C. Afonso and A. Oliveira, Solar chimneys: simulation and experiment, Energy and Buildings, vol.32, issue.1, pp.71-79, 2000.
DOI : 10.1016/S0378-7788(99)00038-9

F. Allard, Natural ventilation in buildings, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00312063

G. Almeida, R. Rémond, and P. Perré, Sorption behaviour of various lignocellulosic building materials, 9th Nordic Symposium on Building Physics, pp.631-637, 2011.

M. Amin, D. Dabiri, and H. K. Navaz, Tracer gas technique: A new approach for steady state infiltration rate measurement of open refrigerated display cases, Journal of Food Engineering, vol.92, issue.2, pp.172-181, 2009.
DOI : 10.1016/j.jfoodeng.2008.10.039

S. T. Avramidis and J. F. Siau, An investigation of the external and internal resistance to moisture diffusion in wood. Wood science and technology 21, pp.249-256, 1987.

H. B. Awbi, Ventilation of buildings ? Second Edition, 2003.

C. Balocco, A simple model to study ventilated facades energy performance, Energy and Buildings, vol.34, issue.5, pp.469-475, 2002.
DOI : 10.1016/S0378-7788(01)00130-X

J. T. Baker, S. H. Kim, D. C. Gitz, and V. R. Reddy, A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide, Environmental and experimental botany 51, pp.103-110, 2004.

S. Becker, H. Lienhart, and F. Durst, Flow around three-dimensional obstacles in boundary layers, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, issue.4-5, pp.265-279, 2002.
DOI : 10.1016/S0167-6105(01)00209-4

M. V. Belleghem, M. Steeman, A. Willockx, A. Janssens, and M. De-paepe, Benchmark experiments for moisture transfer modelling in air and porous materials, Building and Environment, vol.46, issue.4, pp.884-898, 2011.
DOI : 10.1016/j.buildenv.2010.10.018

A. Blondel and H. Plaisance, Screening of formaldehyde indoor sources and quantification of their emission using a passive sampler, Building and Environment, vol.46, issue.6, pp.1284-1291, 2011.
DOI : 10.1016/j.buildenv.2010.12.011

A. Brun, Amélioration du confort d'été dans des bâtiments à ossature par ventilation de l'enveloppe et stockage thermique, 2011.

J. M. Buchlin, Convective heat transfer in a channel with perforated ribs, International Journal of Thermal Sciences, vol.41, issue.4, pp.332-340, 2002.
DOI : 10.1016/S1290-0729(02)01323-6

J. Van-den-bulcke, D. Windt, I. Defoirdt, N. Van-acker, and J. , Moisture dynamics and fungal susceptibility of plywood, International Biodeterioration & Biodegradation, vol.65, issue.5, pp.708-716, 2011.
DOI : 10.1016/j.ibiod.2010.12.015

S. Van-buggenhout, A. Van-brecht, E. Ozcan, S. Vranken, E. Van-malcot et al., Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces, Biosystems Engineering, vol.104, issue.2, pp.216-223, 2009.
DOI : 10.1016/j.biosystemseng.2009.04.018

J. Carmeliet and D. Derome, Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 1 experimental investigation, Building and Environment, vol.48, pp.48-56, 2012.
DOI : 10.1016/j.buildenv.2011.08.015

J. Carmeliet and D. Derome, Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 2 heat-moisture transport simulations, Building and Environment, vol.47, pp.161-169, 2012.
DOI : 10.1016/j.buildenv.2011.07.028

J. Carmeliet, M. De-wit, and H. Janssen, Hysteresis and moisture buffering of wood, th Nordic Symposium on Building Physics, pp.12-15, 2005.

C. De and L. , Perméabilité à l'air de l'enveloppe des bâtiments, Généralités et sensibilisation, 2006.

T. S. Chang, Effects of a finite section with linearly varying wall temperature on mixed convection in a vertical channel, International Journal of Heat and Mass Transfer, vol.50, issue.11-12, pp.2346-2354, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.10.042

C. Y. Chao, M. P. Wan, and A. K. Law, Ventilation performance measurement using constant concentration dosing strategy, Building and Environment, vol.39, issue.11, pp.1277-1288, 2004.
DOI : 10.1016/j.buildenv.2004.03.012

K. W. Cheong, Airflow measurements for balancing of air distribution system ? tracer-gas technique as an alternative?, Building and Environment 36, pp.955-964, 2001.

