
HAL Id: tel-00789726
https://theses.hal.science/tel-00789726

Submitted on 18 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service recommendation for individual and process use
Ngoc Chan Nguyen

To cite this version:
Ngoc Chan Nguyen. Service recommendation for individual and process use. Other [cs.OH]. Institut
National des Télécommunications, 2012. English. �NNT : 2012TELE0044�. �tel-00789726�

https://theses.hal.science/tel-00789726
https://hal.archives-ouvertes.fr

DOCTORAT EN CO-ACCREDITATION
TELECOM SUDPARIS ET L’UNIVERSITE EVRY VAL D’ESSONNE

Spécialité: Informatique

Ecole doctorale: Sciences et Ingénierie

Présentée par

Nguyen Ngoc Chan

Pour obtenir le grade de
DOCTEUR DE TELECOM SUDPARIS

SERVICE RECOMMENDATION

FOR INDIVIDUAL AND PROCESS USE

Soutenue le 13/12/2012

devant le jury composé de :

Directeur de thèse :

M. Samir Tata Professeur, TELECOM SudParis, France

Rapporteurs :

M. Marlon Dumas Professeur, University of Tartu, Estonia

M. Schahram Dustdar Professeur, Vienna University of Technology, Austria

Examinateurs :

M. Bruno Defude Professeur, TELECOM SudParis, France

M. François Charoy Professeur, Université de Lorraine, France

M. Sami Bhiri Mâıtre de conférences, National University of Ireland, Ireland

M. Walid Gaaloul Mâıtre de conférences, TELECOM SudParis, France (Encadrant)

Thèse numéro : 2012TELE0044

to my parents

Acknowledgements
G

First and foremost, I would like to express my appreciation and gratitude to my ad-
visor, Dr. Walid Gaaloul, who offered abundantly helpful assistance, support and
guidance. His vision, creativeness and enthusiasm inspired me greatly to work. This
dissertation would not have been possible without his help.

I am sincerely and heartily grateful to my supervisor, Professor Samir Tata, who gave
me a lot of valuable advice. His expertise and experiences influenced and helped me
be more mature in doing research.

I would like to thank to Dr. Sami Bhiri for his helpful comments and English correc-
tion. I would like to thank to Professor Bruno Defude, Brigitte Houassine and other
staffs of the Information Department for their kind help and assistance.

I acknowledge the TELECOM SudParis institute for offering me a scholarship and
providing me good environment and facilities to complete my thesis.

I am obliged to my colleagues, Mohamed Sellami, Mohamed Amin Sakka, Rami Sel-
lami, Olfa Bouchaala, Mourad Amziani, who not only made many useful discussions
in research but also brought out many interesting stories and unforgettable memories.

I express my deepest gratitude to my loving wife, Vy. Her love and encouragement
fostered me to concentrate at work. Her understanding and supports helped me to
get through many difficult times.

Finally, I am forever indebted to my beloved parents for their understanding, end-
less patience and encouragement. They have given me constant supports, needed
inspiration and always wish the best things to me. I dedicate this thesis to them.

i

ii

Abstract

Web services have been developed as an attractive paradigm for publishing, discov-
ering and consuming services. They are loosely-coupled applications that can be run
alone or be composed to create new value-added services. They can be consumed
as individual services which provide a unique interface to receive inputs and return
outputs; or they can be consumed as components to be integrated into business pro-
cesses. We call the first consumption case individual use and the second case business
process use.

The requirement of specific tools to assist consumers in the two service consump-
tion cases involves many researches in both academics and industry. On the one
hand, many service portals and service crawlers have been developed as specific tools
to assist users to search and invoke Web services for individual use. However, current
approaches take mainly into account explicit knowledge presented by service descrip-
tions. They make recommendations without considering data that reflect user interest
and may require additional information from users. On the other hand, some business
process mechanisms to search for similar business process models or to use reference
models have been developed. These mechanisms are used to assist process analysts
to facilitate business process design. However, they are labor-intense, error-prone,
time-consuming, and may make business analyst confused.

In our work, we aim at facilitating the service consumption for individual use
and business process use using recommendation techniques. We target to recommend
users services that are close to their interest and to recommend business analysts
services that are relevant to an ongoing designed business process. To recommend
services for individual use, we take into account the user’s usage data which reflect
the user’s interest. We apply well-known collaborative filtering techniques which are
developed for making recommendations. We propose five algorithms and develop a
web-based application that allows users to use services. To recommend services for
business process use, we take into account the relations between services in busi-
ness processes. We target to recommend relevant services to selected positions in a
business process. We define the neighborhood context of a service. We make rec-
ommendations based on the neighborhood context matching. Besides, we develop
a query language to allow business analysts to formally express constraints to filter
services. We also propose an approach to extract the service’s neighborhood context
from business process logs. Finally, we develop three applications to validate our
approach. We perform experiments on the data collected by our applications and on
two large public datasets. Experimental results show that our approach is feasible,
accurate and has good performance in real use-cases.

Keywords: Service recommendation - business process design - neighborhood
context - query language - process mining

iii

iv

Table of contents

1 General Introduction 9
1.1 Context . 9
1.2 Thesis objectives . 10
1.3 Thesis outline . 11

2 Context and Research Problem 13
2.1 Thesis context and research problem 13

2.1.1 Web service discovery . 13
2.1.2 Web services in business processes 15
2.1.3 Thesis research problem: How to recommend services for indi-

vidual and process use? . 16
2.2 Motivating example . 18
2.3 Thesis principles, approach and contributions 22

2.3.1 Principles . 22
2.3.2 Approach . 23
2.3.3 Contributions . 24

3 State of the Art 27
3.1 Introduction . 27
3.2 On facilitating Web service discovery 28

3.2.1 Text-based Web service discovery 28
3.2.2 QoS-based Web service discovery 30
3.2.3 Semantic-based Web service discovery 32
3.2.4 Usage-based Web service discovery 34
3.2.5 Synthesis . 35

3.3 On facilitating business process design 36
3.3.1 Business process modeling . 36
3.3.2 Business process similarity . 38
3.3.3 Business process querying . 41
3.3.4 Business process mining . 43
3.3.5 Synthesis . 44

3.4 Conclusion . 45

4 Service Recommendation Based on Past Usage Data 47
4.1 Introduction . 47
4.2 Collaborative filtering techniques . 48

4.2.1 Memory-based CF . 48
4.2.2 Model-based CF . 49
4.2.3 Hybrid CF . 50

4.3 Illustrating example . 50

1

2 Table of contents

4.4 Service recommendation based on past usage data 51

4.4.1 Service-based algorithm . 51

4.4.2 User-based algorithm . 53

4.4.3 Service-user combination algorithm 55

4.4.4 LSI-based algorithm . 57

4.4.5 Power assignment algorithm . 60

4.5 Conclusion . 61

5 Service Recommendation based on Neighborhood Context Match-
ing 65

5.1 Introduction . 66

5.2 Preliminaries . 67

5.2.1 Business process graph . 67

5.2.2 Neighborhood context . 69

5.2.3 Loop cases . 72

5.3 Querying services . 73

5.3.1 Query’s grammar . 73

5.3.2 Query’s execution . 75

5.3.3 Advantages of the query . 76

5.4 Neighborhood context matching . 77

5.4.1 Connection flow matching . 77

5.4.2 Context matching . 78

5.4.3 Zone weight consideration . 78

5.4.4 Computational complexity . 80

5.5 Recommendation . 81

5.6 Taking into account parallel flow relations 83

5.6.1 Neighborhood context . 83

5.6.2 Updating neighborhood context matching 85

5.7 Similarity between connection elements 87

5.7.1 Primitive rules . 87

5.7.2 Similarity computation . 88

5.7.3 Integration into the neighborhood context matching 90

5.8 Conclusion . 90

6 Capturing Neighborhood Contexts from Business Process Logs 93

6.1 Introduction . 93

6.2 Running example . 94

6.3 Exploiting neighborhood context from logs 95

6.3.1 Preliminaries . 96

6.3.2 Log-based business process . 96

6.3.3 Log-based neighborhood context 97

6.4 Log-based neighborhood context matching 98

Table of contents 3

6.4.1 First zone matching . 99
6.4.2 Further zone matching . 101
6.4.3 Matching with zone weight consideration 103

6.5 Service recommendation . 103
6.6 Conclusion . 104

7 Implementation and Experiments 105
7.1 Introduction . 105
7.2 Implementation . 107

7.2.1 Application for individual use 107
7.2.2 Applications for business process use 108
7.2.3 Synthesis . 114

7.3 Experiments . 114
7.3.1 Individual use Experiments . 115
7.3.2 Process use Experiments . 119

7.4 Conclusion . 126

8 Conclusion and Future Work 129
8.1 Conclusion . 129
8.2 Future work . 131

8.2.1 Improving recommendation quality 131
8.2.2 Integrating into cloud computing 132

Appendix A 135
A.1 Levenshtein distance of two inverse strings 135
A.2 Service location in layers . 138
A.3 Checking primitive rules . 139

Appendix B 143
B.1 Service matching in different layers . 143

Appendix C 147
C.1 List of publications . 147

Bibliography 149

4 Table of contents

List of Tables

3.1 Synthesis on service discovery approaches that satisfy our principles . 35
3.2 Synthesis on process design approaches that satisfy our principles . . . 44

4.1 Original usage matrix . 51
4.2 User weights computed by TF-IDF. 53
4.3 Service weights computed by TF-IDF. 55
4.4 User weights given by the user-service combination algorithm. 57
4.5 Decomposed matrices in a 3-D space. 60

5.1 Query grammar . 74
5.2 Query examples . 75
5.3 Probability that aj appears in the possible cases 89
5.4 Similarities between typical connection elements 89

6.1 Example: event logs of the liability claim process 95

7.1 Experiments with the two relevant sets 116
7.2 Details of the dataset . 120
7.3 Examined cases . 120

A.1 Probability that an output flow is executed 139
A.2 Similarities between typical connection elements 140

5

6 List of Tables

List of Figures

2.1 Web service architecture . 14

2.2 Consuming Web services for individual use problematic 16

2.3 Consuming Web services for business process design problematic . . . 18

2.4 Flight & hotel reservation processes 19

2.5 An incomplete train reservation process 20

2.6 Service recommendations for the ‘unknown’ service 20

2.7 The complete train reservation process 21

2.8 Recommendations for the selected services 21

2.9 New traveling process improved from the train reservation process . . 22

3.1 Basic architecture of the WS search engine using VSM [8]. 29

3.2 Scenario of WS recommendation by syntactical matching [9] 30

3.3 QoS aware search engine for Web services [62] 31

3.4 Combining Service Request Expansion and LSI [18] 34

3.5 The architecture of the ICoP framework [50] 41

3.6 Example of a BPMN-Q query [35] . 42

4.1 Decomposition in k dimensions [145] 58

4.2 Select services based on their selection probabilities 62

5.1 Incomplete train reservation process 66

5.2 Flight reservation business process . 67

5.3 Business process graph of the ‘train-reservation’ process (Figure. 5.1) . 68

5.4 Neighborhood context graphs of ax (in Figure 5.1) and a6 (in Figure 5.2) 71

5.5 Connection flows in loop cases . 72

5.6 Recommendations for the ‘unknown’ service 82

5.7 Recommendations for the selected services 82

5.8 New traveling process improved from the train reservation process . . 82

5.9 Label-based business process graph of the ‘flight-reservation’ process . 85

5.10 Updated neighborhood context graphs or services ax and a6 86

6.1 The liability claim business process discovered from event logs [155] . 95

6.2 Log-based business process graph . 97

6.3 Example: neighborhood context graph 98

6.4 Log-based business process graph . 99

6.5 Neighborhood context graph . 99

7.1 Architecture of our service recommendation tool (IRec) based on usage
data . 108

7.2 A screen-shot from IRec . 109

7

8 List of Figures

7.3 PRec, a service recommendation application for process use 110
7.4 Querying web services for process design using WebRec 111
7.5 Business process extracted from logs and the related recommendations 113
7.6 Synthesized results of particular users 117
7.7 RMSE distribution with k = 100 . 118
7.8 Experiment with different k-parameter values 119
7.9 Percentage of services whose matching value >= 0.5 121
7.10 Percentage of services with different kth-zone values 122
7.11 Precision and Recall values computed by taking into account the first

zone . 123
7.12 Precision values in case of two recommended services 123
7.13 Recall values computed based on the number of relevant processes . . 124
7.14 Comparing the simplest case of our approach to the random case . . . 125
7.15 Average computation time with k = 3 125

B.1 Current matching case . 143
B.2 Ignored cases . 143
B.3 Example: case 1 . 144
B.4 Example: case 2 . 145
B.5 Example: case 3 . 145
B.6 Example: case 4 . 146
B.7 Example: case 5 . 146

Chapter 1

General Introduction
G

1.1 Context

The evolution of communication networks and technologies involves the explosion of
services over the Internet. Service providers always compete to rapidly provide the
best services to users. This circumstance requires the development of service oriented
applications. Web services appeared as an attractive paradigm for publishing and
consuming services. The goal of Web service development is to assist service providers
to flexibly create new services and dynamically exchanging data with their partners
for collaborative business. Web services are developed as loosely-coupled applications
that can be run alone to provide a simple function or composed to create new value-
added services. For instance, simple Web services can be services for city codes,
local temperatures, quotes, up-to-date news, and composite Web services can be
flight booking processes that compose functionality offered by other services such as
customer authentication, online check-in, car rental, and payment to accomplish a
flight booking transaction.

To consume a service, a user sends her request and obtains a response from the
using service. To develop a composite service, a (business) process analyst designs
a business process and looks for appropriate services to integrate into the designed
process. Basically, services can be consumed in two different ways. They can be
consumed as simple services which provide an interface to receive inputs and return
outputs; or they can be consumed as components to be integrated into business
processes. We call the first consumption case individual use and the second case
(business) process use.

To find a service for individual use, a user can use a well-known search engine
such as Google, Yahoo or Baidu. However, in most cases, she prefers to use specific
service search engines that can not only provide her ‘good’ services but also can assist
her to discover other interesting services. Similarly, to find a service for process use, a
process analyst also needs specific tools that can understand the business context in
order to rapidly find the most relevant services to integrate into the ongoing designed
process.

9

10 General Introduction

The requirement of specific tools to assist consumers in the two cases involves many
researches in both academics and industry. On the one hand, many service portals
(such as XMethods, BindingPoint, WebServiceX.NET, WebServiceList, StrikeIron,
RemoteMethods, Woogle, and eSynaps) and service crawlers (such as Seekda and
EmbracereRegistry) have been developed as specific tools to assist users to search
and invoke Web services for individual use. On the other hand, some business process
search mechanisms (such as label matching, structural matching, behavioral match-
ing) and querying languages (such as BPQL, BP-QL, BP-Mon and BPMN-Q) have
been developed to assist process analysts to facilitate business process design.

To assist users to consume services for individual use, current approaches take
into account data from provider side such as Web service descriptions, QoS and
semantic concepts of services. They exploit explicit knowledge presented by service
documents or QoS. They make recommendations without considering data that reflect
user interest, such as usage data. In addition, they can meet text-based synonym and
polysemy problems. Some of them are time consuming and some others require efforts
from users such as rating Web services.

To assist users to consume services for process use, current approaches propose
mechanisms to search for similar business process models. Some of them propose
to use reference models. However, the design with reference models is still labor-
intensive, which is absolutely error-prone and time-consuming. Meanwhile, searching
entire process models costs much computation time and it can make business analysts
confused, especially when the number of activities is large. In some cases, a compro-
mise between the computational complexity and the quality of results needs to be
found.

1.2 Thesis objectives

In this thesis, we aim at facilitating the service consumption in two cases: in-
dividual use and process use. Our purpose is twofold: (i) recommending to users
services that are close to their interest and (ii) recommending to process
analysts services that are relevant to selected positions in a designed pro-
cess.

To achieve the first objective, we use usage data and adapt well-known collabora-
tive filtering (CF) techniques. We aim at discovering the user’s interest that is hidden
in the usage data. We also aim at using CF techniques, which have been developed
for item recommendation and prediction. We do not ask users any effort to provide
additional information such as profile, rating or comments. Whenever a user selects
a service, our approach dynamically recommend services that are relevant to her in-
terest. To do so, we firstly identify user interests based on past usage data. Then,
we integrate these interests in CF algorithms to calculate similarities between users
and services. Based on the computed similarities, we select appropriate services for
recommendations. Since usage data reflect user interest, our recommendations are

Thesis outline 11

expected to be close to this interest.

To achieve the second objective, we capture relations of selected services with
others. We define the neighborhood context of a service. We match neighborhood
contexts to infer similarity between services. We make recommendations based on
the neighborhood context matching. In our approach, we aim at taking into account
existing data to generate service recommendations. We aim at discovering implicit
knowledge hidden in business process models. We also do not ask users any effort
to provide additional information. Whenever a business analyst selects a service,
our approach recommend her services whose neighborhood contexts are similar to
the selected service’s context. Apart from service relations captured from business
process models, we also discover these relations from business process event logs. In
addition, we develop a query language in order to allow process analysts to formally
express business constraints to filter services.

1.3 Thesis outline

This thesis includes 8 chapters:

In chapter 2, we introduce in details the thesis context, research problem and
our contributions. We also present a typical scenario to motivate and illustrate our
approach.

In chapter 3, we present the work related to our thesis. We study different ap-
proaches on improving Web services discovery and facilitating business process design.
We introduce their models and analyze their solutions. This analysis allows us to jus-
tify the need of service recommendation based on usage data and interactions between
services in business processes.

Chapters 4, 5 and 6 are the core of our thesis, which elaborate our approach to
recommend services for individual and business process uses.

In chapter 4, we present our solution to recommend services based on past usage
data. We present four algorithms based on CF techniques and one algorithm based
on a power assignment strategy. These algorithms take into account usage data to
make recommendations.

In chapter 5, we present the neighborhood context of a service. We also present
a query language that allows business analysts to filter relevant services based on
the neighborhood context matching. Then, we elaborate the neighborhood context
matching computation and show how to recommend services that are relevant to a
chosen position in a business process. Finally, we examine the parallel flow rela-
tion between services and the similarity between connection elements to improve the
neighborhood context matching values.

In chapter 6, we examine business process logs. We present how we build neighbor-
hood context from the execution orders recorded in business process logs. Then, we

12 General Introduction

present an algorithm to compute the similarity between the extracted neighborhood
contexts. Finally, we present our solution to recommend services.

In chapter 7, we present applications and experiments to validate our approach.
Finally, in chapter 8, we summary our work and give an outlook to the future

work.

Chapter 2

Context and Research Problem

Contents

2.1 Thesis context and research problem 13

2.1.1 Web service discovery . 13

2.1.2 Web services in business processes 15

2.1.3 Thesis research problem: How to recommend services for individual
and process use? . 16

2.2 Motivating example . 18

2.3 Thesis principles, approach and contributions 22

2.3.1 Principles . 22

2.3.2 Approach . 23

2.3.3 Contributions . 24

2.1 Thesis context and research problem

In this section, we present the context and research problem of our thesis. First,
we introduce existing mechanisms to discover Web services (section 2.1.1). Then,
we present the integration of Web services in business processes and the importance
of business process design (section 2.1.2). Finally, we present our research problem
related to service recommendation for individual and process use (section 2.1.3).

2.1.1 Web service discovery

Web services have been developed as a standard technology to deliver services over
the Internet. The Web service architecture (Figure. 2.1) consists of three actors: ser-
vice provider, service requester and service registry. Service providers traditionally
describe their developed services using Web service Description Language (WSDL) [1]
and publish them on service registries, such as Universal Description Discovery and In-
tegration (UDDI) [2] registries. Service requesters who want to consume Web services
use the search function provided by service registries to find their services. Service

13

14 Context and Research Problem

Figure 2.1: Web service architecture

registries return to requesters the locations of the requested services which are de-
ployed at the provider site. The requesters then interact with the requested services
by sending and receiving Simple Object Access Protocol (SOAP) [3] messages.

The Web service architecture creates fundamentals for the Web service develop-
ment. Many companies developed and published their Web services. A survey of
Gartner on 110 companies [4] showed that 54% are working on Web services. In an-
other survey on 2847 executives worldwide in 2007 [5], 80% companies were using or
going to use Web services and 78% identified that Web services are the most impor-
tant technologies for their business. The growing rate of the number of Web services
collected by search engines from Oct. 2006 to Oct. 2007 is 286% [6]. However, since
2006, most of large public UDDI registries such as SAP’s, IBM’s and Microsoft’s were
discontinued [7].

The growing up in the amount of Web services and the discontinuing of public
UDDI registries make Web services more scattered. Many Web service portals, such
as XMethods, BindingPoint, WebServiceX.NET, or Web service crawlers, such as
Seekda and EmbraceService, were developed to allow service providers to continue
publishing their service descriptions. They also provide interfaces for users to search
and invoke Web services. Seekda 1 which has been launched since 2006 has collected
28606 Web services from 7739 providers. Meanwhile, EmbraceService 2 registry stores
more than 8000 Web services. Apart from them, users can also discover Web services
via search engines such as Google, Yahoo, AlltheWeb or Baidu.

The Web service technology has been proven as an efficient mean to delivering
services to users. They are used worldwide in most of the companies. However, the
Web service concept is still not familiar to end users, which still get difficulty in
discovering Web services. They need advanced mechanisms to assist them to better
discover services. This requirement leads to many researches on proposing solutions to

1http://webservices.seekda.com/browse
2http://www.embraceregistry.net/services

Thesis context and research problem 15

enhance Web service discovery. Some approaches analyze Web service descriptions for
better matching with the query strings [8, 9, 10], other approaches group Web services
in clusters [11, 12], some approaches examine the quality of services [13, 14, 15],
whereas [16, 17, 18] rely on the semantic descriptions of Web services.

2.1.2 Web services in business processes

Web services are developed as loosely-coupled applications that not only can be run
alone to provide single-use functions but also can be composed with other services
offered by other companies to create new value-added services. A service which is
created by the composition of other services is called a composite service. It can be
described from the view of a single company, called service orchestration, or from a
global perspective, called service choreography [19, 20]. Interactions of service compo-
nents in a composite service is generally specified by a process analyst/designer. There
are many business process-based languages and standards to assist process analysts to
specify interactions between services. In 2003, Business Process Execution Language
for Web services (BPEL4WS or BPEL for short) [21] was issued by Microsoft, IBM,
Siebel Systems, BEA and SAP as a standard for Web service orchestration. Intalio,
Sun, BEA and SAP also released a joint specification named Web services Choreog-
raphy Interface (WSCI) which is later superseded by the Web services Choreography
Description Language (WS-CDL) [22] in 2005. BPEL provides an XML-based gram-
mar for describing the control logic required to coordinate Web services participating
in a process flow. WS-CDL is an XML-based language that is used to describe the in-
teractions between multiple services. WS-CDL also specifies the ordering structures,
such as sequence, parallel and choice, to define the interactions between Web services.

A business process can be implemented as a Web service composition that exe-
cute a set of services to achieve a business goal. It is managed by business process
management (BPM) technology which includes methods, techniques, and tools to
support the design, enactment, management, and analysis of business processes. The
BPM life-cycle consists of 4 phases: design, configuration, enactment and diagnosis
[23]. Among these phases, design is the initial and key phase of business process
development as it helps to design the business process model, plan resources, identify
new opportunities and foresee risks. In the design phase, process analysts sketch out
business processes using a graphical modeling tool, such as ARIS and MID Innovator.
However, designing a business process from scratch is always a labor-intensive and
time-consuming task. Process analysts need tools and mechanisms to facilitate the
business process design. Many approaches were proposed to address this need. They
propose to use reference models [24, 25], match business processes for similarity search
[26, 27, 28, 29, 30, 31, 32], create a query language [33, 34, 35, 36, 37] or discover
process models from event logs [38, 39, 40, 41, 42].

16 Context and Research Problem

2.1.3 Thesis research problem: How to recommend services for in-

dividual and process use?

As we mentioned in the thesis’s introduction (section 1.1), basically, there are two
service consumption cases: individual use and process use.

To find a service for individual use, users often spend much time to find, compare
and decide the services that are best fitted to their needs. They may easily get
confused by the number of Web services returned by search engines or service crawlers.
Moreover, they may not be aware about the functionality and quality of the returned
services (Figure. 2.2).

Figure 2.2: Consuming Web services for individual use problematic

Intuitively, users need support to understand their interests and suggest them
appropriate services. In this case, recommender systems (RS) [43, 44] can be a good
solution as they are developed to recommend users the most suitable items to their
needs. Currently, many approaches apply RS techniques to assist users to discover
services. Some of them [11, 8] apply content-based filtering technique to match WS
descriptions and user’s requests. Other approaches apply associated rules [45, 46]
or collaborative filtering techniques on the service’s QoS [13, 10]. These approaches,
however, do not take into account user’s behavior which is an important parameter
for finding services that are close to user interest. User ratings are also considered
for service recommendation [16]. Other solutions [47, 17, 48] use semantic annotation
markup language, and rely on semantic description matching to recommend services.

However, the above approaches exploit explicit knowledge which is either repre-
sented by user ratings, semantic descriptions or service’s QoS. They do not consider
user interest which is implicitly reflected by usage data to make recommendations.
Most of them take into account data from provider side (such as service descriptions,
service’s QoS, semantic annotations, etc.). Few of them consider data from customer
side (profile, rating, comments, etc).

In our work, we aim at recommending services that are close to user interest. We
propose solution from the customer side. We target to exploit implicit knowledge
hidden in usage data. We do not ask users any effort such as rating or comments.

Thesis context and research problem 17

To address this research problem, we need to answer the following questions:

1. How to identify user interest?

2. How to recommend services that are close to user interest?

3. How efficient our recommendations are?

From a process use perspective, process analysts need tools to facilitate the process
design. It would be inefficient if every time a company engages in modeling or re-
designing its process, it did so “from scratch” without consideration of previous design
experiences, best practices or how other companies perform similar processes. In
recent years, there have been many efforts on helping business analysts to create
new business process models faster and more accurately by using available reference
models [24, 25], or finding existing similar models to inspire the new process design [27,
28, 30, 26].

However, business analysts merely take reference models as a source of inspiration,
but ultimately, they design their own models on the basis of the reference models.
The design with reference models is still labor-intensive, which is absolutely error-
prone and time-consuming [49]. Indeed, recommending entire process models costs
much computation time and it can make business analysts confused, especially when
the number of activities is large, e.g. hundreds of activities and transition flows. In
some cases [27, 26, 50], a compromise between the computational complexity and the
quality of results needs to be found.

On the other hand, in some circumstances, process analysts need recommenda-
tions for some selected positions instead of entire processes. For example, a process
analyst is designing a process as shown in Figure 2.3. s1, s2 and s3 are services that
execute some given tasks. The process analysts is looking for services that are suit-
able to the missing position (with the ‘?’ mark) in the ongoing designed process. In
this case, recommending an entire business process is not helpful. Instead, service
recommendation is more suitable and straightforward.

Service recommendation for process use not only helps to find suitable services
for a missing positions but also helps to find other alternatives for a selected service.
These alternatives can be useful in either designing process variants or replacing a
service in case of failure. For example, assume that service s1 (Figure 2.3) is vulnerable
and the process analyst wants to find suitable services that can replace s1 to keep the
service available. In this case, she can use service recommendations.

In this work, our objective is to facilitate the business process design. We aim at
recommending services that are relevant to selected positions of an ongoing design
process. We target to exploit implicit knowledge hidden in business process models.
We use existing data (previous process models, process logs) to make recommenda-
tions instead of asking process analysts additional information. We also want to
avoid the computational complexity problem. To address this research problem,
we need to answer the following questions:

18 Context and Research Problem

s1

?

s2

s3

Figure 2.3: Consuming Web services for business process design problematic

1. How to recommend services for a particular position?

2. How to formally express constraints to filter services?

3. Can business process logs be useful? and How?

4. How efficient our recommendations are?

2.2 Motivating example

We present in the following a scenario to illustrate and motivate our approach. It is
also used to explain our approach in the next chapters.

A traveler is planing a trip for her holidays. She intends to travel by train. So,
she searches for train booking related services. She decides to use ‘Search trains’
Web service offered by our travel agency. Assume that this is the first time she
uses our system. The system will record the ‘Search trains’ Web service as her first
historical usage data. By analyzing usage data, our approach can infer the user
interest and recommend her suitable services. For example, it detects that users who
use the ‘Search trains’ service often use the ‘Search hotels’, ‘Rent cars’ and ‘Weather
information’ services. So, it recommends her these services. Now, assume that the
traveler is interested in the recommended ‘Search hotels’ service and she uses it to
search for hotels. Our approach updates her usage data with the ‘Search hotels’
service and reanalyzes it. Assume that it detects that users who use ‘Search trains’
and ‘Search hotels’ services often use ‘Rent cars’, ‘Book tours’ and ‘Activities to do’
Web services. Then, it update the recommendation list with the new services.

By considering usage data, which reflect user interest, our approach can recom-
mend services that are close to her interest. In addition, it recommends services
without asking users any additional effort. Recommendations are generated dynami-
cally whenever users select a service for individual use.

Motivating example 19

Back to the motivating example, our travel agency notices that their customers
often consume a group of services in a time interval to achieve a specific business
goal. They usually do not use just one service, rather they combine many of them.
However, they do it in an ad-hoc manner. For instance, they start by searching
for hotels using ‘Search hotels’ service, then collect manually the results delivered
by this service, make their choice and thereafter call the ‘Process payment’ service.
In order to satisfy the evolutive needs of their customers and offer a more complex
and value-added service, the travel agency decides to take benefits from the multiple
functionalities that business process management systems can offer by composing
services as business processes. For example, it composes the ‘Search flights’ and
‘Search hotels’ services with other services such as, ‘Present alternatives’, ‘Request
customer detailed Info.’, ‘Request customer basic Info.’, ‘Request credit card Info.’,
‘Process payment’ and ‘Send confirmation’, to provide a flight and hotel reservation
processes (Figure 2.4).

Receive

reservation

request

Search

!ights
Present

alternatives

Make

reservation

Cancel

request

Request

customer

detailed Info.

Request

credit

card Info.

Process

payment
Send

con"rmation

Receive

reservation

request

Search

hotels

Present

alternatives

Make

reservation

Cancel

request

Request

customer

basic Info.

Request

credit

card Info.

Process part

payment
Send

con!rmation

Figure 2.4: Flight & hotel reservation processes

Suppose that the traveler now wants to book a train and a hotel using a business
process. Unfortunately, only hotel reservation process is supported (Figure 2.4). The
train reservation process has not yet been developed. So, the user request is forwarded
to our process analyst. The process analyst analyzes the user request and find that
she has to develop either a train reservation process to support a separate payment or
a combined trains-hotels reservation process to support a combined payment. These
processes must be rapidly designed to answer these new business needs. Evolving
user requirements impulse the business analyst to develop more and more value-added
services by composing existing services.

The business analyst decides to design the “train-reservation” process. Based on
her experience, she rapidly sketches-out the “train-reservation” process with some
basic Web services as given in Figure 2.5. The ‘Search trains’ service receives a user’s
request and searches for requested trains. The ‘Present alternatives’ service renders
the results returned by the ‘Search trains’ service and presents it to the user. Then,

20 Context and Research Problem

the user can either cancel her request or process the payment. The ‘Process payment’
service executes the payment and finally, the ‘Send confirmation’ service returns the
user an invoice. The process analyst is looking for suitable services that can be
executed before the ‘Process payment’ service. She marks it ‘unknown’ (notated by a
round-corner rectangle with a ‘?’ symbol) and asks the system for recommendations.

Receive

reservation

request

Search

trains

Present

alternatives

Make

reservation

Cancel

request

?
Process

payment
Send

con!rmation

Figure 2.5: An incomplete train reservation process

Existing approaches (such as reference models, process matching, etc.) that pro-
pose entire process recommendations are not suitable in this circumstance because
the process analyst look for services instead of business processes. Besides, existing
service discovery approaches propose usually functionality-based search tools, which
were mainly built for individual use service consumption, and do not take into account
the process context (i.e. interaction with the other services in the process), which is
important in the process use service consumption.

Receive

reservation

request

Search

trains

Present

alternatives

Make

reservation

Cancel

request

Request

customer

basic Info.

Process

payment
Send

con!rmation

Request

customer

detailed Info.

?

Request

credit

card Info.

Figure 2.6: Service recommendations for the ‘unknown’ service

Indeed, The process analyst wants to know appropriate services that can be per-
fectly plugged in the missing position. By capturing the interactions between services
in processes, our approach can recommend her services that are appropriate to the
missing position. Concretely, it detects that the ‘unknown’ service has similar neigh-
borhood context with the ‘Request customer detailed Info.’, ‘Request customer basic
Info.’ and ‘Request credit card Info.’ in the previously designed Flight & hotel reser-
vation processes (Figure 2.4) because they have similar connections with the same
services, which are ‘Present alternatives’ and ‘Process payment’. So, we recommend

Motivating example 21

these services for the missing position (Figure 2.6).
The business analyst considers these recommended services. She thinks that the

‘train-reservation’ process should not bother users by requesting their personal infor-
mation. In addition, to process the payment, this process needs the “Request credit
card Info.” service. So, she replaces the missing service by the “Request credit card
Info.” service. The complete “train-reservation” process is shown in Figure 2.7.

Receive

reservation

request

Search

trains

Present

alternatives

Make

reservation

Cancel

request

Request

credit

card Info.

Process

payment
Send

con!rmation

Figure 2.7: The complete train reservation process

After designing the ‘train-reservation’ process, she thinks about other process
variants in order to create more value-added services. She wants to know services that
are also appropriate to the positions of ‘Search trains’ and ‘Process payment’. So, she
requests recommendations for these positions. She still keeps selecting the ‘Request
credit card Info.’ service. By using the same principle, which is recommending services
that have similar neighborhood context from previously designed business processes,
recommendations for these selected positions are generated by our approach as shown
in Figure 2.8.

Receive

reservation

request

Search

!ights

Search

hotels

Search

trains

Present

alternatives

Make

reservation

Cancel

request

Request

credit

card Info.

Request

customer

basic Info.

Request

customer

detailed Info.

Process

payment

Process part

payment

Send

con"rmation

Figure 2.8: Recommendations for the selected services

With these recommendations, the business analyst may find that she can integrate
the ‘Search hotels’ service to the designed process to create a combined ‘trains-hotels’
reservation process. In this case, apart from the credit card information, she needs
also the user information for the hotel reservation. Finally, she creates the combined
reservation service as shown in Figure 2.9.

By presenting this example, we show that service recommendation is essential to
facilitate business process design. By taking into account the neighborhood context of
services, we can make service recommendations without asking users any additional

22 Context and Research Problem

Receive

reservation

request

Search

trains

Search

hotels
Present

alternatives

Make

reservation

Cancel

request

Request

customer

detailed Info.

Request

credit

card Info.

Process

payment
Send

con!rmation

Figure 2.9: New traveling process improved from the train reservation process

information (such as service descriptions, locations, input, output etc.). Instead,
we exploit existing knowleddge which are the relations between services in business
processes. We also show that service recommendation not only helps to complete the
design of a business process but also helps to create more value-added services.

In summary, our approach can help to facilitate service consumption in two cases:
individual use and process use. In the first case, we compare user usage data to detect
the correlations between users and services in terms of usage profiles. We recommend
to a user services that are similar to the currently used service, or were used by similar
users. As the usage data reflect user interest, our approach can recommend services
that are close to the user interest. In the second case, we assist business analysts to
rapidly design new business processes. To do so, we compute the similarity between
services based on relations with other services in business processes. Then, for a
selected service, we recommend services that have similar relations.

2.3 Thesis principles, approach and contributions

2.3.1 Principles

In our approach, we consider the following principles:

• Focused and fine-grained results. In order not to confuse users, the ap-
proach should not recommend complicated results such as reference models or
entire business processes, but rather focused and fine-grained results. Con-
cretely, for a specific position in the ongoing designed process it should recom-
mend users a ranked list of services.

• No additional information. The approach should not bother service con-
sumers by asking them additional or complementary information.

• Exploiting implicit knowledge. The approach should extract and utilize im-
plicit knowledge hidden in usage data such as user-service interactions, designed
process models, or business process logs.

• Balanced computational complexity. The approach should make a com-
promise between the computational complexity and the quality of results.

Besides, we also consider the following general principles:

Thesis principles, approach and contributions 23

• Simplicity. The approach should not ask users complex interactions to achieve
recommendations.

• Flexibility. Users should be able to adjust the number of recommended services.
They should be able to select algorithms or set parameter values to get different
recommendation strategies. They should also be able to specify constraints to
filter recommended results.

