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Abstract

This thesis addresses statistical shape analysis, in the context of medical imaging. In the
�eld of medical imaging, shape analysis is used to describe the morphological variability of
various organs and tissues, such as the heart, the brain, or particular structures and tissues
in the brain. Pathologies, whose development is characterized by structural change in brain
tissue, include Alzheimer's disease, which is the pathology of interest in this thesis, multiple
sclerosis and schizophrenia. Structural change in these diseases re�ects the evolution of neu-
ronal degeneration and brain atrophy. The qualitative and quantitative characteristics of such
structural degeneration can help us assess the development of the pathology, and eventually
plan a disease-slowing or symptom prevention treatment.

Our focus in this thesis is on the construction of a generative and discriminative, compact
and non-linear model, suitable to the representation of shapes. This model is evaluated in
the context of the study of a population of Alzheimer's disease patients and a population of
healthy controls. The discriminative component of the model is based on the Support Vector

Data Description (SVDD) framework. The SVDD is closely related to the one-class Support

Vector Machine (SVM). Our principal interest here is using the discriminative model to discover
morphological di�erences that are the most characteristic and discriminate best between a given
shape class and forms not belonging in that class.

An important aspect of the proposed model is the hypothesis that the data (the shapes)
lie on, or su�ciently near, a low-dimensional, non-linear manifold. In this work we originally
parametrize shape as a deformation �eld with respect to a given reference image, a representa-
tion which gives a high quality, detailed description, but also a description space of very high
dimensionality, in the order of millions of dimensions. After dimensionality reduction, the shape
can be represented as a point of a space comprising typically no more than ten dimensions.

The theoretical innovation of our work lies in two principal points : �rst, we propose a
tool to extract discriminative di�erence in the context of SVDD models ; second, all generated
reconstructions are anatomically correct, due to the non-linear and compact character of the
model. The application of our model on real medical data shows results coherent with well-
known �ndings in related research. We con�rm that particular tissue regions and sub�elds are
damaged the most, like the head and the tail of the hippocampus. We also use the model
as a classi�er, discriminating healthy from pathological subjects on the basis of structural
information.
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Résumé

Cette thèse a pour objet l'analyse statistique de formes, dans le contexte de l'imagerie médi-
cale. Dans le champ de l'imagerie médicale, l'analyse de formes est utilisée pour décrire la vari-
abilité morphologique de divers organes et tissus, tels que le c÷ur, le cerveau, ou des structures
et tissus particuliers dans le cerveau. Les pathologies d'intérêt, dont le développement est mar-
qué par des changements structurels dans les tissus cérébraux, incluent la maladie d'Alzheimer,
qui est la pathologie d'intérêt de cette thèse, la sclérose en plaques et la schizophrénie. Le
changement structurel dans le contexte de ces maladies re�ète l'évolution de la dégénération
neuronale ou de l'atrophie du cerveau. Les caractéristiques qualitatives et quantitatives de ces
dégénérations structurelles peuvent nous aider à évaluer le développement de la pathologie, et
de plani�er éventuellement un traitement pour ralentir l'évolution de la maladie.

Nous nous focalisons dans cette thèse sur la construction d'un modèle génératif et discrimi-
natif, compact et non-linéaire, adapté à la représentation de formes. Ce modèle est évalué dans
le contexte de l'étude d'une population de patients atteints de la maladie d'Alzheimer et d'une
population de sujets contrôles sains. La composante discriminative du modèle est fondée sur
le cadre Support Vector Data Description (SVDD). Le SVDD est étroitement lié au one-class

Support Vector Machine (SVM). Notre intérêt principal ici est l'utilisation du modèle discrim-
inatif pour découvrir les di�érences morphologiques les plus discriminatives entre une classe de
formes donnée et des formes n'appartenant pas à cette classe.

Un aspect important du modèle proposé est l'hypothèse que les données (les formes) se
trouvent sur ou non loin d'une variété non-linéaire de dimension faible. La forme, dans ce travail,
est paramétrée originellement comme un champ de déformation par rapport à une image de
référence, ce qui donne une description très �ne et de haute qualité, mais aussi un espace de
description de très haute dimensionalité, de l'ordre de millions de dimensions. Après réduction
de dimension, la forme peut se décrire comme un point d'un espace de moins de dix dimensions.

L'innovation théorique apportée par notre modèle réside en deux points principaux : pre-
mièrement, nous proposons un outil pour extraire la di�érence discriminative dans le contexte
des modèles SVDD ; deuxièmement, toutes les reconstructions générées sont anatomiquement
correctes, ce qui est dû au caractère non-linéaire et compact du modèle. Une application de
notre modèle à des données médicales réelles montre des résultats cohérents avec les connais-
sances médicales. Nous mettons en évidence des points signi�catifs autour de la tête et de la
queue des hippocampes gauche et droit. Nous utilisons également le modèle comme classi�eur,
permettant de discriminer les sujets sains des sujets pathologiques à partir toujours de données
structurelles des régions d'intérêt du cerveau.
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Περίληψη

Το αντικείμενο αυτής της διατριβής είναι η στατιστική ανάλυση μορφών, στα πλαίσια της επε-
ξεργασίας ιατρικής εικόνας. Στο πεδίο της επεξεργασίας ιατρικής εικόνας, η ανάλυση μορφών χρησι-
μοποιείται στο στόχο της περιγραφής της μορφολογικής ποικιλότητας διάφορων οργάνων και ιστών,
όπως η καρδιά, ο εγκέφαλος, ή συγκεκριμένες δομές στο εσωτερικό του εγκεφάλου. Συγκεκριμένες
ασθένειες, των οποίων η ανάπτυξη χαρακτηρίζεται από σημαντικές δομικές αλλαγές στον εγκεφα-
λικό ιστό, συμπεριλαμβάνουν την νόσο Αλτσχάιμερ –η οποία αποτελεί και τη μελέτη περίπτωσης
στην παρούσα διατριβή– τη σκλήρυνση κατά πλάκας και τη σχιζοφρένεια. Οι δομικές αλλαγές σε
αυτές τις ασθένειες αντικατοπτρίζουν την πρόοδο της νευροεκφύλισης και γενικότερα της εγκεφα-
λικής ατροφίας. Η γνώση των ποιοτικών και ποσοτικών χαρακτηριστικών του δομικού εκφυλισμού
μπορούν να βοηθήσουν στην εκτίμηση του τρέχοντος σταδίου και εξέλιξης της ασθένειας, στα
πλαίσια ή μη μιας αγωγής επιβράδυνσης της νόσου και των συμπτωμάτων της.

Ο στόχος της παρούσας διατριβής είναι η κατασκευή ενός παραγωγικού και διακριτικού, συμ-
παγούς και μη γραμμικού μοντέλου, κατάλληλο για την αναπαράσταση ανατομικών μορφών. Το
μοντέλο αξιολογείται στο πλαίσιο της μελέτης ενός πληθυσμού ασθενών της νόσου Αλτσχάιμερ
και ενός πληθυσμού υγιών εθελοντών. Ο διακριτικός μηχανισμός του μοντέλου βασίζεται στο πλαί-
σιο Support Vector Data Description (SVDD). Το SVDD είναι εφάμιλλο της μονοταξικής Support
Vector Machine (One class Support Vector Machine, OCSVM). Το κύριο ενδιαφέρον μας εδώ
είναι η χρήση του διακριτικού μοντέλου στον στόχο της αποκάλυψης εκείνων των μορφολογικών
διαφορών, οι οποίες είναι οι πιο χαρακτηριστικές στη διάκριση μεταξύ ανατομικών μορφών-μελών
μιας δοσμένης τάξης (υγιείς) και μορφών που δεν ανήκουν στην τάξη (ασθενείς).

΄Ενα σημαντικό χαρακτηριστικό του μοντέλου είναι η χρήση της υπόθεσης ότι τα δεδομένα (οι
ανατομικές μορφές) αποτελούν μέλη ενός μη-γραμμικού πολυπτύγματος (πολλαπλότητας) χαμη-
λής διάστασης. Σε αυτή την εργασία παραμετροποιούμε τις μορφές σαν ένα διανυσματικό πεδίο
παραμόρφωσης σε σχέση με μια εικόνα αναφοράς. Αυτή η αναπαράσταση δίνει μια περιγραφή υψη-
λής ποιότητας και ανάλυσης, με το τίμημα ενός χώρου μορφών πολύ υψηλής διάστασης, τάξης
εκατομμυρίων. Μετά την μείωση της διάστασης, χάρη στο βήμα εκμάθησης του πολυπτύγματος,
η μορφή μπορεί πλέον να αναπαρασταθεί σαν ένα σημείο χώρου λιγότερο των, τυπικά, δέκα δι-
αστάσεων.

Σε θεωρητικό και μεθοδολογικό επίπεδο, η καινοτομία της παρούσας εργασίας έγκειται σε δύο
βασικά σημεία. Πρώτον, προτείνουμε ένα εργαλείο εξαγωγής διακριτικής διαφοράς στα πλαίσια του
μονοταξικού μοντέλου SVDD. Δεύτερον, το μη-γραμμικό και συμπαγές μοντέλο εγγυάται την
ορθότητα των παραχθείσων αναπαραστάσεων, στο βαθμό που το βήμα εκμάθησης του πολυπτύγ-
ματος καταγράφει με ακρίβεια την δομή των δεδομένων. Η εφαρμογή του μοντέλου σε πραγματικά
ιατρικά δεδομένα δίνει αποτελέσματα συμβατά με προηγούμενα σχετικά ευρήματα. Επιβεβαιώνουμε
ότι συγκεκριμένες περιοχές παρουσιάζουν την πιο εκτεταμένη ατροφία, όπως η κεφαλή και η ουρά
του αριστερού και δεξιού ιππόκαμπου. Χρησιμοποιούμε επίσης το μοντέλο σαν ταξινομητή, στο
στόχο της διάκρισης υγιών από ασθενείς ιστούς, στη βάση πάντα των ανατομικών δεδομένων.

v
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Résumé étendu

Introduction

Analyse de formes en imagerie médicale

Le but de l'analyse statistique de formes est la construction de modèles capables de décrire
des formes et leur variabilité. Dans le champ de l'imagerie médicale, l'analyse de formes est
utilisée pour comprendre la variabilité morphologique de divers organes et tissus, tels que le
c÷ur, le cerveau, ou des structures et tissus particuliers dans le cerveau. L'étude de telles don-
nées nous permet de mieux comprendre la fonction du corps et du cerveau, d'étudier l'évolution
anatomique, de diagnostiquer certaines pathologies, d'étudier leur développement et de plan-
i�er un traitement pour ralentir l'évolution de la maladie. Des di�érences anatomiques entre
groupes peuvent être étudiées, où groupe peut signi�er similitude d'âge, de condition clinique ou
diagnostique. Un facteur important pour l'analyse de formes a été l'introduction de l'imagerie
haute résolution et de l'Imagerie par Résonance Magnétique (IRM) en particulier, ce qui a per-
mis des études in vivo. L'étude morphologique dans le contexte de l'imagerie cérébrale a été à
son origine réduite à de simples mesures d'aire et volume. Aujourd'hui, nous pouvons quanti�er
des formes avec une résolution et une précision sans cesse meilleures. Les pathologies d'intérêt,
dont le développement est marqué par des changements structurels dans les tissus cérébraux,
incluent la maladie d'Alzheimer, qui est la pathologie d'intérêt de cette thèse, la sclérose en
plaques et la schizophrénie. Le changement structurel dans le contexte de ces maladies re�ète
l'évolution de la dégénération neuronale ou de l'atrophie du cerveau. Les caractéristiques quali-
tatives et quantitatives de ces dégénérations structurelles jouent le rôle de biomarqueurs. Dans
la mesure où un modèle peut capter et décrire précisément la variabilité anatomique, l'intérêt
de la variabilité en tant que biomarqueur est important. La variabilité anatomique présente
un intérêt pour les études intra-population. Elle est tout aussi importante pour l'étude de la
di�érenciation anatomique entre un groupe de patients et un groupe de sujets sains (contrôles).

Problématique et contributions de la thèse

Nous nous focalisons dans cette thèse sur la construction d'un modèle compact, non-linéaire,
adapté à la représentation de formes. Ce modèle est évalué dans le contexte de l'étude d'une pop-
ulation de patients atteints de la maladie d'Alzheimer et d'une population de sujets contrôles.
Le modèle proposé fonctionne à la fois comme un modèle discriminatif et comme un modèle
génératif. La composante discriminative du modèle est fondée sur le cadre Support Vector Data
Description (SVDD). Dans la bibliographie, le SVDD est utilisé pour l'estimation de support,
la classi�cation, la détection de points aberrants et le débruitage. Le SVDD est étroitement
lié au one-class Support Vector Machine (SVM). Notre intérêt principal ici est l'utilisation du
modèle discriminatif pour mettre en évidence les di�érences morphologiques les plus discrimi-
natives entre une classe de formes donnée et des formes n'appartenant pas à cette classe. Un
outil similaire (la direction discriminative) a été proposé [Golland 2000] dans le cadre SVM.
Notre approche, basée sur le SVDD et que nous appelons trajectoire discriminative, génère un
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processus d'instances de formes, à partir d'une forme donnée vers le support de classe estimé.
Toutes les instances de ce processus sont des projections sur un support estimé, pour di�érentes
valeurs de paramètres du modèle.

Un aspect important du modèle proposé est l'hypothèse que les données (les formes) se
trouvent sur ou non loin d'une variété non-linéaire de dimension faible. Cette hypothèse a
été largement utilisée dans la bibliographie depuis l'introduction de méthodes telles que l'I-
somap [Tenenbaum et al. 2000]. La pertinence de l'hypothèse a été con�rmée depuis lors dans
plusieurs domaines applicatifs. En pratique, elle nous permet de construire un modèle compact
de représentation de formes. Dans notre travail, les formes sont paramétrées par un champ de
déformation par rapport à une image de référence (template), ce qui donne une description très
�ne et de haute qualité, mais aussi un espace de description de très haute dimensionalité, de
l'ordre de millions de dimensions. Après réduction de dimension, la forme peut se décrire comme
un point d'un espace de moins de dix dimensions.

En ce qui concerne la trajectoire discriminative introduite dans cette thèse, l'hypothèse
d'existence de la variété de formes nous sert à contraindre la trajectoire à correspondre à des
formes anatomiquement correctes, dans la mesure où la structure intrinsèque des données est
captée avec précision. La génération de formes incorrectes constitue un problème connu qui
touche des modèles, comme par exemple la direction discriminative originale, qui négligent la
non-linéarité de la structure des données.

L'innovation théorique apportée par notre modèle se re�ète dans deux nouveautés principales
de la trajectoire discriminative : premièrement, cette dernière constitue un outil pour extraire la
di�érence discriminative dans le contexte des modèles SVDD ; deuxièmement, elle ne permet que
des reconstructions anatomiquement correctes. D'un autre côté, a�n de décrire succinctement
les di�érences de groupe entre sujets sains et sujets non sains, nous visualisons les di�érences
avec une carte de p-valeurs, superposée à une forme de référence. Les p-valeurs sont calculées
voxel par voxel, comme une fonction de grandeurs calculées d'après le modèle appris. Cette carte
sert à indiquer les zones de di�érences de formes signi�catives entre classe et non-classe. Une
application de notre modèle à des données médicales réelles montre des résultats cohérents avec
les connaissances médicales. Nous utilisons également le modèle comme classi�eur, permettant
de discriminer les sujets sains des sujets pathologiques à partir toujours de formes cérébrales.
Pour toutes les applications, la non-linéarité et la compacité du modèle proposé se révèlent très
utiles.

Contexte de la thèse et collaborations

Ce travail a été e�ectué dans le cadre d'une collaboration entre l'équipe � Modèles, Images
et Vision � du Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection
(Université de Strasbourg, UMR CNRS � UDS 7005) et le Information Processing and Analysis

Group (département d'informatique, Université de Ioannina, Grèce).

D'un point de vue méthodologique, cette thèse est liée aux travaux de Félix Renard [Renard
2011], avec lequel l'auteur a collaboré pendant son séjour au LSIIT. Elle est aussi liée aux
travaux de Torbjørn Vik [Vik 2004] sur des modèles probabilistes, linéaires et non-gaussiens
et également à ceux de Matthieu Brucher [Brucher 2008] sur l'analyse de formes à l'aide de
modèles non-linéaires.

Pendant la thèse, nous avons collaboré avec Frédéric Blanc et Nathalie Philippi (Service de
Neuropsychologie, département de Neurologie, Hôpitaux Universitaires de Strasbourg) qui ont
fourni une partie des données anatomiques que nous traitons dans ce travail. Une collaboration
avec Jack Foucher et Daniel Roquet (INSERM U666 - Hôpitaux Universitaires de Strasbourg)
sur une étude de sujets victimes d'hallucinations est également en cours.
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Plan de la thèse

Le mémoire est organisé en trois parties. La première partie introduit des méthodes pour
décrire les formes. La deuxième partie présente les composantes discriminative et générative de
notre modèle. La troisième partie constitue une application du modèle à notre étude de cas, à
savoir des populations d'hippocampes dans le contexte de la maladie d'Alzheimer.

La première et la deuxième partie présentent le modèle proposé dans un contexte général
d'analyse de formes plutôt abstrait. Nous présentons d'abord l'état de l'art pour décrire la
forme. Nous constatons qu'une représentation de formes n'est pas forcément compacte. Ensuite
nous appliquons les techniques d'apprentissage de variétés tel que l'Isomap, a�n de construire
un descripteur de forme compact.

La deuxième partie présente les di�érentes composantes du modèle proposé. Nous intro-
duisons d'abord le SVDD, le modèle discriminatif de base dans cette thèse. Ensuite nous utilisons
le SVDD pour extraire de l'information à propos de caractéristiques de formes qui discriminent
le mieux entre des objets dans la classe et des objets hors de la classe. Nous présentons la
trajectoire discriminative en termes de projections SVDD, une opération initialement proposée
dans le contexte du débruitage de données. Ensuite nous connectons toutes les composantes
présentées, tout en créant une chaîne de traitement cohérente. Le modèle est complété avec
la mise en place d'une composante de régression multidimensionnelle, qui permet de passer
de l'espace réduit vers l'espace de description original, en générant e�ectivement de nouvelles
formes.

La troisième partie présente une application sur des données médicales réelles. Nous intro-
duisons brièvement des aspects-clefs de l'anatomie du cerveau et de la maladie d'Alzheimer.
Nous parlons ici surtout de la corrélation entre l'évolution structurelle de certains tissus de
cerveau et l'évolution de la maladie d'Alzheimer. Ensuite nous appliquons notre modèle à des
données réelles.

Nous notons que nous avons réservé un appendice, a�n de présenter une partie du travail de
l'auteur qui s'est e�ectuée comme suite de travaux de recherche commencés avant le début de la
thèse. La thématique de ces travaux n'est pas directement liée à l'axe principal de la thèse, que
nous venons de discuter ici. Les travaux présentés dans l'appendice se focalisent sur des modèles
bayesiens et sur l'inférence bayesienne appliquée principalement à la segmentation d'images.
Nous présentons une application à la segmentation d'images naturelles, la segmentation d'IRM
cérébrales en trois types de tissus (matière grise, matière blanche, liquide céphalo-rachidien), et
une application à la segmentation et restoration d'images polarimétriques.

Représentations compactes de formes

Le point d'entrée d'un cadre d'analyse statistique de formes est un jeu d'apprentissage �ni,
représenté de manière à permettre l'élaboration d'un modèle bâti sur ces données. Le modèle
peut être considéré comme une structure bâtie sur la base du mode de représentation des don-
nées, et la qualité de la représentation est alors étroitement liée à la qualité globale du modèle.
Une bonne représentation de formes doit être capable de décrire toute forme possible dans le
contexte de l'application d'intérêt. Il est également souhaitable que le modèle ne représente que
des instances valides, et utilise en même temps un minimum de paramètres dans ce but. Nous
tenons à atteindre ces buts en utilisant des méthodes d'état de l'art de représentation, tout en
mettant en ÷uvre des outils d'apprentissage de variétés a�n de construire une représentation
compacte et non-linéaire.
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Représentation de formes

Dans la bibliographie il existe un grand nombre de méthodes de description de formes,
comme par exemple les nuages de points, les transformées en distance (distance transforms)
[Golland 2000], les m-reps [Pizer et al. 2003], les harmoniques sphériques [Chung et al.
2010], les représentations par amers et les champs de déformations à partir d'une image de
référence [Cootes et al. 2008,Rueckert et al. 2003].

Voyons brièvement les plus importantes de ces méthodes.

Un nuage de points traite la forme comme un ensemble de voxels. Une telle représentation
peut être obtenue facilement à partir d'une image d'entrée (e.g. une IRM tri-dimensionnelle),
et il existe des scanners qui captent et fournissent la forme directement en tant que nuage de
points. Cette modalité est souvent utilisée comme une étape de base dans le but de construire
une représentation plus élaborée.

Les harmoniques sphériques (spherical harmonics, SPHARM) sont un modèle populaire,
basé sur la représentation de la surface de la forme. La forme est vue comme une fonction qu'il
faut exprimer au moyen d'un nombre de termes d'un jeu de fonctions de base. En ce sens, elle est
conceptuellement liée à la représentation de fonctions et signaux en série de Fourier. La première
étape est la construction d'une carte de correspondance entre la surface de la forme d'entrée et
la surface d'une sphère. Ensuite, la fonction de correspondance est analysée en fonction de bases
pertinentes. Les paramètres de cette analyse constituent le descripteur de la forme. L'inclusion
d'un nombre �ni de termes de la série in�nie, ou, ce qui est équivalent, l'exclusion de termes de
hautes fréquences, a pour conséquence le lissage automatique de la forme.

La représentation par m-reps (medial representations) est fondée sur l'idée de l'axe médian
de la forme et de la transformée de l'axe médian (medial axis transform, MAT). L'axe médian
est dé�ni comme l'ensemble des points de la forme qui ont plus d'un point plus proche à la
surface de la forme. La transformée de l'axe médian est dé�nie comme l'axe médian complété
par l'information concernant les sphères inscrites centrées sur les points de l'axe médian. Une
représentation m-rep est constituée d'une collection des points échantillonnés à partir de l'axe
médian, qui sont appelés atomes médians (medial atoms). Chaque atome médian comprend
de l'information concernant les frontières les plus proches, permettant ainsi de reconstruire la
forme à partir de la grille des atomes.

Un champ de déformation peut jouer le rôle de descripteur de forme. Après avoir recalé de
manière non rigide la forme d'entrée vers une image cible ou template, le champ de déforma-
tion qui en résulte et l'image cible peuvent être utilisés pour reconstruire la forme originale et
peuvent ainsi représenter la forme. Si nous voulons construire des représentations pour un jeu
de formes, nous prenons soin d'avoir la même image de référence pour toutes les mises en corre-
spondance, a�n que toutes les représentations se trouvent dans le même cadre de référence. Une
caractéristique souhaitable du recalage est de produire des champs qui soient di�éomorphiques.
En pratique, ceci signi�e que nous ne permettons ni déchirement ni pliage pendant le recalage,
un déchirement ou un pliage n'étant pas réaliste ici.

Dans ce travail, nous choisissons d'utiliser des champs de déformation en tant que méthode
de représentation de base. Chaque champ de déformation est vu comme un champ de vecteurs en
3D. L'ensemble des composantes de chaque vecteur, pour chaque voxel, constitue le descripteur
de la forme donnée. Notons bien aussi que, du point de vue méthodologique, la chaîne de
traitement proposée ici resterait intacte si nous utilisions une méthode pour décrire la forme
autre que le champ de déformation.

L'emploi d'un champ de déformation, ou d'une autre methode générique de description de
forme comme celles que nous venons de discuter brièvement ici, malgré son utilité, fournit une
représentation en général non-compacte, et un espace de vecteurs non-dense (ou non-spéci�que,
d'après la nomenclature de [Davies et al. 2008]). Nous contournons ces lacunes en utilisant
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l'apprentissage de variété a�n de construire une représentation plus pertinente.

Représentation compacte par apprentissage de variétés

Alors que nous augmentons le nombre de paramètres d'un type de représentation de formes,
en général nous pouvons avoir une représentation plus �ne et exacte. A titre d'exemple, une
grille de 2563 voxels fournit plus de détails qu'une grille de 1283 voxels. Pourtant, la variabilité
des données restera toujours équivalente au nombre de degrés de liberté, typiquement très faible.
Par exemple, un ensemble d'objets géométriques qui di�èrent seulement par leur taille aurait
exactement un degré de liberté. Un jeu de données d'IRM cérébrales présenterait le même type
de problème. Un modèle générique de description de formes échouerait également à capter la
structure intrinsèque d'une image de cerveau, dont un élément serait à titre d'exemple que les
voxels extérieurs correspondent aux voxels du crâne, ou que le cerveau est quasi-symétrique et
que les deux hémisphères sont joints au moyen du corps calleux. En termes de modèle, une
représentation présentant une grande disparité entre le nombre de ses paramètres et le nombre
de degrés de liberté est une représentation non-compacte.

Une représentation non-compacte peut se révéler problématique pour diverses raisons. Tout
d'abord, un modèle compact serait par dé�nition plus expansif que nécessaire. D'autre part,
les modèles de grande dimensionalité sont caractérisés par ce qui est connu dans la littérature
comme la malédiction de la dimension. La malédiction de la dimension exprime le fait que, a�n
de construire un modèle statistique sur un espace donné, un nombre de points d'apprentissage
en relation exponentielle avec le nombre de dimensions est nécessaire [Bellman 1961]. Sinon,
tout modèle construit sur cet espace est susceptible de disposer de propriétés d'induction très
faibles.

Par conséquent, il serait souhaitable d'incorporer au modèle un moyen d'obtenir un espace de
dimension réduite. Nous utilisons à ce propos l'apprentissage de variété, et plus particulièrement
l'Isomap [Tenenbaum et al. 2000]. Dans les méthodes d'apprentissage de variété, le principe
de base est que l'espace de formes possibles constitue une variété de dimensionalité faible, qui
occupe un volume qui ne constitue qu'une faible fraction de l'espace englobant. Autrement dit,
les données sont supposées faire partie (ou être assez proches) d'une variété.

Les détails de la chaîne de traitement qui permet de déterminer la variété à partir des données
d'entrée sont spéci�ques à chaque méthode d'apprentissage de variété. Dans le cas de l'Isomap,
qui est la méthode retenue pour ce travail, l'entrée de l'algorithme est constituée par les distances
entre les formes du jeu d'apprentissage. Après une étape convertissant ces distances en distances
géodésiques, l'algorithme cherche des points d'un espace de faible dimension correspondant aux
formes d'entrée, tels que les distances entre les points soient préservées. En pratique, cette
opération est répétée pour plusieurs dimensionalités de l'espace cible, et la dimension est choisie
au moyen d'une règle heuristique. Les nouveaux points générés constituent la représentation
compacte. Idéalement, chaque point de ce nouvel espace correspond à une observation possible
et en ce sens valide, en tant qu'élément de la variété considérée.

Construction du modèle

Nous examinons maintenant les composantes discriminative et générative du modèle, qui
sont bâties sur la couche de représentation compacte de formes que nous venons de discuter.

Un modèle discriminatif est essentiellement une machine qui répond à la question : étant
donné un ensemble d'objets, réparti en classes, inférer la classe à laquelle appartiendra un objet
qui n'appartient pas à l'ensemble original. Dans ce travail, nous nous focalisons sur un tel
modèle, le SVDD [Tax & Duin 1999]. Le SVDD calcule la frontière de la classe dite normale,
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en formant une hyperboule autour des points normaux d'entrée. Le rayon et la position de cette
hyperboule, qui joue le rôle du support de la distribution des formes normales, sont déterminés
en tant que compromis entre deux buts antagonistes. Ces buts sont de minimiser le volume
du support et d'englober autant de formes normales d'entrée que possible. Dans le contexte de
l'analyse de formes, une forme nouvelle serait identi�ée comme normale si elle tombait dans le
support, et anormale sinon.

Notons ici que la forme d'hyperboule peut se généraliser, en employant une application
φ de l'espace original vers un espace auxiliaire, dit espace de caractéristiques, où le support
prend la forme d'une hyperboule. Comme la correspondance entre l'espace original et l'espace
de caractéristiques est en général non-linéaire, la forme de l'antécédent de l'hyperboule dépend
�nalement de la �exibilité de la fonction de correspondance utilisée.

La classi�cation d'un nouvel arrivant est considérée comme l'utilisation � par défaut � d'un
modèle discriminatif. Une utilisation autre que la classi�cation d'un nouvel arrivant est l'es-
timation du type de di�érence de formes le plus marquant entre les formes normales et les
formes anormales. Dans ce travail, nous sommes plutôt intéressés à cette dernière question. Dans
le contexte médical, la question est particulièrement importante, puisque la classe peut faire
référence au diagnostic ou à l'état clinique du sujet associé. Chercher la di�érence discriminative
de formes peut, dans ce cas-ci, mettre en évidence des détails importants du développement de
la pathologie d'intérêt.

Cette di�érence entre objets dans la classe et objets hors de la classe, ou di�érence dis-
criminative, a été abordée dans la bibliographie au moyen d'outils tels que la direction dis-
criminative [Golland 2000,Zhou et al. 2008] et la structure discriminative (discriminative

pattern) [Koutsouleris et al. 2009], tous fondés sur le Support Vector Machine (SVM) en
tant que machine discriminative.

La direction discriminative [Golland 2000] donne la direction d'un point donné vers la
frontière du SVM. En faisant évoluer le point le long de cette direction, la forme change gradu-
ellement vers un objet de l'autre classe. Pourtant, la direction discriminative ne peut pas garan-
tir la validité des formes ainsi générées. Dans [Zhou et al. 2008], une version de la direction
discriminative est proposée, comprenant un terme de régularisation dans la fonction objectif.

L'outil proposé ici dans ce contexte, la trajectoire discriminative, est posé en tant que
partie d'un modèle SVDD, au lieu du SVM des autres approches. La trajectoire est dé�nie au
moyen de la notion de projection SVDD, qui est le point du support le plus proche de l'objet
d'intérêt. Nous écrivons ici pR(x) pour la projection du point x sur le support SVDD de taille
optimisée R. La di�érence entre le point donné x et le point projeté pR(x) est ici interprétée
comme l'élimination de la di�érence de forme qui est non-caractéristique de la classe normale.
La trajectoire discriminative est dé�nie comme un ensemble de projections SVDD. Chaque
instance de l'ensemble correspond à un paramètre spéci�que du modèle SVDD. Les instances
du processus correspondent à toute la gamme de taille d'hyperboules SVDD, de la plus petite
et optimale, à la plus grande, où la projection s'identi�e au point initial. Formellement, la
trajectoire discriminative δ(u) serait dé�nie comme

δ(u) = pR′(x), avec R′ = (1− u)Rmax + uR, (0.1)

où u ∈ [0, 1], et Rmax désigne une taille de l'hyperboule SVDD telle que pRmax(x) = x, c'est-à-
dire que le rayon est maximum.

D'autre part, tous les points de la trajectoire discriminative sont anatomiquement corrects.
Dans la mesure où l'étape d'apprentissage de la variété explique correctement la structure non-
linéaire des données, tous les points générés seront valides, et une correction de la trajectoire
discriminative n'est pas nécessaire.

Il reste à produire des formes à partir des points et trajectoires dans l'espace réduit. Nous
utilisons dans ce but les couples des formes d'apprentissage et des coordonnées de l'espace réduit,
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a�n de construire des fonctions de base de régression. Chaque nouvelle forme apparaît comme
un nouveau champ de déformation, qui se calcule en tant que somme pondérée de fonctions de
base centrées sur les formes du jeu d'apprentissage. Formellement, la forme reconstruite y est
liée au point de l'espace réduit x par la relation

y = g(x) + ε =W Tβ(x) + ε,

où W est une matrice de poids pour les fonctions de base β. Les poids correspondant aux
fonctions de base sont obtenus simplement par une solution d'un problème de moindres carrés.

A titre de résumé, rappelons que les données provenant du jeu d'apprentissage sont représen-
tées de trois façons (voir �g. 0.1) : en tant que points de l'espace des champs de déformation ; en
tant que points de l'espace réduit, cet espace étant obtenu au moyen de l'étape d'apprentissage
de la variété ; en tant que points de l'espace des caractéristiques, espace où le support SVDD
forme une hyperboule autour des données. Nous appelons ces espaces respectivement espace
original, espace réduit, et espace de caractéristiques. La chaîne de traitement peut se décrire
ainsi en tant qu'interaction entre ces trois espaces : les formes d'apprentissage de l'espace origi-
nal se transforment en points de l'espace réduit, et leur image dans l'espace des caractéristiques
aide à déterminer le modèle discriminatif. De nouveaux points et trajectoires de l'espace réduit
se transforment en formes et processus de formes dans l'espace original.

(a) (b) (c)

Figure 0.1 � Illustration des notions d'espace ambiant, d'espace réduit et d'espace de carac-
téristiques. Les cercles verts représentent des données normales, les croix rouges représentent des
données anormales. (a) Espace ambiant. Cet espace est très peu densément rempli de données.
La structure ayant une allure de feuille �la variété� est un espace de dimensionalité plus faible
que celle de l'espace ambiant. Les données font partie de la variété. En utilisant des techniques
d'apprentissage de variété, nous pouvons représenter la variété comme un espace réduit (b). Cet
espace n'est pas observé, mais il est dense, au sens où ses points correspondent en principe tous
à des observations valides. Nous nous servons de l'espace de caractéristiques (c) pour estimer
la distribution des points normaux (support). Sur chacun des graphes, pR(x) correspond à la
projection de la donnée x sur le support normal (projection SVDD). La trajectoire discrimina-

tive δ, représentée en pointillés noirs, est le chemin joignant les points x et pR(x), inclus dans
la variété.

Nous testons la chaîne de traitement proposée sur des données de synthèse. Nous appliquons
des déformations arti�cielles sur des formes géométriques et des anatomies médicales pour
former les points anormaux des jeux de données de synthèse. Le modèle proposé permet de
reconstruire les déformations originales. La trajectoire discriminative produit un processus de
formes à partir d'une forme déformée vers la version normale correcte, alors que nous pouvons
résumer la di�érence discriminative à l'aide d'une carte de p-valeurs. Cette carte mesure la
di�érence statistique des points normaux et des points pathologiques voxel par voxel. Les points
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signi�catifs sont marqués d'une p-valeur faible, alors que les points non signi�catifs sont marqués
d'une p-valeur grande.

Les formes de synthèse sont délibérément construites a�n de constituer une structure non-
linéaire de l'espace des champs de déformations (espace ambiant). Ceci est réalisé en appliquant
divers types de déformations pour créer des données pathologiques. Nous montrons que notre
modèle peut capter et reproduire tout type de déformation, grâce à sa composante de réduction
de dimension. Nous démontrons également qu'au contraire, un modèle qui ne respecterait pas
la structure non-linéaire intrinsèque des données échouerait à capter correctement la di�érence
discriminative.

Étude de cas : dégéneration de l'hippocampe dans le contexte de
la maladie d'Alzheimer

La dernière partie de la thèse présente une application du modèle proposé à des données
médicales réelles. L'étude de cas est la maladie d'Alzheimer. La progression de la maladie
d'Alzheimer, comme celle de nombre d'autres pathologies, est fortement liée à l'évolution struc-
turelle de certaines régions d'intérêt dans le cerveau. Ces régions incluent les hippocampes,
les amygdales et les ventricules latéraux. La dégéneration de ces organes cause également la
dégénération de leur fonction, causant une dé�cience cognitive liée au progrès de la maladie.

L'anatomie du cerveau, le développement de plaques amyloïdes et d'autres symptômes de
la maladie peuvent être considérés comme des indicateurs de la gravité de la maladie. Ces
indicateurs sont connus comme étant des biomarqueurs de la progression de la maladie. Idéale-
ment, un biomarqueur doit être corrélé aux di�érentes étapes de la maladie, et pouvoir aider
à prévoir l'évolution clinique du patient. La recherche en prévention et ralentissement de la
maladie pourrait donc béné�cier d'une information portée par le biomarqueur.

Dans le contexte de la production d'un biomarqueur structurel, aussi informatif que possible,
l'étude de la structure de l'évolution anatomique du cerveau ou d'un tissu particulier du cerveau
avec autant de précision que possible reste un dé� important. Ceci est l'objet de nombreuses
études en anatomie numérique, et c'est en particulier l'objet de la partie applicative du présent
travail.

Expériences sur données médicales réelles

Nous appliquons la chaîne de traitement que nous avons mise en place ici sur des données
réelles. Nous nous servons de deux jeux de données IRM, comprenant des hippocampes et
amygdales qui proviennent d'une part de sujets atteints de la maladie d'Alzheimer et d'autre
part de sujets sains.

Le premier jeu de données est constitué par la base de données libre OASIS. Nous répar-
tissons les données disponibles en deux sous-ensembles, qui contiennent respectivement des
hippocampes gauches et des hippocampes droits, provenant de patients âgés de plus de 60 ans.
Nous avons 198 structures pour chaque sous-ensemble. Nous étiquetons les données suivant
l'information clinique disponible en trois classes : sujets sains, sujets malades, et sujets d'état
intermédiaire.

Le deuxième jeu de données provient d'une étude menée au sein des Hôpitaux Universitaires
de Strasbourg (Centre Hospitalo-Universitaire de Strasbourg, Service de Neurologie, Unité de
Neuropsychologie). Nous répartissons les données disponibles en quatre sous-ensembles, qui
contiennent respectivement des hippocampes gauches, des hippocampes droits, des amygdales
gauches et des amygdales droites. Nous avons 26 structures pour chaque sous-ensemble. Toutes
correspondent à des sujets âgés de 69 à 84 ans. Les sujets sont déjà étiquetés et répartis en deux
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classes suivant leur état, malade ou sain.

Nous appliquons nos outils d'estimation de la di�érence discriminative entre classes �trajectoir-
es discriminatives (voir �g. 0.2) et cartes de signi�cativité� au premier jeu de données OASIS.
Nous découvrons des points signi�catifs autour de régions de la tête et de la queue et de grandes
parties de la région CA1 des deux hippocampes. La tête et la queue de l'hippocampe sont con-
nus pour être des régions importantes pour l'évolution de la maladie d'Alzheimer [Morra et al.
2010]. L'atrophie de CA1 est également connue pour être associée en général à la diminution de
la capacité de récupération de mémoire et de consolidation, et elle est associée à l'apparition de
la maladie d'Alzheimer [West et al. 2000]. Ce résultat est donc en adéquation avec les résultats
des études antérieures.

Figure 0.2 � Échantillons le long d'une trajectoire discriminative. De gauche à droite, les
formes évoluent graduellement d'une forme extrême de la pathologie vers une anatomie saine
et non-atrophiée.

Nous utilisons le deuxième jeu de données pour évaluer la capacité du modèle à la classi�ca-
tion en groupe de caractéristiques pathologiques homogènes, à partir de données structurelles.
Les résultats montrent une performance numérique proche de celle de l'état de l'art de la bib-
liographie. Il est montré également que la composante de réduction de dimension du modèle a
également un e�et béné�que sur les performances du modèle en tant que classi�eur.