B. Coasne, K. E. Gubbins, R. J. Pellenq, and -. , Domain theory for capillary condensation hysteresis, Physical Review B, vol.72, issue.2, p.24304, 2005.
DOI : 10.1103/PhysRevB.72.024304

URL : https://hal.archives-ouvertes.fr/hal-00381741

D. Costola, B. Blocken, and J. L. Hensen, Overview of pressure coefficient data in building energy simulation and airflow network programs, Building and Environment, vol.44, issue.10, pp.2027-2036, 2009.
DOI : 10.1016/j.buildenv.2009.02.006

D. Costola, B. Blocken, M. Ohba, and J. L. Hensen, Uncertainty in airflow rate calculations due to the use of surface-averaged pressure coefficients, Energy and Buildings, vol.42, issue.6, pp.881-888, 2010.
DOI : 10.1016/j.enbuild.2009.12.010

P. Crausse, J. P. Laurent, and B. Perrin, Influence des ph??nom??nes d'hyst??r??sis sur les propri??t??s hydriques de mat??riaux poreux, Revue G??n??rale de Thermique, vol.35, issue.410, pp.95-106, 1996.
DOI : 10.1016/S0035-3159(96)80002-X

T. Z. Desta, J. Langmans, and S. Roels, Experimental data set for validation of heat, air and moisture transport models of building envelopes, Building and Environment, vol.46, issue.5, pp.1038-1046, 2011.
DOI : 10.1016/j.buildenv.2010.11.002

D. Derome, H. Derluyn, W. Zillig, and J. Carmeliet, Model for hysteretic moisture behaviour of wood, th Nordic Symposium on Building Physics, pp.959-966, 2008.

D. Derome, Moisture occurence in roof assemblies containing moisture storing insulation and its impact on the durability of building envelope, 1999.

T. Z. Desta, J. Langmans, and S. Roels, Experimental data set for validation of heat, air and moisture transport models of building envelopes, Building and Environment, vol.46, issue.5, pp.1038-1046, 2011.
DOI : 10.1016/j.buildenv.2010.11.002

P. Fazio, A. K. Athienitis, C. Marsh, and J. Rao, Environmental Chamber for Investigation of Building Envelope Performance, Journal of Architectural Engineering, vol.3, issue.2, pp.97-102, 1997.
DOI : 10.1061/(ASCE)1076-0431(1997)3:2(97)

A. G. Fedorov, R. Viskanta, and A. A. Mohamad, Turbulent heat and mass transfer in an asymmetrically heated, vertical parallel-plate channel, International Journal of Heat and Fluid Flow, vol.18, issue.3, pp.307-315, 1997.
DOI : 10.1016/S0142-727X(97)00010-6

M. Fossa, C. Menezo, and E. Leonardi, Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications. Experimental Thermal and Fluid Science 32, pp.980-990, 2008.

G. Gan, Effect of air gap on the performance of building-integrated photovoltaics, Energy, vol.34, issue.7, pp.913-921, 2009.
DOI : 10.1016/j.energy.2009.04.003

G. Gan, Numerical determination of adequate air gaps for building-integrated photovoltaics. Solar Energy 83, pp.1253-1273, 2009.

V. Gavan, Full-scale experimenta evaluation and modelling of a double-skin facade. Optimal control of thermal and visual comfort, Institut National des Sciences Appliquées de, 2009.

S. Geving and S. Uvsløkk, Moisture conditions in timber frame roof and wall structures -test house measurements for verification of heat, air and moisture transfer models, 2000.

S. Geving, A. Karagiozis, and M. Salonvaara, Measurements and Two-Dimensional Computer Simulations of the Hygrothermal Performance of a Wood Frame Wall, Journal of Building Physics, vol.20, issue.4, pp.301-319, 1997.
DOI : 10.1177/109719639702000404

C. Gudum, Moisture Transport and Convection in Building Envelopes Ventilation in Light Weight Outer Walls, 2003.

M. A. Habib, S. A. Said, S. A. Ahmed, and A. Asghar, Velocity characteristics of turbulent natural convection in symmetrically and asymmetrically heated vertical channels, Experimental Thermal and Fluid Science, vol.26, issue.1, pp.77-87, 2002.
DOI : 10.1016/S0894-1777(02)00113-9

C. E. Hagentoft, Introduction to building physics

O. Hägersted and L. E. Hardeerup, Comparison of measured and calculated temperature and relative humidity with varied and constant air flow in the façade air gap, 9th Nordic Symposium on Building Physics, pp.139-146, 2011.