2.3.2 Approach

To recommend services for individual use, we take into account usage data. We realize
that usage data of each user reflect her interest. Therefore, by taking into account
these data, we can make recommendations that are close to user interest.

collaborative filtering (CF) is one of the most successful technologies for developing
recommender systems [51]. It has been developed and improved over the past decade
with a wide variety of techniques [52]. CF techniques have been successful in research
(with many projects such as GroupLens [53], Ringo [54], Video Recommender [55],
and MovieLens [56]) and in commerce (with well-known websites such as Amazon,
CDNow, MovieFinder, and Launch [57]). CF techniques are efficient and highly
performant in generating recommendations [58].

As CF techniques bring out many advantages for recommendation, we apply them
in the context of service use to generate service recommendations. In our approach,
we firstly identify user interests based on past usage data. Then, we integrate these
interests in CF algorithms to calculate similarities between users and services. Based
on the computed similarities, we select appropriate services for recommendations.
We implemented five algorithms, including three memory-based CF algorithms, one
model-based CF algorithm and one algorithm to solve the new item (or cold-start)
problem. Our memory-based CF algorithms take into account the correlations be-
tween services and users. The model-based CF algorithm applies the singular value
decomposition and latent semantic indexing. The last algorithm deals with the usage
frequency of services.

To recommend services for process use, we take into account relations between
services in business processes. Inspired by the maxim “Judge a man not by the words
of his mother, but from the comments of his neighbors”, we propose to recommend
services that have similar neighborhood context with the selected one. This context
is defined as a business process fragment around the service. For a selected service,
we match its neighborhood context with the neighborhood contexts of other services.
The matching between two neighborhood contexts is scored by a similarity value.
Then, based on the similarity values, we recommend to the process analyst services
that have the highest similarity values.

We have also identified parameters that have an impact on the neighborhood
context matching. We integrated these parameters in our computation to improve the
matching values. In addition, we proposed a query language to help process analysts

24 Context and Research Problem

formally express neighborhood constraints to filter the recommendation results (see
the research problem in section 2.1.3).

In most cases, neighborhood contexts are captured from business process mod-
els. However, in some cases, such as in a hospital information system [59], business
processes are not explicitly presented. We realize that in these cases, business pro-
cess event logs can be exploited to capture neighborhood contexts. So, we propose a
solution to extract service neighborhood contexts from process event logs. We also
take into account the importance of service execution, which is reflected by their
occurrence in logs, for service recommendation.

We developed four applications, named IRec, PRect, WebRec and LogRec, to vali-
date our approach. IRec generates service recommendations for individual use. PRec
and WebRec makes recommendations for business process use. They run different
algorithms of our approach. Finally, LogRec was developed as a proof of concept to
validate our log-based approach.

We performed experiments on the data collected by our IRec application and
on two large public datasets. We evaluated the efficiency of our approach based on
precision/recall and root mean square error. We made statistics on the recommended
services to estimate the recommendation quality. We also measured the performance
of our algorithms based on the computation time.

2.3.3 Contributions

In summary, our contribution in this thesis are as following:

• Four algorithms based on collaborative filtering to recommend to users services
that are close to their interests. By studying the advantages of collaborative
filtering, we propose to apply this technique on service usage data to capture
the correlation between users and services and generate recommendations.

• One algorithm to improve the probability of selecting less used services. This
algorithm is developed to overcome the new item (or cold-start) problem: an
item that has no (or limited) usage data is hard to be recommended.

• The new concept “service neighborhood context” which represent the business
process fragment around a service. By taking into account the neighborhood
context, our objective is twofold: (i) focusing on specific parts of the business
process which can avoid the NP-complexity problem and (ii) benefiting from ex-
isting business processes by extracting implicit knowledge induced from business
process fragments.

• A solution to recommend to process analysts services that are relevant to selected
positions in a designed process. This solution helps to facilitate business process
design, improve the designed process and create new business process variants.

• A query language that uses the neighborhood context matching to search and fil-
ter services that have similar neighborhood context. This query language allows

Thesis principles, approach and contributions 25

adding constrains, such as including/excluding services, to filter the returned
results.

• A solution to capture service neighborhood contexts from business process event
logs and an algorithm to compute the matching of the extracted neighborhood
contexts. We extract execution orders of services from business process execu-
tion logs. Then, we create business processes based on the extracted orders.
We construct service neighborhood contexts based on these processes. Finally,
we match these contexts to generate recommendations.

• Applications for service recommendation and experiments. We deployed four
applications to validate our approach. These applications are published in a
public web site3. Besides, we also provide rich experiments on the collected
usage data and large public datasets to demonstrate the feasibility and the
efficiency of our proposed techniques.

3http://www-inf.it-sudparis.eu/SIMBAD/tools/

26 Context and Research Problem

Chapter 3

State of the Art

Contents

3.1 Introduction . 27

3.2 On facilitating Web service discovery 28

3.2.1 Text-based Web service discovery 28

3.2.2 QoS-based Web service discovery 30

3.2.3 Semantic-based Web service discovery 32

3.2.4 Usage-based Web service discovery 34

3.2.5 Synthesis . 35

3.3 On facilitating business process design 36

3.3.1 Business process modeling . 36

3.3.2 Business process similarity . 38

3.3.3 Business process querying . 41

3.3.4 Business process mining . 43

3.3.5 Synthesis . 44

3.4 Conclusion . 45

3.1 Introduction

Facilitating Web service discovery and business process design are two hot research
topics. Many solutions have been proposed to assist users to retrieve their interested
services and process analysts to design a process. Many problems have been identi-
fied and tackled such as service selection, service execution, service recommendation,
business process modeling, business process searching and so on. Existing approaches
analyzed different aspects of a Web service, such as service descriptions, execution
conditions, service behaviors, etc.. Functionality properties (such as Web service op-
erations, inputs, outputs) and non-functionality properties (such as quality of services,
execution order) have been examined. Web service and process presentations, such
as XML-based, semantic web, graph-based, have been also explored.

In this chapter, we study existing solutions on facilitating Web service discovery
and business process design. In section 3.2, we present solutions that assist consumers

27

28 State of the Art

to discover Web service. We classify them in 4 categories: text-based, QoS-based,
semantic-based and past-usage based. In section 3.3, we present solutions that as-
sist process analysts to design business processes. We classify them in 4 categories:
business process modeling, business process similarity, business process querying and
business process mining. We present shortcomings of the related approaches, identify
the difference and bring out the advantages of our approach.

3.2 On facilitating Web service discovery

Industrial and academic researchers have proposed many approaches to assist providers
deliver the most relevant Web services to particular user’s needs. Some approaches
analyzed Web service descriptions [11, 8, 9, 12], some studied the QoS of services [14,
15, 13], while others used semantic concepts to discover services [16, 17, 10, 18].
Different methods in information retrieval, data mining and artificial intelligence do-
mains were experimented such as collaborative filtering [8, 14, 15, 10], associated
rules [46, 45, 60], clustering [11, 12, 61], divide and conquer [12] and so on. Different
types of applications such as similarity search engines [11, 8, 12, 10] and Web service
recommender systems [9, 46, 45, 60, 16] were also developed.

In order to clarify the difference between the existing approaches and identify
the need of a Web service recommender system based on user’s behavior, we classify
them into 4 groups based on the used methodologies, including text-based approaches,
QoS-based approaches, semantic-based approaches and usage-based approaches. In
the following, we study in details the solutions in each category.

3.2.1 Text-based Web service discovery

An early work that analyzes Web service descriptions to build a similarity search
engine for Web services was proposed by Dong et. al. [11]. The authors developed
a Web service search engine that aims at computing the similarity between inputs,
outputs and operations in a corpus. They proposed to pre-process the Web service
descriptions in order to split the names of inputs, outputs and operations then cluster
them in different concepts. Each input/output is formed as a vector with three
elements, for example: the input i of a Web service operation op has a vector i = (pi;
ci; op), where pi is the set of input parameter names, and ci is the set of concepts
associated with the parameter names. Whereas, each operation op is identified by
a vector op = (w; f ; i; o), where w is the text description of the Web service to
which op belongs, f is the textual description of op; i and o denote the input and
output parameters. Similarity of Web service operations is computed based on the
similarities of vector elements. The similarity between inputs, outputs or Web service
descriptions is computed by the similarity between the corresponding concepts using
Term Frequency-Inverse Document Frequency (TF-IDF) measure.

Platzer et. al. [8] also proposed to match the user’s query string with Web service

On facilitating Web service discovery 29

descriptions. However, they match the query vector directly with document vectors
without structuring the input, output and operation vectors or clustering them in
different concepts like Dong et. al. [11]. They firstly collect Web service descriptions,
i.e. WSDL files, from different resources, such as user’s uploading, links from websites,
or references from UDDI repositories. Then, eachWeb service description file is parsed
to generate a corresponding vector. Each element in the vector corresponds to a word
in the description and its value is the number of time that the word appears in the
description. The user’s query string is also represented as a vector. Each term in
the vectors is weighted by TF-IDF and the similarity between a query-vector and a
document-vector is computed by Vector Space Model (VSM), i.e. the cosine of the
angle between the two vectors. Finally, for each query string, the authors recommend
the Web services whose descriptions have the highest similarity values with the query
string. Figure. 3.1 shows the basic architecture of their system.

Figure 3.1: Basic architecture of the WS search engine using VSM [8].

In [9], Blake et. al. attempted to recommend Web services that are relevant to
user’s daily routine. Different from [11] and [8], which manipulated the user’s query
strings and Web service descriptions, they examined the similarity between the text
data that a user was viewing/processing and the operations of a Web service. They
firstly capture the text data that a user is working on such as HTML files, Word
documents, File systems, messages (ICQ, SOAP, etc) (Figure. 3.2, step 1). Then,
they extract text strings from the captured data (step 2). These extracted strings are
compared to the operations of available Web services (step 3) to infer the similarity
between them. In their approach, they captured four naming tendencies that software
designers/developers used to name a Web service and proposed to apply Levenshtein
Distance(LD) and Letter Pairing(LP) to compute the similarity between two strings.
Finally, Web services that have the highest similarity values are recommended to the
user (step 4).

The typical shortcomings of the text-based approaches are the polysemy and

30 State of the Art

Figure 3.2: Scenario of WS recommendation by syntactical matching [9]

synonym problems, i.e. one word can have many meanings (polysemy) and one
meaning can be expressed by different words (synonym). In addition, these ap-
proaches suppose that the service description text is always correct and meaningful.
Consequently, they do not address the need to flexibly deal with the cases that a user
either types incorrect words, abbreviated words or multi-meanings words in the query.
Available supported languages could be also considered as another shortcoming of
the text-based approaches. Currently, Web service documents are mostly described
in English. Hence, the query should be in English and users must type correctly the
queried words in English. This issue may limit the Web service discovery.

3.2.2 QoS-based Web service discovery

Many QoS driven approaches have been proposed for Web service search [62], Web
service recommender system [14], Web service reliability prediction [63, 15], Web
service selection [13, 64, 65, 66], optimal service composition [67, 68, 65, 69] and so
on.

In [62], Zhang et. al. proposed a search engine that took into account both
functionality and QoS for service ranking. The functionality is described by the Web
service description, such as operation, input and output. The QoS is non-functionality
features, such as price and response time. A user’s query includes both functionality
and QoS requests (Figure. 3.3). In the QoS query, ‘Constraint’ is a vector of queried
values corresponding to QoS attributes. The ‘Weight’ vector allows user to specify
the weight of each QoS attribute in her query. The authors computed both the

On facilitating Web service discovery 31

functionality matching and the QoS matching. A λ ∈ [0, 1] parameter is used to
balance the bias of these matching.

Figure 3.3: QoS aware search engine for Web services [62]

Different from [62], the authors in [14] took into account only QoS values of Web
services to build a Web service recommender system. They aim at predicting the
probability that a user a uses a Web service i in order to recommend her the Web
services that have the highest probabilities. To do so, they built a user-item matrix,
where the rows present the user IDs, the columns present the Web service IDs and
each entry of this matrix is a vector of QoS values observed by the corresponding
user on the corresponding Web service. Based on this matrix, they compute the
similarity between Web services and users using Pearson Correlation Coefficient. The
probability that a user a will use a Web service i is formulated based on the computed
similarities. Two QoS metrics that are taken into account for their experiments are
the round-trip-time and the failure-rate of the requests to each Web service.

The authors in [15] extended the prediction function proposed in [14] to a hybrid
function that consists of item-based and user-based prediction functions. A parameter
µ is added to balance the weight of item-based and user-based prediction functions.
The authors in [63] also used the user-Web service QoS matrix and a prediction func-
tion. However, instead of predicting the usage probability, they predicted the failure
of a composite Web services. This failure is aggregated from the failure probability
of Web service components.

Other approaches [70, 13, 71, 69] also dealt with the QoS of composite Web ser-
vices. However, instead of predicting the failure probability [63], their objective is
to optimize Web service compositions by selecting the best Web services that sat-
isfy given QoS constraints. The authors in [70, 13] proposed to apply two models:
the combinatorial model which defines the problem as a multi-dimension multi-choice
knapsack problem (MMKP) and the graph model that defines the problem as a multi-

32 State of the Art

constrained optimal path (MCOP) problem. In both models, a user-defined utility
function of some system parameters may be specified to optimize application-specific
objectives. Meanwhile, [71, 69] presented service execution paths in Directed Acyclic
Graph (DAG) and formulated the service selection as an optimization problem which
can be solved by linear programming methods.

Cardellini et. al. [65] proposed a service selection scheme which also optimizes
the end-to-end aggregated QoS by means of a simple linear programming problem.
However, instead of independently handling service requests [70, 71], they dealt with
flows of requests, where each flow is a sequence of homogeneous requests originating
by the same user/organization over time, all requiring the same QoS level.

The authors in [66] proposed an extensible, preference-oriented, open and fair
QoS model for Web service selection. Their model allows providers to flexibly add
new specific domain criteria for evaluating the QoS of Web service without changing
the underlying computation model. It provides means for users to accurately express
their preferences without resorting to complex coding of user profiles. It manipulates
the QoS information collected from provider’s site, such as service privacy, and user’s
site, such as feedbacks. Meanwhile, Haddad et. al. [64] focused on the transactional
QoS criteria. They aimed at choosing Web services to create composite services that
satisfy some transactional properties. For example, the composite services have to
support atomic transactions, compensable transactions or they have to terminate
after a finite number of execution steps.

Generally, QoS approaches facilitate the Web service discovery based on QoS at-
tributes (such as throughput, bandwidth, execution time, failure rate, privacy or feed-
back) which are explicit knowledge. They can be classified in two categories based
on service’s consumption purposes: individual use, such as [62, 14, 15, 63], and
process use, such as [13, 64, 65, 66, 67, 68, 69]. Our approach is also developed to
facilitate these consumption cases. However, we do not take into account QoS infor-
mation. Instead we exploit implicit knowledge hidden in user usage data and service
composition structure. These parameters are important for improving Web service
discovery as they expose the user’s preferences and service’s composition context. As
taking into account different parameters for making recommendations, our approach
can complement QoS approaches and vice-versa.

3.2.3 Semantic-based Web service discovery

A Web service recommender system based on semantic matching and rating predic-
tion was proposed by Manikrao et. al. [16]. They proposed to describe Web services
as ontologies using DARPA Agent Markup Language1 (latterly Web Ontology Lan-
guage [72]). Then, they matched all semantic attributes of Web services and consid-
ered that two Web services are similar if their individual semantic attributes matching
is greater than given thresholds. The proposed system can predict the rating of a user

1http://www.daml.org

On facilitating Web service discovery 33

to a Web service based on her previous ratings on other similar Web services. In their
proposition, two services are more similar if their average ratings are less different.

The authors in [17] also proposed to use DARPA Agent Markup Language to
semantically describe Web services. They aimed at utilizing a semantic language to
present the Web service capabilities, which cannot be described by the conventional
WSDL documents. They proposed to match the input/output concepts of a service
request to the input/output concepts of service advertisements respectively in order
to find relevant services to the request. The matching degrees are: exact, plug in,
subsume and fail. The output concepts match has higher priority than the input
concepts match. In other words, services whose advertisements are better matched
on output concepts are preferred for recommendation rather than on input concepts.

Instead of describing Web services as ontologies like [16, 17], Ma et. al. [12]
explored the semantic concepts hidden in the Web service descriptions. They proposed
a two-phase approach that applies the Divide and Conquer methodology and Singular
Value Decomposition technique. In the first phase, the collection of Web service
descriptions is divided into a set of smaller clusters by using the Divide and Conquer
approach (Bisecting k-means algorithm). In this phase, VSM and TF-IDF are applied
to syntactically match the query and Web service descriptions in clusters to identify
the most relevant cluster to the query. In the second phase, the SVD technique
is applied on the selected cluster to decompose the document vectors and present
them in a reduced space. Similarities between the query vector and the decomposed
document vectors are inferred by the cosine of the angel between these vectors. Based
on these similarities, the relevant services to the query are identified.

The authors in [10] also applied SVD and LSI and provided experiments on pre-
cision and recall metrics. However, instead of filtering Web services in two phase like
Ma et. al. [12], they applied VSM and LSI directly on the corpus of Web service
documents. Concretely, they presented Web service documents in a corpus as a ma-
trix of documents and terms. Then, they decomposed the document-term matrix to
an approximate matrix using SVD. Finally, they matched the query terms and the
document rows in the decomposed matrix in order to find the closest documents to a
given query.

Paliwal et. al. [18] proposed to link the Web service request and Web services
descriptions to high-level ontology concepts before decomposing and matching them
(Figure. 3.4). To do so, they firstly pre-process service request and determine the
overall search category of Web services (step 1). Then, they retrieve relevant indexed
service descriptions from the UDDI based on the high-level ontology concept of the
Web service request (step 2). Next, they retrieve associated low-level ontology con-
cepts related to the initial service request from an ontology framework based on the
terms in the request (step 3). Then they expand the request with the retrieved con-
cepts and transform the Web service descriptions into term-document matrices (step
4). These matrices are decomposed using SVD (step 5) and matched to the request
vector to infer the similarity between them (step 6).

34 State of the Art

Figure 3.4: Combining Service Request Expansion and LSI [18]

Semantic-based approaches that described Web services as ontologies [16, 17] can
present better functional and non-functional properties of Web services. However,
creating and publishing ontology annotated content is time-consuming and error
prone task as it needs to be done by domain experts using questionable editing tools.
Meanwhile, rating-based solutions such as [16] may meet the new item problem, which
means new items that have not yet rated are not selected for recommendation while
items that have higher ratings are always recommended. Semantic-based approaches
that exploit the latent semantics hidden in Web service descriptions [12, 10, 18] can
generate recommendations without creating ontologies or asking any effort from users.
In our work, we examine the latent semantics hidden in user usage data.

3.2.4 Usage-based Web service discovery

Although the past usage data are important resource exposing users’ interests, there
are still few approaches that take these data into account for Web service discovery.
Birukou et. al. [45, 60, 46] proposed to utilize the past usage data for a Web service
recommender system. They defined an ‘Implicit Culture’ concept as a relation be-
tween a set and a group of agents such that the set’s elements behave according to
the group’s culture. Based on this concept, they consider that if a user has a sim-
ilar request with other members of the community, he will be suggested operations
that were used by those members. Therefore, they record the usage of users together

On facilitating Web service discovery 35

with their requests. And if they receive a new request, they will recommend the
requester Web service operations that are used by other users who have similar re-
quests. The similarity between service requests is computed based on VSM, TF-IDF
and WordNet-based semantic similarity.

However, Birukou et. al. [45, 60, 46] did not process the past usage data. They
used them in their proposed rule-based theory for generating recommendations. In
addition, the similarity between requests is computed using text-based approaches.
Hence, they ignore the correlation between users and Web services in the past usage
data, which can infer the users’ interests. Moreover, they can meet the shortcom-
ings of text-based approaches while matching users’ requests. In our approach, we
manipulate the past usage data to exploit the hidden users’ interests and we did not
encounter the text-based approaches’ shortcomings.

3.2.5 Synthesis

Existing approaches tried to examine different properties of Web services in order to
find the best solutions for Web service discovery. They applied different techniques in
information retrieval and artificial intelligence domains with different mathematical
models. Those techniques were applied in different types of data, such as Web service
requests and descriptions, quality of services, semantic descriptions and historical
usage data. Most of existing approaches provided experiments on their solutions.
Some of them developed applications such as search engines and recommender systems
to realize their approaches.

Table 3.1 shows a synthesis on the presented approaches in term of our principles
(section 2.3.1). ‘+’ indicates that the corresponding principle is considered by the cor-
responding approach, ‘-’ indicates that the corresponding principle is not considered
and ‘+/-’ indicates that the corresponding principle is optional.

Approaches
Principles

Focused
result

No additional
Information

Implicit
knowledge

Balanced
computation

[11], [17], [12], [10] + + - +

[9], [16], [18] + - - +

[8], [62] + +/- - +

[14], [15], [63], [45], [60],
[46]

+ - + +

[70], [13], [71], [69], [65],
[64], [66]

+ - + -

Table 3.1: Synthesis on service discovery approaches that satisfy our principles

In general, existing approaches attempted to find solutions from the provider
side. They exploited the explicit knowledge that is presented in Web service

36 State of the Art

queries and Web service descriptions [11, 8] or in the QoS of Web services [62, 14,
63, 15]. Some of them applied associated rules [45, 60, 46] or semantic latent index-
ing technique [12, 10, 18] to exploit the implicit knowledge that is hidden from
the Web service description and the service usage of users. Some of them required
efforts from users to provide additional information such as user’s daily routine
files [9], preference [66] or rating [16]. Briefly, text-based approaches can meet the
synonym and polysemy problems, QoS-based approaches miss user’s interest proper-
ties, semantic-based approaches are time consuming in preparing semantic data and
existing usage-based approaches do not exploit the hidden user’s interest.

Our approach aims at improving the Web service discovery from the consumer
side. We take the past usage data and the business process structure into account.
We do not encounter the synonym and polysemy problems. We do not face
the misspelling words or supported languages problem. We do not ask users
any further efforts to provide additional information. We exploit the user’s interest,
which is implicit knowledge hidden in the past usage data. In addition, we propose
an approach that can overcome the new item problem.

3.3 On facilitating business process design

Service providers integrate Web services in abstract business processes to develop
composite services. An abstract business process consists of tasks and logic operators
to specify the execution orders of the tasks, such as in sequence or in parallel. Each
task can be executed by invoking a Web service. Business process design is an impor-
tant step that helps to analyze a business process in reality, plan resources, identify
risks and foresee opportunities.

In this section, we present different approaches that aim at facilitating the business
process design. These approaches are classified into four categories: business process
modeling (section 3.3.1), business process similarity (section 3.3.2), business process
querying (section 3.3.3), and business process mining (section 3.3.4).

3.3.1 Business process modeling

Business process modeling refers to tools and techniques that assist to design, simulate
and monitor business process models. The tools include graphical interface applica-
tions, such as Visio, Workflow designer, Process marker, Tibco, Holosofx, Questetra,
Bizagi, Bonita and so on. The techniques are standards and languages used to de-
scribe business processes, such as Unified Modeling Language (UML), Event-driven
process chain (EPC), XML Process Definition Language (XPDL), Extended Business
Modeling Language (xBML), Business Process Model and Notation (BPMN), and
so on. In spite of the great support of tools and techniques, the business process
modeling is still time-consuming and labor-intensive, especially when such models
are required to be detailed to support the development of software systems [49].

On facilitating business process design 37

It would be inefficient if every time a company engages in modeling and re-
designing its process, it did so “from scratch” without consideration of how other
companies perform similar processes. Indeed, some business processes recur in simi-
lar forms from one company to another [73]. Thereafter, to avoid the effort of creating
process models from scratch, several consortia and vendors have defined so-called ref-
erence process models. These models capture proven practices and recurrent business
operations in a given domain. They are designed in a generic manner and are in-
tended to be individualized to fit the requirements of specific organizations or IT
projects. Commercial process modeling tools which come with standardized libraries
of reference process models such as the Supply Chain Operations Reference (SCOR)
models [24] or the SAP reference models [25], aim at enabling systematic reuse of
proven practices across process (re-)design projects. They do so by capturing knowl-
edge about common activities, information artifacts and flows encountered in specific
application domains.

However, analysts take the reference models merely as a source of inspiration, but
ultimately, they design their own model on the basis of the reference model, with little
guidance as to which model elements need to be removed, added or modified to address
a given requirement. Briefly, the support by reference models still has shortcomings
as (1) the reference models are human based and provided manually (this work is
absolutely error-prone and time-consuming) and (2) they are always studied as a
whole while sometimes only some parts of the model need to be considered.

The Workflow Patterns initiative2 has been developed since 1999 to delineate
the fundamental requirements that arise during business process modeling. It ex-
amines various perspectives (control flow, data, resource, and exception handling)
that need to be supported by a workflow language or a business process modeling
language [74, 75]. It presents patterns that are used to describe the control-flow per-
spective of workflow systems, such as branching and synchronize patterns, multiple
instance patterns, state-based patterns, etc.. It also provides detailed evaluations
of various process languages for Web service compositions, and workflow systems
in terms of control-flow patterns. The results of this initiative can be used for ex-
amining the suitability of a particular process language or workflow system for a
particular project, assessing relative strengths and weaknesses of various approaches
to process specification, implementing certain business requirements in a particular
process-aware information system, and as a basis for language and tool development.

In [76], Gschwind et. al. proposed a tool to support users to correctly apply simple
workflow patterns (exclusive choice, parallel split, simple merge, synchronization and
sequence) [74] during the business process modeling. They proposed three scenarios
in which patterns can be applied. In the first scenario, a user selects a single edge in a
model. This edge is suggested to be replaced by a pattern compound such as sequence,
parallel patterns (parallel split, synchronization) or alternative patterns (exclusive
choice, simple merge), or cyclic compound. In the second scenario, a user selects

2http://workflowpatterns.com

38 State of the Art

a pair of edges. She is recommended to apply a parallel pattern or an alternative
pattern to connect these edges. In the third scenario, a user selects a set of edges.
The system considers the direction of the selected edges and recommends to apply
parallel patterns or alternative patterns according to different situations. Some of
other pattern-based approaches are [77, 78, 79]. In our approach, we recommend
process analysts relevant Web services (or activities) instead of workflow patterns.
We organize the relations between Web services in layers and zones and we apply the
approach on a general case instead of three typical scenarios.

A business process auto-completion assistant approach was proposed by Lincoln
et. al. [80]. For a new business process, they suggest candidates for the first activity
based on the process’s description. When the designer selects an activity to start
designing the process, they suggest the next possible activities. The suggestion is
continued until the process is completely designed. To do so, they proposed to de-
scribe business process using Process Descriptor Catalog notations. Each activity is
described by four elements: object, object qualifier, action and action qualifier. For
example, the activity “Arrive at appropriate terminal with luggages” is described by
for elements: ‘arrive’, ‘with luggages’, ‘terminal’, ‘appropriate’. They presented pos-
sible actions and objects on hierarchy trees. They computed the closeness between
objects or actions based on the distance between them in these trees. Closeness be-
tween activities is inferred from the closeness of respective objects and actions. They
recommend the first activity for a new business process models based on the business
process descriptor. For the next activity, they recommend the activities that are close
to the last selected activity or its siblings. The business designer selects an activity
and creates links between it and previous activities. In our approach, we do not spec-
ify the relations between objects or actions of an activity by hierarchy trees. We do
not suppose having more information apart from service interactions. We compute
the closeness between Web services based on their neighborhood context instead of
the distance between objects or actions. Moreover, our approach can adapt to all
business process descriptions.

3.3.2 Business process similarity

Evaluating the similarity between business process models can help to detect the
duplication or overlap between a new model and the existing process models. It also
helps to identify the redundancy in the repository of process models. It is an essential
tool for business process analysts.

Many approaches proposed different solutions to measure the similarity between
business process models such as [26, 27, 28, 29, 30, 31, 32]. In [26], Dijkman et. al.
proposed to rank all business process models in a repository according their similarity
with respect to a given process model. They presented a business process model as
a directed attributed graph and adopted the graph-edit distance [81] to compute
the similarity between models. The similarity is computed based on the number of

On facilitating business process design 39

deletions/insertions/substitutions of nodes and edges in order to transfer from one
model to the other.

Yan et. al. [27] also aim at estimating the similarity between two business process
models for similarity search purpose. They focused on the characteristics of elements
in a business process model instead of the whole business process structure [26]. They
defined label and structural features of a business process model. Label feature is the
text string used to describe an activity, i.e. activity’s name. Structural features are
connection elements of a business process, including start, end, sequence, split and
join. They computed the similarity between two label features using the text edit
distance [82]. The similarity between two structural features is inferred by the average
number of input and output paths of the corresponding connection elements. And
the similarity between two business process models is synthesized from the similarity
of label feature and structural features.

An approach that measures the difference between two processes based on the
high-level change operations was proposed by Li et. al. [30]. They computed the
difference based on the number of operations that need to be performed to transform
one process to the other. However, different from [26], which measures the difference
based on the number of deletions/insertions/substitutions of nodes, they took into
account the execution orders between activities and measured the difference based on
the deletions/insertions/movements of activities. They targeted to keep the execution
orders when transforming one process model to the other to guarantee the soundness
of the business process. They drove the business process matching problem to the
optimization problem and aim at finding the minimum number of operations that
need to be performed to achieve the transformation.

In [28], the authors proposed to compare two business process models based on
the behaviors obtained from the process executions. They presented business process
models using Petri-Net. The executions of these models are recorded as sequences
of activities, called log traces, and their frequencies. An activity is considered in the
enable state if it is going to be executed in the next execution step. The authors
defined the notion ‘fitness’ and computed the ‘fitness’ between two traces based on
the enable state of activities in the traces. To compute the similarity between two
business process models, they consider one model as an “original model” and the
other as some “new model”. The similarity between the “original model” and the
“new model” is evaluated based on precision and recall metrics. These metrics are
computed based on the fitness between the log traces of the two processes and their
frequencies.

Different from [26, 27, 30, 28], Dongen et. al. [31] proposed to measure the similar-
ity between process models using vector space model (VSM). They modeled business
processes using Event-driven Process Chains (EPCs) language [83]. They also defined
the ‘causal footprint’ which is a graph presenting the execution orders of activities.
Each causal footprint is consistent to an EPC, which is a presentation of a process
model. Similarity between two business process models is inferred from the similar-

40 State of the Art

ity between two corresponding causal footprints. The author presented each causal
footprint as a vector of activities that belongs to both business process models. Each
element in the causal footprint vector has a value corresponding to its execution or-
ders. The similarity between two causal footprints is computed using VSM, i.e. the
cosine value of the angle created by the two corresponding vectors.

The authors in [84] merged the work in [26] and [31] to propose a new approach for
business process models similarity computation. They proposed to evaluate the simi-
larity in three metrics: label matching, structural matching and behavioral matching.
The label matching is synthesized from the matching of the labels attached to process
model elements. The matching between two element’s labels is computed based on
the string-edit distance [82]. The structural matching is inferred from element labels
matching as well as the topology matching of process models. The topology matching
is computed by the graph-edit distance [26]. For the behavioral matching, they de-
fined causal footprint vectors [31] which are consistent to the business process models
on causal relations and compute the similarity between footprint vectors using vector
space model.

Weidlich et. al [50] focused on activities. They proposed a framework, named
ICoP, to identify the correspondences between activities in two business processes
in order to compare them. This framework is tailored to deal with complex 1:n
matches, i.e. each activity can be matched to an arbitrary number of other activities.
It includes 4 main components: searcher, booster, selector and evaluator (Figure. 3.5).
Searchers identify potential 1:1 and 1:n matches between two process models based on
different similarity metrics and heuristics along with a score that indicates the quality
of the match. The result of the search stage is a multiset of matches. The scored
potential matches are conveyed to boosters. The boosters transform the multiset
of potential matches received from the searchers into a set of potential matches by
aggregating them. The selector selects the best matches from the set of potential
matches, satisfying that all the matches are not overlapping. Then it passes these
matches to the evaluator to evaluate them with a matching score. The evaluator may
use knowledge about the original process models to compute this score. Then, the
evaluator returns to the selector the computed matching score. The selector re-select
the best matches based on the score received from the evaluator and re-send them to
the evaluator. This process is continued until the matching score does not increase.
Then, the selector returns the final mapping between elements of the process models.

Ehrig et. al [32] proposed to model business process models using Petri-net. Each
element in the Petri-net, i.e. place, transition, attribute and value, is described by
an ontology with a set of properties. They specified the weight of each property
and computed the similarity between elements based on the syntactic and semantic
matching of the respective properties. For the syntactic matching, they apply string-
edit distance and for the semantic matching, they use WordNet library. They also
modeled a business process as a concept consisting of multiple instances. Each in-
stance corresponds to a Petri-net element and the similarity between instances is the

On facilitating business process design 41

Figure 3.5: The architecture of the ICoP framework [50]

similarity between corresponding Petri-net elements. Similarity between two business
process models is synthesized from the syntactic similarity, semantic similarity and
instances’ similarity of the two business processes’ concepts.

The business process similarity can help to deploy a similarity search engine. It
assists process analysts to rapidly search for business processes related to a specific
requirement, then design a new business process inspired by a selected process from
the search result. However, this may be efficient with small-size business processes,
i.e. with few activities and operations. In contrast, the large-size business processes,
e.g. consist of hundreds of activities and operations, may consume much computa-
tion time. Moreover, they may make process analysts confused and hard to detect
how the business processes are similar and which parts should be inherited from the
recommended processes to use for the current design. In addition, the matching of
the whole business processes often leads to the graph-matching problem, which is
NP-complete [85], and they, e.g. [27, 26, 50], have to deal with the trade-off among
the complexity, accuracy (efficiency) and system performance. In our approach, we
focus partially on the business process and take into account only the activity neigh-
borhood context for recommendations. Consequently, we retrieve related activities
without facing the complexity problem.

3.3.3 Business process querying

One of solutions to assist process analysts to speed up the design is providing him a
tool that can help to query appropriate activities or business processes [33, 35, 36,
37, 86, 87, 88, 89, 90].

Awad et. al. [33, 34, 35, 36, 37] developed a visual business process query language,
named BPMN-Q. This query language extends the BPMN notations by adding some
new elements such as variable node, generic gateway and path [36]. These elements
are used to define a query graph. They matched the query graph to existing business
process models to retrieve partial business processes that satisfy the query pattern.

42 State of the Art

For example, a query with the path element is shown in Figure 3.6. It is for finding all
the execution paths (and the involving activities) between activities B and D. The
variable node element is used for searching activities that are executed before or after
a given activity. The generic gateway element is used for searching activities that are
connected by a gateway.

Figure 3.6: Example of a BPMN-Q query [35]

BPMN-Q finds business process patterns that are compliant to a query and limited
by two activities. It processes the perfect match between the given activities and the
activities in existing process models then retrieves exactly the patterns connecting the
matched activities. In our approach, we also develop a query language for querying
Web services. However, we match the neighborhood contexts instead of the Web
services. Our search context is defined by layers and zones around a service instead
of the connections between two services. We retrieve Web services that have similar
neighborhood contexts instead of the same context. And we build a query language
in Extended Backus–Naur Form (EBNF) instead of visual notations.

In [86], Hornung et. al. proposed an approach that allows process analysts to
query business processes or to get recommendations from the system. To do so,
they transformed business process models from Petri-net to text based documents by
extracting the labels of the component elements. Then, to query business processes,
they query the corresponding documents and return the original process models. The
query is executed by Java Lucene, an open source search engine that was developed by
Apache for the documents querying. The selected part of the editing business process
is considered as a document and it is matched to the documents in the repository
based on the term frequency - inverse document frequency (TF-IDF) and vector
space model (VSM). In our approach, we develop a query language to query services.
However, we do not transform business processes to text-based documents. We deal
with the neighborhood contexts of Web services. And we retrieve relevant services
(with the business processes that contain them) instead of relevant business processes.

Lincoln et. al. [87] continued their previous work [80] (section 3.3.1) to propose a
search framework for retrieving business process segments. They defined the object
grouping model (OGM) which includes the relationship between a primary object and

On facilitating business process design 43

others in a process segment. They weighted the edges that connecting objects in an
OGM by their repetitions. Similarity between segments is computed based on the
term frequency-inverse document frequency (TF-IDF). In our approach, we organize
Web services in a neighborhood context in layers based on their shortest path lengths
to a primary service instead of putting them in the same layer. We take into account
the sequence of connection flow elements instead of the repetition of edges. And we
match connection flows in zones to infer the similarity instead of using TF-IDF.

