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Abstract

The proliferation of small devices and the advancements in various technologies have
introduced the concept of pervasive environments. In these environments, user tasks
can be executed by using the deployed components provided by devices with different
capabilities. One appropriate paradigm for building user tasks for pervasive environments
is Service-Oriented Architecture (SOA). Using SOA, user tasks are represented as an
assembly of abstract components (i.e., services) without specifying their implementations,
thus they should be resolved into concrete components.

The task resolution involves automatic matching and selection of components across
various devices. For this purpose, we present an approach that allows for each service
of a user task, the selection of the best device and component by considering the user
preferences, devices capabilities, services requirements and components preferences.

Due to the dynamicity of pervasive environments, we are interested in the continuity
of execution of user tasks. Therefore, we present an approach that allows components to
monitor locally or remotely the changes of properties, which depend on. We also consid-
ered the adaptation of user tasks to cope with the dynamicity of pervasive environments.
To overcome captured failures, the adaptation is carried out by a partial reselection of
devices and components. However, in case of mismatching between an abstract user task
and a concrete level, we propose a structural adaptation approach by injecting some
defined adaptation patterns, which exhibit an extra-functional behavior.

We also propose an architectural design of a middleware allowing the task’s resolution,
monitoring of the environment and the task adaptation. We provide implementation
details of the middleware’s components along with evaluation results.






Résumé

L’émergence des technologies sans fil et 'ubiquité des dispositifs mobiles ont intro-
duit le concept des environnements pervasifs. Dans ces environnements, les taches d’un
utilisateur peuvent étre exécutées en utilisant des composants déployés sur des disposi-
tifs ayant des capacités différentes. Un paradigme approprié pour la construction de ces
taches est le Service-Oriented Architecture (SOA). En utilisant 'architecture SOA, les
taches d’un utilisateur sont représentées par un assemblage de composants abstraits (les
services), sans préciser leurs implémentations, d’ou la nécessité de résoudre les services
en composants concrets.

La résolution d’une tache implique la sélection automatique des composants concrets
a travers différents dispositifs de ’environnement d’exécution. Pour ceci, nous présentons
une approche qui permet a chaque service d’une tache de I'utilisateur, la sélection du
meilleur dispositif et composant en tenant compte des préférences de 1'utilisateur, des
capacités des dispositifs, des besoins des services et des préférences des composants.

En raison de la dynamicité des environnements pervasifs, nous nous sommes intéressés
aussi a la continuité d’exécution des taches de 'utilisateur dans ces environnements. Pour
cet objectif, nous présentons une approche qui permet aux composants de surveiller locale-
ment ou & distance les changements de propriétés fournies par d’autres composants. Nous
avons également considéré 'adaptation des taches de 'utilisateur en proposant une pre-
miére approche de re-sélection partielle de dispositifs et de composants. Nous proposons
aussi une approche d’adaptation structurelle par 'injection des patrons d’adaptation, qui
offrent un comportement extra-fonctionnel.

Nous avons congu ’architecture d’un middleware permettant la résolution des téches,
le monitoring de 'environnement et I’adaptation des taches. Nous donnons quelques élé-
ments d’implémentation des composants du middleware et nous présentons des résultats
d’évaluation.






Contents

1

3

Introduction
1.1 Thesis Context .

1.2 Problem Description . . . . . . . ... .
1.3 Thesis Contribution and Document Structure . . . . . . . . . . . . .. ..

Continuity of Applications Execution: State of the Art

2.1 Introduction . . . . . . . . ..
2.1.1 Service-Oriented Pervasive Computing . . . . . . . . . . ... ...
2.1.2  Autonomic Computing . . . . . . . . . ... Lo

2.2 Approaches for Abstract Applications . . . . . .. .. ...
221 Aura . ...
222 Gala . . ...
2.2.3 SeSCo . . . . e

2.3 Approaches for Concrete Applications . . . . . . . .. ... ...

2.3.1 ReMMoC
2.3.2 MADAM

2.3.3 PCOM. .
2.3.4 MySIM .
2.4 Discussion . . . .
2.5 Conclusion . . . .

User Tasks Resolution

3.1 Introduction . . .
3.2 Related Work . .
3.2.1 SeGSeC .
3.2.2 COCOA .

3.2.3 Task Resolution Using Three-Phase Protocol . . . . .. ... ...
3.3 Selection Constraints . . . . . . . . ... L o o
3.3.1 Device Capabilities (DC) . . . ... ... ... ... ... .....
3.3.2  Service Requirements (SR) . . ... ... ... ... 0.
3.3.3  User Preferences (UP) . . .. . ... ... ... ... . .......
3.3.4 Components Preferences (CP) . . . . ... ... ... ... ... ..
3.4 Principle of the Task Resolution . . . . . . .. ... ... ... .. .....
3.4.1 Device Selection . . . . . ...
3.4.2 Component Selection . . . . .. .. ... oo

3.5 Example Scenario

10
12
12
14
15
17
17
19
21
22
24
26

29
29
30
30
31
33
34
35
36
36
37
37
37
39
40



CONTENTS

3.6 Conclusion. . . . . . . . e 42
Monitoring of Components 45
4.1 Introduction . . . . . ... 45
4.2 Existing Monitoring Approaches and Backrgound . . . . . . . .. ... .. 46
4.2.1 Observation Contracts . . . . . . . ... .. ... ... 46
4.2.2 Pervasive and Social Bindings . . . . .. . ... 00000 47
4.2.3 Monitoring for SLA management . . . . . . ... ... L. 48
4.2.4 Publish/Subscribe Systems . . . . . ... ..o 49
4.3 Monitoring Required Properties . . . . . . . .. ... o oo 50
4.3.1 Component Model . . . . . .. ... ... . 50
4.3.2 Monitoring Specification . . . . .. ... o oo 02
4.4  Transformation Mechanisms . . . . . . .. .. ... L. 54
4.4.1 Local Monitoring . . . . . . . . . ..o 54
4.4.2 Remote Monitoring . . . . . . .. ..o 57
4.5 Example Scenario . . . . . .. ..o 59
4.6 Conclusion . . . . . . . .. L 61
User Tasks Adaptation 63
5.1 Introduction . . . . . . . . . 63
5.2 Compositional Adaptation related Approaches . . . . . . . . . . ... ... 64
5.2.1 Service Reselection Adaptation . . . . ... ... ... ... .... 64
5.2.2  Structural Adaptation . . . .. .. ..o 66
5.3 Adaptation Context . . . . . . . . ... .. 70
5.4 Partial Reselection Adaptation . . . . .. ... ... 71
5.4.1 Adaptation actions . . . . . .. . ... 71
5.4.2 Example Scenario. . . . . . ... 0o 75
5.5 Structural Adaptation . . . . . ... ... 7
5.5.1 Principle of the Structural Adaptation Approach . . ... ... .. 78
5.5.2 Adaptation Patterns . . . . .. .. ..o 78
5.5.3 Example Scenario . . . . . . ... Lo 85
5.6 Conclusion. . . . . .. L 86
Middleware for the Continuity of User Tasks Execution 89
6.1 Introduction . . . . . . . . .. 89
6.2 User Tasks Description . . . . . . . . .. .. ... .. L 90
6.2.1 Service Component Architecture . . . ... ... ... ... .. .. 90
6.2.2 Extensions of SCA . . . . . .. .. 93
6.2.3 Example Scenario. . . . . . ... ... o 96
6.3 MonAdapt Middleware . . . . . . . .. .. 102
6.4 Prototype Implementation and Evaluation Results . . . .. ... ... .. 104
6.4.1 Implementation and Experimentation setup . . . . . . . ... ... 104
6.4.2 Evaluation of Task Resolution . . . . . . ... ... ... ... .. 105
6.4.3 Evaluation of Monitoring . . . . ... ... ... ... .. ..... 108
6.4.4 Evaluation of Task Adaptation . . . . . ... ... ... ... ... 110

6.5 Conclusion . . . . . . . . . 111



CONTENTS iii
7 Conclusion 113
7.1 Contributions . . . . . . ... 114
7.2 Perspectives . . . . . .. 115
Bibliography 117



v

CONTENTS




List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4

4.1
4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Video player task . . . . . . . . ..o 3
Different devices in a pervasive environment . . . . . . . . . .. ... ... 3
SOA architecture . . . . . . . . . . .. 8
Extended SOA functionalities . . . . . . . . . ... ... ... .. .. ... 9
Autonomic control loop (Computing et al., 2006) . . . . . . ... ... .. 10
Aura architecture (Sousa and Garlan, 2002) . . . ... .. ... ... ... 12
Gaia architecture (Roman et al., 2002) . . . . . .. ... .. ... .. ... 14
Representation of a service (Kalasapur et al., 2007) . . . . . . . ... ... 16
Hierarchical organization of devices (Kalasapur et al., 2007) . . . . .. .. 16
ReMMoC middleware (Grace et al., 2003) . . . . ... ... ... ..... 18
Madam middleware architecture (Floch et al., 2006) . . ... ... .. .. 20
PCOM architecture (Becker et al., 2004a) . . . . .. ... ... ...... 21
MySIM middleware (Ibrahim et al., 2009) . . . . . . ... ... ... ... 23
Architecture of SeGSeC (Fujii and Suda, 2005) . . . . . ... . ... ... 31
Service composition in COCOA (Ben Mokhtar et al., 2007) . . ... ... 32
Task resolution at three different layers (Mukhtar et al., 2011) . . . . . . . 34
The extended CC/PP model . . . . . . ... ... ... .. .. ....... 35
Component with observation contracts (Beugnard et al., 2009) . . . ... 46
A service with its attached monitoring and management components (Ruz

et al., 2011) . . . . . L 48
Basic components in a distributed publish /subscribe system (Silva Filho

and Redmiles, 2005) . . . . .. ... Lo 49
Component describing its required properties . . . . . .. .. .. .. ... 51
Specification of monitoring by polling . . . . . . . ... ... ... ... .. 52
Specification of monitoring by subscription with notification mode OnChange 52
Monitoring by subscription with notification mode Onlnterval . . . . . . . 23
Specification of a remote monitoring need . . . . . . ... ..o 53
Transformation of a local component for a Monitoring by polling . . . . . 54
Description of the Generic Proxy interface . . . . . . ... ... ... ... 55
Description of the property changed subscription interface . . . . . . . .. 56
Description of the property changed notification interface . . . . . . . .. 56
Monitoring by subscription with notification mode OnChange . . . . . . . o6
Monitoring by subscription with notification mode Onlnterval . . . . . . . 57



vi

LIST OF FIGURES

4.15
4.16
4.17
4.18

5.1
0.2
2.3
0.4
2.5
0.6
5.7
2.8
5.9
5.10
0.11
5.12
0.13
5.14

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

6.17

6.18

6.19

6.20

Remote monitoring: server side . . . . . . . . .. ... L. 58
Remote monitoring: client side . . . . . . .. ... ... oL 29
Monitoring of required properties of the video player task . . . . . . . .. 60
Transformation of video player task . . . . . . . ... ... ... ... 61
Classification of interfaces mismatches (Becker et al., 2004b) . . . . . . .. 67
Example of an aspectual composition . . . . . . ... ... oL 68
Categorization of mismatches levels . . . . . . . .. ... ... .. ... .. 71
Transforming abstract task using Adapter Composite . . . . . . . . .. .. 78
Adapter Template structure . . . . . . . . . . .. ... ... 78
Encryption and Decryption adaptation patterns . . . . . . . . . . .. ... 80
Authentication and Integrity adaptation patterns . . . . . . . . ... ... 81
Splitting and Merging adaptation patterns . . . . . . . . . .. .. ... .. 81
Compression and Decompression adaptation patterns . . . . . . . . . . .. 82
Proxy adaptation pattern . . . . . .. ... Lo 83
Caching adaptation pattern . . . . . . . . .. ... .. o L. 84
Retransmition adaptation pattern . . . . . . . .. ... ... 84
Abstract description of video player task . . . . . .. .. ... ... 85
Adaptation of the video player task . . . . . . ... ... ... 86
Service Component Architecture . . . . . . ... ... ... 91
SCA policy intent of an authentication requirement . . . . . . . . .. . .. 93
Extended SCA meta model . . . . . . ... ... ... L. 94
Extension of SCA to support the monitoring and reconfiguration needs

using required properties . . . . .. ... Lo 95
Extension of Implementation element of a component . . . . . . . .. . .. 96
SCA description of the video player task . . . . . . .. ... ... ... .. 97
SCA description of the integrity pattern . . . . . . .. ... ... .. ... 97
SCA description of the WiFi component . . . . . . . ... .. ... .. .. 98
SCA description of the Battery component . . . . . . . ... ... ... .. 98
SCA description of the TaskAdapter component . . . . . . . . . ... ... 99
Transformation of the Battery component . . . . . . ... ... ... ... 100
Transformation of the WiFi component . . . . . . . . . .. .. . ... ... 100
Transformation of the TaskAdapter component . . . . . . . . . ... ... 101
SCA description of the transformed video player task . . . . . . .. .. .. 101
Architecture of MonAdapt Middleware . . . . . . . .. ... ... ..... 102
Device selection for an abstract component by varying its requirements

and the number of devices . . . . . . . ... 106
Device selection for an abstract component by varying its requirements

and its offered services . . . . . ..o Lo 107
Component selection for an abstract component by varying the matching

concrete components and their corresponding preferences . . . . . . . . .. 108
The effect of the variability of the number of the properties or methods on

the transformation of a component for a monitoring need . . . .. .. .. 109
Transformation of a component for a monitoring by varying the both num-

ber of its properties and the methods . . . . . . . . .. . ... ... .... 109



LIST OF FIGURES vii

6.21 The effect of the variability of the number the methods and interfaces on

the generation of a proxy component . . . . . . . .. ... ... ... 110
6.22 Generation of a proxy component by varying the both number of the meth-

ods and the interfaces that it implements . . . . . . . .. ... ... ... 111



viii LIST OF FIGURES




List of Tables

2.1

3.1
3.2
3.3
3.4
3.9
3.6

5.1
5.2
5.3
0.4

2.5
0.6

Approaches classification . . . . . . ... 24
Device capabilities and user preferences . . . . . . .. .. ... ... ... 41
Requirements of the video player services . . . . .. .. ... ... .... 41
Devices values using Device Selection Algorithm in (Mukhtar et al., 2009) 41
Devices values for Controller and DisplayVideo services . . . . . . . . . .. 42
Preferences of DisplayVideo components in the FS device . . . . .. ... 42
Selection of component for DisplayVideo Service . . . .. ... ... ... 42
Device capabilities and user preferences . . . . . . ... ... 75
Requirements of the video player services . . . . . .. ... .. ... ... 76
Devices values for Controller and DisplayVideo services. . . . . . .. . .. 76
Devices values for VideoDecoder and DisplayVideo services after changes

of the FS’s capability . . . . . . . . .. .. ... 76
Capabilities of a laptop device . . . . . . . .. .. ... 7
The laptop value for the video player services . . . . . . .. .. ... ... 77

X



LIST OF TABLES




List of Algorithms

3.1
3.2
0.1
0.2
2.3

0.4

3.5

DeviceSelection(Task t) . . . . . ... ... ... Lo
ComponentSelection(Service s, Device d) . . . . . . ... ... ... ...
DeviceDisappearanceAdaptation(Task t, DevicesTable dt, Device d) . . . .
DeviceAppearanceAdaptation(Task t, DevicesTable dt, Device d) . . . . .
ComponentDisappearanceAdaptation(Task t, ComponentsTable ct, De-

vicesTable dt, Device d, Component ¢) . . . . . . ... ... ... .....
Component AppearanceAdaptation(Task t, ComponentsTable ct, Devices-

Table dt, Device d, Component ¢) . . . . . . . . . . .. .. ... ... ...
ChangesOfDevicesValuesAdaptation(Task t, DevicesTable dt, Device d,

Property p) . . . . oo

x1






Chapter 1

Introduction

1.1 Thesis Context . . . . . o i v i i i i i e e e e e e e e e e e 1
1.2 Problem Description . . . . . . . . . . ittt
1.3 Thesis Contribution and Document Structure . .. .. ... ... 5

1.1 Thesis Context

Driven by the widespread of communication technologies and mobile devices, there
is a growing trend in now-a-days for pervasive computing that allow users to access to
any information using any device and any network at any time (Weiser, 1991). In such
environments computing is pushed away from the traditional desktop to small hand-
held and networked computing devices that are present everywhere. This creates an
environment that hides the complexity of new technologies and enables users to benefit
from their provided functionalities anywhere and at any time.

Moreover, software applications have evolved from centralized and stable applications,
to highly decentralized and dynamic ones. This evolution has induced a change in the
development of applications. One change come in the form of task-based computing
(Sousa and Garlan, 2002) (Ben Mokhtar et al., 2007) which enables users to explicitly
define their tasks that are then realized using networking resources. Examples of user
tasks are writing an email, chatting with friends, watching movies over the Internet, etc.
These tasks may be requested anytime, anywhere and then constructed at runtime as
required by the situation in hand.

Towards this evolution, Service Oriented Architecture (SOA) has emerged as a com-
puting paradigm that changed the traditional way of how applications are designed,
implemented and consumed in a pervasive environment.

One particular approach for developing SOA-based user’s tasks is to use components,
which are the main building blocks in SOA. Using this approach, a user task is defined
as a composition of re-usable software components, which implement the business logic
of the application domain collectively by providing and requiring services to/from one
another. The components required by the user task are assembled at the time of the task
execution.
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However in a dynamic and heterogenous execution environment, assisting users in
their daily tasks by combining available networked functionalities and adapting to the
specifics of pervasive environment is one of the major challenges in achieving the perva-
sive computing vision. Indeed, it is not certain that the user device provides the necessary
components for the execution of the task. Moreover, the deployed components in the de-
vices of the execution environments may support functionally equivalent services. This
leads to look up convenient components offering the required services among devices of
the execution environment. Hence, the user task can use components offered by the broad
range of computing devices in pervasive environments (smartphones, PDAs, tablets, lap-
tops, etc.) and not be limited to the services of the user device.

Building upon the SOA, it is possible to describe a user task as an assembly of
abstract components (i.e., services), which are reusable software entities with well defined
interfaces, and may be accessed without any knowledge about their implementations or
programming languages. Thus, a user task can be crafted using a set of services. This
allows the separation of the business functionality (i.e., services) from its implementation
and to execute it by composing different concrete components provided by various devices.

The implementation of these services can be found by looking up concrete and de-
ployed components in devices of the environment. Therefore, to achieve the task execu-
tion, the services of the user task should be resolved into concrete components, which
are software components with specified implementations. The resolution of a user task
involves an automatic selection of concrete components across various devices in the en-
vironment. A service is matched with a component if their interfaces match. A user task
is said to be resolved if for all of its abstract components, we find matching concrete
components implementing these services.

The complexities involved in designing and realizing such tasks have been identified
and addressed by many approaches (Sousa and Garlan, 2002) (Ben Mokhtar et al., 2007)
(Mukhtar et al., 2011), etc.

While existing approaches may assume that a mapping from abstract to concrete task
can be done effortlessly, many problems may be captured at init time that prevent it to be
achieved successfully. Moreover, components of the user task may depend on the changes
of properties of components provided by the underlying environment. This arises the need
to monitor their properties in order be aware about their changes. Furthermore, tasks in
pervasive environments are challenged by the dynamism of their execution environment
due to, e.g., user and device mobility, which make them subjects to unforeseen failures.
These problems give rise to a relevant challenge, which is ensuring the continuity of
execution of user tasks in such dynamic and heterogeneous environments.

1.2 Problem Description

The challenge that we are interested in this thesis, arises from the limitations of SOA
to fulfil a continuous execution of applications in dynamic and heterogenous environ-
ments. To better describe the issue, let’s consider a video player task that provides the
functionality of displaying video to the user.

The task can be composed of three services (i.e. abstract components) offering func-
tionalities namely, controlling, decoding and displaying video as shown in Figure 1.1.
The Controller component sends a command to the VideoDecoder component to decode
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Controller {W VideoDecoder —C%ﬂ DisplayVideo

Figure 1.1: Video player task

a stored video into an appropriate format. Once the video is decoded, it is passed to
the DisplayVideo component to play it. This is done using the service provided by the
DisplayVideo component. The resolution of these abstract components into respective
concrete ones is required for the execution of the task. It involves automatic selection of
components among devices, matching with task’s services.

Figure 1.2: Different devices in a pervasive environment

We assume that a number of devices exist in the pervasive environment with dif-
ferent characteristics, ranging from small hand-held devices with limited capabilities, to
powerful multimedia computers with abundant resources as shown in Figure 1.2. They
are connected to each other on-the-fly using wireless communication technologies like
Bluetooth, IEEE 802.11, etc. These devices may host one or more concrete components,
which correspond to the services of the video player task.

For each service of the task, we may find one or more matching components across
different devices. However, while these components offer similar functional interfaces,
they may differ from each other in terms of the capabilities of the devices. Hence, a
DisplayVideo component on a smart phone is not considered the same as one on a flat
screen. Therefore, there is a need to a mechanism for a dynamic selection of a particular
device among many alternatives, when they host functionally equivalent components
matching with a task’s services.
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Moreover, it is possible that the selected device provides several components that im-
plement the same service. For example, a laptop device provides a VLC Media Player and
Real Player components, which are two media players implementing the DisplayVideo
service. Thus, there is a need to carry out dynamically the selection of convenient com-
ponents for the task resolution.

On other hand, the VideoDecoder component may depend on network throughput
to decide the rate of frames transferred to the DisplayVideo component. In case of high
throughput, video frames can be sent at higher rates. However, in case of weak through-
put, smaller rate may be applied for a quick transfer. The VideoDecoder component
may also depend on the changes of batteries power of the communicating devices. If the
battery power of the device is low, it uses lower degree of decoding to conserve the bat-
tery power. However, if the remaining battery power of each device is above a certain
threshold (e.g., 20 percent), higher rate of decoding can be used for a better quality of
frames sent to the DisplayVideo component. Hence, there is a need to monitor the net-
work throughput to decide whether the rate to apply for the video frames sent to the
DisplayVideo component and the remaining batteries power to adjust the decoding rate
of the VideoDecoder component.

While existing approaches may assume that a mapping from abstract to concrete
task can be done effortlessly, many problems may arise at init time that prevent it to be
achieved successfully. These problems imply that the user task can not be executed in the
given context due to, e.g., heterogeneity of network connection interfaces, heterogeneity
of interaction protocols, etc. Thus, there is a mismatching between the given abstract
description of the task and the concrete level, which triggers the adaptation of the user
task in order to fulfil its mapping at init time.

Assume, for example, that the VideoDecoder and DisplayVideo components are pro-
vided by two devices supporting different network connection interfaces, e.g., Bluetooth
and WiFi. This means that the task can not be well executed because of the heterogeneity
of network characteristics of devices. Hence, there is an indispensable need to adapt the
user task at init time in order to fulfil its resolution by considering the available hardware,
network and software resources in the execution environment.

Adaptation is very important also in dynamic and ever changing environments to
ensure the continuity of execution of user tasks. Indeed, user tasks in pervasive environ-
ments are challenged by the dynamicity of their execution environments due to, e.g., users
and devices mobility, which may make them subject to unforeseen failures. For example,
if the DisplayVideo component is no longer available during the execution of the video
player task, this arises the need to replace the disappeared component by another one
offering the displaying functionality.

In another case, the adaptation may be triggered at runtime due to a captured mis-
matching between abstract description of the user task and the concrete level. Assume for
example that the bandwidth of the connection interface supported by the devices selected
for the execution of the video player task, becomes very weak, almost nonexistent. This
change may imply a mismatch, if there is no alternative to replace the broken connection.
Thus, there is a need to adapt the user task to such captured mismatches at runtime for
the continuity of its execution.
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We deduce a few important points from the video player task. First, the resolution
of a user task to a concrete level, requires the selection of the convenient device and
component for each service of the task as a pervasive environment provides a broad
range of devices and components.

Second, the behavior of a user task may be dependent on certain properties of com-
ponents representing the underlying environment or the user task. Thus, a monitoring
mechanism is required to consider the changes of these properties irrespective of the type
of components or the properties required to be monitored locally or remotely.

Finally, there is a need to a dynamic adaptation mechanism to overcome the mis-
matching between abstract description of the user task and the concrete level at init time
or during its execution. A dynamic adaptation is required also to overcome the failures
captured during the task’s execution because of the devices mobility, changes of users
preferences and so forth.

In summary, the need for a continuity of execution of user task give a rise to the
following challenges, which are addressed in this thesis:

— Resolution of a user task by selecting the convenient devices and com-

ponents required for its execution

— Monitoring the changes of the execution environment

Adaptation of user tasks to fulfil their execution

1.3 Thesis Contribution and Document Structure

To address the above challenges, this thesis presents an architectural design of a
middleware for tasks resolution, monitoring and tasks adaptation. The most significant
contributions are structured along this document as follows:

— Chapter 2 provides an overview of work related to the continuity of executions
of user tasks in pervasive environments and brings out the limitations of existing
solutions. We distinguish approaches that consider abstract descriptions for appli-
cations to achieve the continuity of their execution in pervasive environments, from
those that manipulate concrete descriptions for applications.

— Chapter 3, first, discuss the existing service composition approaches. Then, it details
our approach for the resolution of an abstract user task that is based on the selection
of a best device and component for each service of the user task (Ben Lahmar
et al., 2011b) (Ben Lahmar et al., 2012). This is done by evaluating devices and
components by considering some non functional constraints like user preferences,
devices capabilities, services requirements and components preferences, in order to
select device and component having the highest values.

— Chapter 4 deals with the monitoring of changes of an execution environment. After
investigating the existing work, we propose a monitoring mechanism that allows
components to be aware about the changes of the properties of other components,
which they depend (Ben Lahmar et al., 2010b). If a component is not monitorable,
we propose transformation mechanisms that will be applied for local as well as
remote components to render them monitorable (Belaid et al., 2010).