S. Hameury, The hygrothermal inertia of massive timber constructions, Thèse de doctorat, 2006.

C. P. Hedlin, Heat Transfer in a Wet Porous Thermal Insulation in a Flat Roof, Journal of Building Physics, vol.11, issue.3, pp.165-188, 1988.
DOI : 10.1177/109719638801100305

H. Hens, Building Physics ? Heat, air and moisture, 2007.

J. Hensen, M. Bartak, and F. Drkal, Modelling and Simulation of a Double-Skin Façade System, American Society of Heating, Refrigerating and Air-Conditioning Engineers, pp.1251-1259, 2002.

H. Holm and H. M. Künzel, Experimental investigation of the hygric buffering capacity of wood based interior panelling, Research in Building Physics and Building Engineering, pp.3-9, 2006.

A. Holm and K. Lengsfeld, Moisture-buffering effect -experimental investigations and validation, In: Proceedings buildings X conference, thermal performance of the exterior envelopes of whole buildings, 2007.

T. Van-hooff and B. Blocken, On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium, Computers & Fluids 39, pp.1146-1155, 2010.

T. Isaksson, S. Thelandersson, A. Ekstrand-tobin, and P. Johansson, Critical conditions for onset of mould growth under varying climate conditions, Building and Environment, vol.45, issue.7, pp.1712-1721, 2010.
DOI : 10.1016/j.buildenv.2010.01.023

P. Johansson, A. Ekstrand-tobin, T. Svensson, and G. Bok, Laboratory study to determine the critical moisture level for mould growth on building materials, International Biodeterioration & Biodegradation, vol.73, pp.23-32, 2012.
DOI : 10.1016/j.ibiod.2012.05.014

P. Johansson, S. Pallin, and M. Shahriari, Risk assessment model applied on building physics: statistical data acquisition and stochastic modelling of indoor moisture supply in Swedish multi-family dwellings. IAE Annex 55 RAP-RETRO, Copenhagen meeting, 2010.

P. Käkelä and J. Vinha, Outdoor field test of timber-framed external wall element structure, 6th Symposium on building physics in the nordic countries, pp.843-849, 2002.

A. S. Kalagasidis, P. Weitzmann, T. R. Nielsen, R. Peuhkuri, C. E. Hagentoft et al., The International Building Physics Toolbox in Simulink, Energy and Buildings, vol.39, issue.6, pp.665-674, 2007.
DOI : 10.1016/j.enbuild.2006.10.007

A. S. Kalagasidis, HAM-Tools, An Integrated Simulation Tool for Heat, Air and Moisture Transfer Analyses in Building Physics, These, Department of Building Technology, Building Physics division, 2004.

A. S. Kalagasidis, HAM-Tools : International Building Physics Toolbox ? block documentation, Department of Building Physics ? Chalmers Institute of Technology, Sweden ? Report : R : 02 : 6, Version 8, 2003.

T. Kalamees and J. Vinha, Hygrothermal calculations and laboratory tests on timber-framed wall structures, Building and Environment 38, pp.689-697, 2003.

J. F. Karlsson and B. Moshfegh, A comprehensive investigation of a low-energy building in Sweden, Renewable energy 32, pp.1830-1841, 2007.

J. Koffi, Analyse multicritère des stratégies de ventilation en maisons individuelles, Thèse de doctorat, 2009.

C. J. Koinakis, The effect of the use of openings on interzonal air flows in buildings: an experimental and simulation approach, Energy and Buildings, vol.37, issue.8, pp.813-823, 2005.
DOI : 10.1016/j.enbuild.2004.10.012

K. Kumaran, Heat, air and moisture transfer in insulated envelope parts -task 3: material properties, 1996.

K. Kumaran, J. Lackey, N. Normandin, F. Tariku, and D. Van-reenen, A thermal and moisture transport property database for common building and insulating materials, 2002.

F. Kuznik, T. Catalina, L. Gauzere, M. Woloszyn, and J. J. Roux, Numerical modelling of combined heat transfers in a double skin fa??ade ??? Full-scale laboratory experiment validation, Applied Thermal Engineering, vol.31, issue.14-15, pp.3043-3054, 2011.
DOI : 10.1016/j.applthermaleng.2011.05.038

F. Kuznik, Etude expérimentale des jets axisymétriques anisothermes horizontaux se développant près d'une paroi, Thèse de doctorat, Institut National des Sciences Appliquées de, 2005.