Some approaches proposed query languages to support business process moni-
toring during the execution, such as BPQL [88, 90], BP-QL [89] and BP-Mon [91].
Beheshti et. al. [92] inspired from SPARQL language to propose FPSPARQL which is
a query language for analyzing business process logs. These approaches assist process
analysts to analyze business process instances during the execution. For example,
the analyst can monitor an auction process to guarantee the fair-play. She can de-
tect users that register as sellers but repeatedly cancel bids or auctions and warn
them. She can also identify illegal accesses, such as users who attempt to submit
bids without first registering to the system, and block these process instances. In our
approach, we also propose a query language. However, we focus on the design phase,
not execution phase. Our query helps to facilitate the business process design rather
than monitor business process instances. We take into account design-based business
process properties, such as the shortest path between two Web services or the similar
between connection elements, instead of execution-based properties, such as user’s
role or login time.

3.3.4 Business process mining

Today’s information systems, such as workflow management systems (e.g.Staffware),
ERP systems (e.g. SAP), case handling systems (e.g. FLOWer), PDM systems
(e.g.Windchill), CRM systems (e.g. Microsoft Dynamics CRM), middle ware (e.g.,
IBM’sWebSphere), hospital information systems (e.g., Chipsoft), etc., record their
business transactions as event logs [59]. These logs back up not only the business
execution but also the knowledge related to the a-priori business process models.

The goal of process mining is to extract information from these logs in order
to exploit the hidden knowledge that may be helpful for the business analysis. For
instance, it can discover the process models [38, 39, 40, 41, 42] from an enormous set
of log traces. It can mine the business constraints to check the conformance of a-priori
models [28, 93, 94, 95, 96]. It can also detect execution errors [97, 98], observe social
behaviors between groups of users [99, 100], and so on.

Business process mining is a discipline that sits between machine learning and data
mining on the one hand and process modeling and analysis on the other hand [42]. It
was firstly introduced in 1998 [101] and was proven as a powerful technique to discover
behaviors observed from event logs. It has involved the development of many tools
and techniques that support mining event logs [102, 103, 104, 105, 106, 107, 108].

44 State of the Art

In our approach, we also exploit the business execution logs to extract the relations
between activities. However, our target is not to discover the a-priori business process
or to check the process conformance. Instead, we discover the neighborhood contexts
of activities based on their execution orders. We prove that the business event logs also
contain knowledge that is essential for recommending activities during the business
process design.

3.3.5 Synthesis

Many approaches have been proposed to assist process analysts to rapidly design
business processes. Most of them dealt with the whole business process model.
They measured the similarity between business process models by comparing their
structures [26, 27], behaviors [28, 84], the execution orders of activities [30, 31], etc.
to help to detect the duplication or the redundancy of process models. They built
different query languages [33, 34, 35, 36, 37, 86] to help to retrieve business process
models that are similar to a query process model. They mined the business process
event logs in order to discover the business process models [38, 39, 40, 41, 42] to help
to check the conformance of a-priori models [28, 93, 94, 95, 96].

Approaches
Principles

Focused
result

No additional
Information

Implicit
knowledge

Balanced
computation

[24], [25], [30], [31], [33],
[34], [35], [36], [37], [86]

- + - +

[76] + + - -

[80], [87] + + - +

[26], [27], [84], [50] - + - -

[28], [38], [39], [40], [41],
[42], [28], [93], [94], [95],
[96], [97], [98], [99], [100]

- + + +

[32] - - - +

Table 3.2: Synthesis on process design approaches that satisfy our principles

Some of approaches dealt with parts of business process model. They at-
tempted to recommend process analysts either appropriate workflow patterns for a
business process structure [76, 77, 78, 79] or appropriate activities for a business pro-
cess [80, 50] during the design. They also proposed a framework to retrieve process
segments that are similar to a given segment [87]. Some of them dealt with all pos-
sible matching between business processes [26, 27] or activities [50]. They faced the
NP-complexity problem of the graph matching and they needed to find a trade-off
between the computational complexity and the quality of recommendations or imple-

Conclusion 45

ment other strategies. One of them require additional information (WordNet
library) for semantic matching computation [32].

Table 3.2 shows a synthesis on the presented approaches in terms of our principles
(section 2.3.1).

In our approach, we focus on part of business process model. We aim at recom-
mending services that are relevant to a selected position in a business process. We
take into account the neighborhood context of a service instead of the service’s
name or features. Therefore, we can retrieve relevant services for not only a selected
service but also an empty position in a business process (recommendations in our
motivating example in section 2.2). We make recommendation based on the existing
data. We do not ask for additional information. As our approach can recommend
services at different positions in a business process, it can be applied for business
process auto-completion during the design. We also exploit business process event
logs to extract the hidden knowledge, which is the execution orders between ser-
vices, for recommendations. In addition, as we do not deal with the whole business
process topology or possible correspondences between services in two processes, our
approach do not face the complexity problem.

3.4 Conclusion

In this chapter we present different approaches that assist users in two service con-
sumption cases: individual use and process use. For the first case, we classify the
existing approaches into four categories: text-based, QoS-based, semantic-based and
usage-based. For the second case, we also classify them into four categories: business
process modeling, business process similarity, business process querying and business
process mining. We briefly introduce these approaches and identify their principles.
We show that existing approaches still miss some features that can help to facili-
tate the service consumption. We also also present the difference between current
approaches and our approach.

We start presenting in detail our approach in the next chapters. In chapter 4, we
elaborate how we recommend services that are close to user interest based on past
usage data. In chapter 5, we present our approach to facilitate the business process
design based on service recommendation. In chapter 6, we show how we can extract
service relations from event logs to make recommendations.

46 State of the Art

Chapter 4

Service Recommendation Based

on Past Usage Data

Contents

4.1 Introduction . 47

4.2 Collaborative filtering techniques 48

4.2.1 Memory-based CF . 48

4.2.2 Model-based CF . 49

4.2.3 Hybrid CF . 50

4.3 Illustrating example . 50

4.4 Service recommendation based on past usage data 51

4.4.1 Service-based algorithm . 51

4.4.2 User-based algorithm . 53

4.4.3 Service-user combination algorithm 55

4.4.4 LSI-based algorithm . 57

4.4.5 Power assignment algorithm . 60

4.5 Conclusion . 61

4.1 Introduction

This chapter presents our contribution to improve service consumption for individual
use. It presents algorithms and strategies to process past usage data for service
recommendation. Only user past usage data is used as input to our approach. We
do not ask users any further data such as their profiles, comments or ratings. As
usage data present user interest on certain categories of services, our approach can
recommend services that are close to user interest. We apply collaborative filtering
techniques on past usage data to generate recommendations. We also propose an
algorithm to address the ‘new item problem’ that can happen in collaborative filtering
techniques.

In this chapter, we firstly give some basic backgrounds on collaborative filtering
techniques (section 4.2). Then, we present an illustrating example with a usage matrix

47

48 Service Recommendation Based on Past Usage Data

(section 4.3). We use this example to illustrate our algorithms (section 4.4). Finally,
we conclude the chapter in section 4.5.

The work of this chapter is published in [109, 110, 111, 112].

4.2 Collaborative filtering techniques

In this section, we present an overview on collaborative filtering techniques. We in-
troduce memory-based CF (section 4.2.1), model-based CF (section 4.2.2) and hybrid
CF (section 4.2.3). In our approach, we apply principles of these CF techniques to
make service recommendations.

The term “collaborative filtering” (CF) was firstly coined by the developers of the
Tapestry recommender system [113]. The fundamental assumption of CF is that if
usersX and Y rate n items similarly, or have similar behaviors (e.g., buying, watching,
listening), then they will rate or act on other items similarly [114]. For example,
GroupLens [115, 53] uses user rating data to compute the similarity between either
users or movies then make recommendations according to the similarity values.

CF includes a set of techniques (mathematical, statistical, etc.) applied on user
rating data to find the correlative relations between users or items in order to make
predictions or recommendations. CF techniques can be classified into three basic
categories: memory-based CF, model-based CF and hybrid CF [58].

4.2.1 Memory-based CF

Memory-based CF algorithms compute the similarity between users or items based on
a user-item matrix. This matrix presents the usage data of users in a system. Each
row of the matrix presents the items that a user used and each column presents a
set of users who used a corresponding item. The value of each element in the matrix
can be the rating of a user to an item or the number of times that a user used (or
viewed, purchased, listened, etc.) an item. Some systems, such as Amazon [116, 117]
or GroupLens, apply memory-based CF algorithms as they are easy to implement
and retrieve high correlated similar items.

The similarity or the correlation between two users, is computed based on their
co-purchased or co-rated items. In contrast, the similarity or the correlation between
two items, is computed based on the common users who purchased or rated the
considered items [118]. The CF techniques that compute the similarity between users
is called user-based CF. Meanwhile, the CF techniques that compute the similarity
between items is called item-based CF. The Vector Space Model [119] measure is on
of the most used and popular measures to compute the similarity between users or
items in memory-based CF.

A user who is interacting with the system is called an active user. The top-
N recommendation [117] method is one of the most used and popular methods to
make predictions or recommendations for an active user using memory-based CF.

Collaborative filtering techniques 49

The top-N recommendation method [117] aims at recommending a user the top-N
items that are most relevant to her interest. There are two types of algorithms to
implement this method: user-based top-N and item-based top-N [58]. User-based top-
N recommendation algorithms firstly identify the k most similar users to the active
user. Let C be the set of items that are purchased by the k most similar users. The
user-based algorithms recommend the top-N most frequent items in C that the active
user has not purchased. Whereas, the item-based top-N recommendation algorithms
compute the k most similar items to the item that the active user is purchasing.
Then, they remove the items that the active user has purchased, sort the rest items
in descending order of the similarity, and pick up n item in the top list for the
recommendation.

As CF techniques have been developed as efficient tools to make predictions and
recommendations, we apply these techniques in our approach. We present usage data
as a matrix. Each row of this matrix presents the usage of a service, each column
presents the usage of a user and the value of each element in the matrix presents
the number of times that the corresponding user used the corresponding service. We
propose two algorithms to make service recommendations based on the user-based
top-N and item-based top-N CF methods. We choose Vector Space Model (VSM) as
it is one of the most popular memory-based CF technique and especially widely used
in Information Retrieval [119]. Detail of our algorithms is presented in section 4.4.1
and section 4.4.2.

4.2.2 Model-based CF

The memory-based CF techniques are easy to implemented and highly effective. How-
ever, as they rely on the commonly rated items, their performance decreases when
data are sparse or common items are few. Consequently, model-based CF techniques
were investigated to overcome the memory-based CF problem. They alleviate the
sparsity problem by discovering hidden correlations between users or items. Some
mathematical techniques are applied in model-based CF to reduce the sparsity such as
Singular Value Decomposition [120] or Eigentaste [114]. They transform the original
user-matrix to a new approximate matrix by removing unrepresentative or insignif-
icant users or items. Later, mathematical or statistical models are applied to make
prediction.

Popular model-based CF techniques include Bayesian belief nets (BNs) CF [121,
122], clustering CF [123, 124, 125], regression-based CF [126], Markov decision process
CF [127] and latent semantic CF [128, 129, 130, 131]. Some other model-based CF
techniques are association rule based CF [132], maximum entropy CF [133], decision
tree CF [134], graph-based CF [135] and probabilistic CF [136, 137, 129].

In our approach, we propose an algorithm based on model-based CF technique
to overcome the sparsity problem of our memory-based algorithm. We choose Latent
Semantic Indexing (LSI) [128, 130] as it is one of the common used model-based

50 Service Recommendation Based on Past Usage Data

CF technique and it implements the Singular Value Decomposition (SVD) which is a
mathematical model that greatly reduce the sparsity of the usage data. Our algorithm
is presented in section 4.4.4.

4.2.3 Hybrid CF

Hybrid CF systems combine different CF techniques [138, 139] or CF techniques with
other recommendation techniques, typically content-based systems [140, 141, 137],
to make predictions or recommendations. They utilize the advantages of different
techniques to overcome limitations of memory-based and model-based models. They
improve the prediction performance. However, they also increase the implementation
complexity and cost. In addition, they generally need external information that is
usually not available [58].

In our approach, we propose an algorithm based on hybrid CF technique. Our
algorithm combines the two memory-based CF methods: user-based top-N and item-
based top-N. However, our proposed hybrid CF technique do not ask for additional
information. Detail of this algorithm is presented in section 4.4.3.

4.3 Illustrating example

It is worthwhile to notice that a service provides one or more operations. To avoid
the confusion of services and operations, we consider that a service offers only one
operation throughout our approach1.

To illustrate our approach, we use an example with four users who used a set of
services as following: U1 = {getWeather (2), getLocation (2), getNews (1), getHotels
(3)}; U2 = {getLocation (4), getBook (1), getNews (2), getHotelID (4), getPlaces (3),
getWeatherByZipCode (2)}; U3 = {getPlaces (2), getWeatherByDate (5), getWeath-
erByZipCode (3), getHotelID (5), getCityDescByName (2)} and U4 = {getHotel (7),
getCityDescByName (8)}.

The set Ui, (i = 1..4) presents the past usage data of the user ui. The record
“getWeather(2)” in the set U1 means that the user u1 has used the service getWeather
two times. The service-user matrix corresponding to these usage data, so named
A[m×n], is represented in Table.4.1, where m = 10 and n = 4. The value of an element
ai,j in this matrix is the number of times that the user uj has used the service si.
This usage matrix is used to illustrate the three memory-based CF algorithms and
the model-based algorithm we propose in the following.

1In the case of multi-operation services, we consider service operation instead of service. Usage
data is presented by an operation-user matrix instead of the service-user matrix currently presented
in our approach. Then, recommendations would have the same level of accuracy.

Service recommendation based on past usage data 51

[service×user]:A[m×n] U1 U2 U3 U4

getWeather 2 0 0 0
getLocation 2 4 0 0
getNews 1 2 0 0
getHotels 3 0 0 7
getBook 0 1 0 0
getHotelID 0 4 5 0
getPlaces 0 3 2 0
getWeatherByZipCode 0 2 3 0
getWeatherByDate 0 0 5 0
getCityDescByName 0 0 2 8

Table 4.1: Original usage matrix

4.4 Service recommendation based on past usage data

In this section, we detail our algorithms to make recommendations based on past
usage data. We firstly present a service-based algorithm (section 4.4.1), which makes
recommendations based on the similarity between services. Then, we present a user-
based algorithm (section 4.4.2), which makes recommendations based on the simi-
larity between users. Next, we present a combination of the service-based and user-
based algorithms (section 4.4.3). This later algorithm makes recommendations based
on the similarity between services that have been used by relevant users. We also
present an algorithm based on Latent Semantic Indexing (LSI) and Singular Value
Decomposition (SVD) (section 4.4.4) techniques to overcome the sparsity problem
of the service-based and user-based algorithms. Finally, we present an algorithm
which aims at improving the probability of selecting less used (or never used) services
(section 4.4.5). This algorithm is developed to overcome the new item problem (or
cold-start problem).

4.4.1 Service-based algorithm

In this algorithm, we aim at finding services relevant to the service that a user is
currently using. We apply the item-based top-N CF algorithm on the service-user
matrix. We compute the similarity between the currently used service with other
services using VSM. Then, we sort the services in descending order of similarity. We
pick up the l-top services to recommend them to the user. The pseudo code of service
recommendation based on item-based top-N CF is described in Algorithm 1.

The key step of the algorithm is finding the similarity between a service si and
another service sx (line 3 of Algorithm 1). To compute this similarity, we apply the
vector space model (VSM).

VSM is firstly introduced by Gerard Salton et al. [142]. It is developed to com-
pute the similarity between two individual documents. It presents documents in a k

52 Service Recommendation Based on Past Usage Data

Algorithm 1: Service-based recommendation

input : sx:currently used service
output: a recommended list of l services

1 S = set of services;
2 foreach service si in S do
3 Compute the similarity between si and sx;
4 end
5 Sort si ∈ S in descending order of similarity ;
6 Select top-l services for recommendation;

dimensional space, where k is the number of different terms. Each document is pre-
sented as a vector with k elements. Each element of a document vector corresponds
to a term appearing in the document. The value of a vector element is the weight
of the corresponding term. This weight is computed by term frequency (TF) and
inverse document frequency (IDF). Similarity between two documents is computed
by the cosine value of the angle created by the two corresponding vectors.

In our approach, we consider analogically each row (service) in the usage matrix
as a document and each column (user) as a term. The value of each element in
the usage matrix is considered as the number of times that the corresponding term
appears in the corresponding documents. Similarity between two services is inferred
from the similarity between two row vectors. We also apply the term-frequency (TF)
and inverse document frequency (IDF) on the usage matrix to compute the weight of
each user (term).

The weight of a user uj w.r.t a service si, denoted by wi,j , i = 1..m, j = 1..n,
computed by TF-IDF is given by Equation 4.1.

wi,j = tfi,j × idfj,S

=
ai,j
n
∑

k=1

ai,k

× log
m

|st ∈ S : at,j > 0| (4.1)

where ai,j is the number of times that the service si was used by the user uj ;
n
∑

k=1

ai,k

is the number of times that si was used by users; S is set of all services; m is the
number of services; and |st ∈ S : at,j > 0| is the number of different services that were
used by the user uj .

By applying the TF-IDF computation (Equation 4.1) on the original usage matrix,
we have a new matrix W u

[m×n] which contains the weights of all users. For example,

by applying the TF-IDF on our motivating example (Table 4.1), we have W u
[m×n] as

given in Table 4.2.

Service recommendation based on past usage data 53

[service×user]:W u
[m×n] U1 U2 U3 U4

getWeather 0.92 0 0 0
getLocation 0.31 0.34 0 0
getNews 0.31 0.34 0 0
getHotels 0.27 0 0 1.13
getBook 0 0.51 0 0
getHotelID 0 0.23 0.39 0
getPlaces 0 0.31 0.28 0
getWeatherByZipCode 0 0.02 0.42 0
getWeatherByDate 0 0 0.69 0
getCityDescByName 0 0 0.14 1.29

Table 4.2: User weights computed by TF-IDF.

Each row in the weight matrix presents a service vector. Similarity between two
services is computed by the cosine value of the angle created by the two corresponding
vectors (Equation 4.2).

sim(sa, sb) =

−→
wu
a ×−→

wu
b

|−→wu
a |×|−→wu

b |
(4.2)

where
−→
wu
a ,

−→
wu
b are the weight vectors of services sa and sb respectively,

−→
wu
a = { wa1,

wa2,. . . , wan }, −→wu
b = { wb1, wb2,. . . , wbn }, wak, wbk ∈ W u

[m×n], k = 1..n, and n is the
total number of users.

In our example, suppose that a user uses the service getPlaces and we are going
to recommend her the top-4 services relevant to getPlaces. By applying the similarity
computation (Equation 4.2) on the user weight matrix (Table 4.2), we get the similar-
ity values of other services to getPlaces as following: {getWeather (0.00), getLocation
(0.55), getNews (0.55), getHotels (0.00), getBook (0.74), getHotelID (0.95), getWeath-
erByZipCode (0.92), getWeatherByDate (0.67), getCityDescByName (0.07)}. Based
on the similarity values, we select 4 services to recommend them to the user. The
selected services are {getHotelID, getWeatherByZipCode, getBook, getWeatherBy-
Date} as they have the greatest similarity values.

The complexity of the item-based CF algorithm is O(mn) where m is the number
of terms and n is the number of documents. In our approach, to shorten the response
time, we process data offline and store them on temporary tables. We also update
the similarities between services periodically offline.

4.4.2 User-based algorithm

Inspired by the fact that users who have similar interest will tend to select similar
items, we aim in this algorithm at finding users who have similar interest, i.e. they
used similar services. We select then the most frequently used services that were used

54 Service Recommendation Based on Past Usage Data

by the most relevant users and were not used by the active user to make recommen-
dations.

Contrary to the service-based algorithm, we consider in this algorithm each user as
a document and each service as a term. We apply the VSM to compute the similarity
between users. We also use TF-IDF to weight vector elements. Concretely, the weight
of a service si which was used by a user uj is computed by Equation 4.3.

wi,j = tfi,j × idfi,U

=
ai,j

m
∑

k=1

ak,j

× log
n

|ut ∈ U : ai,t > 0| (4.3)

where ai,j is the number of times that the service si was used by the user uj ;
m
∑

k=1

ak,j

is the number of times that uj used services; U is the set of all users; n is the number
of users; and |ut ∈ U : ai,t > 0| is the number of users who used si.

By applying Equation 4.3 on the usage matrix, we get a weight matrixW s
[m×n] that

contains the weight of all services. Based on this matrix, we compute the similarity
between users using VSM. Concretely, the similarity between two users ux and uy is
given by Equation 4.4.

sim(ux, uy) =

−→
ws
x ×

−→
ws
y

|−→ws
x|×|−→ws

y|
(4.4)

where
−→
ws
x,

−→
ws
y are weight vectors of users ux and uy respectively,

−→
ws
x = { w1x, w2x,. . . ,

wmx }, −→ws
y = { w1y, w2y,. . . , wmy }, wkx, wky ∈ W s

[m×n], k = 1..m, and m is the total
number of services.

We generate recommendations in three steps algorithm (see the pseudo code pre-
sented in Algorithm 2). Firstly, we compute the similarity between the active user
and others based on their usage data (line 3 of Algorithm 2). Secondly, we sort other
users in descending order of similarity (line 5 of Algorithm 2) and select the top-k
users in the list (line 6 of Algorithm 2). Finally, for each selected user, we select
the t-most-frequently-used services that were not used by the active user to make
recommendations (line 7 of Algorithm 2).

Back to our motivating example, after applying Equation 4.3 on the past usage
matrix (Table 4.1), we get the service weight matrix W s

(m×n) illustrated in Table.4.3.

Suppose that we are going to provide a recommended list of 4 (l = 4) services to
u1 based on the past usage data of the two closest users (k = 2). By using VSM,
we compute the similarity between user u1 and others as follows: {u2(0.25), u3(0.00),
u4(0.36)}. As k = 2, u4 and u2 are selected as they have the highest similarity values.
Then, for each selected user, we select the two most used services for recommendation.
Therefore, we have the recommended services to u1 are: {getLocation, getHotelID,
getHotel, getCityDescByName}.

Service recommendation based on past usage data 55

Algorithm 2: User-based recommendation

input : ux:active user
output: a recommended list of l services

1 U = set of users;
2 foreach user uj in U do
3 Compute the similarity between uj and ux;
4 end
5 Sort uj ∈ U in descending order of similarity values;
6 Select top k users from the sorted list of uj ∈ U ;
7 For each of k selected users, select the t-most-frequently-used services to make
a recommended list of l = k×t services;

[service×user]:W s
[m×n] U1 U2 U3 U4

getWeather 0.35 0 0 0
getLocation 0.17 0.17 0 0
getNews 0.09 0.09 0 0
getHotels 0.26 0 0 0.32
getBook 0 0.09 0 0
getHotelID 0 0.17 0.20 0
getPlaces 0 0.13 0.08 0
getWeatherByZipCode 0 0.09 0.12 0
getWeatherByDate 0 0 0.41 0
getCityDescByName 0 0 0.08 0.37

Table 4.3: Service weights computed by TF-IDF.

In the last step of Algorithm 2, we select the t-mostly used services from the k-top
similar users to provide the recommendation list. Suppose that ux, uy and uz are the
most similar users. Our algorithm always automatically suggest the top-t services of
ux, uy and uz, even if the (t + i)th (i > 0) service of ux is much more used than tth

service of uy or uz. On the other hand, if a similar user used less than t services, the
(t+ i)th service of the other users would not be selected to fulfill the recommendation
list. For example, if we select 3 services from u4 and u2 to be recommended to
u1, the recommendation list will have 5 services as u4 has just used 2 services. We
call this potential missing problem. This problem may decrease the effectiveness of
our approach. In the next section, we present an algorithm that can overcome this
problem.

4.4.3 Service-user combination algorithm

In this section, we present a combination of the service-based and user-based algo-
rithms. We also make recommendations based on the usage data of relevant users.

56 Service Recommendation Based on Past Usage Data

However, instead of selecting the mostly used services of relevant users, we compute
the similarity between services used by these users. By combining these algorithms,
we aim at improving the recommendation performance and avoiding the potential
missing problem of the user-based algorithm.

Algorithm 3: User-service combination recommendation

input : current user ux, current used service sy
output: a recommended list of l services

1 U = set of users;
2 foreach user uj in U do
3 Compute the similarity between uj and ux;
4 end
5 Sort uj ∈ U in descending order of similarity values;
6 Select top k users from the sorted list of uj ∈ U ;

7 A
′

[m×k] = usage data of the selected users;

8 S = set of services;
9 foreach service si in S do

10 Compute the similarity between si and sy based on the new usage matrix

A
′

[m×k];

11 end
12 Sort si ∈ S in descending order of similarity values;
13 Select top-l services for recommendation;

Concretely, the service-user combination algorithm (see Algorithm 3) generates
recommendations in three steps. Suppose that a user ux currently uses a service sy.
First, we find the k-most similar users to ux using the user-based algorithm (lines 3-6
of Algorithm 3). Second, we eliminate the unselected users’ data from the original
usage matrix to get a smaller matrix A

′

[m×k], m is the number of services and k is the

number of selected users (line 7 of Algorithm 3). Third, we recompute the weight of
each user in the new matrix A

′

[m×k] and use the service-based algorithm to find the l

most relevant services to sy for recommendation (lines 10-13 of Algorithm 3).

In our example, suppose that we are going to make recommendations for u1,
who is using getPlaces. Also suppose that we will recommend 4 services (l=4) based
on the two most similar users (k=2). We firstly select two users that are the two
most similar to u1. In this step, we select U4 and U2 as they have the highest
similarity values to u1 which are 0.36 and 0.25. Second, we eliminate the unselected
users’ data, i.e. U3, from the original matrix to have a smaller matrix with three
columns. The user weights computed based on the new matrix are given by Table
4.4. Third, we apply the service-based algorithm on this weight matrix to find the
most relevant services (l=4) to getPlaces. Finally, we select 4 services {getBook,
getHotelID, getWeatherByZipCode, getLocation} for recommendation according to

Service recommendation based on past usage data 57

U1 U2 U4

getWeather 0.92 0 0
getLocation 0.31 0.34 0
getNews 0.31 0.34 0
getHotels 0.27 0 1.13
getBook 0 0.51 0
getHotelID 0 0.51 0
getPlaces 0 0.51 0
getWeatherByZipCode 0 0.51 0
getWeatherByDate 0 0 0
getCityDescByName 0 0 1.61

Table 4.4: User weights given by the user-service combination algorithm.

their similarity values to getPlaces, which are {1.00, 1.00, 1.00, 0.74} respectively.

4.4.4 LSI-based algorithm

The memory-based CF techniques, e.g. the service-based and user-based algorithms
in our approach, compute the similarity based on the explicit relations between users
and items, i.e. the usage matrix. They match directly user vectors or item vectors
to infer their similarity. They do not take in to account the correlation between
two vectors and a third-party vector. For example, in our illustrating example, all
users used the same category of services, which provide traveling information. Their
interests are not totally different. However, when computing the similarity between
users, the user-based CF technique does not detect the similarity between u1 and u3,
u2 and u4 as sim(u1,u3) = sim(u2,u4) = 0 (by Equation 4.4).

To detect the similarity between users or services via a third-party item, we present
in this section the application of a model-based CF technique, which is Latent Se-
mantic Indexing (LSI).

LSI is a mathematical and statistical technique for extracting hidden correlations
between documents and terms [143, 130]. It applies the Singular Value Decomposition
(SVD), which is a factorization algorithm to decompose a rectangle matrix into three
matrices. The original matrix is equal to the multiplication of these matrices. The
mathematical fundamental of SVD and its computation are explained in [130, 144,
145, 146]. Some examples about LSI and SVD are presented in [147, 148].

Basically, a matrix A[m×n] can be decomposed into three matrices U[m×n], Σ[n×n]

and V T
[n×n] using SVD. This decomposition is given by Equation 4.5.

A[m×n] = U[m×n]Σ[n×n]V
T
[n×n] (4.5)

where U[m×n] and V[n×n] are orthogonal matrices, which present the left and right
singular vectors of A. Σ[n×n] is an n-by-n diagonal matrix holding the singular values.

58 Service Recommendation Based on Past Usage Data

In Σ[n×n], only the elements on the diagonal have values greater than or equal to
0 and they are sorted in descending order. Other elements are equal to 0. So, if we
present the values of the elements on the diagonal of Σ[n×n] as a vector −→σ , we will
have −→σ = (σ1, σ2, . . . , σn), σi > 0 for 1 ≤ i ≤ r ≤ n and σ1 ≥ σ2 ≥ . . . ≥ σr >
σr+1 = . . .=σn = 0. r > 0 is called rank of A.

As σr+1 = . . .=σn = 0, the rows and columns (r+1)th, . . . , nth in Σ[n×n] are zero
vectors, i.e. vectors whose all element values are equal to 0. So, the multiplication by
these vectors has value 0. Therefore, if we reduce the Σ[n×n] to Σ[r×r] by removing

the zero vectors, and remove the corresponding columns in U[m×n] and rows in V T
[n×n],

the multiplication of these matrices also yields to the original matrix (Equation 4.6).

A[m×n] = U[m×r]Σ[r×r]V
T
[r×n] (4.6)

On the other hand, as elements on the diagonal of Σ[n×n] are sorted in descending
order of their values (σ1 ≥ σ2 ≥ . . . ≥ σr > 0), the last r − k elements have the
smallest positive values. So, if we consider these r − k smallest values equal to 0,
and thereafter remove zero vectors and corresponding columns in U[m×r] and rows in

V T
[r×n], the multiplication of U[m×k], Σ[k×k] and V T

[k×n] will yield a matrix Ak
[m×n] that

is approximated to A[m×n] (Figure 4.1, Equation 4.7).

k

k

r n

k

n

nn

A
k
! A U V

T

m

nk

m x n m x k k x k k x n

=
r

!

Figure 4.1: Decomposition in k dimensions [145]

A[m×n] ≈ Ak
[m×n] = U[m×k]Σ[k×k]V

T
[k×n] (4.7)

Assume that A[m×n] is a service-user usage matrix. The derived Ak
[m×n] matrix

does not reconstruct the original matrix A[m×n] exactly. However, the truncated SVD
not only captures most of the important underlying structure in the association of ser-
vices and users but also removes the noise or variability in service usage. Services that
are used by similar users, for example, will be near each other in the k-dimensional
space even if they never be co-consumed by the same user.

A query is a set of services. It can be considered as a user. So, to retrieve the
relevant services (or users) to a query, this query must be represented in the same
k-dimensional space. The values of a query vector −→q [m] in the k-dimensional space

Service recommendation based on past usage data 59

is represented by Equation 4.8 [145].

−→q [k] =
−→q T

[m]×U[m×k]×Σ−1
[k×k] (4.8)

As the query is presented in the same k-dimensional space with services (or users),
it can be compared to the services (or users) based on the similarity between two
vectors.

In our approach, we apply LSI on the service usage data to make recommendations
(pseudo codes is presented in Algorithm 4). Following the principles of LSI, we
firstly decompose the service-user matrix A[m×n] into three matrices U , Σ and V
(by Equation 4.5) (line 2 of Algorithm 4). As decomposed by SVD technique, these
matrices hold the values that reflect the correlations between services. Second, we
reduce the service space to a k-dimensional space (Figure 4.1) (line 3 of Algorithm 4).
The original matrix A[m×n] is approximated to a matrix Ak

[m×n] (by Equation 4.7).
In other words, we represent the existing services as vectors in a k-dimensional space.
Third, we compute the vector of the service that a user is using in order to present
it in the same k-dimensional space with other services (by Equation 4.8) (line 4 of
Algorithm 4). Finally, we compute the similarity between the current used services
with others using VSM, sort the services in descending order of similarity, and select
top-l services for recommendation (line 6-9 of Algorithm 4).

Algorithm 4: LSI-based recommendation

input : ux, sy
output: a recommended list of l services

1 A[m×n] = usage matrix;

2 Decompose A[m×n] into 3 matrices U , Σ, V using SVD;

3 Compute Uk, Σk, V k whose Ak
[m×n] is an approximated matrix of A[m×n];

4 Present sy as a query vector −→q in the same k-dimensional space;
5 foreach service vector si in Uk do
6 Compute the similarity between −→q and si;
7 end
8 Sort si ∈ Uk in descending order of similarity with −→q ;
9 Select top-l services from the sorted list for recommendation;

It is noticed that the mathematical computation of SVD is elaborated in [144]
and SVD has been implemented in different languages such as C, C++ or Java2.
Therefore, we do not present the SVD computation. Instead, we present how and
when SVD is applied in LSI technique as aforementioned.

Suppose that a user uj is using a service si. To make recommendations for uj , we
consider si as a query vector −→q [m], in which only the element qi has value ai,j , other

2http://web.eecs.utk.edu/research/lsi/soft.html

60 Service Recommendation Based on Past Usage Data

elements are equal to 0. m is the number of services (Equation 4.9).

qt =

{

ai,j if t = i, t ∈ [1..m]
0 if t 6= i, t ∈ [1..m]

(4.9)

In our motivating example, services are presented in a 4-D space (corresponding
to 4 users). After applying the SVD and truncating the weakest dimension, i.e. the
dimension corresponding to the smallest singular value of Sk, we have the decomposed
matrices (Uk, Σk and V k) in a 3-D space (k = 3) as given in Table 4.5.

Uk =































0.04 0.01 0.18
0.10 −0.26 0.66
0.05 −0.13 0.33
0.62 0.30 0.25
0.02 −0.07 0.12
0.22 −0.64 −0.03
0.11 −0.35 0.15
0.13 −0.35 −0.07
0.16 −0.37 −0.51
0.71 0.19 −0.23































Σk =





11.13 0.00 0.00
0.00 9.28 0.00
0.00 0.00 5.50





V k =









0.19 0.03 0.50
0.18 −0.61 0.66
0.35 −0.69 −0.56
0.90 0.39 −0.02









Table 4.5: Decomposed matrices in a 3-D space.

Now, assume that user u1 uses service getPlaces, the query vector of this usage
is presented by −→q [m]=(0,0,0,0,0,0,1,0,0,0). The coordinates of −→q [m] in the 3-D space
(computed by Equation 4.8) are given in (4.10).

−→q [k] =
−→q T

[m]×U[m×k]×Σ−1
[k×k] = (0.01,−0.04, 0.03) (4.10)

Next, we compute the similarity between the query with other services whose co-
ordinates are presented by the matrix Uk. Suppose that we need to recommend 3
services for the selected service. We apply the VSM for the similarity computation.
Then, we select the top-3 services that have the highest similarity values for recom-
mendation. The selected services are {getBook, getNews, getLocation} according to
their similarity values to the query, which are 0.92, 0.85 and 0.85.

4.4.5 Power assignment algorithm

A common problem of CF techniques occurs when a new item has just entered the
system. A new item, which has no usage data, cannot be recommended until users
enough use it. An item, which has been rarely used, can be hardly selected for
recommendation. This problem is called cold start problem [58] or new item prob-
lem [149, 150].

In this section, we present an algorithm that can help to improve the probability
of selecting new items. We do not apply CF techniques or compute the similarity
between items. Concretely, we propose to assign each service a power value that is
inversely proportional to its used time. The less used a service is, the greater its

Conclusion 61

power value is. Let M be the maximum used time of any service, pi is the power
value of a service si, we have:

pi = (M + 1)− |si| (4.11)

where |si| is the number of used times of si by all users. If si has never been used, it
will have the highest power value, which is M + 1. In contrast, if it is the most used
service, it will have the lowest power value, which is 1.

Selection probability of si computed based on the power value is given by Equa-
tion 4.12.

Prob(si) =
pi
n
∑

j

pj

(4.12)

where n is the number of services. The less used a service is, the greater its selection
probability is. If si has never been used, it will have the highest selection probability.

Algorithm 5: Recommendation based on power assignment

input : past usage data
output: a recommended list of l services

1 foreach service si in S do
2 Compute the power value pi of si.;
3 Compute the selection probability of si;

4 end
5 Arrange all services on a line according to their selection probablity;
6 Select l services to make recommendations;

Pseudo codes of this technique is presented in Algorithm 5. We firstly compute
the power value and selection probability of each service (line 1-3 of Algorithm 5).
Then, we arrange all services on a line (line 5 of Algorithm 5). On this line, each
service is presented by a segment whose length is equal to its selection probability
(Figure 4.2). The less used a service is, the longer its segment is. Finally, we select
l services from the line for recommendation (line 6 of Algorithm 5). As less used
services corresponds to longer segments, they have higher probability to be selected.

Our recommendation algorithm based on the power assignment can improve the
probability of selecting less used services.

