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ABSTRACT

Byzantine Fault Tolerance (BFT) is becoming crucial with the revolution of
online applications and due to the increasing number of innovations in computer
technologies. Although dozens of BFT protocols have been introduced in the previ-
ous decade, their adoption by practitioners sounds disappointing. To some extant,
this indicates that existing protocols are, perhaps, not yet too convincing or sat-
isfactory. The problem is that researchers are still trying to establish ‘the best
protocol’ using traditional methods, e.g., through designing new protocols. How-
ever, theoretical and experimental analyses demonstrate that it is hard to achieve
one-size-fits-all BFT protocols. Indeed, we believe that looking for smarter tac-
tics like ‘fasten fragile sticks with a rope to achieve a solid stick’ is necessary to
circumvent the issue.

In this thesis, we introduce the first BFT selection model and algorithm that
automate and simplify the election process of the ‘preferred’ BFT protocol among
a set of candidate ones. The selection mechanism operates in three modes: Static,
Dynamic, and Heuristic. For the two latter modes, we present a novel BFT system,
called Adapt, that reacts to any potential changes in the system conditions and
switches dynamically between existing BFT protocols, i.e., seeking adaptation.

The Static mode allows BFT users to choose a single BFT protocol only once.
This is quite useful in Web Services and Clouds where BFT can be sold as a service
(and signed in the SLA contract). This mode is basically designed for systems
that do not have too fluctuating states. In this mode, an evaluation process is in
charge of matching the user preferences against the profiles of the nominated BFT
protocols considering both: reliability, and performance. The elected protocol is the
one that achieves the highest evaluation score. The mechanism is well automated
via mathematical matrices, and produces selections that are reasonable and close
to reality.

Some systems, however, may experience fluttering conditions, like variable con-
tention or message payloads. In this case, the static mode will not be efficient since
a chosen protocol might not fit the new conditions. The Dynamic mode solves this
issue. Adapt combines a collection of BFT protocols and switches between them,
thus, adapting to the changes of the underlying system state. Consequently, the
‘preferred’ protocol is always polled for each system state. This yields an optimal
quality of service, i.e., reliability and performance. Adapt monitors the system state
through its Event System, and uses a Support Vector Regression method to con-
duct run time predictions for the performance of the protocols (e.g., throughput,
latency, etc). Adapt also operates in a Heuristic mode. Using predefined heuristics,
this mode optimizes user preferences to improve the selection process.

The evaluation of our approach shows that selecting the ‘preferred’ protocol is
automated and close to reality in the static mode. In the Dynamic mode, Adapt
always achieves the optimal performance among available protocols. The evaluation
demonstrates that the overall system performance can be improved significantly too.
Other cases explore that it is not always worthy to switch between protocols. This
is made possible through conducting predictions with high accuracy, that can reach
more than 98% in many cases. Finally, the thesis shows that Adapt can be smarter
through using heursitics.

Keywords. Fault tolerance, Byzantine fault tolerance, fail-stop, benign faults,
paxos, BFT selection, adaptable BFT, dynamic switching, BFT prediction, BFT



support vector machines, BFT analysis, abortable BFT, Abstract, Re-Abstract,
Byzantine resilient OpenLDAP, heuristic BFT, one-size-fits-all BFT, preferred BFT
protocol, BFT quality of service, BFT clouds.



RÉSUMÉ

La Tolérance aux pannes Byzantines (BFT) est de plus en plus crucial avec
l’évolution d’applications et en raison de la croissance de l’innovation technologique
en informatique. Bien que des dizaines de protocoles BFT aient été introduites dans
les années précédentes, leur mise en œuvre ne semble pas satisfaisant. Pour faire
face à cette complexité, due à la dependence d’un protocol d’une situation, nous
tentons une approche qui permettra de sélectionner un protocole en fonction d’une
situation. Ceci nous paraît, en s’inspirant de tout système d’encrage, comme une
démarche nécessaire pour aborder la problématique de la BFT.

Dans cette thèse, nous introduisons un modèle de sélection ainsi que l’algorithme
qui permet de simplifier et d’automatiser le processus d’élection d’un protocole.
Ce mécanisme est conçu pour fonctionner selon 3 modes : statique, dynamique
et heuristique. Les deux derniers modes, nécessitent l’introduction d’un système
réactif, nous ont conduits à présenter un nouveau modèle BFT : Adapt. Il réagit
à tout changement et effectue, d’une manière adaptée, la commutation entre les
protocoles d’une façon dynamique.

Le mode statique permet aux utilisateurs de BFT de choisir un protocole BFT
en une seule fois. Ceci est très utile dans les services Web et les " Clouds " où le
BFT peut être fournit comme un service inclut dans le contrat (SLA). Ce mode est
essentiellement conçu pour les systèmes qui n’ont pas trop d’états fluctuants. Pour
ce faire, un processus d’évaluation est en charge de faire correspondre, à priori, les
préférences de l’utilisateur aux profils du protocole BFT nommé, en fonction des
critères de fiabilité et de performance. Le protocole choisi est celui qui réalise le
meilleur score d’évaluation. Le mécanisme est bien automatisé à travers des matrices
mathématiques, et produit des sélections qui sont raisonnables.

D’autres systèmes peuvent cependant avoir des conditions flottantes, il s’agit
de la variation des charges ou de la taille de message qui n’est pas fixe. Dans ce
cas, le mode statique ne peut continuer à être efficace et risque de ne pas pouvoir
s’adapter aux nouvelles conditions. D’où la nécessité de trouver un moyen perme-
ttant de répondre aux nouvelles exigences d’une façon dynamique. Adapt combine
un ensemble de protocoles BFT ainsi que leurs mécanismes de commutation pour
assurer l’adaptation à l’évolution de l’état du système. Par conséquent, le "Meilleur"
protocole est toujours sélectionné selon l’état du système. On obtient ainsi une qual-
ité optimisée de service, i.e., la fiabilité et la performance. Adapt contrôle l’état du
système grâce à ses mécanismes d’événements, et utilise une méthode de «Support
Vecor Regrssion» pour conduire aux prédictions en temps réel pour l’exécution des
protocoles (par exemple, débit, latence, etc.). Ceci nous conduit aussi à un mode
heuristique. En utilisant des heuristiques prédéfinies, on optimise les préférences de
l’utilisateur afin d’améliorer le processus de sélection.

L’évaluation de notre approche montre que le choix du "meilleur" protocole est
automatisé et proche de la réalité de la même façon que dans le mode statique.
En mode dynamique, Adapt permet toujours d’obtenir la performance optimale des
protocoles disponibles. L’évaluation démontre, en plus, que la performance globale
du système peut être améliorée de manière significative. Explorer d’autres cas qui
ne conduisent pas de basculer entre les protocoles. Ceci est rendu possible grâce à la
réalisation des prévisions d’une grande precision qui peuvent atteindre plus de 98%
dans de nombreux cas. La thèse montre que cette adaptabilité est rendue possible
grâce à l’utilisation des heuristiques dans un mode dynamique.



Mots-clés. système distribué, system reparti, fautes Byzantines, tolérance aux
pannes, BFT abort-mesure, la qualité de service, performance, paxos, BFT sélec-
tion, adaptable BFT, «switching» dynamique, BFT prédiction, BFT support vector
machines, BFT analyse, Abstract, Re-Abstract, «preferred BFT protocol», BFT
clouds.
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Chapter 1

Introduction

Fault Tolerance is a fundamental requirement for reliable services. The achievements
towards tolerating benign faults [34, 6, 24, 42, 34] (i.e., fail-stop or crash faults) are nowa-
days well mature, and thus are being deployed everywhere. However, studies that address
Byzantine faults [35, 15] have not yet settled on a ‘convincing’ solution for practitioners.
Consequently, research community is still probing for new solutions that are satisfactory
in two aspects: reliability, and performance. Currently, this field has become crucial
with the emergence of new threats due to the reliance on the Internet, and because of
the evolution of computer technologies that yield new bugs and incompatibility issues.
Though a lot of BFT solutions emerged recently to resolve this problem, it is still vague
for practitioners to decide what is the ‘best’ protocol to choose.

Byzantine Fault Tolerance (BFT) is a technique used to leverage the resiliency of
partially-synchronous [41, 23, 38] services against arbitrary faults, the so called Byzantine
faults. BFT is often used on state machine replication (SMR) [47, 33]. To make such
a service Byzantine resilient, it should be deployed as a deterministic state machine on
multiple replicas and use a BFT protocol ( [15, 2, 22, 32, 26, 50, 19]) to manage the
communication between replicas and clients. BFT protocols tolerate Byzantine faults as
long as up to one third of the replicas, and any client, are Byzantine [12, 15, 14].

Plenty of BFT protocols have been introduced recently. PBFT [15, 14] is considered
the bedrock of practical BFT protocols. It maintains fault tolerance in the presence
of Byzantine faults. Unfortunately, the performance of PBFT is low. Afterwards, the
major concern of research community was to boost up the performance of PBFT even
if robustness is a bit compromised; thus, they used speculation [32, 2, 22, 26] for this
sake. The argument is that stable services are often reliable, but they mostly suffer
from transient failures or attacks. Indeed, the perseverance of researchers then yielded
many BFT protocols with better reliability and performance, however, this needed some
sacrifice in other properties. Any new upcoming protocol used to fill some of the gaps of
its predecessors and, unfortunately, introduced other new issues.

Nowadays, various BFT protocols are present (e.g., [15, 32, 2, 22, 26, 1, 28, 4, 50, 19],
etc). Each has its strength and either exhibits new weaknesses, or imposes new assump-
tions to guarantee the anticipated results of its design objectives. For instance, PBFT [15]
operates in the presence of Byzantine nodes, but it suffers from low performance as com-
pared to speculative protocols. Q/U [2] and Quorum [26] exhibit the lowest latency and
fault scalability, however only in contention-free services. Zyzzyva [32] and Chain [26]
achieve a high throughput, but rather they suffer from expensive recovery. Ring [1] scales
to a high number of clients under contention, but it exhibits a low performance. Aard-
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vark [19], Prime [9], and Spinning [50] provide more robustness and tolerance to DoS
attacks, but they either remained vulnerable to some attacks, or required more complex
infrastructure and resources, etc. Abortable BFT protocols like Aliph [26, 27] proposed
a modular approach to use existing BFT protocols and switch from one to another upon
failure. However, for the moment, no dynamic switching policy appeared to maintain run
time system adaptability to the changes in the underlying conditions.

The discrepancy in the properties and performance of BFT protocols leads to the
belief that one-fits-all BFT protocols are hard to achieve. This confuses BFT users while
seeking the preferred protocol to use. A bunch of important questions thus arise: (1)
What is the ‘preferred’ BFT protocol? And first, what is meant by ‘preferred’? Could
the various properties of BFT protocols be combined together in a single system? Which
protocol to choose if the system state is often uniform? Can we provide dynamic run
time adaptation in systems with alternating states? This thesis tries to answer all these
questions.

1.1 Contributions

This thesis introduces the first BFT selection mechanism. The mechanism aims at guiding
BFT users to choose their ‘preferred’ protocol in three modes: Static, Dynamic, and
Heuristic. The former can be used in Web Services [39, 40, 8] or clouds [10, 54, 7] which
can sell BFT as a service. Users are allowed to choose their preferred protocol. Moreover,
we developed a new method, for this mode, to conserve the performance of existing BFT
protocols under recovery. For the Dynamic and Heuristic modes, we rather introduce a
novel BFT system, called Adapt. This system provides an optimal quality of service (i.e.,
reliability and performance) through combining existing BFT protocols together, and
then dispatching one of them each time according to a dynamic selection policy. Adapt
uses experimental Support Vector Regression (SVM) [11, 21, 49] forecast to assess the
performance of different protocols in run time. Occasionally, Adapt uses some heuristics
to boost up performance.

1.1.1 No-one-fits-all Analysis

Our first contribution is to make an extensive study for the behavior of BFT protocols
and their properties. The aim is to strengthen the belief that one-fits-all protocols are
almost impossible to achieve in BFT. Therefore, we conducted three sorts of analysis. In
the former, we describe the various characteristics of different existing protocols, showing
that none of them could comprise all these characteristics. Then, we present a traditional
theoretical analysis based on the basic design aspects of the protocols, e.g., message ex-
change pattern and number of authentications needed; but this time with a wider coverage
and discussion. This analysis shows again that even theoretically BFT protocols achieve
different performance (mainly throughput and latency). The third study is experimen-
tal. The experimental discussion is accompanied with a theoretical interpretation based
on Queuing theory [25, 3]. Upon addressing different cases, we ended up with the same
conclusion that: no BFT protocol is dominant in all cases.
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1.1.2 BFT Quality of Service
Then we introduce a solution for the above problem. We describe, for the first time, a
BFT selection model and algorithm used to cull the preferred protocol among a collection
of protocols. Our definition to the ‘preferred’ protocol is: the most suitable protocol
that matches the user preferences. Our approach is based on mathematical formulas to
automate the selection process. We discuss all the parameters of the formulas and how
to use them. In addition, we conduct many examples to evaluate the mechanism, and to
convey that the output is reasonable and matches reality. The model operates in three
modes: Static, Dynamic, and Heuristic. We explore these modes in the following.

1.1.2.1 Static Mode

In the static mode, the user should be able to choose a protocol that fits his requirement
the most. This is quite useful with the revolution of Web Services and Cloud systems. To
describe the method, we give this example: consider a service provider, say a cloud system,
that sells IaaS, PaaS, and SaaS [10, 54, 7] services in a timely basis. The cloud vendor can
provide an additional service (to be revealed in the SLA [7] contract) to leverage the service
resiliency of the user’s service against Byzantine faults. The cloud vendor also provides a
collection of existing BFT protocols that it supports, and uses our selection approach to
help the users decide which protocol to choose. Protocols are usually accompanied with
predefined profiles (i.e., a set of Key Quality Indicators KQIs) and users provide their
preferences. KQIs are composed of Key Characteristics Indicators (KCIs) that define
the properties of the protocol, and Key Performance Indicators (KPIs) that rank its
performance. Selection occurs by running an evaluation phase. The evaluation occurs
by matching the profiles of the protocols against the user preferences in an automated
process. The protocol that achieves the highest evaluation score is considered the preferred
protocol with respect to this very user. The service provider then assigns the suitable
resources according to the user choice. In the static mode, the user is allowed to choose
a single protocol only once, i.e., at the instant of system deployment (unless the terms of
the SLA contract change). We conducted many concrete examples to evaluate this mode.
The results show that the selection output is reasonable and exactly answers the demands
of the users.

1.1.2.2 Re-Abstract Family

Since selection in the static mode is allowed only once, then according to the user, it is
trivial to obtain (constantly) the anticipated output. In most current BFT protocols, this
is not not possible. In fact, most exiting protocols suffer from drop in their performance
upon failure detection, i.e., during the recovery phase. Experience showed that PBFT
performs better than other protocols in the presence failures [32]; though, it is known
of its poor performance in the trivial phase (i.e., with no failures). We introduce a new
technique to maintain the same performance of existing protocols after recovery (e.g.,
until the faulty replica is repaired). We present the BFT Re-Abstract family [4] for this
sake, based on the abortable BFT [27, 26] approach. Any Re-Abstract member runs the
original Abstract (i.e., an existing BFT protocol) on 3f+1 Active replicas, and requires
f Passive replicas that are idle backups. Upon failure detection, Abstract recovers to
itself again, but this time on a new Active set of replicas. The challenge is to evict the
Suspicious replicas (Byzantine or just slow) out of the Active set and to replace them
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with correct ones (i.e., not Byzantine) from the Passive set. Abstract then returns to
operate normally exhibiting its best-case performance. The evaluation of Re-Abstract
demonstrates that the gain in throughput is sometimes up to twice that of Abstract itself
while recovery. Also we show that Re-Abstract is very useful when the periods of failures
in the system are long. Otherwise, if the failure is transient, the repair time of the faulty
replica will be short (e.g., less than one second), and thus switching to Abstract itself will
be worthless.

1.1.2.3 Dynamic Mode: Adapt System

The static mode works well in systems that are usually steady, i.e., the system state is not
too fluctuating. However, if the system encounters fluttering conditions, the static mode
will not be efficient. The reason is that, in the static mode, only one protocol is allowed
to be run; what if this protocol does not fit the new conditions? For instance, running
Quorum in systems that are deprived from contention is very beneficial, but what about
its performance if the system had some periods of contention? The situation is more
complicated if multiple impact factors are affecting the system state. The Dynamic state
solves this issue.

For the Dynamic mode, we develop a novel BFT system, called Adapt, that can adapt
dynamically to the changes of the underlying system state. Adapt ensures the optimal
quality (reliability and performance) among existing protocols. It is designed for systems
that experience fluttering states. Adapt can be applied on traditional platforms, Web
Services, and Clouds.

Adapt is composed of three sub-systems: BFT Subsystem (BFTS), Event Subsystem
(ES), and Quality Control Subsystem (QCS). BFTS is a pool of existing (and perhaps
new) BFT protocols, it represents the BFT libraries (e.g., [15, 32, 2, 22, 26, 1, 28, 4, 50, 19],
etc) and the abortability libraries ( [27, 26]). ES monitors the system, and detects any
potential changes in the system state that is represented by a collection of Impact Factors
(e.g., number of clients, request size, data loss, etc). Upon detecting a significant change,
ES sends an event to the QCS, thus triggering an evaluation phase. QCS maintains an
optimal system performance by running the ‘preferred’ protocol in the next system state
(i.e., under the new system conditions). QCS evaluates the BFT protocols by calculating
their Evaluation Score (E); the protocol with the higher score is launched in the next
phase. Evaluations are computed according to the selection model described above, but
dynamically this time. In the Dynamic mode, the profiles of the protocols are not totally
predefined; however, some of them are computed dynamically. QCS predicts the values
of the Key Performance Indicators (KPIs) of each protocol, at run time, through using a
well-known Machine Learning technique called Support Vector Machines for Regression
(SVR) [21, 11]. Switching to a new protocol takes place only if it is worthy to switch with
some chosen threshold.

In the evaluation of Adapt, we conduct concrete experiments on Redis [46] and OpenL-
DAP [58, 44, 43] applications. The experiments show that the prediction accuracy of
throughput ranges between 95% and 98%. Then, we discuss how the impact factors (e.g.,
message payloads and number of clients) affect prediction accuracy. Also, in the evalua-
tion we illustrate why this prediction accuracy is enough for Adapt to decide what is the
preferred protocol, and whether switching is worthy or not. Our experiments demonstrate
that Adapt can always choose the preferred protocol through applying the Dynamic mode.
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1.1.2.4 Heuristic Mode

Although the Dynamic mode can achieve good results, however, this is limited to the
user preferences. Since BFT service administrators usually have more knowledge than
users (about BFT protocols), it is good to define some heuristics to optimize the choice
of the users. This can be quite useful sometimes. For instance, if the user requires a high
throughput, then Adapt will choose the preferred protocol; however, when there is no
contention on the system, experience shows that latency becomes more important than
throughput. Another example is when the system is overloaded with requests due to the
high number of clients accessing the system, tolerating a high number of clients becomes
more crucial than high throughput (though they do not contradict). We show how to
automate such heuristics in the selection process using the same mathematical formulas
introduced in the selection model. Then we describe how to use the Heuristic mode in
Adapt. The evaluation of the Heuristic mode explains how it can improve the choice of
the user to achieve the better quality of service. Defining a complete list of heuristics is
a future plan.

1.2 Thesis Organization
The rest of the thesis is organized as follows.

In Chapter 2, we start by defining Byzantine fault tolerance. Then, we demonstrate
why tolerating crash faults in not enough. Then we present some of the common BFT
concepts and techniques. Well-known state of the art BFT protocols (used in this thesis)
are then recalled concisely.

Chapter 3 motivates this thesis by illustrating why one-size-fits-all protocols are hard
to achieve in BFT. It conveys three types of analysis. The first one considers the dif-
ferent characteristics of existing protocols. The second analyzes the performance of the
protocols considering their communication patterns. The third analysis then discusses
experimentally the discrepancy of performance among BFT protocols, accompanied with
a justification based on Queuing theory. Just before introducing the third analysis, we
describe in this chapter the system applications and settings used to conduct these ex-
periments.

Our selection model is presented in chapter 4, preceded by some related work and
terminology. Then, the selection algorithm is presented, and the mathematical selection
formulas are explained thoroughly. Along with the explanation, many examples are pre-
sented. The chapter explores the three system modes: Static, Dynamic, and Heuristic.
At the end, we evaluate these modes, and we present a way to discover when switching is
worthy.

Chapter 5 presents the Re-Abstract family. After introducing the approach, the chap-
ter describes the design of the Re-Zlight, as a member of the family, explaining its two
phases Speculative and Recovery. Re-Abstract evaluation is then conducted in the rest
of the chapter, and terminated by showing how to use Re-Abstract in the Static mode.

Adapt is introduced in Chapter 6. The chapter starts by explaining why the Static
mode is not enough and recalling some related work. The system architecture is then
presented and followed by a description of the SVR prediction process. An interesting
evaluation is then explored, followed by showing when switching is worthy. The Chapter
ends by showing how to use the Heuristic mode in Adapt, and why this is important.
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Finally, our concluding remarks and future work appear in Chapter 7.
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Chapter 2

BFT Concepts and Protocols

In this chapter, we start by justifying the motivation behind Byzantine fault tolerance
(BFT). Then, we recall some BFT concepts and properties, and we describe the BFT
fault model. Afterwards, we explore a brief overview on the basic state of the art BFT
protocols: PBFT, Zyzzyva, Q/U, HQ, Quorum, Chain, Ring, OBFT, etc. Recalling these
protocols is important to understand the following chapters.

2.1 Why Byzantine Fault Tolerance?
Single client-server message exchange represents the simplest communication scheme in
distributed computing; however, it suffers from harmful reliability issues. On the other
hand, as the deployed services are becoming more open to the globe, a significant load
on servers is increasingly imposed. In addition, introducing new computer technologies
raised up the potential of failures in deployed services. These issues can easily compromise
the reliability and performance of services. Replication is an essential technique used to
maintain system reliability through having multiple backup servers (or redundant repli-
cas). Replication aims to lift up system availability and performance while ensuring its
correctness.

State machine replication (SMR) [33, 47] is basically used to make services tolerant to
faults through achieving agreement among system replicas. Paxos [36] is a popular SMR
protocol that handles benign faults (i.e., fail-stop or crash faults) [6, 34, 42, 37]. However,
the increasing number of programming languages, platforms, and human attacks raised
up another sort of arbitrary faults, called Byzantine [35, 14]. The difficulty of resolving
such failures arise from the impossibility to assess the behavior of a Byzantine node, unlike
fail-stop nodes that can be considered non-present. Byzantine Fault Tolerance (BFT) is
the sort of replication that is in charge of maintaining consistency among system replicas
in the presence of Byzantine faults.

The problem of Byzantine faults can be described in this example: consider a client
that has a money credit x in a bank. The client withdraws a certain amount of money,
say y. The client expects that the remaining credit in his account is (x-y). If the bank
uses benign SMR replication, using Paxos for example, the system would return a receipt
of (x-y) or it will fail. But what if it returns a receipt of (x-2y) for example? In this case,
the system responded, but with a wrong response. BFT solves this problem by ensuring
that any operation either finishes correctly, or stops.
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2.2 Byzantine Fault Tolerance

2.2.1 Definition and Approach
Byzantine fault tolerance [35] (BFT) is a technique used to maintain resiliency against
Byzantine (arbitrary) faults. Byzantine faults are those faults that impose, on services,
an unpredictable behavior that is different to the purpose of their design; they include
incorrect processing of a request, sending inconsistent responses, maliciously corrupting
a state, etc. A BFT protocol is used to manipulate the communication among system
replicas and clients assuming partial synchrony [41, 23, 38]. Typical BFT protocols require
at least 3f+1 replicas to ensure consistency among system replicas, where at most f
replicas can be Byzantine [35, 15, 12]. Some protocols like Q/U [2] requires at least
5f+1. In addition, trusted components can be used with certain synchrony assumptions
to reduce the minimum number of replicas to 2f+1, e.g., in [20, 17, 51].

BFT consists of replicating a service over a group of servers (called replicas). Each
replica maintains a set of state variables, which are accessed by Read/Modify operations.
Operations are executed atomically in a deterministic way, i.e., starting from the same
initial state on all of the replicas, and executing the same operation on any replica should
generate the same final state. BFT protocols should satisfy two properties:

• safety: all processes of correct replicas execute the same requests in the same order;

• liveness: all correct requests from the client processes are eventually executed.

BFT protocols are designed to maintain the above two properties. In such protocols,
correct clients issue requests to be executed on replicas; these requests are disseminated
among replicas according to a certain message exchange pattern (i.e., seeking agreement),
and thus they are totally ordered. Ordering is often done by a specific primary replica
(except for client-based protocols). At the end, one replica (or more) sends back the
replies to the client. Replicas and clients maintain request histories to recover under
failure. In BFT, the detection of Byzantine faults and recovery takes place with the help
of clients (they are forced to contribute in this process in order to have their requests
served).

2.2.2 Authentication
To tolerate malicious attacks, exchanged messages in BFT protocols are authenticated
via some cryptographic techniques, such as Public Key Cryptography (PKC) or Message
Authentication Code (MAC). PKC could make the BFT protocols much simpler since
it is verifiable even after the message is forwarded multiple times, but it is much slower
than MAC. The throughput can be bounded by the number of MAC or PKC operations
per request performed by the bottleneck replica; because the sender has to authenticate
a message for each destination. The node that sends more messages to the other nodes,
therefore, has to do more MAC or PKC operations as well.

2.2.3 Understanding the 3f+1 Bound
To understand why at least 3f+1 replicas are needed to tolerate f Byzantine replicas,
we make a short comparison with the case of crash faults where only 2f+1 replicas are
needed[34].
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Starting with crash faults (e.g., Paxos), consider a replicated service that maintains
mutual exclusion on Read/Write operations. Suppose the number of replicas is n, and
assume that up to f replica failures can occur during a short window of time. Now,
if a Write operation is performed, then the client waits until it receives n-f replies
only to maintain liveness since f replicas might not respond at all (system is partially-
synchronous [41, 23, 38]), thus it should not wait more. When another Read request is
issued, the client waits for n-f replies too, but probably from another set of replicas. Thus
the common set of replicas between the Read and Write quorums is n-2f . For the service
to be correct, Read and Write quorums must intersect in at least one replica since in
fail-stop faults we are sure that this replica is not faulty (otherwise it should be crashed);
hence n-2f>0. Consequently for f faulty replicas, at least 2f+1 replies are needed to
maintain safety and liveness.

Figure 2.1: Intersection of Read/Write quorums in BFT.

However, in BFT case (see Figure 2.1), it is hard to decide whether the f replicas that
did not respond are Byzantine or just slow. If they were just slow, then there might be
f Byzantine replicas among the first operation (Read or Write) quorum. Thus, among
the intersection n-2f , there might be f Byzantine replicas that only responded either
in the Read operation or in the Write operation since Byzantine replicas can arbitrarily
or selectively respond. Therefore, for the service to be correct, the intersection should
include at least one correct replica in addition to the f suspicious replicas (that might be
Byzantine), hence n-2f>f ; in other words, n>3f . Therefore, at least 3f+1 replicas are
required to maintain safety and liveness assuming that at most f replicas are Byzantine.

2.3 BFT System Model
BFT fault model [15] assumes a message-passing distributed system using a fully con-
nected network among nodes: clients and servers. The network may (not infinitely)
fail to deliver, corrupt, delay, or reorder messages. Faulty replicas and clients may ei-
ther behave arbitrarily, i.e., in a different way to their designed purposes, or they just
crash (benign faults). A strong adversary coordinates faulty replicas to compromise the
replicated service. However, we assume that the adversary cannot break cryptographic
techniques like: collision-resistant hashes, encryption, and signatures. Liveness, however,
is only guaranteed when the system is eventually synchronous.
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2.4 BFT Protocols

2.4.1 PBFT
PBFT [15] is the seminal practical BFT protocol. It is considered a robust protocol (it
works under failure); however, in most cases, it exhibits a low performance with respect
to that of speculative protocols ([32, 2, 22, 26]). PBFT requires 3f+1 replicas to ensure
safety and progress assuming up to f replicas can be Byzantine. A primary replica is
used to order the requests of the clients. A normal request operation is completed in three
phases (see Figure 2.2): PRE-PREPARE, PREPARE, and COMMIT.

Figure 2.2: Message pattern of PBFT.

After the primary receives a request from a client, it appends a sequence number to this
new request and broadcasts a PRE-PREPARE message to all of the replicas containing
the ordered request. When a backup replica receives the PRE-PREPARE message, it
acknowledges the message by broadcasting a new PREPARE message to all of the other
replicas. As soon as any replica receives a quorum of 2f+1 PREPARE messages, it
promises to commit the request in its local history (ordered by the sequence number
already appended to the request) by broadcasting a COMMIT message. Finally, when
a replica receives a quorum of 2f+1 COMMIT messages, it executes the request and
replies to the client. The client commits the request if it receives f+1 matching replies;
otherwise, the client retransmits the request.

Timers may expire on backup replicas while waiting for the primary to respond. In
this case, a view-change phase is launched to assign a new primary. Consequently, each
backup replica sends a VIEW-CHANGE request to all other replicas along with a sufficient
number of CHECKPOINT and PRE-PREPARED messages to be used as a proof. When
the new primary (usually the next replica) receives 2f valid VIEW-CHANGE messages, it
multicasts a NEW-VIEW message, that comprises a set of PRE-PREPARED messages 1,
i.e., a proof [15]. Backup replicas accept the new view after verifying the NEW-VIEW
message from the primary; and the protocol resumes its normal operation.