J. Kwiatkowski, M. Woloszyn, and J. J. Roux, Modelling of hysteresis influence on mass transfer in building materials, Building and Environment, vol.44, issue.3, pp.633-642, 2009.
DOI : 10.1016/j.buildenv.2008.05.006

M. Labat, M. Woloszyn, G. Garnier, G. Rusaouen, and J. J. Roux, Impact of direct solar irradiance on heat transfer behind an open-jointed ventilated cladding: Experimental and numerical investigations, Solar Energy, vol.86, issue.9, pp.2549-2560, 2012.
DOI : 10.1016/j.solener.2012.05.030

M. Labat, M. Woloszyn, G. Garnier, and J. J. Roux, Assessment of the air change rate of airtight buildings under natural conditions using the tracer gas technique. Comparison with numerical modelling, Building and Environment, vol.60, 2012.
DOI : 10.1016/j.buildenv.2012.10.010

URL : https://hal.archives-ouvertes.fr/hal-00985227

M. Labat, A. Piot, G. Garnier, M. Woloszyn, and J. J. Roux, Measurements of the air leakage rate in a wooden frame experimental house, 5th International Symposium on Building and Ductwork Air-tightness, 2010.

M. Labat, M. Woloszyn, J. J. Roux, A. Piot, and G. Garnier, Bilan hygrique sur une maison à ossature bois : rôle des débits d'air non contrôlés et des transferts aux parois, 2010.

J. Langmans, R. Klein, M. De-paepe, and S. Roels, Potential of wind barriers to assure airtightness of wood-frame low energy constructions, Energy and Buildings, vol.42, issue.12, pp.2376-2385, 2010.
DOI : 10.1016/j.enbuild.2010.08.021

S. Laporthe, J. Virgone, and S. Castanet, A comparative study of two tracer gases: SF6 and N2O, Building and Environment 36, pp.313-320, 2001.

T. S. Larsen and P. Heiselberg, Single-sided natural ventilation driven by wind pressure and temperature difference, Energy and Buildings 40, pp.1031-1040, 2008.

G. E. Lau, G. H. Yeoh, V. Timchenko, and J. A. Reizes, Numerical investigation of passive cooling in open vertical channels, Applied Thermal Engineering, vol.39, pp.121-131, 2012.
DOI : 10.1016/j.applthermaleng.2012.01.001

R. Letan, V. Dubovsky, and G. Ziskind, Passive ventilation and heating by natural convection in a multi-storey building, Building and Environment, vol.38, issue.2, pp.197-208, 2003.
DOI : 10.1016/S0360-1323(02)00070-7

Y. Li, P. Fazio, and J. Rao, An investigation of moisture buffering performance of wood paneling at room level and its buffering effect on a test room, Building and Environment, vol.47, pp.205-216, 2012.
DOI : 10.1016/j.buildenv.2011.07.021

Y. Li and A. Delsante, Natural ventilation induced by combined wind and thermal forces, Building and Environment 36, pp.59-71, 2001.

Y. Li, A. Delsante, Z. Chen, M. Sandberg, A. Andersen et al., Some examples of solution multiplicity in natural ventilation, Building and Environment, vol.36, issue.7, pp.851-858, 2001.
DOI : 10.1016/S0360-1323(01)00011-7

R. Lindberg, A. Binamu, and M. Teikari, Five-year data of measured weather, energy consumption, and time-dependent temperature variations within different exterior wall structures, Energy and Buildings, vol.36, issue.6, pp.495-501, 2004.
DOI : 10.1016/j.enbuild.2003.12.009

W. Maref, M. Lacasse, and D. Booth, Assessing the hygrothermal response of wood sheathing and combined membrane-sheathin assemblies to steady-state environmental conditions, nd International conference on building physics, pp.427-436, 2003.

W. Maref, M. Lacasse, and D. Booth, Large-scale laboratory measurements and benchmarking of an advanced hygrothermal model, p.46784, 2004.

W. Maref, B. Ouazia, J. Reardon, and M. Rousseau, Ventilation and wall research house, Performance of exterior envelope of whole buildings X conference, 2007.