4.5 Conclusion

In this chapter, we answer the following research question raised in section 2.1.3: How
to identify user interest?. user interest in our approach is identified by services that
the user has used. Usage data of each user is presented by a vector. Each element in

62 Service Recommendation Based on Past Usage Data

service segment corresponding to

its selection probability segment of the

most used service

segment of the

least used service

. . .

Select l services all services

Figure 4.2: Select services based on their selection probabilities

this vector is weighted using TF-IDF metrics to calculate its importance w.r.t. other
services.

We also answer another research question: How to recommend services that are
close to user interest?. We make recommendations based on usage data. We recom-
mend a user services that are used by other users who have the same interest with
her. We also recommend her services that are similar to her used services. As the
recommended services are generated based on user usage data, they are close to user
interest.

In our approach, we apply collaborative filtering (CF) techniques. We developed
five algorithms to make recommendations, three of them are based on the memory-
based CF technique, one algorithm is based on the model-based CF technique and a
non CF algorithm to resolve the cold start problem.

As mentioned in section 3.2.4, there are few approaches [45, 60, 46] that take into
account past usage data for service recommendation. Previous work uses these data
as references for a rule-based and text-based solution. They do not take into account
usage data in their computation. In our approach, we use past usage data to exploit
hidden users’ interests.

The principles presented in section section 2.3.1 are respected by the techniques
proposed in this chapter:

• Focused and fine-grained results. We recommend suitable services instead busi-
ness processes.

• No additional information. We do not ask users any effort to provide additional
information such as profiles, ratings and comments.

• Exploiting implicit knowledge. Our recommendations are made based on the
correlation between users and services. This knowledge is implicitly presented
in usage data.

• Balanced computational complexity. The computation time in our approach is
polynomial.

In addition, we do not take into account the text-based query or service descriptions.
Therefore, we do not face the problems of text-based approaches (section 3.2.1) as
discussed in chapter 3.

Conclusion 63

To validate our work, we implemented an application that allows user to select
services and obtain recommendations. We also performed experiments using not only
the usage data collected by our application and but also a large public dataset. Details
of implementation and experiments are presented in chapter 7.

64 Service Recommendation Based on Past Usage Data

Chapter 5

Service Recommendation based

on Neighborhood Context

Matching

Contents

5.1 Introduction . 66

5.2 Preliminaries . 67

5.2.1 Business process graph . 67

5.2.2 Neighborhood context . 69

5.2.3 Loop cases . 72

5.3 Querying services . 73

5.3.1 Query’s grammar . 73

5.3.2 Query’s execution . 75

5.3.3 Advantages of the query . 76

5.4 Neighborhood context matching 77

5.4.1 Connection flow matching . 77

5.4.2 Context matching . 78

5.4.3 Zone weight consideration . 78

5.4.4 Computational complexity . 80

5.5 Recommendation . 81

5.6 Taking into account parallel flow relations 83

5.6.1 Neighborhood context . 83

5.6.2 Updating neighborhood context matching 85

5.7 Similarity between connection elements 87

5.7.1 Primitive rules . 87

5.7.2 Similarity computation . 88

5.7.3 Integration into the neighborhood context matching 90

5.8 Conclusion . 90

65

66 Service Recommendation based on Neighborhood Context Matching

5.1 Introduction

This chapter presents how we can recommend services for process use. It introduces
the concept of service neighborhood context and details our recommendation approach
in order to facilitate business process design.

We start the chapter by presenting some preliminaries that help to formally de-
fine business processes and service neighborhood contexts (section 5.2). Basically,
the context of a service within a process includes its characteristics and relations to
other component services. Service characteristics include the service name, operation,
input, output, etc.. Service relations refer to the dependencies that may have with
other services within the same process. We define the concept of service neighbor-
hood context which corresponds to a process fragment around the given service. We
recommend services based on similarity of their neighborhood contexts.

Next, we present a query language that is used to find relevant services to selected
positions in a business process (section 5.3). This query language is based on the
neighborhood context. Then, we present our approach to compare the similarity
between services based on their neighborhood context matching (section 5.4). We
show how to make recommendations for a selected position using its neighborhood
context matching (section 5.5).

Finally, we study the impact of parallel flow relations between services (section 5.6)
and the similarity between connection elements on neighborhood context matching
(section 5.7).

We reuse our motivating example to illustrate our approach (section 2.2). We
assume that a process analyst is designing a ‘train-reservation’ process. She sketches
out the business process as given in Figure 5.1. She needs recommendations for a
selected position, which is represented by the service labeled by ‘?’, to complete the
process.

s1

a1 a2

e1

a4

e2

a3ax

?

Figure 5.1: Incomplete train reservation process

We also assume that there exists a ‘flight-reservation’ process in the system (Fig-
ure 5.2, taken from our motivating example in section 2.2). We demonstrate our
approach to recommend the process analyst relevant services for the selected posi-
tion.

The work in this chapter was published in conference proceedings [151, 152, 153].

Preliminaries 67

Receive

reservation

request

Search

!ights
Present

alternatives

Make

reservation

Cancel

request

Request

customer

detailed Info.

Request

credit

card Info.

Process

payment
Send

con"rmation

s2

a5 a2

e3

a6

e4

a4a3

a7

Figure 5.2: Flight reservation business process

5.2 Preliminaries

In this section, we present notations and definitions that we use to formally de-
fine a business process (section 5.2.1) and a neighborhood context of a service (sec-
tion 5.2.2). We also describe the representation of neighborhood contexts in loop
cases (section 5.2.3).

5.2.1 Business process graph

As the structure of a business process can be mapped to a graph, we choose graph
theory to present a business process. Indeed, there are a number of graph-based
business process modeling languages, e.g. BPMN, EPC, YAWL, and UML activity
diagram. Despite their variances in expressiveness and modeling notations, they all
share the common concepts of tasks, events, gateways, artifacts and resources, as well
as relations between them, such as transition flows [37]. Without loss of generality,
we select and use BPMN in our approach as it is one of the most popular business
process modeling language. In our work, we focus on services and the connections to
their neighbors.

A service is presented as a round rectangle like a task or a sub-process in BPMN.
Termination activities such as start or end events are considered as termination ser-
vices. We define a connection element as either a connecting object, e.g. sequence flow
and message flow, or a gateway, e.g. AND-split, OR-split, etc., or an intermediate
event, e.g. error message, message-catching, etc.. For example, in Fig. 5.1, s1, a1, a2,
e1 are services; and ‘flow-transition’, ‘event-based-gateway’ and ‘message-catching’
are connection elements.

Services and connection elements in our approach are defined using BPMN nota-
tions. However, they are easily mapped to equivalent notations in other business pro-
cess modeling and workflow languages, e.g. tasks and workflow control patterns [23].
In the following, we present some definitions that are used in our approach to present
a business process and the concept of neighborhood context.

Let AP be the set of services and CP be the set of connection elements in a
business process P .

68 Service Recommendation based on Neighborhood Context Matching

Definition 5.2.1 (next relation). Let ei, ej ∈ AP∪CP . A next relation ei to ej,
denoted by ei →P ej, indicates that ej is situated right after ei in P .

Definition 5.2.2 (connection flow). A connection flow from ai to aj, ai, aj ∈ AP ,
denoted by

aj
ai fP , is a sequence of connection elements c1, c2, . . . , cn ∈ CP that satisfies:

ai →P c1, c1 →P c2, . . . , cn−1 →P cn, cn →P aj.
aj
ai fP ∈ C∗

P , C
∗

P is the set of sequences
of connection elements in P .

For example, in Figure. 5.2, the connection flow from s2 to a5 or from a5 to a2 is
‘flow-transition’; the connection flow from a2 to e3 is ‘event-based-gateway’‘message-
catching’; the connection flow from a2 to a7 is ‘event-based-gateway’‘message-catching’
‘parallel-split’ and so on.

Definition 5.2.3 (Business process graph). Let AP be a set of services and C∗

P be
the set of sequences of connection elements in a business process P . The business
process graph of P is a labeled directed graph GP = (VP , EP , LP), where:

- VP = AP .

- EP ⊆ AP ×AP .

- LP = {((ai, aj),ajai fP) : (ai, aj) ∈ EP ,
aj
ai fP ∈ C∗

P }.

Elements of VP are vertexes, elements of EP are edges and elements of LP are
ordered pairs presenting the mapping from edges to labels. In a business process
graph, each vertex is a service; each edge is an ordered pair of services; and each edge
is labeled by the connection flow between the two associated services. For simplicity,
we label a connection element by its type.

For example, the ‘train-reservation’ process in Figure. 5.1 can be presented by a
business process graphGP1

= (VP1
, LP1

, EP1
) (Figure 5.3), where: VP1

={a1, a2, ax, a3,
a4, s1, e1, e2}, a1=“Search trains”, a2=“Present alternatives”, ax=“?”, a3=“Process
payment”, a4=“Send confirmation”, s1=“start message”, e1=“end event”, e2=“end
event”; EP1

={(s1, a1), (a1, a2), (a2, e1), (a2, ax), (ax, a3), (a3, a4), (a4, e2)}; LP1
=

{((s1, a1), ‘flow-transition’), ((a1, a2), ‘flow-transition’), ((a2, e1), ‘event-based-gateway’
‘message-catching’), ((a2, ax), ‘event-based-gateway’‘message-catching’), ((ax, a3),
‘flow-transition’), ((a3, a4), ‘flow-transition’), ((a4, e2), ‘flow-transition’)}.

a1 a2

ax

a3 a4

‘event-based-gateway’

‘message-caching’

s1

e1

e2

flow-transition flow-transition

‘event-based-gateway’

‘message-caching’

flow-transition

flow-transition flow-transition

Figure 5.3: Business process graph of the ‘train-reservation’ process (Figure. 5.1)

Preliminaries 69

5.2.2 Neighborhood context

We define the neighborhood context of a service as a business process fragment that
includes the associated service and the closest relations to its neighbors. A neighbor-
hood context is presented as a graph of which the associated service is located at the
center. Its neighbors are located in layers according to their shortest path lengths
to the associated service. The neighbor context of a service can be considered as a
business fragment that presents the behavior of the associated service.

We present in the following definitions that are used to define the neighborhood
context.

Definition 5.2.4 (connection path). A connection path from ai to aj in a business
process graph GP , denoted by

aj
aiPP , is a sequence of services a1, a2, . . . , ak where

a1 = ai, ak = aj and ∃(at+1
at fP ∈ C∗

P ∨ at
at+1

fP ∈ C∗

P) ∀1 ≤ t ≤ k − 1.

According to Definition 5.2.4, a connection path in a business process graph is
undirected. It means that the edges in a connection path can be oriented in different
directions. For example, in Figure. 5.2, a connection path from ‘Search flights’ (a5) to
‘Request customer detailed Info.’ (a7) can be either (‘Search flights’, ‘Present alter-
natives’, ‘Request customer detailed Info.’) or (‘Search flights’, ‘Present alternatives’,
‘Request credit card Info.’, ‘Process payment’, ‘Request customer detailed Info.’).

Definition 5.2.5 (connection path length). The length of a connection path
aj
aiPP ,

denoted by L(ajaiPP) is the number of connection flows in the path.

Definition 5.2.6 (shortest connection path). The shortest connection path between
ai and aj, denoted by

aj
aiSP , is the connection path between them that has the minimum

connection path length.

For example, in Figure. 5.2, the shortest path from ‘Search flights’ to ‘Request
customer detailed Info.’ is (‘Search flights’, ‘Present alternatives’, ‘Request customer
detailed Info.’) and its length is 2.

Definition 5.2.7 (kth-layer neighbor). aj is a kth-layer neighbor of ai in a business
process P iff ∃ajaiPP : L(ajaiPP) = k. The set of kth-layer neighbors of a service ai is
denoted by Nk

P (ai). N0
P (ai) = {ai}.

For example in Figure. 5.2, ‘Receive reservation request’ and ‘Present alternatives’
are the 1st-layer neighbors of ‘Search flights’; ‘Search flight’, ‘end-event’, ‘Request
customer detail Info.’ and ‘Request credit card Info.’ are the 1st-layer neighbors of
‘Present alternatives’; ‘Request credit card Info.’ is one of the 2nt-layer neighbors of
‘Search flights’ and so on.

As the distance from a service ai to its kth-layer neighbors is k, we can imagine
that the kth-layer neighbors of a service ai are located on a circle whose center is ai
and k is the radius. The circle is latent since it exists but is not explicitly represented

70 Service Recommendation based on Neighborhood Context Matching

in the business process graph. We call this latent circle a connection layer and the
area limited by two adjacent latent circles a connection zone. Connection layers
and connection zones of a service are numbered. A connection flow connecting two
(k−1)th-layer neighbors, or a (k−1)th-layer neighbor to a kth-layer neighbor is called
a kth-zone flow (Definition 5.2.8).

Definition 5.2.8 (kth-zone flow). av
au
fP is a kth-zone flow of ai iff ∃avaufP : (au, av ∈

Nk−1
P (ai)) ∨ (au ∈ Nk−1

P (ai) ∧ av ∈ Nk
P (ai)) ∨ (av ∈ Nk−1

P (ai) ∧ au ∈ Nk
P (ai)). The

set of all kth-zone flows of a service ai ∈ P is denoted by Zk
P (ai). Z0

P (ai) = ∅ and
|Zk

P (ai)| is the number of connection flows in the kth connection zone of ai.

For example in Figure. 5.2, the connection from ‘Present alternatives’ to ‘Request
customer detailed Info.’ is the 2nd-zone flow of ‘Search flights’ while the connection
from ‘Request customer detailed Info.’ to ‘Process payment’ is its 3rd-zone flow.
|Z2

P2
(‘Search flights’)|= 3 as in the 2nd-zone of ‘Search flight’, there are three connec-

tion flows, which are from ‘Present alternatives’ to ‘Request customer detailed Info.’,
‘Request credit card Info.’ and an end event.

Intuitively, the connection paths between two services present their relation in
term of closeness. The longer the connection path is, the weaker their relation is
and the shortest connection path between two services presents their best relation.
To illustrate the best relations of a service to others services in a business process,
we define the neighborhood context graph (formally defined in Definition 5.2.9) which
presents all the shortest paths from a service to others. Each service in a business
process has a neighborhood context graph. Each vertex in the neighborhood context
graph is associated to a number which indicates the shortest path length of the con-
nection path to the associated service. The vertexes that have the same shortest path
length value are considered to have the same distance to the associated service and
are located on the same layer around the associated service. We name the number
associated to each service in a neighborhood context graph the layer number. The
area limited between two adjacent layers is called zone. The edge connecting two ver-
texes in a neighborhood context graph belongs to a zone. We assign to each edge in
the neighborhood context graph a number, so-called zone number, which determines
the zone that the edge belongs to.

The edge connecting two services ai, aj in the neighborhood context graph of a
service ax is associated to a zone number such that: if ai and aj are located on two
adjacent layers, the edge (ai, aj) will belongs to the zone limited by the two adjacent
layers; and if ai and aj are located on the same layer, the edge connecting them
belongs to the outer zone of the layer they are located on.

Concretely, assume that eij is the edge connecting two vertexes ai and aj in the
neighborhood context graph of a service ax. The lengths of the shortest connection
paths connecting ai and aj to ax are l1 = L(axai SP) and l2 = L(axaj SP) respectively. Let
d = |l1 − l2|, d has only two possible values, which are 0 and 1 (see Appendix A.2 for
the proof). In the case that d = 0 (l1 = l2), i.e. ai and aj are both lth1 -layer neighbors

Preliminaries 71

of ax, we assign to eij l1+1 as zone value. In the case that d = 1, i.e. ai and aj belong
to two adjacent layers, eij is the kth-zone flow connecting ai and aj and we assign to
eij the zone value k, i.e. min(l1, l2) + 1. Consequently, we assign to the connection
flow connecting ai and aj in the neighborhood context graph of ax the value Min(L(
ax
ai
SP),L(axaj SP)) + 1. The maximum zone value of all connection flows in the context

graph of ax will be Max(L(axat SP)) + 1 ∀at ∈ P .

l1 = l2 = l5 = l6 = l7 = l7 = l8 = l9 = l15 = l16 ‘flow-transition’

l3 = l4 = l10 = ‘event-based-gateway’‘message-catching’

l11 = l12 = ‘event-based-gateway’‘message-catching’‘parallel’

l13 = l14 = ‘synchronization’

a1 : Search trains

a2 : Present alternatives

a6: Request credit card Info.

a3 : Process payment

a5 : Search flights

a7 : Request customer detailed Info.

a4 : Send confirmation

G
ax

P1

ax

a2

a3

a1

a4

1
s t

layer

2
nd

layer

3
rd

layer

1
s t

zone

2
nd

zone

3
rd

zone

l1l2

l3

l4

l5

l6

l7

G
a6

P2

a6

a2

a3

a7

a4

1
s t

layer

2
nd

layer

3
rd

layer

1
s t

zone

2
nd

zone

3
rd

zone

a5

l8

l9

l10

l11

l13

l12

l14

l15

l16

s1

e1

e2

s2e3

e4

Figure 5.4: Neighborhood context graphs of ax (in Figure 5.1) and a6 (in Figure 5.2)

Definition 5.2.9 (Neighborhood context graph). The neighborhood context graph of
a service ax ∈ P , denoted by Gax

P = (V ax
P , Eax

P , Lax
P), is a labeled directed graph created

from GP = (VP , EP , LP). V ax
P is a set of vertexes associated to their layer numbers;

Eax
P is a set of edges associated to their zone numbers; and Lax

P is a set of edge labels
in Gax

P . V ax
P , Eax

P , and Lax
P are defined as:

- V ax
P = {(ai,L(axai SP)) : ai ∈ VP }

- Eax
P = {((ai, aj),ajai zaxP) : (ai, aj) ∈ EP ,

aj
ai z

ax
P = Min(L(axai SP),L(axaj SP)) + 1}

- Lax
P = LP

For example, the neighborhood context graph of ‘unknown’ service (ax) in the
‘train-reservation’ process (Figure. 5.1) isGax

P1
= (V ax

P1
, Eax

P1
, Lax

P1
) where V ax

P1
= {(ax, 0),

(a2, 1), (a3, 1), (a1, 2), (e1, 2), (a4, 2), (s1, 3), (e2, 3)}; Eax
P1
={((a2, ax), 1), ((ax, a3), 1),

((a2, e1), 2), ((a1, a2), 2), ((a3, a4), 2), ((s1, a1), 3), ((a4, e2), 3)}; Lax
P1

= LP1
= {((s1, a1),

72 Service Recommendation based on Neighborhood Context Matching

‘flow-transition’), ((a1, a2), ‘flow-transition’), ((a2, e1), ‘event-based-gateway’‘message-
catching’), ((a2, ax), ‘event-based-gateway’‘message-catching’), ((ax, a3), ‘flow-transition’),
((a3, a4), ‘flow-transition’), ((a4, e2), ‘flow-transition’)}. This neighborhood context
graph and the neighborhood context graph of the service ‘Request credit card Info.’
created from ‘flight-reservation’ process (Figure. 5.2) are depicted in Figure. 5.4.

In any business process graph, including graphs that contain loops, we can always
calculate the shortest path length between two services. Therefore, in the neighbor-
hood context graph of a service, we can always identify the layers on which other
services are located. Consequently, we can always assign layer number to a service
and thus, zone number to a connection flow in a neighborhood context graph.

5.2.3 Loop cases

In this section, we show how we handle the loop cases in neighborhood context graphs.
There are three typical loop cases in a business process: self-loop, loop via another
service and loop via other services. By applying Definition 5.2.9, the possible layers
to which the loop services can belong are depicted in Figure 5.5.

�������� 	�
���������

	�
�����
��������
����	�������
����

� �

(a) Self loop

�������� 	�
���������

	�
�����
��������
����	�������
����

� � � �

� �

(b) Loop via another service

�������� 	�
���������

	�
�����
��������
����	�������
����

� �

� �

� �

(c) Loop via other services

Figure 5.5: Connection flows in loop cases

In the self-loop case (Figure. 5.5a), if a service ai is located on the kth-layer, then
its self-loop edge belong to the zone (k + 1)th because according to Definition 5.2.9,
the zone number of this edge is ai

ai
zaxP = Min(L(aiaxSP),L(aiaxSP))+1 = Min(k, k)+1 =

k + 1.
In the loop-via-another-service case (Figure. 5.5b), there are two possibilities:

(i) the two services are located on adjacent layers (e.g. aj and ai) and (ii) the
two services are located on the same layer (e.g. ai and ah). In the first possibil-
ity, assume that ai and aj are respectively located on the (k − 1)th-layer and kth-
layer, the edges connecting them are assigned the zone number

aj
ai z

ax
P =ai

aj
zaxP =

Min(L(aiaxSP),L(ajaxSP)) + 1 = Min(k − 1, k) + 1 = k, i.e. they are on the zone
limited by these adjacent layers. In the second possibility, assume that ai and ah
are located on the same kth-layer, the edges connecting them are assigned the zone
number ah

ai
zaxP =ai

ah
zaxP = Min(L(aiaxSP),L(ahaxSP)) + 1 = Min(k, k) + 1 = k + 1, i.e.

they are presented on the outer zone of the layer where the services are located.

Querying services 73

In the loop-via-other-services case (for example, Figure. 5.5c shows the loop cre-
ated by 3 services), the edges between services are assigned their zone numbers fol-
lowing Definition 5.2.9. For the two services located on adjacent layers (e.g. aj and
ai, or aj and ah in Figure. 5.5c), the edge connecting them belongs to the zone limited
by these layers. For the two services located on the same layer (e.g. ai and ah in
Figure. 5.5c), the edge connecting them belongs to the outer zone of their layer.

5.3 Querying services

Each service in a business process has a neighborhood context which presents the
relations between the service and its neighbors. By matching neighborhood contexts,
we can find services that have similar relations to common neighbors. In this section,
we present a query language used to retrieve relevant services to a selected position
in a business process based on its neighborhood context matching. We focus on
presenting the query language (section 5.3.1), query’s execution (section 5.3.2) and
its advantages (section 5.3.3). The neighborhood context matching is elaborated in
the next section (section 5.4).

5.3.1 Query’s grammar

The query in our approach not only helps to search for relevant services based on
neighborhood contexts but also allows process analysts to add constraints to the
requested context to filter the searching results. The query language in our approach
consists of three parameters, which are: associated service, connection constrain, and
radius. The associated service is the service whose neighborhood context is taken
into account to match with other contexts (the neighborhood context matching is
presented in section 5.4). Connection constrains are services or connection flows to be
included/excluded to filter the query’s results. The radius is the number of connection
layers taken into account for the neighborhood context matching. It specifies the
largeness of the considered neighborhood contexts.

We present in the following our proposed query’s grammar using the Extended
Backus-Naur Form (EBNF)1 [154]. We use ‘;’ to separate the input parameters; ‘(’
and ‘)’ to separate query’s constrains; ‘<’ and ‘>’ to group services or connection
flows; ‘[’ and ‘]’ to separate a connection flow and its ending services. We use ‘+’
and ‘-’ signs to include/exclude constraints; and ‘|’ sign for multiple choice operator.
Details of the grammar are presented in Table 5.1.

Some notations in our query grammar are similar to the EBNF notations. In
EBNF, comma (,) is used for concatenation; semicolon (;) is used for termination;
vertical bar (|) is used for alternation; [...] is used for option; (...) is used for grouping;
{...} is used for repetition and ‘...’ is used for terminal string.

1the EBNF standard is adopted by ISO, no. ISO/IEC 14977

74 Service Recommendation based on Neighborhood Context Matching

1. Query ::= ServiceID,‘:’,[Constraint],‘:’,Radius;
2. ServiceID ::= Character,{Character|Digit};
3. Constraint ::= (‘+’|‘-’)Term | Constraint,‘|’,Term;
4. Term ::= Item | Term,‘+’,Item | Term,‘-’,Item;
5. Item ::= ServiceID| ConFlow | ‘(’,Constraint,‘)’;
6. ConFlow ::= ‘<’,[ServiceID],‘[’,FlowString,‘]’,[ServiceID]‘>’;
7. FlowString ::= ConElement,{ConElement};
8. ConElement ::= ‘sequence’|‘AND-split’|‘AND-join’|‘OR-split’|‘OR-

join’|‘XOR-split’|‘XOR-join’;
9. Radius ::= DigitNotZero,{Digit};
10. Character ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ |

‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’
| ‘y’ | ‘z’;

11. DigitNotZero ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’;
12. Digit ::= ‘0’ | DigitNotZero;

Table 5.1: Query grammar

In the following, we detail the grammar of our query language:

• The query is defined in line 1 with three parameters separated by ‘:’. The
constraint is optional. It can be defined to filter the query result. It can also
be eliminated if we want to execute only the neighborhood context matching
without filtering.

• In line 2, the service identifier is defined as a string of characters or digits.
However, it has to start by a character.

• In line 3, we define the constraint. A constraint can be an included/excluded
service or connection flow. It can also include different items and operators.
Operators in a constraint can be OR, INCLUDE, EXCLUDE. We use ‘|’, ’+’
and ‘-’ to specify these operators. Consequently, we define a constraint as a
‘Term’ or another constraint with ‘|’ operator.

• In line 4 we define a ‘Term’ as an ‘Item’ or another constraint with the ‘+’ and
‘-’ operators.

• The ‘Item’ is defined in line 5. It can be a service or a connection flow that
is included/excluded in the query. It can also be another constraint which is
grouped by ‘(’ and ‘)’. Definitions in line 3, 4 and 5 allow specifying a constraint
with multiple services, connection flows, operations and grouped conditions.

• In line 6, we define a connection flow which is presented within ‘<’ and ‘>’
signs. It includes a string of connection elements that connects two services.

• The string of connection elements is defined in line 7. It includes at least a
connection element which is defined in line 8.

• In line 9, we define the radius as a natural number greater than 0.

Querying services 75

• Finally, lines 10, 11, 12 define literal characters and digits.

Examples of our query are given in Table 5.2. All of the queries are finding services
that have neighborhood contexts similar to the neighborhood context of sx. These
neighborhood contexts are limited in 3 layers. In Table 5.2, we explain the concerned
constraints used to filter the query result.

Query Explanation

sx::3 neighborhood context matching without filtering

sx:+s1-s2:3
sx:-s2+s1:3

services in the results have s1 but do not have s2
in their neighborhood contexts

sx:+(s1|s2)-s3:3
sx:-s3+(s1|s2):3

services in the results have s1 or s2 but do not have
s3 in their neighborhood contexts

sx:+<s1[‘sequence’]s2>:3 services in the results have a connection flow
s1‘sequence’s2 in their neighborhood contexts

sx:-s1+<[‘AND-split’‘OR-
split’]>:3

services in the results do not have s1 but have a con-
nection flow ‘AND-split’‘OR-split’ in their neigh-
borhood contexts

sx:-(s1|<[‘OR-split’]s2>):3 services in the results do not have s1 or a connection
flow ‘OR-split’s2 in their neighborhood contexts

sx:+<s1[‘AND-split’]s2>
+<s2[‘AND-join’]s3>:3

services in the results have both connection flows
s1‘AND-split’s2 and s2‘AND-join’s3 in their neigh-
borhood contexts

Table 5.2: Query examples

In our motivating example (Figure 5.1), assume that a process analyst wants to
find services that have similar context to ‘Search trains’ (a1) within the first zone,
he can make a query as: a1::1. In the case that he wants to know possible payment
methods, he may select ‘Process payment’ service (a3) and add a constraint which
does not include a ‘sequence’ that connects to ‘Send confirmation’ service (a4). He
may also widen the considered neighborhood contexts in two layers to get more results.
Consequently, his query can be: a3:-(<[‘sequence’]a4>):2. In another context, if he
wants to know existing services that are similar to ‘Search trains’, include a new
service ‘Request payment Info.’ (a8) and ‘Process payment’ but not the AND-join
connection between them, he will select the ‘Search trains’ service and declare the
constraints to be excluded. His query can be: a1:+a8+a3-(<a8[‘AND-join’]a3>):5.

5.3.2 Query’s execution

Our query is developed to filter the services returned by the neighborhood context
matching. In general, the procedure of the query execution is the following:

76 Service Recommendation based on Neighborhood Context Matching

1. We capture the neighborhood context of the associated service. This neighbor-
hood context is identified by the associated service and connection flows to its
neighbors. The largeness of the neighborhood context is specified by the radius
parameter.

2. We match the neighborhood context of the associated service to others in other
business processes.

3. We refine the matching result by selecting only services whose neighborhood
contexts satisfy the query’s constraint.

4. We sort the selected services based on the matching values and pick up top-N
services. N can be flexibly tuned by the process analyst for the query’s response.

The neighborhood context matching is executed beforehand. Then the query
constraint is applied on the matching result to filter the unrelated services.

5.3.3 Advantages of the query

Our query can help process analysts to retrieve relevant services to facilitate the
business process design. Some advantages of our query are presented in the following.

• Query’s presentation: The query in our approach is described as a text string. It
contains predefined information, e.g. service’s ID, included/excluded connection
flows. Hence, it can be extended in other standard formats such as XML, JSON.
In addition, it can be expressed by an SQL-like language.

• Flexible result: The query can be extended to query fragments of business
processes. The simplest way is to add an additional parameter to specify the
radius of the requested fragments. Then, instead of returning a list of relevant
services, we return a list of process fragments that include the relevant services
and their neighborhood contexts which are specified by the additional radius.

• Querying an ‘unknown’ service: The associated service’s ID in our query is
used to specify the neighborhood context for querying. So, if we know the
neighborhood context of an associated service regardless its ID, we can execute
the query. Consequently, we can find relevant services to an ‘unknown’ service in
a business process if we know the connection flows between it and its neighbors.

• Business process auto-completion: As our query can be used to find services that
are relevant to an ‘unknown’ service, it can be applied for business process auto-
completion, which dynamically suggests a process analyst next relevant services
to his design. For example, consider a process analyst is designing a process.
She selects a service sx and drags from it a ‘sequence’ connection element. She
needs recommendations for the ‘next’ service of sx. We imagine that there is an
‘unknown’ service connected from sx by a ‘sequence’. The neighborhood context
of this ‘unknown’ service is specified by a ‘sequence’ connection element from sx.
Based on this neighborhood context, using our query, we can retrieve services

Neighborhood context matching 77

that are relevant to the ‘unknown’ service. Consequently, we can recommend
the process analyst possible ‘next’ services of sx.

5.4 Neighborhood context matching

The kth-zone neighbors of a service and their connection flows create a process frag-
ment around the associated service. This fragment contains the business context that
reflects the behavior of the associated service. In this section, we present our method-
ology to compute the matching between two neighborhood contexts. This matching
is used for service recommendation. To compute the neighborhood context matching,
we propose to match all connection flows that belong to the same connection zone
and have the same ending services. Particularly, for the first zone, we match the
connection flows connecting the associated services to the same services in the first
layer.

To illustrate the computation process, we demonstrate the matching between the
neighborhood context of the ‘unknown’ service in the ‘train-reservation’ process (ax
in Figure. 5.1) and the ‘Request credit card Info.’ service in the ‘flight-reservation’
process (a6 in Figure. 5.2). The neighborhood context graphs of these services are
shown in Figure 5.4.

5.4.1 Connection flow matching

To compute the similarity between two services, we propose to match all the con-
nection flows that connect them to their neighbors. Since each connection flow is a
sequence of connection elements which can easily mapped to a sequence of charac-
ters, we propose to use the Levenshtein distance (LD for short) [82] to compute the
matching between two connection flows. In information theory, the LD is a metric for
measuring the difference between two sequences of characters. The LD is defined as
the minimum number of edits needed to transform one sequence of characters into the
other, with the allowable edit operations being insertion, deletion, or substitution of
a single element. For example, the LD between “gumbo” and “gambol” is 2, between
“kitten” and “sitting” is 3, etc. Inspired from this, we consider each connection ele-
ment as a character, then a connection flow is presented by a sequence of characters
and the similarity between two connection flows can be easily computed by LD.

Concretely, given two connection flows
aj
ai fP1

= c1c2 . . . cn and
ay
axfP2

= c′1c
′

2 . . . c
′

m,
the pattern matching between them is computed by Equation. (5.1).

M(
aj
ai fP1

,
ay
ax fP2

) = 1− LevenshteinDistance(
aj
ai fP1

,
ay
ax fP2

)

Max(n,m)
(5.1)

In our example, we have M(a2a1fP1
,a2a5 fP2

) = M(‘flow-transition’, ‘flow-transition’)
=1; Mp(

ax
a2
fP1

,a6a2 fP2
) = M(‘event-based-gateway’‘message-caching’, ‘event-based-gateway’

‘message-caching’‘parallel’) = 0.67 and so on.

78 Service Recommendation based on Neighborhood Context Matching

5.4.2 Context matching

To compute the neighborhood context matching between two services, we propose to
synthesize the matching of the connection flows in the two contexts. There are two
cases to consider: matching in the first zone and matching in other zones. In the
first zone, we match the connection flows that connect the two associated services
and same services in the first layer. In other zones, we match the connection flows
that connect the same services. We sum all matching values then divide them by the
number of connection flows in the considered zones of the first service.

Concretely, the neighborhood context matching between ai ∈ P1 and aj ∈ P2

within k zones, denoted by MCk(Gai
P1
, G

aj
P2
), is computed by Equation 5.2.

MCk(Gai
P1
, G

aj
P2
) =

k
∑

t=1

∑

av
aufP1

∈Zt
P1

,
an
amfP2

∈Zt
P2

MFt(avaufP1
,anam fP2

)

k
∑

t=1

|Zt
P1
(ai)|

(5.2)

where k is the number of considered zones, |Zt
P1
(ai)| is the number of connection flows

in zone tth of Gai
P1
, and MFt(avaufP1

,anam fP2
) is the matching between two connection

flows av
au
fP1

and an
am

fP2
in zone t:

MFt(avaufP1
,anam fP2

) =















M(avaufP1
,anam fP2

) if







t = 1, (au = am) ∨ (av = an)
∨(au = av ∧ am = an)

t 6= 1, (au = am ∧ av = an)
0 other cases

For example, the neighborhood context matching between ax and a6 (Figure.5.4)
computed by Equation 5.2 is: MC3(Gax

P1
, Ga6

P2
) = (M(a3axfP1

,a3a6 fP2
)+M(axa2fP1

,a6a2 fP2
)+

M(e1a2fP1
,e3a2 fP2

) + M(a4a3fP1
,a4a3 fP2

) + M(e2a4fP1
,e4a4 fP2

))/(2 + 3 + 2) = (0 + 0.66 + 1 +
1 + 1)/7 = 0.52.

5.4.3 Zone weight consideration

The behavior of a service is strongly reflected by the connection flows to its closet
neighbors while the interactions with other neighbors in the further layers do not
heavily reflect its behavior. Therefore, we propose to assign a weight (wt) for each tth

connection zone, so called zone-weight and integrate this weight into the similarity
computation. Since the zone-weight has to have greater values in smaller tth connec-
tion zone, we propose the zone-weight a value computed by a polynomial function

which is wt =
k + 1− t

k
, where t is the zone number (1 ≤ t ≤ k) and k is the number

of considered zones around the service. All connection flows connecting either to or
from the associated service have the greatest weight (w1 = 1) and the connection flows

Neighborhood context matching 79

connecting to/from services in the furthest zone have the smallest weight (wk = 1
k
).

The aggregated weight values is given by Equation 5.3.

W =

k
∑

t=1

k + 1− t

k
=

k + 1

2
(5.3)

Then, the neighborhood contexts matching between Gai
P1

and G
aj
P2

within k zones

and with zone weight consideration, denoted by MWk(Gai
P1
, G

aj
P2
), is given by Equa-

tion 5.4.

MWk(Gai
P1
, G

aj
P2
) =

2

k + 1
×

k
∑

t=1

k + 1− t

k
×MZt(Gai

P1
, G

aj
P2
) (5.4)

where MZt(Gai
P1
, G

aj
P2
) is the matching value of all connection flows in the tth zone of

Gai
P1

and G
aj
P2
.

If the neighborhood contexts of ai and aj are completely different, i.e. there
is no similar service on the same layer, or the matching of all connection flows
of their neighborhood contexts is 0, MZt(Gai

P1
, G

aj
P2
) = 0, ∀t = 1..k. This yields

MWk(Gai
P1
, G

aj
P2
) = 0.

If the neighborhood contexts of ai and aj are completely matched, i.e. they have
the same neighbors on the same layers and the matching of all connection flows is
equal to 1, we have: MZt(Gai

P1
, G

aj
P2
) = 1, ∀t = 1..k, and:

MWk(Gai
P1
, G

aj
P2
) =

2

k + 1
×

k
∑

t=1

k + 1− t

k

=
2

k + 1
× k + 1

2
(by Equation 5.3)

= 1

Consequently, the neighborhood context matching of two services ai and aj , i.e.
MWk(Gai

P1
, G

aj
P2
), has value in the range of [0, 1].