2.4.2 Q/U
Q/U [2] is a Quorum-based BFT protocol that has better fault scalability and performance
(especially latency) than PBFT; however, its performance drops under contention. The
communication pattern of Q/U in the failure-free phase is simple (Figure 2.3): A client
sends a request to a preferred quorum of replicas, and the replicas reply directly to the
client. Q/U need no primary replica to order requests; instead, consistency is maintained
through storing object versions upon each update operation, the history of up-to-date

1Describing this process is out of the scope of this thesis.
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object versions is exchanged among replicas and clients to ensure that the final version of
an object is always being queried.

Figure 2.3: Message pattern of Q/U.

Q/U requires 5f + 1 replicas to tolerate f Byzantine faults. Nevertheless, clients can
contact a preferred quorum (of size 4f+1) for optimum performance. This could result in
outdated histories in some replicas, which induce the cost of a synchronization phase to
the protocol. In this phase, the outdated replica requests the up-to-date history from f+1
other replicas (to ensure that the history is not manipulated by some faulty replicas).

Concurrent updates on an object may lead to different versions on different replicas,
this is usually detected by the client that initiates a repair phase to recover from failures
and brings the outdated copies of an object to the current version. Due to this expensive
phase, Q/U is not scalable to large number of clients where the probability of concurrent
updates is very high.

2.4.3 HQ
The Hybrid Quorum [22] (HQ) replication protocol is a quorum-based protocol that over-
comes the limitations of Q/U (i.e., concurrency problems under contention) and PBFT
(i.e., low latency and fault scalability). HQ requires only 3f+1 replicas and combines
quorum and agreement-based state machine replication techniques to provide scalable
performance as f increases. In the absence of contention, HQ uses a new lightweight
Byzantine quorum protocol in which Read operations require one round trip of communi-
cation between the client and the replicas, and Write operations require two round trips.
When contention occurs, it uses an algorithm similar to PBFT to, efficiently, order the
contending operations.

HQ exhibits a moderate performance between Q/U and PBFT in contention-free cases
and a comparable fault scalability to Q/U. Under contention it is more robust than Q/U,
but achieves a performance that is lower than that of PBFT.

2.4.4 Zyzzyva
Zyzzyva [32] is a BFT protocol that uses speculation to improve the performance of BFT
state machine replication. Similar to PBFT, Zyzzyva requires 3f+1 replicas to ensure
safety and progress assuming that up to f replicas can be Byzantine. In the failure-free
phase of Zyzzyva, the client sends the request to the primary, which assigns the request
a sequence number and forwards it to the other replicas. The replicas immediately (i.e.,
speculatively) execute the request and send the reply to the client (Figure 2.4). In this
way, Zyzzyva avoids the expensive agreement phase of PBFT that is needed to achieve
total order of messages, prior to committing a request. The client completes a request

25



in two cases: (1) if it received 3f+1 mutually-consistent responses, or (2) if it received
between 2f+1 and 3f mutually-consistent replies.

Figure 2.4: Message pattern of Zyzzyva.

In the latter case, the client sends a commit certificate to all replicas and waits for
2f+1 SPEC-RESPONSE acknowledgments to complete the request; otherwise, the client
retransmits the commit certificate to all replicas again which forward the request to the
primary on the behalf of the client. When a replica receives an ORDER-REQ successfully
from the primary, it confirms the response to the client; otherwise, it initiates a view
change. In addition, the client may attain a proof of misbehavior (POM) against the
primary (i.e., two different ORDER-REQ for the same request in the same view); in this
case, the client forwards the POM message to all replicas to initiate a view change (in
fact, the process is more complex; for more details see [32]).

Although Zyzzyva exhibits a good performance and latency, its performance drops
sharply under failure, even worst than PBFT by 15% [32]; the reason is refered to the
complex recovery process described above.

2.4.5 Abortable BFT
The notion of BFT abortability [27, 26] (i.e., Modular BFT-SMR) was introduced to
reduce the complexity of design and implementation of BFT protocols. In our thesis,
however, we adopt this approach to achieve optimal performance. An abortable BFT
protocol (i.e., an aAbstract) that runs correctly if its Non-Triviality conditions are sat-
isfied, can abort (i.e., stop running) at any time if these Non-Triviality conditions are
no more satisfied; afterwards, no request will be serviced by the aborted protocol. A
client can initiate abort if the currently running instance of BFT cannot safely progress
anymore (e.g., because of contention or a failure), or the performance is unsatisfactory
(e.g., because of a change in the payloads). The client then collects the abort history (i.e.,
the operations log) that is derived from the local histories of replicas. Then, the client is
in charge of launching another protocol, called Backup, and initializing it with the abort
history. The abort history can be exchanged among replicas and clients to stand as a
proof against Byzantine replicas and clients. The whole process is decribed in details in
Figure 2.5.

A new Abstract is initialized with an abort history that includes all the requests globally
committed by the replicas in the previous BFT Abstract. The design of an abortable BFT
protocol specifies a way to obtain the abort history, considering that (i) some replicas
might be faulty and not responding; (ii) some of the responding replicas might be faulty
and return invalid histories; and (iii) the histories in the replicas could be inconsistent
because of contention or a Byzantine behavior.

The modular behavior of abortability approach is very interesting since it allows using
more than one protocol for a deployed service. However, this approach lacks a clear
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(a) If aAbstract Non-Triviality conditions are satisfied, clients access only the aAbstract module.

(b) If aAbstract aborts, clients use the abort history as init history to switch to Backup. Backup is a
powerful Abstract that guarantees to commit a certain number of requests.

(c) After a certain number of requests is committed within Backup, a client may be switched-back to try
again (some) aAbstract.

Figure 2.5: Switching in abortable BFT.
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dynamic switching policy to be used efficiently. In the history, only static switching of a
predefined order of protocols was introduced. For instance, the authors in [26] introduce
Aliph, a system of three Abstracts (Chain, Quorum, and Zlight) that can switch from
one protocol to the next one whenever failures occur. Knowing that any existing BFT
protocol can be made abortable, we exploit this feature in our thesis to provide new BFT
solutions.

In the following we recall some abortable BFT protocols that will be addressed in the
next chapters.

2.4.5.1 Quorum

Quorum [27] is a client-based BFT protocol that is designed to be abortable [27, 26].
Quorum achieves the theoretical minimum latency in contention-free cases. The protocol
has the same message pattern as Q/U (Figure 2.6) in its trivial phase, i.e., in failure-free
cases, however it requires 3f+1 replicas to tolerate up to f Byzantine replicas (whereas
Q/U requires 5f+1). A client broadcasts the request to all replicas; each replica executes
the request, updates its local history, and replies back to the client. The client completes
the request if all the received replies match; otherwise, the client aborts Quorum, and
launches another stronger backup protocol [27] (e.g., PBFT).

Although the performance of Quorum is very high (as compared to other protocols),
it could not tolerate a large number of clients due to the concurrency problems under
contention.

Figure 2.6: Message pattern of Quorum.

2.4.5.2 Chain

Chain [26, 27] is an abortable speculative protocol where system replicas are arranged
in a chain fashion, starting by the Head replica and ending with the Tail replica. The
communication pattern of chain is depicted in Figure 2.7. A client sends a request to
the Head, which assigns a sequence number to the request. The head then forwards the
request to the next replica in the chain. Each replica executes the request, appends it to
its local history, and forwards the request to its successor until it reaches the Tail. Finally,
the Tail replies to the client. The last f+1 replicas include the digest of their history in
the forwarded request, to be sent to the client by the Tail. If these digests match, the
client commits the request. Otherwise, the client resorts to a backup protocol to commit
the request.

To make sure that no Byzantine replica is in the chain, each replica (except the Head
and Tail) verifies f+1MAC authenticators from its predecessor replicas and adds new f+1
MAC authenticators (corresponding to f+1 successor replicas) to the request. Although
this technique imposes higher end-to-end delay, the throughput increases since the number
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Figure 2.7: Message pattern of Chain.

of MAC operations performed by each replica is close to one, i.e., the theoretical lower
bound.

2.4.5.3 Ring

Ring [1] is another speculative abortable BFT protocol that achieves a high throughput
in the presence of large payloads and contention. Replicas are organized in a ring fashion
where each replica has a predecessor and a successor. Clients can send requests to any
replica and receive the reply from the predecessor of that replica. A sequencer replica
is in charge of assigning sequence numbers to the requests that are forwarded from each
replica to its successor (Figure 2.8). Any request moves in a complete turn through the
ring to get assigned a sequence number by the sequencer, and then it continues in another
round to execute the request on all replicas. This causes large delays in responses.

Figure 2.8: Message pattern of Ring.

Ring achieves a low throughput as compared to state of the art protocols; however, it
dominates them under high contention, i.e., when the network becomes the bottleneck.

2.4.5.4 OBFT

OBFT [28] is client-based abortable BFT protocol that ensures obfuscation,i.e., replicas
have no informtion about each other. The protocol dominates other client-based protocols
(e.g., Q/U and Quorum) in client scalability. Furthermore, the protocol can completely
ensure independence of failure among replicas; whereas, the other protocols require inter-
replica interaction. For instance, the replicas in Q/U must communicate during the Repair
phase, and Quorum recovers to a PBFT-like backup under failures which includes inter-
replica communication too. Since OBFT is new to research community (it is one of our
contributions), we describe it a bit more than other protocols. Further details can be
found in [28].

OBFT requires 4f+1 replicas to maintain safety and liveness; where the communica-
tion occurs among 3f+1 Active replicas, and the extra f Passive replicas are used upon
recovery. The communication pattern of OBFT is depicted in Figure 2.9. In OBFT, the
client sends a request to the primary replica, the primary replica assigns the request a
sequence number, executes it, and sends it back to the client. The client then forwards the
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ordered request to the remaining Active replicas which execute the request and reply back
to the client. The client accepts the request if all the replies match (including that of the
primary), otherwise, recovery is required. The recovery in OBFT is done by detecting the
faulty replica among the Active replicas, and then replacing it with a correct replica from
the Passive set. The mechanism is similar to the techniques described in Re-Abstract [4]
in Chapter 5, thus we do not explain the method further in this section.

Figure 2.9: Message pattern of OBFT.

Since the client plays a crucial role in OBFT, the protocol do assume that clients can
not be malicious, though they can fail by crashing. This assumption is mandatory to
maintain obfuscation in any BFT protocol. In fact, if replicas do not communicate, a
malicious client can violate consistency. The client sends two different requests to two
distinct subsets of the replicas and behaves against each subset as if there was a single
request.

2.4.6 Other BFT Protocols
A set of so-called robust BFT protocols have been recently introduced. For instance,
Prime [9] uses some monitoring techniques to detect a slow primary and then initiates a
view-change to maintain an acceptable performance under failures. Aardvark [19], on the
other hand, uses similar techniques to Prime and attempts to use multiple backup NIC
interfaces to avoid compromised replicas. Spinning [50] is a protocol that avoids attacks
on the primary by changing the primary replica after every batch. Another protocol,
i.e., Zyzzyvark [18], separates execution replicas from agreement replicas to maintain
robustness under failures. These protocols aim at offering good throughput when faults
occur, unlike the previous protocols that ameliorate the failure-free case. Although the
concepts of our approach, in this thesis, are generic, i.e., any protocol can be included in
the study, we do not discuss these protocols due to size limits (we are planning to include
some of these protocols in future work).
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Chapter 3

Does One-size-fits-all BFT Protocols
exist?

In the previous chapter, we have shown that numerous BFT protocols have been de-
signed to fill the gaps of their predecessors. In this chapter, we conduct three different
analyses to show that no one BFT protocol dominates the others under all conditions.
The first discusses the various characteristics of BFT protocols. The second studies the
performance of BFT protocols considering their message exchange patterns. The third
is an experimental analyses accompanied with a justification using Queuing theory. The
experimental analysis is conducted on some applications that we describe briefly in this
chapter too. We highlight some interesting cases where specific protocols are roughly
superior to others. The aim of the three analyses, in this chapter, is to make a strong
belief that one-size-fits-all protocols are very hard to achieve in BFT.

3.1 Discrepancy in the Properties of BFT Protocols
After introducing the seminal practical BFT protocol, i.e., PBFT [15], many protocols
have been developed for the aim of improving its performance. This yielded a set of
protocols that differ in their characteristics and performance. Then, any attempt for
introducing a new protocol to resolve the issues of the predecessor protocols introduced
other weaknesses in the new protocol; and thus, (1) no protocol was able to dominate the
other protocols under all conditions, and (2) different protocols exhibited different design
and robustness characteristics.

Table 3.1 depicts some of the different properties of state of the art BFT protocols.
The columns and rows represent the protocols and their properties, respectively. In this
table, we demonstrate that none of the protocols comprises all the characteristics of the
others, and thus no single protocol could fit all users demands. A property of value ‘Yes’
means that the protocol has the corresponding property, whereas ‘No’ means that the
protocols lack it. In the following we explain the studied properties:

• Speculative: this property tells whether the protocol is speculative or not. Specu-
lative protocols are designed to boost up the performance in failure-free cases (they
are optimistic towards the system state), however these protocols have three main
limitations: (1) they exhibit a low performance under failures, (2) they are expensive
when the network is instable (due to timeouts), and (3) they are complex to design
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and implement since they use some kind of ‘undo’ operations. In other words, spec-
ulative protocols achieve better performance and less robustness. The first row of
the table shows that PBFT is the only non-speculative protocol among the others.
This makes PBFT the most robust protocol in this comparison; whereas, the other
protocols outperform PBFT in failure-free cases.

• Byzantine clients: a protocol that has this property tolerates Byzantine clients.
According to the second row of Table 3.1, OBFT is the only protocol that does
not tolerate Byzantine clients; on the contrary, it assumes that clients can not be
malicious. As mentioned in the previous chapter, this assumption is mandatory to
maintain obfuscation in BFT.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
Speculative No Yes Yes Yes Yes Yes Yes Yes

Byzantine clients Yes Yes Yes Yes Yes Yes No Yes
Tolerates contention Yes Yes No Yes No Yes Yes Yes

Supports WAN Yes Yes No Yes No Yes Yes Yes
Self-Recovery Yes Yes Yes Yes No Yes Yes No
Obfuscated No No Yes No Yes No Yes No

Requires ≤ 3f+1 Yes Yes No Yes Yes Yes No Yes

Table 3.1: Some properties of different state of the art BFT protocols.

• Tolerates contention: this property represents the number of clients that are ad-
dressing the service simultaneously. Table 3.1 shows that Q/U and Quorum could
not tolerate high contention. This is expected since these protocols are quorum
based, and thus they do not utilize a primary replica to order requests. This may
lead to different versions on different replicas and, consequently, recovery is needed.
However, these protocols outperform the other protocols with few client due to their
short messaging pattern that infers a low response time.

• Supports WAN: this property could not be ensured by protocols that use IP multi-
cast since this feature is not yet supported in WANs. Consequently, the protocols:
Q/U, and Quorum could not run on WANs in their current design (though it is not
hard to use uni-cast instead, but this leads to drop in their performance). The other
protocols in the table, however, avoids multi-cast, and thus they support WANs.

• Self-Recovery: different copies on different replica might occur under failures or
under high contention, this is usually resolved through a recovery phase. Though
most BFT protocols implements a recovery phase, there are some protocols, e.g.,
abortable protocols, that do not include a recovery phase; they launch a backup
protocol similar to PBFT instead. Table 3.1 shows that Quorum and Chain do not
include a recovery phase.

• Obfuscated: this feature ensures no inter-replica communication and that none of
the replicas knows a single information about other replicas (even about there pres-
ence). This is important in BFT since independence of failure is required otherwise
assuming f faults would be hard to achieve (since all replicas may fail similarly).
Table 3.1 coveys that Q/U, Quorum, and OBFT are the only protocols that can be

32



obfuscated. Note that we consider Q/U as obfuscated though it sometimes requires
inter-replica interaction to repair.

• Requires ≤ 3f+1: this property defines the protocols that requires at most 3f+1
replica to maintain safety and liveness. In Table 3.1, Q/U and OBFT require 5f+1
and 4f+1, respectively.

Considering the above study, one can simply notice that none of the protocols includes
all features; instead, a protocol has some features and lacks others. Note that considering
more properties can show more discrepancy, but we confine our study to these properties
since we think they are enough to clarify our idea.

3.2 Theoretical Performance Analysis
In addition to their properties, BFT protocols differ in performance too. Table 3.2 depicts
some key measures that are used to evaluate the performance of the protocols analytically.

The values of row A correspond to the minimum number of replicas needed to maintain
consistency if at most f replicas are faulty. This value gives an intuition about the
crowdedness of exchanged messages. For instance, Q/U requires 5f+1 replicas whereas
most of the protocols need only 3f+1. The impact of these extra 2f replicas appears under
contention (failures are more likely to occur); where the network gets jammed with a huge
number of exchanged messages which leads to a significant drop in performance. This does
not appear in failure-free situations due to the use of preferred quorums [2]. Moreover,
the extra replicas of Q/U and OBFT makes these protocols a bit more expensive than
the other choices. We skip the explanation of row B as it has less impact on performance.

Row C represents the number of MAC operations performed on the bottleneck replica.
This is usually used to assess the throughput of the protocol. PBFT needs the higher
number of MAC operations among all existing protocol, consequently, PBFT exhibits the
worst throughput among them. Quorum and OBFT require only 2 MAC operations per
request (for verification and signing) which is reflected clearly in their high throughput.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
A 3f+1 3f+1 5f+1 3f+1 3f+1 3f+1 4f+1 3f+1
B 2f+1 2f+1 5f+1 3f+1 3f+1 3f+1 3f+1 3f+1
C 2+8f 2+3f 4f+2 4f+2 2 ≈4+4f 2 f+2
D 4 3 2 4 2 ≈7f+2 4 3f+2
E 3 2 1 3 1 2 1 1

Table 3.2: Analytic evaluation for the state of the art BFT protocols tolerating f faults using MACs
for authentication, and assuming preferred optimization (without batching): A represents the number
of replicas needed to tolerate f Byzantine replicas; B is similar to A but excluding witness and backup
replicas; C represents the number of MAC operations on the bottleneck replica; D is the number of
one-way latencies needed for each request; and E represents the number of send/to kernel calls on the
bottleneck replica. Bold entries denote protocols with the lowest known cost.

As for Row D which represents the number of one-way delays of a request, Quorum and
Q/U again achieve the theoretical lower bound 2. The response time of these protocols is
very low as compared to other protocol. This leads to a high throughput, again, in case
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few client are issuing requests. Ring has a very long message pattern which impose a big
response time (however Ring is designed for congested systems).

Finally, row E represents the send/to kernel calls on the bottleneck replica. This value
has a similar effect to the value of C explained above. PBFT and HQ need 3 send/to
calls on the primary replicas whereas other protocols requires either 1 or 2 calls.

Notice in Table 3.2 that the lower bounds (bold entries) are scattered among the
protocols which could not drive a clear decision about what is the preferred protocol. For
the first glance, Quorum seems to be the best choice, but our experience shows that it
could not work under contention (we show this later). Another observation can be drawn
from the table is that, in general, Zyzzyva and Chain represent a trade-off between the
protocols.

Therefore, according to this discussion, one can notice that no protocol in dominant
over the other protocols under all conditions.

3.3 Experimental Settings
In order to perform a concrete experimental comparison between state of the art BFT
protocols, we first describe the setup settings and the configuration of the system, then
we conduct the comparison in the following sections.

3.3.1 Hardware Setup
To evaluate our work, we conducted our experiments on three different applications that
have different performance characteristics. The setup of the system is done on Emu-
lab [55] testbed, where we used Dell d710 machines – 64-bit Quad Core Xeon systems,
with 2.4GHz processor, 12 GB of RAM, and 2 NICs. At Emulab, each machine in our
experiments runs Ubuntu 8.04, with 2.6.24 32-bit kernel. Replicas are systematically run-
ning on their own, separate machine, while clients are collocated on a total of 20 machines.
Moreover, in all experiments we use 4 replicas (which consists in tolerating f=1 fault).
Finally, we use a topology where the replicas belong to one Gigabit-Ethernet LAN, and
the clients communicate with replicas over a second Gigabit-Ethernet LAN. Sometimes
we change this configuration due to comparison purposes; we indicate this explicitly when
changed.

3.3.2 Applications
3.3.2.1 Benchmarks

First, we evaluate the protocols using a standard a/b microbenchmark used first by Castro
and Liskov in [15]; where a and b corresponds to the request and the response size,
respectively. The microbenchmark is simple, as it resembles a single memory value that
is updated or read upon every request. Most of previous work was evaluated through
changing the payload of the exchanged messages along with increasing the number of
simultaneous clients addressing the service. In this thesis, we use this microbenchmark
to assess the throughput, latency, peak throughput, and scalability that each protocol
attains as a function of the message payload size.
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3.3.2.2 Redis

Redis [46] is an open source, in-memory key-value store. It supports high level atomic
server side operations like intersection, union, and difference between sets. For perfor-
mance reasons, Redis holds the whole dataset in memory. This results in a small pro-
cessing time (around 20µs); in fact, this is the purpose of experimenting on such an
application. Persistence is realized via an append-only file (a journal) that is written as
operations modifying the dataset in memory are processed. We use the BFT library to
totally order all accesses modifying the state of the key-value store.

In our integration of Redis and BFT, we utilize 3f+1 (or more) replicas instead of a
single Redis server. Redis clients issue regular Redis requests, which are caught by our
BFT library, encapsulated, and then forwarded to the replicas. On replicas, after the
agreement, our BFT substrate takes the request ready for execution, and passes it to
Redis. Results are then forwarded back to the client. We measured the performance of
Redis using a part of the accompanying redis-benchmark [46], namely the SET command.
This command writes a value in the key-value store. We changed the benchmark to send
SET commands whose size is 128 B, with an 8 B random key.

Figure 3.1: The structure of the Directory Information Tree DIT

3.3.2.3 OpenLDAP

Overview. Another application we use to compare BFT protocols is a Directory appli-
cation called OpenLDAP [58]. The integration of BFT library with OpenLDAP is one of
our contributions. We study OpenLDAP since very few works addressed database appli-
cations or applications of large execution time like OpenLDAP. Our integrated system,
i.e., BFT-LDAP, yielded interesting observations: (1) applying BFT technology on ser-
vices that provide a well-defined API, like OpenLDAP, is cheap and straightforward; and
(2) the performance overhead of BFT-LDAP (due to replication) is fairly small (see [5]
for more details).
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LDAP [52] (Lightweight Directory Access Protocol) is a standard messaging proto-
col used to access (Read/Write) Directory information; where a Directory is a listing
of information about objects arranged in some order [31]. The Directory information
are organized in a hierarchical tree structure called Directory Information Tree (DIT).
Figure 3.1 presents an example of DIT. The entries of a DIT are usually collections of
attributes having values of different types, each entry has a globally-unique Distinguished
Name DN (e.g., entry1.people.example.com).

Design. BFT-LDAP is designed as follows: in addition to the OpenLDAP server and
the client application, three additional modules are built to integrate the BFT library
onto OpenLDAP (see Figure 3.2): BFT Client Proxy, BFT Server Proxy, and LDAP
Access Unit. The BFT client and the client application form the client tier, whereas,
the other modules form the server tier, and hence they are installed on all replicas. The
client application sends the requests to the BFT client proxy which forwards the request
to the BFT server proxies after performing necessary message digests and encryptions.
This communication phase takes place according to the specific message patterns of each
BFT protocol. The BFT server proxy calls the LDAP Access Unit that interfaces the
OpenLDAP server. After executing the operation on each OpenLDAP server, the reply
is sent back through the same modules, however in the opposite sense, again considering
the message patterns of the BFT protocol being used.

Figure 3.2: System architecture of BFT-LDAP for f=1.

The integration is similar for any BFT protocol since BFT libraries have a common
interface that provides two basic methods: issue_request() that is called by clients, and
execute_request() that is used by replicas to execute application-based requests (e.g.,
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LDAP Read/Update operations). Speculative protocols require additional methods to
handle ‘undo’ operations in their history. Our system was implemented in C/C++ code.

Installation and Configuration. Our experiments consider only search operations.
We do not address Update operations for two reasons: first, search operations are the most
frequent in Directories (more than 99% of total operations). Second, update operations
may lead to replica inconsistency, and thus the BFT recovery phase is forced. This requires
a Transaction mechanism (i.e., checkpoints) to retain one-copy semantics on all replicas.
Unfortunately, transactions are not yet implemented in OpenLDAP [59] APIs, hence we
leave this issue for future work.

OpenLDAP (v.2.4) is installed on all replicas with the Oracle Berkeley Database (BDB
v.4). The databases are identical on all replicas and they are initialized with 100, 000
entries of 600 Bytes each. OpenLDAP and BDB are configured to provide a maximum
performance. Thus, we allow any number of clients, any message size, indexing, and large
cashing size (i.e., we use an in-memory database to avoid swapping).

3.4 Experimental Performance Analysis
The analysis conducted in Section 3.2 gives an intuition about the general performance of
BFT protocols; however, this forecasting is not very accurate due to the various factors
that affects the behavior of distributed systems on the ground. On the other hand, exper-
imental analysis can give a deeper vision that is more accurate as the system conditions
and factors change. This section discusses the behavior of BFT protocols under such
conditions; and consequently supports our claim that one-size-fits-all protocols are hard
to achieve in BFT.

3.4.1 Performance Queuing Model
Queuing theory [3] is often used to analyze the performance of different related processes
in distributed systems. The main element in queuing analysis is a queue. Here, a queue
may hold either a finite or an infinite number of requests, which arrive according to some
distribution of arrival times. Figure 3.3 is the basic representation of the queuing model.

Figure 3.3: The basic queuing model scheme.

Using queuing theory, we formulate the time needed by a request to be handled and
served. This time starts form the instant the client issues the request, passing by the
replicas according to the communication pattern of the protocol used, and until the client
receives the reply from replicas. Figure 3.4 explains the notations we use in the following
discussion. In general, we consider only one replica in our analysis (usually the primary
replica since it is the bottleneck) unless otherwise stated.

Denote by Tcr, Trc, and Trr the message delays of channels: client-replica, replica-
client, and replica-replica, respectively. Then, the sum of these delays is denoted by:
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Figure 3.4: The time notations of a BFT system with multiple queues.

Td = Tcr +m.Trr + Trc (3.1)
The value of m represents the number replica-replica communications needed by a

protocol. Notice that the value of m for the protocols Q/U and Quorum is zero.
Also let Tp be the processing time on a node which includes: (1) the execution time

Te, (2) the authentication time (verify and sign) Ta, (3) the send/to time (transmission)
Tt, and (4) the handling time of other data structures Th, hence:

Tp = Te + Ta + Tt + Th (3.2)
In addition, a FIFO queuing time Tq is needed before each node to handle concurrent

requests. Putting together, we get the total time needed by a request to be delivered as
follows:

Ttotal = Td + (m+ 1)Tp + Tq (3.3)
Tp is multiplied by m+1 since some protocols, like Chain, execute requests sequentially

rather than concurrently (as in Quorum). The throughput of a BFT protocols is usually
inversely, but not roughly, proportional to Ttotal.

Valuable observations can be drawn from the above equations. In the following, we
discuss some of these observations that can help in interpreting the experiments we convey.
The experiments cover a set of protocols: PBFT, Zyzyyva, Quorum, Chain, and Ring. We
consider these protocols to achieve our goal showing that one-size-fits-all BFT protocols
are hard to achieve. We do not consider other protocols for two reasons: (1) to avoid
jamming this thesis with graphs and numbers, and most importantly (2) since other
protocols have almost similar properties to those we consider in our study (e.g., Q/U
similar to Quorum, HQ similar to Q/U and PBFT, etc). In the following, experiments
are conducted using Redis as an application unless otherwise stated.

3.4.2 Single Client
Here we assume that no concurrent clients are issuing requests. In this case, Tq=0 since
no queuing is needed and the client does not send the following request until it receives
the reply of the previous one. Thus according to equation 3.3, the only playing factors
are the Td and Tp.

T e is small. Suppose that the execution time Te is small, e.g., using a/b microbench-
marks or Redis as an application. Then the authentication time Ta and the total channels
delay Td impose a high impact on the throughput of the system. Increasing Td causes
a drop in the throughput (and trivially increase in response time). Now, according to
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(a) PBFT

(b) Zyzyyva

(c) Q/U

(d) Quorum

(e) Chain

(f) Ring

Figure 3.5: Message patterns of the state of the art BFT protocols; for f = 1.

equation 3.1, we have two possibilities: either (1) Trr is large, e.g., replicas do not belong
to same cluster; or (2) Trc and Tcr are large, e.g., in WAN setting.

• In the former case (i.e., Trr is large), the difference in performance among different
protocols becomes large. This can be noticed clearly upon comparing Quorum and
Q/U with the other protocols since Trr=0 in both protocols; whereas, other proto-
cols require additional inter-replica communication delays, i.e., Trr 6=0. Figure 3.6
depicts the throughput and latency for a single client using two payload sizes 0KB
(actually 64Bytes) and 1KB. The left (resp, right) histogram shows that Quorum
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Figure 3.6: Latency and throughput of a single client using the 0/0 and 1/1 microbenchmarks.

achieves the lowest latency (resp, highest throughput) among protocols. PBFT and
Zyzzyva require additional Trr delay and thus their performance is less than that of
Quorum (i.e., a higher latency and lower throughput). Ring and Chain, however,
exhibit almost half the performance of the other protocols due to their extensive
inter-replica communication as each replica needs to forward requests to the next
replica according to the message exchange patterns in Figure 3.5. Notice that, as
the message size increases, the latency increases (and throughput decreases) due to
the additional processing needed by large messages (e.g., 1/1 benchmark).
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Figure 3.7: Latency and throughput of a single client and Trr is large, using the 0/0 and 1/1 microbench-
marks.

In addition, the impact of Trr on throughput can even be greater in the topology
where different replicas are scattered over WAN, since the point-to-point (P2P) delay
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Figure 3.8: Latency and throughput of a single client in WAN setting, using the 0/0 and 1/1 microbench-
marks.

between replicas will be larger (usually greater than 10ms). This configuration is
usually used to achieve independence of failures against power failures, earth quakes
and disasters, etc. When the number of inter-replica communication m is large, as
in Chain and Ring for instance (since each replica forwards the request to the next
one), the response time will be very large causing a drop in the performance of
the system in contention-free cases. The experimental results of Figure 3.7 confirms
this analysis, and shows that Ring and Chain achieve the highest latency (and worst
throughput) among other protocols in both 0K and 1K message payloads. Notice
that, though PBFT also needs inter-replica communication similar to Chain (where
f=1, see Figure 3.5), however, the latency of the former is less than that of Chain
in contention-free environments. In fact, PBFT uses an optimization to send replies
directly to the client (i.e., before the COMMIT phase) to improve its performance.

• The latter case where Trc and Tcr are also large causes a drop in the throughput
of the protocols. However, in this setting, the difference among protocols becomes
negligible since these two factors dominate the effect of other protocol-related delays
like Ta, Tt, and Trr (which is small now, as replicas belong to the same LAN). Our
experiments, as shown in Figure 3.8, depict the fact that protocols are roughly
equivalent in performance with one client. In addition, the histograms convey that
the impact of payload size is negligible, in such case, since Trc and Tcr dominate the
small processing delays of messages. A closer look at the same figure shows that
Ring performs a bit worst than the other protocols; we refer this difference to the
high inter-replica delays in Ring since it requires two message rounds around the
ring to commit a request (see Figure 3.5).

In general, Ta and Tt have a similar effect to Td. Protocols that require multiple MAC
authentications and send/to calls to the kernel, i.e., Ta and Tt are large, would have a low
throughput as compared to other protocols. PBFT is an example of such protocols since
it needs 2+8f MAC operations and 3 send/to calls (see Table 3.2 in previous sections).
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As the number of MAC operations and send/to calls decrease, e.g, as in Quorum and
Q/U, the throughput of the system increases. These results do not appear in the above
experiments (where a single client is addressing the service) since Td dominates Tp in this
configuration; however, with concurrent clients the difference can be noticed clearly.
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Figure 3.9: Latency and throughput of a single client and Te is large, using the 0/0 and 1/1 microbench-
marks.

T e is large. If Te is large (e.g., using OpenLDAP as an application), the throughput
of the system drops down significantly. On the other hand, the difference in throughput
among different protocols gets smaller since Tp dominates the effect of Td; however, our
experiments (depicted in Figure 3.9) show that this difference does not change significantly
over the case where Te is small above; with more clients instead, the difference appears
clearly. In WAN settings, where P2P delay is greater than 10ms, the drop in performance
will be negligible since Td is usually larger than Te (that does not exceed 1ms in most
applications).

3.4.3 Concurrent Clients
Multiple clients could send simultaneous requests to replicas. If the requests are concur-
rent on a certain replica, it is most likely that they wait in a queue until the preceding
requests are handled by the replica. This means that Tq does not equal to zero anymore,
and thus, it affects the performance of the system.

The arrival and departure of requests to/from a queue (i.e., a replica) are often es-
timated by exponential distributions of an average arrival rate δ and average departure
(or servicing) rate µ. Exponential distributions are convenient in such systems since re-
quests arrive and depart randomly with a greater probability that they are close in time.
According to Kendall’s notation [3], the queuing system can be represented by M/M/k,
where M is the exponential (Markovian) distribution and k is the number of servers. We
focus our discussion on one replica i.e., k=1.
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3.4.3.1 Execution Time is Small

When the execution time Te is small, its impact on the processing time Tp becomes
smaller, consequently, Tp fluctuates randomly; thus, the servicing rate of requests follows
an exponential distribution of average rate µ=1/Tp. Supposing that the arrival of requests
is also random, thus the arrival rate follows a Poisson distribution 1 of an average rate δ.
Then, the average time a single request spends in the queue is as follows:

tq = δ

µ(µ− δ) (3.4)

Therefore, the total queuing time of all requests in the queue Tq 6=0. In addition,
µ=1/Tp, i.e., Tp is directly proportional to tq, and hence, as the processing time Tp in-
creases the queuing time Tq increases. Consequently, the expected raise in the throughout
of the system (since more clients are issuing requests) decreases gradually until reaching
some bottleneck (discussed in later sections). On the other hand, suppose that the num-
ber of waiting requests in the queue is n; then, the system finishes servicing the n requests
as soon as the last (i.e., the n’th) request is served. This means that the systems will pay
additional delay of n × tq. Therefore, as the number of queued requests increases, the
total response time of the system (i.e., all requests) increases, and thus, the throughput
curve keeps increasing (with smaller slope) until it reaches a plateau.

The impact of this drop is plotted on Figure 3.10. The figure shows the real throughput
of Zyzyyva and its expected (unreal) throughput without the effect of queuing. In this
latter case, the curve goes up linearly as the number of clients increases (note that the
graph uses a logarithmic scale on x-axis to show the curves for few clients too). The figure
conveys that Zyzzyva eventually reaches its maximal throughput (the plateau) early as
compared to the case without queuing.
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Figure 3.10: The expected throughput of Zyzyyva supposing no queuing happens under concurrency.

1Poisson is an exponential distribution that is often used for arrivals.
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Notice that, since Tp increases as Ta and Tt increase, then the increase in throughput of
the protocols varies as their Ta and Tt vary. Protocols that need more authentications and
transmissions (e.g., PBFT) will have a slower increase in performance more than others.
Figures 3.11 and 3.12 plot the throughput of different BFT protocols as the number of
clients increases with both payload sizes 0K and 1K, respectively. We use the logarithmic
scale on x-axis for clarity. The figures show that Quorum achieves the best throughput
among its competitors, and that the difference between protocols increases gradually
with the number of clients. Quorum achieves this since its queuing time is negligible as
compared to other protocols that needs a minimal authentication and transmission delays
(see the message patterns in Figure 3.5 above). In fact, the difference in throughput
increases between all the protocols too due to the discrepancy of their Ta and Tt, and
thus, the increase in the queuing time.
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Figure 3.11: Throughput of concurrent clients, using the 0/0 microbenchmark.

Two more observations can be noticed in Figures 3.11 and 3.12 too. The first, is that
Chain performs better than Zyzzyva with more than 50 clients. This can be explained
by the fact that Chain requires fewer authentications (approaches to one authentication
per request) as compared to Zyzzyva. This does not appear, however, with fewer clients
since the effect of P2P delay (and hence Td) is greater than that of the queuing time.
The second observation is that Quorum could not operate with more than 40 clients in
our case. This is expected since Quorum is designed to contention-free cases, hence it
suffers from collisions and retransmissions under contention (this can be said about Q/U
too since both protocols do not make use of a primary to order their requests).

3.4.3.2 Servicing Rate is Low

When the servicing rate µ is low, for instance upon using an application of high execution
time Te, e.g., OpenLDAP, then Tp will be high and almost constant since Te masks the
other factors (in equation 3.2). Thus µ=1/Tp becomes almost constant too. In this case,
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Figure 3.12: Throughput of concurrent clients, using the 1/1 microbenchmark.

the Deterministic distribution is used to model the servicing time (i.e., using M/D/1
Kendall’s model) as there is a less randomness in the system [3]. Consequently, the
queuing time is divided by 2:

tq = δ

2µ(µ− δ)

As one can notice, the analysis is similar to the case of M/M/1 above with one excep-
tion: since Te is very large, and thus Tp is almost constant for all the protocols, then the
queuing time Tq will be equivalent for all protocols very soon. Therefore, the discrepancy
in performance among different protocols will be negligible. This can be clearly noticed
in Figures 3.13 and 3.14. The two figures depict the throughput of a set of BFT protocols
while using OpenLDAP as an application for 0KB and 1KB payloads. Though a strong
slope can been noticed in the curves with few clients; the curves continue horizontally with
more than 5 clients in most protocols. In addition, the curves are almost confounded with
each other beyond 5 clients which confirms the above analysis that when the execution
time is large (e.g., approaches to 1ms in OpenLDAP) under contention, BFT protocols
achieve a similar performance. The figures convey that Ring does not achieve this peak
throughput. In fact, Ring achieves this very late (with more than 300 clients) due to its
extensive two-round message pattern (see Figure 3.5). As for the drop in performance of
PBFT in the figures with more than 40 clients, we refer this to a bug in the implementation
(it used to work with more than 40 clients before having this issue).

3.4.3.3 Arrival Rate is High

In case the arrival rate of requests δ is high, i.e., the requests are almost instantaneous,
then the ratio µ/δ approaches to zero, and the queuing time reaches its maximum. In
fact, from equation 3.4 we get:
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Figure 3.13: Throughput of concurrent clients where Te is high, using the 0/0 microbenchmark.
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Figure 3.14: Throughput of concurrent clients where Te is high, using the 1/1 microbenchmark.

tq = δ/δ

µ/δ|µ− δ|
= 1
µ|µ/δ − 1|

And then, tq ≈ 1
µ

= Tp. Since the system is unstable in this case, we added the absolute
value to (µ− δ) since we allow for arrival rates larger than servicing rate, which is usually
not allowed in stable systems for a long duration of time. In order to avoid infinite queue
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sizes, system designers usually define a finite capacity for the queues. Supposing that the
maximum capacity of the queue is N , then under high contention the queue gets full,
and thus, the waiting time of the last request in the queue (i.e., the tail) will be N × tq.
Therefore, equation 3.3 becomes:

Ttotal ≈ Td + (m+ 1 +N)Tp (3.5)

Under these conditions, the system becomes saturated, and thus the whole route of the
requests becomes a filled tube (this is hard to happen in WANs). Then, the throughput
of the system depends on the flux of the narrowest part of the tube, i.e., the bottleneck.
In our system, two possible bottlenecks might be reached: CPU bottleneck, and network
bottleneck.

CPU is the bottleneck. This occurs when Te is high. In the previous sections, we
explained that protocols with a small number of authentications achieve higher peak
throughput. Nevertheless, if Te is large, the difference in performance among protocols
becomes negligible. In fact, since Tp = Tt + Te + Ta + Th and Te is large, then Te
dominates the other factors. On the other hand, Tp is multiplied by m+ 1 +N according
to equation 3.5, then the impact of Tp dominates Td. Consequently, Te forms a CPU
bottleneck on the most overloaded replica (usually the primary one). In Figures 3.13
and 3.14 above, we have shown that the curves keep increasing until reaching the same
plateau as soon as the CPU becomes the bottleneck. The same result can be noticed
in Figure 3.15 too. The histogram shows that the throughput values of the compared
protocols are very close when the CPU bottleneck is reached. In the same figure, Ring
shows some shortage in the peak throughput, this is justified by the long messaging pattern
(see Figure 3.5) of Ring being designed to work under high contention. However, other
experiments show that Ring reaches the same peak throughput of the other protocols
with a higher number of clients (almost 400 clients). Moreover, Figure 3.15 conveys the
fact that the impact of message payload size becomes negligible too. This occurs since Te
dominates other processing factors that are usually affected by the message size; hence,
the peak throughput of both payload sizes 0KB and 1KB are almost equivalent.

Network is the bottleneck. It can happen that the transmission speed of the network
is slower than the processing speed of requests (e.g., in Fast Ethernet). In this case, the
NIC interface of the bottleneck replica (usually the primary) gets jammed with waiting
requests due to slow transmission, and thus the protocols reach their peak throughput.
The analysis follows the same reasoning as the previous section; however, Tt dominates
the other factors in this case. Some protocols like Ring circumvents this issue by al-
lowing all the replicas to receive requests, and thus, establishing load balancing among
replicas. Ring achieves up to 25% higher throughput than other protocols in some cases.
Figure 3.16 presents the logarithmic scale of the throughput of some state of the art pro-
tocols using 4KB paylod size 2. The figure shows that other protocols outperform Ring
with up to 60 clients. However, as soon as the network gets jammed with requests, it
becomes the bottleneck, and hence Ring dominates the other protocols by more than 25%.
We experimented Ring with up to 420 clients and noticed that its throughput remains
increasing while the other protocols reach their peak throughput early.

2We used this payload size to overload the network interfaces.
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Figure 3.15: Peak throughput when the CPU is the bottleneck.
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Figure 3.16: Peak throughput when the network is the bottleneck using the 4/4 microbenchmark.

3.4.4 Other Measures
BFT protocols differ in other measures too. For instance, quorum-based protocols like
Quorum and Q/U could not tolerate a high number of clients as primary-based proto-
cols. This can be explained by the fact that the latter have a greater tendency to order
requests under contention while quorum-based protocols suffer from extensive recovery
when different versions (on replicas) of the same object skew.

48



On the contrary, quorum-based protocols achieve higher fault scalability than primary-
based protocols, i.e., the throughput of the system keeps increasing as f (the number of
assumed faulty replicas) increases. In fact, the motivation behind Q/U was to improve
fault scalability [2]. By increasing f , the system requires more replicas (i.e., at least
3f+1), and consequently inter-replica communication increases. Thus, increasing f has
a greater impact on other protocols since Quorum and Q/U do not rely on inter-replica
communication.

In addition, BFT protocols differ in performance in the presence of faults. For in-
stance, though Zyzzyva outperforms PBFT in failure-free cases, PBFT performs better
than Zyzzyva under failures by 15% [32]. This is caused by the high number of message
exchanges required during the recovery phase of Zyzzyva in order to maintain consis-
tency under failures [32]. In addition, Q/U uses a very expensive recovery case, whereas,
abortable protocols use a PBFT-like recovery phase.

Further measures that explore the discrepancy among BFT protocols also exist, how-
ever, we believe that the points we covered in this chapter are enough to explain the
motivation of this thesis.

3.5 Conclusion
The goal of this chapter was to to make a strong belief that: one-size-fits-all BFT protocols
are hard to achieve. We started by showing some characteristics of BFT protocols that
make them different from each other; and thus choosing one protocols could result in
sacrificing important characteristics that other protocols can provide. Then we introduced
a theoretical analysis considering basic BFT properties like: number of replicas required,
number of authentications needed, messaging delays, etc. This analysis explored the
discrepancy in performance among BFT protocols and conveyed that no one protocols
dominates the others in all measures. In addition, we conducted an experimental analysis
accompanied with a justification using queuing theory methods. In this analysis, we
highlighted some cases where BFT protocols clearly differ in performance, and other
cases where the difference in performance is negligible.

We provided many experimental figures to support our analysis and convey that the
theoretical analysis complies with the practical results. Before this, we introduced the
experimental settings and software used in our experiments (i.e., benchmarks, Redis, and
OpenLDAP). We addressed the integration of OpenLDAP with BFT in more details being
one of our contributions.

In brief, this chapter explained the fact that it is hard to find a single BFT protocol
that is convenient to all situations; consequently, other solutions are intuitively demanded.
The rest of this thesis describes our solution.
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Chapter 4

BFT Quality of Service

This chapter presents a solution to the problems introduced in the previous chapter,
and thus helps BFT users to choose their ‘preferred’ BFT protocol. For this sake, we
introduce a BFT selection model and a selection algorithm to choose the most convenient
protocol according to user preferences. The selection algorithm uses some matrix formulas
to make selection easy and automatic. The chapter describes three different selection
modes: static, dynamic, and heuristic. These modes differ according to the underlying
conditions of the system. The static mode addresses the cases where a single protocol
is needed; the dynamic mode assumes the system conditions are quite fluctuating; the
heuristic mode is similar to the dynamic mode but it uses additional heuristics to improve
performance. For the dynamic mode, we discuss when it is worthy to change a running
protocol. In addition, the chapter provides many concrete cases to evaluate our approach
and to describe how it can be used efficiently.

4.1 Introduction
Many BFT protocols have been introduced to fill the gaps of their predecessors as shown
in Chapter 2; however, each new protocol had to sacrifice some of the properties of the
others too. Consequently, the discussion in Chapter 3 shows that one-fits-all protocols
are hard to achieve in Byzantine fault tolerance (BFT). Furthermore, the wide range
of characteristics of existing BFT protocols makes it confusing for users to choose the
protocol that fits their demands the best. Thus, the following questions arise: What is
the ‘preferred’ BFT protocol? And before, what is meant by the word ‘preferred’? A
‘preferred’ protocol is always the ‘preferred’? If not, is it worthy to move to another
‘preferred’ protocol?

We believe that selection mechanisms are necessary to help in decision making towards
the ‘preferred’ BFT protocol to adopt. Inspiring from software engineering aspects that a
successful product is the one which can match customer demands and his satisfaction; we
present a solution that chooses the preferred protocol considering user preferences. Hence,
the preferred protocol is the preferred one in the eyes of a certain client (i.e., a BFT user),
and not necessarily the preferred for other clients. Figure 4.1 depicts a matching problems
between five protocols of different preferences with two preferences of different users. The
arrows in the figure demonstrate how different protocols can be chosen as ‘preferred’ for
different users. Thus, in this chapter, we define a BFT selection model that matches
the properties of BFT protocols across the demands of the user. In addition, we present
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Figure 4.1: Schematic matching process between two user preferences and five profiles of different BFT
protocols.

a selection algorithm that can operate in three modes: static, dynamic, and heuristic.
The static mode can be used in stable services, i.e., where choosing a protocol is needed
only once; whereas, the dynamic mode handles the situation where different alternating
protocols are needed in a short period of time due to the frequent changes in the system
state. Furthermore, we show how the former can be useful in IaaS, PaaS, and SaaS
Clouds, where Cloud vendors present BFT services along with the original service, and
users define their BFT requirements in the SLA contract. The dynamic mode, however, is
useful in abortable BFT systems, where a real-time dynamic switching is needed to switch
from one protocol to another according to the changes in the underlying system state and
conditions. The heuristic mode is an advanced dynamic mode that can adjust the user
preferences according to the changes in the system state. We recall some related work in
the next section; and then, we introduce the BFT QoS selection model and algorithm in
the following sections.

4.2 Related Work
In this section we recall some related work that can help understanding our ideas. The
related concepts to our approach are divided into three parts: (1) Switching between
protocols, (2) QoS selection, and (3) cloud computing.

4.2.1 Switching Between Protocols
Research community is always introducing new protocols in order to enhance robustness
and performance of existing BFT protocols, however, the idea of using multiple protocols
at once did not get a great attention. Guerraoui et al. introduced the abortability
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approach in [27] and [26] to allow switching from one protocol to another as the underlying
conditions change. However, no clear switching mechanism was introduced to dispatch
these protocols, instead, a trivial method was used by switching to a specific protocol
according to a predefined order and only when problems exist. This chapter introduces a
BFT QoS model that provides method to select the most convenient protocol according
to the user. The approach considers both static switching and dynamic switching.

4.2.2 QoS Selection
QoS selection models and algorithms gained a big interest from research community with
the increasing popularity of Web Services. The work of Wang et al. [53] represents the
base of QoS (Quality of Service) selection models and algorithms. In this work, the author
introduces a QoS selection model and algorithm for the WSMO semantic model of Web
Services. In general, the selection mechanism tries to match the requirements of the user
with the evaluation score of the proposed services. The existing services are evaluated as
in Equation 4.1, where qij and wi represent the value and the weight of a property j in
any service i, respectively.

M =
m∑
i=1

(qij × wj) (4.1)

In this chapter, we provide a BFT selection model that inspires many ideas from these
existing concepts. In addition, we introduce a new selection algorithm that has some
common features to existing algorithms of Web Services (e.g., [53] and [57]). However,
our algorithm differs in other aspects that we adjust according to the demands of BFT,
in order to improve static and dynamic switching at once and automate the selection
process. On the other hand, we provide some mathematical formulas that can be used
efficiently to conduct selections. In fact, the early versions of our approach were different
than the traditional QoS models, however, we updated it later for two reasons: (1) to
stay within the standard notations of QoS being very well-known and mature, and (2)
to conserve the WSMO Web Services structure that allows introducing new services to
cloud computing, e.g., like BFT.

4.2.3 Cloud Computing
Clouds are becoming everywhere nowadays; they present a quick and cheap (charges
are payed in hourly basis) solution to clients (e.g., small and moderate size enterprises).
Cloud computing applies virtualization techniques on one or more machines to create
other, probably smaller, virtual machines with predefined characteristics like CPU, stor-
age, RAM, etc. It provides three types of services: IaaS (Infrastructure as a Service),
PaaS (Platform as a Service), and SaaS (Application as a Service). Cloud vendors (e.g.,
Amazon [7]) allows clients to use their services through signing an SLA (Service Level
Agreement) contract. Therefore, cloud vendors can rent additional features along with
the required service like Byzantine Fault Tolerance for instance. Thus, our approach en-
courages introducing another kind of services (like BFT) by cloud vendors in a similar
way to Web Services. In this paper, we present a selection mechanism to help clients
decide what are the BFT techniques that can fit their services the best.
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Figure 4.2: Example on the vocabulary of Key Quality Indicators (KQI) class including both Key Char-
acteristic Indicators (KCI) and Key Performance Indicators (KPI).

Class QoS sub-Class nonFunctionalProperties
hasMetricName type string
hasValue type value
hasMetricValue type value
hasMeasurementUnit type Unit
hasValueDefinition type logicalExpression
isDynamic type boolean
isOptional type boolean
hasTendency type small, large, given
isGroup type boolean
hasWeight type string

Class KQI sub-Class QoS
isHeuristic type boolean
Table 4.1: The KQI and QoS WSMO classes.

4.3 BFT QoS Notations and Terms
Before diving into the presentation of the selection model, we introduce some terms and
notations that will be used in this model. First, we call any property that specifies the
quality of a BFT protocol by Key Quality Indicator (KQI). A KQI is composed of two
types of indicators: Key Characteristic indicators (KCI), and Key Performance Indicators
(KPI). Figure 4.2 represents an example on the KQIs vocabulary. KCIs are those discrete
(boolean) properties of a protocol that indicate its behavior, properties, requirements,
e.g., number of replicas needed, tolerates malicious clients, obfuscated, etc. The value of
this type of indicators can strictly decide whether an evaluated service could be selected or
not. The KPIs are the properties that evaluate the performance of a certain protocol like
throughput, latency, scalability, etc. These values are usually continuous (real) values.
KPIs are usually used to recommend a service over another but, in general, it could not
rule out a service.
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To make the notations more generic and to comply with the Web Services standards,
we define the KQI WSMO class, an inheritance of the QoS class defined in [53]; the two
classes are depicted in Table 4.1. In Figure 4.3, we present the interpretation of the
properties of KQI and QoS WSMO classes.

The definition and the discussion of concrete measurements of KCIs is out of the scope
of this thesis.

hasMetricName. this defines the name of
the property, e.g, throughput.
hasValue. types of this parameter may be
linguistic, numeric (int, float, long), boolean
(0/1, True/False) or other. There will be dif-
ferent forms of preprocessing according to the
different value types.
hasMetricValue. this property defines a
metric’s values which are either real ones or
a string such as ‘calculate’. If MetricValue =
‘calculate’, then this attribute should refer to
its valueDefinition for a dynamic value calcula-
tion.
hasMeasurementUnit. this property
specifies the concrete unit of every quality
metric, with possible types such as Unit =
$, millisecond, percentage, kpbs, times, ....
hasValueDefinition. this either a logical
expression or the string ‘NULL’. If hasVal-
ueDefinition = ‘NULL’, then this value defini-
tion cannot explicitly extracted from the con-
text of service description, but must dynami-
cally be invoked from its service provider. In
this case this quality attribute must be dy-
namic, that is isDynamic = True.
isDynamic. through this property, the na-
ture of a quality is defined as static or dynamic.
For a static quality, its values are given in pri-
ori, and can be directly used during the selec-
tion process. If isDynamic = True, this quality
metric must be dynamically invoked and ob-
tained from its service provider, or/and its val-
ues must be calculated at run-time.
isOptional. this parameter tells whether
the current property is mandatory for the ser-
vice or it is optional. If isOptional = ‘False’,
then the absence of the current property harms
the service, consequently, the current service is
out of choice.
hasTendency. this is an object property
representing the expected tendency of the value

from the user’s perspective. For example, the
latency of a service is expected to be as low as
possible, so that its hasTendency = ‘low/small’.
On the contrary, the throughput of a service
should be as high as possible, i.e., hasTendency
=‘high/large’. When hasTendency =‘given’,
the user expects the value of this quality to
be as close to the given value as possible.
isGroup. this indicates if this quality at-
tribute is defined by a group of other quali-
ties or not. For example, suppose that secu-
rity is composed of nonRepudiatior, DataEn-
cryption, Authorization, Authentication, Au-
ditability, and Confidentiality. Hence, isGroup
= True means that in the preprocessing stage,
the group value must be calculated first.
hasWeight. this is a value denotes the im-
pact of the property with respect to the others,
especially when synthetically measuring several
metrics. The weight value either ranges in [0,
10] or ’NULL’. Different end users have differ-
ent weight values for their service requirements.
If hasMetricValue = ‘calculate’ holds, its has-
ValueDefinition property must be checked to
determine how to calculate it. If hasValueDef-
inition =‘NULL’ and isDynamic = 1, then the
invocation function is to inquire the real-time
value. If isDynamic = 0, its corresponding has-
MetricValue is an existing value. If isAdapt-
able= ‘True’, this value will change according
to some heuristics due to system state changes.
isHeuristic. this value designates whether
this property is adaptable to the changes of
the system state using predefined heuristics. If
isHeuristic= ‘True’, then the hasWeight of this
parameters can be changed according to the ex-
ternal heuristics of the system. This parameter
is designed to systems that impose different be-
havior due to frequent different conditions.

Figure 4.3: Interpretation of the parameters of KQI and QoS WSMO classes.

55



4.4 BFT Selection Model
Consider a service provider (e.g., a cloud) that provides n different BFT protocols for
users. We define the set of protocols ψ = {pi; where 1 ≤ i ≤ n}; where pi is one of the
BFT protocols. On the other hand, consider a selection model represented by:

Σ = {PROTOCOL,USER,MODE} (4.2)

where PROTOCOL represents the profile of a BFT protocol, USER represents the
preferences of the user, and MODE represents the selection mode of the system. Selection
occurs through matching the PROTOCOL profile with the USER preferences according
to the mapping: f : Σ 7−→ ψ; this yields the ‘preferred’ protocol among all competing
protocols. Here we introduce the definition of ‘preferred’:

Definition 4.1. A protocol pi with profile PROTOCOLi is called the ‘preferred’ proto-
col among a set of available protocols ψ with respect to a specific user with preferences
USERj if and only if according to an evaluation function e : Σ 7−→ <, e(PROTOCOLi,
USERj,φ) is maximal.

The interpretation of PROTOCOL, USER, and MODE is as follows:

PROTOCOL. Each protocol is described in a profile of KQIs and default weights:
PROTOCOL = {AP , AU , BP , BV }, where AP is a vector of a KCIs: AP = (α1, α2, ..., αa),
and AU represents the vector of the corresponding default weights of these KCIs: AU =
(u1, u2, ..., ua). BP , however, is a vector of b KPIs: BP = (β1, β2, ..., βb), and BV represents
the vector of the corresponding default weights of these KPIs: BV = (v1, v2, ..., vb).

USER. Each user defines his preferences in USER = {U, V,M}, where U (resp., V) is
a vector of user defined weights corresponding to the KCIs (resp., KPIs) of the PROTO-
COL’s preference AP (resp., BP ). M defines the mode required by the user, i.e, either
DYNAMIC, STATIC, or HEURISTIC.

MODE. The selection can occur in three different modes: STATIC, DYNAMIC, or
HEURISTIC. In the former, the selection occurs only once, i.e., at the time the user re-
quires a service; afterwards, the user does not change his selection (i.e., the used protocol)
until the system is halted. Thus, he provokes a new selection. On the other hand, the
DYNAMIC mode tells the system to react dynamically to changes of the system state.
This mode allows the system to adapt to the upcoming conditions and thus the user will
be using multiple protocols at once. The HEURISTIC mode is similar to the DYNAMIC
mode but, in addition, it uses some heuristics to adjust the preferences of the user, espe-
cially V . The heuristics are represented in a vector W similar to U and V, but its values
are modified as the system state changes according to some predefined heuristics. The
default mode is STATIC.

In the STATIC mode, AP and BP are predefined. They are calculated before selection
occurs, and even before the advertisement of the protocol is done. However, in the DY-
NAMIC and HEURISTIC modes, the values of BP change dynamically while the system is
running. In this thesis, for instance, we use predictions to assess these values in real-time.
We define the system state by S = {si = (f1, f2, ..., fj, ..., fm)} where fj represents the jth
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impact factor of the system state and m is the number of considered impact factors by
the system. When these impact factors change, the system state changes; consequently,
a new dynamic evaluation and selection is needed to move, probably, to a new protocol
that performs better than the current one under the new conditions. We explain this
mechanism further in later sections.

4.5 Selection Mechanism
The selection mechanism of the most convenient protocol according to the user prefer-
ences, i.e., the preferred protocol, is achieved through computing the evaluation score E
of the competing protocols, and then electing the protocol that corresponds to the maxi-
mum score. As mentioned in the previous section, the selection process is represented by
the mapping: f : Σ 7−→ ψ; Equation 4.3 is an example of such mapping.

Selection (and evaluation) occurs only once in the STATIC mode, i.e., at deployment
time. Otherwise, the deployed service should be stopped and restarted again, probably,
using another selected protocol if the user preferences changed. If the mode of the system
is DYNAMIC or HEURISTIC, then the evaluation process of protocols can take place
at any instant. The system chooses the protocol that has the highest evaluation score E
among all protocols to launch it in the next phase. Formally speaking, for any state s,
and protocol pi ∈ ψ that has an evaluation score Ei,s; a protocol pnext is chosen according
to the function:

pnext = pi, s.t. Ei,s = max
1≤j≤n

Ej,s. (4.3)

The evaluation scores are computed in real-time. When the system state changes, the
evaluation of the protocols E also changes. Then, the protocol pnext is launched in the
next phase only if it is worthy to switch (see later).

4.5.1 Definitions
To automate the evaluation process, the mechanism depends on mathematical formula-
tions using matrices. Before whelming into the evaluation formulas, and to make them
easier to understand, we start by recalling some mathematical concepts and defining new
ones.

Definition 4.2. Consider two matrices of the same dimension A,B ∈ <m×n with entries
aij, and bij, respectively. The Schur product A ◦B (also known as Hadamard product) is
a matrix of the same dimensions C = A ◦ B ∈ <m×n, where its elements are defined by:
cij = aij.bij.

Example 4.1. Consider the two matrices:

A =
(
a11 a12
a21 a22

)
; and B =

(
b11 b12
b21 b22

)
The Schur product C = A ◦B is as follows:

A ◦B =
(
a11.b11 a12.b12
a21.b21 a22.b22

)
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Definition 4.3. Consider a matrix A ∈ <m×n with entries aij and a scalar λ ∈ <. The
Scalar product B = λ.A is a matrix of the same dimension as A, where its elements are
defined by: bij = λ.aij.

Example 4.2. Consider a scalar λ ∈ <, and the matrix:

A =
(
a11 a12
a21 a22

)

The Scalar product B = λ.A is as follows:

λ.A =
(
λ.a11 λ.a12
λ.a21 λ.a22

)

Definition 4.4. Consider two matrices A ∈ <n×l, B ∈ <l×m with entries aij, and bij,
respectively. The product AB is a matrix C = AB ∈ <n×m, where its elements are
defined by: cij = ∑m

k=1 aik.bkj.

Example 4.3. Consider the two matrices:

A =
(
a11 a12 a1,3
a21 a22 a2,3

)
; and B =

 b11 b12
b21 b22
b31 b32


The product C = AB is as follows:

AB =
(
a11.b11 + a12.b21 + a13.b31 a11.b12 + a12.b22 + a13.b32
a21.b11 + a22.b21 + a23.b31 a21.b12 + a22.b22 + a23.b32

)

In addition, to make computations easier, we define a new operator, i.e., the OR
product ∨̇.

Definition 4.5. Consider two boolean matrices A ∈ {0, 1}n×l, B ∈ {0, 1}l×m with entries
aij, and bij, respectively. The OR product A∨̇B is a matrix C = A∨̇B ∈ Nn×m, where its
elements are defined by: cij = ∑m

k=1 aik ∨ bkj. The operator ∨ is the logical OR operator.

Example 4.4. Consider the two boolean matrices:

A =
(
a11 a12 a1,3
a21 a22 a2,3

)
; and B =

 b11 b12
b21 b22
b31 b32


The product C = A∨̇B is as follows:

A∨̇B =
(
a11 ∨ b11 + a12 ∨ b21 + a13 ∨ b31 a11 ∨ b12 + a12 ∨ b22 + a13 ∨ b32
a21 ∨ b11 + a22 ∨ b21 + a23 ∨ b31 a21 ∨ b12 + a22 ∨ b22 + a23 ∨ b32

)
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4.5.2 Evaluation of Protocols
As mentioned above, the selection of the preferred protocol is represented by the mapping:
f : Σ 7−→ ψ; where, f = pnext in Equation 4.3 is an example of such mapping. The
evaluation score E is calculated according to the formulas introduced in Equation 4.4. In
the following, we present the interpretation and discussion on these formulas. To make the
idea easier to understand, we conduct some concrete examples along with the discussion.


E = D ◦ C

where D =
⌊1
a
.A ∨̇ (en − U)

⌋
and C = B±.(V ◦W ).

(4.4)

4.5.2.1 The Evaluation Matrix E

The evaluation matrix E is the Schur product (see Definition 4.2 and Example 4.1) of
discrete matrix D and the continuous matrix C. D represents the part of the evaluation
that deals with the KCIs of the profiles of the protocols; whereas, C represents the eval-
uation part that deals with the KPIs. E is calculated after computing the values of D
and C. If the mode of the system is DYNAMIC or HEURISTIC, then E may change in
real-time as C changes.

4.5.2.2 The Discrete Matrix D.

In this section, we discuss the discrete matrix: D =
⌊

1
a
.A ∨̇ (en − U)

⌋
. This matrix

matches the user preferences against the profiles of different protocols. a represents the
dimension of KCIs vector (see Section 4.3). The operator b c is the absolute value operator
(it is sometimes indicated by [ ] too). The operator ∨̇ was defined in Definition 4.5. The
matrices A, U, and en are explained next.

The profile matrix A. This matrix represents the profiles of the protocols; it takes
the form:

A =


α1,1 α1,2 α1,a
α2,1 α2,2 α2,a
... ... ...

αn,1 αn,2 αn,a


The dimension of the matrix A is n× a; where n is the number of available protocols

(i.e., the cardinality of ψ) and a is the number of KCIs considered in the evaluation. Each
row of the matrix represents a KCI vector profile of a protocol. For instance, consider
the KCIs of state-of-the-art protocols depicted in Table 4.2; the boolean representation of
these values are depicted in Table 4.3. Obtaining the latter table is trivial. If a protocol
has a certain property, i.e., has the value ‘Yes’, it takes the value 1; otherwise, it lacks that
property and thus takes the value 0. Note that, the values in the table are not necessarily
100% accurate but they are acceptable to conduct our examples. Deciding the values of
KCIs is out of the scope of this thesis.
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Example 4.5. According to the boolean representation of KCIs in Table 4.3, the matrix
A can be defined as follows:

A =



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1



Notice that, each column (i.e., protocol) in Table 4.3 represents a row in the matrix.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
Non-speculative Yes No No No No No No No
Byzantine clients Yes Yes Yes Yes Yes Yes No Yes

Tolerates contention Yes Yes No Yes No Yes Yes Yes
No IP Multicast Yes Yes No Yes No Yes Yes Yes
Self-Recovery Yes Yes Yes Yes No Yes Yes No
Obfuscated No No Yes No Yes No Yes No

Requires ≤ 3f+1 Yes Yes No Yes Yes Yes No Yes

Table 4.2: Some discrete properties (KCIs) of different state-of-the-art BFT protocols.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
Non-speculative 1 0 0 0 0 0 0 0
Byzantine clients 1 1 1 1 1 1 0 1

Tolerates contention 1 1 0 1 0 1 1 1
No IP Multicast 1 1 0 1 0 1 1 1
Self-Recovery 1 1 1 1 0 1 1 0
Obfuscated 0 0 1 0 1 0 1 0

Requires ≤ 3f+1 1 1 0 1 1 1 0 1

Table 4.3: Boolean representation of KCIs of different state-of-the-art BFT protocols.

The user preferences matrix U . This is a vector matrix that represents the re-
quirements of the user. According to this vector, the protocols that satisfy all these
requirements will be considered for selection (i.e., will continue the competition). On the
contrary, the protocol that lacks a single property among those demanded by the user
will be out of selection. It can happen that the user does not provide his requirements
because he does not have enough experience to do so, and thus he keeps the decision
for the specialists of the service provider (e.g., cloud vendors). This is possible through
choosing the default vector AU provided by the system (see Section 6.4). U is a 1-column
matrix (of dimension a× 1) that takes the form:
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U =


u1,1
u2,1
...
ua,1



Example 4.6. The following matrix represents the default user KCI preferences vector.
When the user does not define his requirements, this vector is used automatically.

U =



1
1
0
0
0
0
0


The values of this vector correspond to the KCIs (Non-speculative, Byzantine clients,

Tolerates, Contention, No IP Multicast, Self-Recovery, Obfuscated, Requires ≤ 3f + 1).
This vector tells that the user needs a protocol that is not speculative and tolerates Byzan-
tine clients, and that he does not care for the other properties (in our case, PBFT is the
only protocol that satisfies these condition, thus PBFT is default).

Note that, if the user chooses the vector U = ea, then any discrete matrix has no effect
on the selection, and the protocols are only selected regarding the continuous matrix. On
the contrary, if U = 0a, then no protocol will be selected unless it satisfies every property.
In our case, non of the protocols satisfy this condition, and thus none will be selected.

The matrix en. This is a column matrix of dimension a× 1. Each entry of this matrix
takes the value 1:

ea =


1
1
...
1


We use this matrix is to invert the values of the matrix U to −U .

Calculating D. After defining the matrices in the formula D =
⌊

1
a
.A ∨̇ (ea − U)

⌋
,

the computation D becomes trivial. To explain the process, we conduct the following
example.

Example 4.7. In this example, we compute the matrix D given the two matrices:
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A =



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1


; and U =



1
1
0
0
0
0
0



The computation is as follows:

D =
⌊

1
a
.A ∨̇ (ea − U)

⌋

=


1
7 .



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1


∨̇



1
1
1
1
1
1
1


−



1
1
0
0
0
0
0




(step 0)

=


1
7 .



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1


∨̇



0
0
1
1
1
1
1




(step 1)

=


1
7 .



7
6
6
6
6
6
5
6




(step 2)

=





1
6/7
6/7
6/7
6/7
6/7
5/7
6/7




=



1
0
0
0
0
0
0
0


(step 3)
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Step 1 computes the difference (ea − U). This inverts the values of U (i.e., a boolean
x becomes ¬x). In step 2, the OR product is calculated (recall the OR product in Defini-
tion 4.5 and Example 4.4). Notice that, each KCI in the protocol profiles (i.e., each row)
is multiplied (OR multiplication) by the corresponding items of the user’s preferences. The
resulted entries represent the sum of the properties that each protocol supports. In step 3,
the absolute value of these sums are calculated, and the final matrix D is achieved.

Through analyzing Example 4.7, important notes can be drawn. First, notice that the
computation is automated using these formulas. Imagine the time and effort needed to
achieve the result of the matrix D by hand, especially, when the requirements vector U is
more complicated. In addition, the selection depends, strictly, on the user preferences. In
our example, PBFT was the only selected protocol (which is the default choice). However,
protocols of important characteristics can be evicted out of competition according to
the user preferences. For instance, Zyzzyva was discarded in Example 4.7 since it is a
speculative protocol (see the 2nd entry of U).

Notice that the selection process using the discrete matrix D alone is correct; however,
it does not take into consideration the performance of the protocols, i.e., the KPIs. The
continuous matrix C is derived then to achieve this goal.

4.5.2.3 The Continuous Matrix C.

The continuous matrix is used to update the discrete selection by considering the KPIs
of the protocols seeking better performance. The continuous matrix C is defined in the
formula: C = B±.(V ◦W ). The matrices B, V, and W are discussed in the following.

The matrix B±. This matrix represents the KPI profiles of each protocol. Each profile
is presented in one row. This matrix is a normalized version of another matrix B. B and
B± have the same dimension n × b where n is the number of protocols and b is the
number of KPIs considered, i.e., the dimension of the KPI vector defined in Section 4.3.
The entries of the matrix B± are denoted by β± and are calculated from the entries of B
that are denoted by β. Thus, the matrices B and B± are of the form:

B± =


β±11 β±12 β±1b
β±21 β±22 β±2b
... ... ...
β±n1 β±n2 β±nb

 ;B =


β11 β12 β1b
β21 β22 β2b
... ... ...
βn1 βn2 βnb



The notion of β± KPIs. The β± values of matrix B± can be either β+, or β−, they
are normalized values of the entries of B (i.e., they belong to the interval [0,1]). They
differ according to properties of the KPI considered. If a KPI has the property hasTen-
dency=‘high’ (see Section 4.3), e.g., throughput, then this KPI is of type β+, since a
higher throughput means better evaluation score E. On the contrary, if the KPI has the
property hasTendency=‘low’, e.g., latency, then this KPI is of type β−, since a higher
latency means a worst evaluation score E.

Suppose the number of β-KPIs is b, then the matrix B can be divided into b column
matrices (i.e., vectors): B1, B2, Bi, ..., and Bb. Let the maximum (resp., minimum) value
of the entries of each vector Bi be maxi (resp., mini). Then, the entries of the matrix
B± can be calculated as follows:
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

β+
ij = 1− maxi − βij

maxi −mini
;

β−ij = 1− βij −mini
maxi −mini

;

where i ≤ b and j ≤ n.

(4.5)

Table 4.4 conveys an analytic evaluation of the studied protocols. Based on this table,
we obtain the KPI values β of Table 4.5 considering three KPIs: Throughput, Latency,
and Capacity (i.e., the estimated number of clients that can be tolerated). The values
of Table 4.5 are calculated as follows: Throughput=10/C, and Latency=D. We use 10/C
(and not 1/C) in throughput to show the effect of normalization in the next sections. As
for Capacity, we estimate this value based on the message patterns of the protocols (see
Chapter 3, Figure 3.5) and some concrete experiments that we conducted for this sake.
Note that the values of Table 4.5 can be unaccurate; however, our experience shows that
they give a good approximation that is enough to explain our idea. Filling this table is
out of the scope of this thesis, we rather keep it for future work.

Next, we explain the calculation of B± in the following example.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
A 4 4 6 4 4 4 4 4
B 3 3 6 4 4 4 4 4
C 10 5 6 6 2 ≈8 2 3
D 4 3 2 4 2 ≈9 4 5
E 3 2 1 3 1 2 1 1

Table 4.4: Analytic evaluation for the state-of-the-art BFT protocols tolerating f faults using MACs
for authentication, and assuming preferred optimization (without batching): A represents the number
of replicas needed to tolerate f Byzantine replicas; B is similar to A but excluding witness and backup
replicas; C represents the number of MAC operations on the bottleneck replica; D is the number of
one-way latencies needed for each request; and E represents the number of send/to kernel calls on the
bottleneck replica. Bold entries denote protocols with the lowest known cost.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
Throughput (β+) 1 2 1.67 1.67 5 1.25 5 3.33
Latency (β−) 4 3 2 4 2 9 4 5
Capacity (β+) 6 7 2 5 1 10 7 8

Table 4.5: Analytical values of β+ and β− for the state-of-the-art BFT protocols.

Example 4.8. First, we write down the matrix B that is derived from Table 4.5. Each
column in the table represents a row in the matrix B:
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B =



1 4 6
2 3 7

1.67 2 2
1.67 4 5

5 2 1
1.25 9 10

5 4 7
3.33 5 8


The matrix B can be divided into 3 column matrices B1, B2, and B3. The correspond-

ing maxima and minima of these column matrices are as follows: (max1=5,min1=1),
(max2=9, min2=2), (max3=10,min3=1). The calculation of β± is done according to the
formulas in Equation 4.5. For instance, the β± KPIs of PBFT are as follows:

• the throughput KPI (β+) of PBFT is: β+
11=(1− 5−1

5−1)=0.

• the latency KPI (β−) of PBFT is: β+
12=(1− 4−2

9−2)=0.71.

• the capacity KPI (β+) of PBFT is: β+
13=(1− 10−6

10−1)=0.55.

The β± values of the other protocols (i.e., other rows) are calculated in a similar way,
and finally we obtain the matrix B±:

B± =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.78



The matrix V . This matrix represents the user preferences (i.e., the KPI weights)
used to recommend a protocol. V is a column matrix of dimension b × 1, where b is
the dimension of the number of KPIs considered in the evaluation. The entries of this
matrix follow two constraints: (1) all entries ∈ [0,10], and (2) their sum ∑b

i=1 vi1 = 10.
Notice that this differs from the preferences of the discrete matrix U , since the values of
U ∈ {0, 1}. The matrix V takes the form:

V =


v11
v21
...
vb1


Example 4.9. As an example of V , we suppose that the requirements of the user are
default, i.e., a protocol with acceptable throughput, latency, and capacity (i.e., tolerates a
high number of clients); thus the matrix becomes as follows:
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V =

 3
3
4



The matrix W . This matrix is a column matrix used in the HEURISTIC mode only.
W is important to adjust the user preferences given in V by considering the system state.
Thus, it can happen that the user chooses a ‘low’ weight for some KPI in V; however,
according to the heuristics of the system, the weight is modified by the corresponding value
in W to ‘high’. In some cases, this improves the performance of the system significantly.

W is column matrix with the same dimension as V and its entries follow the same
constraints: (1) all entries ∈ [0,10], and (2) their sum ∑b

i=1 vi1 = 10. The matrix takes
the form:

W =


w11
w21
...
wb1



Since we assume that the default mode is STATIC, then the entries of W are equal
to 1, i.e., W=eb, and the matrix has no effect on the evaluation. Instead, we leave the
discussion of W to later sections where the HEURISTIC mode is used.

Computing C. After explaining the matrices B±, V, and W, the calculation of the
C = B±.(V ◦W ) becomes easy. We conduct the following example to show the process
of computing C. After explaining the matrices B±, V, and W, the calculation of the
C = B±.(V ◦W ) becomes easy. We conduct the following example to show the process.

Example 4.10. In this example, we compute the matrix C given the three matrices:

B± =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


; V =

 3
3
4

 ; and W = eb =

 1
1
1



Recall that we set W=eb since we assume that the mode is STATIC. The computation
is as follows:
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C = B±.(V ◦W )

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 ◦
 1

1
1

 (step 0)

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 (step 1)

=



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57


(step 2)

Step 1 is trivial, it the Schur product of V and W; but since W=eb, then the Schur
product gives V. In Step 2, the product of the two matrices: B and V is performed.

The results of Example 4.10 show the evaluation of the performance of the protocols
by considering the three KPIs throughput, latency, and capacity together. The result is
reasonable as it conveys that OBFT, Zyzzyva, and Chain achieve the best scores according
to the current user preferences in V (recall that OBFT does not tolerate Byzantine clients).
The final evaluation of E, however, yields a different result. The reason is that the KCI
preferences of the user have to be taken into consideration.

4.5.3 The Preferred Protocol
To achieve the preferred protocol, the evaluation scores of matrix E should be computed.
E is a vector matrix such that: E = D ◦ C. It represents the overall evaluation of KCIs
and KPIs together. After calculating E, the ‘preferred’ protocol with respect to the user
can be selected using the equation:

pnext = pi, s.t. Ei,s = max(E) = max
1≤j≤n

Ej,s. (4.6)

Where n is the number of protocols considered, and s is the current state of the system.
The next example shows the calculation of E.
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Example 4.11. In this example, we put things together. To calculate E, we use the
matrices already calculated in Examples 4.7 and 4.10:

D =



1
0
0
0
0
0
0
0


; and C =



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57



Then, E is calculated using the Schur product as follows:

E = D ◦ C =



1
0
0
0
0
0
0
0


◦



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57


=



4.33
0
0
0
0
0
0
0



The preferred protocol can be achieved then by finding pnext. For the system state
s=Current, E1,Current = max(E)=4.33, and then pnext=p1 =PBFT.

Thus, as shown in Example 4.11, the discrete matrixD forces the choice of PBFT (that
corresponds to the evaluation score 4.33) though the other protocols achieve a higher score
as shown in matrix C. Of course, choosing another KCI preferences vector U will change
this leadership. We do not consider other preferences in the STATIC mode, but we do it
in the DYNAMIC and the HEURISTIC modes since these modes are more interesting.
Finally, the ‘preferred’ protocol, i.e., PBFT, is chosen through calculating max(E), which
is the score that corresponds to the first protocol in E (i.e., the first entry).

4.5.3.1 DYNAMIC Mode

The DYNAMIC mode is designed for systems that exhibit fluctuating states, and thus
the system needs to adapt to the new state dynamically. In this mode, evaluations and
selection can occur more than once, i.e., during the normal operation of the system. For
instance, consider a system that is exposed to high contention during the day more than
nights, or during a season more than other seasons. In this case, moving to a protocol
that can perform better under these new conditions will be very useful. The motivation
behind the DYNAMIC mode can be noticed clearly through observing the values of KPIs
in the matrix B. To explain this, we give the following example.

Example 4.12. In this example, we suppose the user preferences of KCIs are as follows:
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U =



0
1
0
0
0
0
1



U imposes no constraints on the chosen protocols except for the 2nd and the 7th entries
which require that the protocol tolerates Byzantine clients and does not need more than
3f+1 replicas to operate. Consequently, the calculation of the discrete matrix D becomes
as follows:

D =
⌊

1
a
.A ∨̇ (ea − U)

⌋

=


1
7 .



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1


∨̇



1
1
1
1
1
1
1


−



0
1
0
0
0
0
1





=


1
7 .



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1


∨̇



1
0
1
1
1
1
0





=


1
7 .



7
7
6
7
7
7
5
7




=





1
1

6/7
1
1
1

5/7
1




=



1
1
0
1
1
1
0
1



Thus, according to the values of D, the competition continues between all protocols
excluding Q/U and OBFT which correspond to the 3rd and 6th entries, respectively. Then,
using the same continuous matrix C calculated in Example 4.10, we get the following
evaluation scores:
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E = D ◦ C =



1
1
0
1
1
1
0
1


◦



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57


=



4.33
6.01

0
4.4
6

4.18
0

6.57



Thus, max(E)=6.57=E5; therefore, the preferred protocol according to these settings
is Chain since it corresponds to the last entry in E.

According to the results of Example 4.12, Chain has been chosen as a preferred pro-
tocol. However, it is known that Chain achieves low throughput with few clients due
to its long messaging pattern (see Figure 3.5). Thus, in case the system is supposed to
low contention for a reasonable period of time, it is more efficient to switch to another
protocol. In the static mode, Chain could not be replaced by another protocol according
to matrix E. However, in the dynamic mode the values of the KPIs in the matrix B can
be modified at run time which may yield another protocol that has a better performance.

In Chapter 6, we present a method to assess the values of B on the fly. The method uses
the famous Support Vector Machines for Regression [49] (SVR), a technique often used
in Machine Learning. This mechanism allows the prediction of the KPIs of the protocols
as the system is running. For instance, in Example 4.12, Chain will not be chosen as
preferred protocol, in the dynamic mode, if the system state indicates low contention. In
fact, the prediction of the throughput of Chain will be low with few clients, which changes
the corresponding value in the matrix B; and consequently, the system yields another
protocol that achieves better throughput under these new conditions. In addition, this
technique leads to very accurate (up to 98%) KPI values which is not the case in our
current chapter (as shown in Table 4.5). For example, our experiements show that the
throughput of Zyzzyva is very close to Chain in real systems, however the β values of
Zyzzyva in Table 4.5 (and in matrix B) are lower than Chain. Indeed, no BFT protocol
could preserve its good performance under all condiitions as shown in Chapter 3. We
defer the discussion of the dynamic mode to Chapter 6.

4.5.3.2 HEURISTIC Mode

The HEURISTIC mode is an advanced dynamic mode. This mode uses some heuristics
to change the user preferences of the KPIs. This is very useful in the cases where the user
has no big experience or when the system is fluctuating. Similar to the dynamic mode,
the evaluation of protocols is done at run time and, probably, a new protocol is selected
as the system state changes. Thus, the KPIs (i.e., the entries of matrix B) are calculated
dynamically during the normal operation of the system.

However, in the dynamic mode, it can happen that according to the chosen KPI
weights of the user (i.e., the entries of matrix V), a certain protocol is recommended;
however, under some specific conditions, other protocols can perform better (thus, the
choice is not the best). For instance, if the system is deprived from contention, the latency
becomes more important than throughput and capacity, even through the user gave higher
weights for these values. Another example is when the system is jammed with requests.
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In this case, the system should run the protocol that tolerates more clients even if the
client gave low weights to the capacity KPI. The role of the heuristics is to adjust the user
preferences through using the weights (in matrix W) as the system state changes. These
weights can modify the weights already defined by the user in V, but just temporarily,
according to the underlying system conditions.

To explain the idea of heuristic we recall the matrices of the previous example.

Example 4.13. First, we recall the user preferences of the KCIs U and the KPIs V that
were used in Example 4.12:

U =



0
1
0
0
0
0
1


; and V =

 3
3
4



In addition we recall the evaluation E in the static mode that was computed in Exam-
ple 4.12:

E = D ◦ C =



1
1
0
1
1
1
0
1


◦



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57


=



4.33
6.01

0
4.4
6

4.18
0

6.57



According to E, U, and V, the preferred protocol chosen is the one that corresponds to
max(E)=6.57=Chain. Now, if the mode is set to HEURISTIC, we consider the following
cases.

No contention. In this case, the throughput and the capacity KPIs of the system are
not important; on the contrary, the latency becomes the major performance KPI. Thus,
the user preferences of the KPIs defined in matrix V=(4,2,4) in Example 4.13 do not
reflect the performance of the protocols anymore. Therefore, the weights of these KPIs
should be modified using the system heuristics. For instance, the heuristics in this case
sets the values of matrix W to:

W =

 1
8
1


Recall that in the static mode W=en. The effect of this modification can be noticed

in the following example.
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Example 4.14. Let us calculate the continuous matrix C again.

C = B±.(V ◦W )

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 ◦
 1

8
1

 (step 0)

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
24
4

 (step 1)

=



19.24
24.07
24.95
19.31

27
4.18
22.72
18.98


(step 2)

Then, the calculation of E becomes as follows:

E = D ◦ C =



1
1
0
1
1
1
0
1


◦



19.24
24.07
24.95
19.31

27
4.18
22.72
18.98


=



19.24
24.07

0
19.31

27
4.18

0
18.98



In this case, maxi=max(E)=27, and thus, Quorum is the preferred protocol since it
corresponds to the 5th entry.

Example 4.14 depicts the power of the heuristic mode. Notice that though the user
requirements are almost equivalent for all KPIs (i.e., throughput, latency, and capac-
ity), in contention-free cases, the heuristics can modify the weights defined in V through
multiplying it by W. Consequently, the preferred protocol can change according to these
heuristics (as compared to Example 4.13). Example 4.14 shows that the preferred proto-
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col in contention-free cases is Quorum which is very reasonable as it exhibits the shortest
messaging pattern among all protocols (see Figure 3.5 in Chapter 3).

High contention. In this case, tolerating a high number of clients is more important
than throughput and latency. Again, the user preferences of the KPIs defined in matrix
V=(4,2,4) in Example 4.13 do not reflect the performance of the protocols anymore. The
weights of these KPIs can be modified using the system heuristics. Now consider the
heuristics depicted in matrix W:

W =

 2
1
7


The effect of this modification can be noticed in the following example.

Example 4.15. Lets calculate the continuous matrix C again.

C = B±.(V ◦W )

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 ◦
 2

1
7

 (step 0)

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 6
3
28

 (step 1)

=



17.53
22.84
7.1

15.47
9

28.36
26.89
30.11


(step 2)

And then, the calculation of E is:
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E = D ◦ C =



1
1
0
1
1
1
0
1


◦



17.53
22.84
7.1

15.47
9

28.36
26.89
30.11


=



17.53
22.84

0
15.47

9
28.36

0
30.11



In this case, maxi=max(E)=30.11, and thus, Chain is the preferred protocol since it
corresponds to the last entry.

Again, Example 4.15 presents the modification of user requirements according to sys-
tem heuristics. The preferred protocol under high contention becomes Chain. This is ex-
pected since Chain is deprived from collisions under contention due to its chain-messaging
fashion.

The above examples are conducted without changing the values of KPIs in matrix B
(i.e., as if no dynamic mode is chosen). Indeed, this makes the result a bit biased. The
reason is that, under high contention, Ring achieves a very high throughput whereas the
other protocols go in a plateau as observed in Figure 4.4. However, the matrix B uses the
throughput 0.06 of Ring, which is very different from reality. The issue arises here since
we estimated the throughput of Ring according to the number of MAC authentications
needed which could not be true as the system state changes. This indicates that when the
KPIs in B are calculated dynamically, the results can be more accurate and reasonable
(discussed in Chapter 6). For this example, Chapter 6 shows that Ring will be the best
choice using the prediction system of KPIs. This sounds very logical since the throughput
of Ring will be much higher than 0.06 (i.e., the estimated value used in this example).
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Figure 4.4: Throughput of Ring with respect to other protocols under high contention.
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4.6 Worthy Switching
In the modes DYNAMIC and HEURISTIC, the system switches to a new protocol that is
evaluated as preferred protocol under the new system state. Switching takes place either
during a routine system performance checking and evaluation, or upon receiving a failure
event. Worthy switching will be discussed in more details in Chapter 6.

Routine Checking. In this case, the system checks the performance of the system
periodically. This is done through performing the evaluation process discussed in this
chapter, periodically, at a certain predefined duration. After that, the system can switch
to another protocol seeking better performance. However, if the difference in performance
between the running protocol and the next one is ‘small’, switching becomes useless.
Instead, we require that switching to occur only if:

Emax − Ecurr ≥ Sthr (4.7)

Emax and Ecurr in Equation 4.7 are the evaluation scores corresponding to the preferred
protocol (under the current state st) and the currently running one, respectively. Sthr
represents the threshold over which switching is considered worthy. Sthr is a decision
choice of the service administration or the user (e.g., 10%).

Figure 4.5: The difference between evaluation scores (E) with considering the error tubes.

Figure 4.5 conveys a sample graph of the evaluation scores of two different protocols
as the system state changes. Since E depends on predicted values of KPIs, then each E
has an average prediction error represented by the error tubes on the graph (in red color).
For system state st=2, we plot a magnified graph to show the differences between E1 and
E2. ε1 and ε2 represent the width of the error tubes of E1 and E2, respectively. δ is the
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distance between E1 and E2 after excluding the width of the error tubes. Switching is
worthy only when the switching threshold Sthr is less than or equal to δ, in other words:

E1− E2− ε1/2− ε2/2 = δ > Sthr (4.8)
Notice that, ε1 and ε2 should be excluded to ensure that, in worst cases, the difference

δ between E1 and E2 is always guaranteed. This is needed to avoid the overhead of
switching if the prediction is not accurate enough. We give more discussion and examples
in Chapter 6 about this point.

Abort. In addition, switching can occur when something wrong happens (e.g., a
Byzantine replica detected). An evaluation process takes place before switching. In this
case, the system sets the matrix U of Equation 4.4 to en; this forces any speculative
protocol that can not work under replica failures to be out of the competition (e.g.,
Quorum). Therefore, the selected protocol for the next phase will be the one that can
tolerate replica failures, and at the same time, the one that has the preferred performance
among all protocols.

4.7 Conclusion
In this chapter, we presented a BFT selection model and algorithm to improve the quality
of BFT services. The mechanism helps the user to choose the ‘preferred’ BFT protocol
according his preferences. This is useful in large services that provide BFT as a service.
For instance, cloud vendors can sell BFT services along with their IaaS, PaaS, and SaaS
SLA contracts. This can be achieved by proposing many BFT protocols for users, and
the user is in charge of choosing his preferred protocol. This can be implemented as a
Web service.

Our mechanism tries to match the user preferences with the profiles of each protocol
through a set of mathematical formulas based on matrices. The formulas are automated to
choose the preferred protocol with respect to the demanding user. Our model considers
three modes: (1) STATIC mode: this is the default mode where the user chooses a
protocol only once; he can only change it when the service is rebooted. (2) DYNAMIC
mode: which allows the user to use more than one protocol at once, where a running
protocol can be stopped and another protocol is launched after performing the evaluation
and selection process. The intuition is that the performance of protocols differ as the
underlying system state changes, and thus adaptation to the new state is required. In
this mode, the performance measures (i.e., the KPIs) are calculated at run time (to be
introduced in Chapter 6). (3) HEURISITC mode: this mode is similar to the dynamic
mode; however, it allows to modify the weights (i.e., preferences) chosen by the user as
the system state changes using some predefined heuristics. This mode is very useful since
some KPIs are important under some conditions, but they become less important in other
situations. For example, throughput is very important in normal cases, however, it is not
basic in contention-free cases (in contrast to latency), thus, adjusting the weights of the
KPIs will have great impact on the overall performance.

In the next chapters, we present some BFT techniques that can be used in the STATIC
mode. In addition, we provide Machine Learning prediction method to assess the KPI
values of the protocols, while the system is running, using Support Vector Machines for
Regression (SVR) [49]. In the future, we are planning to study the cost of this selection
mechanism and to explore the heuristics required for the heuristic mode.
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Chapter 5

BFT Reconfiguration: BFT
Re-Abstract Family

This chapter presents a technique to improve the performance of BFT protocols in the
static mode that we discussed in the previous chapter. The idea is to conserve the per-
formance of any protocol even after recovery. This approach allows any protocol, that is
a member of the Re-Abstract family, to recover to itself upon failure, and hence, avoiding
usual expensive recovery phases. The chapter provides some examples on three members
of this family: Zlight, Quorum, and Chain.

5.1 Introduction
Many BFT protocols ( [15, 2, 22, 32],...) have been designed in the last decade; however,
none of them fits the wide range of infrastructures and settings of the deployed services
(as discussed in the previous chapters). PBFT [15] was the first practical BFT protocol
to appear. PBFT suffered from the low performance despite being one of the most robust
BFT protocols. The speculative approaches [2, 22, 32, 26] then succeeded to ameliorate
the performance during the failure-free phases, but a recovery phase was crucial to resolve
the issues under failure. The recovery phase in such protocols render a low performance,
similar to that of PBFT or even worst in some cases like Zyzzyva, where PBFT performs
better than this latter by 15% under failure [32]. Consequently, those speculative protocols
were not satisfactory to services that seek a stable performance even during recovery,
especially if the failure is not transient.

The abortable platform, i.e. Abstract1 [27], then introduced the possibility of adapting
to new conditions that might show up in a deployed services. The modular nature of
Abstract allowed the recovery from one Abstract (any BFT protocol) to another, according
to the upcoming changes in the service. Abstract platform addressed the trivial (failure-
free) cases; however under faults (1) it recovers to PBFT-like backup that exhibits a low
performance; or (2) it launches another protocol. However, no dynamic switching policy
was defined for this approach. More details about abortability can be found in Chapter 2
and in [27, 26].

We present in this chapter a family of modular BFT protocols, called Re-Abstract,
built on top of Abstract platform; where Abstract can be any traditional protocol. The
idea is to have the Abstract (i.e, any protocol) recover back to itself upon failure detection

1The term ’Abstract’ comes from: ABortable STate mAChine Replication
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(instead of switching to PBFT-like backup, as done in [27]). Re-Abstract family members
conserve their original inherited performance even during recovery. This is done via the
recovery plug-in, that we built to detect and replace the faulty replica by another correct
backup replica. We benefit from the Abstract platform to make the protocols simple to
re-use, design, and implement.

As an example on Re-Abstract application; consider a deployed service that should
be secure and fault resilient, but it does not experience a high contention usually. Such
a service recommends a protocol with a good latency, like Q/U [2] or Quorum [27], since
throughput does not matter in contention-free environments. Upon failure, the latency
of Q/U becomes very large due to the expensive Repair phase. On the other hand,
Quorum recovers to a PBFT-like protocol, which also, in its turn, has a high latency.
A more convenient solution is to preserve the same latency even after recovery through
using Re-Quorum; thus, by recovering from Quorum to Quorum itself, after replacing
the faulty replicas. By this, the anticipated performance of the deployed service can be
always maintained. Figure 5.1 for instance depicts the throughput of some state of the
art BFT protocols when experimented on Redis software. The figure clearly highlights
the difference in performance among protocols, especially between PBFT and Quorum.
Imagine the costly overhead that would happen upon recovery of Quorum to PBFT; this
can be avoided upon recovery to Quorum (i.e., to itself) again using our approach.
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Figure 5.1: Throughput using the 0K payloads on Redis.

In brief, Re-Abstract family members work as follows. For simplicity, we consider one
Re-abstract family member: Re-Zlight 2. System replicas are composed of two sets: an

2Zlight is an abortable version of Zyzzyva built using the Abstract platform
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Active set (3f+1 replicas), and a Passive set (f backup replicas). Re-Zlight operates on
the Active replicas during its Speculative phase, according to its defined message pattern
(see Figure 5.3). Once a client detects a failure, it initiates the Recovery phase to identify
and eliminate the potentially faulty replicas (they can be just slow). The client replaces
the eliminated replicas by backup replicas from the Passive set. Re-Zlight continues then
through its speculative phase following the usual message pattern again, just after the
switching phase finishes. This way, the service maintains Zlight’s performance even after
recovery.

Re-Abstract family maintains one-copy semantics, and conserves a constant service
performance. However, Re-Abstract family members require f extra Passive replicas as
compared to state of the art protocols (3f+1). This is tolerable nowadays, as commodity
hardware and cloud computing solutions are becoming cheap. Re-Abstract imposes some
additional, but negligible, cost while recovery.

5.2 Design of Re-Abstract
In order to make the presentation simpler, we present Re-Abstract family through dis-
cussing Re-Zlight. Knowing that any traditional BFT protocol can be a member of the
family.

5.2.1 Fault Model
Here we present our fault model which complies with the traditional BFT model (e.g.,
PBFT [15]). We assume a message-passing distributed system using a fully connected
network among nodes: clients and servers. The network may (not infinitely) fail to de-
liver, corrupt, delay, or reorder messages. Faulty replicas and clients may either behave
arbitrarily, i.e., in a different way to their designed purposes, or they just crash (be-
nign faults). A strong adversary coordinates faulty replicas to compromise the replicated
service. However, we assume the adversary cannot break cryptographic techniques like:
collision-resistant hashes, encryption, and signatures. Liveness, however, is guaranteed
only whenever the system is eventually synchronous; i.e., during intervals in which mes-
sages reach their correct destinations within some fixed worst case delay.

5.2.2 Algorithm Overview
Re-Zlight requires at least 4f+1 replicas to tolerate up to f Byzantine replicas and any
number of Byzantine clients. However, using 3f+1 replicas only at a time, it can sustain
faults, but cannot ensure progress. At any time, the protocol distributes the replicas into
two sets:

- Active set: composed of 3f+1 replicas (we call them Active replicas); these replicas
are used in the speculative phase, speculatively.

- Passive set: composed of f idle replicas that are used as recovery backups.

Re-Zlight launches the speculative phase on 3f+1 Active replicas. Upon failure detec-
tion, it recovers by replacing the suspicious replicas (i.e., either faulty or slow) by correct

79



replicas from the f Passive set; and then, resumes to the speculative phase on a new
Active set (i.e., in a new view). The 3f+1 replicas are enough to collect a correct abort
history.

The algorithm of Re-Zlight consists of two main phases: a speculative phase and a
recovery phase. In this section, we recall the two phases briefly, and then we only present
the recovery phase in details (since the speculative phase is similar to Zyzzyva’s trivial
case discussed in Chapter 2 and in [32]).

Speculative phase. The communication message pattern of Re-Zlight in a failure-
free scenario is simple (see Figure 5.3), and it is concerned with the Active set only (i.e.,
3f+1 replicas):

1. The client sends its request to the primary replica.

2. The primary assigns a sequence number to the request and executes it.

3. The primary sends the reply to the client, and forwards another copy to the remain-
ing 3f Active replicas, along with the assigned sequence number.

4. Each non-primary replica executes the received requests by order, and returns the
replies to the client.

5. The client commits the request only if all the responses of the Active replicas match;
otherwise, the recovery phase is launched.

Recovery phase. This phase takes place using both: Passive and Active sets (i.e.,
4f+1 replicas).

1. Once the timer of the client expires waiting for 3f+1 matching replies, the client
panics by sending a Panic message to the Active replicas.

2. Replicas, upon receiving the Panic messages, stop executing new requests and send
an Abort message back to client with their signed local histories.

3. The client constructs an Abort history collected from the 2f+1 matching replies
(more details later), and sends an INIT request to all replicas (4f+1) along with
the abort history.

4. The replicas execute the INIT request (they append it to their local histories), and
reply to the client with ACKinit.

5. As the client receives the first 3f+1 matching ACKinit replies, it considers their
corresponding replicas as Active, and the remaining f replicas as Passive (those are
suspicious replicas).

6. The client sends SET message to update the Active set on the replicas with its
request piggybacked.

7. All replicas update their local control information (i.e., their Active set), and Active
replicas reply to the client according to the speculative phase in a new view.
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(a) Client c sends a message to Active set.
CONTROL structure of replicas and clients
are the same.

(b) Active replicas respond. Replica three
might be Byzantine.

(c) Client c detects a faulty replica sends INIT
message to Active and Passive replicas to re-
place the faulty one.

(d) Replicas reply with ACK message; the
client detects that replica 3 is suspicious
(Byzantine or slow)).

(e) The client broadcasts the new info. to up-
date the CONTROL structure of replicas.

Figure 5.2: The mechanism used to evict the faulty replica from the Active set. The tables with numbers
are the CONTROL structures of the client and replicas, respectively.

5.2.3 Details of the Recovery Phase
The Recovery phase is composed of three major steps: aborting, collecting abort his-
tory, and cleaning the Active set from any suspicious replicas. Figure ?? explains the
mechanism in brief.

Aborting. The client in Re-Zlight considers a request as complete if the received
3f+1 responses of the Active replicas are matching and before the expiry of the timer.
Otherwise, the client stops sending requests and sends a Panic message to all Active repli-
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cas. Each replica, upon receiving the Panic message, stops receiving/executing requests,
appends its local history of committed requests to an Abort message, and sends it to the
client. The latter waits until it receives 2f+1 non-conflicting signed Abort messages. This
ensures the correctness of the local histories. Aborting is achieved as follows:

1. The client waits for the first 2f+1 local commit histories to be received.

2. If no conflicting entries among the 2f+1 received local histories are found by the
client, it stops receiving new histories, and collects the 2f+1 messages in a ProofAH
set, that is used to form the abort history AH later.

3. Otherwise, if the client identified some commit histories with conflicting entries it
waits for new local histories (since definitely there are correct clients that did not
respond yet). The loop continues from step 1 again.

Building Abort History. A correct abort history is crucial for safety. It preserves
total ordering and consistency across different switching phases (i.e., views). The abort
history is collected from the current Active set, to initialize the local histories of the
replicas on a new correct Active set. Building the abort history AH is done by the client
after the receipt of 2f+1 non-conflicting signed abort messages from different replicas,
collected in the ProofAH structure. The steps can be summarized as follows:

1. The client generates a history h such that: h[j] equals the value that appears at
position j ≥ 1 of f+1 different local histories (LHj), that appear in ProofAH .

2. If such a value does not exist for some position x, then x is the last index of h.

3. Finally, AH is the longest prefix of h in which no request appears twice (i.e., exclude
duplicate entries).

AH is used, then, to initialize the local histories of the new Active replicas (see more
details later).

Eliminating Faulty Replicas. The client in Re-Zlight attempts to replace the faulty
replicas in the Active set with correct ones from the Passive set; this is done by detecting
the suspicious replicas (faulty and slow ones) among the 4f + 1 replicas. This occurs as
follows:

1. After collecting the abort history AH, the client sends an INIT request (with AH
appended) to the 4f + 1 replicas.

2. The replicas execute the INIT request, and append AH to their local history (if it
is not already done through a previous view). Then, they reply to the client with
ACKinit.

3. The client verifies the received ACKinit messages, and waits until it receives 3f + 1
matching ones.

4. The corresponding replicas to the first 3f +1 matching messages constitute the new
Active set, and the remaining f form the Passive set.

This process ensures eliminating the faulty replicas from the Active set, and having a
correct one in the next view. Note that, all the exchanged messages among the replicas
and the clients are authenticated/verified with MACs.
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5.2.4 Switching
Switching requires 4f + 1 physical replicas where only 3f + 1 of them are used at once
as Active replicas. The other Passive replicas, however, are used to replace some Active
replicas whenever failure occurs. This requires, sometimes, changing the primary replica
also.

Initializing control information on clients. Upon launching the system, default
Active set and primary replica are chosen. And since these are changing among the
same physical replicas across different views, it is crucial for the client to know this
control information before issuing its requests. The control information is collected on
replicas and clients in the CONTROL structure, that is composed of: (1) The Active set
ACTIV E, (2) the primary P , and (3) the current view number V IEWcurr. Hence, some
control messages are needed to deliver this information to any new coming client. The
client gets informed as follows:

1. The client sends a GETinfo message to all (4f + 1) replicas.

2. Active replicas send an INFO message to the client containing the control infor-
mation: (1) The Active set ACTIV E, (2) the primary P , and (3) the current view
number V IEWcurr.

3. The client waits until it receives 2f+1 matching INFO messages from the replicas.
Once done, it saves the information of the INFO messages, updates its CONTROL,
and starts sending its requests according to the protocol. Otherwise, it starts again
from step 1.

Control information after recovery. However, when recovery occurs, and some
client c succeeds in panicking, sending the INIT request, and identifying the suspicious
replicas (faulty or slow), the control structure CONTROL should change to exclude faulty
replicas. Thus, the replicas refuse to execute any request until: a SETinfo control message
(more details later) is received from c, or the timer expires. Instead, the replicas respond
on any request type with an INFO message (possibly with some empty fields).

In the case where the timer of a replica expires, it releases the lock, and accepts
Panic messages in the current view to allow other clients to perform a successful recovery.
SETinfo is important after recovery by which replicas get assigned a new CONTROL. To
fill the SETinfo message, the client determines the Active set, selects the first replica to
be the primary, and increments the view number. The client appends ProofAH to the
message so that the replicas verify message correctness against malicious clients.

If CONTROL on the replicas is already updated by the SETinfo message, the INFO
reply message will be complete and informative enough for other clients (upon receiving
2f+1 matching messages). Otherwise, if the replicas are still waiting the SETinfo message
from c, the ACTIVE and the primary replica P fields in the INFO message will be empty,
in contrast to the V IEWcurr field that allows the clients to retry sending Panic messages in
the current view successfully; since replicas do not accept any requests from other views.
Re-Zlight handles SETinfo messages according to the usual communication pattern in
(Figure 5.3). The receiving replica knows from the SETinfo message itself, whether it is
included in the Active set, it is a new primary, or it is a Passive replica; nd it can verify
this using the proof message.
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5.2.5 Handling Contention
Views Perspective. Requests of any type are required to comprise the current view
number V IEWcurr. In addition, any request received by the replicas is validated by
verifying its MACs and the V IEWcurr field, before being executed. Any request that
belongs to a different view or has corrupted MAC gets rejected.

Panicking. The speculative phase in Re-Zlight is deprived from contention problems
as long as all requests that belong to the current view are ordered by the primary. How-
ever, upon failure, a client launches the recovery phase. The client needs to collect the
abort history. Correct clients keep retransmitting Panic messages until they receive an
enough number (i.e., 2f + 1) of matching local histories, or a filled INFO messages from
the replicas.

Initializing. When any client (one or more) creates the abort history, it sends INIT
message to all the replicas (4f + 1) to initialize their local histories and to update their
view number V IEWcurr. Under contention, different replicas might receive different INIT
requests from different clients, and hence none will be completed since no client will be
able to collect enough ACKinit from 3f+1 replicas. Thus the clients follow an exponential
back-off scheme that offers more chance that all replicas execute the same INIT requests
sent by the same client c. This ends up by consistent local histories on replicas in the
next view.

Control Information. Afterwards, the replicas will be waiting for the SETinfo
request from the same client c. During this period, and to maintain non-conflicting
messages from contending clients; any request will be discarded by the replicas, that
reply instead, by an INFO message (where its Active set and primary replica fields are
still empty), containing the V IEWcurr that is needed by the clients while retrying their
future request attempts. The step ends with a unique Active set and a primary replica
across different views once the replicas receive the SETinfo message from the client c.
After this stage, any request from the clients will be handled as designed if it belongs to
this view, otherwise, replicas respond with an INFO message (where no fields are empty
this time) to update those clients with the new control information. By this way, the
clients can send requests as usual in the new view.

5.2.6 Byzantine Clients
In this section, we focus on the behavior of malicious clients upon recovery. For the trivial
cases of the protocols, i.e., the speculative phase, we do not provide a discussion since
this is done for every protocol aside. In fact, most previous works of existing protocols
introduced this discussion.

In the recovery phase, a client starts by broadcasting a Panic message to all replicas.
In this case, a malicious client can send different messages to different replicas. The
replica that receives a Panic message aborts and stops handling new requests from other
clients, but it can respond with an INFO messages instead. Whereas, other replicas
respond correctly to correct clients. Correct clients then Panic again since it could not
receive matching replies from all replicas. The replicas (except the already aborted one)
then send an Abort message to the client accompanied with their local histories LH. The
already aborted replica aborts again (due to the new Panic message from the new client)
after its timer expires while waiting for the INIT message from the first client. Recall
that, an exponential back off scheme is applied here to fight against contending clients.
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When the replicas send Abort messages to some client, and the client is malicious, it
can either drop these messages or respond. In the former cases, the replicas wait until
their timer expires waiting for the INIT request from this clients, and then other correct
clients panic again and the recovery process continues correctly with the new clients.

The latter case where the client responds, it can respond with a forged INIT message.
Correct replicas could not be fooled by this forged message since they can verify the
Proof message in the AH that contains their collected and signed local histories LH.
Thus, correct replicas drop the INIT message and wait for another correct client to resolve
the situation.

If a malicious client sent a correct INIT request, and the replicas reply back with ACK
messages. The client can drop this ACK message. Once more, the replicas accept Panic
messages from new clients after their timer expires while waiting for Set request for the
first client.

When the client receives the first 3f+1 ACK messages from correct replicas, it des-
ignates the corresponding replicas as Active and sends a SET message to the replicas to
update their CONTROL information. A malicious client can pretend that some Abort
replies arrived before even if the converse is true. By this, the client tries to include slow
replicas in the Active set. The impact, however, is limited to slowness and could not affect
correctness. Moreover, if the client sent different Set messages to different clients, correct
replicas discover this since through calculating themselves the CONTROL information
from the Proof .

Notice that, malicious clients can delay their replies until just before the expiry of
the replicas timer. By this the client succeeds to impose an additional response delay
on request. In addition, similar to existing protocols, malicious clients can play a Denial
of Service attack. A black list of clients and multiple NIC interfaces on replicas, then,
could be used as in [19]. These issues, however, affect performance and have no impact
on correctness.

5.3 Evaluation
In this section we show the gain in performance, more specifically throughput, upon using
our approach. Before starting our discussion, we first introduce the experimental settings
we used to conduct our experiments.

5.3.1 Experimental Settings

We conducted our experiments using Redis and OpenLDAP. The two software have oper-
ations of different execution times which is important in our study as will be shown later.
The setup of the system is done on Emulab [55] testbed, where we used Dell d710 ma-
chines – 64-bit Quad Core Xeon systems, with an eight-core 2.4GHz processor, 12 GB of
RAM, and 2 NICs. At Emulab, each machine in our experiments runs Ubuntu 8.04, with
2.6.24 32-bit kernel. Replicas are systematically running on their own, separate machine,
while clients are collocated on a total of 20 machines. Moreover, in all experiments we
use 4 replicas (which consists in tolerating f=1 fault).
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(a) PBFT

(b) Zlight (Zyzzyva)

(c) Quorum

(d) Chain

Figure 5.3: Message patterns of PBFT, Zlight, Quorum, and Chain (for f = 1).

5.3.2 Switching Overhead
Figure 5.4 conveys the switching cost of Re-Zlight over LAN for f = 1. The figure depicts
the recovery time in (ms) as a function of the number of requests in the abort history AH.
The size of requests used is 1KB (this size is an average for the typical request sizes used
in previous works, e.g., [15, 32, 27, 26], etc). The graph shows that as the abort history
AH size increases, the recovery time also increases, ranging from 28ms and 42ms. For a
300 request-size of AH, the recovery time does not exceed 50ms. We consider this cost
to be very reasonable, provided that faults are supposed to be rare in environments that
run speculative protocols like Re-Zlight, Re-Quorum, etc.

We mention here that we did not consider AH of sizes more than 300 requests since,
in speculative protocols, fine-grained checkpointing is usually used to reduce the recovery
cost (since the abort history AH will be smaller). On the other hand, since the switching
cost of all protocols is almost similar due to the slight difference in their message headers,
we do not reveal all the graphs of these protocols (in fact, we did not implement the
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Figure 5.4: Re-Zlight Recovery cost as a function of abort history size, for f=1.

switching phase of all protocols being very similar).
On WAN settings, the execution time of requests becomes negligible as compared to

the end-to-end latency (typically, more than 10ms). Thus, the major factor becomes
the number of communication steps needed to recover. Table 5.1 shows the number of
communication delays needed for state of the art protocols during the speculative phase;
and conveys the recovery cost of Re-Zlight, Re-Quorum, and Re-Chain. We show that,
the cost during recovery is always double that of the message cost during the speculative
phase. Thus, even in WAN settings, the recovery cost is considered small too.

Protocol PBFT Re-Zlight Re-Quorum Re-Chain
Message delays 4 2 2 2
Recovery delays - 4 4 4
Table 5.1: Recovery cost of Re-Abstract family members in WAN setting.

5.3.3 Performance
The goal of using our approach is to use any existing protocol as an abortable protocol
making it able to recover to itself; this yields a high performance as compared to the
original protocol upon recovery. We recall that PBFT achieves the best throughput under
failures, whereas other protocols either use a PBFT-like recovery phase (e.g., Quorum,
Chain, Zlight [26]) or other techniques that are more expensive (e.g., Zyzzyva [32] and
Q/U [2]). Consequently, we focus our comparisons on PBFT as a recovery protocol; and
on the trivial cases (i.e., failure-free) of other existing protocols: Zlight, Quorum, and
Chain.
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Figure 5.5: Throughput of Re-Zlight during three time slots.

To make our evaluation easier, we consider the following scenario. Assume we have
a running BFT service that runs a protocol for a duration δ1. Then, assume that as the
number of clients increases, some failure happens and recovery is launched. The recovery
phase (or recovery protocol) runs for a duration δ2 until the faulty replica is fixed. Then,
the protocol switches back to the non-faulty phase which has a better performance as
compared to the recovery phase, the protocol runs in this phase for a duration of δ3. To
make the graphs easy to follow, we assume that the number of clients is always increasing
with time. In our evaluation, we try to calculate the number of operations performed
by each protocol in the phases δ = δ1 + δ2 + δ3, of course, taking into consideration the
overhead of switching time. Hence, it is imperative to start with the switching cost.

5.3.3.1 Throughput

In this section we study the throughput of Re-Abstract family members, we consider
three protocols: Zlight (i.e., a light version of Zyzzyva), Quorum, and Chain. Any other
protocol can be discussed similarly.

Re-Zlight. Figure 5.5 conveys the throughput (on the y-axis) of PBFT, Zlight and Re-
Zlight as a function of the number of clients (on the x-axis). The graph is divided into
three time periods δ1, δ2 and δ3. In this figure, we notice that the throughput of PBFT is
always worst than Zlight, which is expected due the high number of MAC authentications
needed in PBFT and due its long message pattern (see Figure 5.3). On the other hand, the
throughput of Zlight increases gradually as the number of clients increases up to 10 clients,
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where the throughput becomes almost double that of PBFT’s throughput. In time slot
δ2, we suppose that Zlight switches to PBFT due to some failure, thus the throughput of
Zlight drops to almost half its expected throughput. The throughput returns to increase
as the failed replica gets repaired in δ3 and Zlight is able then to run its speculative
phase. The throughput drops slightly with more than 70 clients but it remains better
than PBFT. Therefore, the throughput of Re-Zlight is similar to Zlight during δ1 and
δ2, however, during δ3 it recovers to itself again (by replacing the faulty replica) which
conserves its expected performance that is double that of PBFT.

Protocol PBFT Zlight Re-Zlight Quorum Re-Quorum Chain Re-Chain
δ1 3K 7K 7K 10K 10K 4K 4K
δ2 13K 13K 24K 13K 28K 13K 17K
δ3 18K 23K 23K 27K 27K 26K 26K

δ1 + δ2 + δ3 34K 43K 54K 50K 65K 43K 47K
% of gain - - 20% - 23% - 10%

Table 5.2: The average number of operations performed in the each time slot.
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Figure 5.6: Throughput of Re-Quorum during three time slots.

Since the switching time (discussed above) does not exceed 50ms, i.e., the worst case,
then the total switching time of Re-Abstracts is also 50ms (since Re-Abstracts switches
only once, in contrast to Abstracts like Zlight, Quorum that need to switch twice while
entering and leaving recovery). Assume that the time needed to switch from Zlight to
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PBFT is negligible (in fact this is not true, but it has no great impact on the comparison).
Consider, the average throughput of all protocols during each time slot as shown in
Table 5.2. Now, if δ1 = δ2 = δ3 = 1 hour, then during δ = δ1 + δ2 + δ3 the maximum
throughput of PBFT will be 3600×(3K+13K+18K) = 3600×34K operations. Whereas,
Zlight completes 3600× (7K + 13K + 23K) = 3600× 43K since during the second time
slot it recovers to PBFT-like protocol. Considering the switching time of Re-Zlight we
get 3600 × (7K + 24K + 23K) − (0.05 × 23.5) = 3600 × 54K − 720. Thus, during the
three-hours duration, the throughput of Re-Zlight exceeds Zlight by around 3600× 11K
operations, i.e., around 20%. On the other hand, the overall throughput of Re-Zlight is
around 37% better than that of PBFT.

Notice that the switching is always justified as long as the recovery time slot δ2 is
reasonably not small. In case the failure of some replica is transient (e.g., lost message,
or flooded network, etc), then the replica does not need any maintenance or external
intervention to repair, thus δ2 will be small, and consequently it is worth nothing to
switch to Re-Zlight. We think that if δ2 is larger than one second then it is strictly
fruitful for Re-Zlight to switch.

It is important to mention that our chosen time slots are just an example. Since
observing Figure 5.5 conveys that any time slots can give almost the same results since
the throughput discrepancy between Zlight and PBFT is large. This justification also
applies for Figures 5.6 and 5.7.
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Figure 5.7: Throughput of Re-Chain during three time slots.
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Re-Quorum. As for Re-Quorum, Figure 5.6 depicts similar results to Re-Zlight. In
fact, since the difference in throughput between PBFT and Quorum is large, then in a
short period of time Re-Quorum will outperform both Quorum and PBFT. The graph
shows that in the three time slots Re-Quorum outperforms the PBFT by almost double
throughput. This is referred to the minimal MAC authentications needed in Quorum and
due to its short messaging pattern (see Figure 5.3). The overall gain in throughput of
Re-Quorum over PBFT and Quorum during this duration is 74% and 23%, respectively.
The calculated numbers are mentioned in Table 5.2.

Re-Chain. Similarly, Re-Chain outperforms Chain and PBFT in the three time slots
as mentioned in Figure 5.7. However this time, the difference in throughput is less than
that presented in the previous cases of Zlight and Quorum; especially for a small number
of clients. This is expected since the chain-fashion message exchange pattern of Chain
imposes large delays which impacts its throughput (Figure 5.3). However, Re-Chain
achieves 10% of operations more than Chain during the three time slots in our scenario.
Notice that according to the same graph, if the recovery occured in th first time slot,
switching is not worthy as Re-Chain and PBFT are almost equivalent in throughput.

In the above graphs, we only considered messages of 0KB payloads. We don’t reveal
other payloads since they are close to the above results as the difference among protocols
remains large even with large payloads. Instead, we convey a more interesting study
where switching is not worthy.
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Figure 5.8: Throughput is negligible between BFT protocols when execution time is large.

Switching is not worthy. The above graphs are real experiments conducted using
Redis as an application, knowing that Redis has small operation execution times. This
made the difference in throughput among protocols significant. However, upon using
OpenLDAP, that has operations of large execution time, the difference in throughput
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among different protocols becomes negligible especially with a large number of clients.
This justification was elaborated in details in Chapter 3. Figure 5.8 depicts the throughput
of different BFT protocols as a function of the number of clients. The graph shows that up
to 5 clients, distinct protocols achieve different throughput. Quorum and Chain achieve
the highest and lowest throughput, respectively. However, starting from 6 clients, the
throughput of the protocols becomes roughly similar due to the CPU bottleneck. In this
case, it is clear that switching is not worthy to occur, instead using PBFT can be more
convenient since it can operate in the presence of failures.

5.4 Re-Abstract in the STATIC Mode
Our approach in this chapter presents a method that can be used to use any existing
protocol as a member of Re-Abstract family. This conserves the performance of the
protocol even under recovery. This approach is important for systems that does not exhibit
a large variation in the underlying conditions. In this case, we have shown that such
situation fits the STATIC mode, explained in the previous chapter, where the user needs
to choose a protocol only once, i.e., at the installation of the service. Re-Abstract family
guarantees that the user will have a constant (or an expected) performance even under
recovery. If the system is quite fluctuating, however, the user can use the DYNAMIC
mode for which we present a solution in the next chapter.

5.5 Lightweight Checkpointing
Since Re-Abstract family members are often speculative, then if the abort history AH is
very large, switching overhead will be high; consequently, swtiching might not be worthy
anymore. Lightweight checkpointing is used to maintain small size local histories LH on
replicas in order to reduce the communication cost; in particular, upon moving from the
Speculative phase to the Recovery phase. Lightweight checkpointing can minimize the
local history sizes (256 for instance); and thus reduces the switching time.

Checkpointing appears crucial as Passive replicas have to be updated continuously, so
that, they maintain an up-to-date state as Active replicas.

The pseudo-code of lightweight checkpointing is presented in Algorithm 0 and Algo-
rithm 1. The client triggers checkpointing every k requests (we use k=256). It sends
RCHK message to the Active replicas (Algorithm 0, lines: 1 to 3) and starts a timer
Timer1. Each Active replica validates the RCHK (MAC and times-tamp), and sends a
CHK message to the client. A CHKi message sent by replica i contains: the digest of 256
requests starting from its last checkpoint of number ni, and the new supposed checkpoint
counter ni+1 (Algorithm 0, lines: 8 and 11).

When the client receives 2f+1 CHK messages with valid MACs and matching digests,
it sends a RCHK message to the Passive replicas with the received LH piggybacked.

Otherwise, if Timer1 expired, the checkpoint is postponed to the next attempt. After
validating the request, a Passive replica appends LH to its local history (Algorithm 1,
line 10), and replies back to the client with a CHK message. When the client receives f
such messages from the Passive replicas, it sends a COM message to all replicas (Active
and Passive) to commit the checkpoint (Algorithm 0, lines: 31 and 32). The replicas,
then, truncate the 256 requests from their LH and increment their checkpoint counter ni
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(Algorithm 1, lines: 15). If the client is malicious and sent different checkpoint counter
to different replicas, this will be discovered by replicas in in the next checkpoint phase,
and the data will be recovered (this time with more than 256 requests).

A checkpoint does not succeed until all the replicas respond correctly. Thus, whenever
a checkpoint fails, it is postponed, and the replicas truncate 2 × 256 requests instead of
256 in the next attempt. More generally, i × 256 requests are truncated if i consecutive
failed attempts occurred.

Algorithm 1 CHKclient()
1: . Send RCHK to all Active replicas
2: m ← 〈RCHK〉µc,i

3: Send(m,i) ∀ i ∈ Active
4: R1 ← φ
5: if [ thenUntil T imer1 expires]T imer2() 6= φ
6: while Receive(ri,i) ∧ vMAC(ri) ∧ i ∈ Active do
7: if [ thencollecting 2f+1 matching CHK]‖R1‖ ≥ 2f + 1
8: Break
9: end if
10: if ri.LH=j.LH and ri.ni = rj .nj ; ∀j ∈ R1 then
11: R1 ← R1 ∪ {ri}
12: end if
13: end while
14: end if
15: . Send RCHK to all Passive replicas
16: LH ← r1.LH
17: m← 〈RCHK , D(LH)〉µc,i

18: Send(m,i) ∀ i ∈ Passive
19: R2 ← φ
20: if [ thenUntil T imer2 expires]T imer2() 6= φ
21: while Receive(ri,i) ∧ vMAC(ri) ∧ i ∈ Passive do
22: if [ thencollecting f+1 matching CHK]‖R2‖ ≥ f + 1
23: Break
24: end if
25: if ri.LH = rj .LH and ri.ni = rj .nj ; ∀j ∈ R1 ∪R2 then
26: R2 ← R2 ∪ {ri}
27: end if
28: end while
29: end if
30: . Commit checkpoint nc
31: if TRUE then
32: m← 〈COM,ni〉µc,i

33: Send(m,i) ∀ i ∈ Σ
34: end if

Algorithm 2 CHKreplica(m)
1: . Handling checkpoint requests
2: if MAC(m) is False or m.tc ≤ ti[c] then return False
3: . request is not valid
4: end if
5: if m.type=RCHK then
6: if i ∈ Active then
7: r ← 〈CHK,D(LHi), ni + 1〉µc,i

8: else if [ thenPassive replicas update their LH]
9: LHi ← m.LH
10: r ← 〈CHK,D(LHi), ni + 1〉µc,i

11: end if
12: Send(r,c)
13: else if [ thenCommit checkpoint]m.type=COM
14: ni ← ni + 1
15: Truncate(LHi, ni) truncate 256 LH entries
16: end ifreturn True
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5.6 Conclusion
In this chapter, we presented Re-Abstract family that allows an existing BFT protocol
to recover to itself. This helps in maintaining the performance of the same protocol
during recovery. This approach is very useful in the STATIC mode of the selection model
presented in the previous chapter. The mechanism is convenient to systems that do not
exhibit too fluttering conditions.

Our approach introduces a cheap recovery phase that eliminates the faulty or slow
replicas and replaces them with correct ones. Re-Abstracts require at least 4f+1 replicas
to maintain one-copy semantics if up to f replicas are faulty. We introduced the de-
sign of the recovery phase using Re-Zlight as an example; and we provided solutions for
availability and contention.

We conducted some experiments on two real application Redis and OpenLDAP. On
Redis, we have shown that, using our approach, existing protocols like Zlight (an abortable
version of Zyzzyva), Quorum, and Chain achieve from 20% to 100% better throughput
during recovery. The experiements demonstrated that switching in Re-Abstract approach
is worthy when the recovery duration is long (i.e., it takes time to repair a faulty node).
However, if the recovery time is short (e.g., ;less than 1 second) or the executuion time of
the used application is large (e.g., OpenLDAP), then switching will not render a significant
profit.
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Chapter 6

Can BFT be Adapt-able?

In this chapter, we introduce a novel BFT system called Adapt. The system uses existing,
and probably future, BFT protocols together, at once, and adapts to the underlying
system through switching dynamically from one protocol to the other according to a
dynamic switching policy. The switching policy follows the Dynamic and Heursitic modes
of the selection mechanism introduced in Chapter 4. A prediction function, based on
Support Vector Machines, predicts the performance of the protocols in real-time to choose
the preferred protocol that fits the next stage, i.e., if the underlying conditions of the
system change frequently. The evaluation of this approach investigates when switching is
worthy. In addition, it conveys the high accuracy of prediction and computes the overall
gain in performance.

6.1 Why Adapt?
Various BFT protocols have been developed recently to fill the gaps of their predecessors;
however, as demonstrated in Chapter 3, no BFT protocol fits all. Abortable BFT (pre-
sented in Chapter 2) introduced the possibility to collect state-of-the-art protocols in one
package and switch between them when something wrong happens; nevertheless, without
introducing a clear switching policy this approach remained limited.

Furthermore, the previous chapter provided a method to have any Abortable BFT
protocol recover to itself in order to persist on its anticipated performance. However, this
mechanism addresses systems that do not experience frequent changes in the underlying
conditions; in fact, it is mostly designed to stable systems with occasional failures. This
approach is convenient to work in the Static mode of the selection model presented in
Chapter 4.

Here we introduce an example where the static mode, and consequently Re-Abstract
approach, are sometimes insufficient. Figures 6.1 and 6.2 explore the throughput of well-
known BFT protocols using 0/0 and 4/0 micro-benchmarks (used in [15]), respectively.
The results show that no protocol outperforms the others as the number of clients changes.
Figure 6.1 demonstrates that Quorum [26] performs 50% better than the nearest competi-
tor Zlight 1 [26] when the number of clients is small. As this number increases, Quorum
crashes due to high contention, and Zlight becomes the leader. Another look at Figure 6.2
shows that all the protocols dominate Ring [1] with few clients. However, when the num-
ber of clients exceeds 200, the network becomes a bottleneck, and hence Ring outperforms

1Quorum is a 3f + 1 abortable version of Q/U [2], and Zlight is an abortable version of Zyzzyva [32].
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Figure 6.1: Throughput of state-of-the-art BFT protocols using the 0/0 micro-benchmark.
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Figure 6.2: Throughput of state-of-the-art BFT protocols using the 4/0 micro-benchmark (log. scale).

the other protocols by 25%. Therefore, upon using Re-Abstrct approach, a single protocol
will be used at once, and thus recovery to itself might not be fruitful. Instead, it is very
interesting if one can choose the optimal use of all protocols in any condition.

In this chapter, we present Adapt; a BFT system to make BFT protocols adapt to the
system state changes, i.e., to the underlying system conditions like contention, message
size, processing time, etc. Adapt is designed to make an optimal use of the existing
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BFT protocols. At anytime, a running protocol can be aborted and replaced by another
protocol according to some change (an event) in the underlying system conditions. The
launched protocol is chosen after passing a real-time evaluation process by using the
Dynamic and the Heuristic modes of the selection machanism introduced in Chapter 4.
Adapt takes into consideration both: robustness and performance. We use Support Vector
Machines prediction mechanisms to assess performance in real-time. In addition, we
discuss when it is worthy to switch from one protocol to another. This approach ensures
that the optimal choice among the existing protocols is always chosen to run in the next
phase. Adapt uses some heuristics (in the Heuristic mode) to optimize the switching
process.

To explore the power of Adapt, we give an example using some numbers from the
experiments we conducted (presented also in Figures 6.1 and 6.2). Consider a system
running for a three-hours duration: one hour with no contention (less than 20 clients),
one hour with tens of clients (more than 40), and one hour where the network is jammed
with big requests (4KB) issued by more than 300 clients. In this scenario, one might
choose Zlight as the most convenient protocol according to Figures 6.1 and 6.2 (the
curve with triangle line-points). During this period, Zlight can handle a maximum of:
(21kops+38kops+2.8kops)×3600=223 Mops. On the other hand, Adapt can launch Quo-
rum in the first phase, Zlight in the second, and Ring in the last. Adapt handles a maxi-
mum of: (40kops+38kops+3.4kops)×3600=293 Mops. The graph of Adapt is depicted in
red color on Figures 6.1 and 6.2. Thus, Adapt handles 70 extra million operations (i.e.,
30% gain) during this period. Additional cost should be payed for switching between
phases, but this is negligible as shown in Chapter 5. Notice that, in case a replica failure
is detected, Adapt launches PBFT, while the other protocols either crash or go into a
very expensive recovery phase.

6.2 System Overview
Adapt is composed of three systems: BFT Subsystem (BFTS), Event Subsystem (ES),
and Intelligent Control Subsystem (QCS). BFTS is a pool of BFT protocols, it represents
the BFT and the abortability libraries. ES monitors the system, and detects the changes
in the Impact Factors (e.g., number of clients, request size, data loss, etc) of the underly-
ing system, if any. Upon detecting a significant change in the impact factors, ES sends an
event to the QCS, triggering an evaluation phase. QCS maintains an optimal system per-
formance by running the preferred protocol under the current conditions. QCS evaluates
the BFT protocols by calculating their Evaluation Score (E); the protocol with the higher
E is launched in the next phase. The evaluation phase works according to the Dynamic
and Heuristic modes of the selection model and selection algorithm in Chapter 4. QCS
predicts the KPI values of each protocol, in real-time, through using SVR [21]. Switching
to a new protocol takes place only if it is worthy. This chapter is concerned mainly with
QCS; whereas, ES will appear in future work.

6.3 SVM Prediction Mechanisms
Using analytical models like [48, 45] can give a general idea about the real performance of
BFT protocols; however, these models could not give accurate predictions for a detailed
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fine-grained performance as the system conditions vary. This refers to the various pa-
rameters that can affect the behavior of BFT protocols like: network properties, network
topology, platform type, operating systems, etc. This was discussed thoroughly in Chap-
ter 3. On the contrary, prediction mechanisms that depend on the observations of actual
data, derived from the real system during testing for example, can be more accurate. Ma-
chine learning predictors like SVR [21] are often used for this goal. Adapt learns about
the BFT protocols by training a prediction function on a real data collected throughout
the testing phase of system deployment, and keeps learning as long as the system is oper-
ational. The prediction function is used then to predict the real-time performance of the
protocols, mainly the KPIs.

In this section, we briefly explore the SVR mechanism and then we mention the
evaluation methods that we use to evaluate prediction accuracy.

6.3.1 Methodology of Support Vector Regression (SVR)
This section introduces SVR [21], [49]. We use SVR to predict the throughput of BFT
protocols as the system conditions change, e.g., number of clients, request size, etc.

Let x be an instance of some request transfer. An instance is represented by a d-
dimensional feature vector x =(x(1), ..., x(d))T ∈ <d. Each dimension is called a feature
(e.g., number of clients, request size, etc). The target y ∈ R of an instance x is the
predicted value (e.g., throughput, latency, etc). In this paper, we refer to features and
targets as Impact Factors and Key Performance Indicator (KPIs), respectively. Our goal
is to train a regression function f : <d → < that maps any instance x to its target y (e.g.,
maps the number of clients to throughput).

A training set of n previously known instance-target pairs (x1, y1), ..., (xn, yn) is re-
quired to train the regression function. A family of candidate regression functions F
must also be specified, e.g., the set of all linear functions. A loss function L(f(x), y)
is used to measure how close a prediction f(x) is to the actual target y. We use the
ε-insensitive loss L(f(x), y) = max(|f(x) − y| − ε, 0) . This loss function is standard in
support vector regression [49]. Training a regression function involves finding a function
f ∈ F that minimizes the loss on the training set, plus a regularization term as follows:

f̂ = arg min
f∈F

C
n∑
i=1

L(f(xi), yi) + ‖f‖2 . (6.1)

The first term is known as the empirical loss. The prediction function is good if it
minimizes the empirical loss on the training set, however, it may not be the one that
produces the most accurate predictions on future test instances. This is because minimiz-
ing the empirical loss has the danger of over-fitting the training data (since it is a small
sample out of a big population). One way to prevent over-fitting is to regularize f by its
norm ‖f‖2, with the intuition that we prefer a smoother regression function. The scalar
C balances the empirical loss and the smoothness of f . The solution to the optimization
problem 6.1 can be found efficiently using a quadratic program.

We use the Radial Basis Function (RBF) kernel, which induces a rich candidate re-
gression functions family. The kernel enables learning of highly non-linear, yet well regu-
larized, regression functions. We use the SVM library: LIBSVM [16].
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6.3.2 Prediction Model Selection
Model selection is performed to choose good values for the prediction function parameters
(e.g., C and γ in the RBF Kernel) in such a way to make a trade-off between prediction
model accuracy and complexity. This is basic since choosing parameters that yields high
accuracy may cause over-fitting the training data, and consequently predicting unknown
data will not be accurate. Grid-search [30] and v-fold cross-validation [13] are often used
for model selection. Various pairs of (C,γ) values are tried using grid-search, and the one
with the best cross-validation accuracy is picked.

Grid-search is a naive, yet powerful, method for model selection. It probes a defined
domain [a, b] with a step δ. Starting from x = a and until reaching b, the model is cross-
validated on x; then x is incremented by δ, and so until reaching the best values of C and
γ.

Cross-validation is used along with grid-search (for each value x). The idea of v-fold
cross-validation is to split the original training set into v equal subsets; the prediction
function is trained on v − 1 subsets and tested on the remaining one. This is repeated
v folds until each instance of the whole training set is predicted once. Cross-validation
accuracy is the percentage of data which are correctly predicted with a predefined error.

6.3.3 Evaluating Prediction Accuracy
We use the relative prediction error E, defined in [29], to evaluate the accuracy of an
individual target (e.g., throughput) prediction. Denoting the actual target by R and the
predicted target by R̂, we define the relative prediction error as follows:

E = R̂−R
R

(6.2)

To evaluate the overall predictions of the target on a protocol, we use the average
relative prediction error :

A = 1
n

n∑
i=1

|R̂−R|
R

× 100 (6.3)

6.4 Adapt Architecture
Adapt is composed of three subsystems: BFT Subsystem (BFTS), Event Subsystem (ES),
and Quality Control Subsystem (QCS). The term eState represents the state of the entire
system: the infrastructure, the platform, the exchanged messages, the installed software
(Adapt and other applications), etc.

6.4.1 BFT Subsystem: BFTS
BFTS is the BFT library. It is composed of a collection of state-of-the-art protocols like
PBFT [15], Zyzzyva [32], Quorum [26], Ring [1], Chain [26], etc. To remove confusion,
sometimes we call them sub-protocols: SP . These SPs are designed to be abortable [26]. A
running SP spi can be interrupted at any time, finishing the current Phase, and starting
a new Phase by launching another SP spj; we call this process: switching. Switching
conserves the local states of the replicas across different Phases by collecting the abort
history AH of the operations executed in the current Phase, and initializing the replicas
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(i.e., executing AH) in the next Phase. Our switching concepts are derived from [27]
and [26] as shown in Chapter 2, thus we do not explain switching further in this chapter.

6.4.2 Event Subsystem: ES
ES monitors the system and collects the meta-data that construct the eState (i.e., network
state, messages exchanged, clients statistics, etc). These meta-data are the Impact Factors
that can affect the performance and reliability of the SPs. ES periodically sends event
notifications to QCS, updating its database, and informing it with the new eState. ES is
a plan for future work, thus it is out of the scope of this thesis.

6.4.3 Quality Control Subsystem: QCS
QCS is the control unit of Adapt; it is in charge of taking the decisions: whether switching
is needed due to some changes in eState, and which SP is the preferred to launch in the
next Phase. QCS evaluates the SPs by computing the Evaluation Scores (E) described in
Chapter 4. Some of the parameters of E, more specifically the KPIs, are predicted using
SVR [21]. Evaluation in QCS is triggered upon receiving an event from ES; whereas,
switching takes place only if it is worthy (more details next).

This chapter focuses on QCS and the accuracy of predictions.

6.5 Quality Control Subsystem (QCS)
The role of the Quality Control Subsystem (QCS) is axial in Adapt. Adapt performs
two important tasks: (1) Performing run time evaluations for protocols according to the
dynamic and heuristic modes of the selection model introduced in Chapter 4 and (2)
predict the β-KPIs used by this model, also at run time, to make the switching process
among protocols dynamic. This yields a powerful system that achieves optimal robustness
and performance through joining the merits of existing protocols.

In this section, we start by exploring the prediction mechanism used in QCS, and then
we move into discussing the evaluation of protocols and switching.

6.5.1 Prediction of β-KPIs
Before diving into details, we recall the matrix of β-KPIs already used in the selection
model in Chapter 4:

B =


β11 β12 β1b
β21 β22 β2b
... ... ...
βn1 βn2 βnb


In this section we describe the method used to predict the entires of the above matrix

using SVR.
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6.5.1.1 System eState

The β-KPIs must always be known to compute the evaluation scores (E) of the protocols.
β-KPIs vary as eState changes. We define eState by S = {si = (f1, f2, ..., fj, ..., fm)};
where m is the number of Impact Factors. The values fj represent the impact factors of
the system state. Various impact factors (fj) can affect the performance of the protocols
in BFTS; the following represents a classification for some impact factors:

• Network factors: network speed, packet loss, packet duplication, number of clients,
etc.

• Data factors: request size, response size, batching, etc.

• Application factors: execution time, memory needed, etc.

• Infrastructure factors: CPU speed, memory size, virtualization, etc.

QCS runs the prediction process to assess the values of β-KPIs for each eState.

6.5.1.2 Prediction Mechanism

To predict the run time values of β-KPIs, we use SVR with the Radial Basis Function
(RBF) Kernel (see [11] and [49]). We define a prediction function fC,γ : S 7−→ <, where S is
the set of eStates defined above. C and γ are the free parameters chosen through training
the function (see later). Training takes place on an initial data set called: Training
Set. After choosing the parameters C and γ; for any SP spi, instant t, and eState
st = (f1, f2, ..., fj, ..., fm), the prediction function can be used to predict the value of βi,st
as follows:

β̂i,st = fC,γ(st). (6.4)

The prediction of a β-KPI takes place in two main steps:

• Training: Train the prediction function on a Training Set for model selection.

• Prediction: Run the prediction function to assess the value of β, given a new eState.

Training. QCS trains the prediction function using the Training Set. The Training
Set of a protocol is composed of instances of eState tuples st = (f1,t, f2,t, ..., fm,t) ∈ S
for an instant t, associated with the corresponding β-KPI values 2. The structure of the
training set is as follows:



s1 = (f1,1, f2,1, ..., fm,1)
s2 = (f1,2, f2,2, ..., fm,2)

...

...
sl = (f1,l, f2,l, ..., fm,l)


−→



βi,1,k
βi,2,k
...
...
βi,l,k


(6.5)

2In SVM terminology, f and β-KPI correspond to features and target, respectively.
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The left part of the Training Set 6.5 lists l different eState tuples composed of m
impact factors (e.g., number of clients, request size, etc.). The right hand side shows the
corresponding values of some βi,k (e.g., throughput) of an SP spi.

Different eState tuples are obtained as the impact factors vary. An initial training set
is collected before starting the system (e.g., while testing). Afterwards, upon normal sys-
tem operation, additional instances can be appended to the training set, trying to widen
the knowledge base of the system further.

Model Selection. A prediction model selection must be performed before using
the prediction function. Grid-search [30] and v-fold cross-validation [13] are used to
identify the parameters C and γ of Equation 6.4. The method is explained further in
Subsection 6.3.

Prediction. When the parameters of the prediction function are identified, the func-
tion becomes ready for prediction. At any time t, the system can predict the value of
a β-KPI for an eState st = (f1,t, f2,t, ..., fm,t). Prediction takes place by solving Equa-
tion 6.4. To measure prediction accuracy, the prediction function is tested on a Test set to
get a predicted value of β: β̂. The Test set is similar in structure to the Training set but
it comprises new data instances (i.e., not used in training). The relative error between β
and β̂ is then calculated (see Subsection 6.3). We use LIBSVM [16] as an implementation
of SVR.

6.6 Evaluating Prediction Accuracy

6.6.1 Experimental Settings
To initialize a Training Set, we conducted extensive experiments on some BFT protocols
while changing some Impact Factors. The output is then parsed to match the input format
of LIBSVM [16]. LIBSVM is used to train the prediction function ε-SVR using the RBF
kernel [49]. In our experiments, we consider the protocols: PBFT, Zlight, Quorum, Chain,
and Ring. Other protocols like Q/U [2] and HQ [22] are similar to Quorum and PBFT,
hence we exclude them.

BFT experiments are performed on Ubuntu OS, installed on 25 64-bit Xeon machines
with 2 GB of memory, and deployed on Emulab [55] testbed. We use the advanced key-
value store Redis [46] as an application. Redis server is installed on all system replicas.
The number of replicas is four and the fault factor f is equal to one. Each replica runs on
a separate machine and the client processes share 20 machines. All nodes communicate
through a Fast Ethernet network.

To compare results, we use the standard a/b benchmark 3 with different payload sizes:
0/0, 4/0. This is the same benchmark used in [15].

6.6.2 Evaluation Parameters
To evaluate the prediction accuracy of Adapt, we try to predict the throughput of different
protocols under different conditions. We consider the Impact Factors: number of clients
and request size. These factors have the greatest influence on the performance of BFT
protocols. We considered 9 request size values (in Bytes): 0, 64, 128, 256, 512, 768, 1024,

3In a/b benchmarks, a, and b correspond to request size, and response size in KB, respectively.
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2048, 3064, and 4096. The number of simultaneous clients ranged from 1 to 400 clients.
We run more frequent experiments as the number of clients decreases to have better data
representation 4; this is needed since the throughput of BFT protocols is more fluttering
with few clients. We conducted around 400 experiment runs for each protocol.

Though we believe that these parameters can evaluate our approach correctly, we look
forward towards more accurate evaluation. Therefore, our future plan is to use more KPI
parameters like throughput, latency, capacity, etc. Similarly, we will increase the number
of impact factors: number of clients, request size, response size, processing time, malicious
behaviors, etc.

6.6.3 Choosing SVR Parameters
We divide the data instances (i.e, the results) of the experiments into: a Training Set,
and a Test Set. The former is used to train the prediction function, and the Test Set is
used to evaluate its accuracy. We get the Test Set by, randomly, selecting 15% (around
50/400) of the data instances; the remaining 85% form the Training Set.

To choose an optimal model parameters: C and γ, we used the grid.py [30] script, in
LIBSVM library, and the five-fold cross-validation [13]. Table 6.1 represents the values
of C and γ that we achieved in this study.

PBFT Zlight Quorum Ring Chain
C 106 5× 106 20× 106 106 1.7× 106

γ 5× 10−4 1.2× 10−4 0.1× 10−4 10−4 6.5× 10−5

Table 6.1: SVR parameters (γ and C).
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Figure 6.3: Average relative prediction accuracy.

4For instance, we ran experiments for all the values from 1 to 5 clients, then we widen the range
gradually up to 300 clients, where the step between each two consecutive experiments becomes 50 clients.
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6.6.4 Average Prediction Accuracy
This section explores the prediction accuracy we achieved for the protocols: PBFT, Zlight,
Quorum, Chain, and Ring. Figure 6.3 presents the average prediction error of these SPs.
The figure shows that the error ranges between 1.9% and 4.5% depending on the protocol.
In the next sections we explain how do different protocols affect prediction accuracy. Since
the accuracy, in all cases, is more than 95%, it is considered high enough to decide whether
switching is worthy or not since the discrepency in performance among different protocols
is significanlty higher than 5% in many cases. We explore how this affects the switching
process given a switching threshold. This is crucial in our approach since switching is
worthy only when the difference in performance among the protocols is larger than the
switching threshold.

The achieved accuracy in Figure 6.3 can change in two cases. First, adding new
parmeters to the function will decrease this accuracy. For instance, considering malicious
clients, message dropping, etc., in the evaluation will have a negative impact on prediction
accuracy. On the other hand, incresing the size of the Training set will increase accuracy.
In fact, we argue that considering more parameters in the evaluation requires larger
Training sets (which are not hard to achieve).

Observing the histogram in Figure 6.3, we notice that the prediction accuracy is not
similar for the different protocols, though we are using the same SVR kernel function
and the same level of cross-validation folds (to decide the parameters of the prediction
function). In fact, this is referred to the behavior of the protocol itself as the underlying
conditions change, e.g., request size, response size, and contention. We explain this further
in the following sections.

6.6.5 Scattered Diagrams
Figures 6.4 and 6.5 depict the scattered diagrams of the predicted points of the different
protocols. The x-axis represents the predicted throughput while the y-axis represents the
real throughput. The closer the point is to line y=x, the more accurate is the prediction
(i.e., nearest to y=x is better). These graphs give a wider view about the predicted points.
Each graph plots around 50 predicted points out of 400 real ones. The diagrams clearly
show how close are the points to the line y = x. Most of the points are coinciding with
this line.

Notice that the accuracy we have seen in the previous section seems low with respect
to these points. In fact, though most of the points are very close to real values (i.e., around
1%), the few points that are predicted with higher error are making this variation. This
can be observed clearly in Subfigures 6.5(a) 6.5(b). We argue that with further training
(more than 400 tries in our case) more accurate and stable predictions could be obtained.
This is expected since this variation is a consequence of the unstability of the protocols in
the experiments we have done. With more runs, an accurate training set can be gathered.

In Subfigure 6.5(b) the predicted points are a bit far away from the line y = x more
than in other protocols. Better results could be achieved for Zlight being a stable pro-
tocol, however, we noticed a lot of fluctuations in the actual throughput of Zlight in
our experiments. This is unusual in Zlight, perhaps Emulab had routing issues at that
period 5.

5Zlight uses Mrouted to multicast requests, thats why other protocols were not greatly affected.

104



 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

T
hr

ou
gh

pu
t (

ko
p/

s)

Predicted Throughput (kop/s)

PBFT vs Predicted
Line y=x

(a) PBFT

 0

 6

 12

 18

 24

 30

 0  6  12  18  24  30

T
hr

ou
gh

pu
t (

ko
p/

s)

Predicted Throughput (kop/s)

Quorum vs Predicted
Line y=x

(b) Quorum

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

T
hr

ou
gh

pu
t (

ko
p/

s)

Predicted Throughput (kop/s)

Chain vs Predicted
Line y=x

(c) Chain

Figure 6.4: Predicted vs Real throughput of PBFT, Quorum, and Chain.

6.6.6 Levels of Prediction Error

The average prediction error gives a general view about accuracy; nevertheless, a closer
look at Figures 6.6 and 6.7 convey how the prediction accuracy is changing. The x-axis
of the graph represents the level of prediction error from 1% to 10%; the y-axis shows the
percentage of commulative prediction errors. In such graphs, when the curve is monotonic
with a big slope, then the predictions are quite changing (the error is quickly augmented)
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Figure 6.5: Predicted vs Real throughput of Ring and Zlight.

starting from 1% to 10%; otherwise, the curve is more like a plateau, which means no big
prediction errors with this percentage level.

The graphs in Figures 6.6 and 6.7 convey that the prediction accuracy is higher than
99% in 40% to 50% of the cases (notice the start point of the curves). Ring is the exception,
since the throughput of Ring increases slowly as the number of clients increases which
makes the prediction difficult with such small training set. In fact, the throughput of Ring
becomes steady with more than 400 clients accessing the system. For this same reason,
the curve of Ring (in Subfigure 6.7(b)) has a big slope. A similar situation can be noticed
with Quorum by observing Subfigure 6.6(b). The curve between 1% and 5% has a big
slope, i.e., signifcant errors are found from 1% up to 5%. The reason behind this is also
the quick change in the throughput of Quorum with few clients. With more than 5%,
no prediction errors are almost faced as Quorum’s throughput becomes steady and thus
prediction becomes easier (notice that the curve becomes horizontal). Again regarding
Zlight in Subfigure 6.7(a), the prediction errors with more than 5% are frequent (the
curve has a large slope). This is due to the unfamiliar behavior of Zlight in the original
experiments, i.e., the training set, hence we expected the prediction to skew.

In addition, the Figures 6.6 and 6.7 indicate that the percentage of predictions degrades
gradually as L increases since all curves advance like a plateau with a higher error value.
We argue that it is hard to achieve better prediction results with such training set of
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Figure 6.6: Commutative predicted error of throughput of PBFT, Quorum, and Chain.

small dimension (around 400 tuples), especially, since BFT protocols always have some
margin of fluctuations. This urges us to choose a prediction function with smooth curves;
otherwise, having a prediction function that passes through every actual throughput value
will lead to over-fitting, and thus the prediction error increases again while predicting new
unknown data.
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Figure 6.7: Commutative predicted error of throughput of Ring and Zlight.

6.6.7 The Effect of Impact Factors
In this section, we discuss the effect of the impact factors on prediction. Figure 6.8 conveys
the prediction error as the number of clients and the request size change.

Subfigure 6.8(a) conveys the prediction where the number of clients is less or more
than 30 clients. The figure depicts the fact that prediction accuracy is larger with more
than 30 clients in all protocols. We expected this since the protocols become stable with
more clients and hence prediction becomes easier.

Two interesting observations can be noticed in this graph. First, notice that in Quo-
rum and Chain, prediction errors are more frequent with fewer clients (83% and 70%,
respectively). This is referred to the quick change in the throughput (i.e., increasing
accelartion) with few clients. With a high number of clients, however, these protocols
exhibit a stable throughput, and hence prediciton errors decrease significantly. Second,
the prediction errors of Zlight are almost 50% either above or below 30 clients. We refer
this to the uniform change of the throughput of Zlight as more clients access the system;
this yields prediction errors even with high number of clients (though we expect that this
percentage will be somehow similar to other protocols incase Zlight is working with no
issues).

On the other hand, Subfigure 6.8(b) conveys that the request size has a great impact
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Figure 6.8: Effect of impact factors on prediction accuracy.

on the accuracy of prediction. The figure shows that the prediction error when the request
size is less than 1KB is almost twice that of sizes larger than 1KB. This is expected since
with larger request sizes the network becomes more stable and thus throughput is less
fluctuating.

The prediction result of Zlight in Subfigure 6.8(b) is surprising; predictions appear to
be dramatically affected by small request sizes. In fact, we noticed that the real through-
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put results of Zlight are more fluctuating than the other protocols when the request size
is small, this what is making the prediction error too large with small requests. Zlight
becomes stable with large payloads and consequently prediction becomes more accurate.
Similarly, the values of Chain are also surprising; since one would expect fewer prediction
errors as messages become larger. In fact, upon observing the results of Chain, we no-
ticed that this variation is due to the prediction points with few clients. With few clients
and large request sizes, the throughput of Chain becomes quite changing. This could
be noticed from Subfigure 6.8(a) where Chain has 70% of the errors with fewer than 30
clients.

6.6.8 Switching Overhead
In Adapt, we use the same switching technique in Chapter 5. In addition, the results
are quite close to those in Subsection 5.3.2, in the same chapter, with a slight difference
between protocols due to the difference in their message headers. Thus, not to repeat
ourselves, we urge the reader to have a look at Subsection 5.3.2 for more details.

In addition, we differentiate between two cases in Adapt where selection is performed:
during system normal operation, and upon failure detection. In the former case, event
triggering, prediction, and evaluation are done while the system is running. Thus, they do
not impose any additional delay overhead since switching has not yet occured. If Adapt
took the decision to choose another protocol, then switching happens and imposes the
cost that was discussed in Chapter 5. In the latter case, where some failure is detected,
the replicas stop handling any request until switching happens (maybe switching to PBFT
since it maintains failures). Therefore, evaluation must be done while switching. This
imposes an additional overhead, i.e., the cost of selection process. We did not measure this
overhead since we did not finish the Event System yet. However, our prediction scripts
show that the time could not exceed 1 second, which is considered small when there are
big differences among replicas as we explore in the following sections.

6.7 Worthy Switching
As we have seen in Chapter 4, switching is only worthy if:

Emax − Ecurr ≥ Sthr (6.6)

where Emax and Ecurr in this equation are the evaluation scores corresponding to the
preferred protocol (under the current state st) and the currently running one, respectively.
Sthr represents the threshold over which switching is considered worthy. Sthr is a decision
choice of the service administration or the user (e.g., 10%).

In the modes DYNAMIC and HEURISTIC of the selection model that was introduced
in Chapter 4, the system switches to a new protocol that is evaluated as the ‘preferred’
protocol under the new system state. To recall the details, you may see Section 4.6 in
Chapter 4. In this section, however, we focus on discussing the method experimentally.

To understand the mechanism, we provide some graphs in Figure 6.9 that can describe
the results well. The graphs convey the throughput of Redis application using two different
payload message sizes: 0KB and 4KB, respectively. In the experiment that corresponds
to the second graph, the network had a higher contention than the former. Note that, we
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have noticed a lot of interesting cases to discuss; however, we have chosen these two since
the difference among protocols is clear, and the switching cases are quite reasonable.
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Figure 6.9: Real and predicted throughput with the error tubes of BFT protocols.
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6.7.1 Experimental Switching
The x-axis of the graphs represents the number of clients, whereas the y-axis represents
the achieved throughput of the protocol. The graphs convey the curves of 4 protocols:
PBFT, Quorum, Zlight, and Ring. Their corresponding graphs are colored in black, and
are assigned different linepoints to identify them clearly. The corresponding predicted
curves are plotted in red on each curve. They are almost confounded, most of the time,
with the real curve, however, they skew sometimes when the prediction error of some point
is high (e.g., the curve of Zlight in Subfigure 6.9(a) for 25 and 120 clients). This can be
resolved with further training. The corresponding green curves around each real (black)
curve resemble the width of the error tubes. The error tubes are simply the original
(black) graph with adding/subtracting the average prediction error. Thus, if the average
prediction error of a protocol is ε, then the width of the error tube is 2ε. In reality, an
error tube has a variable width versus the number of clients, however, we used the average
error in these graphs for clarity. Of course, using a variable error tube is much accurate,
thus it makes our justification stronger.

First, lets analyze Subfigure 6.9(a) first. In this graph, we notice that the throughput
discrepancy among protocols is significant. For instance, look at the difference between
Ring and Quorum. The latter is sometimes 5 times better than Ring. The result is similar
in the cases of Zlight and PBFT, but with smaller variation. In fact, this is referred to
the short messaging pattern of Quorum and the minimal authentications needed 6.

Moreover, the width of the error tubes can be clearly observed. The graph shows
that this width is not equal for all protocols (this was explained in previous sections).
Note that, the width of the error tubes ranges between 1Kops and 2.5Kops in our case.
Thus, for any difference in throughput between two protocols, half of the two error tube
widths should be subtracted. For instance, consider PBFT and Quorum with error tube
widths 1.5Kops and 2Kops, respectively; the difference between the throughputs of these
protocols should be: δ = (1.5Kops + 2Kops)/2 = 1.75Kops. A closer look at the cor-
responding graphs conveys that the difference in throughout among the two graphs is
large, and ranges from 10Kops to 15Kops. Subtract the error tubes, we get the difference
ranges from 8.25Kops (i.e., 10Kops−1.75Kops) to 13.25Kops (i.e., 15Kops−1.25Kops).
Assume the client have chosen a threshold of 10%, thus, it is: 10× 30Kops/100 = 3Kops
(considering the peak throughput of Quorum). Since the threshold 3Kops is quite less
than 8.25Kops and 13.25Kops, i.e., the difference in their throughput, then it is strictly
worhty to switch from PBFT to Quorum, of course, if the other conditions are also satis-
fied according to the selection model. The same logic can be applied to the other protocols
too.

An interesting case in Subfigure 6.9(a) is the difference between PBFT and Zlight
between 70 clients and 130 clients (notice the vertical dotted red lines). In this region,
the width of the error tubes is 1.5Kops and 2.5Kops for PBFT and Zlight, respectively.
The difference δ becomes: δ = (1.5Kops + 2.5Kops)/2 = 2Kops. Since in this region
the corresponding throughputs of the protocols are almost around 20Kops and 23Kops,
respectively; then using the same threshold as above, 10% (i.e., 23Kops × 10/100 =
2.3Kops), we get the total difference: 23Kops− 20Kops− 2Kops = 1Kops. Now, since
this difference is smaller than the threshold, i.e. 2.3Kops, then we say that in this region

6To focus on the goal of this section we do not explain why this difference is achieved. On the
contrary, this was thoroughly discussed in Chapter 3.
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switching is not worthy and, thus, even if the evaluation is done, the running protocol is
kept running (unless other factors forced switching according to the model).

Here, we would like to explore two limitations of Adapt. In the above example,
notice that in reality we remove the error tubes, then the above difference becomes:
23Kops − 20Kops − 0Kops = 3Kops which is greater than the threshold 2.3Kops; thus
switching should occur. However, we have seen that switching is considered not worthy
in such case in Adapt (due to the prediction error). Another limitation is the points
that skew significantly from the curve due to non accurate predictions. This would give
a wrong decision about whether switching is worthy or not as compared to reality if the
throughout of the protocols is reasonably close.

The same logic can be applied to Subfigure 6.9(b). The graph depicts the throughput
of the protocols where 4KB payloads are used. The throughput of the protocols reach
the peak throughput very soon (with 10 clients) due to the large payloads (i.e., reaching
the network bottleneck). Consequently, the curves take the shape of a plateau. Ring is
an exception since it allows any replica to receive requests and, hence, it circumvents to
exceed the network limitation. Therefore, as depicted in the graph, the throughputs of
PBFT, Zlight, and Quorum become equivalent with more than 10 clients. The throughput
of Ring is much lower than the other protocols; however from 80 clients and more, Ring
becomes dominant.

In this case, switching is only worthy between Ring and the other protocols since
Zlight, Quorum, and PBFT are almost equivalent in throughput. For a 10% switch-
ing threshold, i.e., 0.34 Kops (considering the peak throughput of Ring), we notice that
switching between Ring and the other protocols is not worthy when the number of con-
current clients is between 40 and 240 clients (see the red dotted vertical lines). Of course,
we always consider the distance between the error tubes and not the actual curves. The
logic is the same as the previous graph, thus we keep further obeservations to the reader.

6.8 Adapt Dynamic Mode
In this section, we return back to discuss the behavior of Adapt in the Dynamic mode
that was presented in Chapter 4. We compare it with the Static mode and we show
how it is more efficient. But here, we focus on the application of the selection model,
experimentally. Since we used the prediction method for the protocols: PBFT, Zyzzyva
(i.e., Zlight), Quorum, Ring, and Chain, then we confine our examples on these protocols.
By this, we guarantee to provide clear examples with fruitful results.

6.8.1 Recall Model Formulas and Examples
Let us first recall the formulas used in the selection model. The evaluation score E is as
follows: 

E = D ◦ C

where D =
⌊1
a
.A ∨̇ (ea − U)

⌋
and C = B±.(V ◦W ).

(6.7)

The β KPI values of matrix B± are calculated as follows:
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

β+
ij = 1− maxi − βij

maxi −mini
;

β−ij = 1− βij −mini
maxi −mini

;

where i ≤ b and j ≤ n.

(6.8)

And finally, the preferred protocol to be launched in the next state is chosen as follows:

pnext = pi, s.t. Ei,s = max(E) = max
1≤j≤n

Ej,s. (6.9)

Now, we concisely try to recall the example used in the discussion of the Dynamic
mode in Chapter 4. After removing the non considered protocols for prediction, we get
the table of analytical values of β-KPIs is:

PBFT Zyzzyva Quorum Ring Chain
Throughput (β+) 1 2 5 1.25 3.33
Latency (β−) 4 3 2 9 5
Capacity (β+) 6 7 1 10 8

Table 6.2: Analytical values of β+ and β− for selected state-of-the-art BFT protocols.

Next, we recall the matrix B± used before in the following:

B =


1 4 6
2 3 7
5 2 1

1.25 9 10
3.33 5 8

 and then: B± =


0 0.71 0.55

0.25 0.86 0.67
1 1 0

0.06 0 1
0.58 0.57 0.78



For clarity of presentation, we assume that the discrete matrix D = ea, i.e., any pro-
tocol is allowed for comparison, and we focus on the continuous matrix C. To conduct a
fair comparison, we use the same matrices V and W that were used in Example 4.10 in
Chapter 4. Thus, we use the following matrices:

V =

 3
3
4

 ; and W = eb =

 1
1
1

 ; and D =


1
1
1
1
1

 .

The evaluation score E in this case (after excluding the non predicted protocols) be-
comes:

114



E =


4.33
6.01

6
4.18
6.57



Thus, according to this example, Chain is always chosen as the ‘preferred’ protocol.

6.8.2 Applying Dynamic Mode
In this section, we try to apply the Dynamic mode of the selection model since we have
now run time predictions of KPIs. First, we start by writing down the tables of β-KPIs
in the dynamic mode. Since here KPI values are derived at run time through prediction,
then we choose three interesting system states S0, S1, and S2 not to limit the study but,
as usual, choosing the most interesting cases and for clarity reasons. According to our
experiments, the tables used to plot matrix B are in Multi-table 6.3:

[S0: Predicted β KPIs with 10 clients, 128B request size.]
PBFT Zyzzyva Quorum Ring Chain

Throughput (β+) 6390.59 11160.5 19814.2 3357.44 7016.72
Latency (β−) 1.25e-03 8.85e-04 5.01e-04 2.86e-03 1.31e-03
Capacity (β+) 6 7 1 10 8

[S1: Predicted β KPIs with 40 clients, 128B request size.]
PBFT Zyzzyva Quorum Ring Chain

Throughput (β+) 15381.7 23771.8 - 7725.37 21018.7
Latency (β−) 2.26e-03 1.66e-03 - 5.05e-03 1.67e-03
Capacity (β+) 6 7 - 10 8

[S2: Predicted β KPIs with 400 clients, 4KB request size.]
PBFT Zyzzyva Quorum Ring Chain

Throughput (β+) 2851.29 2821.15 - 3337.85 2715.49
Latency (β−) 8.01e-02 9.18e-02 - 1.25e-01 1.35e-01
Capacity (β+) 6 7 - 10 8

Table 6.3: Predicted values of β KPIs for selected state-of-the-art BFT protocols.

The throughput in the above tables is predicted. The value of latency is the real one.
The capacity is kept as before. Note that using some non predicted data do not change
the results since prediction accuracy is more than 95%. In additon, we replaced Quorum
values by ‘-’ when it does not work (since it does not tolerate a high number of clients).
The bolded areas correspond to the max and min values.

Now, the β+ and β− values can be calculated according to the formulas in Equa-
tion 6.8. Then we write down the matrix B± for the three states S0 S1, and S2 directly
as follows:
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B±S0 =


0.18 0.68 0.55
0.47 0.84 0.67

1 1 0
0 0 1

0.22 0.56 0.78



B±S1 =


0.48 0.82 0.55

1 1 0.67
− − 0
0 0 1

0.82 0.99 0.78



B±S2 =


0.21 1 0.55
0.17 0.79 0.67
− − 0
1 0.18 1
0 0 0.78


We discuss each of the three states separately in the following sections.

6.8.2.1 State S0

In state S0, the calculation of the matrix C = B±.(V ◦W ) is follows:

C00 = B±S0.(V ◦W )

=


0.18 0.68 0.55
0.47 0.84 0.67

1 1 0
0 0 1

0.22 0.56 0.78

 .

 3
3
4

 ◦
 1

1
1

 =


4.78
6.61

6
4

5.46



Thus, without considering the discrete matrix D, we get that the prferred protocol
according to the user preferences is Zyzzyva. This is different to Example 4.10 in Chapter 4
where Chain was chosen. The main reason is that we calculated the B values using the
anlaysis Table 6.2 which are not realistic; e.g., we have seen here that Chain does not
achieve a high throughput with few clients in prediction (and real) case, however, this is
not mentioned in the table.

Heuristic Mode. To achieve better results, we can use the heuristic mode. This mode
is similar to Dynamic mode, however, we use the matrixW to change the user preferences
according to system defined heuristics. In the above state S0, the system notices that
the number of clients is 10, which is small. Then the system, in this case, uses the
heuristic rule that says ‘no contention ==> latency is more important than throughput
and capacity’. Hence, we use the following matrix:

W1 =

 3
6
1


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The matrix C is then as follows:

C01 = B±S0.(V ◦W1)

=


0.18 0.68 0.55
0.47 0.84 0.67

1 1 0
0 0 1

0.22 0.56 0.78

 .

 3
3
4

 ◦
 3

6
1



=


0.18 0.68 0.55
0.47 0.84 0.67

1 1 0
0 0 1

0.22 0.56 0.78

 .

 9
18
4

 =


16.06
22.03

27
4

15.18



Therefore, the preferred protocol according to the heuristic mode on state S0 is Quo-
rum (the corresponding evaluation score is 27), which is more reasonable than before.
since Quorum achieves the best latency and throughout in contention-free conditions.

6.8.2.2 State S1

Let us move now two state S1, we calculate the matrix C1:
C1 = B±S1.(V ◦W )

=


0.48 0.82 0.55

1 1 0.67
− − 0
0 0 1

0.82 0.99 0.78

 .

 3
3
4

 ◦
 1

1
1

 =


6.1
8.68
−
4

8.55



In this state S1, however, the preferred protocol becomes Zyzzyva. This makes sense,
since Zyzzyva achieves better performance than other protocols as we have seen in previous
sections (e.g., see Figure 6.9). Thus switching will occur in this state to Zyzzyva. Note
that, here we can use heuristics too, but we did not define a heuristic rule for this case.
We recall that the definition of heuristics is a future plan.

6.8.2.3 State S2

The calculation of the matrix C2 in the next state S2 is done similarly:
C20 = B±S2.(V ◦W )

=


0.21 1 0.55
0.17 0.79 0.67
− − 0
1 0.18 1
0 0 0.78

 .

 3
3
4

 ◦
 1

1
1

 =


5.83
5.56
−

7.54
3.12


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Therefore, in state S2, where the network is highly contended, we notice that Ring is
chosen as the preferred protocol (that corresponds to the 4th entry of value 7.54). The
result is reasonable since Ring exceeds the network limitations of the other protocols. In
fact, the same result can be seen clearly in Figure 6.9 too.

Heuristic Mode. In the above state S2, we can use the heuristic rule ‘very high con-
tention ==> capacity is more important than latency and throughput’. Hence, we use
the following matrix:

W2 =

 3
1
6


The matrix C is then as follows:
C22 = B±S2.(V ◦W2)

=


0.21 1 0.55
0.17 0.79 0.67
− − 0
1 0.18 1
0 0 0.78

 .

 3
3
4

 ◦
 3

1
6



=


0.21 1 0.55
0.17 0.79 0.67
− − 0
1 0.18 1
0 0 0.78

 .

 9
3
24

 =


18.09
19.98
−

33.54
18.72



In this heuristic case, the result remains the same, i.e., choosing Ring as the ‘preferred’
protocol which is trivial. However, notice that the other scores in C22 are more reasonable
than C20. For instance, notice that the evaluation score of Ring without heuristics (i.e.,
7.54) is somehow close to the other values in C20. In the heuristic mode C22, however,
the score of Ring is far away from all protocols which gives a strict selection. The result is
true in the former case, but the latter gives more confidence. In addition, the evaluation
score of Chain in C20 is very small as compared to other protocols. This does not sound
logical since Chain achieves a good performance in reality, that is close to Zyzzyva under
contention. Interestingly, this appears in the heuristic mode, in C22. Again, though the
preferred protocol has not changed, the result sounds more realistic.

6.9 Conclusion
We introduced Adapt, a new BFT system designed to boost up the performance of BFT
protocols, however, this time without introducing a new protocol; we rather collect ex-
isting BFT protocols in one package, we assess their run time performance under given
system conditions, and we launch the protocol with the best performance under these
conditions.

First, we explored the different modules of Adapt. Adapt is composed of: BFT Subsys-
tem (BFTS), Event Subsystem (ES), and Quality Control Subsystem (QCS). We focused
on the QCS. We have presented a mechanism using SVR [21] to predict the run time
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performance of the protocols. Then, we studied the prediction of throughput, and we
showed that prediction accuracy ranges between 95% and 98%. We explained some pre-
diction observations and conducted discussions to see the effect of the Impact Factors on
prediction, namely: the number of clients and request size. We performed a concrete ex-
perimental study demonstrating some cases that are worthy to switch between protocols.
Finally, we demonstrated how to use the Dynmic and Heuristic modes of the selection
model presented in Chapter 4. The discussion yielded very reasonable results that are
close to reality.

In the future, we plan to examine Adapt in the presence of heterogeneous payloads,
and to study further impact factors on the performance of BFT protocols (to include them
in the evaluation). In addition, we plan to present an event subsystem ES to accomplish
all the modules of Adapt, and to define a set of heuristics for the Heuristic mode.
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Chapter 7

Conclusions

The enormous reliance of our society on computers in personal life and business demands
increasing reliability. On the other hand, the evolution of computer technologies, program-
ming languages, and platforms raised up new failures and bugs that are often classified
as Byzantine (or arbitrary) faults. Consequently, Byzantine fault tolerance is becoming
crucial to resolve this sort of failures. Although notable research has been conducted to
achieve BFT protocols that are convincing to practitioners, existing BFT protocols are
clearly at a far distance from the one-fits-all protocol. Our work makes this distance
closer.

The theoretical analyses of existing BFT protocols convey a significant discrepancy
among them. However, this variety is quite useful as distinct BFT users have different
demands. Thus, while a specific protocol is recommended by some user, other users may
prefer another protocol that suites their demands better. Since dozens of protocols have
been introduced so far, users may get bothered while making their selections. In out
thesis, we provided an automated approach that can make the selection process simple
and fast. Our idea is to match the user preferences with the profiles of the different BFT
protocols. Then, users can choose the best match. The selection mechanism work in
Static, Dynamic, and Heuristic modes.

In the static mode, users are allowed to choose a single protocol only. However, the
recovery phase of existing protocols is expensive when compared with the trivial phase
of the protocol itself during free-failure. In services that are usually stable but encounter
alternating periods of failure, the overhead of the recovery phase can be greater. In this
thesis, we developed a new technique to maintain the same anticipated performance of
the protocol even during recovery. The idea is to let the protocol recover to itself again,
this time, using another set of backup replicas. When the time to repair a faulty replica
is big, the profit induced by our approach becomes significant.

The above approach is useful with static selection since the user is convinced with the
chosen protocol and he/she has a steady-state system. However, when the system state
is too fluctuating, the situation becomes more complex. For instance, consider a service
that endure different conditions during the same day or week. No single protocol will be
convincing to the user anymore. A dynamic solution becomes crucial in such situation.
We introduced Adapt as a solution. Adapt can adapt to the changes of the underlying
system at run time. Adapt (1) predicts the performance of the protocols while running,
(2) decides which is the preferred protocol under the new conditions, (3) and tells whether
switching to the selected protocol is worthy or not. Moreover, we used some heuristics in
Adapt to optimize the performance of the system further.
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7.1 Summary
This section summarizes the major points of the thesis.

7.1.1 Theoretical and Experimental Analysis
In this thesis, we conducted three analyses to understand the behavior and properties of
BFT protocols. The first addressed the different characteristics of BFT protocols. The
second (a traditional one) discussed the impact of message exchange patterns and message
authentications on performance. The third is an experimental analysis that showed the
discrepancy in performance among BFT protocols. The latter analysis was accompanied
with a justification using Queuing theory. The three analyses together demonstrated how
one-fits-all BFT protocols are hard to achieve.

7.1.2 Selection Mechanism
Then, we introduced a BFT selection model and selection algorithm to choose the ‘pre-
ferred’ protocol out of a collection of candidate protocols. The ‘preferred’ protocol for
a specific user is the closer to his demandes. Each protocol is associated with a profile.
The profile comprises (1) the properties that differentiate this protocol, (2) its required
assumptions, and (3) its performance metrics. A user provides his preferences that are
matched against the profiles of candidate BFT protocols through an evaluation process.
The protocol that corresponds to the highest evaluation score is considered the ‘preferred’
protocol for this specific user. Selection is done through establishing a set of mathematical
formulas to automate the evaluation process.

The model works in three modes: Static, Dynamic, and Heuristic.

7.1.2.1 Static Mode

The static mode is designed for systems that often have a steady behavior, i.e., they do
not encounter a lot of ups and downs in their state. Thus, a single chosen protocol can
always be satisfactory for such systems. The situation is very useful in Web Services
and Clouds where cloud vendors can sell BFT as a service (signed in the SLA contract)
to provide services with Byzantine resiliency. Our approach provides a way for users to
choose the preferred protocol for their service. Users have to provide their preferences,
and the service provider runs the algorithm to match user preferences against the profiles
of the candidate protocols it supports. We have driven a detailed discussion and examples
on the matching process to show its automated nature and simplicity. In addition, we
demonstrated how this approach can yield decision choices that match reality.

7.1.2.2 Re-Abstract Family

In addition, we introduced a BFT Re-Abstract family of protocols based on abortable
BFT to improve the performance of existing protocols during recovery. Re-Abstract
family members are useful in the Static mode. The fact is that most protocols suffer from
degraded performance upon failure, i.e., during the recovery phase. Our approach solved
this problem by having two sets of replicas: 3f+1 Active replicas and f additional Passive
replicas. The protocol, i.e., an Abstract, operates as usual on the Active replicas, while
the f Passive replicas are idle. Upon failure detection, the system aborts and switches
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back to itself after it rules out the suspicious replicas. Suspicious replicas are either
Byzantine or slow. We presented a mechanism to identify the suspicious replicas and
then replace them with correct Passive ones. We have shown that our approach conserves
the actual performance of the original Abstract during recovery. In fact, the throughput
can be improved up to two folds in some cases. Furthermore, the evaluation conveyed
that Re-Abstract family members are efficient when the repair time of failed replicas is
not short. On the contrary, Re-Abstract is not quite useful if the failure is transient (e.g.,
for less than one second).

7.1.2.3 Dynamic and Heuristic Modes

The Dynamic mode addresses systems that are quite fluctuating, for instance: variable
contention, message payloads, malicious clients, etc. In this situation, it is necessary to
move to another protocol that better fits the new system conditions. Adapt, a novel BFT
system, operates in the Dynamic mode to switch between protocols at run time according
to the changes in the underlying system state. Adapt collects existing protocols and
libraries in a pool, called the BFT system (BFTS). An Event Subsystem (ES) monitors
the communication, and can send an event to the Quality Control Subsystem (QCS)
triggering an evaluation process for the protocols. QCS runs a prediction phase to assess
the performance of all protocols (e.g., throughput and latency) on the fly, and then runs
the selection algorithm to cull the most suitable protocol for the next phase. We used a
well-known prediction mechanism in Machine Learning called Support Vector Machines
for Regression (SVR). In SVR, prediction is based on training a prediction function on
an experimental knowledge base. This is important in complex communication systems
since it is hard to divine the performance of different protocols via theoretical or analytic
forecast.

The Heuristic mode is sometimes needed to adjust the preferences of the user. For
instance, choosing a protocol that tolerates a high number of clients is not convenient
if the system is not contended. Another example is when a user seeks low latency and
high throughput but the system is flooded with requests from numerous clients. In this
case, tolerating a higher number of clients becomes prior to latency and throughput. The
heuristic mode uses some predefined rules that reacts with such situations and adjust
the user preferences to choose the ‘preferred’ protocol. Our evaluation showed that this
approach can sometimes be very useful.

We evaluated Adapt in different ways. First, we conveyed that the prediction accuracy
of throughput ranges between 95% and 98% (considering two impact factors: number of
clients and request size). Then we demonstrated how the impact factors are affecting
prediction accuracy. Then we explored how using the dynamic mode yields intersting
realsitic choices. In addition, we conveyed some interesting cases where switching can be
very benificial. In addition, we have shown how to use the heursitic mode in Adapt, and
that this is useful in many cases, especially when a BFT user has no big experience.

Though we have shown that switching in Abortable BFT is not expensive (in Chap-
ter 5), we believe that selection process and event triggering impose some overhead in
some cases. We plan to measure this in the future as soon as we finish our research on
the Event Subsystem.
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7.1.3 Miscellaneous
Our experiments were conducted on Emulab using two applications Redis and OpenL-
DAP. Also, we used SVMLIB library for prediction. On the other hand, most of our
implementations were coded in C/C++ and Bash scripts.

7.2 Future Work
Our schedule comprises three major subjects and some minor ones.

First, we think that the idea of Adapt is promising and practical and hence deserves
further research. For instance, the Event Subsystem (ES) is mandatory for Adapt in
order to take good decisions at the right time. ES should send events about any potential
changes in the underlying system. This triggers the selection and evaluation process.
ES should take into consideration network factors, payload factors, contention factors,
application specific factors, etc. In BFT, we think that this is not an easy task since the
event should be shared among replicas, thus, avoiding Byzantine behaviors in centralized
solutions.

In addition, the conveyed prediction accuracy of Adapt is high. Due to our close
deadline, we were unable to consider further impact factors and KPIs in the evaluation
process. In the future, we plan to include these issues in order to discover the efficiency
of Adapt under more complicated situations with multiple factors.

We have seen that Adapt can use some heuristic to adjust the selection process. In
this thesis, we used an example of two heuristics. We believe that defining a heuristic set
of rules will be an interesting future work.

Regarding the minor subjects, we plan to conduct some experiments to study new
classes of protocols, e.g., separating agreement form execution [56]. In addition, we need
to find a method that can better evaluate selection in the Static mode. Currently, we
evaluated the approach using human reasoning which is not constant among humans.

In parallel to this plan, we are working on other fault tolerance issues that, currently,
have a growing importance. For instance, ensuring anonymous communication in the
BAR model (i.e., Byzantine, Altruistic, Rational) with practical performance is still an
open problem, and thus requires intensive research. We try to contribute in finding some
solutions.
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Chapter 8

French Summary (Résumé Français)

8.1 Introduction

Tolérance aux pannes est une exigence fondamentale pour les services fiables. Les pro-
grès accomplis benignfaults [34, 6, 24, 42, 34] (i.e., fail-stop ou la panne de défauts) sont
aujourd’hui bien matures. Ils sont déployés partout. Cependant, les études qui abor-
dent fautes byzantines [35, 15] ne sont pas fondées sur une solution convaincante pour les
praticiens. Par conséquent, la communauté de recherche est en train, toujours, de sonder
de nouvelles solutions satisfaisantes dans deux aspects: la fiabilité et la performance. À
l’heure actuelle, ce domaine est devenu notoirement cruciale avec l’émergence de nouvelles
menaces dues à l’ouverture en ‘désordre’ de l’Internet, l’évolution des technologies infor-
matiques qui produisent de nouveaux bogues et des problèmes d’incompatibilité. Bien
que beaucoup de solutions à ces problèmes BFT ont émergé récemment. Il est encore
compliqué pour la communauté pratique de décider quelle est la meilleure "protocole de
choisir.

La tolérance aux pannes byzantines (BFT) est une reproduction de machine d’état
(SMR) [47, 33] technique. Elle est utilisée pour tirer parti de la résilience partiellement
synchrone [41, 23, 38] des services contre les défauts arbitraires, que l’on appelle Byzantine
défauts. Pour effectuer un service de résilience aux pannes byzantine, il devrait être
déployé en tant que machine état déterministe sur plusieurs répliques et en utilisant un
protocole BFT( [15, 2, 22, 32, 26, 50, 19]) pour gérer la communication entre les répliques
et les clients. Protocoles BFT tolèrent les fautes byzantines BFT jusqu’à un tiers des
répliques, en supposant que n’importe quel client pourrait être byzantin [12, 15, 14].

Différents protocoles de BFT ont été introduits récemment. PBFT [15, 14] est consid-
éré comme la pierre angulaire de protocoles BFT pratiques. Il maintient la tolérance aux
pannes en présence de fautes byzantines. Malheureusement, les performances de PBFT
est faible. Par la suite, la préoccupation majeure de la communauté de recherche était de
stimuler la performance de PBFT même si la robustesse est un peu compromise; ainsi, ils
ont utilisé la spéculation [32, 2, 22, 26] pour cette cause. L’argument est que les services
sont souvent stables et fiables. Ils souffrent principalement de défaillances transitoires ou
des attaques. En effet, la persévérance des chercheurs ont ensuite donné de nombreux
protocoles de BFT avec une fiabilité et des performances améliorées au détriment de
quelques sacrifices dans d’autres propriétés. Désormais tout protocole à venir va servir
à combler certaines des lacunes de ses prédécesseurs mais malheureusement a introduit
d’autres problèmes nouveaux.
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De nos jours, les protocoles sont différents de BFT (par exemple, [15, 32, 2, 22, 26,
1, 28, 4, 50, 19], etc). Chacun a ses forces et faiblesses où s’imposent de nouvelles hy-
pothèses pour garantir les résultats attendus de ses objectifs de conception. Par exemple,
PBFT [15] opère en présence de nœuds byzantines, mais il souffre d’une faible perfor-
mance. Q/U [2] Quorum [26] présente la plus faible latence et une évolutivité défectueux
quand il s’agit des environnements sans contention. Zyzzyva [32] et Chain [26] permettent
d’atteindre un débit élevé, mais ils souffrent de récupération trop cher. Ring [1] fonctionne
à grande échelle, un grand nombre de clients de moins de prétention, mais il présente une
faible performance. Aardvark [19], Prime [9] et Spinning [50] apportent plus de robustesse
et de la tolérance aux attaques DoS, mais ils restent vulnérables à certaines attaques ou
ont besoin d’infrastructures plus complexes et pourraient être interrompu. Les proto-
coles BFT comme Aliph [26, 27] ont proposé une approche modulaire pour utiliser des
protocoles existants et BFT switch permet de passer de l’un à l’autre en cas de panne.
Toutefois, jusqu’à ce moment, aucune politique commutation dynamique est apparu pour
maintenir la capacité d’adaptation du système en temps réel de l’évolution des conditions
sous-jacentes. La différence entre les propriétés et les performances des protocoles BFT
porte à croire que les one-size-fits-all protocoles de BFT sont difficiles à atteindre. Ce qui
perturbe les utilisateurs de BFT tout en cherchant le protocole, de préférence, à utiliser.
Un tas de questions importantes se posent alors: (1) Quel est le meilleurs "protocole BFT?
Qu’est-ce qu’on entend par ‘meilleur ’? Est-ce que es diverses propriétés des protocoles
BFT pourraient être combinés dans un seul système? Quel protocole choisir si l’état du
système est souvent uniforme? Pouvons-nous fournir une adaptation dynamique en temps
réel dans les systèmes avec les États d’alternance? Cette thèse tente de répondre à toutes
ces questions.

8.2 Contributions
Cette thèse introduit le mécanisme de sélection de premier BFT. Le mécanisme vise à
guider les utilisateurs à choisir leur meilleurs BFT "protocole en trois modes: statique,
dynamique et heuristique. Le premier peut être utilisé dans les WebServices [39, 40, 8]
ou clouds [10, 54, 7] qui peut fournir du BFT en tant que service. Les utilisateurs sont
autorisés à choisir leur meilleur protocole. De plus, nous avons développé une nouvelle
méthode, pour ce mode, pour conserver les performances de protocoles existants BFT de
moins de récupération. Pour les modes dynamiques et heuristiques, nous allons plutôt
mettre en place un système de BFT, appelé Adapt. Ce système offre une qualité de service
optimale (à fiabilité et de performance) grâce à la combinaison des protocoles existants.
L’envoi de l’un d’eux selon une politique de sélection dynamique. Adapt utilise une
politique expérimentale de régression à vecteurs de support(SVM) [11, 21, 49]. Il devrait
évaluer la performance des différents protocoles en temps réel. De temps en temps, Adapt
utilise aussi des heuristiques pour booster les performances.

8.2.1 No one-size-fits-all Analyse
Notre première contribution est de faire une étude approfondie du comportement des
protocoles de BFT et de leurs propriétés. L’objectif est de renforcer la conviction que les "
one-size-fits-all " protocoles sont presque impossibles à réaliser dans BFT. Par conséquent,
nous avons effectué trois sortes d’analyses. Dans la première, nous décrivons les différentes
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caractéristiques des différents protocoles existants. Nous montrons qu’aucun d’entre eux
ne pourrait comporter toutes ces caractéristiques. Le Tableau 8.1 liste des propriétés BFT
qui sont différents en fonction des états.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
Spéculatif Non Oui Oui Oui Oui Oui Oui Oui

Fault byzantine Oui Oui Oui Oui Oui Oui Non Oui
Tolère affirmation Oui Oui Non Oui Non Oui Oui Oui
Support de WAN Oui Oui Non Oui Non Oui Oui Oui

Self-recovery Oui Oui Oui Oui Non Oui Oui Non
Obscurci Non Non Oui Non Oui Non Oui Non

Demande ≤ 3f+1 Oui Oui Non Oui Oui Oui Non Oui

Table 8.1: Certaines propriétés desdifférents protocoles BFTdeetat de l’art.

Ensuite, nous présentons une analyse théorique traditionnelle fondée sur les aspects
de la conception de base des protocoles, par exemple, modèle d’échange de messages
et le nombre d’authentifications nécessaires, comme illustré dans le Tableau 8.2, mais
cette fois avec une couverture plus large. Cette analyse montre encore une fois de plus
que théoriquement les protocoles BFT peuvent atteindre des performances différentes
(principalement le débit et la latence).

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain
A 3f+1 3f+1 5f+1 3f+1 3f+1 3f+1 4f+1 3f+1
B 2f+1 2f+1 5f+1 3f+1 3f+1 3f+1 3f+1 3f+1
C 2+8f 2+3f 4f+2 4f+2 2 ≈4+4f 2 f+2
D 4 3 2 4 2 ≈7f+2 4 3f+2
E 3 2 1 3 1 2 1 1

Table 8.2: Évaluation analytique des protocoles BFT état de l’art tolérer f fautes à l’aide de
l’authentification MAC, et en supposant que l’optimisation préféré(sans batching): A représente le nom-
bre de répliques nécessaires pour tolérer f répliques byzantines; B est semblable à A, mais à l’exclusion
répliques des témoins et de sauvegarde; C représente le nombre d’opérations de MAC sur le goulot
d’étranglement réplique; D est le nombre de unidirectionnels latences nécessaires pour chaque requête, et
E représente le nombre de send/to demande de noyau sur la réplique goulot d’étranglement. Entrées en
caractères gras sont des protocoles avec le coût le plus bas connu.

La troisième étude est expérimental, mais elle est accompagnée d’une interprétation
théorique basée sur la théorie de Queuing [25, 3]. Lors de traiter les cas différents, nous
nous sommes retrouvés à la même conclusion: pas de protocole BFT qui soit dominant
dans tous les cas. L’analyse détaillée est basée sur le modèle de la Figure 8.1 .Si le
temps de traitement sur une réplique est: Tp = Te + Ta + Tt + Th, où Te désigne le
temps d’exécution, Ta désigne le temps d’authentification (vérifier et signer), Tt désigne
le send/to de l’heure (transmission) Tt, et Th représente le temps de la manipulation de
structures de données.

En outre, une file d’attente FIFO, un temps Tq est nécessaire avant chaque nœud
pour gérer les demandes simultanées. Une fois rassemblées, on obtient le temps total
nécessaire par une demande comme suit: Ttotal = Td+(m+1)Tp+Tq. Tp est multiplié par
m+1 car certains protocoles, comme la chaîne, exécutent des requêtes séquentiellement
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Figure 8.1: Les notations de temps d’un système BFT avec plusieurs files d’attente.

plutôt que simultanément (comme dans le Quorum). Le débit d’un des protocoles BFT
est généralement inversement, pas forcément proportionnelle au total dénoté par T.

Sur la base de ce modèle, nous justifions les résultats que nous avons obtenus dans la
réalisation de nombreuses expériences sur différents protocoles existants. Nos expériences
sont réalisées sur Emulab, en utilisant Redis et OpenLDAP comme des applications. En
outre, nous expliquerons le comportement de ces protocoles en tenant compte de leurs
comportements illustrés dans Figure 8.3. Dans ce qui suit, nous présentons et nous
discuterons certains de ces cas qui démontrent que les protocoles one-size-fits-all sont
difficiles à réaliser dans la pratique.
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Figure 8.2: Latence et le débit d’un seul client en utilisant les 0/0 et 1/1 microbenchmarks.

Cas 1. Quand un seul client envoie des requêtes aux répliques, c’est à dire, sans con-
tention, la différence de débit et de latence entre les différents protocoles devient clair
(voir Figure 8.2) dans les paramètres LAN. Cela reflète l’effet des modèles de messages
dans les protocoles. Dans les réseaux WAN, la performance des protocoles devient très
proche depuis Trc et Tcr qui dominent les autres facteurs de la formule. De plus, le temps
d’exécution Te n’affecte pas ces résultats dans le cas d’un seul client, ce qui n’est pas le
cas, comme on le verra plus tard, dans les autres cas.
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(a) PBFT

(b) Zyzyyva

(c) Q/U

(d) Quorum

(e) Chain

(f) Ring

Figure 8.3: Modèles de message des protocoles BFT état-of-the-art, pour f=1.

Cas 2. L’effet de la mise en file d’attente affecte les performances des protocoles dans
le cas des clients simultanés. La justification sera expliquée dans les détails dans la thèse.
Cependant, ici nous venons de présenter le graphique de la Figure 8.4 qui exprime la
différence de débit entre l’état les protocoles de BFT existants. Le graphique montre que,
avec plus de 10 clients, la différence entre des protocoles devient grand, et les protocoles
les plus touchés par la queue sont ceux qui exigent un plus grand temps d’exécution Tp,
ou de déchiffrement / déchiffrement, etc.
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Figure 8.4: Débit de clients simultanés, en utilisant le microbenchmark 0/0.

Cas 3. Lorsque le temps d’exécution Te est élevé, la différence de performance entre les
différents protocoles devient négligeable. Par exemple, la figure 8.5 traduit le fait que le
débit de pointe de 5 protocoles différents est à peu près égale à celui d’ OpenLDAP (qui
a une haute Te). En fait, la valeur élevée de temps d’exécution masque l’impact d’autres
facteurs (comme dans les modèles de message et de cryptographie) ce qui fait l’équivalent
de débit et de latence pour atteindre le goulot d’étranglement du processeur.
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Figure 8.5: Débit maximal lorsque la CPU est le bottleneck.

130



Cas 4. En vertu de contention élevée, les protocoles atteignent la même pointe de débit
atteint par le goulot d’étranglement du réseau. Figure 8.6 décrit le débit des protocoles
sous contention élevée. Le graphique montre que le débit de pointe de protocoles est très
proche avec un nombre élevé de clients. Une exception est Bague, qui permet à toutes
les répliques d’accepter les demandes des clients et, par conséquent, dépasse la limite de
goulot d’étranglement du réseau des autres protocoles. Par conséquent, à partir de 60
clients, Ring surpasse tous les autres protocoles avec près de 25%.
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Figure 8.6: Débit de pointe lorsque le réseau est le goulot d’étranglement en utilisant lemicrobenchmark
4/4.

8.2.2 Qualité de Service BFT
Ensuite, nous introduisons une solution pour le problème ci-dessus. Nous décrivons,
pour la première fois, un modèle de sélection BFT et l’algorithme utilisé pour dépasser le
meilleur protocole d’un ensemble de protocoles. Notre définition du meilleur‘’protocole: le
protocole le plus approprié, par une forte probabilité, qui correspond aux préférences aux
besoins de l’utilisateur. Notre approche fait référence à des formules mathématiques pour
automatiser le processus de sélection. Nous discutons, dans la thèse, tous les paramètres
de la formalisation et la manière de les utiliser. En outre, nous effectuons de nombreux
exemples pour évaluer ce mécanisme afin de démontrer que la sortie est raisonnable et
correspond à la réalité. Le modèle fonctionne en trois modes: statique, dynamique et
heuristiques. Nous explorons dans la suite ces trois modes.

8.2.2.1 Mode statique

En mode statique, l’utilisateur doit être en mesure de choisir un protocole qui correspond
à son exigence maximale. Ceci est très utile à la révolution des services Web et des sys-
tèmes de Cloud. Pour décrire la méthode, nous donnons cet exemple: considérons un
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fournisseur de services, par exemple un système de nuages, qui fournit des IaaS, PaaS, et
l’AaaS [10, 54, 7] services en temps opportun. Le fournisseur nuage peut offrir un service
supplémentaire (à être révélé dans la contrat SLA [7]) pour tirer parti de la résilience du
service de l’utilisateur contre les fautes byzantines. Le fournisseur cloud fournit égale-
ment une collection de protocoles existants BFT qu’il prend en charge, et utilise notre
approche de sélection pour aider les utilisateurs à déterminer quel protocole choisir. Les
protocoles sont généralement accompagnés de profils prédéfinis (par exemple, un ensemble
d’indicateurs de qualité clés KQIs) et les utilisateurs fournissent leurs préférences. KQIs
sont composés d’indicateurs clés (Caractéristiques KCIs) qui définissent les propriétés du
protocole, et les indicateurs de performance clés (KPI). La sélection se fait en exécutant
une phase d’évaluation. Ensuite, l’évaluation se produit en faisant correspondre les profils
des protocoles contre les préférences de l’utilisateur dans un processus automatisé (voir
la Figure 8.7). Le protocole qui réalise le meilleur score d’évaluation est considéré comme
le meilleur protocole à l’égard de cet utilisateur. Le fournisseur de services attribue en-
suite les ressources appropriées en fonction du choix de l’utilisateur. En mode statique,
l’utilisateur est autorisé à choisir un protocole unique une seule fois, c’est à dire, à l’instant
de déploiement du système (à moins que les termes de la modification du contrat SLA).
Nous avons effectué de nombreux exemples concrets pour évaluer ce mode. Les résultats
montrent que la sélection est raisonnable et elle répond exactement aux exigences des
utilisateurs. Les détails sur le mode, formules mathématiques, et des exemples peuvent
être trouvés dans le chapitre 4.

Figure 8.7: Schéma de processus d’appareillement entre deux préférences d’utilisateurs et cinq profils
différents de protocoles BFT.

8.2.2.2 Famile Re-Abstract

Puisque la sélection dans le mode statique est autorisée une seule fois, en fonction de
l’utilisateur, il paraît trivial d’obtenir (en permanence), la sortie anticipée. Dans les
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protocoles les plus courants de BFT, ceci n’est pas impossible. En fait, la plupart des
protocoles sortant souffrent de baisse de leur performance lors de la détection d’échec,
c’est à dire pendant la phase de récupération. L’expérience a montré que PBFT plus
performant que d’autres protocoles dans les échecs présence [32]; cependant, il est connu
de sa piètre performance lors de la phase trivial (ie, sans défaillance). Nous introduisons
une nouvelle technique pour conserver les mêmes performances des protocoles existants
qui prennent en compte la récupération. Nous présentons laBFTRe-Abstract famille [4]
pour cette cause, sur la base du avortable BFT [27, 26] approche. Tout membre runs
le Abstract d’origine(par exemple,un protocole existant BFT), le 3f+1 répliques actifs,
et nécessite f répliques passifs qui sont des sauvegardes inactives. Lors de la détection
d’échec, Abstract, récupère à lui-même à nouveau, mais cette fois, sur une nouvelle série
de répliques actives. Le défi consiste à expulser les répliques «suspecté»(byzantin ou bien
lent) sur l’ensemble des actifs et de les remplacer par emphcorrecte un (pas byzantin)de
l’ensemble passif. Abstract retourne pour fonctionner normalement en présentant ses
meilleurs des cas les performances.

L’évaluation de la Re-Abstract démontre que le gain en débit augmente, parfois,
jusqu’à deux fois celle de la récupération. Par exemple, Figure 8.8 montre trois créneaux
temporels d’un protocole en cours d’exécution, où chaque fois que l’expérience sous dif-
férentes conditions sous-jacentes. La deuxième tranche de temps montre clairement le
gain en débit lors de la récupération quand Re-zLight est utilisé à la place de ZLight.
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Figure 8.8: Débitde Re-zLight pendant trois intervalles de temps.

En outre, nous montrons que Re-Abstract est très utile lorsque les périodes de défail-
lances dans le système sont longues. Dans le cas contraire, si la panne est transitoire, le
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temps de réparation de la réplique défectueuse sera de courte durée (par exemple, moins
d’une seconde), et donc le passage à lui-même sera sans valeur. Pour expliquer com-
mutation digne, la Figure 8.9 décrit la différence entre les deux scores d’évaluation. En
supposant un seuil de commutation Sthr= 10%, le passage est digne seulement si:

E1− E2− ε1/2− ε2/2 = δ > Sthr (8.1)

Figure 8.9: La différence entre les résultats d’évaluation (E) à examiner les tubes d’erreur.

8.2.2.3 Mode Dynamique: Adapt System

Le mode statique fonctionne bien dans des systèmes qui sont généralement stable, c’est
à dire, l’état du système n’est pas trop fluctuante. Toutefois, si le système rencontre des
conditions de flottement, le mode statique ne sera pas efficace. La raison est que dans
le mode statique, un seul protocole est autorisé à exécuter. Que faire si ce protocole ne
répond pas aux nouvelles conditions? Par exemple, la course Quorum dans les systèmes
qui sont privés de la controverse est très bénéfique, mais qu’en est-il de ses performances
si le système a eu quelques périodes de discorde? La situation est plus compliquée si
les facteurs d’impact multiples affectent l’état du système. L’état dynamique résout ce
problème.

Pour le mode dynamique, nous développons un nouveau système BFT appelé Adapt.
Le système peut s’Adapter dynamiquement aux variations de l’état du système sous-
jacent. Adapt assure une qualité optimale (fiabilité et de performance) parmi les pro-
tocoles existants. Il est conçu pour les systèmes qui connaissent les états qui s’agitent.
Adapt peut être appliqué sur les plateformes traditionnelles, les services Web et les nuages.

Adapt est composé de trois systèmes: système BFT(BFTS), Système d’événement(ES),
et le système de contrôle de la qualité(QCS). BFTS est un pool existant (et peut-être nou-
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Figure 8.10: Débit de l’état de l’art des protocoles BFT en utilisant le 0/0 micro-benchmark.
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Figure 8.11: Débit de l’état de l’art des protocoles BFT en utilisant le 4/0 micro-benchmark (échelle
logarithmique).

veau) de protocoles BFT, il représente les bibliothèques BFT(par exemple, [15, 32, 2, 22,
26, 1, 28, 4], etc.) et les abortability library( [27, 26]). ES surveille le système et détecte
tout changement éventuel dans l’état du système qui est représenté par un ensemble de
facteurs d’impact de clients, taille de la requête, la perte de données, etc.) Lors de la
détection d’un changement significatif, ES envoie un Event QCS, déclenchant ainsi une
phase d’évaluation QCS qui maintient une performance optimale du système en exécutant
le meilleur "protocole dans l’état suivant du système(par exemple, dans les conditions du
nouveau système). QCS évalue les protocoles de BFT en calculant leurScore d’évaluation
(E), le protocole avec le plus haut score est lancé dans la prochaine phase. Les évalu-
ations sont calculées en fonction du modèle de sélection décrit ci-dessus, mais cette fois
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de manière dynamique. Figures 8.10 et 8.11 transmettent le débit d’un des protocoles
dans deux conditions: les clients simultanés avec petit temps d’exécution (comme dans
Redis), et la querelle élevée. Les deux graphiques montrent que le débit d’Adapt (tracé
en rouge) est meilleur, dans les deux cas, que tous les protocoles. C’est ce qu’on appelle
la politique de commutation dynamique qui exécute le protocole le plus approprié pour
chaque condition.

En mode dynamique, les profils des protocoles ne sont pas totalement prédéfinis, mais
certains d’entre eux sont calculés dynamiquement. QCS prédit les valeurs des indicateurs
clés de performance(KPI) de chaque protocole, en temps réel, grâce à l’aide d’un célèbre
technique Machine Learning Support Vector Machines pour la régression (SVR) [21, 11].
Le passage à un nouveau protocole a lieu seulement si elle est digne de passer à un seuil
choisi.
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Figure 8.12: Moyenne précision de la prédiction par rapport.

Lors de l’évaluation d’Adapt, nous effectuons des expériences concrètes sur des appli-
cations: Redis [46] et OpenLDAP [58, 44, 43]. Les expériences montrent que la précision
de la prédiction des plages de débit entre 95% et 98% (voir Figure 8.12). Puis, nous dis-
cutons de la façon dont les facteurs d’impact (par exemple, les charges utiles de messages
et le nombre de clients) affectent la précision de la prédiction. En outre, dans l’évaluation
nous montrons pourquoi cette précision de la prédiction est suffisante, pour décider quel
est le meilleur protocole et si la commutation est digne ou non. Figure 8.13, par exemple,
montre que le passage entre les protocoles qui peuvent être dignes dans la plupart des
cas, sauf si entre 70 et 200 clients, où la commutation entre PBFT, et zLight devient
inutile. Cela est dû à la différence entre eux qui devient petite (moins d’un 10% seuil
de commutation prédéfini) dans cette partie du graphique. D’autres expériences montre
l’intérêt de choisir le meilleur protocole par Adapt en appliquant le mode dynamique.
Plus de détails sur Adapt peuvent être trouvées dans le Chapitre 6.
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Figure 8.13: Débit réel et prédit avec les tubes d’erreur de protocoles BFT.

8.2.2.4 Mode heuristique

Bien que le mode dynamique permette d’obtenir des résultats optimaux, il est limité aux
préférences de l’utilisateur. Depuis que les administrateurs " système " sont généralement
plus expérimentés que les utilisateurs, il est bon de définir des heuristiques pour optimiser
le choix des utilisateurs. Cela nous paraît bien utile. Par exemple, si l’utilisateur a
besoin d’un débit élevé, alors Adapt choisira le meilleur protocole, quand il n’y a pas de
contestation sur le système. Par contre l’expérience montre que la latence devient plus
important que le débit. Un autre exemple est lorsque le système est surchargé de demandes
en raison du nombre élevé de clients lui accédant. En tolérant un grand nombre de clients,
ceci devient plus important que le débit élevé (même si elles ne sont pas contraires). Dans
le Chapitre 4, nous montrons comment automatiser ces heuristiques dans le processus
de sélection en utilisant les mêmes formules mathématiques introduites dans le modèle
de sélection. Ensuite, nous décrirons comment utiliser le mode heuristique dans Adapt
au chapitre 6. L’évaluation du mode heuristique explique comment il peut améliorer le
choix de l’utilisateur pour obtenir la meilleure qualité de service. La définition d’une liste
complète des heuristiques reste un plan d’étude pour l’avenir.

8.3 Conclusion
La dépendance importante de notre société, des ordinateurs dans la vie personnelle et
professionnelle, exige l’augmentation de la fiabilité. D’autre part, l’évolution des tech-
nologies informatiques, langages de programmation et plates-formes utilisés évoquent de
nouveaux échecs et des bugs qui sont souvent classés comme byzantines (ou arbitraire).
Par conséquent, la tolérance aux pannes byzantines devient cruciale pour résoudre ces dé-
faillances. Bien que la recherche a été bien menée pour atteindre des protocoles de BFT
qui puissent convaincre les praticiens, les protocoles de BFT sont restés loin du protocole

137



" passe-partout ". Notre travail n’est qu’une tentative de rapprochement vers ce protocole
" passe-partout). Les analyses théoriques des protocoles existants BFT montrent un écart
important entre eux. Cependant, cette diversité est une réalité vu que les utilisateurs,
de BFT distincts, ont des exigences différentes. Un protocole spécifique est recommandé
par certains utilisateurs quand d’autres utilisateurs pourraient préférer un autre. Depuis
des dizaines de protocoles ont été mis en place et les utilisateurs pourraient déranger en
faisant leurs choix. Dans notre thèse, nous présentons une approche automatisée qui peut
rendre le processus de sélection simple et rapide. Notre idée est de faire correspondre les
préférences de l’utilisateur avec les profils des protocoles différents. Ensuite, les utilisa-
teurs peuvent choisir la meilleure correspondance. Le mécanisme de sélection fonctionne
en modes statique, dynamique et heuristique.

En mode statique, les utilisateurs sont autorisés à choisir un protocole unique. Cepen-
dant, la phase de récupération des protocoles existants est chère par rapport à la phase
du protocole trivial lui-même pendant de libre-échec. Dans les services qui sont générale-
ment stables et qui rencontrent une alternance de périodes d’échec, les frais généraux de la
phase de récupération peuvent être plus grands. Dans cette thèse, nous avons développé
une nouvelle technique pour conserver les mêmes performances anticipée du protocole,
même lors de la récupération. L’idée est de laisser le protocole récupérer, lui-même, en
utilisant une autre série de répliques de sauvegarde. Lorsque le temps de réparer une
réplique défectueuse est grand, le bénéfice induit par notre approche devient significatif.
L’approche ci-dessus est utile à la sélection statique puisque l’utilisateur est convaincu
par le protocole choisi et il a un système de l’état d’équilibre. Toutefois, lorsque l’état du
système est trop fluctuant, la situation devient plus complexe. Par exemple, considérons
un service qui vit dans des conditions différentes dans la même journée ou à la semaine ;
aucun protocole unique ne sera convaincant à l’utilisateur. Une solution dynamique de-
vient cruciale dans une telle situation. Nous avons introduit Adapt comme une solution.
Adapt peut s’accommoder à l’évolution du système sous-jacent en temps réel. Adapt (1)
prédit la performance des protocoles lors de l’exécution, (2) décidera quel est le meilleur
protocole dans les conditions nouvelles, (3) et indique si le passage au protocole sélec-
tionné est digne ou non. En outre, nous avons utilisé des heuristiques dans Adapt pour
optimiser les performances du système plus loin.

Nous envisageons, dans le future, d’étudier la possibilité d’utiliser d’autres types de
protocoles de BFT, par exemple, les protocoles qui utilisent la séparation de l’accord de
l’exécution comme dans [56] et [18]. En outre, il est intéressant de considérer d’autres
paramètres dans le mécanisme de prédiction d’Adapt. Par exemple, compte tenu de la
latence et l’évolutivité des KPI, et compte tenu de la taille et de la réponse des clients
malveillants comme les facteurs d’impact pour avoir une idée plus claire sur le com-
portement des Adapt. Le développement d’un système ES événement nécessite aussi un
travail de recherche. Enfin, nous pensons qu’il est intéressant de définir un ensemble
d’heuristiques pour être utilisé efficacement dans Adapt.
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