C. Marinosci, P. A. Strachan, G. Semprini, and G. L. Morini, Empirical validation and modelling of a naturally ventilated rainscreen fa??ade building, Energy and Buildings, vol.43, issue.4, pp.853-863, 2011.
DOI : 10.1016/j.enbuild.2010.12.005

D. Meijer and M. , Review on the durability of exterior wood coatings with reduced VOC-content, Progress in organic coatings 43, pp.217-225, 2001.
DOI : 10.1016/S0300-9440(01)00170-9

J. W. Meissner, N. Mendes, K. C. Mendonça, and L. M. Moura, A full-scale experimental set-up for evaluating the moisture buffer effects of porous material, International Communications in Heat and Mass Transfer, vol.37, issue.9, pp.1197-1202, 2010.
DOI : 10.1016/j.icheatmasstransfer.2010.07.022

A. K. Melikov, R. Cermak, and M. Majer, Personalized ventilation: evaluation of different air terminal devices, Energy and Buildings, vol.34, issue.8, pp.829-836, 2002.
DOI : 10.1016/S0378-7788(02)00102-0

F. Miranville, Contribution à l'Etude des Parois Complexes en Physique du Bâtiment : Modélisation, Expérimentation et Validation Expérimentale de Complexes de Toitures incluant des Produits Minces Réfléchissants en climat tropical humide, Thèse, 2002.

G. Van-moeseke, E. Gratia, S. Reiter, and A. De-herde, Wind pressure distribution influence on natural ventilation for different incidences and environment densities, Energy and buildings, pp.878-889, 2005.

Y. Mualem, A conceptual model of hysteresis, Water Resources Research, vol.7, issue.4, 1974.
DOI : 10.1029/WR010i003p00514

S. Muhic and V. Butala, Effectiveness of personal ventilation system using relative decrease of tracer gas in the first minute parameter, Energy and Buildings, vol.38, issue.5, pp.534-542, 2006.
DOI : 10.1016/j.enbuild.2005.09.001

K. Nore, Hygrothermal performance of ventilated wooden cladding, 2009.

K. Nore, B. Blocken, and J. V. Thue, On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: Coupled and decoupled simulations and modelling limitations, Building and Environment, vol.45, issue.8, pp.1834-1846, 2010.
DOI : 10.1016/j.buildenv.2010.02.014

C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Towards urban-scale flow simulations using the Lattice Boltzmann method, 12 th Conference of International Building Performance Simulation Association, pp.933-940, 2011.

O. F. Osanyintola and C. J. Simonson, Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact, Energy and Buildings 38, pp.1270-1282, 2006.

T. Padfield and L. A. Jensen, Humidity buffering of building interiors by absorbent materials, 9 th Nordic Symposium on Building Physics, pp.475-482, 2011.

J. Palyvos, A survey of wind convection coefficient correlations for building envelope energy systems??? modeling, Applied Thermal Engineering, vol.28, issue.8-9, pp.801-808, 2008.
DOI : 10.1016/j.applthermaleng.2007.12.005

Z. Pasztory, P. N. Peralta, S. Molnar, and I. Peszlen, Modeling the hygrothermal performance of selected North American and comparable European wood-frame house walls, Energy and Buildings, vol.49, pp.142-147, 2012.
DOI : 10.1016/j.enbuild.2012.02.003

F. Patania, A. Gagliano, F. Nocera, A. Ferlito, and A. Galesi, Thermofluid-dynamic analysis of ventilated facades, Energy and Buildings, vol.42, issue.7, pp.1148-1155, 2010.
DOI : 10.1016/j.enbuild.2010.02.006

C. Pedersen, Combined heat and moisture transfer in building construction, 1990.

P. N. Peralta, Modelling wood moisture sorption hysteresis using the independent-domain theory, Wood and Fibre Science, vol.27, issue.3, pp.250-257, 1995.

R. Peuhkuri, C. Rode, and K. K. Hansen, Non-isothermal moisture transport through insulation materials, Building and Environment, vol.43, issue.5, pp.811-822, 2008.
DOI : 10.1016/j.buildenv.2007.01.021

A. Piot, M. Woloszyn, J. Brau, and C. Abele, Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models, Energy and Buildings, vol.43, issue.6, pp.1322-1328, 2011.
DOI : 10.1016/j.enbuild.2011.01.008

URL : https://hal.archives-ouvertes.fr/hal-01025211

A. Piot, Hygrothermique du bâtiment : expérimentation sur une maison à ossature bois en conditions climatiques naturelles et modélisation numérique, Thèse, Institut National des Sciences Appliquées de, 2009.