To compute MZt(Gai
P1
, G

aj
P2
), for the first zone (t = 1), we match the connection

flows connecting the two associated services to the same neighbors in the first layer.
Then we divided the result by the number of connection flows in the first zone of the
first service. For further zone (t > 1), we match all connection flows that are in the
same zone and connect the same ending services. Then we divided the result by the
number of connection flows in the considered zone of the first service. The connection
flow matching in the tth zone is given by Equation 5.5.

MZt(Gai
P1
, G

aj
P2
) =

∑

av
aufP1

∈Zt
P1

,
an
amfP2

∈Zt
P2

MFt(avaufP1
,anam fP2

)

|Zt
P1
(ai)|

(5.5)

80 Service Recommendation based on Neighborhood Context Matching

where:

MFt(avaufP1
,anam fP2

) =















M(avaufP1
,anam fP2

) if







t = 1, (au = am) ∨ (av = an)
∨(au = av ∧ am = an)

t 6= 1, (au = am ∧ av = an)
0 other cases

From Equation 5.4 and Equation 5.5, we have:

MWk(Gai
P1
, G

aj
P2
) =

2

k + 1
×

k
∑

t=1

k + 1− t

k
×

∑

av
aufP1

∈Zt
P1

an
amfP2

∈Zt
P2

MFt(avaufP1
,anam fP2

)

|Zt
P1
(ai)|

(5.6)

where:

MFt(avaufP1
,anam fP2

) =















M(avaufP1
,anam fP2

) if







t = 1, (au = am) ∨ (av = an)
∨(au = av ∧ am = an)

t 6= 1, (au = am ∧ av = an)
0 other cases

For example, the service context matching between ax and a6 (Figure. 5.4) com-

puted by Equation 5.6 is: MW3(Gax
P1
, Ga6

P2
) = 2

3+1×(33×
M(axa2 fP1

,
a6
a2

fP2
)+M(

a3
axfP1

,
a3
a6

fP2
)

2 +

2
3×

M(
e1
a2

fP1
,
e3
a2

fP2
)+M(

a4
a3

fP1
,
a4
a3

fP2
)

3 + 1
3×

Mp(
e2
a4

fP1
,
e4
a4

fP2
)

2) = 2
4×(0.66+0

2 + 2
3× 1+1

3 + 1
3× 1

2) =
0.47.

5.4.4 Computational complexity

In our approach, only the connection flows connecting common neighbors in two
adjacent layers are taken into account for the matching computation. So, by using
queues (data structure) to store the common neighbors and track them from the
nearest layers to the furthest layers, we avoid the redundant checking of unrelated
neighbors. On the other hand, the number of services as well as the number of
common neighbors in a business process are not great2, our algorithm can run fast
in computing the neighborhood context matching of two services. The worst case of
this algorithm’s computation time is O(nS × nP × n × k), where nS is the number
of services, nP is the number of business processes, n is the maximum number of
common services located on a layer and k is the number of considered layers. The
worst case only happens when all the business processes in the system are completely

2We made statistics on the public dataset used in our experiment. This dataset consists of real
business processes designed for financial services, telecommunications, and other domains. We have
that in average, there are 11.36 services in a business process (section 7.3.2)

Recommendation 81

matched. In our experiments (section 7.3.2), we measured the computation time and
the result shows that our algorithm runs fast in making recommendations. In addition,
the performance of the algorithm can be improved by processing the neighborhood
context matching periodically off-line.

5.5 Recommendation

We make recommendations based on the neighborhood context matching. For a
selected service, we compute its neighborhood context graph matching with other
services in other business processes. Then, we sort the computed matching values in
descending order and pick up top-N services that have the highest matching values
for recommendation.

As the neighborhood context graph presents the interactions between the associ-
ated service and its neighbors, it infers the associated service’s behavior. Therefore,
the matching between service context graphs exposes the similarity between associ-
ated services in terms of their behaviors. In our approach, the higher the service
context matching value is, the more similar the services are.

There are two typical cases that a process analyst needs service recommendation:
discovering services or improving the ongoing designed business process.

In the first case, when the process analyst wants to discover services that are suit-
able to a position in a business process, she marks this position as an ‘unknown’ service
(a round rectangle with a ‘?’ symbol). Our approach will capture the neighborhood
context of the ‘unknown’ service. Then, it matches the captured context with oth-
ers and retrieves relevant services to the selected position. For example, the process
analyst wants to discover services that are suitable to the position of ax in the ‘train-
reservation’ process (Figure 5.1). She selects this position. Our approach captures the
neighborhood context of ax and matches it with neighborhood contexts of other ser-
vices in other processes. The neighborhood context matching between ax and other
services in the ‘flight-reservation’ process (Figure 5.2) are MW3(Gax

P1
, Ga6

P2
) = 0.47;

MW3(Gax
P1
, Ga7

P2
) = 0.47; MW3(Gax

P1
, Ga5

P2
) = 0; etc. In our motivating example (sec-

tion 2.2), we compute the matching between ax and services in ‘flight-reservation’
and ‘hotel-reservation’ process. According to the matching values, we recommend
for ax services ‘Request customer detailed Info.’, ‘Request customer basic Info.’ and
‘Request credit card Info.’ (Figure 5.6).

In the second case, when the process analyst wants to extend (or improve) the
ongoing designed process, she may need recommendations provided by our approach.
For example, if she wants to find other possibilities at some positions in the process,
she will select services at these positions. Our approach will recommend her rele-
vant services. With these recommendations, the process analyst can create different
process variants from the current designed process. In our motivating example (Fig-
ure 5.7, taken from section 2.2), when the process analyst selects services ‘Search
trains’ and ‘Process payment’ to know other possibilities at these positions, our ap-

82 Service Recommendation based on Neighborhood Context Matching

s1

a1 a2

e1

a4

e2

a3ax

?

Request

customer

basic Info.

Request

customer

detailed Info.

Request

credit

card Info.

Figure 5.6: Recommendations for the ‘unknown’ service

proach recommends services as shown in Figure 5.7. Then, she may improve the
‘train-reservation’ process to a combined service as shown in Figure 5.8 (also taken
from our motivating example in section 2.2)

Receive

reservation

request

Search

 ights

Search

hotels

Search

trains

Present

alternatives

Make

reservation

Cancel

request

Request

credit

card Info.

Request

customer

basic Info.

Request

customer

detailed Info.

Process

payment

Process part

payment

Send

con!rmation

Figure 5.7: Recommendations for the selected services

Receive

reservation

request

Search

trains

Search

hotels
Present

alternatives

Make

reservation

Cancel

request

Request

customer

detailed Info.

Request

credit

card Info.

Process

payment
Send

con rmation

Figure 5.8: New traveling process improved from the train reservation process

In addition, our approach can retrieve services that have the same neighborhood
context with the selected service (neighborhood context matching value is equal to
1). It can be associated to a functionality-filtering approach, which can filter services
that have the same function, to find services that have the same function and behavior
with a given service. This can help to find services that can replace a given service
in case of unavailability.

Taking into account parallel flow relations 83

5.6 Taking into account parallel flow relations

In our previous model, we take into account the causal relation between services. We
consider only the case where a service is situated next to another service. We did
not consider the parallel flow relations between services, i.e. the relations between
services that belong to parallel flows. These relations express concurrent and choice
(or condition) relations. For example, in previous model, we do not take into account
the relation between a6 and a7 in Figure 5.2 as they are presented in parallel flows.

In this section, we examine the parallel flow relations (created by AND, OR and
XOR operators) between services. We re-define the connection flow in order to capture
both causal and parallel flow relations. The new connection flow definition yields the
enrichment of the neighborhood context and the updated matching computation.

5.6.1 Neighborhood context

To capture the causal and parallel flow relations between services, we define the
connected relation based on the next relation (which was defined in Definition 5.2.1)
and update the connection flow definition as following.

Definition 5.6.1 (connected relation, connection flow). Let AP be the set of services
and CP be the set of connection elements in a business process P .

Let ei, ej ∈ AP∪CP . ei is connected to ej in P , denoted by ei ↔P ej, iff ei →P ej
or ej →P ei.

A connection flow from ai to aj, ai, aj ∈ AP , denoted by
aj
ai fP , is a sequence of

connection elements c1, c2, . . . , cn ∈ CP satisfying: ai ↔P c1, c1 ↔P c2, . . . , cn−1 ↔P

cn, cn ↔P aj
3.

aj
ai fP ∈ C∗

P , C
∗

P is set of sequences of connection elements in P .

Definition 5.6.2 (connected relation label, connection flow label). The label of a
connected relation ei ↔P ej, ei, ej ∈ AP∪CP , denoted by l(ei ↔P ej), is defined as
following:

l(ei ↔P ej) =

{

eiej , if ei →P ej
ejei, if ej →P ei

The label of a connection flow
aj
ai fP , denoted by l(

aj
ai fP), is defined as following:

l(
aj
ai fP) = l(ai ↔P c1).l(c1 ↔P c2) . . . l(cn−1 ↔P cn).l(cn ↔P aj)

where c1, c2, . . . , cn ∈ CP :
aj
ai fP = c1c2. . .cn.

For example, the label of the connection flow from “Search flights” to “Present al-
ternatives” in Figure. 5.2 is: a5‘sequence’.‘sequence’a2; from “Present alternatives” to
“Request customer detailed Info.” is: a2‘event-based-gateway’.‘event-based-gateway’
‘message-catching’.‘message-catching’‘parallel-split’.‘parallel-split’a7.

We notice that:
3The connection flow from aj to ai is the inverse of the connection flow from ai to aj

84 Service Recommendation based on Neighborhood Context Matching

• An edge connecting two services ai, aj ∈ AP can be labeled by either l(
aj
ai fP) or

l(aiaj fP). For example, the edge connecting a5 to a2 in Figure. 5.2 can be label
by l(a2a5fP)=a5‘sequence’.‘sequence’a2 or l(a5a2fP)=‘sequence’a2.a5‘sequence’.

• There can be more than one connection flow between two services. In this case,
we number these connection flows to distinguish them. For example, there are
two connection flows from a7 to a6 in Figure. 5.2 and we number them as follows:
l(a6a7f

1
P)=‘parallel-split’a7.‘parallel-split’a6 and l(a6a7f

2
P)=a7‘synchronization’.a6‘syn-

chronization’.

We re-define the business process graph with regard to the new definition of con-
nection flow. In this graph, we define the set of edges is a multiset in order to present
the number of times that an edge appears. We call this graph ‘label-based business
process graph’ (Definition 5.6.3).

Definition 5.6.3 (Label-based business process graph). Let AP be the set of services
and C∗

P be the set of sequences of connection elements in a business process P . A
label-based business process graph of P is an undirected labeled multigraph GP = (VP ,
EP , LP , l) in which VP is a set of nodes, EP is a multiset of edges, LP is a set of edge
labels, and l is a mapping function that maps edges to labels, where:

• VP = AP ,

• EP ⊆ 〈AP ×AP , g〉, g : AP ×AP −→ N is a mapping function. g((ai, aj)) is
the multiplicity of (ai, aj). If g((ai, aj)) > 1, the edges connecting ai to aj are
numbered as (ai, aj)

t, t = 1..k, k > 1.

• LP = l(EP), where:
l : EP −→ LP

(ai, aj) 7→ l(
aj
ai fP) , if g((ai, aj)) = 1

(ai, aj)
t 7→ l(

aj
ai f

t
P) , if g((ai, aj)) = k > 1, t = 1..k

For example, the label-based business process graph of the ‘flight-reservation’
process (Figure. 5.2) is presented in Figure. 5.9.

The modification of the connection flow definition yields the adjustment of the
business process graph with additional edges connecting parallel services. These edges
are taken into account to update the shortest paths between services. Consequently,
they impact on the distribution of services on layers and connection flows in zones.

For example, the neighborhood context graphs of ax (Figure. 5.1) and a6 (Fig-
ure. 5.2) are presented in Figure. 5.10. In these graphs, all causal and parallel flow
relations are presented. The parallel flow relation between a6 and a7 is presented by
two connection flow labels l16 and l17. Whereas, this relation can not be presented in
our previous model (Figure 5.4).

By using the updated connection flow definition, we can present any connection
flow connecting two parallel services. This connection flow is presented by a sequence
of connected relations between them. Consequently, we can present any parallel flow
relation created by an AND, an OR, an XOR or a combination of these operators.

Taking into account parallel flow relations 85

a 5 a 2

a 7

a 4a 3

a 6

l1 l2

l3

l4

l5
l6

l7

l8

l10

l9
l13l12

l11

s2

e3

e4

a5
fs2 P

a2
fa5 P

a7
fa2 P

a6
fa2 P

e3
fa2 P

a7
fe3 P

Nodes:

 s2: ‘Start message’

 a5: ‘Search flights’

 a2: ‘Present alternativies’

 a6: ‘Request credit card Info.’

 a7: ‘Request customer detailed Info.’

 a3: ‘Process payment’

 a4: ‘Send confirmation’

 e3, e4: ‘End’

l1=l()=‘‘s2S.Sa5’’

l2=l()=‘‘a5S.Sa2’’

l3=l()=‘‘a2E.EM.MP.Pa7’’

l4=l()=‘‘a2E.EM.MP.Pa6’’

l5=l()=‘‘a2E.EM.Me3’’

l6=l()=‘‘Me3.EM.EM.MP.Pa7’’

l7=l()=‘‘Me3.EM.EM.MP.Pa6’’

l8=l()=‘‘Pa7.Pa6’’

l9=l()=‘‘a7Y.a6Y’’

l10=l()=‘‘a7Y.Ya3’’

l11=l()=‘‘a6Y.Ya3’’

l12=l()=‘‘a3S.Sa4’’

l13=l()=‘‘a4S.Se4’’

a6
fa7 P
a3
fa7 P

a3
fa6 P

a4
fa3 P

e4
fa4 P

a6
fa7 P

1

2

Edge labels:

a6
fe3 P

Edges:

 (s2,a5), (a5, a2), (a2, e3), (a2, a7), (a3, a6),

 (e3, a7), (e3, a6), (a7, a6)
1, (a7, a6)

2,

 (a7, a3), (a6, a3), (a3, a4), (a4, e4)

Abbreviation:

 S: ‘sequence’

 E: ‘event-based-gateway’

 M: ‘message-catching’

 P: ‘parallel-split’

 Y: ‘synchronization’

Figure 5.9: Label-based business process graph of the ‘flight-reservation’ process

5.6.2 Updating neighborhood context matching

As a label of a connection flow is sequence of characters, we reuse the Levenshtein
distance (LD) to compute the matching between two connection flows. However, an
edge connecting au and av in P1 can be labeled by either av

au
fP1

or au
av
fP1

because GP1

and GP2
are undirected graphs. In addition, there can be multiple connection flows

between two services. We update the matching between av
au
fP1

and an
am

fP2
as following.

Let st1 = l(avaufP1
), st2 = l(anam fP2

). Let Diff be a function that computes the
difference between two connection flows. We have:

M(avau fP1
,anam fP2

) = 1− Diff(st1, st2)

Max(length(st1), length(st2))
(5.7)

where:

• Diff(st1, st2) = LD(l(avaufP1
), l(anam fP2

)), if (au = am) ∧ (av = an)

• Diff(st1, st2) = LD(l(avaufP1
), l(aman fP2

)), if (au = an) ∧ (av = am)

• Diff(st1, st2) = Max(length(st1), length(st2)), i.e. M(avaufP1
,anam fP2

) = 0 in
other cases.

We prove that LD of two strings is equal to LD of their inverse strings (see
Appendix A.1). So, whatever the edges (au, av) and (am, an) are labeled by l(avau fP1

)
or l(auav fP1

) and l(anam fP2
) or l(aman fP2

), Equation 5.7 give a unique value.

Equation 5.7 to used compute the matching between two connection flows that
connecting the same pair of services in two business processes. In case of neigh-
borhood context matching, we apply Equation 5.7 to compute the matching between

86 Service Recommendation based on Neighborhood Context Matching

G
ax

P1

ax

a2

a3

a1

a4

1
s t

layer

2
nd

layer

3
rd

layer

1
s t

zone

2
nd

zone

3
rd

zone

l1

l2

l3
l4

l5

l6
l7

s1

e1

e2

l8

G
a6

P2

a6

a2

a3

a7

a4

1
s t

layer

2
nd

layer

3
rd

layer

1
s t

zone

2
nd

zone

3
rd

zone

a5

l18

l9l10

l11

l13

l12

l14

l15

l16

s2

e3

e4

l19

l20

l17

l21

Nodes:

 s1, s2: ‘Start message’

 a1: ‘Search trains’

 a2: ‘Present alternativies’

 a3: ‘Process payment’

 a4: ‘Send confirmation’

 a5: ‘Search flights’

 a6: ‘Request credit card Info.’

 a7: ‘Request customer detailed Info.’

 e1, e2, e3, e4: ‘End’

Abbreviation:

 S: ‘sequence’

 E: ‘event-based-gateway’

 M: ‘message-catching’

 P: ‘parallel-split’

 Y: ‘synchronization’

Edge labels:

a1
fs1 P1a2
fa1 P1e1
fa2 P1ax
fe1 P1

a3
fax P1

ax
fa2 P1

a4
fa3 P1e2
fa4 P1

l1 = l()

l2 = l()

l3 = l()

l4 = l()

l5 = l()

l6 = l()

l7 = l()

l8 = l()

a5
fs2 P2

a2
fa5 P2a6
fa2 P2e3
fa2 P2a7
fa2 P2a7
fe3 P2

a6
fa7 P2

1

l9 = l()

l10 = l()

l11 = l()

l12 = l()

l13 = l()

l14 = l()

l15 = l()

l16 = l()

a6
fe3 P2

a4
fa3 P2e4
fa4 P2

a3
fa6 P2a3
fa7 P2

a6
fa7 P2

2l17 = l()

l18 = l()

l19 = l()

l20 = l()

l21 = l()

l9=‘‘s2S.Sa5’’

l10=‘‘a5S.Sa2’’

l11=‘‘a2E.EM.MP.Pa6’’

l12=‘‘a2E.EM.Me3’’

l13=‘‘a2E.EM.MP.Pa7’’

l14=‘‘Me3.EM.EM.MP.Pa7’’

l15=‘‘Me3.EM.EM.MP.Pa6’’

l16=‘‘Pa7.Pa6’’

l17=‘‘a7Y.a6Y’’

l18=‘‘a6Y.Ya3’’

l19=‘‘a7Y.Ya3’’

l1=‘‘s1S.Sa1’’

l2=‘‘a1S.Sa2’’

l3=‘‘a2E.EM.Me1’’

l4=‘‘Me1.EM.EM.Max’’

l5=‘‘a2E.EM.Max’’

l6=‘‘axS.Sa3’’

l7=l20=‘‘a3S.Sa4’’

l8=l21=‘‘a4S.Se4’’

Figure 5.10: Updated neighborhood context graphs or services ax and a6

connection flows that are located on the kth-zone, k > 1. For the 1st-zone, we compute
the difference between connection flows, which connect to two associated services, as
following.

Let ui ∈ {au, av}, ux ∈ {am, an} : ui, ux are two associated services. Let uj =
{au, av}\ui, uy = {am, an}\uj . Let st1 = l(avaufP1

), st2 = l(anam fP2
), then:

Diff(st1, st2) = LD(l(
aj
ai fP1

), l(
ay
ax fP2

)) (5.8)

In the case that there is more than one connection flow between two services, we
compute all possible matching between them and we select the best matching value.

To compute the neighborhood context matching between two services, we reuse
the principles presented in section 5.4.1, 5.4.2 and 5.4.3. We consider two matching
cases: matching in the first zone and in other zones. In the first zone, we match all
connection flows that connect the two associated services to the same services in the
1st-layer. In other zones, we match connection flows that are in the same zone and
connect to the same services.

We also take into account the zone weight in the neighborhood context matching.
We present in chapter 7 (section 7.3.2) our experiments in both cases: with and
without zone weight consideration.

Similarity between connection elements 87

5.7 Similarity between connection elements

Connection elements serve as fundamental factors to specify execution constraints
and dependencies between services. For example, a sequence specifies a causal rela-
tion, an AND-split specifies a parallel execution, an OR-split specifies a choice, etc.
The connection elements can show common execution behavior such as sequential,
concurrent, choice, etc. So, their behaviors are not totally different. For example,
consider two services ai and aj that can be connected by: (1) a ‘sequence’ or (2) an
‘AND-split’. The two connection elements are different, however, their behavior is
quite similar: aj has to be execute and it is always executed after ai.

In our previous model, we consider that the matching between two connection
elements has only two values: 0 (in the case that they do not have the same type)
and 1 (in the case that they have the same type). In this section, we propose a
metric to compute the similarity between connection elements in terms of execution
properties. This metric allows evaluating their similarity by a value between 0 and 1.

We firstly indicate the primitive rules that the similarity has to satisfy (sec-
tion 5.7.1). Secondly, we present our proposition to compute the similarity between
typical connection elements (section 5.7.2). Finally, we describe how to integrate the
computed similarity into the neighborhood context matching (section 5.7.3).

5.7.1 Primitive rules

In our work, we deal with basic connection elements, which are sequence, AND, OR
and XOR as they are commonly used in most of business processes. Other elements
and complex gateways are not considered. However, the same principles expressed
below can be applied.

We present our analysis on the ‘-split’ elements, including AND-split, OR-split
and XOR-split. A ‘-split’ connection element consists of one input and multiple out-
put flows. The similarities between ‘-join’ elements can be inferred with the same
reasoning.

To compute the similarity between connection elements, we firstly specify three
primitive rules that our approach satisfies, which are:

¬ If two connection elements are identical, their similarity is 1.
For example, similarity of two ‘sequence’ is 1; similarity of two ‘AND-split’
elements is 1 and so on.

­ Similarity between two connection elements that have the same types but dif-
ferent number of output flows is 1. Similarity between two different connection
elements is less than 1.
For example, similarity between two ‘AND-split’ elements that have different
number of output flows is 1 whereas similarity between an ‘AND-split’ and an
‘OR-split’ is less than 1.

88 Service Recommendation based on Neighborhood Context Matching

® In the case that two connection elements are different, the less different the
numbers of output flows are, the greater similarity value is.
For example, consider the matching between an ‘AND-split’ that has 2 output
flows and two ‘OR-split’ that have respectively (1) 2 output flows and (2) 3
output flows. The similarity value of the ‘AND-split’ and the first ‘OR-split’
must be higher than the similarity value of the ‘AND-split’ and the second
‘OR-split’.

5.7.2 Similarity computation

Connection elements indicate also the number of possible execution cases. The num-
ber of possible execution cases is impacted by the type of connection elements and
the number of output flows derived by the connection elements. In our approach, we
analyze the number of possible execution cases and compute the similarity between
connection elements based on the probability that an output flow is executed.

Consider the case where two services ai and aj are connected by a connection
element c. The connection flow from ai to aj is notated by

aj
ai f = c. c can be a

sequence, an ‘AND-split’, an ‘OR-split’ or an ‘XOR-split’.

We call a case that satisfies the constraints of a connection element a ‘possible
execution case’ or a ‘possible case’ in short. For example, if c is a ‘sequence’, it has
only one possible execution case, in which the service following c is executed; if c is
an ‘AND-split’, it also has one possible execution case in which all services located on
the output flows of c are executed; but if c is an ‘OR-split’, it has multiple execution
cases: ‘at least one of the services located on output flows needs to be executed’.

Let x, y and z be the number of output flows that an ‘AND-split’, an ‘OR-
split’ and an ‘XOR-split’ respectively have. The numbers of possible cases of these
connection elements are given in the 4th column of Table 5.3. The last column of
Table 5.3 presents the probabilities that an output flow is executed. We explain in the
following how we compute these values.

For the ‘sequence’ and ‘AND-split’ cases, there is only one possible execution
case, in which all services are executed. Hence, the probability that an output flow
is executed is 1.

For the ‘OR-split’ case, the execution step is completed if at least one of y services
in the y output flows is executed. The number of cases where at least one of y services
is executed is 2y − 1. On the other hand, consider an output flow. The number
of possible cases where this flow is ‘executed’ among 2y possible execution cases is
2y

2 = 2y−1. So, the probability that an output flow is executed is 2y−1

2y−1 .

For the ‘XOR-split’ case, for z output flows, there are z possible execution cases.
Therefore, the probability that an output flow is executed is 1

z
.

To compute the similarity between these connection elements, we propose to com-
bine the weight of an output flow and the probability that it is executed. The weight
of an output flow is specified by the inverse number of output flows. For example,

Similarity between connection elements 89

Element Presentation No. paths No. possi-
ble cases

Probability that an out-
put flow is executed

Sequence � � � � 1 1 1

AND-split
� � � �

�

� x 1 1

OR-split
� � � �

�

�

y 2y − 1
2y−1

2y − 1

XOR-split
� � � �

�

�

z z
1

z

Table 5.3: Probability that aj appears in the possible cases

consider an ‘AND-split’ that derives 3 output flows. The weight of each output flow
is 1

3 .

Consequently, the similarity between two connection elements cu and cv, denoted
by S(cu, cv), is given as following:

S(cu, cv) = w∗

cu
× w∗

cv
× P+

cu
× P+

cv
(5.9)

where w∗(cu), w
∗(cv) are respectively weights of an output flow of cu and cv; P

+
cu

and
P+
cv

are probabilities that an output flow of cu and cv is executed.

The similarities between aforementioned connection elements are given in Ta-
ble 5.4. In Appendix A.3, we prove that the similarities computed by our approach
satisfy the primitive rules.

Similarity Sequence AND-split(x) OR-split(y) XOR-split(z)

Sequence 1 1× 1

x
× 1× 1 1× 1

y
× 1× 2y−1

2y − 1
1× 1

z
× 1× 1

z

AND-split(x) 1
1

x
× 1

y
× 1× 2y−1

2y − 1

1

x
× 1

z
× 1× 1

z

OR-split(y) 1
1

y
× 1

z
× 2y−1

2y − 1
× 1

z

XOR-split(z) 1

Table 5.4: Similarities between typical connection elements

For example, with x = 2, y = 3, z = 4, S(AND− split, sequence) = 0.5, S(OR−
split, sequence) = 0.19, S(XOR − split, sequence) = 0.06, S(AND − split, OR −

90 Service Recommendation based on Neighborhood Context Matching

split) = 0.10, S(AND−split,XOR−split) = 0.03 and S(OR−split,XOR−split) =
0.01.

5.7.3 Integration into the neighborhood context matching

The neighborhood context matching is synthesized from the connection flow matching
(section 5.4). A connection flow is a sequence of connection elements that connect
two services (Definition 5.2.2). It can contain one or more connection elements.

We integrate the similarity between connection elements into the neighborhood
context matching in the case where connection flows contain only one connection
element. For example, consider two connection flows

ay
axfP1

and av
au
fP2

of two neigh-
borhood context graph Gai

P1
and G

aj
P2
. Assume that they are located on the same

connection zone and connect the same ending services. Each of them contains only
one connection element, which is c and c′ respectively. Similarity between them is
inferred by the similarity between the connection elements, which is computed by
Equation 5.9.

In the case that connection flows contain more than one connection element, we
transform them to strings of characters and reuse Levenshtein distance to compute
their similarity (section 5.4.1).

As the similarity between connection elements is applied to compute the similar-
ity of connection flows, it impacts on the neighborhood context matching. In our
experiments, we run our different neighborhood context matching computations with
and without the similarity between connection elements to identify its impact on the
final results.

5.8 Conclusion

In this chapter, we answer the two questions raised in the thesis problematic (sec-
tion 2.1.3), which are How to recommend services for particular positions? and How
to formally express constraints to filter services?.

To recommend services for a particular position, we take into account connection
flows between services. We define the neighborhood context of a service as a process
fragment that contains the associated service and relations to its neighbors. We
capture the neighborhood context of a selected position and match it to existing
neighborhood contexts to find relevant services. Our recommendations can be used
in different cases: (1) a process analyst wants to discover suitable services for an
‘empty’ position or (2) to have recommendations to extend (or evolve) a designed
process or (3) to replace an existing service.

To help process analysts formally express constraints to filter services, we propose
a query language. Using this language, a process analyst can formally specify filter-
ing constraints. These constraints are applied on the neighborhood context of the

Conclusion 91

returned services. For example, the returned services have to contain (or not contain)
a given service (or a given connection flow) in their contexts, etc..

To capture more service relations, we examine parallel flow relations and the
similarity between connection elements. We also present how to integrate these factors
in the neighborhood context matching.

Our principles presented in section 2.3.1 are respected:

• Focused and fine-grained results. We recommend services instead of business
processes. So, our recommendations do not make users confused.

• No additional information. We do not ask for any additional information. We
make recommendations based on existing data, which are relations between
services in business process models.

• Exploiting implicit knowledge. We exploit service neighborhood context which
is implicit knowledge hidden in process models. This context is used to induce
the service behavior within a process.

• Balanced computational complexity. We neither focus on a service nor consider
entire business processes. Instead, we take into account neighborhood contexts
which are business fragments around services. The computational complexity
of our approach is polynomial. In addition, we do not face the NP-complete
problem.

92 Service Recommendation based on Neighborhood Context Matching

Chapter 6

Capturing Neighborhood

Contexts from Process Logs for

Service Recommendation

Contents

6.1 Introduction . 93

6.2 Running example . 94

6.3 Exploiting neighborhood context from logs 95

6.3.1 Preliminaries . 96

6.3.2 Log-based business process . 96

6.3.3 Log-based neighborhood context 97

6.4 Log-based neighborhood context matching 98

6.4.1 First zone matching . 99

6.4.2 Further zone matching . 101

6.4.3 Matching with zone weight consideration 103

6.5 Service recommendation . 103

6.6 Conclusion . 104

6.1 Introduction

In this chapter, we present another approach for service recommendation. Instead of
capturing the neighborhood contexts from existing business processes, we propose to
discover the neighborhood contexts from business process logs. We study business
process logs because of four reasons:

1. They exist in all transactional information systems such as ERP, CRM, or
workflow management systems [39]. So, they are large resources that are always
available to be discover.

93

94 Capturing Neighborhood Contexts from Business Process Logs

2. Business process models do not always exists. For example, in case of the flow
of patients in a hospital, all activities are logged but information about the
underlying process is typically missing [39]. In this case, our previous techniques
presented in the previous chapter cannot be applied. Therefore, we propose to
use logs as an alternative input.

3. They present the reality of the business process execution. They include the ser-
vice execution frequency, which is useful information to identify the importance
of a service and is not presented by the a-priori process model.

4. They contain useful information that can be discovered to assist the business
process design and diagnosis. For example, they can be mined to check the
conformance of a-priori business process models [28, 93, 94, 95, 96], to detect
execution errors [97, 98] or to observe social behaviors between users or ser-
vices [99, 100].

By extracting business process logs, we capture the execution orders between web
services. Then, we construct a log-based business process model from the captured
execution orders. We define the service neighborhood context as a fragment of the
log-based business process that contains the considered service and relations to its
neighbors mined from the business process logs. Each relation between two web
services is associated to a weight value which is the number of time that it occurs
in the business process logs. We match neighborhood contexts to infer the similarity
between services. This similarity is used for service recommendation to facilitate the
business process design.

This chapter is organized as following: we firstly present a running example that is
used for illustrating our approach (section 6.2). The log-based business process model
and the neighborhood context graph extracted from logs are presented in section 6.3.
In section 6.4, we elaborate our technique for service matching based on business
process logs. Section 6.5 presents the recommendation strategy. Finally, we conclude
the chapter in section 6.6.

6.2 Running example

We use an example about liability claim within an insurance company, which is pre-
sented in [155]. The liability claim process is described as following: first, some data
related to the claim is registered (service A), and then either a full check or a policy-
only check is performed (B or C). Afterwards, the claim will be evaluated (D), and
then it is either rejected (F) or approved (E and G). Finally, the case is archived and
closed (H).

The log traces collected from the execution of the liability claim process are given
in Table 6.1. We assume that there is no error occurs during the business process
execution. A process instance contains multiple services and a service can be executed
by different process instances. Each process instance is recorded as a trace. Each

Exploiting neighborhood context from logs 95

trace is a sequence of services, which presents the execution orders of the services
involved by a process instance. In a trace, the following service (service on the right)
is executed after the followed service (service on the left). For example, consider a
trace σ = ABCD, service B is executed after service A and before service C.

Traces Log traces

trace 1 ACDGEH
trace 2 ABDFH
trace 3 ABDEGH
trace 4 ABDFH
trace 5 ACDGEH
trace 6 ABDGEH
trace 7 ACDFH

Table 6.1: Example: event logs of the liability claim process

Figure 6.1 shows the liability claim process model which is discovered from the
above event logs [155].

A

B

C

E

D G

F

H

Register

claim

Check all

Check

policy only

Evaluate

claim

Issue

payment

Send

approval letter

Send

rejection letter

Archive

Figure 6.1: The liability claim business process discovered from event logs [155]

In the following sections, we present our approach to build a log-based business
process model. Based on this model, we also build service neighborhood contexts and
present a matching technique for service recommendation. We notice that the only
input in our approach is business process log.

6.3 Exploiting neighborhood context from logs

In this section, we present the log-based business process and the neighborhood con-
text that are captured from business process logs. We firstly present some definitions
related to business process logs (section 6.3.1). Then, we present log-based business
process (section 6.3.2) and service neighborhood context (section 6.3.3) definitions.

96 Capturing Neighborhood Contexts from Business Process Logs

6.3.1 Preliminaries

We reuse definitions in [39] and in [156] for the business process log and log traces
definitions. In our approach, as we take into account the service execution frequency,
we add a definition about full business process log (see Definition 6.3.2).

Definition 6.3.1 (Log trace, business process log). Let A be a set of services. A∗

denotes the set of finite sequences over A and σ = a1a2 . . . an ∈ A∗ is a log trace.
L ∈ P(A∗) is a business process log1.

A business log defined by Definition 6.3.1, which is proposed by [39, 156], does not
include the number of times that a trace is executed. To include this number in the
log, we define a full business process log (see Definition 6.3.2) as an original business
process log without the elimination of similar traces.

Definition 6.3.2 (Full business process log). A full business process log is the original
business process log with the consideration of the trace frequency, i.e., number of times
that traces are repeated in the log. The full business log is denoted by L∗, L∗ ∈ P∗(A∗).
L ⊆ L∗.

For example, the full business process log of the liability claim process in the
running example includes all traces given in Table 6.1 while the business process log
(by Definition 6.3.1) includes only case 1, 2, 3, 5 and 7.

Definition 6.3.3 (Log-based ordering relation). Let L be a business process log over
A, i.e., L ∈ P(A∗). Let a, b ∈ A. a >L b iff ∃σ = a1a2 . . . an, i ∈ {1, 2, . . . , n − 1}:
σ ∈ L ∧ ai = a ∧ ai+1 = b.

6.3.2 Log-based business process

The sequence of services in a log trace σ = a1a2 . . . an ∈ A∗ present their ordering
relations. A relation between a service ai and its followed service ai+1 in the trace
σ, 1 ≤ i ≤ n − 1 can be presented as a directed edge from ai to ai+1. The service
relations in a business process log L can be presented in a weighted directed graph
where the edge’s weight presents the number of times that the edge was repeated in
the log L. This graph is called log-based business process graph (Definition 6.3.4).

Definition 6.3.4 (Log-based business process graph). A log business process graph
is a weighted directed graph GL = (VL, EL, w) built from a business process log L∗ ∈
P∗(A∗) where:

• VL = A = {a1, a2, . . . , an},
• EL = {(ai, aj) ∈ A×A : ai >L aj} ⊆ A×A,

1
P(A∗) is the power set of A∗, i.e., L ⊆ A

∗

Exploiting neighborhood context from logs 97

• w is a weight function from EL to N :

w : EL −→ N
(ai, aj) 7→ |ai >L aj |

|ai >L aj | is number of times that ai >L aj comes about in the log L∗.
w(ai, aj) = 0 if ∄σ = a1a2 . . . an and k ∈ {1, 2, . . . , n− 1} : ak = ai ∧ ak+1 = aj.

The log-based business process graph of the given running example is depicted in
Figure 6.2. The flow’s weight is the number of times that the flow is executed. It is
emphasized by the path’s thickness. The log-based graph indicates the frequency of
each flow in real business execution. This information should be taken into account
for recommendation because it can suggest the likelihood of this relation to happen
again.

A

B

C

ED

G

F

H

3

4 4

3

3

3

1

3

1
31

3

Figure 6.2: Log-based business process graph

6.3.3 Log-based neighborhood context

Inspired by the neighborhood context definition in the previous chapter (Defini-
tion 5.2.9), we define the log-based neighborhood context as a directed labeled graph
that presents the shortest path from a service to its neighbors. Intuitively, the close-
ness between services is presented by the paths connecting them. The shortest path
between services presents their closest relation. The log-based neighborhood context
of a service presents the best relations between the service and its neighbors.

In a log-based neighborhood context graph, each vertex is associated to a number
that indicates the shortest path length from it to the associated service. Vertexes
that have the same shortest path length are considered to be located on the same
layer around the associated service. Thus, we name the number associated to each
service in a neighborhood context graph layer number. The layer number of a service
a is denoted by l(a). The area limited between two adjacent layers is called zone.
The edge connecting two vertexes in a neighborhood context graph belongs to a zone
as the vertexes are on the same or adjacent layers. We assign to each edge in the
neighborhood context graph a number, so-call zone number, which determines the
zone that the edge belongs to.

The edge connecting aj , ak in the neighborhood context graph of a service ai is
assigned a zone number z(aj , ak) = min(l(aj), l(ak)) + 1. This means, if aj and ak

98 Capturing Neighborhood Contexts from Business Process Logs

are located on two adjacent layers, the edge (aj , ak) will belongs to the zone limited
by l(aj) and l(ak). In the case that aj and ak are located on the same layer, the edge
connecting them belongs to the outer zone of their layer, which is limited by layers
l(aj) and l(aj) + 1.

Definition 6.3.5 (Log-based neighborhood context graph). A log-based neighborhood
context graph of a service ai, denoted by GC(ai), is an extension of the log-based
graph GL = (VL, EL, w) with vertex layer numbers and edge zone numbers. The layer
number of an vertex aj, denoted by l(aj), is the shortest path length from aj to ai and
the zone number of an edge (aj , ak), denoted by z(aj , ak), has value min(l(aj), l(ak))+
1:

1. l(aj) = ShortestPathLength(aj , ai),

2. z(aj , ak) = min(l(aj), l(ak)) + 1, aj >L ak ∨ ak >L aj.

The vertex layer numbers and edge zone numbers are different in different neigh-
borhood context graphs. We denote l(aj)GC(ai) the layer number of vertex aj and
z(aj , ak)GC(ai) the zone number of the edge (aj , ak) in the neighborhood context graph
GC(ai).

For example, the neighborhood context graph of activity D in Figure 6.2 is de-
picted in Figure 6.3.

A

B

C

ED

G

F

H

1st layer

2nd layer

1st zone

2nd zone

3

4

3

4

3

1

3
1 3

3

3

1

Figure 6.3: Example: neighborhood context graph

Definition 6.3.6 (kth-neighbor). a is the kth-neighbor of b, iff l(a)GC(b) = k. Set

of kth-neighbors (k ≥ 1) of a service ai is denoted by Nk(ai). Nk(ai) = {aj :
l(aj)GC(ai) = k}.

6.4 Log-based neighborhood context matching

The layer number and the zone number in a neighborhood context graph present the
closeness between services, while the weights of edges in the log-based graph present
the strength of their relations. In this section, we detail our approach that is based on

Log-based neighborhood context matching 99

log-based neighborhood contexts matching (including layer number and edge weight)
for service recommendation.

Assume that Pp and Pq are two log-based business processes constructed from
the event logs Lp and Lq. Let Ap, Aq be sets of services of Pp and Pq respectively.
Similarity between services a ∈ Ap and b ∈ Aq is computed using vector space model
(VSM). The computation is divided in two parts: first zone matching and further
zone matching.

To illustrate our computation, we assume that there is another log-based process
built from event logs of another business process as given in Figure 6.4.

K B J

G

F

H

5 5

3

2

3

2

Figure 6.4: Log-based business process graph

We are going to compute the similarity between service D in the liability claim
process (Figure 6.2) and service J in Figure 6.4. The neighborhood context graph of
J is illustrated in Figure 6.5.

K B J

G

F

H

1st zone

2nd zone

1st layer

2nd layer

5

3

2

5

3

2

Figure 6.5: Neighborhood context graph

In the following we present the matching computation in the first zone and in the
further zones using VSM.

6.4.1 First zone matching

The first zone matching computes the similarity between services’ neighborhood con-
texts for the first zone.

Let E1
Pp
(a), E1

Pq
(b) be the sets of edges connecting a in Pp and b in Pq in the first

100 Capturing Neighborhood Contexts from Business Process Logs

zone respectively. Let
−−→
e(a),

−−→
e(b) be vectors of weights of these edges.

E1
Pp
(a) = {(a, x) ∪ (y, a) : x, y ∈ N1(a)|a >Lp x, y >Lp a}

= {(a, x1), (a, x2), . . . , (a, xm), (y1, a), (y2, a), . . . , (yn, a)}
−−→
e(a) = (w(a, x1), w(a, x2), . . . , w(a, xm), w(y1, a), w(y2, a), . . . , w(yn, a))

= (u1, u2, . . . , um+n)

E1
Pq
(b) = {(b, e) ∪ (f, b) : e, f ∈ N1(b)|b >Lq e, f >Lq b}

= {(b, e1), (b, e2), . . . , (b, ed), (f1, b), (f2, b), . . . , (fh, b)}
−−→
e(b) = (w(b, e1), w(b, e2), . . . , w(b, ed), w(f1, b), w(f2, b), . . . , w(fh, b))

= (v1, v2, . . . , vd+h)

Let N1
c (a, b) be the set of common neighbors of a and b in the first layer.

N1
c (a, b) = N1

Pp
(a) ∩N1

Pq
(b)

Let E1
c (a), E1

c (b) be the sets of edges that connect a and b to their common

neighbors in the first layer respectively. Let
−−→
ec(a),

−−→
ec(b) be vectors of weights of these

edges.

E1
c (a) = {(a, x′) ∪ (y′, a) : x′, y′ ∈ N1

c (a, b)|a >Lp x′, y′ >Lp a}
= {(a, x′1), (a, x′2), . . . , (a, x′t), (y′1, a), (y′2, a), . . . , (y′z, a)}−−→

ec(a) = (w(a, x′1), w(a, x
′

2), . . . , w(a, x
′

t), w(y
′

1, a), w(y
′

2, a), . . . , w(y
′

z, a))

= (a1, a2, . . . , at+z)

E1
c (b) = {(b, e′) ∪ (f ′, b) : e′, f ′ ∈ N1

c (a, b)|b >Lq e′, f ′ >Lq b}
= {(b, e′1), (b, e′2), . . . , (b, e′r), (f ′

1, b), (f
′

2, b), . . . , (f
′

z, b)}−−→
ec(b) = (w(b, e′1), w(b, e

′

2), . . . , w(b, e
′

r), w(f
′

1, b), w(f
′

2, b), . . . , w(f
′

z, b))

= (b1, b2, . . . , bt+z)

The similarity between a and b for the 1st − zone is computed by VSM (Equa-
tion 6.1).

M1(a, b) =

t+z
∑

i=1

ai × bi

√

√

√

√

m+n
∑

i=1

u2i ×

√

√

√

√

d+h
∑

i=1

v2i

(6.1)

For example, from Figure 6.2 and Figure 6.4, we have:

Log-based neighborhood context matching 101

E1(D) = {(D,F), (D,E), (D,G), (C,D), (B,D)}
−−→
e(D) = (3, 1, 3, 3, 4)

E1(J) = {(J, F), (J,G), (B, J)}
−−→
e(J) = (3, 2, 5)

Common neighbors of D and J in the 1st-layer are:

N1
c (D, J) = {B,F,G}

Sets of edges connecting to the same neighbors are:

E1
c (a) = {(D,F), (D,G), (B,D)}

E1
c (a) = {(J, F), (J,G), (B, J)}

Vectors of these edges are:

−−−→
ec(D) = (3, 3, 4)
−−−→
ec(J) = (3, 2, 5)

So, the matching between D and J for the 1st-zone is:

M1(D, J) =
3× 3 + 3× 2 + 4× 5√

32 + 12 + 32 + 32 + 42 ×
√
32 + 22 + 52

= 0.86

6.4.2 Further zone matching

The further zone matching computes the similarity between services’ neighborhood
contexts for the kth-zone (k > 1). To do so, we present edges that connect the same
vertexes in the same layers of the two neighborhood context graphs in vectors. The
item values in each vector are the edge weights in the log-based graphs.

Let Ek
Pp
(a) and Ek

Pq
(b) be the sets of edges in kth-zone of a in Pp and b in Pq

respectively. Let
−−→
e(a),

−−→
e(b) be vectors of weights of these edges.

Ek
Pp
(a) = {(x, y) : z(x, y) = k, x, y ∈ Ap}

= {(x1, y1), (x2, y2), . . . , (xm, ym)}
−−→
e(a) = (w(x1, y1), w(x2, y2), . . . , w(xm, ym))

= (u1, u2, . . . , um)

Ek
Pq
(b) = {(e, f) : z(e, f) = k, e, f ∈ Aq}

= {(e1, f1), (e2, f2), . . . , (en, fn)}
−−→
e(b) = (w(e1, f1), w(e2, f2), . . . , w(en, fn))

= (v1, v2, . . . , vn)

102 Capturing Neighborhood Contexts from Business Process Logs

Let Nk−1
c (a, b) and Nk

c (a, b) be the sets of common neighbors of a and b on layers
k − 1 and k, k > 1.

Nk−1
c (a, b) = Nk−1

Pp
(a) ∩Nk−1

Pq
(b)

Nk
c (a, b) = Nk

Pp
(a) ∩Nk

Pq
(b)

Let Ek
c be the set of common edges of a and b in kth-zone.

Ek
c = {(r, t) : (r ∈ Nk−1

c (a, b), t ∈ Nk
c (a, b)|r >Lp t ∧ r >Lq t)

∪(r ∈ Nk
c (a, b), t ∈ Nk−1

c (a, b)|r >Lp t ∧ r >Lq t)}
= {(r1, t1), (r2, t2), . . . , (rm, tm)}

Let
−−→
ec(a),

−−→
ec(b) be vectors of weights of these common edges.

−−→
ec(a) = (w(r1, t1), w(r2, t2), . . . , w(rz, tz)), (ri, ti) ∈ EL(Ap), 1 ≤ i ≤ z

= (a1, a2, . . . , az)
−−→
ec(b) = (w(r1, t1), w(r2, t2), . . . , w(rz, tz)), (ri, ti) ∈ EL(Aq), 1 ≤ i ≤ z

= (b1, b2, . . . , az)

The similarity between a and b for the kth zone is given by VSM (Equation. 6.2).

Mk(a, b) =

z
∑

i=1

ai × bi

√

√

√

√

m
∑

i=1

u2i ×

√

√

√

√

n
∑

i=1

v2i

(6.2)

For example, the matching between D and J in the second zone is computed as
following:

E2(D) = {(A,C), (A,B), (E,H), (F,H), (G,H), (E,G), (G,E)}
−−→
e(D) = (3, 4, 3, 3, 1, 1, 3)

E2(J) = {(K,B), (F,H), (G,H)}
−−→
e(J) = (5, 3, 2)

N1
c (D, J) = {B,F,G}

N2
c (D, J) = {H}

E2
c = {(F,H), (G,H)}

Service recommendation 103

−−−→
ec(D) = (3, 1)
−−−→
ec(J) = (3, 2)

Then, similarity between D and J for the second zone is:

M2(D, J) =
3× 3 + 1× 2√

32 + 42 + 32 + 32 + 12 + 12 + 32 ×
√
52 + 32 + 22

= 0.24

6.4.3 Matching with zone weight consideration

The behavior of a service is strongly reflected by the connections to its closet neighbors
while the interactions among other neighbors in the further layers do not heavily
reflect its behavior. Therefore, to improve the final matching precision, we propose to
consider a zone weight in our matching. Concretely, as the zone-weight has to have
greater values in smaller kth connection zone, we propose to assign the zone-weight

a value computed by a polynomial function which is wz
j =

k + 1− j

k
, where j is the

zone number (1 ≤ j ≤ k), k is the number of considered zones around an associated
service. The final matching formula improved with the zone weight consideration is
given in Equation 6.3.

M∗(a, b) =
2

k + 1
×

k
∑

i=1

k + 1− i

k
×M i(a, b) (6.3)

For example, the matching between the neighborhood contexts of D and J with zone
weight consideration is:

M∗(D, J) =
2

3
× (M1(D, J) +

1

2
×M2(D, J)) =

2

3
× (0.86 +

1

2
× 0.24) = 0.65

6.5 Service recommendation

The neighborhood context graph presents the interactions between the associated
service and its neighbors in layers. It can infer the behavior of the associated service.
Therefore, the matching between neighborhood context graphs exposes the similarity
between the associated services. In our approach, the higher the matching value is,
the more similar the services are. Basically, the steps to make recommendations based
on log-based neighborhood context matching are:

1. We represent the business execution logs in a log-based graph. This graph
contains relations between services and their weight values.

2. For each service in the log-based graph, we build a neighborhood context graph
which contains the closet relations between the associated service and its neigh-
bors. In a neighborhood context graph, services are presented in layers and
relations between them are presented in zones.

104 Capturing Neighborhood Contexts from Business Process Logs

3. We compute the neighborhood context graph matching using vector space model.
The matching between two neighborhood context graphs presents the similar
between two corresponding services in terms of relations to their neighbors.

4. For a selected service, we sort other services in descending order of similarity
and pick up top-n services for recommendation.

6.6 Conclusion

In this chapter, we answer the second last question raised in the thesis problematic
(section 2.1.3), which is Can business process logs be useful? and How?. We show
that business process logs can be useful to make service recommendations. To do so,
we capture execution orders between services and the ‘importance’ of the connection
flows connecting them. This ‘importance’ is reflected by the number of time that the
connection flow is repeated in the business process logs. We build business process
models and neighborhood context graphs of services based on business process graphs.
We match neighborhood context graphs to infer the similarity between corresponding
services. This similarity is used for service recommendation during the design phase.
Concretely, for each selected service in an on-going designed process, we recommend
a list of services that are similar in terms of neighborhood context using only business
process logs.

Our principles (section 2.3.1) are also respected in this chapter:

• Focused and fine-grained results. We recommend services instead of business
processes.

• No additional information. We do not ask users any further information or
resources to make recommendations.

• Exploiting implicit knowledge. We exploit log-based neighborhood contexts
which is implicit knowledge hidden in business process logs.

• Balanced computational complexity. The computational complexity of our ap-
proach is polynomial and we do not face the NP-complete problem.

Our approach is self-contained and it can be associated to other recommendation
approaches such as functionality based, user’s interest based, service-rating based,
etc. to improve recommendation quality.

Chapter 7

Implementation and

Experiments

Contents

7.1 Introduction . 105

7.2 Implementation . 107

7.2.1 Application for individual use . 107

7.2.2 Applications for business process use 108

7.2.2.1 PRec . 109

7.2.2.2 WebRec . 111

7.2.2.3 LogRec . 112

7.2.3 Synthesis . 114

7.3 Experiments . 114

7.3.1 Individual use Experiments . 115

7.3.1.1 Experiments on the dataset collected by IRec 115

7.3.1.2 Experiments on a large public dataset 117

7.3.1.3 Synthesis . 119

7.3.2 Process use Experiments . 119

7.3.2.1 Approach feasibility and parameter impact 120

7.3.2.2 Algorithms accuracy . 122

7.3.2.3 Algorithms performance 125

7.3.2.4 Synthesis . 126

7.4 Conclusion . 126

7.1 Introduction

In this chapter, we present the implementation we have done to realize our recommen-
dation techniques, and the experiments we have made to evaluate the effectiveness of
our solutions. Our goal is to prove that our approach is feasible and accurate in real

105

106 Implementation and Experiments

use-cases. Besides, we analyze the parameters that impact on the recommendation
quality.

We implemented four applications that recommend relevant services in the two
consumption cases: individual use and process use.

• The first application, named IRec, is a web-based application. It allows users to
search for services, select a service for individual use, and get recommendations.
In this application, we collected the user’s usage data and implemented the
algorithms presented in chapter 4 to make recommendations.

• The second application, named PRec, demonstrates our recommendation tech-
niques for process use. It allows users to add/remove services, create business
process and get recommendations for a selected service. In this application, we
implemented the algorithm proposed in chapter 5 (without considering the par-
allel flow relation and the similarity between connection elements). We made
recommendations based on the existing designed business processes.

• The third application, named WebRec, is another web-based application. It
makes recommendations for business process use. It is developed based on
Signavio, which is a public platform for BPMN-based business process design.
It implements the algorithm proposed in chapter 5. This application considers
the parallel flow relation and the similarity between connection elements.

• The forth application, named LogRec, demonstrates the service recommenda-
tions from business process logs. It implements the algorithm proposed in chap-
ter 6. It is developed on ProM, an open-source framework for implementing
process mining tools.

We perform experiments on the usage data collected by our applications. We also
tested our algorithms on public datasets.

• For individual use, we evaluated the effectiveness of our algorithms based on the
search data and the user’s last usage data. We used as metrics for the evaluation
Precision and Recall. We also tested our algorithms on AudioScrobbler, which is
a large public dataset that contains similar behaviors to the service usage data.
We used as metric for this experiment the Root Means Square Error (RMSE).

• For process use, we provided statistics on the number of recommended ser-
vices and the context matching values. We tested our algorithms on a large
public dataset of real business processes. This dataset is shared by the Busi-
ness Integration Technologies (BIT) research group at the IBM Zurich Research
Laboratory. We computed Precision and Recall values. We also measured the
computation time and usage memory of our algorithms to evaluate their per-
formance.

The results show that our approach are feasible and accurate. They can be de-
ployed as standalone applications or integrated in the existing business process man-
agement applications to facilitate service consumption.

Implementation 107

We present in section 7.2 our four applications and basic use cases. The exper-
iments and related discussion are presented in section 7.3. Finally, we conclude the
chapter in section 7.4.

7.2 Implementation

In this section, we present the applications that we have developed to realize our
approach. We firstly present IRec, an application that recommends web services for
individual use (section 7.2.1). Second, we present three applications that recommend
services for process use (section 7.2.2). These applications include PRec, a standalone
java-based application, WebRec, a web-based business process design application and
LogRec, an application that uses business process logs to make recommendations.

7.2.1 Application for individual use

The architecture of IRec is shown in Figure 7.1. It consists of 7 components: a search
engine, an invocation engine, a recommender component, an evaluation component, a
database management component, a data manipulation component and a web service
collector and checker component. The search engine allows users to search for ser-
vices. The invocation engine provides interface for service invocation. It forwards the
usage data to the database management component. The recommender component
implemented the proposed algorithms to recommend users suitable services to their
interests. The data management component provides functions to interact with the
database system. The service collector and checker component collects web service
descriptions from different sources such as providers, crawlers, search engines and
other systems. It checks web services availability and the correctness of their descrip-
tions before sending them to the data management component. The data preparation
component pre-processes the usage data to facilitate the recommendation step. It
also periodically updates the similarity between web services. Finally, the evaluation
component evaluates the recommendation algorithms. It helps to identify the user’s
interest to improve the recommendation quality.

Based on this architecture, we developed IRec as a web-based server-client appli-
cation. It allows users to register, create their profiles and use web services. It also
provides an interface to upload web service descriptions. It implements the algorithms
presented in chapter 4. It includes two parts: front-end and back-end. The front-end
processes data at the user-side. It provides interfaces to interact with users. It is
written in Flex1, which is a programming language developed by Adobe. The back-
end processes data at the server-side. It is written in Java. The mechanisms used
to exchange data between front-end and back-end are RemoteObject and BlazeDS
framework2. Tomcat server 5.5 was set up for hosting the application.

1http://www.adobe.com/devnet/flex/
2http://sourceforge.net/adobe/blazeds/

108 Implementation and Experiments

Search Engine

Invocation

Engine

Recommender

DB Management

Module

Data Preparation

Module

Database

System

Evaluation

Module

Providers

WS Desc.

W
S

 C
o

lle
c
to

r

Crawler

Search

Engines

Other

Systems

WS Desc.

WS Desc.

WS Desc.

Users

IRec

Figure 7.1: Architecture of our service recommendation tool (IRec) based on usage
data

The screen-shot of IRec is shown in Figure 7.2. Its layout consists of 5 areas, in
which the top area provides a menu and a search interface; the center area provides
the search results or the service invocation interface; the left, right and bottom areas
provide lists of recommended services according to the proposed algorithms. Our tool
can be found at http://www-inf.it-sudparis.eu/SIMBAD/tools/IRec/ and the
user guide is available at http://www-inf.it-sudparis.eu/SIMBAD/tools/IRec/

tutorial.html.

A basic scenario to get recommendations is as follows:

1. A user firstly searches for services in which she is interested. She types keywords
and click on Get services button.

2. Our application returns a list of services that match to the input keywords.

3. The user now selects a service. We assume that the selected service is the one
in which the user is interested.

4. Our application generates recommendations based on the user’s ID and the
selected service’s ID using the the five algorithms presented in chapter 4.

7.2.2 Applications for business process use

We present in the following our three developed applications to make recommenda-
tions for process use. The first application, named PRec (section 7.2.2.1), allows users
to design business process and get recommendation from our approach. The second
application, named WebRec (section 7.2.2.2), was developed as a plugin of a busi-
ness process design platform. The third application, named LogRec (section 7.2.2.3),
makes recommendations based on process event logs. These applications implemented
the different algorithms presented in chapters 5 and 6.

Implementation 109

Figure 7.2: A screen-shot from IRec

7.2.2.1 PRec

PRec is developed to show how our approach helps to facilitate the business process
design. It allows process analysts to design new business processes, select a service
and get recommendations from our approach. It also allows managing services and
processes. It is written in Java and published at http://www-inf.it-sudparis.eu/
SIMBAD/tools/PRec/3.

A screenshot of the application is shown in Figure 7.3. It includes three tabs,
named Composition design, Composition and Service. The ‘Composition’ tab pro-
vides functions to manage business processes. It allows business analysts to cre-
ate/delete/modify a business process. The ‘Composition design’ tab provides func-
tions to design a process. It allows creating/deleting connection flows between services
in a selected process. The ‘Service’ tab (Figure 7.3) provides functions to manipu-
late services. It allows selecting services for the process design (area 2). It also allows
adding/deleting/modifying a service (area 3). It provides recommendations for a se-
lected service (area 4) and allows configuring parameters for the recommendation
(area 5).

The basic scenario to get recommendations is as follows:

1. A process analyst firstly selects the Composition tab and creates a new business
process.

2. A new process contains no services. Therefore, the process analyst clicks on the
Service tab and select services for the new business process design from the list
of available services.

3A test version, where users are free to use its functions and select algorithms to run, is published
at http://www-inf.it-sudparis.eu/SIMBAD/tools/PRec/test/

110 Implementation and Experiments

Figure 7.3: PRec, a service recommendation application for process use

3. If the needed services are not available in the list, the process analyst can add
them as new services.

4. After adding necessary services to the new business process, the process analyst
clicks on the Composition design tab to start designing the process. She can
select services and define the connection flows4 between them.

5. Finally, the process analyst can back to the Service tab and click on one of
selected services to see the recommendations. The number beside the recom-
mended service’s name is the neighborhood context matching between it and the
selected service. The process analyst can adjust the k parameter, which corre-
sponds to the number of zones that are taken into account for the neighborhood
context matching.

This tool does not take into account the parallel flow relations between services
and the similarity between connection elements. These parameters are considered in
the next application (section 7.2.2.2).

4There are 9 connection elements, including sequence, parallel split, synchronization, exclusive
choice, simple merge, multi choice, structured synchronizing merge, deferred choice and cancel task.

Implementation 111

7.2.2.2 WebRec

Our first application for process use, PRec, is not a perfect user-friendly to use because
the design and recommendation functions are text-based. So, to improve the usability
of our implementation, we develop WebRec, an application that provides a graphical
user interface for business process design. WebRec is developed based on Signavio5.

Signavio is a platform developed for business process design. It provides a web-
based graphical interface to design business processes. It uses BPMN notations. It
has two versions: commercial and open source. The open source version with limited
features is published6 for free downloading and testing.

By developing our approach based on Signavio, we achieve two targets: (1) we
make our approach more user-friendly through the graphical suite and (2) we widen
the user community and make our approach more visible as Signavio is widely known
in the community. Our tool is published at http://www-inf.it-sudparis.eu/

SIMBAD/tools/WebRec/.

Figure 7.4: Querying web services for process design using WebRec

In this application, a process analyst can design and store business processes.
During the design, she can select a service and activate the recommendation feature.
She needs to specify the number of layers/zones needed to be taken into account and
an algorithm to be executed to make recommendations. We consider each selected
service and relations to other services within the selected zone as a query. The queries
and their results can be saved and reloaded for a future use.

A screen-shot of the application is shown in Figure. 7.4. The areas 1, 2 and 3 show

5http://www.signavio.com/
6http://code.google.com/p/signavio-core-components/

112 Implementation and Experiments

the BPMN elements for design, canvas and property of the selected element. They are
provided by the Signavio platform. We developed areas 4, 5, and 6. Area 4 contains
the buttons for activating the context matching and query, area 5 shows the list of
previous queries and area 6 can show both the query design and the recommendation
results.

The recommendation feature of this application runs the neighborhood context
matching algorithm (chapter 5) that takes into account the parallel flow relations and
the similarity between connection elements. Whenever a user selects a service, the
application provides a list of recommended services together with the corresponding
similarity values computed by the neighborhood context matching.

A basic scenario7 is as follows:

1. A business process analyst opens the application and designs a new process.
She can also open an existing process for editing8.

2. During the design, the analyst can select a service and activate the recommen-
dation feature. She is free to select one of the four algorithms to make recom-
mendations. The four algorithms take into account the parallel flow relations
between services (chapter 5). They correspond to the four cases: with/without
zone weight consideration and with/without similarity between connection ele-
ments.

3. She also selects the number of layers (or zones) needed to be taken into account
for the neighborhood context matching. A query is generated. The designer
can save, modify or execute it (a saved query can be loaded and modified in the
next usage).

4. After executing the query, she gets a list of relevant services recommended by
the application.

5. If she selects a service from the recommendation list, the application will return
the corresponding process in which the selected service is highlighted.

6. She can copy services from the recommended process and paste them to the
ongoing designed process.

7.2.2.3 LogRec

Our last application, LogRec, was developed to make recommendations based on pro-
cess event logs. It implements the algorithm presented in chapter 6. It is developed
based on ProM9, which is a well-known open-source framework for implementing

7Tutorial at: http://www-inf.it-sudparis.eu/SIMBAD/tools/WebRec/tutorial.html and
video demo at: http://www-inf.it-sudparis.eu/SIMBAD/tools/WebRec/demo.html

8As Signavio uses BPMN notations, we consider each task as a service and the task’s name as its
identifier.

9http://www.promtools.org/prom6/

Implementation 113

process mining tools10. Source codes and tutorial of our LogRec application are pub-
lished at http://www-inf.it-sudparis.eu/SIMBAD/tools/LogRec/. Our objective
is twofold: (1) we validate our approach using a proof of concept to show the feasibil-
ity of our approach and (2) we implement a tool, which is a plug-in within ProM, to
make our approach more visible and widely used by the community.

Figure 7.5: Business process extracted from logs and the related recommendations

A screen-shot of the application is shown in Figure 7.5. The displayed graph is
built based on the relations between services extracted from event logs. Each edge
connecting two services is associated to a number which presents the number of times
that the edge is repeated in the logs. This number (corresponds to the thickness of
the edge) reflects the importance of the relation between two services as it shows the
execution frequency of that relation. During the process design, if a business analyst
selects a service and clicks on the Recommendation button, a list of recommended
services to that selected position will be shown (Figure 7.5).

A basic scenario to get recommendations is as follows:

10ProM has been developed by the Process Mining group (http://www.processmining.org)

114 Implementation and Experiments

1. A business analyst firstly runs the ProM application, open the Workspace tab
and import the log file to be used.

2. After importing the log file in ProM, the business analyst opens the Action tab,
selects the Mine log-based graph action and clicks Start to execute it.

3. The application will process log and present it as a graph with edge weights.

4. The business analyst now is able to select a service (presented in rectangle shape)
and press the Recommendation button to get the recommendations based on
the log-based neighborhood context matching presented in chapter 6.

7.2.3 Synthesis

In our work, we implemented 4 applications: IRec, PRec, WebRec and LogRec.

• IRec (section 7.2.1) was developed as a web-based application to collect service
usage data for individual use. Based on these data, we will perform experi-
ments in the following section to evaluate the accuracy of our approach. IRec
implements our algorithms presented in chapter 4.

• PRec (section 7.2.2.1) serves for process use service consumption. It allows man-
aging services, designing processes and viewing recommendations. However it
is not user-frequently. It implements the neighborhood context matching algo-
rithm without considering the parallel flow relations and the similarity between
connection elements.

• WebRec (section 7.2.2.2) was developed as a user-frequently application with
graphical user interface to design business processes. It was developed based
on Signavio platform to widen the user community and make our approach
more visible as Signavio is widely known in the community. It impelements our
algorithms by considering the parallel flow relations and the similarity between
connection elements.

• LogRec (section 7.2.2.3) was developed to validate our approach using a proof
of concept. It runs our log-based algorithm presented in chapter 6.

The four applications were implemented to prove that our approach is feasible. It
can be flexibly developed as a standalone application or integrated into other appli-
cations to recommend services for individual use and process use.

7.3 Experiments

In this section, we present the experiments that we performed to evaluate our ap-
proach. We firstly present experiments about individual use service consumption
(section 7.3.1). We run the five algorithms presented in chapter 4 on the data col-
lected by IRec, our first application. We evaluate their performance using Precision
and Recall metrics. We also perform experiments with LSI-based and service-user
combination-based algorithms on a large dataset.

Experiments 115

Second, we present experiments about process use service consumption (section 7.3.2).
We run the algorithms presented in chapter 5 on a public dataset. This dataset con-
sists of real business processes designed for financial services, telecommunications
and other domains. We evaluate the accuracy of our algorithms using Precision and
Recall. We also present the computation time of our algorithms.

7.3.1 Individual use Experiments

We performed our experiments on two different datasets: the dataset collected by
IRec, our first application (section 7.3.1.1) and AudioScrobbler, a large public dataset
(section 7.3.1.2). Our objective is to show that our algorithms can be used to widen
the view of users and they can produce high quality recommendations in the case
that users have stable behavior. Moreover, we target to show that our algorithms are
of good performance on a large-scale system.

7.3.1.1 Experiments on the dataset collected by IRec

We used Precision and Recall metrics to measure the accuracy of our algorithms.
Precision and Recall (and often associated F-measure) are two popular metrics to
evaluate the accuracy of an information retrieval system [157]. They are computed
based on the matching between data retrieved by the system and relevant (or ground-
truth) data. Precision is equal to 1 if all retrieved data belong to the relevant set.
Recall is equal to 1 if all relevant data are retrieved by the system. Precision and
Recall are computed by Equation 7.1.

Precision =
Retrieved data ∩ Relevant data

Retrieved data

Recall =
Retrieved data ∩ Relevant data

Relevant data
(7.1)

In our approach, we identify two relevant sets, which are used as ground-truth
data, to compute Precision and Recall:

• The first set is the most-used services returned by our search engine, which
is a traditional query-string search engine. Whenever a user searches for a
service, we capture the most-used services in the search result. Whenever she
selects a service, she gets recommendations from our application. We match the
recommended services with the services that we captured from her last search
to compute the Precision and Recall. By using this set, we target to compare
the services recommended by our algorithms with the services returned by our
search engine. We do not target to replace a search engine by our tool. Instead,
we aim at evaluating how far (or how close) our recommendations and search
results are.

116 Implementation and Experiments

• The second set is the user’s last used services. Whenever a user selects a service,
we match the services recommended by our algorithms with the user’s last used
services. By using this set, we target to detect the relation between user’s
behavior and recommendation quality. We measure the recommendation quality
in two cases: (1) a user whose behavior changes frequently and (2) a user who
has stable behavior.

During two weeks, our IRec application collected 271 iterations. Most of them are
performed by invited PhD students and researchers. The relevant data were set as
the 10 most-used services returned by the search engine and the 10 last-used services
of each user. We compute the average Precision and Recall values of each algorithm.
Table 7.1 shows the results based on the two relevant sets.

Search based Last-used based
Precision Recall Precision Recall

Service-based 0.107 0.521 0.351 0.704

User-based 0.206 0.623 0.27 0.382

Service-user combination 0.093 0.346 0.296 0.577

LSI-based 0.118 0.54 0.333 0.689

Power assignment 0.184 0.109 0.075 0.069

Table 7.1: Experiments with the two relevant sets

Experiments on first relevant data set show that recommendations made by our
algorithms are not “too close” (low Precision values) and not “too far” (high Recall
values) from the results returned by a query string search engine. On the one hand,
it means that our algorithms and the query-string based solution are not identical
and our approach could be a good solution along with the query-string based search
approach to widen the user’s view and give him interesting web services that the clas-
sical query-based approach could not give. On the other hand, the services returned
by our recommendation algorithms should not be too far from the query-based results
to avoid incoherent services and to be quite close to the search context to replace the
query-based approach in the case that it fails.

They also show that the user-based algorithm has the highest Precision and Recall
values. Indeed, the usage data is collected from the usage of PhD students who have
somehow similar behavior. Hence, the user-based algorithm can return good results
and becomes the most suitable algorithm for this context. It is obvious that the power
assignment algorithm has very low Precision and Recall because its objective is to
recommend the least used services instead of services that are close to user interest.

Experiments with the last usage-based relevant data show that the algorithms
which take into account the relations of all services (service-base and LSI-based)
achieved the best results. The user-based algorithm and service-user combination al-

Experiments 117

gorithm make recommendations based on the usage data of selected users, hence, they
can easily miss the potential services which can make the evaluation more accurate.

Figure 7.6 shows the synthesized Precision and Recall values computed by the
second evaluation method for particular users. If a user (for instance User ID=21 in
Figure 7.6a) changes his behavior frequently, the recommendations generated by our
algorithms may not fit to his interest. This causes the low and unstable Precision and
Recall values when we run the second evaluation method, which is based on the user’s
usage data. In contrary, if a user (for instance User ID=24 in Figure 7.6b) keeps or
slightly changes his interest, our recommendations are of higher quality.

(a) UID=21 (b) UID=24

Figure 7.6: Synthesized results of particular users

7.3.1.2 Experiments on a large public dataset

We used AudioScrobbler11, which is a public dataset, for this experiment. This
dataset records the musical usage. We analyzed that the behavior of users in this
dataset is similar to the behavior of users in using a web service because in both
cases, users interact with items in which they are interested. In addition, this dataset
contains records that correspond to user’s IDs, service’s IDs and the number of times
that a user uses a web service. Therefore, it is suitable to evaluate our algorithms.

As the provided dataset does not include the search results or user’s last-user
items, we can not process the evaluation with Precision and Recall metrics like we
did with the data collected by our application. We decided to use Root Mean Square
Error (RMSE) [52] metric, which is a metric to evaluate the performance of prediction
system.

RMSE is used to compare the predicted data to existing ground-truth data. It
is used in the Netflix Prize12 Contest as the significant metric to evaluate the per-
formance of participated recommendation algorithms [158, 159]. Small RMSE values
indicate good prediction. Basically, assume that P[m×n] is the prediction matrix and
A[m×n] is the ground-truth matrix. Let I[m×n] ∈ {0, 1}[m×n] be the indicator of A.

11http://www.audioscrobbler.net/development/
12http://www.netflixprize.com/

118 Implementation and Experiments

The RMSE between the prediction P and the answer A is computed by Equation 7.2.

RMSE(P,A) =

√

∑m
i=1

∑n
j=1 Iij(Aij − Pij)2

∑m
i=1

∑n
j=1Iij

(7.2)

To evaluate our algorithms using this measure, we divided the AudioScrobbler
dataset, which consists of 1033 user’s IDs, 3435 artist’s IDs, 644.281 records and
12.332.214 hits, into two parts: the training set, which consists of 4/5 the number
of records, and the test set, which contains the rest 1/5 number of records. We
run our algorithms on the training set and captured recommendations generated
by our algorithms. We compared these recommendations (corresponding to the P
matrix) to the test set (corresponding to the A matrix) to compute the RMSE. We
performed experiments using two algorithms of two CF different types: our service-
user combination algorithm for the memory-based CF, and our LSI-based algorithm
for model-based CF.

We run our algorithms with different k parameter values. In the service-user
combination algorithm, k is the number of the selected users and in the LSI-based
algorithm, k is the number of dimensions reduced by the singular value decomposition
(see more details in section 4.4.3 and 4.4.4).

1

10

100

1000

0 200 400 600 800 1000

R
M

S
E

Number of users (1033)

Service!user

combination

LSI!based

Figure 7.7: RMSE distribution with k = 100

In our experiments, we set k ={1, 2, 5, 10, 20, 50, 100}. Figure 7.7 shows the
distribution of RMSE values computed by the service-user combination and LSI-based
algorithms with k = 100 for 1033 users. The average and minimum RMSE values
with different k are shown in Figure 7.8. These results show that in most cases, the
LSI-based algorithm performs better than the service-user combination algorithm in a
large scale system. They also show that RMSE values decrease when k increases and
the service-user combination algorithm recommends services that are more accurate
to user need. It is because when k increases that the number of selected users (in the
service-user combination algorithm) and the number of dimensions (in the LSI-based
algorithm) increases, useful data for recommendations are larger and our algorithms
make better recommendations.

Experiments 119

0

10

20

30

40

50

60

70

80

90

1 2 5 10 20 50 100

A
v

e
ra

g
e

 R
M

S
E

k!parameter values

Service!user

combination

LSI!based

(a) Average RMSE

0

1

2

3

4

5

6

7

8

9

10

1 2 5 10 20 50 100

M
in

im
u

m
 R

M
S

E

k!parameter values

Service!user

combination

LSI!based

(b) Minimum RMSE

Figure 7.8: Experiment with different k-parameter values

7.3.1.3 Synthesis

Experiments on the first search data showed that the recommendations made by our
algorithms can help to widen the user’s view and give him interesting web services
that the classical query-based approach could not give. They also showed that the
user-based algorithm achieved the best results in the case that users have similar
behaviors.

Experiments on the last-used data showed that the algorithms that take into
account the relations of all services (service-based and LSI-based) achieved the best
results. They also showed that our recommendations were accurate in the case that
users had stable behavior.

Experiments on a large dataset showed that our algorithms were of good-performance
in a large scale system with quite small RMSE values. They also showed that the LSI-
based algorithm achieved better results than the service-user combination algorithm
because the LSI-based algorithm overcomes the sparsity problem of the service-user
combination algorithm (see section 4.4.3 for details), especially when the number of
users and services are very large.

7.3.2 Process use Experiments

We present in the following our experiments for the neighborhood context matching
algorithms (presented in chapter 5) using a large public dataset. This dataset is
shared by the Business Integration Technologies (BIT) research group13 at the IBM
Zurich Research Laboratory. It was presented in [160]. It contains business process
models designed for financial services, telecommunications, and other domains. It is
presented in XML format following BPMN 2.0 standard. Each XML file stores the
data of a business process, including elements’ IDs, activity names, and the sequence
flows between elements. The dataset consists of 560 business processes with 6363

13http://www.zurich.ibm.com/csc/bit/

120 Implementation and Experiments

activities. There are 3781 different activities in which 1196 activities appear in more
than one process. In average, there are 11.36 activities, 2.59 ‘start’ elements, 3.42
‘end’ elements, 18.96 gateways (including parallel, exclusive and inclusive gateways)
and 46.81 sequence flows in a process (Table 7.2).

Min. Max. Average
No. of activities in a process 1 195 11.36
No. of start events in a process 1 32 2.59
No. of end events in a process 1 32 3.42
No. of gateways in a process 1 139 18.96
No. of sequence flows in a process 2 326 46.81

Table 7.2: Details of the dataset

We consider each activity as a service14 and the activity’s name as the service’s
identifier. We performed three experiments to show that our approach is feasible,
accurate and of good performance. In the first experiment, we evaluate the feasibility
of our approach by measuring the number of services whose matching values with
others are greater than a given threshold. We also observe the impact of parameters,
including the kth-zone, zone weight and similarity between connection elements, on
the number of recommended services (section 7.3.2.1). In the second experiment, we
evaluate the accuracy of our algorithms based on Precision and Recall metrics (sec-
tion 7.3.2.2). In the third experiment, we measure the performance of our algorithms
based on the computation time (section 7.3.2.3).

7.3.2.1 Approach feasibility and parameter impact

In our experiments, we run the proposed algorithms with different kth-layer values.
We compute the similarity between each service and the other services in the other
processes. We observed the number of recommended services and their similarity
values. We also analyze the impact of the zone weight and the similarity between
connection elements.

We performed experiments with the neighborhood context matching in 5 cases
presented in Table 7.3.

Case 1 Case 2 Case 3 Case 4 Case 5

parallel flow relations x x x x

Zone-weight x x x

Connection element similarity x x

Table 7.3: Examined cases

14The mapping between activities and services in a business process is discussed in section 3.3

Experiments 121

Figure 7.9 shows the percentages of services whose matching values with at least
one other service are greater than or equal to 0.5. It shows that cases 2, 3, 4, 5, which
take into account the parallel flow relations, retrieve greater number of services than
case 1. The zone-weight parameter has no impact in the first zone (see section 5.4.3).
Hence, with k = 1, case 2 and case 3 has the same number of services (similar to case 4
and 5). However, with k = 2, the number of services and similarity values decreased.
Case 3 and case 5, which take into account zone weight in their computation, retrieve
more services than case 2 and case 4 respectively. It means that zone weight impacts
on the number of retrieved services. When we take into account zone weight, we
retrieve more services. Similarly, the similarity between connection elements impacts
on the number of retrieved services. When we take into account similarity between
connection elements (case 4 and case 5 compared to case 2 and case 3 respectively),
we retrieve more services. Case 5, which takes into account both zone-weight and
connection element similarity, retrieves the highest number of services.

In this experiment, we obtain 77.7% services whose matching values are greater
than 0 and 21.48% services whose matching values are greater than 0.5. In the worst
cases, we obtain 61.3% services whose matching values are greater than 0 and 8.57%
services whose matching values are greater than 0.5. These results show that our
approach can provide recommendations for a majority services as we can retrieve
similar services for more than 2/3 number of services in average. It means that our
approach is feasible and can be applied in real use-cases.

0

0.05

0.1

0.15

0.2

0.25

k=1 k=2

P
e

rc
e

n
ta

g
e

 o
f

se
rv

ic
e

s

kth!zone number

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 7.9: Percentage of services whose matching value >= 0.5

To examine the impact of kth-zone values, we run our algorithms with k from 5
to 1. The experiment (Figure 7.10) shows that when k decreases, the number of
recommended services increases. It is because when k decreases that the number of
unmatched services in further layers decreases, the matching values between neigh-
borhood contexts increase, the number of services increases.

This experiment also shows that zone-weight and similarity between services im-
pact on the number of retrieved services. Cases 3 and case 5, which take into account
zone-weight, has more services than case 2 and 4 respectively. Similarly, cases 4 and

122 Implementation and Experiments

5, which take into account similarity between services, has more services than case 2
and 3 respectively.

0

0.05

0.1

0.15

0.2

0.25

k=5 k=4 k=3 k=2 k=1

P
e

rc
e

n
ta

g
e

 o
f

se
rv

ic
e

s

kth!zone number

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 7.10: Percentage of services with different kth-zone values

Figure 7.10 also shows the impact of parallel flow relations. When we take into
account the parallel flow relations between services, many services located on the
further layers of a neighborhood context graph are relocated on the nearer layers
(as we discussed in section 5.6). Therefore, when we take into account parallel flow
relations, the matching values in the first zone are high and these values decrease
quickly when we consider further zones. Figure 7.10 show that in Cases 2, 3, 4 and 5,
which take into account parallel flow relations, the number of services is very low with
great k and very high with small k. Meanwhile, in Case 1, the number of services
slightly change when k decreases.

7.3.2.2 Algorithms accuracy

Our approach makes recommendations based on the neighborhood context matching
regardless the identifier of the considered service. The identifier of a service is used to
determine the associated neighborhood context. In this experiment, we aim at using
it as the ground-truth data for Precision and Recall computation. Our objective in
to assess how accurate is our approach when it is used to recommend services for an
empty position in a process. To do so, for a selected service in a process, we consider
this service as an unknown service. We compute recommendations for this selected
position. A relevant recommendation should contain the selected service.

Concretely, consider a selected service s in a process P . Assume that s appears
in n processes. The recommendations for this selected position consist of l services,
in which t(t ≤ l) services are s. Precision and Recall of these recommendations are
given by Equation 7.3.

Precision =
t

l
; Recall =

t

n
(7.3)

Experiments 123

In our experiment, we tune the number of recommended services for each position
from 5 to 1. We consider the matching in the first zone. To ignore the noise of
the irrelevant processes, we compute Precision and Recall for only the services that
appear in at least 10 business processes. Consequently, 29 services and 267 processes
are considered for our experiment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 4 3 2 1

P
r
e

c
is

io
n

 a
n

d
 r

e
c
a

ll
 v

a
lu

e
s

Number of recommended services

Case 1 Precision

Case 1 Recall

Case 2 Precision

Case 2 Recall

Case 3 Precision

Case 3 Recall

Case 4 Precision

Case 4 Recall

Case 5 Precision

Case 5 Recall

Figure 7.11: Precision and Recall values computed by taking into account the first
zone

The average Precision and Recall values are shown in Figure 7.11. The Precision
and Recall values of the examined cases are not so different, as the different parameters
that distinguish these cases has a slight impact if we consider just the the first zone (as
explained in the previous section). The Precision values increase when the number
of recommended services decreases. This means that the relevant services mostly
appear at the top of the recommendation list. In other words, when we shorten
the recommendation list, the recommendations generated by our approach are more
focused and precise.

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Case 1 Case 2 Case 3 Case 4 Case 5

P
r
e
c
is
io
n

Figure 7.12: Precision values in case of two recommended services

Figure. 7.12 shows the Precision values in the case that we recommend only 2

124 Implementation and Experiments

services. These Precision values decrease when the kth-layer value increases. The
first algorithm which does not take into account the concurrent relations and the
similarity between connection elements has the lowest Precision values.

0

0.05

0.1

0.15

0.2

0.25

Case 1 Case 2 Case 3 Case 4 Case 5

R
e
c
a
ll

Figure 7.13: Recall values computed based on the number of relevant processes

The Recall value is not so high in the examined cases (Figure 7.11) because the
number of recommended services is much more smaller than the relevant services. For
example, suppose that a service s appears in 20 processes. We recommend 5 services
for each selected position. The maximum value of Recall computed by Equation (7.3)
is 5

20 = 0.25. In our approach, as we consider only services that appear in at least
10 processes (i.e, l ≥ 10) and we recommend maximum 5 services for each selected
position (i.e, n ≤ 5), the value of l

n
is always less than 5

10 = 0.5. If we increase the
number of recommended services to be equal to the number of relevant services, the
Recall values increase by almost twice (Figure 7.13). Figure 7.13 also shows that the
Recall values decrease when the kth-layer value increases and the first algorithm has
the highest Recall values.

Currently, there are few approaches [80, 87] that consider the matching between
services in processes. They however use the matching results to search for relevant
processes. In addition, they do not provide experiments with Precision and Recall
values. So, we can not compare the accuracy of our approach to them. Instead,
we consider the random case, where a system recommends randomly services for
a selected position. We compare the simplest case of our approach, which make
recommendations without considering the concurrent relation and similarity between
connection elements, with the random case.

Figure 7.14 shows the result of our experiment. In this experiment, we make
recommendations randomly for each service which appears in at least 10 business
processes and compute the average Precision and Recall values. Figure 7.14 shows
that the worst result of our approach is still much better than the best result of the
random case (with 5 recommended services, our approach achieves 10.01 times higher
Precision value and 20.62 times higher Recall value).

Experiments 125

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 4 3 2 1

P
r
e

c
is

io
n

 a
n

d
 r

e
c
a

ll
 v

a
lu

e
s

Number of recommended services

Our approach Precision

Random case Precision

Our approach Recall

Random case Recall

Figure 7.14: Comparing the simplest case of our approach to the random case

7.3.2.3 Algorithms performance

We performed all experiments on a computer running Ubuntu 11.10 with configura-
tion: Pentium 4 CPU 2.8GHz, cache 512KB, RAM 512MB, HDD 80GB. We evaluate
the performance of our algorithms by considering the computation time.

We measure the time that each algorithm consumes to perform the matching be-
tween a service and all other services in the dataset. Figure 7.15 shows the average
computation time of all algorithms in the case that the kth-zone value is 3. In average,
our algorithms spend less than 2 seconds to compute the matching between a service
and the other 6362 services. This means that these algorithms have acceptable com-
putation time as they can make recommendations in a very short time by considering
a large number of services. The experimental result also shows that Case 1, which
does not take into account parallel flow relations, is the least time-consuming. Other
cases, which consider more parameters, are more time-consuming. To shorten the
response time for recommendations, the matching computation in our approach can
be done offline.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Case 1 Case 2 Case 3 Case 4 Case 5

A
v

e
ra

g
e

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Figure 7.15: Average computation time with k = 3

126 Implementation and Experiments

7.3.2.4 Synthesis

We performed experiments to evaluate the feasibility of our approach. We also observe
the impact of parameters (including the kth-zone, zone weight and connection element
similarity) on the number of recommended services. Experimental results showed
that our approach is feasible. They also showed that when k increases, the number
of similar services decreases. When taking into account zone weight or connection
element similarity, our algorithms retrieve more services that have similarity values
greater than a given threshold. The results also showed that the algorithms that take
into account parallel flow relations between services retrieved more services than the
one that does not take into account these relations.

To evaluate the accuracy of our algorithms, we compute Precision and Recall
values. We examined the case in which we recommend services for an empty position.
We have not yet examined the case in which we recommend services that are similar
to a selected service as we did not have the relevant data for this case to compute
Precision and Recall. We will consider this case in our future work. We also compare
our algorithms to the case that makes recommendations randomly. Experimental
results showed that our algorithms achieved high Precision values. In addition, precise
services are mostly at the top of the recommendation list. So, when we shorten
the recommendation list, the recommendations generated by our approach are more
focused and precise. The results also showed that our algorithms were much more
accurate than the random case.

To evaluate the performance of our algorithms, we measure the computation time.
Experimental results showed that our algorithms have acceptable computation time
as they computed the context matching of a large number of services (6362 services)
within a short time (less than 2 seconds) which is not very long for a business process
designer waiting for recommendation.

7.4 Conclusion

In this section, we answers the question How accurate the recommendations are?,
which is raised in the thesis problematic (section 2.1.3). We present the implementa-
tions and experiments to validate our approach.

Four applications were implemented to prove that our approach is feasible. It
can be flexibly developed as a standalone application or integrated into popular and
specific applications to recommend services for individual use and process use.

We performed experiments with the data collected by our applications and large
public datasets. Experimental results of individual-use service consumption case
showed that our approach could help to widen user’s view on the services that are
related to their behaviors. The quality of recommendations is higher in the case that
users have stable behavior.

Experimental results of business process-use service consumption case showed that

Conclusion 127

the number of considered layers, zone weight and connection element similarity im-
pacted on the neighborhood context matching results. They also showed that our
approach is accurate and of good performance. It performs much more better than a
random approach.

Due to the general limitation of public business process datasets, which provide
only elements’ identifier and service’ names, the validation of our approach so far is
done with only the perfect match of services’ names. However, our approach can
be easily improved to take into account other parameters such as input, output,
service description, etc. In addition, the validation can be extended for the imperfect
matching. For instance, we can consider more paths on layers for the neighborhood
context matching if similarity on another comparison metric between the related
services is greater than a certain threshold.

128 Implementation and Experiments

Chapter 8

Conclusion and Future Work

G

The research problem of this thesis is expressed by this interrogation: How to
recommend services for individual and process use? Previous chapters presented in
details our solutions to answer the raised question. In this chapter, we summary our
work (section 8.1) and present the future work (section 8.2).

8.1 Conclusion

A service can be either consumed for individual use or process use. Facilitating
service consumption for the individual and process use has been a hot topic since the
beginning of the last decade. It became a big challenge that involves many researches
in both academics and industry.

Contemporary approaches address this problem in different ways. They analyzed
service descriptions, service quality, user’s behavior, semantic relations, service ex-
ecution order, business process topology, etc.. They applied different mathematical
models and technologies such as singular value decomposition, probabilistic methods,
clustering, mining, and so on.

In our work, we tackle this problem using recommendation techniques. We ex-
ploit implicit knowledge hidden in service usage data; we study service relations in a
business process; and we capture execution orders from event logs for service recom-
mendation.

To make recommendations for individual use, we proposed to utilize past usage
data and retrieve services that are close to user interest. We proposed four algo-
rithms based on collaborative filtering techniques, which have been developed for
item recommendation and prediction. We also developed a new algorithm to resolve
the cold-start problem. By making recommendations based on only usage data, our
approach is self-contained and independent from any explicit or human centric or
error prone knowledge. Whereas other information such as user rating or service rep-
utation is hard to be captured, our approach is a good solution as it does not require
such explicit knowledge.

129

130 Conclusion and Future Work

To validate our approach, we implemented a web-based application, named IRec,
that allows users to select services for their individual use and obtain recommenda-
tions. We performed experiments using the usage data collected by our application.
We also run our algorithms on a large public dataset to measure their performance
in a large scale system. Experiments showed that our approach could help to widen
user’s view on the services that are related to their interests. The quality of recom-
mendations is high when users have stable behavior.

To make recommendations for process use, we proposed to recommend relevant
services for selected positions on an ongoing designed process. These recommenda-
tions can be used in three typical cases:

• when a process analyst wants to find suitable services for an empty place in
order to facilitate the process design;

• when she wants to extend (or improve) the ongoing designed process for new
(or different) business goals;

• and when she wants to find services that have similar behavior to an existing
one to replace it in case of failure.

We proposed to compute the similarity between services by matching their neigh-
borhood contexts. The recommendations are generated based on the computed sim-
ilarities. We also proposed an approach to extract the service neighborhood contexts
from process event logs for service recommendation. Our approach not only helps to
find suitable services that can be plugged-in into selected positions in a business pro-
cess but also can recommend services for the auto-completion during business process
design.

To validate our approach, we developed three applications: PRec, WebRec and Lo-
gRec. PRec was developed to demonstrate our recommendation technique for process
use. It allows managing services, designing processes and viewing recommendations.
WebRec was developed as a user-friendly application based on Signavio platform to
widen the tool user community and make our approach more visible. Finally, Lo-
gRec was developed as a proof of concept to validate our log-based recommendation
technique. We performed different experiments on a real public dataset. Experimen-
tal results showed that our approach was accurate (according to obtained precision
values) and has good performance (according to computation time).

The principles presented in section 2.3.1 have been respected:

• Focused and fine-grained results. Our approach recommends a list of services
instead of complicated results (such as entire business processes) in both service
consumption cases. So, our recommendations are clear and easy to apprehend.

• No additional information. We do not ask users any effort to provide additional
information such as user’s ratings, comments or profiles. We make recommen-
dations based on existing data, which are usage data, business process models
and process logs.

Future work 131

• Exploiting implicit knowledge. We exploit implicit knowledge hidden in existing
data. Concretely, we capture the correlations between users and services; and
we extract neighborhood contexts of services from business processes and logs.

• Balanced computational complexity. The complexity of our algorithms is poly-
nomial and we do not face the NP-complete problem. The computation time is
acceptable for users.

Besides, we also consider the announced general principles:

• Simplicity. To obtain recommendations, users just perform a very simple action.
In case of individual use, a user selects a service in which she is interested. In
case of business use, a process designer selects a position for which she wants
to have recommendations.

• Flexibility. In our approach, we allow adjusting the number of recommended
services; selecting algorithms to run; setting parameters such as the number of
related users and the number of considered zones; and adding constraints to
filter results.

Last but not least, our approach is self-contained and independent. So, it can be
associated to other approaches to better make recommendations. For example, in the
business process design context, our approach can be associated to functionality-based
service discovery approaches to find services that have similar function and behavior.

8.2 Future work

In the future work, we intend to improve the recommendation quality of our current
work (section 8.2.1) and extend the applicability of our work to other contexts, such
as the possibility to integrate our approaches into the cloud computing environment
to support the business process management (section 8.2.2).

8.2.1 Improving recommendation quality

Currently, our work takes into account only non-functionality data, which are past
usage data and service relations. In future work, we intend to take into account
functionality data such as service descriptions, inputs, outputs, actors, resources or
pre- and post-conditions. We intend to discover the correlations between these data
to infer the similarity between services in term of functionality. Then, we will com-
bine non-functionality based similarity computed by our current approach to this
functionality-based similarity to make recommendations.

We also intend to associate our approach to existing functionality based recom-
mendation methods, such as [11, 8, 9, 12, 62, 16, 17]. In this case, our approaches
can play as a post- or pre-processing filter to limit the search space of relevant ser-
vices. We expect that the combination of our approach with others will increase result
quality.

132 Conclusion and Future Work

Moreover, We aim to propose a new method to compute the matching between
services using multiple criteria. So far we consider each service’s name as the service’s
identifier and we match only services that have the same name. In the future, we will
identify a service by a vector of characteristics, including name, description, location,
input, output, etc. The matching between services becomes the matching between
two characteristic vectors. To compute the matching between two vectors, we can, for
instance, apply the vector space model or synthesize the respective matching of vector
elements. Consequently, two services in the same layer will be considered equal if the
matching between the corresponding characteristic vectors is greater than a given
threshold.

Our approach can also be extended to deal with the matching in different layers.
Currently, we match only same services on same layers to compute the neighborhood
context matching. We do not take into account the similarity between services in
different layers. This means that the matching algorithms may miss some meaning-
ful information which can improve the recommendation quality. So, we are going to
extend our algorithm by considering service matching from different layers. In Ap-
pendix B.1, we list out the possible matching cases and proposed some solutions. We
will deal with these cases in our future work.

In the log-based approach, we currently use ProM, which is a popular mining
application, to validate our approach. In the upcoming work, we will integrate the log-
based recommendation feature into a process design application, such as Eclipse BPEL
designer, BonitaSoft or Signavio, in order to find relevant services for an ongoing
designed business process based on its logs. We will also perform more experiments
with different metrics (such as ROC, AUC and top-k precision) to obtain richer results.
We will identify relevant data to evaluate the accuracy of our approach in the case
that a business analyst wants to find services that are relevant to a selected service in
order to improve the current designed process create more business process variants.

8.2.2 Integrating into cloud computing

Cloud computing has emerged as an advanced paradigm for developing and providing
services over the Internet. Its innovation brings out many benefits to small and
medium enterprises, such as no up-front investment, lowering operating cost, highly
scalable, easy access and reducing business risks and maintenance expenses [161]. The
migration of business process management to the Cloud involves an extension of the
cloud computing architecture. A new layer, so called Business Process as a Service
(BPaaS) layer, was proposed to locate upon the application layer to provide process
management services [162, 163].

All entities that are hosted, deployed and run on the same cloud provider some-
how share their implicit and explicit data. A cloud provider can capture the exposed
data to improve its services. For example, a cloud provider can analyze the logs cap-
tured from the interactions between entities on the lower layers to know the relations

Future work 133

between entities. This information is very useful for a cloud computing system to
generate recommendations for business process design at the BPaaS layer.

Integrating our approaches into the BPaaS layer can help to (1) flexibly ex-
pand/adjust a current business process to provide new services, (2) create business
process variants which are very necessary to the multi-tenant companies and (3) im-
prove the quality of participated services in business processes which involves the
improvement of the cloud environment.

In the future work, we will integrate our work into the Cloud environment. We
will exploit the implicit and explicit data owned by a cloud service provider to dis-
cover the relevant services to a business process. We will infer the relations between
services based on the exchanged messages in the Cloud. In addition, we will associate
our recommendation techniques to other functionality-based service recommendation
approaches and business model checking approaches, such as [160, 164, 165] to dy-
namically create business process variants.

134 Conclusion and Future Work

Appendix A

A.1 Levenshtein distance of two inverse strings

Lemma A.1.1. The Levenshtein distance of two strings is equal to the Levenshtein
distance of their inverse strings.

Which means, assume that:

sa = a0a1 . . . an

sb = b0b1 . . . bn
(A.1)

Let:
sa = inverse(sa) = anan−1 . . . a0

sb = inverse(sb) = bnbn−1 . . . b0
(A.2)

We have:

LD(sa, sb) = LD(sa, sb) (A.3)

Proof:

Let T be a function to transform a string to another string. |T | is the number of
substitution, insertion or deletion steps to process the transformation. To prove the
Lemma, we need to prove that:

1. ∃T : |T (sa, sb)|= LD(sa, sb), i.e. sa can be transformed to sb by LD(sa, sb) = l
steps. (*)

2. ∄T : |T (sa, sb)|< LD(sa, sb), i.e. there does not exist a solution that transforms
sa to sb by l′ < l steps. (**)

Proof (*):

Assume that we need x substitution steps, y insertion steps and z deletion steps to
transform from sa to sb. Let PS , PI , PD be sets of positions in sa that are substituted,
inserted and deleted, we have

PS = {r1, r2, . . . , rx}
PI = {i1, i2, . . . , iy}
PD = {d1, d2, . . . , dz}

(A.4)

135

136

and

l = |PS |+|PI |+PD| (A.5)

Assume without loss of generality that the substitution operation (OS) is firstly
executed, then the insertion operation (OI) and deletion (OD), which means:

sb = OD(OI(OS(sa))) (A.6)

Let :
srsa = OS(sa)

sirsa = OI(s(sa)
r) = OI(OS(sa))

sdirsa
= OD(s

ir
sa
) = OD(OI(s

r
sa
)) = OD(OI(OS(sa))) = sb

(A.7)

Generally, we have:

s′ = inverse(s) ⇔
{

s′[i] = s[n− i], ∀0 ≤ i < n = length(s)
length(s′) = length(s)

(A.8)

From (A.2), we have:

{

sa[i] = sa[n− i], ∀0 ≤ i < n = length(sa)
length(s′a) = length(s′′a)

(A.9)

If we replace the character at the position rt (0 ≤ rt < length(sa)) in sa to get s′a
and the character at the position n− rt in sa by the same character c, to get s′′a, we
have

s′a[i] = s′′a[n− i] = c, i = rt. (A.10)

Characters in other positions in s′a and s′′a are kept from sa and sa, therefore:

s′a[i] = sa[i] = sa[n− i] = s′′a[n− i], 0 ≤ i < n = length(sa), i 6= rt. (A.11)

From (A.10) and (A.11), we have:

{

s′a[i] = s′′a[n− i], ∀0 ≤ i < n = length(s′a)
length(s′a) = length(s′′a)

(A.12)

From (A.8) and (A.12), s′′a = inverse(s′a).

Inductively, if we replace characters at the positions rt ∈ PS in sa, to get srsa and
the characters at the position n− rt in sa by the same characters, to get s∗rsa we also
have: srsa [i] = s∗rsa [n− i], i = rt ∈ PS .

With the same argument as in (A.11), we have:

{

srsa [i] = s∗rsa [n− i], ∀0 ≤ i < n = length(srsa)
length(srsa) = length(s∗rsa)

(A.13)

Levenshtein distance of two inverse strings 137

From (A.8) and (A.13), s∗rsa = inverse(srsa) = srsa . Which means that with |PS |
substitution steps, we can transform sa to srsa which is the inverse string of srsa . This
means:

∃T : |T (sa, srsa)|= |PS | (A.14)

Next, from (A.4) and (A.7), we have: sirsa is created by inserting y characters from
sb into srsa . Since srsa is the inverse string of srsa , s

r
sa
[ij] = srsa [n− ij] and if we insert

a character bi at the position i in srsa , to get sp and the same bi at the position n− i
in srsa , to get sq, we will have: sq = sp.

Inductively, if we insert all buj in I at the positions ij ∈ PI(j = [1 . . . y]) in srsa ,

to get sirsa and the same buj at the position n− ij in srsa , we will get sirsa which is the
inverse string of sirsa .

Which means that with |PI | insertion steps, we can transform srsa to sirsa which is
the inverse string of sirsa . This means:

∃T : |T (srsa , sirsa)|= |PI | (A.15)

Also from (A.4) and (A.7), sdirsa
is created by deleting z characters from sirsa to get

sb. We have:

sirsa = inverse(sirsa)

=⇒ sirsa [i] = sirsa [n− i]∀i ∈ [0 . . . n]

Which means if we delete a character at position di in sirsa to get a new string

se and delete a character at position n − di in sirsa to get a new string sf , we have
sf = inverse(se).

Inductively, if we delete characters at all positions di ∈ PD, i = [1 . . . z] in sirsa to

get sdirsa
and characters at the positions n− di in sirsa , we will get:

sdirsa
= OD(sirsa) = inverse(sdirsa) = inverse(sb) = sb

Which means that with with |PD| deletion steps, we can transform sirsa to sdirsa
= sb

which is the inverse string of sb. Which means:

∃T : |T (sirsa , sb)|= |PD| (A.16)

From (A.14), (A.15), (A.16), we conclude that:

∃T : T (sa, sb) = |PS |+|PI |+|PD|= l = LD(sa, sb) (A.17)

Proof (**):

We prove (**) by contradiction.
Assume that there exist a l′ < l steps that can transform sa to sb, l

′ = |P ′

S |+|P ′

I |+|P ′

D|.

138

Following (A.17), we have:

∃T : |T (sa, sb)|= |P ′

S |+|P ′

I |+|P ′

D|= l′ (A.18)

On the other hand, we have:

inverse(sa) = sa

inverse(sb) = sb
(A.19)

From (A.18) and (A.19), we have:

∃T : |T (sa, sb)|= l′ < l (A.20)

(A.20) is illogical because as the Levenshtein Distance definition, l is the minimum
steps to transform from sa to sb.

Therefore, there does not exist a solution that transforms sa to sb with a l′ < l
steps. In the other words:

∄T : |T (sa, sb)|< LD(sa, sb) (A.21)

From (A.17) and (A.21), we conclude that:

LD(sa, sb) = LD(sa, sb) (A.22)

A.2 Service location in layers

Lemma A.2.1. Let eij be the edge connecting two vertexes ai and aj in the neighbor-
hood context graph of a service ax. l1 = L(axai SP) and l2 = L(axaj SP) are the lengths of
the shortest connection paths connecting ai and aj to ax respectively. Let d = |l1− l2|,
then d ≤ 1.

Proof:

Assume without loss of generality that l1 < l2. We prove the lemma by contra-
diction.

Assume that d = |l1 − l2|> 1. As l1 < l2, we have:

l2 > l1 + 1 (A.23)

On the other hand, as eij is the edge connecting two vertexes ai and aj , there
exists a path from aj to ax via ai whose length is equal to l1 + 1. This means:

∃axaj P : L(axaj PP) = L(axai SP) + 1 = l1 + 1 (A.24)

From (A.23) and (A.24), we have:

Checking primitive rules 139

∃axaj P : L(axaj PP) < l2 = L(axaj SP) (A.25)

which means that there exists a path that has the length smaller than the shortest
path. This is illogical according to the definition of the shortest path.

So, d = |l1 − l2|≤ 1

A.3 Checking primitive rules

Primitive rules are:

¬ If two connection elements are identical, their similarity is 1.

­ Similarity between two connection elements that have the same types but dif-
ferent number of output flows is 1. Similarity between two different connection
elements is lest than 1.

® In the case that two connection elements are different, the less different the
numbers of output flows are, the greater similarity value is.

Probabilities that an output flow is executed with different connection flows are
given in Table A.1.

Element Presentation No. paths No. possi-
ble cases

Probability that an out-
put flow is executed

Sequence � � � � 1 1 1

AND-split
� � � �

�

� x 1 1

OR-split
� � � �

�

�

y 2y − 1
2y−1

2y − 1

XOR-split
� � � �

�

�

z z
1

z

Table A.1: Probability that an output flow is executed

Proof that the similarities between connection elements given in Table A.2 satisfy
the primitive rules.

Proof:

1. Proof of the first primitive rule:

140

Similarity Sequence AND-split(x) OR-split(y) XOR-split(z)

Sequence 1
1

x

1

y
× 2y−1

2y − 1

1

z2

AND-split(x) 1
1

x
× 1

y
× 2y−1

2y − 1

1

x
× 1

z2

OR-split(y) 1
1

y
× 2y−1

2y − 1
× 1

z2

XOR-split(z) 1

Table A.2: Similarities between typical connection elements

It is clear from the Table A.2 that similarity between two connection flows that
are the same types and same number of output flows is 1.

2. Proof of the second primitive rule:

Consider two connection elements c1 and c2 that connect ai and aj in two different
business processes P1 and P2. If c1 and c2 have the same type and different number
of output flows, the connection flows from ai to aj in these processes are labeled by
the same string. Therefore, their similarity is 1 (computed by Levenshtein distance).

If c1 6= c2, consider the similarities presented in Table A.2, we have:
1

x
< 1;

1

y
< 1;

1

z
< 1. We also have: 2y−1 < 2y − 1, ∀y > 1 which infer

2y−1

2y − 1
< 1. So,

the multiplication of these elements is always less than 1. In other words, similarity
between two different elements is always less than 1.

3. Proof of the third primitive rule:

Consider a connection element c1. We compare c1 to others connection elements
c2 and c3 that have the same type and are different from c1. Assume that c2 has x1
output flows and c3 has x2 output flows. We are going to prove that:

x1 < x2 =⇒ Sim(c1, c2) > Sim(c1, c3) (A.26)

As c2 and c3 have the same type, Sim(c1, c2) and Sim(c1, c3) is computed by the
same function with different input parameters. So, if we prove that Sim(c1, c2) is a
contra-covariant function by the number of output flows, we can conclude that (A.26)
is always true.

Checking primitive rules 141

We have:
1

x
,
1

y
and

1

z
are contra-covariant functions. If we prove that

2y−1

2y − 1
is

also a contra-covariant function, we can conclude that Sim(c1, c2) is a contra-covariant
function as it is computed by a multiplication of contra-covariant functions (according
to Table A.2).

To prove that
2y−1

2y − 1
is a contra-covariant function, we consider the function:

f(y) =
2y−1

2y − 1
, y ≥ 2 (A.27)

We have:
2y1−1

2y1 − 1
≥ 2y2−1

2y2 − 1

⇔ (2y1−1)

(2y2−1)
× (2y2 − 1)

(2y1 − 1)
≥ 1

⇔ (2y1−y2)× (2y2 − 1) ≥ (2y1 − 1)
⇔ 2y1 − 2y1−y2 ≥ 2y1 − 1
⇔ 1 ≥ 2y1−y2

(A.28)

Assume that y1 < y2, we have: 1 ≥ 2y1−y2 . Then, from (A.28), we have:

2y1−1

2y1 − 1
≥ 2y2−1

2y2 − 1
(A.29)

So, function f(y) in (A.27) is contra-covariant.
Which means, Sim(c1, c2) is a contra-covariant function and (A.26) is always true.

We conclude that the similarity given in Table A.2 satisfy the second condition.

142

Appendix B

B.1 Service matching in different layers

In our current approach, we match only services that have the same name and are
located on the same layers. For example, in Figure.B.1, we compute the matching
between two connection flows s1 → d1 and s2 → d2 only if: s1 = s2 (or s1, s2 are two
associated services) and d1 = d2.

s1 d1

s2 d2

i i+1

n-i+1

n

n-i

n

zone number

zone weight

in BP 1

in BP 2

Figure B.1: Current matching case

In the case that d1 = d2 but d1 is not the closest neighbor of s1 or d2 is not the
closet neighbor of s2, even though neighbors of d1 are completely matched with neigh-
bors of d2 (Figure.B.2), our approach ignores these common neighborhood contexts.

s1

s2 d2

i i+1

n-i+1

n

n-i

n

d1

n-i-1

n

i-1

(a) case 1

s1 d1

s2

i i+1

n-i+1

n

n-i

n

d2

n-i-1

n

i-1

(b) case 2

s1 d1

s2 d2

i i+1

n-i+1

n

n-i

n

n-i-1

n

i-1

(c) case 3

Figure B.2: Ignored cases

143

144

In this section, we present a solution that consider the matching between services
not only on the same layer but also on the next layers. This solution proposes an
adjustment of the connection flow matching computation.

Concretely, assume d1 ∈ N1(s1) and d2 ∈ N1(s2) and d1 6= d2. We consider
the matching of 2nd-layer neighbors of s1 and s2. If there exist d′1 ∈ N2(s1) and
d′2 ∈ N2(s2) such that d′1 = d2 or d′2 = d1 or d′1 = d′2, we will (1) compute the pattern
matching between s1 → d′1 and s2 → d′2, (2) assign d′1 to d1, d

′

2 to d2 and (3) repeat
the matching process.

To compute the matching between s1 → d′1 and s2 → d′2, we ignore the intermedi-
ated services on the connection flows and take into account a new zone weight which
is computed by the average weights of the zones that the flows cross.