Conclusion et perspective

En conclusion, nous avons présenté dans ce travail une modélisation non-linéaire compacte
et une chaîne de traitement permettant l'étude de formes. Etant donné un jeu de formes d'ap-
prentissage, nous estimons d'abord la distribution de ces formes dans un espace de description,
en utilisant la théorie SVDD. Nous nous servons ensuite du support estimé a�n de discriminer
les points normaux des points anormaux. Posé dans le contexte de l'imagerie médicale, ceci se
transpose en la discrimination entre tissus sains et tissus pathologiques. A partir de ce modèle
discriminatif, nous introduisons la trajectoire discriminative, comme outil pour estimer la dif-
férence discriminative. La distribution des données sous-jacente, modélisée comme une variété
non-linéaire, est partie intégrante de la chaîne de traitement.

Dans la mesure où l'apprentissage de la variété explique correctement la structure de don-
nées sous-jacente, le modèle est compact, ce qui nous mène à une description de données plus
�dèle à la réalité. D'un côté, les nouvelles formes générées grâce au modèle sont anatomique-
ment correctes, puisqu'elles sont contraintes à appartenir à la variété. D'un autre côté, tous les
éléments de la trajectoire discriminative sont également contraints à faire partie de la variété,
ce qui nous sert à fournir une estimation précise de la di�érence discriminative. Nous illustrons
ce point en appliquant le modèle à des jeux de données géométriques et à des jeux de données
anatomiques de synthèse. L'application du modèle à des données réelles donne des résultats qui
nous mènent à des conclusions cohérentes avec les résultats des recherches antérieures.

Nous con�rmons que suite à la manifestation et pendant le déroulement de la maladie
d'Alzheimer, certaines régions dans le cerveau, et plus particulièrement des régions des deux
hippocampes, sont atteintes plus que les autres régions. Il s'agit en particulier de la tête et de
la queue des hippocampes. Ceci a été montré à l'aide de la trajectoire discriminative et des
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cartes de signi�cativité. Les trajectoires discriminatives expliquent la di�érence discriminative
en tant que processus entre un seul sujet vis-à-vis d'une classe, alors que la carte des p-valeurs
fournit un résumé de la di�érence en tant que di�érence de classe vis-à-vis de la non-classe.
Bien que la sortie de la fonction SVDD présente un certain degré de corrélation avec des scores
cliniques, qui sont largement une fonction du temps, notons bien ici que le paramètre libre de
la trajectoire discriminative n'est pas identique à un paramètre de temps. En perspective, un
jeu de données longitudinal, couplé à un modèle pouvant générer de telles données, pourrait
mener éventuellement à des conclusions plus concrètes en modélisant la forme directement en
tant que fonction du temps.
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In this introduction, we shall present the work realized in the context of this thesis. We shall
discuss the core theoretical notions, application context, and contributions of our work, as well
as the related collaborations and projects.

1. General context

1.1 Shape and neuroimaging

In this thesis, we are interested in statistical shape analysis, applied in a medical, neuroimag-
ing context. Statistical shape analysis refers to constructing models capable of describing shape
and variability of shape. In medical imaging, shape analysis is used to model the morphological
variability of various body organs and tissues, such as the heart, the brain or speci�c brain
tissues. In turn, study of such data allows us to better understand body and brain function,
study anatomical evolution, diagnose certain pathologies, identify their time of onset and study
their development, realize the planning of therapeutical treatment, and monitor its impact.
Group anatomical di�erences can be studied, where group di�erence can refer to a partition by
age-group, pathological vs control or gender anatomical di�erence.

Paramount to medical shape analysis has been the introduction of high resolution 3D imag-
ing such as Magnetic Resonance Imaging (MRI), which has allowed in vivo study of medical
shape. Various MRI modalities exist today. To name a few, these include structural MRI, which
is suitable to describe anatomical structure, functional MRI, which associates function and
activation to brain structure, and di�usion MRI, which measures water molecule di�usion in
biological tissue. For the purpose of tissue shape analysis, structural MRI is the most suitable.
Morphological study in neuroimaging was originally based on simple measurements of area and
volume. Such measurements provide a crude, elementary measure of morphological variation,
and as such can only capture shape complexity in a limited degree.

Pathologies of interest, whose development induces structural change in brain tissue, include
multiple sclerosis, schizophrenia and Alzheimer's disease (AD), the latter being the case study of

1
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this thesis. Structural change in these diseases re�ects the progress of neuronal degeneration, or
brain atrophy. The qualitative and quantitative characteristics of the progress of this structural
degeneration play the role of the so-called disease biomarker. A biomarker is in general de�ned
as a biological or biologically derived indicator of a process, event, or condition such as disease
(or other conditions such as aging, or exposure to a toxic substance) [Medical Dictionary
2012]. To the extent that a model can describe anatomical variability as precisely as possible,
its value as a biomarker of disease progression is more important. Anatomical variability is of
interest as intra-population variability, as well as the study of anatomical di�erence between a
group of patients and a group of healthy controls.

1.2 Statistical shape analysis

Quantitative shape analysis is generally admitted to date originally back to the work of
D'Arcy Thompson [Thompson 1917]. The context of Thompson's works is the study of the
relation between form and function. A group of biological forms is put into anatomical corre-
spondence, by de�ning points of interest in a template shape and their corresponding points in
a second shape. These points de�ne a grid of lines (see �g. 1.1) which is accordingly deformed to
create a dense correspondence between shape points (�method of coordinates�). This approach
presents several practical di�culties, such as de�ning the interpolation allowing the passage
from point correspondence to straight line correspondence, or the de�nition of the position of
the landmark points. These problems were left unanswered originally [Heinrich 2008]. The
milestone work of Thompson includes, albeit in a premature form, some aspects and problems
of statistical shape analysis recurrent in models and methods of today. In a modern, computa-
tional context, description of a set of shapes is performed by de�ning a correspondence between
shape data, either explicitly or implicitly. Numerous shape description methods exist, which in
general permit to map each shape-object to a mathematical object, playing the role of a shape
descriptor. Landmark descriptors, spherical harmonics and deformation �elds are some of the
most important shape descriptors (see chapter 2).

A model, in shape analysis or elsewhere, seeks to describe observed data as manifestations
of some underlying pattern, as exactly and yet as simply as possible [Davies et al. 2010]. Given
a �nite training set of shape data, generative or discriminative models can be constructed. The
goal of a generative model is to generate shape instances that are in some sense similar to the
training shapes. This necessarily presupposes the estimation of the shape distribution in a shape
description space. A discriminative model supposes the partition of the data into a �nite set of
classes (for example, pathological and non-pathological class), and its goal is to decide the class
of new, unseen data. Regardless of its exact utility and type, a good statistical shape model
should have, according to [Davies et al. 2008,Davies et al. 2010], a set of traits that can be
summarized to (1) generalization ability, so that the model can represent any possible shape
instance (2) speci�city, so that it can only represent valid instances of the modelled class of
object (3) compactness, so that the model can be represented with few parameters. We might
add here that all of these traits are correlated to one another. For example, a non-compact
model will in all likelihood also be non-speci�c, and vice versa. In this work we are interested
in building compact shape representations, and dense -in the sense of highly speci�c- shape
spaces. Manifold learning is a tool that will aid us in this direction (see chapter 3).

A basic step in creating a model is to de�ne a shape description space where data reside.
Two typical assumptions can be made at this point [Davies et al. 2010] : (1) data form a linear
substructure in the description space that can be captured using a related estimation method
such as Principal Component Analysis (PCA) and (2) shape data distribution can be captured
using a Gaussian probability density function. The undeniable advantage of these assumptions
is exactly their simplicity. However data may not always �t such simplistic hypotheses. The
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goal of the current thesis, and main axis of the presented work, is the creation of a statistical
shape model that relaxes the aforementioned hypotheses and describes shape in a compact and
precise manner.

Figure 1.1 � Putting shapes into correspondence with the method of coordinates. Figure
reproduced from [Thompson 1917].

2. Contributions

The material presented in this thesis centers around the construction of a compact, non-
linear model suitable to represent shape. This model is evaluated in the context of a population
study of Alzheimer's disease patients and controls. The proposed model acts both as a discrim-
inative and a generative model.

The discriminative aspect of the model is based on the Support Vector Data Description
(SVDD) model. In the literature, uses of SVDD include support estimation and classi�cation,
anomaly detection and denoising. SVDD is very closely related to the one-class Support Vector
Machine [Schölkopf et al. 2001]. It should also be noted that, while SVDD is based on a
one-class versus-all philosophy, it can be extended to a multi-class model [Lee & Lee 2007],
competing fairly with state-of-the art discriminative models. Our main interest here is to use
the discriminative model to uncover shape di�erence between a given class of shapes versus
shapes not in the class, that is the most characteristic of the class di�erence. An analogous
tool, called discriminative direction, has been proposed originally in [Golland 2000] in the
context of a SVM model. Our proposed SVDD-based approach, which we call discriminative

trajectory, generates a process of shape instances starting from a given shape, towards the
estimated class support. All process instances share the trait of being projections onto the
estimated support, given varying model parameters. Our naming of the proposed scheme as
discriminative trajectory, serves to di�erentiate from related models in the literature and to
underpin our formulation of discriminative di�erence explicitly as a process.
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An important aspect of the proposed model is that we use the hypothesis that shape data lie
on (or su�ciently near) a non-linear manifold of low dimension. This manifold hypothesis has
been extensively used in the literature since the introduction of milestone non-linear manifold
learning techniques such as isomap [Tenenbaum et al. 2000]. The usefulness of the manifold
hypothesis has been con�rmed in various domains (see chapter 3). In practice, it allows to
construct a compact model of shape representation. With respect to the proposed discriminative
trajectory, the manifold hypothesis constraints trajectory shape instances to correspond only to
anatomically correct shapes, to the extent that the intrinsic data structure is captured faithfully.
Conversely, models that neglect this non-linear structure, such as the discriminative direction
[Golland 2000], cannot guarantee anatomical correctness. (see [Zhou et al. 2008] for a related
discussion).

Methodologically, the contribution of this thesis is re�ected in two aspects of the proposed
discriminative trajectory. First, it is a tool for extracting discriminative shape di�erence in the
context of SVDD models. Second, it allows only for anatomically correct reconstructions. To the
end of describing group di�erence between healthy and pathological subjects, we visualize as a p-
value map on residuals associated to each shape voxel. This map indicates the locus of signi�cant
di�erence between class and non-class. The application of our model on real anatomical data,
shows results consistent with related literature �ndings. The non-linear, compact character of
the model is shown to have overall a bene�cial impact in any aspect or type of application.

3. Collaborations

This thesis has been realized in the context of a partnership between two research groups :
the �Modèles, Images et Vision� (MIV) group, part of the Laboratoire des Sciences de l'Image, de
l'Informatique et de la Télédetection (LSIIT, UMR 7005, Université de Strasbourg - CNRS), and
the �Information Processing and Analysis� (IPAN) group, part of the Department of Computer
Science (University of Ioannina, Greece).

This thesis is part of a line of research projects of the MIV group of LSIIT, under the general
topic of �Traitement d'Images Médicales� (Medical image processing). The thesis is also part
of research work conducted by the federation �Imagerie et Robotique Médicale et Chirurgicale�
(IRMC). More generally, this research topic is supported by the pôle of competitivity �Innovation
thérapeutiques� and is part of pôle image Région Alsace. This thesis was funded by the Région
Alsace.

From a methodological point of view, this thesis is closely related to the work of Félix
Renard [Renard 2011], with which the author of the thesis has collaborated. It is also related
to the work of Torbjørn Vik [Vik 2004] in probabilistic linear, non-Gaussian models and that
of Matthieu Brucher [Brucher 2008] in shape analysis with non-linear models.

We have used two main sources of real neuroimaging data. The �rst source is the free-access
OASIS database [Marcus et al. 2007]. The other is a study conducted at the University Hos-
pital of Strasbourg through the service of Neurology and the Neuropsychology unit, [Philippi
et al. 2012], courtesy of Frédéric Blanc and Nathalie Philippi of the same unit. A collaboration
with the latter group, aiming at exploring correlations of memory and cognitive markers with
structural deformation is currently in progress.

A collaboration with Jack Foucher and Daniel Roquet (INSERM U666 - University Hospital
of Strasbourg) is also in progress. This project targets at building a suitable discriminative
model for hallucinating and non-hallucinating schizophrenic patients, plus controls. The input
is functional connectivity data processed with the Independent Component Analysis (ICA)
model.
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4. Thesis outline

We present the proposed statistical shape analysis model in three parts.

The �rst and second part presents the proposed model in an abstract, general shape analysis
context. Chapter 2 and chapter 3 constitute part I, and discuss shape description. In chapter
2, we discuss state-of-the-art shape methods for shape description. We observe that these do
not necessarily lead to a compact representation. In the next chapter (chapter 3), we use the
technique of manifold learning to create a compact shape descriptor.

The second part presents the discriminative and generative component of the model. In
chapter 4, we introduce elements of SVDD theory. In chapter 5, we use SVDD to extract
information about shape characteristics that best discriminate objects of a given class from
objects not in the class. This is encoded in the notion of the discriminative trajectory. We
present the latter in terms of the SVDD projection, an operation originally proposed for data
denoising, and discuss the relation of the proposed discriminative trajectory to the SVM-based
discriminative direction. In chapter 6, we �connect� the manifold learning component with the
SVDD component of the model, creating a coherent processing pipeline. We express the model
in terms of three description spaces � the ambient space, the reduced space, and the feature
space � and the relation of each one to the other. Finally we apply our model to geometrical
and synthetic anatomical shape, in order to assess the validity of our claims. We show that
the proposed discriminative trajectory, as part of the present model, reveals discriminative
di�erence in detail that a non-compact model would not achieve.

The third part of the thesis presents an application of the proposed model to real neu-
roimaging data. In chapter 7, we discuss the correlation of structural evolution to the progress
of Alzheimer's disease, and the related notion of a disease biomarker. In chapter 8, we use our
model on a group of patients, intermediate condition subjects and controls, and create discrim-
inative trajectories for the left and right hippocampi. We also illustrate the use of our model as
a classi�er, deciding over the likelihood of a hippocampus or amygdala originating o� a healthy
subject or not, based always on structural data.

We have reserved a fourth -appendix- part to present work conducted since the beginning
of the thesis, but not directly thematically connected to the main presented subject. The work
presented in the appendix is centered around using Bayesian models and inference for im-
age segmentation. We discuss an application in natural image segmentation, brain MR image
segmentation in three tissue classes (gray matter, white matter, cerebrospinal �uid) and an
application in polarimetric image segmentation and restoration.
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Part I

Compact shape representation
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Introduction

The entry point of any statistical shape analysis framework is a �nite training set of shapes,
represented in a way suitable to allow for a subsequent elaboration of a model built on this data.
In a way, a model is a superstructure constructed on the basis of the way shape is represented ;
hence the quality of the representation is organically related to the quality of the model.

In the �rst part of this thesis we discuss how to describe shape. First we present a brief state
of the art of shape description. It is in the interest of the model as a whole to use a descriptor
that can accurately describe any possible shape in the application of interest, as well as to ease
the construction of an accurate, �exible generative or discriminative model. Next we discuss
how to process such a shape descriptor with manifold learning in order to obtain a compact
shape representation. As we shall see, compactness is a trait that can lead to more useful and
stronger models of shape.
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Chapter 2

Shape description

1. Models for shape representation . . . . . . . . . . . . . . . . . . . . 11

1.1 Point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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Encoding the shapes of the input training set in some computationally usable, numeric
form, is a basic �rst step in any statistical shape analysis pipeline. There exist plenty of ways
in the related literature to represent shape, like distance transforms [Golland 2000], m-reps
[Pizer et al. 2003], spherical harmonics [Chung et al. 2010], landmark-based representations
deformation vector �elds with respect to a template [Cootes et al. 2008,Rueckert et al. 2003].
In this chapter we shall review some of the most widely used models for shape representation.
We bear in mind that we shall be eventually speci�cally interested in training sets in the context
of medical imaging. Most of the models that follow have been widely used in related applications
of the same area. We shall imply a three-dimensional shape, unless otherwise stated. In most
cases that we examine, passage from the formulation of a 2D planar shape descriptor to its
corresponding version in 3D �or vice versa� is straightforward.

1. Models for shape representation

1.1 Point cloud

The most straightforward way to describe a shape, given a three-dimensional voxel intensity
map (such as the T1-weighted intensity information of an MRI), is the intensity map itself, or
a thresholding/segmentation over the input intensities producing a binary map. In this map,
true-valued voxels correspond to voxels that are part of the shape, and false-valued voxels corre-
spond to background. This is what is called a point cloud. Point clouds are the default output of
3D scanners, and can be further processed to build three-dimensional surfaces meshes. Besides
medical imaging, point clouds have been employed in a wide spectrum of applications, includ-
ing computer-aided design, computer generated-imagery (CGI) visualization and animation,
archaeology and antiquities preservation [Allen et al. 2004].

11
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1.2 Spherical harmonics (SPHARM)

The spherical harmonics model (SPHARM) [Brechbühler et al. 1995,Schönefeld 2005]
is a popular, surface-based representation method. It views shape as a function which is to be
expressed in terms of a suitable set of basis functions, as is the case for example for the Fourier
or the Legendre series in 1D. The �rst requirement in a spherical harmonics representation
is to build a proper parametrization of the shape to be represented. This means de�ning a
continuous, one-to-one mapping from the surface of the original shape to a two-coordinate
space with spherical topology. Mapping our object to a sphere immediately implies that the
modelled object is necessarily a single, simply connected object.

The parametrization is formulated as a constrained optimization problem. The variables of
the optimization problem are the coordinates of all vertices, i.e. the positions on the unit sphere
to which the vertices are mapped. The parametrization is constrained, so that any object surface
region maps to a region of proportional area on the sphere. The objective is to miminimize the
distortion of the surface net in the mapping. To ful�ll this goal perfectly, a target object facet
should map to a �spherical square�.

The previous step produces a one-to-one mapping where each pair of spherical coordinates
(θ, φ) is connected to a point x ∈ R3 in Cartesian coordinates, which corresponds to a position on
the surface of the object to be represented. Coordinates (θ, φ) are de�ned over a range of (0, π)
and (0, 2π) respectively. The decomposition of the function x(θ, φ) with spherical harmonics is
de�ned as a series of the form

x(θ, φ) =

∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ), (2.1)

where Y m
l denotes a basis function of degree l and order m [Brechbühler et al. 1995] and

cml is a tri-variate complex vector representing the expansion coe�cient of the same degree and
order. Basis functions Y m

l form an orthonormal set and are de�ned as

Y m
l (θ, φ) =

√
2l + 1

4

(l −m)!

(l +m)!
Pml (cosθ)eimφ, Y −m

l (θ, φ) = (−1)mY m∗
l (θ, φ), (2.2)

where

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x), Pl(x) =

1

2ll!

dl

dxl
(x2 − 1)l. (2.3)

The coe�cients cml are formally de�ned as

cml =

∫ π

0

∫ 2π

0
x(θ, φ)Y m

l (θ, φ)dφ sin θdθ. (2.4)

In practice, an approximation of eq. (2.4) is used to calculate the expansion coe�cients
[Brechbühler et al. 1995]. The higher the degree of an expansion set and its coe�cients,
the �ner the structural information they describe. Low-degree terms carry coarse structural
information. In practical applications, only a limited number of the lowest degree coe�cients
are used, and any further analysis is performed over them. Using a limited number of coe�cients
naturally serves as an implicit form of mesh smoothing [Chung et al. 2010].

Let us note that the spherical harmonics have a global support, so the decomposition coef-
�cients encapsulate necessarily global information about the shape. Decomposition using other
sets of bases has been considered in the literature, like Fourier descriptors [Staib & Duncan

1992], and more recently wavelets [Nain et al. 2007,Yu et al. 2007]. The latter have a non-global
support, and in principle each coe�cient can carry local shape information.
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1.3 Medial axis representations

1.3.1 Medial axis and medial axis transform

[Blum 1967, Blum & Nagel 1978] introduced the medial axis transform as a shape
descriptor, originally for a biological application context. The medial axis transform is based on
the notion of a shape medial axis. Formally, the medial axis, or topological skeleton, of a shape
is de�ned as the set of points with more than one closest point to the shape boundary. It turns
out that the medial axis forms a tree-like hierarchical structure, intuitively similar to a sort
of an object �backbone�. The medial axis transform (MAT) is de�ned as the medial axis plus
information about the largest inscribing spheres to any of its points. Most of the algorithms for
computing the MAT typically require a binary segmentation of the object as input [Golland
et al. 2000,Leymarie & Levine 1992].

1.3.2 Medial representations (m-reps)

M-rep is a representation based on the medial axis and the medial axis transform. M-reps
come to amend weaknesses of the medial axis transform representation. Namely, the medial axis
is di�cult to manipulate in its continuous version, and is not robust to noise, in the sense that
small surface perturbations can cause changes in the medial axis [Fletcher et al. 2001]. The
m-rep is de�ned as a structure made up of so-called medial atoms. Medial atoms are objects
sampled over the shape medial axis, from which the entire medial axis (and the original shape
itself) can be reconstructed. Each medial atom thus encapsulates information about the medial
axis in its immediate neighborhood. The mesh of the medial atoms forms a structure referred
to as a medial surface. With the exception of atoms on the medial surface edge and branch
positions, each medial atom de�nes two equal length vectors, named the �port vector� and
�starboard vector�. These vectors are incident and normal to the shape surface at their ends.

A medial atom is de�ned as a four-tuple

m = {x,R, F, θ},

where x ∈ R is a position on the medial axis, R is the radius of the inscribing sphere, θ is one
half of the angle between the port and the starboard vector. F is a three-dimensional frame
with origin at x and �tted to the geometry of the medial axis. The frame F is a rotation of the
standard Euclidean basis ; the �rst basis vector is de�ned as the bisector of the port and the
starboard vector, the second is perpendicular to the �rst, so that together they span the plane
tangent to the medial surface on x. The remaining frame vector is the normal at the same point
x.

Simple enough shapes can be described using a single medial atom mesh. If needed, hinge
atoms can be added to the main medial atom mesh, so as to represent protrusions or intrusions
on the original shape (�g. ??). In this manner, complex objects can be represented as a collection
of connected sub-objects.

1.4 Distance transforms

A shape descriptor conceptually related to the medial axis transform, also with reference
to the object surface, is the distance transform [Leventon et al. 2000,Golland 2000]. The
distance transform is a function of the original object voxels, where each voxel is assigned a
scalar equal to the distance of the given voxel to the surface. Hence surface points are by
de�nition assigned a value equal to zero. Points outside the boundary are assigned a negative
distance. Like the MAT, distance transforms can be easily computed given a binary map of the
target object.
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1.5 Landmark-based representation

Landmark-based methods represent shape using a set of discrete points scattered over the
target shape in a speci�c manner. These points can be placed along the shape boundary, such
as in a point-distribution model (PDM) [Cootes & Taylor 1995]. Using an interpolant be-
tween these points produces the continuous original surface. We can alternatively have a full
net of control points distributed across the whole volume of the target shape [Cootes et al.
2008]. Again, exact positions for the points in-between the control points is computed using
interpolation.

Proper positions for the landmarks can be determined manually, to identify special loca-
tions [Bookstein 1996]. Such locations can be for example the position of the �ngertips in
a set of human hand shapes, the position of bone connections in a set of body shapes, or the
position of the hippocampi or other structures in a set of brain MR images. However, manual
positioning of the landmarks can be a very challenging and time-consuming task, especially
in 3D. Methods exist therefore for automatic placement of landmarks, exploiting the semanti-
cal value of geometrical properties such as curvature [Pennec et al. 2000]. In [Cootes et al.
2008] grids of control points are initialized to a uniform distribution across the shape area, in a
multiresolution manner. Finding the correct positions for the control points in this case, when
done with respect to a speci�c template, is essentially equivalent to non-rigid image registration
(which we shall see in more detail below). Group-wise landmark position optimization has been
considered in [Davies et al. 2001,Davies et al. 2008], determining correspondence between and
in the context of a speci�c group of shapes.

1.6 Deformation vector �elds with respect to a template

The representation of this type is based on non-rigid matching of a template shape to an
input shape. The resulting registration produces a vector �eld, that is one vector per original
shape voxel. This vector �eld forms a dense correspondence between the template and the
input shape. Numerous models have been proposed which focus on producing a correspondence
mapping that is di�eomorphic [Beg et al. 2005,Cootes et al. 2008,Vercauteren et al.
2008,Vercauteren et al. 2009]. A di�eomorphism is a one-to-one mapping f , where both f
and its inverse f−1 are di�erentiable. In practice, this means that in matching the template to
the input shape no tearing or folding is allowed, which is a desirable trait when it comes to
dealing with anatomical data.

Given a training set of a number of shapes, using a single template provides a common
coordinate frame for the shape descriptors. The shape that plays the role of the template can
be picked out of the training set, or can be a pre-computed standard image. Choosing a single
template shape can bias the representation, and methods that create multiple templates have
been proposed [Blezek & Miller 2007,Sabuncu et al. 2009,Sfikas et al. 2010A]. However,
there is no straightforward way to use a multiple template collection as a common coordinate
frame, to the end of representing shape in our case.

Deformation vector �elds have been widely used in modeling medical imaging anatomical
data (whole 3D brain volume [Ashburner et al. 1998], cortical surfaces [Thompson et al.
2000], hippocampus [Joshi et al. 1997], and cingulate gyrus [Csernansky et al. 2004]).

2. Feature vector space as a model basis

Building a feature vector given a speci�c shape model can be done by simply concatenating
model parameters into a single vector. Each variate contains a di�erent model parameter, with
care taken for the concatenation to be always in the same order when we are dealing with
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modeling a set of multiple shapes.

Let y ∈ RD be the produced feature vector, assuming D parameters, and in the general
case where all parameters are real scalars. This representation immediately implies a space of
dimensionalityD where feature vectors reside. Further statistical analysis can then be performed
in terms of this space.

3. Conclusion

In this thesis we shall use deformation vector �elds with respect to a template to describe
shape. We use Di�eomorphic demons [Vercauteren et al. 2008] to register shapes one to
another and produce the required deformation �elds. 1 The template is chosen as the shape
with the minimum sum of distances to the rest of the shapes, where shape distance is de�ned
as in [Gerber et al. 2009] (see also chapter 3 for a related discussion of shape distance).

Using a deformation �eld for shape description �and any of the methods described in this
section, up to a certain degree� in spite of its usefulness, produces a representation that is in
general non-compact, and a feature vector space that is non-dense (or non-speci�c, using the
terminology of [Davies et al. 2008]). In this sense, our current choice of shape representation is
a component that could be replaced with any of the other alternative presented in this chapter,
leaving the rationale of the proposed pipeline and model intact. In the next chapter we shall
discuss how to produce a compact representation of shape, and its relation with its non-compact
peer.

1. We have used and adapted code from http ://www.insight-journal.org/browse/publication/644 and
http ://darwin.bio.uci.edu/ cestark/roial/Distribution/source/DemonsRegistration.cxx .
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In the previous chapter, we discussed shape representation, and we reviewed a number of re-
lated parametric models. However, regardless of the speci�c model of parametric representation,
the following contradiction typically arises : on the one hand, the more parameters the model
uses, in general the higher the �delity to the actual shape ; for example, a 2563 voxel grid would
allow us much more detail for a three-dimensional shape than a 1283 voxel grid. On the other
hand, data variability is represented by a very low number of degrees of freedom. For example, a
set of geometrical objects that would di�er only in their size would have exactly 1 (one) degree
of freedom, corresponding to scale. As another example, let us consider a dataset of structural
brain MR images. A generic shape description model would fail to capture a priori the intrinsic
structure of any brain MR image, such as the fact that the external voxels correspond to skull
voxels, or that the brain is quasi-symmetric in structure and the two hemispheres are joined
by the corpus callosum, etc. In model terms, a representation with a large disparity between
the number of possible model parameters and the number of actual degrees of freedom is not
compact.

A non-compact representation can be problematic in a number of ways. Aside from the
obvious fact that a non-compact model is by de�nition more �expensive� than it should, high-
dimensional models are characterized by what is known as the curse of dimensionality in the
literature [Bellman 1961]. The curse of dimensionality, in brief, expresses that in order to build
useful models over a given space, a number of training data that is in exponential relation to
the number of the space dimensions is required. If not, then any model, be it discriminative or
generative, built on the high-dimensional space in question runs a serious risk of having very
poor inductive properties.

In anatomical population analysis, training sets are at the very best in the order of 1000
subjects [Jack Jr. et al. 2008], so a means to cope with the high dimensionality of the data
is required. Taking advantage of a priori information on a given pathology can and has been
used. Examples of such information include extracting and working with particular tissues and
brain regions of interest that are known to be the most a�ected, instead of working with the

17
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Figure 3.1 � Illustration of the manifold data structure hypothesis. The data are formally
vectors in a high-dimensional space �the �ambient space��, yet they can only cover a very small
part of it �the �embedding�. Here, for the purpose of visualization the ambient space is 3-
dimensional and the embedding is 2-dimensional. In practice, the di�erences of dimensionality
between the ambient space and the embedding can be several orders of magnitude greater.

whole brain. Feature selection methods [Fan et al. 2007,Morra et al. 2010] and recently
foremost dimensionality reduction or manifold learning methods [Gerber et al. 2010,Pless &
Souvenir 2009,Tenenbaum et al. 2000,Wolz et al. 2010] are used to the end of remedying the
undesirable e�ects associated with working with high-dimensional, sparsely populated spaces.
In this thesis we shall work with the latter solution, that of manifold learning.

In the following sections of this chapter, we �rst see the basic hypotheses underlying manifold
learning. We discuss the important issue of de�ning a suitable distance metric, that will capture
manifold topology. We choose the distance metric we shall use in this work, and see how to
estimate the manifold with Isomap.

1. Manifold hypothesis

In manifold learning methods, we postulate that the space of possible shapes forms a low-
dimensional continuous manifold, occupying only a small volume fraction of the containing
space. In other words, data are assumed to lie on or close to a manifold. We shall refer to this
assumption as the �manifold hypothesis� (see �g. 3.1). This idea has been introduced originally
for natural images [Donoho & Grimes 2006,Lu et al. 1998]. The parametrization of the low-
dimensional embedding, or intrinsic parametrization, is often found to have a very intuitive
character [Lu et al. 1998,Pless & Souvenir 2009,Tenenbaum et al. 2000,Thayananthan
et al. 2006,Vik et al. 2007] such as lighting, pose or scale of the imaged object. Principal
Component Analysis (PCA) [Bishop 2006] in the context of image analysis (e.g. [Vik et al.
2007], or the Eigenfaces model [Turk & Pentland 1991] among others) can be considered
as a model adhering to the image manifold hypothesis, in its most simple form. The resulting
eigenanalysis bases of PCA form a subspace, that is clearly a smooth manifold, constrained
to be �at everywhere. In real problems however, the �atness / linearity constraint can easily
prove to be an inadequate assumption : in [Donoho & Grimes 2006], a set of simple arti�cial
examples is presented, where the articulated image produces curved manifolds even in the case of
articulations as simple as a rigid translation ; in [Lu et al. 1998], sets of face images are studied,
and found to form manifolds which have a curvature too high to be considered linear. The
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Figure 3.2 � Illustration of manifold learning. Geodesic distances between point pairs in the
ambient space (left) are preserved as Euclidean distances between images of the same points in
the reduced space (right).

application of the manifold hypothesis and learning covers a wide �eld spectrum, which includes
tracking [Nascimento & Silva 2010], content-based image retrieval [Sparks & Madabhushi

2011], image registration [Wachinger & Navab 2010], pose estimation [Thayananthan et al.
2006,Ptucha et al. 2011]. In the context of medical imaging, low-dimensional representations
of medical data have been used including both linear [Vik et al. 2007,Zhou et al. 2011] and
nonlinear models [Cao et al. 2011,Fletcher 2004,Gerber et al. 2010,Hamm et al. 2010,
Wachinger et al. 2010,Wachinger & Navab 2010,Wolz et al. 2010,Wolz et al. 2010,
Zhang et al. 2006]. The reader may also refer to the related section of chapter 7 for a summary
of applications of the manifold hypothesis in medical imaging.

2. Manifold learning

We assume an input set Y of N shapes, under a common representation framework. In this
work, we have used deformation �elds to describe shape for our experiments (see chapter 2). All
members of Y = {yn}Nn=1 reside in a space of dimensionality D, which we shall call the ambient
space Y. Formally, the manifold hypothesis consists in the assertion that the same elements are
at the same time constrained to lie on a continuous manifold X ⊂ Rd, d� D, embedded in the
containing, ambient space Y. We consider all points / shapes y ∈ Y to be related to x ∈ X as

y = g(x) + noise, (3.1)

where g de�nes a mapping g : X → Y and x corresponds to the intrinsic parametrization or
coordinates of datum y over the embedding X . The noise parameter expresses a (small) margin
of model misrepresentation. We are not interested in a more precise form for the mapping g for
the moment, as our goal here is to obtain the compact representation for our shape set, that is
pass from yn to xn. We discuss again the mapping g in chapter 6.

We can learn the values xn ∈ X for our observation set Y using manifold learning techniques
[Pless & Souvenir 2009,Van der Maaten et al. 2009]. Numerous algorithms have been
proposed to learn a nonlinear manifold such as locally linear embedding [Roweis & Saul

2000], Hessian eigenmaps [Donoho & Grimes 2003], semide�nite embedding [Weinberger

& Saul 2006], Laplacian eigenmaps [Belkin & Niyogi 2003] and Isomap [Tenenbaum et al.
2000]. Isomap remains one of the most widely used manifold learning methods, and it is the
algorithm we use in this thesis.
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Figure 3.3 � The swiss roll dataset. Results of various manifold learning algorithms.
Only Isomap captures the data structure correctly. Image produced using software in
http ://www.math.ucla.edu/ wittman/edu

2.1 Learning the manifold with Isomap

Isomap works by computing an isometric mapping of a dataset. In other words, the Euclidean
distances between all points of the output set X = {xn}Nn=1 are constrained to be equal (or
reasonably close) to geodesic distances taken as input, for all corresponding interpoint distances
in Y (see �g. 3.2). Geodesic distance is de�ned as the length of the shortest path that links
two points ya, yb and all points of this path are part of the embedded manifold. The input in
Isomap can be regarded as a N × N matrix D with Dij = d(yi, yj), where d(·, ·) is the input
distance operator. Based on this matrix, Isomap constructs k-nearest neighbor neighborhoods
and computes shortest paths over the new induced graph, where each point is a vertex forming
edges with its neighbors (Floyd-Dijkstra algorithm). This produces the output geodesic distance
matrix DG. Isomap then relies on the Multi-dimensional scaling (MDS) algorithm [Cox et al.
2000]. MDS determines the new points {xn}Nn=1, constraining them to miminize the cost

argmin
x1,x2,··· ,xN

∑N
n=1

∑N
m=1,m6=n(‖xn − xm‖2 −DGnm)2∑N
n=1

∑N
m=1,m6=nD

2
Gnm

. (3.2)

Note that in classical MDS, the original distances D are used in place of DG. See �g. 3.3
for an illustration of using Isomap, MDS and the linear PCA on a test dataset.
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2.2 Distance metrics

The hypothesized distance metric between data is a de�ning aspect of the induced em-
bedding. The distance metric can be used to induce topological properties for a given space
[Munkres 2000]. Otherwise, moving over the manifold has the meaning of in�nitesimal defor-
mations that gradually transform shape ya to shape yb. Hence, the manifold geodesic distances
are expected to mesure intuitive distance between shapes. Di�erent metrics are expected to
capture di�erent notions of shape di�erence, and prioritize di�erent aspects of shape as more
important and more responsible for shape di�erence.

In this work we have used a deformation �eld induced distance [Gerber et al. 2009,Al-
jabar et al. 2010,Vercauteren et al. 2009] based on the estimation of a di�eomorphic map-
ping between the two shapes or images. Di�eomorphisms, i.e. transforms that are everywhere
smooth and invertible, are widely used in computational anatomy [Beg et al. 2005,Trouvé
1998,Durrleman et al. 2008] to assess shape di�erence. In the widely used LDDMM frame-
work [Trouvé 1998], a �ow of di�eomorphic transformations is constructed on coordinates of
the shapes to be matched. Here we follow the related framework and discussion as is posed
in [Gerber et al. 2009,Gerber et al. 2010], and consider the di�eomorphism in terms of a
time-varying vector �eld. We denote the di�eomorphic coordinate transformation as φ(x, 1),
where φ(x, t) = x+

∫ t
0 u(φ(x, τ), τ)dτ) and u(x, t) is a smooth, time-varying vector �eld. A Rie-

mannian metric can be de�ned on the space of di�eomorphic transformations [Gerber et al.
2010] as

d(yi, yj) = minu

∫ 1

0
‖u(x, τ)‖L dτ

s.t.

∫
Ω
‖yi(x+ φ(x, 1))− yj(x))‖22 dx = 0

The metric prioritizes the possible mappings, and with an appropriate choice of the di�erential
operator L, can ensure smoothness. For two shapes that are relatively similar to one another,
we can approximate the coordinate transform by a single vector �eld, because the velocities of
the geodesics are smooth in time [Younes et al. 2009]. Formally we have

φ(x, 1) ≈ u(x, 0) = v(x), and d(yi, yj) ≈ minv ‖v(x)‖L (3.3)

subject always to the condition that the di�eomorphism matches well enough the two shapes
of the pair to be matched. Assuming that the distance between the given shapes is small is
legitimate, since the manifold learning layer is based on distances between nearby samples
(larger distances are eventually disregarded anyway, due to the isomap Floyd-Dijkstra step).

We again follow [Gerber et al. 2010,Aljabar et al. 2010] and de�ne the di�erential
operator L as αO+ (1− α)Id. Finally the formula for our distance in eq. (3.3) becomes

d(yi, yj) =

∫
Ω
α ‖Ov(x)‖2 +(1− α) ‖v(x)‖2 dx. (3.4)

where we set α = 0.9 [Gerber et al. 2010]. 1. In practice, a symmetrized version of the resulting
distance matrix is fed to Isomap. Note that it is an open problem to show that the resulting
distance metric satis�es the triangle inequality and hence is a metric or a semimetric [Gerber
et al. 2010].

There are several other options for distance metrics in use in the literature in similar con-
texts. A related, recently proposed framework is that of currents [Durrleman et al. 2008,Vail-
lant & Glaunes 2005]. Under this framework, shapes are represented as mathematical objects

1. We have used Di�eomorphic demons [Vercauteren et al. 2008] to register shapes and produce the
required deformation �elds. We also used the same method in section 2 to create shape descriptions.



22 Chapter 3. Compact representation with manifold learning

that encode normal vectors of surfaces, which are in turn elements of a vector space equipped
with a computable distance. In this manner, a matching is performed not only in terms of ex-
trinsic volume coordinates, but also based on intrinsic values as are the surface normal vectors,
resulting theoretically to a more elaborate result.

Possibly the most inexpensive alternative would be a voxel-to-voxel distance. As reported in
the literature [Gerber et al. 2009,Souvenir & Pless 2007,Twining & Marsland 2008], a
direct application of a measure such as a L1 or a L2 distance is in general not the most suitable to
capture shape di�erences. However, measured over pairs of (usually a�nely or rigidly) registered
images, it has given useful results in a number of related medical imaging applications [Blezek
& Miller 2007,Wolz et al. 2010,Wolz et al. 2010]. Other distance metrics used for comparing
shape include normalized mutual information [Studholme et al. 1999,Wolz et al. 2010],
normalized cross-correlation [Aljabar et al. 2010] and the Hausdor� distance [Souvenir &

Pless 2007,Thayananthan et al. 2006].