S. Punyasompun, J. Hirunlabh, J. Khedari, and B. Zeghmati, Investigation on the application of solar chimney for multi-storey buildings, Renewable Energy 34, pp.2545-2561, 2009.

N. M. Ramos, J. M. Delgado, and V. P. De-freitas, Influence of finishing coatings on hygroscopic moisture buffering in building elements, Construction and Building Materials, vol.24, issue.12, pp.2590-2597, 2010.
DOI : 10.1016/j.conbuildmat.2010.05.017

A. M. Rodrigues, A. Canha-da-piedade, A. Lahellec, and J. Y. Grandpeix, Modelling natural convection in a heated vertical channel for room ventilation, Building and Environment, vol.35, issue.5, pp.455-469, 2000.
DOI : 10.1016/S0360-1323(99)00027-X

S. Rouchier, H. Janssen, C. Rode, M. Woloszyn, G. Foray et al., Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete, Construction and Building Materials, vol.34, pp.54-62, 2012.
DOI : 10.1016/j.conbuildmat.2012.02.047

URL : https://hal.archives-ouvertes.fr/hal-00795457

H. Saber, W. Maref, M. C. Swinton, and C. St-onge, Thermal analysis of above-grade wall assembly with low emissivity materials and furred airspace, Building and Environment, vol.46, issue.7, pp.1403-1414, 2011.
DOI : 10.1016/j.buildenv.2011.01.009

A. Saltelli, F. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to asssessing scientific models, 2004.
DOI : 10.1002/0470870958

C. Sanjuan, J. Suárez, M. Blanco, E. , R. Heras et al., Development and experimental validation of a simulation model for open joint ventilated facades, Energy and Buildings 43, pp.3446-3456, 2011.

C. Sanjuan, J. Suárez, M. Gonzalez, M. Pistono, J. Blanco et al., Energy performance of an open-joint ventilated facade compared with a conventional sealed cavity façade, Solar Energy 85, pp.1851-1863, 2011.

C. Sanjuan, N. Sánchez, M. Del-rosario-heras, M. Blanco, and E. , Experimental analysis of natural convection in open joint ventilated fa??ades with 2D PIV, Building and Environment, vol.46, issue.11, pp.2314-2325, 2011.
DOI : 10.1016/j.buildenv.2011.05.014

M. Sankar and Y. Do, Numerical simulation of free convection heat transfer in a vertical annular cavity with discrete heating, International Communications in Heat and Mass Transfer, vol.37, issue.6, pp.600-606, 2010.
DOI : 10.1016/j.icheatmasstransfer.2010.02.009

M. Santamouris, A. Synnefa, M. Asssimakopoulos, I. Livada, K. Pavlou et al., Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation, Energy and Buildings 40, pp.1833-1843, 2008.

A. Sfakianaki, K. Pavlou, M. Santamouris, I. Livada, M. N. Assimakopoulos et al., Air tightness measurements of residential houses in Athens, Greece, Building and Environment, vol.43, issue.4, pp.398-405, 2008.
DOI : 10.1016/j.buildenv.2007.01.006

A. Sharag-eldin, A parametric model for predicting wind-induced pressures on low-rise vertical surfaces in shielded environments, Solar energy 81, pp.52-61, 2007.

C. Simonson, Energy consumption and ventilation performance of a naturally ventilated ecological house in a cold climate. Energy and buildings 37, pp.23-35, 2005.

C. Spitz, L. Mora, E. Wurtz, and A. Jay, Practical application of uncertainty analysis and sensitivity analysis on an experimental house, Energy and Buildings, 2012.

M. Steeman, M. Van-belleghem, M. De-paepe, and A. Janssens, Experimental validation and sensitivity analysis of a coupled BES?HAM model, Building and Environment 45, pp.2202-2217, 2010.