— Chapter 5 tackles two adaptation techniques. First technique considers the adapta-
tion that is based on the partial reselection of components and devices with respect
to the functional behaviour of the user task (Ben Lahmar et al., 2011b). The princi-
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ple of this adaptation is to replace a component or device by another one whenever
there is a need. The second technique of adaptation addresses the failures captured
during the resolution or during the execution of a user task and that denote a mis-
matching between an abstract description of a user task and the concrete level. The
adaptation is based on the transformation of the abstract description of the task
by injecting adaptation patterns that encapsulate an extra-functional behaviour
with respect to the functionalities of the task (Ben Lahmar et al., 2010a). In this
chapter, we propose also a set of adaptation patterns to overcome not only soft-
ware mismatches but also hardware and network mismatches (Ben Lahmar et al.,
2011a).

Chapter 6 presents an architectural design of our middleware for task resolution,
monitoring of environment’s changes and task adaptation. We provide details about
the implementation of the middleware components along with evaluation results.
Chapter 7 summarizes our contributions presented in this thesis and discusses fur-
ther research perspectives to be explored beyond them.
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2.1 Introduction

Pervasive environment (called also ubiquitous environment and ambient intelligence),
as envisioned by Weiser (Weiser, 1991), is a world where computing systems exist ev-
erywhere and allow access any time to data and computing resources. It is characterized
by the interaction of a multitude of highly heterogeneous devices, ranging from powerful
general-purpose servers located in the infrastructure, to tiny mobile sensors, integrated
in everyday objects. It envisions the seamless applications that are cooperatively ex-
ecuted by integrating transparently functionalities provided by heterogeneous software
and hardware resources in order to assist users in the realization of their daily tasks.

User tasks in such environments are under highly dynamic and unpredictable oper-
ating conditions. User needs may change dynamically, availability of resources may vary,
devices may come and go at runtime, etc. To cope with such dynamicity and diversity,
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they should have the capacity to be deployed and executed in ad hoc manner, integrating
the available hardware and software resources.

Towards these objectives, software applications have evolved from centralized and
stable applications, to highly decentralized and dynamic ones. This evolution has induced
a change in the development of applications as described in the following.

2.1.1 Service-Oriented Pervasive Computing

Service-oriented architecture (SOA) is the outcome of the Web services developments
and standards in support of automated business integration (Booth et al., 2004) (Burbeck,
2000). The purpose of this architecture style is to address the requirements of loosely
coupled, standards-based, and protocol-independent distributed computing. As defined
by Papazoglou (Papazoglou, 2003), SOA is a logical way of designing a software system to
provide services to either end user applications or other services distributed in a network
through published and discoverable interfaces.

The main building blocks in SOA are services. Services are self-describing, open com-
ponents that support rapid, low-cost development and deployment of distributed appli-
cations. Thus, using SOA, applications are defined as a composition of re-usable software
services, which implement the business logic of the application domain.

.
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Figure 2.1: SOA architecture

The SOA architectural style is structured around the three basic actors depicted in
Figure 2.1: Service Provider, Service Client and Service Registry while the interactions
between them involve the publish, find and bind operations. Service Provider is the role
assumed by a software entity offering a service. Service Client is the role of a requestor
entity seeking to consume a specific service. However, Service Registry is the role of an
entity maintaining information on available services and the way to access them.

The benefit of this approach lies in the looser coupling of the services making up an
application. Services are provided by components and are platform independent, implying
that a client using any computational platform, operating system and any programming
language can use the service. While different Service Providers and Service Clients may
use different technologies for implementing and accessing the business functionality, the
representation of the functionalities on a higher level (services) is same. Therefore, it
should be interesting to describe an application as a composition of abstract components
(i.e., services) in order to be independent on from implementations. This allows the
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separation of the business functionality (services) from its implementation (components).
Hence, an application can be executed by composing different components provided by
various devices with respect to their services descriptions.

However, the SOA architecture alone cannot meet the dynamicity and heterogeneity
of pervasive environments. Indeed, developing and executing applications in such environ-
ments is a non-trivial task. It is possible that the Service Client depends on the changes
of the Service Provider or such other services provided by the registry. This may give a
rise to a monitoring need in order to be aware about their changes. Another challenge is
to provide techniques and support for dynamic service compositions in that a way they
equip themselves with adaptive service capabilities so that they can continually modify
themselves to respond to environmental demands and changes.

Reconfiguration

Coordination
Confermance Transactions

[ Publication ] [ Selection ]

Service Management

Service Composition

] Service

[ Discovery ] [ Binding Foundations

Figure 2.2: Extended SOA functionalities

In (Papazoglou and van den Heuvel, 2007), authors proposed an extension for SOA
architectural model to take into account several extra functional requirements for an
SOA application. They separate them into three layers, as shown in Figure 2.2, service
foundations at the bottom, service composition in the middle, and service management
and monitoring on top:

— Service Foundations consists of a service-oriented middleware backbone that real-
izes the runtime SOA infrastructure. This infrastructure connects heterogeneous
components over various networks by publishing, finding, and binding of services
as described in Figure 2.1.

— Service Composition is responsible for combining multiple services into a single
composite service at design-time (static) or at run-time (dynamic). Resulting com-
posite services can be used as basic services in further service compositions or
offered as complete applications and solutions to Service Clients.

— Service Management requires to realize monitoring and management activities over
the services. This includes the collection of information about the SOA-based ap-
plication during its life cycle, and to observe the execution status of composite
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services to possibly trigger service adaptation. Management activities also include
the modification of the composition of the services in order to adapt to some spec-
ified conditions.

2.1.2 Autonomic Computing

Autonomic computing aims to manage the computing systems with decreasing human
intervention. The term autonomic is inspired from the human body where the autonomic
nervous system takes care of unconscious reflexes, the digestive functions of the stomach,
the rate and depth of respiration and so forth (Huebscher and McCann, 2008). Autonomic
computing attempts to intervene in computing systems in a similar fashion as its biologi-
cal counterpart. The term autonomic was introduced by IBM in 2001 (Horn, 2001). This
initiative aims to develop computer systems capable of self-management, to overcome the
rapidly growing complexity of computing systems management, and to reduce the barrier
that complexity poses to further growth.

Management tasks like monitoring, configuration, protection, optimization, are not
the main functional objective of most applications, but if they are not properly addressed,
the application cannot accomplish its task. The challenge, then, is to enable self-managing
systems that take control of all these non functional tasks, letting the developers to focus
on the main functional goals of applications. In order to really free developers from the
burden of programming self-governing features on their applications, there must exist a
way to develop these concerns independently and to integrate them with the application
at some stage.

Autonomic Manager

JKnowledge
Monitor Execute

I

v
Sensors Effectors

C Managed Element )

Figure 2.3: Autonomic control loop (Computing et al., 2006)

To achieve autonomic computing, IBM has suggested a reference model for autonomic
control loops (Computing et al., 2006) as depicted in Figure 2.3. It is called the MAPE-
K (Monitor, Analyse, Plan, Execute, Knowledge) loop. The central element of MAPE-K
is the autonomic manager that implements the autonomic behaviour. In the MAPE-K
autonomic loop, the managed element represents any software or hardware resource that
is coupled with an autonomic manager to exhibit an autonomic behaviour. Sensors are
used to collect information about the managed element, while effectors carry out changes
to the managed element. Sometimes also a common element called Knowledge source is
highlighted, which represents the management data that can be shared for all the phases
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of the control loop. Knowledge include for example, requests for change, change plans,
etc. Thus, based on the data collected by the sensors and the internal knowledge, the
autonomic manager will monitor the managed element and execute changes on it through
effectors.

The phases of the autonomic control loop are defined as: Monitor, Analyse, Plan, and

Execute.

— The Monitor function that provides the mechanisms to collect, aggregate, filter and
report monitoring data collected from a managed resource through sensors.

— The Analyze function that provides the mechanisms that correlate and model com-
plex situations and allow the autonomic manager to interpret the environment,
predict future situations, and interpret the current state of the system.

The Plan function that provides the mechanisms that construct the actions needed
to achieve a certain goal, usually according to some guiding policy or strategy.

— The Execute function that provides the mechanisms to control the execution of the
plan over the managed resources by means of effectors.

The use of autonomic capabilities in conjunction with SOA provides an evolution-
ary approach in which autonomic computing capabilities anticipate runtime application
requirements and resolve problems with minimal human intervention.

The challenge is to ensure that applications can operate over devices using multiple
wireless access networks by selecting the most appropriate services for its execution, to
be aware about the changes of execution environments and to adapt the applications
once changes are captured. These give a rise to a crucial issue, which is ensuring the
continuity of execution of applications in such dynamic and heterogenous environments.
This challenge is divided into three subproblems namely, services composition, monitoring
of pervasive environments and services adaptation.

Services composition aims to realize a user task by combining multiple services into a
single composite service at design-time (static) or at run-time (dynamic). The challenge
is how to realize that task regarding the diversity of devices and services in pervasive
environments.

The monitoring is an essential issue when dealing with such dynamic and heteroge-
neous environments in order to be aware about their changes that may have an impact
in the realizations and executions of user tasks.

Once changes are captured, there is a need to trigger an adaptation for the continu-
ity of execution of applications. In the literature, we distinguish two relevant adaptive
techniques used in pervasive environment (McKinley et al., 2004). Parametric adapta-
tions aim at adjusting internal or global parameters in order to respond to changes of
the environment. Compositional adaptation is classified into structural and behavioural
adaptations. A behavioural adaptation implies the modification of the functional be-
haviour of the application in response to changes in its execution environment. However,
structural adaptation allows the restructuring of the application by adding or removing
software entities with respect to its functional logic.

As it can be seen, these aspects correspond to the second and third layers of the
extended architectural model of SOA as defined in (Papazoglou and van den Heuvel,
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2007). Regarding the requirements for the continuity of user tasks executions, the auto-
nomic control loop cover the different aspects that we are looking for. The monitoring
and analysis phases are needed to notify components about the changes of the execution
environment that seem to be interesting for their execution. The execution phase cor-
respond either to the composition or to the adaptation actions. The planning phase is
required to determine which actions will be performed to accomplish the services compo-
sition or adaptation. However, in this thesis, we do not carry about the planning phase
that remains as challenge in the future work.

In this chapter, we investigate how each of the existing work deals with the prob-
lem of the continuity of execution of applications in pervasive environments. The chap-
ter is structured as following. In Section 2.2, we present approaches that consider ab-
stract descriptions of applications for dynamic composition, monitoring and adaptation
like Aura (Sousa and Garlan, 2002), Gaia (Roméan and Campbell, 2003), etc. Then,
we introduce in Section 2.3 approaches manipulating concrete descriptions of applica-
tions to achieve the continuity of their executions like MADAM (Floch et al., 2006),
ReMMoc (Grace et al., 2003), etc. In Section 2.4, we provide an overall discussion and
classification of the cited work.

2.2 Approaches for Abstract Applications

Approaches in this category deal with the continuity of execution of abstract applica-
tions. An abstract application is represented by an assembly of abstract components that
specify only their offers and requirements. In this section, we present the different aspects
of these approaches to ensure the composition, monitoring and adaptation challenges.

2.2.1 Aura

The Aura project (Sousa and Garlan, 2002) defines an architecture for home and
office environments to allow users to dynamically realize their tasks that are represented
as a set of abstract services.

Aura is based on the concept of a personal Aura. A personal Aura acts as a proxy
for the mobile user. When a user enters a new environment, the Aura marshals the
appropriate resources in the environment to support its task. Furthermore, an Aura
captures the physical context around the user like user location, other people in the
vicinity, etc.
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Figure 2.4: Aura architecture (Sousa and Garlan, 2002)
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The Aura project proposes an architecture for configuration and reconfiguration con-
sisting of four architectural components as shown in Figure 2.4. First, the Task Manager,
called Prism, is used to embody the concept of personal Aura. It captures knowledge
about user’s tasks and associated context. Based on this information, the Task Manager
is responsible for the configuration and reconfiguration of the environment to best serve
the user. Second, the Context Observer provides information on the physical context
and reports relevant events back to Prism. Third, the Environment Manager embodies
the gateway between the environment-independent requests made by the Task Manager
and the concrete applications and devices (Suppliers) of the environment layer. Suppliers
provide abstraction of applications and devices; they are employed by the Environment
Manager to support a user’s task. When Suppliers are installed in an environment, they
become registered with the local Environment Manager. Such a registry is the base for
matching requests for services.

The mapping of Suppliers consists of wrapping of existing applications and services to
conform to Aura APIs. Such wrappers play a fundamental role while instantiating a task
by considering the user preferences and the available resources (Sousa et al., 2006). User
preferences are expressed as multidimensional utility functions having three parts. First,
configuration preferences capture preferences with respect to the set of services to support
a task to reflect how happy the user is with each possible set of services interconnections.
Second, supplier preferences capture which specific suppliers are preferred to provide
the required services and how happy the user is with the choice of a specific supplier
for a specific service. And third, QoS preferences capture the acceptable QoS levels and
preferred services. Based on the the supplier and QoS preferences, the wrappers map
the abstract service descriptions into application-specific settings to maximize the utility
function.

The Environment Manager adjusts such mapping automatically, not only in response
to changes in the user’s needs, but also in response to changes in the environment’s
capabilities (adaptation initiated by the Environment Manager).

Indeed, Aura deals with three contexts triggering the adaptation of a user task. First,
as users move from one location to another, there is a need to migrate the information.
This is ensured by the Task Manager that coordinates the migration of all the information
related to the user task to the new environment. Second, the Task Manager coordinates
the suspension of the executing task, if users switch from one task to another, or resume
previous tasks by finding and configuring suitable services to support their tasks. Third,
the infrastructure shields the user as much as possible from distractions by automatically
adapting to dynamically changing resources.

The adaptation is achieved by the Environment Manager by reselecting new services
implementations given the existing resources by considering the user preferences towards
the reconfigurations. In this case, the reconfigurations are ranked according to the utility
function in order to select the reconfiguration that maximizes the utility.

For example, Figure 2.4 illustrates an example of a user switching between two loca-
tions, where the Aura environment at Fred’s home cooperates with the Aura environment
at his office to migrate tasks between the two locations. When Fred leaves one environ-
ment, the local Context Observer points out that event to the Task Manager. The Task
Manager then checkpoints the state of the running services in a platform-independent
fashion and causes the local Environment Manager to pause those services. This informa-
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tion, along with Fred’s task state, is stored in a distributed file space. When Fred enters
his office environment, the local Context Observer notices the event and informs the lo-
cal Task Manager. The Task Manager reinstantiates the tasks by finding and configuring
service Suppliers in the new environment. This reconfiguration is achieved by calculating
and selecting the best combination of suppliers that can provide the required services,
satisfy the user’s configuration preference, and maximize the utility function.

2.2.2 Galia

Gaia (Roman et al., 2002) is a distributed middleware infrastructure that enables the
dynamic execution of software applications in a physical space, called an active space.
An active space represents an integrated habitat that merges physical and computational
infrastructures therein.
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Figure 2.5: Gaia architecture (Roman et al., 2002)

Figure 2.5 shows the three major building blocks of Gaia: the Gaia Kernel, the Gaia
Application Framework, and the Applications.

The Gaia Kernel contains a Component Management Core and a set of basic services
that are used by all the Gaia applications. The Component Management Core is respon-
sible for load, unload, transfer, creation, and destruction of applications’ components.

Gaia contains five basic services which are the Event Manager Service, Presence Ser-
vice, Context Service, Space Repository Service, and Context File System. The Event
Manager Service distributes events in the active space and implements a decoupled com-
munication model based on suppliers, consumers, and channels. The Context Service
provides information about the current context. It also allows applications to query and
register for particular context information so that they may adapt to their environment.
The Presence Service detects digital and physical entities present in an active space like
application, service, device, and person. The Space Repository Service stores informa-
tion about all software and hardware entities contained in the space (e.g., name, type,
and owner) and provides functionality to browse and retrieve entities based on specific
attributes. The Context File System incorporates context into the traditional file system
model to provide support for mobile users, device heterogeneity, and data organization.

Gaia’s applications use a set of component building blocks, organized as Application
Frameworks (Romén and Campbell, 2003), to support applications that execute within
an active space. The Application Framework defines two types of application descriptions:
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the application generic description (AGD), and the application customized description
(ACD). The AGD is an active space-independent application description that lists the
components of an application and their requirements. This description is mapped later
to an ACD that uses resources present in the active space. The ACD matches the ap-
plication requirements listed in the generic description. The mapping mechanism uses
the requirements to query Gaia OS to obtain a list of matching entities. It can be a
user-assisted or automatic.

Users can describe tasks to be performed in terms of abstract goals and an applica-
tion framework decides how these goals can be achieved (Ranganathan and Campbell,
2004). The key element of the architecture of the framework is the Planning Component.
The user indicates his goal to the Planning Component through a GUI. The framework
then analyzes the different choices available for achieving user goals based on the user’s
preferences and the current context. It then plans a sequence of actions to achieve the
goals and executes them.

Gaia uses a STRIPS planning algorithm (Ranganathan and Campbell, 2004) to im-
plement the Planning Component. The planning algorithm takes in an abstract goal
specification, generates a template goal state and then converts that into a concrete goal
state by considering into account the context and the user preferences. Each state of the
environment is associated with a utility function. This allows the planning framework to
compare different goal states and choose the best one with the maximum utility.

The planning framework supports also the dynamic reconfiguration of applications.
It deals with actions failure that is detected if the entity on which the method is invoked
is not reachable or does not respond. If a failure is detected, the planning framework
invokes the same action once again, else it replans to get to the next best goal state.
Gaia also allows changing the composition of an application dynamically upon a user
request. For example, a user may specify a new device providing a component that should
replace a component currently used. Furthermore, Gaia supports two different types of
mobility: intra-space mobility and inter-space mobility. Intra-space mobility is related
to the migration of application components inside an active space and is the result of
application partitioning among different devices. Intra-space mobility allows users and
external services to move application components among different devices. Inter-space
mobility concerns moving applications across different spaces.

In Gaia, event-based communication is used for notifying about changes in the active
space or in the state of components, for both kernel and application components.

2.2.3 SeSCo

SeSCo (Seamless Service Composition) provides a mechanism for dynamic service
composition in pervasive environments (Kalasapur et al., 2007). This mechanism imple-
ments a process for resolving an abstract specification of a task to a concrete services
composition.

The proposed service composition mechanism employs the service-oriented middle-
ware platform called Pervasive Information Communities Organization (PICO) (Kumar
et al., 2003) to model and represent resources as services. Using PICO, services are mod-
eled as directed attributed graphs. Each service is described as a simple graph where
a directed edge represents the inputs and outputs for the service. The edge attributes
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Figure 2.6: Representation of a service (Kalasapur et al., 2007)

include the semantic description of the parameter, the parameter type, the data rates,
formats, and so forth. Figure 2.6 shows the representation of a service that performs text-
to-voice conversion. The semantic attribute associated with the input is text, whereas the
syntactic attribute specifies the expected form of text, which is ASCII in this case, along
with other associated parameters such as the data rate.

A task is submitted for resolution to the directory that can have a centralized or a
distributed structure. In the directory, the components of the task graph are matched
against available basic services to generate possible composite services. Indeed, the service
graphs are parsed for storage into a two-layered aggregation graph. For each registered
service, the first stage of aggregation is based on the semantic parameters associated
with the service. The second stage of aggregation is based on the syntactic type of the
parameters.

The task resolution is also performed in two steps. In the first step, one or more
possible compositions are derived at the semantic level based on the aggregated graph.
If a composition is possible at the semantic level, the underlying services that can take
part in the composed result are identified at the second level of aggregation during the
syntactic matching. The shortest path will be selected for the mapping of the task. This
is done by considering requirements such as the permissible delay, cost of utilization,
location, and so forth. These requirements are specified within the task through the
attributes on the nodes and treated as weights along the edges. The computation of the
shortest path has to consider these multiple constraints along the edges as weights.

Figure 2.7: Hierarchical organization of devices (Kalasapur et al., 2007)
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To achieve the mapping upon a distributed directory, they propose a classification of
devices in four levels as shown in Figure 2.7. Resources with relatively higher degrees of
availability can be classified into the highest end of the spectrum, which is a level 3 device
like PC, servers, etc. User devices like laptop or PDA are classified under level 2. Level 1
include mobile resources like cell phone and so on. Level-0 devices are resources with no
native support for additional configuration, e.g., sensors, printers, etc. The classification
of resources into one of the above levels is performed at the time of configuring the
resources.

Services composition is based on a device overlay formed through a latch protocol.
The basic principle of latching is that a device with lower resource availability latches
itself to another device with higher resource availability. Thus, devices are structured as
a tree that implies the device levels with higher devices up in the tree and lower devices
latched to them. The result of the latch process is a service zone where a device includes
all its children of within the hierarchy and itself. The search zone of the device is its own
service zone if a device level is higher than 1. Otherwise, the search zone of device is the
service zone of its parent. When a device has a task to be composed, the aggregation in
the local search zone is first inspected. If any of the required services for the task cannot
be met, the search zone is then expanded to the search zone of its parent, and so on.

Due to the dynamic nature of pervasive environments, the structure of the hierarchy
can change frequently. The change in the structure can be triggered by disappearance
of a device or the appearance of a new one. When a new device joins the hierarchy, it
sends a LATCH HFELO message to the neighboring devices to advertise its appearance,
along with the information about its level. It will be added as either a parent, child, or
sibling based on its level. When a device leaves a parent, it may notify the parent of its
departure. Otherwise, the parent decides that the device is no longer available due to
the missing periodic LATCH HFELO messages. Thus, it is necessary to recompute a
portion of the composition to fulfill the part that was being played by the missing service.
Based on the hierarchy, a new composition can be generated to meet the requirements of
the affected node by looking up the search zone.

2.3 Approaches for Concrete Applications

In this section, we present some research work dealing with the continuity of execution
of applications that are described as an assembly of concrete components. We mean by
a concrete component, any component whose description specifies its implementation.
We illustrate how these work tackle the different aspects related to the continuity of
execution; which are namely composition, monitoring and adaptation.

2.3.1 ReMMoC

In mobile environments, services can be developed upon a range of middleware types
(e.g. RMI and publish-subscribe) and advertised using different service discovery proto-
cols (e.g. UPnP and SLP) unknown to the application developer. Towards this challenge,
the ReMMoC middleware (Reflective Middleware for Mobile Computing) (Grace et al.,
2003), which is an adaptation middleware, enables software applications to be developed
independently of specific middleware technologies. Thus, applications are able to dis-
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cover and interoperate with a range of heterogeneous services available in the execution
environment.
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Figure 2.8: ReMMoC middleware (Grace et al., 2003)

The ReMMoC middleware is built on OpenCom component model (Coulson et al.,
2004), as shown in Figure 2.8. This component model is used to construct families of
middleware that are constructed as a set of configurable component frameworks. It uses
reflection to discover the current structure and behaviour of framework, and to enable
selected changes at run-time.

Built upon OpenCOM component model, ReMMoC middleware consists of two Open-
Com frameworks, a binding framework for interoperation with mobile services imple-
mented upon different middleware types and a service discovery framework for discover-
ing services advertised by a range of service discovery protocols. A component framework
in OpenCOM is itself an OpenCOM component that maintains internal structure to im-
plement its service functionality. An OpenCOM Component framework implements the
base interfaces of an OpenCOM component (IMetalnterface, ILifeCycle, IConnections)
in addition to its own services interfaces and receptacles (i.e., required services). These
interfaces allow the inspection of the current structure of the framework and the ability to
dynamically alter its behaviour. ILifeCycle offers operations to be called by the run-time
when an instance of the host component is created or destroyed. IMetalnterface sup-
ports inspection of the types of all interfaces and receptacles declared by the component
framework. However, IConnections offers methods to modify the interfaces connected to a
framework’s receptacles. Each component framework is added by the ICFMetaArchitec-
ture interface, which provides reflective operations to inspect and dynamically reconfigure
the framework’s local component architecture.

Each component framework of ReMMoC middleware is able to: 1) find the required
mobile services irrespective of the service discovery protocol and 2) interoperate with
services implemented upon different interaction types. The framework monitors the envi-
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ronment and the service types in use and reconfigures itself to mirror the current setup.
The reconfiguration consists of components replacement or the framework restructur-
ing by adding or removing components. Hence, the binding framework allows services
to interact by plugging in different binding type implementations, such as ITOP (Inter-
net Inter-Orb Protocol), publish / subscribe, and SOAP. However, the service discov-
ery framework allows the plugging in service discovery protocols (for example, SLP and
UPnP) that are being used to advertise services.

The adaptation is ensured by using the MOPs (Meta Object Protocols) of an Open-
Com component that is based on reflection. MOPs provide a set of methods to introspect
and adapt this meta-representation by adding or removing protocols or a binding type
from a framework at runtime.

The ReMMoC component, as shown in Figure 2.8, performs reconfiguration manage-
ment and provides a generic API that are mapped to the technology specific APIs. For
example, when a service is advertised using the abstraction API, this is mapped onto the
underlying protocols e.g., SLP or UPnP. But if SLP and UPnP are configured then the
service will be advertised using both.

2.3.2 MADAM

The middleware MADAM (Mobility and ADaption enAbling Middleware) (Floch
et al., 2006) aims to facilitate adaptive application development for mobile computing. In
MADAM, a component is defined as a unit of composition with contractually specified
interfaces and explicit dependencies. A component type is associated to a set of port
types that components should implement. A port represents the component’s capability
of participating in a specific interaction.

To support adaptation, a runtime representation architecture model is required to
allow middleware components to reason about and control adaptation. The architecture
model includes specification of the application structure, the application’s variability and
the properties of each variant.

MADAM architecture model uses component frameworks to design applications. In
MADAM, a component framework describes a composition of component types that are
achieved by plugging in different component implementations conforming to the type.
To discriminate between alternative component implementations in MADAM architec-
ture models, components types are annotated with properties in order to compare their
implementations. Properties qualify the services that components offer or need. Because
sometimes the properties cannot be expressed by constant values, they propose to use
property predictors, which enable the expression of a property as a function of other
properties and possibly context values.

In addition to the framework architecture model, the middleware also builds and
maintains an instance architecture model, which is a model of the running application
variant. The context model is used to represent the context of execution of applications.

Figure 2.9 shows the MADAM middleware architecture, which consists of four com-
ponents: Context manager, Adaptation manager, Configurator and a Core.

A Context manager component is responsible for context reasoning, such as aggre-
gation, derivation in order to provide the Adaptation manager component with relevant
context information when context changes occur. The Adaptation manager is responsi-
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Figure 2.9: Madam middleware architecture (Floch et al., 2006)

ble for reasoning on the impact of context changes on the application, and for planning.
The Configurator component is responsible for reconfiguring an application by deleting
or replacing component instances, instantiating components, transferring states, etc. The
middleware Core component provides platform-independent services for managing appli-
cations, components, and component instances. This includes operations for publication
and discovery of component frameworks and implementations and for loading, unloading,
and connecting components.

Indeed, MADAM deals with two types of variation for applications, namely compo-
sitional variability and parameter variability. Compositional variability designates places
in a component framework architecture where one or multiple, logically alternative el-
ements can be plugged in and composed dynamically. Parameter variability includes
tuning mechanisms to modify programs variables and behaviour which can be suitable
for fine-grained adaptation such as buffer size, device parameters, etc.

The decision of which adaptations to make for variability, is done by the Adaptation
manager by planning the reconfigurations. The planning consists of dynamic discovery
of implementation alternatives at the variation points of the application’s component
framework, and further of selection of those that best matches the operational environ-
ment and provides the highest user satisfaction given the current user context. A plan is
specified by the application developer. It may refer to a composition of component types
as well as to an implementation or to a property predictor function.

The Adaptation manager evaluates the variants by calculating the utility of each
variant in the current context. An utility function is specified by the developer regarding
components properties and user requirements. If the adaptation manager determines that
a variant has a better utility than the current instance, a reconfiguration takes place.
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2.3.3 PCOM

PCOM (Pervasive Component system) (Becker et al., 2004a) is a component system
that allows specification of a distributed application and supports automatic application
adaptation. The PCOM architecture, shown in Figure 2.10, is structured in two well
differentiated parts. On one hand, the lower part, named BASE, manages the communi-
cation among devices. On the other hand, the upper part, named PCOM, offers high-level
programming abstraction to application programmers.
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Figure 2.10: PCOM architecture (Becker et al., 2004a)

PCOM applications are defined in terms of components, which dependencies are ex-
plicitly specified as contracts. A contract defines the characteristics of the component in
terms of its implementation, its offer, and its requirements with respect to other compo-
nents. Components reside within a component container that is running on every device
to manage their dependencies, and thus acts as a distributed execution environment for
applications.

A PCOM application is modeled as a tree of components where the root component
(called application anchor) identifies the application. The application tree reflects the
dependencies between components where the successors of a component identify its de-
pendencies in order to fulfill the service. The life cycle of an application is reflected by
the life cycle of its application anchor.

A configuration algorithm that is cooperatively executed by the containers of an
environment ensures that only valid configurations are started. A valid configuration is
thereby defined as a configuration that does not have unresolved dependencies. Before
instantiating a component, PCOM examines its contract dependencies and tries to find
the required components. Dependencies on local resources are automatically resolved by
the container that hosts the component. To resolve remote component requirements, each
container is equipped with a remote query interface that lets another container search
for matching offers.

The PCOM containers provide three signaling mechanisms to detect changes of the
environment. A communication listener mechanism was handled to detect the disappear-
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ance of components. To capture the arrival of new components, a discovery listener is
used to discover the new components deployed in devices. The last signaling mechanism
provided by PCOM container is contract listeners that are notified whenever a parameter
changes.

PCOM deals with contractual and compositional changes. Contractual changes ex-
press that a previously agreed set of properties can no longer be guaranteed, e.g. due
to changed network properties. Compositional changes are a result of device mobility or
failures.

To react to these changes, PCOM allows a parametric adaptation by adjusting com-
ponents’ properties. It allows also a compositional adaptation by replacing components
that are no longer available. The replacement is ensured by escalating to a higher level of
the tree. The replacement of a sub-tree starts from the parent of the component and may
include its predecessor if necessary. The escalation continues until a component resolves
the conflict by reselecting components.

PCOM containers are equipped with an algorithm that performs resource aware appli-
cation configuration and adaptation. To decrease the communication required to compute
a reconfiguration, an architectural extension to PCOM is proposed in (Handte et al., 2007)
in order to enable the system to switch between configuration algorithms at runtime.

The configuration algorithm is fully distributed, i.e. each component container config-
ures and adapts its hosted components. For this goal, they have extended the container
with two services: assembler and the application manager. The application manager is
responsible for managing the life cycle of the application and the selection of the config-
uration. However, the assembler is responsible for computing a valid configuration.

Once the configuration is computed, the assembler can determine which dependencies
need to be resolved in order to transform the current invalid configuration into a valid
one. To compute a valid configuration, the assembler needs to be able to determine the
set of resources that are available on each device and to find the components that can
be used to resolve a dependency. Then, the container retrieves the configuration for each
child component required by the anchor. Using the configuration, the container decides
whether the child must be reused or replaced.

2.3.4 MySIM

Service Integration Middleware for pervasive Environment(MySIM) is a distributed
middleware for a spontaneous services integration in pervasive environment (Ibrahim
et al., 2009). The focus is to allow a spontaneously transformation, composition and
adaptation of services.

The middleware, as shown in Figure 2.11, consists of four modules: the Translator,
the Generator, the Evaluator, and the Builder.

The Translator module enables a service expressed and provided in a predefined tech-
nology to be transformed into a generic service model. A component defined by the
generic service model is composed of : an interface, an implementation and QoS non
functional properties. A functional interface specifies operations that can be performed
by a set of inputs and outputs. The implementation is of the operations defined in the
functional interface. The QoS non functional properties describe the operation capabili-
ties. These capabilities reflect the quality of the functionality expected from the service,
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il

such as dependability (including availability, reliability, security and safety), accuracy of
the operation, speed of the operation, and so on.

The Translator Service provides rules to map from OSGi services (OSGI, 1999), and
Web service descriptions to the generic service model. The transformation is ensured by
extracting and identifying the three main parts of a service: the interface by extracting
the operation signatures and semantic description, the implementations by extracting the
operation implementations and the QoS non-functional properties by extracting the non
functional properties.

The transformation is essential to compose or to adapt services once they are ex-
pressed in the same model. For these objective, the service is sent to the Generator
module once it is translated. The Generator Service is responsible of the syntactic and
semantic matching of the functional interfaces of services in order to compose, substitute
or adapt services. It tries to generate one or several composition or adaptation plans
based on syntactic and semantic matching.

In the case of composition, the Generator Service finds, for each service, all the services
that respond to a composition relation, syntactic or semantic, between the functional
parts of services.

The adaptation of services composition is triggered either by the disappearance of
a selected service or the appearance of a new one that seems to be interesting for the
application execution. MySIM reacts to the appearance and disappearance of services by
spontaneously integrating services into their new inhabitant in a completely transparent
way for users and applications. In this case, the Generator Service finds all the services
available in the environment, which are syntactically or semantically equivalent to the
disappeared or the new service for a possible substitution.

Then, these plans will be evaluated by the Evaluator module in order to select the
best plan to accomplish a composition or an adaptation process. The QoS service of
the Evaluator module checks for every service composition, that the non-functional QoS
properties of inputs and outputs of service operations are equivalent. In a service adap-
tation, the QoS Service assures a substitution between equivalent services by choosing
the best QoS properties of services for a given application. For this goal, MySIM uses a
metric that measures the non-functional QoS degree of QoS similarities between syntac-
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tically and semantically matched services. The Decision Service of the Evaluator module
is responsible of the plan selection.

The last step is achieved by the Builder module that is responsible for executing the
real service integration and registering. The Builder Service creates new functionalities
respecting the service model and directly implements these services in a chosen technology
model in order to allow its integration. The Builder module provides also a Registry
Service to register the interfaces of the newly transformed or/and composed services
in the environment. It monitors these services by checking periodically if they execute
correctly. Otherwise, it notifies the Decision Service of the Evaluator module of the events
related to service appearance or disappearance.

Thus, MySIM returns new services with the same well known interfaces, but different
implementations, and non-functional QoS properties in order to allow applications not
only to use the available services in their vicinity but also to compose and adapt services.

2.4 Discussion

We have investigated previously how each of these state-of-the-art solutions are ap-
plied for the continuity of execution of applications in pervasive environments. The conti-
nuity of execution of applications in pervasive environments as we define it, is composed
of three complementary sub-problems: composition, monitoring and adaptation. Some
of the approaches focus on a specific aspect, while some others deal with more than
one aspect. We compare the cited work to distinguish the ones that ensures a complete
or partial continuity of execution of applications in pervasive environments as shown in

Table 2.1.

Composition | Monitoring | Adaptation

Aura Vv Vv Vv
Gaia vV Vv V
SeSCo vV v Vv
ReMMoC V
MADAM V V V
PCOM vV Vv vV
MySIM vV V

Table 2.1: Approaches classification

Aura middleware (Sousa and Garlan, 2002) (Sousa et al., 2006) presents an archi-
tecture for resolution of abstract services of user tasks by finding suppliers that can
seamlessly provide specified services. More specifically, Aura calculates and selects the
best combination of suppliers that can provide the required services. The resolution of
the abstract user’s task is done by wrapping existing applications and services regarding
the available resources and user preferences. However, wrapping a complex application
does not seem to be a trivial task as it depends on the applications’ complexity. The
monitoring of the execution environment is ensured by the Environment Manager that
detects the changes of the context. For the adaptation aspect, Aura allows the replace-
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ment of services implementations when moving from one location to another by ranking
the configurations given an utility function.

Gaia middleware (Roman and Campbell, 2003) (Ranganathan and Campbell, 2004)
deals too with the composition issue for users tasks described as a set of abstract ser-
vices. To realize a Gaia application, they propose a planning algorithm that computes a
concrete realization by considering the user preferences and the execution context. For
the adaptation aspect, Gaia considers the failure of actions invocations as triggers for
the adaptation of an application. The reconfiguration is achieved by recalculating a new
combination that maximize the user preferences. In Gaia, event-based communication is
used for notifying about changes in the active space or in the state of components, for
both kernel and application components.

SeSCo (Kalasapur et al., 2007) proposes an architecture for realizing abstract descrip-
tions of users tasks based on the latching protocol. The latching protocol selects devices
with high levels availability for the services execution. Thus, this selection may prevent
devices with low level to be selected for the execution of the task even if they respond
better to services requirements. Moreover, the services composition does not consider user
preferences for the task execution and it is limited to services semantics and requirements
like cost of utilization and location, and so forth. For the adaptation aspect, SeSCo deals
with the appearance or disappearance of devices events as triggers for the adaptation of a
user task. These events are detected by sending latching messages that denote the arrival
or departure of devices. However, the reconfiguration in pervasive environment may be
triggered also by the changes of devices capabilities which may have an impact on devices
levels and hence the selection of devices. Towards the appearance and disappearance of
devices, they claim in their work that they ensure a portion recomposition of the affected
part of the task by reselecting devices without further details.

The ReMMoC middleware (Grace et al., 2003) focuses on the adaptation feature and it
proposes an adaptation approach that enables applications to be developed independently
of specific middleware technologies and to interoperate between them. Specifically, upon
the detection of the specific service discovery and access protocols employed in the current
environment, ReMMoC reconfigures by loading the appropriate component frameworks
enabling service requesters to use those protocols. However, the ReMMoC middleware
is limited to the reconfiguration of service discovery and service interaction protocols.
Moreover, they do not specify how the middleware detects the used protocols in an
execution environment.

MADAM (Floch et al., 2006) presents an architecture that covers the different aspects
of the continuity of execution of applications. In MADAM, components are composed
and configured by using plans. The plans are composed based on the type compatibility
of components to describe alternative application configurations. Then, the application
configurations are ranked by evaluating their utility with regards to the application ob-
jectives. However, these configuration plans are predefined by a developer at design time,
which limits the possible adaptations to these predefined plans. Moreover, the utility
function is limited to the application and hence can not be used for other applications.
To monitor the changes of context, MADAM provides a context manager component that
it is responsible for context reasoning.

The PCOM system (Becker et al., 2004a)(Schuhmann et al., 2008) allows specification
of distributed applications that is modeled as a tree of components. A PCOM-based
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application is realized by resolving the contracts of its components by considering user
preferences. PCOM also considers adaptation of applications by replacing a subtree if
a component if it is no longer available or if a new component appears and seems to
be interesting for the application execution. For the monitoring feature, each PCOM
container provides signaling mechanisms to monitor only its provided components.

Using MySIM middleware (Ibrahim et al., 2009), services are translated using a
generic model in order to be composed if they are syntactically and semantically matched.
For this, the services composition considers the non-functional QoS (e.g., reliability, se-
curity, etc) that does not include the user preferences. Moreover, they claim in their
work that the Translator component is able to transform any service independently of
its description. For the adaptation aspect, MySIM considers only the appearance or dis-
appearance of components to trigger adaptation of services. Towards these changes, it
recalculates new reconfigurations to reselect components. However, in their work, they
do not specify any monitoring mechanism to capture these changes.

As it can be seen, few of work consider the three aspects for the continuity of applica-
tions in pervasive environments. Moreover, most of them deal with concrete descriptions
to fulfil the composition, monitoring and adaptation of applications therein. Towards the
composition challenges, most of the cited work considers in addition to the functional
aspects, the non-functional ones like user preferences, QoS of services, devices capabili-
ties, etc. For the monitoring aspect, the both categories detects the environment changes
by using sensors of the underlying environment (Sousa and Garlan, 2002) (Floch et al.,
2006). Their focus is to capture the appearance/disappearance of components or devices.
Few of work consider the changes of user preferences as an adaptation context (Sousa
and Garlan, 2002). Most of the cited adaptation approaches corresponds either to the
parametrization or to the behavioural adaptation that aims to reselect new components.
In these cases, the adaptation is achieved by calculating new reconfigurations or using
predefined plans to reconfigure their compositions (Floch et al., 2006) (Becker et al.,
2004a).

2.5 Conclusion

In this chapter, we provided an overview of the existing approaches and middleware
for the continuity of executions of applications in pervasive environments, which is com-
posed of three complementary aspects: composition, monitoring and adaptation. Services
composition aims to realize applications despite the highly heterogeneity of devices in per-
vasive environments, whereas, monitoring the environments is essential in highly dynamic
environments due to the mobility of users and devices. However, services adaptation tries
to overcome the captured failures and problems to ensure a continuous execution.

We have divided the cited work in two main categories depending upon how the
application is described. First category consists of approaches dealing with the continuity
of execution of applications having abstract descriptions. However, the second category
cites work that tackle the composition, monitoring and adaptation issues of applications
composed of concrete components.

In the following chapters of this thesis we present our contributions for these different
aspects for the continuity of execution by considering many of the limitations of the
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existing approaches that we identified in this chapter. We consider that a user task is
defined as a composite of abstract components. First, we present our resolution approach
to fulfil the composition of the task’s services in Chapter 3. The monitoring will be
detailed in Chapter 4. Finally task adaptation will be treated in Chapter 5.
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3.1 Introduction

Using Service-Oriented Architecture (SOA), a user task can be defined as an assembly
of abstract components (i.e. services), requiring services from and providing services to
each other. To achieve the task’s execution, it has to be resolved into concrete components,
which involves automatic matching and selection of components across various devices in
pervasive environments. The implementation of these services can be found by looking up
concrete and deployed components in devices of the environment. A service is matched
with a concrete component if their interfaces match. A user task is said to be resolved if
for all of its services, we find matching concrete components implementing these services.

In this chapter, we detail our contribution for resolution of abstract user tasks in
pervasive environments. Our goal is to allow for each service of a user task, the selection
of the best device and component for its execution. First, we examine some existing
proposals for task’ s resolution and list their limitations in Section 3.2. Then in Section 3.3,
we introduce non-functional constraints which are considered for the selection of devices

29
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and components. Section 3.4 describes our approach for the devices and components
selection which are explained through an example scenario in Section 3.5. Finally, Section
5.6 concludes this chapter with an overview of our resolution contribution.

3.2 Related Work

In this section, we detail some of the existing tasks resolutions approaches as well as
their limitations.

3.2.1 SeGSeC

In (Fujii and Suda, 2005) (Fujii and Suda, 2009), authors propose an architecture
to dynamically compose the requested services, which are expressed in a natural lan-
guage. Their proposal consists of realizing an application through combining distributed
components based on their semantics and the user preferences.

To satisfy the composition of semantic components, the architecture consists of three
sub-systems: Component Service Model with Semantic (CoSMoS), Component Runtime
Environment (CoRE), and Semantic Graph based Service Composition (SeGSeC). CoS-
MoS is an abstract component model designed to model the functions (i.e., inputs, out-
puts or properties), the semantics (i.e., what each input, output and property semantically
corresponds to), and contexts (i.e., their location, capability) of components. Each input
(and output) of an operation is modeled as a component, representing that the operation
accepts (or generates) another component as its input (or output). Similarly, a property
of a component is also modeled as a component, representing that it can be retrieved as
another component. CoSMoS models the information about a component as a semantic
graph that consists of labeled nodes and links.

The services required for a composition are discovered through a middleware CoRE
and composed based on their semantics and user preferences through a Semantic Graph-
Based Service Composition (SeGSeC) mechanism. SeGSeC consists of four modules: Re-
quest Analyzer, ServiceComposer, SemanticsAnalyzer, and ServicePerformer as depicted
in Figure 3.1.

The Request Analyzer parses the user request that is expressed in a natural language
into a CoSMoS semantic graph representation. Then it passes it to a ServiceComposer.
In order to create an execution path, the ServiceComposer seeks services from directories
that can be supplied as the inputs of the operations. After discovering the services, it
computes all possible combinations of the services that are sorted based on their similarity
values to the user request (number of common node in the combination). After that, the
ServiceComposer gives the execution path (in the form of semantic graph) and the user
request (which is also a semantic graph) to SemanticsAnalyzer to check whether the user
request is satisfied by the semantics of the execution path.

The SemanticsAnalyzer applies the semantic matching rules onto the execution path
in order to derive the semantics of the path. Then, it notifies the ServiceComposer that the
given execution path satisfies the user request. In this case, ServiceComposer passes the
execution path to ServicePerformer to execute the given execution path by accessing the
services, i.e., by invoking operations and retrieving properties of services in the specified
order, through specific access interface.
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Figure 3.1: Architecture of SeGSeC (Fujii and Suda, 2005)

Thus, based on the semantic descriptions of services and the user preferences, SeGSeC
composes services to satisfy a user request. However, this approach does not consider the
services requirements, which have also an important influence on the services execution.
Moreover, SeGSeC select arbitrarily discovered services to build the execution path with-
out considering the case of similar services.

3.2.2 COCOA

COCOA is a COnversation-based service COmposition middlewAre
(Ben Mokhtar et al., 2007) that allows a dynamic realization of user tasks from networked
services available in the pervasive computing environment.

COCOA uses COCOA-L, which is an OWL-S based language for the specification
of user tasks in pervasive environments. A service of a user task provides a set of ca-
pabilities. A service capability corresponds to either a primitive operation of the service
or a process composing a number of operations (called conversation). To enable the au-
tomated reasoning about conversion behavior, they specify these capabilities as a finite
state automata.

COCOA-L allows also the specification of required QoS properties. A user task has
two kinds of required QoS properties that allow the description of both quantitative
(e.g., service latency) and qualitative (e.g., CPU scheduling mechanism) non-functional
properties. First, the QoS properties specified at the level of capabilities, express local
QoS requirements. These QoS will be considered during services composition in order to
be satisfied by individual advertised services. Second, the QoS properties specified at the
level of the whole task, express the global QoS requirements.

The middleware performs services composition in two steps. The first step is to match
each capability involved in the task’s description against capabilities of the networked
services. This is achieved by the COCOA Service Discovery algorithm (COCOA-SD).
The second step is to compose the task’s conversation using conversations of the selected
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Figure 3.2: Service composition in COCOA (Ben Mokhtar et al., 2007)

services. This is achieved by the COCOA Conversation Integration algorithm (COCOA-
CI).

COCOA-SD allows finding in the pervasive environment service advertised capabili-
ties that match service requested capabilities for the realization of user tasks. COCOA-SD
is decomposed into service matching and service selection. Service matching allows iden-
tifying services that provide semantically equivalent capabilities with those of the user
task’s conversation. Service selection allows identifying services that offer semantically
equivalent capabilities to the capabilities of the user task and potentially useful for the
composition by checking the local QoS requirements.

COCOA-CI integrates the conversations of the services selected by COCOA-SD to
realize the conversation of the target user task. The global QoS requirements has to be
satisfied by the resulting service composition. Therefore COCOA-CI checks the aggrega-
tion of QoS properties coming from the multiple advertised capabilities to be integrated.
Then, it integrates all the automata of selected services in a global one.

Figure 3.2 shows the service composition process in COCOA. As it can be seen,
the first step is a semantic matching of interfaces, that leads to the selection of the
set of services that may be useful during the composition. Then, COCOA performs a
conversation matching starting from the set of previously selected services, thus, obtaining
a conversation composition that behaves as the task’s conversation. The matching is based



3.2. RELATED WORK 33

on a mapping of OWL-S conversations to finite state automata. This mapping facilitates
the conversation composition process, as it transforms this problem to an automaton
equivalence issue. Once the list of sub-automata that behaves like the task automaton
is produced, a last step consists in checking whether the atomic conversation constraints
have been respected in each sub-automaton. After rejecting those sub-automata that
don’t verify the atomic conversation constraints, COCOA selects one of the remainders
after checking their QoS. Using the sub-automaton that has been selected, an executable
description of the user task that includes references to existing environment’s services is
generated, and sent to the Service Discovery and Invocation that executes this description
by invoking the appropriate service operations.

COCOA middleware is limited on a semantic composition of user task services. It
supports QoS for the services selection. However, the services composition does not con-
sider neither user preference nor services requirements which may constrain the selection.
Moreover, the COCOA framework permits the arbitrary selection of the resulting service
composition as they all conform to the target user task.

3.2.3 Task Resolution Using Three-Phase Protocol

In (Mukhtar et al., 2011) (Mukhtar et al., 2009), authors propose an approach for
the resolution of abstract user task by considering in addition to the functional aspects
of the task, the user preferences, the services requirements and the devices capabilities.
The resolution is carried out by a Task Composer which is provided by the user device
where the user task is initiated.

The Task Composer first determines the abstract services, their interfaces, and the
capability requirements of all the services, from the user task specification. These services
are used to create a graph representation of the user task. To create a network graph, the
Task Composer forwards the graph of the task to a Service Discovery system and uses
the three-phase task composition protocol as shown in Figure 3.3.

First, the Service Discovery system interrogates the environment for available devices
and queries them for their capabilities. Each device sends back its capabilities to the
requesting device. For each device, the Task Composer compares its capabilities with the
services requirements and the user preferences for the task. Any device which does not
meet the required device capabilities or user preferences, is eliminated from the graph
(as shown by the shaded circles in the Network layer of Figure 3.3). Then, devices will
be valued for the overall task by considering the user preferences and devices capabilities
and ranked from high to low values.

The second phase is the graph aggregation. At this level, the Service Discovery sends
the abstract services to the selected devices starting from high to low value. Each device
sends back a description of those components which match with at least one of the
abstract services of the task. The Task Composer then combines the various components,
obtained from all devices, into a single component graph.

Finally, the task composer will determine the final set of components that represent
the concrete user task graph. If the device host more than one component offering sim-
ilar functional interfaces, the task composer will select arbitrarily a component for the
execution of the task’s service.
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Figure 3.3: Task resolution at three different layers (Mukhtar et al., 2011)

While this approach responds to the most important features for a resolution of ab-
stract user tasks as we intend to ensure, it presents some limitations. First, the selection
of devices is done by valuing them for the overall task regarding the user preferences
and their capabilities. However, this selection may prevent devices with lower value to
not be selected even if they respond better to services requirements. Second, the selec-
tion of components is done arbitrarily. However, components may offer similar functional
interfaces, but may differ from each other in terms of the needs towards the devices ca-
pabilities. Thus, there is a need to provide a mechanism for the selection of the most
convenient component.

In view of all these identified problems in the above cited works, we now propose
our own approach that overcomes these problems. This approach is based on the device
selection approach presented in (Mukhtar et al., 2009) that is improved to ensure the
selection of the best device and component for each service of the task.

3.3 Selection Constraints

Resolving an abstract task corresponds to the selection of concrete components that
best match with its services across various devices provided by the execution environ-
ment. In order to select the most promising components for the preferred devices for
the user, we require considering some non-functional constraints like devices capabilities,
user preferences, services requirements and components preferences. In the following, we
describe each of these non-functional constraints.
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Figure 3.4: The extended CC/PP model

3.3.1 Device Capabilities (DC)

Pervasive environments consists of a variety of devices that may have a wide range of
different characteristics: hardware, software, communication capabilities, etc.

All these aspects (i.e., software, hardware and network characteristics) represent the
devices capabilities. As defined in RFC 2703 (Klyne, 1999), a capability is an attribute of
a sender or receiver (often the receiver) which indicates an ability to generate or process
a particular type of message content. It is possible to quantize a concrete capability, e.g.,
memory, CPU, bandwidth, etc.

Applications designed for pervasive environments do not consider the availability of
particular software/hardware capabilities at the time of their conception. It is only at
the time of execution of such applications, based on the availability of devices and the
available components on them, that an application must know about the characteristics
of the devices in the environment in order to determine devices for the selection of com-
ponents. However, due to heterogeneity of devices, it is hard to assume in advance about
the characteristics of individual devices.

In the literature, there have been a number of device description mechanisms like
UAProf (Open Mobile Alliance (OMA), 2001), WURFL (Passani and Trasatti, ), etc.
CC/PP (Composite Capability /Preference Profiles) being an adopted standard, is the
obvious choice for device description in now-a-days (Kiss, 2007) (Klyne et al., 2004).
However, CC/PP descriptions are limited to only two-level hierarchy, consisting of com-
ponents, and attributes attached to each component. Therefore, (Mukhtar et al., 2008a)
proposes an extension to CC/PP that classifies a device capabilities into hardware, soft-
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ware and network categories as shown in Figure 3.4. We use this extension to model the
devices capabilities.

The hardware capabilities include the input and output of the device. While the
software capabilities specifies software application installed on the device, the network
capabilities represent a network access method or protocol, or a non-functional aspect
such as security or payment. All of these capabilities are modeled in (Mukhtar et al.,
2008b)(Mukhtar et al., 2008a) either as boolean or literal type, which can represent the
device ability for a specific device capability. We denote by 1 that the device is able to
provide a specific capability and 0 if not.

3.3.2 Service Requirements (SR)

Services in the user task may also describe their requirements for devices capabilities
so that they can be executed only on devices fulfilling the required capabilities. These
requirements may be specified by the task designer and they tailor the selection of devices
to a task resolution.

We adopt the proposed model in (Mukhtar et al., 2009) to describe the services re-
quirements as abstract resources requirements. The availability or absence of a capability
on a device is noted by true and false, which can be represented by 1 and 0, respectively.

Assume for example a TextService specifying a Hardware . InputCapable as a service
requirement. This abstract requirement implies that the device must be capable of ac-
cepting input from the user in order to use the service. Depending upon the interactivity
model used by the device, text input can be accepted by a device in several ways: touch-
screen, keypad, soft-keypad, keyboard, and mouse (using virtual, on-screen keyboard by
clicking), etc. Thus, instead of specifying one of these several types as a required capabil-
ity, the service may specify the capability abstractly using the Hardware . InputCapable.
Thus, the device executing the service must be able to accept input resource from the
Hardware category, otherwise the service will not work properly.

For a boolean capability Hardware.TextInputCapable, the possible value can either
be true or false for a device. When a device is capable of accepting text as input,
the capability will be presented as Hardware.TextInputCapable=true, which will be
translated by the value of 1.

Hence, by introducing service requirements, we can reduce the solution space largely
by decreasing the number of candidate devices. If any of the required capability’s value
is false, the service cannot be executed on that device. Hence, this later is eliminated as
the service requirements are not satisfied there.

3.3.3 User Preferences (UP)

A user can specify his preferences and dislikes towards the devices capabilities in order
to select the device that meets best his preferences for a particular task.

We adopt the user preference model as proposed in (Mukhtar et al., 2009), to represent
the user preferences as real number values ranging between (—1.0,1.0). Using 1.0 value
represents a very important capability, thus, a device should provide that capability else
it will be eliminated. The -1.0 value represents users dislike to avoid using a device with
such a capability, whereas, the 0.0 value represents a do not care condition, i.e., the
availability or unavailability of such a capability is not important for the user.
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A user may specify their preferences for device capabilities and resources with the help
of a GUI provided on the device such as by clicking certain choices, by enabling/disabling
certain options, or by specifying a preference value directly. Depending upon the value,
the preference dictates the approval or dislike of the user for a particular capability of
the device.

Based on the user preferences, the user task will be executed on a set of devices for
which maximum of their preferences are satisfied.

3.3.4 Components Preferences (CP)

Compared to user preferences, a component may have preferences towards the de-
vices capabilities, implying that the device should provide specific capabilities for which
maximum of their preferences are satisfied. We proposed to model them using real values
ranging between (0.0 , 1.0) (Ben Lahmar et al., 2011b). The 1.0 value represents a very
important capability that a device should provide. If a component does not have any
preference, we assume that it does not care, and its value is 0.

By considering these preferences, the user task will be executed by using concrete
components for which maximum of their preferences are satisfied.

3.4 Principle of the Task Resolution

Resolving a user task corresponds to the selection of concrete components that best
match with its services across various devices provided by the execution environment.

In (Mukhtar et al., 2009), authors propose an algorithm that evaluate devices regard-
ing the overall task by considering the devices capabilities and the user preferences in
order to select the device with the highest value. The limitations of this approach are on
one hand, that the device value does not consider the services requirements towards the
devices capabilities. Thus, it will prevent devices with lower values to be selected even
if they respond better to services requirements. On the other hand, their algorithm does
not provide any selection method for a suitable component if the selected device has more
than one concrete component matching the same service.

In (Ben Lahmar et al., 2011b) (Ben Lahmar et al., 2012), we proposed an algorithm
for the selection of the best device for each service of a user task, which improves the
device selection algorithm in (Mukhtar et al., 2009) by considering in addition to the
user preferences and the devices capabilities, the services requirements. We also proposed
a new algorithm for the selection of the best component for each service of the task by
considering the devices capabilities and components preferences.

In the following, we detail the both algorithms that are based on formulas presented
in (Mukhtar et al., 2009) to evaluate the devices values.

3.4.1 Device Selection

To select the devices used for the user task’s execution, we calculate a device value
(DV) for each of them as following. Given a capability ¢; of a device and the user pref-
erence or dislike value v; for ¢;, a weighted capability w; is calculated as:
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Coifg =1, —1<u <
wi_{vz if ¢; =1, 1<y; <1 (3.1)

—v; ifeg =0 —-1<v<1

Thus, a weighted capability is numerically equivalent to the user preference, but
depending upon the presence or absence of a capability, it will take negative or pos-
itive value. This applies to most of the device’s capabilities related to input meth-
ods, memory, CPU, etc., that can be represented by boolean or literal type (Mukhtar
et al., 2008a) (Kiss, 2007). However, if we consider the screen size, it is a two dimen-
sional capability and cannot be modeled like other capabilities. Let R, = {wy, h,} and
Ry = {wg, hq} represent respectively the screen resolution specified by the user and the
screen resolution available on the device, where w and h represent the width and height
dimensions of the screen. We used the Match method (formula 3.2) to return a value
representing the matching degree between R, and R, of the device.
Min(wy,wgq) Min(hy,hg)
Maz(wy,wq) Maz(hu,hq)

2
Using this equation, only the exact match will return the value of 1, while both larger
and smaller screen sizes will return smaller values.

We used these formulas to calculate the device value (DV) as the following:

Match(R,, Rq) = (3.2)

CalculateDV = Zwi + Match(R,, Rg) + ];j — gj (3.3)

The P,/ P, ratio is used to calculate the number of preferred or liked capabilities (Ps)
satisfied by the device among the total number of preferred capabilities (P;). We also
consider the number of disliked capabilities available on a device. The D, denotes the
number of disliked capabilities present on a device, while D; denotes the total number of
dislikes specified by the user. A device with relatively high number of disliked capabilities
will result in relatively lower value.

Using the formula 3.3, we denote by CalculateDV(DC, UP) to calculate value of a
device for all of its capabilities (DC) and regarding the user preferences (UP). However,
if we calculate a value of a device for a specific service by considering only the device
capabilities (DC) and the user preferences (UP) related to its service requirements (SR),
we denote it as CalculateDV(SR, DC, UP).

Algorithm 3.1 shows the main feature of the device selection process (Ben Lahmar
et al., 2012). A user task consists of a list of services to resolve in a set of components
provided by devices of the execution environment. We consider the fitness constraint
proposed in (Mukhtar et al., 2009) to indicate that a service is executable on a device
using a fit() method (line 6) that returns true if the service is executable on the device,
or false otherwise. Indeed, each service may specify one or more capability requirements,
which must be satisfied in order for the service to be executed on the device. If any of
the required capability’s value is false, the service cannot be executed on that device.

Moreover, two or more services may specify their colocation dependency on each
other, which means that they must be executed on the same device (Mukhtar et al.,
2009). A colocation request may arise due to intrinsic inter-service dependency or may
be the result of a user preference. For this goal, the algorithm checks the fitness of the
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Algorithm 3.1 DeviceSelection(Task t)
1: DevicesList contains list of devices;
2: DevicesTable: each row of this table is an ordered devices list associated with a service
of the user task

3: for each service s; € t do

4:  for each device d in DevicesList do

5: if fit(s;, d) and fit(colocation(s;), d) then

6: for each service s’ in {s;, colocation(s;)} do

7: if Requirement(s’) # @ then

8: DV = DV + CalculateDV(SR, DC, UP)

9: else

10: DV = DV + CalculateDV(DC, UP)

11: end if

12: end for

13: store the couple < d, DV > in DevicesTable(s;) the row of the DevicesTable
associated to s;

14: end if

15:  end for

16:  sort DevicesTable(s;) from high to low values

17: select DevicesTable(s;)[1].d as the device has the highest value for s; and
colocation(s;)

18: end for

colocation services (i.e. colocation() method in line 5) to determine if they fit in the same
device as the task’s service.

To calculate the devices values for the service and its colocation, the algorithm uses
the formula 3.3. If the service specifies some requirements (Requirement method in line
7), the device value is calculated using CalculateDV(SR, DC, UP) (line 8). Otherwise, the
device value is calculated using CalculateDV(DC, UP) (line 10). After that, it sums the
device values calculated for the execution of the service and its colocations. The device
with the highest value will be selected to fit a service and its colocations in.

Algorithm 3.1 improves the device selection algorithm in (Mukhtar et al., 2009), in
the way that it evaluates each device for each service of the task rather than for the
whole task. This improvement reduces the complexity of calculating devices values for
each service of the task by considering only the capabilities and the user preferences that
are related to its requirements.

3.4.2 Component Selection

Some selected devices may provide more than one component implementing the same
service. In (Mukhtar et al., 2009), authors propose to select arbitrarily a component
matching with the service. These components may offer similar functional interfaces, but
they may differ from each other in terms of the capabilities of the devices. Thus, there
is a need to select a component that best matches the service’s description. For this, we
proposed an Algorithm 3.2 that allows the selection of the convenient component for each
service of the user task (Ben Lahmar et al., 2011b) (Ben Lahmar et al., 2012).
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A component value (CV) is calculated using the following formula:

i

CalculateCV = Zwi + P,

(3.4)

The w is a weighted capability of a device that depends on the component’s pref-
erences. It is calculated using formula 3.1 by considering the components preferences
instead of user preferences. The P;/P; corresponds to the number of preferred capabili-
ties satisfied (Ps) among the total number of preferred capabilities (P;) of the component.

Algorithm 3.2 ComponentSelection(Service s, Device d)

1: DeviceComponents contains components deployed on d

2: ComponentsTable: each row of this table is an ordered components list matching with
a service of the user task

: for each ¢ in DeviceComponents do

if s matches ¢ then
CV=calculateCV(CP,DC)
store the couple < ¢,CV > in ComponentsTable(s) the row of the Compo-
nentsTable associated to s

end if

: end for

9: sort ComponentsTable(s) from high to low value

10: select ComponentsTable(s)[1].c as the component has the highest value for s

S gk w

®

Algorithm 3.2 uses the formula 3.4 to calculate components’ values (line 5) by consid-
ering their preferences (CP) towards the device capabilities (DC). Then, the components
values are sorted in order to select the component with the highest value. To achieve
the task resolution, this algorithm will be executed in each selected device to choose the
convenient component for each service.

3.5 Example Scenario

Referring back to the video player task in the chapter 1, which is represented by an
assembly of three services: a VideoDecoder, a DisplayVideo and a Controller services.
The Controller service sends a command to the VideoDecoder service to decode a stored
video into appropriate format. Once the video is decoded, it is passed to the DisplayVideo
service to play it. Assume that the DisplayVideo service should be collocated with the
VideoDecoder for a quick transfer of frames. Thus, they should be executed in the same
device.

For the task execution, the services should be resolved into concrete components
available in the execution environment. Consider that this later consists of a Smartphone
(SP) and Flat-screen (FS) devices and that each device provides concrete components
matching with the task’s services in order to valid their fitness. Table 3.1 shows some
capabilities of the two devices and their corresponding user preferences.

Moreover, services may express their requirements towards the devices capabilities.
For example in table 3.2, the DisplayVideo service requires an output VideoCapable
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Table 3.1: Device capabilities and user preferences

Capabilities SP FS User

Resource.Software.VideoPlayer=VLC 1 0 0.1
Resource.Hardware.Output.VideoCapable.Screen. Width 320 1920 1920
Resource.Hardware.Output.VideoCapable.Screen.Height 240 1200 1200

Resource.Hardware.Output.SoundCapable.InternalSpeaker 1 1 0.2
Resource.Hardware.Output.SoundCapable.ExternalSpeaker 1 1 1.0
Resource.Hardware.Input.Keyboard 1 0 0.1
Resource.Hardware.Input. TouchScreen 1 0 0.3
Resource.Hardware.Memory.MainMemory 1 1 0.0
Resource.Hardware.Memory.Disk 1 0 0.0

and SoundCapable capabilities to achieve its execution, whereas, the Controller service
requires an input capability to command the video player task.

Table 3.2: Requirements of the video player services

Service Service Requirements

Controller Resource.Hardware.Input
DisplayVideo Resource.Hardware.Output.VideoCapable
Resource.Hardware.Output.SoundCapable

To resolve the video player task, there is a need to select for each service of the task
the best device that has the highest value. In the following, we compare the results of
our Algorithm with the device selection Algorithm in (Mukhtar et al., 2009) to prove the
convenience of our approach.

Table 3.3: Devices values using Device Selection Algorithm in (Mukhtar et al., 2009)

SP FS Selected Device
2.78 2.3 SP

Table 3.3 shows the devices values for the overall task regarding the devices capa-
bilities and the user preferences as described in (Mukhtar et al., 2009). The SP has the
highest value, thus, it will be selected to resolve the video player task. However, this
selection does not satisfy the user preference which is displaying video in bigger screen.

We have evaluated the devices for each service of the video player task by considering
only the capabilities related to each service requirements and their corresponding user
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Table 3.4: Devices values for Controller and DisplayVideo services

Service SP FS  Selected device

Controller 1.4 -04 SP
DisplayVideo & VideoDecoder 5.16 5.5 FS

preferences. Table 3.4 shows the devices values as a result of Algorithm 3.1. The Con-
troller service will be executed in SP device, while the DisplayVideo and VideoDecoder,
which are two colocated services, will be executed in FS device. As it can be see, our
algorithm satisfies best the user preference (i.e. bigger screen size) compared to algorithm
in (Mukhtar et al., 2009).

To achieve the service resolution, there is a need to select the suitable components
in the selected devices. This is done by each selected device by using the Algorithm 3.2
that allows the selection of the convenient component for each service of the video player
task by considering the preferences of components regarding the devices capabilities.

Table 3.5: Preferences of DisplayVideo components in the FS device

Preference DisplayVideol DisplayVideo2
Resource.Hardware.Memory.MainMemory 0.8 1.0
Resource.Hardware.Memory.Disk 0.2 0.0

In Table 3.5, we list the preferences of components provided by FS device. The Dis-
playVideo2 component requires a main memory to cache the video, whereas the Dis-
playVideol component is less interested in Disk memory than the Main one.

Table 3.6: Selection of component for DisplayVideo Service

DisplayVideol DisplayVideo2 Selected Component
1.1 2.0 DisplayVideo2

Table 3.6 presents the values of DisplayVideo components provided by FS device in
order to select the suitable component for the DisplayVideo service. The DisplayVideo2
component has a higher value than the DisplayVideol component. Thus, it will be selected
for the execution of the DisplayVideo service.

3.6 Conclusion

A user task can be defined as an assembly of abstract components (i.e. services),
requiring services from and providing services to each other. To achieve the task’s exe-
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cution, it has to be resolved in concrete components, which involves automatic matching
and selection of components across various devices.

Towards these challenges, we proposed in this chapter, algorithms that ensure for each
service of a user task the selection of the best device and component for its execution. This
is done by considering in addition to the functional aspects of a task, some non-functional
ones like user preferences, devices capabilities, services requirements and components
preferences. These non-functional features allow to refine the devices and components
lists in order to select a suitable component in a convenient device, which have highest
values, for each service of the user task.

Thus, using this approach, it is possible to resolve user tasks by combining deployed
components provided by various devices that satisfies the services requirements and max-
imizes the user and components preferences regarding to devices capabilities. However,
user tasks in pervasive environments are challenged by the dynamism of their execution
environments due to users mobility, devices appearance and disappearance, etc. This may
have an impact on the tasks’ executions. Therefore, there is a need to detect these changes
and then adapt tasks regarding the captured changes, which are the topics of the next
chapters.
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4.1 Introduction

Due to the heterogeneity and dynamicity of pervasive environments, an important
aspect of user tasks is that their execution is very much dependent on their context.
Therefore, modeling the behavior of a user task needs to satisfy not only the functional
requirements in an effective way, but in order to provide better quality of service (QoS)
for user satisfaction, it should also consider the current state of the environment in which
the task is executing. In such situations, a component may depend on the changes of
components’ properties representing the environment or the user task. This gives a rise
to the need to monitor these properties in order to allow the component to be aware
about their changes.

In this chapter, we present our vision for the component model that allows com-
ponents to express explicitly their dependencies to properties provided by components
representing the execution environment or belonging to a user task. Moreover, we present

45
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a monitoring mechanism to detect the changes of properties of local or remote compo-
nents. If a component is not monitorable by default, we proposed some transformation
mechanisms to render it monitorable whenever there is a need.

Before going into the details of our contribution to tackle the above mentioned chal-
lenges, we provide an overview of the existing related approaches as well as their lim-
itations in Section 4.2. Then, we describe the principle of our monitoring approach in
Section 4.3. Section 4.4 describes how local and remote components can be transformed
to make them monitorable. In section 4.5, we present an example scenario through which
we describe how the monitoring is handled. Finally, Section 4.6 concludes this chapter
with an overview of our monitoring approach.

4.2 Existing Monitoring Approaches and Backrgound

The monitoring issue has been extensively studied in different contexts, notably in the
area of software components that has become an accepted standard for building complex
applications. In this section, we detail some of the existing related approaches as well as
their limitations.

4.2.1 Observation Contracts

In (Beugnard et al., 2009), authors propose a process that makes functional aspects of
components independent from observational ones in order to observe the execution con-
text. This separation of concerns allows the advantage of changing observations without
modifying the core part of components.
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interfaces interfaces
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Figure 4.1: Component with observation contracts (Beugnard et al., 2009)

Towards this objective, they propose to define a set of predefined components dedi-
cated to observation that can be attached to any functional component by complementing
the Fractal component model (Bruneton et al., 2006) with observation contracts as drawn
in Figure 4.1. The thick black box denotes the controller part of a component, while the
interior of the box corresponds to its content part. Interfaces appearing on the left and
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right sides depict server and client interfaces, respectively. Interfaces appearing at the top
of the box represent reflexive control (extra-functional) interfaces such as the life-cycle
controller, the binding controller, the attribute controller or the content controller inter-
faces. In the bottom of the component, observation contracts describes how a component
and an observable nodes are associated. It defines if the observation data are provided
or required by the component. In case of required observation data, it also defines the
mode: observation or notification. For a notification, it defines what event triggers this
notification.

COSMOS (Conan et al., 2007) component-based framework is used to describe the
contextual situations to which a context-aware application is expected to react. These
situations are decomposed into fine-grained units called context nodes. A context node is
a context information modeled as a Fractal component. Communication between context
nodes through the hierarchy may be bottom-up or top-down. The former case corresponds
to notifications sent by context nodes to their parents, whereas the latter case corresponds
to observations triggered by a parent node.

Hence, the monitoring contracts are used by components of applications to express
their monitoring needs of contexts expressed as COSMOS context nodes. For this goal,
these nodes should provide observation components through which they are monitored.
Otherwise, the monitoring could not be handled. This will limit the monitoring to only
defined observation components.

4.2.2 Pervasive and Social Bindings

In (Mélisson et al., 2010), authors propose pervasive binding to provide support for
service discovery in applications based on SCA (Service Component Architecture) (Open
SOA Collaboration, 2007). This binding is called UPnP binding since it is based on UPnP
protocol (UPnP Forum, 2008). Towards this objective, they propose to integrate UPnP
into FRASCATT platform (SCA runtime)(Seinturier et al., 2009) to support the remote
call of a service that is advertised via the UPnP protocol.

They propose also to integrate social bindings into FRASCATTI platform to allow
asynchronous event exchange via Twitter. These bindings allow the notification of situa-
tions identified by the system. To do that, the SCA services defining Twitter bindings do
not require to define specific interfaces. Instead, the services specify the representations
and types of the events that can be retrieved from the Twitter accounts. This information
will be used for marking the tweets with the event type that contains using Twitter tags.
Thus, by encapsulating the event notifications as SCA social bindings, it is possible to
support asynchronous event notification.

Hence, the FRASCATI platform was modified to supply spontaneous communica-
tions between SCA components using UPnP bindings and social binding. This limits the
execution of applications only on the modified FRASCATI platform and it does not con-
sider the existing open-source SCA runtimes (e.g. Newton, Tuscani, ...). Moreover, the
social bindings is used to send notifications about some events related to Twitter account.
Thus, they can not be used to notify components about events related to the changes of
properties of other components.
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4.2.3 Monitoring for SLA management

To ensure some Quality of Service (QoS) level in an application, (Ruz et al., 2010)
(Ruz et al., 2011) propose to monitor Service Level Agreements (SLA) conditions, that
are specified in contracts established between consumers and providers services, to cope
with the evolving SLA.

Their proposal is to separate the concerns involved in an autonomic control loop
(MAPE) (Computing et al., 2006) and implement those concerns or a set of them as
separate components attached to each managed service, in order to provide a monitoring
and management framework.

Figure 4.2: A service with its attached monitoring and management components (Ruz
et al., 2011)

Figure 4.2 shows a service C that is extended with one component for each phase of
the MAPE loop and converted into a Managed service C (dashed lines). The Monitor-
ing component collects monitoring data from service C. They consider one Monitoring
component attached to each monitored service, that collects information from it, and ex-
poses an interface to obtain the computed metrics. Monitoring involves the collection of
information from the target service (sensing), storage, filtering, and possibly processing
(apply functions over the sensed values) of the data to obtain a set of metrics that is
made available for other components. The implementation of the Monitoring component
should support the communication with sensors provided by the service C or, alterna-
tively, it must include specific sensors to monitor it. This way the Monitoring component
is effectively attached to the service, which becomes a monitored service from the frame-
work point of view. The monitored metrics may be exposed in a pull mode, where the
interested component asks explicitly for a value, or in a push mode, where the component
can ask for a metric and receive a periodic update each time that the value changes.

The Analysis component checks the compliance to a previously defined SLA. An SLA
is defined as a set of simpler Service Level Objectives (SLOs), which must be verified
at runtime. In any case a parsing component specialized in reading this description and
creating the desired SLO must be used. As input, the Analysis receives a set of condi-
tions (SLOs) to monitor, expressed in a predefined language. The Analysis checks the
compliance of all the stored SLOs according to the metrics obtained from the Monitoring
component. The Analysis checks if the SLA is being fulfilled, and if not, it sends an alarm
notification to the Planning component.
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The Planning component implements a strategy defined for reacting to an alarm
notified by the SLA Analysis component, which is a sequence of actions. These actions
are executed by the Execution component, which includes the specific means to make
them effective over service C, completing the loop.

They prototyped a framework based on GCM (Grid Component Model) model (Baude
et al., 2009), which enables large-scale grid/cloud deployment of components. The frame-
work is implemented as a set of non functional components that can be added or removed
at runtime to the membrane of any GCM component, which becomes a managed service
of the application. For example, a service that does not need monitoring information ex-
tracted, does not need to have a Monitoring component and may only have an Execution
component to modify some parameter of the service.

The limitation of their approach is that the management of a service is independent
of other services. Thus, the framework components are dedicated for a single service and
thus they cannot be used to monitor or to manage the changes of other services.

4.2.4 Publish/Subscribe Systems

The publish /subscribe interaction systems, also called event-based systems (Silva Filho
and Redmiles, 2005), represent the earliest research work to cope with the monitoring
challenge. Their objective is to provide subscribers with the ability to express their in-
terest in an events, in order to be notified subsequently of any event, generated by a
publisher, that matches their registered interest. In other terms, producers publish in-
formation and consumers subscribe to the information they want to receive. This is per-
formed by means of subscriptions. The subscription denotes the act of expressing interest
on some specific content, which can be performed in different ways such as: opening a
communication channel between two or more parties, posting a filter expression, defining
rules and queries on parts of this information content, becoming part of a group where
this content is produced, and many other ways.

notification | Consumer A

Producer 1
subscribe
Producer 2 :
E%bscribe
Producer 3 -l

> | Consumer B
notification

Figure 4.3: Basic components in a distributed publish/subscribe system (Silva Filho and
Redmiles, 2005)

In Figure 4.3, we depict the different elements of a publish /subscribe system:



50 CHAPTER 4. MONITORING OF COMPONENTS

— Producers, also called the publishers, are the entities that produce information in
the system. This information is called an event, which is published via the notifi-
cation service.

— Consumers, also known as subscribers, are the entities that consume information.
They express their interest in an event or a set of events by requesting one or more
subscriptions to the notification service.

— Subscriptions represent the act of expressing interest in specific content by con-

sumers. When a Consumer is no longer interested in this set of events, it cancels
the subscription corresponding through the notification service.
Events express a change of a component state. An event is expressed in the form
of a message, transmitting the content or information on this event. The message
can have different representations, such as plain text, tuples (attribute/value pairs)
etc.

— The notification service is the main element of a publish/subscribe system and
it is responsible for receiving subscriptions from consumers, and events coming
from their producer. With these two sets of information, it efficiently performs the
matching of subscriptions with their corresponding subset of events, routing the
resulting eventsto the interested parties. Thus, it notifies consumers that an event
is ready to be retrieved.

Moreover, publish /subscribe infrastructures supports different subscription languages.
Subscribers are usually interested in particular events and not in all events. The different
ways of specifying the events of interest have led to several subscription schemes.

(Eugster et al., 2003) classifies the subscription models into three main categories:
topic-based model, content-based model and type-based model. The earliest publish /-
subscribe model is based on the notion of topics or subjects. Participants can publish
events and subscribe to individual topics, which are identified by keywords. Publish/sub-
scribe systems based content allows the event system to use filters based on the content of
the event. In other terms, events are not classified according to some predefined external
criterion (e.g., topic name), but according to the properties of the events themselves. How-
ever, the subscription based type model uses concepts of object-oriented programming:
the events are declared as objects belonging to a particular type that can encapsulate
the attributes as well as methods (Baldoni and Virgillito, 2005).

We distinguish two main notification service architecture that are namely, centralized
and distributed architectures (Carzaniga et al., 2001). The centralized architecture uses
a single entity called the server (called also proxy or broker) to broadcast events between
producers and consumers. However, a distributed event notification service is composed
of interconnected servers, each one serving some subset of consumers and producers
of the service. The distributed architecture is classified into three basic architectures:
hierarchical client /server, acyclic peer-to-peer, and general peer-to-peer.

4.3 Monitoring Required Properties

4.3.1 Component Model

In an object-oriented paradigm, an object provides its services through a well-known
interface, which specifies the functionality offered by the object. However, in component-
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oriented paradigm, components may specify, in addition to their provided interfaces, their
properties, through which they can be configured, and their dependencies on the offered
services of other components using required interfaces.

As defined by (Szyperski, 2002), "a software component is a unit of decomposition
with contractually specified interfaces and explicit context dependencies only”. Thus, a
component exposes not only its services but it also specifies its dependencies. These
dependencies represent not only the offered services of other components but also ex-
ternal properties. It is possible that a component may depend on the changes of other
components’ properties in order to adjust its internal state.

The ability to specify dependency for external properties has two important impli-
cations. First, it results in specification at relatively fine granularity thus helping the
architects and designers in fine tuning the component’s requirements. Second, this fine
tuning helps in elaborating the contract between two components because the proper-
ties can be enriched with additional attributes that constrain the nature of the contract
through appropriate policies. Thus, modeling the application behaviour needs to satisfy
not only the functional requirements in an effective way, but also to consider external
properties, for example, knowing the current state of the environment in which the ap-
plication is executing in order to provide a better Quality of Services (QoS).

Most of the existing component models PCOM (Becker et al., 2004a), Fractal (Brune-
ton et al., 2006), OSGi (OSGI, 1999) and SCA (Open SOA Collaboration, 2007) allow
specification of their dependencies for business services external to the component. How-
ever they do not allow specification of their dependency for external properties in ex-
plicit way. Some of which leave such issues to the underlying middleware, which provides
a uniform Application Programming Interface (API) or a framework for this purpose.
This means that the programmers and the designers have to rely on the functionality
of the underlying middleware and such aspects need to be considered during application
development life-cycle.

Property

. T
Service Required

— Component € gopice

4

Required Property

Figure 4.4: Component describing its required properties

Towards these issues, we proposed an extension to the concept of component to allow
it expressing explicitly its dependencies to external properties in terms of required proper-
ties (Ben Lahmar et al., 2010b). Required properties are used to express the dependency
of components to properties values of other components.

Figure 4.4 shows main characteristics of a component that provides a service through
an interface and requires a service from other components. The component also exposes a
property through which it can be configured. In addition, the component also specifies its
dependency on a certain property. This required property, which appears at the bottom
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of the component, will be satisfied if we can link this component with another component
that offers the requested property, thus, solving the dependency.

4.3.2 Monitoring Specification

Using required properties allows a component to express its dependencies to external
properties. It is possible that the component depends on the changes of these external
properties. This requirement can be specified explicitly through its required properties.
Thus, there is a need to a monitoring mechanism in order to allow it to be aware about
their changes. In (Ben Lahmar et al., 2010b), we proposed a monitoring approach to per-
mit to a component to express its needs to monitor the changes of its required properties.

Monitoring required properties correspond to detecting changes of offered properties
of other components. Hence, each offered property can be monitored by other components
that depend on its changes. The process consists in informing the interested component
about the changes of required properties or notifying it on a regular way or for each
variation.

GenericProx
Comionent o8 Y

M

ErequiredProperty : propertyOfB
{e monitoring= ByPolling

____qpropertyOfB
ServiceB[ Component
— B

Figure 4.5: Specification of monitoring by polling

We distinguish two monitoring types: by polling and by subscription. Polling is the
simpler way of monitoring, as it allows the observer to request the current state of an
external property whenever there is a need. Figure 4.5 shows a component A express-
ing through its required property the need to monitor by polling an external property
provided by a component B.

PCNotification PCSubscription
Component | P

h— A

requiredProperty : propertyOfB
« monitoring=BySubscription

» notificationMode = OnChange
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. propertyOfB
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Figure 4.6: Specification of monitoring by subscription with notification mode OnChange
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Figure 4.7: Monitoring by subscription with notification mode OnlInterval

However, subscription allows an observing component to be notified about changes of
monitored properties. There are two modes of monitoring by subscription: 1) subscription
OnChange which specifies that the subscriber component is notified every time the value
of the property changes; 2) subscription OnlInterval which specifies that the subscriber
component is to be notified after a specified time interval.

For the notification OnChange, a component may precise the starting time and the
duration of notifications. For the notification OnInterval it must specify the notification
interval value and may also precise the starting time and the duration of notifications.
Figure 4.6 shows how the component A specifies its need to monitor a required property
offered by the component B by subscription mode OnChange, whereas, Figure 4.7 shows
its monitoring request by subscription Onlnterval.
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Figure 4.8: Specification of a remote monitoring need

To carry out a distributed application in a pervasive environment, some components
may be interested in monitoring properties of remote components. Using required proper-
ties provides the ability to a component to specify that its required properties are offered
by remote components. As the local case, the remote monitoring can be achieved by ob-
serving to the current state of the remote components, or by subscribing to their changes.
Figure 4.8 shows how the component A specifies its need to monitor a property offered
by the remote component B.
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Figure 4.9: Transformation of a local component for a Monitoring by polling

4.4 Transformation Mechanisms

The specification of required properties may contain a monitoring request by polling
or by subscription of those properties. Therefore, the component maintaining the required
properties, should allow the monitoring of its properties by offering a monitoring service
and having a notification mechanism. However, some components may not define their
offered properties as monitorable resources despite the components’ requests.

Our objective is that given a user task, which was not conceived for dynamic en-
vironments with changing QoS, we would like to transform it in order to allow it to
monitor the properties of components which depend on. The transformation may applied
to some of its components available on the device locally resulting in local transformation
or it may applied to a component in remote device, in which case it is known as remote
transformation.

The transformation counsists of creating a composite that encapsulates the considered
component with predefined monitoring components (Belaid et al., 2010). The new com-
posite offers monitoring services in addition to the services of the considered component.

In the following, we present transformation mechanisms to render local as well as
remote components monitorable in order to respond to monitoring needs of other com-
ponents.

4.4.1 Local Monitoring

A component can be transformed in order to be monitored locally by polling or by
subscription. In the following, we describe the transformation mechanism for each type
of the monitoring.

Monitoring by Polling

A component may express its need to monitor by polling a required property provided
by another component (see Figure 4.5). The monitoring by polling of a property can be
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made by calling its getter method. However, the component that wishes to monitor a
property of another component does not know a priori the type of this component. To
complete the monitoring of any component from only the name and type of a property,
the interested component often uses an appropriate interface that provides the method
getPropertyValue(propertyName) to request the current state of a property.

public interface GenericProxy {
Property[] getProperties();
Object getPropertyValue(String propertyName) ;
void setPropertyValue(String propertyName, Object propertyValue);
Object invoke(String methodName, Object[] params);

Figure 4.10: Description of the Generic Proxy interface

However, the component to monitor may not define its offered properties as moni-
torable by polling resources despite the request. So, we need to transform the component
to make its properties to be monitorable by offering an appropriate interface of monitor-
ing.

For this purpose, we defined a generic proxy service which can be applied to any
component of a user task. A general purpose of the GenericProxy interface is to provide
four generic methods that are described in Figure 4.10. Each implementation of this
interface is associated with a component for which the first method getProperties() returns
the list of the properties of the component, the getPropertyValue() returns the value of a
property, the setPropertyValue() changes the value of a property and the invoke() method
invokes a given method on the associated component and returns the result.

Thus, the transformation consists of a creation of a new composite that encapsulates
the considered component with a LGenericProxy component, which provides a local im-
plementation for the GenericProxy interface. Thus, when a LGenericProxy component is
associated with a local component, it translates its method calls into calls of this latter.
The new composite offers in addition to the service B, a GenericProxy service that allows
a component to get the properties value of another component using its getProperties()
method.

Moreover, the new created composite allows a component not only to observe the
changes of its required properties, but also to reconfigure some of them if it is needed.
This is ensured using the setPropertyValue() method of the GenericProxy interface.

In Figure 4.9(a), we show the transformation of the component B to render its prop-
erty monitorable by polling by the component A, while Figure 4.9(b) is a symbol, we
used to represent the transformation for monitoring by polling.

Monitoring by Subscription

There are two modes of monitoring by subscription: 1) OnChange and 2) OnlInterval.
For the the both modes of notification, the component B must offer a subscription service
to the component A and in turn, the component A must subscribe to the component
B specifying its need. When a change of the property happens, a notification is sent
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from the component B to A. To provide the monitoring ability to the component B, we
propose to transform it into a composite offering a monitoring interface. This is done by
encapsulating it with MonitoringBySubscription and LGenericProxy components.

public interface PCSubscription {
boolean subscribe(PCNotification listener, String propertyName) ;
boolean renewSubscription(PCNotification listener, long duration);
boolean unsubscribe(PCNotification listener, String[] names);

}

Figure 4.11: Description of the property changed subscription interface

public interface PCNotification {

void notify(Object source, String propertyName, Object propertyValue);
}

Figure 4.12: Description of the property changed notification interface

The MonitoringBySubscription component implements a PCSubscription interface, as
described in Figure 4.11, in order to allow a subscriber component to subscribe, to renew
its subscription or to unsubscribe to property changed event. The MonitoringBySubscrip-
tion component also implements a PCNotification interface, as depicted in Figure 4.12, in
order to send notifications the interested components.
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Figure 4.13: Monitoring by subscription with notification mode OnChange

When the notification mode is on change for a required property of B (Figure 4.13(a)),
the MonitoringBySubscription component offers a (callback) service of notification PCNo-
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Figure 4.14: Monitoring by subscription with notification mode Onlnterval

tification to the component B so that it can be notified of the changes of a required
property and in turn inform all the subscribers of this change. To allow the component
B to notify the MonitoringBySubscription for the change of its properties, the byte-code
of the component B is modified at runtime by adding new instructions for notifications.

Thus, the created composite provides in addition to the GenericProxy service, a PC-
Subscription one, while the component A should specify through a required interface its
need to PCSubscription service.

For the monitoring by subscription with notification mode on interval, as shown in
the Figure 4.14(a), each time the MonitoringBySubscription component have to notify the
subscriber (the component A), it gets (or monitor by polling) the value of the required
property of the component B via the LGenericProxy component.

Figures 4.13(b) and 4.14(b) shows the symbols we used for denoting subscription on
change and subscription on interval, respectively.

4.4.2 Remote Monitoring

As well as the local monitoring, a component can be transformed in order to render
it monitorable to satisfy a remote component request (See Figure 4.8).

In case of the monitoring by subscription, whatever the notification mode, the moni-
tored component (server side) must offer a remote subscription service over the network
to the subscriber component (client side) and in turn, this later must subscribe to the
remote server component specifying its need. However to provide a remote monitoring by
polling the server component must offer a GenericProxy service and should also be reach-
able over the network as for the local case. We note that for the remote purposes there
are two transformations: server-side and client-side (Belaid et al., 2010) as following.
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Figure 4.15: Remote monitoring: server side

Server-side transformation

To render a remote component B monitorable, the transformation consists first of en-
capsulating it in a composite (Figure 4.15(a)) such as defined for the local transformation
for the monitoring by subscription. Then it adds a new RServer component that integrates
the network communication aspects like remote call and event processing. The remote
call of the RServer will be used by the service B, the GenericProxy service and PCSubss-
cription service to allow the remote subscriptions. However, the event processing of the
RServer component is used to send notifications over network to the subscriber component
once it is notified by MonitoringBySubscription component. The RServer component has
two references: one for the subscription service offered by the MonitoringBySubscription
component, which is used to subscribe to the changes of properties of the component
B. The second reference is for the GenericProxy service provided by the LGenericProxy
component, which is used for the monitoring by polling on behalf of the client component
A.

We note that the newly defined composite provides the GenericProxy service and
the PCSubscription service in addition to the services of the component B. Thereby it
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Figure 4.16: Remote monitoring: client side

can be used, for local monitoring. Figure 4.15(b) is a symbol denoting the server-side
transformation.

Client-side transformation

A new composite is created in the client side to represent the remote component B.
This composite provides the service B, a GenericProxy service and the PCSubscription
one, as shown in Figure 4.16(a). The ServerProxy component is a byte-code generated
component at runtime. Its implementation of the service B consists on forwarding its
calls to the RGenericProxy component. The RGenericProxy component corresponds to a
remote implementation of the GenericProxy interface. It forwards the calls of its methods
over the network to the RServer component in the server side. The MonitoringBySubscrip-
tion component is able to receive subscriptions requests from the component A that are
forwarded to the RGenericProxy component for a transfer over the network to the RServer
component..

When the RGenericProxy receives a notification from RServer component, it forwards
it to the MonitoringBySubscription component that in turn notifies by callback the target
component A. Figure 4.16(b) is a symbol, we used to represent the transformation in the
client-side.

4.5 Example Scenario

Referring back the video player task presented in Chapter 1. Assume that the VideoDe-
coder component is dependent on the network signal property to decide the rate of frames
transferred to the DisplayVideo component. In case of high throughput, video frames can
be sent at higher rates. However, in case of weak throughput, smaller rate may be applied
for a quick transfer.
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Figure 4.17: Monitoring of required properties of the video player task

The VideoDecoder component may depend also on the changes of battery powers of
the communicating devices. If the battery power of the device is low, it uses lower degree
of decoding to conserve the battery power. However, if the remaining battery power of
each device is above a certain threshold (e.g., 20 percent), higher rate of decoding can be
used for a better throughput over the network.

Thus, there is a need to monitor by polling the remaining batteries of the communicat-
ing devices and to subscribe to the changes of the network throughput to decide whether
the decoded frames rate to apply for the video sent to the DisplayVideo component.

Towards this objective, we need some adaptive logics that will make appropriate adap-
tation decisions based on certain rules for adaptation. This adaptation logic has to be
defined by the architect at design time to make the task adaptable. It is encapsulated
in an TaskAdapter component. The TaskAdapter component expresses through its re-
quired properties its need to monitor local as well as remote properties offered by other
components in order to adapt the task.

Figure 4.17 shows the monitoring needs of the video player task. The TaskAdapter
component expresses the monitoring needs by subscription mode towards the signal prop-
erty of a WiFi component in order to adjust the frames sent to the DisplayVideo compo-
nent. It expresses also its need to observe the remaining batteries of the local and remote
devices.

Assume that the WiFi and Battery components do not provide the monitoring ser-
vices despite the request of the TaskAdapter component. In order to be aware about their
changes, we propose to transform them into monitorable components. Figure 4.18 shows
the transformation of the WiFi component to a new composite to render its property
monitorable by the VideoDecoder component. The created composite exposes in addi-
tion to the service of the WiFi component, a PCSubscription service that is provided by
Monitoringbysubscription component to allow the TaskAdapter component to subscribe
to the changes of the signal property. We used the transformation symbol for a moni-
toring by subscription mode OnChange, as depicted in Figure 4.13(b), to represent the
transformation of the WiFi component.
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Figure 4.18: Transformation of video player task

Similarly, we have transformed the remote and local Battery components to monitor
by polling their powers. For a local monitoring by polling, the Battery component of
the device A is encapsulated with a LGenericProxy component in order to observe its
changes. We used the transformation symbol for a local monitoring by polling (see Figure
4.9(b)) to represent the transformed Battery component of the device A.

However, to monitor the remote Battery component of the device B, two compos-
ites are created for a client and server transformations. In the device A, a ServerProxy
component is generated to represent the remote Battery component. This component is
encapsulated with a RGenericProxy component to forward its remote calls to the device
B following the transformation symbol in Figure 4.16(b). However, in the device B, the
created composite consists of an RServer that receives the subscription requests from
the RGenericProxy component of the device A, then translates them in order to request
the LGenericProxy component about the power property of the Battery component of
the device B. The transformation of the Battery component in the device B is modeled
following the transformation symbol in Figure 4.15(b).

4.6 Conclusion

In this chapter, we proposed an approach for monitoring of properties of components.
The flexibility offered by our approach is that any component that one wants to monitor
properties offered by other components, but these latter do not offer these capabilities
inherently, can be transformed to offer these functionalities. These aspects are treated
independently of the functional code and, hence, do not make the situation more complex
for the developers. We proposed an extension to the component concept in order to allow
it to express explicitly its dependency to properties offered by other components. Thus,
the component is able specify in addition to its provided and required services, and
its properties, the required properties that may depend on their changes and needs to
monitor them.
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This chapter represents a foundation for the next chapter where we will define an
adaptation approach for components-based user tasks. In fact, the monitoring approach
will be used to capture the events that trigger the adaptation of applications in dynamic
environments. In the next chapter, we tackle the adaptation issues given the captured
changes in the execution environment.
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5.1 Introduction

A Resolution of an abstract user task corresponds to the selection of concrete compo-
nents provided by various devices of the execution environments. However mapping from
abstract to concrete task cannot be done effortlessly; several problems can be detected
at init time that prevent the mapping to be achieved successfully, e.g., heterogeneity of
network connection interfaces, heterogeneity of interaction protocols, etc. These prob-
lems may imply a mismatch between the given abstract description of the task and the
concrete level, if the current abstract description of the task could not be realized in the
given context.

Moreover, user tasks in pervasive environments are challenged by the dynamicity of
their execution environments due to, e.g., users and devices mobility, which make them
subject to unforeseen failures and mismatching.

We distinguish two major events categories triggering the adaptation of user tasks in
pervasive environments namely, failures and mismatching. The failures may be caused
by changes at runtime of user preferences or devices capabilities or due to the mobility
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of devices etc. However, the mismatching between abstract and concrete levels can be
captured at init time or during the execution of the task to denote the inability of the
abstract description to be executed in the given context or in the new context if it changes.

Therefore, there is a crucial need to overcome them and hence to adapt the user tasks
to ensure the continuity of their execution.

In literature, two main adaptation techniques are used, which are parametric or com-
positional mechanisms to adapt applications in pervasive environment (McKinley et al.,
2004). Parametrization techniques aim at adjusting internal or global parameters in or-
der to respond to changes in the environment. Compositional adaptation goes far beyond
the simple code tuning, and allows exchange of algorithmic and structural parts of the
system in order to improve a program’s fit to its current environment. It is classified
into structural and behavioral adaptations. The behavioral adaptation corresponds to
the modification of the functional behavior of an application in response to changes in its
execution environment. However, structural adaptation allows the restructuring of the
application by adding or removing software entities with respect to its functional logic.

In this chapter, we studied the different contexts triggering the compositional adapta-
tion of user tasks in pervasive environments and we present the corresponding adaptation
actions to overcome the failures and mismatches detected at init time or during their ex-
ecution.

The chapter is organized as following. First, we cite some adaptation approaches in
Section 5.2. Then, in Section 5.3, we describe the most prominent adaptation contexts
that denote failures or mismatches between abstract and concrete levels. After that,
we detail our compositional adaptation approaches that are the reselection of services
implementations (in Section 5.4) and restructuring of abstract tasks (in Section 5.5). For
each approach, we explain the corresponding adaptation actions to overcome the failures
or mismatching illustrated by an example scenario to better explain the principle of each
approach. Finally, we conclude the chapter with an overview outlining the most important
aspects of our adaptation approaches.

5.2 Compositional Adaptation related Approaches

The problem of adapting component-based applications has been extensively stud-
ied in the literature. In this section, we cite approaches that propose solutions to the
compositional adaptation issue. We distinguish approaches for reselection of services’
implementations and the structural adaptation ones.

5.2.1 Service Reselection Adaptation
QoS-based Reselection

(Li et al., 2010b) proposes an adaptation approach to reconfigure SOA-based applica-
tion to comply with a new quality of service (QoS) constraint by replacing its individual
or multiple component services.

The reconfiguration is driven by the changes of the QoS of SOA-based applications.
They distinguish two major causes that can trigger the dynamic reconfiguration. Firstly,
if one component service violation happens, thus the service needs to be replaced by an
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appropriate candidate in order to ensure an application working by complying with the
initial QoS constraint. Secondly, if a user expects to improve the QoS of the application,
there is a need to replace components in order to satisfy a given QoS constraint.

In their work, authors focus on the second cause. For this, they propose to adapt
the applications in two phases: 1) try to replace each individual component service or
2) replace multiple components services. For the both phases, the adaptation is achieved
according to the global significance value. The global significance value is obtained by
a weighted quantitative calculation of QoS attributes of each service. In fact, four QoS
attributes of Web services are considered as follows: Response Time, Cost, Reliability,
Availability.

If the global significance value of one service is biggest, this means that it contribution
on the improvement of the QoS of the application is greatest, thus it should be replaced
firstly. Therefore, they go through the candidates of the service which have the same or
similar functions with it to search for a substitutor. If all candidates cannot comply with
the QoS constraint, it will try to replace another service whose global significance value
is the highest among the rest of component services and so forth. If all attempts failed in
the first phase, the number of the replaced services will be increased gradually to replace
multiple component services until the application meets the new QoS constraint required
by users.

Hence, using this approach allows to replace components gradually given their global
significance values, whenever the user preferences change. However, in their work they
do not consider neither the appearance/disappearnce of devices or components nor the
changes of devices capabilities which are also prominent effects having an impact on
the components replacement. Moreover, identifying the replaced components among a
large number of components does not reveal an easy task as they should attempt the an
expanded number of replacements in order to identify the suitable one.

Service Process Reconfiguration with End-to-End QoS Constraints

(Zhai et al., 2009) presents an approach for repairing failed services by replacing them
with new ones and ensuring that they meet the user specified end-to-end QoS constraints.
The reconfiguration is triggered by services failures to deliver the QoS as requested by
users because of, for example, network delay, host overload, unexpected inputs, etc.

Their proposal consists of a reconfiguration algorithm that is designed to produce
reconfiguration regions that include one or more failed services. When one or more services
in a service process fail at runtime, they try to replace only those failed services in that
a way, the resulting service process must still comply with the original end-to-end QoS
constraints.

The algorithm first identifies the regions that are affected by faulty services. The
motivation from the reconfiguration region is to reduce the number of services that need
to be replaced by the service recomposition algorithm. In this algorithm, the region
identification procedure increases the size of affected region gradually. The range bound
starts from zero, which means the algorithm will try to replace only the failed services
first. For a failed service, an output reconfiguration region extends from it to all nodes
that are connected to it. If it fails to replace the services successfully, the range bound
will be increased, therefore, more services will be added to the region to be reconfigured.
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The algorithm will then try to recompose these regions. This recomposition is a multi-
QoS attribute service composition problem with end-to-end QoS constraints. After the
initial recomposition attempt, if there are still some regions that cannot be reconfigured,
the algorithm will increase the range of the affected regions, which means more nearby
services will be added into the region. The algorithm continues until all regions have a
satisfactory subprocess composition.

Thus, the adaptation is ensured by identifying services in reconfiguration regions and
attempting to replace them one by one until the end-to-end QoS constraints are satisfied.
However, this task does not seem to be trivial for a region with an expanded number of
services.

Reconfigurations Plans

MADAM (Mobility and ADaption enAbling Middleware) (Floch et al., 2006) proposes
to reconfigure applications by using plans. A plan describes an alternative application
configuration. It mainly consists of a structure that reflects the type of the component
implementation and the QoS properties associated to the services it provides. To select
the suitable configurations, they are ranked by evaluating their utility with regards to the
application objectives and the user preferences in order to select a configuration with a
highest utility. However, these configuration plans are predefined by a developer at design
time, which limits the possible adaptations to these predefined plans. Moreover, the util-
ity function is limited to the application and hence can not be used for other applications.

The PCOM system (Becker et al., 2004a) also uses reconfiguration plan algorithms
to support a PCOM component reselection whenever this later is no longer available.
With respect to the application model defined by PCOM, which is modeled as a tree, the
reconfiguration consists of escalating to the parent component. The escalation continues
until the conflict is resolved by reselecting components. Thus, the replacement of a sub-
tree starts from the predecessor of the component and may include its successors if it is
necessary even if they are not concerned by the changes.

5.2.2 Structural Adaptation
Adaptation of Components Interfaces’ Mismatches

In (Becker et al., 2004b), authors propose an adaptation approach which is built upon
a classification of components interfaces’ mismatches. They introduced a taxonomy to
enumerate different types of component mismatches which will be taken into consideration
for the adaptation.

As drawn in Figure 5.1, they distinguish the Signatures mismatches, which is caused
by different signatures of components interfaces (methods’ names, parameters’ types,
etc.). The mismatches between Assertions (i.e. pre- and postconditions for the methods)
of interfaces are captured when comparing provided and required interfaces. Protocols
mismatches are related to the messages of the interacted components for example ordering
of messages, absence of messages etc. The Quality Attributes mismatches are captured
if the provided and required interfaces do not make the same QoS assumptions about
the authentication, access, and integrity of messages, etc. The Concepts mismatches are
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Protocols

Assertions

Signatures

Figure 5.1: Classification of interfaces mismatches (Becker et al., 2004b)

detected if for example corresponding interface elements of a provided and required in-
terface, are identical with respect to their definition, but have been used with different
terms (e.g. customer and buyer).

To cover these mismatches, they identify a number of patterns to be used for eliminat-
ing the interfaces’ mismatches. They classify the adaptation patterns into two categories:
functional adaptation pattern to bridge the functional component incompatibilities and
extra functional adaptation pattern to increase a single or several QoS of the component
being adapted. For example, the Adapter, Decorator and Bridge patterns (Gamma et al.,
1995) are used to bridge the functional component incompatibilities and to ensure the
delegation functionality. However, the extra-functional adaptation patterns consists of an
increasing a single or several quality of attributes of the components being adapted like
security, authentication, encryption etc.

The major drawback of these adaptation patterns that are limited to the mismatches
between components’ interfaces and they do not take into account the network and hard-
ware heterogeneities of devices.

AO-ADL

(Pinto and Fuentes, 2007)(Fuentes et al., 2007) present an Aspect Oriented-Architecture
Description Language (AO-ADL) to model applications. The main architectural elements
of AO-ADL are components and connectors. AO-ADL considers that components having
either crosscutting (named aspectual component) or non-crosscutting behavior (named
base component) exhibiting a symmetric decomposition model. The aspectual compo-
nents are used to adapt an AO-ADL application by inserting crosscutting behaviour
with respect to the functional behaviour of the application.

Any component (i.e., base or aspectual component) is described in terms of offered
services, required services and parameters. AO-ADL components may play an aspectual
or non-aspectual role depending on the particular interactions in which they participates.
This role serves as an identifier for the component or aspect and is used for coupling
between components.
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Figure 5.2: Example of an aspectual composition

The binding between components is specified in AO-ADL connectors. AO-ADL con-
nectors specify how aspectual components are weaved with base components during com-
ponents’ communication. They distinguish two different binding to differentiate between
aspectual components and base components. A component binding describes the connec-
tion between the base components, while the aspectual binding specifies the name of an
aspectual component and a pointcut expression. These connectors are described following
templates that are specific to them.

Figure 5.2 shows an aspectual component which is used to ensure the security of
transactions in Automated Teller Machines (ATMs) system for a bank. The Encryption
component, which is included as an aspectual component, affects the interactions between
the ATM-GUI and the ATM components, between the ATM and the Bank components
and between the Bank and the Account components. These connections are specified
by three different connectors. Consequently, an aspectual-role clause specifying the en-
cryption aspectual behavior and an aspectual-binding clause specifying how encryption
is bound to the interaction among base components have to be replicated in the three
connectors.

However, the instantiation of the connector template is done at design time, which
limits the possibility to extend applications with new aspectual components. Moreover,
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they consider a connector template per aspect. However, it is not possible to define as
many connector templates as possible aspects.

Mismatch patterns

(Kongdentha et al., 2009) (Benatallah et al., 2005) have investigated matching of Web
service interfaces by providing a classification of common mismatches between service
interfaces and business protocols, and introducing mismatch patterns. These patterns
are used to formalize the recurring problems related to the interaction between services.

Each mismatch pattern has a name and a mismatch type that provides a description
of the mismatch that is captured. A mismatch pattern includes a template of adaptation
logic that resolves the detected mismatch.

Their proposal is to use aspect-oriented approach to specify the mismatches patterns.
In this case, each mismatch pattern consists of advice templates which are implemented
using XQuery templates. To instantiate adaptation advices, developers need to provide
transformations functions, i.e., XQuery functions, to the advice templates. While in-
stantiating each adaptation advice, developers also specify the process execution point
(joinpoints) where the advice needs to be executed. Joinpoints are specified in terms of
queries on the process code. Both the joinpoint queries and their corresponding advice for
each of the mismatch are described in a single file called the Aspect Definition Document
(ADD).

However, their proposed mismatch patterns are limited to the interfaces and protocols
mismatches. Moreover, the specification of adapters supplies some pseudo code predefined
by the developers. Thus, it is not possible to integrate them dynamically at runtime
without the assistance of the developers.

Mediating Connectors

In (Spalazzese and Inverardi, 2010), authors propose an adaptation approach to allow
the interoperability between components supporting different interaction protocols at
runtime. Their approach is based on mediating connectors that are used to dynamically
cope with components’ behavioral diversity.

The approach first decomposes the components’ behavior into elementary behaviors
representing elementary intents of the components. Then, there is a need to check the
possibility for the two protocols to communicate. If the two protocols are not comple-
mentary, the framework should identify the mismatches in order to find out the suitable
mediating connector to use.

Towards these mismatches, they propose a list of basic mediator patterns given a
mediator connector template. These patterns are: (1) Message Consumer Pattern, (2)
Message Producer Pattern, (3) Message Translator Pattern, (4) Messages Ordering Pat-
tern, (5) Message Splitting Pattern, (6) Messages Merger Pattern.

Based on the identified mismatches and their relative solutions, they intend to de-
fine a composition strategy to build a mediating connector’s behavior starting from the
elementary mediating behaviors.

This preliminary work introduces Connect, a software framework which aims to re-
solve the interpretability challenge for dynamic application domains. The mediators will
be used to resolve a specific components’ mismatches, which are related to protocols’



70 CHAPTER 5. USER TASKS ADAPTATION

heterogeneity. The specification and realization of mediators remain a challenge.

In (Li et al., 2010a), authors propose too to use the mediation patterns to overcome
behavioral mismatches for web services interaction. They categorize the mediation on two
levels, signature and protocol mediations. Signature mediation focus on message types,
methods names, etc. In comparison, protocol mediation focus on resolving mismatches
occurring at the message exchanging sequences. They have proposed six basic mismatch
patterns and pointed out that all possible protocol mismatches can be composed by these
basic patterns.

The basic mediators are namely, (1)Storer pattern, (2) Constructor pattern, (3)
Merger pattern, (4) Splitter pattern (5) Storing Controller pattern and (6) Constructing
Controller pattern.

The purpose is to introduce mediators when composing services together in order
to make both of the requester and provider interfaces fit each other smoothly. Each
mediator is based on transformation rules to deal with these interfaces. Therefore, a
mediator pattern consists of input interfaces that are used to receive messages sent from
a service requestor, output interfaces that are used to send messages to a provider and
a rule engine to determine which transformation rule defined in the rule base should be
activated. However, these proposed mediators connectors are limited to the protocol or
signature level.

5.3 Adaptation Context

We are interested in the compositional adaptation techniques. In this section, we
put the light on the most important contexts that may trigger either the reselection of
services’ implementations or the structural adaptation of an abstract description of a user
task.

A generalized notion of context has been proposed in (Abowd et al., 1999) as any
information that can be used to characterize the situation of an entity (person, location,
object, etc.). We consider adaptation context as any piece of information that may trigger
the adaptation of the task.

For a reselection adaptation, a context may represent an event corresponding to the
disappearance of a device, which may include components used for the execution of a user
task. In this case, the disappearance of the device leads to the failure of the task execution
as the used components are disappeared. Similarly, the disappearance of components
because of their undeployement implies the failure of the task if they are selected for the
execution of a user task.

To trigger the reselection of services, an adaptation context may imply the appearance
of a new device or component that may be interesting for the execution of the user task.
In this case, there is a need to adapt the user task in order to use the new components.
Moreover, the changes of user preferences or devices capabilities may have an impact on
the execution of the user task.

We are also interested in contexts that represent mismatches between an abstract
description of a user task and the concrete level to trigger a structural adaptation. These
mismatches imply that the current abstract description could not be realized in the given
context, or in the new context, if it has changed.
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Figure 5.3: Categorization of mismatches levels

We have classified the mismatches level, where they occur, into three categories: inter-
components, intra-device and inter-devices mismatches as shown in Figure 5.3.

At the inter-components level, we consider the mismatches that may arise at init
time due to the non-satisfaction of the extra-functional requirements of the components.
These latter are system requirements which are not of a functional nature, but contribute
decisively to the applicability of the system (Galster and Bucherer, 2008) like security,
reliability, etc. Thus, if they are not ensured at the concrete level, this may prevent the
abstract task to be well mapped. At this level, the mismatches may be also related to
the heterogeneity of signatures, protocols or semantic of services (Becker et al., 2004b).
In the present work, we do not focus on these mismatches.

It is also possible to detect mismatches at intra-device level. These mismatches denote
that the desired characteristics of the devices are changed at runtime like using reduced
capacities as a congested memory, a slower CPU, etc. Thus, there is a need to adapt the
user task at runtime to consider these changes.

In case of a distributed environment, there is also a need to consider the mismatches
occurring at inter-devices level. These mismatches may be caused by the heterogeneity of
network characteristics of communicating devices for example, using heterogeneous inter-
faces of connection. Thus, they have an impact in the communication between devices.

In the following, we present the different adaptation actions to overcome the captured
failures and mismatches and hence ensure a continuous execution of the task.

5.4 Partial Reselection Adaptation

In this section, we propose a dynamic compositional adaptation approach by replac-
ing services implementations at runtime for a continuous execution of a user task. The
reselection of services is triggered by the failures of task execution due to the disappear-
ance/appearance of devices or components, the changes of user preferences or devices
capabilities. The adaptation consists of a partial reselection of services implementations
since there may be cases in which components are not affected by the contexts’ changes.
We describe in the following the adaptation actions related to the most prominent events.

5.4.1 Adaptation actions

For each adaptation context, we defined the corresponding actions (Ben Lahmar et al.,
2012) as following:
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Disappearance of a used device If a device disappears from an execution environ-
ment, this may imply the disappearance of components selected for the execution of a
user task. Therefore, there is a need to check whether the disappeared device was selected
for the execution of the user task or not. We have considered previously that the resolu-
tion of an abstract task is achieved in two steps; 1) selection of devices for each service of
the user task and 2) selection of concrete components therein (see chapter 3). As a result
of the device selection phase is a device table that ranks devices, for each service of the
task, from high to low values.

According to this table, it is possible to determine if the disappeared device has the
highest value or not. If it is, we propose the selection of a subsequent device in the devices
table and then select its components to fulfill the replacement of services implementations.
However, if the disappeared device has not the highest value in the devices list for a task’s
service, there is no need to trigger the adaptation of the user task and we require only
removing it from the table (see Algorithm 5.1).

Algorithm 5.1 DeviceDisappearanceAdaptation(Task t, DevicesTable dt, Device d)

1: for each service s; € t do
if dt(s;)[1].d——d then
if dt(s;)[2] # Null then
Select dt(s;)[2].d for s;
ComponentSelection(s;, dt(s;)[2].d)
end if
remove d and its corresponding value from the dt(s;)
end if
end for

Appearance of a new device The appearance of a new device may trigger the adap-
tation of a user task, if some of the task’s services fit in and its capabilities ensure their
requirements. Indeed, a new device appearing in the execution environment may be in-
teresting for the execution of some services of the task, if it has a highest device value.
The fact that it has a higher value than the existing devices, means that it responds
better to the services requirements and to the user preferences.

Therefore, we require to calculate its value for each service of the task fitting in, to
determine whether it has a higher value than the value of the currently used device. If
it is, the new device will replace the already selected device to map the services with its
provided components. Consequently, there is a need to select the convenient components
to achieve the services reselection (see Algorithm 5.2).

Disappearance of a component Another important event that may trigger the adap-
tation of a user task is the disappearance of a component from a selected device. The
disappeared component may not be selected for the execution of a service of the user
task. Therefore, there is a need to check in the components table associated to that de-
vice whether the disappeared component was selected for the execution of a task’s service.
If it is not, there is no need to reselect a new component for the service’s execution. Oth-
erwise, we propose to select the subsequent component in components table associated
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Algorithm 5.2 DeviceAppearanceAdaptation(Task t, DevicesTable dt, Device d)
1: for each service s; € t do
if fit(s;,d) and fit(colocation(s;), d) then
calculate DV the device value of d for s;
if DV > dt(s;)[1].DV then
Select device d
ComponentSelection(s;, d)
end if
insert the couple < d, DV > in the dt(s;)
9:  end if
10: end for

Algorithm 5.3 ComponentDisappearanceAdaptation(Task t, ComponentsTable ct, De-
vicesTable dt, Device d, Component c)

1: for each service s; € t do
2. if d was selected for s; then

3: if ¢ == ct(s;)[1].c then

4: if ct(s;)[2] # Null then

5: Select ct(s;)[2] for the execution of s;
6: else

7: select dt(s;)[2].d for s;

8: ComponentSelection(s;, dt(s;)[2].d)
9: end if

10: remove ¢ and its corresponding value from ct(s;)
11: end if

12:  end if

13: end for

with the service, if the device provides more than one component functionally similar
to the disappeared one (see Algorithm 5.3). But, if the device has no more components
matching with the disappeared component, there is a need to select the subsequent device
in the devices table and consequently select a component matching with the disappeared
one therein.

Appearance of a new component in a selected device During the execution of
a user task, a new component may be deployed on a device selected for the execution of
a user task. The new component can be interesting for the execution of the user task if
its description matches with a service of the user task. If it is, we require calculating its
value in order to compare this latter with the value of the already selected component.
If the new component has the highest value, it will be selected for the execution of the
service of the task. Otherwise, the currently used component is kept and the new one is
added to the ranked components table associated with the service for a future use (see
Algorithm 5.4).
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Algorithm 5.4 ComponentAppearanceAdaptation(Task t, ComponentsTable ct, De-
vicesTable dt, Device d, Component c)

1: for each service s; € t do
2: if d was selected for s; then
if s; matches ¢ then
CV-calculateCV(c, DC)
if CV > ct(s;)[1].CV then
select ¢ for the execution of s; in d
end if
insert the couple ¢ and its corresponding value in ct(s;)
end if
10:  end if
11: end for

Algorithm 5.5 ChangesOfDevicesValuesAdaptation(Task t, DevicesTable dt, Device d,
Property p)

1: p is a property representing a changed capability for a device d
2: for each service s; € t do

3. if p is related to the Requirement(s;) then
4: calculate newDV the new device value of d for
5: if d==DT(s;)[1].d then

6: if newDV < DT(s;)[2].DV then

7: Select DT(s;)[2].d for s;

8: ComponentSelection(s;, DT(s;)[2].d)
9: end if

10: else

11: if newDV > DT (s;)[1].DV then

12: Select d for s;

13: ComponentSelection(s;, d)

14: end if

15: end if

16: rank DT(SZ)

17:  end if

18: end for
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Changes of a device capabilities or user preferences The changes of the user
preferences or devices capabilities may trigger the adaptation of a user task if they are
related to its services requirements. Indeed, for each service of the task, the devices
values are calculated according to the user preferences and devices capabilities related to
its requirements. Thus, changing the user preferences or devices capabilities or the both
imply the changes of devices values from low to high values and vice versa.

Thus, if a device capability or a user preference related to a service requirement
changes, there is a need to recalculate the new device value. If a device is already in use
for the execution of some services of the user task and its value changes from high to low,
we propose to select the subsequent device in the devices table associated to the consid-
ered services. However, if a device is not used beforehand and its value becomes higher
than the value of the used device, it will be selected to assign the concerned services to
its components (see Algorithm 5.5).

In summary, our adaptation approach allows the partial reselection of concrete com-
ponents for a continuous execution of users tasks in pervasive environments. The main
advantage of this approach is that the adaptation is limited to the services that are af-
fected by the changes of the execution environment, thus, there is no need to adapt the
whole task.

5.4.2 Example Scenario

Referring back to the video player task in the introductory Chapter 1, we consider that
the task is represented by an assembly of three services: a VideoDecoder, a DisplayVideo
and a Controller services.

Table 5.1: Device capabilities and user preferences

Capabilities SP FS User

Resource.Software.VideoPlayer—VLC 1 0 0.1
Resource.Hardware.Output.VideoCapable.Screen. Width 320 1920 1920
Resource.Hardware.Output.VideoCapable.Screen.Height 240 1200 1200

Resource.Hardware.Output.SoundCapable.InternalSpeaker 1 1 0.2
Resource.Hardware.Output.SoundCapable. ExternalSpeaker 1 1 1.0
Resource.Hardware.Input.Keyboard 1 0 0.1
Resource.Hardware.Input.TouchScreen 1 0 0.3
Resource.Hardware.Memory.MainMemory 1 1 0.0
Resource.Hardware.Memory.Disk 1 0 0.0

For the task execution, the services should be resolved in concrete components avail-
able in the execution environment. Consider that this later consists of a Smartphone (SP)
and Flat-screen (FS) devices having the following capabilities in Table 5.1.

Moreover, services may express their requirements towards the devices capabilities.
For example in table 5.2, the DisplayVideo service requires an output VideoCapable
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and SoundCapable capabilities to achieve its execution, whereas, the Controller service
requires an input capability to command the video player task.

Table 5.2: Requirements of the video player services

Service Service Requirements

Controller Resource.Hardware.Input
DisplayVideo Resource.Hardware.Output.VideoCapable
Resource.Hardware.Output.SoundCapable

Using the resolution approach in Chapter 3, the task’s services will be executed as the
following: the Controller service will be executed in SP device, while the DisplayVideo
and VideoDecoder services will be executed in FS device given the devices values in table
5.3.

Table 5.3: Devices values for Controller and DisplayVideo services

Service SP FS  Selected device

Controller 1.4 -04 SP
DisplayVideo & VideoDecoder 5.16 5.5 FS

Assume that during the execution of the user task, the FS device capability is changed
in that a way it does not provide an external speaker capability. This change may have an
impact of the device’s value since the DisplayVideo service specifies a sound capable re-
quirement. Therefore, there is a need to recalculate the device value for the DisplayVideo
service as it depends on the changes of this capability.

Table 5.4: Devices values for VideoDecoder and DisplayVideo services after changes of
the FS’s capability

Service SP  FS Selected device
DisplayVideo & VideoDecoder 5.16 0.5 SP

Table 5.4 shows the device value of SP and the new the device value of FS As it can
be seen, the changes of the F'S capability has induced the change of its value from high
(5.5) to low value (0.5). The new selected device is the SP as it has the highest device
value (5.16).

In another context, assume now that during the execution of the video player task,
a laptop device appears. Thus, there is a need to determine whether it is useful for the
execution of some of services of the video player task. Table 5.5 describes the capabilities
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Table 5.5: Capabilities of a laptop device

Capabilities LP
Resource.Software.VideoPlayer=VLC 1
Resource.Hardware.Output.VideoCapable.Screen. Width 1280

Resource.Hardware.Output.VideoCapable.Screen.Height 800
Resource.Hardware.Output.SoundCapable.InternalSpeaker
Resource.Hardware.Output.SoundCapable.ExternalSpeaker
Resource.Hardware.Input.Keyboard
Resource.Hardware.Input.TouchScreen
Resource.Hardware.Memory.MainMemory

= e

Resource.Hardware.Memory.Disk

of the new device (i.e., LP). As it can be seen, the capabilities of the laptop device include
the services requirements of the user task’s services.

Table 5.6: The laptop value for the video player services

Service LP

Controller 2
DisplayVideo & VideoDecoder 5.41

To determine the device usefulness, there is a need to calculate its value for each
service of the user task. Table 5.6 shows the values of the LP device. As it can be seen,
the LP device has a higher value (5.41) than the FS device value (0.5) and SP one (5.16),
thus, it will be selected for the execution of the DisplayVideo and VideoDecoder services.
However, there is no need to reselect the implementation of Controller service as the value
of LP is less than the value of the SP device.

5.5 Structural Adaptation

In some adaptation contexts, reselecting new components is not sufficient to recover
the failures. This is the case of the situations triggered by mismatches between an abstract
description of a user task and a concrete level, implying that the task could not be realized
in the given context, or in the new context, if it has changes (as detailed in Section 5.3).

In this section, we propose a dynamic compositional adaptation approach that consists
of restructuring the abstract description of user tasks with respect to their functional
behaviour. The adaptation can be done at runtime to ensure a continuous execution,
or at init time to fulfil their mapping. We describe in the following the principle of our
structural adaptation approach.
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Figure 5.4: Transforming abstract task using Adapter Composite

5.5.1 Principle of the Structural Adaptation Approach

To overcome a captured mismatch between an abstract description of a user task and
the concrete level, there is a need to adapt the abstract description to ensure its mapping
and its execution.

In (Ben Lahmar et al., 2010a), we proposed a dynamic structural adaptation approach
for abstract user tasks, which consists of transforming a task to another one that allows
its mapping and execution. The transformation is ensured by injecting some adapters
exhibiting extra-functional behaviours into the user task without modifying its functional
behaviour.

For example, as shown in Figure 5.4, an Adapter Composite is injected to adapt
the communication between components A and B. The Adapter Composite requires the
service I of the component A and exposes a service implementing the interface I. This
provided service will be used by the component B, since it corresponds to its required
service.

5.5.2 Adaptation Patterns

Adapter Template

Adaptive Logic
Component

L ]

Extra-Functional| Extra-Functionnal
Service Component

Figure 5.5: Adapter Template structure

As the basis for our approach, we have proposed to use adaptation patterns as adapter
composites, which provide solutions to overcome mismatches between an abstract descrip-
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tion of user task and a concrete level and can be used in different and recurrent contexts
(Ben Lahmar et al., 2010a).

From a design pattern standpoint, an adaptation pattern corresponds to a proxy as
defined in (Gamma et al., 1995) since it represents a component and provides the same
service as required by the caller components.

We have defined an Adapter Template to be used for the description of adaptation
patterns. Figure 5.5 shows the description of the adapter template, which consists of an
"adaptive logic" and an "extra-functional" components.

The extra-functional component provides services allowing, e.g., encryption, compres-
sion, etc. It has an abstract description to be mapped to concrete level (see chapter 3).
Thus, the extra-functional component is resolved dynamically without the assistance of
designer.

The adaptive logic component is considered as the main element of the adapter tem-
plate. Thus, each adaptation pattern should contain at least the adaptive logic compo-
nent, if it does not require any extra-functional service to overcome the mismatch. The
adaptive logic component encapsulates the adaptation logic and uses the extra-functional
service. This component has a generated implementation as it depends to the interfaces
of communicated components. As shown in figure 5.5, the adaptive logic component relies
on the offered service of the extra-functional component to ensure the adaptation.

Using this specific structure of the adapter template has an advantage, on one hand,
to separate the adaptive logic from the functional logic of a user task. Thus, it is possible
to modify the adaptive logic with respect to the components’ descriptions and to the
adaptation contexts. On the other hand, it allows providing an abstract description for
the adaptation actions, corresponding to extra-functional components, to be mapped to
the concrete level. Thereby, the separation between adaptive logic and extra-functional
components facilitates the generation of the adaptive logic.

In the following, we present a set of adaptation patterns that are defined using the
Adapter Template (Ben Lahmar et al., 2011a). For each pattern, we give its description,
the context in which it will be used, and where it will be used to overcome a mismatch.

The list of the adaptation patterns is not exhaustive. However, it is possible to define
other adaptation patterns following our adapter template.

Encryption and Decryption Adaptation Patterns

Description we propose an encryption pattern that intercepts the interaction be-
tween components to encrypt messages transiting over a network in order to prevent
the disclosure of information to unauthorized components. To use the original message,
there is a need to restore it from the encrypted one. For this purpose, we also define
a decryption pattern that decrypts the received messages before using it by the target
component.

The encryption and decryption patterns consist of an adaptive logic component and
an extra-functional one as shown in the figure 5.6. Each extra-functional component
exposes a key property and provides a service ensuring the encryption or decryption of a
message.
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Figure 5.6: Encryption and Decryption adaptation patterns

In case of a symmetric encryption and decryption, the transmitter and the receiver
sides use the same key to exchange messages. However, if the extra-functional components
implement an asymmetric algorithm, they use two different keys.

Adaptation context The encryption and decryption patterns will be injected at init
time to ensure the security of the transferred messages, which may be sensitive to disclose
as with credit card numbers and passwords.

The security requirement can be expressed explicitly through the extra-functional
requirements of services. At init time, if the concrete components do not ensure this
requirement as specified in the abstract level, there is a need to adapt the task in order
to achieve its mapping.

Where to use The encryption pattern is used by the transmitter device to send
encrypted messages, while the decryption pattern is used by the receiver side to restore
the messages. For example, in Figure 5.6, an encryption pattern is used by the device B
in order to encrypt the messages sent from the component B over the network. However,
a decryption pattern was handled in the device A to restore the original message before
using it by the component A.

Authentication and Integrity Patterns

Description The authentication pattern is used to sign the transferred message
between two components in order to ensure that a message has not been tampered with.
The extra-functional component of the pattern generates a signature digest and then
encrypt it with a private key in order to add it at the end of the message before sending
this later by the adaptive logic component over the network.

In the receiver side, there is a need to validate the authentication of the message’s
signature to authorize component to invoke the requested service. Therefore, we propose
an integrity pattern that will prove the validity of the transmitted message before trans-
ferring it to the intended component. Its extra-functional component, as shown in Figure
5.7, returns a boolean result implying the validity of signed messages.

The verification is done by decrypting the digest using the public key of the sender.
Then, the extra-functional component of the integrity pattern compares the decrypted
digest with a calculated one. If the calculated digest matches the decrypted one from
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Figure 5.7: Authentication and Integrity adaptation patterns

the received signature, then the integrity is ensured. Otherwise, the message is tampered
with during its transfer.

Adaptation context An abstract component may specify at init time through its
extra-functional requirements the need to authenticate the transferred messages. If the
communicating concrete components do not ensure the authentication and the integrity
of messages, this implies a mismatch between the abstract description and the concrete
level. Thus, it triggers the adaptation of the user task.

Where to use The authentication pattern is used by the transmitter side to send
signed messages. In the receiver side, the integrity pattern will be used to check if the
message is kept intact during its transfer over the network. Figure 5.7 shows an authen-
tication pattern that is used by device B to send signed message from the component B
to the component A. However, an integrity pattern is used by the device A, to validate
the received message from the component B.

Splitting and Merging Patterns
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| M i | | |
| | |
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| | | I
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Figure 5.8: Splitting and Merging adaptation patterns
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Description The splitting pattern is used to split a message into chunks. The pattern
consists of an adaptive logic component and an extra-functional one that returns a list
of chunks to send over the network as shown in Figure 5.8.

To respond to the component’s request, there is a need to merge the chunks before-
hand. Therefore, we propose to compose the splitter pattern with a merger one to form
the message from the received chunks. Hence, the extra-functional component of the
merger pattern will construct messages from the received chunks, which are forwarded
by its adaptive logic component to the intended component.

Adaptation context The splitting and merging patterns may be used to overcome
a problem related to a lower network signal captured during the task execution. The
change of context has certainly an impact on the message delay in case of the transfer of
bigger files or messages. In this case, the message is split into chunks for a quick transfer
over a network and hence to reduce the message delay. And a merging pattern will be
used by the receiver side to construct it.

