
HAL Id: tel-00790156
https://theses.hal.science/tel-00790156

Submitted on 19 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Management of Scenarized User-centric Service
Compositions for Collaborative Pervasive Environments.

Matthieu Faure

To cite this version:
Matthieu Faure. Management of Scenarized User-centric Service Compositions for Collaborative Per-
vasive Environments.. Ubiquitous Computing. Université Montpellier II - Sciences et Techniques du
Languedoc, 2012. English. �NNT : �. �tel-00790156�

https://theses.hal.science/tel-00790156
https://hal.archives-ouvertes.fr

Académie deMontpellier

U n i v e r s i t é M o n t p e l l i e r II
Sciences et Techniques du Languedoc

Thèse

pour obtenir le grade de docteur

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Information, Structures, Systèmes

présentée et soutenue publiquement par

Matthieu Faure

Management of scenarized user-centric
service compositions for

collaborative pervasive environments

Soutenue le 07 décembre 2012, devant le jury composé de :

Rapporteurs
Jean-Michel Bruel (Prof.) Université de Toulouse
Lionel Brunie (Prof.) Institut National des Sciences Appliquées (INSA) de Lyon

Examinateurs
Philippe Collet (MCF-HDR) Université Nice Sophia Antipolis
Peter Kriens (PDG) aQute
Joël Quinqueton (Prof.) Université de Montpellier III

Directrice de thèse
Marianne Huchard (Prof.) Université de Montpellier II

Co-encadrants de thèse
Luc Fabresse (MCF) École des Mines de Douai
Christelle Urtado (MCF) Invitée, École des Mines d’Alès
Sylvain Vauttier (MCF) École des Mines d’Alès

2

3

Osez ! Ce mot renferme toute la politique de notre révolution.
Louis Antoine de Saint-Just

Remerciements

Tout d’abord, je remercie l’Institut Carnot M.I.N.E.S, financeur de cette thèse. Ce financement m’a permis
de me consacrer pleinement à mon travail.

Je remercie Messieurs Stéphane Lecoeuche, directeur de l’Unité de Recherche Informatique et Automa-
tique (URIA) de l’École des Mines de Douai, et Yannick Vimont, directeur du Laboratoire de Génie Infor-
matique et d’Ingénierie de Production (LGI2P) de l’École des Mines d’Alès, pour m’avoir successivement si
bien accueilli et permis de réaliser cette thèse dans d’idéales conditions.

Je voudrais par ailleurs remercier l’ensemble des membres du jury. Je remercie particulièrement Messieurs
Lionel Brunie et Jean-Michel Bruel pour avoir accepté de rapporter ma thèse. Leurs remarques et conseils
furent précieux. Je remercie également Messieurs Joël Quinqueton, Philipe Collet et Peter Kriens pour avoir
accepté d’examiner mon travail. Ils honorent mon jury de thèse de leur présence.

Je tiens à remercier tout particulièrement et à témoigner toute ma reconnaissance à mon équipe encadrante:
Madame Marianne Huchard pour avoir dirigé ce travail de thèse, Madame Christelle Urtado et Messieurs
Luc Fabresse et Sylvain Vauttier qui m’ont accompagné dans cette aventure. Je tiens à louer votre complé-
mentarité, votre enthousiasme, votre disponibilité et votre pédagogie. Cette thèse fut une expérience incroyable
qui n’aurait pu se faire sans vous.

Je remercie l’ensemble du personnel technique et administratif du Département Informatique et Automa-
tique de l’Ecole des Mines de Douai et du site de Nîmes de l’Ecole des Mines d’Alès. Toujours disponibles et
aimables, ils sont garants de la réussite de ces deux institutions. Merci aux enseignants-chercheurs, doctor-
ants, post-doctorants et ingénieurs des deux laboratoires qui m’ont toujours bien accueilli et furent souvent
d’une aide précieuse. J’ai pu apprécier leur bonne humeur. A ce titre, je tiens particulièrement à remercier:
Lyes, qui m’a introduit aux subtilités du doctorat et m’a entraîné dans des discussions toutes aussi passion-
nantes qu’éclairantes, Mariano, pour son amitié, son amour du ballon rond et ses expressions argentines qui
marquèrent si durablement mon vocabulaire, Guillaume, collègue de travail et ami, ses remarques enrichissent
continuellement mon travail, Abdelhak, ami sincère et pronostiqueur imparable.

Par ailleurs, je remercie aussi Laurent, pour son temps et son travail précieux ainsi que tous ceux qui ont
contribué, de quelque manière que ce soit, à l’accomplissement de ce travail.

Je voudrais remercier mes amis, toujours présents (malgré la distance parfois). Merci à Niamh, Réjane,
Ali, Benoit et tous ceux que je ne cite pas mais que je n’oublie pas...

Je remercie ma famille qui m’a toujours accompagné et encouragé, mes parents et beaux-parents, pour leur
éducation et leur amour, mes sœurs et mon frère, à jamais dans mon cœur. Cette thèse est le fruit de votre
réussite.

Pour finir, je tiens à remercier Adélaïde pour son soutien quotidien indéfectible et son enthousiasme con-
tagieux à l’égard de mes travaux comme de la vie en général. Elle est la raison principale de mon épanouisse-
ment. Merci d’être là, à mes côtés...

Contents

1 Introduction 15
1.1 Context of the Thesis . 15

1.1.1 From Ubiquitous Computing to Pervasive Systems 16
1.1.2 Pervasive Environments . 17

1.2 Challenges in Pervasive Environment including Users’ Expectations 18
1.2.1 Benefit of Pervasive Environments . 18
1.2.2 Meet users’ expectations . 19

1.3 The Problematics of this Thesis . 20
1.4 Contribution of this Thesis . 21
1.5 Thesis Outline . 21

I Pervasive Systems 23

2 Context of User-Centric Systems in Pervasive Environments 25
2.1 Presentation and Terminology . 25

2.1.1 Motivating Example . 25
2.1.2 Terminology . 26

2.2 Requirements for User-Centric Systems in Pervasive Environments 27
2.2.1 Functional requirements . 27
2.2.2 Non-Functional Requirements . 29
2.2.3 Synthesis . 32

3 State of the Art 35
3.1 Presentation of Studied Pervasive Systems . 36

3.1.1 Anamika . 36
3.1.2 DigiHome . 36
3.1.3 MASML . 37
3.1.4 PHS . 37
3.1.5 SAASHA . 37
3.1.6 SODAPOP . 37
3.1.7 WComp . 38

3.2 Service Platforms: an Approach to Context Management (R1) 38
3.2.1 Concepts and Approaches . 38
3.2.2 Evaluation of Pervasive Systems . 42

3.3 Service Composition: First Response to Scenario Definition (R2) 44
3.3.1 Concepts and Approaches . 44

8 Contents

3.3.2 Evaluation of Pervasive Systems . 46
3.4 Distributed Execution and Recovery Strategies: Complementary Approaches

for Scenario Execution (R3) . 48
3.4.1 Concepts and Approaches . 48
3.4.2 Evaluation of Pervasive Systems . 51

3.5 Service Component Platforms: an Architecture for the Reuse Paradigm (R4) . . 53
3.5.1 Concepts and Approaches . 53
3.5.2 Evaluation of Pervasive Systems . 56

3.6 Access rights and Remote Invocation: Solutions for Selective Sharing (R5) . . 58
3.6.1 Concepts and Approaches . 58
3.6.2 Evaluation of Pervasive Systems . 59

3.7 Non-Functional Requirements (RA-D) . 60
3.7.1 User Friendliness (RA) . 61
3.7.2 Collaborativeness (RB) . 62
3.7.3 Adaptability (RC) . 63
3.7.4 Mobility (RD) . 66

3.8 Synthesis and Conclusion . 67

II Contribution 69

4 From Services to Scenarios 71
4.1 Overview of SaS . 72

4.1.1 SaS Software in its Environment . 72
4.1.2 Scenario Creation and Deployment 72
4.1.3 Scenario Execution . 75
4.1.4 Scenario Sharing . 75

4.2 Context Management . 75
4.2.1 Context Awareness . 75
4.2.2 Context Representation . 81

4.3 Scenario Definition . 84
4.3.1 Service Composition . 85
4.3.2 Scenario Customization . 86
4.3.3 Scenario Description Syntax . 88

4.4 Synthesis and Conclusion . 89
4.4.1 Context Management with SaS . 89
4.4.2 Scenario Definition with SaS . 91
4.4.3 Requirements Fulfillment . 92

Contents 9

5 Scenario Management: Control, Reuse and Share 95
5.1 Scenario Life-Cycle . 96

5.1.1 Scenario Description Resilience . 96
5.1.2 Scenario Orchestrator . 98
5.1.3 Scenario Registered as Service . 99

5.2 Platforms Collaboration . 101
5.2.1 Scenario Sharing Modes . 101
5.2.2 The Collaborate Service . 103
5.2.3 Integration to the Scenario and Service Directories 107
5.2.4 Platform Substitution . 108

5.3 Synthesis and Conclusion . 109
5.3.1 Scenario life-cycle . 110
5.3.2 Platform Collaboration . 110
5.3.3 Requirements Fulfillment . 112

6 Scenario Step-by-Step Execution 113
6.1 Scenario Execution Scheduling . 114

6.1.1 Scenario Structured Representation 114
6.1.2 Correspondences with SaS-Sdl elements 116

6.2 Static Scenario Analysis to Prepare its Step-by-Step Execution 120
6.2.1 Step Extraction . 120
6.2.2 Scenario Execution Life-Cycle . 126
6.2.3 Step Execution . 128

6.3 Dynamic and Adaptive Service Invocation . 131
6.3.1 The Service Broker . 131
6.3.2 Scenario Fault-Tolerance Mechanisms 133

6.4 Synthesis and Conclusion . 135
6.4.1 Scenario Execution Scheduling . 136
6.4.2 Dynamic and Adaptive Service Invocation 136
6.4.3 Requirement Fulfillment . 137

7 Implementation and Validation 139
7.1 The SaS’ prototype . 139

7.1.1 Architecture . 140
7.1.2 Insights into the SaS’ prototype . 149

7.2 Experimentations . 155
7.2.1 Reports on Experiments . 155
7.2.2 Experimental Validation . 159

10 Contents

III Conclusion 161

8 Conclusion and Perspectives 163
8.1 Conclusion . 163

8.1.1 Synthesis . 163
8.1.2 Requirements Fulfillment . 164
8.1.3 SaS Functionalities Synthesis . 167

8.2 Perspectives . 169
8.2.1 Perspectives for Context Management 169
8.2.2 Perspectives for Scenario Definition 170
8.2.3 Perspectives for Scenario Execution 170
8.2.4 Perspectives for Scenario and Service Sharing 170
8.2.5 Perspectives for the Service Broker 171
8.2.6 Security Perspectives . 171

IV Bibliography and Appendices 173

Bibliography 175

A Scenario Transformation Algorithms 185
A.1 Action Block Transformation . 185

A.1.1 Sequence Action Block . 185
A.1.2 Parallel Action Block . 186

A.2 Action Transformation . 187
A.2.1 Service Execution . 187
A.2.2 Conditional Statement . 188
A.2.3 While Loop . 188
A.2.4 Repeat Loop . 189
A.2.5 Conditional Event . 190
A.2.6 Time Event . 190

B Publications 191

List of Figures

1.1 Computer evolution by JB Waldner . 16
1.2 User’s main issue . 17

2.1 Class diagram of pervasive environments elements 27
2.2 Requirements hierarchy . 33

3.1 Service Oriented Architecture triangle . 39
3.2 Salutation architecture extracted from [70] . 40
3.3 Service Choreography Example . 49
3.4 Service Orchestration Example . 50
3.5 Service Component Architecture example . 54
3.6 iPOJO composition architecture . 55
3.7 FraSCAti platform architecture . 56

4.1 Class diagram of SaS in pervasive environments 73
4.2 Overview of the proposed SaS scenario creation and deployment cycle 74
4.3 Class diagram of SaS service description syntax 76
4.4 Class diagram of UPnP service description syntax 78
4.5 Class diagram of WSDL service description syntax 79
4.6 WSDL document representation . 80
4.7 Class diagram of the SaS-Sdl scenario syntax 90
4.8 Instance diagram of the scenario example . 93

5.1 State diagram of scenario life-cycle . 96
5.2 State diagram of installed scenario life-cycle 99
5.3 Overview of SaS scenario sharing modes . 103
5.4 Sequence diagram of sharing scenario xample 106
5.5 Sequence diagram of platform substitution example 109

6.1 Scenario execution graph example . 115
6.2 Scenario steps type class diagram . 116
6.3 Scenario steps class diagram . 119
6.4 Sequence action block model transformation example 121
6.5 Parallel action block model transformation example 122
6.6 Service execution model transformation . 122
6.7 Conditional statement model transformation 123
6.8 While loop model transformation . 124
6.9 Repeat loop model transformation . 124
6.10 Conditional event model transformation . 125

12 List of Figures

6.11 Time event model transformation . 125
6.13 Activity diagram of the scenario deployed state 127
6.14 Activity diagram of the scenario paused state 127
6.12 Activity diagram of the scenario running state 128
6.15 Service broker: service matchmaking and invocation 134

7.1 SaS’s prototype model . 141
7.2 Gateway composite . 142
7.3 Context manager composite . 143
7.4 Scenario orchestrator manager composite . 144
7.5 Scenario orchestrator composite . 145
7.6 Step execution manager composite . 146
7.7 Service broker composite . 147
7.8 Platform collaborator manager composite . 148
7.9 Domus simulator . 156

List of Tables

2.1 Impact of non-functional requirements on functional requirements 32

3.1 System comparison with the context management requirement 44
3.2 System comparison with the scenario definition requirement 48
3.3 System comparison with the scenario execution requirement 53
3.4 System comparison with the scenario reuse requirement 57
3.5 System comparison with the scenario sharing requirement 60
3.6 System comparison with the user friendliness requirement 62
3.7 System comparison with the collaborativeness requirement 64
3.8 System comparison with the adaptability requirement 65
3.9 System comparison with the mobility requirement 67
3.10 System comparison with our requirements . 68

4.1 Fulfillment of requirements detailed in Chapter 4 92

5.1 Scenario sharing modes comparison . 102
5.2 Fulfillment of requirements detailed in Chapter 5 112

6.1 Fulfillment of the sub-requirement R3.b detailed in Chapter 6 137

8.1 Fulfillment of requirements by SaS . 165

Chapter 1

Introduction

Contents
1.1 Context of the Thesis . 15

1.1.1 From Ubiquitous Computing to Pervasive Systems 16

1.1.2 Pervasive Environments . 17

1.2 Challenges in Pervasive Environment including Users’ Expectations 18

1.2.1 Benefit of Pervasive Environments . 18

1.2.2 Meet users’ expectations . 19

1.3 The Problematics of this Thesis . 20

1.4 Contribution of this Thesis . 21

1.5 Thesis Outline . 21

This chapter introduces the context of the thesis. Progress in nanotechnologies makes that all
the everyday devices can embedded a small computer. Thus, we are surroundedg by electronic
devices that can assist us in our daily life: this the emergence of pervasive computing. In this
context, we present the problematics of this thesis and introduce the solutions that underlie our
contribution. Finally, we present the thesis outline.

1.1 Context of the Thesis

With the progress in nanotechnology, computers become smaller and more powerful over time.
As described by Moore in 1960’s, power of microprocessors doubles every 18 months [55].
Computer size changes (and its memory increases) can be easily illustrated. The IBM 350 (first
computer with a hard drive), commercialized in 1956 by IBM, was 9 meters long and 15 meters
wide [40]. Its storage capacity amounted five megabytes. Nowadays, any smartphone has a
capacity of several gigabytes (and fits in one hand). In addition, the improvement of electric
batteries makes electronic devices energetically independent and thus mobile. Additionally, the
development of wireless communication technologies makes computers communicant. Elec-
tronic devices become remotely controllable and moreover, can be networked without being
manually configured to. They can also collaborate.

16 Chapter 1. Introduction

Miniaturization and reduction of costs make the number of electronic devices increase sig-
nificantly. In few decades, we evolved from a situation where there was one computer for a
group of persons, to one computer by person (advent of the personal computer) and now, a set
of computers for each person. Computer miniaturization gives everyday devices (television,
light, fridge, etc.) the potential to embed an electronic system. Each electronic device can have
its own central processing unit (CPU), its own memory and its own network connectivity. This
is the rise of ubiquitous computing as defined by Mark Weiser in 1995 [89]. We are surrounded
by electronic devices, through wired or wireless networks.

Figure 1.1 illustrates the evolution of computer these last 50 years. This Figure is adapted
from [88] by Jean-Baptiste Waldner. We could discuss the pertinence of the dates chosen by
the author. However, this figure clearly represents the emergence of ambient intelligence [1]:
environments tend to be totally personalized and plenty of electronic devices provide access to
a multitude of functionalities that assist us in our daily life.

Figure 1.1: Computer evolution by JB Waldner

1.1.1 From Ubiquitous Computing to Pervasive Systems
Since recently, the term "pervasive" is often used instead of "ubiquitous". The two words can be
understood similarly even if some people highlight the differences [51]. Various interpretations
of these two words can be found in the literature. This is why, when the Institute of Electrical

1.1. Context of the Thesis 17

and Electronic Engineers (IEEE) published its first issue of Pervasive Computing [72] in 2002,
the editor-in-chief Satyanarayanan Mahadev clarified the terminology to be used: "This maga-
zine will treat ubiquitous computing and pervasive computing as synonyms - they mean exactly
the same thing and will be used interchangeably throughout the magazine".

Literally, ubiquitous means "everywhere" while pervasive means "diffused throughout every
part of". Thus, we understand ubiquitous as "a functionality accessible anywhere, anytime".
This is exactly what applications on web-enabled smartphones bring us. We understand per-
vasive as "a functionality accessible through the devices around me that thus adapts to my
environment". Therefore, in this thesis, we will use the pervasive term.

1.1.2 Pervasive Environments

This subsection details the elements that compose a pervasive environment. Figure 1.2 presents
a pervasive environment example: a living room, with several electronic devices and three users.
We use this example to illustrate the pervasive environment elements.

Figure 1.2: User’s main issue

18 Chapter 1. Introduction

1.1.2.1 Services

A pervasive environment is characterized by electronic devices that can interact with their en-
vironment and propose various functionalities to users. According to the OASIS organization,
“a service is a mechanism to enable access to one or more functionalities" [58]. Thus, device
functionalities can be handled as services, and thus, Service-Oriented Computing (Soc) [61] is a
suitable paradigm to design software for ubiquitous environments. Therefore, Soc eases the use
of these electronic devices through their services. In the example of Figure 1.2, we can imagine
that the clock proposes a Clock service and the TV a Watch service and so on.

1.1.2.2 Scenarios

Each device provides its own set of services. Users are often limited to use a single service at a
time. However, users usually want to describe scenarios. As shown in Figure 1.2, user’s need
can be satisfied by a scenario that involves a composition of multiple services provided by mul-
tiple devices. Enabling end-users to describe their own scenarios would be a first improvement
and a step towards ambient intelligence. In addition, users should easily manage the created
scenarios and have access to them from several control devices (PDA, mobile phone, etc.).

1.1.2.3 Users

As illustrated by Figure 1.2, several users can share the same pervasive environment. Users can
possess a device (e.g. a smartphone) or share one (e.g. a TV). Moreover, they might want to
reach the same goal (e.g. parents that want to close all shutters at night) and thus, they must be
able to collaborate. Additionally, users can have different rights (e.g. children might not have
access to all devices).

1.2 Challenges in Pervasive Environment including Users’ Ex-
pectations

The idea of pervasive computing as stated by Weiser in 1995 introduced a new perspective on
our daily life. This implies some challenging issues that are detailed in this section.

1.2.1 Benefit of Pervasive Environments

The dimension of pervasive environments is highly problematic because of the various aspects
of pervasive environment elements (heterogeneity and volatility of devices, etc.). The challenge
is not just to adapt these singularities, but also to benefit from them.

1.2. Challenges in Pervasive Environment including Users’ Expectations 19

1.2.1.1 Heterogeneity

Devices present in pervasive environments can be of various kinds: simple devices (e.g. light or
clock), mobile assistant devices (e.g. PDA or smartphones), multimedia devices (e.g. PC or TV),
etc. These devices have different hardware and are based on various operating systems. They
can have different communication technologies (e.g. wired/wireless), and implement different
network protocols (e.g. UPnP, Jini, SLP, GSM). Thus, we need to handle this heterogeneity and
provide users with an interoperable system.

1.2.1.2 Dynamicity

In pervasive environments, devices are volatile. They can promptly appear and disappear. More-
over, unexpected devices can appear, thus giving access to a new functionality that could interest
users. Therefore, a pervasive system must be adaptive to changes and even, benefit from unex-
pected environment elements.

1.2.1.3 Representation

To control a pervasive environment, users must have its representation. This representation
must adapt to the heterogeneity and the dynamicity of pervasive environments but also to the
diversity of environment elements (devices, services, users). In addition, users must have the
capacity to adapt this representation as they wish. Typically, surrounding devices can fulfill to
different goals (multimedia, work, etc.) or be attached to different locations (home, kitchen,
office, etc.).

1.2.2 Meet users’ expectations

Users are at the center of pervasive environments. A pervasive system must meet users’ expec-
tations. This implies to enable users to control their environment as they wish, and to adapt to
their mobility and multiplicity.

1.2.2.1 Users’ needs

In a pervasive environment, users have access to devices’ functionalities. Soc eases service
discovery and access. Thus, it enables users to reach a device functionality. However, it still
is impossible for end-users, which have no specific technical knowledge, to fully benefit from
the services proposed by their surrounding devices. As seen in Figure 1.2, users’ needs can
be reached by scenarios, which are service composition. Different service composition mech-
anisms have been proposed in the literature [6, 12, 83, 41]. However, none of them has been
specifically designed for users without technical knowledge. In addition, to easily express their
goals by defining scenarios, users must control (start, pause, resume, abort) their creations, and
be able to retrieve and reuse them (even in another scenario).

20 Chapter 1. Introduction

1.2.2.2 Users Mobility

Users are mobile. They can move from a pervasive environment to another. The system must
therefore dynamically adapt to its changing environment. Besides, users might have a need
that imply functionalities present on different locations and thus, not available simultaneously.
Thus, users’ mobility is both a constraint on the system (need of adaptability) and a chance.
The system can benefit from mobility, while executing scenarios that involve services that never
coexist in a same environment.

1.2.2.3 Collaboration

Several users can share the same pervasive environment. They can have common interests.
Moreover, a user can possess several devices in a pervasive environment (e.g. a smartphone, a
tablet and a PC can be owned by the same user and available simultaneously). These devices
could have access to functionalities that the other ones do not have (e.g. smartphones can send
text messages). Thus, they must collaborate by sharing information. Besides, devices can
disappear from the environment (they can be turned off or took away). The collaboration must
enable devices to supersede each other when possible.

1.3 The Problematics of this Thesis

Pervasive computing is the next step in the evolution of computer science. It promises a bright
future where users’ expectations are fully realized by pervasive systems. However, if some
progresses have been made, especially in home automation [11, 91], we have not yet reached
Weiser’s vision. Controlling a pervasive environment implies that devices that populate the en-
vironment are remotely controllable, even through various protocols. Typically, a shutter that
can only be used manually cannot be integrated in a pervasive system (i.e. a system that tries to
enable users to control a pervasive environment). Everyday devices which are remotely control-
lable become more and more frequent in our environment, but are not yet widely adopted today.
However, if users cannot control their environment as they wish, the lack of appropriate devices
is not be the only reason. To our knowledge, existing systems fail to meet users’ expectations.
Currently, pervasive environments are hardly directly usable by non-technical users.

In this thesis, we advocate that a pervasive system must enable users to fully benefit from
their environment. A pervasive system must adapt to the environment and its particularities
(presence of mobile users and devices, use of different protocols). It must provide users with
a representation of their context and enable them to manage this representation as they wish.
Moreover, users must be able to easily express their needs by creating scenarios. Such scenarios
represent users’ goal and thus, must be customizable and easily controllable and reusable. In
addition, the presence of several users implies that users must be able to collaborate (e.g. share
scenarios). Scenarios execution must be resilient to environmental changes and user actions,
but also dynamically adapt and benefit from the context.

1.4. Contribution of this Thesis 21

In this thesis, we raise two main issues:

1. What is a user-centric system in pervasive environments, i.e. a system that enables its
user to control pervasive environments?

2. How to design and build a user-centric system that enables users to fully benefit of perva-
sive environments?

1.4 Contribution of this Thesis
In a nutshell, this thesis advocates that pervasive systems should be user-centric and collabora-
tion aware. They should thus fulfill precise functional and non-functional requirements (detailed
in Chapter 2.2) such as context management or scenario definition, control and sharing.

The main contributions of this thesis are:

• definition of user-centric systems in pervasive environments and identification of their
requirements,

• development of an interoperable approach for context management which is adaptive and
provides a customizable and persistent context representation to users,

• definition of a scenario description language which corresponds to users’ expectations,

• establishment of scenario control mechanisms for users that include scenario reuse capa-
bilities,

• advanced scheduling of the step-by-step scenario execution that adapts to environmental
changes and benefits from users’ mobility,

• implementation of sharing mechanisms that enable users to collaborate.

1.5 Thesis Outline
This thesis is split into three parts. It is further organized as follows:

Part I: The first part is dedicated to the study of pervasive systems. It is composed of two
chapters:

Chapter 2 introduces the context of pervasive systems. We present a motivating ex-
ample, detail the attached terminology and establish the list of requirements for
user-centric systems in pervasive environments.

22 Chapter 1. Introduction

Chapter 3 is dedicated to the state of the art. Based on the requirements established in
the previous chapter, we analyze and compare some existing pervasive systems that
try to enable users to control pervasive environments.

Part II: The second part presents our contribution. It is split into four chapters:

Chapter 4 introduces the contribution and presents a brief overview. Then, we study
how our contribution manages its context (a pervasive environment) and enables
users to easily compose a set of services into a scenario that represents their needs.

Chapter 5 details scenario management. We discuss how users can control, reuse and
share scenarios.

Chapter 6 is dedicated to scenario execution. We present how a scenario description is
analyzed to enable its dynamic and mobile execution and we detail the adaptive and
fault-tolerance mechanisms of our contribution.

Chapter 7 presents the implementation and validation of our contribution. A prototype
has been developed as a proof of feasibility and enables to make experiments to
evaluate and validate the contribution. Then, the chapter presents and discusses the
results obtained by experimentation regarding the accomplishment of each of the
previously identified requirements.

Part III: The third and last part of this thesis concludes. It contains one chapter:

Chapter 8 concludes this work. We summarize our contribution and discuss its limits.
Then, we draw some perspectives.

Part I

Pervasive Systems

Chapter 2

Context of User-Centric Systems in
Pervasive Environments

Contents
2.1 Presentation and Terminology . 25

2.1.1 Motivating Example . 25

2.1.2 Terminology . 26

2.2 Requirements for User-Centric Systems in Pervasive Environments 27

2.2.1 Functional requirements . 27

2.2.2 Non-Functional Requirements . 29

2.2.3 Synthesis . 32

The chapter presents the context of our study. A first section introduces some motivating
examples that illustrate the context, and establishes a terminology, used all along this thesis.
Then, a second section establishes the list of requirements for user-centric systems in pervasive
environments. This exhaustive list is used as a reading grid for the state of the art study, and
corresponds to the requirements qualities expectations that our contribution tries to satisfy.

2.1 Presentation and Terminology
We present here a simple example to illustrates users’ needs in pervasive environments. Then,
we pose the terminology used all along this thesis.

2.1.1 Motivating Example

Our example takes place in a smart home [84] (illustrated by Figure 1.2). Every night, parents
close all shutters and the main door. Depending on temperature, they adjust the thermostat.
Obviously, users’ goal here is a need for security and comfort. This goal is achieved by a
combination of services provided by different devices. This combination further obeys a simple
logical structure. To reach this goal, one of the parents wishes to easily define a scenario on a
control device (i.e. a laptop). Once defined, this scenario might be shared with the other parent

26 Chapter 2. Context of User-Centric Systems in Pervasive Environments

(but maybe not with children) and available on other control devices of the house (smartphones,
PCs, etc.) even if the original provider device disappears. This scenario must be easy to control
(start, pause, check status) and to parameterize (possibility to define a new thermostat value). Of
course, scenario execution should adapt to environmental changes. Typically, the system should
maintain scenario execution if a service disappears (the kitchen clock has no more battery) by
trying to find an appropriate replacement service (the bedroom clock still works).

2.1.2 Terminology

The terminology posed in this section is relative to pervasive environment elements, briefly
introduced in Chapter 1 (such as users, devices, etc.). Then, it clarifies the terms relative to
the system that enables to control the pervasive environment (such as scenarios and control
devices).

2.1.2.1 Users, devices and services

Pervasive environments involve multiple users and multiple devices that each provides a set of
services. A device is a communicating electronic object (such as a clock, a DVD player or a
smartphone). Devices publish services (such as Time, MultimediaPlayer, or Localization).
Each service provides one or more operations (such as getTime or setTime, play, getLocation).
They are called “capabilities” by the OASIS consortium in the Service Oriented Architecture
(SOA) norm [58]. Users use these operations to access functionalities of devices. Operations
can require entry parameters.

2.1.2.2 Service composition and scenarios

Devices can interoperate but the goal the system has to achieve always comes from users, which
can be simple consumers or technical experts that command devices. Their needs can always be
considered as scenarios defined as combinations of operations from different services / devices.
Such combination is said to be a service composition because services are not stand-alone ele-
ments and to stick to the terminology used in Service Oriented Computing [61].

2.1.2.3 Control devices

Some devices have a graphical user interface and implement different wireless protocols (wifi,
bluetooth, etc.). They thus are suitable to implement control capabilities and personally assist
users in pervasive environments. Typically, users must be able to get an overview of surrounding
services with their control devices. Additionally, control devices must provide functionalities
to define and control (e.g. start, pause, etc.) scenarios.

2.2. Requirements for User-Centric Systems in Pervasive Environments 27

2.1.2.4 Synthesis

Notions previously presented interrelate. Figure 2.1 depicts the class diagram of pervasive envi-
ronments elements. Devices (which can be simple or control devices) export services. Services
expose operations, that can have parameters. A control device is owned by a single user.

Figure 2.1: Class diagram of pervasive environments elements

2.2 Requirements for User-Centric Systems in Pervasive En-
vironments

Requirements for user-centric systems in pervasive environments can be split into two cate-
gories, functional and non-functional requirements [13]. The requirements numbering is kept
and used all along the manuscript (especially in the chapter dedicated to the state of the art).

2.2.1 Functional requirements
By functional requirements we refer to the following end-user needs: manage the context, de-
fine, use, reuse and share scenarios.

2.2.1.1 R1. Context Management

According to Coutaz et al. in [20], a context should be viewed not simply as a complex state but
as a process result that can take into account spontaneous interactions between users, services
and resources. This implies being continuously aware of the context and enabling users to
represent it as they wish.

(a) Context representation. Pervasive systems should manage a representation of their ex-
ecution context (presence of services / devices, device location, device owner). Users must be
able to add to this inner representation their own preferences (such as defining device or service
categories) and should be able to relate this representation to the information of the device/ser-
vice directory.

28 Chapter 2. Context of User-Centric Systems in Pervasive Environments

(b) Context awareness. Pervasive systems must be continuously aware of service and device
availability and should be able to relate them to the context representation.

2.2.1.2 R2. Scenario Definition

Users’ needs cannot all be satisfied with predefined, thus limited, scenarios. Moreover, prede-
fined scenarios cannot leverage the new kinds of services that can be dynamically discovered in
open environments. Scenario definition is therefore a requirement of pervasive systems.

(a) Service composition. Users’ needs involve several services, bound together with condi-
tions, logical statements, etc. A scenario definition thus consists of a composition of services,
glued together by control structures (conditional statement, repetition, etc.).

(b) Scenario customization. Users should be able to define generic, parameterizable scenar-
ios to foster their reuse in various and variable contexts. As a part of parameterization, pervasive
systems should enable users to specify if a service involved in a scenario has to come from a
specific device (or not) or to specify when parameter values for service operations have to be
provided (at scenario run-time or at design-time).

2.2.1.3 R3. Scenario Execution

Users must be able to control scenario execution. Moreover, scenario execution must be resilient
and the system should dynamically adapt scenario execution.

(a) Scenario user control. Pervasive systems should enable users to easily control scenario
execution (start, pause, abort) and check for scenario execution advancement.

(b) Scenario execution resilience. Scenario execution must adapt to user actions and envi-
ronmental changes (such as service disappearance) so that scenario execution becomes resilient.

2.2.1.4 R4. Scenario reuse

Users must be able to reuse their scenarios. This assumes that scenarios description are per-
sistent to be reused in the future by users. Moreover, scenarios must recomposable into new
scenarios.

(a) Scenario description availability. Scenarios description should be persistent to enable
future use (users should not need to redefine a scenario each time they want to use it). Scenario
description availability must also be preserved in a pervasive environment when the control
device used for the scenario definition disappears.

2.2. Requirements for User-Centric Systems in Pervasive Environments 29

(b) Hierarchical composition. Users may need to reuse existing scenarios to create more
complex ones.

2.2.1.5 R5. Scenario Sharing

Pervasive systems must provide mechanisms to share scenarios among users. In addition, users
should be able to choose what they share (the scenario description or the scenario execution
control) depending on the target.

(a) Select what to share. Created scenarios could interest other users. The simplest way of
sharing scenarios is by sharing their description. Additionally, systems must enable scenario
execution cooperation. Typically, a home-designed scenario should be controllable at the same
time on several control devices owned by family members (PDA, laptops, etc.). Therefore,
scenario execution should also be sharable.

(b) Select who to share with. Several users can be present in the same environment. Users
might want to take advantage of this by sharing their scenarios with others. However, they must
select who they want to share the scenario with. Typically, a home-designed scenario should be
shared differently with parents or with children (i.e. scenario control must be more restrictive).

2.2.2 Non-Functional Requirements

The non-functional requirements come from the pervasive nature of the environment and impact
the functional requirements. The first two requirements are related to users, the two last ones
are more context specific. We present each non-functional requirement and how it impacts
previously identified functional requirements.

2.2.2.1 RA. User Friendliness

Users often are not technical experts. Therefore, system functionalities must be easy to use. For
example, information should be presented in an easy to understand way, possible actions should
not necessitate difficult parameterization, etc.

User Friendliness & Context management. Users must easily retrieve environment ele-
ments thanks to the context representation (R1.a). Moreover, some changes in context represen-
tation imply user interventions (such as defining a device location). It is therefore impacted by
user friendliness, whereas context awareness (R1.b) should be an automatic process, transparent
to users.

30 Chapter 2. Context of User-Centric Systems in Pervasive Environments

User Friendliness & Scenario definition. Service composition (R2.a) and scenario cus-
tomization (R2.b) are both user actions. So, they must be realizable without many technical
knowledge.

User Friendliness& Scenario execution. Users must easily control scenario execution (R3.a),
however, scenario runtime resilience (R3.b) is an automatic system process, transparent to users.

User Friendliness& Scenario reuse. Users should be able to easily find a scenario that they
previously defined (R4.a). Moreover, users must be able to reuse a scenario into another one
(R4.b). Scenario reuse is therefore impacted by user friendliness.

User Friendliness & Scenario sharing. Select who to share (R5.a) with and what to share
(R5.b) must be accessible for users. User friendliness thus affects scenario sharing.

2.2.2.2 RB. Collaborativeness

Several users share the same pervasive environment. Users might want to reach the same goal
(e.g. parents that want to close all shutters at night) and thus, they must be able to collaborate.

Collaborativeness & Context management. Collaborativeness impacts context representa-
tion (R1.a): the system must represent surrounding users to enable collaboration. Moreover,
users are mobile and can appear or disappear from the environment. Presence of users must be
detected. Collaborativeness thus impacts context awareness (R1.b).

Collaborativeness & Scenario definition. Service composition (R2.a) does not need to take
into consideration the collaborative aspect of pervasive environments as composition is only
targeted at defining an executable sequence of activities. Nonetheless, users may be interested
in defining parameterizable scenarios (R2.b) that adapt to different users.

Collaborativeness& Scenario execution. If scenario execution control (R3.a) has been shared,
it is affected by collaborativeness. However, scenario execution resilience (R3.b) does not de-
pend on which users control the scenario execution. Thus, collaborativeness does not have any
impact on it.

Collaborativeness & Scenario reuse. To maintain scenario description availability (R4.a),
users must collaborate. A user may ask to another one to take scenario availability responsi-
bility. However, enabling scenario hierarchical composition (R4.b) is a functional requirement
that does not depend on collaborativeness.

2.2. Requirements for User-Centric Systems in Pervasive Environments 31

Collaborativeness & Scenario sharing. Collaborativeness impacts both the possibility to
select who to share a scenario with (R5.a) and what to share: scenario description and / or
execution (R5.b).

2.2.2.3 RC. Adaptability

Pervasive environments change (services appear, disappear, etc.). Needs may evolve. They
can be different depending on the user, on the location, etc. Pervasive systems should thus be
adaptive.

Adaptability & Context management. Context representation (R1.a) must adapt to the dif-
ferent elements of the context (locations, users, etc.). The pervasive system should constantly
be aware (R1.b) of the evolution in its environment (dynamic appearance of services without
prior knowledge).

Adaptability & Scenario definition. Service composition (R2.a) is a static process. How-
ever, pervasive systems must enable users to define adaptable scenarios, which are parameteri-
zable at runtime (R2.a).

Adaptability & Scenario execution. User scenario control (R3.a) is not impacted by adapt-
ability, whereas, scenario execution resilience (R3.b) is a response to environmental changes.

Adaptability& Scenario reuse. Similarly, maintaining scenario description availability (R4.a)
depends on environmental changes and so, adaptability affects it. However, specifying scenarios
as recomposable entities (R4.b) is not impacted by adaptability.

Adaptability & Scenario sharing. Finally, select who to share with (R5.a) or what to share
(R5.b) must adapt to the shared scenario availability. For instance, when a shared scenario is
uninstalls, the pervasive system must adapts scenario sharing.

2.2.2.4 RD. Mobility

In pervasive environments, users, devices and services are mobile. It implies to adapt to the
mobility (e.g. service volatility) but also to benefit from the mobility such as executing scenarios
that involve services that never coexist in a same environment.

Mobility & Context management. Mobility impacts context awareness (R1.b), due to the
appearance and disappearance of mobile services, and context representation (R1.a), due to the
need to represent different locations where users and devices might be.

32 Chapter 2. Context of User-Centric Systems in Pervasive Environments

Mobility & Scenario definition. Users might need to define scenarios on multiple locations.
Moreover, users must define customizable scenarios that adapt to different environments en-
countered. Service composition (R2.a) and scenario customization (R2.b) thus depend on mo-
bility.

Mobility& Scenario execution. Mobility does not impact user scenario control (R3.a). How-
ever, handling mobility in scenario execution resilience (R3.b) is primordial (typically: enabling
scenario execution continuity in different locations).

Mobility & Scenario reuse. Preserving scenario description availability (R4.a) implies that
the scenario description moves from a system to another one. Whereas, hierarchical composi-
tion (R4.b) is not affected by this non-functional requirement.

Mobility & Scenario sharing. Users must be able to select other users to share scenarios
with, even if these users are mobile and not always available. Moreover, sharing a scenario (its
description or its execution) has to deal with scenario provider mobility.

2.2.3 Synthesis
In this section, we have detailed the list of requirements for a system that enables users (without
technical knowledge) to control a pervasive environment. These requirements are classified in
two categories: functional and non-functional. Figure 2.2 depicts the requirements hierarchy.
Table 2.1 synthesizes the impact of the non-functional requirements over the functional ones.
^ symbolizes an absence of impact, whereas _ points out an impact.

Thanks to this study, we can analyze and compare existing systems. Established require-
ments serve as a reading grid in next chapter, dedicated to the state of the art.

Functional requirements
Non R1. R2. R3. R4. R5.

functional Context Scenario Scenario Scenario Scenario
requirements management definition execution reuse sharing

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
RA. User friendliness _ ^ _ _ _ ^ _ _ _ _

RB. Collaborativeness _ _ ^ _ _ ^ _ ^ _ _

RC. Adaptability _ _ ^ _ ^ _ _ ^ _ _

RD. Mobility _ _ _ _ ^ _ _ ^ _ _

Table 2.1: Impact of non-functional requirements on functional requirements

2.2. Requirements for User-Centric Systems in Pervasive Environments 33

Figure 2.2: Requirements hierarchy

Chapter 3

State of the Art

Contents
3.1 Presentation of Studied Pervasive Systems 36

3.1.1 Anamika . 36

3.1.2 DigiHome . 36

3.1.3 MASML . 37

3.1.4 PHS . 37

3.1.5 SAASHA . 37

3.1.6 SODAPOP . 37

3.1.7 WComp . 38

3.2 Service Platforms: an Approach to Context Management (R1) 38

3.2.1 Concepts and Approaches . 38

3.2.2 Evaluation of Pervasive Systems . 42

3.3 Service Composition: First Response to Scenario Definition (R2) 44

3.3.1 Concepts and Approaches . 44

3.3.2 Evaluation of Pervasive Systems . 46

3.4 Distributed Execution and Recovery Strategies: Complementary Approaches
for Scenario Execution (R3) . 48

3.4.1 Concepts and Approaches . 48

3.4.2 Evaluation of Pervasive Systems . 51

3.5 Service Component Platforms: an Architecture for the Reuse Paradigm (R4) 53

3.5.1 Concepts and Approaches . 53

3.5.2 Evaluation of Pervasive Systems . 56

3.6 Access rights and Remote Invocation: Solutions for Selective Sharing (R5) . 58

3.6.1 Concepts and Approaches . 58

3.6.2 Evaluation of Pervasive Systems . 59

3.7 Non-Functional Requirements (RA-D) . 60

3.7.1 User Friendliness (RA) . 61

3.7.2 Collaborativeness (RB) . 62

36 Chapter 3. State of the Art

3.7.3 Adaptability (RC) . 63

3.7.4 Mobility (RD) . 66

3.8 Synthesis and Conclusion . 67

In the previous chapter, we presented the essential requirements for systems to enable users
to easily control pervasive environments. These requirements are twofold: functional and nun-
functional. Now that the requirements of pervasive systems are established, we study how exist-
ing approaches answer to the problematics, what are the benefits of an approach and what still
misses or is not completely achieved. To do so, this chapter is dedicated to the analysis of some
existing pervasive systems. We briefly introduce each system and then, analyze it based on the
prior requirements. This study is divided into sections dedicated to each functional requirement
and one section that explains how each system fulfills the non-functional requirements that im-
pact the functional ones. For each functional requirement, technical approaches and concepts
that try to respond to the requirement are introduced. Then we analyze how each system tries
to achieve the requirement. A last section is dedicated to system comparison and summarizes
this study.

3.1 Presentation of Studied Pervasive Systems

In this section we briefly present different pervasive systems. These systems are representative
of the different approaches that enable the control of a pervasive system. They are recent aca-
demic works and have been implemented in an operational prototype to prove their feasibility
and evaluate their contribution. This section introduces each system and presents its main char-
acteristics (origin, authors, technical choices, etc.). The systems are alphabetically presented.

3.1.1 Anamika

Anamika [15] is an implementation of the reactive service composition architecture for perva-
sive environments proposed in 2002. This is a distributed, de-centralized and fault-tolerance
design architecture that enables to execute a request (i.e. a scenario) corresponding to a user
need. Anamika comprises two different techniques to dynamically select service brokers re-
sponsible for scenario execution. Moreover, it implements fault-tolerance mechanisms to adapt
to environmental changes.

3.1.2 DigiHome

DigiHome [67] is a system dedicated to control home appliances. Its main goal is to facilitate
high-level and event programming of Sensor Wireless Networks. It is based on a service compo-
nent architecture (SCA), implemented on FraSCAti [75] and incorporates the REpresentational

3.1. Presentation of Studied Pervasive Systems 37

State Transfer (REST) architecture. Moreover, it is an event-based system which implements
Complex Event Processing (CEP).

3.1.3 MASML

MASML [91] is a multi-agent system for home automation by Wu, Liao and Fu designed in
2007. Scenarios are defined with an XML syntax and consist of a sequence of service operation
invocations. MASML XML documents can embed ECMA scripts [23] to add logic elements. A
mobile agent is in charge of scenario execution. This agent migrates to each appropriate device
carrying the scenario description file to execute it.

3.1.4 PHS

Personal Home Server (PHS) [56] is a software infrastructure for home computing environ-
ments. Its main purpose is to reduce the complexity of embedded systems (e.g. TV, phone).
To do so, a PHS software, destined to the control devices, discovers surrounding services and
enables users to invoke them. In fact, devices that propose services spontaneously, also propose
to users a HTML control page to interact with available services. Such service presentations
adapt to user preferences (specified on the user device).

3.1.5 SAASHA

SAASHA [35, 34], has been designed in 2010. It focuses on ubiquitous systems for home au-
tomation. It enables end-users to create scenarios with Event - Conditions - Action (ECA) rules.
SAASHA combines the agent and component paradigms. Agents are responsible for context
management, scenario creation and execution. A graphical user interface also provides easy
access to SAASHA mechanisms. Agents dynamically generate new components that enable
the control of surrounding equipments.

3.1.6 SODAPOP

SODAPOP [26, 36] (acronym of Self-Organizing Data-flow Architectures suPporting Ontology-
based problem decomPosition) proposes an innovative goal-based approach. It has been de-
signed in 2005. For the authors, predefined scenarios cannot encompass every situations and
learning systems are not efficient. Therefore, pervasive system must dynamically generate sce-
narios that try to reach the user’s goal. The main hypothesis is that each service contains in-
formations about its initial conditions and its effects. SODAPOP automatically classifies new
services with these informations. Thanks to intention analysis [46], SODAPOP translates user
interactions and context information into concrete goals. Then, it tries to compose services with
Artificial Intelligence (AI) planning to map users’ goals.

38 Chapter 3. State of the Art

3.1.7 WComp

WComp [80, 17] is a model for the design of pervasive computing applications designed in
2008. It gives developers the capability to compose services. WComp is based on Web Ser-
vices [57] which obey a standard and can be implemented in any language. A composite service
contains proxy components attached to involved Web Services. WComp enables hierarchical
service composition. In addition, it is an event-based system which adapts to environmental
changes. In case of service unavailability, the composite service replaces it if an appropriate
service is found. If not, the composite service removes the proxy component attached to this
service.

3.2 Service Platforms: an Approach to Context Management
(R1)

Users in pervasive environments must access to device functionalities. Moreover, they need a
representation of the different elements present in the environment, i.e. the context. The first
requirement of a pervasive system thus is the context management. It demands to represent
the context (R1.a) (i.e. enable users to get an overview of functionalities) and to enable users
to manage this representation. Moreover, context management also involves to be continuously
aware (R1.b) of environmental changes and to relate this according to the context representation.

The Service Oriented Architecture (SOA) paradigm [58, 63] enables to handle device func-
tionalities as services. According to the OASIS organization, “a service is a mechanism to
enable access to one or more capabilities" [58]. Therefore, service oriented platforms, spe-
cially in home automation [11, 91, 84], facilitate the use of these electronic devices through
their services and are an approach to handle context management.

In this section we introduce SOA and present several existing systems based on this paradigm.
These systems are widely adopted industrial standards. Finally, we analyze how the studied per-
vasive systems fulfill the context management requirement.

3.2.1 Concepts and Approaches

The Service Oriented Architecture paradigm [63] is based on three main entities (as illustrated
by Figure 3.1):

• The service provider. This is the entity that furnishes the services. It is responsible for
publishing the service contract and for service execution.

• The service broker. This entity handles the service directory. It enables service providers
to register their services and service consumers to retrieve a desired service.

3.2. Service Platforms: an Approach to Context Management (R1) 39

• The service consumer. It can search a service thanks to the service broker. Thus, if the
consumer finds a desired service, it can directly invoke the service instance through the
service provider.

Figure 3.1: Service Oriented Architecture triangle

Some papers already analyzed the different service oriented architectures, specially [66, 60,
8, 93, 24]. We can distinguish two sorts of approaches: centralized or decentralized. Following
sub-sections analyze these different approaches.

3.2.1.1 Centralized Approaches

Centralized systems have a main entity, which plays the role of the service broker defined in the
service oriented architecture triangle. Their main advantage is that a centralized architecture is
easily deployable and maintainable. However, it creates a single point of failure. In this section,
we analyze two centralized systems based on services: Jini [5] and Salutation [69] which are
two standards, representative of existing systems, and widely adopted.

Jini. Jini [5] is a network architecture, originally designed by Sun Microsystems and now
developed and maintained by the Apache foundation under the River project. It is based on a
central entity: the Lookup Server (LUS). The process to publish, discover and invoke services
is always the same:

• Step 1. Find a LUS (discovery). Return a RMI [22] proxy for the LUS.

• Step 2. Publish services (join).

• Step 3. Find a service: request the LUS (lookup).

• Step 4. Obtain the proxy and invoke the service.

40 Chapter 3. State of the Art

Jini is implemented in Java and makes it OS and platform independent but requires the
presence of a Java virtual machine. Moreover, Jini is independent of the network transport
layer. Jini introduces the possibility of code mobility which makes it protocol independent.
Applications based on Jini thus are highly interoperable (Jini enables to remotely deploy a
driver, for example). However, code mobility can raise security problems (i.e. local execution
of foreign code).

Salutation. The Salutation architecture [69] is developed by an industrial consortium: the
Salutation Consortium which members include IBM, Canon, Epson, etc. Its objective is to
enable service discovery and utilization among a broad set of devices.

The Salutation architecture is based on the Salutation Managers (SLM) that have the role
of service broker in the SOA triangle. The other major component of Salutation is the Trans-
port Manager (TM). A SLM is deployed on a TM which provides a reliable communication
channel. Several TMs that implement different networks protocol can be present. They use a
transport-independent interface (SLM-TI) to communicate with SLMs. This enables the Salu-
tation architecture to physically reach different networks simultaneously. This is transparent
for the users, that use a specific interface (SLM-API) to register, discover and invoke services.
Several SLM can communicate with the Salutation Manager Protocol. This enhances collabo-
ration but service registries are not shared (service discovery is thus restricted to a single SLM).
Figure 3.2 illustrates the Salutation architecture.

Figure 3.2: Salutation architecture extracted from [70]

3.2.1.2 Decentralized Approaches

In a decentralized architecture, devices can directly discover and interact themselves without a
centralized entity that maintains the service directory. Entities in a decentralized architecture
can embed their own service directory. In this section, we study three majors standards: Web
Services [62], UPnP [82] and SLP [86].

3.2. Service Platforms: an Approach to Context Management (R1) 41

Web Services. Web Services are a set of communication protocols defined by the World Wide
Web Consortium (W3C), which is the main international standards organization for the World
Wide Web. According to Papazoglou [62]:

"A Web Service is a platform-independent, loosely coupled, self-contained, pro-
grammable Web-enabled application that can be described, published, discovered,
coordinated, and configured using Extensible Markup Language (XML) artifacts
for the purpose of developing distributed interoperable applications."

Web Services [57] are based on standards such as XML and HTTP. They are platforms and
language independent. Web Services are described using the Web Service Description Lan-
guage (WSDL). They are registered inside Universal Description, Discovery and Integration
(UDDI) registries. Web Services exchange messages through the Simple Object Access Proto-
col (SOAP).

Web Services are largely adopted, particulary in Business to Business activities. However,
they are not dedicated (and thus adapted) to volatile environments, where devices can appear
and disappear frequently without it being known in advance. In addition, Web Services are not
adapted for small devices that are mobile and / or that cannot implement the Internet Protocol
transport layer [42].

UPnP. The origin of UPnP [82] is industrial. It is a Microsoft’s original idea, then picked
up by the UPnP Forum (with Sun, IBM,...). The first version of the UPnP Device Architecture
appears in June 2000. The motivation of UPnP was to design a set of OS independent protocols,
limited to sending data over the network. Moreover, another UPnP goal is to standardize current
everyday-devices. It is based on industrial standards (XML, User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), IP, SOAP, HTTP). UPnP creates an open architecture
network to discover and control services, based on four protocols:

• Simple Service Discovery Protocol (SSDP), for service discovery.

• Generic Event Notification Architecture (GENA), to handle events such as variable state
changes or service appearance.

• Service Control Protocol Description (SCPD/DDD), for device (DDD) and service (SCPD)
description.

• Simple Object Access Protocol (SOAP), to control devices.

The advantages of UPnP are various. UPnP does not send executable (only data) which lim-
its security problems. It provides a standardized device format. Additionally, it is programming
language and OS independent. It enables to discover, describe and control services. Moreover,
it handles events with the possibility to subscribe to variable changes. UPnP it is a de facto
standard, present in numerous industrial devices.

42 Chapter 3. State of the Art

However, UPnP is not adapted for small devices (because it has an imposing stack). Because
there is no registry, UPnP uses heartbeat and active discovery which can cause a heavy network
traffic. UPnP is also limited to the use of a single protocol (HTTP over UDP over IP). In
addition, it does not define any security mechanism. Moreover, its search function is limited.
There is no possibility to add attribute filter such as in the case of Lightweight Directory Access
Protocol (LDAP) [29].

Service Location Protocol (SLP). SLP [86] is a standard developed by the Internet Engi-
neering Task Force (IETF), an organization that develops and promotes Internet standards. SLP
comprises three types of entities: service agents (SAs), user agents (UAs), and directory agents
(DAs). The presence of DA is optional; it is useful for large networks to reduce traffic. SLP can
therefore work with or without a service directory.

SLP has the advantage to be flexible, programming language and OS independent. More-
over, it is LDAP compatible (DAs can even work with LDAP directories) and there is the pos-
sibility to configure security features. SLP works with TCP and UDP and thus, is restricted to
the IP transport protocol.

3.2.1.3 Synthesis

There is no set of protocols that is widely adopted and dominates the market. Each has its
advantages and disadvantages. Pervasive systems must be interoperable and therefore cannot
be based on a single standard (e.g. the exclusive use of Web Services does not encompass small
devices that implement a lighter protocol such as UPnP). The solution is certainly to adopt a
generic approach that can be bridged with different technologies.

3.2.2 Evaluation of Pervasive Systems

In the previous subsection, we detailed the different concepts and approaches to fulfill the con-
text management requirement (R1). This subsection is dedicated to the analysis of the studied
pervasive systems regarding this requirement.

Anamika is restricted to Bluetooth. However, service discovery is flexible (service match-
making uses semantics and is not limited to unique service identifier). Moreover, each Anamika
platform contains surrounding services description and can be requested by other platforms to
share service access (R1.b). Service discovery is therefore distributed. In addition, they cannot
represent the context (R1.a) as they wish (by annotating service description).

DigiHome is interoperable and can implement various service discovery protocol (R1.a)
such as UPnP, Zigbee [45], etc. It separates services in two sorts: sensors and actuators. More-
over, it manages service quality levels. DigiHome objects, placed into user mobile devices,
embedded user configuration files (e.g. users’ preferences). However, this is not a real context
representation (R1.a).

3.2. Service Platforms: an Approach to Context Management (R1) 43

MASML handles service discovery which is a part of context awareness (R1.b) thanks to
the use of Web Services. Moreover, MASML platforms can share access to local services. This
means that a MASML platform can be deployed on a device that contains a local service (e.g. a
platform can be deployed in a TV). If this service is not designed to be accessible remotely
(i.e. does not implement a network protocol), the MASML platform can inform other platforms
of the existence of this service and thus, be responsible of its remote invocation. This is done
through SOAP messages. However, MASML users cannot represent their context (R1.a).

PHS is mainly based on UPnP. It can also integrate bridges that transform Web Services
or Jini services into SOAP (used in UPnP) messages. PHS is thus interoperable and enables
context awareness (R1.b). Users can embed service control preferences but cannot represent
their context (R1.a) such as locations or surrounding users.

SAASHA uses UPnP to discover and invoke services. In addition, SAASHA represents the
context (R1.a): the representation of device localization, device type and device owner enables
users to have an overview of their context. This context representation (R1.b) is constantly
updated thanks to the use of UPnP.

SODAPOP contains a context representation (R1.a), with service effects (such as impact on
the environment) but this is not adapted to users (e.g. users and locations are not represented).
Moreover, it does not enable users to customize the representation. In addition, SODAPOP
discovers surrounding services (R1.b) but they must provide a specific description of their ca-
pabilities.

WComp uses Web Services to communicate. It partially treats context management (R1)
because context awareness is handled but users cannot represent their context.

3.2.2.1 Synthesis

All studied systems implement a discovery protocol and therefore manage context awareness.
However, to enhance interoperability, pervasive systems cannot be restricted to the use of a
single protocol.

Moreover, only SAASHA provides users with a real representation of the context (device
type, locations, etc.) and enables users to customize this representation. SODAPOP contains
information about services and their effect, which is the beginning of a context representation
but it does not consider the information necessary for users such as device locations or sur-
rounding users. However, this representation is limited to devices that provide a UPnP service.
A pervasive system must also enable users to represent surrounding users. Table 3.1 synthesizes
how studied pervasive systems fulfill the context management requirement.

44 Chapter 3. State of the Art

Pervasive Systems
Requirements

R1.a R1.b
Context Representation Context Awareness

Anamika ^ _

DigiHome ^ _

MASML ^ _

PHS ^ _

SAASHA _ _

SODAPOP _ _

WComp ^ _

Table 3.1: System comparison with the context management requirement

3.3 Service Composition: First Response to Scenario Defini-
tion (R2)

Service oriented platforms enable users to have access to device functionalities. However, it is
still impossible for end-users, that have no specific technical knowledge, to fully benefit from
the services proposed by their surrounding devices. Indeed, each device provides its own set
of services and users are often limited to use a single service at a time. Alternatively, users
usually want to describe scenarios which involve multiple services from multiple devices. The
more complex user requirements can be satisfied by a scenario that involves a composition of
multiple services provided by multiple devices.

A pervasive system must therefore enable users to define scenarios. Service composition is a
first response to scenario definition (R2.a). Additionally, scenarios must be easily customizable
(e.g. select a service from a specific device, add meta-informations), parameterizable (e.g. some
parameter values must be defined at scenario execution and not scenario definition) and adapted
to users’ needs (R2.b).

In this section, we first introduce the concepts used service composition. Then we present
the two main approaches: manual and automatic composition, through different languages and
systems that compose services. Finally, we examine how selected pervasive systems enable
scenario definition.

3.3.1 Concepts and Approaches

Service Oriented Architecture provides a flexible and adaptable paradigm to program softwares.
However, the use of a basic service is limited and service composition encompasses more user
needs. Service composition originally comes from workflow definition that can be compared to
Petri nets [85] or state machines [74]. Nowadays, we can distinguish two mains approaches to
compose services: manual or automatic.

3.3. Service Composition: First Response to Scenario Definition (R2) 45

3.3.1.1 Manual Composition

In manual composition, developers (or users) themselves select services that have to be com-
bined. They can be helped with semantics but they keep control of service composition.

ECA Rules. Event-Condition-Action rules [31, 32] are a simple mechanism to define basic
compositions. They are also used in active databases. ECA rules are composed of three parts:

• The event part. Its satisfaction is the composition starting point.

• The condition part. It is a logical test that can combine several conditions.

• The action part. It is composed of service invocations. They are executed if the condition
remains satisfied.

ECA rules’ default is linked to its main advantage: its simplicity. End-users can easily
define and understand composition. However, such compositions are limited (i.e. parallelism is
not considered, it is not possible to define hierarchical conditions, etc.).

BPEL. BPEL [44] (Business Process Execution Language) is a standard maintained by the
OASIS consortium. Its origins can be attributed to the fusion of two precursors languages:
WSFL [49], developed by IBM and XLANG [79], designed by Microsoft. BPEL uses an XML
syntax to model a business process by composing Web Services. Such composition can be pro-
posed as a new Web Service. BPEL is based on W3C norms such as WSDL [18] to describe
Web Services, XMLSchema [87] to define data structures and XPath [19] to parse XML doc-
uments. BPEL enables to use variables and to define control structures (i.e. sequence/parallel,
if-then-else, while loops, events).

BPEL does not have a standard graphical representation: it was not relevant for the Organi-
zation for the Advancement of Structured Information Standards (OASIS) committee1. This is
why, the Business Process Management Initiative (BPMI) created Business Process Model and
Notation (BPMN) [90] as a graphical front-end to define the BPEL processes. BPMN is now
adopted and maintained by the Object Management Group (since 2005). BPMN specification
includes a partial mapping from BPMN to BPEL. However, differences exist between these two
business process modeling languages (especially with BPMN 2.0).

3.3.1.2 Automatic Composition

In automatic composition, services provide their requirements and functionalities and a com-
position engine is responsible for service composition depending on the goal to reach. The
advances in semantic Web Services make automatic composition engines become more and
more efficient. However, the absence of user control can be seen as a disadvantage and cannot
ensure to achieve the desired result.

1some non-officials exist that do so such as the Eclipse plugin BPEL Designer, available at
http://www.eclipse.org/bpel/

46 Chapter 3. State of the Art

Semantic Based Engine. We can mention systems that automatically compose services based
on ontologies such as SHOP2 [76]. Main ontology languages are OWL-S [50], based on
DAML-S [2], and Semantic Web Rule Language (SWRL) [37], that combines OWL and RuleML [10].

Automated planning and scheduling. Automated planning considers a goal to achieve, with
a set of constraints, and tries to automatically select a sequence of actions. It is based on a
specification language that not only briefly define actions but also represents the action effects,
preconditions, etc. This information enables to reason automatically an plan a certain sequence
of actions to reach a goal. One of the most used planning language is Planning Domain Defi-
nition Language (PDDL) [30, 52]. Listing 3.1 illustrates a service description in PDDL. This
service enables to close a shutter, indicated with the variable ?x. This service has a precondition
(the selected shutter must be opened to close it) and effects (the shutter is closed and luminos-
ity is therefore low). This example illustrates how automated planning can consider effects to
reach a goal. Typically, a scenario that aims to decrease luminosity automatically considers this
service as interesting.

1 (:action closeShutter
2 :parameters (?x - int)
3 :precondition: open(?x)
4 :effects: (and (open(?x)) (luminosity() = low))
5)

Listing 3.1: Service closeShutter declared in PDDL

3.3.1.3 Synthesis

Automatic compositions are promising. However, they are too dependent on service descrip-
tions and we cannot make the assumption that all services present in the environment corre-
spond to a certain expectation. Moreover, it could be adapted for a simple goal (e.g. increase
luminosity) but it becomes limited for more complex scenarios. In addition, users might be
interested to customize their scenarios (not just compose services), for example adding meta-
informations, defining parameter values at runtime, etc. Alternatively, manual compositions
seem more adapted for users to define a goal in a pervasive environment. However, ECA is too
simple to enable to define all necessary needs whereas BPEL syntax is too rich and complicated
for end-users. Graphical user interfaces exist to compose with BPEL but they refer to concepts
(such as exception handling) which increase language complexity and which are not necessary
for non-technical end-users.

3.3.2 Evaluation of Pervasive Systems

In the previous subsection, we presented different languages to compose services. They are a
first response to scenario definition (R2). In this subsection, we analyze and evaluate studied
pervasive systems regarding this requirement.

3.3. Service Composition: First Response to Scenario Definition (R2) 47

Anamika enables to compose services with DAML-S (R2.a). Such composition is based
on semantics but not usable for end-users. Additionally, users cannot customize their scenarios
(R2.b).

In DigiHome, scenarios are created (R2.a) as specific configuration rules for the Complex
Event Processing (CEP). Such capacity does not enable users to define their own scenarios
neither to customize them (R2.b). In fact, DigiHome is more destined to programmers and
eases high-level, event programming of Wireless Sensors Networks.

MASML users use MASML language to define scenarios (R2.a). Scenarios are a sequence
of service invocations. However, MASML scenarios can integrate ECMA scripts. This enables
to embed logical elements in the sequence invocation, and thus, improves the possibilities to
define more complex scenarios. However, MASML users cannot customize (R2.b) their runtime
behavior as there is no possible scenario run-time modification.

PHS does not consider scenarios and thus, does not enable users to compose services (R2.a).
Control devices in PHS can embed service control preferences. Such mechanism enables to
filter surrounding services and to dynamically generate a HTML control page. However, PHS
users can just customize how services are presented and cannot customize scenarios (R2.b).

SAASHA enables users to compose services (R2.a) with ECA rules. This is simple for users
but offers limited possibilities. Moreover, SAASHA’s users can customize scenarios (R2.b).
From example by invoking a specific service from any device. However, users cannot define
parameterized scenarios.

SODAPOP tries to automatically compose services (R2.a) to define a scenario that achieves
users’ goal. This is possible thanks to automated planning. However, it is dependent on the
meta-informations that services expose. Moreover, this mechanism does not enable users to
define or customize their own scenarios (R2.b).

In WComp, service composition (R2.a) is possible thanks to the Service Lightweight Com-
ponent Architecture (SLCA) [38]. SLCA is a component architecture that enables event-based
Web service composition. Service composition with SLCA is adaptable and reconfigurable and
enables to define complex scenarios (R2.a). However, it is not adapted to end-users and does
not enable scenario customization (R2.b).

3.3.2.1 Synthesis

SAASHA brings some interesting concepts to scenario definition such as executing a service
independently from the provider device (with the keyword any), or invoking all instances of
a selected service in the environment (with the keyword all). This is a first step to enable
scenario customization (R2.b). Other mechanisms (such as scenario parameterization) must
be taken into consideration to completely achieve this requirement. Table 3.2 summarizes the
fulfillment of the scenario definition requirement by the studied pervasive systems.

48 Chapter 3. State of the Art

Pervasive Systems
Requirements

R2.a R2.b
Service Composition Scenario Customization

Anamika _ ^

DigiHome _ ^

MASML _ ^

PHS ^ ^

SAASHA _ _

SODAPOP _ ^

WComp _ ^

Table 3.2: System comparison with the scenario definition requirement

3.4 Distributed Execution and Recovery Strategies: Comple-
mentary Approaches for Scenario Execution (R3)

Once a scenario has been defined, a pervasive system must manage its execution. This is our
third functional requirement (R3). This implies to enable users to easily control scenarios ex-
ecution (R3.a), i.e. to start, stop and check scenario execution. Moreover, scenario execution
must be resilient and adapt to environmental changes (R3.b) such as service disappearance.

In this section we present two complementary manners to execute a scenario (i.e. a service
composition) in a distributed environment. Then, we introduce some recovery strategies that en-
hance scenario execution resilience. Finally, we analyze how studied pervasive systems manage
scenario execution.

3.4.1 Concepts and Approaches

3.4.1.1 Distributed Execution

Service composition can be distributively executed by two complementary manners: orchestra-
tion or choreography [68, 64]. Choreography focuses on collaboration between entities in order
to reach a goal. Orchestration defines how a central or master element controls all aspects of
the process.

Choreography. A choreography defines the sequence and the nature of message exchanged
between the partners. This is a collaboration between all entities to reach the same goal (here,
the execution of a scenario). Each partner knows its role in the scenario and can detail it. This
is a more global view of the execution, detailed from an external point of view. Figure 3.3
illustrates a service choreography example. It is composed of a sequence of message exchanges
between four services. Service 1 sends simultaneously a message to service 2 and another to

3.4. Distributed Execution and Recovery Strategies: Complementary
Approaches for Scenario Execution (R3) 49

service 4. Each of them in turn sends and receives messages with the other partner (Service 3).
Finally, service 2 answers to service 1 (message 6) and service 4 also responds to service 1
(message 7).

Figure 3.3: Service Choreography Example

Orchestration. Orchestration describes an internal process of an entity. The different steps
that the entity must execute are detailed. It can be seen as an executable process. Figure 3.4
exemplifies service orchestration (based on the service choreography example of Figure 3.3).
We can see that steps 1 and step 2 must be executed in parallel, corresponding to the exchange
message order defined in Figure 3.3. Then, service 1 waits for a response of service 2 (step 3)
and for another response of service 4 (step 4). The process is defined from the internal point of
view.

3.4.1.2 Recovery Strategies

These strategies are based on the work of Mikic-Rakic and Medvidovic [54] who classified the
most commonly used techniques for supporting disconnected operations. There are two sorts
of strategies: the anticipation strategies and the repair strategies.

Anticipation strategies. Anticipation strategies consider the loss of a service before it occurs
and thus, provide mechanisms to annihilate this loss.

• Caching

Caching consists in storing locally some data that have been already retrieved. This obvi-
ates the service disappearance using the result of a previous service invocation if it is no

50 Chapter 3. State of the Art

Figure 3.4: Service Orchestration Example

longer available. Because of the size of the cache, it is adapted to services that provide
few information (for example a thermometer) and is useful for a service that is called
many times.

• Hoarding

This strategy anticipates the disconnection and prefetches the needed data. If a service is
episodically present, it is useful to use this strategy on it.

• Replication

If possible, a local copy of the service is done. In this strategy, the copy should be
synchronized at every change of the original.

Repair strategies. Even if anticipation strategies are defined, they do not fix the problem.
They just try to maintain the scenario, waiting for a solution. That is why repair strategies have
been defined.

• Find the same

The same service can be provided by another device. For example the getTime service can
be offered by two different clocks. It is always the first strategy to apply as the simplest
and the best.

• Find an equivalent

3.4. Distributed Execution and Recovery Strategies: Complementary
Approaches for Scenario Execution (R3) 51

The equivalent can be the same service with different properties (for example a printer
service that corresponds to a less rapid printer). It also can be an association of other
services. The system always proposes to users the matching solutions that it finds and
lets them choose their preferred one. If no equivalent, has been found the system allows
the user to specify one manually.

• Queuing

Queuing is not a fixing solution but enables to not lost requests. The idea is to store the
requests waiting for the service return. Of course, this strategy is only effective if the
service result is not needed immediately.

3.4.1.3 Synthesis

Orchestration is simple to elaborate. A single entity in charge of scenario execution enables to
easily control the execution (start, stop, etc.). Indeed, the responsible entity can easily provide a
checking mechanism of scenario execution advancement. However, an execution that depends
on a single entity augments the risk of failure. Choreography is more complicated and sophis-
ticated to develop but it can help reach a better performance. In addition, such execution better
adapts than orchestration in a volatile environment. However, with several entities responsible
for scenario execution, it becomes less evident to dynamically change the course of execution
(e.g. stop and resume the execution). Moreover, with choreography, entities have a limited view
of both the environment and scenario execution. Thus, it is more complicated to easily check
scenario execution advancement. Therefore, to be able to easily control scenario execution (and
check its status), execution should be managed by a single entity (that can be defined dynami-
cally). Of course, execution responsibility must be able to be dynamically given to another. In
addition, a part of the scenario must be possibly delegated to another entity.

Because of mobility and use of wireless networks some services may disappear, even for a
few seconds. Therefore, pervasive systems have to handle these interruptions, even more if the
disappeared service is inside a scenario being use. This mechanism should take into consid-
eration the fact that services are composed in a scenario. They thus have interactions, can be
invoked several times, have a different role, etc. Therefore, it could be interesting to implement
different recovery strategies, based on the work of of Mikic-Rakic and Medvidovic [54], and to
apply them depending on the service role. Typically, the caching strategy could be useful for a
service invoked many times in a scenario.

3.4.2 Evaluation of Pervasive Systems

In the previous subsection, we summarized the different representative techniques to execute a
scenario. In this subsection, we compare the pervasive systems based on the scenario control
requirement (R3) fulfillment.

52 Chapter 3. State of the Art

Anamika only enables to execute a request which is similar to start a scenario (R3.a). There
is no possibilities to pause nor resume the scenario. In Anamika, scenario execution is orches-
trated and several platforms can execute a part of the composition. Anamika uses a service
broker for service invocation. This enhances service matchmaking. The selection of a service
broker obeys to two different strategies that enable to dynamically select a broker or to distribute
the execution between several brokers. Moreover, it comprises a fault-tolerance mechanism that
enhances scenario execution resilience (R3.b). However, this mechanism does not take into ac-
count the possibility that the device which provides the scenario disappears.

DigiHome has a centralized architecture based on the DigiHome core. DigiHome objects
can communicate together but all decisions are taken into the DigiHome core. It collects data
from the DigiHome objects (that embed sensors) and decides to execute a corresponding sce-
nario depending on the events. Such mechanism does not enable scenario users control (R3.a)
but adapts to environmental changes (R3.b).

MASML’s mobile agents can launch the scenario and check its execution (R3.a). However,
it is impossible to pause and resume scenario execution. Moreover, MASML tries to maintain
scenario execution in case of service disappearance (R3.b) by replacing the disappeared service.

SAASHA has a distributed architecture where the responsibility of scenario execution is
delegated to multiple platforms. Moreover, it enables users to control scenario execution (R3.a)
with start, pause and resume functionalities. However, it is impossible to check its execution.
Additionally, SAASHA tries to preserve scenario execution (R3.b) from a service’s disappear-
ance by replacing the service. But, it does not anticipate the loss of a service.

With SODAPOP, users can control scenario execution (R3.a) by expressing a new goal
(such as watch TV or stop watching TV). This does not enable advanced control mechanisms
(i.e. pause, check execution). Moreover, execution is completely centralized and orchestrated.
In addition, scenario execution resilience is not maintained in case of service disappearance
(R3.b).

PHS does not consider scenarios. Users can easily invoke surrounding services that propose
an HTML control GUI (such services can be complexes services similar to scenarios). How-
ever, they cannot define nor execute their own scenarios (R3.a). There is therefore no scenario
execution resilience (R3.b).

Scenarios in WComp are composite services and can just be invoked (i.e. started). WComp
does not provide to users other scenario control mechanisms such as pause, resume or check
the execution (R3.a). WComp tries to maintain service composites in case of service disap-
pearance (R3.b). This mechanism implements simple service replacement. Indeed, there are no
anticipation strategies for service loss.

3.4.2.1 Synthesis

As a synthesis, it appears that none of the systems provide an advanced user control mecha-
nism. It could be interesting to provide to users similar controls as SAASHA exposes (start,
pause, resume, abort) with a possibility to check scenario execution advancement as MASML

3.5. Service Component Platforms: an Architecture for the Reuse Paradigm
(R4) 53

Pervasive Systems
Requirements

R3.a R3.b
User Control Scenario Execution Resilience

Anamika _ _

DigiHome ^ _

MASML _ _

PHS ^ ^

SAASHA _ _

SODAPOP _ ^

WComp _ _

Table 3.3: System comparison with the scenario execution requirement

does. In addition, most of the pervasive systems try to replace a disappearing service. However,
enhancing scenario execution resilience also implies to anticipate service loss. A pervasive sys-
tem must therefore propose fault anticipation strategies as exposed in Section 3.4.1.2. Table 3.3
summarizes the comparison between studied systems and the scenario execution requirement.

3.5 Service Component Platforms: an Architecture for the
Reuse Paradigm (R4)

In prior sections, we detailed existing mechanisms of pervasive systems to manage the context,
define and control a scenario. The scenario can thus be seen as an executable entity. How-
ever, users must be able to reuse (R4) a scenario. Users need to retrieve the scenario if they
want to reuse it in the future. This implies to maintain scenario description availability (R4.a).
Moreover, users might want to recompose a scenario into another one (R4.b).

In this section, we introduce Component-based Software Engineering (CBSE) [47] field and
how it can partially answer to the scenario reuse requirement. To do so, we particularly analyze
some component-based platforms that promote the use of services. Then, we study how selected
pervasive systems try to enable scenario reuse.