J. Straube, D. Onysko, and C. Schumacher, Methodology and Design of Field Experiments for Monitoring the Hygrothermal Performance of Wood Frame Enclosures, Journal of Building Physics, vol.26, issue.2, pp.123-151, 2002.
DOI : 10.1177/0075424202026002098

K. Svennberg, K. Lengsfeld, L. Harderup, and A. Holm, Previous Experimental Studies and Field Measurements on Moisture Buffering by Indoor Surface Materials, Previous Experimental Studies and Field Measurements on Moisture Buffering by Indoor Surface Materials, pp.261-274, 2007.
DOI : 10.1177/1744259107073221

M. V. Swami and S. Chandra, Correlations for pressure distribution on buildings and calculation of natural ventilation airflows, ASHRAE transactions, vol.94, pp.243-266, 1988.

P. Talukdar, S. O. Olutmayin, O. F. Osanyintola, and C. J. Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data, International Journal of Heat and Mass Transfer, vol.50, issue.23-24, pp.4527-4539, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2007.03.026

D. J. Tanner, A. C. Cleland, T. Robertson, and L. U. Opara, PH???Postharvest Technology, Journal of Agricultural Engineering Research, vol.77, issue.4, pp.409-417, 2000.
DOI : 10.1006/jaer.2000.0626

F. Tariku, K. Kumaran, and P. Fazio, Integrated analysis of whole building heat, air and moisture transfer, International Journal of Heat and Mass Transfer, vol.53, issue.15-16, pp.3111-3120, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.03.016

I. Traoré, D. Lacroix, L. Trovalet, and G. Jeandel, Heat and moisture transport in wooden multi-composite panels, Dynamic study of the air layer impact on the building envelope energetic behaviour, International Journal of Thermal Sciences, vol.50, pp.2290-2303, 2011.

C. Tremblay, A. Cloutier, and Y. Fortin, Determination of the effective water conductivity of red pine sapwood, Wood Science and Technology, vol.34, issue.2, pp.109-124, 2000.
DOI : 10.1007/s002260000036

Y. Uematsu and N. Isyumov, Wind pressures acting on low-rise buildings, Journal of Wind Engineering and Industrial Aerodynamics, vol.82, issue.1-3, pp.1-25, 1999.
DOI : 10.1016/S0167-6105(99)00036-7

S. Vera, P. Fazio, and J. Rao, Experimental set-up and initial results of moisture transport through horizontal openings, 8th Symposium on building physics in the Nordic countries, pp.393-400, 2008.

J. Vinha, Hygrothermal performance of timber-framed external walls in Finnish climatic conditions: a method for determining the sufficient water vapour resistance of the interior lining of a wall assembly, 2007.

X. Yang, P. Fazio, H. Ge, and J. Rao, Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation, Building and Environment, vol.47, pp.47188-196, 2012.
DOI : 10.1016/j.buildenv.2011.07.025

X. Yang, S. Vera, J. Rao, H. Ge, and P. Fazio, Full-scale experimental investigation of moisture buffering effect and indoor moisture distribution, Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings (Building X Conference, 2007.

T. Yilmaz and S. M. Fraser, Turbulent natural convection in a vertical parallel-plate channel with asymmetric heating, International Journal of Heat and Mass Transfer, vol.50, issue.13-14, pp.2612-2623, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.11.027

H. Yoshino, T. Mitamura, and K. Hasegawa, Moisture buffering and effect of ventilation rate and volume rate of hygrothermal materials in a single room under steady state exterior conditions, Building and Environment, vol.44, issue.7, pp.1418-1425, 2009.
DOI : 10.1016/j.buildenv.2008.09.007

W. L. Wilson, D. J. Sherman, and M. H. , A comparison of the power law to quadratic formulations for air infiltration calculations, Energy and Buildings, vol.27, pp.293-299, 1998.

P. Wolkoff and S. K. Kjaergaard, The dichotomy of relative humidity on indoor air quality, Environment international 33, pp.850-857, 2007.

M. Woloszyn, T. Kalamees, M. O. Abadie, M. Steeman, and A. S. Kalagasidis, The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings, Building and Environment 44, pp.515-524, 2009.

M. Woloszyn and C. Rode, Annex 41 whole building heat, air, moisture response -Modelling principles and common exercises, 2008.

M. Woloszyn and C. Rode, Tools for performance simulation of heat, air and moisture conditions of whole buildings, Building Simulation: an international journal, pp.5-24, 2008.

R. R. Zarr, D. M. Burch, and A. H. Fanney, Heat and moisture transfer in wood-based wall construction: measured versus predicted, 1995.
DOI : 10.6028/NIST.BSS.173

G. Ziskind, V. Dubovsky, and R. