nodes from the network, interruption of valid routes, and

selfishness of nodes. By using packet dropping attacking method, the attacker is able to

execute an ample range of packet dropping misbehavior, such as selective packet dropping,

probabilistic packet dropping, arbitrary packet dropping, and intermittent packet dropping.

Chapter 5. Distributed Detection of Packet Dropping Attacks 102

Because packet dropping attacks may present such different variants, detecting precisely

this kind of routing misbehavior is a difficult task for IDSs.

5.3 Distributed Detection of Malicious Packet Dropping
The first step of the intrusion detection process starts at the traffic monitoring engine,

which captures and analyses packets of interest, i.e., routing packets, being transmitted on

the node interface. Subsequently, the collected routing packets are processed by the routing

protocol analyzer, which generates routing events that reflect the routing behavior of

protocol in operation. Next, these routing events are handled by cooperative intrusion

detection algorithms to collaboratively produce intrusion detection metrics in the

neighborhood. These intrusion detection metrics are then aggregated and correlated

between neighboring nodes in order to reach a global view of the actual state of network

activities and localize the source of intrusion in the vicinity if it exists.

In Section 4.3, we have introduced our complete distributed intrusion detection

architecture for detection of routing attacks according to the common attacking methods

specified in Section 3.2.1. In this section, we show how this architecture can be specifically

applied to detect packet dropping intrusions. In special, we provide details on the module of

Packet Dropping Detection which outputs Packet Dropping Metrics that signalize the

presence of malicious message dropping in the network traffic.

5.3.1 Routing Protocol Analyzer
In order to detect any disruption in the network routing functionality, the IDS tool should

firstly examine every routing message traversing the node interface. To that end, we

implemented a Routing Protocol Analyzer (RPA) module by using Bro monitoring

architecture as explained in Section 4.3.2.

Basically, the RPA module inspects each routing packet captured and generates

corresponding Routing Events in accordance with the routing protocol behavior. These

Routing Events, which are defined based on BATMAN protocol behavior for detection of

packet dropping misbehavior, are described in Section 5.3.3. A Routing Event consists of a

message containing arguments extracted from the routing packet and it designates an action

Chapter 5. Distributed Detection of Packet Dropping Attacks 103

taken by the protocol. The Routing Events are then sent to the Packet Dropping Detection

module at script level so they can be properly processed by the node and its neighbors.

5.3.2 Distributed Intrusion Detection Engine
In this chapter, we study in detail the Packet Dropping Detection module of Distributed

Intrusion Detection Engine (DIDE) component, which was introduced in Section 4.3.3. The

Packet Dropping Detection module receives as input local and remote Routing Events

forwarded from the RPA module of node and from neighboring RPA modules for

performing cooperative packet dropping attack detection, and it yields Packet Dropping

Metrics, which designate whether or not malicious routing behavior is present in the

neighborhood. The algorithms for detection of packet dropping intrusion are implemented

in this module by making use of particular Routing Event Handlers which treat respective

Routing Events. If DIDE component perceives any potentially risky routing behavior

within Packet Dropping Metrics which reveals any packet dropping misbehavior that has

been monitored, it promptly marks the situation and calls the Cooperative Consensus

Mechanism (CCM) module.

The Packet Dropping Detection module is further explained in Sections 5.3.4 and

5.3.5. In Section 5.3.4, Routing Constraints are defined on the routing protocol behavior,

and in Section 5.3.5, Packet Dropping Metrics are estimated taking into consideration the

Routing Events produced by RPA module and the Routing Constraints defined in Section

5.3.4. BATMAN routing protocol is applied to illustrate the functions of the Message

Packet Dropping Detection module.

5.3.3 RPA: Routing Events
The RPA module parses every message broadcasted by the routing protocol based on the

protocol behavior and produces Routing Events, which are then treated by corresponding

Routing Event Handlers. We implemented this parsing mechanism for BATMAN proactive

routing protocol. Nevertheless, the design of RPA module is flexible and can be easily

adapted to fit other traditional routing protocols, such as OLSR and AODV.

The RPA module processes BATMAN OGM packets and generates the following

Routing Events, which represent BATMAN protocol behavior.

Chapter 5. Distributed Detection of Packet Dropping Attacks 104

ሺ൏ݒܿݎ_ܯܩܱ (1 ݏ݉ܽݎܽ݌ ൐ ሻ: an OGM is received from a neighboring node ܾܰ.

ሺ൏݀ܽ݋ݎܾ_ܯܩܱ (2 ݏ݉ܽݎܽ݌ ൐ ሻ: the node broadcasts an OGM to its neighbors ܾܰ.

ሺ൏݀ݎܾ݁ݎ_ܯܩܱ (3 ݏ݉ܽݎܽ݌ ൐ ሻ: the node rebroadcasts an OGM received from a

neighboring node ܾܰ.

Routing Events own two type of parameters: (i) parameters extracted from the node’s

local context such as the MAC address of node; and (ii) parameters extracted from the

OGM such as Originator Address ܱ݃݅ݎ, Source Address ܵܿݎ, Sequence Number value ܵ݁݊ݍ, and TTL. The following Routing Event Handlers are defined to process local and

remote Routing Events, i.e., the ones generate by the node and those received from the

node’s neighbors ܾܰ. Routing Event Handlers store routing information about the current

activity of the protocol and incorporate it into the analyses of the future activity of protocol.

ሺ൏ݒܿݎ_ܯܩܱ ሺ ሻ: it processes the parameters of local and remote Routing Eventsݒܿݎ_ܯܩܱ_ܪܧ .1 ݏ݉ܽݎܽ݌ ൐ሻ and stores the extracted metric data in the following

specifics sets.

(a) ܴܿݒை௥௜௚ே௕ ൌ ൅ܵ݁݊ݍ: set of ܵ݁݊ݍ (OGMs) received by the node from ܾܰ for ܱ݃݅ݎ.

(b) ܾܰ_ܴܿݒை௥௜௚ௌ௥௖ ൌ ൅ܵ݁݊ݍ: set of ܵ݁݊ݍ received by the node’s ܾܰ from ܵܿݎ for ܱ݃݅ݎ.

ݏ݉ܽݎܽ݌ሺ ൏݀ܽ݋ݎܾ_ܯܩܱ ሺ ሻ: it processes local and remote Routing Events݀ܽ݋ݎܾ_ܯܩܱ_ܪܧ .2 ൐ሻ and stores the extracted data in the following sets.

(a) ݀ܽ݋ݎܤ ൌ ൅ܵ݁݊ݍ: set of ܵ݁݊ݍ broadcasted by the node.

(b) ܾܰ_݀ܽ݋ݎܤே௕ ൌ ൅ܵ݁݊ݍ: set of ܵ݁݊ݍ broadcasted by the node’s ܾܰ.

ݏ݉ܽݎܽ݌ሺ ൏݀ݎܾ݁ݎ_ܯܩܱ ሺ ሻ: it processes local and remote Routing Events݀ݎܾ݁ݎ_ܯܩܱ_ܪܧ .3 ൐ሻ and stores the extracted data in the following sets.

(a) ܴܾ݁݀ݎை௥௜௚ே௕ ൌ ൅ܵ݁݊ݍ: set of ܵ݁݊ݍ rebroadcasted by the node (received

from ܾܰ) for ܱ݃݅ݎ.

(b) ܾܰ_ܴܾ݁݀ݎை௥௜௚ௌ௥௖ ൌ ൅ܵ݁݊ݍ: set of ܵ݁݊ݍ rebroadcasted by the node’s ܾܰ for ܱ݃݅ݎ that were received from ܵܿݎ.

Chapter 5. Distributed Detection of Packet Dropping Attacks 105

5.3.4 DIDE: Routing Constraints
To detect malicious dropping behavior, we define Routing Constraints 3ܥ ,2ܥ ,1ܥ, and 4ܥ

based upon the routing protocol behavior. These Routing Constraints are implemented by

the Routing Event Handlers defined in previous section, and they employ the respective

data sets of the Routing Event Handlers. If a Routing Constraint is violated, we count the

number of malicious packet dropping ܲܦ detected for this Routing Constraint violated.

 which checks the 1ܥ ሺ ሻ: it implements: (i) Routing Constraintݒܿݎ_ܯܩܱ_ܪܧ .1

routing behavior of node’s ܾܰ by using remote Routing Events; and (ii) Routing

Constraint 2ܥ that checks the routing behavior of node taking into account local

Routing Events.

(a) 1ܥ ՚ ݊ݍ݁ܵ ܎ܑ ב ை௥௜௚ௌ௥௖݀ݎܾܴ݁_ܾܰ ,++ே௕_ோ௘௕௥ௗܦܲ ܖ܍ܐܜ
• check if the ܵ݁݊ݍ received by neighbor ܾܰ from ܵܿݎ for ܱ݃݅ݎ is

rebroadcasted by ܾܰ, where ܲܦே௕_ோ௘௕௥ௗ is the number of ܵ݁݊ݍ dropped

by ܾܰ for ܱ݃݅ݎ that are supposed to be rebroadcasted by ܾܰ.

(b) 2ܥ ՚ ݊ݍ݁ܵ ܎ܑ ב ை௥௜௚ே௕݀ݎܾܴ݁ ,++ோ௘௕௥ௗܦܲ ܖ܍ܐܜ
• check if the ܵ݁݊ݍ received by the node from ܾܰ for ܱ݃݅ݎ is rebroadcasted

by the own node, where ܲܦோ௘௕௥ௗ is the number of ܵ݁݊ݍ dropped by the

node for ܱ݃݅ݎ that are supposed to be rebroadcasted by the node.

 for checking the 3ܥ ሺ ሻ: it implements: (i) Routing Constraints݀ܽ݋ݎܾ_ܯܩܱ_ܪܧ .2

routing behavior of the node and its ܾܰ simultaneously taking into account local

Routing Events; and (ii) Routing Constraints 4ܥ to concurrently check the routing

behavior of the node and its ܾܰ by using remote Routing Events.

(a) 3ܥ ՚ ݊ݍ݁ܵ ܎ܑ ב ை௥௜௚ே௕ݒܴܿ ,++ ோ௖௩ܦܲ ܖ܍ܐܜ
• check if the ܵ݁݊ݍ broadcasted by neighbor ܾܰ has been received by the

node, where ܲܦோ௖௩ is the number of ܵ݁݊ݍ dropped by the node that are

originated by ܾܰ.

(b) 4ܥ ՚ ݊ݍ݁ܵ ܎ܑ ב ை௥௜௚ௌ௥௖ݒܴܿ_ܾܰ ,++ே௕_ோ௖௩ܦܲ ܖ܍ܐܜ
• check if the ܵ݁݊ݍ broadcasted by the node is received by its ܾܰ, where

Chapter 5. Distributed Detection of Packet Dropping Attacks 106

 .ܾܰ presumably dropped by ݊ݍ݁ܵ ே௕_ோ௖௩ is the number ofܦܲ

The intrusion detection module allows integrating extra Routing Constraints in order to

detect specific packet dropping attacks, for example, a selfish node that refuses forwarding

packets from particular neighbors in order to save hardware resources.

5.3.5 DIDE: Misbehaving Metrics
The next step of the packet dropping detection algorithm is calculate the rate of packet drop

routing misbehavior ܴ for the respective Routing Constraints 3ܥ ,2ܥ ,1ܥ, and 4ܥ by using

the number of malicious packet dropping ܲܦ found for the node and its ܾܰ. The set of ܴ

compose the Packet Dropping Metrics, i.e., the Misbehaving Metrics.

• For 1ܥ at ݒܿݎ_ܯܩܱ_ܪܧሺ ሻ: ܴே௕_ோ௘௕௥ௗ ൌ |ݒܴܿ_ܾܰ|ே௕_ோ௘௕௥ௗܦܲ (1)

where ܴே௕_ோ௘௕௥ௗ is the rate of ܵ݁݊ݍ dropped by ܾܰ for ܱ݃݅ݎ that are not forwarded by ܾܰ.

• For 2ܥ at ݒܿݎ_ܯܩܱ_ܪܧሺ ሻ: ܴோ௘௕௥ௗ ൌ |ݒܴܿ|ோ௘௕௥ௗܦܲ (2)

where ܴோ௘௕௥ௗ is the rate of ܵ݁݊ݍ dropped by the node for ܱ݃݅ݎ that are not forwarded

by the node.

• For 3ܥ at ݀ܽ݋ݎܾ_ܯܩܱ_ܪܧሺ ሻ: ܴோ௖௩ ൌ (3) |݀ܽ݋ݎܤ_ܾܰ|ோ௖௩ܦܲ

where ܴோ௖௩ is the rate of ܵ݁݊ݍ broadcasted by ܾܰ that are dropped by the node before

being processed by the node itself.

• For 4ܥ at ݀ܽ݋ݎܾ_ܯܩܱ_ܪܧሺ ሻ:

Chapter 5. Distributed Detection of Packet Dropping Attacks 107

ܴே௕_ோ௖௩ ൌ |݀ܽ݋ݎܤ|ே௕_ோ௖௩ܦܲ (4)

where ܴே௕_ோ௖௩ is the rate of ܵ݁݊ݍ broadcasted by the node that are dropped by ܾܰ

before being processed by ܾܰ.

The Packet Dropping Metrics ܴ are constantly monitored by the CCM module for

distributed packet dropping detection purposes. These Misbehaving Metrics are sufficient

for detecting most of packet dropping attacks threating the nodes of the mesh network.

5.4 Cooperative Consensus Mechanism
The CCM module often analyzes the Packet Dropping Metrics ܴ provided by Packet

Dropping Detection module to eventually identify packet dropping intrusions. Before

making a final decision, the CCM module consults the neighboring nodes and exchanges

Detection Results, i.e., Packet Dropping Metrics, related to the claimed packet dropping

attack. Neighboring nodes collaborate directly with the node leading the consensus

procedure, so this node can make the right decision about the suspicious activity. Based on

that, a consensus is reached among nodes in the neighborhood on the routing intrusion and

the malicious node. The motivation is that Packet Dropping Metrics provided by a single

node may contain inaccurate detection results due to poor quality transmission of Routing

Events in the node link, resulted from interference, channel congestion, or node mobility.

Therefore, a legitimate node can be falsely accused by its neighbors just because the node is

transmitting packets in a link with poor quality or mostly saturated.

The consensus process described in Section 4.3.4, which make decisions by consensus,

is concretized as the Consensus Algorithm, which is implemented into CCM module. In the

decision process, each node provides inputs to collaboratively generating a verdict. The

consensus process seeks to generate full agreement from all participating nodes by

combining the outcomes from different nodes to form a consensual judgment about the

suspected node. If a few nodes do not consent to the verdict, the consensus process applies

the final decision rule to evaluate if the current level of agreement is sufficient to finalize

the decision. Nonetheless, if a few nodes are unsatisfied with the decision, they will have to

tolerate it since it is believed to be the best possible decision for the group of nodes.

Chapter 5. Distributed Detection of Packet Dropping Attacks 108

Algorithm 1: Consensus Mechanism
Input: ܴே௕_ோ௘௕௥ௗை೙ , ܴோ௘௕௥ௗை೙ , ݄ܶே௕_ோ௘௕௥ௗை೙ , ݄ܶோ௘௕௥ௗை೙
Output: ܰܯை೙, ܿݏݑݏ݊݁ݏ݊݋
ோ௘௕௥ௗ ை೙ܴ ܎ܑ .1 ൒ ݄ܶோ௘௕௥ௗை೙ ܖ܍ܐܜ
ݏݑݏ݊݁ݏ݊݋ܿ ܎ܑ .2 ൌ ܖ܍ܐܜ ݁ݏ݈݂ܽ
,ை೙ܴܦሺܿ݊ݕܵ .3 ݄ܶை೙ሻ
,where ܾܰ௜ ;ܗ܌ ௜ܾܰ ܔܔ܉ ܚܗ܎ .4 … , ܾܰ௞: 1 ൑ ݅ ൑ ݇
,ே௕೔ܴܦሺܿ݊ݕܵ .5 ݄ܶே௕೔ሻ
 ܚܗ܎ ܌ܖ܍ .6
ே௕_ோ௘௕௥ௗ ே௕೔ܴ ܔܔ܉ ܎ܑ .7 ൒ ݄ܶே௕_ோ௘௕௥ௗே௕೔ ,where ܾܰ௜ ;ܖ܍ܐܜ … , ܾܰ௞: 1 ൑ ݅ ൑ ݇
ை೙ܰܯ .8 ՚ ௡ܱ
 ை೙ሻܰܯሺܿ݊ݕܵ .9
,where ܾܰ௜ ;ܗ܌ ௜ܾܰ ܔܔ܉ ܚܗ܎ .10 … , ܾܰ௞: 1 ൑ ݅ ൑ ݇
 ே௕೔ሻܰܯሺܿ݊ݕܵ .11
 ܚܗ܎ ܌ܖ܍ .12
ே௕೔ܰܯ ܔܔ܉ ܎ܑ .13 ൌ ௡ܱ ܖ܍ܐܜ; where ܾܰ௜, … , ܾܰ௞: 1 ൑ ݅ ൑ ݇
ݏݑݏ݊݁ݏ݊݋ܿ .14 ՚ ݐ݊݁݉݁݁ݎ݃ܽ_ݏݑ݋݉݅݊ܽ݊ݑ
ை೙ܰܯ .15 ՚ ௡ܱ
16. Raise ሺ݈ܽ݁ݐݎሻ ܌ܖ܉ Execute ሺ݊݋݅ݐܿܽ݁ݎሻ
ே௕೔ܰܯ ܡܖ܉ ܎ܑ ܍ܛܔ܍ .17 ് ௡ܱ ܖ܍ܐܜ
18. Executeሺ݈݀݁ܿ݅݁ݑݎ_݊݋݅ݏሻ
ே௕೔ܰܯ ܡܜܑܚܗܒ܉ܕ ܎ܑ .19 ൌ ௡ܱ ܖ܍ܐܜ
ݏݑݏ݊݁ݏ݊݋ܿ .20 ՚ ݁ݑݎݐ
ை೙ܰܯ .21 ՚ ௡ܱ
22. Raiseሺ݈ܽ݁ݐݎሻ ܌ܖ܉ Executeሺ݊݋݅ݐܿܽ݁ݎሻ
ே௕೔ܰܯ ܡܜܑܚܗܒ܉ܕ ܎ܑ ܍ܛܔ܍ .23 ൌ ܖ܍ܐܜ ݁݊݋݊
ݏݑݏ݊݁ݏ݊݋ܿ .24 ՚ ݁ݑݎݐ
ை೙ܰܯ .25 ՚ ݁݊݋݊
 ܍ܛܔ܍ .26
ݏݑݏ݊݁ݏ݊݋ܿ .27 ՚ ݁ݏ݈݂ܽ
ை೙ܰܯ .28 ՚ ݁݊݋݊
29. Raiseሺ݈ܽ݁ݐݎሻ
 ܎ܑ ܌ܖ܍ .30
 ܎ܑ ܌ܖ܍ .31
 ܍ܛܔ܍ .32
ை೙ܰܯ .33 ՚ ݁݊݋݊
 ܎ܑ ܌ܖ܍ .34
 ܍ܛܔ܍ .35
36. Raiseሺ݈ܽ݁ݐݎሻ
 ܎ܑ ܌ܖ܍ .37
 ܎ܑ ܌ܖ܍ .38

Since WMNs presents non-negligible natural packet loss, thresholds should be defined.

With the use of thresholds, the detection rate is improved and false negatives are excluded

Chapter 5. Distributed Detection of Packet Dropping Attacks 109

since there is a clear division between malicious traffic and false alarms. Our threshold-

based mechanism results in lower false positives rate and provides better efficiency in

terms of intrusion detection rate. The threshold mechanism employed by the Consensus

Algorithm was explained in Section 4.4.

The Consensus Algorithm for detecting packet dropping attack is summarized

Algorithm 1. For the sake of a better comprehension, the algorithm is illustrated using the

rates of packet dropping: ܴܦை೙ ൌ ሼܴே௕_ோ௘௕௥ௗை೙ , ܴோ௘௕௥ௗை೙ ሽ, which are the Packet Dropping

Metrics calculated by node ௡ܱ and supplied to CCM module. In the packet dropping

scenario, node ௡ܱ drops the OGMs originated and broadcasted by ܾܰଵ which are supposed

to be rebroadcasted by node ௡ܱ.

We define the threshold ݄ܶ to differentiate the false alarm rate and the packet dropping

detection rate when analyzing the Packet Dropping Metrics of the nodes since the rate of

packet dropping ܴே௕_ோ௘௕௥ௗ , which is basically calculated using remote Routing Events, is

not precise because of the packet loss between the neighboring nodes. For instance, the

threshold ݄ܶை೙, which is defined for node ௡ܱ, is calculated taken into account the packet

loss rate of the link of node ௡ܱ. Then, the threshold ݄ܶ avoids the node making inaccurate

decisions because of poor quality links resulted from interference and congestion.

We make use of Bro’s synchronization mechanism at script level to exchange

Detection Results ܴܦை೙ and ܴܦே௕ and individual decisions about the presumed malicious

node ܰܯை೙ and ܰܯே௕ among the neighboring nodes. For instance, the function ܵܿ݊ݕሺ൏ݎܽݒ ൐ሻ synchronizes variable ݎܽݒ, then every modification node ௡ܱ applies to variable ݎܽݒ the change is propagated to all neighboring nodes ܾܰ, and the opposite is also true.

The Consensus Algorithm of node ௡ܱ, i.e., Algorithm 1, follows the steps.

1. If the rate of packet dropping ܴோ௘௕௥ௗ ை೙ ൒ ݄ܶோ௘௕௥ௗை೙ , node ௡ܱ diagnoses that own node

௡ܱ is possibly dropping packets and trigger the consensus mechanism.

2. Then, node ௡ܱ consults its neighbors by exchanging Detection Results ܴܦை೙ with

all ܾܰ௜ and also receiving Detection Results ܴܦே௕೔ from all ܾܰ௜, where ܾܰ௜, … , ܾܰ௞: 1 ൑ ݅ ൑ ݇

3. If node ௡ܱ checks all ܾܰ௜ have detected similar packet dropping misbehavior, node

Chapter 5. Distributed Detection of Packet Dropping Attacks 110

௡ܱ points out the malicious node ܰܯை೙ ՚ ௡ܱ, otherwise it does not point any

malicious node. In addition, all ܾܰ௜ execute the same analysis procedure and

equally designate their malicious node ܰܯே௕೔ or not.

4. Then, node ௡ܱ share its individual decision about the suspected node ܰܯை೙ with all ܾܰ௜, and collect the decisions ܰܯே௕೔ from all ܾܰ௜.
5. If all the nodes determine the same node as malicious ܰܯை೙ ൌ ே௕೔, suchܰܯ

consensual decision is made with unanimous agreement. Then, the alarm is

triggered, and a response action is required from the Response Mechanism since a

reaction should follow the attack detection.

6. If at least one neighbor ܾܰ௜ does not find the suspected node ௡ܱ is malicious then

the decision rule is applied. In a first case, if most of neighbors ܾܰ௜ indicate the

same node ௡ܱ as malicious, by having the decision of majority, the consensus

procedure is finished. Then, the alert is triggered to inform the nodes about the

imminent intrusion, and an active reaction is executed accordingly.

7. The second possibility is the majority of nodes ܾܰ௜ does not accuse node ௡ܱ as

being malicious, so a consensual decision is made on the innocence of suspicious

node ௡ܱ, and no further action is required.

8. As third option, half of nodes points node ௡ܱ as being malicious and the other half

decide on the guiltlessness of node ௡ܱ, then no final decision is made since there is

no consensus among the nodes, and an alert is raised for performing more accurate

analysis of network current situation.

The total number of neighboring nodes has little effect on the consensus accuracy. That

means if the number of nodes participating in the consensus process increases or decreases,

a consensus is reached in the same manner with equal precision regardless of the number of

nodes concurrently analyzing Packet Dropping Metrics for detection of malicious packet

dropping. In addition, if the amount of decisions made by these nodes about the suspicious

node increases or decreases, it does not have impact on the consensus accuracy since the

decision rule is always applied in case of unanimous agreement is not achieved in the

group. Thus, the consensus approach is considered scalable concerning its accuracy.

Chapter 5. Distributed Detection of Packet Dropping Attacks 111

5.5 Performance Evaluation
In this section, we employ the virtualized mesh network environment to demonstrate the

efficiency of the packet dropping detection approach. We have applied this virtualized

mesh network architecture in Sections 3.5 and 4.6 to emulate and analyze the performance

of routing manipulation attacks in mesh networks.

5.5.1 Experiment Platform
In the mesh network, each node is emulated by a VM that is composed of QEMU emulator

[37] running Linux OS and BATMAN routing protocol [14] as Linux kernel module, i.e.,

each mesh node is represented by a corresponding virtual node. The QEMU VM hardware

configuration consists of standard PC 32Bit machine type having one default QEMU 32Bit

CPU type with 256 MB of main memory. We consider a common wireless mesh device

owns similar hardware configuration as the QEMU VM, then having sufficient hardware

resources to execute the distributed intrusion detection solution.

The VMs are connected with each other by a virtual switch [38] which emulates bi-

directional communication link between neighboring nodes and also link limitations, such

as packet loss rate. In the experiments, we employ a static mesh topology, but node

mobility could be similarly emulated. The distributed packet dropping detection approach

described in Section 5.3 is implemented and integrated into Bro tool v.1.5.3 [42]. Packet

Dropping Metrics and intrusion detection information is collected as log files at each node.

The mechanism of data collecting at each node is synchronized with a global clock, i.e., the

clock of the main machine that supervises, controls, and connects all the VMs.

5.5.2 Defining the Threshold
For defining the thresholds ݄ܶ for the rates of packet drop routing misbehavior ܴ, we

firstly execute the distributed packet dropping detection solution at each node, then we

carry out the packet dropping attacks. Figure 5.1 illustrates the mesh network topology we

employ for this first trial, which is composed of four nodes ܱଵ, ܱଶ, ܱଷ, and ସܱ. The link

between nodes ସܱ and ܱଶ, and nodes ସܱ and ܱଷ have packet loss rate of 10%.

Chapter 5. Distributed Detection of Packet Dropping Attacks 112

Figure 5.1: Mesh topology emulated for threshold definition.

Figure 5.2: Packet Dropping Metrics calculated by node ସܱ.

In this scenario, all nodes are legitimate and do not present malicious behavior such as

packet dropping behavior. Therefore, eventual Packet Dropping Metrics ܴ collected at each

node are consequence of Routing Event messages lost during transmission, which is caused

by the packet loss rate of the link. The experiment duration is 20 mins. Figure 5.2 shows

the rates of packet drop routing misbehavior ܴே௕_ோ௘௕௥ௗ ைర , ܴோ௖௩ைర , and ܴே௕_ோ௖௩ைర calculated by

node ସܱ considering ܾܰ ൌ ܱଷ. Those rates are in reality false positives. We notice that

10% packet loss
Gateway
 node

O4

O3O2

O1

Mesh node

Mesh
node

Mesh node

Routing Events

OGM

RoutingTable of node O3

O1O2

Destination Best next-hop

0 150 300 450 600 750 900 1050 1200
0

2

4

6

8

10

12

14

16

R
at

e
of

 P
ac

ke
t D

ro
p

R
ou

tin
g

M
is

be
ha

vi
or

 (%
)

Time (s)

 RO4Rcv RO4Nb_Rcv RO4Nb_Rebrd

Chapter 5. Distributed Detection of Packet Dropping Attacks 113

while rate ܴோ௖௩ைర has a maximum value of 15.4% and ܴே௕_ோ௖௩ைర has a maximum value of 9.5%,

the maximum value of rate ܴே௕_ோ௘௕௥ௗைర is only 0.5%, which means ܴே௕_ோ௘௕௥ௗைర is less affected

by the packet loss rate between nodes ସܱ and ܱଷ.

The threshold ݄ܶோ௖௩ for the rate of packet dropping ܴோ௖௩ is calculated as:

 ݄ܶோ௖௩ ൌ ∑ ܴோ௖௩ܰ (5)

where ܰ is the total number of malicious packet dropping ܲܦோ௖௩ detected by the node.

The thresholds ݄ܶே௕_ோ௖௩ and ݄ܶே௕_ோ௘௕௥ௗ concerning the rates of packet dropping ܴே௕_ோ௖௩ and ܴே௕_ோ௘௕௥ௗ are defined in similar way, i.e., by calculating the ratio of Packet

Dropping Metrics ܴே௕_ோ௖௩ and ܴே௕_ோ௘௕௥ௗ in terms of the number of malicious packet

dropping ܲܦே௕_ோ௖௩ and ܲܦே௕_ோ௘௕௥ௗ detected by the node. Seeing that ܴோ௘௕௥ௗ is explicitly

determined by making use of local Routing Events and external factors, such as packet loss,

has no effect on ܴோ௘௕௥ௗ, we define ݄ܶோ௘௕௥ௗ ൌ 5%. Table 5.1 displays the thresholds

calculated for nodes ܱଶ, ܱଷ, and ସܱ by using the respective Packet Dropping Metrics ܴைమ, ܴைయ, and ܴைర. For nodes ܱଶ and ܱଷ, we consider ܾܰ ൌ ସܱ when calculating the thresholds.

Table 5.1: Thresholds calculated for nodes ܱଶ, ܱଷ, and ସܱ.

Threshold ࡻ૛ ࡻ૜ ࡻ૝ ݄ܶோ௖௩ (%) 11.3 7.9 12.4 ݄ܶே௕_ோ௖௩ (%) 9.1 8.6 8.1 0.31 0.48 0.49 (%) ࢊ࢘࢈ࢋࡾ_࢈ࡺࢎࢀ

In case the mesh topology configuration changes, i.e., the number of nodes in the

neighborhood is altered and consequently the amount of routing packets broadcasted, the

threshold values calculated for the nodes will have small variations since they depend

uniquely on the link’s packet loss rate. Therefore, if the link quality is not modified in terms

of packet loss, the thresholds do not need to be updated. Therefore, the threshold

mechanism achieves scalability with respect to the number of neighboring nodes.

Chapter 5. Distributed Detection of Packet Dropping Attacks 114

5.5.3 Emulation of Packet Dropping Attack
In this scenario, the malicious node ܱଵ intentionally drops packets in two different

scenarios, as illustrated in Figure 5.3.

1) ܵܿ݁݊ 1: malicious node ܱଵ drops the OGMs received from (broadcasted by)

gateway node ܱଶ which are supposed to be rebroadcasted by node ܱଵ.

2) ܵܿ݁݊ 2: malicious node ܱଵ drops the OGMs rebroadcasted by own node ܱଵ that are

received from node ܱଶ.

Since routing decisions are made relying on statistical analysis of the amount of OGMs

received rather than information contained in the routing packets, after the packet dropping

attack has initiated, node ܱଷ will choose node ସܱ as best next-hop to gateway node ܱଶ

because node ସܱ has rebroadcasted the most number of OGMs for node ܱଶ. However, as

shown in Figure 5.1, nodes ܱଷ would normally choose node ܱଵ as best next-hop toward

gateway node ܱଶ since the link between nodes ܱଷ and ܱଵ has lower packet loss rate (0%)

compared to the link between nodes ܱଷ and ସܱ (10%).

Figure 5.3: Malicious node executing packet dropping attack.

If node ସܱ is compromised and since it is the only relay point to gateway node ܱଶ,

node ସܱ can carry out more serious packet dropping attacks without being noticed by the

10% packet loss
Gateway
 node

O4

O3O2

O1

Malicious node

Target
 node

Target node

Routing Events +
Detection Results

OGM

Target node

OGM dropped

RoutingTable of node O3

O4O2

Destination Best next-hop

Chapter 5. Distributed Detection of Packet Dropping Attacks 115

target nodes, such as black hole or gray hole attacks. In this type of misbehavior, the

malicious node attracts all the data traffic from the target nodes by redirecting the routes of

target nodes to the own malicious node. Then, the malicious node drops randomly or

selectively a portion of the data traffic in case of gray hole attack, or the malicious node

drops all of the data traffic that was attracted to itself in case of black hole attack, instead of

forwarding such data traffic as expected by the target nodes.

The packet dropping attack aims to disrupt the integrity of data delivery service and

routing service by particularly violating the integrity of routing table of nodes. The packet

dropping attack is implemented into wirefilter tool [38]. We added a new feature to

wirefilter tool which allows applying different packet loss rates to the OGMs traversing the

virtual link between two nodes according to the Source Address and the Originator Address

provided by the user, then OGMs are discarded before reaching the destination node. In

addition, we employ netem tool [45] in order to apply different packet loss rates to OGMs

broadcasted or rebroadcasted by the node in accordance with the Originator Address

provided by the user.

5.5.4 Results

 (a) Packet Dropping Metric calculated by
node ܱଵ.

 (a) Packet Dropping Metric calculated by
node ܱଶ.

Figure 5.4: Packet Dropping Metrics calculated for ܵܿ݁݊ 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

R
at

e
of

 P
ac

ke
t D

ro
p

R
ou

tin
g

M
is

be
ha

vi
or

 (%
)

Time (s)

 RO1Rcv ThO1Rcv

Attacker starts dropping (5%)

Dropping
rate is 100%

RO1

Rcv
 >= ThO1

Rcv

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

Time (s)

 RO2Nb_Rcv ThO2Nb_Rcv

Attacker starts
dropping (5%)

Dropping
rate is 100%

RO
2

Nb_Rcv >= ThO
2

Nb_Rcv

Chapter 5. Distributed Detection of Packet Dropping Attacks 116

We performed several experiments to evaluate the efficacy of the packet dropping detection

approach. The duration of each experiment is around 35 minutes. Figure 5.4 shows the rates

of packet drop routing misbehavior ܴோ௖௩ைభ and ܴே௕_ோ௖௩ைమ calculated by nodes ܱଵ and ܱଶ

respectively for packet dropping scenario ܵܿ݁݊ 1, where node ܱଵ drops the OGMs received

from node ܱଶ. We assume ݄ܶோ௖௩ைభ ൌ ݄ܶோ௖௩ைమ concerning node ܱଵ.

The malicious node ܱଵ starts dropping OGMs at 16 secs applying a dropping rate of

5%. After 180 secs, the malicious node applies a dropping rate of 10 %, then at 376s a

dropping rate of 20% is applied, at 556s a dropping rate of 30% is applied, and so on, until

the dropping rate reaches 100%. Therefore, the malicious packet dropping rate applied by

the attacker is 3.33% per minute. In Figure 5.4 (a), we note that the rate of packet dropping ܴோ௖௩ைభ follows closely the increase of malicious packet dropping rate applied by the attacker,

i.e., the packet dropping detection algorithm of node ܱଵ precisely detects that own node ܱଵ

is discarding the OGMs received from node ܱଶ. Since the rate of packet dropping ܴோ௖௩ைభ

keeps increasing during the packet dropping attack, at 583 secs ܴோ௖௩ைభ ൒ ݄ܶோ௖௩ைభ , i.e., the rate

of packet drop routing misbehavior exceeds the threshold. In Figure 5.4 (b), we remark that

the rate of packet dropping ܴே௕_ோ௖௩ைమ also correctly detects the malicious packet dropping

rate applied by the attacker, i.e., node ܱଶ perceives that its broadcasted OGMs do not reach

node ܱଵ. As the rate of packet dropping ܴே௕_ோ௖௩ைమ continues increasing, similarly at 573 secs ܴே௕_ோ௖௩ைమ ൒ ݄ܶே௕_ோ௖௩ைమ , as seen in Figure 5.4 (b).

Since ܴே௕_ோ௖௩ைమ ൒ ݄ܶே௕_ோ௖௩ைమ at earlier time than ܴோ௖௩ைభ ൒ ݄ܶோ௖௩ைభ , node ܱଶ first notices the

malicious packet dropping behavior occurring in the neighborhood and starts the consensus

mechanism as described in Section 5.4. Then, nodes ܱଶ and ܱଵ share their corresponding

Detection Results ܴܦைమ and ܴܦைభ for further analysis. When the common analysis is

finished, node ܱଶ detects node ܱଵ is intentionally discarding the OGMs broadcasted by

node ܱଶ and designates node ܱଵ as malicious node: ܰܯைమ ՚ ܱଵ. From another standpoint,

nodes ܱଵ determines that the OGMs received from node ܱଶ are being dropped by own node ܱଵ and identically indicates node ܱଵ as malicious: ܰܯைభ ՚ ܱଵ. Since both decisions are

equal: ܰܯைభ ൌ .ைమ, a final decision is made on the guiltiness of node ܱଵܰܯ

Figure 5.5 illustrates the rates of packet drop routing misbehavior ܴோ௘௕௥ௗைభ and ܴே௕_ோ௘௕௥ௗைయ

Chapter 5. Distributed Detection of Packet Dropping Attacks 117

calculated by nodes ܱଵ and ܱଷ respectively for malicious scenario ܵܿ݁݊ 2, where node ܱଵ

drops the OGMs rebroadcasted by own node ܱଵ which are received from node ܱଶ. For the

sake of simplicity, we do not show the rate of packet dropping ܴே௕_ோ௘௕௥ௗ ைమ since it is quite

similar to the rate ܴே௕_ோ௘௕௥ௗைయ of node ܱଷ. As stated in Section 5.5.2, we assume ݄ܶோ௘௕௥ௗைభ ൌ5%. The malicious node ܱଵ starts dropping OGMs at 19 secs. A dropping rate of 5 % is

applied after 180 secs, at 379s a dropping rate of 10% is applied, and so on, until the

dropping rate achieves 100%. As expected, the rate of packet dropping ܴோ௘௕௥ௗைభ follows very

close the increase of malicious packet dropping rate presenting a linear trend, as shown in

Figure 5.5 (a). Therefore, the packet dropping detection algorithm of node ܱଵ accurately

identifies that node ܱଵ is not rebroadcasting OGMs received from node ܱଶ as it should

proceed. In Figure 5.5 (b), we can see that the rate of packet dropping ܴே௕_ோ௘௕௥ௗைయ likewise

follows the increase of malicious packet dropping rate applied by the attacker, which means

nodes ܱଷ efficiently detects node ܱଵ is refusing to forward OGMs received from node ܱଶ.

 (a) Packet Dropping Metric calculated by node ܱଵ.
 (a) Packet Dropping Metric calculated by

node ܱଷ.

Figure 5.5: Packet Dropping Metrics calculated for ܵܿ݁݊ 2.

At 254 secs, ܴோ௘௕௥ௗைభ ൒ ݄ܶோ௘௕௥ௗைభ , as shown in Figure 5.5 (a). In addition, at 1 sec, ܴே௕_ோ௘௕௥ௗ ைయ ൒ ݄ܶே௕_ோ௘௕௥ௗைయ , as seen in Figure 5.5 (b). Since the threshold ݄ܶே௕_ோ௘௕௥ௗ of

nodes ܱଵ, ܱଶ, and ܱଷ is very low as shown in Table 5.1, we assume the consensus

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

R
at

e
of

 P
ac

ke
t D

ro
p

R
ou

tin
g

M
is

be
ha

vi
or

 (%
)

Time (s)

 RO1Rebrd ThO1Rebrd

Attack starts
dropping (5%)

RO1

Rebrd >= ThO1

Rebrd

Dropping
rate is 100%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

Time (s)

 RO3Nb_Rebrd ThO3Nb_Rebrd

Attack starts
dropping (5%)

RO3

Nb_Rebrd >= ThO3

Nb_Rebrd

Dropping
rate is 100%

Chapter 5. Distributed Detection of Packet Dropping Attacks 118

procedure is triggered when ܴோ௘௕௥ௗைభ ൒ ݄ܶோ௘௕௥ௗைభ , i.e., at 254 secs. In that way, we avoid

starting the consensus process earlier and erroneously accuse a legitimate node by

prematurely alarming the presumed packet dropping attack at 1 sec.

As ܴோ௘௕௥ௗைభ ൒ ݄ܶோ௘௕௥ௗைభ , node ܱଵ diagnoses a packet dropping attack is happening and

trigger the consensus mechanism as described in Section 5.4. Thus, node ܱଵ sends its

Detection Results ܴܦைభ to nodes ܱଶ and ܱଷ and receives the corresponding Detection

Results ܴܦைమ and ܴܦைయ for checking purpose. When the mutual analysis is finished, node ܱଵ detects that own node ܱଵ is deliberately dropping OGMs rebroadcasted by node ܱଵ

received from node ܱଶ, and points node ܱଵ as the malicious node: ܰܯைభ ՚ ܱଵ. The

neighboring nodes ܱଶ and ܱଷ conclude that node ܱଵ is not forwarding the OGMs received

from node ܱଶ and similarly designate node ܱଵ as malicious node: ሼܰܯைమ, ைయሽܰܯ ՚ ܱଵ.

Therefore, since ܰܯைభ ൌ ைమܰܯ ൌ ைయ, such consensus is reached with unanimity. Aܰܯ

proper active response to this type of packet dropping attack is temporarily blocking the

network activity of rebroadcasting routing messages on node ܱଵ. In that way, the correct

routes of nodes ܱଷ and ସܱ would restored toward gateway node ܱଶ.

In attacking scenario ܵܿ݁݊ 2, false positives are only caused by the dropping of

particular Routing Events caused by inherent packet loss of communication links. If remote

Routing Events generated by node ܱଵ, which confirm the transmission of routing packets,

are lost during transmission, own node ܱଵ has the evidence of transmission of the routing

packets, i.e., it processes its local Routing Events generated for the routing packets, then it

does not produce false positives. However, the neighboring nodes ܱଶ and ܱଷ would detect

false positives because they miss to receive the remote Routing Events that prove that node ܱଵ transmitted the routing packets. Since we assume node ܱଵ itself triggers the consensus

mechanism in case of routing attack evidence, the false positives detected by its neighbors

do not influence the intrusion detection process.

The effective detection rate, i.e., true positive rate, is defined as: ݎܦ ൌ ௉஽ି௉்்௉ , where ܲܦ is the number of malicious packet dropping detected by the node during the packet

dropping attack, as explained in Section 5.3.4; ܲܶ is the number of malicious packet

dropping, i.e., the false positives, found during the period of threshold definition in Section

5.5.2; and ܶܲ is the total number of packets dropped by the attacker. Thus, we calculate the

Chapter 5. Distributed Detection of Packet Dropping Attacks 119

effective detection rate ݎܦ for nodes ܱଵ, ܱଶ, and ܱଷ using the malicious scenario ܵܿ݁݊ 2,

where node ܱଵ drops its own OGMs rebroadcasted that are received from node ܱଶ.

For node ܱଵ, we found ݎܦைభ ൌ 100%, which is considered normal since detection of

malicious packet dropping at node ܱଵ only depends on local Routing Events that are not

impacted by the packet loss of link. For nodes ܱଶ and ܱଷ, we obtained ݎܦைమ ൌ 100% and ݎܦைయ ൌ 99.9%, which is likewise a typical behavior since there is no packet loss rate in the

link between nodes ܱଵ and ܱଶ and in the link of nodes ܱଵ and ܱଷ, therefore the detection

accuracy of packet dropping attack is not the impacted by external parameters at nodes ܱଶ

and ܱଷ concerning malicious node ܱଵ . Hence, nodes ܱଶ and ܱଷ detect all the OGMs

dropped by node ܱଵ. However, in real WMNs, where there is possibly small packet loss

rate in links, the effective detection rate of the nodes would be reduced around to 96%.

We assume the false positive rate ݎܨ of nodes ܱଵ, ܱଶ, and ܱଷ is equivalent to the ones

defined in Section 5.5.2 during threshold definition: ݎܨைభ ൌ ைమݎܨ ,5% ൌ 0.49%, and ݎܨைయ ൌ 0.48%. In fact, we fix the false positive rate ݎܨைభ of node ܱଵ since packet loss has

no influence on the packet dropping detection at node ܱଵ, then this false positive rate is

symbolic. The false positive rate of nodes ܱଶ and ܱଷ do not represent proper rates for this

attacking scenario since they are calculated considering node ସܱ as the unique neighbor of

nodes ܱଶ and ܱଷ in which there is 10% of packet loss in their links, however in the link

between node ܱଵ and nodes ܱଶ and ܱଷ there is no packet loss.