3.5.1 Concepts and Approaches

The need for reuse in software engineering is linked to Component-based software engineer-
ing [78]. This paradigm promotes the decomposition of applications into modules called com-
ponents. This improves, inter alia, adaptability, late-binding and reuse.

With the need of adaptability and interoperability, new platforms based on components that
follow the service oriented architecture emerge. We called them Service Component Platforms.

54 Chapter 3. State of the Art

3.5.1.1 Service Component Architecture

The Service Component Architecture [73] (SCA) is a set of specifications that provides a model
for composing applications based on the Service Oriented Architecture. It is created by indus-
trial partners (IBM, Oracle, etc.) and now maintained by the OASIS organization.

SCA applications are based on components that provide and / or require services. Compo-
nents can be reused to create composite components. Figure 3.5 illustrates the service compo-
nent architecture with a basic example. Two primitive components (Account Service and and
AccountData Service) are composed into a new one. This component provides a service and
requires a reference (both wired to the Account Service component).

Figure 3.5: Service Component Architecture example

3.5.1.2 OSGi

OSGi [59] is a service oriented platform specification defined by the OSGi Alliance (previously
known under the name Open Services Gateway initiative). This organization is created in 1999
(under the initiative of Ericsson, IBM, Motorola and Sun Microsystems) and the first OSGi
specification release appeared in May 2000.

"OSGi technology is Universal Middleware. OSGi technology provides a service-
oriented, component-based environment for developers and offers standardized ways
to manage the software lifecycle."

The OSGi Alliance2

The platform enables the deployment of components that provide and use services. Com-
ponents can be dynamically (and remotely) deployed without requiring a reboot. The platform
is responsible for component life-cycle and the service registry. Component management en-
ables to modularize applications and thus easily reuse part of it. Moreover, some frameworks
based on OSGi, such as iPOJO [27], enable to easily recompose an instance component into a
new component. This composition is declared into a XML file. This enables to maintain the
composition’s description and so, to reuse it (redeploy it) in the future.

2http://www.osgi.org/

3.5. Service Component Platforms: an Architecture for the Reuse Paradigm
(R4) 55

Figure 3.6 illustrates how iPOJO enables to recompose existing components (Checker and
English Dictionary) to create a new one (Composition 1). This composite exports the Checker
service provided by the Checker component, that can be used by a GUI component. Listing 3.2
shows the composite description.

Figure 3.6: iPOJO composition architecture

1 <ipojo>
2 <composite name="composition1">
3 <instance component="spell.english.EnglishDictionary"/>
4 <instance component="spell.checker.SpellCheck"/>
5 <provides action="export" specification="spell.services.SpellChecker"/>
6 </composite>
7

8 <instance component="composition1"/>
9 </ipojo>

Listing 3.2: Composite declaration with iPOJO

3.5.1.3 FraSCAti

FraSCAti [75] is a platform that enables to design and execute SCA-based applications [73]. It
is developed by the OW2 Consortium (founded by INRIA, Bull, and France Télécom in 2007).
All FraSCAti functionalities and mechanisms are themselves implemented as SCA components.
FraSCAti enables to develop distributed and interoperable applications (with a large support of
various protocols). Moreover, FraSCAti provides runtime adaptation, i.e. applications can be
dynamically modified to add new services or to remove existing ones.

FraSCAti applications are developed as SCA components. They can therefore be easily
recomposed into new ones. Figure 3.7 illustrates the FraSCAti platform architecture based on
the Figure 3.5 example. We can see how FraSCAti components act on a SCA component. The
component factory creates the components, the wiring & binding factory creates wires to link
composite ports and the assembly factory assembles components to create a composite.

56 Chapter 3. State of the Art

Figure 3.7: FraSCAti platform architecture

3.5.1.4 Synthesis

Service component platforms benefit from the SOA’s advantages (such as adaptability, dynam-
icity and interoperability) and from components’ faculty to be composed (i.e. reused) to create
a higher granularity composite. Therefore, it could be interesting to define a component that
manages scenario execution. This component should have a composite description such as
in iPOJO. It could thus be easily redeployed (e.g. reuse the scenario in the future on another
platform). In addition, the components lifecycle management in OSGi enables to dynamically
install or uninstall a component without altering the other components. Moreover, similarly to
FraSCAti and OSGi, the component can expose its functionalities as services and can therefore
be hierarchically composed.

3.5.2 Evaluation of Pervasive Systems

In the previous subsection, we detailed how service component platforms enable to reuse a
composite. In this subsection, we analyze the studied pervasive systems based on their scenario
reuse requirement (R4) fulfillment.

Anamika is not based on a service component platform but. It nonetheless stores scenario
description (R4.a) in XML files for reuse. However, Anamika does not enable scenario hierar-
chical composition (R4.b).

DigiHome is based on FraSCAti, which makes its architecture adaptable. However, sce-
narios are considered as neither SCA components nor as services which can hierarchically be
recomposed (R4.b). DigiHome considers scenarios as preference rules, registered in persistent
files. They can therefore be reused (R4.a).

MASML memorizes scenarios in XML documents which makes scenario descriptions per-
sistent (R4.a). MASML scenarios, however, cannot be recomposed into other ones (R4.b).

PHS does not consider scenarios so scenario description availability is irrelevant (R4.a).
Moreover, users cannot define scenarios, they cannot therefore hierarchically compose them
(R4.b).

3.5. Service Component Platforms: an Architecture for the Reuse Paradigm
(R4) 57

Pervasive Systems
Requirements

R4.a R4.b
Scenario description availability Hierarchical composition

Anamika _ ^

DigiHome _ ^

MASML _ ^

PHS ^ ^

SAASHA _ ^

SODAPOP ^ ^

WComp _ _

Table 3.4: System comparison with the scenario reuse requirement

SAASHA attaches scenario to user profile. Thus, scenario description is registered and per-
sistent. Moreover, user profile is duplicated on several platforms of the environment. Therefore,
if the original device where a scenario has been defined disappears, the scenario remains avail-
able in the environment (R4.a). However, SAASHA does not consider to invoke a scenario into
another one. Thus, hierarchical composition of scenarios is impossible (R4.b).

Scenarios in SODAPOP are an automatic composition to reach an ephemeral goal. There-
fore, scenario definitions are not persistent and thus, scenarios cannot be reused in the future
(R4.a). Moreover, scenarios in SODAPOP are dynamically executed but not deployed in the en-
vironment for reuse. Therefore, scenarios cannot be hierarchically composed with SODAPOP
(R4.b).

In WComp, scenarios are service composites. They can therefore be recomposed (R4.b) in
other ones. Moreover, a composite service provides an interface to retrieve its internal compo-
sition which is the scenario description. However, if the device where the service composite is
deployed disappears, the scenario description is not maintained in the environment.

3.5.2.1 Synthesis

This study demonstrates that having a scenario description file (such as for MASML, SAASHA,
Anamika and DigiHome) is a response to scenario description availability requirement (R4.a).
Thus, users can easily retrieve a scenario previously created. Moreover, this description must be
duplicated (as for SAASHA) to remain available into the environment. To enable hierarchical
composition (R4.b), WComp adopts an interesting approach, the composite service. A scenario
deployed as a service is thus recomposable into a new one. Table 3.4 summarizes this part of
the related work study.

58 Chapter 3. State of the Art

3.6 Access rights and Remote Invocation: Solutions for Se-
lective Sharing (R5)

Pervasive environments can be populated by several users. These users are mobile, and thus,
can come and go without being able to predict their presence (or absence). Though, users must
be able to share scenarios (R5) among users. For example, in a family, if one of the parents
define a scenario, the other one must be able to control it. However, users might be interested
to select who to share with (R5.a). Typically, in the same example, children should have a
restricted access to the scenario. Moreover, users must be able to select what to share, the
scenario description or its execution (R5.b).

In this section we first introduce the access rights mechanism, to select who to share with.
Then, we present some remote invocation methods, which enable to access to a distant resource.

3.6.1 Concepts and Approaches
Sharing a resource is an old problem treated by computer science. Defining some permissions
to selected users enables to control who has access to resources and how. This process can be
stated to access rights definition. Moreover, pervasive systems must enable to reach a distant
resource (e.g. a scenario defined on a device must be controllable from another one). This aspect
is possible thanks to remote invocation.

3.6.1.1 Access Rights

Defining access rights in computer science began with multi-user systems (such as operating
systems). The basic solution is to assign to a user (or a group of users) permissions (e.g. Read,
Write, Execute, and Delete for a filesystem). Role-Based Access Control (RBAC) [28] intro-
duces the concept of roles to enhance and simplify the management of permissions. Sandhu et
al. define the roles in [71]:

"Roles are closely related to the concept of user groups in access control. However, a role
brings together a set of users on one side and a set of permissions on the other, whereas user

groups are typically defined as a set of users only."

RBAC has been formalized in 1995 by David Ferraiolo and Rick Kuhn. Since that time, it
has become the main model for defining access rights.

3.6.1.2 Remote Invocation

The development of networks in the 1980s introduced the need to invoke a process (typically
a method) in another computer on a shared network. Bruce Jay Nelson introduced the term
Remote Procedure Call [9] (RPC) in 1982 during his PHD. Some notable implementations are
the Open Network Computing Remote Procedure Call (ONC RPC) defined by Sun (previously

3.6. Access rights and Remote Invocation: Solutions for Selective Sharing
(R5) 59

named Sun RPC [53]) and the Java remote method invocation (Java RMI) [22]. Systems pre-
sented in Section 3.2 such as Jini or UPnP, that provide discovery protocols, also enable remote
invocation.

3.6.1.3 Synthesis

RBAC integrated in a pervasive system would enable to select users to share scenarios with.
Moreover, both scenario description and execution must be provided by remote invocation.
Therefore, users can easily select users they want to be able to access their scenarios and assign
them permissions, e.g. access either to scenario description or scenario execution, or both.

3.6.2 Evaluation of Pervasive Systems

In the previous subsection, we presented two different approaches for selective sharing. In this
subsection, we evaluate the studied pervasive systems regarding the scenario sharing require-
ment (R5).

Anamika can distribute scenario execution and thus, transmit a part of the scenario descrip-
tion to another platform but it cannot be assimilated to a sharing mechanism. Indeed, users
cannot select other users to share scenarios with (R5.a). Moreover, neither scenario descrip-
tion nor execution can be shared in the environment (R5.b). Therefore, we can consider that
Anamika does not consider scenario sharing.

Scenarios in DigiHome are preference rules attached to a single device. DigiHome considers
that several devices can be present and therefore tries to avoid conflicts between scenarios.
However, there is no mechanism to share neither a scenario description file nor its execution
(R5.b). Moreover, users cannot select surrounding users to share a scenario with (R5.a).

MASML scenarios can migrate from a device to another but to invoke services present on
the latter device, not to be controllable with this device. Moreover, MASML does not propose
any sharing mechanism.

PHS does not consider scenarios and then, does not enable users to select who to share
scenarios with (R5.a). It does not integrate the possibility to choose what to share either (R5.b).

SAASHA enables to define users and their attached role (R5.a). Roles enable to define
device access (given users might have a limited access to certain device services). Therefore, a
user that connects to a SAASHA platform must login and gains access to devices that his/her
role allows him/her to. Such configuration is shared among all SAASHA platforms present in
the environment. Moreover, a scenario defined by a user is attached to his/her configuration and
so, also shared. A user can thus access a scenario he/she defined on another platform. However,
this is not a configurable mechanism as scenarios are shared like this, with both description
and control. Moreover, it is impossible to share a scenario with other users (R5.b). SAASHA
users must know the user’s login and password to connect to a platform and have access to the
scenario.

SODAPOP tries to execute a user request (such as watch TV). Therefore, it does not consider

60 Chapter 3. State of the Art

Pervasive Systems
Requirements

R5.a R5.b
Select what to share Select who to share with

Anamika ^ ^

DigiHome ^ ^

MASML ^ ^

PHS ^ ^

SAASHA _ _

SODAPOP ^ ^

WComp ^ _

Table 3.5: System comparison with the scenario sharing requirement

surrounding users and thus, does not enable to select surrounding users to share a scenario with
(R5.a). Moreover, scenarios are automatically composed to be dynamically executed when the
user does the request. Scenarios in SODAPOP are not considered as sharable entities, neither
their description nor their execution (R5.b).

WComp considers scenario as a composite service. This composite provides two interfaces:
one to retrieve the composite service’s internal description, and another to dynamically inter-
act with the composite service. The composite does not check the requester identity, thus, it
is impossible to select who to share with (R5.a). However, surrounding users can access to
the composite service description (R5.b). In addition, WComp users cannot control scenario
execution. Therefore, WComp does not enable scenario execution sharing.

3.6.2.1 Synthesis

Having access to a scenario from another device is possible with SAASHA. This is possible
thanks to user preferences (that contain users’ scenarios) which are shared in the environment.
WComp deploys the scenario as a composite service in the environment. It is thus shared with
everyone. It could be interesting to create categories (e.g. a user category such as Jimmy’s
devices) and attach permissions to this category to enable users to share their scenarios with
other ones. Table 3.5 summarizes how studied pervasive systems treat the scenario sharing
requirement (R5).

3.7 Non-Functional Requirements (RA-D)

In the previous sections we studied concepts and approaches to fulfill the functional require-
ments. Then we analyzed how studied pervasive systems try to respond to each requirement.
This section is dedicated to the non-functional requirements (defined in Section 2.2.2), that af-
fect functional requirements. In next subsections, we present each non-functional requirements

3.7. Non-Functional Requirements (RA-D) 61

and analyze mechanisms proposed by pervasive systems for this requirement.

3.7.1 User Friendliness (RA)

3.7.1.1 Presentation

Users in pervasive environments are not necessarily technical experts. Nevertheless, they have
a goal. Therefore, pervasive systems must help them to easily reach this goal. It implies to
represent surrounding users, enable to easily define scenarios, provides users with means to
control, enable to easily reuse a scenario in the future or from another scenario and to share
scenarios. Moreover, a dedicated graphical user interface highly improves user friendliness.

3.7.1.2 Pervasive Systems Analysis

Anamika does not enable users to easily represent their context such as locations. Moreover,
scenario definition is possible thanks to DAML-S which is not accessible for end-users. Addi-
tionnaly, there is no mechanism to easily recompose a scenario or share it. However, Anamika
provides a graphical user interface to easily start already defined scenarios.

DigiHome is dedicated to developers. Therefore, it does not consider any mechanism to
facilitate users access to functionality. Users cannot easily represent their context. Scenarios
in DigiHome are configuration rules for Complex Event processing. These are too complex for
users. Moreover, scenarios can be started but there is no other execution control mechanism
such as pause or resume.

MASML enables scenario definition with ECMA scripts that are not adapted to users with-
out technical knowledge. It does not provide user control of scenario execution. Scenarios are
registered in XML files and are thus easily reusable. However, it is impossible to recompose
them. Finally, no mechanism dedicated to scenario sharing is provided.

PHS is based on services that propose a HTML control page. Users can therefore easily
retrieve surrounding functionalities and invoke them. However, control of pervasive environ-
ments is limited with this single mechanism. Users can neither represent their context, nor
define, reuse and share scenarios.

SAASHA is dedicated to users and thus, proposes a dedicated graphical user interface. This
interface is specially designed to represent the context, define and control scenarios execution
in a user-friendly way. SAASHA enables users to easily control a pervasive environment. How-
ever, there are limitations to scenario definition (due to the use of ECA rules), scenario reuse
and sharing.

SODAPOP functionalities are almost entirely automatic processes, so users can only interact
with the system by expressing their needs (which is easy but limited). Typically, a user can
easily define a goal to achieve but there is no possibility to customize it. Moreover, users can
control scenario execution by choosing actions (such as watching TV or stop watching TV).
However, it is impossible to check scenario execution advancement. Additionally, users with
SODAPOP cannot reuse or share a scenario.

62 Chapter 3. State of the Art

Systems RA
User Friendliness

Anamika _

DigiHome ^

MASML ^

PHS _

SAASHA _

SODAPOP _

WComp ^

Table 3.6: System comparison with the user friendliness requirement

WComp is not user-friendly since defining a scenario is only possible thanks to SLCA,
which is powerful but not adapted to end-users. Moreover, there is no mechanism for users to
control scenario execution. Scenarios in WComp are composite services. They can therefore
only be hierarchically recomposed with SLCA (which is not user-friendly). Similarly, scenarios
are accessible (and thus sharable) through interfaces dedicated to developers only.

3.7.1.3 Synthesis

SASHAA proposes some easy mechanisms to represent the context and define scenarios. How-
ever, they are limited (i.e. use of ECA rules to define scenarios cannot encompass all user needs).
It could be interesting to propose a simple language that enables to represent the context (users,
locations, etc.) and to define scenarios (by composing services). Moreover, a dedicated user
interface to provide a better access to the pervasive system mechanisms seems mandatory. Ta-
ble 3.6 summarizes how studied pervasive systems treat the user friendliness requirement.

3.7.2 Collaborativeness (RB)

3.7.2.1 Presentation

Several users can share the same pervasive environments. Pervasive systems must thus handle
collaborativeness. They must therefore consider surrounding users in the context representa-
tion, enable to customize a scenario depending on a user, handle several users simultaneously
accessing a given scenario and provide sharing mechanisms.

3.7.2.2 Pervasive Systems Analysis

Anamika enables several platforms to collaborate by sharing surrounding services. This is
implemented in Anamika’s advanced service discovery system. However, Anamika does not
provide any mechanism to represent surrounding users nor share scenarios.

3.7. Non-Functional Requirements (RA-D) 63

DigiHome comprises a user manager which enables to determine different roles for users
(e.g. rights to invoke a service operation such as activation of the sprinklers). Moreover, Digi-
Home considers that several platforms (called DigiHome objects) can communicate together
through different protocols with the REST interfaces. However, this is not really collaboration
considering that platforms only provide their local services to the environment. Users cannot
have a representation of surrounding users nor share scenarios.

MASML enables platforms to share their local services. Platforms therefore collaborate to
obtain a better representation of their environment and access services that cannot be directly
reached. However, MASML users cannot represent surrounding users nor share a scenario with
them.

A PHS system is deployed on a mobile device and embeds user preferences. PHS considers
that several users can share the same environment and that they must have a personal way to
control the pervasive environment. However, this mechanism does not enable collaboration
between users as it cannot represent surrounding users nor share scenarios.

SAASHA enables to represent surrounding users and to attach them corresponding devices.
Moreover, SAASHA handles the multi-user aspect by providing access right policies. Some
users have a limited access to some services (e.g. a child cannot invoke the security system ser-
vice). Moreover, different access rights (on the same device) enable to define priority scenarios.
However, it still is impossible to select surrounding users to share scenarios with.

SODAPOP does neither represent surrounding users, nor provide multi-user access to sce-
narios. Additionnaly, SODAPOP platforms are not collaborative (they do not share service
access).

WComp does not provide mechanisms to handle multi-user support. Typically, it is impos-
sible to represent surrounding users. Moreover, scenarios can be redeployed in the environment
but it is not possible to select who to share with.

3.7.2.3 Synthesis

The idea of SAASHA to define surrounding users and to attach them a device is interesting.
However, this representation depends on the presence of devices. It could be interesting to
make this presentation persistent. Moreover, systems (such as MASML and Anamika), that
share local services, enhance collaborativeness. Table 3.7 summarizes the analysis of the col-
laborativeness requirement fulfillment by the studied pervasive systems.

3.7.3 Adaptability (RC)

3.7.3.1 Presentation

Pervasive environments are volatile, they can quickly change. Users and / or devices can appear
and disappear without prior knowledge. Context management should therefore adapt to context
evolution and enable to discover services without prior knowledge. Users must be able to define
adaptable (i.e. customizable, parameterizable) scenarios. Scenario execution should adapt to

64 Chapter 3. State of the Art

Systems RB
Collaborativeness

Anamika _

DigiHome _

MASML _

PHS ^

SAASHA _

SODAPOP ^

WComp ^

Table 3.7: System comparison with the collaborativeness requirement

available devices (select appropriate services to execute the scenario) and to environmental
changes (such as service disappearance). Scenario description availability must be resilient,
even if the provider device disappears. Finally, scenario sharing needs to adapt to changes of
the context.

3.7.3.2 Pervasive Systems Analysis

Anamika proposes an advanced service discovery mechanism that enables to adapt to different
and scalable environments. Moreover, scenario execution comprises dedicated service bro-
kers that enable to adapt to available services. In addition, a fault-tolerance mechanism adapts
scenario execution to service disappearance. However, Anamika does not consider scenario de-
scription resilience if the scenario provider disappears. Additionally, Anamika does not adapt
to users’ mobility: scenario execution is not possible in several places.

DigiHome is based on FraSCAti and, therefore, can implement various network protocols to
adapt to different environments. Moreover, DigiHome platforms propose their services through
standard protocols and are therefore not restricted to DigiHome platforms. In addition, Digi-
Home platforms embed a reconfiguration engine that adapts the internal architecture depending
on available services. However, scenario execution does not adapt to the scenario provider de-
vice disappearance. Additionally, scenario description availability is never maintained if the
scenario provider device disappears.

MASML uses Web Services to discover services without prior knowledge. Moreover,
MASML tries to preserve scenario execution if an involved service disappears. However, users
cannot define parameterizable scenarios that enable to adapt to users’ needs. Users can retrieve
a scenario description for reuse. However, MASML does not preserve scenario description
availability if the provider device disappears.

PHS can discover services deployed in UPnP, Web Services, Jini and even X10. It is there-
fore interoperable and adapts to surrounding services. Moreover, PHS enables users to define
preferences. The system therefore proposes to users an adaptable control interface. However,
PHS does not consider scenarios and thus, adaptability of scenario execution, reuse and share

3.7. Non-Functional Requirements (RA-D) 65

Systems RC
Adaptability

Anamika _

DigiHome _

MASML _

PHS _

SAASHA _

SODAPOP ^

WComp _

Table 3.8: System comparison with the adaptability requirement

is irrelevant.

In SAASHA, context awareness is not really adaptive (limited to UPnP devices), however
appearance and disappearance of unknown devices is handled. SAASHA enables to define
scenarios with service invocations independently from the provider device (which enhances
adaptability). Moreover, SAASHA tries to maintain scenario execution in case of service dis-
appearance by selecting a similar device (device of the same type). In addition, SAASHA
makes scenario descriptions persistent even if the provider device disappears. Therefore, we
can conclude that SAASHA almost handles adaptability.

SODAPOP dynamically discovers services. However, these services must provide a de-
scription of their capabilities. Instead, they cannot be considered for integrating a scenario.
Moreover, scenario execution does not dynamically adapt to environmental changes. In ad-
dition, scenario description availability is not resilient and scenario sharing is not possible.
SODAPOP is thus not adaptable.

WComp enables context awareness with no prior knowledge. Moreover, it handles scenario
execution adaptability by recomposing the composite service depending on available services.
However, it is impossible to define adaptable scenarios (runtime scenario customization). Ad-
ditionally, defining adaptable scenarios is not possible.

3.7.3.3 Synthesis

All the pervasive systems studied try to adapt their context representation and scenario execution
to context changes (except for PHS). Some of them preserve scenario description availability
or enable to define adaptable scenarios. For example, SAASHA and Anamika propose to in-
voke services independently from the provider device. However, there are some lacks such as
preserving scenario sharing in case of device disappearance. Table 3.8 summarizes our systems
comparison based on the adaptability requirement.

66 Chapter 3. State of the Art

3.7.4 Mobility (RD)

3.7.4.1 Presentation

Pervasive environments are populated by users and devices. These two entities are mobile.
Context management thus require representation of device and user mobility. Users must be able
to define mobile scenarios (with services present on different locations, i.e. not simultaneously
available). Therefore, scenarios have to be executable in different times at multiple locations.
Moreover, scenario description must be mobile between surrounding platforms and scenario
sharing requires to handle user and device mobility.

3.7.4.2 Pervasive Systems Analysis

Anamika does not enable users neither to represent several places nor to memorize services
encountered while users move. Moreover, a scenario cannot be executed if all services are
not available simultaneously. Mobile scenario execution is therefore not possible. In addition,
scenario description is not mobile and users cannot share scenarios with mobile users.

DigiHome platforms can be embedded in mobile devices and therefore follow user moves.
However, it is not possible to represent different locations. Moreover, definition or execution of
mobile scenarios is not considered by DigiHome.

MASML agents are mobile. They can migrate from a device to another. MASML agents
have a service database and can thus retrieve and execute a service remotely (e.g. in another
room). But, these services are simultaneously available. MASML does not enable to define
a scenario with services that are not simultaneously available. Thus, mobile execution of a
scenario (discovering and invoking new services on the fly) is not possible. Moreover, users
cannot represent several locations, nor share a scenario with mobile users.

A PHS system is embedded in a user’s control device. It is therefore mobile and adapts to
different locations. However, users cannot compose services in different locations or execute a
mobile scenario.

Scenarios in SAASHA are mobile. They can migrate from a platform to another. However,
this process only serves to maintain the scenario description in the environment. SAASHA users
cannot compose services that are not simultaneously available. Moreover, scenario execution
in different times at multiple locations is not considered.

SODAPOP users can express a goal at a certain moment. The system tries to achieve this
goal with available services. SODAPOP does not consider that users are mobile and can en-
counter services in different locations. Thus, SODAPOP service compositions are not mobile.
Moreover, users cannot represent the different environments where they can evolve. Therefore,
SODAPOP does not fulfill the mobility requirement.

WComp handles service mobility (service appearance or disappearance). However, it is not
possible to define mobile scenarios (with services available on multiple locations). Additionally,
scenario execution is not expected to be realized on multiple locations. Scenario sharing is not
possible with mobile users.

3.8. Synthesis and Conclusion 67

Systems RD
Mobility

Anamika ^

DigiHome _

MASML _

PHS _

SAASHA ^

SODAPOP ^

WComp _

Table 3.9: System comparison with the mobility requirement

3.7.4.3 Synthesis

Several systems can be embedded in mobile devices (such as DigiHome or WComp), but none
of them considers that the user can successively be in different locations that must be represented
in the system. Moreover, none of the studied pervasive systems enables to define a scenario
than can be executed in multiple places (with services that are not simultaneously available). A
pervasive system must therefore provide users with a better context representation, enable users
to define a scenario with services on different locations and handle mobile scenario execution.
Table 3.9 summarizes this study.

3.8 Synthesis and Conclusion
In this section, we analyzed various systems to build applications for pervasive environments.
None of these studied systems fulfills all the requirements we defined in Section 2.2. Most
of them enable to discover services, compose services define a scenario and handle scenario
execution, which can be seen as the minimum for pervasive environment control. Moreover,
some functional requirements (such as scenario sharing or hierarchical scenario composition)
are almost completely ignored. Table 3.10 summarizes this state of the art study.

The rest of this thesis describes our SaS system which best meets all the expectations of
user-centric systems for pervasive environments. Our contribution is divided into three parts to
be better presented. The first part introduces a brief overview of the SaS system, and presents
how SaS handles context management and enables scenario definition. The second part details
scenario installation, and how users can easily control, reuse and share scenarios. The third part
is dedicated to mechanisms that manage scenario execution.

68 Chapter 3. State of the Art

Systems

Functional requirements
R1. R2. R3. R4. R5.

Context Scenario Scenario Scenario Scenario
management definition execution reuse sharing
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

Anamika ^ _ _ ^ _ _ _ ^ ^ ^

DigiHome ^ _ _ ^ _ _ _ ^ ^ ^

MASML ^ _ _ ^ _ _ _ ^ ^ ^

PHS ^ _ ^ ^ ^ ^ ^ ^ ^ ^

SAASHA _ _ _ _ _ _ _ ^ _ _

SODAPOP _ _ _ ^ _ ^ ^ ^ ^ ^

WComp ^ _ _ ^ _ _ _ _ ^ _

Systems Non-Functional requirements
RA. RB. RC. RD.

User Friendliness Collaborativeness Adaptability Mobility
Anamika _ _ _ ^

DigiHome ^ _ _ _

MASML ^ _ _ _

PHS _ ^ _ _

SAASHA _ _ _ ^

SODAPOP _ ^ _ ^

WComp ^ ^ _ _

Table 3.10: System comparison with our requirements

Part II

Contribution

Chapter 4

From Services to Scenarios

Contents
4.1 Overview of SaS . 72

4.1.1 SaS Software in its Environment . 72

4.1.2 Scenario Creation and Deployment . 72

4.1.3 Scenario Execution . 75

4.1.4 Scenario Sharing . 75

4.2 Context Management . 75

4.2.1 Context Awareness . 75

4.2.2 Context Representation . 81

4.3 Scenario Definition . 84

4.3.1 Service Composition . 85

4.3.2 Scenario Customization . 86

4.3.3 Scenario Description Syntax . 88

4.4 Synthesis and Conclusion . 89

4.4.1 Context Management with SaS . 89

4.4.2 Scenario Definition with SaS . 91

4.4.3 Requirements Fulfillment . 92

In this chapter, we introduce our contribution, a pervasive system which responds to the re-
quirements previously established in Section 2.2. As we explain in the previous chapter, the goal
of a pervasive system is to enable users to control pervasive environments. To do so, users must
express their needs, and we consider scenarios as the representation of users’ needs. Therefore,
scenarios are a central entity of a pervasive system. Moreover, services populate pervasive envi-
ronments and are the interface between users and devices’ functionalities. They can be invoked
or composed and constitute the main constituents of scenarios. Deploying scenarios as services
enables to make scenarios accessible in the environment as if they were simple services. This
mechanism is an originality of our system named SaS which stands for Scenarios as Services.

This chapter is organized as followed. A first section introduces SaS and its main function-
alities: definition, control and sharing of scenarios. This is a brief overview to see how SaS

72 Chapter 4. From Services to Scenarios

integrates in a pervasive environment. Then, we deeper explore SaS’s mechanisms. Section 4.2
presents how SaS manages the context. It details how SaS is aware of the system’s surrounding
context and how it provides users with means to describe it. Then, Section 4.3 presents how
users can define scenarios with SaS thanks to a dedicated scenario description language named
SaS-Sdl.

4.1 Overview of SaS

The purpose of SaS, which stands for Scenarios as Services, is to fulfill all the requirements
presented in Section 2.2. This section presents how SaS is set in its environment, and a brief
overview of SaS’s main functionalities.

4.1.1 SaS Software in its Environment

Figure 4.1 shows the class diagram of SaS (in grey) and how it extends the class diagram of
pervasive environments (in white, described in Figure 2.1). Pervasive environments involve
electronic devices. As detailed in Section 2.1.2, we define two types of devices: simple de-
vices (e.g. radiator, light) and control devices (e.g. laptop, PDA) which have an advanced user
interface (e.g. touch screen), and can be considered as personal and mobile.

SaS is a pervasive system that enables users to control a pervasive environment. The SaS
system (which contains all SaS mechanisms) is a software deployable on an electronic device
that may benefit of the device capabilities such as a network access. The SaS system can
therefore only be deployed on a control device to constitute a SaS platform.

Every SaS platform has a unique identifier and enables its user to specify his/her name (one
platform = one user name)1. Such information is available for surrounding platforms. A SaS
platform participates in one or more networks which constitute the platform’s environment. This
environment is represented on the SaS platform by the SaS context directory. It comprises the
service directory, the platform directory and the scenario directory. These directories enable
users to memorize encountered services and platforms and the created scenarios. Platforms,
services and scenarios can be grouped (into their own directory) with name categories.

4.1.2 Scenario Creation and Deployment

The SaS system is deployed on a user’s control device, and enables, inter alia, to create and
deploy scenarios. Figure 4.2 illustrates the necessary steps from the user perspective to do so.
This figure does not illustrate scenario execution and sharing, which are described in the next
subsections.

1As a perspective, we plan to enable multiple user accounts on a single platform.

4.1. Overview of SaS 73

Figure 4.1: Class diagram of SaS in pervasive environments

• Context Awareness. The SaS platform first needs to be aware about its environment.
This implies to discover the surrounding services, and represent the context. Context
Awareness is detailed in Section 4.2.

– Service discovery: SaS discovers the services available in its environment. Service
descriptions that come from various service discovery protocols are homogenized
and services are automatically redeclared with our scenario description language
(SaS-Sdl).

– Context representation: SaS extracts from the discovered services, the different en-
vironment elements (devices, SaS platforms) and displays the context representation
to the user.

• Scenario creation. With the list of available services, users can create a scenario.

– Scenario definition: Users can define scenarios thanks to SaS-Sdl by composing
services.Section 4.3 is dedicated to the scenario definition.

74 Chapter 4. From Services to Scenarios

– Scenario memorization: A SaS-Sdl scenario definition is memorized into a scenario
description file for future use. It therefore becomes easily reusable by and transmis-
sible to other platforms and users. Section 5.1.1 presents the scenario description
memorization.

• Scenario deployment. Once the scenario has been created, the user can decide to deploy
it. The scenario thus becomes executable.

– Scenario analysis: SaS then analyzes the scenario description file. It extracts infor-
mation about the different services involved and how they are composed. Section 6.2
details the scenario analysis.

– Scenario execution scheduling: From this analysis, SaS computes the scenario exe-
cution algorithm. A scenario orchestrator is dynamically generated. It is responsible
for scenario execution control availability and will enforce the scenario execution
life cycle. Section 6.1 presents how SaS schedules the scenario execution.

– Scenario registration: Finally, the orchestrator deploys the scenario as a new ser-
vice. The newly created scenario then becomes accessible as a service and can even
be hierarchically composed into a new scenario. Section 5.1.3 details the SaS’s
mechanisms to register a scenario as a service.

Figure 4.2: Overview of the proposed SaS scenario creation and deployment cycle

4.2. Context Management 75

4.1.3 Scenario Execution

SaS enables users to easily control scenario execution. It provides functionalities to start, pause,
abort or check the status of a scenario execution. In addition, the scenario orchestrator dynami-
cally generated comprises a scenario execution algorithm. Thus, scenario execution is split into
parts that can run in different locations at different moments. Moreover, SaS enhances scenario
execution resilience by providing some fault-tolerance mechanisms. Therefore, the scenario
orchestrator enables scenario execution to adapt to environmental changes. Section 6.2.2 is
dedicated to the scenario execution.

4.1.4 Scenario Sharing

SaS enables to share scenarios among SaS platforms (and thus with other users). However,
users might not all have identical access rights. SaS proposes several sharing modes adapted to
different situations. Section 5.2 details the SaS’s scenario sharing mechanisms.

4.2 Context Management

As detailed in Section 2.2, context management is the first requirement of pervasive systems. A
pervasive system must be aware about its context. This implies to discover surrounding services.
However, several protocol exist that do so (cf. Section 3.2) and a pervasive system cannot be
restricted to a single one. Moreover, the context is also characterized by the presence of devices,
platforms, users. SaS must extract this information from the service discovery and propose to
users a context representation. This context representation must also be pervasive. This enables
users to keep a representation of various services or users that they can encounter in different
locations and that are not always available. Additionally, services can be attached to a location
(e.g. kitchen lights) or a specific use (e.g. multimedia). Users must be able to personalize their
environment representation as they wish.

4.2.1 Context Awareness

Context awareness implies to discover services and to continuously listen for environmental
changes. The result should be an homogenized service directory. This is a twofold automatic
process handled by SaS. First, SaS discovers available services. Then, SaS declares discovered
services with SaS-Sdl in SaS’s service directory. This is a transformation process from a service
instance discovered to a description written in SaS-Sdl. Users then query this directory to select
services and build their scenarios.

76 Chapter 4. From Services to Scenarios

4.2.1.1 Service Discovery

In pervasive environments, devices provide functionalities through services. These services can
be discovered thanks to service discovery protocols (SDP). Some protocols already exist that do
so (e.g. Simple Service Discovery Protocol (SSDP) [82] implemented in UPnP, SLP [8], Jini [5])
along with extra functionalities. To be as interoperable as possible, SaS does not prescribe the
use of a particular SDP. SaS uses an abstract API that can be easily mapped into any chosen
concrete protocol implementation. Thus, SaS is not restricted to a single SDP. Moreover, it can
evolve and adapt to any future SDP.

Context awareness is not restricted to the discovery of services at a certain moment. SaS
is also continuously listening for service events (appearance, disappearance and modification).
This makes it possible to maintain updated a directory of available services.

4.2.1.2 From Service Instances to an Homogenized Service Directory

Each SDP uses a service description syntax which can be specific. Typically, Web Services
Dynamic Discovery (WS-Discovery) enables the discovery of Web Services described with
Web Services Description Language (WSDL), SSDP discovers UPnP services, etc. To not be
restricted to a single discovery protocol, we define a generic service syntax. Thus, service
instances discovered with SDPs are automatically translated in our syntax to be dynamically
published in an homogenized service directory. Therefore, the service description syntax in
SaS-Sdl can be seen as a protocol-independent language for service description.

Service description Syntax. Service description syntax in SaS-Sdl is generic. It contains
elements that we think important for users to know about the service. Figure 4.3 depicts the
class diagram of the SaS service declaration syntax. Namely, services are provided by a de-
vice (e.g. the SwitchPower service is exported by the Kitchen_Lights device). They ex-
port one or several operations (e.g. SetTarget or GetTarget). Operations have a return type
(which can be void) and can have typed parameters. Additionally, services can have properties
(e.g. deviceType = BinaryLight).

Figure 4.3: Class diagram of SaS service description syntax

4.2. Context Management 77

Listing 4.1 presents the service description grammar of SaS-Sdl. Listing 4.2 is a Light ser-
vice description example. We can see that the service description is easily readable. Moreover,
SaS-Sdl comprises few object types (i.e. String, Number, Boolean, Date and Object), once again
to facilitate the user service description comprehension. Typically, an end-user may not make
the difference between different numbers type such as integer, float, double, etc. Identifiers in
SaS-Sdl are similar to various programming languages such as Java. They must be composed
of letters, numbers, the underscore _ and the dollar sign $. Identifiers may only begin with a
letter, the underscore or a dollar sign.

1 <service> ::= service <service_name > : <device> [<service_prop >] <op_list>
2

3 <device> ::= device <device_name > ;
4 <service_prop > ::= (property <attr> : <value> ;)+
5 <op_list> ::= (<operation > ;)+
6 <operation > ::= operation <operation_name >([<param_list >]) : <return_type >
7 <param_list > ::= <parameter_type > (,<parameter_type >)*
8

9 <service_name > ::= <identifier >
10 <device_name > ::= <identifier >
11 <operation_name > ::= <identifier >
12

13 <attr> ::= String
14 <value> ::= String
15 <return_type > ::= <type> | void
16 <parameter_type > ::= <type>
17 <type> ::= String | Number | Boolean | Date | List <type> | Object
18 <identifier > ::= a..z, $, _ (a..z, $, _, 0..9, unicode character over 00C0)*

Listing 4.1: Service description in SaS-Sdl with the Backus−Naur Form (BNF)

1 service SwitchPower :
2 device Kitchen_Lights;
3 property deviceType : BinaryLight;
4 property protocol : UPnP;
5 operation SetTarget(Boolean) : void;
6 operation GetTarget() : Boolean;

Listing 4.2: Service description example in SaS-Sdl

Service transcription. SaS retrieves necessary information about the service (i.e. its opera-
tions, its properties, etc.) using the implementation language introspection capability. Then,
it automatically declares them in SaS-Sdl. This is a model transformation where SaS tries
to match elements of a service description syntax to SaS-Sdl service description syntax ele-
ments. We illustrate this mechanism with two service description language: UPnP [82] and
WSDL [62].

Figure 4.4 depicts the simplified class diagram (without class attributes) of the UPnP ser-
vice representation. It is quite similar to the SaS-Sdl service description syntax (illustrated by
Figure 4.3), and thus easily transcribable into SaS-Sdl. SaS operations are named actions, SaS

78 Chapter 4. From Services to Scenarios

parameters are named arguments. Moreover, UPnP comprises state variables with a listener
mechanism that SaS does not take in consideration because it is irrelevant in most of the SDPs.

Figure 4.4: Class diagram of UPnP service description syntax

Listing 4.3 shows the description in UPnP of the service example from Listing 4.2. We can
notice that SaS-Sdl is shorter and more readable for users. We retrieve the device name on
line 3, the service name on line 7 (serviceType), the operations name on lines 15 and 25. UPnP
uses URLs to indicate the addresses of service descriptions XML files. Additionally, UPnP can
propose a link to an HTML control page. The use of XML and of several files, linked with
URLs make the service description difficult to read for the user.

1 <device>
2 <deviceType>urn:schemas -upnp-org:device:BinaryLight:1</deviceType>
3 <friendlyName>Kitchen Lights</friendlyName>
4 ...
5 <serviceList>
6 <service>
7 <serviceType>urn:schemas -upnp-org:service:SwitchPower:1</serviceType>
8 <serviceId>urn:upnp -org:serviceId:SwitchPower:1</serviceId>
9 <SCPDURL>/SwitchPower1.xml</SCPDURL>

10 <controlURL>/SwitchPower/Control</controlURL>
11 <eventSubURL>/SwitchPower/Event</eventSubURL>
12 ...
13 <actionList>
14 <action>
15 <name>SetTarget</name>
16 <argumentList>
17 <argument>
18 <name>NewTargetValue</name>
19 <relatedStateVariable>Target</relatedStateVariable>
20 <direction>in</direction>
21 </argument>
22 </argumentList>
23 </action>
24 <action>
25 <name>GetTarget</name>
26 <argumentList>
27 <argument>

4.2. Context Management 79

28 <name>RetTargetValue</name>
29 <relatedStateVariable>Target</relatedStateVariable>
30 <direction>out</direction>
31 </argument>
32 </argumentList>
33 </action>
34 </actionList>
35 <serviceStateTable>
36 <stateVariable sendEvents="no">
37 <name>Target</name>
38 <dataType>boolean</dataType>
39 <defaultValue>0</defaultValue>
40 </stateVariable>
41 </serviceStateTable>
42 ...
43 </service>
44 </serviceList>
45 </device>

Listing 4.3: Service declaration example in UPnP

In WSDL, a service description comprises two sections: the abstract section that specifies
the service syntax (with its operation, parameters, etc.) and the concrete section which describes
how to reach the service instance: which protocol to use (e.g. SOAP, HTTP, etc.) and which
address provides the service instance (URL or IP). Figure 4.5 depicts the class diagram of the
abstract section of WSDL. We can see that the service is attached to an interface, that provides
operations with input and output parameters which are typed. Operations can have several
output parameters, which is not the case in SaS-Sdl. SaS treats the multiple output parameters
by creating a list which that the operation in SaS-Sdl returns. Moreover, WSDL does not
contain information about the provider device. We can just know (thanks to the concrete section)
its url or its IP address. Thus, without any other information, SaS considers the device address
as the device name.

Figure 4.5: Class diagram of WSDL service description syntax

80 Chapter 4. From Services to Scenarios

Figure 4.5 depicts the representation of a WSDL document. It contains the abstract section
(types and interface) and the concrete section (binding and service). Listing 4.4 illustrates a
service description example in WSDL. It is based on the service example from Listing 4.2. We
retrieve the abstract section from line 3 to line 19 and the concrete section (binding and service)
from line 21 to line 33. The binding element (in the concrete section) details the protocol
to reach the service, namely SOAP here. The endpoint element (inside the service element)
references the binding element and provides the URL address to invoke the service operations.

Figure 4.6: WSDL document representation

1 <description
2 ...
3 <types>
4 <xs:schema
5 ...
6 <xs:element name="status" type="xs:boolean"/>
7 </xs:schema>
8 </types>
9

10 <interface name = "SwitchPower" >
11 <operation name="SetTarget"
12 pattern="http://www.w3.org/ns/wsdl/in-only">
13 <input messageLabel="In" element="tns:status" />
14 </operation>
15 <operation name="GetTarget"
16 pattern="http://www.w3.org/ns/wsdl/out-only">
17 <output messageLabel="Out" element="tns:status"/>
18 </operation>
19 </interface>
20

21 <binding name="SwitchPowerSOAPBinding"

4.2. Context Management 81

22 interface="tns:ISwitchPower"
23 type="http://www.w3.org/ns/wsdl/soap"
24 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">
25 <operation ref="tns:SetTarget" />
26 <operation ref="tns:GetTarget" />
27 </binding>
28

29 <service name="SwitchPowerService" interface="tns:ISwitchPower">
30 <endpoint name="SwitchPowerEndpoint"
31 binding="tns:SwitchPowerSOAPBinding"
32 address ="www.service.com/SwitchPowerService"/>
33 </service>
34

35 </description>

Listing 4.4: Service declaration example in WSDL

Service Registration. Service discovery protocols enable to discover services and use vari-
ous service description syntax. SaS can implement various SDPs and thus, transcript service
instances discovered with SaS-Sdl. When a discovered service has been transcripted, it can be
memorized inside the service directory. We thus obtain an homogenized service directory.

Besides, when SaS executes a scenario, it needs to invoke services (selected by users in the
scenario description). SaS uses the service directory to find an available service that match with
the one selected by users. To invoke a service, SaS needs to know which protocol to use to
reach the service instance. Thus, when SaS registers a service description inside the service
directory, SaS adds to the service description a service property that indicates the protocol
used for service discovery. Listing 4.2 illustrates a service description example of a service
discovered with UPnP. Thus, SaS adds on line 4, as a service property, the protocol used.

4.2.2 Context Representation
Context awareness enables to maintain an updated service directory. This directory is a first
representation of the user environment. Besides, a pervasive environment contains devices, that
exports services. These devices can be SaS platforms, owned by users. SaS must represent this
information. In addition, the context representation must adapt to users mobility and enable
representation of environments elements even if they are not available. Moreover, a pervasive
system must enable users to customize the environment representation as they wish.

4.2.2.1 SaS Context Directory

The SaS context directory is the representation of the user context. It enables users to detect
what is available in their environment. Moreover, it must adapt to users expectations and users
mobility.

Services and devices representation. A SaS platform discovers surrounding services and
maintain updated a service directory. SaS retrieves from the list of available services the set of

82 Chapter 4. From Services to Scenarios

devices present in the environment. Therefore, service directory enables the representation of
the surrounding services and devices.

Platforms and users representation. Several SaS platforms can also populate the environ-
ment. To integrate the context representation, SaS platforms export an identification service
into the environment. Such service provides platforms with an identifier and an owner name.
This enables surrounding platforms to be aware about the platform (and therefore the user) pres-
ence. Listing 4.5 presents the platform description syntax in SaS-Sdl. Listing 4.6 illustrates the
platform description with an example.

1 <platform > ::= platform <platform_id > : <device> <user> [<platform_prop >]
2 <user> ::= user <user_name >;
3 <platform_id > ::= Number
4 <user_name > ::= <identifier >
5 <platform_prop > ::= (property <attr> : <value> ;)+

Listing 4.5: Platform description syntax with SaS-Sdl

1 platform 17890804 :
2 device AndroPhone;
3 user Max;

Listing 4.6: Platform description example

4.2.2.2 Users Personalization of the Context Representation

Users may see their environment as a set of functionalities, that can be specific to a location
(e.g. kitchen) or to a specific usage (e.g. multimedia). Similarly, SaS platforms discovered in
the environment can be owned by different users (e.g. dad’s platforms) or attached to a specific
location (e.g. home). To enable users to better represent their environment, SaS allows them to
group services and platforms previously memorized into named categories. These categories
are like tags because a service (resp. a platform) can be included into several distinct categories.
Examples of categories are locations (e.g. all services available at home) or users (e.g. all plat-
forms owned by kids). Categorization also eases directory browsing, and diminishes the amount
of information presented to users.

To enable categorization, SaS adds to the service description (inside the service directory)
the categories to which the service belongs. Listing 4.7 represents the context directory syn-
tax in SaS-Sdl. As illustrated by Figure 4.1, the context directory contains three directories
dedicated to services, platforms and scenarios. We can see that the directories contain a list
of their corresponding elements that can be associated with categories. We illustrate service
and platform directories in this subsection. Scenario directory is presented and discussed in
Section 5.1.1.1.

Listings 4.8 and 4.9 illustrate the service and platform directories with examples. The ser-
vice directory examples contains two services. The SwitchPower service is provided by the

4.2. Context Management 83

Kitchen_Lights device, discovered with UPnP and categorized in the home category. The Player
service is provided by the Lounge_PC device. Its protocol is set to local, which means that the
SaS platform is deployed on the Lounge_PC and locally discovers the Player service. The ser-
vice is categorized in the home and multimedia categories. The platform directory contains two
platforms. The first platform is owned by Max and categorized in the Max’s_platforms cate-
gory. The second platform is also owned by Max and categorized in the Max’s_platforms and
home categories.

1 <sas_platform > ::= platform <platform_id > <device_name > <user_name >
2 <service_dir > <platform_dir >
3

4 <service_dir > ::= service_directory { (<service> <category >*)* }
5 <platform_dir > ::= platform_directory { (<platform > <category >*)* }
6 <scenario_dir > ::= scenario_directory { (<scenario > <category >*)* }
7 <category > ::= category <category_name > ;

Listing 4.7: Context representation with SaS-Sdl

1 service_directory {
2 service SwitchPower :
3 device Kitchen_Lights;
4 property deviceType : BinaryLight;
5 property protocol : UPnP;
6 operation SetTarget(Boolean) : void;
7 operation GetTarget() : Boolean;
8 category home;
9

10 service Player :
11 device Lounge_PC;
12 property deviceType : Computer;
13 property protocol : Local;
14 operation play(Object) : void;
15 category home;
16 category multimedia;
17 }

Listing 4.8: Service directory example

1 platform_directory {
2 platform 17890804 :
3 device AndroPhone;
4 user Max;
5 category Max’s_platforms;
6

7 platform 18710318 :
8 device Lounge_PC;
9 user Max;

10 category Max’s_platforms;
11 category home;
12 }

Listing 4.9: Platform directory example

84 Chapter 4. From Services to Scenarios

4.2.2.3 Context Representation Persistence

The SaS context directory contains three directories: the service directory (which contains ser-
vice descriptions with devices associated), the platform directory (with the owner name) and the
scenario directory. Besides, users are mobile. Surrounding services and platforms are not al-
ways available whereas users can need this information at every moment. Typically, users might
want to define scenarios with services that might not be simultaneously available. Context rep-
resentation is therefore persistent. Thus, a service (resp. a platform) which is not available in
the environment is still memorized in the service (resp. platform) directory. By this means,
scenarios can be defined using services that temporarily miss (thanks to the service directory).
Platform directory can also be used to collectively share scenarios (which can be equivalent to
providing grouped access rights, see Section 5.2.1 for details).

The available service category. To enable service persistence and distinguish the services
currently available from the services previously memorized, SaS uses the ability to manipulate
categories in the service directory. Thus, if a service is available in the environment, SaS adds
to its service description (inside the service directory) the category named available. If the ser-
vice disappears, SaS just removes the category entry from the service description. The service
description thus still remains in the service directory.

Last time presence and cleaning mechanism. A service (resp. platform) discovered but not
available anymore is thus still memorized in the service (resp. platform) directory. To inform
the user about last time service (resp. platform) presence, SaS provides for each service (resp.
platform) its last seen date. This is added as a property of the service (resp. platform) into the
service (resp. platform) description.

Moreover, some services (resp. platforms) description not available anymore may become
obsolete. Thus, SaS enables users to clean the service (resp. platform) directory of descriptions
they do not want anymore.

4.3 Scenario Definition
Scenarios are the representation of users’ needs for pervasive systems. Users must therefore
easily define scenarios that correspond to their expectations. In this section, we present the part
of SaS-Sdl dedicated to the scenario description language. The syntax of SaS-Sdl provides
the elements that are strictly necessary to create scenarios. It is simpler than most existing
programming languages for service composition (such as BPEL [44]) which contain complex
mechanisms. Such mechanisms (e.g. asynchronous invocations, exception handling, etc.) are
transparently handled by SaS when necessary. Thus, SaS-Sdl can be seen limited for cer-
tain aspects compared to BPEL, but we advocate that these mechanisms are not necessary for
end-users who want to express their needs in a pervasive environment. SaS-Sdl scenarios are
therefore easy to read (see Listing 4.10 for an example). Moreover, SaS-Sdl contains dynamic

4.3. Scenario Definition 85

configuration mechanisms for users to be able to customize the scenario they are going to exe-
cute.

In this section, we first present mechanisms to compose services (requirement R2.a) and
then, we detail the possibilities for users to customize scenarios (requirement R2.b). We intro-
duce each of the subsections by a scenario example to illustrate SaS-Sdl mechanisms. Then,
we present the full SaS-Sdl scenario description syntax.

4.3.1 Service Composition

With SaS, defining scenarios is quite similar to designing basic workflows with a control-flow
perspective as described in [85]. To define a scenario, SaS-Sdl proposes only essential service
composition mechanisms, detailed in this subsection.

Listing 4.10 illustrates SaS-Sdl with a scenario example. This scenario, called NightSce-
nario, is a comfort scenario in a home-automation context. The scenario tries to close main
door and shutter, and adjust luminosity. Then, it adjusts the thermostat to maintain a certain
temperature. Finally, it uses the player of the personal computer to listen the news from the
radio at 8pm.

1 scenario NightScenario [
2 MainDoor.DoorService.close();
3 [parallel:
4 [
5 Shutter.ShutterService.close();
6 while (LuminosityCaptor.LuminosityService.getValue() > 500)
7 [
8 RoomLight.DimmableLightService.decrease();
9]

10]
11 if (LivingRoomThermomether.ThermometerService.getTemperature() <= 18
12 and HouseThermostat.ThermostatService.getValue() < 5)
13 [
14 HouseThermostat.ThermostatService.setValue(5);
15]
16 else
17 [
18 PC.AdjustTemperatureScenario.start(18);
19]
20]
21 at (8pm)
22 [
23 PC.Player.play(WebRadio.RadioService.getChannel(InfoChannel));
24]
25]

Listing 4.10: Scenario declaration example

4.3.1.1 Sequential or parallel execution

Actions may either be executed sequentially – in a defined order – or in parallel – if their
executions do not have any side effects on one another. To specify so, SaS provides the parallel

86 Chapter 4. From Services to Scenarios

keyword, to indicate that action execution order does not matter. In parallel mode, the first
available action is executed. By default, actions in an action block are executed sequentially.
Line 3 of Listing 4.10 illustrates an action block defined as parallel. Actions involved are
executed without invocation order.

4.3.1.2 Operation composition

Service operations might have formal parameters. Users can either directly fix actual parameter
(e.g. line 14 of Listing 4.10) or invoke another service operation to create the desired value
(e.g. line 23 of Listing 4.10) thus composing operations. SaS checks if parameter types conform
to the service definition.

4.3.1.3 Conditional statement

Users might define alternative execution flows (if-then-else or conditional statements), that are
conditions, with their consequences and alternatives. Lines 11 to 19 of Listing 4.10 illustrate a
conditional statement (with condition on lines 11 and 12, consequences on line 14 and alterna-
tives on line 18).

4.3.1.4 Repetition loop

Users might want to repeat the execution of an action several times. SaS-Sdl proposes two
ways to do so: the while loops is to execute an action while a condition remains satisfied.
The times keyword can be used alternatively to precise how many times an action should be
invoked. Lines 6 to 9 of Listing 4.10 illustrate a while loop.

4.3.1.5 Event

Users must be able to define event actions. Events can be time-event (e.g. at 7pm) or a basic
condition (e.g. when any.Thermometer.getTemperature() > 17). Consequences of the event are
immediately invoked (if possible) when the event happens. Lines 21 to 24 of Listing 4.10
illustrate a time event (condition is specified at line 21 and its dedicated action block is on
line 23).

4.3.2 Scenario Customization

Scenarios are not just service compositions: they must represent user needs as much as possible
and thus be customizable. Such possibilities are illustrated by Listing 4.11, which adds to the
example from Listing 4.10 some customizations.

4.3. Scenario Definition 87

1 scenario NightScenario (description:close the main door and shutters,adjust
2 luminosity , change thermostat value and listen to radio;
3 creator: Antoine;
4 timeout: 4 hours) [
5 MainDoor.DoorService.close();
6 [parallel:
7 [
8 all.ShutterService.close();
9 while (LuminosityCaptor.LuminosityService.getValue() > ?) [

10 RoomLight.DimmableLightService.decrease();
11]
12]
13 if (LivingRoomThermomether.ThermometerService.getTemperature() <= 18
14 and HouseThermostat.ThermostatService.getValue() < 5) [
15 HouseThermostat.ThermostatService.setValue(5);
16]
17 else [
18 (creator=matt) any.AdjustTemperatureScenario.start(18);
19]
20]
21 at (8pm) [
22 PC.Player.play(WebRadio.RadioService.getChannel(InfoChannel));
23]
24]

Listing 4.11: Scenario customization example

4.3.2.1 Dynamic Service Selection

User scenarios are operation combinations. Operations define the concrete ways to invoke ser-
vices as syntactical signatures. Users evolve in different environments where same service can
be provided by different devices (e.g. a Clock service). Service selection cannot be restricted to
a single and specific device, it must but dynamic.

Generic service use. The identity of a service or of its provider device do not always matter.
For example, to print a document, the chosen printer generally matters: a person chooses his
favorite printer, accesses the specified service and selects the appropriate operation. On the
contrary when a user needs to know what time it is, he directly selects the getTime operation,
no matter which clock provides it. To specify so, SaS-Sdl has a specific keyword, any, that can
replace the provider device or service name. The ability to not specify a device’s or a service’s
name leads to a dynamic and automatic selection of the device or the service that is going to be
effectively used. On line 18 of Listing 4.11, the AdjustTemperatureScenario service can now be
provided by any device (thanks to special word any). SaS will therefore select an appropriate
device at scenario runtime.

Multi service use. Users must also be able to select all devices that provide a service. SaS
enables users to do so thanks to the all keyword. Therefore, all available devices that propose
the appropriate service are selected for invocation. Line 8 of Listing 4.11 illustrates the multi-
service use. All devices that propose the Shutter service will be closed.

88 Chapter 4. From Services to Scenarios

4.3.2.2 Dynamic Parameterized Execution

Users usually provide parameter values for operation calls at scenario design-time. However,
some parameter values should be defined at scenario runtime. SaS enables this thanks to a joker,
symbolized by the ? symbol in SaS-Sdl. Users thus choose to either specify a value for each
parameter or set them at ? which can be interpreted as “to be specified at runtime". Scenarios
therefore become parameterizable entities (like most services). Line 9 of Listing 4.11 illustrates
the use of joker for dynamic parameterized execution (with ?). The value of the parameter of
the getValue operation must now be specified at scenario execution time by a user (who starts
the scenario).

4.3.2.3 Service Filter

SaS enables users to add a preference filter for each invoked service in an operation invocation.
It is comparable to the LDAP filter [39], and is composed of the attribute name and its desired
value (e.g. for a print service, color:true). Filters can be combined with binary operators to
define more complex selection criteria. Line 18 of Listing 4.11 illustrates a filter example.
The service AdjustTemperatureScenario must provide the property (creator=Matt). This
signifies that the scenario made available by this service, must have been created by an user
called Matt.

4.3.2.4 Scenario Documentation

Users have to name their scenarios. This is a first information that illustrates the scenario goal
(e.g. AdjustTemperatureScenario). In addition, SaS enables users to provide scenario metadata
to document them. It could be a textual description (e.g. adjust the radiator value to maintain
a desired temperature) or extra functional characteristics (e.g. creator: Antoine). On line 1
of Listing 4.11, a brief textual description has been added and on line 3 the creator name is
appended.

4.3.2.5 Scenario Timeout

A scenario being executed could become obsolete after it has run a certain time. Users can
thus define a timeout for the scenario. A scenario launched will be interrupted after the time
specified by users. On line 4 of Listing 4.11, a scenario timeout has been defined. Scenario will
automatically abort (if not already finished or stopped) after four hours.

4.3.3 Scenario Description Syntax

Listing 4.12 presents the grammar of SaS-Sdl for scenario declaration using the BNF notation.
Elements of this syntax are described in Section 4.3.1. Figure 4.7 presents another view (class
diagram) of the SaS-Sdl scenario syntax.

4.4. Synthesis and Conclusion 89

1 <scenario > ::= scenario <scenario_name > [<scenario_prop >] <action_block >
2

3 <action_block > ::= [[<parallel_exec >] (<action> | <action_block >)+]
4 <action> ::= <service_exec > | <conditional_statement > | <loop> | <event>
5

6 <service_exec > ::= <op_invocation > ;
7 <op_invocation > ::= [<filter >] <device>.<service_name >.<operation_name >
8 ([<parameter_list >])
9 <parameter_list > ::= (<op_invocation > | <parameter_value >)

10 (, (<op_invocation > | <parameter_value >))*
11 <conditional_statement > ::= if<condition ><action_block >[<else_clause >]
12 <else_clause > ::= else <action_block >
13 <loop> ::= (while <condition > | <repeat_value > times) <action_block >
14 <event> ::= (when <condition > | at (<time_event >)) <action_block >
15

16 <condition > ::= ([not] (<unary_condition > | <cplx_condition >))
17 <unary_condition > ::= <op_invocation > <comp_operator > (<op_invocation > | <value>)
18 <cplx_condition > ::= (<condition > (<bin_operator > <condition >)*)
19

20 <scenario_prop > ::= (<attr> : <value> (; <attr> : <value >)*)
21 <filter> ::= (<filtercomp >)
22 <filtercomp > ::= <binary_filter > | <item>
23 <binary_filter > ::= <binary_operator > <filterlist >
24 <filterlist > ::= <filter> | <filter> <filterlist >
25 <item> ::= <attr> <comp_operator > <value>
26 <bin_operator > ::= and | or
27 <comp_operator > ::= < | <= | > | >= | == | !=
28 <parameter_value > ::= <value> | ?
29 <device> ::= <identifier > | any | all
30 <service_name > ::= <identifier > | any
31 <parallel_exec > ::= parallel:
32 <identifier > ::= a..z, $, _ (a..z, $, _, 0..9, unicode character over 00C0)*

Listing 4.12: Grammar of the scenario declaration using the BNF notation

Figure 4.8 represents the instance diagram of the scenario example described by Listing 4.10.
To simplify the diagram, we do not represent the operation invocations as objects, but we set
them as attributes of the service execution object and the condition object. We annotate rela-
tions for the conditional statement object and the while loop object to help reading. To ease the
reading, we specify some color rules, scenario is in orange, action blocks are in blue, actions
are in red, complex condition is in green and unary conditions are in gray.

4.4 Synthesis and Conclusion
In this chapter, we presented how SaS enables users to pass from a set of available services to
a scenario. This chapter responds to the two first requirements of pervasive systems: context
management (R1) and scenario definition (R2).

4.4.1 Context Management with SaS

We have seen in Section 4.2 that SaS can implement various service discovery protocols (SDP).
It enables to be aware about the environment elements. Moreover, SaS provides to users a con-

90 Chapter 4. From Services to Scenarios

Figure 4.7: Class diagram of the SaS-Sdl scenario syntax

text representation composed of a service directory (that also enables to retrieve surrounding
devices) and a platform directory (that also enables to retrieve surrounding users). Such repre-
sentation is customizable and persistent. The context management requirement is thus fulfilled
by SaS. It has advantages and some limits that we detail in this subsection.

Advantages of SaS context management:

+ SaS uses a generic language for service description, that enables to be not restricted to a
single SDP. This enhances interoperability.

+ SaS is continuously listening for context events and thus adapts to environmental changes.

+ SaS enables users to customize the context representation as they wish thanks to cate-
gories.

+ The SaS context representation is persistent, which thus adapts to users mobility. This
enables users to retrieve and use services in scenarios even if they are not available simul-
taneously. Moreover, the platform directory enables users to select surrounding platforms
for sharing (this process is explained in Section 5.2).

4.4. Synthesis and Conclusion 91

Limits of SaS context management:

- Some SDPs can propose extra functionalities. Typically, UPnP enables to listen for value
changes of some devices variables. Such functionalities are not implemented by all ser-
vice discovery protocol. Thus, the SaS generic approach limits to the discovery of service
(with their operations) and their provider devices.

- SaS does not prescribe a device type model. The nature of devices, specially in home-
automation, may be listed (typically: light, radiator, fan, etc.). With such mechanism,
a pervasive system could propose to users a better representation of the surrounding de-
vices, classified by types. This mechanism is difficult to implement with various SDPs,
because it implies that they semantically agree on the device type.

4.4.2 Scenario Definition with SaS
SaS comprises a scenario description language, namely SaS-Sdl, that enables to define sce-
narios by composing services such as basic workflows (cf. Section 4.3.1). This language only
contains necessary elements for users to express their goals. Moreover, SaS-Sdl also enables
users to customize their scenarios to make them parameterizable, more dynamic and represen-
tative of their needs (cf. Section 4.3.2). These two mechanisms have advantages and limits,
detailed here.

Advantages of scenario definition with SaS:

+ SaS-Sdl comprises various composition concepts (such as parallel or sequential execu-
tion) that enables to define scenarios which correspond to users’ needs.

+ SaS-Sdl only contains necessary elements for users to express their goals. Thus, SaS-Sdl
is simpler than existing composition languages (such as BPEL).

+ SaS-Sdl contains mechanisms to create parameterizable and dynamic scenarios. Scenar-
ios thus dynamically adapt to users needs and to the environment.

Limits of scenario definition with SaS:

- A composition language enables to define scenarios however, it is still too complex for
users without any technical knowledge. Scenario descriptions with SaS-Sdl are easily
readable (cf. Listing 4.10), however, it may be difficult for users to express their needs if
they begin to be complex (conditions imbricated, etc.).

- Some complex mechanisms (that we specified as not necessary defining scenarios such
as exception handling) are not provided by SaS-Sdl. They are handled by the system
transparently for the user. Thus, for an advanced user, SaS-Sdl can be seen as limited
compared to other existing languages by some aspects.

92 Chapter 4. From Services to Scenarios

4.4.3 Requirements Fulfillment
Context management requirement (R1) implies context representation (R1.a) and context aware-
ness (R1.b). The scenario definition requirement (R2) has two sub-requirements: service com-
position (R2.a) and scenario customization (R2.b). This chapter has detailed how SaS fulfills
these four functional sub-requirements. Table 4.1 synthesizes the SaS’ functionalities that an-
swer to the sub-requirements.

Functional Functionalities
Requirements Associated

R1.a SaS provides users with a persistent and personalizable
Context context directory that contains services,

representation devices, platforms, users and scenarios.
R1.b SaS proposes an interoperable approach

Context that enables to use various service discovery
awareness protocols thanks to a model transformation.

R2.a SaS comprises a scenario description language (SaS-Sdl)
Service that enables service composition and contains

composition only necessary elements for users.
R2.b The SaS-Sdl enables to customize

Scenario scenarios in order to better correspond
customization to users’ needs.

Table 4.1: Fulfillment of requirements detailed in Chapter 4

In this chapter, we have seen, inter alia, how users can define scenarios. Next chapter
presents how SaS enables users to manage scenarios (i.e. control, reuse and share).

4.4. Synthesis and Conclusion 93

Figure 4.8: Instance diagram of the scenario example

Chapter 5

Scenario Management: Control, Reuse
and Share

Contents
5.1 Scenario Life-Cycle . 96

5.1.1 Scenario Description Resilience . 96

5.1.2 Scenario Orchestrator . 98

5.1.3 Scenario Registered as Service . 99

5.2 Platforms Collaboration . 101

5.2.1 Scenario Sharing Modes . 101

5.2.2 The Collaborate Service . 103

5.2.3 Integration to the Scenario and Service Directories 107

5.2.4 Platform Substitution . 108

5.3 Synthesis and Conclusion . 109

5.3.1 Scenario life-cycle . 110

5.3.2 Platform Collaboration . 110

5.3.3 Requirements Fulfillment . 112

In the previous chapter, we presented how users obtain a representation of their context, can
manage it and are able to define a scenario that corresponds to their needs. Now that we have
seen how SaS enables to define a scenario, we present in this chapter the different mechanisms to
manage a scenario. This management corresponds to three functional requirements of pervasive
systems and implies scenario control, reuse and share.

Section 5.1 details how SaS handles scenario life-cycle. This functionality considers sce-
nario reuse and enables users to control scenario execution. Section 5.2 is dedicated to the
platform collaboration. We detail how SaS enables users to share scenarios and services among
them. Finally, Section 5.3 synthesizes this chapter, concludes and draws some perspectives.

96 Chapter 5. Scenario Management: Control, Reuse and Share

5.1 Scenario Life-Cycle

As detailed in Section 2.2, a scenario created by a user must be easily controllable and reusable.
It first implies to memorize the created scenario. When memorized, a scenario can be installed
by its owner. This provokes scenario deployment to become available for execution. This
installation is locally done on the platform. The internals of scenario when it is in the Installed
state are discussed in Section 5.1.2.2. A scenario could become obsolete or useless and so,
scenario owner can decide to uninstall its scenario at every moment. Such scenario therefore
becomes unavailable for execution (and can be reinstalled) and can be deleted permanently.
Figure 5.1 depicts the state diagram of scenario life-cycle.

Figure 5.1: State diagram of scenario life-cycle

In this Section, we first introduce how SaS memorizes scenarios, which enable users to
reuse their creations in the future. Then, we present the scenario orchestrator, which enables
users to control scenario execution and enforces scenario execution life-cycle. Finally, we de-
tail the SaS’ mechanism that registers scenario as services, which enables, inter alia, scenario
hierarchical composition.

5.1.1 Scenario Description Resilience

To enable users to reuse a scenario in the future, SaS makes scenario description persistent.
This enables to easily retrieve the scenario and to modify it.

5.1.1.1 Scenario Memorization

The scenario memorization makes scenario description persistent. This implies to memorize
the scenario into a text file, and register this file inside a directory.

The scenario description file. To make scenario description persistent, SaS memorizes the
scenario declaration in SaS-Sdl into a text file (as illustrated by step 3 in Figure 4.2): the sce-
nario description file. The scenario description file is named with the scenario name. Typically,

5.1. Scenario Life-Cycle 97

the scenario example from Listing 4.11 is memorized in a text file, named NightScenario.sas.
Scenario text files are stored inside the SaS platform.

The scenario directory. To list the scenario description files stored, SaS contains a scenario
directory. This directory is part of the the SaS context directory as illustrated by Figure 4.1
and Listing 4.7. To memorize scenarios into the scenario directory, SaS creates the scenario
description. Listing 5.1 illustrates the scenario description syntax with SaS-Sdl. Listing 5.2
illustrates a scenario description example. This is the scenario example from Listing 4.11.

1 <scenario > ::= scenario scenarioName : <property >*
2 <property > ::= property <attr> : <value>:
3 <attr> ::= String
4 <value> ::= String

Listing 5.1: Scenario description syntax with SaS-Sdl

1 scenario NightScenario :
2 property creator : Antoine;
3 property description : close the main door and shutters, adjust luminosity ,
4 change thermostat value and listen to radio;
5 property timeout : 4 hours;

Listing 5.2: Scenario description example

Similarly as the service and the platform directories (cf. Section 4.2.2.1), SaS enables users
to categorize their scenarios. Users therefore have an easy access to already memorized scenar-
ios. Listing 4.7 represents the context directory syntax in SaS-Sdl with the scenario directory
syntax. Listing 5.3 illustrates a scenario directory example that contains two scenarios both
categorized in the home category.

1 scenario_directory {
2 scenario NightScenario :
3 property creator : Antoine;
4 property description : close the main door and shutters , adjust luminosity ,
5 change thermostat value and listen to radio;
6 property timeout : 4 hours;
7 category home;
8

9 scenario AdjustTemperatureScenario :
10 property creator : Louise;
11 property description : adjust the temperature value;
12 property timeout : 8 hours;
13 category home;
14 }

Listing 5.3: Scenario directory example

Users can then install their scenarios while the descriptions remain available (i.e. while the
description file is not deleted).

98 Chapter 5. Scenario Management: Control, Reuse and Share

5.1.1.2 Scenario Future Use

As seen in the previous subsection, scenario description persistence enables users to install
scenarios as such in the future. However, users’ needs can change which might lead them to
modify their creations. SaS therefore enables to modify scenario descriptions. To do so, SaS
checks if the scenario is already installed. If so, SaS uninstalls the scenario (based on the old
description) and installs the new one. The new scenario automatically replaces the new one
inside the scenario directory.

5.1.2 Scenario Orchestrator
Scenario execution is a complex process that implies to adapt to users’ action and to context
(presence / absence of certain services, environmental changes, etc.). Therefore, SaS dynami-
cally generates a scenario orchestrator for each deployed scenario. The orchestrator provides
to users the scenario execution control operations. Moreover, it enforces the scenario execution
life-cycle.

5.1.2.1 Scenario Execution Control Commands

An installed scenario is executable. Users should therefore be able to start it. Additionally,
users might want to pause or abort a scenario in execution. For example, a listen music sce-
nario, that sends music from the PC to the stereo system, must be easy to pause (and also to
resume). Therefore, SaS provides users with execution control commands: start, pause, abort
and resume.

5.1.2.2 Installed Scenario Life-Cycle

The possible user operations are available to users as defined in SaS’ installed scenario life-cycle
depicted by Figure 5.2. This represents the state diagram of the installed state of Figure 5.1. A
scenario can be in one of these states:

• Deployed. When the scenario is installed it becomes ready to be executed. It can also be
uninstalled.

• Running. The scenario has been launched and is currently being executed. The scenario
can finish normally. Afterwise, it comes back to the deployed state. Otherwise, it can be
paused or aborted and goes to the paused state. A scenario aborted automatically passes
through the paused state before it returns to the deployed state.

• Paused. Scenario execution has been interrupted by a user. It is paused waiting to be
resumed (and return to the running state) or to be aborted.

The transition when finished (in italic on Figure 5.2) is the only one which is automatic and
not controlled by users. The internals of scenario execution when it is in the running state are
discussed in Section 6.2.2.

5.1. Scenario Life-Cycle 99

Figure 5.2: State diagram of installed scenario life-cycle

5.1.3 Scenario Registered as Service

As seen in the previous subsection, when SaS installs a scenario (to make it executable), SaS
generates a scenario orchestrator that provides users with scenario execution control commands.
These control commands are similar to service operations which are invocable and can have
entry parameters. Moreover, users must be able to reuse scenario into other ones. Scenarios
have therefore to be hierarchically recomposable. Besides, SaS considers service as an atomic
entity which is composable. This is why, SaS considers scenarios as new services. A scenario
can then be used simply as a service and, as such, composed into a new coarser grained scenario
(scenario hierarchical composition).

Listing 5.4 illustrates the service description of the scenario example described in List-
ing 4.11. The SaS platform where the scenario is deployed is named MyPlatform.

1 service MyPlatform NightScenario
2 property description : close the main door and shutters, adjust luminosity ,
3 change thermostat value and listen to radio;
4 property timeout: 4 hours;
5 operation start(Object...) : Boolean;
6 operation pause() : Boolean;
7 operation resume() : Boolean;
8 operation abort() : Boolean;
9 operation getScenarioState() : File;

10 operation getDescriptor() : File;

Listing 5.4: A scenario registered as a service example

The service exported by the scenario orchestrator is automatically discovered by the plat-
form (where it is locally provided) and thus, memorized into the service directory with the list
of available services.

100 Chapter 5. Scenario Management: Control, Reuse and Share

5.1.3.1 Scenario Properties

The scenario orchestrator is responsible for scenario execution control. To do so, scenario
orchestrator locally provides a new service that enables the platform owner to control scenario
execution thanks to the control commands (e.g. start, pause, etc.). The service exported by the
scenario orchestrator has the same name as the scenario’s to be easily recognizable as illustrated
by line 1 of Listing 5.4.

Users can detail some scenario information at scenario definition (cf. Section 4.3.2), such as
textual description, scenario timeout and multi-execution. Such scenario information is embed-
ded in the scenario description file and must be provided to users simultaneously as the control
commands. Besides, a service can embed some properties. Scenario information are therefore
transcribed into the service properties. This is illustrated from line 2 to line 4 of Listing 5.4.

5.1.3.2 Scenario Operations

We have seen in Section 5.1.2.1 that SaS enables several actions to control scenarios execution.
To provide these functionalities, SaS thus registers scenarios as services with operations corre-
sponding to users action control. We retrieve these operations illustrated from line 5 to line 10
of Listing 5.4.

Scenario control commands. Figure 5.1 shows that four operations are dedicated to control a
scenario execution: start, pause, abort and resume. The start operation is not the same
for every scenario. It might have parameters or not depending on the presence of ? values for
the parameters of its constituting operations (cf. Section 4.3.2.2). SaS matches parameter values
entered by users to the corresponding operations by order of appearance in the scenario. Control
operations return a boolean which reports the success (or failure) of the operation invocation.

Scenario extra operations. Scenario execution is a statefull process. Depending on users’
control, scenarios can be deployed, started, paused or aborted. Moreover, scenario execution
might involve several processes that are not executed atomically. Some feedback is necessary.
SaS provides therefore users with a mechanism to check scenario execution advancement. Users
can thus check if the scenario is running and what scenario parts have been already executed.
This is done thanks to the getScenarioState operation. This operation provides the log file
that reports scenario starting time, user actions and parts of the scenario already executed.

A scenario has its description memorized into a scenario description file. The user can
retrieve the scenario description file thanks to the scenario directory. However, users may want
to have a direct access to see what the scenario registered as a service is composed of. Moreover,
scenarios can be shared (detailed in Section 5.2) among users. However, the scenario directory
remains only accessible locally. Other users may need to retrieve the scenario description file.
Thus, the getDescriptor operation provides an access to the scenario description file.

5.2. Platforms Collaboration 101

5.1.3.3 Hierarchical Composition

As a service, a scenario is therefore hierarchical recomposable. To do so, users simply need
to invoke a scenario operation (e.g. start to launch the scenario) into their composite scenarios.
Additionally, if the start operation contains parameters (due to the presence of jokers inside the
scenario exported as service), users should enter values for them. Otherwise, these parameters
become parameters of the scenario currently defined. Line 17 of scenario example (Listing 4.11)
illustrates scenario hierarchical composition. The AdjustTemperatureScenario service provides
the start operation that requires a single parameter.

5.2 Platforms Collaboration

Users must be able to share scenarios among surrounding users and devices. As detailed in
Section 2.2, this implies to select who to share with and define what to share. SaS therefore
provides users with different sharing modes to share their creations. Moreover, pervasive sys-
tems must enhance collaborativeness. Platforms can therefore share service access. This makes
it possible for platforms to have access to services that are not directly physically reachable.

5.2.1 Scenario Sharing Modes

Users that want to share a scenario must be able to select who to share with. SaS thus enables
to select some surrounding platforms for sharing. Besides, users also need to select what they
want to share. SaS therefore provides several scenario sharing modes. Several users can thus
be able to execute the same scenario. SaS must therefore enable users to keep control of the
scenario.

5.2.1.1 Platforms Selection For Sharing

A pervasive environment is characterized, inter alia, by the presence of multiple users. A way
to be aware of the presence of users is to look at the owner of available platforms. Each SaS
platform exports a service in the environment that enables surrounding platforms to detect its
presence. This service provides, inter alia, the platform owner’s name. Thus, SaS (installed on
a platform) detects surrounding platforms and provides to users a representation of the available
platforms (and their owner). Users can thus select some available platforms to share scenarios
with.

Additionally, users can customize the context representation thanks to categories (cf. Sec-
tion 4.2.2). Users can use this mechanism and shares a scenario with a platform category. Thus,
each platform of this category, is selected to share the scenario with.

As a SaS platform is associated to a unique user, sharing scenarios with selected SaS systems
is equivalent to defining access rights. SaS platforms are permanently indexed into a platform
directory (cf. Section 4.2.2.1). This makes it possible to share scenarios with a platform even

102 Chapter 5. Scenario Management: Control, Reuse and Share

if the platform is temporarily unavailable (because of a failure or of mobility). However, users
must decide who to share their scenarios with. This is why, SaS enables users to share scenarios
according to different modes.

5.2.1.2 Scenario Sharing Access Modes

Users must be able to select what they want to share. There are three functionalities interesting
for users: (a) the scenario properties (e.g. scenario creator, brief textual description, etc.), (b) the
scenario description file (to see what the scenario is composed of) and (c) the remote execution
control. SaS provides three scenario sharing access modes to select what to share:

• descriptive. Only the scenario description file is shared with selected users. These users
can see what the scenario is composed of and decide to redeploy it locally (on their own
platforms) in order to be able to execute a local copy of it.

• collaborative. The scenario execution is shared but not its description: the scenario is
remotely controllable by selected users. Users can control scenario execution and check
its advancement. However, they have not access to the scenario description and thus, can-
not redeploy it locally. If the scenario creator has written a scenario textual description,
this information is provided as a property of the service (cf. Section 5.1.3) and is thus
accessible for selected users in collaborative mode.

• copied. Selected users have access to both the scenario description and scenario execu-
tion.

Table 5.1 synthesizes the comparison between the different scenario sharing modes. We can
see the default mode that illustrates that by default, a SaS platform does not share scenarios
with surrounding platforms. Users must select surrounding users to share scenarios with and
attribute them an access right. Moreover, this table illustrates that users selected for sharing
have access to scenario properties (and thus a brief textual description) independently on the
sharing mode. Thus, they can see the purpose of the scenario.

Scenario Sharing mode
shared part Default Descriptive Collaborative Copied

Scenario properties × X X X
Description file × X × X

Execution control × × X X

Table 5.1: Scenario sharing modes comparison

Figure 5.3 illustrates these different scenario sharing modes. Each octagon represents a SaS
platform, with its owner at the center and the creation and deployment cycle (cf. Section 4.1)
that the scenario has on each platform. To illustrate the different sharing modes, we symbolized

5.2. Platforms Collaboration 103

the scenario description file by a text file icon and the scenario execution control by a remote
control. The central user (Matt) creates a scenario (which is registered as a new service in its
directory). He shares the scenario description file with Janis. Janis can therefore locally rede-
ploy the scenario. James has access to the scenario execution control (symbolized by a remote
control). This is the collaborating mode. James can thus execute the scenario or recompose it
into a new one. Kurt illustrates the copied sharing mode: he has access to both the scenario
description file and the execution control. He can therefore control scenario execution remotely
or decide to redeploy the scenario (on its own platform).

Figure 5.3: Overview of SaS scenario sharing modes

5.2.1.3 Scenario Execution Conflict Management Modes

On collaborative and copied modes, a platform (e.g. James’ platform of example from Fig-
ure 5.3) can remotely control scenario execution (e.g. installed on Matt’s platform). The sce-
nario creator (e.g. Matt) must be able to keep the control of the execution, even if he/she shares
scenario execution control. SaS therefore provides two extra modes: veto and free modes. The
scenario creator selects a mode for each user with whom scenario execution has been shared.
In veto mode, the scenario creator (e.g. Matt) is warned when another user (e.g. James) wants
to remotely control scenario execution (e.g. installed on Matt’s platform). The scenario creator
can therefore choose to authorize the user action or not. In free mode, selected users can interact
with the scenario without asking for the scenario’s creator approval.

5.2.2 The Collaborate Service
In Section 4.2.2.1 (dedicated to context representation), we explained that platforms export an
identification service into the environment. Such service provides platforms with an identifier
and an owner name and enables surrounding platforms to be aware about the platform presence.
SaS uses this service for sharing scenarios and services. This is the Collaborate service.

104 Chapter 5. Scenario Management: Control, Reuse and Share

5.2.2.1 Collaborate Service Description

Listing 5.5 presents the Collaborate service description. It contains three properties, corre-
sponding to the information necessary for context representation for surrounding platforms.
The Collaborate service provides five operations. Four operations are dedicated to sharing sce-
narios and services and one operation enables platform substitution (cf. Section 5.2.4).

1 service Collaborate :
2 device MyPlatform;
3 property platformId : 17890804;
4 property device : AndroPhone;
5 property user : max;
6 operation shareScenario(ServiceDescription) : void;
7 operation shareService(List<ServiceDescription >) : void;
8 operation invokeScenarioOperation(OperationInvocation) : Object;
9 operation invokeServiceOperation(OperationInvocation) : Object;

10 operation substitute(String) : Boolean;

Listing 5.5: The Collaborate service description

5.2.2.2 Scenario Sharing

Thanks to the Collaborate service, users can share their scenarios. To do so, they use the
shareScenario(ServiceDescription) operation of the Collaborative services provided by
other platforms. The value of the parameter ServiceDescription depends on the shared
scenario and the sharing mode. The user sends the service description corresponding to the
scenario that he/she wants to share.

Scenario as service description sharing. A scenario deployed as a service proposes two
types of operation: five execution control operations (start, pause, resume, abort and
getScenarioState) and one operation to get the scenario description file (getDescriptor).
Moreover, a scenario as a service embeds properties (e.g. the scenario owner name, a brief tex-
tual description, etc.). Listing 5.4) illustrates an example of a scenario as service description.
Depending on the sharing mode, the user that shares a scenario sends a service description with
the five execution control operations, the get scenario description file operation or both.

We can illustrate the use of the Collaborate service thanks to Figure 5.3. The four users
provide the Collaborate service into the environment. Thus, they are all aware about each other.
The user Matt wants to share a scenario he created. To do so, he invokes the operation named
shareScenario(ServiceDescription) provided by the Collaborative service exported by
other platforms. The value of the parameter ServiceDescription depends on the shared scenario
and the sharing mode. In descriptive sharing mode (with Janis), the user Matt sends a scenario
description that contains only one operation (getDescriptor). In collaborative sharing mode
(with James), the user Matt sends a scenario description that contains the five execution control
operations (start, pause, resume, abort and getScenarioState). In copied sharing mode
(with Kurt), the user Matt sends a scenario description with all the operations.

5.2. Platforms Collaboration 105

Remote scenario operation invocation. Users that have been selected for sharing can thus
invoke scenario operations (that they have access). To do so, they use the operation named
invokeScenarioOperation(OperationInvocation) from the Collaborate service provided
by the platform of the scenario provider.

Typically, on the example from Figure 5.3, Janis can get the scenario description file.
To do so, she invokes the invokeScenarioOperation operation from the Collaborate ser-
vice provided by Matt’s platform. The parameter value of the operation invocation has to be
MyPlatform.NightScenario.getDescriptor(). The Matt’s platform, that receives the re-
quest, checks the access rights of the requester. If the requester has the right to invoke the op-
eration on the scenario requested, the Matt’s platform executes the request. Instead, the Matt’s
platform responds an error message saying that the requester does not have rights to invoke the
requested operation on this scenario.

Scenario sharing example. Figure 5.4 depicts the sequence diagram of a sharing scenario
example based on the example from Figure 5.3. First, the two platforms (MP and JP) export the
Collaborate service into the environment. Each platform discovers the service provided by the
other one and updates its platform directory. Matt wants to share a scenario (NightScenario)
with Janis on descriptive mode. Thus, MP uses the shareScenario from the Collaborate
service provided by JP. The service description s1 is illustrated in the diagram. It contains a
single operation: getDescriptor. JP receives the scenario as service description and thus,
updates its scenario directory. Janis wants to get the scenario descriptor file. Thus, JP invokes
the invokeScenario operation from the Collaborate service provided by MP. MP receives
the request with the operation invocation o1. It checks if the requester (JP) has access to this
operation for the selected scenario. If this is the case, MP invokes the scenario operation and
returns the result (here, the scenario description file).

5.2.2.3 Sharing Services

Devices do not implement all protocols and cannot physically have access to services not present
in their close environment (e.g. Bluetooth protocol has a scope of 50 meters). To enhance
collaboration between platforms, platforms must be able to share services.

5.2.2.4 Sharing Service Descriptions

To share services, SaS platforms first need to share the descriptions of the services they want
to share. To do so, they use the shareService("List<ServiceDescription>") opera-
tion from the Collaborate services provided by surrounding platforms. It is similar to the
shareService operation except that there is no different service sharing modes and thus, SaS
shares the whole service description (i.e. all the service operations).

106 Chapter 5. Scenario Management: Control, Reuse and Share

Figure 5.4: Sequence diagram of sharing scenario xample

5.2.2.5 Sharing Service Access

Sharing service descriptions is not enough. Users that are interested in a shared service by
another platform need to access to this service. Therefore, platforms that share service descrip-
tions also share access to the same services. SaS makes it possible through the operation named
invokeServiceOperation(OperationInvocation) of the Collaborate service. It is sim-
ilar to the invokeScenarioOperation but for a service operation. The provider platform
checks if the requested service is shared with the requester.

5.2.2.6 Shared Services Availability

Sharing a service not available is irrelevant. Therefore, SaS matches service described as
sharable and services available. The union is the list of services that are actually shared through
the Collaborate service. Of course, SaS dynamically updates this union (depending on
changes from the user or the context) and thus, invokes the shareService operation pro-
vided by surrounding platform when necessary. Surrounding platforms are thereby informed of
appearance or disappearance of a shared service.

5.2. Platforms Collaboration 107

5.2.3 Integration to the Scenario and Service Directories

SaS integrates the scenario and service sharing mechanisms to the scenario and service directo-
ries presented in Section 4.2.2.1. Sharing scenarios and services become part of the directories.
Thus, they are persistent, easily retrievable and modifiable by the platform owner.

Listing 5.6 complete the context representation detailed in Listing 4.7. We add <service_sharing>

and <scenario_sharing> attributes to the directories. Thus, a service can be shared with a plat-
form (thanks to the platform identifier) or a platform category. Similarly, a scenario can be
shared with a platform or a platform category. Scenario sharing implies to specify a scenario
sharing mode to platforms selected for sharing.

Platforms have an identifier and an owner name. Identifier is unique, contrary to the owner
name, so it is used for sharing identification. Alternatively, users can share a service with
a platform category. In this case, all platforms registered with this category are selected for
sharing. SaS distinguishes a platform identifier from a category because a category name cannot
begin by a number (and platform identifiers are numbers).

1 <service_dir > ::= service_directory {(<service><category >*<service_sharing >*)*}
2 <scenario_dir > ::= scenario_directory{(<scenario><category >*<scenario_sharing >*)*}
3

4 <category > ::= category <category_name > ;
5 <service_sharing > ::= share (<platform_id > | <category >);
6 <scenario_sharing > ::= share (<platform_id > | <category >) : <sharing_mode >;
7 <access_right > ::= descriptive | collaborative | copied

Listing 5.6: Scenario and service directories with sharing

Listing 5.7 illustrates a service directory example with a single service description, shared
with the platform that has for identifier 17890804.

1 service_directory {
2 service SwitchPower :
3 device Kitchen_Lights;
4 property deviceType : BinaryLight;
5 property protocol : UPnP;
6 operation SetTarget(Boolean) : void;
7 operation GetTarget() : Boolean;
8 category home;
9 share 17890804;

10 }

Listing 5.7: Service sharing directory example

Listing 5.8 illustrates a scenario directory example, based on Figure 5.3 example, with a sin-
gle scenario description. This scenario is shared with three platform categories: with the plat-
form Janis_platform category in descriptive sharing mode, with the platform James_platform
category in collaborative mode and with the platform Kurt_platform category in copied mode.
In this example, the platform owner must have created the three platform categories previously
and attached platform identifiers to them.

108 Chapter 5. Scenario Management: Control, Reuse and Share

1 scenario_directory {
2 scenario NightScenario :
3 property creator : Antoine;
4 property description : close the main door and shutters , adjust luminosity ,
5 change thermostat value and listen to radio;
6 property timeout : 4 hours;
7 category home;
8 share Janis_platform : descriptive;
9 share James_platform : collaborative;

10 share Kurt_platform : copied;
11 }

Listing 5.8: Scenario sharing directory example

5.2.4 Platform Substitution
Platforms are mediators between services and users. They enable users to define scenarios and
are responsible for their execution. Platforms share their service directory and their ability to
execute services. SaS therefore handles platform substitution and re-organise the system in
order to maintain its functioning, and the best quality of service from its users’ point of view.

5.2.4.1 The Substitute Operation

To support mobility and collaborative usages, SaS enables to share scenarios between platforms.
When the original scenario providing platform disappears, platform owner may want that the
scenario remains available in the environment. For example, a user creates a morning scenario
on his / her laptop with the alarm clock set to 7 am. Later, the user changes his / her mind and
wants to change the alarm to 7:30 am. If the laptop is off, the user needs to have access to the
scenario on another active device (a mobile phone or a PDA). Additionally, a platform can be
responsible for scenario execution. When this platform is shut-downed, platform owner may
want to maintain scenario execution.

To do so, the Collaborative service provides the substitute(String) operation. The operation
parameter corresponds to the scenario the user wants to maintain in the environment. Thus, the
scenario owner can ask to another platform to maintain scenario availability and execution. The
requested platform owner decides to take the scenario responsibility or not. The operation thus
returns a Boolean that symbolizes the choice of the requested platform owner. Users can invoke
this operation if they previously shared with the selected platform in copied mode the scenario
that they want to maintain.

5.2.4.2 The Substitution

If the requested platform owner accepts, it gets the scenario description file (if not already
did) and its execution log file (thanks to the Collaborate service). SaS platform log scenario
execution advancement. Thus, the requested platform can easily know if the scenario was
only installed or currently in execution. In both case, it locally installs the scenario. If the

5.3. Synthesis and Conclusion 109

scenario was running, the platform retrieves the execution advancement and continues scenario
execution.

Figure 5.5 depicts the sequence diagram of a platform substitution example based on the
example from Figure 5.3. Matt wants to maintain the NightScenario scenario in the environ-
ment. It previously shared this scenario in copied mode with the Kurt’s platform (KP). MP
invokes the substitute operation from the Collaborate service provided by KP. The KP accepts
to take the scenario responsibility. Thus, KP retrieves the scenario description file and locally
install it. Then, KP retrieves the scenario execution log file. KP checks the scenario execution
advancement. If the scenario is running, KP continues scenario execution from where it was
paused (not illustrated in the diagram).

Figure 5.5: Sequence diagram of platform substitution example

5.3 Synthesis and Conclusion

In this chapter, we detailed how SaS manages scenario life-cycle and provides collaboration
mechanisms.

110 Chapter 5. Scenario Management: Control, Reuse and Share

5.3.1 Scenario life-cycle

SaS manages scenario life-cycle from their creation to their removal (cf. Section 5.1). Scenar-
ios are memorized into description files. Moreover, SaS registers the scenario description into
the scenario directory. This enables to make scenario description persistent. Moreover, a sce-
nario orchestrator (dynamically generated per each scenario) registers a service to have access
and control scenarios execution. As a service, scenario can be hierarchically composed. Ad-
ditionally, SaS enables users to start, pause, resume and abort a scenario, but also to check its
execution advancement and retrieve its description file.

Advantages of scenario life-cycle management by SaS:

+ SaS comprises a persistent scenario directory that enables users to easily manage their
creations. Users can categorize scenarios which eases scenario directory browsing. Thus,
users can easily reuse scenarios in the future.

+ SaS provides control commands for scenario execution that are easy to use (start, pause,
resume and abort). SaS defines a scenario life-cycle that handles dynamic scenario status
evolution.

+ SaS dynamically creates scenario orchestrators dedicated to the management of a sce-
nario. A scenario orchestrator enforces, inter alia, the scenario execution life-cycle.

+ Scenario orchestrators provide to users a service for controlling scenario execution. Con-
sidered as services, scenarios can be thus used as such and hierarchically composed.

Limits and perspectives of scenario life-cycle management by SaS:

- The control commands for scenario execution do not enable users to execute a certain
part of the scenario. When the scenario is installed, the execution always starts by the
beginning. To execute a certain scenario part, users can modify the scenario to create a
new one corresponding to their needs.

- As a single scenario orchestrator is generated for an installed scenario, only one scenario
instance can run simultaneously. To solve this issue, users can duplicate a scenario de-
scription file and rename it to install a new scenario similar to the first one.

5.3.2 Platform Collaboration

SaS provides users with scenario sharing modes. Thus, users can specify for scenarios they
created access rights to surrounding users. Moreover, platforms can also collaborate by sharing
service access to surrounding platforms that may not have directly access to these services.

5.3. Synthesis and Conclusion 111

Advantages of SaS scenario sharing:

+ SaS comprises an access rights policy that enables users to adapt scenario sharing de-
pending on surrounding users.

+ Thanks to the use of the platform directory, scenario sharing is easy (selection of platform
categories) and adapts to users mobility. A scenario can be shared with a platform, even
if it is not currently available. When the selected platform appears in the environment, it
automatically receives the scenario shared without any other intervention from users.

+ Thanks to the scenario execution conflict management modes, SaS enables users to ap-
prove or not (and thus keep the control) a surrounding user request for scenario execution
control.

+ Service sharing mechanism enables platform to collaborate. Thus, services only accessi-
ble by one platform can be integrated into the whole environment for surrounding plat-
forms.

+ SaS enables to maintain scenario availability and execution when the original platform
provider is shut-downed. This is the platform substitution.

Limits and perspectives of SaS scenario sharing:

- Scenario sharing implies a manual action. Typically, a new platform never seen before
cannot be automatically selected for scenario sharing. In perspectives, we can consider
that platforms export semantic informations and consider advanced recognition tech-
niques that enable platforms automatic selection.

- SaS does not enable to share a specific part of a scenario. It could be interesting for
platforms to choose a part of the scenario that they know they can execute and thus,
improve collaboration.

- Platforms do not share services currently not available. It could be interesting, in perspec-
tives, to enable platforms to share service descriptions that they know they can achieve in
the future. Therefore, they could participate in a large collaborative scenario. Typically,
in robotic science, a robot can announce that it can access to a service somewhere else,
and thus can be given the order to invoke this service.

- Platform substitution requires that the platform owner asks for substitution before he/she
closes the platform. Moreover, the requested platform owner must manually answer to
the request. It could be interesting to develop automatic substitutions mechanisms.

112 Chapter 5. Scenario Management: Control, Reuse and Share

5.3.3 Requirements Fulfillment
Scenario management involves scenario control, reuse and share. Scenario control (R3) implies,
inter alia, to enable users to easily control scenario execution (R3.a). Scenario reuse require-
ment (R4) implies to maintain scenario description availability (requirement R4.a) and enable
scenarios hierarchical composition (requirement R4.b). Moreover, platform collaboration en-
ables users to share scenarios (R5). Besides, users must be able to select with who they want
to share scenario with (sub-requirement R5.a) and what they want to share (sub-requirement
R5.b). This chapter details how our contribution fulfills these five functional sub-requirements.
Table 5.2 synthesizes the SaS’ functionalities that answer to the sub-requirements.

Functional Functionalities
Requirements Associated

R3.a The scenario orchestrator provides
Scenario users with scenario execution

user control control commands.
R4.a Scenarios are memorized into

Scenario scenario description files and
description availability stored into the scenario directory.

R4.b Scenarios are considered as
Hierarchical services and thus,
composition hierarchically composable.

R5.a SaS provides scenario
Select what sharing modes that enable

to share to select what to share.
R5.b Platforms export a Collaborate service,

Select who that enable users to do
to share with a selected collaboration.

Table 5.2: Fulfillment of requirements detailed in Chapter 5

In this Chapter, we have seen that users can control scenario execution, and SaS handles
scenario life-cycle that dynamically adapts to users request. Next chapter is dedicated to SaS’
mechanisms that manage scenario execution resilience.

Chapter 6

Scenario Step-by-Step Execution

Contents
6.1 Scenario Execution Scheduling . 114

6.1.1 Scenario Structured Representation . 114

6.1.2 Correspondences with SaS-Sdl elements 116

6.2 Static Scenario Analysis to Prepare its Step-by-Step Execution 120

6.2.1 Step Extraction . 120

6.2.2 Scenario Execution Life-Cycle . 126

6.2.3 Step Execution . 128

6.3 Dynamic and Adaptive Service Invocation . 131

6.3.1 The Service Broker . 131

6.3.2 Scenario Fault-Tolerance Mechanisms 133

6.4 Synthesis and Conclusion . 135

6.4.1 Scenario Execution Scheduling . 136

6.4.2 Dynamic and Adaptive Service Invocation 136

6.4.3 Requirement Fulfillment . 137

In the previous chapter, we detailed how SaS manages scenario deployment (through a sce-
nario orchestrator) and enables users to easily control (sub-requirement R3.a), reuse (require-
ment R4) and share scenarios (requirement R5). In this chapter, we focus on scenario execution
resilience (sub-requirement R3.b).

With SaS, users have a service directory (cf. Section 4.2.2.1) and can thus define a sce-
nario referring to services that are not simultaneously available. To better handle environmental
changes (such as service disappearance), and to enable mobile scenario execution, SaS executes
scenarios step-by-step. This mechanism enhances scenario execution resilience and mobility as
it makes it possible to execute a scenario even if all the involved services are not simultaneously
available.

Scenario execution needs to adapt to both context and available services. SaS contains a
dynamic and adaptive service invocation mechanism through a service broker.

114 Chapter 6. Scenario Step-by-Step Execution

Moreover, even if the scenario execution is adaptive, errors (e.g. service disappearance,
wrong service invocation, etc.) may occur. SaS thus proposes recovery strategies to anticipate
and recover from these errors.

Section 6.1 introduces scenario execution scheduling and defines the scenario execution
graph. Section 6.2 presents how SaS analyzes scenario description file to extract steps and
manage scenario execution life-cycle. Section 6.3 is dedicated to the dynamic service invocation
and details SaS’s scenario recovery strategies that aim to enhance scenario execution resilience.
Finally, Section 6.4 concludes this chapter.

6.1 Scenario Execution Scheduling
A scenario must be executable even if there is no available service instances (in the environment)
for all required services. Moreover, a service failure should not impact the rest of the scenario
and should thus be isolated. Therefore, SaS executes a scenario in blocks (that can involve a set
of instructions).

These blocks correspond to steps in the scenario step-by-step execution. Steps are similar to
transactions that respect the ACID (atomicity, consistency, isolation, durability) properties [33].
Each step must be executable atomically. Step execution may succeed or fail.

6.1.1 Scenario Structured Representation

To schedule scenario execution, SaS defines a scenario execution graph. Such a graph specifies
the dynamics of the execution steps and can be compared to Petri nets [85] or finite-state ma-
chines [74]. The graph enables SaS to know and anticipate the possible consequences of astep
execution.

Figure 6.1 provides a scenario execution graph example that results from the scenario anal-
ysis. We can notice that the scenario has been divided into several steps (of different types as
detailed in Section 6.1.2.1). Details on the scenario execution graph details and its extraction
are presented in the following subsections.

6.1.1.1 Scenario Execution Graph

The scenario execution graph is the result of a syntactic scenario analysis. It is a structured
representation of the scenario in a set of atomic executable steps. It is an execution logic rep-
resentation with control flows. Thus, the graph enables to anticipate and monitor scenario
execution.

The scenario execution graph is a simple and directed graph noted G = (N, E) with N being
the set of its nodes and E the set of its edges. This graph is acyclic. There is a labeling function
ϕ that attributes a label to each node of G.

ϕ : N → {1, 2, ..., n}, with n the number of nodes.

6.1. Scenario Execution Scheduling 115

Figure 6.1: Scenario execution graph example

6.1.1.2 Scenario Execution Graph Elements

Nodes. Graph nodes correspond to scenario steps, except for the start and end nodes which
are pseudo-steps. Steps have an attribute named status, that holds the step’s state. Thus, there
is a function that associates a status value to each node. Besides,the status dynamically evolves
during scenario execution. The function takes in parameter an instruction pointer value i, that
indicates a specific scenario progress state.

fstatus,i : N → {EXECUT ED,WAIT ING_S ERVICE, LOOP_NOT_FINIS HED,
IN_EXECUT ION, FAILED, PAUS ED,TRUE, FALS E}

Steps’ status values FAILED, PAUSED, IN_EXECUTION and WAITING_SERVICE are inherent
to all steps whereas other values are step type specific. Step status enable, inter alia, scenario
orchestrators to monitor execution and users to check scenario execution progress. Moreover,
steps contain an execution attribute, which represents the step’s objective. This attribute de-
pends on step types. Typically, a step responsible for a service invocation has for its execution
value the corresponding operation invocation. The execution attribute is determined during
scenario analysis and does not change.

Edges. Graph edges are the links between scenario steps. We note the set of edges: E ⊆ N×N.
To be executed, steps require that previous steps have an appropriate status (e.g. in a sequence,

116 Chapter 6. Scenario Step-by-Step Execution

each step needs that the previous step be executed before trying to execute itself). Therefore, we
name the edges precedence links. Edges are annotated with the required status, that indicates
when to pass from one step to the next. We define a fedge function that associates each edge with
its status.

fedge : E → {EXECUT ED, LOOP_NOT_FINIS HED,TRUE, FALS E}

6.1.2 Correspondences with SaS-Sdl elements

The scenario execution graph enables to schedule scenario execution. Scenario execution graph
elements are related to scenario definition elements. This subsection details the scenario execu-
tion graph elements and their correspondences with the scenario definition elements.

6.1.2.1 Step Types

A scenario is not just a set of services to invoke. Services invocations are aggregated with
conditions, loops, etc. We thus define two types of steps: action steps that invoke services, and
connection steps that combine steps when necessary (e.g. join step used for a parallel action
block). These two step types are divided into four sub-types.

Figure 6.2 depicts the scenario step class hierarchy. We can see the five concrete types at
the bottom. Other step type (Step, ConnectionStep and ActionStep) are abstract. All step types
share the same two attributes: status and execution.

Figure 6.2: Scenario steps type class diagram

6.1. Scenario Execution Scheduling 117

We detail here the different step types and their correspondences with the element of SaS-
Sdl.

• Action step. This is an executable step that contains service invocations. In SaS-Sdl,
services are invoked in service execution actions and in conditions. Thus, we define two
kinds of action steps:

◦ Invocation step. It is created for service execution actions. Its execution attribute
contains the operation invocation. When the step is executed, its status is set to
EXECUTED. This step has a single entry edge and and a single output edge.

◦ Condition step. It is used for conditions (used in the conditional statements, while
loops and conditional events of scenario actions). Therefore, its execution at-
tribute contains a condition, which can be a complex condition (combination of
conditions aggregated with binary operators) or a unary condition. Each unary con-
dition contains an operation invocation. The object obtained from the invocation is
compared with a specific value to obtain the condition value. When the condition
has been successfully evaluated, the status of the condition step is set to the corre-
sponding condition value (i.e. TRUE or FALSE). Condition steps have a single entry
edge and two output edges corresponding to the two different values that the step’s
status can take.

• Connection Step. This type of steps is used to connect action steps when necessary.
Typically, action steps only have one entry edge. Thus, if an action block is defined as
parallel, we need to create a step that joins the parallel action steps. Connection steps do
not invoke services but structure the execution flow. We specify three types of connection
steps:

◦ Join step. It is used to join action steps (parallel action blocks, conditional statement
actions and loops). A join step could require the execution of several steps to be
crossed. Thus, next steps only require the join step to be satisfied. Join steps have
an empty execution (they do not invoke any service). Join steps have a join mode,
that specifies how their precedence links are evaluated. This join mode can take two
values: AND (all precedence links are required), and OR only one precedence link is
required). We name a join step in join mode AND (resp. OR) an AND (resp. OR)
join step. They can have several entry edges and only one output edge.

◦ Fork step. It is used for parallel action blocks to separate the graph into several
branches. There are as many branches as elements of the action block defined as
parallel. Fork steps have an empty execution (they do not invoke any service). They
have one entry edge and several outputs edges.

◦ Calculus step. This type of steps are used by SaS when it necessitates a calculation,
without invoking services. Typically, the repeat loop action needs to calculate how

118 Chapter 6. Scenario Step-by-Step Execution

many times actions have been executed (and checks if they need to be executed
again). The execution attribute contains the calculus to be done. Calculus steps
have one entry edge and can have two output edges.

6.1.2.2 Step Preconditions and Step Postconditions Status

Steps are elements of the scenario execution graph. Thus, they are interconnected with edges
that symbolize the execution order. Moreover, action steps invoke services and thus, need cor-
responding service instances. Additionally, we define step postconditions status that correspond
to the step’s execution end status.

Step preconditions. Preconditions enable to check if a step is ready to be executed. Thus,
SaS always checks if the step preconditions are satisfied before executing a step. Preconditions
are twofold and specific to each step:

• Step precedence satisfaction. Some steps can only be executed if preceeding ones have
been correctly executed (or have a specific status). Steps are therefore connected by
precedence links to other steps. These precedence links correspond to the edges of the
scenario execution graph. A precedence link contains an expected status (i.e. the edge
is annotated). Action steps only have one precedence link whereas join steps can have
many.

• Service presence. Preconditions check the presence of the services involved in the step.
SaS therefore ensures that a step is executed only when all the involved services are
simultaneously available.

Step preconditions are automatically computed from its involved services and its prece-
dences. Some precondition examples, based on Listing 4.11, are: step 2 requires the execution
of step 1 and the presence of a Shutter service (whatever the provider device); step A requires
the execution of step 4 or the execution of step 5 (and does not require any service to be present).

Step postcondition status. Postcondition status correspond to the step’s execution end status.
They are threefold:

• Step execution may succeed. The services involved in the steps have been correctly in-
voked.

• Step execution may also fail. There are several reasons for a step to fail:

◦ Service invocation error. The service is present but an error occurs when it is in-
voked. This can be due to wrong parameters, etc.

◦ Service disappearance. The service disappears during the step execution.

6.1. Scenario Execution Scheduling 119

◦ Unresponsive service. The service is available but does not answer.

• Step may also be finished. It can be due to:

◦ User interruption. The scenario can be interrupted by a user.

◦ Scenario timeout. A scenario timeout can be reached and scenario be aborted.

Connection steps thus have three possible postconditions status (step succeed, scenario
interrupted and scenario timeout reached) whereas action steps have six possible post-
conditions status (same as connection steps plus the three postconditions status due to a
service failure).

Figure 6.3 adds to Figure 6.2 the step’s pre-and-post condition status representation. The
added classes are represented in white. We can see that steps have several preconditions (which
number and nature depend on steps). Connection steps can have several precedence links but do
not require any service presence, whereas action steps have a single precedence link but contain
several service invocations and thus need several services to be present. A precedence links
points to a single step. Moreover, steps contain the list of precedence links that points to them.

Figure 6.3: Scenario steps class diagram

120 Chapter 6. Scenario Step-by-Step Execution

6.2 Static Scenario Analysis to Prepare its Step-by-Step Exe-
cution

The static analysis of a scenario description builds the corresponding scenario execution graph.
It is the scheduling of scenario execution and defines what must be executed atomically. We
first present here SaS’s mechanisms to extract steps from scenario description files, and then,
how scenario execution graphs are computed from the extraction of scenario steps. All these
processes are automatic and seamless for the user. The algorithms to transform a scenario
description into an execution graph are detailed in Appendices A.

6.2.1 Step Extraction

To extract the steps, we do a model transformation from an instance of the SaS-Sdl scenario
model to the scenario execution graph model. The type of the extracted step depends on the
action type (each action implies one or several steps of different possible types). During this
extraction, we specify the step execution attribute and step-preconditions. Step preconditions
are twofold, and thus, differently defined:

• Precedence link. SaS extracts the steps one after the other. When SaS extracts a step, it
needs to specify its precedence links. Typically, SaS transforms a sequence action block
with a precedence link that points to the previous defined step. Thus, SaS can attach the
precedence link to the steps extracted from this action block.

• Service presence. Action steps may invoke services. Services to invoke are specified in
the execution attribute (that can be a condition or a service execution action). SaS uses
this to define the service presence preconditions.

This subsection presents the different model transformations that enable to extract scenario
steps. We illustrate each scenario element transformation with a Figure that presents (on the
left) the SaS-Sdl scenario element and its transformation (on the right).

A scenario contains an action block. An action block contains actions and/or action blocks,
and is executed sequentially or in parallel. We first present the different action block transfor-
mations (depending on the block’s execution type) and then, how SaS transforms a scenario
action (depending on the action type).

6.2.1.1 Action Block Transformation

The action block transformation is different when the action block is executed sequentially
or in parallel. Thus, we define two different transformations for action block transformation
depending on the execution mode.

6.2. Static Scenario Analysis to Prepare its Step-by-Step Execution 121

Sequence Action Block. If an action block is defined as a sequence, we transform each ele-
ment of the action block. This transformation returns a precedence link that points to the last
step defined. We use it for the next element of the action block. Depending on the current
element type, we transform it as either an action block or an action.

In the scenario example from Listing 4.11, the scenario action block (from line 4 to line 24)
is defined as a sequence. It contains three elements: two actions (at line 4 and from line 20 to
22) and one action block (from line 5 to line 19). Figure 6.4 illustrates the transformation of this
sequence action block example. We transform each element with the precedence link obtained
by the transformation of the previous action block element.

Figure 6.4: Sequence action block model transformation example

Parallel Action Block. If an action block is executed in parallel, we define a fork step at the
beginning of the transformation. Then, each element of the transformed action block requires
this fork step to be executed. Moreover, we define a AND join step for the end of the action
block. Each precedence link extracted from the transformation of the action block elements
is added to this join step. Thus, this join step is only executed if all its precedence links are
satisfied (e.g. all steps computed from the action block are executed). So, scenario execution
continues if this join step has the EXECUTED status. Such join step acts as a synchronization
step for the content of the parallel block.

In the scenario example from Listing 4.11, the action block from line 5 to line 19 is defined
as parallel. It contains an action block (defined as a sequence) and a conditional statement
action. Figure 6.5 illustrates the transformation of this parallel action block example. We
can notice the fork and join steps, that have outgoing precedence links annotated with E for
EXECUTED.

6.2.1.2 Action Transformation

Action transformation depends on the action’s type. Therefore, we define several transforma-
tions to extract the different actions. Action transformations return a precedence link, that points
to the last step of the action. This precedence link is used to transform next action (or action
block).

122 Chapter 6. Scenario Step-by-Step Execution

Figure 6.5: Parallel action block model transformation example

Service Execution. The service execution action contains an operation invocation. We define
a single invocation step that is initially set to this operation invocation as its execution attribute
value. The next step requires this step’s status to be EXECUTED. Figure 6.6 illustrates the service
execution model transformation.

Figure 6.6: Service execution model transformation

Conditional Statement. The conditional statement action contains a condition and two action
blocks. Figure 6.7 illustrates the conditional statement transformation. We define a condition
step for the condition. The condition step has for its execution attribute value the condition.
The condition step has two precedence links as outputs, corresponding to the two possible
condition evaluation values. Then, we transform the two action blocks (then - else) of the
conditional statement. These transformations are done with a precedence link pointing on the
condition step but with different required status (TRUE or FALSE). Thus, the steps representing
each of the alternative action blocks are executed only when the condition value corresponds.
Transformations return two precedence links that we attach to an OR join step. Therefore,

6.2. Static Scenario Analysis to Prepare its Step-by-Step Execution 123

the OR join step only requires one precedence link to be fulfilled (i.e. one of the action block
transformation executed). Finally, a precedence link that requires the join step to be executed is
defined.

Figure 6.7: Conditional statement model transformation

While Loop. A while loop action contains a condition and an action block to execute while the
condition remains TRUE. Figure 6.8 illustrates the while loop transformation. SaS first creates
an OR join step that is used to create a loop in the execution graph. Then, a condition step is
defined for the condition. This condition step requires the previously defined join step to be
executed. Then, we transform the action block of the while loop action. This transformation
is connected to the condition step by a precedence link that has a status set to TRUE. When
the condition evaluation equals TRUE, the steps defined from the action block transformation
are thus executed. The precedence link that results from the action block transformation is
connected to the join step. When this precedence link is fulfilled (i.e. the last step of the while
action block transformed is executed), the join step is executed again and thus, the condition step
reevaluates its status. If the condition still is TRUE, steps in the while action block are executed
again. To finish the while loop, SaS defines a precedence link, that requires the condition step’s
status to be set to FALSE. Thus, when the condition becomes FALSE, scenario execution can
continue.

Repeat Loop. A repeat loop contains an action block to be executed several times. Fig-
ure 6.9 illustrates the repeat loop transformation. SaS creates an OR join step at the beginning.
Then, we transform the action block and connect it to the join step with a precedence link that
requires the join step to be in the EXECUTED status. We then define a calculus step. We
connect it to the action block transformation with the precedence link that results from the ac-
tion block transformation. This calculus step enables to repeat the set of steps defined in the
action block transformation. To do so, the join step has a precedence link with the calculus
step. The calculus step calculates if the repeat action block has been executed as many times as

124 Chapter 6. Scenario Step-by-Step Execution

Figure 6.8: While loop model transformation

needed. It thus has two output precedence links which correspond to two possible status values:
LOOP_NOT_FINISHED (abbreviated as N_F in the Figure) and EXECUTED (abbreviated as E).

Figure 6.9: Repeat loop model transformation

Conditional Event. In a conditional event action, an action block is executed when a com-
plex condition becomes TRUE. Figure 6.10 illustrates the condition event transformation. The
execution graph produced by the transformation starts with an OR join step. Then, we define a
condition step for the condition. Thereafter, we transform the action block that depends on the
event condition and connect it to the condition step with a precedence link with a TRUE status.
We add to the OR join step a precedence link that points to the condition step with its status set
to FALSE. If the condition step’s status is set to TRUE, the action block is executed. Alternatively
(step’s status set to FALSE), the join step is executed again and its condition step is re-evaluated.
Thus, we iterate the evaluation of the condition until it becomes TRUE.

6.2. Static Scenario Analysis to Prepare its Step-by-Step Execution 125

Figure 6.10: Conditional event model transformation

Time Event. A time event action contains an action block to be executed at a specific date.
Figure 6.11 illustrates the time event transformation. The specific date to execute the action
block is the value of the timeEventValue attribute of the Time Event object. The execution
graph produced by the transformation starts with a calculus step. This step monitors the oc-
currence of a specified time event. The status of this step becomes EXECUTED when the time
event is reached. Then, we transform the action block with a precedence link that points to the
calculus step and requires this step to have the EXECUTED status.

Figure 6.11: Time event model transformation

6.2.1.3 Step Extraction Example

The example scenario (cf. Listing 4.11) is decomposed into 13 steps: 6 invocation steps, 2 con-
dition steps, 4 join steps and 1 calculus step. Figure 6.1 illustrates the scenario execution graph
defined thanks to the model transformation. We detail here all the steps with their corresponding
lines in the example scenario listing.

126 Chapter 6. Scenario Step-by-Step Execution

Step 1: Invocation Step (line 5).

Step 2: Fork Step (begin of the action block executed in parallel).

Step 3: Invocation Step (line 8).

Step 4: Join Step (beginning of the while loop).

Step 5: Condition Step (line 9).

Step 6: Invocation Step (line 10).

Step 7: Condition Step (lines 13 and 14).

Step 8: Invocation Step (line 15).

Step 9: Invocation Step (line 18).

Step 10: Join Step (after the conditional statement).

Step 11: Join Step (after the action block executed in parallel).

Step 12: Calculus Step (line 21).

Step 13: Invocation Step (line 22).

6.2.2 Scenario Execution Life-Cycle
Step division enables SaS to schedule scenario execution. This capability is completed with
a logging system that records scenario step-by-step execution status. In addition, thanks to
step-by-step management, scenario execution is not aborted if a required service becomes un-
available. Moreover, the isolation property of the steps’ execution also ensures that a failed step
will not interrupt the whole scenario execution or alter its other steps.

Scenario execution depends on user actions (e.g. start, pause, etc.) and on environmental
changes (e.g. service appearance, disappearance, etc.). Thus, SaS adapts scenario execution to
these events by changing the running state of the scenario, as specified by its life-cycle. Figure
5.2 depicts the state diagram of the scenario installed state. In this section, we details the
internals of the installed state.

6.2.2.1 Scenario Running

Figure 6.12 depicts the activity diagram the scenario running state. When the scenario is started,
SaS schedules the scenario timeout (selected by the user). SaS-Sdl enables to use jokers for
parameter values. Parameter values not defined at scenario definition must be thus specified at
scenario execution. So SaS replaces the jokers present in operation invocations with their actual
values. Then SaS looks for next steps in the scenario execution graph. At start, the succeeding

6.2. Static Scenario Analysis to Prepare its Step-by-Step Execution 127

steps correspond to the steps that have no precedence link. If the scenario is resumed, the
succeeding steps are the steps previously paused.

For each step of the succeeding step list, SaS checks if its precedence links preconditions are
satisfied. If not, SaS does not treat this step for the moment. If the step has its precedence links
satisfied, SaS checks the step type. If it is a connection step, it does not require any service and
can thus be executed. Instead, if it is an action step, SaS searches for available service instances
in the service directory. The service selection mechanism is detailed in Section 6.3.1.1. If all
required services are available, SaS can execute the step. Instead, to be aware about the missing
service and execute the step when an appropriate service appears, SaS sends a request to track
the required services’ apparition and sets the step’s status to WAITING_SERVICE. Therefore,
SaS knows that this step needs one or more specific services and is waiting for them. When the
requested services become available, SaS executes the step.

Before executing the step, SaS sets the step’s status to IN_EXECUTION. Step execution can
succeed or fail (e.g. in case of service disappearance, etc.). In both cases, SaS sets the step’s
status to the postcondition status value when step execution ends. If execution fails, SaS applies
recovery strategies as that is detailed in Section 6.3.2.2. Instead, if execution succeeds, SaS
checks if the scenario execution is finished. If this is not the case, SaS looks if the executed step
has succeeding steps and the scenario execution continues.

6.2.2.2 Scenario Deployed

A scenario installed, finished or aborted falls in the deployed state. Figure 6.13 depicts the
activity diagram of the scenario deployed state. In this state, SaS initializes scenario execution.
Thus, it resets the scenario steps’ status and the scenario timeout. Then, it removes the joker
values from a previous execution.

Figure 6.13: Activity diagram of the
scenario deployed state

Figure 6.14: Activity diagram of the
scenario paused state

128 Chapter 6. Scenario Step-by-Step Execution

Figure 6.12: Activity diagram of the scenario running state

6.2.2.3 Scenario Paused

A scenario in execution can be paused. Moreover, a scenario automatically aborted traverses
paused state before it returns in the deployed state. Figure 6.14 depicts the activity diagram
of the scenario paused state. When the scenario is paused, SaS first retrieves the steps which
are currently being executed. These steps have their status set to IN_EXECUTION. Steps being
executed are paused: their execution is interrupted, and their status set to PAUSED.

6.2.3 Step Execution

The scenario orchestrator (presented in Section 7.1.1.4) is responsible for scenario execution
and thus, step execution. Steps are executed differently depending on their type. This subsection

6.2. Static Scenario Analysis to Prepare its Step-by-Step Execution 129

presents how the different kinds of steps are executed.

6.2.3.1 Invocation step

An invocation step contains an operation invocation, that SaS tries to execute. If the invocation
is well done, step’s status is set to EXECUTED. If an error appears (e.g. service disappearance),
the step’s status is set to FAILED. Algorithm 1 summarizes the invocation step execution.

Algorithm 1 Step Execution: Invocation Step
1: function executeInvocationStep(InvocationStep step): void
2: try
3: invokeOperationInvocation(step.getExecution())
4: catch(Exception)
5: step.setStatus(FAILED)
6: break
7: end try-catch
8: step.setStatus(EXECUTED)
9: end function

An operation invocation contains values, that can in turn be obtained by operation invoca-
tions. A service is invoked thanks to a ServiceInvocator, that implements a specific protocol
and executes the appropriate service invocation. Algorithm 2 presents how SaS invokes an
operation.

Algorithm 2 Step Execution: Operation Invocation
1: function invokeOperationInvocation(OperationInvocation opInvoc): Object
2: for all (parameter in opInvoc.getParameterList()) do
3: if (parameter.isInstanceOf(OperationInvocation)) then
4: parameter.setValue(invokeOperationInvocation(parameter))
5: end if
6: end for
7: return ServiceInvocator.invokeService(operationInvocation.getServiceInvocation())
8: end function

6.2.3.2 Condition step

A condition step is defined to execute a condition. Its resulting status is the evaluation of the
condition. A condition is defined (cf. Section 4.3) as a unary condition or as a complex condition
that combines conditions either unary or complex (binary tree decomposition). Algorithm 3
describes condition evaluation.

130 Chapter 6. Scenario Step-by-Step Execution

Algorithm 3 Step Execution: Condition Evaluation
1: function evaluateCondition(Condition condition): boolean
2: switch(condition.isType())
3: case UNARY_CONDITION
4: return evaluateUnaryCondition(condition)
5: case COMPLEX_CONDITION
6: return evaluateComplexCondition(condition)
7: end switch
8: end function

If the condition is a unary condition (e.g. line 6 of scenario example from Listing 4.10),
it is defined as a single operation invocation to be compared with a parameter value. SaS re-
trieves the object returned by the operation invocation (thanks to the invokeOperationInvocation
function, seen in Algorithm 2). Then, it calls a function that simply evaluates the expression
(e.g. 25 < 20) and returns a boolean. Algorithm 4 presents how SaS evaluates a unary condition.

Algorithm 4 Step Execution: Unary Condition Evaluation
1: function evaluateUnaryCondition(UnaryCondition condition): boolean
2: OperationInvocation opInvocation = condition.getOperationInvocation()
3: Object object = invokeOperationInvocation(opInvocation)
4: Object parameterValue = condition.getParameter().getValue()
5: return evaluateExpression(returnValue,parameterValue,condition.getComparisonOperator)
6: end function

If the condition is a complex condition, it contains several conditions combined with binary
operators (i.e. AND/OR). SaS evaluates recursively the conditions, traversing the corresponding
binary tree down to unary conditions, calculating their values, and combining them with the
used boolean operator. Then, SaS returns a boolean that represents the condition’s evaluation
value. Algorithm 5 represents the complex condition evaluation.

6.2.3.3 Join step

A join step synchronizes parallel executions, conditional statements and while loops. A join
step is used as a control flow connector and thus has no concrete execution, so its status is
directly set to EXECUTED.

6.2.3.4 Calculus step

A calculus step can contain a time event value (defined for a time event action) In this case, SaS
simply sets the step’s status to EXECUTED when the specified time has elapsed. Alternatively,
SaS also uses a calculus step for repeat loops (e.g. (repeat n times)), where it is placed at

6.3. Dynamic and Adaptive Service Invocation 131

Algorithm 5 Step Execution: Complex Condition Evaluation
1: function evaluateComplexCondition(ComplexCondition cplxCondition): boolean
2: boolean cplxCdtnValue = evaluateCondition(cplxCondition.getConditionList(0));
3: for (int i=1; i<binCondition.getConditionList().size(); i++) do
4: boolean binCdtnValue = evaluateCondition(cplxCondition.getConditionList(i))
5: switch(cplxCondition.getBinaryOperatorList(i-1))
6: case AND
7: cplxCdtnValue = (cplxCdtnValue AND binCdtnValue)
8: case OR
9: cplxCdtnValue =(cplxCdtnValue OR binCdtnValue)

10: end for
11: return cplxCdtnValue
12: end function

the end of the action. In this case, the join step calculates how many times the loop has been
executed. If the loop is not finished, the join step’s status is set to NOT_FINISHED. Instead, it is
set to EXECUTED.

Synthesis. In this section, we detailed how SaS transforms a scenario description to obtain a
scenario execution graph that enables a step-by-step execution management. During scenario
execution, SaS needs to invoke services. To do so, it is provided with a directory of available
services. Next section is dedicated to the selection and the invocation of services during scenario
execution.

6.3 Dynamic and Adaptive Service Invocation
Step-by-step execution enables, inter alia, to execute a scenario even if all required services are
not present. Thus, a scenario can be executed in different places over time. This implies that
service invocation has to be dynamic and adapt to environmental changes. Scenario execution
can thus leverage as many resources provided by the environment as possible.

6.3.1 The Service Broker

A scenario is composed of service invocations. Therefore, executing a scenario implies to
invoke appropriate services. Service invocation can be independent of the provider devices (use
of the keyword any in scenario definition, cf. Section 4.3.2). Additionally, users can define
a scenario at a moment in a certain place and decide to (re)execute it later in another place.
Thus, a service that is present at scenario definition (discovered with a specific protocol) may
be missing at scenario execution, but another one (provided by another device with another
protocol) can be a substitute. Therefore, service invocation has to be adaptive. This implies to

132 Chapter 6. Scenario Step-by-Step Execution

dynamically select an appropriate available service. To do so, SaS uses a service broker. This
service broker is responsible for service matchmaking and invocation.

6.3.1.1 Service Matchmaking

The pervasive system must select a concrete service that matches with an abstract service de-
scription present in the service composition (i.e. the scenario). This is service matchmaking,
which is primordial in service composition. Service matchmaking implies to find an available
service instance available that proposes the same functionalities as a service description. If sev-
eral possibilities exist, the pervasive system must select the best one according to their quality
of service.

Service selection by service functionality. SaS selects services independently of their tech-
nology or management protocol. This enhances interoperability. Discovered services are tran-
scribed into SaS-Sdl (cf. Listing 4.2) and registered in the service directory. SaS looks for
appropriate services in this directory. This search depends on the scenario definition. Users can
use a quantifier (any / all) or define a service filter (cf. Section 4.3.2). The selection of services
according to the functional properties is based on the exact syntactic match between the service
description provided by suppliers and the operation invocation required by the consumer. For
instance, when SaS searches for an available service inside the service directory example from
Listing 4.8, that corresponds to the operation invocation Kitchen_Lights.SwitchPower.GetTarget(),
it finds that a SwitchPower service ,that has been, discovered with UPnP corresponds.

Quality of service. Service selection depends on a quality of service criterion. Quality of ser-
vice relates to both service characteristics and user preferences. Moreover, a pervasive system
should learn from invocation errors to adapt and improve service selection.

Distance preference policy. Since we do not specify a specific network protocol, it is
difficult to take into consideration technical aspects such as bandwidth. However, SaS applies
a preference policy based on the distance of the service implementation locations to select
services. SaS thus prefers closer services (that we assume to be supposedly easier to reach).
The preference order is:

1. Local services.

2. Directly reachable services (discovered by the platform).

3. Services shared by another platform (cf. Section 5.2.2.3).

Service category preference policy. Users can also define service preferences based on
categories (cf. Section 4.2.2). Available services registered in a category are considered as

6.3. Dynamic and Adaptive Service Invocation 133

preferable to uncategorized services from devices.

Service invocation error learning. Services can be discovered as being available and fail
to answer (or return errors). SaS learns from these errors and blacklists the more frequently
faulty services. Such service instances are therefore not invoked anymore. SaS achieves this by
creating a specific service category named blacklist. Users can easily see the blacklisted service
instances and therefore modify the list.

Service equivalence. If a required service is not available, an equivalent service can be used
instead. Selection of an equivalent service is handled by these ordered strategies:

1. Same service but without required properties (use of a filter for service invocation).

2. Same service but not from the chosen device.

3. Same service but without required properties and not from the appropriate device.

6.3.1.2 Service Invocation

A SaS platform can implement several discovery protocols. The components deployed on a
SaS platform that enable to discover services are also responsible for their invocation. We
name these components gateways. Thus, a gateway that discovers a service, registers it into the
service directory along with its used protocol. When the service broker searches for an available
service corresponding to a service description, it can therefore retrieve which gateway to use
for service invocation. We distinguish two types of invocations:

• Direct invocations (local or remote services). A gateway directly retrieves and invokes
the service instance that it discovered previously.

• Shared Service Invocation. SaS platforms can share service access thanks to the Collab-
orate service (cf. Section 5.2.2.5). Thus, the broker tries to remotely invoke the service
operation through the Collaborate service.

Figure 6.15 illustrates how the service broker interacts with the service directory and gate-
ways. To manage the service directory, SaS provides a Service Directory Manager. It is re-
sponsible for the management (create, read, update and delete) of service descriptions into the
service directory. This figure details that gateways interact with the Service Directory Manager
which maintains the service directory updated and enables the service broker to invoke services.

6.3.2 Scenario Fault-Tolerance Mechanisms
Because of both mobility and use of wireless networks, services may disappear, even for a few
seconds. The system has to handle these interruptions, especially when the disappeared services
are involved in a running scenario.

134 Chapter 6. Scenario Step-by-Step Execution

Figure 6.15: Service broker: service matchmaking and invocation

Our idea is to support different strategies to maintain scenario execution on the top of the
step-by-step scenario execution mechanism. The strategies we chose are based on the work
of Mikic-Rakic and Medvidovic [54] presented in Section 3.4.1.2. SaS uses these strategies
to anticipate and / or repair faults. Anticipation strategies are based on the service role in the
scenario. Whereas, recovery strategies depend on the nature of the fault.

6.3.2.1 Anticipation Strategies

SaS proposes strategies to anticipate the loss of a service.

• Caching. In SaS, when an operation invocation is present several times in a scenario and
returns something, the result of its first invocation is cached. The cached result is used
when the operation invocation must be invoked again and there is no available service
instance that corresponds to the operation invocation.

• Hoarding. A condition step that has several conditions to evaluate requires the simultane-
ous presence of several services. If a condition step precondition is not satisfied because

6.4. Synthesis and Conclusion 135

of the absence of one or several services, the available services also required by this pre-
condition are hoarded. Thus SaS invokes the requested operations for available services
and caches their results. The cached results are used if the services that were not available
appear while the previously invoked ones are no longer available.

• Replication. Replication is adapted for a scenario shared by another platform because we
can replicate it by getting its scenario description file and deploying it. Thus, when the
invoked service is a scenario (SaS recognizes scenarios from simple services), SaS tries to
replicate it. SaS gets it description file (when possible) and locally redeploy the scenario
if it becomes unavailable. If the shared scenario is updated, the corresponding service is
also updated. SaS then retrieves the new version of the scenario descriptor.

• Queuing. In SaS, when a needed service is not available, the status of the corresponding
step is set to WAITING_SERVICE. Thus, the corresponding service invocation (inside the
step) is queued, until an appropriate service instance appears.

6.3.2.2 Recovery Strategies

Step execution can fail, and several reasons can cause these failures (cf. Section 6.1.2.2). De-
pending on the error, SaS applies different recovery strategies:

• Service invocation error. If the error persists after several attempts, SaS tries to invoke
another service instance that can replace it.

• Service disappearance. If the service reappears in the specified elapsed time, SaS tries
to re-invoke the service instance. If the service disappears again, this service instance is
blacklisted. It will not be invoked anymore for this scenario and marked as too volatile in
the service directory. Thus, SaS tries to find the same service or an equivalent.

• Unreachable service. SaS specifies a service invocation timeout. If a service does not
answer after the specified elapsed time, SaS tries to re-invoke the service instance. After
several attempts, this service instance is blacklisted. It will not be invoked anymore for
this scenario and marked as unreachable in the service directory. Thus, SaS tries to find
the same service or an equivalent. The owner of the SaS platform can remove the service
from the blacklist whenever he/she wants.

6.4 Synthesis and Conclusion
This chapter concludes the presentation of our contribution and of SaS’s mechanisms to execute
a scenario. They are designed to schedule scenario execution and to dynamically adapt it to
environment changes. Thus, SaS proposes a dynamic and adaptive service invocation scheme
and scenario recovery strategies.

136 Chapter 6. Scenario Step-by-Step Execution

6.4.1 Scenario Execution Scheduling

In Section 6.1, we define a scenario execution model, which is an execution graph. Such a
graph specifies the operational semantics of the execution steps and can be compared to Petri
nets [85] or finite-state machines [74]. This graph enables SaS to calculate and anticipate the
consequences of step execution. To schedule scenario execution, SaS realizes a model transfor-
mation, from the scenario description model to the scenario execution model.

Advantages of scenario execution scheduling by SaS:

+ Scenario execution scheduling enables to adapt scenario execution to pervasive environ-
ment and its evolution. Scenarios can be partially executed, suspended and then resumed
when all the required services are not available.

+ Scenario execution scheduling adapts to users’ mobility and enables to execute a scenario
in several times and several places.

Limits of scenario execution scheduling by SaS:

- SaS enables step-by-step scenario execution but scenario execution is managed by a sin-
gle platform at a time. It could be interesting, once the scenario has been scheduled in
different steps, to distribute the steps execution on several platforms.

- A scenario can imply contradictory orders. We could implement static semantic analysis
to avoid scenario execution conflicts.

6.4.2 Dynamic and Adaptive Service Invocation

SaS dynamically selects the services to invoke according to preference rules, that take into
account quality of service. Furthermore, SaS defines some fault-tolerance mechanisms that
enhance scenario execution resilience.

Advantages of dynamic and adaptive service invocation in SaS:

+ SaS uses a service broker that enables to dynamically adapt to environmental changes.
Moreover, interoperability support enables that a service discovered with a protocol and
used by the user for scenario creation may be replaced by a corresponding service, dis-
covered with another protocol, at scenario execution.

+ SaS applies different service recovery strategies depending on the service role inside the
scenario.

6.4. Synthesis and Conclusion 137

Limits to dynamic and adaptive service invocation in SaS:

- Service matchmaking in SaS requires that services specify the same semantic contract.
Service matchmaking thus only relies on syntactic functional correspondence. It could be
interesting to look at solutions, such as Larks (Language for Advertisement and Request
for Knowledge Sharing) [77], which propose service description languages that use local
domain ontologies. Such solutions consider service advertising and request and performs
both syntactic and semantic matchmaking.

6.4.3 Requirement Fulfillment
This chapter details how SaS fulfills a functional sub-requirement: scenario execution resilience
(R3.b). Table 6.1 synthesizes SaS’s functionalities that meet this sub-requirement.

Functional Functionalities
Requirement Associated

R3.b SaS schedules a step-by-step scenario execution
Scenario that enables to adapt to environmental changes
execution and to users’ mobility. Additionally,
resilience SaS proposes fault-tolerance strategies.

Table 6.1: Fulfillment of the sub-requirement R3.b detailed in Chapter 6

Chapter 7

Implementation and Validation

Contents
7.1 The SaS’ prototype . 139

7.1.1 Architecture . 140

7.1.2 Insights into the SaS’ prototype . 149

7.2 Experimentations . 155

7.2.1 Reports on Experiments . 155

7.2.2 Experimental Validation . 159

The three previous chapters presented all SaS functionalities we proposed to respond to the
requirements of a user-centric pervasive system. Chapter 4 presents how SaS enables users
to represent their environment and define scenarios. Chapter 5 details scenario management.
Chapter 6 is dedicated to scenario execution resilience. It presents the scenario step-by-step
execution mechanisms which provide mobile execution and enable to adapt to environmental
changes.

This chapter describes the design and implementation of the SaS’ prototype and presents
a report on experiments that evaluate our contribution. It is organized as follows. We present
SaS’s prototype architecture and detail the design of the main SaS’s functionalities. Then, a
second section is dedicated to our experiments. It evaluates our contribution, regarding to the
requirements that we established in Section 2.2.

7.1 The SaS’ prototype

SaS’s prototype has been implemented over industrial standards to prove the feasibility of our
contribution. Moreover, this enables to conduct experiments to evaluate our work (cf. Sec-
tion 7.2). The prototype conforms to the Service-Oriented Component architecture [14]. In this
section, we first introduce SaS’s prototype model and present all its components. These compo-
nents can be composite components. In this case, we simply use the composite word. Then, we
detail the different mechanisms they implement (such as context management, scenario control,
etc.).

140 Chapter 7. Implementation and Validation

7.1.1 Architecture
The architecture of the prototype is illustrated by Figure 7.1. We can see that the prototype
comprises seven composites. The following subsections present SaS’s architecture and its com-
posites.

7.1.1.1 Gateway

Gateways enable to discover and invoke services. They implement a specific protocol. A gate-
way is divided into two sub-composites: the gateway listener that listens to service events, and
the gateway communicator, which interacts with other devices in the environment. Figure 7.2
illustrates the gateway as a composite, with its two sub-composites.

Service listener. This component listens for service events (i.e. service appearance, disap-
pearance or update) from the environment. It is used for service discovery at SaS’s start and
then service event monitoring. Thanks to this component, SaS is aware about the presence of
services (that implement a specific protocol) in the environment.

Gateway manager. The gateway manager receives service events and service descriptions
from the service listener. Service descriptions depend on the protocol implemented by the
gateway. Thus, the gateway manager sends service descriptions to the service declarator in
order to translate it into SaS-Sdl. Then, the gateway manager updates the service directory.

Service declarator. The service declarator is protocol specific. Its role is to translate a
service description from a protocol to a service description into SaS-Sdl.

Service instance invoker. Surrounding devices propose functionalities through services. The
service instance invoker enables to invoke them.

Service exporter. SaS platforms can collaborate by proposing services to surrounding plat-
forms. To do so, the service exporter enables to export a service. This component thus
receives requests from surrounding SaS platforms, and dispatches these requests through the
collaborate service provided by the platform collaborator manager (described later in
this section).

7.1.1.2 Context Manager

The context manager is responsible for managing context awareness and must enable users
to model context as they wish. SaS’s context directory contains three directories. The context
manager composite maintains directories through its directory manager components. More-
over, SaS enables users to define environment elements categories. The context manager
composite also contains components to manage categories.

7.1. The SaS’ prototype 141

Figure 7.1: SaS’s prototype model

142 Chapter 7. Implementation and Validation

Figure 7.2: Gateway composite

In a pervasive environment SaS discovers services. These services can be a Collaborate
service that enables, inter alia, to discover surrounding platforms. To do so, the context
manager composite contains two awareness manager components dedicated to services and
platforms. Scenarios are not directly discovered from the environment but proposed through the
Collaborate service. Therefore, the context manager composite does not contain a platform
awareness manager component. Figure 7.3 depicts the context manager composite, with its
eight sub-components.

Service awareness manager. The service awareness manager component enables the
many deployed gateways to update the service directory.

Platform awareness manager. Platforms can export a Collaborative service. Thus, the plat-
form awareness manager listens for appearance (or disappearance) of other platforms. When a
platform event occurs, the platform awareness manager component updates the platform
directory.

Service directory manager. The service directory manager component is responsible
of the service directory. It enables to create, read, update and delete service descriptions in the
service directory.

Scenario directory manager. The scenario directory manager component is responsi-
ble of the scenario directory. It enables to create, read, update and delete scenario descriptions
in the scenario directory.

Platform directory manager. The platform directory manager component is responsi-
ble of the platform directory. It enables to create, read, update and delete platform descriptions
in the platform directory.

7.1. The SaS’ prototype 143

Figure 7.3: Context manager composite

Service category manager. The service category manager component enables to cre-
ate, read, update and delete categories in the service directory. Typically, it enables to retrieve
all the services registered under a specific category or add a service description to an existing
service category.

Platform category manager. The platform category manager component enables to cre-
ate, read, update and delete categories in the platform directory.

Scenario category manager. The scenario category manager component enables to cre-
ate, read, update and delete categories in the scenario directory.

7.1.1.3 Scenario Orchestrator Manager

The scenario orchestrator manager composite is responsible for scenario management.
Once a scenario has been defined and memorized as a scenario description file, this compos-
ite enables to deploy the scenario. This deployment is realized by the dynamic generation

144 Chapter 7. Implementation and Validation

of a scenario orchestrator composite. Figure 7.4 depicts the scenario orchestrator
manager composite. We can see that the composite is composed of two components.

Figure 7.4: Scenario orchestrator manager composite

Scenario manager. The scenario manager enables users to install and uninstall a scenario.
It handles the dynamic generation of a corresponding scenario orchestrator composite
which is responsible for scenario execution. Moreover, scenario manager component is also
responsible for the scenario orchestrator destruction (when the scenario is uninstalled).

Scenario analyzer. The scenario analyzer comprises all scenario execution scheduling
mechanisms (detailed in Section 6.2) such as step extraction.

7.1.1.4 Scenario Orchestrator

A scenario orchestrator composite is responsible for the control of a scenario. There
is one scenario orchestrator composite per deployed scenario. Figure 7.5 describes the
scenario orchestrator composite. We can see that the composite is composed of six com-
ponents.

Scenario controller. The scenario controller enables users to control a scenario. To
do so, it publishes a service into the platform service repository that holds operations to in-
teract with scenario execution (cf. Section 5.1.3). Depending on the operation invoked by the
user (start, stop, pause, resume), the scenario controller executes, pauses or cancels the
scenario steps.

7.1. The SaS’ prototype 145

Figure 7.5: Scenario orchestrator composite

Step manager. The step manager component manages scenario steps. It handles the se-
lection of the scenario steps to be executed depending on the occurrence of different events
(required service availability, user control, etc.). It uses the scenario step list to calculate and
anticipate step execution.

Service checker. A step is executable when its preconditions all are satisfied. When a step
has its precedence links satisfied, SaS evaluates the service presence preconditions. Thus, the
service checker components checks if there are available instances for the required services.

Fault anticipator. The fault anticipator component implements the fault anticipation
strategies (detailed in Section 3.4.1.2). Typically, when a service is invoked several times in-
side a scenario, the fault anticipator caches the first invocation result to reuse it (when
necessary) later in the scenario.

Scenario Log Manager. The scenario log manager component maintains the log of the
scenario execution state. To do so, it provides a Log service that enables to log any scenario
status change. It is used by the step manager component. The scenario log manager

146 Chapter 7. Implementation and Validation

component enables to retrieve the log, through the Log service. This enables users, inter alia, to
check scenario execution advancement.

7.1.1.5 Step Execution Manager

The step execution manager composite is responsible for step execution resilience. Fig-
ure 7.6 describes it. We can see that the step execution manager composite contains two
components. One is responsible for step execution (step executor) and the other for recov-
ering execution if a problem occurs (step recovery manager).

Figure 7.6: Step execution manager composite

Step executor. The step executor component tries to execute a step that has its precondi-
tions satisfied. It contains the different algorithms to execute a step (detailed in Section 6.2.3)
that depend on the step type. Executing an action step involves invoking services. The compo-
nent uses the service broker composite to do it.

Step recovery manager. The step recovery manager component is responsible for step
resilience. When a problem occurs during step execution, the step recovery manager ap-
plies one of the different recovery strategies (detailed in Section 6.3.2) according to the nature
of the error.

7.1.1.6 Service Broker

The service broker composite is responsible for searching service instances that correspond
to required services and to invoke them. Figure 7.7 presents the service broker compos-
ite. Two components constitute the composite: the service selector that searches service
instances and the service invoker that invokes service instances.

7.1. The SaS’ prototype 147

Figure 7.7: Service broker composite

Service selector. The service selector component searches for available service instances
that match a given operation invocation specification. To do so, it uses the service provided by
the service category manager to retrieve the corresponding available service list. If the
operation is a scenario control operation, the service selector looks up in the scenario di-
rectory instead. The service selector component then uses a selection algorithm (detailed
in Section 6.3.1.1) to choose services corresponding to the request.

Service invoker. The service invoker component is responsible for service invocation.
SaS registers the service description in the service directory with a property specifying the
protocol used to reach the service instance. Thus, the service invoker selects the appropriate
gateway (that provides a InvokeServiceInstance service) to invoke the service instance. Then it
returns the result of the service invocation or an error if it does occur.

7.1.1.7 Platform Collaborator Manager

The platform collaborator manager composite is responsible for platform collaboration
management. It enables to share scenarios and services with other platforms thanks to a spe-
cial service called Collaborate. Figure 7.8 depicts the platform collaborator manager
composite. Its six components are detailed in this subsection.

Sharing manager. The sharing manager component manages scenario and service shar-
ing. It receives the chosen access rights, specified thanks to the scenario sharing manager
and service sharing manager components and shares scenarios and services with the se-
lected platforms.

148 Chapter 7. Implementation and Validation

Figure 7.8: Platform collaborator manager composite

Platform collaborator. The platform collaborator component provides the special Col-
laborate service (cf. Section 5.2.2). To export this service in the environment, and make it
available for surrounding platforms, the platform collaborator component uses the Ex-
portService service provided by available gateways. Then, other platforms that want to share
a scenario (resp. a service) and/or invoke a scenario (resp. a service) can use this Collaborate
service.

Context collaborator. When a surrounding platform invokes the Collaborate service to share
a scenario (resp. service), the context collaborator component updates the scenario (resp.
service) directory to propose the new scenario (resp. service) to users.

Local service invoker. When a surrounding platform invokes the Collaborate service to in-
voke a scenario (resp. a service), the local service invoker component invokes the appro-
priate scenario (resp. service) which is locally installed and has been shared.

7.1. The SaS’ prototype 149

Scenario sharing manager. The scenario sharing manager component enables to share
a scenario. It proposes a service to define the access rights for a platform (or a platform cate-
gory) and for a specific scenario.

Service sharing manager. The service sharing manager component enables to share
access to local services. It proposes a service to attach selected services to a platform (or a
platform category).

7.1.2 Insights into the SaS’ prototype
This section describes the implementation of SaS’s prototype. SaS’s prototype is implemented
in Java over OSGi [59] with iPOJO [27]. OSGi is a popular development framework that is
widely adopted by industry developers to create Java components called bundles. iPOJO is
based on OSGi and conforms to the Service-Oriented Component Model [14]. We detailed
these two frameworks in Section 3.5. We first introduce the prototype and then present all SaS’s
mechanisms that enable users to control a pervasive environment.

7.1.2.1 SaS over the OSGi platform

As explained in the previous section, SaS’s prototype model follows the Soc architecture and
thus, is made of components. Each component is implemented as an OSGi bundle in order to be
easily and safely administrated at runtime by the OSGi platform. The OSGi platform proposes
a service registry, that bundles use to register and retrieve services. On the top of OSGi, iPOJO
provides an API to dynamically generate components and create composites.

7.1.2.2 Context Awareness

Service discovery. Service discovery is handled by gateway composite (cf. Section 7.1.1.1).
Services can be local (locally registered by bundles installed on the OSGi platform) or provided
by other devices (through a network protocol). Thus, we have developed two gateway compos-
ites: one that listens to and invokes local services and another one that implements the UPnP
protocol (detailed in Section 3.2.1.2).

For the UPnP gateway we use a bundle provided by the Apache Felix project [3] that imple-
ments the UPnP protocol. This bundle listens for surrounding UPnP devices. When it discovers
a new UPnP device (that provides UPnP services), the bundle registers in the OSGi registry a
corresponding OSGi service. Thus, the service listener component of the UPnP gateway
listens for service events provided by this bundle in the OSGi registry. When a service event
occurs, SaS queries the service to retrieve the UPnP service description. Then, the service
declarator component in the gateway composite translates the UPnP service description
into a SaS-Sdl service description.

The service awareness manager component (cf. Section 7.1.1.2) provides a service that
enables gateways to signal service events. Gateways transmit the nature of the events (service

150 Chapter 7. Implementation and Validation

appearance, disappearance or update) and the description of the related service. The service
awareness manager uses the service directory manager component to update the service
directory. In addition, the service awareness manager component provides a TrackService
service. This service enables components to track the availability of a specific service. When
this service appears, the service awareness manager component sends a message to the
component which is waiting for the service.

Platform discovery. The platform awareness manager uses the TrackService service to
track surrounding SaS platforms. SaS platforms can provide a Collaborate service (to manage
collaborations). The platform awareness manager tracks this kind of service. When a
new collaboration service appears, the platform awareness manager retrieves its associated
platform identifier and user name (provided in the service properties) and sends a message to
the platform directory manager which can update the platform directory.