Where to use The splitting pattern will be used by the transmitter device, while
the merging pattern will be used by the receiver device to fulfill the interaction between
devices. Thus, the component B in figure 5.8 is able to send a message or a file into
chunks to the component A for a quick transfer over a lower network signal.

Compression and Decompression Patterns

Component |Interface | Service | Component

A

pression Adapter

i
i
i
I
|

Decompression Adapter
A Interface |
TAdEIVE  Interfoce!

Decompressio Decompression
Service Component

Seiice |

CompressEn ._Compression

Service Component

Device B Device A

Figure 5.9: Compression and Decompression adaptation patterns

Description The compression pattern is introduced between two components com-
municating with each other over a network in order to send compressed messages. How-
ever, in the receiver device, there is a need to decompress the message in order to be used
by the target component. Therefore, we propose to compose the compression pattern with
a decompression one to decompress the data before using it by the target component.

Each adapter consists of an adaptive logic component that relies on a non-functional
component to compress or decompress the message, as shown in Figure 5.9.

Adaptation Context The compression and decompression patterns are introduced
in response to a trigger generated by fluctuation in network QoS. For example, two
components exchanging data may be adapted to use the compressor if the network latency
or throughput falls below a certain threshold. By using the compression between the



5.5. STRUCTURAL ADAPTATION 83

components, all the data will be compressed before transmission over network, allowing
efficient transfer of data. Thus, it is useful to overcome a mismatch induced by a network
problem.

Where to use We propose to use the compression pattern by the sender device in
order to send compressed messages over network. However, the decompression pattern
should be handled in the receiver side to decompress the messages before using them as
shown in figure 5.9.

Proxy Pattern
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Figure 5.10: Proxy adaptation pattern

Description The proxy pattern allows components to access to services offered by
others components. Figure 5.10 shows a description of the proxy pattern following the
adapter template. As it can be seen, the proxy pattern represents a specific case of the
adapter template as it contains only an adaptive logic component that forwards the call
of the service I to the component A.

Adaptation Context The proxy pattern is useful to overcome the network factor
related to the heterogeneity of network interfaces. For example, if two devices were se-
lected to map an abstract task and they support two different connection interfaces, e.g.
Bluetooth and wifi, thus, the mapping will fail. Therefore, we propose to introduce the
proxy pattern, in a device supporting the both network interfaces (i.e., Bluetooth and
wifi), to act as an intermediate between the communicating components.

Where to use To intermediate the communication between devices, we propose to
generate the proxy in a third device. Thus, the components A and B, as shown in figure
5.10, can communicate together via the proxy generated in a device C.

Caching Pattern

Description the caching pattern enables a user task to cache messages in rapid
memory. Figure 5.11 shows the main features of the caching pattern. It consists of an
adaptive logic component that will first check the cache to see for example if the response
of the component request can be found there. Failing to find the response in the cache,
the adaptive caching component will forward the call to the target component. Once it
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Figure 5.11: Caching adaptation pattern

receives the response, it will forward it to the caller component after storing it in the
cache. The caching service provides mainly methods for retrieving, updating and setting
message in the cache.

Adaptation Context The caching pattern can be used during the execution of a
user task to avoid the congestion of a network by storing the responses to the services’
requests. Therefore, the system should monitor the latency of the used network to identify
if there is not a jitter. Otherwise, a caching pattern will be injected during the execution
of the task to avoid the congestion for a further uses.

Moreover, some component may express through their non-functional requirements
the need to have a decreased response time, for example the response time of service I is
less than 50 ms. If the concrete component does not consider this requirement, there is
a need to inject a caching pattern at init time in order to try to decrease the response
time during the execution of a user task.

Where to use The caching pattern will be used either by the sender side where the
message will be stored. For example, in Figure 5.11, the pattern is used to decrease the
response time to the requests of the component B by caching the call to service I in a
cache of the device B.

Retransmission pattern
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Figure 5.12: Retransmition adaptation pattern
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Description This pattern provides the functionality of retransmitting a failed call to
a remote component. Its adaptive logic component, as shown in the Figure 5.12, attempts
to retransmit message to the target component.

Adaptation Context The transmission in pervasive environment may be subject
to failures because of e.g. network down. This can be captured by tracking the network
work for a period of time. If the statistics shows that the system is not reliable, thus, the
components’ messages could get lost along the path. When it is not possible to deliver
messages to remote components, the system should attempt to respond to the component
request at the earliest possible opportunity by trying to retransmit the messages. For this
reason, we propose a retransmission pattern that attempts to retransmit the messages to
render a user task reliable.

The retransmission pattern is used also during the execution of the task, if the network
is quick cut-off, to overcome the loss of messages. Thus, once the network is repaired,
the retransmission pattern is established to retry the sending of calls. To detect this
adaptation context, we require to monitor the status of the supported network, i.e., if it
is activated or not.

Where to use To ensure a reliable communication between devices, we propose to
handle at init time a retransmission pattern in the sender side. For example, Figure 5.12
shows a retransmission pattern that is used by a device B to resend the failed call to a
device A.

5.5.3 Example Scenario

VideoDecoder| DisplayVideo

Controller —C-w VideoDecoder —C Service DisplayVideo

Figure 5.13: Abstract description of video player task

Referring back to the video player task described in Chapter 1 Figure 5.13 shows
an abstract description of the task which consists of three abstract components namely,
Controller, VideoDecoder and DisplayVideo services.

Assume that the controller component requires that its messages sent to the VideoDe-
coder service, should be authenticated. It expresses an authentication need towards the
required service, i.e., VideoDecoder. However, the implementation of the concrete compo-
nent of the videoDecoder service does not support the authentication intent. Thus, there
is a mismatch between the given abstract description of the video player task and the
concrete level. This gives a rise to the adaptation of the user task to fulfil its execution.

To resolve this mismatch, we can inject the authentication and integrity patterns
into the abstract description of the task as shown in Figure 5.14. Thus, the controller
component is able to send authenticated commands to the VideoDecoder component.
These commands will be validated at first by the integrity pattern before forwarding
it to the videoDecoder component. As a result, the task is transformed, as shown in
Figure 5.14, to contain the authentication, and the integrity patterns in addition to its
own components.

In another case, we assume that during the execution of the task that the bandwidth of
the supported network becomes weak. This may have an impact on the quality of video
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Figure 5.14: Adaptation of the video player task

that requires a high QoS. Towards this change of context, we can adapt the abstract
video player task by splitting the frame into chunks and then compress them for a quick

transfer.
sion and merging patterns, as shown in Figure 5.14 for a quick transfer of messages with

a lower bandwidth. The splitter adapter will split a frame sent from the VideoDecoder
component to the DisplayVideo one into chunks. These latter will be compressed before
their transfer over the network. Once the chunks are received by a device, there is a
need at first to decompress them and then to merge them before forwarding it to the
DisplayVideo component. Hence, the abstract task is adapted by injecting a composition

of adapters to overcome a mismatch triggered by a low bandwidth.

For this purpose, we have composed together the splitting, compression, decompres-

5.6 Conclusion
The adaptation of the user task may be triggered by the disappearance of a used

device or component. It may be also caused by the appearance of a new device or the

deployment of a new component that may be interesting for task’s execution. Moreover,
the changes of user preferences or devices capabilities may affect the devices values thus

triggering the adaptation of the user task.
Towards these changes, we have proposed a compositional adaptation approach that
is based on a partial reselection of services implementations as all components are not

necessarily affected by the changes.
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Moreover, the adaptation of a user task may be triggered by a mismatch captured
between its abstract description and the concrete level, that denote that the user task
can not be executed in the given context or in the new context if it changes. Hence, there
is a need to adapt the abstract user task for a continuous execution.

Towards this objective, we have proposed a set of adaptation patterns that are injected
into an abstract description of the task. These adapters exhibit an extra-functional be-
havior with respect to the functional behavior of the user task. The list of the adaptation
patterns is not exhaustive. However, it is possible to define such other patterns following
our adapter template, which consists of an adaptive logic compulsory component and
extra-functional optional one.
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6.1 Introduction

We present in this chapter the MONitoring and ADAPTation (MonAdapt) middle-
ware, which provides a comprehensive solution for the continuity of execution of user
tasks in pervasive environments. This middleware integrates the contributions presented
in this thesis, i.e., user tasks resolution (Chapter 3), monitoring of components (Chapter
4) and user tasks adaptation (Chapter 5).

The remainder of this chapter is structured as follows. First, we present in Section 6.2
the principle of Service Component Architecture (SCA), which is used to model the user
tasks, and extended to meet the monitoring and adaptation needs. Then, we introduce
in Section 6.3 the MonAdapt middleware architecture. Finally, we present a prototype
implementation and performance evaluations of this middleware in Section 6.4.

89
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6.2 User Tasks Description

6.2.1 Service Component Architecture

As the research in Service Oriented Architecture (SOA) is evolving, different architec-
tures and languages have been proposed over the time to support application development
using the SOA paradigm (Papazoglou, 2003). For example, Web Services (WS) have been
particularly used for developing SOA-based applications. Unfortunately, due to its re-
liance on a particular set of description languages and protocols (WSDL/SOAP/HTTP)
Web Services have suffered much from criticism.

Thus, a felt was needed for an architecture model that is independent of particular
implementation technology or communication protocol. The result was in the form of
the Service Component Architecture (SCA) (Open SOA Collaboration, 2007), which is
maintained and standardized by the Open SOA consortium !,

The main idea behind SCA is to be able to build distributed applications across or-
ganizations, which are independent of a particular technology, protocol, and implemen-
tation. Applications built as a set of services, called composite applications, can include
both new services created specifically for the application, and also business functions
from existing applications that are reused as part of the composition. SCA components
are the basic units of construction of applications.

Figure 6.1 (a) shows the SCA meta-model, while Figure 6.1 (b) shows the various
SCA elements that constitutes a composite in SCA.

An SCA component encapsulates the implementation of a service and makes it avail-
able through clearly specified interfaces called SCA services. An SCA service is, thus, the
access point to the functionality provided by the SCA component, i.e., its external inter-
face. At the same time an SCA component expresses the dependencies on other services
as SCA references that specify what a component needs from the other components or
applications of the outside world. The SCA services and references used by a composite
are exposed by promoting the interfaces of their internal SCA components.

Both SCA services and references are matched and connected using SCA wires that
are specified using bindings. SCA wires are abstract representations of the relationship
between references and some services that meet the needs of those references. The bind-
ings specify how services and references communicate with each other. Each binding
defines a particular protocol that can be used to communicate with a service as well as
how to access it. A single service can have multiple bindings, allowing different remote
software to communicate with it in different ways.

SCA components provide a mechanism to configure an implementation externally
through SCA properties. These properties can be customized, allowing a component to
adapt its behaviour appropriately. The implementation of an SCA component can be
in Java, C++, COBOL, Web Services or as BPEL processes. Independent of whatever
technology is used, every component relies on a common set of abstractions, i.e. services,
references, properties, and bindings.

i

SCA divides up the steps in building a service-oriented application into two major
parts:

1. http://www.osoa.org
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— The implementation of components which provide services and consume other ser-
vices
The assembly of set of components to build business applications by connecting
references to services.

SCA emphasizes the decoupling of service implementation and of service assembly
from the details of infrastructure capabilities and from the details of the access methods
used to invoke services. The assembly of an SCA application can be described using an
XML-based ADL file, sometimes referred to as Service Component Definition Language
(SCDL).

Different SCA Runtime implementations have been developed like IBM WebSphere
Application Server 2, Apache Tuscany?® and FraSCAti# (Seinturier et al., 2009), etc. An
SCA Runtime provides the support to create, deploy and execute application based on
the SCA specifications.

SCA Policy Framework

SCA provides a policy framework (Open SOA Collaboration, 2005) to support specifi-
cation of non-functional constraints, capabilities, and QoS expectations from component
design, which are captured and expressed through the introduction of policies. A pol-
icy describes some capability or constraint that can be applied to components or to the
interaction between components. These policies are defined independently of the corre-
sponding component assembly. The advantage is that policies can be reused for several
different assemblies and can be changed without modifying the assembly itself. Thus,
a separation is kept between functional and non-functional aspects of applications. The
version 1.0 of the SCA Policy Framework discusses only the security and reliability poli-
cies.

SCA does not define how policies should be described within a domain —no policy
language is mandated— so vendors are free to do this in their own ways. In order to
allow the inclusion of any policy language within a policy set, SCA allows using the
extensibility elements in the @policySet attribute, which may be from any namespace
and may be intermixed. One or more policy sets can be attached to any SCA element
used in the definition of components and composites.

In SCA, services and references can have policies applied to them that affect the form
of the interaction that takes place at runtime. These are called interaction policies. Service
components can also have other policies applied to them which affect how the compo-
nents themselves behave within their runtime container. These are called implementation
policies.

How a policy is interpreted depends on how the policy is defined within the domain
in which the SCA component is running. For example, a binding for a service can have
an associated policy set describing its interaction policies, while a binding for a reference
can have another policy set describing its interaction policies. When a binding is created
between them, these policy sets are matched, and their intersection determines the set
of policies used for this communication.

2. http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/
3. http://tuscany.apache.org
4. http://frascati.ow2.org
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<intent name="authentication" constrains="sca:binding">
<description>

Communication through this binding must be authenticated.
</description>

</intent>

Figure 6.2: SCA policy intent of an authentication requirement

The SCA policy framework defines the following key concepts:
An Intent allows the SCA developer to specify abstract Quality of Service capabil-
ities or requirements independent of their concrete realization.
A Profile allows the SCA developer to express collections of abstract QoS intents.
— A Policy Set provides the realization of concrete policies for a set of intents.

For example, a service which requires its messages to be authenticated can be marked
with an intent "authentication" as described in Figure 6.2. This marks the service as
requiring message authentication capability without being prescriptive about how it is
achieved. At deployment time, when the binding is chosen for the service (e.g., SOAP
over HTTP), the deployer can apply suitable policies to the service which provide aspects
of WS-Security, for example, and which supply a group of one or more authentication
technologies.

Limitations of SCA

While SCA is gaining acceptance in the service-oriented industries, it has some limita-
tions. First, the current SCA runtimes consider an SCA composite as a static assembly of
components and cannot be modified during the execution of the application. The binding
between the services and components is also defined at deployment time. Consequently
any modification in the composition of the service-based application requires to stop
the complete application, and restart it using the new composition. Second, the existing
SCA specifications do no allow components to express their dependencies towards other
components and leave this issue to the code level. Third, extra-functional aspects, like
monitoring and dynamic reconfiguration, are not addressed by the current SCA specifi-
cation. These aspects are usually left out of the specifications and must be handled by
SCA platform implementations.

6.2.2 Extensions of SCA

In this thesis, we rely on the SCA specification to describe user tasks instead of defin-
ing a new component model. In this regard, SCA provides a rich ADL that details most
of the aspects that we are looking for. One of the main features of this component model
is that it is independent of a particular technology, a protocol, and an implementation.
Using SCA, a user task is described as an assembly of services provided by various devices
of the execution environment. We use SCA for its extensibility to overcome the missing
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elements related to required properties, monitoring and adaptation aspects as shown in
Figure 6.3.
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Figure 6.3: Extended SCA meta model

Modeling the behavior of a user task needs to satisfy not only the functional require-
ments in an effective way. But in order to provide better quality of service (QoS) for
user satisfaction, it should also consider the current state of the environment in which
the application is executing in order to be aware about its changes. In such situations,
a component may depend on properties of components representing the environment or
the user task.

Therefore, we have extended the standard SCA meta model, as shown in Figure 6.3, by
adding requiredProperty element to express explicitly the dependency of components to
the offered properties of other components (Belaid et al., 2010). The component element
can have zero or more @requiredProperty elements as children which are used to express
that it requires certain property.

The Q@requiredProperty element has 1 or many properties to monitor or to recon-
figure as shown in Figure 6.3. These properties may belong to hardware, software or
network resource and they are specified by their names. The separation between required
property and the associated property is significant as it allows the transformation of a
given component for only the specified properties to be monitored or reconfigured (See
Section 4.4).
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<component ...>*

<implementation ... />*

<service ... />x

<reference ... />%

<requiredProperty resource="Name"
remotable="Boolean"
reconfiguration="Boolean"
monitoring="ByPolling|BySubscription"
notificationMode="0nChange|OnInterval®
startTime="long"
duration="long"
notificationInterval="long" >

<property ... />*
<property ... />*
</requiredProperty>
</component>

Figure 6.4: Extension of SCA to support the monitoring and reconfiguration needs using
required properties

The @requiredProperty element has the following attributes, as described in Figure
6.4.

— resource specifies the component to which this required property belongs. The
resource attribute corresponds to classification of the component in one of the
predefined categories, such as software, hardware, and network, etc. Some of these
categories have been defined as extension of the Composite Capability/Preference
Profile (CC/PP) (Kiss, 2007) by the authors (Mukhtar et al., 2008a) (Mukhtar
et al., 2008b).

— remotable of SCA specification (Open SOA Collaboration, 2007) specifies if the
required property belongs to a remote resource or not to carry out the remote
monitoring or the remote configuration. This attribute has a boolean value; if it is
true, it implies that the requested resource is remotable else it is a local resource.
Its default value is false.

— reconfiguration specifies if the property of resource would be configured or not.
This attribute has a boolean value; if it is true, it implies that the requested property
has to be reconfigured. Its default value is false.

— monitoring is used to specify type of monitoring requirement; by polling or by
subscription.
notificationMode is used to distinguish between the monitoring by subscription
modes. The monitoring by subscription mode OnChange specifies that the sub-
scriber component is notified every time the value of the property changes. How-
ever, the monitoring by subscription mode Onlnterval specifies that the subscriber
component is to be notified after a specified time interval. Its default value is On-
Change.
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— startTime is used to specify the time period (in milliseconds) at which monitoring
of the properties should start. If it is not specified, thus its default value is -1, and
the subscription will be activated right after receiving the subscription message.

— duration indicates for how long (in milliseconds) the subscription should last. The
default value of duration is -1, that means subscription all the time.

— notificationInterval is used to specify the time interval (in milliseconds) in
which the notification is sent to the subscriber for a subscription mode Onlnterval.

<component name="AdaptiveLogicOfAdaptationPattern" >x*

<service ... />%
<reference ... />*
<property ... />%

<implementation. java generated="True"
type="Compression|Decompression|Proxy|Encryption
|Decryption|Authentication ..." />
</component>

Figure 6.5: Extension of Implementation element of a component

To cope with the adaptation issue, we have also extended SCA implementation ele-
ment by a new attribute, generated, to specify if the implementation of the component
is generated or not (Ben Lahmar et al., 2011a). This specification is useful to model the
adaptation patterns for a structural adaptation. Indeed, the Adaptive Logic component
of an adaptation pattern has a generated implementation because it depends on the busi-
ness interfaces of components to be adapted in order to carry out the dynamic injection
of adaptation patterns in users tasks.

Furthermore, a type attribute extends the implementation element of the Adaptive
Logic component to determine whether this later is generated for an adaptation pattern
allowing a compression or encryption or splitting, etc. Figure 6.5, shows the extension to
the implementation child element of an SCA component.

6.2.3 Example Scenario
Task Description using Extended SCA

Referring back to the video player task in the Chapter 1. Figure 6.6 shows an extended
SCA description of the video player task. The task is represented by a composite of the
Controller, VideoDecoder and DisplayVideo components.

The Controller component requires that its messages sent to the VideoDecoderSer-
vice, should be authenticated. Therefore, its reference is marked with an intent "authen-
tication" (line 6 in Figure 6.6). However, the VideoDecoderService is marked with the
"integrity"’ intent to check the validity of the messages received from the controller
component (line 9 in Figure 6.6). Figure 6.2 shows a description of the authentication
abstract intent that is applied to the component binding using SCA policy framework

(Open SOA Collaboration, 2005).
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1<composite name="VideoPlayer">

2 <component name="ControllerComponent'>
3 <service name="ControllerService" requires="Hardware.Input'">
4 <interface.java interface="example.interface.Controller" >
5 </service>
6 <reference name=" VideoDecoderService" requires="authentication"/>
7 </component>
8 <component name="VideoDecoderComponent" >
9 <service name="VideoDecoderService" requires="integrity">
10 <interface.java interface="example.interface.VideoDecoder" >
11 </service>
12 <reference name="DisplayVideoService" />
13 </component>
14 <component name="DisplayVideoComponent'>
15 <service name="DisplayVideoService"
requires="Hardware.(Output.VideoCapable Hardware.Output.SoundCapable'>
16 <interface. java interface="example.interface.DisplayVideo" />
17 </service>
18 </component>
19 </composite>
Figure 6.6: SCA description of the video player task
1 <composite name="IntegrityAdapter">
2  <service name="GenericProxy" promote="AdaptiveLogicComponent/GenericProxyService"/>
3 <reference name=" VideoDecoderService" promote="AdaptiveLogicComponent/VideoDecoderService”/>
4  <component name="AdaptiveLogicComponent" >
5 <service name="GenericProxy">
6 <interface. java interface="mw.interface.GenericProxy"/>
7 </service>
8 <implementation.java generated="True" type ="Integrity" />
9 <reference name="IntegrityService" target="IntegrityComponent"/>
10 <reference name=" VideoDecoderService" target="VideoDecoderComponent" />
11  </component>
12 <component name="IntegrityComponent">
13 <service name="IntegrityService">
14 <interface. java interface="example.interface.Integrity" />
15 </service>
16 </component>

17 <composite>

Figure 6.7: SCA description of the integrity pattern
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Based on the same concept, the services in the user task specify their requirements for
capabilities abstractly. The component implementations provide the corresponding con-
crete policies. For example, the ControllerService specifies an intent Hardware.Input
using the @requires attribute in the service definition, as shown in Figure 6.6, oth-
erwise the service will not work properly. However, the DisplayVideoService requires
Hardware. Output. Video Capable and Hardware. Output.SoundCapable capabilities for its
execution (line 15 in Figure 6.6).

Assume now that during the resolution of the task, the concrete components of the
VideoDecoder and the controller services do not support the policies related to the au-
thentication and integrity intents. This give a rise to an adaptation need in order to
overcome the captured mismatch. Towards this challenge, it is possible to inject the au-
thentication and integrity patterns into the user task to fulfil these missed requirements.

Figure 6.7 represents the SCA description of the integrity adaptation pattern. It con-
sists of an AdaptiveLogic component and an IntegrityComponent one. The @generated
attribute is used to specify that the implementation of the AdaptiveLogic component is
generated (line 8). Moreover, the @type attribute (line 8) is used to specify the intent of
the adaptation pattern, which is the checking the integrity of the received message from
the Controller component. The authentication adaptation pattern is described in similar

way.

1 <component name="Network.WiFi" >

2 <service name="WiFiService'">

3 <interface. java

4 interface="example.interface.WiFiInterface"/>
5 </service>

6 <property name="signal" type="float"/>

7

8 </component>

Figure 6.8: SCA description of the WiFi component

1 <component name="Hardware.Battery" >

2 <service name="BatteryService">

3 <interface. java

4 interface="example.interface.BatteryInterface"/>
5 </service>

6 <property name="power" type="float" />

7

8 </component>

Figure 6.9: SCA description of the Battery component

As the task is executed in a heterogenous and dynamic environment, there is a need to
monitor its changes and to carry out the necessary adaptation to fulfil the task execution.
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<component name="TaskAdapter">
<service name="PCNotification">
<interface. java interface=”mw.example.PCNotificationInterface”/>
</service>
<reference name="GenericProxy" target="Hardware.Battery"/>

<requiredProperty resource="Hardware.Battery" monitoring="ByPolling">
<property name="power" type="float" />
</requiredProperty>
0 <requiredProperty resource="Newtork.WiFi" monitoring="BySubscription"
notificationMode="0N_CHANGE" >

1
2
3
4
5
6 <reference name="PCSubscription" target=”Network.WiFi"/>
7
8
9
1

11 <property name="signal" type="float"/>
12 </requiredProperty>
13 <component>

Figure 6.10: SCA description of the TaskAdapter component

This is done by a TaskAdapter component that encapsulates the adaptation logic and
allows the monitoring of properties which the task depend on. This component has to be
defined by the architect at design time to make the task adaptable.

As shown in Figure 6.10, the TaskAdapter component expresses using its requiredProperty
its needs to monitor by polling the power property of the Battery component belonging to
a local hardware resource as described in Figure 6.9. It requires also to be notified about
the changes of signal property of the WiFi component, belonging to the network cate-
gory, each time it changes (see Figure 6.12). For this objective, a monitoring attribute is
used to specify the subscription way for signal property. Moreover, a notificationMode
attribute is used to specify the subscription mode that is OnChange. To receive the
notifications, the TaskAdapter component provides a PCNotification service and has a
reference to a PCSubscription service and a GenericProxy one.

Transformations to Standard SCA

Using the proposed monitoring and adaptation extensions provides the ability to an
SCA component to specify its dependencies towards properties offered by other compo-
nents and to monitor or to reconfigure them if there is a need. However, executing such
extended descriptions is not possible in the existing opensource SCA runtimes® such as
FraSCAti, Newton, or Tuscany, etc., as they do not support these monitoring and adap-
tation extensions. Therefore, to prove the feasibility and the efficiency of the proposed
extensions, we proposed to transform them into standard SCA descriptions.

The transformation of the monitoring extensions into SCA standard corresponds to
the creation of composites that encapsulate the concerned components, as specified using
@resource attribute, with monitoring ones (see for more details in Chapter 4). In addition,
the required properties extensions are transformed to references to the created composites.

Referring back to the video player task, as described in Figure 6.6, the TaskAdapter
component expresses through its required properties its dependencies to the power prop-

5. http://osoa.org/display /Main/Implementation+Examples+and+Tools
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1<composite name=BatteryComposite>

2 <service name="BatteryService" promote="Battery/BatteryService" />

3 <service name="GenericProxyService" promote="LGenericProxy/GenericProxy" />
6 <component name="Hardware.Battery" >

7 <service name="BatteryService'>

8 <interface.java interface="example.interface.Battery"/>

9 </service>

10 <property name="power" type="float" />

11  </component>
12 <component name="LGenericProxy" >

13 <service name="GenericProxy">

14 <interface. java interface="mw.interface.GenericProxy"/>

15 </service>

16 <implementation class="mw.impl.LGenericProxy"/>

17 <reference name="BatteryService" target="Battery/BatteryService"/>
18 </component>

20</composite>

Figure 6.11: Transformation of the Battery component

1 <composite name="WiFiComposite">

2 <service name="WifiService" promote="WiFi/WifiService" />

3  <service name="SubscriptionService"
promote="MonitorBySubscription/PCSubscription" />

4 <service name="GenericProxyService" promote="LGenericProxy/GenericProxy" />
5 <component name="Network.WiFi">

6 <service name="WifiService">

7 <interface.java interface="example.interface.Wifi'"/>

8 </service>

9 <implementation class="example.Impl.WifiImpl"/>

10 <property name="signal'/>
11  </component>
12 <component name="LGenericProxy" >

13 <service name='"GenericProxy">

14 <interface.java interface="mw.interface.GenericProxy"/>
15 </service>

16 <implementation class=”mw.impl.LGenericProxy"/)

17 <reference name="target" target="Network.WiFi"/>

18 </component>
19 <component name="MonitorBySubscription" >

20 <service name="PCSubscription">

21 <interface. java interface="mw.interface.PCSubscription"/>

22 </service>

23 <implementation.java class="mw.impl.PCSubscriptionImpl"/>

24 <reference name="genericProxy" target="LGenericProxy/GenericProxy"/>

25  </component>
26 </composite>

Figure 6.12: Transformation of the WiFi component
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erty of the Battery component and to signal property of the Wifi component. To consider
these requirements using existing SCA runtimes, we propose to transform them into
standard SCA descriptions.

In Figure 6.11, we show the transformation of the local Battery component to a new
composite to render its property monitorable as requested by the TaskAdapter compo-
nent. The created composite exposes in addition to the service of the Battery component,
a GenericProxy service that is provided by a LGenericProxy component allowing the mon-
itoring by polling of the power property.

Similarly we transform the WiFi component to render it monitorable as shown in Fig-
ure 6.12. The created composite exposes in addition to the service of the WiFi component,
a GenericProxy service and a PCSubscription one.

1<component name="TaskAdapter'>

2 .

3 <reference name="GenericProxy" target="BatteryComposite"/>
4 <reference name="PCSubscription" target="WiFiComposite"/>
5 </component>

6 B

7</component>

Figure 6.13: Transformation of the TaskAdapter component

1<composite name="TransformedVideoPlayer">
<component name="ControllerComponent">

</component>
<component name="VideoDecoderComponent'" >

2
3
4
5
6
7 </component>

8 <component name="DisplayVideoComponent'>

9 A

10 </component>

11 <component name="AuthenticationComponent'>

12 <implementation.composite name="AuthenticationAdapter" />
13 R

14 </component>

15 <component name="IntegrityComponent">

16 <implementation.composite name="IntegrityAdapter" />

17 R

18 </component>

19 . . .

20 </composite>

Figure 6.14: SCA description of the transformed video player task



102 CHAPTER 6. MONADAPT MIDDLWARE

Moreover, the required properties of the VideoDecoder component are transformed to
references to the created composites, as shown in Figure 6.13, namely, BatteryComposite
and WiFiComposite.

To cope with the adaptation issue, we proposed to transform a user task to another
one by injecting adaptation patterns that overcome the captured mismatches between its
description and the concrete level.

The transformation of the video player task, as depicted in Figure 6.14, corresponds
to the creation of a new composite that encapsulates in addition to the initial components
of the task, the authentication and integrity composites.

6.3 MonAdapt Middleware

We present in this section, the middleware MonAdapt for task resolution, monitor-
ing and task adaptation in pervasive environments. MonAdapt deals with the different
contributions present in this thesis to ensure the continuity of user tasks execution in
dynamic and heterogenous environments.
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Figure 6.15: Architecture of MonAdapt Middleware

MonAdapt has been developed to consider user tasks described using SCA specifica-
tion (Open SOA Collaboration, 2007). SCA allows user tasks to be defined in abstract
way. Thus, task’s services can be resolved by using concrete components provided by a
variety of devices in a distributed fashion. MonAdapt takes an extended SCA description
of a user task and transform it into a standard one and using the selection algorithms, it
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finds the best solution for task execution in terms of devices and components available on
the execution environment. Once a task is resolved, it may be subject to unforseen failure
due to a change of user preference or device capability or appearance or disappearance of
devices and components. In addition, some mismatches between its abstract description
and the concrete level can be captured at init time or during its execution. Towards these
changes, MonAdapt provides a monitoring and adaptation mechanism for a continuous
execution of the user task.

The architectural design of our middleware is depicted in Figure 6.15. It consists
of a TaskResolver, MonitoringTransformer and TaskAdapter components. The Monitor-
ingTransformer is responsible for the transformation of extended SCA descriptions to
standard ones and components to render them monitorable whenever there is a need.
The TaskResolver component ensures the selection of the best device and component
used for the execution of each service of the user task while the TaskAdapter adapts the
execution of a user task for the new context.

The TaskResolver is based upon two components implementing the device selection
and component selection algorithms (see Chapter 3 for details). The DeviceSelection
component is executed by the user device that contains an abstract description of the
task. For each user task, the middleware uses a DevicesTable component to update the
devices lists associated to each service of the user task.

In addition, each selected device has a ComponentSelection component to match
services with the best components. It uses the ComponentsTable component of the user
task, to update the lists of components by adding or removing components associated
with the services to execute in that device.

Moreover, each device in the execution environment contains a DeviceCapabilities
component, which is a composition of software, hardware and network components to
describe its characteristics. The DeviceCapabilities component provides properties corre-
sponding to some of the exported properties of its internal components to represent its
capabilities. The UserPreferences component is responsible for management of user pref-
erences. The device also uses a ComponentRegistry that lists its deployed components
and the DeviceRegistry component that is responsible for sending notifications about the
arrival and departures of devices.

As these components have impact of the task’s execution, there is a need to monitor
their changes. This is done by the MonitoringTransformer component, that is based
upon two components: ExtendedSCAParser and Transformer components. After parsing
the extended SCA description by the ExtendedSCAParser component, the Transformer
component transform them into monitorable composites and adds the notification codes
to their implementations in order to send notifications to the subscribers components.

Once a change is captured, there is a need to adapt the task to ensure its continuous
execution. This is carried out by the TaskAdapter component that is responsible for the
decision making and the execution of adaptation actions. The TaskAdapter component
deals with the partial reselection of services implementations and the structural adapta-
tion to overcome failures and mismatches captured at init time or during the execution
of the task.

To fulfil services reselection, it subscribes to the changes of the DeviceRegistry com-
ponent and the remote ComponentRegistry components of the selected devices in order
to receive notifications about the arrival and departures of devices or components. It
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subscribes also to the changes of the UserPreferences and DeviceCapabilities components
in order to be aware of the changes of their properties values.

The TaskAdapter component provides a notification service that allows it to receive
notifications about the appearance, disappearance of devices or components, the changes
of properties of user preferences or devices capabilities components. Given the received
notification, it triggers the adaptation of the task to the new context by reselecting
devices and/or components for a continuous execution of the user task. This is for, it
requires the services offered by the DevicesTable and ComponentsTable components. In
fact, the adaptation is carried out by its AdaptationAction component that implements
the adaptation algorithms presented previously in Chapter 5.

An adaptation of the user task may be also triggered by mismatches captured at
init time or during the execution of the user task. To overcome these mismatches, there
is a need to restructure the task by injecting adaptation patterns that provide extra-
functional behaviours. For this objective, the TaskAdapter consults AdaptationPattern-
sRegistry that contains descriptions of the proposed patterns. Then, it selects the suitable
adaptation patterns to fulfil the resolution or the execution of the task. The TaskAdapter
maintains a ProxyGenerator component that is responsible for the generation of the proxy
implementation of the adaptation pattern. After that, it asks the TaskResolver to resolve
the partial abstract description of the extra-functional component of the adaptation pat-
tern to accomplish the injection of the adaptation pattern.

6.4 Prototype Implementation and Evaluation Results

In this section, we evaluate the performance of our MonAdapt middleware for the
three aspects namely, task resolution, monitoring and task adaptation. We begin by
detailing the implementation of our prototype and the experimentation setup. Then, we
evaluate the time required to fulfil the device selection and component selection for a
task resolution. After that, we evaluate the transformation of a component in order to
render it monitorable. Finally, we evaluated the time required for a generation of a proxy
component for a structural adaptation of a user task.

6.4.1 Implementation and Experimentation setup

The MonAdapt middleware is described as an SCA composite. Each component has
a java implementation. The TaskResolver composite consists of two components namely,
DeviceSelection and ComponentSelection components, that implements the resolution
Algorithms (as detailed in Chapter 3) using Java version 1.6.

The MonitoringTransformer component is composed of an ExtendedSCAParser and
a Transformer components. The Transformer component is responsible for adding noti-
fications code to components to render them monitorable. To that end, it uses the java
API java.lang.reflect to obtain information about classes and objects. It is also based
on the open source software Java programming ASSISTant% (JavAssist) library
that is used to enable Java programs to define new classes at runtime or to modify a
class byte code.

6. http://http://www.csg.is.titech.ac.jp/
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Moreover, the LGenericProxy component is also responsible for transforming a com-
ponent to a monitorable composite, as detailed in Chapter 4. The LGenericProxy compo-
nent relies on java.lang.reflect to obtain information about the monitored component
and to invoke the methods on it.

For remote monitoring, two transformations are handled in the server and in the
client sides. To that end, we have used the Universal Plug and Play (UPnP) (UPnP
Forum, 2008) technology to allow devices to exchange their capabilities or to discover
one another and components to monitor remote properties. A UPnP network consists of
UPnP devices that act as servers to UPnP control points. The control point can search
for devices and invoke actions on them.

The remote monitoring in the server side is carried out by an RServer component
that integrates the network communication aspects like remote method call and event
processing. RServer component is implemented as a UPnP device, using CyberLink
library 7, to offer UPnP services and UPnP device description to remote clients.

In the client side, the RGenericProxy component, providing a remote generic proxy
service, is implemented as an UPnP control point using CyberLink library. When it starts,
it searches for a UPnP device with the same type of RServer component and subscribes
to the UPnP events related to the change of the variables state of this server component.
In addition, the implementation of the ServerProxy component is generated using the
JavAssist library to represent the remote component.

To fulfil the adaptation, MonAdapt provides a TaskAdapter component that imple-
ments the adaptation Algorithms as detailed in Chapter 5. This component contains a
GeneratorProxy component to generate the byte codes of the proxy components of the
adaptive logic of an adaptation patterns by using JavAssist.

The evaluation was carried out using a simulated environment on a single PC con-
sisting of 2.27 GHz dual processor with 2GB RAM. The simulation consisted of running
several devices on the same PC. Each device’s capabilities were represented by CC/PP
profile (Kiss, 2007) in terms of screen sizes, type of input, etc. We have specified 30
capabilities based on CC/PP profile of existing devices.

A device is considered as an SCA component whose properties correspond to its
capabilities. We have generated randomly 100 devices by varying their properties values
towards these capabilities. A user is also represented as an SCA component. Similarly, a
user has properties values towards the specified devices capabilities.

Then, we have generated a random task with a random number of abstract compo-
nents. Each abstract component has a different set of services, references, properties. An
abstract component may have requirements towards the capabilities of devices. We have
specified 15 services requirements. Fach abstract component may have from 0 to 15 re-
quirements towards the capabilities of devices. Each service or reference of a component
has an interface that contains a random number of methods. A method of an interface
has a random return type and a random number of parameters.

6.4.2 Evaluation of Task Resolution

In this section, we evaluate the time required for the device and component selections
to fulfil an abstract component resolution of a user task.

7. http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava
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Device Selection We evaluated the time required for the device selection of an ab-
stract component of the user task by varying the number of the devices and the services
requirements. We denote that the device selection considers the user preferences, devices
capabilities and services requirements.
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Figure 6.16: Device selection for an abstract component by varying its requirements and
the number of devices

We have varied the number of devices of the execution environment between 10 and
100 and the services requirements of the abstract component between 0 and 15 in order
to calculate the time required for the selection of a device for an abstract component of a
task. Each device maintains a concrete component matching with the abstract component
to valid the fitness of the abstract component in all available devices of the execution
environment.

Figure 6.16 shows the time measured to fulfil the device selection for an abstract
component of a user task by varying its requirements towards the devices capabilities
and the number of devices. As it can be seen, the time required for a device selection
among different devices of the execution environment is linear. We also notice that the
device selection time is in the order of few milliseconds. For example, if the environment
contains 30 devices and an abstract component has 10 services requirements, the device
selection time takes around 4 ms.

This time depends also on the number of services requirements. We have varied the
number of services requirements between 0 and 15. The Figure 6.16 shows that the
time is as few as the number of services requirements that are considered for a device
selection. For example, selecting a device among 100 alternatives to execute an abstract
component having 1 requirement is around 0.3 ms, while this time takes more than 14
ms if the abstract component expresses more than 10 requirements.

The time required for the selection of a device using the algorithm in (Mukhtar et al.,
2009) corresponds to 0 requirements in Figure 6.16. As it can be seen there are equivalent
results for the selection of a device for the abstract component with 0 or 15 requirements
as the 15 requirements include all the devices capabilities. The Figure 6.16 also shows that
the variability of the number of services requirements between 1 and 15 has an impact
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Figure 6.17: Device selection for an abstract component by varying its requirements and
its offered services

on the device selection time that is fewer than neglecting the services requirements (i.e.,
0 requirements). This proves that our device selection algorithm improves the algorithm
in (Mukhtar et al., 2009) and it provides best results when considering the requirements
of abstract components towards the device capabilities.

We also studied the impact of the variability of the number of services offered by
an abstract component for the time required for a device selection, as shown in Figure
6.17. For this, we have varied the number of services offered by an abstract component
between 1 and 100 and its requirements between (0 and 15. The execution environment
contains 10 devices.

As it can be seen in Figure 6.17, increasing the number of services offered by an
abstract component does not influence the time required for the device selection. However,
this experiment confirms another time the dependency of the device selection to the
number of requirements of the abstract component.

Component Selection To fulfil a resolution of an abstract component, there is a need
to match it with a concrete component in the selected device. We varied the number
of concrete components in the selected device and their preferences in order to measure
the time required for the component selection for an abstract component. The number
of concrete components in each device is varied between 1 and 100, the components’
preferences are varied between 0 and 30.
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Figure 6.18: Component selection for an abstract component by varying the matching
concrete components and their corresponding preferences

As shown in Figure 6.18, the selection of a component depends on the number of
concrete components matching with the service in the selected device. Thus, increasing
the number of components in the selected device implies an augmentation of the time of
the component selection.

The time of component selection is also dependent on the number of components
preferences considered for the component selection. For example, the selection of suitable
component among 10 alternatives whose their preferences is about 20, takes less than 1
ms.

6.4.3 Evaluation of Monitoring

For the monitoring aspect, we are interested in evaluating the transformation of a
component to render it monitorable. The monitoring transformation consists of adding,
to its byte code at runtime, notification codes to the services methods and to the accessors
and mutuators of properties. For this objective, we compared the impact of the variability
of the number of properties and methods on the time required for a component transfor-
mation. For the following experiments, we consider that the component implements one
interface.

Figure 6.19 compares the effect of each factor on the time of transformation. To
measure the impact of properties, we vary the number of properties between 1 and 200,
while the number of methods of the implemented interface is fixed to 1. However, to
calculate the effect of the number of methods, we vary the number of the interface’s
methods between 1 and 200 and we fixe the number of properties to 1.

As it can be seen in Figure 6.19, the time of transformation of a component for a
monitoring is linear. It is related to the number of its properties and to the number
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methods of the implemented interface. This is due to the injected notification codes that
depend on the number of monitored properties. If the number of properties is high, the
byte code of notifications increases too. We also notice that the time for a transformation
is in the order of few milliseconds. For example, it takes around 25 ms if the component
exposes 10 properties and an interface with only method or 1 property and an interface
with 10 methods.

To confirm the influence of the both factors, we have varied the number of methods
between 1 and 100 and properties between 10 and 50 as shown in Figure 6.20. As it
can be seen, expanding the number of offered properties has a big impact on the time
required for transformation of a component than increasing the number of the interface’s
methods. For example, the transformation a component having 20 properties represents
the double of the time to transform a component having 10 properties.

6.4.4 Evaluation of Task Adaptation
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Figure 6.21: The effect of the variability of the number the methods and interfaces on
the generation of a proxy component

In this section, we do not consider the adaptation contexts that trigger the rese-
lection of services’ implementation as this later refers to the selection of a component
and/or device, which was evaluated previously in Section 6.4.2. However, we are inter-
ested in knowing how quickly the structural adaptation takes place to cover the task’s
mismatches. Irrespective of the situation and the used pattern, we need to generate the
byte code of its adaptive logic component as explained in Chapter 5. This generated
component corresponds to a proxy that implements some business interfaces. Therefore,
we have evaluated the structural adaptation by calculating only the time required for the
generation of the byte code of this proxy.
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For this experiment, we varied the number of methods and interfaces between 1 to 200,
to deduce which aspect has an important impact on the time required for the generation
of the proxy component. To observe the impact of methods’ variability, we fixed the
number of interfaces to 1. However, the number of methods is fixed to 1 to evaluate the
impact of the variability of number of interfaces on the proxy generation’s time.
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Figure 6.22: Generation of a proxy component by varying the both number of the methods
and the interfaces that it implements

We deduce from the Figure 6.21, that the variability of interfaces has more impact
on the time needed for the generation of the byte code of a proxy than the variabil-
ity of methods of an interface. Indeed, the generation of a proxy consists of the time
for loading interfaces classes from memory and the time of byte code class generation.
Therefore, increasing the number of interfaces implies the augmentation of the time of
proxy’s generation.

We have also evaluated the variability of interfaces and methods to observe the influ-
ence of the both factors on the time required for the generation of proxy. The number of
interfaces is varied between 1 and 30, whereas, the number of interfaces is varied between
1 and 100, as shown in Figure 6.22.

We observe that the time of generation of the proxy is linear and it is in the order of
some milliseconds. For example, the generation of a proxy with 10 interfaces having 10
methods takes less than 200 ms.

6.5 Conclusion

In this chapter, we proposed some extensions to SCA specification that are used
for describing the users tasks in abstract way. These extensions deal mainly with the
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monitoring and adaptation aspects in order to allow an SCA-based component to express
its dependencies to external properties.

We then presented the architecture and functionalities of our proposed middleware
MonAdapt for task resolution, monitoring the changes of the underlying environment
and task adaptation. We provided some implementation details of the middleware’s com-
ponents along with evaluation results for times required for an abstract component’s
resolution, the transformation of a component to render it monitorable and the genera-
tion of proxy component in case of a structural adaptation.
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The emergence of wireless technologies and ubiquity of hand held wireless devices has
increasingly enabled the pervasive computing that envisions the seamless applications.
In pervasive environments, applications are cooperatively executed by integrating trans-
parently functionalities provided by heterogeneous software and hardware resources in
order to assist users in the realization of their daily tasks. Towards this evolution, Ser-
vice Oriented Architecture (SOA) has emerged as a computing paradigm that changed
the traditional way of how applications are designed, implemented and consumed in a
pervasive environment.

Building upon the SOA, it is possible to describe a user task as an assembly of abstract
components (i.e. services), which are reusable software entities with well defined inter-
faces, and may be accessed without any knowledge about their implementations or the
programming languages. Thus, a user task can be crafted using a set of abstract compo-
nents requiring and providing services to/from one another. This allows the separation of
the business functionality (services) from its implementation (concrete components) and
to execute a user task by composing different components provided by various devices.

The implementation of these services can be found by looking up concrete and de-
ployed components in devices of the environment, which implies the resolution of abstract
components into concrete ones. A service is matched with a concrete component if their
interfaces match. A user task is said to be resolved if for all of its abstract components,
we find matching concrete components implementing these services.

However, resolving an abstract description of a user task can be done effortlessly. In
such heterogenous environments, we may find several matching components across differ-
ent devices, which offer similar functional interfaces. So there is a need to a mechanism
that selects for each service of the task the suitable concrete component for its execution.
Furthermore, tasks in pervasive environments are challenged by the dynamism of their
execution environment due to, e.g., user and device mobility. This arises the need to
monitor the changes of the environment, which may make them subjects to unforeseen
failures. Towards these captured failures, a dynamic adaptation is required to fulfill its
execution in an ever changing and dynamic environments. These problems put the light

113
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on a relevant challenge, which is ensuring the continuity of execution of user tasks in such
dynamic and heterogeneous environments.

7.1 Contributions

In this thesis, we focus our interest upon the challenge of the continuity of user tasks
executions in pervasive environments. This challenge is divided into three subproblems
namely, task resolution, monitoring of pervasive environments and task adaptation. If
many middleware dealt with one or more of our service problems - composition, mon-
itoring, adaptation - few proposed a unified vision for the continuity of applications
executions in such dynamic and heterogeneous environments. This thesis contributed to
these three aspects. Our contributions in this regard can be summarized in the following.

Apart from an abstract description of a user task, we propose to resolve it to fulfil
its execution. The resolution of a user task involves an automatic selection of concrete
components across various devices in the environment. Towards this objective, we have
considered in addition to the functional aspects of a task, some non-functional ones like
user preferences, devices capabilities, services requirements and components preferences.
These non-functional aspects allow, for each service of the user task, the selection of a
suitable component in a convenient device among a large list of devices and components
provided by the execution environment.

Due to the heterogeneity and dynamicity of pervasive environment, an important
aspect of user tasks is that their execution is very much dependent on their context.
Therefore, modeling the behavior of a user task needs to satisfy not only the functional
requirements in an effective way, but in order to provide better quality of service (QoS)
for user satisfaction, it should also consider the current state of the environment in
which the application is executing. For this, we have extended the specification of the
Service Component Architecture (SCA) to allow a component to express explicitly its
dependencies to external properties in terms of required properties, which are offered by
other components.

Using the required properties, a component may specify its monitoring needs in order
to be aware about the changes of the properties offered by local or remote components. We
distinguish two monitoring types: by polling and by subscription. Polling is the simpler
way of monitoring, as it allows the observer to request the current state of an external
property whenever there is a need. However, subscription allows an observing component
to be notified about changes of monitored properties. There are two modes of monitoring
by subscription: 1) subscription OnChange which specifies that the subscriber component
is notified every time the value of the property changes; 2) subscription OnlInterval which
specifies that the subscriber component is to be notified after a specified time interval.

We proposed also some transformation mechanisms to render local as well as remote
components monitorable, if they are not, in order to respond to components requests.
A monitoring transformation consists of creating a composite that encapsulate the con-
cerned component with defined ones. The created composite provides in addition to the
component’s services, the monitoring ones through which it allows other components to
subscribe or to observe the changes of its properties.

Moreover, user tasks in pervasive environments are challenged by the dynamicity of
their execution environments due to, e.g., users and devices mobility, which make them
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subject to unforeseen failures. We distinguish two major events categories triggering the
adaptation of user tasks in pervasive environments namely, failures and mismatching.
The failures may be caused at runtime by changes of user preferences, devices capabil-
ities, appearance/disappearance of devices or components and so forth. However, the
mismatching between abstract and concrete levels can be captured at init time or during
the execution of the task to denote the inability of the abstract description to be executed
in the given context or in the new context if it changes. Towards the captured failures or
mismatches, there is a crucial need to overcome them and thus to adapt the user tasks
to ensure the continuity of their execution.

To overcome the captured failures, we proposed a compositional adaptation approach
that is based on a partial reselection of devices and components as in many cases there are
a lot of devices and components that are not affected by the changes. The main objective
of this approach is to ensure of each service of the task to overcome the captured changes
by selecting the suitable device and component that maximizes the user and components
preferences and that satisfies the services requirements regarding the existing devices
capabilities.

In case of captured mismatches, we require to restructure the task’s description with
respect to its functional behaviour, so that it can be resolved and executed using the
available resources of the execution environments. This is done by adding adaptation
patterns that are injected into an abstract description of the task. These adapters exhibit
an extra-functional behavior with respect to the functional behavior of the application
and they are defined following our adapter template, which consists of an adaptive logic
compulsory component and extra-functional optional one. We have identified a list of
adaptation patterns that allows encryption, decryption, compression, splitting, etc. The
list of the adaptation patterns is not exhaustive. However, it is possible to define some
other patterns following our adapter template.

To have a unified vision of these contributions, we proposed an architectural design
of a middleware allowing the task’s resolution, the monitoring of the environment and
the task adaptation. We provide implementation details of the middleware’s components
along with evaluation results to prove the feasibility and the efficiency of our proposed
approaches.

7.2 Perspectives

We can distinguish tow kinds of perspectives, the short term perspectives which are
related to improving our middleware with additional functionalities, and the long term
perspectives which can be realized after sufficient time for investigation before they can
be solved.

Among the short term perspective, the most important aspect to consider is the
specification of adaptation policies to describe when and which adaptation patterns will
be injected dynamically to fulfill the execution of the task. These policies are of the form
of event-conditions-actions. While events in the environment correspond to the captured
mismatches, actions consist of identification of adaptation patterns that will be used
separately or composed together to restructure a task’s description.

Another short term perspective that can be investigated is to extend our middleware
with de-adaptation functionality. This is required when the context is recovered after
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adaptations actions. So there is no need to the injected adaptation patterns. For example,
if the compression and decompression patterns are used to overcome a lower bandwidth,
and this latter is repaired, we require to remove these injected patterns to re-establish
the direct interaction between the concerned components rather than adapting it.

As long term objectives, we envision to integrate our prototype into an existing SCA
runtime, like Frascati! or Newton?, to support the proposed extensions for monitoring
and adaptation features. This will allow us to test the feasibility of our approach in real
world scenarios.

Furthermore, our middleware deals actually with stateless services for the task resolu-
tion and adaptation. In the future, we would like to extend it with functionality allowing
the reselection of stateful components, which require not only the identification of the
replacing components but also to transfer their states.

1. http://frascati.ow2.org
2. http://newton.codecauldron.org
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