The false negative rate is defined as: ܰݎ ൌ 1 െ ௉஽்௉. We use malicious scenario ܵܿ݁݊ 2

for estimating the malicious packet dropping behavior that is not be detected by IDS at

nodes ܱଵ, ܱଶ, and ܱଷ. Hence, we obtain ܰݎைభ,మ ൌ 0% for nodes ܱଵ and ܱଶ, and ܰݎைయ ൌ0.1% for node ܱଷ. As expected, the three nodes accurately detect all the OGMs purposely

dropped by malicious node ܱଵ, but node ܱଷ miss to detect only one OGM dropped by node ܱଵ. That happens probably due to a synchronization issue in the packet dropping detection

algorithm at node ܱଷ when the experiment starts. Therefore, we conclude that the packet

dropping attack detection mechanism does not produce false negatives.

5.6 Performance Analysis
In this section, we estimate the amount of system resources consumed by the IDS solution

Chapter 5. Distributed Detection of Packet Dropping Attacks 120

which runs at each mesh node, such as memory, CPU, and network resources utilization.

Since mesh nodes as wireless routers are expected to be limited in computation power, we

evaluate the computation and communication cost added by the distributed packet dropping

detection mechanism.

5.6.1 CPU and Memory Consumption
The computation cost of the IDS tool includes: (i) routing packets are collected from the

node network interface; (ii) the collected routing packets are handled by RPA module,

which generates respective Routing Events; (iii) the packet dropping detection algorithm

makes use of the Routing Events to produce Packet Dropping Metrics; (iv) Routing Events

are sent to neighboring nodes through TCP sockets; and (v) packet dropping detection

information is recorded to log files. All those intrusion detection operations incur

computation overhead to the mesh node.

We determine the consumption of CPU and memory resources for the IDS at node ܱଵ

in the course of the intrusion detection operations for two scenarios: (i) ܵ1: this is the

scenario of threshold definition in Sections 5.5.2; (ii) ܵ2: this is malicious scenario ܵܿ݁݊ 2

of Section 5.5.3, where malicious node ܱଵ drops the OGMs rebroadcasted by own node ܱଵ.

We employ sysstat performance measurement tool [43] to collect the required performance

data at each node, as described in Section 4.7.1. Figures 5.6 and 5.7 present the

computational overhead for the IDS solution at node ܱଵ for both scenarios ܵ1 and ܵ2.

In Figure 5.6, we can see the average percentage of CPU time used by the IDS task for

the two scenarios ܵ1 and ܵ2 is acceptable taking this into account all the intrusion detection

operations carried out by the IDS during the process of packet dropping attack detection. In

scenario ܵ1, the average CPU utilization is 24.9% while maximal CPU usage is 34.4% and

minimal CPU consumption is 16.2%, as presented in Table 5.2. Concerning scenario ܵ2,

before the attack is triggered, the average CPU consumption is 23.1%, having maximum

usage of 28.4% and the minimum utilization is 16.3%, which is not so different from the

CPU usage of scenario ܵ1, as shown in Table 5.2. After the attack is initiated, the average

CPU utilization is 23.3% having lowest usage of 13.3% and highest utilization of 33.0%,

which is also much the same as the CPU utilization in scenario ܵ1. For the whole

experiment duration of scenario ܵ2, the average CPU usage is 23.3%, which is similar to

Chapter 5. Distributed Detection of Packet Dropping Attacks 121

the average CPU consumption for the IDS in scenario ܵ1.

Figure 5.6: CPU utilization for the IDS at node ܱଵ.

Table 5.2: CPU consumption statistics for the IDS at node ܱଵ.

Scenario Average CPU
usage (%)

Maximum CPU
usage (%)

Minimum CPU
usage (%) ܵ1 24.9 34.4 16.2

 ૛ࡿ
Before Attack 23.1 28.4 16.3
After Attack 23.3 33.0 13.3

All 23.3 33.0 13.3

We observe only a very small reduction of the average CPU usage of 1.6% for the IDS

in scenario ܵ2 compared to scenario ܵ1. This is because the number of routing packets

treated per second by the IDS, i.e., the traffic load, does not change from scenario ܵ1 to

scenario ܵ2 and consequently the intrusion detection operations are practically the same

with or without attack. Since the attacker drops OGMs that are processed earlier by the

IDS, the IDS workload is not affected by the malicious behavior of attacker in node ܱଵ.

This CPU usage behavior observed for the IDS in scenarios ܵ1 and ܵ2, that is based on the

network traffic load, is consistent with the abnormal CPU usage behavior remarked in

Section 4.7.1, where the average CPU utilization for the IDS decreases when the traffic

load, i.e., number of packets per second, is increased on the node.

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

Attacker starts
dropping OGMs

C
PU

 U
sa

ge
 (%

)

Time (s)

 S1
 S2

Chapter 5. Distributed Detection of Packet Dropping Attacks 122

The total computation overhead remains quite stable during the intrusion detection

activities at scenarios ܵ1 and ܵ2. Furthermore, the CPU overhead imposed by IDS is not

high since the average CPU consumption throughout the packet dropping detection

operation is 23.3%. Thus, the execution of the packet dropping detection algorithm at the

node adds a very low overhead. In case of additional nodes are introduced to the

neighborhood, the IDS tool efficiently processes the extra traffic generated by these

neighboring nodes and maintain the intrusion detection accuracy at a high level. Therefore,

the IDS is scalable in respect to the computational overhead.

Figure 5.7: Memory utilization for the IDS at nodeܱଵ.

Table 5.3: Memory consumption statistics for IDS at node ܱଵ.

Scenario Average memory
usage (%)

Maximum memory
usage (%)

Minimum memory
usage (%) ܵ1 6.22 7.61 4.79

 ૛ࡿ
Before Attack 4.57 4.78 4.05
After Attack 6.12 7.41 4.62

All 6.05 7.41 4.78

In Figure 5.7, we can notice the rate of memory utilization for the IDS in both

scenarios ܵ1 and ܵ2 slightly increases with respect to time, i.e., the memory usage

increases linearly over the time. In addition, the rate of memory usage of scenario ܵ1 is

0 200 400 600 800 1000 1200
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Attacker starts
dropping OGMs

M
em

or
y

U
sa

ge
 (%

)

Time (s)

 S1
 S2

Chapter 5. Distributed Detection of Packet Dropping Attacks 123

marginally higher than that in scenario ܵ2. The average memory consumed by the IDS in

scenario ܵ1 is 6.22% of 256MB of physical memory, which is equal to 15508.88 Kbytes,

i.e., 15.14 Mbytes consumed by IDS from the main memory, as seen in Table 5.3. For

scenario ܵ2, the peak of memory usage is 7.41% when the attack is performed, and the

lowest level of memory utilization is 4.05% that is before the attack is triggered, as shown

in Table 5.3. Therefore, there is an increase of 3.36%, i.e., 8.18 Mbytes, during the packet

dropping detection process in scenario ܵ2, which is tolerable considering the total intrusion

detection operations executed by the IDS. Therefore, the packet dropping detection solution

incurs low memory overhead concerning the amount of main physical memory, for

instance, mesh devices equipped with at least 64MB of RAM memory can bear this

memory overhead introduced by the IDS.

In Figure 5.7, we observe the rate of memory utilization increases linearly over the

time despite malicious packet dropping behavior is processed by IDS or not. Thus, in case

of the traffic load, i.e., the number of packets per second processed by the IDS, increases,

then the memory consumption would present a linear increase as well. Hence, if it happens

that more nodes are added to the neighborhood, the memory overhead would present a

linear increase as the number of packets broadcasted by these nodes also increases, and the

memory overhead would remain at a low level. Therefore, the IDS approach is scalable

with respect to the memory overhead.

The IDS solution has a similar level of computation overhead across different

scenarios. CPU and memory usage for the IDS does not reach elevated levels still the traffic

load is increased in the neighborhood and consequently the intrusion detection operations

executed by the IDS. The CPU and memory consumption exhibited an average rate of

23.3% (CPU time) and 6.05% (14.72 Mbytes) respectively during packet dropping

misbehavior detection process. Therefore, the distributed packet dropping detection

mechanism is scalable with regard to the computational overhead.

5.6.2 Communication Overhead
The communication overhead of the IDS solution is basically due to Routing Event ܴܧ

messages exchanged between nodes by using TCP packets. The average size of a ܴܧ TCP

packet is 271 bytes whereas the size of an OGM packet is 44 bytes, but a TPC packet

Chapter 5. Distributed Detection of Packet Dropping Attacks 124

contains many ܴܧ messages in consequence of the analysis of various OGMs. The major

bandwidth occurs when ܴܧ messages are transmitted to neighboring nodes.

We estimate the message overhead added by the IDS using the scenario of threshold

definition of Section 5.5.2. The formula of message overhead for ܴܧ in the matter of

average message size is the same as the one used in Section 4.7.2: ܯ ௌܱ ൌ ∑|ೃಶ|ಿ∑|ೀಸಾ|೙ , which is

basically the ratio of average ܴܧ message size with reference to OGM packet size

considering the whole experiment duration, where ܰ ൌ ∑ ݊ and ܧܴ ൌ ∑ The .ܯܩܱ

message overhead formula in terms of message frequency is: ܱܯி ൌ ே௡, which is the ratio

of total number of ܴܧ messages in relation to the number of OGM packets transmitted and

received by the node during the entire experiment duration.

We calculated the ܴܧ message overhead for node ܱଵ: ܯ ௌܱைభ ൌ 7.2% and ܯ ிܱைభ ൌ6.7%, and for node ܱଷ: ܯ ௌܱைయ ൌ 8% and ܯ ிܱைయ ൌ 6.2%. We remark that ܯ ௌܱைభ ൏ ܯ ௌܱைయ,

as a result of the higher average ܴܧ message size: ∑|ೃಶ|ಿ for node ܱଷ since less ܴܧ messages

are processed by node ܱଷ caused by the packet loss rate in the link of node ܱଷ. However,

concerning ܱܯி we see an opposite behavior ܯ ிܱைభ ൐ ܯ ிܱைయ since there is no packet loss

in the link of node ܱଵ, then the number of ܴܧ messages exchanged by node ܱଵ is higher

than node ܱଷ. The ܴܧ message overhead ܯ ௌܱ for nodes ܱଵ and ܱଷ is considered low if we

take into account that ܴܧ messages are transmitted using TCP packets which incur

significant message overhead in relation to BATMAN packets. This is because usually one

TCP packet comprises several ܴܧ messages. In addition, the ܴܧ message overhead ܱܯி is

also small. The reason for that behavior is the same as explained earlier, i.e., various ܴܧ

messages are transported by a unique TCP packet then decreasing the total number of TCP

packets exchanged between two endpoints.