7.1.2.3 Context Management

The directories, dedicated to the environment elements (services, platforms and scenarios),
are handled by three components (service directory manager, platform directory
manager and scenario directory manager) that have a similar role: manage their ded-
icated directory (cf. Section 7.1.1.2). They all provide a service that enables to update the
directories.

To avoid duplicates, the directories manager checks if a environment element description
is already registered before adding it into the corresponding directory. Moreover, environment
elements can be categorized, which enables users to better define and reuse elements of the
context. Categories are like tags (an environment element can be linked to several categories).
The categories associated with an environment element are listed in their descriptors.

Categorization is also used for registering and retrieving available environment elements.
The presence of a service (resp. a platform) is transcribed by a special category available.
Thus, when the service (resp. platform) awareness manager sends a message to update
the service (resp. platform) directory, the service (resp. platform) directory manager
adds or remove the available category tag in the service (resp. platform) directory.

The context representation manager composite contains three components that en-
able to create, read, update and delete categories in the directories: the service category
manager, the platform category manager and the scenario category manager.

7.1.2.4 Scenario Definition

SaS-Sdl is implemented with Xtext [7]. Xtext is a framework for developing domain-specific
languages (DSLs). It enables to generate a parser for the concrete textual syntax of the language
(source code) and a class model that implements the concepts of its abstract, conceptual syntax.
Moreover, based on these two elements, XText generates a customizable Eclipse-based IDE

7.1. The SaS’ prototype 151

dedicated to SaS-Sdl. Thus, users can benefit of Eclipse features such as syntax coloration and
dynamic syntax checking. As a scenario description file is a simple text file, users can also
define a scenario with their favorite text editor. In this case, scenario syntax checking is done
during scenario deployment.

7.1.2.5 Scenario Installation

To install a scenario, SaS dynamically generates a scenario orchestrator composite which
is responsible for scenario execution. Additionally, to uninstall the scenario, SaS uninstalls the
corresponding scenario orchestrator composite. This is the responsibility of the scenario
orchestrator manager composite (cf. Section 7.1.1.3). To do so, SaS uses an API provided
by iPOJO that enables to create a composite of component instances. This composite can be
dynamically deployed and removed on the OSGi platform.

A scenario orchestrator composite is specific to the scenario that it controls. Thus,
SaS needs to analyze the scenario to create a corresponding scenario orchestrator com-
posite.

Scenario analysis. The scenario analyzer component extracts the scenario steps. The
scenario description file parser is implemented with Xtend [25]. Xtend is a programming lan-
guage implemented on top of Xtext. It enables to parse a file defined in a language implemented
with Xtext. Thus, thanks to Xtend, and the SaS-Sdl implemented with Xtext, the scenario an-
alyzer parses the description file to obtain an instance of the SaS meta-model (e.g. something
similar to the one illustrated by Figure 4.8). Then, the scenario analyzer component tra-
verses the scenario model and transforms it into a step-by-step execution graph.

To do so, SaS applies model transformation algorithms. Algorithm 6 depicts the conditional
statement transformation. The conditional statement action contains a condition and two action
blocks. The condition step is created on line 3. On line 4, SaS adds to the condition step
the precedence link returned from the previous transformation (received as parameter in the
transformation function). On line 5, SaS adds to the step’s precedence link list a link to the
condition step (with the required status). Thus, the step required by the condition step knows
that the condition step needs its execution. The condition step has for execution attribute value
the complex condition (line 6). Then SaS adds the condition step to the scenario step list (line
7). Then, we transform the two action blocks (then - else) of the conditional statement (lines 9
to 12). These transformations are done with a precedence link pointing on the condition step
but with different required status (TRUE or FALSE). Transformations return two precedence
links that we attach to an OR join step (lines 15 and 16). As for the conditional step, we retrieve
the steps from these two precedence links and attach to them a link that points to the join step
(lines 17 and 18). Finally, a precedence link that requires the join step to be executed is defined
and returned (lines 20 and 21).

All the transformation algorithms are depicted in Section A, in Appendices. Steps con-
tain their succeeding steps. Thus, the scenario execution graph that results from the scenario

152 Chapter 7. Implementation and Validation

Algorithm 6 Scenario Steps Extraction: Conditional Statement Transformation
1: function transformCondStatement (Action action, PrecLink precLink, StepList scenar-

ioStepList) : PrecLink
2: begin
3: ConditionStep conditionStep = new ConditionStep
4: conditionStep.setPrecedence(precLink)
5: precLink.getStep().addNextStepLink(conditionStep,precLink.getStatus())
6: conditionStep.setExec(action.getCondition())
7: scenarioStepList += conditionStep
8:

9: PrecLink thenPrecLink = transformActionBlock(action.getThen(),
10: new PrecLink(conditionStep,TRUE), scenarioStepList)
11: PrecLink elsePrecLink = transformActionBlock(action.getElse(),
12: new PrecLink(conditionStep,FALSE), scenarioStepList)
13: JoinStep joinStep = new JoinStep
14: joinStep.setJoinMode(OR)
15: joinStep.addPrec(thenPrecLink)
16: joinStep.addPrec(elsePrecLink)
17: thenPrecLink.getStep().addNextStepLink(joinStep,thenPrecLink.getStatus())
18: elsePrecLink.getStep().addNextStepLink(joinStep,elsePrecLink.getStatus())
19: scenarioStepList += joinStep
20: precLink = new PrecLink(joinStep, EXECUTED)
21: return precLink
22: end

description transformation, is conserved in the form of a step list.

Scenario orchestrator creation. The scenario manager component dynamically gener-
ates a scenario orchestrator composite and its inner components thanks to the iPOJO
API (cf. Section 7.1.1.4). Listing 7.1 shows a code excerpt of the scenario orchestrator com-
posite creation. It illustrates how the iPOJO API is used to create three components (fault
anticipator, scenario log manager and service checker) and the scenario orches-
trator composite that contains the components. The fault anticipator component has a
service dependency: the CheckServicePresence service provided by the service checker
component. Moreover, it provides an AnticipateFault service. The scenario log manager
component provides a Log service. The service checker component has two dependencies:
the TrackService and SearchService services, both provided by the service broker com-
posite. It also provides a CheckServicePresence service. iPOJO uses dependency injection to
provide components with their required services. The scenario name, used as a property, is used
to select the right pair of components to be connected.

7.1. The SaS’ prototype 153

Then, we create the scenario orchestrator composite with two instances of the previ-
ously defined components. The composite exports the Log service provided by the Scenario
Log Manager component. Then, we register the composite instance inside a scenario orchestrator
composite list. Thus, when the user wants to uninstall the scenario, we retrieve the associated
scenario orchestrator composite and we delete it.

1 //Create Fault Anticipator component
2 PrimitiveComponentType faultAnticip = new PrimitiveComponentType();
3 faultAnticip.setClassName(IFaultAnticipator.class.getName());
4 faultAnticip.addService(new Service().addProperty("ScenarioName", scenarioName));
5 Dependency checkServiceDependency = new Dependency().setField(checkService)
6 .setFilter(ScenarioName=scenarioName);
7 faultAnticip.addDependency(checkServiceDependency);
8 faultAnticip.addService(new Service().addProperty("ScenarioName", scenarioName));
9

10 //Create Scenario Log Manager component
11 PrimitiveComponentType scenarLogMngr = new PrimitiveComponentType();
12 scenarLogMngr.setClassName(IScenarioLogManager .class.getName());
13 scenarLogMngr.addService(new Service().addProperty("ScenarioName",scenarioName));
14

15 //Create Service Checker component
16 PrimitiveComponentType serviceChecker = new PrimitiveComponentType();
17 serviceChecker.setClassName(IServiceChecker .class.getName());
18 serviceChecker.addService(new Service().addProperty("ScenarioName",scenarioName));
19 serviceChecker.addDependency(new Dependency().setField(trackService));
20 serviceChecker.addDependency(new Dependency().setField(searchService));
21

22 //Create Scenario Orchestrator composite
23 CompositeComponentType composite = new CompositeComponentType();
24 composite.addInstance(new Instance(faultAnticip.getFactory().getName()));
25 composite.addInstance(new Instance(scenarLogMngr.getFactory().getName()));
26 composite.addInstance(new Instance(serviceChecker.getFactory().getName()));
27 composite.addService(new ExportedService().setSpecification(IScenarioLogManager));
28 ComponentInstance instance = composite.createInstance(scenarioName);
29

30 //Register the scenario orchestrator composite
31 scenarioCompositeList.add(instance);

Listing 7.1: Extract of scenario orchestrator composite creation

The scenario orchestrator composite also exports a service provided by the scenario
controller component. This service holds the scenario name as a property. It can thus be
easily differentiated from the other scenarios registered as services. The dynamically gener-
ated Step Manager component contains the scenario step list (previously computed), which
represents the scenario execution graph.

7.1.2.6 Scenario Execution

The scenario orchestrator composite provides a service to control scenario execution. In
this subsection, we detail how scenario execution is managed.

Scenario control. When the user invokes a scenario control operation, the scenario controller
component (cf. Section 7.1.1.4) checks if the operation is not contradictory with the scenario sta-
tus (e.g. a user tries to stop a scenario which is not running). Then, if the operation is relevant,

154 Chapter 7. Implementation and Validation

the scenario controller component sends a message to the step manager component.
The step manager components adapts scenario execution depending on user control and logs
the new scenario status.

Scenario execution. When a scenario is running, the step manager executes the scenario as
detailed in Section 6.2.2. To search a service instance, the step manager sends a message
to the service checker component. To execute a step, the step manager invokes the Exe-
cuteStep service provided by the step execution manager composite. The step executor
component receives the step to execute. Depending on step’s type it tries to execute it by in-
voking some services If an error does occur during service invocation, the step recovery
manager component applies the appropriate recovery strategies (detailed in Section 6.3.2) and
may blacklist a service in the service directory when necessary.

7.1.2.7 Collaborate

SaS platform can provide a Collaborate service to other platforms. This service enables the
platform to be detected by surrounding platforms and to share scenarios and services. This
service is provided by the platform collaborator component, and exported to the envi-
ronment by gateway components installed on the platform (cf. Section 7.1.1.7). Reciprocally,
these gateway components are used by the platform to detect the Collaborate services exported
by the surrounding platforms. Thanks to these Collaborate services, the SaS platform collects
information about the environment and proposes a representation of surrounding platforms to
users. Users can personalize this representation by grouping platforms into categories. In addi-
tion, users can decide to share scenarios that they have locally or services locally accessible by
assigning access rights to surrounding platforms.

Depending on the access rights defined, thanks to the scenario sharing manager and
the service sharing manager components, the sharing manager component retrieves and
invokes the Collaborate service target to the selected platform to share scenarios and/or services
with it.

Users can select a platform (or a platform category) even if it is not available in the environ-
ment. Thus, the sharing manager component listens for platform events. When a platform
selected for sharing appears, the sharing manager invokes its Collaborate service.

Users can share a service which is currently not available. In this case, the sharing
manager adapts its sharing depending on the service presence (i.e. the service is not shared
while it remains unavailable). Thus, it checks the service presence thanks to the ListenSer-
viceEvent service. Similarly, a scenario which is initially shared by the user is automatically
not shared anymore when the user uninstalls it.

7.2. Experimentations 155

7.2 Experimentations

Using the prototype described previously, we ran experiments to prove the feasibility of our
contribution. Moreover, these experiments were used to evaluate SaS on some use cases.

7.2.1 Reports on Experiments

In this sub-section we present the different experiments. Each experiment is dedicated to a SaS
prototype functionality.

7.2.1.1 Environment Simulation

The physical environment. To simulate pervasive environments, we connect three PC ma-
chines by WI-FI. These machines embedded a Java Virtual Machine that enabled to launch
the SaS prototype (based on the Apache Felix platform [3]). Each machine proposed several
services locally and to the network. Moreover, we have launched distinct prototype instances
on the same machine. We simulated users’ mobility by the connection (or disconnection) of a
machine that proposed about a dozen services. Thus, the SaS platform had an environment that
evolves as if it is moving into different locations.

The devices simulation. Experimentations are, inter alia, based on the Domus simulator,
developed by our team, and implemented in JavaFX. Domus, illustrated in Figure 7.9, simulates
a smart-home that contains UPnP devices (light, washing machine, air conditioning, shutter,
radiator and thermostat). It proposes a realistic interactive view which enables to control directly
the UPnP devices by clicking on them. UPnP devices are implemented in Java thanks to the
CyberLink project for Java1.

To vary the origins of the UPnP devices we also used the Developer Tools for UPnP Tech-
nologies software. This software proposes UPnP devices (e.g. light device that proposes a
DimmableLightService) and tools to detect UPnP devices in a network and observe UPnP mes-
sages sent through the network. This software is based on Intel UPnP Tools [43]. Thus, the
implemented devices are fully compliant with the UPnP specification (Intel is a member of the
UPnP forum, responsible of the UPnP norm).

Moreover, we developed OSGi bundles that propose services involved in the scenario ex-
ample of Listing 4.10 and that are not already provided by the UPnP devices. Thus, we imple-
mented a LuminosityService service, a Player service, a Thermometer service, a DoorService
service and a RadioService service. To simulate a real environment, the LuminosityService
comprises a luminosity attribute that we can dynamically modify. Moreover, we define an
AdjustTemperatureScenario that simply invokes the operation setValue(Integer) of the Ther-
mostatService service. Additionally, the PlayerService and the RadioService simulate a multi-

1http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava

156 Chapter 7. Implementation and Validation

Figure 7.9: Domus simulator

media service. We define a Multimedia object that contains attributes (e.g. name, type) that the
RadioService provides and the PlayerService uses.

7.2.1.2 Context awareness

To prove that SaS prototype supports interoperability, we developed two service gateways: one
that implements the UPnP protocol and one that listens and invokes OSGi-based services.

Service discovery. A first experiment consists in discovering services and transforming them
into SaS-Sdl service descriptions. The SaS prototype automatically discovers OSGi services
(implemented locally) and UPnP services (present in the network). Then, SaS updates the
service directory. All service declarations are translated into SaS-Sdl and registered into the
service directory, defining their corresponding protocol as a property and their category as avail-
able. Listing 7.2 shows an extract from the obtained service directory.

7.2. Experimentations 157

1 service_directory {
2

3 service DimmableLightService :
4 device RoomLight;
5 property deviceType : DimmableLightService;
6 property protocol : UPnP;
7 operation SetValue(Integer) : void;
8 operation GetTarget() : Integer;
9 category available;

10

11 service Player :
12 device Lounge_PC;
13 property deviceType : Computer;
14 property protocol : Local;
15 operation play(Object) : void;
16 category available;
17

18 service RadioService :
19 device WebRadio;
20 property protocol : Local;
21 operation getChanngel(String) : Object;
22 category available;
23

24 service ShutterService :
25 device ShutterDevice;
26 property deviceType : Shutter;
27 property protocol : UPnP;
28 operation open() : void;
29 operation close() : void;
30 category available;
31 }

Listing 7.2: Service directory automatically obtained by experimentation

If services appear once the prototype is launched, the SaS prototype discovers and memo-
rizes them as well.

Service disappearance. When a service disappear, the service directory is dynamically up-
dated. SaS detects the corresponding service event, retrieves the service description inside the
service directory and removes its available category entry.

Platform representation. We launched two platforms on two different machines connected
by Wi-Fi to simulate platforms collaboration. In our experiment, the platforms propose the Col-
laborate service through UPnP. Thus, platforms discover Collaborate services automatically,
use them to retrieve surrounding platform information (platform id and user name). Platform
information are memorized into the platform directory.

7.2.1.3 Scenario Installation

We created the scenario example of Listing 4.11. This scenario enables to test the different
functionalities of SaS-Sdl (i.e. parallel execution, dynamic service selection, etc.) The time
event defined in the scenario description is modified in order to wait just one minute (and not

158 Chapter 7. Implementation and Validation

until 8pm). Once created, SaS memorizes the scenario into the scenario directory. Scenario is
then ready for installation. Scenario installation leads to scenario orchestrator generation. The
scenario description file is parsed with our Xtend parser. The result is an instance of the SaS-
Sdl scenario declaration model. Thanks to the algorithms implemented by SaS, this scenario
declaration model is transformed into a scenario execution graph. Then, SaS generates the
scenario orchestrator composite with iPOJO. The scenario orchestrator provides a service to
control scenario execution. The start operation requires a parameter value for the joker used
in the scenario. The scenario is dynamically discovered as a service by the local gateway (that
listens for OSGi service events).

7.2.1.4 Scenario Execution

To test scenario execution resilience we try to execute the above scenario in different execution
conditions. The scenario contains a joker (specified on line 9 of Listing 4.11). Thus, the scenario
start operation requires a parameter value. We enter the value 500.

Execution without interruption. In this first test, all the required services are available in
the environment. The AdjustTemperatureScenario scenario is available as a service. Services
are easily retrieved by the service broker and invoked by the appropriate gateways. The step
manager executes the steps, following the scenario execution graph. SaS executes the scenario
which remains in the while loop (steps 4, 5 and 6). We manually change the luminosity value to
make the while condition false. Now that we have tested the while loop, we maintain the while
condition to false for the next experiments. Scenario execution continues until the end.

Execution with missing required services. In this test we try scenario execution without
some required services. The AdjustTemperatureScenario scenario is stored in the scenario di-
rectory but not installed.

We begin by removing the DoorService service (used in step 1). The scenario can be
launched but does not progress. Step 1 cannot be executed while the service is missing. Thus, its
status is set to WAITING_SERVICE. When the DoorService service appears, it is automatically
detected and step 1 is executed.

Then we remove the ShutterService service (used in step 3). This service is involved in a
parallel action block. Thus, step 7 and following steps are executed until step 11 that transitively
depends on the execution of step 3. When the ShutterService service appears, step 3 is executed
and the execution goes on.

We set the environment parameters (such as Temperature) to a specific value in order to
obtain a negative evaluation of the condition step 7. SaS then needs to invoke the AdjustTem-
peratureScenario scenario. This scenario is not available as a service but exists in the scenario
directory. Thus, SaS dynamically installs it. The generated scenario orchestrator proposes a
service to control the AdjustTemperatureScenario scenario execution. This service is detected
and the start operation is invoked.

7.2. Experimentations 159

7.2.1.5 Platform Collaboration

Thanks to the Collaborate service, two platforms can share scenarios and services. To test this
functionality, a first platform invokes the Collaborate service of a second to share a scenario.

We first shared the scenario in descriptive mode. The second platform receives a service
description (that correspond to the scenario) which provides an operation to get the scenario
description file: getDescriptor. The second platform invokes this operation and retrieves the
scenario description.

Then, we shared the same scenario in collaborative mode. The second platform receives
a service description that, this time, provides the control commands operations instead. The
second platform invokes the scenario start operation. The scenario installed on the first platform
executes accordingly.

The copied mode is a combination of the first two and thus, works fine.

7.2.2 Experimental Validation
Thanks to these experiments, we have proven the feasibility of our contribution. This validates
our proposed solutions. However, this prototype implementation has limits, detailed in this
sub-section.

7.2.2.1 Prototype Validation

We can argue that our SaS contribution is adapted to pervasive environments with heterogeneous
and volatile services. We tested SaS’s functionalities on realistic uses cases (service and device
heterogeneity, different environments, service volatility, presence of several users). SaS features
such as context representation, scenario control reuse or sharing are fully functional. Scenario
execution adapts to environmental changes and enables to execute a scenario without the need
for all required services to be simultaneously available.

7.2.2.2 Prototype Limits

Our prototype has been yet tested in simple cases that that are representative of smart-home
contexts (few services, limited service volatility, small number of platforms, etc.). We thus still
have to experiment the scalability of our proposal, to validate its ability to manage larger scale
contexts (buildings, airports, companies, ...). Besides, we have not yet implemented SaS’ fault
anticipation strategies (except for queuing). Moreover, the implemented recovery strategies do
not yet include service blacklisting.

Part III

Conclusion

Chapter 8

Conclusion and Perspectives

Contents
8.1 Conclusion . 163

8.1.1 Synthesis . 163

8.1.2 Requirements Fulfillment . 164

8.1.3 SaS Functionalities Synthesis . 167

8.2 Perspectives . 169

8.2.1 Perspectives for Context Management 169

8.2.2 Perspectives for Scenario Definition . 170

8.2.3 Perspectives for Scenario Execution . 170

8.2.4 Perspectives for Scenario and Service Sharing 170

8.2.5 Perspectives for the Service Broker . 171

8.2.6 Security Perspectives . 171

In the previous chapters, we have defined what a user-centric pervasive system is and iden-
tified the requirements it must fulfill. Then we presented our contribution named SaS and its
functionalities that enable users to fully benefit from pervasive environment. This chapter con-
cludes this thesis and draws some perspectives.

8.1 Conclusion
This section concludes this thesis. We first make a synthesis of our problematics. Then, we
detail how SaS meets the requirements for a user-centric pervasive system.

8.1.1 Synthesis

In the context of collaborative pervasive environments, this thesis advocates that systems should
be user-centric i.e. enable users to fully benefit from such environments. The study of existing
pervasive systems, their particularities and their constituting elements enabled us to establish a
requirement list for user-centric systems (detailed in Section 2.2). These requirements raise a

164 Chapter 8. Conclusion and Perspectives

number of major issues to build such systems. Indeed, device heterogeneity and distribution and
service volatility necessitate an adaptive and interoperable approach. Moreover, in a pervasive
environment users express their needs as scenarios, which implies a composition of multiple
services provided by multiple devices. Additionally, users are mobile, they can have needs that
combine functionalities present in different locations. In addition, multiple users can share the
same environment and may want to collaborate. To answer to all these issues, the contribution of
this thesis is SaS (Scenarios as Services): a model of user-centric system to manage scenarized
service compositions for collaborative pervasive environments which fulfills the established
requirements list.

8.1.2 Requirements Fulfillment

In this section, we synthesize how our SaS solution fulfills all the requirements defined in Sec-
tion 2.2.

8.1.2.1 Functional Requirements

We have defined five functional requirements and each of them implies two functional sub-
requirements. At the end of each previous chapter dedicated to our contribution, we proposed
a table that synthesizes how SaS fulfills several functional requirements. Table 8.1 synthesizes
all the functional requirements and how SaS fulfills them.

8.1.2.2 Non-Functional Requirements

We defined four non-functional requirements that impact functional requirements. This sec-
tion presents SaS solutions for each non-functional requirement depending on the functional
requirement that they impact.

User friendliness. SaS provides users with a context representation. This context represen-
tation corresponds to environment elements necessary for users (services, devices, platforms,
platform owners, scenarios). Moreover, this representation is easily personalizable thanks to
categories. Users can easily categorize environment elements as they wish.

Users can declare scenarios with SaS-Sdl. SaS-Sdl contains only the elements necessary
for users to express their needs. Complex concepts are transparently handled by the system. A
scenario description is easily readable.

SaS provides users with easily understandable operations to control scenario execution. Sce-
nario execution mechanisms are transparently handled. SaS also enables users to easily check
scenario execution advancement.

In addition, scenarios are stored as description files and their corresponding descriptions are
memorized into the scenario directory. Thus, users can easily retrieve scenarios in the future.
They can also categorize them, similarly as services and platforms. Additionally, a scenario is

8.1. Conclusion 165

Functional Functionalities
Requirements Associated

R1.a SaS provides users with a persistent and personalizable
Context context directory that contains services,

representation devices, platforms, users and scenarios.
R1.b SaS proposes an interoperable approach

Context that enables to use various service discovery
awareness protocols thanks to model transformations.

R2.a SaS comprises a scenario description language (SaS-Sdl)
Service that enables service composition and contains

composition only elements necessary for users.
R2.b The SaS-Sdl enables to customize

Scenario scenarios in order to better correspond
customization to users’ needs.

R3.a The scenario orchestrator provides
Scenario users with scenario execution

user control control commands.
R3.b SaS schedules a step-by-step scenario execution

Scenario that enables to adapt to environmental changes
execution and to users’ mobility. Additionally,
resilience SaS handles fault-tolerance strategies.

R4.a Scenarios are memorized into
Scenario scenario description files and

description availability stored into the scenario directory.
R4.b Scenarios are considered as

Hierarchical services and thus,
composition hierarchically composable.

R5.a SaS provides scenario
Select what sharing modes that enable

to share to select what to share.
R5.b Platforms export a Collaborate service,

Select who that enable users to
to share with collaborate selectively.

Table 8.1: Fulfillment of requirements by SaS

166 Chapter 8. Conclusion and Perspectives

registered as a service thanks to a generated scenario orchestrator. Therefore, users can easily
hierarchically compose a scenario into a new scenario.

SaS provides users with scenario sharing modes. This enables users to easily select who
they want to share scenarios with and which part of the scenario they want to share.

Collaborativeness. SaS provides users with a context representation that includes surround-
ing platforms and their owners. Thus, SaS detect users that have a platform in the environment.

Thanks to SaS-Sdl, users can define parameterizable scenarios. A scenario can therefore be
used differently by several users.

Users can share scenario execution control with its surrounding platforms. SaS enables
users to keep control of scenario execution thanks to two extra sharing-modes: veto and free
modes. The scenario provider thus decides if a requested control operation, depending on the
requester, can be effected or not.

Furthermore, a platform responsible of a scenario (availability or execution) can ask to an-
other one to be its substitute. The other platform may accept to take the responsibility of the
scenario. This enhances collaborativeness.

Scenario sharing modes enable users to select who they want to share scenarios with. In
addition, a platform can have access to services that are not reachable for other platforms in the
same environment. For instance, services locally deployed or reachable with a service discovery
protocol that has a small scope (e.g. Bluetooth). Thus, SaS enables platforms to share service
access.

Adaptability. SaS adapts its context representation to the different elements of the environ-
ment (services, users, etc.). This representation also adapts to environmental changes. More-
over, SaS is interoperable and can use various service discovery protocols. Thus, it adapts to
the heterogeneity of the environment elements.

SaS-Sdl enables to define scenarios which are customizable at runtime. Thus, users can
adapt scenario definition to the context (by specifying certain parameters value at runtime for
example).

The step-by-step scenario execution adapts to environmental changes and to users’ mobility.
Moreover, SaS applies fault-tolerance strategies to anticipate and recover from errors.

Scenario descriptions are registered into scenario description files and thus, persist. In addi-
tion, SaS enables a platform responsible of a scenario to be substituted by another one. Scenario
availability thus adapts to platform disappearance.

SaS provides a platform directory capability, which enables users to select surrounding plat-
forms for scenario sharing. The directory persistence enables to adapt sharing to platform ap-
pearance or disappearance. For instance, a platform can be selected for sharing even if it is not
available in the environment. When this platform appears, it automatically has access to the
shared scenario.

8.1. Conclusion 167

Mobility. The context representation (that contains three directories) is persistent. Thus, it
adapts to device and user mobility. Moreover, users can customize their directories. They can
therefore represent different contexts that they have encountered such as locations.

Furthermore, users still have the representation of elements that are not currently available.
They can define scenarios with services that are not available simultaneously.

Step-by-step scenario execution is used to reach scenario execution continuity in different
locations.

Scenario responsibility can be delegated to another platform. Thus, the scenario can move
from a platform to another and thus, remain available.

Finally, thanks to the persistent platform directory, users can select platforms that are not
currently available for sharing. The sharing mechanism automatically adapts to platform ap-
pearance or disappearance and thus, to their mobility.

8.1.3 SaS Functionalities Synthesis

In the prior section, we have seen how SaS fulfills all the identified requirements. This section
details SaS functionalities more.

8.1.3.1 Context Management

To handle device heterogeneity, SaS adopts a generic approach. Thus, it proposes a context rep-
resentation model that contains main elements of a pervasive environment: services, devices,
SaS platforms, users and scenarios. SaS is not restricted to the use of a single service dis-
covery protocol. This enhances interoperability. Its generic approach enables to define model
transformations between the service model adopted by a protocol to the SaS’ model. We illus-
trate the model transformation (cf. Section 4.2.1.2) with UPnP and the Web Service Description
Language (WSDL) used by the Web Services Dynamic Discovery (WS-Discovery) protocol.

Thanks to service discovery (realized with multiple service discovery protocols), SaS dy-
namically provides users with a context representation. This context representation is composed
of three directories: the service directory (that also contains devices), the platform directory
(where platform owners are listed) and the scenario directory. SaS listens for environmental
changes and thus, dynamically adapts the representation. Moreover, this representation is per-
sistent (cf. Section 4.2.2.3). The descriptions of environment elements that are not currently
available remain accessible. Thus, context representation adapts to user mobility. This enables,
inter alia, users to retrieve and use services in scenarios even if they are not available simulta-
neously.

Some information that users may want (such as services location) are not present in the con-
text representation that SaS dynamically generates. Thus, users can create categories and attach
environment elements to them (cf. Section 4.2.2.2). Categories are like tags, an environment
element can belong to several categories.

168 Chapter 8. Conclusion and Perspectives

8.1.3.2 Scenario Definition

SaS comprises a scenario description language, namely SaS-Sdl, that enables to define scenar-
ios by composing services as basic workflows (cf. Section 4.3.1). This language only contains
necessary elements for users to express their goals (e.g. conditional statements, loops, etc.).
Complex mechanisms (e.g. asynchronous invocations, exception handling, etc.) are transpar-
ently handled by SaS when necessary. Moreover, SaS-Sdl also enables users to customize
their scenarios to make them parameterizable, more dynamic and representative of their needs
(cf. Section 4.3.2).

8.1.3.3 Scenario Life-Cycle

SaS manages scenario life-cycle from their creation to their removal (cf. Section 5.1). Scenarios
are memorized into description files and SaS registers scenarios description into the scenario di-
rectory. This directory is part of the context directory. Thus, scenarios description are persistent
and can be categorized (such as services and platforms).

Moreover, SaS dynamically generates a scenario orchestrator per scenario This scenario or-
chestrator enforces, inter alia, the scenario execution life-cycle. Moreover, it provides a service
to control the scenario execution. This service contains operations that correspond to execution
control commands (i.e. start, pause, resume and abort) but also that check scenario execution
advancement and retrieve scenario description file. As a service, scenarios are easily used and
can be hierarchically composed.

8.1.3.4 Platform Collaboration

SaS platforms export a Collaborate service into the environment (cf. Section 5.2.2). This service
provides a platform’s identifier and its owner’s name and enables platforms to detect each other.
Moreover, this Collaborate service contains operations to share scenarios and services among
platforms. Users can thus select surrounding platforms to share their creations or services that
they have access to. This enhances collaborativeness. Thanks to the use of the platform direc-
tory, scenario sharing is easy (selection of platform categories) and adapts to users mobility. A
scenario can be shared with a platform, even if it is not currently available. When the selected
platform appears in the environment, it automatically receives the shared scenario without any
need of further intervention from users.

Moreover, a scenario comprises properties (such as a brief textual description), the descrip-
tion file and the execution control. Therefore, SaS provides users with scenario sharing modes
to select which part of the scenario to share (cf. Section 5.2.1.2). Users can thus select who
to share with and what to share. Users can thus share scenario execution control. However,
to keep control of the scenario and avoid execution conflicts, SaS provides users with scenario
execution conflict management modes. These extra-modes for shared scenarios enable scenario
owners to approve a request for scenario execution control or not.

8.2. Perspectives 169

Additionally, SaS provides a platform substitution mechanism, through the Collaborate ser-
vice. It enables to maintain scenario availability and execution when the original platform
provider cannot be reached.

8.1.3.5 Scenario Execution Resilience

SaS schedules a step-by-step scenario execution that adapts to the pervasive environment and its
evolutions. Thus, scenarios can be executed even if all required services are not simultaneously
available. Moreover, scenario execution adapts to users’ mobility and enables to execute a
scenario in different times on several places. To do so, we define a scenario execution model,
which is an execution graph (cf. Section 6.1). Such a graph specifies the dynamics of the
execution steps and can be compared to Petri nets [85] or finite-state machines [74]. The graph
enables SaS to know and anticipate the consequences that a step execution could have. To
schedule scenario execution, SaS realizes a transformation model from the scenario description
model to the scenario execution model.

8.1.3.6 Dynamic and Adaptive Service Invocation

SaS uses a service broker that enables to dynamically benefit from environment changes. More-
over, this interoperable approach enables a service discovered with a protocol to be used by the
user for scenario creation and a similar service, discovered with another protocol, to be used at
scenario execution.

Furthermore, SaS defines fault-tolerance mechanisms that enhance scenario execution re-
silience. These strategies depend on the service’s role inside the scenario.

8.2 Perspectives
Our perspectives are plural. We plan to enhance each SaS’s functionality and advance our
system towards ambient intelligence.

8.2.1 Perspectives for Context Management

It could be interesting to provide users with a device type model, such as the one already pro-
posed by UPnP. The nature of devices, specially in home-automation, can be easily be listed
(typically: light, radiator, fan, etc.). Thus, we may propose users a better representation of the
surrounding devices, classified by types. In addition, the model may comprise the services and
operations proposed by the devices. Thus, we could normalize functionalities that we discover
and enable users to express simple needs such as all the lights off.

We plan to study multi-agent systems such as Context Broker Architecture [16] (CoBrA).
In CoBrA, agents maintain a model of the present context and enable to share this model of
context knowledge with other agents, services and devices.

170 Chapter 8. Conclusion and Perspectives

Moreover, we may use a context-aware ontology (such as GCOMM [21]) to organize col-
lected data. The context representation would integrate network context, location context, etc.
Thus, the context would be better described and understood and the pervasive system might
better adapt to its particularities. Typically, it could be interesting to study systems based on
ontologies such as PERSEWS [48], that proposes a semantic context representation and thus,
considers composition rules by inference.

8.2.2 Perspectives for Scenario Definition

In perspectives, we plan to develop a graphical programming language based on SaS-Sdl. A
composition language enables to define scenarios. However, it is still too complex for users
without any technical knowledge. Tools, such as Yahoo Pipes [92], Automator [4] and Scratch
[65], provide non-technical end-users the capability to graphically develop small applications
by composing elements.

8.2.3 Perspectives for Scenario Execution

We wish to enable the execution of a specific scenario part. Thus, users may be able to execute
the part that they want but also to share a scenario part. Moreover, this mechanism would enable
to distribute scenario execution. We can imagine several platforms distribute scenario execution
between them, depending on what services each platform can execute. Moreover, we plan to
enable multiple instances of a scenario to run on the same platform.

A scenario can imply contradictory orders. We think that it must be left to the devices
themselves to implement mechanisms to avoid conflicts. For instance, a device that receives two
contradictory orders in a short time may send a specific error message. It could be interesting
to develop mechanisms considering this possibility. Meanwhile, it could also be interesting to
implement static semantic analysis to avoid scenario execution conflicts. This would necessitate
that services furnish extra informations about the effects of their operations.

8.2.4 Perspectives for Scenario and Service Sharing

We may also consider that platforms comprise advanced recognition techniques. Such mecha-
nisms would enable platforms to automatically select platforms for sharing and enhance collab-
oration.

Additionally, it could be interesting to enable platforms to share service descriptions that
they know they can achieve in the future. Therefore, they could participate in a large collabora-
tive scenario. Typically, in robotic science, a robot can announce that it can access to a service
somewhere else, and thus can be given the order to invoke this service.

In addition, we would like to develop automatic platform substitution mechanisms. Some
research works, such as the user Centric REplicAtion Model (CReaM) [81], already propose a
user-centric replication model. We plan to study this works to implement replication strategies

8.2. Perspectives 171

for scenario description and log files. This mechanism, combined with an automatic platform
selection (e.g. avoid overloading mechanism, by vote, etc.), would enable to maintain scenario
availability and execution when a SaS platform brusquely disappears. It would thus enhance
fault tolerance.

8.2.5 Perspectives for the Service Broker
It could be interesting to improve service matchmaking (limited to syntactic functional cor-
respondence for the moment). Typically, SaS may use domain ontologies to perform both
syntactic and semantic matchmaking.

8.2.6 Security Perspectives
In this thesis, we do not integrate security as a non-functional requirement. Security generally
imply low-levels mechanisms which are out-of-scope. Security is usually implemented on the
network level. Thus, when we access network capabilities, we can assume that exchanges are
safe.

Moreover, our solutions do not imply a high level of security management. We do not
enable code mobility or execute locally something that we could not assume the safety of. SaS
enables to share text files that must correspond to a particular syntax. Theses files are parsed
and interpreted, not executed. In addition, platform collaboration is not automatic and thus,
users select who they want to collaborate with. However, it could be interesting to develop
some authentication mechanisms and to crypt the exchanged messages.

Part IV

Bibliography and Appendices

Bibliography

[1] Emile Aarts and Boris de Ruyter. New research perspectives on Ambient Intelligence.
volume 1, pages 5–14. IOS Press, 2009. (Cited in page 16.)

[2] Anupriya Ankolekar, Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin,
Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, Terry R. Payne, Katia P. Sycara,
and Honglei Zeng. DAML-S: Semantic Markup for Web Services. In Semantic Web
Working Symposium, SWWS’01, pages 411–430, 2001. (Cited in page 46.)

[3] Apache Foundation. Apache Felix UPnP. http://felix.apache.org/site/

apache-felix-upnp.html, 2008. [Last access: October 2012]. (Cited in pages 149
et 155.)

[4] Apple. Automator: Your personal Automation Assistant. http://www.

macosxautomation.com/automator, 2012. (Cited in page 170.)

[5] Gerd Aschemann, Roger Kehr, and Andreas Zeidler. A Jini-based Gateway Architecture
for Mobile Devices. In Proc. of the Java-Informations-Tage (JIT99), pages 203–212, 1999.
(Cited in pages 39 et 76.)

[6] Mohamed Bakhouya and Jaafar Gaber. Service composition approaches for ubiquitous
and pervasive computing environments: A survey. In Eldon Li and Soe-Tsyr Yuan, editors,
Agent Systems in Electronic Business, pages 323–350. Information Science Reference/IGI
Publishing, 2007. (Cited in page 19.)

[7] Heiko Behrens, Michael Clay, Sven Efftinge, Moritz Eysholdt, Peter Friese, Jan Köhnlein,
Knut Wannheden, and Sebastian Zarnekow. Xtext User Guide. https://eclipse.org/
Xtext/documentation/1_0_1/xtext.pdf, 2010. [Last access: October 2012]. (Cited
in page 150.)

[8] Christian Bettstetter and Christoph Renner. A comparison of service discovery protocols
and implementation of the service location protocol. In 6th EUNICE Open European
Summer School: Innovative Internet Applications, pages 13–15, 2000. (Cited in pages 39
et 76.)

[9] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Trans. Comput. Syst., 2(1):39–59, February 1984. (Cited in page 58.)

[10] Harold Boley, Said Tabet, and Gerd Wagner. Design Rationale for RuleML: A Markup
Language for Semantic Web Rules. In Semantic Web Working Symposium, SWWS’01,
pages 381–401, 2001. (Cited in page 46.)

http://felix.apache.org/site/apache-felix-upnp.html
http://felix.apache.org/site/apache-felix-upnp.html
http://www.macosxautomation.com/automator
http://www.macosxautomation.com/automator
https://eclipse.org/Xtext/documentation/1_0_1/xtext.pdf
https://eclipse.org/Xtext/documentation/1_0_1/xtext.pdf

176 Bibliography

[11] André Bottaro, Anne Gérodolle, and Philippe Lalanda. Pervasive service composition in
the home network. In 21st Int. Conf. on Advanced Networking and Applications, pages
596–603, 2007. (Cited in pages 20 et 38.)

[12] Jeppe Bronsted, Klaus Marius Hansen, and Mads Ingstrup. Service composition issues in
pervasive computing. IEEE Pervasive Computing, 9:62–70, 2010. (Cited in page 19.)

[13] Janis Bubenko, Colette Rolland, Pericles Loucopoulos, and Valeria De Antonellis. Fa-
cilitating ’Fuzzy to Formal’ Requirements Modelling. In Proceedings of International
Conference on Requirement Engineering (ICRE’94), pages 154–158, USA, 1994. (Cited
in page 27.)

[14] Humberto Cervantes and Richard S. Hall. Autonomous adaptation to dynamic availability
using a service-oriented component model. In ICSE, pages 614–623. IEEE, 2004. (Cited
in pages 139 et 149.)

[15] Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy W. Finin, and Yelena Yesha.
A reactive service composition architecture for pervasive computing environments. In
PWC, pages 53–62, 2002. (Cited in page 36.)

[16] Harry Chen, Tim Finin, and Anupam Joshi. A context broker for building smart meeting
rooms. In Proceedings of the Knowledge Representation and Ontology for Autonomous
Systems Symposium, 2004 AAAI Spring Symposium, 2004. (Cited in page 169.)

[17] Daniel Cheung, Jean-Yves Tigli, Stéphane Lavirotte, and Michel Riveill. Wcomp: a multi-
design approach for prototyping applications using heterogeneous resources. Rapid Sys-
tem Prototyping, IEEE International Workshop on, 0:119–125, 2006. (Cited in page 38.)

[18] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March
2001. [Last access: October 2012]. (Cited in page 45.)

[19] James Clark and Steve DeRose. XML Path Language (XPath), Version 1.0. http://www.
w3.org/TR/xpath/, November 1999. [Last access: October 2012]. (Cited in page 45.)

[20] Joëlle Coutaz, James Crowley, Simon Dobson, and David Garlan. Context is key. vol-
ume 48, pages 49–53, 2005. (Cited in page 27.)

[21] Ejigu Dejene, Vasile-Marian Scuturici, and Lionel Brunie. An Ontology-Based Approach
to Context Modeling and Reasoning in Pervasive Computing. In Fifth Annual IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops (Per-
ComW’07), pages 14–19, March 2007. (Cited in page 170.)

[22] Troy Bryan Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide,
Inc., Foster City, CA, USA, 1st edition, 1998. (Cited in pages 39 et 59.)

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

Bibliography 177

[23] Ecma International. ECMA-262: ECMAScript Language Specification. http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf, 2009.
[Last access: October 2012]. (Cited in page 37.)

[24] Keith Edwards. Discovery systems in ubiquitous computing. volume 5, pages 70–77,
Piscataway, NJ, USA, April 2006. IEEE Educational Activities Department. (Cited in
page 39.)

[25] Sven Efftinge and Sebastian Zarnekow. Xtend User Guide. http://www.eclipse.
org/xtend/documentation/2.3.0/Documentation.pdf, 2012. [Last access: Oc-
tober 2012]. (Cited in page 151.)

[26] José L. Encarnaçao and Thomas Kirste. Ambient intelligence: Towards smart appliance
ensembles. From Integrated Publication and Information Systems to Information and
Knowledge Environments, pages 261–270, 2005. (Cited in page 37.)

[27] Clement Escoffier and Richard S. Hall. Dynamically adaptable applications with iPOJO
service components. 6th Int. Conf. on Software composition, pages 113–128, 2007. (Cited
in pages 54 et 149.)

[28] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In Proc. of the 15th
National Computer Security Conference (NCSC), pages 554–563, October 1992. (Cited
in page 58.)

[29] OpenLDAP Foundation. Lightweight Directory Access Protocol (LDAP): Technical Spec-
ification Road Map. http://tools.ietf.org/html/rfc4510, 2006. [Last access:
October 2012]. (Cited in page 42.)

[30] Maria Fox and Derek Long. Pddl2.1: an extension to pddl for expressing temporal plan-
ning domains. volume 20, pages 61–124, USA, December 2003. AI Access Foundation.
(Cited in page 46.)

[31] Narain H. Gehani, Hosagrahar Visvesvaraya Jagadish, and Oded Shmueli. Event specifi-
cation in an active object-oriented database. In Proceedings of the 1992 ACM SIGMOD
international conference on Management of data, SIGMOD ’92, pages 81–90, New York,
NY, USA, 1992. ACM. (Cited in page 45.)

[32] Angela Goh, Y.-K. Koh, and Dragan S. Domazet. Eca rule-based support for workflows.
volume 15, pages 37 – 46, 2001. (Cited in page 45.)

[33] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recov-
ery. volume 15, pages 287–317, New York, NY, USA, December 1983. ACM. (Cited
in page 114.)

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.eclipse.org/xtend/documentation/2.3.0/Documentation.pdf
http://www.eclipse.org/xtend/documentation/2.3.0/Documentation.pdf
http://tools.ietf.org/html/rfc4510

178 Bibliography

[34] Fady Hamoui. A component-based multi-agent system for autonomous context-aware
adaptation - Application to smart homes. PhD thesis, University Montpellier II, 2010.
(Cited in page 37.)

[35] Fady Hamoui, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier. Specification
of a component-based domotic system to suport user-defined scenarios. In 21st SEKE Int.
Conf., pages 597–602, 2009. (Cited in page 37.)

[36] Thomas Heider and Thomas Kirste. Multimodal appliance cooperation based on explicit
goals: concepts & potentials. In Joint Conf. on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies, pages 271–276. ACM, 2005.
(Cited in page 37.)

[37] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: A semantic web rule language combining OWL and RuleML, 2004.
(Cited in page 46.)

[38] Vincent Hourdin, Jean Y. Tigli, Stéphane Lavirotte, Gaëtan Rey, and Michel Riveill.
SLCA, composite services for ubiquitous computing. In Int. Conf. on Mobile Technol-
ogy, Applications, and Systems, pages 1–8. ACM Press, 2008. (Cited in page 47.)

[39] Tim Howes. A String Representation of LDAP Search Filters, 1996. (Cited in page 88.)

[40] IBM. IBM 305 RAMAC. http://www.ed-thelen.org/comp-hist/BRL61-ibm03.
html, 1961. [Last access: October 2012]. (Cited in page 15.)

[41] Noha Ibrahim and Frédéric Le Mouël. A Survey on Service Composition Middleware in
Pervasive Environments. Int. Journal of Computer Science Issues, 1:1–12, 2009. (Cited
in page 19.)

[42] Information Sciences Institute. RFC 791 : Internet Protocol. http://tools.ietf.org/
html/rfc791, 1981. [Last access: October 2012]. (Cited in page 41.)

[43] Intel. Intel Software for UPnP Technology. http://software.intel.com/en-us/
articles/intel-software-for-upnp-technology-download-tools/, 2009.
[Last access: October 2012]. (Cited in page 155.)

[44] Diane Jordan and John Evdemon. Web services business process execution language ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, January
2007. [Last access: October 2012]. (Cited in pages 45 et 84.)

[45] Patrick Kinney. ZigBee Technology: Wireless Control that Simply Works, October 2003.
Communication Design Conference. (Cited in page 42.)

http://www.ed-thelen.org/comp-hist/BRL61-ibm03.html
http://www.ed-thelen.org/comp-hist/BRL61-ibm03.html
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791
http://software.intel.com/en-us/articles/intel-software-for-upnp-technology-download-tools/
http://software.intel.com/en-us/articles/intel-software-for-upnp-technology-download-tools/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Bibliography 179

[46] Thomas Kirste, Thorsten Herfet, and Michael Schnaider. EMBASSI: multimodal assis-
tance for universal access to infotainment and service infrastructures. In Proceedings of
the 2001 EC/NSF workshop on Universal accessibility of ubiquitous computing: providing
for the elderly, WUAUC’01, pages 41–50, New York, NY, USA, 2001. ACM. (Cited in
page 37.)

[47] Wojtek Kozaczynski and Grady Booch. Component-Based Software Engineering. IEEE
Softw., 15(5):34–36, September 1998. (Cited in page 53.)

[48] Julien Lancia. Infrastructure orientée service pour le développement d’applications ubiq-
uitaires. PhD thesis, Université Bordeaux 1, 2008. (Cited in page 170.)

[49] Frank Leymann. Web Services Flow Language (WSFL 1.0). http://xml.coverpages.
org/WSFL-Guide-200110.pdf, May 2001. [Last access: October 2012]. (Cited in
page 45.)

[50] David Martin, Massimo Paolucci, Sheila Mcilraith, Mark Burstein, Drew Mcdermott,
Deborah Mcguinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki, Naveen
Srinivasan, and Katia Sycara. Bringing semantics to web services: The owl-s approach.
In Semantic Web Services and Web Process Composition, pages 26–42. Springer, 2004.
(Cited in page 46.)

[51] Anne McCrory. Ubiquitous? Pervasive? Sorry, they don’t compute. http:

//www.computerworld.com/s/article/41901/Ubiquitous_Pervasive_Sorry_

they_don_t_compute, October 2000. [Last access: October 2012]. (Cited in page 16.)

[52] Drew Mcdermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL - The Planning Domain Definition Lan-
guage. Technical report, Yale Center for Computational Vision and Control, 1998. (Cited
in page 46.)

[53] Sun Microsystems. RPC: Remote Procedure Call Protocol Specification Version 2. http:
//www.ietf.org/rfc/rfc1057.txt, June 1988. [Last access: October 2012]. (Cited
in page 59.)

[54] Marija Mikic-Rakic and Nenad Medvidovic. A Classification of Disconnected Opera-
tion Techniques. In 32nd EUROMICRO Conf. on Software Engineering and Advanced
Applications, pages 144–151. IEEE, 2006. (Cited in pages 49, 51 et 134.)

[55] Gordon Moore. Cramming More Components onto Integrated Circuits. Electronics,
38:114–117, April 1965. (Cited in page 15.)

[56] Tatsuo Nakajima and Ichiro Satoh. Personal home server: Enabling personalized and
seamless ubiquitous computing environments. In Proceedings of the Second IEEE Inter-
national Conference on Pervasive Computing and Communications (PerCom’04), PER-

http://xml.coverpages.org/WSFL-Guide-200110.pdf
http://xml.coverpages.org/WSFL-Guide-200110.pdf
http://www.computerworld.com/s/article/41901/Ubiquitous_Pervasive_Sorry_they_don_t_compute
http://www.computerworld.com/s/article/41901/Ubiquitous_Pervasive_Sorry_they_don_t_compute
http://www.computerworld.com/s/article/41901/Ubiquitous_Pervasive_Sorry_they_don_t_compute
http://www.ietf.org/rfc/rfc1057.txt
http://www.ietf.org/rfc/rfc1057.txt

180 Bibliography

COM ’04, pages 341–345, Washington, DC, USA, 2004. IEEE Computer Society. (Cited
in page 37.)

[57] Eric Newcomer and Greg Lomow. Understanding SOA with web services. Addison-
Wesley, 2005. (Cited in pages 38 et 41.)

[58] OASIS. Reference Model for Service Oriented Architecture 1.0. http://docs.

oasis-open.org/soa-rm/v1.0/soa-rm.html, Oct 2006. [Last access: October
2012]. (Cited in pages 18, 26 et 38.)

[59] OSGi Alliance. OSGi Service Platform Core Specification Release 4. http://www.
osgi.org/download/r4v40/r4.core.pdf, 2005. [Last access: March 2012]. (Cited
in pages 54 et 149.)

[60] Petri Palmila. Zeroconf and UPnP techniques. Technical report, Helsinki University of
Technology, 2007. (Cited in page 39.)

[61] Michael Papazoglou. Service-Oriented Computing : Concepts , Characteristics and Di-
rections. In 4th Int. Conf. on Web Information Systems Engineering, pages 3–12. IEEE,
2003. (Cited in pages 18 et 26.)

[62] Michael Papazoglou. Web Services: Principles and Technology. Prentice Hall, September
2007. (Cited in pages 40, 41 et 77.)

[63] Michael Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing. volume 46, pages 25–28, 2003. (Cited in page 38.)

[64] Chris Peltz. Web services orchestration and choreography. volume 36, pages 46–52, Los
Alamitos, CA, USA, October 2003. IEEE Computer Society. (Cited in page 48.)

[65] Mitchel Resnick, John Maloney, AndrÃl’s Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman,
and YYasmin Kafai. Scratch: Programming for Everyone. Comm. of the ACM, 52(11):60–
67, 2009. (Cited in page 170.)

[66] Golden G. Richard. Service advertisement and discovery: Enabling universal device coop-
eration. volume 4, pages 18–26, Piscataway, NJ, USA, September 2000. IEEE Educational
Activities Department. (Cited in page 39.)

[67] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain
Rouvoy, and Frank Eliassen. The DigiHome Service-Oriented Platform. Software: Prac-
tice and Experience, 2011. 14 pages. (Cited in page 36.)

[68] Stephen Ross-Talbot. Orchestration and Choreography: Standards, Tools and Technolo-
gies for Distributed Workflows. In Proc. Workshop Network Tools and Applications in
Biology (NETTLAN’05), October 2005. 8 pages. (Cited in page 48.)

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.osgi.org/download/r4v40/r4.core.pdf
http://www.osgi.org/download/r4v40/r4.core.pdf

Bibliography 181

[69] Salutation Consortium. Salutation Architecture: Overview. http://salutation.

org/wp-content/uploads/2012/05/originalwp.pdf, 1998. [Last access: October
2012]. (Cited in pages 39 et 40.)

[70] Salutation Consortium. Salutation Architecture Specification (Part-1). http://www.
salutation.org/, 1999. [Last access: October 2012]. (Cited in pages 11 et 40.)

[71] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-Based
Access Control Models. volume 29, pages 38–47, 1996. (Cited in page 58.)

[72] Mahadev Satyanarayanan. A catalyst for mobile and ubiquitous computing. volume 1,
pages 2–5, Los Alamitos, CA, USA, 2002. IEEE Computer Society. (Cited in page 17.)

[73] SCA Consortium. Building Systems using a Service Oriented Architecture. http://www.
ibm.com/developerworks/library/specification/ws-sca/, 2005. [Last access:
October 2012]. (Cited in pages 54 et 55.)

[74] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
a tutorial. volume 22, pages 299–319, New York, NY, USA, December 1990. ACM. (Cited
in pages 44, 114, 136 et 169.)

[75] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schiavoni,
and Jean-Bernard Stefani. Reconfigurable sca applications with the frascati platform. vol-
ume 0, pages 268–275, Los Alamitos, CA, USA, 2009. IEEE Computer Society. (Cited in
pages 36 et 55.)

[76] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana S. Nau. Htn planning
for web service composition using shop2. volume 1, pages 377–396, 2004. (Cited in
page 46.)

[77] Katia Sycara, Matthias Klusch, Seth Widoff, and Jianguo Lu. Dynamic Service Match-
making Among Agents in Open Information Environments. volume 28, pages 47–53,
March 1999. (Cited in page 137.)

[78] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2002. (Cited in page 53.)

[79] Satish Thatte. XLANG: Web services for business process design, 2001. (Cited in
page 45.)

[80] Jean-Yves Tigli, Stéphane Lavirotte, Rey Gaetan, Hourdin Vincent, Cheung-Foo-Woo
Daniel, Callegari Eric, and Michel Riveill. WComp middleware for ubiquitous comput-
ing: Aspects and composite event-based Web services. volume 64, pages 197–214, Apr
2009. (Cited in page 38.)

http://salutation.org/wp-content/uploads/2012/05/originalwp.pdf
http://salutation.org/wp-content/uploads/2012/05/originalwp.pdf
http://www.salutation.org/
http://www.salutation.org/
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.ibm.com/developerworks/library/specification/ws-sca/

182 Bibliography

[81] Zeina Torbey, Nadia Bennani, Lionel Brunie, and David Coquil. A decentralized and au-
tonomous replication model for mobile environments . In F. Laforest, editor, UBIMOB’10
Actes informels, 2010. (Cited in page 170.)

[82] UPnP Forum. Understanding UPnP: A White Paper. http://www.upnp.org/

download/UPNP_UnderstandingUPNP.doc, 2000. [Last access: October 2012]. (Cited
in pages 40, 41, 76 et 77.)

[83] Aitor Urbieta, Guillermo Barrutieta, Jorge Parra, and Aitor Uribarren. A survey of dy-
namic service composition approaches for ambient systems. In Ambi-Sys Wkshp on Soft-
ware Organisation and MonIToring of Ambient Systems, pages 1–8. ICST, 2008. (Cited
in page 19.)

[84] Dimitar Valtchev and Ivailo Frankov. Service gateway architecture for a smart home.
Communications Magazine, IEEE, pages 126–132, 2002. (Cited in pages 25 et 38.)

[85] Wil Van der Aalst and Arthur Ter Hofstede. Workflow Patterns: On the Expressive Power
of (Petri-net-based) Workflow Languages. In D. Moldt, editor, 4th Wkshp on the Practical
Use of Coloured Petri Nets and CPN Tools, pages 1–20. University of Aarhus, 2002. (Cited
in pages 44, 85, 114, 136 et 169.)

[86] John Veizades, Erik Guttman, Charles Perkins, and Scott Kaplan. Service Location Pro-
tocol. www.ietf.org/rfc/rfc2165.txt, 1997. [Last access: October 2012]. (Cited in
pages 40 et 42.)

[87] W3C. XML Schema 1.1. http://www.w3.org/XML/Schema, April 2012. [Last access:
October 2012]. (Cited in page 45.)

[88] Jean-Baptiste Waldner. Nanocomputers and Swarm Intelligence. Wiley-IEEE Press, 1st
edition, 2008. (Cited in page 16.)

[89] Mark Weiser. The computer for the 21st century. Scientific American, pages 78–89, 1995.
(Cited in page 16.)

[90] Stephen A. White. Using BPMN to Model a BPEL Process. 3:1 – 18, 2005. (Cited in
page 45.)

[91] Chao-Lin Wu, Chun-Feng Liao, and Li-Chen Fu. Service-Oriented Smart-Home Archi-
tecture Based on OSGi and Mobile-Agent Technology. volume 37, pages 193–205, Mar
2007. (Cited in pages 20, 37 et 38.)

[92] Yahoo. Rewire the Web. http://pipes.yahoo.com/pipes, 2012. (Cited in page 170.)

[93] Fen Zhu, Matt W. Mutka, and Lionel M. Ni. Service discovery in pervasive computing
environments. volume 4, pages 81–90, Piscataway, NJ, USA, October 2005. IEEE Educa-
tional Activities Department. (Cited in page 39.)

http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc
www.ietf.org/rfc/rfc2165.txt
http://www.w3.org/XML/Schema
http://pipes.yahoo.com/pipes

Bibliography 183

Appendix A

Scenario Transformation Algorithms

A.1 Action Block Transformation
Algorithm 7 summarizes the algorithm to transform an action block.

Algorithm 7 Scenario Steps Extraction: Action Block Transformation
1: function transformActionBlock(ActionBlock aBlock, PrecLink precLink, StepList sce-

narioStepList) : PrecLink
2: begin
3: if (!aBlock.isParallel()) then
4: return transformSequenceActionBlock(aBlock, precLink, scenarioStepList)
5: else
6: return transformParallelActionBlock(aBlock, precLink, scenarioStepList)
7: end if
8: end

A.1.1 Sequence Action Block
Algorithm 8 presents the sequence action block transformation.

Algorithm 8 Scenario Steps Extraction: Sequence Action Block Transformation
1: function transformSequenceActionBlock(ActionBlock aBlock, PrecLink precLink,

StepList scenarioStepList) : PrecLink
2: begin
3: for all element in aBlock.getElements() do
4: switch element.isType() :
5: case ACTIONBLOCK
6: precLink = transformActionBlock(element, precLink, scenarioStepList)
7: case ACTION
8: precLink = transformAction(element, precLink, scenarioStepList)
9: endswitch

10: end for
11: return precLink
12: end

186 Appendix A. Scenario Transformation Algorithms

A.1.2 Parallel Action Block
Algorithm 9 represents the parallel action block traversal.

Algorithm 9 Scenario Steps Extraction: Parallel Action Block Transformation
1: function transformParallelActionBlock(ActionBlock aBlock, PrecLink precLink,

StepList scenarioStepList) : PrecLink
2: begin
3: Step forkStep = new ForkStep
4: forkStep.setPrecedence(precLink)
5: precLink.getStep().addNextStepLink(forkStep,precLink.getStatus())
6: precLink = new PrecLink(forkStep, EXECUTED)
7: scenarioStepList += forkStep
8: Step joinStep = new JoinStep
9: joinStep.setJoinMode(AND)

10: for all element in aBlock.getElements() do
11: switch element.isType() :
12: case ACTIONBLOCK
13: joinStep.addPrec(transformActionBlock(element, precLink, scenarioStepList))
14: case ACTION
15: joinStep.addPrec(transformAction(element, precLink, scenarioStepList))
16: endswitch
17: precLink.getStep().addNextStepLink(joinStep,precLink.getStatus())
18: end for
19: scenarioStepList += joinStep
20: precLink = new PrecLink(joinStep, EXECUTED)
21: return precLink
22: end

A.2. Action Transformation 187

A.2 Action Transformation

Algorithm 10 presents the function that dispatches action transformation depending on the ac-
tion type.

Algorithm 10 Scenario Steps Extraction: Action Transformation
1: function transformAction (Action action, PrecLink precLink, StepList scenar-

ioStepList) : PrecLink
2: begin
3: switch action.isType :
4: case SERVICE_EXECUTION
5: return transformServiceExecution(action, precLink, scenarioStepList)
6: case COND_STATEMENT
7: return transformCondStatement(action, precLink, scenarioStepList)
8: case WHILE_LOOP
9: return transformWhileLoop(action, precLink, scenarioStepList)

10: case REPEAT_LOOP
11: return transformRepeatLoop(action, precLink, scenarioStepList)
12: case COND_EVENT
13: return transformCondEvent(action, precLink, scenarioStepList)
14: case TIME_EVENT
15: return transformTimeEvent(action, precLink, scenarioStepList)
16: end

A.2.1 Service Execution

Algorithm 11 illustrates the operation invocation transformation.

Algorithm 11 Scenario Steps Extraction: Service Execution Transformation
1: function transformServiceExecution (Action action, PrecLink precLink, StepList

scenarioStepList) : PrecLink
2: begin
3: InvocationStep invocationStep = new InvocationStep
4: invocationStep.setPrecedence(precLink)
5: precLink.getStep().addNextStepLink(invocationStep,precLink.getStatus())
6: invocationStep.setExec(action.getOpInvocation())
7: scenarioStepList += invocationStep
8: precLink = new PrecLink(invocationStep, EXECUTED)
9: return precLink

10: end

188 Appendix A. Scenario Transformation Algorithms

A.2.2 Conditional Statement
Algorithm 6 (detailed in Section 7.1.2.5) presents the conditional statement transformation.

A.2.3 While Loop
Algorithm 12 presents the while loop transformation.

Algorithm 12 Scenario Steps Extraction: While Loop Transformation
1: function transformWhileLoop (Action action, PrecLink precLink, StepList scenar-

ioStepList) : PrecLink
2: begin
3: JoinStep joinStep = new JoinStep
4: joinStep.setJoinMode(OR)
5: joinStep.setPrecedence(precLink)
6: precLink.getStep().addNextStepLink(joinStep,precLink.getStatus())
7: scenarioStepList += joinStep
8: ConditionStep whileConditionStep = new ConditionStep
9: whileConditionStep.setExec(action.getCondition())

10: whileConditionStep.addPrec(new PrecLink(joinStep, EXECUTED))
11: joinStep.addNextStepLink(whileConditionStep,EXECUTED)
12: scenarioStepList += whileConditionStep
13: PrecLink thenPrecLink = transformActionBlock(action.getActionBlock(),
14: new PrecLink(whileConditionStep,TRUE), scenarioStepList)
15: joinStep.addPrec(thenPrecLink)
16: thenPrecLink.getStep().addNextStepLink(joinStep,thenPrecLink.getStatus())
17: precLink = new PrecLink(whileConditionStep, FALSE)
18: return precLink
19: end

A.2. Action Transformation 189

A.2.4 Repeat Loop
Algorithm 13 presents the repeat loop transformation.

Algorithm 13 Scenario Steps Extraction: Repeat Loop Transformation
1: function transformRepeatLoop (Action action, PrecLink precLink, StepList scenar-

ioStepList) : PrecLink
2: begin
3: JoinStep joinStep = new JoinStep
4: joinStep.setJoinMode(OR)
5: joinStep.addPrec(precLink)
6: precLink.getStep().addNextStepLink(joinStep,precLink.getStatus())
7: scenarioStepList += joinStep
8: CalculusStep calculusStep = new CalculusStep
9: calculusStep.setCalculusValue(action.getRepeatValue())

10: PrecLink doPrecLink = transformActionBlock(action.getActionBlock(),
11: new PrecLink(joinStep,EXECUTED), scenarioStepList)
12: calculusStep.addPrec(doPrecLink)
13: thenPrecLink.getStep().addNextStepLink(calculusStep,doPrecLink.getStatus())
14: scenarioSteps += calculusStep
15: joinStep.addPrec(new PrecLink(calculusStep, NOT_FINISHED))
16: calculusStep.addNextStepLink(joinStep, NOT_FINISHED)
17: precLink = new PrecLink(calculusStep, EXECUTED)
18: return precLink
19: end

190 Appendix A. Scenario Transformation Algorithms

A.2.5 Conditional Event
Algorithm 14 presents the conditional event transformation.

Algorithm 14 Scenario Steps Extraction: Conditional Event Transformation
1: function transformCondEvent (Action action, PrecLink precLink, StepList scenar-

ioStepList) : PrecLink
2: begin
3: JoinStep joinStep = new JoinStep
4: joinStep.setJoinMode(OR)
5: joinStep.addPrec(precLink)
6: precLink.getStep().addNextStepLink(joinStep,precLink.getStatus())
7: scenarioStepList += joinStep
8: ConditionStep conditionStep = new ConditionStep
9: conditionStep.setPrecedence(new PrecLink(joinStep, EXECUTED))

10: joinStep.addNextStepLink(conditionStep, EXECUTED)
11: conditionStep.setExec(action.getCondition())
12: scenarioStepList += conditionStep
13: joinStep.addPrec(new PrecLink(conditionStep, FALSE))
14: conditionStep.addNextStepLink(joinStep, FALSE)
15: precLink = transformActionBlock(action.getActionBlock(), new Pre-

cLink(conditionStep, TRUE), scenarioStepList)
16: return precLink
17: end

A.2.6 Time Event
Algorithm 15 constitutes the time event transformation.

Algorithm 15 Scenario Steps Extraction: Time Event Transformation
1: function transformTimeEvent (Action action, PrecLink precLink, StepList scenar-

ioStepList) : PrecLink
2: begin
3: CalculusStep calculusStep = new CalculusStep
4: calculusStep.setPrecedence(precLink)
5: precLink.getStep().addNextStepLink(calculusStep,precLink.getStatus())
6: calculusStep.setExec(action.getTimeEventValue())
7: scenarioStepList += calculusStep
8: precLink = transformActionBlock(action.getActionBlock(), new Pre-

cLink(calculusStep, EXECUTED), scenarioStepList)
9: return precLink

10: end

Appendix B

Publications

A service component framework for multi-user scenario management in ubiquitous environ-
ments.
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado and Sylvain Vauttier.
Proceedings of the 6th International Conference on Software Engineering Advances (ICSEA’11).
Barcelona, Spain, October 2011. AR 30%

User-defined scenarios in ubiquitous environments: creation, execution control and sharing.
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado and Sylvain Vauttier.
Proceedings of the 23rd International Conference on Software Engineering and Knowledge En-
gineering (SEKE’11), pages 302-307.
Miami, USA, July 2011. AR 31%

Towards scenario creation by service composition in ubiquitous environments.
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado and Sylvain Vauttier.
Proceedings of the 9th BElgian-NEtherlands software eVOLution seminar (BENEVOL’10), S.
Ducasse, L. Duchien and L. Seinturier editors, pages 145-155.
Lille, France, December 2010.

Mission-oriented Autonomic Configuration of Pervasive Systems.
Guillaume Grondin, Matthieu Faure, Christelle Urtado and Sylvain Vauttier.
Proceedings of the 7th International Conference on Software Engineering Advances (ICSEA’12).
Lisbon, Portugal, November 2012. AR 30%

Management of Scenarized User-centric Service Compositions for Collaborative Pervasive
Environments.
Pervasive (or ubiquitous) computing is a paradigm for environments containing distributed interconnected devices
that embed electronics. These devices provide a remote access to numerous functionalities that assist us in our daily
life. Service-Oriented Architectures are suitable to design software for pervasive environments. Indeed, each device
provides its own set of functionalities as services. Without any extra mechanism, users can only use a single service
at a time. Nevertheless, their needs usually correspond to scenarios which involve a composition of multiple services,
provided by multiple devices.
In this thesis, we advocate that a pervasive system must, on the one hand, enable users to easily express their needs
through scenario creation and, on the other hand, propose to users a representation of their context so that they can
benefit from both their environment and its changes. In addition, the presence of several users implies that users must
be able to collaborate.
Our contribution, named SaS (Scenarios as Services), fulfills these requirements. It proposes an interoperable ap-
proach that adapts to its environment. It provides users with a customizable and persistent representation of their
context and includes a scenario description language targetted to users. Scenarios are easy to control, customize and
reuse. SaS schedules the step-by-step execution of scenarios to adapt to environmental changes and benefit from user
mobility (scenario execution splitted over time on successive distinct sites). Finally, SaS includes scenario sharing
mechanisms which are a basis for collaboration. A prototype of SaS, based on industrial standards (e.g., OSGi),
proves the feasibility of our contribution and serves for its evaluation on a simple use case.

Keywords: Pervasive / ubiquitous computing, Service oriented architecture, Service composition, Software Engineer-
ing

Mise en œuvre de la composition de services scénarisée et centrée utilisateur pour les envi-
ronnements pervasifs collaboratifs.
L’informatique pervasive (ou ubiquitaire) est un support pour des environnements contenant de nombreux objets (ou
dispositifs) disséminés, équipés d’électronique et interconnectés. Ces dispositifs fournissent un accès distant à une
multitude de fonctionnalités qui nous aident dans notre vie quotidienne. Les Architectures Orientées Services sont
adaptées à la conception de logiciels pervasifs. En effet, chaque dispositif fournit son propre ensemble de fonctionnal-
ités sous la forme de services. Ainsi, en l’absence de mécanisme complémentaire, les utilisateurs se trouvent limités
à utiliser les services isolément alors que leurs besoins correspondent à des scénarios qui impliquent une composition
de multiples services offerts par plusieurs appareils.
Dans cette thèse, nous défendons qu’un système pervasif doit : d’une part, permettre aux utilisateurs d’exprimer facile-
ment leurs besoins en créant des scénarios et d’autre part, proposer à ses utilisateurs une représentation et des moyens
de gestion de leur contexte afin qu’ils puissent tirer le meilleur parti de leur environnement et de ses changements.
De plus, la présence de plusieurs utilisateurs implique la nécessité de collaborer. Par ailleurs, l’exécution de scénar-
ios doit être résiliente aux changements environnementaux et aux actions des utilisateurs. Elle doit ainsi s’adapter
dynamiquement et, si possible, tirer profit du contexte et des changements de l’environnement.
Notre contribution, nommée SaS (Scenarios as Services), répond à ces objectifs. Elle propose une approche in-
teropérable capable de s’adapter à l’environnement. Elle fournit une représentation persistante et personnalisable
du contexte et inclut un langage de description de scénarios destiné aux utilisateurs. Ces scénarios sont facilement
contrôlables, personnalisables et réutilisables. Elle planifie l’exécution pas à pas des scénarios, afin de s’adapter aux
changements de l’environnement et de bénéficier des avantages de la mobilité des utilisateurs (exécution d’un scénario,
dans la durée, sur plusieurs lieux). Enfin, elle inclut le partage de scénarios qui permet aux utilisateurs de collaborer.
Un prototype de SaS, basé sur des normes industrielles (telle qu’OSGi), prouve la faisabilité de notre contribution et
nous permet de l’évaluer sur un cas d’étude simple.

Mots clés : Informatique pervasive/ubiquitaire, Architecture orientée service, Composition de services, Génie logiciel

	Introduction
	Context of the Thesis
	From Ubiquitous Computing to Pervasive Systems
	Pervasive Environments

	Challenges in Pervasive Environment including Users' Expectations
	Benefit of Pervasive Environments
	Meet users' expectations

	The Problematics of this Thesis
	Contribution of this Thesis
	Thesis Outline

	I Pervasive Systems
	Context of User-Centric Systems in Pervasive Environments
	Presentation and Terminology
	Motivating Example
	Terminology

	Requirements for User-Centric Systems in Pervasive Environments
	Functional requirements
	Non-Functional Requirements
	Synthesis

	State of the Art
	Presentation of Studied Pervasive Systems
	Anamika
	DigiHome
	MASML
	PHS
	SAASHA
	SODAPOP
	WComp

	Service Platforms: an Approach to Context Management (R1)
	Concepts and Approaches
	Evaluation of Pervasive Systems

	Service Composition: First Response to Scenario Definition (R2)
	Concepts and Approaches
	Evaluation of Pervasive Systems

	Distributed Execution and Recovery Strategies: Complementary Approaches for Scenario Execution (R3)
	Concepts and Approaches
	Evaluation of Pervasive Systems

	Service Component Platforms: an Architecture for the Reuse Paradigm (R4)
	Concepts and Approaches
	Evaluation of Pervasive Systems

	Access rights and Remote Invocation: Solutions for Selective Sharing (R5)
	Concepts and Approaches
	Evaluation of Pervasive Systems

	Non-Functional Requirements (RA-D)
	User Friendliness (RA)
	Collaborativeness (RB)
	Adaptability (RC)
	Mobility (RD)

	Synthesis and Conclusion

	II Contribution
	From Services to Scenarios
	Overview of SaS
	SaS Software in its Environment
	Scenario Creation and Deployment
	Scenario Execution
	Scenario Sharing

	Context Management
	Context Awareness
	Context Representation

	Scenario Definition
	Service Composition
	Scenario Customization
	Scenario Description Syntax

	Synthesis and Conclusion
	Context Management with SaS
	Scenario Definition with SaS
	Requirements Fulfillment

	Scenario Management: Control, Reuse and Share
	Scenario Life-Cycle
	Scenario Description Resilience
	Scenario Orchestrator
	Scenario Registered as Service

	Platforms Collaboration
	Scenario Sharing Modes
	The Collaborate Service
	Integration to the Scenario and Service Directories
	Platform Substitution

	Synthesis and Conclusion
	Scenario life-cycle
	Platform Collaboration
	Requirements Fulfillment

	Scenario Step-by-Step Execution
	Scenario Execution Scheduling
	Scenario Structured Representation
	Correspondences with SaS-Sdl elements

	Static Scenario Analysis to Prepare its Step-by-Step Execution
	Step Extraction
	Scenario Execution Life-Cycle
	Step Execution

	Dynamic and Adaptive Service Invocation
	The Service Broker
	Scenario Fault-Tolerance Mechanisms

	Synthesis and Conclusion
	Scenario Execution Scheduling
	Dynamic and Adaptive Service Invocation
	Requirement Fulfillment

	Implementation and Validation
	The SaS' prototype
	Architecture
	Insights into the SaS' prototype

	Experimentations
	Reports on Experiments
	Experimental Validation

	III Conclusion
	Conclusion and Perspectives
	Conclusion
	Synthesis
	Requirements Fulfillment
	SaS Functionalities Synthesis

	Perspectives
	Perspectives for Context Management
	Perspectives for Scenario Definition
	Perspectives for Scenario Execution
	Perspectives for Scenario and Service Sharing
	Perspectives for the Service Broker
	Security Perspectives

	IV Bibliography and Appendices
	Bibliography
	Scenario Transformation Algorithms
	Action Block Transformation
	Sequence Action Block
	Parallel Action Block

	Action Transformation
	Service Execution
	Conditional Statement
	While Loop
	Repeat Loop
	Conditional Event
	Time Event

	Publications