For example, in Fig. B.2a and B.2b, the average zone weight is:

w =
2× n−i+1

n
+ n−i

n

3

while in Fig. B.2c, the average zone weight is:

w =
2× n−i+1

n
+ 2× n−i

n

4

In the case that d1 = d2, the zone weight computed in this solution becomes the
zone weight defined in our current approach.

In the following, we present some typical cases where we can apply our solution.
In these cases, we compute the matching between connection flows x → f and x′ → f ′

a. Simple cases: ordered connection flows.

First example (Figure. B.3):

x a b c d e f

x' b c d' e f'

1 2 3 4 5 6

6

6 6 6 6

5 4

6 6

3 2 1

b

Figure B.3: Example: case 1

M+ =
9
6

2
×M(cbfP1

,cb fP2
) +

12
6

4
×M(ecfP1

,ec fP2
)

Second example (Figure. B.4):

Service matching in different layers 145

x a b c d e f

x' b c e f'

1 2 3 4 5 6

Figure B.4: Example: case 2

M+ =
9
6

2
×M(cbfP1

,cb fP2
) +

9
6

3
×M(ecfP1

,ec fP2
)

b. Complex cases: disordered connection flows

First example (Figure. B.5):

x a b c d e f

x' b c e f'

1 2 3 4 5 6

a

Figure B.5: Example: case 3

M+ =
17
6

3
×M(axfP1

,ax′ fP2
) +

17
6

3
×M(bxfP1

,bx′ fP2
)

+
9
6

2
×M(cbfP1

,cb fP2
) +

9
6

3
×M(ecfP1

,ec fP2
)

Second example (Figure. B.6):

M+ =
17
6

3
×M(bxfP1

,bx′ fP2
) +

9
6

2
×M(cbfP1

,cb fP2
)

+
12
6

3
×M(dbfP1

,db fP2
)

+
1

2
× (

16
6

4
×M(ecfP1

,ec f
(d1)
P2

) +
16
6

4
×M(ecfP1

,ec f
(d2)
P2

))

Third example (Figure. B.7):

146

x a b c d e f

x' b c d1 e f'

1 2 3 4 5 6

d2
d

Figure B.6: Example: case 4

x a b c d e f

x' a' b d

d'

e

1 2 3 4 5 6

f'

Figure B.7: Example: case 5

M+ =
22
6

4
×M(bxfP1

,bx′ fP2
) +

11
6

3
×M(dbfP1

,db fP2
)

+
1

2
× (

5
6

2
×M(edfP1

,ed fP2
) +

7
6

3
×M(edfP1

,ed f
(d′)
P2

))

Appendix C

C.1 List of publications

Journal article

1. Nguyen Ngoc Chan,Walid Gaaloul, and Samir Tata. A recommender system
based on historical usage data for web service discovery. Service Oriented Com-
puting and Applications, 6(1):51-63, March 2012.

Conference proceeding

1. Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Assisting business process
design by activity neighborhood context matching. In 10th International Con-
ference on Service Oriented Computing (ICSOC), Lecture Notes in Computer
Science, Shanghai, China, Nov. 2012. Springer.

2. Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Composition context
matching for web service recommendation. In Proceedings of the 2011 IEEE
International Conference on Services Computing (SCC), pages 624-631, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

3. Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Context-based service
recommendation for assisting business process design. In E-Commerce and Web
Technologies (EC-Web), volume 85 of Lecture Notes in Business Information
Processing, pages 39-51. Springer Berlin Heidelberg, 2011.

4. Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. A web service recom-
mender system using vector space model and latent semantic indexing. In
IEEE International Conference on Advanced Information Networking and Ap-
plications (AINA), pages 602-609, march 2011.

5. Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Web services recom-
mendation based on user’s behavior. In IEEE 7th International Conference on
e-Business Engineering (ICEBE), pages 214-221, Shanghai, China, Nov. 2010.

6. Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Collaborative filtering
technique for web service recommendation based on user-operation combination.
In OTM Conferences (CoopIS), OTM’10, pages 222-239, Berlin, Heidelberg,
2010. Springer-Verlag.

147

148

Bibliography

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services de-
scription language (wsdl) 1.1. W3c note, World Wide Web Consortium, March
2001.

[2] Bob Atkinson, Tom Bellwood, Maud Cahuzac, Luc Clément, John Colgrave,
Ugo Corda, Alexandru Czimbor, Matthew J. Dovey, Daniel Feygin, Shishir
Garg, Rajul Gupta, Andrew Hately, Brad Henry, Aikichi Kawai, Paul Macias,
Anne Thomas Manes, Claus von Riegen, Tony Rogers, Alok Srivastava, Paul
Thorpe, Alessandro Triglia, Max Voskob, and George Zagelow. Uddi spec tech-
nical committee specification. Technical report, 2003.

[3] Henrik F. Nielsen, Noah Mendelsohn, Jean J. Moreau, Martin Gudgin, and
Marc Hadley. Soap version 1.2 part 1: Messaging framework. W3c recommen-
dation, W3C, June 2003.

[4] Neal Leavitt. Are web services finally ready to deliver? Computer, 37:14–18,
2004.

[5] The Mckinsey Quarterly. How businesses are using web 2.0: A mckinsey global
survey. Technical report, 2007.

[6] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the
world wide web. In Proceedings of the 17th international conference on World
Wide Web, WWW ’08, pages 795–804, New York, NY, USA, 2008. ACM.

[7] Bachlechner Daniel, Siorpaes Katharina, Lausen Holger, and Dieter Fensel. Web
service discovery ? a reality check. 3rd European Semantic Web Conference,
Budva, Montenegro, June 2006.

[8] C. Platzer and S. Dustdar. A vector space search engine for web services. Web
Services, 2005. ECOWS 2005. Third IEEE European Conference on, pages 9
pp.–, Nov. 2005.

[9] M. Brian Blake and Michael F. Nowlan. A web service recommender system
using enhanced syntactical matching. In ICWS, pages 575–582, 2007.

[10] Chen Wu, Vidyasagar Potdar, and Elizabeth Chang. Latent semantic analysis
- the dynamics of semantics web services discovery. In Tharam Dillon, Eliza-
beth Chang, Robert Meersman, and Katia Sycara, editors, Advances in Web
Semantics I, volume 4891 of Lecture Notes in Computer Science, pages 346–373.
Springer Berlin / Heidelberg, 2009.

149

150 Bibliography

[11] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Sim-
ilarity search for web services. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases, pages 372–383. VLDB En-
dowment, 2004.

[12] Jiangang Ma, Yanchun Zhang, and Jing He. Web services discovery based
on latent semantic approach. In ICWS ’08: Proceedings of the 2008 IEEE
International Conference on Web Services, pages 740–747, Washington, DC,
USA, 2008. IEEE Computer Society.

[13] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Trans. Web, 1, May 2007.

[14] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King. Wsrec: A collaborative
filtering based web service recommender system. In ICWS ’09: Proceedings
of the 2009 IEEE International Conference on Web Services, pages 437–444,
Washington, DC, USA, 2009. IEEE Computer Society.

[15] Yechun Jiang, Jianxun Liu, Mingdong Tang, and Xiaoqing (Frank) Liu. An
effective web service recommendation method based on personalized collabora-
tive filtering. In IEEE International Conference on Web Services, ICWS 2011,
Washington, DC, USA, July 4-9, 2011, pages 211–218, 2011.

[16] Umardand Shripad Manikrao and T. V. Prabhakar. Dynamic selection of web
services with recommendation system. In NWESP ’05: Proceedings of the In-
ternational Conference on Next Generation Web Services Practices, page 117,
Washington, DC, USA, 2005. IEEE Computer Society.

[17] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.
Semantic matching of web services capabilities. In ISWC ’02: Proceedings of
the First International Semantic Web Conference on The Semantic Web, pages
333–347, London, UK, 2002. Springer-Verlag.

[18] Aabhas V. Paliwal, Nabil R. Adam, and Christof Bornhövd. Web service discov-
ery: Adding semantics through service request expansion and latent semantic
indexing. In 2007 IEEE International Conference on Services Computing (SCC
2007), 9-13 July 2007, Salt Lake City, Utah, USA, pages 106–113, 2007.

[19] Chris Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, October 2003.

[20] Adam Barker, Christopher D. Walton, and David Robertson. Choreographing
web services. IEEE Trans. Serv. Comput., 2(2):152–166, April 2009.

[21] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,

Bibliography 151

Ivana Trickovic, and Sanjiva Weerawarana. Bpel4ws, business process execution
language for web services version 1.1. Technical report, 2003.

[22] Martin Chapman, Duncan Johnston-Watt, Nickolas Kavantzas, Yves Lafon,
Jeff Mischkinsky, and Greg Ritzinger. Web services choreography description
language version 1.0. Technical report, 2005.

[23] W.M.P. van der Aalst, A. H. M. Ter Hofstede, and M. Weske. Business process
management: A survey. In Proceedings of the 1st International Conference on
Business Process Management, pages 1–12. Springer-Verlag, 2003.

[24] Scott Stephens. Supply chain operations reference model version 5.0: A new
tool to improve supply chain efficiency and achieve best practice. Information
Systems Frontiers, 3:471–476, December 2001.

[25] Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 business
blueprint: understanding the business process reference model. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1998.

[26] Remco Dijkman, Marlon Dumas, and Luciano Garcia-Banuelos. Graph match-
ing algorithms for business process model similarity search. In Proceedings of
the 7th International Conference on Business Process Management, BPM ’09,
pages 48–63, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. Fast business process similar-
ity search with feature-based similarity estimation. In Proceedings of the 2010
international conference on On the move to meaningful internet systems - Vol-
ume Part I, OTM’10, pages 60–77, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] W.M.P. Aalst, A.K.Alves Medeiros, and A.J.M.M. Weijters. Process equiva-
lence: Comparing two process models based on observed behavior. In Schahram
Dustdar, JosÃ c©Luiz Fiadeiro, and AmitP. Sheth, editors, Business Process
Management, volume 4102 of Lecture Notes in Computer Science, pages 129–
144. Springer Berlin Heidelberg, 2006.

[29] Remco M. Dijkman. A classification of differences between similar business
processes. In 11th IEEE International Enterprise Distributed Object Computing
Conference, 15-19 October 2007, Annapolis, Maryland, USA, pages 37–50, 2007.

[30] Chen Li, Manfred Reichert, and Andreas Wombacher. On measuring process
model similarity based on high-level change operations. In Proceedings of the
27th International Conference on Conceptual Modeling, ER ’08, pages 248–264,
Berlin, Heidelberg, 2008. Springer-Verlag.

[31] Boudewijn Dongen, Remco Dijkman, and Jan Mendling. Measuring similar-
ity between business process models. In Proceedings of the 20th international

152 Bibliography

conference on Advanced Information Systems Engineering, CAiSE ’08, pages
450–464, Berlin, Heidelberg, 2008. Springer-Verlag.

[32] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring similarity
between semantic business process models. In Proceedings of the fourth Asia-
Pacific conference on Comceptual modelling - Volume 67, APCCM ’07, pages
71–80, Darlinghurst, Australia, Australia, 2007. Australian Computer Society,
Inc.

[33] Ahmed Awad. Bpmn-q: A language to query business processes. In EMISA,
pages 115–128, 2007.

[34] Ahmed Awad, Artem Polyvyanyy, and Mathias Weske. Semantic querying of
business process models. In Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, pages 85–94, Washington,
DC, USA, 2008. IEEE Computer Society.

[35] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance check-
ing using bpmn-q and temporal logic. In Proceedings of the 6th International
Conference on Business Process Management, BPM ’08, pages 326–341, Berlin,
Heidelberg, 2008. Springer-Verlag.

[36] Sherif Sakr and Ahmed Awad. A framework for querying graph-based business
process models. In Proceedings of the 19th international conference on World
wide web, WWW ’10, pages 1297–1300, New York, NY, USA, 2010. ACM.

[37] Sherif Sakr, Emilian Pascalau, Ahmed Awad, and Mattias Weske. Partial pro-
cess models to manage business process variants. International Journal of Busi-
ness Process Integration and Management (IJBPIM), 6(2):20, September 2011.

[38] A. J. M. M. Weijters and W. M. P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integr. Comput.-Aided Eng.,
10(2):151–162, April 2003.

[39] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Dis-
covering process models from event logs. IEEE Trans. on Knowl. and Data
Eng., 16(9):1128–1142, September 2004.

[40] FabrizioM. Maggi, R.P.JagadeeshChandra Bose, and WilM.P. Aalst. Efficient
discovery of understandable declarative process models from event logs. In
Jolita Ralyte, Xavier Franch, Sjaak Brinkkemper, and Stanislaw Wrycza, edi-
tors, Advanced Information Systems Engineering, volume 7328 of Lecture Notes
in Computer Science, pages 270–285. Springer Berlin Heidelberg, 2012.

Bibliography 153

[41] Robert Engel, Wil van der Aalst, Marco Zapletal, Christian Pichler, and Hannes
Werthner. Mining inter-organizational business process models from edi mes-
sages: A case study from the automotive sector. In Jolita RalytÃ c©, Xavier
Franch, Sjaak Brinkkemper, and Stanislaw Wrycza, editors, Advanced Informa-
tion Systems Engineering, volume 7328 of Lecture Notes in Computer Science,
pages 222–237. Springer Berlin / Heidelberg, 2012.

[42] Wil M. P. van der Aalst. Process discovery: capturing the invisible. Comp.
Intell. Mag., 5(1):28–41, February 2010.

[43] Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM,
40(3):56–58, March 1997.

[44] Cheng-Ting Wu and Hsiao-Fan Wang. Recent development of recommender
systems. Industrial Engineering and Engineering Management, 2007 IEEE In-
ternational Conference on, pages 228–232, Dec. 2007.

[45] A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, and N. Kokash. Improving
web service discovery with usage data. Software, IEEE, 24(6):47–54, Nov.-Dec.
2007.

[46] Natallia Kokash, Aliaksandr Birukou, and Vincenzo D’Andrea. Web service dis-
covery based on past user experience. In Proceedings of the 10th international
conference on Business information systems, BIS’07, pages 95–107, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[47] Zhenqiang Wang, Kaiyin Liu, Guoying Lv, and Xiaoyan Hao. Study of an
algorithm of web service matching based on semantic web service. In ALPIT
’07: Proceedings of the Sixth International Conference on Advanced Language
Processing and Web Information Technology (ALPIT 2007), pages 429–433,
Washington, DC, USA, 2007. IEEE Computer Society.

[48] Shaofei Wu. A new web services matching algorithm. In IUCE ’09: Proceed-
ings of the 2009 International Symposium on Intelligent Ubiquitous Computing
and Education, pages 414–416, Washington, DC, USA, 2009. IEEE Computer
Society.

[49] Wil M. P. van der Aalst, Marlon Dumas, Florian Gottschalk, Arthur H. M. ter
Hofstede, Marcello La Rosa, and Jan Mendling. Preserving correctness during
business process model configuration. Formal Asp. Comput., 22(3-4):459–482,
2010.

[50] Matthias Weidlich, Remco Dijkman, and Jan Mendling. The icop framework:
identification of correspondences between process models. In Proceedings of the
22nd international conference on Advanced information systems engineering,
CAiSE’10, pages 483–498, Berlin, Heidelberg, 2010. Springer-Verlag.

154 Bibliography

[51] Anne Yun-An Chen and Dennis McLeod. Collaborative filtering for information
recommendation systems. Encyclopedia of E-Commerce, E-Government, and
Mobile Commerce, IGI Global, pages 118–123, January 2006.

[52] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl. Evaluating collaborative filtering recommender systems. ACM Trans.
Inf. Syst., 22:5–53, January 2004.

[53] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker,
Lee R. Gordon, and John Riedl. Grouplens: applying collaborative filtering to
usenet news. Commun. ACM, 40(3):77–87, March 1997.

[54] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms
for automating ”word of mouth”. pages 210–217. ACM Press, 1995.

[55] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending
and evaluating choices in a virtual community of use. In Proceedings of the
SIGCHI conference on Human factors in computing systems, CHI ’95, pages
194–201, New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing
Co.

[56] B.J. Dahlen, J.A. Konstan, J.L. Herlocker, N. Good, A. Borchers, and J. Riedl.
Jump-starting movielens: User benefits of starting a collaborative filtering sys-
tem with ”dead-data”. In . University of Minnesota TR 98-017, 1998.

[57] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collab-
orative filtering recommendations. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, CSCW ’00, pages 241–250, New York,
NY, USA, 2000. ACM.

[58] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering
techniques. Adv. in Artif. Intell., 2009:4:2–4:2, January 2009.

[59] Wil M. P. van der Aalst. Challenges in business process analysis. In 9th Inter-
national Conferenc on Enterprise Information Systems (Selected Papers), pages
27–42. Springer, 2007.

[60] R Birukou, Enrico Blanzieri, Paolo Giorgini, Natallia Kokash, and Alessio Mod-
ena. Ic-service: A service-oriented approach to the development of recommen-
dation systems. In In: Proceedings of ACM Symposium on Applied Computing.
Special Track on Web Technologies, ACM Press, pages 1683–1688. Press, 2007.

[61] Khalid Elgazzar, Ahmed E. Hassan, and Patrick Martin. Clustering wsdl doc-
uments to bootstrap the discovery of web services. In Proceedings of the 2010
IEEE International Conference on Web Services, ICWS ’10, pages 147–154,
Washington, DC, USA, 2010. IEEE Computer Society.

Bibliography 155

[62] Yilei Zhang, Zibin Zheng, and Michael R. Lyu. Wsexpress: A qos-aware search
engine for web services. In ICWS, pages 91–98, 2010.

[63] Zibin Zheng and Michael R. Lyu. Collaborative reliability prediction of service-
oriented systems. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1, ICSE ’10, pages 35–44, New York,
NY, USA, 2010. ACM.

[64] Joyce El Haddad, Maude Manouvrier, Guillermo Ramirez, and Marta Rukoz.
Qos-driven selection of web services for transactional composition. In Proceed-
ings of the 2008 IEEE International Conference on Web Services, ICWS ’08,
pages 653–660, Washington, DC, USA, 2008. IEEE Computer Society.

[65] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, and Francesco Lo
Presti. Flow-based service selection forweb service composition supporting mul-
tiple qos classes. 2012 IEEE 19th International Conference on Web Services,
0:743–750, 2007.

[66] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. Qos computation and policing in
dynamic web service selection. In Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, WWW Alt. ’04,
pages 66–73, New York, NY, USA, 2004. ACM.

[67] Mohammad Alrifai and Thomas Risse. Combining global optimization with
local selection for efficient qos-aware service composition. In Proceedings of the
18th international conference on World wide web, WWW ’09, pages 881–890,
New York, NY, USA, 2009. ACM.

[68] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible
processes. IEEE Trans. Softw. Eng., 33(6):369–384, June 2007.

[69] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services com-
position. IEEE Trans. Softw. Eng., 30(5):311–327, May 2004.

[70] Tao Yu and Kwei-Jay Lin. Service selection algorithms for composing complex
services with multiple qos constraints. In Proceedings of the Third international
conference on Service-Oriented Computing, ICSOC’05, pages 130–143, Berlin,
Heidelberg, 2005. Springer-Verlag.

[71] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. In Proceedings of the
12th international conference on World Wide Web, WWW ’03, pages 411–421,
New York, NY, USA, 2003. ACM.

156 Bibliography

[72] W3C OWL Working Group. Owl web ontology language. Technical report,
2004.

[73] Marcello La Rosa, Marlon Dumas, Arthur H. M. ter Hofstede, and Jan
Mendling. Configurable multi-perspective business process models. Inf. Syst.,
36(2):313–340, 2011.

[74] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[75] Nick Russell, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, and Nataliya
Mulyar. Workflow control-flow patterns: A revised view. Technical report,
BPM Center Report BPM-06-22, 2006.

[76] Thomas Gschwind, Jana Koehler, and Janette Wong. Applying patterns during
business process modeling. In Proceedings of the 6th International Conference
on Business Process Management, BPM ’08, pages 4–19, Berlin, Heidelberg,
2008. Springer-Verlag.

[77] Uwe Zdun and Schahram Dustdar. Model-driven and pattern-based integration
of process-driven soa models. In Frank Leymann, Wolfgang Reisig, Satish R.
Thatte, and Wil van der Aalst, editors, The Role of Business Processes in
Service Oriented Architectures, number 06291 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

[78] Lucineia Heloisa Thom, Jean Michel Lau, Cirano Iochpe, and Jan Mendling.
Extending business process modeling tools with workflow pattern reuse. In
Proceedings of the Ninth International Conference on Enterprise Information
Systems, pages 447–452, 2007.

[79] Steen Brahe and Behzad Bordbar. A pattern-based approach to business process
modeling and implementation in web services. In Proceedings of the 4th inter-
national conference on Service-oriented computing, ICSOC’06, pages 166–177,
Berlin, Heidelberg, 2007. Springer-Verlag.

[80] Maya Lincoln, Mati Golani, and Avigdor Gal. Machine-assisted design of busi-
ness process models using descriptor space analysis. In Proceedings of the 8th
international conference on Business process management, BPM’10, pages 128–
144, Berlin, Heidelberg, 2010. Springer-Verlag.

[81] H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett., 18(9):689–694, August 1997.

[82] VI Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707, 1966.

Bibliography 157

[83] W.M.P. van der Aalst. Formalization and verification of event-driven process
chains. Information and Software Technology, 41(10):639 – 650, 1999.

[84] Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Käärik, and
Jan Mendling. Similarity of business process models: Metrics and evaluation.
Inf. Syst., 36(2):498–516, April 2011.

[85] Mohammad Abdulkader Abdulrahim. Parallel algorithms for labeled graph
matching. PhD thesis, Golden, CO, USA, 1998. AAI0599838.

[86] Thomas Hornung, Agnes Koschmider, and Georg Lausen. Recommendation
based process modeling support: Method and user experience. In Proceedings
of the 27th International Conference on Conceptual Modeling, ER ’08, pages
265–278, Berlin, Heidelberg, 2008. Springer-Verlag.

[87] Maya Lincoln and Avigdor Gal. Searching business process repositories using
operational similarity. In Proceedings of the 2011th Confederated international
conference on On the move to meaningful internet systems - Volume Part I,
OTM’11, pages 2–19, Berlin, Heidelberg, 2011. Springer-Verlag.

[88] Mariusz Momotko and Kazimierz Subieta. Process query language: A way
to make workflow processes more flexible. In Advances in Databases and In-
formation Systems, volume 3255 of Lecture Notes in Computer Science, pages
306–321. Springer Berlin / Heidelberg, 2004.

[89] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying busi-
ness processes. In Proceedings of the 32nd international conference on Very
large data bases, VLDB ’06, pages 343–354. VLDB Endowment, 2006.

[90] Daniel Deutch and Tova Milo. Querying structural and behavioral properties
of business processes. In Proceedings of the 11th international conference on
Database programming languages, DBPL’07, pages 169–185, Berlin, Heidelberg,
2007. Springer-Verlag.

[91] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring business
processes with queries. In Proceedings of the 33rd international conference on
Very large data bases, VLDB ’07, pages 603–614. VLDB Endowment, 2007.

[92] Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Hamid Motahari-Nezhad,
and Sherif Sakr. A query language for analyzing business processes execution.
In Stefanie Rinderle-Ma, Farouk Toumani, and Karsten Wolf, editors, Business
Process Management, volume 6896 of Lecture Notes in Computer Science, pages
281–297. Springer Berlin / Heidelberg, 2011.

[93] A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes
based on monitoring real behavior. Inf. Syst., 33(1):64–95, March 2008.

158 Bibliography

[94] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen.
Replaying history on process models for conformance checking and perfor-
mance analysis. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery,
2(2):182–192, 2012.

[95] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Conformance
checking using cost-based fitness analysis. In Proceedings of the 2011 IEEE 15th
International Enterprise Distributed Object Computing Conference, EDOC ’11,
pages 55–64, Washington, DC, USA, 2011. IEEE Computer Society.

[96] Dirk Fahland, Massimiliano De Leoni, Boudewijn F. Van Dongen, and Wil
M. P. Van Der Aalst. Conformance checking of interacting processes with over-
lapping instances. In Proceedings of the 9th international conference on Busi-
ness process management, BPM’11, pages 345–361, Berlin, Heidelberg, 2011.
Springer-Verlag.

[97] Jan Mendling, Gustaf Neumann, and Wil Van Der Aalst. Understanding the
occurrence of errors in process models based on metrics. In Proceedings of the
2007 OTM Confederated international conference on On the move to meaningful
internet systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I,
OTM’07, pages 113–130, Berlin, Heidelberg, 2007. Springer-Verlag.

[98] J. Mendling, H. M. W. Verbeek, B. F. van Dongen, W. M. P. van der Aalst, and
G. Neumann. Detection and prediction of errors in epcs of the sap reference
model. Data Knowl. Eng., 64(1):312–329, January 2008.

[99] WilM.P. Aalst and Minseok Song. Mining social networks: Uncovering interac-
tion patterns in business processes. In Jorg Desel, Barbara Pernici, and Mathias
Weske, editors, Business Process Management, volume 3080 of Lecture Notes
in Computer Science, pages 244–260. Springer Berlin Heidelberg, 2004.

[100] Wil M. P. Van Der Aalst, Hajo A. Reijers, and Minseok Song. Discovering
social networks from event logs. Comput. Supported Coop. Work, 14(6):549–
593, December 2005.

[101] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process
models from workflow logs. In Proceedings of the 6th International Conference
on Extending Database Technology: Advances in Database Technology, EDBT
’98, pages 469–483, London, UK, UK, 1998. Springer-Verlag.

[102] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen,
A. K. Alves de Medeiros, M. Song, and H. M. W. Verbeek. Business process
mining: An industrial application. Inf. Syst., 32(5):713–732, July 2007.

Bibliography 159

[103] Wil M. P. van der Aalst and B. F. van Dongen. Discovering workflow perfor-
mance models from timed logs. In Proceedings of the First International Con-
ference on Engineering and Deployment of Cooperative Information Systems,
EDCIS ’02, pages 45–63, London, UK, UK, 2002. Springer-Verlag.

[104] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: a survey of issues and approaches.
Data Knowl. Eng., 47(2):237–267, November 2003.

[105] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software
processes from event-based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–
249, July 1998.

[106] W. M. P. Van Der Aalst, B. F. Van Dongen, C. W. Güunther, R. S. Mans,
A. K. Alves De Medeiros, A. Rozinat, V. Rubin, M. Song, H. M. W. Verbeek,
and A. J. M. M. Weijters. Prom 4.0: comprehensive support for real process
analysis. In Proceedings of the 28th international conference on Applications
and theory of Petri nets and other models of concurrency, ICATPN’07, pages
484–494, Berlin, Heidelberg, 2007. Springer-Verlag.

[107] A. Rozinat and W. M. P. van der Aalst. Decision mining in prom. In Proceedings
of the 4th international conference on Business Process Management, BPM’06,
pages 420–425, Berlin, Heidelberg, 2006. Springer-Verlag.

[108] J. M. Werf, B. F. Dongen, C. A. Hurkens, and A. Serebrenik. Process discov-
ery using integer linear programming. In Proceedings of the 29th international
conference on Applications and Theory of Petri Nets, PETRI NETS ’08, pages
368–387, Berlin, Heidelberg, 2008. Springer-Verlag.

[109] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Collaborative filtering
technique for web service recommendation based on user-operation combination.
In OTM Conferences (CoopIS), OTM’10, pages 222–239, Berlin, Heidelberg,
2010. Springer-Verlag.

[110] Nguyen Ngoc Chan, W. Gaaloul, and S. Tata. Web services recommendation
based on user’s behavior. In IEEE 7th International Conference on e-Business
Engineering (ICEBE), pages 214 –221, Shanghai, China, nov. 2010.

[111] Nguyen Ngoc Chan, W. Gaaloul, and S. Tata. A web service recommender
system using vector space model and latent semantic indexing. In IEEE In-
ternational Conference on Advanced Information Networking and Applications
(AINA), pages 602 –609, march 2011.

[112] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. A recommender system
based on historical usage data for web service discovery. Service Oriented Com-
puting and Applications, 6(1):51–63, March 2012.

160 Bibliography

[113] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collab-
orative filtering to weave an information tapestry. Commun. ACM, 35(12):61–
70, December 1992.

[114] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste:
A constant time collaborative filtering algorithm. Inf. Retr., 4(2):133–151, July
2001.

[115] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported cooperative
work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[116] Gregory D. Linden, Jennifer A. Jacobi, and Eric A. Benson. Collaborative
recommendations using item-to-item similarity mappings, July 2001.

[117] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, Jan-
uary 2003.

[118] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based
collaborative filtering recommendation algorithms. In WWW ’01: Proceedings
of the 10th international conference on World Wide Web, pages 285–295, New
York, NY, USA, 2001. ACM.

[119] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[120] Daniel Billsus and Michael J. Pazzani. Learning collaborative information fil-
ters. In Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, pages 46–54, San Francisco, CA, USA, 1998. Morgan Kauf-
mann Publishers Inc.

[121] Koji Miyahara and Michael J. Pazzani. Collaborative filtering with the simple
bayesian classifier. In Proceedings of the 6th Pacific Rim international confer-
ence on Artificial intelligence, PRICAI’00, pages 679–689, Berlin, Heidelberg,
2000. Springer-Verlag.

[122] Xiaoyuan Su and Taghi M. Khoshgoftaar. Collaborative filtering for multi-
class data using belief nets algorithms. In Proceedings of the 18th IEEE In-
ternational Conference on Tools with Artificial Intelligence, ICTAI ’06, pages
497–504, Washington, DC, USA, 2006. IEEE Computer Society.

[123] L. Ungar and D. Foster. Clustering methods for collaborative filtering. In
Proceedings of the Workshop on Recommendation Systems. AAAI Press, Menlo
Park California, 1998.

Bibliography 161

[124] Sonny Han Seng Chee, Jiawei Han, and Ke Wang. Rectree: An efficient collab-
orative filtering method. In Proceedings of the Third International Conference
on Data Warehousing and Knowledge Discovery, DaWaK ’01, pages 141–151,
London, UK, UK, 2001. Springer-Verlag.

[125] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong Yu,
and Zheng Chen. Scalable collaborative filtering using cluster-based smooth-
ing. In Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’05, pages 114–121,
New York, NY, USA, 2005. ACM.

[126] Slobodan Vucetic and Zoran Obradovic. Collaborative filtering using a
regression-based approach. Knowl. Inf. Syst., 7(1):1–22, January 2005.

[127] Guy Shani, David Heckerman, and Ronen I. Brafman. An mdp-based recom-
mender system. J. Mach. Learn. Res., 6:1265–1295, December 2005.

[128] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM
Trans. Inf. Syst., 22(1):89–115, January 2004.

[129] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic anal-
ysis. Mach. Learn., 42(1-2):177–196, January 2001.

[130] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Informatioin Science, 41(6):391–407, 1990.

[131] Chris H. Q. Ding. A similarity-based probability model for latent semantic in-
dexing. In Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’99, pages 58–65,
New York, NY, USA, 1999. ACM.

[132] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of
recommendation algorithms for e-commerce. In EC ’00: Proceedings of the 2nd
ACM conference on Electronic commerce, pages 158–167, New York, NY, USA,
2000. ACM.

[133] Dmitry Pavlov, Eren Manavoglu, David M. Pennock, and C. Lee Giles. Collab-
orative filtering with maximum entropy. IEEE Intelligent Systems, 19(6):40–48,
November 2004.

[134] Daniel Nikovski and Veselin Kulev. Induction of compact decision trees for
personalized recommendation. In Proceedings of the 2006 ACM symposium on
Applied computing, SAC ’06, pages 575–581, New York, NY, USA, 2006. ACM.

162 Bibliography

[135] Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, and Philip S. Yu. Horting
hatches an egg: a new graph-theoretic approach to collaborative filtering. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’99, pages 201–212, New York, NY, USA,
1999. ACM.

[136] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of pre-
dictive algorithms for collaborative filtering. pages 43–52. Morgan Kaufmann,
1998.

[137] Alexandrin Popescul, Lyle H. Ungar, David M. Pennock, and Steve Lawrence.
Probabilistic models for unified collaborative and content-based recommenda-
tion in sparse-data environments. In Proceedings of the 17th Conference in
Uncertainty in Artificial Intelligence, UAI ’01, pages 437–444, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[138] David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles. Collab-
orative filtering by personality diagnosis: A hybrid memory and model-based
approach. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, UAI ’00, pages 473–480, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[139] Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, and Hans-Peter Kriegel.
Probabilistic memory-based collaborative filtering. IEEE Trans. on Knowl. and
Data Eng., 16(1):56–69, January 2004.

[140] Marko Balabanovic and Yoav Shoham. Fab: content-based, collaborative rec-
ommendation. Commun. ACM, 40(3):66–72, March 1997.

[141] Michael J. Pazzani. A framework for collaborative, content-based and demo-
graphic filtering. Artif. Intell. Rev., 13(5-6):393–408, December 1999.

[142] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, 1975.

[143] Scott C. Deerwester, Susan T. Dumais, George W. Furnas, Richard A. Harsh-
man, Thomas K. Landauer, Karen E. Lochbaum, and Lynn A. Streeter. Com-
puter information retrieval using latent semantic structure. US Patent No.
4839853, June 1989.

[144] Michael W. Berry. Large scale sparse singular value computations. International
Journal of Supercomputer Applications, pages 13–49, 1992.

[145] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear
algebra for intelligent information retrieval. SIAM Rev., 37(4):573–595, 1995.

Bibliography 163

[146] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[147] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An introduction to
latent semantic analysis. Discourse Processes, (25):259–284, 1998.

[148] April Kontostathis and William M. Pottenger. A framework for understanding
latent semantic indexing (lsi) performance. Inf. Process. Manage., 42(1):56–73,
January 2006.

[149] L.G. Perez, M. Barranco, and L. Martinez. Building user profiles for recom-
mender systems from incomplete preference relations. Fuzzy Systems Confer-
ence, 2007. FUZZ-IEEE 2007. IEEE International, pages 1–6, July 2007.

[150] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005.

[151] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Composition context
matching for web service recommendation. In Proceedings of the 2011 IEEE
International Conference on Services Computing (SCC), pages 624–631, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[152] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Context-based service
recommendation for assisting business process design. In E-Commerce and Web
Technologies (EC-Web), volume 85 of Lecture Notes in Business Information
Processing, pages 39–51. Springer Berlin Heidelberg, 2011. 10.1007/978-3-642-
23014-1˙4.

[153] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Assisting business process
design by activity neighborhood context matching. In 10th International Con-
ference on Service Oriented Computing (ICSOC), Lecture Notes in Computer
Science, Shanghai, China, Nov. 2012. Springer.

[154] Niklaus Wirth. What can we do about the unnecessary diversity of notation for
syntactic definitions? Commun. ACM, 20(11):822–823, November 1977.

[155] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst. Discover-
ing colored petri nets from event logs. Int. J. Softw. Tools Technol. Transf.,
10(1):57–74, December 2007.

[156] Helen Schonenberg, Barbara Weber, Boudewijn Dongen, and Wil Aalst. Sup-
porting flexible processes through recommendations based on history. In Pro-
ceedings of the 6th International Conference on Business Process Management,
BPM ’08, pages 51–66, Berlin, Heidelberg, 2008. Springer-Verlag.

164 Bibliography

[157] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition, 1979.

[158] James Bennett, Charles Elkan, Bing Liu, Padhraic Smyth, and Domonkos Tikk.
Kdd cup and workshop 2007. SIGKDD Explor. Newsl., 9(2):51–52, dec 2007.

[159] James Bennett and Stan Lanning. The netfix prize. In Proceedings of KDD
Cup and Workshop, New York, NY, USA, 2007. ACM.

[160] Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann,
Hagen Völzer, and KarstenWolf. Instantaneous soundness checking of industrial
business process models. In 7th BPM, pages 278–293, 2009.

[161] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications, 1:7–18,
2010.

[162] Liang-Jie Zhang and Qun Zhou. Ccoa: Cloud computing open architecture.
In IEEE International Conference on Web Services (ICWS), 2009, pages 607
–616, july 2009.

[163] Heather Kreger, Michael Behrendt, Bernard Glasner, Petra Kopp, Robert
Dieckmann, Gerd Breiter, Stefan Pappe, and Ali Arsanjani. Ibm cloud com-
puting reference architecture 2.0, 2011.

[164] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: on the
verification of semantic business process models. Distrib. Parallel Databases,
27(3):271–343, June 2010.

[165] Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for
business process models. IBM Syst. J., 46(2):335–361, April 2007.