Nevertheless, regarding the ratio of total ܴܧ message size: ்ܱܯ ൌ ∑|ோா|∑|ைீெ|, we obtain ܱܯை்భ ൌ 48.5% for node ܱଵ, and ܱܯை்య ൌ 49.8% for node ܱଷ. These ܴܧ message

overhead ்ܱܯ values are considered high and reflect the extra communication overhead

added by the constant ܴܧ messages exchange of the IDS. That means, a priori, that one ܴܧ

message is twice the size of the OGM packet.

The effective transmission rate of ܴܧ messages for node ܱଵ is 0.191 Mbit/sec and the

Chapter 5. Distributed Detection of Packet Dropping Attacks 125

effective transmission rate of OGMs is 0.0039 Mbit/sec. Then, the total bandwidth

overhead added by the IDS messages together with BATMAN protocol is 0.195 Mbit/sec,

which is convenient for a typical WMN comprised of mesh routers equipped with wireless

network cards capable of transfer rates of up to 108 Mbps. Therefore, the WMN

communication channels could tolerate this communication overhead introduced by the

IDS messages in combination with BATMAN protocol. Hence, the IDS packet dropping

detection approach achieves scalability with respect to communication overhead.

In addition, we estimate the ܴܧ message overhead for the malicious scenario ܵܿ݁݊ 2 of

Section 5.5.2, where node ܱଵ drops the OGMs rebroadcasted by own node ܱଵ that are

received from node ܱଶ. We obtained ܯ ௌܱைభ ൌ 6.3% and ܯ ிܱைభ ൌ 7.1% for node ܱଵ, and ܯ ௌܱைయ ൌ 7% and ܯ ிܱைయ ൌ 6.6% for node ܱଷ. We note the overhead ratio ܯ ௌܱ estimated

for both nodes ܱଵ and ܱଷ in this scenario demonstrates a small decrease and the overhead

ratio ܱܯி presents a low increase compared to ܯ ௌܱ and ܱܯி calculated in the threshold

scenario. Therefore, as expected, the IDS does not introduce extra communication overhead

during the packet drop attack detection process. Moreover, we estimate the ܴܧ message

overhead regarding the total ܴܧ message size ்ܱܯ for nodes ܱଵ and ܱଷ: ܱܯை்భ ൌ 44.5%

and ܱܯை்య ൌ 46.3%. We observe a small reduction in these rates in relation to ones of the

threshold scenario. This is because malicious node ܱଵ drops OGM packets broadcasted by

node ܱଵ resulting in less ܴܧ messages generated by the neighboring nodes, then decreasing

the message overhead in terms of average ܴܧ message size: ∑|ೃಶ|ಿ and increasing the

message overhead in respect to average OGM packet size ∑ ೀಸಾ೙ . The main reason for that

behavior is the reduction of ܴܧ messages frequency which is responsible for producing the

majority of message overhead.

The possible drawback of the distributed packet drop detection scheme is the overhead

that the exchange of ܴܧ messages imposes to each node communication link since a node

is required to transmit a ܴܧ message to its neighbors for each routing packet received or

broadcasted by the node. ܴܧ messages are essentially exchanged using TPC packets which

incurs significant message overhead in respect to OGM packets. Thus, the message

overhead added to the communication system is fairly high and in consequence a low-

overhead optimized solution is necessary. To overcome that overhead issue, the IDS may

Chapter 5. Distributed Detection of Packet Dropping Attacks 126

consider exchanging ܴܧ messages periodically by employing datagrams (UDP) to transmit

such ܴܧ messages in order to optimize the communication overhead. Since the size of a

typical ܴܧ UDP packet would be around 160 bytes, an average reduction of 41% is

expected compared to the ܴܧ TCP packet size.

5.7 Discussion

5.7.1 Security
The security issues of the IDS solution concerning the assumed trust of IDS behavior and

its communication mechanism, that is used to exchange routing information and detection

results between cooperating nodes, are discussed in Section 4.8.1. The IDS message

exchange mechanism is mainly threaten by main in the middle attacks, malicious message

dropping attacks, and blackmail attacks. The solutions to mitigate these potential attacks

and vulnerabilities of the intrusion detection architecture are equally discussed in Section

4.8.1. We summarize the attacks targeting the packet drop detection mechanism as follow.

• Main in the middle attack: the malicious node modifies Detection Results messages,

i.e., Packet Dropping Metrics, or decision messages from the majority in order to

misguide the node in charge of the consensus procedure to incorrectly incriminate

legitimate nodes. The security solution for this attack is encrypting and

authenticating the messages exchanged among nodes in the neighborhood.

• Malicious message dropping: in this attack, the malicious node intentionally

discards, for instance, Routing Event messages disseminated by the node IDS above

the established threshold, which should detect this rate of packet drop routing

misbehavior, in order to deceive the neighboring nodes to decide on the node’s

guiltiness. One manner of avoiding this type of attack is the use of a complementary

independent IDS at the node which uniquely captures and analyzes Routing Event,

Detection Results, and decision messages exchanged between the nodes.

• Blackmail attack: in this attack, the malicious node has the private key of the node

and deliberately sends fake intrusion detection information, such as Packet

Chapter 5. Distributed Detection of Packet Dropping Attacks 127

Dropping Metrics and decisions, to other nodes during the consensus process.

Additionally, it may conspire with other malicious nodes to delude the consensus

mechanism in the target node to spuriously decide upon the guilt of honest nodes.

One way of preventing blackmail attacks is the employment of a distributed and

cooperative trust based intrusion detection scheme which calculates the level of

trust for each node in the neighborhood. Then the IDS would only accept intrusion

detection information, e.g., Packet Dropping Metrics and individual decisions, from

trustworthy neighbors, i.e., neighboring nodes that have achieved a certain level of

trust in the network.

5.7.2 Complexity and Limitations
The IDS, particularly the consensus mechanism, fails to detect minor packet dropping

attacks for two cases: (i) the malicious node slightly drops packets below the threshold that

was established to identify this type of dropping attack for saving hardware and

communication resources; or (ii) the malicious node drops a few packets intermittently

which averages a packet dropping rate over a period of time that is below the threshold. As

a result, the packet dropping detection mechanism allows certain types of malicious packet

dropping behavior to pass unnoticed. However, the damage caused to the network services

by such intermittent packet dropping behavior would be acceptable since it does not

considerably affect the network operations.

Nevertheless, we have to define an appropriate threshold for the packet dropping

detection algorithm considering two situations: (i) signalize packet dropping intrusions in

case the packet dropping misbehavior becomes intolerable, i.e., the routing service or data

delivery service is considerably impacted by the node malicious behavior; or (ii) put up

with actual packet dropping misbehavior while it does not disrupt the mesh network

communication, i.e., violate the network routes and the integrity of data delivery for nodes.

In this chapter, we do not address the problem of data packet dropping misbehavior,

where the malicious node conditionally discards data packets in place of forwarding such

data traffic, such as black hole and gray hole attacks. However, BATMAN protocol is

likewise conceived for data packet forwarding service, although, in this work, we focus

exclusively on the routing functionality of BATMAN protocol. To that end, Batman-adv

Chapter 5. Distributed Detection of Packet Dropping Attacks 128

creates a specific virtual interface in Linux OS, which have an IP address. Then, each data

packet that enters this particular virtual interface is examined by batman-adv kernel module

regarding its destination MAC address, and it is forwarded with the help of BATMAN

routing tables toward the destination node, which in turn will process this data packet using

its respective BATMAN virtual interface. In that way, data packets are transmitted between

source and destination nodes in the network using BATMAN protocol. Therefore, if a

malicious node selectively drops data packets at a node, our packet dropping detection

approach is capable of precisely detecting this malicious data packet dropping behavior by

using the same packet dropping detection algorithms. However, small modifications are

required to RPA module and Packet Dropping Detection module since these modules have

to deal with BATMAN data packets instead of BATMAN routing packets, which have

some differences concerning the packet header added by BATMAN protocol.

The distributed and cooperative packet dropping detection mechanism is said to scale

since it is efficient and practical when applied to a large number of participating nodes, i.e.,

for ampler neighborhoods. The IDS tool can be easily installed at every node of the

network for exchanging Routing Events and Packet Dropping Metrics messages with

neighboring nodes in order to perform collaborative packet dropping attack detection. The

approach scalability regarding the consumption of system and communication resources,

such as CPU, memory and network bandwidth overhead is analyzed in Section 5.6. The

scalability of the consensus mechanism is discussed in Section 5.4, and the threshold

scheme scalability is presented in Section 5.5.2.

Our cooperative IDS solution performs better in mesh networks with limited mobility

since the intrusion detection approach does not handle node mobility. For example, if a

node moves from a mesh node to another node that is more distant, then the IDS consensus

scheme of the first node would judge this node as malicious since it is does not have the

exact knowledge of the current position of the mobile node in the network. As a

consequence, the Response Mechanism would unfairly apply active responses, such as

blocking the network access to this mobile node, which does reflect the actual state of the

mesh network. To remediate that limitation of the intrusion detection approach, the IDS

consensus approach could make use of the client announcement mechanism of BATMAN

routing protocol [36], where the actual closest neighbor of the mobile node informs the

Chapter 5. Distributed Detection of Packet Dropping Attacks 129

entire network that the mobile node is now to be found at a new location. Thus, the IDS has

just to retrieve such location information concerning the mobile node from the node which

it is installed before making a final decision about this node.

5.8 Conclusion
In this chapter, we have presented a distributed and cooperative approach for detecting

packet dropping attacks in WMNs. The IDS tool is placed at each node for passively

monitoring the routing traffic on node network interface, i.e., the routing behavior of node,

and exchanging Routing Events with the neighboring nodes for monitoring the

neighborhood routing behavior in order to detect possible packet dropping routing

misbehavior in a collaborative manner. Then, the workload of intrusion detection is fairly

distributed among all nodes in the neighborhood. The distributed detection scheme makes it

possible to detect a wide range of packet dropping attacks, such as selective packet

dropping, probabilistic packet dropping, and periodic packet dropping.

In case of suspected dropping behavior is detected, the IDS evokes the consensus

mechanism which shares detection results, i.e., packet dropping metrics, and individual

verdicts with the neighbors in order to achieve a consensus on the presumed malicious

dropping behavior. In the consensus decision-making approach, the final decision is

collaboratively built with full participation of nodes. Thus, packet dropping intrusions are

consensually identified in real-time with collective decision. In addition, a threshold

scheme, which takes into consideration unintentional packet loss of wireless links in

realistic scenario, is employed to distinguish malicious behavior from normal behavior

when analyzing the collected routing traffic. If all nodes or the majority judge the

suspicious node is malicious, the IDS performs a passive response by reporting the

dropping intrusion and logging the incident for further investigation.

The approach is evaluated and validated by implementation using customized VMs

which constitute the virtualized mesh network environment. Different packet dropping

attacks are emulated in this virtual testing platform. The approach proved to be accurate,

reliable, and scalable for the task of detecting packet dropping misbehavior in different

scenarios. Through both analysis and experimental evaluations, we show that our packet

dropping detection mechanism is effective and incurs low computational overhead, i.e.,

Chapter 5. Distributed Detection of Packet Dropping Attacks 130

average CPU and memory consumption, and moderate bandwidth overhead. The proposed

packet dropping detection scheme is distributed and cooperative in nature.

Chapter 5. Distributed Detection of Packet Dropping Attacks 131

132

Chapter 6

6 Conclusion and Perspectives

6.1 Conclusion
WMNs are cooperative in nature since mesh nodes forward packets on the behalf of other

nodes to reach a destination that is out of the node communication range. This emerging

multi-hop routing architecture assures reliable data delivery since there is often more than

one route from a source node to a destination node in the network. However, WMNs are

extremely vulnerable to a wide range of attacks that threaten their operation and provided

services. WMNs do not have a clear line of defense. Cryptographic solutions, such as

authentication services and access controls schemes, can increasingly improve the security

of WMNs. Nevertheless, these preventive mechanisms alone cannot deter all types of

attacks, such as internal attackers. Even with end-to-end cryptographic protection, a

malicious node can drop packets going through the node and execute DoS attacks.

The assumption of every node will broadcast correct messages and that every node is

cooperating to forward correct messages makes WMNs susceptible to attacks. An

adversarial node can easily exploit these assumptions to violate the cooperation of nodes,

e.g., spreading false routing information. Therefore, a security mechanism is required to

track down misbehaving nodes that have valid keys and access rights to the network. IDSs

may act as a second line of defense and provide efficient defensive mechanisms to WMNs.

An effective way to identify when an attack occurs in a WMN is the deployment of an IDS.

Hence, a distributed IDS is of fundamental importance to protect routing services in the

WMN. Until now, several intrusion detection schemes for WMNs have been proposed in

literature, however their validation has been limited to simulations. In this thesis, our main

contribution is the implementation of a practical and scalable distributed and cooperative

intrusion detection architecture for WMNs capable of detecting a broad range of attacks.

In this work, we proposed an efficient distributed intrusion detection approach suitable

for WMNs. The intrusion detection process involves the tasks of data collection and traffic

Chapter 6. Conclusion and Perspectives 133

analysis in conformance with the protocol behavior. The proposed intrusion detection

mechanism relies on non-intrusive traffic monitoring at each node for generating Routing

Events. IDSs individually installed at each node monitor independently and simultaneously

their local neighborhoods over time and establish thresholds to distinguish malicious

behavior from failures of packet transmission, such as packet loss and packet corruption.

Our approach uses collaborative intrusion detection techniques to detect more accurately a

wider set of attacks. Since detecting routing attacks involves intense collaboration among

IDS instances, we defined a consensus mechanism that merges observations from multiple

nodes in order to make a proper decision that is based on different points of view of traffic

behavior, and finally formulates a consensual verdict about a suspicious node.

We proposed a Routing Protocol Analyzer (RPA) which inspects each routing packet

passing through the node interface and produces respective Routing Events according to the

protocol behavior. Then, we implemented a communication mechanism for the IDS that

allows neighboring nodes to actively exchange local generated Routing Events for

distributed analysis of the neighborhood routing behavior. This regular exchange of

Routing Events between nodes assures a reliable distribution of routing information among

nodes. In addition, our IDS approach is capable of tolerating loss of messages between two

communicating IDSs while maintaining a good intrusion detection accuracy.

We then proposed a Distributed Intrusion Detection Engine (DIDE) divided into

intrusion detection modules that are in charge of detecting general attacking methods that

we studied in this work. Each intrusion detection module processes the Routing Events,

generated by the node and by the neighbors, relying on Routing Constraints to calculate

Misbehaving Metrics, which designate the existence of malicious traffic in the vicinity. We

defined Routing Constraints which allows detecting a considerable number of intrusions to

WMNs, which are based on generic routing attacking methods of WMNs. We identified the

most common attacking methods utilized by insider attackers through systematic analysis

of attacking techniques of WMNs. This allows the IDS to not only examine the routing

packet content, but also understand the context of message diffusion of the routing

protocol, then greatly reducing the number of false positives.

We proposed a threshold approach that results in significant improvement in both the

intrusion detection rate and false positive rate compared to traditional intrusion detection

Chapter 6. Conclusion and Perspectives 134

approaches. The threshold takes into account the link quality in terms of packet loss rate for

defining an appropriate threshold level according to the traffic conditions on the node.

We also designed a Cooperative Consensus Mechanism (CCM) that is responsible for

analyzing in detail Misbehaving Metrics provided by DIDE component but also taking into

consideration the Misbehaving Metrics calculated by the neighbors and respective

thresholds. As a result, CCM module outputs a verdict on the presumed malicious behavior.

But before that, it collects individual decisions from neighboring nodes, which are

explicitly made based on their current vision of the network traffic behavior, in order to

form a final collective decision by applying consensus decision-making process. We also

implemented a decision rule to resolve impasses during the consensus process, which

basically considers the decision of the majority since it copes with the concerns of all group

members and it is considered the best possible decision for the group.

We then proposed a Response Mechanism in which the IDS initiates a passive

response procedure in case intrusions are detected with consensual decision. The response

policy script raises alerts and properly notifies the security administrator of the network.

The IDS does not apply active responses since it leaves this task of mitigating or blocking

the attack to the network administrator. We implemented a logging scheme in the attack

detection script which generates output files recording the malicious activity observed on

the network traffic. In addition, we implemented response policy scripts that execute

programs according to the response policy, which in turn send e-mail messages

automatically to end-users and network administrators.

The primary way of measuring the IDS efficiency is the number of low false positives

and false negatives. Our intrusion detection solution diagnoses routing attacks in WMNs

effectively and efficiently in real-time with practical assumptions and conditions, then

providing good performance. We demonstrated through implementation that our intrusion

detection method achieves high detection rate with reduced false positive rate and no false

negatives for different types of routing attacks. In particular, we implemented malicious

scenarios for emulating message fabrication attacks and packet dropping attacks. Our

experimental results show that the intrusion detection approach is able to precisely identify

attacker nodes in neighborhoods. The misbehaving attacks are implemented in a virtual

mesh network platform that we developed specifically for testing and evaluating the

Chapter 6. Conclusion and Perspectives 135

performance of security solutions for WMNs. Moreover, we analyzed the performance and

discussed the security properties of BATMAN proactive routing protocol, which was

employed to exemplify the real use of our distributed intrusion detection architecture.

Furthermore, we presented a detailed analysis on the impact of routing attacks on the

routing service of mesh nodes running BATMAN routing protocol.

Since every security solution comes with a cost, for achieving high detection accuracy

for most of the attacking methods of WMNs, our intrusion detection solution introduces a

reasonable message overhead to the communication system since frequent exchange of

Routing Events is necessary to detect such attacks in a distributed manner. However, our

intrusion detection approach incurs small computational overhead, i.e., CPU and memory

overhead, during the intrusion detection process. In that way, an appropriate balance

between security and overhead should be found for the WMN, i.e., how much of bandwidth

overhead the deployed mesh network is willing to sacrifice for executing an efficient

intrusion detection solution in terms of intrusion detection rate and diversity of attacks. We

analyzed the security and overhead of the IDS approach and proved that in most of the

cases it is able to identify and track the attacker node on every occurrence of routing

misbehavior. Our intrusion detection solution showed to be scalable.

In particular, we have identified the importance of deploying a distributed and

cooperative IDS for WMNs. However, significant progress may not be expected until

WMNs are widely deployed in the field and are actively utilized by community wireless

networks. At the present time, attack and intrusion detection in this heterogeneous

environment are more speculative and theoretical. Nonetheless, further real experience with

WMNs will undoubtedly accelerate research progress on this area.

6.2 Future work
There are a number of open problems and future research directions for this work.

Throughout the thesis development, we have discussed the limitations of our distributed

intrusion detection solution which could surely evolve to new approaches. The following

are some suggestions for the development of future work.

Implementation of an Active Response Mechanism. IDS will not be very useful

Chapter 6. Conclusion and Perspectives 136

without an effective active response scheme which executes punctual reactions, i.e.,

corrective actions. Active responses attempt to extenuate the effect of intrusions on the

network and interrupt the attack in progress. Active response mechanism is divided into

two groups: (i) collective responses: those that try to protect the target nodes, and (ii)

individual responses: those that try to control over the source of the attack, i.e., the attacker

node. The first one tries to recuperate the damaged system by killing processes, terminating

network connections, or filtering the traffic. The second one tries to isolate the attacker and

prevent future attacking attempts by denying network resources to the malicious node. We

envisage to develop a cooperative intrusion response mechanism that will precisely recover

the disrupted routes by repairing compromised routing messages based on specific

detection constraints defined according to the routing protocol behavior. In a second

approach, the IDS will interrupt the malicious traffic at the compromised node. The

intrusion response mechanism will also consider dynamic thresholds to not cause damage

to innocent nodes that could be mistakenly identified as malicious nodes.

Implementation of a Reputation Management Mechanism. In WMNs, nodes need

to trust on each other since a node relies on intermediate nodes to reach other nodes in the

network. Consequently, our IDS approach assumes that each participating node provides

accurate routing information and cooperatively shares intrusion detection results and

individual decisions with no malicious intention as specified by the intrusion detection

architecture, i.e., each IDS is trusted. By exploiting this assumed trust, a malicious node can

adulterate routing information messages, and detection results and decisions exchanged

between IDSs to violate the cooperative intrusion detection mechanism. Therefore, a

reputation management mechanism is strictly necessary for WMNs. We will implement a

collaborative reputation scheme at each node which estimates trust values for neighboring

nodes in order to deduct the node’s reputation that represents the node behavior concerning

its intrusion detection activities. Trustiness will be calculated by monitoring and analyzing

the intrusion detection information and consensus outcomes provided by the node at regular

periods, and by crosschecking and correlating these data with respective data received from

neighboring reputation mechanisms at the neighbors. Then, each IDS keeps a list of trusty

nodes to guarantee that only nodes having a certain level of trust, i.e., trustworthy nodes,

Chapter 6. Conclusion and Perspectives 137

are authorized to exchange intrusion detection results and routing information with the IDS.

This trust mechanism minimizes the risk of transmission of false intrusion detection

information and inconsistent consensus messages.

Reduction of Communication Overhead. Usually, wireless networks are more

constrained bandwidth than wired networks. IDS instances have to communicate with other

IDS instances to exchange protocol events and intrusion detection information, or alerts and

consensus information. Since this intense message exchange between IDSs could cause

congestion in the communication channels and limit the network throughput, the IDS

instances are required to reduce their data transfers. In addition, in wireless environments

with restricted bandwidth, the IDS operations can become ineffective since many messages

are lost. For instance, an IDS may not be able to detect an attack in real-time or at

reasonable time due to communication delays between neighbors. Furthermore, IDS

instances may get disconnected from the network due to the wireless link saturation.

Therefore, minimizing the message overhead of the IDS communication system and its

impact on the entire mesh network traffic is of extreme importance. We envisage reducing

the communication overhead of our intrusion detection approach without affecting the

accuracy of the distributed intrusion detection scheme and the cooperative mechanism, i.e.,

routing attacks should be detected with equal precision respecting the principles of

distributiveness and cooperativeness introduced by the approach.

Introduction of Mobility Models. Although nodes in the WMN are quite static with

restricted mobility, the mesh network architecture still supports mobiles nodes, such as

smartphones, which connect and disconnect to the network in an arbitrary manner.

Therefore, the IDS architecture has to take into account this premise when monitoring the

communication links in order to ensure the efficiency of intrusion detection and avoid

significant false positive rate, which can lead to inconsistent intrusion detections. We will

integrate mobility models based on arbitrary movement of nodes, such as Random

Waypoint model where mobile nodes move randomly and freely without restrictions, into

our virtualized mesh network platform. Mobility models will be implemented by executing

connection management scripts which will connect and disconnect the virtual links of the

Chapter 6. Conclusion and Perspectives 138

nodes, i.e., the VMs, to simulated the node movement. For instance, when a node moves

out the network transmission range and after a period of time it is attached to different

nodes, then the script will emulate this movement behavior by terminating the actual virtual

switch connections of the node, triggering a timeout, and then reconnecting the node virtual

links to the new neighboring nodes.

Apply the Approach to WSNs and VANETs. Wireless Sensor Networks (WSNs)

and Vehicular Ad-Hoc Networks (VANETs) are two other relevant research areas related to

wireless networks that have recently attracted much attention. WSNs, VANETs, and

WMNs have multiple similarities, however WSNs and VANETs present additional

restrictions concerning the deployed environment for implementing security solutions. For

instance, VANETs considers moving cars as nodes in a network in order to configure the

mobile wireless network, then introducing the issue of node mobility. VANETs also

considers the nodes, i.e., cars, are placed within a certain distance range in the deployed

area and have the tendency to move in an organized fashion, then having specific mobility

models and topology characteristics. In WSNs, sensor nodes have constrained hardware

resources, such as memory, CPU, and communication bandwidth, and very restricted

power, such as small batteries, which demands security solutions highly efficient in terms

of bandwidth and computational overhead. In addition, WSNs introduce mobility of nodes,

network topology changes, and the issue of network size, i.e., the network consists of

several hundreds or even thousands nodes. Therefore, we will extend our distributed

intrusion detection architecture to address intrusions in WSNs and VANETs. However, we

should firstly integrate particular mobility models concerning these environments into our

intrusion detection mechanism and correspondingly reduce the communication and

computational overhead added by our IDS solution in order to cope with the resource

limitations imposed by these network architectures.

Chapter 6. Conclusion and Perspectives 139

 140

References

[1] W. Zhang, Z. Wang, S. K. Das, and M. Hassan, “Security issues in wireless mesh
networks,” In Book Wireless Mesh Networks: Architectures and protocols. New
York: Springer, 2008.

[2] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,”

Computer Networks, Vol. 47, pp. 445- 487, January 2005.

[3] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. BeldingRoyer, “A Secure
routing protocol for ad hoc networks,” In Proc of the 10th IEEE International
Conference on Network Protocols (ICNP), November 2002.

[4] Y-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: a secure on-demand routing
protocol for ad hoc networks,” Wireless Networks, Vol. 11, No. 1-2, pp. 21-38,
January 2005.

[5] M. G. Zapata, “Secure ad hoc on-demand distance vector routing,” ACM Mobile
Computing and Communications Review (MC2R), Vol. 6, No. 3, pp. 106-107, July
2002.

[6] IEEE P802.11 Task Group S, “Status of Project IEEE 802.11s” [Online], available at
http://grouper.ieee.org/groups/802/11/Reports/tgs_update.htm.

[7] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better approach to mobile
ad-hoc networking (B.A.T.M.A.N.)”, April 2008, IETF Internet-Draft (expired
October 2008) [Online], available at http://tools.ietf.org/html/draft-wunderlich-
openmesh-manet-routing-00.

[8] OSSEC, “Open Source Host-based Intrusion Detection System” [Online], available at
http:// http://www.ossec.net.

[9] A. Baker, J. Esler, and R. Alder, “Snort IDS and IPS Toolkit,” Syngress, 2007.

[10] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-Time,”
Computer Networks, vol.31, no. 23–24, pp. 2435-2463, 1999.

[11] Suricata, “Open Source Network-based Intrusion Detection System” [Online],
available at http://www.openinfosecfoundation.org/.

References 141

[12] H. S. Javitz, and A. Valdes, “The SRI IDES Statistical Anomaly Detector,” In Proc of
the IEEE Symposium on Research in Security and Privacy, 1991.

[13] P. Uppuluri, and R. Sekar, “Experiences with Specification-based Intrusion
Detection,” In Proc of the 4th International Symposium on Recent Advances in
Intrusion Detection (RAID '00), pp. 172-189, 2001.

[14] C-Y Tseng, P. Balasubramayan, C. Ko, R. Limprasittiporn, J. Rowe, and K. Levitt,
“A Specification-Based Intrusion Detection System for AODV,” In Proc of the 1st
ACM workshop on Security of ad hoc and sensor networks (SASN '03), 2003.

[15] Yi-an Huang, and W. Lee, “Attack analysis and detection for ad hoc routing
protocols,” In Proc of the 7th International Symposium on Recent Advances in
Intrusion Detection (RAID'04), 2004.

[16] J.-M. Orset, B. Alcalde, and A. Cavalli, “An EFSM-based intrusion detection system
for ad hoc networks,” In Proc of the Third international conference on Automated
Technology for Verification and Analysis (ATVA'05), pp. 400-413, 2005.

[17] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R.A. Olsson, “Detecting
disruptive routers: a distributed network monitoring approach,” IEEE Network, vol.
12, issue 5, pp. 50-60, Sept./Oct. 1998.

[18] Y. Zhang, W. Lee, and Y. Huang, “Intrusion detection techniques for mobile wireless
networks,” Wireless Networks, Vol. 9, No. 5, pp. 545-556, September 2003.

[19] S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in mobile
ad hoc networks,” In Proc of 6th Annual International Conference on Mobile
Computing and Networking (MobiCom '00), pp. 255-265, Boston, 2000.

[20] O. Kachirski, and R. Guha, “Effective Intrusion Detection Using Multiple Sensors in
Wireless Ad Hoc Networks,” In Proc of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03), p. 57.1, January 2003.

[21] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R.
Balupari, C-Y. Tseng, T. Bowen, K. Levitt, and J. Rowe, “A General Cooperative
Intrusion Detection Architecture for MANETs,” In Proc of Third IEEE International
Workshop on Information Assurance (IWIA '05), pp. 57–70, March 2005.

[22] H. Yang, J. Shu, X. Meng, and S. Lu, “SCAN: self-organized network-layer security

References 142

in mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 2, pp. 261–273, February 2006.

[23] S.A. Razak, S.M. Furnell, N.L. Clarke, and P.J. Brooke, “Friend-assisted intrusion
detection and response mechanisms for mobile ad hoc networks,” Ad Hoc Networks,
vol. 6, issue 7, pp. 1151-1167, September 2008.

[24] N. Komninos, and C. Douligeris, “LIDF: layered intrusion detection framework for
ad-hoc networks,” Ad Hoc Networks, Volume 7, Issue 1, pp. 171-182, January 2009.

[25] Z. Zhang, P. Ho, and F. Naıt-Abdesselam, “RADAR: A reputation-driven anomaly
detection system for wireless mesh networks,” Wireless Networks, Vol. 16, Issue 8,
pp. 2221-2236, November 2010.

[26] N. Saxena, M. Denko, and D. Banerji, “A hierarchical architecture for detecting
selfish behaviour in community wireless mesh networks,” Computer
Communications, Vol. 34, Issue 4, pp. 548-555, April 2011.

[27] C. Popper, M. Strasser, and S. Capkun, “Jamming-resistant broadcast communication
without shared keys,” In Proc of the 18th conference on USENIX security
symposium (SSYM'09), pp. 231-248, August 2009.

[28] A. Liu, P. Ning, H. Dai, Y. Liu, and C. Wang, “Defending DSSS-based broadcast
communication against insider jammers via delayed seed-disclosure,” In Proc of the
26th Annual Computer Security Applications Conference (ACSAC '10), pp. 367–376,
December 2010.

[29] IEEE 802.11i-2004, “Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: Medium Access Control (MAC) Security Enhancements”
[Online], available at http://standards.ieee.org/getieee802/download/802.11i-
2004.pdf.

[30] I. Khalil, S. Bagchi, and N.B. Shroff, “LiteWorp: Detection and isolation of the
wormhole attack in static multihop wireless networks,” Computer Networks, Vol. 51,
Issue 13, pp. 3750-3772, September 2007.

[31] Y. Wang, Z. Zhang, and J. Wu, “A Distributed Approach for Hidden Wormhole
Detection with Neighborhood Information,” In Proc of the IEEE Fifth International
Conference on Networking, Architecture, and Storage (NAS '10) , pp. 63-72, 2010.

[32] J. Friginal, D. Andrés, J. Ruiz, and P. Gil, “Towards benchmarking routing protocols
in wireless mesh networks,” Ad Hoc Networks, Vol. 9, Issue 8, pp. 1374-1388,

References 143

November 2011.

[33] M. Abolhasan, B. Hagelstein, J. C.-P. Wang, “Real-world performance of current
proactive multi-hop mesh protocols,” In Proc of 15th Asia-Pacific conference on
Communications (APCC'09), pp. 42-45, 2009.

[34] BATMAN ELP protocol, “BATMAN Echo Location Protocol (ELP)” [Online],
available at http://www.open-mesh.org/projects/batman-adv/wiki/ELP.

[35] D. Johnson, N. Ntlatlapa, and C. Aichele, “A simple pragmatic approach to mesh
routing using BATMAN”, In 2nd IFIP International Symposium on Wireless
Communications and Information Technology in Developing Countries, pp. 10,
October 2008.

[36] Open-Mesh.net, “B.A.T.M.A.N. (better approach to mobile ad-hoc networking)”
[Online], available at http://www.open-mesh.net/.

[37] QEMU, “Machine emulator and virtualizer” [Online], available at
http://wiki.qemu.org.

[38] VDE switch, “Virtual Distributed Ethernet switch” [Online], available at
http://wiki.virtualsquare.org/wiki/index.php/VDE.

[39] PackETH, “Ethernet packet generator” [Online], available at
http://packeth.sourceforge.net/sourceforge/Home.html.

[40] Tim Hartnett, “Consensus-Oriented Decision-Making: The CODM Model for
Facilitating Groups to Widespread Agreement”, New Society, 2011.

[41] M. O. Pervaiz, M. Cardei, and J. Wu, “Routing Security in Ad Hoc Wireless
Networks,” Network Security, pp. 117-142, Springer 2010.

[42] Bro, “Network Security Monitor” [Online], available at http://bro-ids.org/.

[43] Sysstat, “Performance monitoring tools for Linux” [Online], available at
http://sebastien.godard.pagesperso-orange.fr/.

[44] Bro communication issue, “High CPU usage of Bro” [Online], available at
http://mailman.icsi.berkeley.edu/pipermail/bro/2012-February/005338.html.

References 144

[45] Netem, “Network Emulation” [Online], available at http://www.linuxfoundation.org/
collaborate/workgroups/networking/netem/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