3. Conclusion

Under the manifold hypothesis, the duality ambient space - reduced space (or ambient space
- embedding) is introduced. On the one hand, we have the ambient space which is directly
observable (usually) but high-dimensional and sparsely populated, while on the other hand the
reduced space is latent but low-dimensional and densely populated, in the sense that ideally
all of its points correspond to a possible discrete observation. The spirit that characterizes all
cases, regardless of application, is that provided the data do indeed lie in a low-dimensional
embedding, one can produce a model that represents the data more faithfully and compactly
than models that neglect this intrinsic structure. Classi�cation, clustering, anomaly detection,
population comparison can thence be performed over the dimension-reduced data instead of
the original space input. To the extent that the dimension-reduced space is free of the curse of
dimensionality, the above operations will be performed in a more robust and reliable fashion
than without dimensionality reduction.

One of the main focuses of this thesis is to build a discriminative model capable of tracking
the exact structural di�erence that is responsible of the model class di�erence. We discuss this
point in the next part of this thesis, where we also show that compactness proves to be a crucial
trait for the achievement of our claims, through the proposed model.
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Introduction

In this part we discuss the discriminative and generative components of the model, and we
examine how to put them together as a working processing pipeline. Our model is built on
the compact representation layer, which was presented in the previous part. The discriminative
model is essentially a SVDD, one-class machine, built over the reduced dimension embedding
previously discussed. Aside from providing a decision function which tells us which part of the
shape space can be considered �normal� or �abnormal�, the SVDD model can also allow us to
estimate the so-called discriminative di�erence or discriminative pattern between class members
and class non-members. In the �nal section of this part, we discuss how we can generate new
shapes with regression, and review all the presented model components as a whole. We use
datasets of geometric and synthetic anatomical shapes, where we train our model and show that
its compact, non-linear qualities �stemming from the fact that it deals inherently with shape
as a low-dimensional, non-linear manifold structure� render it more powerful. We illustrate this
point by showing that the proposed discriminative trajectory, as part of the present model,
reveals discriminative di�erence in detail that would not be achieved by a non-compact model.
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The basic premise of any discriminative model is as follows : given a number of objects,
partitioned into a number of classes, infer class membership for a new unseen object. In this
thesis we focus on one such discriminative model, the support vector data description (SVDD)
model [Sakla et al. 2011, Sjöstrand et al. 2007,Tax & Duin 1999,Tax & Duin 2004].
In the shape analysis context, the role of a discriminative model �such as SVDD� is, simply
put, to tell if a target shape can be categorized as part of a learned class of shapes, or not. In
forthcoming sections we shall examine applications of SVDD other than classi�cation.

Even if SVDD is based on a one-class versus-all philosophy, it can in principle be extended
to a multi-class model [Lee & Lee 2007,Yang et al. 2011]. In [Lee & Lee 2007] for example, a
di�erent support for each class is trained. Then, a classi�er is built using Bayes optimal decision
theory with the class-conditional densities being approximated using the SVDD boundaries.
The resulting model competes fairly with other classi�cation techniques, with similar or better
results.

In what follows we shall present elements of the SVDD framework, and then brie�y review
some models closely related to SVDD from a theoretical standpoint.

1. Support vector data description theory elements

Support vector data description (SVDD) is a one-class support vector learning method [Tax
& Duin 2004] used for novelty / outlier detection. The main idea in SVDD is to approximate
the support of data a priori tagged as normal using a hypersphere. Thence the support is
used typically for classi�cation of new unseen data as normal or abnormal, depending if they
happen to lie respectively inside or outside the SVDD support. In the context discussed here
for example, the healthy normal control group plays the role of the SVDD normal class.

Consider a hypersphere with center a and radius R, and the normal, training data set X
consisting of objects {xn}Mn=1 ∈ C with C ⊂ Rd. Consider also measures ξn for each datum ;
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these measures form a penalty term for data lying outside the hypersphere boundary. In SVDD
learning, we wish to minimize the SVDD hypersphere radius R while keeping the ξn penalties
in check. Formally this is expressed as solving

arg min
R,a,ξn

R2 + C

M∑
n=1

ξn,

s.t. ‖xn − a‖26 R2 + ξn, ξn > 0, n = 1, · · · ,M, (4.1)

where C is a parameter controlling the trade-o� between the relative importance of minimizing
the hypersphere radius R, versus minimizing the penalties ξn. Optimally ξn =‖xn−a‖2 −R2 for
data outside the hypersphere of radius R and center a, and ξn = 0 for the rest. Larger values
for C result in greater hypersphere radius R, and larger estimated support area. In practice,
parameters C and slack variables ξn allow for a number of the training set to be �nally labelled
as outliers, in the interest of computing a more compact support.

The optimization problem of eq. (4.1) can be reformulated in dual form [Park et al. 2007,
Tax & Duin 2004] as

argmax
α

M∑
n=1

αnx
T
nxn −

M∑
n=1

M∑
m=1

αnαmx
T
nxm,

s.t.
M∑
n=1

αn = 1, αn ∈ [0, C], n = 1, · · · ,M, (4.2)

where αn are M Lagrange multipliers, α = [α1α2 · · ·αM ]. Eq. (4.2) is a quadratic optimization
problem with linear constraints. It can be solved using interior point methods [Wright 2005].
Since its objective function is strictly concave, it has a unique solution.

The basic assumption of SVDD in the form introduced here, that is that the support to be
approximated has the form of a hypersphere, is quite limiting. The hypersphere form constraint
can be relaxed by means of mapping the original data to an auxiliary space F , called feature
space. This mapping is typically nonlinear. The solution is obtained using the so-called kernel

trick or kernel substitution [Bishop 2006,Shawe-Taylor & Cristianini 2004,Lemm et al.
2011]. The kernel trick, most notably also used in SVM, is based on the observation that the
input data appear in the problem formulation exclusively through inner products. These inner
products can be replaced by a corresponding kernel function between the same input data.
Kernel functions are functions of the form k : Rd × Rd → R, satisfying the condition that for
any choice of points X in Rd the matrix K formed as Knm = k(xn, xm), with xn, xm ∈ X,
must be positive semi-de�nite. Hence in this notation, we have k(xn, xm) = φ(xn)

Tφ(xm). The
replacement of inner products by valid kernel functions -valid in the sense that they satisfy the
semi-de�nite positivity condition- implies that the transformation x 7→ φ(x) [Bishop 2006] does
not need to be de�ned explicitly in practice. Equation (4.2) presents the trivial case, termed
linear kernel in the literature, where φ(x) = x and k(xn, xm) = xTnxm. Using kernel choices
other than the linear kernel leads practically to a SVDD support form that is more �exible
than the standard hypersphere. In fact, the support does not in this case form a hypersphere in
the original space but it does form a hypersphere in feature space F , where the function φ maps
the input x to. A hypersphere in the feature space produces an arbitrary form in the original
space X, this form depending on the choice of k(., .), and consequently on φ(.).

In this work, we shall assume a Gaussian kernel function, k(xn, xm) = exp(−d2C/σ2), with dC
the distance metric in the original space C, typically the Euclidean dC =‖xn−xm‖. The notation
k(., .) will refer to the Gaussian kernel unless otherwise stated. The Gaussian kernel is used
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extensively already in contexts other than SVDD, most notably in support vector machines.
For kernel bandwidth σ → +∞, the SVDD solution tends to the solution under the linear
kernel [Tax & Duin 1999], so that the Gaussian kernel can also be viewed as a convenient
generalization of the trivial linear kernel. Mapping using a nonlinear kernel comes in handy
versus a linear kernel when the number of observations is much larger than the number of data
dimensions [Hsu et al. 2010], which is the case with the reduced-dimension data we shall use.
The dual problem of SVDD is reformulated [Park et al. 2007] as

argmin
α

M∑
n=1

M∑
m=1

αnαmk(xn, xm),

s.t.

M∑
n=1

αn = 1, αn ∈ [0, C], n = 1, · · · ,M, (4.3)

where k(xn, xn) = 1 for the RBF (here Gaussian) kernel. After optimizing over α, the hyper-
sphere radius that abides to the constraint expressed in eq. (4.1) is given by

R2 = 1− 2

M∑
n=1

αnk(xn, xs) +

M∑
n=1

M∑
m=1

αnαmk(xn, xm), (4.4)

where we used dC(x, x) = 0, which must hold for any true metric dC . Also, xs stands for any
support vector lying on the hypersphere surface. The SVDD decision function [Sakla et al.
2011,Tax & Duin 1999] for an unseen point x is

fSV DD(x) = R2− ‖φ(x)−
M∑
n=1

αnφ(xn)‖2=

M∑
n=1

αnk(xn, x)−
1 +

∑M
n=1

∑M
m=1 αnαmk(xn, xm)−R2

2
. (4.5)

Non-negative values of fSV DD correspond to points estimated to be part of the support, or
normal. Negative values are considered lying outside the support, or outliers. See �g. 4.1 for an
illustration of support estimation with SVDD.

2. Related models

2.1 Support vector machines

Closely related to the SVDD, and historically much prior to the SVDD, is the celebrated
Support Vector Machine (SVM) [Cortes & Vapnik 1995]. The SVM assumes two classes.
These classes are divided by a hyperplane in the feature space. The dividing hyperplane in the
SVM is essentially the counterpart of the hypersphere as used in the SVDD.

Let X be the training set consisting of objects {xn}Mn=1 ∈ C with C ⊂ Rd. A priori we also
know the set of labels {yn}Mn=1 ∈ {−1,+1}, with yn = +1 if datum xn belongs to class A,
and yn = −1 if datum xn belongs to class B. The training of SVM seeks to �nd a hyperplane
that separates the data, under two constraints. The �rst constraint seeks to reward separating
hyperplanes with a large margin �where margin is the distance from the closest datum to the
separating hyperplane. The second constaint seeks to minimize the number of wrongly classi�ed
training data. Formally we have

argmin
w,ξn

1

2
‖w‖ +C

M∑
n=1

ξn,
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(a) (b)

Figure 4.1 � Support estimation with SVDD. Green circles are normal data, red crosses are
abnormal data. The normal data support corresponds to the beige-color �lled area. (a) The
original (shape) space. (b) The feature space. The support boundary forms a hypersphere in
the feature space. This translates to a nonlinear structure in the original space.

s.t. yn(w
Txn − b) > 1− ξn, n = 1, · · · ,M, (4.6)

where w is a vector controlling the margin of the hyperplane, 1/ ‖w‖ is the margin of the
hyperplane, b is a scalar bias term, and [ξ1ξ2 · · · ξM ] are slack variables. These slack variables
allow for the corresponding data to be classi�ed on the wrong side of the hyperplane, if need
be. C is a user-de�ned parameter controlling the tradeo� between the two optimization goals,
that is maximization of the margin and minimization of the number of wrongly classi�ed data.

The problem as stated in eq. (4.6) can be reformulated in its dual as follows [Cortes &
Vapnik 1995,Bishop 2006]

argmax
α,ξn

M∑
n=1

αn −
1

2

M∑
n=1

M∑
m=1

αnαmynymx
T
nxm,

s.t. ξn > 0 n = 1, · · · ,M. (4.7)

Note the similarities of the above with the SVDD problem formulation (section 1. of this
chapter). The problem formulation allows use of the kernel trick here as well. The SVM decision
function is given by

fSVM (x) =
M∑
n=1

αnynk(xn, x) +

∑
n∈S yn −

∑M
n=1

∑M
m=1 αmymk(xn, xm)

|S|
, (4.8)

where S is the set of support vectors (αn = 0). The interested reader is referred to [Cortes
& Vapnik 1995] or [Bishop 2006,Shawe-Taylor & Cristianini 2004] for more details on
support vector machine theory and applications.
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2.2 One-class support vector machines

At about the same time with SVDD, the one-class support vector machine (OCSVM) was
introduced [Schölkopf et al. 2001]. Intuitively, the object separating normal examples from
abnormal in OCSVM is a hyperplane, like in SVM, which is set to separate input data points
from the origin. The solution of SVDD and that of OCSVM are shown to be equivalent, when
the chosen kernel is a radial basis function [Sjöstrand et al. 2007], such as the Gaussian
kernel.

3. SVDD in shape analysis

Let us put the SVDD discussion in the more special context of analyzing shapes. First, we
need to de�ne the original space C as a space representing shapes. We have already reviewed a
number of ways to describe shape in section 2.

Assuming that small distances correspond to similar shapes, then the SVDD support, as
it de�nes a continuous area characterized by small distance to all or part of the training set,
de�nes equivalently the set of shapes considered as close enough to the input to be considered of
a similar enough shape. For example, a shape with a deformity that does not appear in any of the
shapes of the training set would lie outside the SVDD support, and thus be labelled abnormal.
Likewise, in a neurodegenerative disease setting, a tissue with a deformity (or deformities)
not apparent in the control group should be tagged as pathological. This is the case for the
hippocampus dataset that we shall examine in chapter 8. The idea of using shape as a disease
biomarker [Tarawneh & Holtzman 2010], that is to classify subjects according to their
progress with respect to a given neurodegenerative pathology, has been recently extensively
used and is an active �eld of research (see for example [Cuingnet et al. 2011]).

4. Conclusion

In this chapter we have seen the formal de�nition of the SVDD, the SVM and the one-class
SVM. The SVDD is a one-class classi�er. Our focus in this work is not classi�cation in itself,
as much as using the induced discriminative model to extract information about what kind of
shape di�erence is responsible for the class di�erence. We review this in the following chapter.
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In this chapter, we shall discuss the following question : given a set of shape data, what is the
type of shape di�erence that discriminates best between objects that belong to a given class and
objects that do not ? The answer implies the existence of a discriminative model trained on the
data, which however does not answer the question by itself. We shall present a novel solution to
the problem, that is based on SVDD and which we call discriminative trajectory. Related work,
where the concept was originally posed, is based on the 2-class SVM. Golland et al. [Golland
2000,Golland 2001,Golland et al. 2005] proposed the SVM-based discriminative direction,
and other related proposals have followed [Koutsouleris et al. 2009,Zhou et al. 2008].

In a medical context, the question is of special importance, as object class may refer to the
object (organ, tissue) and associated subject being diagnosed with a certain pathology or not.
Thus, looking for the discriminative shape di�erence in this case can unveil details of pathology
development in terms of structural change.

1. Estimating discriminative di�erence with SVDD

In this section, we introduce a method to estimate discriminative di�erence, suitable for
SVDD models. This estimate comes in the form of a discriminative trajectory, which is de�ned
explicitly as a process of shapes, given an initial shape x. Each moment of the process is in turn
de�ned as a projection on a speci�c data support trained using SVDD. We must hence �rst
discuss the de�nition of this special projection, to which we shall refer as SVDD projection.

1.1 SVDD projection

In [Park et al. 2007], the SVDD theory is used in a denoising application. Given a noisy
pattern x and an SVDD ball trained on a set of normal, noiseless data, the closest point of the
SVDD support to the noisy pattern will be a denoised version of x. We shall call this point the
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SVDD projection of x and represent it by pR(x), where R is the optimal hypersphere radius
(eq. (4.4)). Formally, given the space C where data reside, the SVDD projection can be thought
of as a mapping pR : C → C. Based on the idea of the SVDD projection for denoising, we
use the same theoretical tool in the context of shape analysis. Principally, the di�erence with
denoising is that the noise that is to be eliminated is identi�ed here as shape features that are
uncharacteristic of normal data.

For the sake of illustration let us consider a set of geometric shapes de�ned as normal,
for example the set of all geometrical solids having exactly �ve faces which would include any
pentahedron including a normal pyramid (see �g. 5.1). Consider a pyramid with a sawed-o� top.
Given a pertinent topology and metric for C, this object would be considered abnormal, since it
has six faces. The projected image of this new object, so to speak, should be a pyramid, since as
a shape, compared with the other shapes in the normal set, the pyramid is perceptually closest
to the sawed-o� top pyramid in comparison to other �normal� structures, such as a �ve-face
prism.

Figure 5.1 � Illustration of the projection on the normal data support. The shape description
space C is partitioned in normal and abnormal data, lying correspondingly inside and outside the
shaded area. The set of normal shapes is comprised of �ve-face geometrical solids. This partition
consequently labels a pyramidal shape as normal. A truncated pyramid with a sawed-o� top is
tagged as abnormal, since it comprises six faces. The dotted line joining the truncated pyramid
to the pyramid illustrates the notion of projecting an abnormal datum to its corresponding
normal datum image.

In the context of a SVDD-inferred support, this operation is captured by the SVDD pro-
jection, that is the projection of the abnormal datum on the normal support. If we should see
the problem in terms of denoising as in [Park et al. 2007], the noise would here be represented
in the sawed-o� top of the new pyramid - provided that the distance metric between geometric
solids has been appropriately de�ned.

The de�ning aspect about the SVDD projection is that it does not only serve as a means
to map noisy patterns onto normal patterns, but also that patterns are mapped speci�cally to
the closest normal datum. In the shape analysis context, this means that through the SVDD
projection shapes undergo just enough deformation required to become normal. More particu-
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larly in the neurodegenerative disease setting, the SVDD projection would result in the image
of the healthy tissue that is at the same time the closest to the input pathological tissue.

The SVDD projection of any given input x ∈ Rd can be computed �supposing that d is
not too large� simply with a grid search at the neighborhood of the input training data. Out
of all points full�lling fSV DD(.) ≥ 0 (eq. (4.5)), the point closest to the input x is the SVDD
projection. In [Park et al. 2007], a non-brute force method to compute the SVDD projection is
proposed. The projection is computed �rst on the feature space in terms of its kernel product.
Then, its preimage on the original space is estimated. This latter method is independent of d,
however the end-result depends on the estimate quality issued on the preimage step. In our
experiments we used the grid search method when d was su�ciently small, falling back to the
method of [Park et al. 2007] when grid search proved prohibitively expensive.

1.2 Discriminative trajectory

Previously we have discussed the basic concepts of SVDD theory and introduced the idea
of the SVDD projection, as a projection onto the support induced by the training, �normal�
data. Let us consider the set of continuous paths ∆ between an abnormal point x and its SVDD
projection pR(x) given the hypersphere (R, a). Both endpoints x and pR(x) are lying in space C.
Any element γ ∈ ∆ can be written as a parametric continuous function γ : u ∈ R 7→ γ(u) ∈ C,
where γ(0) = x and γ(1) = pR(x).

In the context of shape analysis, where C is a space where elements represent shapes and
distance corresponds to shape dissimilarity, continuous movement in C represents gradual shape
change. For the sake of illustration, assume C to be the voxel space, i.e. each vector of C is
an ordered grouping of all volume voxel intensities. Movement from γ(u) to γ(u + du) then
represents shape change in the sense of in�nitesimal change in the value of some or all voxel
values. Another choice is to assume C to be the space of all 3D deformation vector �elds, with
respect to a given volume-template. A movement along γ would then represent a change in
the sense of an introduced quantum of deformation, or in other words that an in�nitesimal
amount of contraction or dilation is introduced in a part or all areas of the shape. The same
observations would be also valid as if we were discussing a continuous path not in∆. For elements
in γ ∈ ∆ in particular, movement from γ(u) to γ(u + du) can be interpreted as in�nitesimal
shape movement towards the normal element pR(x) if du > 0, or in�nitesimal shape movement
towards the abnormal element x if du < 0.

We are interested in a speci�c path δ ∈ ∆, de�ned as a series of SVDD projections for all
valid values of the hypersphere radius. We saw already that by de�nition a SVDD projection
regardless of parameters lies on the ‖φ(x)‖ = 1 hypersphere, and has a valid preimage. As such,
δ is well-de�ned on both spaces C and F . Formally we de�ne the path δ(u) as

δ(u) = pR′(x), where R′ = (1− u)Rmax + uR. (5.1)

Each path point has the attractive property, that since it is a projection on the SVDD support
of normal elements, it represents as such the abnormal input x minus �just enough� deformation
to be considered normal (recall the previous discussions in chapter 4 and subsection 1.1 of the
current chapter) under a varying radius threshold governing the support size. For this reason we
shall refer to δ in this work as a discriminative trajectory. Visually, the discriminative trajectory
thus de�ned corresponds to projecting on a series of dilations of the SVDD hypersphere, between
the optimal radius R (optimal in the sense of eq. (4.1), and solved as in eq. (4.4)) and the
maximal radius Rmax (see �g. 6.1). Endpoint δ(0) is de�ned as the input x itself, so the maximal
radius Rmax must be equal to the distance of x from the hypersphere center, in the feature space.
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Expanding Rmax =‖φ(x)−
∑M

n=1 αnφ(xn)‖, we have

R2
max = 1− 2

M∑
n=1

αnk(xn, x) +

M∑
n=1

M∑
m=1

αnαmk(xn, xm).

See �g. 5.2 for a visual illustration of the discriminative trajectory in the original shape
space and its image in the feature space.

(a) (b)

Figure 5.2 � Green circles are normal data, red crosses are abnormal data. The normal data
support corresponds to the beige-color �lled area. (a) The original (shape) space. (b) The feature
space. In both panels, p(x) corresponds to the projection of a datum x onto the normal support
(SVDD projection). The discriminative trajectory δ is drawn as a black dotted path.

2. Related work in support vector machines

2.1 Discriminative direction

The concept of a tool to estimate the kind of shape deformation that di�erentiates one class
of objects from non-members has been originally introduced in [Golland 2000], in the form of
the discriminative direction. The underlying discriminative model is the support vector machine,
in the case of the discriminative direction. We recall that SVMs are 2-class discriminative models
(see chapter 4). In SVM, the two classes are separated by a hyperplane in the feature space.
The SVM decision function is of the form fSVM (x) = wTφ(x) + b (see eq. (4.8)). This implies
that the classi�er function depends only on the projection of vector φ(x) on w, ignoring totally
the component that is perpendicular to φ(x). In other words, in order to create a displacement
of φ(x) that would correspond to the di�erence between the two classes, one should change the
input vector projection onto the w component while keeping the orthogonal component intact.
Thus essentially the direction along which we need to move the datum image φ(x) is w.

At this point arises the following problem : moving the datum image x along w would
be straightforward if φ(.) would be the identity mapping. If not, we need to compute the
preimage of φ(x) + dz, where dz is a displacement in the feature space F . However, it is not a
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priori guaranteed that φ(x) + dz has a valid preimage. In the typical scenario where F is the
feature space for the RBF kernel case, points of F with a valid preimage necessarily reside on
hypersphere φ(x)Tφ(x) = 1. In the discussion on the discriminative trajectory, the problem was
solved by de�ning each moment of the trajectory as an SVDD projection, which has a preimage
by construction.

The solution that is proposed in [Golland 2000,Golland et al. 2005] is to search for the
direction around the datum x in the original space that minimizes the divergence of its image
φ(x) from the direction of the projection vector w. This is called the discriminative direction,
and represents the direction that a�ects the output of the classi�er while introducting as little
spurious di�erence as possible.

Formally, moving from x to a new point x + dx in the shape space C, the image vector in
the feature space F changes by

dz = φ(x+ dx)− φ(x), (5.2)

which creates a deviation e from w, equal to

e = dz − dzTw

‖w‖
w

‖w‖
= dz − dzTw

wTw
w. (5.3)

Solving for the discriminative direction dx is achieved by a constrained optimization problem,
set to minimize the error norm ‖e‖ :

argmin
dx

‖e‖2= dzTdz − (dzTw)2

wTw
, (5.4)

s.t. ‖dx‖2= ε. (5.5)

For the Gaussian RBF kernel case, the above yields a closed form solution, which is the following
[Golland et al. 2005]

M∑
n=1

αnynK(x, xn)(x− xn), (5.6)

where we recall that αn are given by the solution of the SVM objective function (see chapter
4), and yn correspond to +1 or −1 depending on which class training datum xn belongs.

2.2 Regularized discriminative direction

In [Zhou et al. 2008] it is recognized that moving a shape along the discriminative direction
may prove to be problematic if the low-dimensional manifold structure of the shape distribution
in the used shape space is not taken under consideration. We also discuss this important point
in chapter 3 and chapter 6. Simply put, [Zhou et al. 2008] point out that the discriminative
direction as de�ned in [Golland 2000,Golland et al. 2005] may produce shape samples that
come from areas that are o� the hypothesized shape manifold. This means that in practice
generated shapes will include characteristics that are more or less invalid, or in other words,
shapes that do not look like the original shapes. Likewise, the discriminative deformation will
then contain spurious shape di�erence. To deal with this, [Zhou et al. 2008] propose a modi-
�cation of the discriminative direction optimization objective function (eq. (5.4)). They add a
regularization term of the form

β(x+ dx− µ)TΣ−1(x+ dx− µ)T (5.7)

where β is the scalar non-negative weight of the regularization term, and µ and Σ are the
parameters of the hypothesized probability distribution of shapes, that should re�ect the low-
dimensional manifold shape structure. Mean µ is set to x, and Σ is set to the covariance of the



38 Chapter 5. Discriminative trajectory

training data in C, assuming µ as their mean [Zhou et al. 2009]. Solving the modi�ed problem
results in an iterative scheme.

Note that in the model that is proposed in this thesis, we do address the same issue, albeit in
a di�erent, implicit manner. Instead of working to modify the discriminative trajectory so that
the trajectory in C is recti�ed to account for the manifold hypothesis, we modify in a sense the
space C itself, using dimensionality reduction. We have seen dimensionality reduction in chapter
3 and we discuss the connection with the discriminative aspect of the model in chapter 6. Also
note that, in comparison with the scheme of [Zhou et al. 2008], we hypothesize the existence
of a non-linear manifold using state-of-the-art manifold learning methods [Tenenbaum et al.
2000], consequently we do not need to alter the model objective function in any way.

2.3 Discriminative pattern

A map showing the areas and the type of discriminative deformation over a template tis-
sue has been recently proposed [Costafreda et al. 2011,Koutsouleris et al. 2009], again
under the SVM framework. The proposed discriminative pattern is computed by �rst selecting
pairs of support vectors that are separated by the smallest distance accross opposite sides of
the separating margin. For each of these pairs, their di�erence is computed. This di�erence
plays a role similar to that of the discriminative direction of [Golland 2000], albeit de�ned
here di�erently. The mean of these di�erences, evaluated for support vector pairs, forms the
discriminative pattern.

The main advantage of this discriminative pattern is that it allows for the creation of a
simple and functional map of discriminative di�erence. The discriminative pattern is essentially
a function of a discriminative direction evaluated at a selection of points, adapted so as to
visualize information carried by the discriminative direction easily. The discriminative pattern
is a means to obtain discriminative di�erence as a single, global, group vs group trait. This
advantage of the discriminative pattern is also its disadvantage, as the resulting map is made
up of multiple di�erence components. Due to their summing up to a single pattern, they are
rendered impossible to discern one from the other.

3. Conclusion

In this chapter we have posed the question, what is the type of deformation that makes the
di�erence between class member and non-member, and have discussed possible answers to this
question.

We have proposed a novel method to estimate discriminative deformation, that �ts the
SVDD model. We have named the proposed scheme discriminative trajectory, which serves not
only to di�erentiate from the SVM-based schemes discussed in this chapter, but also underpins
our viewing of discriminative di�erence explicitly as a process. The endpoints of this process
are the original shape itself and the projection of the input on the normal data support. In
principle, the di�erence associated with one endpoint of the process can be very di�erent from
the one associated on the other trajectory endpoint, as well as from points in-between.

In the next chapter, aside from completing the presentation of our model, we shall see that in
synergy with the manifold hypothesis model component, the proposed discriminative trajectory
can uncover discriminative di�erence that models that do not take the manifold structure of
shape data into consideration, cannot.
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In this chapter, we review the components presented previously, and present them as a
connected whole. We discuss the proposed model in terms of the interaction between three
data spaces �ambient space, reduced space, and feature space� and de�ne how to regress on
embedding coordinates and produce new shapes. Next, we present two arti�cial datasets which
we use to illustrate and evaluate the processing pipeline, before continuing with an applica-
tion on real anatomical data in the next part of this thesis. Model function is illustrated and
evaluated through discriminative trajectories and p-value signi�cance maps which summarize
discriminative di�erence.

1. Combining SVDD and the manifold hypothesis

Let us recall the de�nition of the membra disjecta of our model, and review them in their
unison. In chapter 4 we have introduced the duality original space C - feature space F . In
chapter 3 we have introduced another space duality, that between the reduced space X and
the ambient space Y. The reduced space X is the output of manifold learning given a set of N
observations in Y. In contrast to Y, X is �in principle� a compact model of shapes, where each
point of X corresponds to a shape similar to the training data shapes. Hence, making the link
between the SVDD theory part and the manifold hypothesis part that we so far discussed, we
identify the original space of SVDD with the reduced space, that is we set C ≡ X . In all, our
data are then represented in three ways :

1. the representation in the ambient space Y which is the only one directly observed. In
the experiment part of this work (section 2. chapter 8) we shall assume Y to be the
space of non-rigid deformation vector �elds with respect to a coordinate frame, given by
a prede�ned template image.

2. the intrinsic parametrization in the reduced space, or embedding X .

3. the representation in the feature space F . This latter comes into play for SVDD support
estimation.
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A subset ofM normal observations out of the total N training data is used to induce the normal
data support de�ned in X (identi�ed here with C) (see �g. 6.1 for a graphical overview of these
spaces).

Figure 6.1 � The processing pipeline of the proposed model, in terms of the di�erent shape
representation spaces used (ambient space Y, reduced space C, feature space F). Green circles
are normal data, red crosses are abnormal data. The ambient space is observed, but typically is
very sparsely populated by data. The �sheet� structure �a manifold� is a space of dimensionality
lower than the one of the ambient space, where data are assumed to lie upon. Using manifold
learning we can represent it as a reduced space. This space is not observed, but in principle
points of this space correspond to valid, possible observations. The feature space is useful
when estimating the normal data distribution (support). In all panels, pR(x) corresponds to
the projection of a datum x onto the normal support (SVDD projection). The discriminative

trajectory δ, drawn as the black dotted path, is a path joining x and pR(x), constrained to pass
through the manifold. In the ambient space graph, the blue path joins x and the support, but
passes through non-manifold space.
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The notions of SVDD support estimation (see chapter 4), SVDD projection and discrimina-
tive trajectory (see chapter 5) all apply to elements of the embedding X . Points in X are latent
variables however ; in order to produce a practically usable form for the SVDD projection and
trajectory, we have to set our model in �generative mode� using a regression relation of the form
of eq. (6.1). We de�ne this relation more precisely in the following subsection.

1.1 Generating new shape with multivariate regression

Generating new shape consists in employing the couples {{x1, y1}, {x2, y2}, . . . , {xN , yN}}
to form basis functions and interpolate over new X values. Let us recall that a couple {xn, yn}
consists of the non-compact shape descriptor yn �which consists of parameters of the deforma-
tion �eld descriptor (see chapter 2)� and its compact image xn on the reduced space, computed
using Isomap (see chapter 3). We assume that

y = g(x) + ε =W Tβ(x) + ε, (6.1)

�xing the more general eq. (3.1). The above equation forms an ordinary least squares (OLS)
multi-output regression [Bishop 2006], with y ∈ RD, x ∈ Rd as already discussed, W being
a P × D weight matrix and β(x) being a vector containing P coe�cients corresponding to
the basis functions (rows of W ). Noise ε accounts for small deviations of y from the manifold
surface, with typically εn ∼ N (0, σ2n).

This yields a straightforward solution which is

W = (ΦΦT )−1ΦY, (6.2)

where Y is an N × D matrix with yn as its nth row, and ΦT the N × P design matrix with
β(xn) as its nth row. We choose h-scale Gaussian basis functions, plus a bias basis :

βn(x) =

{
exp{− 1

2h2
(x− xn)

2} if 1 ≤ n ≤ N,
1 if n = N + 1,

and therefore, P = N + 1. In practice bandwidth h is adjusted by cross-validation. Evidently,
the more data N at our disposal, the better the whole model will be. This is true in terms of
the regression model, the quality of which increases with N , as well as for other aspects such
as the manifold learning or the support estimation step.

The resulting non-linear structure conveys as such an advantage over a linear, non-compact
solution (see �g. 6.1(a)). Traversing a path as simple as a straight line in X corresponds to a
curve in the ambient space Y, meaning dynamically changing types and directions of deforma-
tion over the studied anatomy. More importantly, elements of the resulting path, hence also of
the discriminative trajectory, are constrained to always �look like� elements of the training set.
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2. Illustration with synthetic datasets

2.1 Data sets considered

Set name Type Anatomy Number of subjects
controls patients int. group total

Synth-I synth. spheres 20 30 0 50
Synth-II synth. l. ventricles 2 16 18 36

Table 6.1 � Overview of synthetic datasets used in the current work.

We have tested the proposed processing pipeline on a number of both real and synthetic
data. In this section, we shall present the synthetic data we have elaborated, then build our
discriminative and generative model over them. An overview of some characteristics of the
synthetic datasets is given in table 6.1.

We created two synthetic data sets, Synth-I and Synth-II, on which we test our model,
for proof of concept. Set Synth-I is composed of deformations on a baseline sphere structure.
The normal class is comprised of 20 spheres with small, random deformations spread over their
surface. The abnormal class is comprised of spheres with 3 distinct types of deformation, with 10
data for each type. In total, the abnormal class comprises 30 deformed spheres. All deformations
over the baseline form were produced using the trigonometric kernel model of [Cootes et al.
2008]. To each of the 3 deformation types corresponds a distinct point over the sphere surface,
acting as a deformation control point. These three points are chosen to be equidistant and
lying on a common sphere perimeter. The �rst type of deformation corresponds to pushing the
control point towards the center of the sphere, which gives a contraction over the area around
the control point. The other two control points are pulled outwards, giving a swelling over each
of the corresponding areas. In �gure 6.2 we show a number samples taken from set Synth-I.

Set Synth-II is composed of deformations over a baseline of a real left lateral ventricle, taken
from the OASIS dataset (see chapter 8 for a detailed description of the OASIS dataset). The
normal class here is composed of the baseline ventricle, plus a version of the same ventricle with
a slight contraction on the middle of its surface (see �g. 6.3, left column). Over these two forms,
considered as normal, the same series of deformations is then applied to create the abnormal
class. The series of deformations is as follows : �rst we deform the baseline form, by elongating
its lower part (see �g. 6.3, middle column). Each of the produced forms is gradually more
elongated than its corresponding previous one. In this manner we create 5 volumes for each of
the two baseline volumes (total 10 up to this point). The most elongated forms now constitute a
new baseline. We deform the higher part of the new baseline, by elongating its higher part this
time (see �g. 6.3, right column). Again each of the produced forms is gradually more elongated
than its corresponding previous one. In this manner we create 3 extra volumes for each of the
two baseline volumes (that is an extra 6 volumes, in total 16 in the abnormal set). We have
also added a set of points that are tagged intermediate. In real data applications, these would
correspond to unlabelled data, or data of unsure/intermediate diagnosis when class refers to
pathological state. These play no direct role in training the discriminative model or creating
discriminative trajectories, but are used in the manifold learning step, like the rest of the data.
In Synth-II, we have created a total of 18 shapes tagged as intermediate. The process we used
to create them mirrors the one for the aforementioned shapes of the normal and abnormal sets,
di�ering only in the level of contraction in the middle of their surface.

2.2 Tests on synthetic datasets

Running Isomap on the Synth-I data produces the 2D embedding of �g. 6.4. The normal
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(a)

(b) (c) (d)

Figure 6.2 � Samples taken from the synthetic dataset Synth-I. (a) Random sample shapes from
the normal group. (b)-(d) Sample shapes from the abnormal group. Same column corresponds
to the same type of deformation with each row corresponding to a di�erent magnitude. Columns
(b)-(d) correspond to di�erent viewpoints.
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(a)

(b)

Figure 6.3 � Samples taken from the Synth-II dataset. Images in (b) are versions of the images
in (a), with slightly contracted bodies. Left column : baseline images. Middle column : bottom
part elongated. Right column : bottom and top part elongated (top/bottom speci�cations refer
to the 2D view). Only the images on the left column are labelled normal. The di�erence in
structure is best visible in the �C�-shaped interior outline, on the 2D view.
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Figure 6.4 � Isomap R2 embedding for synthetic dataset Synth-I. Green points are part of
the normal set. Red points are part of the pathological set, corresponding to an imaginary
degenerative pathology over the sphere �tissue�. Normal data are almost perfect spheres, while
pathological data are spheres plus an amount of contraction or swelling over a given area. Three
types of pathological data were produced, portrayed on the isomap representation as each of
the rays protruding from the center.
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group data lie on the center, tightly packed and close to one another. This is due to the small
shape di�erence between them, as they are all quasi-spheres. The pathological group is divided
into the 3 well-demarcated rays, protruding from the normal center. Correctly, these correspond
to the three types of deformation previously discussed, each corresponding to a deformation
around a given control point. The further a point from the center, the larger its magnitude of
deformation with respect to the baseline perfect sphere.

In order to assess shape di�erence between class and non-class, we have computed a map of
p-values. These values show areas of signi�cant di�erence between two given groups of interest
[Rosner 2000]. Let us remind the reader that in our analysis, the elements of the ambient space
Y are non-rigid deformation vector �elds with respect to a coordinate frame, given by a template
image. We have also seen already that normal subjects are characterized and di�erentiated from
pathological subjects in terms of their SVDD projection. Normal subjects should be very close
to the SVDD border or inside the SVDD ball, while pathological subjects should be relatively
further away. This stems simply from the fact that normal subjects de�ne the position and form
of the SVDD ball. The di�erence of each subject to its reconstructed SVDD projection is the
value of interest for our statistical tests and the related p-value maps.

Formally, we compute for each anatomy n ∈ [1, N ] and each shape voxel v,

εvn =‖yvn − gv ◦ pR(xn)‖,

where g ◦ pR(xn) represents the reconstruction of the SVDD projection of anatomy n, and
gv ◦pR(xn) represents the vector value of g ◦pR(xn) at voxel v. For normal anatomies g ◦pR(xn)
should be close to yn for all voxels, for the reasons we mentioned above. A one-sample t-test is
then run over the norm εvn corresponding to each voxel, that is we perform one test per voxel.
The �pathological� spheres play the role of the sample here. Hence, the test statistic for each
voxel is computed as t = x̄−µn

σs
√
ns

[Rosner 2000, section 7.3], where x̄, σs, ns are the sample

mean, standard deviation and cardinal of the sample (abnormal shapes) and µn is the normal
population mean. The test statistic obtained per voxel leads to a p-value per voxel. This is
computed as the area under the tail of a Student's-t distribution of mean x̄ − µn, standard
deviation σs and ns − 1 degrees of freedom [Rosner 2000, section 7.3] (see �g. 6.5 for an
illustration). Note that using a two-sample test, with the set of normal shapes playing the role
of the second sample, would be inappropriate in our case. This is because values of εn for normal
shapes should be zero or close to zero at all voxels, and any small variance would primarily
stem on reconstruction error, which is not what we want to measure with this test.
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Figure 6.5 � The p-value, computed as the dark tail area demarcated by the sample test
statistic (see text). The distribution mean represents statistics characterizing the normal set.
In our case the test statistic is a value computed per shape voxel (εvn). Put simply, this value
corresponds to how much a given shape di�ers from its projection on the normal support, on the
given shape voxel. Normal training data are evidently expected to have an identity projection,
hence a statistic value equal or close to zero. If the abnormal training data give a consistently
high εvn value, this will translate to a statistically signi�cant di�erence denoted by a far-o�
t-statistic and a low p-value for the speci�c point (voxel) of the shape.
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In �g. 6.6 we see false discovery ratio (FDR) corrected [Benjamini & Hochberg 1995,
Storey 2003] p-value maps overlaid on the template sphere. We have used FDR correction as
it can give a more useful signi�cance threshold when it comes to multiple tests, as is the case
here, where we have one test per voxel.

Figure 6.6 � Top row : p-value signi�cance maps for the Synth-I dataset. Left and right columns
correspond to front and back views of the sphere. Bottom rows : signi�cance maps computed
considering the patients set partitioned according to the three synthetized deformation types
considered separately (see text). Each of these three rows corresponds to a di�erent type of
deformation. Negative log values are shown in all cases. Red corresponds to highly signi�cant
zones, blue corresponds to insigni�cant zones.

The p-values are lower where deformation is deemed signi�cant between the normal and
the pathological group. These low p-value voxels are correctly identi�ed with the areas around
the original deformation. On the downside, while the signi�cance map of �g. 6.6 does identify
the correct areas, it cannot give us any information about the diverse types of deformation
included in the dataset. In �g. 6.7 the discriminative trajectories over the embedding are shown,
corresponding to each of the deformation types of the pathology class. We set as their initial
point the farthest sample for each of the three rays.

In �g. 6.8 we can see the Isomap embedding for dataset Synth-II. Here moving along the
y-axis coincides with the degree of contraction in the middle of the ventricle body. The two
normal subjects are at the rightmost part of the embedding plot. The points corresponding
to the original OASIS ventricle are above, while the horizontal paths below correspond to the
contracted versions. Starting from the two normal points are two point paths corresponding
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Figure 6.7 � Reconstructions sampled over discriminative trajectories, computed for each of the
pathology deformation types. The orange-colored trajectory corresponds to the reconstructions
shown on the top ; the cyan-colored trajectory corresponds to the reconstructions shown on the
left ; the magenta-colored trajectory corresponds to the reconstructions shown on the right.
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Figure 6.8 � Isomap R2 embedding for synthetic dataset Synth-II. Green points are part of
the �normal� set ; red points are part of the �pathological� set. Orange points are part of the
�intermediate� set.
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�rst to a gradual swelling of the ventricle bottom, then to a swelling of its top. Between these
two point paths, on the top and the bottom, are two intermediate point paths, that corre-
spond to intermediate set shapes, which as we discussed earlier, have an intermediate degree of
contraction of the ventricle body.

In �g. 6.9 the discriminative trajectories over the embedding are shown, corresponding to
each of the two baseline ventricles. We set as their initial point the farthest sample for each of

Figure 6.9 � Reconstructions sampled over discriminative trajectories, computed for each of
the �pathology� deformation types. Note that the series of deformation types, on the top and the
bottom of the �C�-like curve, is correctly reconstructed (See text for details). The brown-colored
trajectory corresponds to the reconstructions shown on the top, the cyan-colored trajectory
corresponds to the reconstructions shown on the bottom.

the two baseline normal ventricles. Note that movement on the x-axis, almost coinciding here
with movement along the discriminative trajectories, does not correspond to a single type of
deformation, such as a single type of swelling or a contraction on a number of given points.
Rather, movement on the x-axis corresponds to a juxtaposition of two di�erent types of defor-
mation. This is not surprising, as it stems from the non-linearity of our model. In practice, this
means that we can reconstruct correctly the process that leads from the baseline shapes on the
rightmost edge of the embedding plot, to the very deformed shapes of the leftmost edge.

In �g. 6.10 we see samples of the discriminative trajectory in a model where we do not
use dimension reduction (cf. �g. 6.1(a)). The samples generated do not resemble to the actual
training set, in the sense that their top and their bottom are simultaneously deformed. In the
original training set for example, �g. 6.3, the majority of the pathological ventricles have their
lower part elongated but their higher part remains normal. It is worth noting that a linear
dimensionality reduction model would fail to capture the data structure as well, since as we
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Figure 6.10 � Reconstructions for Synth-II made without the dimensionality reduction step.
(see ambient space panel of �g. 6.1 and the �shortcut� path that does not follow the embedding).
See text for details.

have seen the structure of Synth-II is by construction non-linear.

In �g. 6.11 we see a signi�cance p-value map overlaid on a template baseline ventricle. We
have used the same procedure to produce this map as the one used for the Synth-I set. Note
that principally the lower ventricle area is found signi�cant, which is natural, yet this discards
information on the deformation of the higher ventricle that characterizes part (40%) of the
pathological data. While the p-value map gives a possibly more convenient, single global map
of class versus non-class discriminative di�erence, the discriminative trajectory (�g. 6.9) can
reconstruct correctly all relevant deformations about the pathological class. In this sense, the
signi�cance map and the discriminative trajectory reconstructions are two tools complementary
to one another. Note also, that the discriminative trajectories comprise and reconstruct only
relevant deformation (which is represented here by movement along the embedding x-axis),
barring out irrelevant deformation (which is represented here by movement along the embedding
y-axis).

Figure 6.11 � p-value signi�cance maps for the Synth-II dataset. Left and right image cor-
respond to di�erent views of the same plot. Negative log values are shown in all cases. Red
corresponds to highly signi�cant zones, blue corresponds to insigni�cant zones.

3. Conclusion

With this chapter we have completed this part of the thesis, and the theoretical presentation
of the proposed compact, non-linear model. To the extent that the manifold learning step
captures the underlying shape data structure correctly, the resulting model is compact, and can
lead to a more accurate model. We have seen with an application on synthetic data how this
higher model accuracy is expressed : newly generated shapes are on the one hand anatomically
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correct, since they are constrained to lie on the hypothesized manifold ; on the other hand,
discriminative trajectory moments are inherently also constrained to lie over the hypothesized
manifold, leading to an accurate discriminative di�erence estimate.
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Introduction

The third part of the thesis presents an application of the proposed model to real neuroimag-
ing data. The case study of choice is the progression of Alzheimer's disease, which is strongly
correlated to structural evolution of certain regions of interest in the brain. Such regions include
the hippocampus, amygdala and lateral ventricles. Our focus is mainly on the relation of the
hippocampus to AD. We use our model on a group of patients, intermediate condition subjects,
and controls, and create discriminative trajectories for the left and right hippocampi. Finally
we illustrate the use of our model as a classi�er, deciding over the likelihood of a hippocampus
or amygdala originating o� a healthy subject or not.
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This chapter is a brief introduction to the structure of the brain, and to how this is af-
fected during the course of Alzheimer's disease. First, we discuss some basic points about the
structure of the human brain, and more especially about the hippocampus and the amygdala.
In the next section, we discuss Alzheimer's disease and the e�ect its progression has over the
brain. Structural and neuronal damage can play the role of a disease progression marker, or
biomarker. Clinical symptoms of the disease can be measured using clinical assessment scores,
that are typically included in patient population studies. Finally, we review state-of-the-art
computational models for neuroimaging studies in AD.

1. Elements of brain anatomy

The brain is the center of the nervous system in humans. The cerebrum is the most promi-
nent structure, approximately split in two quasi-symmetric hemispheres. The two cerebral hemi-
spheres form its largest part and are situated above most other brain structures. The outer part
of the cerebrum is formed as a highly convoluted layer, known as the cerebral cortex. Di�erent
parts of the cerebral cortex are involved in di�erent cognitive and behavioral functions. Anatom-
ically each hemisphere is divided in four lobes, the frontal lobe, parietal lobe, occipital lobe, and
temporal lobe. This demarcation has to do mostly with spatial position rather than functional or
tissue coherence. Histologically, a common division of the brain is in gray matter, white matter
and cerebrospinal �uid. The gray matter is formed by neurons and their unmyelinated �bers,
while the white matter contains mostly myelinated axons. Neurons are the basic building blocks
of the nervous system. Axons or nerve �bers on the other hand serve to connect di�erent organ-
ism areas and pass electro-chemical signals. Gray matter includes brain areas responsible for
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muscle control, sensory perception such as seeing and hearing, memory, emotions, and speech.
It is distributed at the surface of the cerebral cortex and of the cerebellum (cerebellar cortex),
as well as in the depth of the cerebrum (thalamus ; hypothalamus ; sub-thalamus, basal ganglia
- putamen, globus pallidus, nucleus accumbens ; septal nuclei), deep cerebellar nuclei (dentate
nucleus, globose nucleus, emboliform nucleus, fastigial nucleus), brainstem (substantia nigra,
red nucleus, olivary nuclei, cranial nerve nuclei) and spinal white matter (anterior horn, lateral
horn, posterior horn). White matter is located in the inner layer of the cortex, the optic nerves,
the central and lower areas of the brain (the brainstem) and surrounding the gray matter in
the spinal cord. The cerebrospinal �uid is a transparent �uid that surrounds the brain and the
spinal cord. Cerebrospinal �uid (CSF) is produced by an organ, called the choroid plexus, in the
ventricles and by the surface of the roof of the third and fourth ventricles. The major functions
of CSF are to protect the brain from injury and to maintain chemical stability. An important
part of the brain is the limbic system, which is a collection of brain structures that form the
internal border of the cerebral cortex. The limbic system is a collection of anatomical units
with common functions [Duvernoy 1988], including the fornix, cingulate gyrus, amygdala, the
hippocampus, the parahippocampal gyrus and parts of the thalamus. It supports functions such
as long term memory, emotion, behavior, and olfaction.

A variety of pathologies may during their course cause the degeneration of important struc-
tures and brain areas. Alzheimer's, Parkinson's, frontotemporal disease or schizophrenia are
some examples. The hippocampus and the amygdala are two cognitively important structures,
that are known to be associated to the advent and development of neurodegenerative disease.
Note that here exists one hippocampus and one amygdala per cerebral hemisphere. We examine
these structures in more detail in the subsections that follow.

1.1 The hippocampus

The hippocampus is located in the medial temporal lobe, underneath the cortical surface.
The hippocampus lies adjacent to the temporal horn of the lateral ventricle, and it forms an
elongated �C�-like structure. Its general appearance does indeed resemble a sea horse in shape,
as its name suggests. It can be divided into three segments : (1) A body, or middle segment,
which is sagittally oriented. (2) A head, or anterior segment, which is transversely oriented
and dilated and which shows elevations, the digitationes hippocampi. (3) A tail, or posterior
segment, which is also oriented transversely and which gradually narrows until disappearing
beneath the splenium [Duvernoy 1988].

The hippocampus is part of the limbic system [Duvernoy 1988]. Histologically-wise the
hippocampus is subdivided transversely into several sub�elds, including the dentate gyrus,
subiculum, and cornu ammonis sub�elds (CA1- CA4), which have unique connections to other
subcortical and cortical regions in the brain [Greene et al. 2012]. These sub�elds are inde-
pendent of subregional de�nitions of the hippocampus along its longitudinal axis (head, body,
and tail). While all sub�elds are present within the head, body, and tail of the hippocampus, a
majority of the dentate gyrus was found to lie within the hippocampal body, while a majority
of CA1�CA3 were detected in the hippocampal head in [Malykhin et al. 2010].

It is generally admitted that the hippocampus has a critical role in learning and memory
[Kandel et al. 1995,Nikita 2009,Duvernoy 1988]. Information arising from large isocortical
zones converges to the entorhinal cortex area and then to the hippocampus. The entorhinal
cortex is an area located at the anterior end of the temporal lobe, also important in learning
and memory function. The entorhinal area, despite its small size, is the principal input to the
hippocampus [Duvernoy 1988]. Newly acquired items cross the hippocampal �lter before being
�xed in the isocortex. It is possible to distinguish the memory of new or recent items, which
depends on the hippocampus (short-term memory), from that of old ones (long-term memory),
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which depends on the isocortex.

Patients with ambilateral hippocampus damage exhibit a total inability of conscious learn-
ing, while short-term memory is spared [Kandel et al. 1995,Eichenbaum 1999]. The most
well-known suggestion about the exact role of the hippocampus in memory is the hypothesis
that the hippocampus constitutes some form of a �cognitive map� [Nikita 2009]. Recent �ndings
con�rm the multifacet implication of the hippocampus in memory and strengthen the validity
of the conclusion that the hippocampus is the mechanism of production and recall of mnemonic
representations and stored data [Nikita 2009]. Hippocampus degeneration, as neuronal loss and
atrophy, is well-known to be associated with the normal aging process [Driscoll et al. 2003],
re�ecting the deterioration of cognitive functions. From the aspect of behavioral pathology,
the human hippocampus (and especially its anterior parts) constitutes the most frequent area
of epileptic seizure manifestation [Nikita 2009]. In tests on rodents notably, the rodent hip-
pocampus showed a relatively high degree of sensitivity in experimental in vivo epilepsy models.
With some types of epilepsy there is associated a form of structural degeneration of the hip-
pocampus, temporal lobe sclerosis [Nikita 2009]. Other pathologies related with hippocampal
degeneration include hippocampal sclerosis, Parkinson's disease, schizophrenia and Alzheimer's
disease. The hippocampus notably exhibits serious atrophy in the course of Alzheimer's dis-
ease [Cuingnet et al. 2011,Frisoni et al. 2010,Greene et al. 2012]. Neuro�brillary tangle
development commences early on the hippocampus during AD [Greene et al. 2012]. There is
evidence that the hippocampal head and body undergo increased atrophy in mild cognitive im-
pairment (MCI) [Greene et al. 2012]. At the mild dementia stage of AD, hippocampal volume
is already reduced by 15 − 30% relative to controls, and in the amnestic variant of MCI the
volume is reduced by 10− 15% [Frisoni et al. 2010].

The interested reader is referred to [Duvernoy 1988] for a much more detailed description
of the hippocampus.

1.2 The amygdala

Anatomically the amygdala is a heterogenous group of nuclei situated in the dorsomedial
portion of the temporal lobe. The amygdala has widespread connections with cortical and
subcortical areas, including the aforementioned hippocampus. Closely connected with the much
more voluminous hippocampus, structurally, spatially and functionally, the amygdala has been
studied together with the hippocampus as a single hippocampus-amygdala complex [Golland
et al. 2005,Shenton et al. 2002]. The amygdala is an important modulator between external
sensory environmental in�uences and internal appropiate autonomic responses, and seems to
be involved in cognitive functions including memory processing [Vereecken et al. 1994].

During the process of AD the amygdala shows abundant senile plaques and neuro�brillary
tangles [Vereecken et al. 1994], and its degeneration is as such correlated to the disease devel-
opment. Other pathologies related to amygdala degeneration include schizophrenia [Golland
2000] and autism [Chung et al. 2010].

2. Alzheimer's disease

2.1 Disease general characteristics

Alzheimer's disease is a hitherto incurable and terminal disease of unknown etiology. AD is
the most common form of dementia on people over the age of 60, and today the disease a�ects
more than 30 million people worldwide [Goate & Holtzman 2010,Jellinger 2006]. The cen-
tral quest of research on AD is to identify the steps in its pathogenesis that, if inhibited, would
slow or prevent the disease. An important step for AD pathogenesis shown as necessary accord-
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ing to hitherto study is amyloid-β protein (Aβ) accumulation [Selkoe 1997]. Aβ accumulation
in the cerebral cortex is an early and invariant event in the development of AD pathology,
preceding other brain lesions and clinical symptoms by many years or decades. All AD patients
develop neuritic plaques in brain areas subserving memory and cognition. These plaques con-
sist of extracellular masses of Aβ �laments (long protein chains). Aβ also accumulates in many
non�lamentous extracellular deposits. Typical forms of accumulated Aβ proteins are isoforms
Aβ40 and Aβ42. Virtually all patients also have many neuro�brillary tangles. Neuro�brillary
tangles are intraneuronal bundles of paired helical �laments composed of tau protein.

Risk of developping AD increases dramatically with old age, age being the evident risk factor
of AD. Also, among the groups with heightened AD risk are people with Down's syndrome and
patients with certain familial genes. Such genes include β amyloid precursor protein (βAPP),
apolipoprotein E4 (apoE4), presenilin (PS) 1 and 2. These genes have been shown to enhance
Aβ production or deposition (or both) even in simple in vitro systems [Selkoe 1997]. On the
other hand, the presence of apolipoprotein E2 (apoE2) is known to reduce AD risk [Hua et al.
2008B]. The gradual cerebral buildup of Aβ causes local neurons and their processes to be
injured, leading to profound metabolic changes. The clinically important consequence of the
in�icted changes is eventually synaptic loss and multiple neurotransmitter de�cits [Selkoe
1997].

The loss and degeneration of neurons and their connections is commonly known under the
general term brain atrophy. Structurally, brain atrophy is re�ected in volume loss of various
brain structures and areas such as the hippocampus, the amygdala and the entorhinal cortex
(see also subsection 2.2). As a consequence, these organs degenerate also in function, causing
cognitive impairment proportional to the progress of the disease.

2.1.1 Mild cognitive impairment and AD

Mild cognitive impairment (MCI) is a transitional stage between the cognition of normal
aging and mild dementia [Petersen et al. 2001]. MCI patients convert to AD at a rate of
10�25% annually, compared with normal subjects who convert at a rate of 1-2% annually
[Petersen et al. 2001]. While MCI can be thought of as a preclinical stage of AD [Petersen
et al. 2009], it is in reality a heterogeneous group, with some of the subjects converting to
AD faster than others, and others never developping AD, or developping non-AD forms of
dementia [Filipovych & Davatzikos 2011]. Numerous AD computational studies treat their
data input as a labelled 3-class set (e.g. [Filipovych & Davatzikos 2011]), namely partitioned
in controls, MCI subjects, and de�nite AD subjects. Others use less classes (controls and AD)
or more (for example separating MCI into MCI converters and MCI non-converters, [Cuingnet
et al. 2011]).

In the next section we shall see how the structural, histological, functional and cognitive
symptoms can be utilized so as to assess disease development, and discuss the related notion of
biomarkers.

2.2 Biomarkers and Alzheimer's disease

We have seen that the evolution of Alzheimer's disease is strongly correlated with anatomical
changes in brain structures. Brain anatomy, plaque development and other symptoms of the
disease can be seen as a source of measures and indicators of disease severity. These measures are
known collectively as biomarkers of disease progression. Ideally, a biomarker should have well-
known dynamics during the di�erent stages of the disease and predict clinical evolution [Chen
et al. 2011,Frisoni et al. 2010,Mueller et al. 2006,Rothenberg et al. 2011,Tarawneh &
Holtzman 2010]. Disease-slowing and symptom prevention treatment research on AD could
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greatly bene�t from an e�cient biomarker, on the basis of which future treatment proposals
and potential therapeutic agents could be approved or disapproved. Biomarkers could also help
di�erentiate individuals with preclinical and probable AD from healthy subjects or from patients
of other dementing disorders [Goate & Holtzman 2010,Jack Jr. et al. 2003,Mueller et al.
2006,Tarawneh & Holtzman 2010]. CSF Aβ42, amyloid imaging, CSF tau and structural
MRI are some of the most important biomarkers.

2.2.1 Blood and CSF biomarkers

Several promising markers in the blood and the CSF of individuals with AD have been iden-
ti�ed [Tarawneh & Holtzman 2010]. Related studies focus on markers that directly re�ect
pathological symptoms such as amyloid plaques and neuro�brillary tangles. Other potential
candidates include proteins involved in cytoskeletal maintenance, cellular tra�cking, cellular
stress response, redox homeostasis, transcription, and DNA repair [Tarawneh & Holtzman

2010]. Levels of Aβ42 and Aβ42 in plasma and cerebrospinal �uid have been among the �rst
and perhaps most widely investigated biomarkers. Several studies have suggested that baseline
plasma levels of Aβ42 are higher in patients with AD, and that the plasma Aβ42/Aβ40 ratio
predicts a high risk of progression to dementia in cognitively normal individuals [Tarawneh
& Holtzman 2010].

As cerebrospinal �uid is a compartment which is in direct contact with brain parenchyma,
CSF biomarkers have shown more promise as reliable and early indicators of disease. The CSF
biomarkers with the highest diagnostic accuracy are Aβ42, tau, and p-tau.

2.2.2 Structural degeneration as a biomarker

Radiological biomarkers, obtained in vivo using neuroimaging, could play the role of the
disease progression assessment tool. Alongside cerebrospinal �uid (CSF) biomarkers, brain
computational imaging and MRI in particular is the most promising biomarker option in
AD [Schmand et al. 2011,Tarawneh & Holtzman 2010], and constitutes an active area
of research.

Among the brain areas and tissues of interest which undergo signi�cant structural degen-
eration are the hippocampus, the CSF-containing lateral ventricles, the amygdala and the en-
torhinal cortex. Structural data of a�ected areas can so be a useful biomarker [Cuingnet et al.
2011]. Such data may be a simple function of structural change, as simple as a measure of
hippocampal volume, or cortical thickness [Cuingnet et al. 2011], or a much more precise and
elaborate input in the form of a shape model. Neurodegeneration is detectable on MRI up to
5 years before clinical expression of the disease [Thompson et al. 2004]. Neuro�brillary tangle
development commences early on the hippocampus during AD [Greene et al. 2012]. Among
all brain neurodegenerative deformation, hippocampal atrophy is one of the best established
and validated [Frisoni et al. 2010]. Combined with the fact that the boundaries of the hip-
pocampus are relatively easier to detect than other AD-related areas [Frisoni et al. 2010], the
hippocampus constitutes a very useful region of interest.

On the hippocampus, particular sub�elds that undergo comparably the most signi�cant
levels of degeneration during AD progression have been identi�ed [Costafreda et al. 2011,
Csernansky et al. 2005,Greene et al. 2012,Mueller et al. 2011,West et al. 2000]. These are
the foremost sub�elds CA1 and subiculum, which su�er neuronal loss and tangle accumulation
most notably on early disease stages. The head and tail of the hippocampus have also been
known as hotspots, that show extensive volume reduction [Morra et al. 2010]. A combination
of hippocampal head volume with neuropsychological test scores and CSF measures gave as
much as 100% prediction accuracy of conversion to AD in a recent study [Greene et al. 2012].
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The same study [Greene et al. 2012] raises the issue of the di�erential e�ects of AD on the
head, body, and tail of the hippocampus as measured. To the end of producing a structural
biomarker as informative as possible, studying the pattern of structural evolution of the brain
tissue in question in as much detail and precision possible, remains a continuous challenge. This
is the general direction of numerous computational studies, including the work presented in the
current thesis.

3. Clinical assessment scores

Cognitive impairment is measured with clinical score trials. These are typically based on data
gathered through a collection of questions and simple cognitive tasks addressed to the patient,
and to collateral sources. The result is recorded in the form of a score scale. Mini-mental state
exam (MMSE) [Cockrell & Folstein 2002] and CDR (Clinical dementia rating) [Marcus
et al. 2007,Morris 1997,Petersen et al. 2009] are two of the most widely-used tests.

The MMSE evaluates �ve cognitive domains : orientation, registration, attention and cal-
culation, recall, and language. The maximum MMSE score is 30, corresponding to no cognitive
impairment, with lower scores signifying damaged cognition functions. Scores of 24 or lower are
generally consistent with dementia [Cockrell & Folstein 2002].

The CDR rates subjects for impairment in each of the six domains : memory, orientation,
judgment and problem solving, function in community a�airs, home and hobbies, and personal
care. CDR equal to 0 indicates no dementia and CDR 0.5, 1, 2, and 3 represent very mild, mild,
moderate, and severe dementia, respectively [Morris 1997,Morris et al. 2001].

Other related rating scales include Alzheimer's disease assessment scale (ADAS) [Ston-
nington et al. 2010], dementia rating scale (DRS) [Stonnington et al. 2010] and the global
deterioration stage (GDS) [Petersen et al. 2001].

4. State of the art computational models and approaches for the
study of AD

There exists a large body of work in neuroimaging AD-related studies, as well as a variety
in the brain imaging methods employed. Modalities such as structural T1-weighted MRI [Cu-
ingnet et al. 2011,Klöppel et al. 2008], positron emission tomography (PET) [Chen et al.
2011,Nordberg 1999], di�usion tensor MRI (DT-MRI) [Bozzali et al. 2002], and morphom-
etry types such as deformation and tensor based morphometry (DBM, TBM) [Koikkalainen
et al. 2011,Hua et al. 2008B,Hua et al. 2008A,Hua et al. 2009], are included in the arsenal of
methodological tools employed in statistical analysis of AD brain populations. A typical frame-
work in neuroimaging studies, shared among others by the celebrated voxel-based morphometry
(VBM), involves comparing control versus pathology groups using an independent multivari-
ate voxel-to-voxel analysis [Ashburner & Friston 2000,Thompson et al. 2004,Hua et al.
2008B,Hua et al. 2008A,Hua et al. 2009]. The intensity of each voxel in the tissue under study
is analyzed in comparison with homologous voxels on other anatomies. Voxel intensity may rep-
resent a range of local qualities, depending on the modality and morphometry type used. Such
voxel-wise, mass-univariate methods cannot capture multivariate dependency in the data, which
in turn limits the diagnostic value of such models [Davatzikos 2004]. To overcome this limita-
tion, methods inspired by machine learning and pattern recognition theory are employed [Lemm
et al. 2011], which view the image or volume in study as a point in a high-dimensional space
and hence can capture multivariate dependency inherently.

In this context, various classical machine learning tools have been used with success. Support
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vector machines (SVM) are such an example, used widely as a discriminative model [Bishop
2006,Shawe-Taylor & Cristianini 2004,Lemm et al. 2011]. We have already brie�y pre-
sented SVM along with the closely related SVDD model in chapter 4 of this thesis. Let us name
here a few applications of SVM in MRI neuropathology population analysis, for the sake of
illustration : in [Klöppel et al. 2008], SVMs over whole brain MRI anatomical data are used
to discriminate Alzheimer's patients from controls ; in [Fan et al. 2007], after feature extraction,
feature selection and ROI grouping over structural MRI data, schizophrenia patients are classi-
�ed to pathological or sane ; in [Golland 2000,Golland et al. 2005], hippocampus-amygdala
anatomies segmented from a population of schizophrenia patients and controls are used to train
a SVM, with the anatomical information represented as the shape distance transform. In the
same work the notion of the discriminative direction is introduced, corresponding to the type
of anatomical change that has to be applied on a given anatomy, so that it would look like an
object of the opposite class. In [Zhou et al. 2011], a hierarchical map of brain ROI correlations
is computed given the raw T1-weighted MRI intensity map. After a feature selection step and a
supervised, linear dimension reduction step, aiming at preserving discriminative class informa-
tion, the processed features are fed onto a SVM. In [Mourão-Miranda et al. 2011], a one-class
SVM is used to model an fMRI study of depression patients as an outlier detection problem.
Signi�cant correlation between model distance from the healthy controls support and a clinical
depression measure (HRSD scale) is identi�ed.

Compact representations, and notably manifold learning methods have been very much the
center of attention in medical imaging recently. We have presented manifold learning in chapter
3 of this thesis. Especially the nonlinear manifold structure of MR image description spaces
has been explored in various works. A nonlinear extension to PCA is presented in [Fletcher
2004] and applied on analysis of DT-MRI data. In [Gerber et al. 2009,Gerber et al. 2010],
a generative model is induced over a collection of brain MR images. In [Zhang et al. 2006],
the manifold structure of cardiac MRI data is exploited in order to facilitate segmentation ;
likewise in [Cao et al. 2011] for the processing of prostate MR images. In [Wolz et al. 2010],
atlas-based hippocampus segmentation is performed over a set of brain MRI, with the choice
of the proper atlas being guided by a two-dimensional embedding of the input brain images,
in order to avoid registration bias. Using a similar argument, in [Hamm et al. 2010] large
deformation registration is performed as a synthesis of small deformations that are constrained
to correspond to image movements exclusively over the embedding surface. In [Wolz et al.
2010], a discriminative model is built on top of dimension-reduced data. Breathing gating is
performed in [Wachinger et al. 2010], where a series of ultrasound images is assigned to
corresponding breathing phases, using Laplacian eigenmaps to describe the image time-process.
In [Wachinger & Navab 2010], manifold learning is used in multi-modal image registration.
Registration targets are represented as manifolds, then are matched using an inexpensive L2-
based energy term.

5. Conclusion

In this chapter we have brie�y discussed elements of human brain anatomy and the relation
of structural degeneration of the brain with the progression of Alzheimer's disease. Modelling the
shape variability of AD-related volumes of interest, pathological and non-pathological alike, is
hence an important issue leading ultimately to a better understanding of disease progression. In
the next chapter we shall apply the proposed shape processing pipeline that we have presented
in the previous parts of this thesis, to real anatomical data.
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In this chapter we evaluate the model that we have proposed in the previous parts of this
thesis, over real medical data. We have discussed our case study of choice in the previous
chapter, where we saw how structural degeneration of various brain tissues and Alzheimer's
disease progression closely correlate. We have used two MRI datasets, comprising anatomies of
real brain hippocampi and amygdalae. After reviewing the general characteristics of the used
datasets, we generate discriminative trajectories in order to underpin signi�cant structural
di�erence between pathological and non-pathological tissues. We also evaluate our model's
capacity as a classi�er / anomaly detector.

1. Dataset description

Set name Type Anatomy Number of subjects
controls patients int. group total

Oasis-LH real left hippocampi 91 32 75 198
Oasis-RH real right hippocampi 91 32 75 198
UhS-LH real left hippocampi 11 15 26
UhS-RH real right hippocampi 11 15 26
UhS-LA real left amygdalae 11 15 26
UhS-RA real right amygdalae 11 15 26

Table 8.1 � Overview of real anatomical datasets used in the current work.

We have used two separate studies as a source of anatomical data, namely OASIS, a free-
access database [Marcus et al. 2007], and a study organized at the University Hospital of
Strasbourg [Philippi et al. 2012]. Both studies are comprised of structural MR scans of AD

67
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patients and controls. We segmented the whole-brain MR scans to obtain tissues of interest. In
table 8.1 we denote Oasis-xx and UhS-xx the real datasets studied in this thesis, corresponding
to sets originating from OASIS and the University Hospital of Strasbourg study respectively.
Next we present the two studies in more detail. See also �gure 8.1 for samples of the studied
datasets.

1.1 OASIS datasets

Figure 8.1 � Samples of right and left hippocampi and amygdalae from the Oasis and UhS
datasets. In rows from top to bottom, we see : Hippocampi of AD patients, hippocampi of inter-
mediate condition subjects, hippocampi of healthy control subjects, amygdalae of AD patients,
amygdalae of healthy control subjects. Amygdalae of intermediate condition subjects were not
available.

Two real datasets that we use in this thesis are related to the cross-sectional dataset of
the OASIS database [Marcus et al. 2007,Gerber et al. 2010]. Oasis-LH and Oasis-RH are
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made up of OASIS T1-weighted MRI hippocampus volumes for right-handed subjects aged 60 or
more. Oasis-LH includes left hippocampi and Oasis-RH includes right hippocampi. The OASIS
datasets presented here include probable AD patients with dementia, and age-matched controls,
198 volumes in total. All OASIS participants with dementia have been diagnosed with probable
AD [Marcus et al. 2007]. We chose to exclude younger subjects, as age is a known confounding
factor in brain atrophy/dementia studies. We used the Freesurfer [Fischl et al. 2002] pipeline to
process the OASIS data. Subjects are aligned to the Talairach atlas through an a�ne registration
step. The required hippocampi forms are obtained with subcortical segmentation on the skull-
stripped, bias-�eld treated input. We have partitioned the data into �normal control�, �patient�
and �intermediate� categories according to their respective clinical/cognitive assessment test
results, captured in their MMSE (mini-mental state examination) [Cockrell & Folstein

2002] and CDR (clinical dementia rating) [Marcus et al. 2007,Morris 1997] scores. In our
OASIS-based datasets, extreme MMSE and CDR scores, under or equal to 24 and over or equal
to 0.5 respectively, were tagged as AD patients. Likewise, MMSE and CDR scores over or equal
to 28 and equal to 0 respectively, were tagged as healthy controls. The remaining volumes were
tagged as intermediate. We have based this partition on related clinical score statistics in the
literature [Hua et al. 2008A]. Note that a partition of patient data based solely on clinical
scores is not equivalent to diagnosis by an expert. While a CDR rating of 0.5 or more signi�es
a clinical diagnosis of AD, so is the case for MCI patients, which are included in the group
of patients with a CDR rating equal to 0.5. Hence our partition of Oasis-LH and Oasis-RH

into normal/ intermediate/patients should be perceived as loosely equivalent to a partition into
healthy controls/MCI patients/AD patients. For this reason we will not present classi�cation
results run on the OASIS datasets using the SVDD model, as we do not in fact possess actual
diagnosis ground truth data to di�erentiate MCI from AD, which would make unfair, to a
certain extent, a comparison with classi�er evalution scores of other works in the literature.

1.2 University Hospital of Strasbourg datasets

The UhS datasets refere to a study on a number of AD patients and controls conducted at
the University Hospital of Strasbourg (Centre Hospitalo-Universitaire de Strasbourg, Service
de Neurologie, Unité de Neuropsychologie) [Philippi et al. 2012]. The study includes 15 AD
patients and 11 age-matched controls.

The 15 AD patients are aged 69 to 84 years, right-handed, French-native speakers. A diag-
nosis of probable AD was made according to the criteria of the NINCDS-ADRDA [McKhann
et al. 1984] and to the more recent criteria proposed by [Dubois et al. 2007], whose speci�city
has recently been evaluated and proved to be reliable (i.e. 93%, see [deJager et al. 2010]).
The 11 healthy elderly subjects matched for sex ratio, age distribution, education level and
handedness were tested. To be included, subjects had to be free of major depression, central
neurological disease, cognitive complaint and those with abnormal neurological examination
were excluded. The control subjects underwent the Verbal Paired Associates test [Wechsler

1991] and the similarities subtest of the WAIS-R verbal scale in addition to the remote memory
tests. Statistical analyses con�rmed that the two groups were well matched for both quantita-
tive and qualitative characteristics. The interested reader is referred to [Philippi et al. 2012] for
a more detailed description of the study organization and participant characteristics. We used
Freesurfer [Fischl et al. 2002], as in the OASIS datasets, in order to provide ourselves with
segmentations of hippocampi and amygdalae. The resulting 4 datasets related to the University
Hospital of Strasbourg study are UhS-LH, UhS-RH, UhS-LA, UhS-RA, corresponding to sets
of left hippocampi, right hippocampi, left amygdalae, and right amygdalae respectively.
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1.3 Estimating the embedding dimensionality

Isomap, which is our manifold learning algorithm of choice, works with anatomy-to-anatomy
distances as its input. In order to evaluate the output embedding, we have computed the embed-
ding residual variance [Tenenbaum et al. 2000], as a function of the embedding dimensionality
d. We use the de�nition of residual variance of [Tenenbaum et al. 2000], 1 − corr2(D,DG),
where corr is the linear correlation coe�cient between input distances D and embedding Eu-
clidean distances DG, over the input dataset. This gives us an empirical way of deciding over
the �best� embedding dimensionality. Residual variance captures the amount of divergence be-
tween the original distances and the Euclidean distances over the embedding, or put in other
words, the distortion required to embed the original distances in a d-dimensional Euclidean
space [Gerber et al. 2010]. As noted in [Tenenbaum et al. 2000], we can estimate the intrin-
sic data dimensionality to lie around the point where variance stops reducing signi�cantly � the
so-called �elbow� of the graph. The question of deciding the dimensionality of the manifold con-
tains in itself an important trade-o�. Choosing a dimension higher than the actual dimension
leads to a non-compact result ; choosing a dimension too low may result in rejecting important
data variability.

Embedding evaluation results over the Oasis-LH dataset using the deformation-induced
distance metric (eq. (3.4)) against a voxel-to-voxel distance are shown in �g. 8.2. The latter
distance is de�ned as the sum of the `1 norm of the intensity di�erence, per voxel. We have
computed embeddings using a varying number of graph nearest neighbors, with k ∈ [2, 20] and
varying dimensionality, with d ∈ [1, 20]. In every case, we show error-bars corresponding to
result variation over k for each dimensionality. A given distance metric induces a particular
topology [Munkres 2000], in the sense of particular neighborhood structure in the reduced
space, for the manifold. Di�erent metrics induce di�erent topologies, hence also a di�erent
manifold. Therefore, the choice of the distance metric a�ects fundamentally the characteristics
and quality of the dimensionality reduction module, and of the model as whole.
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Figure 8.2 � Estimated embedding residual variance, given di�erent distance metrics and
di�erent Isomap parameters. The horizontal axis corresponds to varying embedding dimension.
The error-bars correspond to variance introduced by varying the number of neighbors in Isomap.
The graph on the left shows results using a voxel-to-voxel `1 distance over registered intensities.
The graph on the right shows results using the deformation-�eld induced distance (eq. (3.4)).

The results in �g. 8.2 show unstable �regarding the Isomap number of neighbors parameter�
`1-induced embedding statistics compared to the ones for the shape-based distance. On the
former we have no clear residual �elbow�, while on the latter case we do, namely around d =
3. Shape-based distance Isomap is also almost invariable with regard to parameter k. These
observations suggest that our data indeed form a low-dimensional embedding when using the
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shape-based distance and induced topology, while this is relatively more uncertain when it comes
to the voxel-to-voxel based distance case. The Isomap result �be it in terms of the residual graph
or the embedding coordinates in each case� con�rms that the two metrics do not capture the
same topology. The choice of metric will thus depend entirely on the nature of application at
hand. Each metric compares shapes in a di�erent sense, capturing di�erent qualities. In this
work we shall be most interested in capturing shape variation and evolution, so we shall be
using the deformation-�eld induced distance (eq. (3.4)).

Isomap parameters choice Following the �elbow� heuristic [Tenenbaum et al. 2000], we
can estimate the true dimensionality of the embedded manifold to be most probably 3, for the
deformation-�eld induced distance. In related work, the most useful results come for embeddings
for a similar scale dimension magnitude [Wolz et al. 2010], with d as low as 2 [Gerber et al.
2010,Wolz et al. 2010]. In �g. 8.3 we see residual variance graphs for all real datasets used
in this thesis. We note that the elbow is consistently around dimension 3 for residual graphs
of the Oasis datasets. The UhS datasets show an elbow around dimension 1 − 3. This implies
that in all cases the main causes of variability are only a small number of elementary types of
variation. We have chosen d = 3 for the Oasis datasets, and d = 2 for the UhS datasets.

In the experiments performed in this work, unless otherwise speci�ed, we use k = 5 nearest
neighbors for the Dijkstra step of Isomap and the deformation-based induced distance metric
as Isomap input.
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Figure 8.3 � Residual variance graphs. (a) Oasis-LH and Oasis-RH. (b) UhS-LH and UhS-RH.
(c) UhS-LA and UhS-RA.
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2. Hippocampus discriminative trajectories and p-value signi�-
cance maps

left right left right
top view bottom view

Figure 8.4 � p-value signi�cance maps for the Oasis-LH and Oasis-RH dataset. Each couple of
�gures show a left hippocampus and a right hippocampus template with overlaid p-values. Minus
log values are shown in all cases. Red corresponds to highly signi�cant zones, blue corresponds
to insigni�cant zones.

Under the hypothesis that Alzheimer's disease incurs a single deformational pattern on the
hippocampus, i.e. the same hippocampal areas are more or less a�ected in all AD patients and
under more or less the same pattern, we have computed a single discriminative trajectory. As
with the synthetic sets Synth-I and Synth-II (see chapter 6), as starting point of the trajectory
we set the point that lies the farthest from the normal support in the reduced space. Here this
point corresponds to subject OAS1_0373_MR1, aged 80, female, with clinical scores MMSE
= 20, CDR = 1. These scores are, as expected, evident of quite severe dementia. They describe
a patient that has progressed through the major stages, if not the totality, of the illness, both
clinically and anatomically (in the sense of hippocampal anatomy). While the discriminative
trajectory does correspond to this subject in particular, in practice the reconstructed samples
along the trajectory comprise anatomical information of neighboring subjects due to the regres-
sion model. This discriminative trajectory can thus be considered representative of the class
di�erence between normal and abnormal subjects, to a certain extent.

Oasis-LH Oasis-RH
corr. coe�cient p-value corr. coe�cient p-value

SVDD function - MMSE 0.2717 1.08e-4 0.2200 1.0e-3
SVDD function - CDR -0.2943 0.28e-4 -0.1926 6.6e-3

Table 8.2 � Correlation coe�cients between the SVDD decision function and MMSE/CDR
scores, as evaluated over all subjects of Oasis-LH and Oasis-RH. The p-value here is the prob-
ability of getting a correlation as large as the observed value by random chance, when the true
correlation is zero.

We have computed correlation coe�cients between clinical scores and the SVDD decision
function (eq. (4.5)), over all subjects included in Oasis-LH and Oasis-RH. The SVDD decision
function is positive for subjects lying inside the normal support and negative for the rest.
The results of table 8.2 show a degree of correlation between the SVDD decision function
and MMSE/CDR scores. Since movement over the discriminative trajectory is movement from
negative SVDD values towards more positive ones, the discriminative trajectory correlates �
albeit does not identify� with disease progress as re�ected in MMSE/CDR scores.

In �gures 8.6 and 8.7, we see reconstructed left hippocampi sampled along the discriminative
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trajectory and following the direction from pathology towards the normal/healthy class. In �gure
8.5(a) we see the Isomap R3 embedding for the Oasis-LH set, with the discriminative trajectory
overlaid. As clearly observed in �g. 8.6, movement away from normality corresponds to volume
loss. In particular, we note widespread inward deformation while moving towards pathology

(a) (b)

Figure 8.5 � Isomap embeddings for the (a) Oasis-LH and Oasis-RH datasets. Green points
correspond to healthy controls. Yellow points correspond to intermediate subjects. Red points
correspond to AD patients. The arrow corresponds to the discriminative trajectory towards the
healthy elements support. Points along the arrow-trajectory correspond to samples of �gures
8.6, 8.7 for Oasis-LH, and 8.8, 8.9 for Oasis-RH.

foremost at the hippocampus anterior and posterior surfaces (head and tail). This result is also
captured by the signi�cance map of �g. 8.4 (see 2.2 on how this map was computed). The areas
showing signi�cant deformation can also be largely identi�ed with the cornu ammonis 1 (CA1)
and subiculum regions (see also �g. ?? for a reference on hippocampus sub�elds).

Apparently the same areas are more or less a�ected, either on trajectory points near the
normal support, i.e. mildly atrophic hippocampi (roughly early stages of the disease), or on
trajectory points far from the support, i.e. severely atrophic hippocampi (roughly late stages
of the disease). The �ndings above are consistent with well-known �ndings in related research
(for example [Csernansky et al. 2005,Costafreda et al. 2011,Morra et al. 2010,Greene
et al. 2012,Thompson et al. 2004,West et al. 2000]). Concerning the state of the deformation
pattern with respect to the atrophy severity, given here by the discriminative trajectory, in
related literature the head and the tail of the hippocampus [Morra et al. 2010] and the CA1
region [West et al. 2000] are indeed hotspots in the progression of AD, acknowledged to show
signs of atrophy early on. Hippocampal atrophy that is related with normal aging, is on the
contrary more con�ned to the subiculum and the dentate gyrus [West 1993]. Atrophy on CA1
has been associated in general with impairment of late retrieval and consolidation [Mueller
et al. 2011], and is in general correlated with AD onset. We have in the same manner processed
the right hippocampi dataset Oasis-RH. In �gure 8.5(b) we see the Isomap R3 embedding for
the Oasis-RH set, with the discriminative trajectory overlaid. The results are largely analogous
to the results for the left hippocampi. The trajectory corresponds again to a visible volume loss,
and inward deformation is present on roughly the same areas as those of the left hippocampi
case (�g. 8.4, 8.8, 8.9).
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1 2 3

4 5 6

7 8 9

Figure 8.6 � Oasis-LH discriminative trajectory samples. From 1 to 9 the samples correspond
to movement from extreme pathology gradually towards a healthy, non-atrophic anatomy.

3. Using the proposed model for hippocampus and amygdala
classi�cation

We have used the UhS datasets to test our model as a 1-class classi�er. In �gure 8.10 we see
the reduced dimension embeddings for the University Hospital of Strasbourg datasets. We have
evaluated classi�cation as the percentage of correctly classi�ed data. We remind the reader that
in the UhS-xx datasets we have data partitioned in only two classes, which are AD patients
and healthy controls. SVDD is trained assuming the healthy controls as normal, as also done
previously. The evaluation mark was computed during the phase of cross-validating for model
parameters C and kernel bandwidth σ. The mean for repeated leave-10%-out cross validation
trials is shown in table 8.3. Note that state of the art classi�cation results for AD patient-
control hippocampus datasets are typically around the 80% − 85% correct classi�cation ratio
mark [Cuingnet et al. 2011,Wolz et al. 2010]. We also note the corresponding results for
a SVM model instead of SVDD. SVM/Isomap corresponds to using SVM over dimensionality
reduced data, and SVM corresponds to using SVM directly on ambient space data. The same
notation applies to SVDD, with SVDD/Isomap corresponding to the proposed model, and
SVDD corresponding to a direct application on ambient space data.

As expected, SVM results are overall superior to those of SVDD. This is due to the SVM
formulation, which exploits all information available in a 2-class setting, while the SVDD hy-
persphere is a direct function of only the normal training set. There is work in the literature
that extends the SVDD so that it can produce a competitive classi�er especially in multiclass
(i.e. more than 2 classes) classi�cation problems (for example [Lee & Lee 2007] or [Ban &
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Figure 8.7 � Oasis-LH discriminative trajectory swelling/contraction maps. From 1 to 8 the
samples correspond to movement from extreme pathology gradually towards a healthy, non-
atrophic anatomy. Red areas correspond to outward deformation as we are moving towards the
healthy controls support (from the �rst towards the last frame), or inward deformation as we
are moving towards the opposite direction. Blue areas correspond to inward deformation as we
are moving towards the healthy controls support (from the �rst towards the last frame), or
outward deformation as we are moving towards the opposite direction. Green areas correspond
to no change.

SVDD SVDD/Isomap SVM SVM/Isomap
UhS-LH 0.85 0.96 0.96 1.00
UhS-RH 0.81 0.86 0.88 0.92
UhS-LA 0.83 0.84 0.88 0.92
UhS-RA 0.79 0.87 0.92 0.96

Table 8.3 � Classi�cation accuracy results. Figures show percentage of correctly classi�ed data
in the UhS datasets. SVDD and SVM were run directly over data on the ambient space, with
no dimensionality reduction. SVDD/Isomap is the proposed model.

Abe 2006,Kang et al. 2006,Yang et al. 2011]). An extended discussion would be out of the
scope set in this thesis, as using the proposed model as a classi�er is not our primary goal.
We shall limit ourselves to note the application of such multiclass extensions of the SVDD on
practical problems similar to the ones discussed here (for example classi�cation in 4 classes :
AD, MCI converters, MCI non-converters, and healthy controls class).

Looking at the results of table 8.3 as classi�cation without isomap versus classi�cation with
isomap, we conclude that working with the manifold hypothesis is always more bene�cial than
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Figure 8.8 � Oasis-RH discriminative trajectory samples. From 1 to 9 the samples correspond
to movement from extreme pathology gradually towards a healthy, non-atrophic anatomy.

not, regardless of the discriminative base model used. This con�rms our premise set earlier in
this thesis (chapter 3). It also con�rms previous work in the literature where manifold learning
is used to create a better SVM classi�er [Wolz et al. 2010], and extends it for the SVDD
classi�er case.

4. Conclusion

With this chapter we �nish the last part and the main presentation theme of this thesis.
We have applied the proposed shape processing pipeline in real data. Discriminative trajectory
results over the hippocampus have shown a discriminative pattern that appears coherent with
previous results in AD-related research.
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Figure 8.9 � Oasis-RH discriminative trajectory swelling/contraction maps. From 1 to 8 the
samples correspond to movement from extreme pathology gradually towards a healthy, non-
atrophic anatomy. Red areas correspond to outward deformation as we are moving towards the
healthy controls support (from the �rst towards the last frame), or inward deformation as we
are moving towards the opposite direction. Blue areas correspond to inward deformation as we
are moving towards the healthy controls support (from the �rst towards the last frame), or
outward deformation as we are moving towards the opposite direction. Green areas correspond
to no change.
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(a) (b)

(c) (d)

Figure 8.10 � Isomap embeddings for the UhS datasets. (a) UhS-LH (left hippocampi) (b)
UhS-RH (right hippocampi) (c) UhS-LA (left amygdalae) (d) UhS-RA (right amygdalae). Green
points correspond to healthy controls. Red points correspond to AD patients.
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Conclusion and perspective

In this thesis, we have presented a non-linear, non-Gaussian compact model capable of
describing shape. Given a set of training shapes labelled as normal, we have estimated the
distribution of these elements in the shape description space, using SVDD theory. The esti-
mated normal support was then used to discriminate normal data from abnormal, or put in
the medical imaging context, healthy tissues from pathological ones. We have also introduced
the discriminative trajectory, as a tool to estimate discriminative di�erence. Instrumental for
the utility of these tools is always the underlying data distribution, modelled as a non-linear
manifold.

To the extent that the manifold learning step captures the underlying shape data structure
correctly, the resulting model is compact, and leads to a more accurate description. On the one
hand, newly generated shapes are anatomically correct, since they are constrained to lie on the
hypothesized manifold. On the other hand, discriminative trajectory moments are inherently
also constrained to lie over the hypothesized manifold, leading to an accurate discriminative
di�erence estimate. We have illustrated this point on geometrical shape and synthetic anatom-
ical datasets. In the real anatomical data scenario, the results showed coherence with results
previously presented in related literature.

We have con�rmed that during Alzheimer's disease, particular tissue regions and sub�elds
are damaged the most, like the the head and the tail of the hippocampus. This has been shown
using the discriminative trajectory as well as p-value signi�cance maps. Discriminative trajecto-
ries capture discriminative di�erence as a subject-to-class process, while the p-value map gives
a class-to-non class di�erence summary. As far as the discriminative trajectory is concerned, let
us note that the trajectory parameter is not identical to a time parameter. At best, it could be
perceived as correlated to time. We have indeed seen that the SVDD decision function correlates
to a certain extent with clinical assessment scores, which in turn re�ect disease progress. We
have not identi�ed dramatical di�erence in the hippocampal subregions a�ected with respect to
di�erent discriminative trajectory moments, which would indicate towards a changing pattern
in AD-related atrophy, as a function of disease progress. In perspective, a longitudinal dataset,
and more importantly a model capable of handling such data, could shed more light and lead
to modelling of shape as a direct function of time.

The SVDD model used as the discriminative component of the proposed model is essentially
one-class based, however it can be in perspective extended to a multiclass model. Related
experimental results have shown that multiclass SVDD extensions compete fairly against state
of the art multiclass discriminative models [Lee & Lee 2007,Yang et al. 2011].

In the experiments run here we assumed that the observed, ambient space is the space of de-
formation vector �elds given a single template. Combined with OLS regression, this constitutes
a fast and practical solution. However, using a single template when dealing with complex popu-
lations introduces registration bias, which can have a damaging e�ect on the analysis [Blezek
& Miller 2007, Sabuncu et al. 2009,Koikkalainen et al. 2011, Sfikas et al. 2010A]. A
suitable representation that could �t the role of the ambient space of our model, could relax the
related bias. Another perspective is to use input information other than shape to describe and
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discriminate subjects, as done for example in [Aljabar et al. 2010], where di�erent distance
metrics are fused in order to produce a better embedding ; or integrate alternate shape matching
frameworks such as the currents framework [Vaillant & Glaunes 2005]. Concerning again
the proposed model, the regression mechanism could be replaced with a more e�cient, robust
approach such as the Relevance Vector Machine (RVM). Originally proposed for regression over
scalar output data [Tzikas et al. 2006], they were recently extended to multivariate outputs
in the context of pose estimation [Thayananthan et al. 2006]. The basic idea in RVM is to
weigh down the e�ect that some of the basis functions have in the regression, or, in the limit,
disregard them altogether. The inputs that correspond to the remaining basis vectors are the
relevance vectors. Compared to the simple linear model, RVM results in a sparse represena-
tion of the interpolation function while exhibiting comparable generalization error. The need to
lighten computational cost makes RVM an attractive solution for biomedical data, which are
typically very demanding in terms of both disk space and processing power. These issues could
also be attenuated using compressive sensing [Lustig et al. 2007] on the volume representation
part of the model, or as part of the regression mechanism.
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Appendix A

Bayesian models for medical, natural

and polarimetric image processing

In this appendix, we present a number of works that we have co-authored during the �rst
part of this thesis. The general theme of this set of works is using Bayesian spatially varying
mixture models to perform image segmentation (chie�y) and image restoration. This subject is
organically unrelated to as much as thematically di�erent from the main part of this thesis, to
quite a great extent. Hence, we have decided to present these works in an appendix, in a brief
yet concise manner.

The models that we shall present here cover aspects of machine learning, di�erent from the
ones presented in the main part of the thesis. All models are hierarchical, generative models
based on a special form of a Gaussian mixture model, which assumes di�erent model statistics
for di�erent image pixels -hence the title spatially-varying. Basic theoretical tools that are used
in the models that follow include Expectation-Maximization (EM), Variational Inference (VI),
Majorization-Minimization (MM). We use a graphical model illustration in each subsection to
describe the corresponding model structures concisely.

The work presented here partly covers work published in [Sfikas et al. 2008B,Sfikas et al.
2008A,Sfikas et al. 2010B,Sfikas et al. 2011A,Sfikas et al. 2011B].

1. Introduction

In this section we present an outline of the works in image processing that we discuss in
this appendix. A common trait of all proposed models is that they are generative, in the sense
that they describe a mechanism of image generation. In all cases the (only) observed quantity
is the image itself, and solving each of the models amounts to estimating the exact values or
distributions of the model parameters. The observed image in model terms is expressed as a set
of N image cues, denoted as the set X = {xn}n=1..N .

The input image is perceived as a set of K segments (classes). Each of these segments is
governed by di�erent statistics over its features, centered around a mean cue value. This is
expressed as a Gaussian distribution over X, given class information. The class each image
pixel belongs to is encoded with the Z = {znj }n=1..N,j=1..K , Π = {πnj }n=1..N,j=1..K sets of
vectors. Vector set Z encodes which pixel belongs to which segment directly, while each vector
in Π encodes the probability of the given pixel being part of any given segment. This relation
between sets Z and Π is expressed as a probability distribution of Z given Π.

In order to enforce spatial smoothness, we de�ne a Markov random �eld (MRF) prior over
Π, which e�ectively encodes our assertion that spatially neighboring pixels are more likely
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to belong to the same segment. The MRF prior includes the possibility of not enforcing
smoothness, if an edge is detected. Edge information about the image is captured by vari-
ables U = {unkj }n=1..N,j=1..K,k=1..Γ (and ` = {`nk}n=1..N,k=1..Γ in section 2) and their respective
parameters.

The required segmentation or restoration is obtained by solving the model, or in other words
estimating the a posteriori distributions (a posteriori in the sense of after having observed
the image data) of the aforementioned hidden variables and parameters. Depending on the
envisaged application at hand, our objective goal translates here to estimating distributions of
Z (segmentation) or S = {sn}n=1..N (actual Stokes image). This task, due to the complexity of
the models, is in all cases directly intractable. To this end, an approximation scheme is employed.
Expectation-Maximization, Majorization-Minimization and Variational Inference are used, the
choice of which depends on the particular structure and accompanying inference di�culties of
each model. To the extent that it is computationally possible, the full posterior distribution is
computed, or a MAP estimate for each model variable.

Each particular application discussed in sections 2, 3, 4, 5 of this appendix shares the core
generative model outlined above. In section 2 the MRF spatial relationships are extended to
a 3D grid, so as to handle 3D image inputs, such as structural MR images. In section 3 the
model is applied on natural 2D image data.

The base generative model assumes a �xed number of segments. In section 4 the segmenta-
tion model is extended so as to allow for the automatic estimation of the number of segments.
Alongside the set Π, which expresses mixing probabilities at a local spatial level, we add a
set Ω = {ωj}j=1..K of global mixing probabilites. This allows for a more e�cient pruning of
unnecessary components.

In section 5 we propose a model for segmentation and restoration of polarimetric images.
The observed variables G = {gn}n=1..N are distorted versions of a true Stokes image S. Each
pixel of the Stokes image is constrained under a speci�c range of values. This is expressed as
a non-linear relation between each of its four channels. Both the required restoration S and
the segmentation Z appear as hidden variables in the model hierarchy, and are estimated by
solving the model, as before.

A summary of the graphical models for the works that we discuss in this appendix is given
in table A.1.

2. MR brain tissue classi�cation using an edge-preserving spa-
tially variant mixture model

2.1 Introduction

The segmentation of 3D brain magnetic resonance (MR) images into the three main types,
namely, white matter (WM), gray matter (GM) and cerebro-spinal �uid (CSF) is of great impor-
tance in most neuroimaging applications. Although many research studies have been presented
in this area, MRI brain segmentation still remains a challenging issue due to speci�c di�culties
of MRI, such as intensity inhomogeneity, partial volume e�ect and acquisition noise. A �rst ap-
proach to the problem relied on the expectation-maximization (EM) algorithm [Kapur et al.
1996,Wells III et al. 1996] which led to an important category of methods resorting to Gaus-
sian mixture models (GMM). Among them, many studies incorporate prior information (e.g.
anatomical atlases) on tissue topology [Marroquin et al. 2002,Prastawa et al. 2004,Tas-
dizen et al. 2005,Pohl et al. 2007] or constrain the segmentation to be spatially smooth and
take into account edge discontinuities (e.g. using Markov random �eld (MRF) priors) [Niessen
et al. 1998,Laidlaw et al. 1998,Kapur et al. 1998,Van Leemput et al. 1999,Van Leemput
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Table A.1 � Summary of graphical models for the Bayesian models for image processing,
discussed in this chapter. The structure of all models treats the input image as a group of
segments (classes) each with separate feature statistics, and enforces spatial smoothness through
an edge-preserving MRF prior. (a) Model applied to 3D MR images for classi�cation in 3 tissue
types (see section 2). This is closely related to (b), a model applied to the segmentation natural
images (see section 3). (c) Model extended to allow for the automatic determination of the
number of image segments (see section 4). (d) Model applied to the joint segmentation and
restoration of polarimetric images (see section 5).
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et al. 2001,Greenspan et al. 2006,Peng et al. 2006,Awate et al. 2006,Awate et al. 2007].

Modeling the probability density function (pdf) of pixel or voxel attributes with a GMM
[Bishop 2006] is a natural way to cluster data because it automatically provides a grouping
based on the components of the mixture that generated them. Furthermore, the likelihood of
a GMM is a rigorous metric for clustering performance. The parameters of the GMM can be
estimated very e�ciently through maximum likelihood (ML) estimation using the Expectation-
Maximization (EM) algorithm [Bishop 2006].

The prior knowledge that adjacent pixels most likely belong to the same cluster is not used in
standard GMM. To overcome this shortcoming, spatial smoothness constraints may be imposed,
generally applying an MRF prior, like the spatially varying Gaussian mixture model (SVGMM)
in [Nikou et al. 2007]. However, this model enforces smoothness between pixels belonging to
di�erent classes. Since the seminal work in [Geman & Geman 1984], line processes were also
introduced in several applications, other than brain tissue classi�cation, to respond to this
drawback, see for instance [Molina et al. 2003] and [Kanemura et al. 2007A,Kanemura
et al. 2007B] for image restoration and superresolution respectively.

In this section, we propose a Bayesian, spatially varying Gaussian mixture model for the
classi�cation of brain images to the three tissue types (WM, GM, CSF). The main contribution
of the model is that it takes into account not only that adjacent voxels are more probable to
belong to the same class but it also prohibits smoothing across boundary voxels. Motivated by
the studies in brain image segmentation incorporating MRF-based prior knowledge [Tasdizen
et al. 2005,Niessen et al. 1998,Laidlaw et al. 1998,Kapur et al. 1998,Van Leemput et al.
1999,Van Leemput et al. 2001,Greenspan et al. 2006,Peng et al. 2006,Awate et al. 2006,
Awate et al. 2007] we impose proper hyperpriors to simultaneously address local smoothing and
edge preservation. The main di�erence with other, state-of-the-art methods imposing MRF-type
priors, is that the constraint is imposed on the probabilities of the voxel labels (generally known
in mixture modeling as contextual mixing proportions) and not onto the labels themselves. By
these means, closed form solutions are provided for the model parameters through variational
inference.

2.2 Model description and solution

The K-kernel spatially varying GMM di�ers from the standard GMM in the de�nition of the
mixing proportions. More precisely, in the SVGMM, each voxel xn, n = 1, ..., N has a distinct
vector of mixing proportions denoted by πnj , j = 1, ...,K. We call these parameters contextual
mixing proportions to distinguish them from the mixing proportions of a standard GMM. Hence,
the probability of a distinct voxel is expressed by :

f(xn;π, µ,Λ) =

K∑
j=1

πnjN (xn;µj ,Λj), (A.1)

where 0 ≤ πnj ≤ 1,
∑K

j=1 π
n
j = 1 for j = 1, 2, ...,K and n = 1, 2, ..., N , µj are the Gaussian

kernel means and Λj are the Gaussian kernel precision (inverse covariance) matrices.

We now assume that the voxels X = {x1, x2, ..., xN} are independent and generated by the
graphical model shown in �gure A.1.

Note that a set Z = {znj }n=1..N,j=1..K of N ×K latent variables is introduced, in order to
make inference tractable for the model. The Z variables are distributed multinomially :

p(Z|Π) =
K∏
j=1

N∏
n=1

(πnj )
znj , (A.2)
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Figure A.1 � Graphical model for the edge preserving spatially variant Gaussian mixture
model. Superscript n ∈ [1, N ] denotes voxel index, subscript j ∈ [1,K] denotes kernel (segment)
index and Γ ∈ [1, 26] describes the neighborhood direction type.

where each zn is a binary vector, with znj = 1 if datum n is generated by the j -th kernel and
znj = 0 otherwise.

Considering the set of contextual mixing proportions Π as random variables and assuming
a proper prior, we can incorporate the intuitive fact that neighboring voxels are more likely to
share the same class label. We impose an edge preserving Gaussian prior on Π :

p(Π|`;β) =
K∏
j=1

N∏
n=1

Γ∏
k=1

N (πnj |πkj ;β2j )`
nk
, (A.3)

where `nk is a binary random variable we call line-process. If `nk = 1, then there is a link on
the random �eld between the voxel indexed n and its k-th possible neighbor (we denote by πk

the k-th neighbor of speci�c voxel n). Otherwise, if `nk = 0 there is no link between them,
signifying the presence of an edge. We assume that two voxels can be possible neighbors when
they are vertically, horizontally or diagonally adjacent with regard to their spatial location in
the three-dimensional mesh, implying Γ = 26 neighbors per voxel.

Parameters β = {β21 , β22 , ..., β2K} control the spatial smoothness of the contextual mixing

proportions. The prior in eq. (A.3) implies that

πnj − πkj ∼ N (0, β2j ), ∀k ∈ [1,Γ] | `nk = 1,

re�ecting the fact that the contextual mixing proportions which implicitly control voxel class
membership are similar for neighboring voxels except in case there exists an edge.

We now regard the line process variables `nk as Bernoulli distributed random variables,
governed by a parameter set ξ = {ξ1, ξ2, ..., ξΓ} :

p(`|ξ) =
N∏
n=1

Γ∏
k=1

p(`nk|ξk) =
N∏
n=1

Γ∏
k=1

ξk
`nk

(1− ξk)(1−`
nk). (A.4)

The Beta distribution is the conjugate for the Bernoulli pdf, therefore, we impose it on the
ξ parameters :

p(ξ;αξ0, βξ0) =

Γ∏
k=1

Γ(αξk0 + βξk0)

Γ(αξk0)Γ(βξk0)
ξk

(αξk0−1)
(1− ξk)(βξk0−1). (A.5)
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The main advantage of the model in �g. A.1 is that (i) it takes into account that neighboring
voxels are more probably generated by the same Gaussian pdf and (ii) it does not smooth
adjacent voxels separated by an edge.

To perform segmentation, the evidence with respect to model parameters has to be opti-
mized :

argmax
µ,Λ,Π,β

ln p(X,Π;µ,Λ, β).

This MAP solution cannot be computed directly, or even estimated using the EM algorithm,
due to the Π prior distribution complexity. Therefore, we resort to variational inference [Bishop
2006]. This leads to an iterative scheme with one step for the computation of the stochastic
parameters Z, `, ξ and Π and one step for the deterministic parameters µ, Λ and β. Due to
lack of space we present here the �nal expressions.

The expected values of the stochastic parameter are

<znj>= π̃nj , <lnk>= ξ̃nk, <ln ξk>= ψ(αξk)− ψ(αξk + βξk),

<ln(1− ξk)>= ψ(βξk)− ψ(αξk + βξk),

where ψ(·) is the digamma function and the expectations (denoted by a tilde) being as follows,
with sig(x) = (1 + e−x)−1 :

π̃nj =
πnjN (xn;µj ,Λj)∑K
l=1 π

n
l N (xn;µl,Λl)

,

ξ̃nk = sig

 K∑
j=1

lnN (πkj |πnj ;β2j )+ <ln ξk> − <ln(1− ξk)>

 ,

α̃ξk = αξ0 +

N∑
n=1

<lnk>, β̃ξk = βξ0 +

N∑
n=1

<1− lnk> .

The contextual mixing proportions πnj are computed as the roots of a quadratic equation :

anj
(
πnj

)2
+ bnj

(
πnj

)
+ cnj = 0, (A.6)

with coe�cients :

anj = −
Γ∑
k=1

<lnk>, bnj =

Γ∑
k=1

<lnk> πkj , cnj =
<znj> β2j

2
.

The form of the coe�cients guarantees that there is always a non negative solution. The
solutions of eq. (A.6) however will not in general satisfy the constraint

∑K
j=1 π

n
j = 1,πj ≥ 0,∀j ∈

[1..K] so we project the corresponding πn vectors ∀n ∈ [1..N ] onto the constraints subspace ;
this is done using the quadratic programming algorithm described in [Blekas et al. 2005].

Furthermore, the deterministic parameters are also obtained in closed form :

µ̃j =

∑N
n=1 <z

n
j> xn∑N

n=1 <z
n
j>

, Λ̃−1
j =

∑N
n=1 <z

n
j> (xn − µj)(x

n − µj)
T∑N

n=1 <z
n
j>

, (A.7)

β̃2j =

∑N
n=1

∑Γ
k=1 <l

nk> (πnj − πkj )
2∑N

n=1

∑Γ
k=1 <l

nk>
. (A.8)

The above update equations, for both the stochastic and deterministic parameters, are
considered for the full range of each of the indices, namely n, j and k and are computed
iteratively until convergence [Boyd & Vandenberghe 2004] of the variational lower bound.
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2.3 Experimental results

We have evaluated the proposed model on simulated images with known ground truth from
the BrainWeb database [Collins et al. 1998], [Kwan et al. 1999] using the voxel intensities as
features. Prior to segmentation, we have preprocessed each volume so that only WM, GM and
CSF are included (�g. A.2). Hence, we set the number of kernels in our model to K = 3. The
hyperparameter values of the Beta prior distribution were set to αξk0 = βξk0 = 1, ∀k, making
the prior uninformative as the data size N � 1.

The algorithm was applied to a simulated T1-weighted data without any bias �eld and with
intensity noise levels between 0% and 9%. The noise percentages were de�ned with respect
to the mean intensity of each tissue class. We have compared our segmentation results with
two of the state of the art methods of [Van Leemput et al. 1999] and [Tasdizen et al.
2005]. In both of these studies, the Dice metric was used for evaluation. Therefore we present
our results using this performance measure. Figure A.2 summarizes the Dice metrics for the
compared methods. In that �gure, the curves for the state-of-the-art methods are reproduced
from the respective publications [Van Leemput et al. 1999,Tasdizen et al. 2005]. As it can
be observed, in all cases, our method provides better segmentations with respect to the method
in [Van Leemput et al. 1999]. Also, for low level noise the Dice metric of the proposed method
is higher with respect to the method proposed in [Tasdizen et al. 2005]. On the other hand,
the method of [Tasdizen et al. 2005] performs better for noise levels of 7% and 9%. However,
our method takes no more than 50 minutes to run on a 2.7 GHz standard PC whereas the
method in [Tasdizen et al. 2005] requires at least six hours runtime for convergence.

(a) (b)

(c) (d)

Figure A.2 � Dice metric as a function of noise level for data without bias �eld. (a) Gray matter, (b)
white matter, (c) CSF, (d) mean over gray and white matter. The dashed lines plot the results for the
same images as presented in [Tasdizen et al. 2005] and [Van Leemput et al. 1999]. Results are not
provided by the respective publications for the case in (c).

We have also compared our Bayesian model to a standard GMM as well as to the spatially
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varying GMM (SVGMM) proposed in [Nikou et al. 2007]. In all cases, our model performed
better than both methods. Both of the spatially varying models provided Dice metrics signif-
icantly better than the standard GMM. Moreover, the di�erence between our model and the
SVGMM [Nikou et al. 2007] is small but consistently in favor of our method. These di�erences
are underpinned in table A.2. A representative segmentation example is presented in �gure A.3.

Noise (%) Bayes-SVGMM SVGMM GMM

0 96.6 96.5 77.2
1 96.6 96.5 89.8
3 96.0 95.9 95.3
5 94.2 94.2 94.1
7 91.8 91.7 90.8
9 88.9 88.8 86.8

Table A.2 � Mean values for the Dice metric as a function of noise level over the three tissue types.
The compared methods are the proposed method (Bayes-SVGMM), the non edge preserving spatially
varying GMM (SVGMM) proposed in [Nikou et al. 2007] and a standard GMM.

Figure A.3 � Axial slices of a 3D segmentation example. From left to right : original MR slice
with (9%) noise, ground truth, segmentation using a GMM, and the proposed method.

2.4 Conclusion

We have presented a framework for segmenting the brain anatomy from 3D MRI. The
proposed method relies on a Bayesian �nite mixture model with a Gauss-Markov random �eld
prior on the probabilities of the pixel labels. Also, the model incorporates a probabilistic line
process for edge preservation. The quantitative evaluation reveals that the method not only
improves the standard GMM and re�nes the SVGMM [Nikou et al. 2007] but also performs
at least at the same level as other state-of-the-art methods. A perspective of this study is the
extension of the model to include more brain tissues and to integrate bias �eld correction into
the segmentation procedure.

Methodologically, the model described in this section is related to the natural image seg-
mentation model presented in the next section.

3. Edge-preserving spatially varying models for image segmen-
tation

Clustering-based image segmentation methods rely on arranging data into groups hav-
ing common characteristics [Xu &Wunsch II 2005]. During the last decade, the main re-
search directions in the relevant literature have been focused on mixture model [Sanjay-
Gopal & Hebert 1998,Nikou et al. 2007], graph theoretic approaches [Shi & Malik 2000,
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Felzenswalb & Huttenlocher 2004, Zabih & Kolmogorov 2004], methods based on
the mean shift algorithm [Comaniciu & Meer 2002,Carreira-Perpinan 2006] and rate
distortion theory techniques [Yang et al. 2007].

Research e�orts in imposing spatial smoothness for image segmentation can be grouped into
two categories. In the methods of the �rst category, spatial smoothness is imposed on the dis-
crete hidden variables of the FMM that represent class labels [Marroquin et al. 2003,Zabih
& Kolmogorov 2004]. These approaches may be categorized in a more general area involving
simultaneous image recovery and segmentation which is better known as image modeling [Ra-
jagopalan & Chaudhuri 1999]. More speci�cally, spatial regularization is achieved by im-
posing a discrete MRF on the classi�cation labels of neighboring pixels that penalizes solutions
where neighboring pixels belong to di�erent classes. Inference in this category of models is non
trivial and generally performed through EM-like alternating optimization, Markov Chain Monte
Carlo (MCMC) or inexact variational inference.

In the second category of methods, the MRF-based smoothness constraint is not imposed
on the labels but on the contextual mixing proportions, that is on the probabilities of the pixel
labels. This model is called spatially variant �nite mixture model (SVFMM) [Sanjay-Gopal &
Hebert 1998] and avoids the inference problems of DMRFs. For instance, in [Nikou et al. 2007],
a new family of smoothness priors was proposed for the contextual mixing proportions based
on the Gauss-Markov random �elds that takes into account cluster statistics, thus enforcing
di�erent smoothness strength for each cluster. The model was also re�ned to capture information
in di�erent spatial directions. In these models, maximum a posteriori (MAP) estimation of
the contextual mixing proportions via the MAP-EM algorithm is possible. However, the main
disadvantage is that smoothness is imposed in the neighborhood of each pixel without taking
into account that the respective pixel may be an edge pixel or its neighborhood consists of edge
pixels.

In this section, we present a new hierarchical Bayesian model for mixture model-based
image segmentation with spatial constraints. This model assumes that the local di�erences of
the contextual mixing proportions follow a Student's t-distribution. The generative model of
Student's t-distribution contains two levels. The lower level is a Gaussian pdf with precision
(inverse variance) varying with each pixel and the higher level a Gamma pdf. The varying
precisions with each pixel of the Gaussians of this model capture the local image variations and
thus allow the smoothness constraints to incorporate the image edge structure.

A MAP-EM algorithm was used for Bayesian inference with this model. An important
feature of this algorithm is that all the necessary parameters are estimated from the data.
Thus, the proposed segmentation algorithm is automatic in the sense that it does not require
empirical selection of parameters like other state-of-the-art methods (n-cuts [Shi & Malik

2000], mean-shift [Comaniciu & Meer 2002]).

The model was extensively evaluated on the 300 images of the Berkeley image data base and
was compared with other GMM based methods that do not require parameter selection. More
speci�cally, it compared favorably to standard GMM and to GMM with "standard" spatial
smoothness constraints [Nikou et al. 2007].

3.1 Model description and solution

The K-kernel spatially varying GMM [Sanjay-Gopal & Hebert 1998,Nikou et al. 2007]
di�ers from the standard GMM [Bishop 2006] in the de�nition of the mixing proportions.
More precisely, in the SVGMM, each pixel xn, n = 1, ..., N has a distinct vector of mixing
proportions denoted by πnj , j = 1, ...,K, with K being the number of Gaussian kernels. We call
these parameters contextual mixing proportions to distinguish them from the mixing proportions



94 Appendix A. Bayesian models for medical, natural and polarimetric image processing

of a standard GMM. Hence, the probability of a distinct pixel is expressed by :

f(xn;π, µ,Σ) =
K∑
j=1

πnjN (xn;µj ,Σj), (A.9)

where 0 ≤ πnj ≤ 1,
∑K

j=1 π
n
j = 1 for j = 1, 2, ...,K and n = 1, 2, ..., N , µj are the Gaussian

kernel means and Σj are the Gaussian kernel covariance matrices.

Generally, in image processing and computer vision, we assume that, conditioned on a hidden
variable Z, pixels X = {x1, x2, ..., xN} are independent and Gaussian-distributed :

p(X|Z) =
K∏
j=1

N∏
n=1

N (xn|µj ,Σj)z
n
j , (A.10)

where the set of N ×K latent variables Z = {znj }n=1..N,k=1..K is introduced to make inference
tractable for the model. The Z variables are distributed multinomially :

p(Z|Π) =
K∏
j=1

N∏
n=1

(πnj )
znj , (A.11)

where each zn is a binary vector, with znj = 1 if datum n is generated by the j -th kernel and
znj = 0 otherwise.

Considering the set of contextual mixing proportions Π as random variables and assuming
a proper prior, we can incorporate the intuitive fact that neighboring pixels are more likely to
share the same class label. We assume a Markov random �eld on Π, which equivalently means
that Π is governed by a Gibbs distribution [Geman & Geman 1984] generally expressed by :

p(Π) ∝
∏
C

e−ψc(Π),

where ψc is a function on clique c, called clique potential function in the literature, and the
product is over all minimal cliques of the Markov random �eld.

In the herein proposed model, we consider clique potential functions imposing local di�er-
ences of contextual mixing proportions to follow a univariate Student's t-distribution.

A d-dimensional random variable X follows a multivariate t-distribution, X ∼ St(µ,Σ, ν),
with mean µ, positive de�nite, symmetric and real d×d covariance matrix Σ and has ν ∈ [0,∞)
degrees of freedom when [Bishop 2006], given the weight u, the variable X has the multivariate
normal distribution with mean µ and covariance Σ/u :

X|µ,Σ, u ∼ N (µ,Σ/u), (A.12)

and the weight u follows a Gamma distribution parameterized by ν :

u ∼ G(ν/2, ν/2). (A.13)

Integrating out the weights from the joint density leads to the density function of the marginal
distribution :

p(x;µ,Σ, ν) =
Γ
(
ν+d
2

)
|Σ|−

1
2

(πν)
d
2Γ

(
ν
2

)
[1 + ν−1δ(x, µ; Σ)]

ν+d
2

, (A.14)

where δ(x, µ; Σ) = (x−µ)TΣ−1(x−µ) is the Mahalanobis squared distance and Γ is the Gamma
function [Bishop 2006]. It can be shown that for ν → ∞ the Student's t-distribution tends to
a Gaussian distribution with covariance Σ. Also, if ν > 1, µ is the mean of X and if ν > 2,
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Figure A.4 � The Student's t-distribution for various degrees of freedom. As ν → ∞ the
distribution tends to a Gaussian. The Student's t-distribution has heavier tails than a Gaussian.

ν(ν − 2)−1Σ is the covariance matrix of X. Therefore, the family of t-distributions provides a
heavy-tailed alternative to the normal family with mean µ and covariance matrix that is equal
to a scalar multiple of Σ, if ν > 2 (�g. A.4) [Bishop 2006].

Therefore, the clique potential functions are properly de�ned in order to impose :

πnj − πkj ∼ St(0, β2jd, νjd), ∀n, j, d, ∀k ∈ γd, (n). (A.15)

As it can be observed in eq. (A.15), we introduce K×D di�erent t-distributions, amounting
to an equal number of parameter sets, {βjd, νjd}j=1..K,d=1..D. In eq. (A.15), D stands for the
number of a pixel's neighborhood adjacency types, and γd(n) is the set of neighbors of pixel
indexed n, with respect to the dth adjacency type. In our model, we assume 4 neighbors for
each pixel, and partition the corresponding adjacency types into horizontal and vertical, thus,
setting D = 2. This variability of parameter sets aims to capture the fact that smoothness
statistics may vary along clusters and spatial directions [Nikou et al. 2007]. Therefore, the
joint distribution on Π is given by :

p(Π;β, ν) =

D∏
d=1

K∏
j=1

N∏
n=1

∏
k∈γd(n)

St(πnj |πkj ;β2jd, νjd). (A.16)

Following the de�nition of the t-distribution in eq. (A.12) and eq. (A.13) we introduce the latent
variables U = {unkj }n=1..N,j=1..K,k=1..D and the distribution of the di�erences of local contextual
mixing proportions becomes :

πnj − πkj ∼ N (0, β2jd/u
nk
j ),

unkj ∼ G(νjd/2, νjd/2), ∀n, j, d, ∀, k ∈ γd(n). (A.17)

This generative model (�g. A.5), apart from being tractable using the EM algorithm, as will
be demonstrated in what follows, allows better insight on our assumption of Student-t cliques.
Since unkj depends on datum indexed by n, each weight di�erence in the MRF can be described
by a di�erent instance of a Gaussian distribution. Therefore, as unkj → +∞ the distribution
tightens around zero, and forces neighboring contextual mixing proportions to be smooth. On the
other hand, when unkj → 0 the distribution tends to be uninformative, and forces no smoothness.
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This is a desirable property when there exists an edge between neighboring pixels. Thus, the
U -variable maps provide a very detailed description of the image edge structure. Furthermore,
they may be considered as a continuous generalization of the binary line-process variable idea
in [Blake & Zisserman 1987,Geman & Geman 1984].

- -

� �

R

�

6
νjd unkd

β2jd µj

Σj

πnj

znj

xn

D

K

N

Figure A.5 � Graphical model for the edge preserving spatially variant Gaussian mixture
model. Superscript n ∈ [1, N ] denotes pixel index, subscript j ∈ [1,K] denotes kernel (segment)
index and d ∈ [1, D] describes the neighborhood direction type.

As shown in the graphical model in �gure A.5, the unknowns Ψ = {µ,Σ, β, ν} are considered
as parameters and will be estimated in the M-step of the EM algorithm that follows. The Z,U
are hidden random variables and will be inferred in the E-step of the same algorithm. The
unknown quantities Π, although being random variables, are treated as parameters and are
estimated in the M-step. This is the reason we refer to this algorithm as MAP-EM [Bishop
2006].

To perform model inference, the evidence with respect to the model parameters Ψ =
{µ,Σ, β, ν} and the contextual mixing proportions Π has to be optimized :

ln p(X,Π;Ψ). (A.18)

In EM terminology [Dempster et al. 1977] this is the incomplete data log-likelihood while the
complete log-likelihood is expressed by :

ln p(X,Π, Z, U ; Ψ). (A.19)

The conditional expectation of the complete likelihood is an important quantity in EM - it
is de�ned as

EZ(t),U(t)|X,Π(t)

{
ln p(X,Π, Z, U ; Ψ)

}
. (A.20)

By optimizing this expectation with respect to Ψ and Π, given the observed variables and some
initial estimate Ψ(0),Π(0), we can produce a new estimate Ψ(1),Π(1). In the same way, the new
estimate can be used to produce a next one and so on. It can be proved that these estimates
converge to a local optimum for the incomplete likelihood, eq. (A.18) ; this is the main idea in
the EM algorithm. Formally this iteration scheme is split in two steps, the Expectation and the
Maximization step.

The E-step consists in computing the joint expectation of the hidden variables Z and U , with
respect to current iteration parameters Ψ(t) where t denotes the number of current iteration.
Observing the graphical model in �g. A.5, we can see that given X and Π, Z and U are
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conditionally independent ; therefore EZ,U |X,Π(·) = EZ|X,Π{(EU |X,Π(·)} and we can compute
these expectations separately. So we have the updates ∀n, j, d, ∀k ∈ γd(n) :

<znj>
(t)=

π
n(t)
j N (xn;µ

(t)
j ,Σ

(t)
j )∑K

l=1 π
n(t)
l N (xn;µ

(t)
l ,Σ

(t)
l )

<unkj >
(t)= ζ

nk(t)
j /η

nk(t)
j

<lnunkj >
(t)= ψ(ζ

nk(t)
j )− ln η

nk(t)
j

where ψ(·) stands for the digamma function, and parameters ζ, η being :

ζ
nk(t)
j =

1

2

(
ν
(t)
jd + 1

)
,

η
nk(t)
j =

1

2

(
ν
(t)
jd +

(π
n(t)
j − π

k(t)
j )2

β
2(t)
jd

)
.

Maximization of the current complete likelihood ( A.20) must be driven with respect to the
model parameters Ψ and Π. With some manipulation, we can rewrite it equivalently as

EZ|X,Π{ln p(X|Z;µ,Λ)}+ EZ|X,Π{ln p(Z|Π)}+

+EU |Π{ln p(Π|U ;β)}+ EU |Π{ln p(U ; ν)}.

In this form, parameter optimization is straightforward. The resulting update equations
make up the M-step :

µ
(t+1)
j =

∑N
n=1 <z

n
j>

(t) xn∑N
n=1 <z

n
j>

(t)
,

Σ
(t+1)
j =

∑N
n=1 <z

n
j>

(t) (xn − µ
(t+1)
j )(xn − µ

(t+1)
j )T∑N

n=1 <z
n
j>

(t)
,

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd(n) <u

nk
j >

(t) (π
n(t)
j − π

k(t)
j )2∑N

n=1 |γd(n)|
.

Moreover, the contextual mixing proportions πnj are computed as the roots of a quadratic equa-
tion :

anj

(
π
n(t+1)
j

)2
+ bnj

(
π
n(t+1)
j

)
+ c

n(t+1)
j = 0, (A.21)

with coe�cients :

anj = −
D∑
d=1

{
β
−2(t)
jd

∑
k∈γd(n)

<unkj >
(t)

}
,

bnj =
D∑
d=1

{
β
−2(t)
jd

∑
k∈γd(n)

<unkj >
(t) π

k(t)
j

}
,

cnj =
1

2
<znj>

(t) .

The form of the coe�cients guarantees that there is always a real non negative solution. However,
the solutions of eq. (A.21) for a given pixel, indexed by n, will not in general satisfy the constraint∑K

j=1 π
n
j = 1. In order to get proper mixing weight vectors we perform a projection step onto
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the constraints subspace using the quadratic programming algorithm described in [Blekas
et al. 2005].

Finally, setting the derivative of (A.20) with respect to the degrees of freedom equal to zero

we obtain ν(t+1)
jd as the solutions of the equation :

ln(ν
(t+1)
jd /2)− ψ(ν

(t+1)
jd /2)+

+

[∑N
n=1

∑
k∈γd(n)(<lnu

nk
j >

(t) − <unkj >
(t))∑N

n=1 |γd(n)|

]
+ 1 = 0,

with ψ(·) being again the digamma function.

3.2 Experimental results

In our model, parameters U play a very important role in the preservation of the boundaries
between image regions. The U -variable maps for the jth kernel can be considered as the edges
that separate the jth segment of the image from the remaining segments. To demonstrate this
point we show an example in �gure A.6. In this example, an image is segmented into K = 3
segments thus 6 U -variable maps are shown. The �rst row of this �gure shows the original
and the segmented images. Then, moving from top to bottom, the U -variable maps for the
three image segments, namely sky, roof and shadows, building are shown, respectively. The left
column highlights vertical edges and the right column underpins horizontal edges. Notice that
in the second row of �g. A.6, where the U -variable maps for segment sky are shown, the edges
between the segment sky and the rest (roof and shadows, building) are mainly highlighted.
The edges between the other segments, (roof and shadows and building) are mainly highlighted
in the remaining two maps. Similarly, the edges between the segments sky and building are
not highlighted in the third row of images as the U -variable maps for roof and shadows are
underpinned.

In our implementation, we have used a 4-dimensional feature vector to describe the image
data. It is comprised by the Lab color space features and the Blobworld contrast texture de-
scriptor as described in [Carson et al. 2002]. Prior to segmentation, each variate has been
separately normalized in order not to have dominating features. We have evaluated the pro-
posed Student's t-based SVGMM (St-SVGMM) segmentation scheme on the 300 images of the
Berkeley image database [Martin et al. 2001]. We have applied our algorithm for di�erent val-
ues of the number of segments (K = {3, 5, 7, 10, 15, 20}). For comparison purposes, we have also
experimented with the standard GMM [Bishop 2006] and the GMM based segmentation with
"standard" smoothness constraints [Nikou et al. 2007] with the same number of components.

The obtained segmentations were quantitatively evaluated with two performance measures :
the Rand index (RI) [Unnikrishnan et al. 2007] and the boundary displacement error (BDE)
[Freixenet et al. 2002]. The RI measures the consistency between the ground truth and the
computed segmentation map while the BDE measures error in terms of boundary displacement
with respect to the ground truth. The statistics for these measures are presented in tables A.3
and A.4.

Based on the theoretical properties of the Student's t-model one might have expected that
the St-SVGMM introduced erroneous boundaries that did not agree with human segmentation.
Therefore it would provide a worse RI as compared to the "classical" non preserving algorithm
(SVGMM) [Nikou et al. 2007]. However, as observed in the statistics of the RI (table A.3), the
St-SVGMM outperforms the standard GMM in all cases and the SVGMM in the overwhelming
majority of the di�erent number of components.

Also, in terms of correct region boundary estimation, expressed by the BDE (table A.4), the
St-SVGMM outperforms the SVGMM, as theoretically expected. However, it also outperforms
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Figure A.6 � U -variable maps : the �rst row shows the original image and the segmentation
for K = 3 clusters ; the rows below show U -variable maps (expected values of unkj variables).
Brighter values represent lower values of u. In each row, the U -variable maps for kernel indexed
by j = 1 (sky), j = 2 (roof and shadows) and j = 3 (building), are shown respectively. The left
column corresponds to u values computed for horizontal adjacencies, and the right column for
vertical adjacencies.

standard GMM and the di�erence in performance increases with the number of segments.
The explanation for this behavior is that the standard GMM generally computes correctly the
boundaries between segments since it does not integrate a smoothing step (it also outperforms
the SVGMM in the same median values). However, as the number of segments increases, the
complexity of the image cannot be captured by a simple GMM and smoothness constraints that
model the image edge structure become increasingly bene�cial.

Overall, the St-SVGMM not only preserves region boundaries but also improves the correct
classi�cation rates with respect to the standard methods. Some representative segmentation
examples are shown in �gure A.7.

3.3 Conclusion

A segmentation algorithm based on clustering with GMM has been proposed here. The main
novelty of this model is a smoothness prior which apart from constraining adjacent pixels to
belong in the same cluster captures the image edge structure. Thus, it does not enforce smooth-
ness across segment boundaries. Another important feature of the herein proposed segmentation
algorithm is that all required parameters are estimated from the data. Thus, this algorithm is
automatic and does not require empirical parameter selection like many recent state-of-the-art
segmentation algorithms.

An important issue remains the estimation of the number of components K. In the next
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Figure A.7 � Segmentation examples using the proposed edge preserving spatially variant
mixture. From left to right, the columns show : the original image, segmentation with K = 5,
K = 10 and K = 15 kernels.

section, we shall discuss a di�erent Bayesian model that attempts to answer this problem.
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Table A.3 � Statistics on the Rand Index (RI) over the 300 images of the Berkeley image data

base for the compared methods. Higher values represent better segmentations.

GMM SVGMM St-SVGMM
K Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.
3 0.6754 0.6796 0.0853 0.6860 0.6902 0.0851 0.6871 0.6911 0.0857
5 0.7101 0.7346 0.1025 0.7175 0.7451 0.1071 0.7183 0.7460 0.1071
7 0.7171 0.7528 0.1191 0.7228 0.7589 0.1214 0.7233 0.7586 0.1212
10 0.7166 0.7590 0.1329 0.7209 0.7598 0.1355 0.7209 0.7592 0.1357
15 0.7125 0.7545 0.1431 0.7159 0.7579 0.1465 0.7157 0.7589 0.1469
20 0.7092 0.7489 0.1473 0.7062 0.7452 0.1529 0.7110 0.7525 0.1524

Table A.4 � Statistics on boundary displacement error (BDE) over the 300 images of the

Berkeley image data base for the compared methods. Lower values represent better segmentations.

GMM SVGMM St-SVGMM
K Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.
3 4.7893 4.1636 2.3856 4.7870 4.2057 2.3967 4.7633 4.2109 2.3820
5 4.3862 3.7571 2.1734 4.3938 3.8141 2.1745 4.3666 3.7939 2.1713
7 4.2438 3.7077 2.0950 4.2118 3.6831 2.0554 4.1902 3.6451 2.0556
10 4.1370 3.6025 2.0088 4.0963 3.5038 1.9863 4.0929 3.4969 2.0033
15 4.0996 3.6353 1.9760 4.0341 3.5036 1.9401 4.0119 3.4486 1.9345
20 4.1283 3.6784 2.0110 4.1913 3.6549 1.9084 4.0049 3.4735 1.9286

4. Automatic number of components determination

Selecting the appropriate number of clusters for a given data set is an important issue, on
which several approaches have been proposed. The most straightforward model selection ap-
proach is �tting a number of models with varying number of components, and evaluating the
solutions using a suitable criterion. Such penalty terms, inspired by coding theory and minimum
description length, try to avoid data over�tting by penalizing solutions with high number of
components. Examples include Akaike's information criterion, the Bayesian information crite-
rion and the Minimum message length criterion [Bishop 2006].

In the more speci�c context of assuming the data being generated by a mixture model,
methodologies include notably the Bayesian approaches [Corduneanu & Bishop 2001,Ueda
& Ghahramani 2002] where the number of kernels and the model parameters are estimated
simultaneously. In this family of methods, the model is initialized on a large number of compo-
nents, and progressively removes those components that reside in the same region of the data
space. On the contrary, in [Constantinopoulos & Likas 2007], the model starts with a low
number of components and more kernels are progressively added by splitting existing kernels
when necessary.

It is straightforward to adapt these Bayesian models into image segmentation, simply by
assuming our image feature vectors to be the data to be clustered. However, the important
feature of an image's spatial structure would not be accounted for. Natural images have a spatial
smoothness property which is neglected by standard mixture model approaches. Approaches like
the method proposed in [Blekas et al. 2005,Nikou et al. 2007,Marroquin et al. 2003] and the
model discussed in the previous section of this thesis Appendix (see also [Sfikas et al. 2008A]),
are based on MRF priors [Geman & Geman 1984] to account for spatial characteristics.
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However, they assume an a priori known number of segments.

Here we present a Bayesian model for image segmentation that enables the estimation of the
number of segments during the training process while accounting for image spatial smoothness.
We assume that the distribution of the hidden class labels is controlled by two distinct sets of
probability weight vectors, tagged correspondingly as local and global weights.

The local weights vary with pixel location. Local di�erences in these weights follow a
Student's-t distribution. The Student's-t distribution decomposes on two levels : the lower
level is a Gaussian pdf with precision (inverse variance) that is spatially variant, while the
higher level is a Gamma pdf that generates the aforementioned precision values. This precision
variability of the Gaussians allows the model to incorporate elegantly the image edge structure
along with imposing smoothness constraints.

The global weights control the number of image segments that are active in the model by
imposing a Dirichlet prior on them. In this way, more probable solutions, which otherwise
exhibit high model complexity by comprising many kernels, are penalized as low probability
states. This allows the model to estimate the number of classes in the segmentation process, by
starting from an initial high number of classes estimate and pruning mixing kernels gradually
during the model training process.

The variational inference framework [Bishop 2006, Sudderth & Jordan 2008] is used
to train the model. Variational inference involves iteratively optimizing a lower bound of the
model evidence with regard to the posterior distribution of the hidden variables, and the model
parameters. The mean �eld approximation is employed on the posterior distribution of the
hidden variables, so as to render its estimation tractable. Let us note that the proposed model
is di�erent with respect to standard Dirichlet priors imposed on the mixing proportions of a
mixture [Bishop 2006]. In our model, the hidden variables depend on two priors (local and
global weights) and model inference is not trivial with standard inference techniques. Therefore,
we optimize the variational lower bound by making use of the Majorization-Minimization (MM)
methodology [Lange 2004].

Thus, unlike state-of-the-art methods in image segmentation like normalized cuts [Shi &
Malik 2000] and standard or spatially varying mixtures [Sfikas et al. 2010B], the proposed
model can produce an estimate of the number of image segments while at the same time ensur-
ing a smooth segmentation result. Methods supporting automatic determination of the number
of classes typically depend on a scalar parameter, or a small set of parameters, that more
or less directly control the number of classes / �t likelihood trade-o� (e.g. the bandwidth in
mean shift [Comaniciu & Meer 2002]). Such parameters are meant to be empirically adjusted
beforehand. Concerning the rest of the parameters, a�ecting the quality of the segmentation
itself, the proposed model determines them automatically. We consider this issue as an ad-
vantage in comparison with other methods. Graph-cut based methods fall under this latter
category [Sfikas et al. 2010B], as well as recently proposed extensions that can handle number
of components determination [Feng et al. 2010].

Producing a smooth segmentation result while determining the number of classes has also
been addressed in the Dirichlet process prior models proposed in [DaSilva 2007,Orbanz &
Buhmann 2007], among others. However such approaches rely on sampling techniques which are
notoriously computationally expensive, in contrast to the Majorization-Minimization iterative
scheme we propose in this section.

4.1 Model description and solution

Let X = {xn}Nn=1 be the observed set of the image intensities. Consider also that there
exist at most K classes in our segmentation. Each datum xn is governed by di�erent statistics,
according to which class it belongs to. Let us assume a hidden variable set Z = {znj }n=1..N, j=1..K ,
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Figure A.8 � Graphical representation of the proposed model. Superscript n ∈ [1, N ] denotes pixel
index, subscript j ∈ [1,K] denotes kernel (segment) index, d ∈ [1, D] describes the neighborhood
direction type and k ∈ [1,Γ] denotes neighbor index.

grouped as N one-zero K × 1 vectors that control pixel class membership.

It is a popular choice in computer vision to choose the data to be Gaussian and i.i.d dis-
tributed, assuming knowledge of class memberships Z :

xn|znj = 1 ∼ N (µj ,Λj), (A.22)

with N representing a Gaussian distribution with µj and Λj being the mean vector and the
precision (inverse covariance) matrix respectively.

The distribution choice of Z plays a drastic role on the model behavior. Let us recall that
under a multinomial and i.i.d assumption on the zn, the model is essentially a Gaussian mixture
[Bishop 2006] governed by a set of K weights. In [Sfikas et al. 2010B] this idea is extended
by using spatially varying weights with a smoothness prior on them.

With the presented model we make a design choice that is meant to lie between the spa-
tially and non-spatially varying hypotheses for the mixing proportions. Let zn, ∀n ∈ [1, N ] be
independently distributed with

p(zn|Ω,Π) =

∏K
j=1(π

n
j ωj)

znj∑K
j=1 π

n
j ωj

. (A.23)

In the equation above, we have introduced Π = {πnj }n=1..N, j=1..K and Ω = {ωj}j=1..K weight

variable sets, which are constrained by
∑K

j=1 π
n
j = 1, ∀n ∈ [1, N ] and

∑K
j=1 ωj = 1. In view

that the denominator in (A.23) is the probability distribution normalization constant, eq. (A.23)
acts closely like a multinomial distribution with weights given by the set [πn1ω1, π

n
2ω2, ..., π

n
KωK ].

Thus, for each pixel n ∈ [1, N ], a class membership is determined by two sets of weight vectors.
At �rst, it depends on the set Π = [πn1 , π

n
2 , ..., π

n
K ] whose components are vectors, now called

local weights. The local weights are spatially varying as they depend on the position (indexed
by n). Secondly, it depends on the set Ω =[ω1, ω2, ..., ωK ] whose components are scalars and are
now called global weights.

For further insight, note that, if in eq. (A.23), for a given pixel indexed by n, we treat its local
weights πnj as parameters with probabilities equal to the uninformative 1/K, the distribution
of the hidden variables zn is a multinomial distribution. This is also true for the global weights
ωj . Thus, in eq.(A.23), for a given a pixel, both the local and global weights should have high
values for a certain class in order to be dominant.

Considering the set of local weights Π as random variables and assuming a proper prior, we
can incorporate the spatial smoothness trait by forcing neighboring vectors to be more likely to
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share the same class label. We assume a Markov random �eld on Π, which equivalently means
that Π is governed by a Gibbs distribution [Geman & Geman 1984], generally expressed by :

p(Π) ∝
∏
C

e−Ψc(Π), (A.24)

where Ψc is a function on clique c, called clique potential function in the literature, and the
product is over all minimal cliques of the Markov random �eld.

An appropriate clique distribution choice would be to assume that the di�erences of local
weights Π follow a Student's-t distribution with its peak set at zero. This setting, proposed
previously in [Sfikas et al. 2010B], also provides our model with the properties of an edge-
preserving line-process [Geman & Geman 1984]. The probability law for local di�erences is
thus expressed by

πnj − πkj ∼ St(0, β2jd, νjd), ∀n, j, d,∀k ∈ γd(n). (A.25)

The parameters βjd control how tightly smoothed we need the vectors of segment j to be.
In eq. (A.25), D stands for the number of a pixel's neighborhood adjacency types and γd(n)
is the set of neighbors of pixel indexed by n, with respect to the dth adjacency type, where
d ∈ [1, D]. In our model, we assume 4 neighbors for each pixel (�rst-order neighborhood), and
partition the corresponding adjacency types into horizontal and vertical, thus, setting D = 2.
This variability of parameter aims to capture the intuitive property that smoothness statistics
may vary along clusters and spatial directions.

It can be observed that the assumption in (A.25) is equivalent to

πnj − πkj ∼ N (0, β2jd/u
nk
j ),

unkj ∼ G(νjd/2, νjd/2), ∀n, j, d, ∀k ∈ γd(n),

where N and G represent a Gaussian and a Gamma distribution respectively. This breaking-
down of the Student's-t distribution allows clearer insight on how our implicit edge-preserving
line-process works. Since unkj depends on datum indexed by n, each weight di�erence in the MRF
can be described by a di�erent instance of a Gaussian distribution. Therefore, as unkj → +∞
the distribution tightens around zero, and forces neighboring local weights to be smooth. On
the other hand, unkj → 0 signi�es the existence of an edge and consequently no smoothing.

The global weights Ω are introduced in the model in order to cover our model's second
important property which is the automatic estimation of the number image segments. The idea
is that starting from a prede�ned maximum segments �gure K, during the training process
some segments "fade out" eventually to zero-weights [Corduneanu & Bishop 2001]. While
it is possible that for a certain class j all local weights πnj , ∀n ∈ [1, N ] may attain negligible
values, in practice this is di�cult. This is due to the fact that updating each πnj ∀n ∈ [1, N ]
individually must account for MRF local dependencies, which will not lead to an update far
from each site's neighbors.

Thus, assigning for each class a single global weight scalar allows us to conveniently treat
each class as a distinct entity during model training. Therefore, Ω is considered to be a random
vector governed by a Dirichlet distribution :

p(Ω;α0) ∝
K∏
j=1

ωα0−1
j . (A.26)

By these means, we can penalize solutions with numerous non-zero components. As hyperpa-
rameter α0 → −∞, solutions with less segments are encouraged, and as α0 → +∞ all K initial
segments tend to be preserved. While α0 < 0 may enforce the prior in (A.26) to be improper, in
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practice negative α0 values are applicable since it is not necessary to compute the normalizing
constant of eq. (A.26) during inference as it will be explained in the next section.

Finally we impose a Wishart prior on precision matrices Λj , ∀j ∈ [1,K] :

p(Λj ;W0, η0) ∝ |Λj |(η0−∆−1)/2e−
1
2
Tr(W−1

0 Λj), (A.27)

where the matrix W0 and the scalar η0 are such that E{Λj} = W0η0. Parameter ∆ stands
for the number of variates of the feature vectors xn. Imposing this prior on precision matrices
avoids degenerate cases, for instance, when the corresponding covariance matrix Λ−1

j has zero
eigenvalues or equivalently |Λj | → +∞ [Bishop 2006]. For an overview of the proposed model,
see �g.(A.8).

To perform inference and consequently segmentation, the model likelihood with respect to
model parameters has to be optimized :

argmax
µ,Π,Ω,β

ln p(X,Π,Ω;µ, β, ν).

Due to the functional form of the involved distributions the above optimization problem is
practically intractable. Therefore, we resort to variational inference [Bishop 2006]. This involves
calculating approximations of the posterior distributions q(·) of the hidden variables Z, U ,
Λ, then using them to �nd parameter estimates that maximize a lower bound of the model
likelihood.

Adapting the standard variational methodology [Bishop 2006] to our problem, the lower
bound to be optimized is

L(q,Π,Ω, µ, β, ν) ,∑
Z

∫
U,Λ

q(Z,U,Λ) ln
p(X,Π, Z, U,Ω;µ, β, ν)

q(Z,U,Λ)
dUdΛ

=<ln p(X,Π, Z, U,Ω;µ, β, ν)>Z,U,Λ −

<ln q(Z,U,Λ)>Z,U,Λ

=<ln p(X|Z,Λ;µ)>Z,Λ + <ln p(Λ)>Λ +

<ln p(Z|Π,Ω)>Z + <ln p(Π|U ;β)>U + ln p(Ω)+

<ln p(U ; ν)>U − <ln q(Z,U,Λ)>Z,U,Λ . (A.28)

Model evidence is decomposed to the lower bound L and the Kullback-Leibler distance
between the approximation of the posterior and the posterior itself :

ln p(X,Π,Ω;µ, β, v) = L(q,Π,Ω, µ, β, ν) +KL(q||p).

To proceed with the computation of the optimal distribution q on L, we recur to the mean

�eld approximation which stems from statistical physics [Bishop 2006] :

q(Z,U,Λ) = q(Z)q(U)q(Λ). (A.29)

Note that in the proposed model, we only need to assume q(Z,U,Λ) = q(Z,U)q(Λ), as q(Z,U) =
q(Z)q(U) is induced from the model structure (�g. A.8). Thence we can obtain update equations
for the expected values of hidden variables Z,U ,Λ :

<znj>
(t)=

π
n(t)
j ω

(t)
j N (xn;µ

(t)
j | <Λj>(t))∑K

l=1 π
n(t)
l ω

(t)
j N (xn;µ

(t)
l | <Λl>(t))

, (A.30)
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<unkj >
(t)= ζ

nk(t)
j /θ

nk(t)
j ,

<lnunkj >
(t)= ψ(ζ

nk(t)
j )− ln θ

nk(t)
j ,

where ψ(·) stands for the digamma function, and parameters ζ, θ being :

ζ
nk(t)
j =

1

2

(
ν
(t)
jd + 1

)
,

θ
nk(t)
j =

1

2

(
ν
(t)
jd +

(π
n(t)
j − π

k(t)
j )2

β
2(t)
jd

)
.

The required moment for variables Λj are given by

<Λj>
(t)=W

(t)
j η

(t)
j η

(t)
j = η0 +

N∑
n=1

<znj>
(t),

W
−1(t)
j =W−1

0 +
N∑
n=1

<znj>
(t) (xn − µ

(t)
j )(xn − µ

(t)
j )T .

Estimation of the deterministic parameters µ, Π, Ω, β, ν is achieved by maximization of
(A.28) with respect to them. However, optimizing (A.28) with respect to Ω is di�cult due to the
normalizing factor in (A.23). We can work around this obstacle and �nd a closed form update for
Ω as well, by making use of the Majorization-Minimization (MM) methodology [Lange 2004].
MM in its philosophy is quite close to variational inference and the EM algorithm [Bishop
2006], in the sense that the problem of minimizing a given objective function is transformed to
successive minimizations of surrogate functions, i.e. majorizers of the original objective function
that can be minimized in closed-form.

For the term of (A.28) involving ln p(Z|Π,Ω), we note the following inequality :

<ln p(Z|Π,Ω)>Z=

−
N∑
n=1

ln

K∑
j=1

πnj ωj +

K∑
j=1

lnωj

N∑
n=1

πnj <z
n
j> >

−
N∑
n=1

ln yn −
N∑
n=1

1

yn
(
K∑
j=1

πnj ωj − yn) +
K∑
j=1

lnωj

N∑
n=1

πnj <z
n
j>

, ϕ(Z,Π,Ω, y), (A.31)

where we have introduced y = {y1, y2, ..., yN} as a new set of auxiliary real parameters. In eq.
(A.31), we made use of the linear minorization

f(x) > f(y) +
df(y)

dy
(x− y),

which holds for any convex function f . Here f(x) = − lnx and x =
∑K

j=1 π
n
j ωj .

Consequently, we de�ne our minorant as

LMM (q, µ, β, ν,Π,Ω, y) , (A.32)

L(q, µ, β, ν,Π,Ω)− <ln p(Z|Π,Ω)>Z +ϕ(Z,Π,Ω, y),

which according to (A.31) is easily con�rmed to be a lower bound of (A.28). Therefore, we have
an MM approach in a Minorization-Maximization sense.
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Optimization of (A.32) leads to parameter value updates for µ, y, β, ν, Π, Ω. For the �rst
three parameter sets, the updates are

µ
(t+1)
j =

∑N
n=1 <z

n
j>

(t) xn∑N
n=1 <z

n
j>

(t)
, yn(t+1) =

K∑
j=1

ωjπ
n
j ,

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd(n) <u

nk
j >

(t) (π
n(t)
j − π

k(t)
j )2∑N

n=1 |γd(n)|
.

Setting the derivative of the lower bound (A.32) with respect to the degrees of freedom of

the Student's -t distributions equal to zero we obtain ν(t+1)
jd as the solutions of the equation :

ln(ν
(t+1)
jd /2)− ψ(ν

(t+1)
jd /2)+

+

[∑N
n=1

∑
k∈γd(n)(<lnu

nk
j >

(t) − <unkj >
(t))∑N

n=1 |γd(n)|

]
+ 1 = 0,

The solution for parameter ν is obtained using the bisection method [Peel & McLachlan

2000].

In order to estimate Π and Ω we have the di�culty that the optimization is under positivity
and sum-to-unity constraints as they have to be probability vectors de�ned by (A.23). The local
weights πnj are computed as the roots of a quadratic equation :

anj

(
π
n(t+1)
j

)2
+ bnj

(
π
n(t+1)
j

)
+ c

n(t+1)
j = 0, (A.33)

with coe�cients :

anj = −
D∑
d=1

{
β
−2(t)
jd

∑
k∈γd(n)

<unkj >
(t)

}
,

bnj =
D∑
d=1

{
β
−2(t)
jd

∑
k∈γd(n)

<unkj >
(t) π

k(t)
j

}
− ωj

2yn
,

cnj =
1

2
<znj>

(t) .

The solutions of (A.33) for a given pixel, indexed by n, will not in general satisfy the constraints
πnj > 0,

∑K
j=1 π

n
j = 1. In order to get proper mixing weight vectors we perform a projection step

onto the constraints subspace using the quadratic programming algorithm described in [Sfikas
et al. 2010B].

Motivated by the form of the objective function to be optimized, we follow a di�erent
strategy for the estimation of the global weights. At �rst, the unconstrained optimizers are
computed :

ω̃j =

∑N
n=1 <z

n
j> +α0 − 1∑N

n=1 π
n
j /y

n
. (A.34)

If ω̃j < 0, we �x the corresponding constrained solution to ωj = 0, so that they comply with
the positivity constraint ωj > 0.

We carry on to the second step with the remaining J 6 K non-zero components after
relabelling them as {ω1, ..., ωJ} and the K − J zero components as {ωJ+1, ..., ωK}. Solving the
corresponding equation subject to the constraint

∑J
j=1 ωj = 1, we obtain

ω
(t+1)
j =

∑N
n=1 <z

n
j>

(t) +α0 − 1

λ+
∑N

n=1 π
n(t)
j /yn(t)

, (A.35)
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where λ is the Lagrange multiplier. Substituting ωj , j = 1, ..., J from (A.35) to the sum-to-unity
constraint yields

J∑
j=1

∑N
n=1 <z

n
j>

(t) +α0 − 1

λ+
∑N

n=1 π
n(t)
j /yn(t)

− 1 = 0. (A.36)

Note that the left-hand side in (A.36) is continuous and monotonically decreasing function of :

λ ∈

[
max
j

{
−

N∑
n=1

π
n(t)
j /yn(t)

}
, +∞

)

Also, as λ→ maxj

{
−
∑N

n=1 π
n(t)
j /yn(t)

}
, the left hand of (A.36) goes to +∞ and as λ→ +∞

the left hand side of (A.36) goes to −1. Thus, we can determine the solution for λ using the
bisection method. Substituting it into (A.35) yields the updates for the constrained global
weights.

Summing up, the updates presented previously for the posterior distribution and the updates
for the model deterministic parameters constitute an iterative model training scheme. During
the training process, some of the K ωj global weight coe�cients may gradually go down to zero.
In view of update (A.30), no pixels will any longer be assigned to the corresponding class, and
e�ectively these classes are pruned from the model.

The iterations terminate with lower bound convergence. Since bound convergence is guar-
anteed for both MM [Lange 2004] and variational inference [Bishop 2006], the proposed
MM-derived lower bound LMM will also converge in a �nite number of iterations.

4.2 Experimental results

At �rst, we have applied the proposed model to the segmentation of a piecewise constant
image slightly corrupted by white Gaussian noise at SNR of 20 dB (Mondrian [Orbanz &
Buhmann 2007], �g. A.9). As this is a relatively easy segmentation problem, we use this
example to show our algorithm results over varying Dirichlet hyperparameter values α0. For
convenience, we express α0 in (A.26) as a function of the image size N and the maximum
number of classes K, with α0 = −ε−1NK−1. In view of the global weights updates (A.35),
the value of α0 is compared to the sum of the expected values znj which is of the order of
NK−1. Thus, values of ε close to one will encourage pruning of kernels. On the other hand, as
ε approaches N−1K kernel pruning is progressively less encouraged. For the Mondrian image
(�g. A.9) we have set ε = 1, 5, 50, 1000, starting from an initial number of kernels K = 12. Low
values for parameter ε lead to underestimation of the true number of segments. High values of
ε yield over-�tting problems.

Figure A.9 � Segmentation results for the Mondrian image, over various Dirichlet hyperparameter
values. From left to right : the original image after degradation by additive white Gaussian noise (SNR
of 20 dB), segmentations using ε = 1, ε = 5, ε = 20, ε = 1000. For too low ε, the number of segments is
undervalued. For too high ε, extra segments are formed erroneously out of image noise.
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Furthermore, to test the dependency of the estimated number of kernels on the initial
number of segments K and the hyperparameter ε (and consequently the Dirichlet parameter
α0), we have run tests with varying parameter values on the Mondrian (�g. A.9) and Church

(�g. A.10). The results presented in �gure A.11 show that for low values of ε, that is, penalizing
con�gurations with high number of kernels, the �nal number of segments are almost invariant
with regard to its initial value K, as it would be desired.

Figure A.10 � Natural image segmentation using Lab features for ε = 5, K = 7 initial number of
segments. The algorithm converged to four segments.
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Figure A.11 � Estimate of the number of kernels for varying values of initial segmentsK and Dirichlet
hyperparameter ε. Curves are interpolants for values at points ε = 1, 2, 5, 20, 50.

In order to evaluate the combination of both the smoothing MRF, and the automatic deter-
mination of the number of components, we have compared the proposed algorithm to two other
models. The �rst model comprises an MRF prior without any automatic component number
selection. In that case, the global weights Ω are inactive. The second model consists of estimat-
ing the number of segments but incorporates no smoothing prior. Therefore, in this case, the
local weights Π are inactive. Models close to these two may be found in [Sfikas et al. 2010B]
and [Corduneanu & Bishop 2001] respectively.

The experiment was run on a test 3-class piecewise constant image degraded by white
additive Gaussian (SNR of 18 dB) as presented in �gure A.12. The initial number of segments
was set to K = 7 and the Dirichlet parameter ε = 5. The model with no kernel number selection
fails as it identi�es erroneously the noise as separate classes. Both models with kernel number
selection successfully prune the extra kernels to the correct number of three. However, the
proposed model succeeds also to deal with the noise due to its smoothing property.

Finally, we have tested our algorithm on the Berkeley natural image database [Martin et al.
2001]. We have used a superpixels initialization [Mori 2005] as described in [Yang et al. 2007].
We start by oversegmenting the images, all at full resolution of 480× 320, to typically around
200 superpixels each. Then, we associate to each superpixel the medoid of the color feature
vectors of the pixels that belong to the superpixel in question. These superpixels medoids play
the role of the X observed set for our algorithm and represent the whole set of pixels belonging
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Figure A.12 � Segmentation results for a 3-class piecewise constant image. From left to right : original
image, image degraded by additive Gaussian noise (SNR of 18 dB), segmentation using the proposed
model without global weights (Rand index = 82.14%), segmentation using the proposed model with
ε = 5 and without local weights (Rand index = 99.2%), segmentation using the proposed model with
ε = 5 (Rand index = 99.86%).

to the corresponding superpixel. A region adjecency graph is also computed to keep track of the
superpixel neighborhoods for the MRF imposed on the local weights. To this end, we consider
for the MRF prior, those medoids that represent spatially adjacent superpixels.

We have quantitatively evaluated the segmentations using four performance measures [Yang
et al. 2007] : the Rand index (RI), the variation of information (VOI), the global consistency
error (GCE) and the Boundary displacement error (BDE). The RI measures the consistency
between human segmentations and the computed segmentation map. VOI measures the amount
of information one segmentation conveys about the other. GCE measures the degree of re�ne-
ment between two segmentations. Finally, BDE measures the average chamfer distance between
the boundaries of two segmentation maps. The mean values of the results over the 300 images
of the data base are summarized in table A.5. As it can be observed, all of the indices have
values comparable to the ones obtained by state of the art techniques (for example [Yang
et al. 2007]). It should be noted that the BDE depends highly on the image size. In �gure

Table A.5 � Segmentation evaluation of the algorithm on the 300 images of the Berkeley image

data base. The mean values of the corresponding indices are presented (see text for abbrevia-

tions). The model was applied to the original images of size 480×320 pixels and it was initialized
to K = 15 starting number of classes. Results are computed over two di�erent segmentation

scales, ε = 3 (lower number of classes) and ε = 10 (higher number of classes).

Index RI BDE GCE V OI

ε = 3 0.71 15.6 0.27 2.27
ε = 10 0.72 14.4 0.31 2.52

A.13, we present some representative results using an initial number of kernels K = 15 and
ε = {3, 10}. As a �nal remark concerning the parameter ε (or equivalently α0), let us stress
that (a) its choice amounts to how coarse or �ne we want the segmentation to be, (b) user-
de�ned parameters with a similar role, a�ecting the resulting number of classes are used in
other number-of-class-determining segmentation algorithms to our knowledge (e.g. the Dirich-
let hyperparameter in [Orbanz & Buhmann 2007] or the bandwidth in [Comaniciu & Meer

2002]). Nonetheless, in the experiments on natural images described here values of ε ' 5 seem
to have given the best results.

Algorithm runtime is in the order of a few minutes. On a 2 Ghz workstation each algorithm
iteration took around 20 seconds for a 480 × 320 color image (MATLAB code), converging at
20− 30 iterations.
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Figure A.13 � Segmentation results on images from the Berkeley database, using a superpixels
initialization. All images were initialized at K = 15 classes. From left to right, each column shows the
original image, the segmentation for ε = 3 and the segmentation for ε = 10.

4.3 Conclusion

We proposed a segmentation algorithm based on a Bayesian model. The main novelty of
this work is the use of a smoothness MRF prior along with automatic selection of the number
of segmentation classes. Updates for the model training are obtained in an e�cient manner by
variational inference and the Majorization-Minimization (MM) methodology. Recently proposed
algorithms that combine a smoothness prior with automatic selection of the number of kernels
have to resort to computationally expensive Monte Carlo sampling instead. As future work,
novel MRF energy minimization techniques such as proposal-based fusion [Lempitsky et al.
2010] could be integrated to our model, as MRF optimization is a critical step. The evaluation
of the model to image data bases using more sophisticated features for natural images such as
the MRF texture features [Ren & Malik 2003] and the Blobworld features [Carson et al.
2002] is also envisaged.

5. Recovery and segmentation of polarimetric images

Exploiting the polarization of light has been shown to be a useful and powerful technique,
overcoming many limitations that arise in radiance measurement-based classical imagery. In-
deed, there is increasing evidence that recording the polarization properties of inhomogeneous
objects provides a rich set of information about their local nature. This imaging modality
requires the development of e�cient imaging systems that can record spatially distributed po-
larization patterns across a scene and appropriate techniques of handling and processing the
issued multicomponent images while preserving the physical integrity of the data.

Stokes imaging consists in estimating the four Stokes parameters of each pixel of an image.
This is traditionally achieved by placing a Polarization State Analyzer (PSA) in front of a
camera. This con�guration allows acquiring polarized radiance images G that can be used to
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calculate the multi-component Stokes image S. Images G and S are linked by the Polarization
Measurement Matrix (matrix H) that depends on the PSA con�guration (g = Hs, pixelwise).
Classically, the Stokes parameters are obtained using a pseudo-inverse approach, which is sensi-
tive to noises that degrade the acquired intensity images. Moreover, at each location, the Stokes
parameters must satisfy physical constraints that can be infringed when using pseudo-inversion.

Here we present a Bayesian model based on a mixture of Gaussians, capable of performing
recovery simultaneously with segmentation of the polarimetric image. Intuitively we conjecture
that the problem of recovering the degraded image should be intertwined with the problem of
segmenting the image. In other words, a good restoration should lead to a good segmentation
and vice versa, which is the motivation of performing the two operations jointly.

Polarimetric imaging gives rise to intricate estimation problems because of the associated
underlying physical admissibility conditions [Zallat & Heinrich 2007,Zallat et al. 2008].
Stokes images exhibit the particularity that, while they are comprised of 4 separate channels,
only a subset of R4 constitutes admissible Stokes 4-variate vectors. In order to work around this
problem, instead of assuming directly that the input Stokes vectors follow a certain distribu-
tion, we impose a mixture of Gaussian distributions on a suitable transformation of the Stokes
image. Furthermore, with a properly chosen prior set on the probabilities of the underlying
segmentation class labels, we achieve to produce smooth edge-preserving segmentations that in
turn produce correspondingly reasonably smooth image restorations.

Polarimetric image restoration methodologies have already been presented in [Zallat &

Heinrich 2007,Zallat et al. 2008], but under the hypothesis that the variables of interest
were spatially piecewise constant. Our present model uses no such constraining assumption. We
have tested the proposed model succesfully on sets of noise-degraded arti�cial Stokes images
and on real data, and present both numerical and visual results.

5.1 Model description and solution

Each image to be restored consists of 4 channels. For pixel n, we group the scalars of each
observed channel into vector gn = [gn1 gn2 gn3 gn4 ]

T and let G = {gn}Nn=1 denote the set of
vectors gn. These vectors are considered as stemming from N corresponding Stokes vectors
S = {sn}Nn=1, s

n = [sn1 sn2 sn3 sn4 ]
T . Thus G is an indirect and noise corrupted version of S.

The 4 × 4 observation matrix H is supposed to be known. Every Stokes channel corresponds
to a speci�c function of the covariance between orthogonal electric vector components [Zallat
et al. 2004]. Consequently the Stokes vectors are subject to the following constraints :

sn1 > 0, (sn1 )
2 > (sn2 )

2 + (sn3 )
2 + (sn4 )

2. (A.37)

We model the noise on each Stokes channel as zero mean, additive, white Gaussian. Formally
this translates to

gn|sn, V ∼ N (H sn, V ), (A.38)

where the covariance matrix is V = σ2I. 1

We take advantage of our probabilistic generative model formulation and assume a prior
distribution on the real Stokes vector set S. Such prior knowledge is the intuitive fact that
vectors with spatially neighboring coordinates are more likely to have values close to one an-
other. In order to implement this hypothesis, we �rst assume the existence of an underlying
segmentation of the polarimetric image in K segments. The segmentation is de�ned by the set
of K × 1 vectors z = {zn}Nn=1. Each member zn is de�ned as a vector with its kth variate set to
1 if the corresponding nth Stokes vector sn belongs to the kth segment ; otherwise, it is set to
zero. Also, every Stokes vector is assumed to belong to exactly one segment.

1. The noise model is straightforwardly extensible to consider colored noise.
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For each image segment k we de�ne a probability distribution (kernel) generating the Stokes
vectors belonging to the corresponding segment. While in image segmentation problems the
chosen distribution is typically Gaussian [McLachlan 2000], in the present problem we need a
kernel choice that will assign zero probability mass to vectors not complying with the constraints
given in (A.37). To this end, the Gaussian distribution is not convenient. To work around this
particularity, we can instead consider a probability distribution on a special parametrization of
the Stokes vectors. This parametrization is one of the contributions of the present model.

Let λ = [λ1 λ2 λ3 λ4]
T be a parametrization ϕ of the Stokes vector s = [s1 s2 s3 s4]

T , with
s = ϕ(λ). Let matrices Φ and Λ be

Φ =

[
s1 + s4 s2 − i s3
s2 + i s3 s1 − s4

]
, Λ =

[
λ1 0

λ3 + i λ4 λ2

]
.

The transformation ϕ is de�ned to comply with

Φ = ΛΛH . (A.39)

It can be easily seen that any real vector λ will yield, according to transformation (A.39), a
Stokes vector S that will necessarily satisfy the constraints (A.37). We can conveniently assume
a Gaussian i.i.d. distribution hypothesis on the λ vectors :

λn|znk = 1, µk,Σk ∼ N (µk,Σk). (A.40)

In turn, the label vectors z are multinomially i.i.d distributed. This distribution is parametrized
by the contextual mixing proportions set Π :

zn|πn ∼Mult(πn).

The prior probability vectors Π = {πn}Nn=1 are subject to the positiveness πnk > 0, ∀k ∈
[1, . . .K], ∀n ∈ [1, . . . N ] and sum-to-unity constraints

∑K
k=1 π

n
k = 1, ∀n ∈ [1, . . . N ].

Considering the set of contextual mixing proportions Π as random variables and assuming
a proper prior, we can incorporate the spatial smoothness trait, of which we have referred to
earlier in the section, in an indirect way by forcing neighboring Stokes vectors to be more likely
to share the same class label. We assume a Markov random �eld on Π, which equivalently means
that Π is governed by a Gibbs distribution [Geman & Geman 1984], generally expressed by :

p(Π) ∝
∏
C

e−ψc(Π), (A.41)

where ψc is a function on clique c, called clique potential function in the literature, and the
product is over all minimal cliques of the Markov random �eld.

An appropriate clique distribution choice would be to assume that the local di�erences of
contextual mixing proportions follow a Student-t distribution, with its peak set at zero. This
choice, proposed in a natural image segmentation context in [Sfikas et al. 2008B], also provides
our model the properties of an edge-preserving line-process [Geman & Geman 1984]. The
probability law for local di�erences is thus set to the Student's-t distribution :

πnk − πjk ∼ St(0, β2kd, νkd),

∀n ∈ [1, . . . N ], k ∈ [1, . . .K], d ∈ [1, . . . D],∀j ∈ γd(n). (A.42)

The parameters βkd control how tightly smoothed we need the Stokes vectors of segment
k to be. In (A.42), D stands for the number of a pixel's neighborhood adjacency types and
γd(n) is the set of neighbors of pixel indexed by n, with respect to the dth adjacency type. In
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our model, we assume 4 neighbors for each pixel (�rst-order neighborhood), and partition the
corresponding adjacency types into horizontal and vertical, thus setting D = 2. This variability
of parameter aims to capture the intuitive property that smoothness statistics may vary along
clusters and spatial directions [Nikou et al. 2007].

One can see that the assumption in (A.42) is equivalent to

πnk − πjk ∼ N (0, β2kd/u
nj
k ),

unjk ∼ G(νkd/2, νkd/2), ∀n, k, d, ∀j ∈ γd(n),

where N and G represent a Gaussian and a Gamma distribution respectively. This breaking-
down of the Student's-t distribution allows clearer insight on how our implicit edge-preserving
line-process works. Since unjk depends on datum indexed by n, each weight di�erence in the MRF
can be described by a di�erent instance of a Gaussian distribution. Therefore, as unjk → +∞
the distribution tightens around zero, and forces neighboring contextual mixing proportions to
be smooth. On the other hand, unjk → 0 signi�es the existence of an edge and consequently no
smoothing. This generative model can be examined in detail in �gure A.14.

�

-

� �

R

�

6 6
-

?

νkd

unjk

β2kd µk

Σk

πnk

znk

λn sn

gn

V

Γ

D

K

N

Figure A.14 � Graphical model for the proposed Stokes image restoration model. Stokes vectors
sn constitute the estimated restoration, produced by observations gn. The rest of the model, namely
random variable sets unjk , πn

k , z
n
k , constitute the prior for the proposed Stokes vector transformation λn.

Superscript n ∈ [1, . . . N ] denotes pixel index, subscript k ∈ [1, . . .K] denotes kernel (segment) index,
subscript d ∈ [1, . . . D] describes the neighborhood direction type and superscript j ∈ [1, . . .Γ] denotes
neighbor index.

The problem of inference formulates in our case as, given observations G, estimate the true
Stokes image S. To achieve this, we need to �nd estimates jointly for all unknown parameters
Ψ = {µ,Σ, β, ν}, Π and λ ; thence the restoration S can be computed given the λ estimate. The
rest of the variables are considered as hidden, and are namely the labels z and the edge map u.
While we do not need to determine estimates for the hidden variables, they play an important
role in the model inference in an indirect way.

Hence, we need to optimize the model evidence, given by

ln p(g, λ,Π;Ψ), (A.43)

with respect to parameters Ψ, λ, Π. In this sense, our method is a maximum a posteriori

(MAP) estimation, with λ and Π being the conditioned variables. As we cannot �nd MAP
estimates in closed form for (A.43), we employ the EM algorithm [Tzikas et al. 2008]. In
EM terminology, eq.(A.43) is referred to as the incomplete likelihood, while the complete log-
likelihood is expressed by

ln p(g, λ,Π, z, u; Ψ). (A.44)
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The conditional expectation of the complete likelihood is an important quantity in EM. It is
de�ned as

Ez(t),u(t)|gp,λp(t),Π(t)

{
ln p(g, λ,Π, z, u; Ψ)

}
. (A.45)

By optimizing this expectation with respect to Ψ, Π and λ given the observed variables and
some initial estimates Ψ(0), Π(0), λ(0) we can produce a new estimate Ψ(1), Π(1), λ(1). In the
same way, estimates are computed iteratively. It can be proved that these estimates converge
to a local optimum for the incomplete likelihood of eq. (A.43). This is the main idea in the EM
algorithm. The iteration scheme is split in two steps, the Expectation and the Maximization
step.

The E-step consists in computing the joint expectation of the hidden variables z and u,
with respect to current iteration parameters Ψ(t), λ(t), Π(t) where t denotes the number of
current iteration. Observing the graphical model in �g.A.14, we can see that given G, Π and
λ, z and u are conditionally independent. Therefore Ez,u|g,λ,Π(·) = Ez|g,λ,Π{(Eu|gp,λ,Π(·)} and we
can compute these expectations separately.

Due to lack of space, we point the reader to [Sfikas et al. 2008A] for the analytical expres-
sions of the updates for parameters µ, Σ, β, ν, Π, and for the expected values of z and u, in a
similar model proposed for natural image segmentation.

The update for the noise covariance matrix estimate V is given by

V (t+1) = (4N)−1
N∑
n=1

(Hgn − sn(t))T (Hgn − sn(t))I. (A.46)

Optimization with respect to the constraint-free parameters λ involves the following expres-
sion, after dropping constant terms from (A.45) :

(gn −Hϕ(λn(t)))TV −1(gn −Hϕ(λn(t)))+

K∑
k=1

(λn(t) − µk)
TΣ−1

k (λn(t) − µk) <z
n
k>,

which after some manipulation boils down to :

hTΩ1h+ λTΩ2λ+ ω3h+ ω4λ, (A.47)

where we have omitted the data and iteration indices n and t for brevity. Parameters h, Ω1,
Ω2, ω3, ω4 are given by

h ≡ Hϕ(λ),Ω1 ≡ V −1,Ω2 ≡
K∑
k=1

<zk> Σ−1
k ,

ω3 ≡ −2gTV −1, ω4 ≡ −2

K∑
k=1

<zk> µTkΣ
−1
k .

In view of (A.39), eq. (A.47) is a fourth-order polynomial over each of the variates of
λ. Setting the derivative of (A.47) with respect to each of the λ variates to zero, we can
obtain optimizers for λ by solving the resulting third-order polynomial equations. Thus for
each n ∈ [1, . . . N ], we solve iteratively four third-order polynomial equations, and repeat the
operation until convergence of λ.
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Finally, in order compute the Stokes estimates sn we simply make use of the ϕ transformation
de�nition (A.47) to obtain the update

sn1 = 1
2

[
(λn1 )

2 + (λn2 )
2 + (λn3 )

2 + (λn4 )
2
]
,

sn2 = λn1 λ
n
3 ,

sn3 = λn1 λ
n
4 ,

sn4 = 1
2

[
(λn1 )

2 − (λn2 )
2 − (λn3 )

2 − (λn4 )
2
]
.

(A.48)

5.2 Experimental results

We have applied the proposed recovery algorithm to two test Stokes images, one arti�cial
image of size 64×64 and one real image of size 256×256. On the arti�cial image, the experiment
was conducted by reproducing the blurring / noise model of (A.38) and applying varying levels
of noise variance σ2. We also used di�erent assumed numbers of underlying segments K. The
obtained results are shown in table A.6. These are computed as the improvement over SNR for
the degraded image, given by

ISNR = 20 log10
‖s? − g‖
‖s? − ŝ‖

, (A.49)

where s?, ŝ, g represent the ground truth, the estimate, and the degraded (observed) image
respectively. The pseudo-inverse estimates are as well computed for the restoration using ŝn =
(HTH)−1HT gn,∀n ∈ [1, . . . N ]. The results clearly demonstrate that the proposed method gives
a consistently better restoration compared to the general purpose pseudo-inverse estimator.
Note also that the pseudo-inverse estimate will not necessarily yield values that satisfy the
constraints (A.37). The main advantage of our method is that it takes explicitly into account the
Stokes admissibility constraints (A.37), which is not the case for standard restoration methods.
Representative visual results for the arti�cial image under 5dB noise are shown in �gure A.15.
Corresponding results for a real Stokes image are shown in �gure A.16. The pseudo-inverse
estimate of the real Stokes image contains 285 inadmissible vectors, out of a total of 65535
vectors ; under the heavy-noise scenario of �g.A.15, this �gure goes up to 1316 inadmissible
vectors out of a total of 4096. Our method on the other hand, ensures always admissibility for
all recovered vectors.

Runtimes for our algorithm were approximately 7 and 400 seconds respectively for the
arti�cial and the much larger and more complex real Stokes image, for each EM iteration. We
found that our algorithm converged in each case at around 10 EM iterations. Computations
were done on a dual core 1.8 GHz PC workstation.

Table A.6 � Restoration error results on the simulated Stokes data of �g. A.15. The image was

degraded by varying noise levels. The presented values are the restoration ISNR (A.49) ; higher

values correspond to better restorations. Results are shown for various numbers of classes K of

the underlying segmentation, as well as the result of the pseudo-inverse estimate (PI).

PI Proposed method
SNR K = 3 K = 5 K = 7

20dB 21.4 22.4 22.3 22.7
10dB 11.4 14.7 14.5 14.5
5dB 6.3 10.9 9.9 9.9
1dB 2.3 7.3 7.6 7.6
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(a) (b) (c) (d)

Figure A.15 � Recovery result for simulated Stokes data under signi�cant degradation. From
left to right, each column shows the four channels of (a) the original Stokes image s?, (b) the
degraded image G (SNR of 5 dB) (c) the non-complying to Stokes constraints pseudo-inverse
recovery estimate and (d) the recovered image ŝ obtained with our method. The corresponding
segmentation of the degraded image into K = 2 classes is shown at the top of the (d) column.

5.3 Conclusion

We have presented an image recovery methodology suitable for Stokes images. Making use
of a smoothing prior which assumes an underlying image segmentation and a suitable Stokes
vector parametrization, we are able to produce a good estimate of the real image that at the
same time satis�es the Stokes vector constraints (A.37). Also, we simultaneously produce a
segmentation of the input image due to the model structure. Future work could be directed
towards more sophisticated prior models, adapted properly in order to handle the distinctive
di�culties of the Stokes image recovery problem.
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(a) (b) (c)

Figure A.16 � Recovery result for real Stokes data. From left to right, each column shows
the four channels of (a) the observed image G (b) the non-complying to Stokes constraints
pseudo-inverse recovery estimate and (c) the recovered image ŝ obtained with our method. The
corresponding segmentation of the observed image into K = 7 classes is shown at the top of
the (c) column.



Part V

References

119





Author publications

Articles in peer-reviewed international journals

[1] S�kas G., Renard F., Heinrich C., Nikou C., � Estimating pathology discriminative defor-
mation using trajectories over low-dimensional manifolds. Application to hippocampus MRI
discrimination for Alzheimer's disease �, Medical Image Analysis, submitted, 2012.

[2] Philippi N., Noblet V., Botzung A., Després O., Renard F., S�kas G., Cretin B., Kremer
S., Manning L., Blanc F., � MRI-Based Volumetry Correlates of Autobiographical Memory in
Alzheimer's Disease �, PLoS ONE, vol. 7, num. 10, e46200, 2012.

[3] S�kas G., Heinrich C., Zallat J., Nikou C., Galatsanos N.P., � Recovery of polarimetric
Stokes images by spatial mixture models �, Journal of the Optical Society of America A , vol.
28, num. 5, pp. 465-474, 2011.

[4] S�kas G., Nikou C., Galatsanos N.P., Heinrich C., � Spatially varying mixtures incorporating
line processes for image segmentation �, Journal of Mathematical Imaging and Vision, vol. 36,
num. 2, pp. 91-110, 2010.

Communications in peer-reviewed international conferences with proceedings

[5] S�kas G., Nikou C., Galatsanos N.P., Heinrich C., � Majorization-Minimization mixture
model determination in image segmentation �, Proceedings of IEEE Computer Vision and

Pattern Recognition conference (CVPR), Colorado Springs, USA, pp. 2169-2176, June 2011.

[6] S�kas G., Heinrich C., Nikou C., � Multiple atlas inference and population analysis with
spectral clustering �, Proceedings of IEEE International Conference on Pattern Recognition

(ICPR), Istanbul, Turkey, pp. 2500-2503, August 2010.

[7] S�kas G., Heinrich C., Zallat J., Nikou C., Galatsanos N.P., � Joint recovery and segmen-
tation of polarimetric images using a compound MRF and mixture modeling �, Proceedings
of IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, pp. 3901-3904,
November 2009.

[8] S�kas G., Nikou C., Heinrich C., Galatsanos N.P., � On optimization of probability vector
random �elds used for image segmentation �, Proceedings of IEEE International workshop on

Machine Learning for Signal Processing (MLSP), Grenoble, France, pp. 1-6, September 2009.

121



122

Publications related to research realized before the current thesis

Communications in peer-reviewed international conferences with proceedings

[9] S�kas G., Nikou C., Galatsanos N.P., Heinrich C., � MR Brain Tissue classi�cation using an
edge-preserving spatially variant Bayesian mixture model �, Proceedings ofMedical Image Com-

puting and Computer Assisted Intervention (MICCAI), New York, USA, pp. 43-50, September
2008.

[10] S�kas G., Nikou C., Galatsanos N.P., � Edge-preserving spatially-varying mixtures for
image segmentation �, Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR),
Anchorage, USA, pp. 1-7, June 2008.

[11] S�kas G., Nikou C., Galatsanos N.P., � Robust image segmentation with mixtures of stu-
dent's t-distributions �, Proceedings of IEEE International Conference on Image Processing

(ICIP), San Antonio, USA, pp. 273-276, September 2007.

[12] S�kas G., Constantinopoulos C., Likas A., Galatsanos N.P., � An analytic distance met-
ric for Gaussian mixture models with application in image retrieval �, Proceedings of Interna-
tional conference on Arti�cial Neural Networks (ICANN), Warsaw, Poland, part II, pp. 835-840,
September 2005.



Bibliography

[Aljabar et al. 2010] P. Aljabar, R. Wolz, L. Srinivasan, S. Counsell, J. Board-

man, M. Murgasova, V. Doria, M. Rutherford, A. Edwards, J. Hajnal &

D. Rueckert (2010), �Combining morphological information in a manifold learning
framework : application to neonatal MRI�, in Proceedings of Medical Image Computing

and Computer Assisted Intervention (MICCAI), Beijing, China.

[Allen et al. 2004] P. Allen, S. Feiner, A. Troccoli, H. Benko, E. Ishak & B. Smith

(2004), �Seeing into the past : creating a 3D modeling pipeline for archaeological visualiza-
tion�, in International Symposium on 3D Data Processing, Visualization and Transmission

(3DPVT), pages 751 � 758, Sept. 2004.

[Ashburner & Friston 2000] J. Ashburner & K. J. Friston (2000), �Voxel-based
morphometry�the methods�, NeuroImage, 11, no 6, pages 805 - 821.

[Ashburner et al. 1998] J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude,
C. Price & K. Friston (1998), �Identifying global anatomical di�erences : deformation-
based morphometry�, Human Brain Mapping, 6, no 5-6, pages 348�357.

[Awate et al. 2006] S. P. Awate, T. Tasdizen, N. Foster & R. Whitaker (2006), �Adap-
tive Markov modeling for mutual information based, unsupervised MRI brain tissue clas-
si�cation�, Medical Image Analysis, 10, pages 726-739.

[Awate et al. 2007] S. P. Awate, H. Zhang & J. C. Gee (2007), �A fuzzy, nonparametric
segmentation framework for DTI and MRI analysis : with applications to DTI tract
extraction�, IEEE Transactions on Medical Imaging, 26, pages 1525-1536.

[Ban & Abe 2006] T. Ban & S. Abe (2006), �Implementing multi-class classi�ers by one-
class classi�cation methods�, in International Joint Conference on Neural Networks

(IJCNN), pages 327 �332, 2006.

[Beg et al. 2005] M. F. Beg, M. I. Miller, A. Trouvé & L. Younes (2005), �Computing
large deformation metric mappings via geodesic �ows of di�eomorphisms�, International
Journal of Computer Vision, 61, pages 139-157.

[Belkin & Niyogi 2003] M. Belkin & P. Niyogi (2003), �Laplacian eigenmaps for dimen-
sionality reduction and data representation�, Neural Computation, 15, pages 1373�1396.

[Bellman 1961] R. Bellman (1961), Adaptive control processes., Princeton University Press,
Princeton, NJ.

[Benjamini & Hochberg 1995] Y. Benjamini & Y. Hochberg (1995), �Controlling the
false discovery rate : a practical and powerful approach to multiple testing�, Journal of
the Royal Statistical Society B, 57, no 1, pages 289�300.

[Bishop 2006] C. M. Bishop (2006), Pattern recognition and machine learning, Springer.

[Blake & Zisserman 1987] A. Blake & A. Zisserman (1987), Visual reconstruction, The
MIT Press.

123



124

[Blekas et al. 2005] K. Blekas, A. Likas, N. Galatsanos & I. Lagaris (2005), �A spa-
tially constrained mixture model for image segmentation�, IEEE Transactions on Neural

Networks, 16, no 2, pages 494-498.

[Blezek & Miller 2007] D. Blezek & J. Miller (2007), �Atlas strati�cation�, Medical

Image Analysis, 11, pages 443�457.

[Blum 1967] H. Blum (1967), �A transformation for extracting descriptors of shape�, in Mod-

els for the Perception of Speech and Visual Forms, pages 362�380, 1967.

[Blum & Nagel 1978] H. Blum & R. N. Nagel (1978), �Shape description using weighted
symmetric axis features�, Pattern Recognition, 10, no 3, pages 167 - 180.

[Bookstein 1996] F. Bookstein (1996), �Landmark methods for forms without landmarks :
localizing group di�erences in outline shape�, in Proceedings of the Workshop on Mathe-

matical Methods in Biomedical Image Analysis, pages 279 �289, June 1996.

[Boyd & Vandenberghe 2004] S. Boyd & L. Vandenberghe (2004), Convex optimiza-

tion, Cambridge University Press.

[Bozzali et al. 2002] M. Bozzali, A. Falini, M. Franceschi, M. Cercignani, M. Zuffi,
G. Scotti, G. Comi & M. Filippi (2002), �White matter damage in Alzheimer's disease
assessed in vivo using di�usion tensor magnetic resonance imaging�, Journal of Neurology,
Neurosurgery and Psychiatry, 72, no 6, pages 742-746.

[Brechbühler et al. 1995] C. Brechbühler, G. Gerig & O. Kübler (1995),
�Parametrization of closed surfaces for 3-d shape description�, Computer Vision and

Image Understanding, 61, no 2, pages 154 - 170.

[Brucher 2008] M. Brucher (2008), Représentations compactes et apprentissage non super-

visé de variétés non linéaires. Application au traitement d'images., PhD thesis, University
Louis Pasteur - Strasbourg I.

[Cao et al. 2011] Y. Cao, Y. Yuan, X. Li & P. Yan (2011), �Putting images on a manifold
for atlas-based image segmentation�, in Proceedings of the IEEE International Conference

on Image Processing, pages 721�724, Brussels, Belgium.

[Carreira-Perpinan 2006] M. A. Carreira-Perpinan (2006), �Fast nonparametric clus-
tering with Gaussian blurring mean-shift�, in Proceedings of the International Conference

on Machine Learning (ICML'06), pages 153�160, 2006.

[Carson et al. 2002] C. Carson, S. Belongie, H. Greenspan & J. Malik (2002), �Blob-
world : image segmentation using Expectation-Maximization and its application to image
querying�, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, no 8,
pages 1026-1038.

[Chen et al. 2011] K. Chen, N. Ayutyanont, J. B. Langbaum, A. S. Fleisher,

C. Reschke, W. Lee, X. Liu, D. Bandy, G. E. Alexander, P. M. Thompson,

L. Shaw, J. Q. Trojanowski, C. R. Jack Jr., S. M. Landau, N. L. Foster,

D. J. Harvey, M. W. Weiner, R. A. Koeppe, W. J. Jagust & E. M. Reiman

(2011), �Characterizing Alzheimer's disease using a hypometabolic convergence index�,
NeuroImage, 56, no 1, pages 52�60.

[Chung et al. 2010] M. K. Chung, K. J. Worsley, B. M. Nacewicz, K. M. Dalton &

R. J. Davidson (2010), �General multivariate linear modeling of surface shapes using
SurfStat�, NeuroImage, 53, pages 491�505.

[Cockrell & Folstein 2002] J. R. Cockrell & M. F. Folstein (2002), Mini-mental

state examination, pages 140�141, John Wiley and Sons, Ltd.

[Collins et al. 1998] D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani,
C. Holmes & A. Evans (1998), �Design and construction of a realistic digital brain
phantom�, IEEE Transactions on Medical Imaging, 17, no 3, pages 463�468.



125

[Comaniciu & Meer 2002] D. Comaniciu & P. Meer (2002), �Mean shift : a robust ap-
proach toward feature space analysis�, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 24, no 5, pages 603-619.

[Constantinopoulos & Likas 2007] C. Constantinopoulos & A. Likas (2007), �Unsu-
pervised learning of Gaussian mixtures based on variational component splitting�, IEEE
Transactions on Neural Networks, 18, no 3, pages 745�755.

[Cootes & Taylor 1995] T. Cootes & C. Taylor (1995), �Combining point distribution
models with shape models based on �nite element analysis�, Image and Vision Computing,
13, no 5, pages 403 - 409.

[Cootes et al. 2008] T. Cootes, C. Twining, K. Babalola & C. Taylor (2008), �Dif-
feomorphic statistical shape models�, Image and Vision Computing, 26, pages 326�332.

[Corduneanu & Bishop 2001] A. Corduneanu & C. M. Bishop (2001), �Variational
Bayesian model selection for mixture distributions�, Arti�cial Intelligence and Statistics,
pages 27�34.

[Cortes & Vapnik 1995] C. Cortes & V. Vapnik (1995), �Support-vector networks�, Ma-

chine Learning, 20, pages 273-297.

[Costafreda et al. 2011] S. G. Costafreda, I. D. Dinov, Z. Tu, Y. Shi, C.-Y. Liu,
I. Kloszewska, P. Mecocci, H. Soininen, M. Tsolaki, B. Vellas, L.-O.

Wahlund, C. Spenger, A. W. Toga, S. Lovestone & A. Simmons (2011), �Au-
tomated hippocampal shape analysis predicts the onset of dementia in mild cognitive
impairment�, NeuroImage, 56, no 1, pages 212 - 219.

[Cox et al. 2000] T. F. Cox, M. A. A. Cox & T. F. Cox (2000), Multidimensional Scaling,

Second Edition, Chapman & Hall/CRC.

[Csernansky et al. 2005] J. Csernansky, L. Wang, J. Swank, J. Miller, M. Gado,
D. McKeel, M. Miller & J. Morris (2005), �Preclinical detection of Alzheimer's
disease : hippocampal shape and volume predict dementia onset in the elderly�, Neu-
roImage, 25, no 3, pages 783 - 792.

[Csernansky et al. 2004] J. G. Csernansky, L. Wang, S. C. Joshi, J. T. Ratnanather
& M. I. Miller (2004), �Computational anatomy and neuropsychiatric disease : prob-
abilistic assessment of variation and statistical inference of group di�erence, hemispheric
asymmetry, and time-dependent change�, NeuroImage, 23, pages S56 - S68 (Supplement
1).

[Cuingnet et al. 2011] R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias,

S. Lehéricy, M.-O. Habert, M. Chupin, H. Benali & O. Colliot (2011), �Au-
tomatic classi�cation of patients with Alzheimer's disease from structural MRI : a com-
parison of ten methods using the ADNI database�, NeuroImage, 56, no 2, pages 766 -
781.

[DaSilva 2007] A. R. F. DaSilva (2007), �A Dirichlet process mixture model for brain MRI
tissue classi�cation�, Medical Image Analysis, 11, pages 169�182.

[Davatzikos 2004] C. Davatzikos (2004), �Why voxel-based morphometric analysis should
be used with great caution when characterizing group di�erences�, NeuroImage, 23, no

1, pages 17 - 20.

[Davies et al. 2008] R. Davies, C. Twining & C. Taylor (2008), Statistical models of

shape : optimisation and evaluation, Springer, Dordrecht.

[Davies et al. 2010] R. Davies, C. Twining, T. Cootes & C. Taylor (2010), �Build-
ing 3-D statistical shape models by direct optimization�, IEEE Transactions on Medical

Imaging, 29, no 4, pages 961 -981.



126

[Davies et al. 2001] R. H. Davies, T. F. Cootes, C. J. Twining & C. J. Taylor (2001),
�An information theoretic approach to statistical shape modelling�, in Proceedings of the

British Machine Vision Conference (BMVC), 2001.

[deJager et al. 2010] C. deJager, T. Honey, J. Birks & G. Wilcock (2010), �Retro-
spective evaluation of revised criteria for the diagnosis of Alzheimer's disease using a
cohort with post-mortem diagnosis�, International Journal of Geriatric Psychiatry, 25,
pages 988�997.

[Dempster et al. 1977] P. Dempster, N. M. Laird & D. B. Rubin (1977), �Maximum
likelihood from incomplete data via the EM algorithm�, Journal of the Royal Statistical

Society B, 39, no 1, pages 1-38.

[Donoho & Grimes 2003] D. Donoho & C. Grimes (2003), �Hessian eigenmaps : Lo-
cally linear embedding techniques for high-dimensional data�, Proceedings of the National
Academy of Sciences of the USA, 100, no 10, pages 5591�5596.

[Donoho & Grimes 2006] D. Donoho & C. Grimes (2006), �Image manifolds which are
isometric to Euclidean space�, Journal of Mathematical Imaging and Vision, 23, no 1,
pages 5�24.

[Driscoll et al. 2003] I. Driscoll, D. A. Hamilton, H. Petropoulos, R. A. Yeo,
W. M. Brooks, R. N. Baumgartner & R. J. Sutherland (2003), �The aging
hippocampus : cognitive, biochemical and structural �ndings�, Cerebral Cortex, 13, no

12, pages 1344-1351.

[Dubois et al. 2007] B. Dubois, H. Feldman, C. Jacova, S. Dekosky, P. Barberger-
Gateau, D. A. G. D. Cummings, J., S. Gauthier, G. Jicha, K. Meguro,

J. O'Brien, F. Pasquier, P. Robert, M. Rossor, S. Salloway, Y. Stern,

P. Visser & P. Scheltens (2007), �Research criteria for the diagnosis of Alzheimer's
disease : revising the NINCDS-ADRDA criteria�, Lancet Neurology, 6, pages 734�746.

[Durrleman et al. 2008] S. Durrleman, X. Pennec, A. Trouvé & N. Ayache (2008),
�Sparse approximation of currents for statistics on curves and surfaces�, Proceedings of

Medical Image Computing and Computer Assisted Intervention (MICCAI), pages 390�
398.

[Duvernoy 1988] H. Duvernoy (1988), The human hippocampus : an atlas of applied

anatomy, J.F. Bergmann Verlag, Munich.

[Eichenbaum 1999] H. Eichenbaum (1999), �The hippocampus and mechanisms of declara-
tive memory�, Behavioural Brain Research, 103, no 2, pages 123 - 133.

[Fan et al. 2007] Y. Fan, D. Shen, R. Gur, R. Gur & C. Davatzikos (2007), �COM-
PARE : Classi�cation of morphological patterns using adaptive regional elements�, IEEE
Transactions on Medical Imaging, 26, no 1, pages 93 -105.

[Felzenswalb & Huttenlocher 2004] P. F. Felzenswalb & D. Huttenlocher (2004),
�E�cient graph-based image segmentation�, International Journal of Computer Vision,
59, no 2, pages 167-181.

[Feng et al. 2010] W. Feng, J. Jia & Z.-Q. Liu (2010), �Self-validated labeling of Markov
random �elds for image segmentation�, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 32, no 10, pages 1871�1887.

[Filipovych & Davatzikos 2011] R. Filipovych & C. Davatzikos (2011), �Semi-
supervised pattern classi�cation of medical images : application to mild cognitive im-
pairment (MCI)�, NeuroImage, 55, no 3, pages 1109 - 1119.

[Fischl et al. 2002] B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich,
C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness,



127

A. Montillo, N. Makris, B. Rosen & A. M. Dale (2002), �Whole brain segmen-
tation : automated labeling of neuroanatomical structures in the human brain�, Neuron,
33, no 3, pages 341 - 355.

[Fletcher 2004] T. Fletcher (2004), Statistical variability in nonlinear spaces, PhD thesis,
University of North Carolina.

[Fletcher et al. 2001] T. Fletcher, S. M. Pizer, A. Thall & A. G. Gash (2001),
�Shape modeling and image visualization in 3d with m-rep object models�, Technical
report TR01-004, Dept. of Computer Science, Univ. of North Carolina, 2001.

[Freixenet et al. 2002] J. Freixenet, X. Munoz, D. Raba, J. Marti & X. Cuff (2002),
�Yet another survey on image segmentation : region and boundary information integra-
tion�, in Lecture Notes in Computer Science. Proceedings of the European Conference on

Computer Vision (ECCV'02), pages 408�422, 2002.

[Frisoni et al. 2010] G. B. Frisoni, N. C. Fox, C. R. Jack Jr., P. Scheltens & P. M.

Thompson (2010), �The clinical use of structural MRI in Alzheimer disease�, Nature
Reviews Neurology, 6, pages 67�77.

[Geman & Geman 1984] S. Geman & D. Geman (1984), �Stochastic relaxation, Gibbs dis-
tribution and the Bayesian restoration of images�, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 24, no 6, pages 721-741.

[Gerber et al. 2009] S. Gerber, T. Tasdizen, S. Joshi & R. Whitaker (2009), �On
the manifold structure of the space of brain images�, in Proceedings of Medical Image

Computing and Computer Assisted Intervention (MICCAI), 2009.

[Gerber et al. 2010] S. Gerber, T. Tasdizen, P. T. Fletcher, S. Joshi & R. Whitaker

(2010), �Manifold modeling for brain population analysis�, Medical Image Analysis, 14,
no 5, pages 643 - 653.

[Goate & Holtzman 2010] A. Goate & D. M. Holtzman (2010), �Biomarkers will revo-
lutionize the way we diagnose and treat Alzheimer's disease�, Biomarkers in Medicine, 4,
no 1, pages 1-2.

[Golland 2000] P. Golland (2000), Statistical shape analysis of anatomical structures, PhD
thesis, Massachusetts Institute of Technology.

[Golland 2001] P. Golland (2001), �Discriminative direction for kernel classi�ers�, Ad-
vances in Neural Information Processing Systems (NIPS), pages 745�752.

[Golland et al. 2000] P. Golland, W. Eric & L. Grimson (2000), �Fixed topology skele-
tons�, in Proceedings of the IEEE International Conference on Computer Vision and

Pattern Recognition (CVPR), volume 1, pages 10�17, 2000.

[Golland et al. 2005] P. Golland, W. E. L. Grimson, M. E. Shenton & R. Kikinis

(2005), �Detection and analysis of statistical di�erences in anatomical shape�, Medical

Image Analysis, 9, no 1, pages 69 - 86.

[Greene et al. 2012] S. J. Greene, R. J. Killiany &the Alzheimer's Disease Neu-

roimaging Initiative (2012), �Hippocampal subregions are di�erentially a�ected in
the progression to Alzheimer's disease�, The Anatomical Record : Advances in Integrative

Anatomy and Evolutionary Biology, 295, no 1, pages 132�140.

[Greenspan et al. 2006] H. Greenspan, A. Ruf & J. Goldberger (2006), �Constrained
Gaussian mixture model framework for automatic segmentation of MR brain images�,
IEEE Transactions on Medical Imaging, 25, pages 1233-1245.

[Hamm et al. 2010] J. Hamm, D. H. Ye, R. Verma & C. Davatzikos (2010), �GRAM : A
framework for geodesic registration on anatomical manifolds�, Medical Image Analysis,
14, no 5, pages 633 - 642.



128

[Heinrich 2008] C. Heinrich (2008), Problèmes inverses, analyse statistique de formes et

problèmes connexes, Habilitation dissertation, University of Strasbourg.

[Hsu et al. 2010] C.-W. Hsu, C.-C. Chang & C.-J. Lin (2010), �A practical guide to support
vector classi�cation�, Technical report, Department of Computer science, National Taiwan
University.

[Hua et al. 2008A] X. Hua, A. D. Leow, S. Lee, A. D. Klunder, A. W. Toga, N. Lep-

ore, Y.-Y. Chou, C. Brun, M.-C. Chiang, M. Barysheva, C. R. Jack Jr.,

M. A. Bernstein, P. J. Britson, C. P. Ward, J. L. Whitwell, B. Borowski,

A. S. Fleisher, N. C. Fox, R. G. Boyes, J. Barnes, D. Harvey, J. Kornak,

N. Schuff, L. Boreta, G. E. Alexander, M. W. Weiner, P. M. Thompson

&the Alzheimer's Disease Neuroimaging Initiative (2008), �3D characterization
of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based
morphometry�, NeuroImage, 41, no 1, pages 19 - 34.

[Hua et al. 2008B] X. Hua, A. D. Leow, N. Parikshak, S. Lee, M.-C. Chiang, A. W.

Toga, C. R. Jack Jr., M. W. Weiner & P. M. Thompson (2008), �Tensor-based
morphometry as a neuroimaging biomarker for Alzheimer's disease : an MRI study of 676
AD, MCI, and normal subjects�, NeuroImage, 43, no 3, pages 458�469.

[Hua et al. 2009] X. Hua, S. Lee, I. Yanovsky, A. D. Leow, Y.-Y. Chou, A. J. Ho,
B. Gutman, A. W. Toga, C. R. Jack Jr., M. A. Bernstein, E. M. Reiman,

D. J. Harvey, J. Kornak, N. Schuff, G. E. Alexander, M. W. Weiner &

P. M. Thompson (2009), �Optimizing power to track brain degeneration in Alzheimer's
disease and mild cognitive impairment with tensor-based morphometry : an ADNI study
of 515 subjects�, NeuroImage, 48, no 4, pages 668 - 681.

[Jack Jr. et al. 2003] C. R. Jack Jr., M. Slomkowski, S. Gracon, T. M. Hoover, J. P.
Felmlee, K. Stewart, Y. Xu, M. Shiung, P. C. O'Brien, R. Cha, D. Knopman

& R. C. Petersen (2003), �MRI as a biomarker of disease progression in a therapeutic
trial of milameline for AD�, Neurology, 60, no 2, pages 253-260.

[Jack Jr. et al. 2008] C. R. Jack Jr., M. A. Bernstein, N. C. Fox, P. Thompson,

G. Alexander, D. Harvey, B. Borowski, P. J. Britson, J. L. Whitwell,

C. Ward, A. M. Dale, J. P. Felmlee, J. L. Gunter, D. L. Hill, R. Killiany,

N. Schuff, S. Fox-Bosetti, C. Lin, C. Studholme, C. S. DeCarli, G. Krueger,

H. A. Ward, G. J. Metzger, K. T. Scott, R. Mallozzi, D. Blezek, J. Levy,

J. P. Debbins, A. S. Fleisher, M. Albert, R. Green, G. Bartzokis, G. Glover,

J. Mugler & M. W. Weiner (2008), �The Alzheimer's disease neuroimaging initia-
tive (ADNI) : MRI methods�, Journal of Magnetic Resonance Imaging, 27, no 4, pages
685�691.

[Jellinger 2006] K. A. Jellinger (2006), �Alzheimer 100 - highlights in the history of
Alzheimer research�, Journal of Neural Transmission, 113, pages 1603-1623.

[Joshi et al. 1997] S. Joshi, U. Grenander & M. Miller (1997), �The geometry and shape
of brain submanifolds�, International Journal Pattern Recognition Arti�cial Intelligence

Special Issue on Processing of MR Images of the Human, 11, pages 1317�1343.

[Kandel et al. 1995] E. R. Kandel, J. H. Schwartz & T. M. Jessel (1995), Essentials
of neural science and behavior, Prentice-Hall.

[Kanemura et al. 2007A] A. Kanemura, S. Maeda & S. Ishii (2007), �Edge-preserving
Bayesian image superresolution based on compound Markov random �elds�, in Proceed-

ings of the 17th Int'l conference on Arti�cial Neural Networks, 2007, Porto, Portugal.

[Kanemura et al. 2007B] A. Kanemura, S. Maeda & S. Ishii (2007), �Hyperparameter
estimation in Bayesian image superresolution with a compound Markov random �eld



129

prior�, in Proceedings of the IEEE International Workshop on Machine Learning for Signal

Processing, Thessaloniki, Greece.

[Kang et al. 2006] W.-S. Kang, K. Im & J. Choi (2006), �SVDD-based method for fast
training of multi-class support vector classi�er�, in J. Wang, Z. Yi, J. Zurada, B.-L.
Lu & H. Yin, editors, Advances in Neural Networks - ISNN 2006, volume 3971 of Lecture
Notes in Computer Science, pages 991�996, Springer Berlin / Heidelberg.

[Kapur et al. 1996] T. Kapur, W. E. L. Grimson, W. M. Wells III & R. Kikinis (1996),
�Segmentation of brain tissue from magnetic resonance images�, Medical Image Analysis,
1, pages 109-127.

[Kapur et al. 1998] T. Kapur, W. E. L. Grimson, R. Kikinis &W. M. Wells III (1998),
�Enhanced spatial priors for segmentation of magnetic resonance imagery�, in Proceedings
of the International Conference on Medical Image Computing and Computer Assisted

Intervention (MICCAI'98), pages 457�468, 1998.

[Klöppel et al. 2008] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I.
Scahill, J. D. Rohrer, N. C. Fox, C. R. Jack Jr., J. Ashburner & R. S. Frack-

owiak (2008), �Automatic classi�cation of MR scans in Alzheimer's disease�, Brain, 131,
pages 681�689.

[Koikkalainen et al. 2011] J. Koikkalainen, J. Lftjfnen, L. Thurfjell, D. Rueck-
ert, G. Waldemar & H. Soininen (2011), �Multi-template tensor-based morphome-
try : application to analysis of Alzheimer's disease�, NeuroImage, 56, no 3, pages 1134 -
1144.

[Koutsouleris et al. 2009] N. Koutsouleris, E. M. Meisenzahl, C. Davatzikos,

R. Bottlender, T. Frodl, J. Scheuerecker, G. Schmitt, T. Zetzsche,

P. Decker, M. Reiser, H.-J. Moller & C. Gaser (2009), �Use of neuroanatomical
pattern classi�cation to identify subjects in at-risk mental states of psychosis and predict
disease transition�, Archives of General Psychiatry, 66, no 7, pages 700-712.

[Kwan et al. 1999] R.-S. Kwan, A. Evans & G. Pike (1999), �MRI simulation-based eval-
uation of image-processing and classi�cation methods�, IEEE Transactions on Medical

Imaging, 18, pages 1085�1097.

[Laidlaw et al. 1998] D. H. Laidlaw, K. W. Fleischer & A. H. Barr (1998), �Partial-
volume Bayesian classi�cation of material mixtures in MR volume data using voxel his-
tograms�, IEEE Transactions on Medical Imaging, 17, no 1, pages 74�86.

[Lange 2004] K. Lange (2004), Optimization, Springer.

[Lee & Lee 2007] D. Lee & J. Lee (2007), �Domain described support vector classi�er for
multi-classi�cation problems�, Pattern Recognition, 40, no 1, pages 41 - 51.

[Lemm et al. 2011] S. Lemm, B. Blankertz, T. Dickhaus & K.-R. Müller (2011), �In-
troduction to machine learning for brain imaging�, NeuroImage, 56, no 2, pages 387 -
399.

[Lempitsky et al. 2010] V. Lempitsky, C. Rother, S. Roth & A. Blake (2010), �Fusion
moves for Markov random �eld optimization�, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 32, pages 1392-1405.

[Leventon et al. 2000] M. Leventon, W. Grimson & O. Faugeras (2000), �Statistical
shape in�uence in geodesic active contours�, in Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 316�
323, 2000.

[Leymarie & Levine 1992] F. Leymarie & M. Levine (1992), �Simulating the grass�re
transform using an active contour model�, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14, no 1, pages 56 -75.



130

[Lu et al. 1998] H. Lu, Y. Fainman & R. Hecht-Nielsen (1998), �Image manifolds�, in
Proceedings of the SPIE Symposium on Electronic Imaging : Science and Technology ;

Conference on Arti�cial Neural Networks in Image Processing III, San Jose, California.

[Lustig et al. 2007] M. Lustig, D. Donoho & J. M. Pauly (2007), �Sparse MRI : the ap-
plication of compressed sensing for rapid MR imaging�, Magnetic Resonance in Medicine,
58, no 6, pages 1182�1195.

[Malykhin et al. 2010] N. Malykhin, R. Lebel, N. Coupland, A. Wilman & R. Carter

(2010), �In vivo quanti�cation of hippocampal sub�elds using 4.7T fast spin echo imag-
ing�, NeuroImage, 49, no 2, pages 1224 - 1230.

[Marcus et al. 2007] D. Marcus, T. Wang, J. Parker, J. Csernansky, J. Morris &
R. Buckner (2007), �Open Access Series of Imaging Studies (OASIS) : cross-sectional
MRI data in young, middle aged, nondemented, and demented older adults�, Journal of
Cognitive Neuroscience, 19, pages 1498�1507.

[Marroquin et al. 2002] J. Marroquin, B. Vemuri, S. Botello, F. Calderon &

A. Fernandez-Bouzas (2002), �An accurate and e�cient Bayesian method for au-
tomatic segmentation of brain MRI�, IEEE Transactions on Medical Imaging, 21, pages
934-945.

[Marroquin et al. 2003] J. Marroquin, E. Arce & S. Botello (2003), �Hidden Markov
measure �eld models for image segmentation�, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25, no 11, pages 1380-1387.

[Martin et al. 2001] D. Martin, C. Fowlkes, D. Tal & J. Malik (2001), �A database
of human segmented natural images and its application to evaluating segmentation algo-
rithms and measuring ecological statistics�, in Proceedings of the 8th International Con-

ference on Computer Vision (ICCV '01), volume 2, pages 416�423, July 2001.

[McKhann et al. 1984] G. McKhann, D. Drachman, M. Folstein, R. Katzman,

D. Price & E. Stadlan (1984), �Clinical diagnosis of Alzheimer's disease : report
of the NINCDS-ADRDA work group under the auspices of Department of Health and
Human Services task force on Alzheimer's disease�, Neurology, 34, pages 939-944.

[McLachlan 2000] G. McLachlan (2000), Finite mixture models, Wiley-Interscience.

[Medical Dictionary 2012] Merriam-Webster's Medical Dictionary (2012),
�Merriam-Webster's medical dictionary, lemma "biomarker"�, http ://www.merriam-
webster.com/medical/biomarker (Accessed 29/3/2012).

[Molina et al. 2003] R. Molina, J. Mateos, A. Katsaggelos & M. Vega (2003),
�Bayesian multichannel image restoration using compound Gauss-Markov random �elds�,
IEEE Transactions on Image Processing, 12, pages 1642�1654.

[Mori 2005] G. Mori (2005), �Guiding model search using segmentation�, in ICCV'05 : Pro-

ceedings of the Tenth IEEE International Conference on Computer Vision, volume 2,
pages 1417�1423, 2005.

[Morra et al. 2010] J. Morra, Z. Tu, L. Apostolova, A. Green, A. Toga &

P. Thompson (2010), �Comparison of adaboost and support vector machines for detect-
ing Alzheimer's disease through automated hippocampal segmentation�, IEEE Transac-

tions on Medical Imaging, 29, no 1, pages 30 -43.

[Morris 1997] J. C. Morris (1997), �Clinical Dementia Rating : A reliable and valid diagnos-
tic and staging measure for dementia of the Alzheimer type�, International Psychogeri-
atrics, 9, pages 173-176.

[Morris et al. 2001] J. C. Morris, M. Storandt, J. P. Miller, D. W. McKeel, J. L.

Price, E. H. Rubin & L. Berg (2001), �Mild cognitive impairment represents early-
stage Alzheimer disease�, Archives of Neurology, 58, no 3, pages 397-405.



131

[Mourão-Miranda et al. 2011] J. Mourão-Miranda, D. R. Hardoon, T. Hahn, A. F.
Marquand, S. C. Williams, J. Shawe-Taylor & M. Brammer (2011), �Patient
classi�cation as an outlier detection problem : an application of the one-class support
vector machine�, NeuroImage, 58, no 3, pages 793 - 804.

[Mueller et al. 2011] S. Mueller, L. Chao, B. Berman & M. Weiner (2011), �Evidence
for functional specialization of hippocampal sub�elds detected by MR sub�eld volumetry
on high resolution images at 4T�, NeuroImage, 56, no 3, pages 851 - 857.

[Mueller et al. 2006] S. G. Mueller, N. Schuff & M. W. Weiner (2006), �Evaluation
of treatment e�ects in Alzheimer's and other neurodegenerative diseases by MRI and
MRS�, NMR in Biomedicine, 19, no 6, pages 655�668.

[Munkres 2000] J. R. Munkres (2000), Topology, Prentice Hall, 2nd edition.

[Nain et al. 2007] D. Nain, M. Styner, M. Niethammer, J. Levitt, M. Shenton,
G. Gerig, A. Bobick & A. Tannenbaum (2007), �Statistical shape analysis of brain
structures using spherical wavelets�, in Proceedings of the IEEE International symposium

on Biomedical Imaging : From Nano to Macro, pages 209 �212, April 2007.

[Nascimento & Silva 2010] J. Nascimento & J. Silva (2010), �Manifold learning for ob-
ject tracking with multiple motion dynamics�, in Proceedings of the European Conference

on Computer Vision (ECCV), volume 6313, pages 172�185, 2010.

[Niessen et al. 1998] W. J. Niessen, K. L. Vincken, J. Weickert & M. A. Viergever

(1998), �Three dimensional MR brain segmentation�, in Proceedings of the 6th Interna-

tional Conference on Computer Vision (ICCV'98), pages 53�58, 1998.

[Nikita 2009] I. Nikita (2009), Comparative study of the rythmic activity induced by achetyl-

choline receptor agonist in dorsal and ventral hippocampal slices of the rat, PhD thesis,
University of Patras.

[Nikou et al. 2007] C. Nikou, N. Galatsanos & A. Likas (2007), �A class-adaptive spa-
tially variant mixture model for image segmentation�, IEEE Transactions on Image Pro-

cessing, 16, no 4, pages 1121�1130.

[Nordberg 1999] A. Nordberg (1999), �PET studies and cholinergic therapy in Alzheimer's
disease�, Revue Neurologique (Paris), 155, pages S53-63.

[Orbanz & Buhmann 2007] P. Orbanz & J. M. Buhmann (2007), �Nonparametric
Bayesian image segmentation�, International Journal of Computer Vision, 77, pages 25-
45.

[Park et al. 2007] J. Park, D. Kang, J. Kim, J. T. Kwok & I. W.Tsang (2007), �SVDD-
based pattern denoising�, Neural Computation, 19, no 7, pages 1919-1938.

[Peel & McLachlan 2000] D. Peel & G. J. McLachlan (2000), �Robust mixture mod-
eling using the t-distribution�, Statistics and Computing, 10, pages 339-348.

[Peng et al. 2006] Z. Peng, W. Wee & J. H. Lee (2006), �Automatic segmentation of MR
brain images using spatial-varying Gaussian mixture and Markov random �eld approach�,
in Proceedings of the Computer Vision and Pattern Recognition Workshop (CVPRW'06),
2006.

[Pennec et al. 2000] X. Pennec, N. Ayache & J.-P. Thirion (2000), �Landmark-based
registration using features identi�ed through di�erential geometry�, in I. Bankman, edi-
tor, Handbook of Medical Imaging - Processing and Analysis. I., pages 499�513, Academic
Press.

[Petersen et al. 2001] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris,
P. V. Rabins, K. Ritchie, M. Rossor, L. Thal & B. Winblad (2001), �Current
concepts in mild cognitive impairment�, Archives of Neurology, 58, no 12, pages 1985�
1992.



132

[Petersen et al. 2009] R. C. Petersen, R. O. Roberts, D. S. Knopman, B. F. Boeve,
Y. E. Geda, R. J. Ivnik, G. E. Smith & C. R. Jack Jr. (2009), �Mild cognitive
impairment : Ten years later�, Archives of Neurology, 66, no 12, pages 1447-1455.

[Philippi et al. 2012] N. Philippi, V. Noblet, A. Botzung, O. Després, F. Renard,
G. Sfikas, B. Cretin, S. Kremer, L. Manning & F. Blanc (2012), �Neuronal
correlates of autobiographical memory : an MRI-based volumetry study in Alzheimer's
disease�, Technical report.

[Pizer et al. 2003] S. M. Pizer, P. T. Fletcher, S. Joshi, A. Thall, J. Z. Chen,
Y. Fridman, D. S. Fritsch, A. G. Gash, J. M. Glotzer, M. R. Jiroutek, C. Lu,

K. E. Muller, G. Tracton, P. Yushkevich & E. L. Chaney (2003), �Deformable
m-Reps for 3D medical image segmentation�, International Journal of Computer Vision,
55, pages 85-106.

[Pless & Souvenir 2009] R. Pless & R. Souvenir (2009), �A survey of manifold learning
for images�, IPSJ Transactions on Computer Vision and Applications, 1, pages 83�94.

[Pohl et al. 2007] K. Pohl, S. Bouix, M. Nakamura, T. Rohfling, R. McCarley,
R. Kikinis, L. Grimson, M. Shenton & W. Wells (2007), �A hierarchical algorithm
for MR brain image parcellation�, IEEE Transactions on Medical Imaging, 26, pages
1201-1212.

[Prastawa et al. 2004] M. Prastawa, J. Gilmore, W. Lin & G. Gerig (2004), �Auto-
matic segmentation of neonatal brain MRI�, in Proceedings of the International Confer-

ence on Medical Image Computing and Computer Assisted Intervention (MICCAI'04),
2004.

[Ptucha et al. 2011] R. Ptucha, G. Tsagkatakis & A. Savakis (2011), �Manifold learn-
ing for simultaneous pose and facial expression recognition�, in Proceedings of the IEEE

International Conference on Image Processing, pages 3082�3085, Brussels, Belgium.

[Rajagopalan & Chaudhuri 1999] A. N. Rajagopalan & S. Chaudhuri (1999), �An
MRF model-based approach to simultaneous recovery of depth and restoration from de-
focused images�, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21,
no 17, pages 577-589.

[Ren & Malik 2003] X. Ren & J. Malik (2003), �Learning a classi�cation model for seg-
mentation�, in ICCV'03 : Proceedings of the IEEE International Conference on Computer

Vision, volume 1, pages 10�17, 2003.

[Renard 2011] F. Renard (2011), Création et utilisation d'atlas en IRM de di�usion. Appli-

cation à l'étude des troubles de la conscience, PhD thesis, University of Strasbourg.

[Rosner 2000] B. Rosner (2000), Fundamentals of Biostatistics, Brooks/Cole, 5th edition.

[Rothenberg et al. 2011] K. G. Rothenberg, S. L. Siedlak, H.-G. Lee, X. Zhu,
G. Perry & M. A. Smith (2011), �Neurodegenerative processes in Alzheimer's dis-
ease : an overview of pathogenesis with strategic biomarker potential�, Future Neurology,
6, no 2, pages 173-185.

[Roweis & Saul 2000] S. Roweis & L. Saul (2000), �Nonlinear dimensionality reduction
by locally linear embedding�, Science, 290, pages 2323-2326.

[Rueckert et al. 2003] D. Rueckert, A. Frangi & J. Schnabel (2003), �Automatic con-
struction of 3-D statistical deformation models of the brain using nonrigid registration�,
IEEE Transactions on Medical Imaging, 22, no 8, pages 1014�1025.

[Sabuncu et al. 2009] M. Sabuncu, S. Balci, M. Shenton & P. Golland (2009), �Image-
driven population analysis through mixture modelling�, IEEE Transactions on Medical

Imaging, 28, no 9, pages 1473 -1487.



133

[Sakla et al. 2011] W. Sakla, A. Chan, J. Ji & A. Sakla (2011), �An SVDD-based al-
gorithm for target detection in hyperspectral imagery�, IEEE Geoscience and Remote

Sensing Letters, 8, no 2, pages 384�388.

[Sanjay-Gopal & Hebert 1998] S. Sanjay-Gopal & T. Hebert (1998), �Bayesian pixel
classi�cation using spatially variant �nite mixtures and the generalized EM algorithm�,
IEEE Transactions on Image Processing, 7, no 7, pages 1014-1028.

[Schmand et al. 2011] B. Schmand, P. Eikelenboom, W. A. van Gool &the

Alzheimer's Disease Neuroimaging Initiative (2011), �Value of neuropsycholog-
ical tests, neuroimaging, and biomarkers for diagnosing Alzheimer's disease in younger
and older age cohorts�, Journal of the American Geriatrics Society, 68, no 10, pages
1257�1266.

[Schönefeld 2005] V. Schönefeld (2005), �Spherical harmonics�, Technical report, Com-
puter Graphics and Multimedia Group, Technical Note. RWTH Aachen University.

[Schölkopf et al. 2001] B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. J. Smola &

R. C. Williamson (2001), �Estimating the support of a high-dimensional distribution�,
Neural Computation, 13, no 7, pages 1443�1471.

[Selkoe 1997] D. J. Selkoe (1997), �Alzheimer's Disease�Genotypes, Phenotype, and
Treatments�, Science, 275, no 5300, pages 630-631.

[Sfikas et al. 2008A] G. Sfikas, C. Nikou & N. Galatsanos (2008), �Edge preserving spa-
tially varying mixtures for image segmentation�, in Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), Alaska, USA.

[Sfikas et al. 2008B] G. Sfikas, C. Nikou, N. Galatsanos & C. Heinrich (2008), �MR
brain segmentation using an edge-preserving spatially variant Bayesian mixture model�, in
Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI),
New York, USA.

[Sfikas et al. 2010A] G. Sfikas, C. Heinrich & C. Nikou (2010), �Multiple atlas inference
and population analysis with spectral clustering�, in Proceedings of the IEEE International

Conference on Pattern Recognition, pages 2500�2503, Istanbul, Turkey.

[Sfikas et al. 2010B] G. Sfikas, C. Nikou, N. Galatsanos & C. Heinrich (2010), �Spa-
tially varying mixtures incorporating line processes for image segmentation�, Journal of
Mathematical Imaging and Vision, 36, no 2, pages 91�110.

[Sfikas et al. 2011A] G. Sfikas, C. Nikou, N. Galatsanos & C.Heinrich (2011),
�Majorization-Minimization mixture model determination in image segmentation�, in
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recog-

nition (CVPR), Colorado springs, USA.

[Sfikas et al. 2011B] G. Sfikas, C. Heinrich, J. Zallat, C. Nikou & N. Galatsanos

(2011), �Recovery of polarimetric stokes images by spatial mixture models�, Journal of
the Optical Society of America A, 28, no 3, pages 465�474.

[Shawe-Taylor & Cristianini 2004] J. Shawe-Taylor & N. Cristianini (2004), Kernel
methods for pattern analysis, Cambridge University Press.

[Shenton et al. 2002] M. E. Shenton, G. Gerig, R. W. McCarley, G. Székely &

R. Kikinis (2002), �Amygdala�hippocampal shape di�erences in schizophrenia : the ap-
plication of 3D shape models to volumetric MR data�, Psychiatry Research : Neuroimag-

ing, 115, no 1�2, pages 15 - 35.

[Shi & Malik 2000] J. Shi & J. Malik (2000), �Normalized cuts and image segmentation�,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, no 8, pages 888-
905.



134

[Sjöstrand et al. 2007] K. Sjöstrand, M. S. Hansen, H. B. Larsson & R. Larsen

(2007), �A path algorithm for the support vector domain description and its application
to medical imaging�, Medical Image Analysis, 11, no 5, pages 417 - 428.

[Souvenir & Pless 2007] R. Souvenir & R. Pless (2007), �Image distance functions for
manifold learning�, Image and Vision Computing, 25, no 3, pages 365�373.

[Sparks & Madabhushi 2011] R. Sparks & A. Madabhushi (2011), �Out-of-sample ex-
trapolation using semi-supervised manifold learning (OSE-SSL) : Content-based image
retrieval for prostate histology grading�, in Proceedings of the IEEE International sym-

posium on Biomedical Imaging : From Nano to Macro, pages 734 �737, 2011.

[Staib & Duncan 1992] L. H. Staib & J. S. Duncan (1992), �Boundary �nding with para-
metrically deformable models�, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14, no 11, pages 1061�1075.

[Stonnington et al. 2010] C. M. Stonnington, C. Chu, S. Klöppel, C. R. Jack Jr.,

J. Ashburner & R. S. Frackowiak (2010), �Predicting clinical scores from magnetic
resonance scans in Alzheimer's disease�, NeuroImage, 51, no 4, pages 1405 - 1413.

[Storey 2003] J. Storey (2003), �The positive false discovery rate : A Bayesian interpreta-
tion and the q-value�, The Annals of Statistics, 31, no 6, pages 2013�2035.

[Studholme et al. 1999] C. Studholme, D. Hill & D. Hawkes (1999), �An overlap in-
variant entropy measure of 3D medical image alignment�, Pattern Recognition, 32, pages
71-86.

[Sudderth & Jordan 2008] E. Sudderth & M. Jordan (2008), �Shared segmentation of
natural scenes using dependent Pitman-Yor processes�, Proceedings of Neural Information

Processing Systems (NIPS), 21.

[Tarawneh & Holtzman 2010] R. Tarawneh & D. M. Holtzman (2010), �Biomarkers
in translational research of Alzheimer's disease�, Neuropharmacology, 59, no 4-5, pages
310 - 322.

[Tasdizen et al. 2005] T. Tasdizen, S. Awate, R. Whitaker & N. Foster (2005), �MR
tissue classi�cation with neighborhood statistics : a nonparametric entropy-minimizing
approach�, in Proceedings of the International Conference on Medical Image Computing

and Computer Assisted Intervention (MICCAI'05), pages 517�525, 2005.

[Tax & Duin 2004] D. Tax & R. Duin (2004), �Support vector data description�, Machine

Learning, 54, pages 45-66.

[Tax & Duin 1999] D. M. Tax & R. P. Duin (1999), �Support vector domain description�,
Pattern Recognition Letters, 20, no 11-13, pages 1191�1199.

[Tenenbaum et al. 2000] J. B. Tenenbaum, V. de Silva & J. C. Langford (2000), �A
global geometric framework for nonlinear dimensionality reduction�, Science, 290, pages
2319�2323.

[Thayananthan et al. 2006] A. Thayananthan, R. Navaratnam, B. Stenger, P. H. S.
Torr & R. Cipolla (2006), �Multivariate Relevance Vector Machines for tracking�,
Proceedings of the European Conference on Computer Vision (ECCV).

[Thompson 1917] D. A. W. Thompson (1917), On growth and form, Cambridge University
Press.

[Thompson et al. 2000] P. Thompson, J. Giedd, R. Woods, D. MacDonald, A. Evans

& A. Toga (2000), �Growth patterns in the developing brain detected by using contin-
uum mechanical tensor maps�, Nature, 404, pages 190-193.

[Thompson et al. 2004] P. M. Thompson, K. M. Hayashi, G. I. de Zubicaray, A. L.

Janke, S. E. Rose, J. Semple, M. S. Hong, D. H. Herman, D. Gravano, D. M.



135

Doddrell & A. W. Toga (2004), �Mapping hippocampal and ventricular change in
Alzheimer disease�, NeuroImage, 22, no 4, pages 1754 - 1766.

[Trouvé 1998] A. Trouvé (1998), �Di�eomorphisms groups and pattern matching in image
analysis�, International Journal of Computer Vision, 28, no 3, pages 213�221.

[Turk & Pentland 1991] M. Turk & A. Pentland (1991), �Eigenfaces for recognition�,
Journal of Cognitive Neuroscience, 3, no 1, pages 71�86.

[Twining & Marsland 2008] C. Twining & S. Marsland (2008), �Constructing an atlas
for the di�eomorphism group of a compact manifold with boundary with application to
the analysis of image registrations�, Journal of Computational Applied Mathematics, 222,
pages 411-428.

[Tzikas et al. 2006] D. Tzikas, A. Likas & N. Galatsanos (2006), �A tutorial on Rel-
evance Vector Machines for regression and classi�cation with applications�, EURASIP
newsletter, 17, no 2, pages 4�23.

[Tzikas et al. 2008] D. Tzikas, A. Likas & N. Galatsanos (2008), �The variational ap-
proximation for Bayesian inference�, IEEE Signal Processing Magazine, 25, no 6, pages
131-146.

[Ueda & Ghahramani 2002] N. Ueda & Z. Ghahramani (2002), �Bayesian model search
for mixture models based on optimizing variational bounds�, Neural Networks, 15, no 10,
pages 1223�1241.

[Unnikrishnan et al. 2007] R. Unnikrishnan, C. Pantofaru & M. Hebert (2007), �To-
ward objective evaluation of image segmentation algorithms�, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 29, no 6, pages 929-944.

[Vaillant & Glaunes 2005] M. Vaillant & J. Glaunes (2005), �Surface matching via
currents�, in Information Processing in Medical Imaging, pages 1�5, Springer, 2005.

[Van der Maaten et al. 2009] L. Van der Maaten, E. Postma & H. van den Herik

(2009), �Dimensionality reduction : a comparative review�, Technical report 2009-005,
Tilburg centre for Creative Computing, Tilburg University, Tilburg, The Netherlands.

[Van Leemput et al. 1999] K. Van Leemput, F. Maes, D. Vandermeulen & P. Suetens

(1999), �Automated model-based tissue classi�cation of MR images of the brain�, IEEE
Transactions on Medical Imaging, 18, pages 897-908.

[Van Leemput et al. 2001] K. Van Leemput, F. Maes, D. Vandermeulen, A. Colch-

ester & P. Suetens (2001), �Automated segmentation of multiple sclerosis lesions by
model outlier detection�, IEEE Transactions on Medical Imaging, 20, pages 677-688.

[Vercauteren et al. 2008] T. Vercauteren, X. Pennec, A. Perchant & N. Ayache

(2008), �Symmetric log-domain di�eomorphic registration : a demons-based approach�, in
Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI),
volume 5241, pages 754�761.

[Vercauteren et al. 2009] T. Vercauteren, X. Pennec, A. Perchant & N. Ayache

(2009), �Di�eomorphic demons : e�cient non-parametric image registration�, NeuroIm-

age, 45, no 1, Supplement 1, pages S61 - S72.

[Vereecken et al. 1994] T. Vereecken, O. Vogels & R. Nieuwenhuys (1994), �Neuron
loss and shrinkage in the amygdala in Alzheimer's disease�, Neurobiology of Aging, 15, no

1, pages 45 - 54.

[Vik 2004] T. Vik (2004), Modèles statistiques d'apparence non gaussiens. Application à la

création d'un atlas probabiliste de perfusion cérébrale en imagerie médicale, PhD thesis,
University Louis Pasteur - Strasbourg I.



136

[Vik et al. 2007] T. Vik, F. Heitz & P. Charbonnier (2007), �Robust pose estimation and
recognition using non-Gaussian modeling of appearance subspaces�, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 29, no 5, pages 901 -905.

[Wachinger & Navab 2010] C. Wachinger & N. Navab (2010), �Manifold learning for
multi-modal image registration�, in Proceedings of the British Machine Vision Conference,
pages 1�12, 2010.

[Wachinger et al. 2010] C. Wachinger, M. Yigitsoy & N. Navab (2010), �Manifold
learning for image-based breathing gating with application to 4D ultrasound�, in Pro-

ceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI),
volume 6362, pages 26�33, 2010.

[Wechsler 1991] D. Wechsler (1991), Echelle clinique de mémoire Wechsler-révisée, Les
Editions du Centre de Psychologie Appliquée.

[Weinberger & Saul 2006] K. Q. Weinberger & L. K. Saul (2006), �Unsupervised
learning of image manifolds by semide�nite programming�, International Journal of Com-

puter Vision, 70, pages 77-90.

[Wells III et al. 1996] W. Wells III, W. Grimson, R. Kikinis & F. Jolesz (1996),
�Adaptive segmentation of MRI data�, IEEE Transactions on Medical Imaging, 15, pages
429-442.

[West 1993] M. West (1993), �Regionally speci�c loss of neurons in the aging human hip-
pocampus�, Neurobiology of Aging, 14, no 4, pages 287 - 293.

[West et al. 2000] M. J. West, C. H. Kawas, L. J. Martin & J. C. Troncoso (2000),
�The CA1 region of the human hippocampus is a hot spot in Alzheimer's disease�, Annals
of the New York Academy of Sciences, 908, no 1, pages 255�259.

[Wolz et al. 2010] R. Wolz, P. Aljabar, J. V. Hajnal, A. Hammers & D. Rueckert

(2010), �LEAP : Learning embeddings for atlas propagation�, NeuroImage, 49, no 2,
pages 1316 - 1325.

[Wolz et al. 2010] R. Wolz, P. Aljabar, J. Hajnal & D. Rueckert (2010), �Manifold
learning for biomarker discovery in MR imaging�, in F. Wang, P. Yan, K. Suzuki &
D. Shen, editors, Machine Learning in Medical Imaging, volume 6357 of Lecture Notes

in Computer Science, pages 116�123, Springer Berlin / Heidelberg.

[Wright 2005] M. H. Wright (2005), �The interior-point revolution in optimization : history,
recent developments, and lasting consequences�, Bulletin of the American Mathematical

Society (N.S), 42, pages 39�56.

[Xu &Wunsch II 2005] R. Xu & D. Wunsch II (2005), �Survey of clustering algorithms�,
IEEE Transactions on Neural Networks, 16, no 3, pages 645-678.

[Yang et al. 2007] A. Yang, J. Wright, S. Sastry & Y. Ma (2007), �Unsupervised seg-
mentation of natural images via lossy data compression�, Computer Vision and Image

Understanding, 110, no 2, pages 212�225.

[Yang et al. 2011] L. Yang, W.-M. Ma & B. Tian (2011), �New multi-class classi�cation
method based on the SVDD model�, in D. Liu, H. Zhang, M. Polycarpou, C. Alippi
& H. He, editors, Advances in Neural Networks � ISNN 2011, volume 6676 of Lecture
Notes in Computer Science, pages 103�112, Springer Berlin / Heidelberg.

[Younes et al. 2009] L. Younes, F. Arrate & M. Miller (2009), �Evolutions equations
in computational anatomy�, NeuroImage, 45, no 1, pages S40�S50.

[Yu et al. 2007] P. Yu, P. Grant, Y. Qi, X. Han, F. Segonne, R. Pienaar, E. Busa,
J. Pacheco, N. Makris, R. Buckner, P. Golland & B. Fischl (2007), �Corti-
cal surface shape analysis based on spherical wavelets�, IEEE Transactions on Medical

Imaging, 26, no 4, pages 582 -597.



137

[Zabih & Kolmogorov 2004] R. Zabih & V. Kolmogorov (2004), �Spatially coherent
clustering using graph cuts�, in Proceedings of the IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR), volume 2, pages 437�444, 2004.

[Zallat & Heinrich 2007] J. Zallat & C. Heinrich (2007), �Polarimetric data reduction :
a Bayesian approach�, Optics Express, 15, no 1, pages 83-96.

[Zallat et al. 2004] J. Zallat, C. Collet & Y. Takakura (2004), �Clustering of
polarization-encoded images�, Applied Optics, 43, no 2, pages 283�292.

[Zallat et al. 2008] J. Zallat, C. Heinrich & M. Petremand (2008), �A Bayesian ap-
proach for polarimetric data reduction : the Mueller imaging case�, Optics Express, 16,
no 10, pages 7119-7133.

[Zhang et al. 2006] Q. Zhang, R. Souvenir & R. Pless (2006), �On manifold structure of
cardiac MRI data : Application to Segmentation�, in Proceedings of the IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

[Zhou et al. 2008] L. Zhou, R. Hartley, L. Wang, P. Lieby & N. Barnes (2008), �Reg-
ularized discriminative direction for shape di�erence analysis�, in Proceedings of Medical

Image Computing and Computer Assisted Intervention (MICCAI), New York, USA.

[Zhou et al. 2009] L. Zhou, R. Hartley, L. Wang, P. Lieby & N. Barnes (2009), �Iden-
tifying anatomical shape di�erence by regularized discriminative direction�, IEEE Trans-

actions on Medical Imaging, 28, no 6, pages 937�950.

[Zhou et al. 2011] L. Zhou, Y. Wang, Y. Li, P.-T. Yap & D. Shen (2011), �Hierarchical
anatomical brain networks for MCI prediction by partial least square analysis�, in Proceed-
ings of the IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1073�1080, June 2011.



Giorgos SFIKAS

Modèles statistiques non 
linéaires pour l'analyse de 

formes. Application à l'imagerie 
cérébrale.

Résumé

Cette thèse a pour objet l'analyse statistique de formes, dans le contexte de l'imagerie médicale.  
Dans le champ de l'imagerie médicale, l'analyse de formes est utilisée pour décrire la variabilité 
morphologique  de  divers  organes  et  tissus.  Nous  nous  focalisons  dans  cette  thèse  sur  la  
construction  d'un  modèle  génératif  et  discriminatif,  compact  et  non-linéaire,  adapté  à  la 
représentation de formes. Ce modèle est evalué dans le contexte de l'étude d'une population de 
patients  atteints  de  la  maladie d'Alzheimer et  d'une population  de sujets  contrôles sains.  Notre  
intérêt  principal  ici  est  l'utilisation  du  modèle  discriminatif  pour  découvrir  les  différences 
morphologiques  les  plus  discriminatives  entre  une  classe  de  formes  donnée  et  des  formes 
n'appartenant pas à cette classe. L'innovation théorique apportée par notre modèle réside en deux 
points principaux : premièrement, nous proposons un outil pour extraire la différence discriminative 
dans le cadre Support Vector Data Description (SVDD) ; deuxièmement, toutes les reconstructions 
générées  sont  anatomiquement  correctes.  Ce  dernier  point  est  dû  au  caractère  non-linéaire  et 
compact du modèle, lié à l'hypothèse que les données (les formes) se trouvent sur une variété non-
linéaire de dimension faible.  Une application de notre modèle à des données médicales réelles 
montre des résultats cohérents avec les connaisances médicales.

Mots-clés : analyse statistique de formes, apprentissage de variétés, support vector data description, 
différence discriminative, maladie d'Alzheimer, hippocampe.

Résumé en anglais

This thesis addresses statistical shape analysis, in the context of medical imaging. In the field of  
medical imaging, shape analysis is used to describe the morphological variability of various organs 
and  tissues.  Our  focus  in  this  thesis  is  on  the  construction  of  a  generative  and discriminative,  
compact and non-linear model, suitable to the representation of shapes. This model is evaluated in 
the context of the study of a population of Alzheimer's disease patients and a population of healthy 
controls.  Our  principal  interest  here is  using the discriminative  model  to  discover  morphological  
differences that are the most characteristic and discriminate best between a given shape class and 
forms not belonging in that class. The theoretical innovation of our work lies in two principal points :  
first, we propose a tool to extract discriminative difference in the context of the Support Vector Data  
description (SVDD) framework ; second, all generated reconstructions are anatomically correct. This 
latter point is due to the non-linear and compact character of the model, related to the hypothesis  
that the data (the shapes) lie on a low-dimensional, non-linear manifold. The application of our model 
on real medical data shows results coherent with well-known findings in related research.

Keywords:  statistical  shape  analysis,  manifold  learning,  support  vector  data  description, 
discriminative difference, Alzheimer's disease, hippocampus.


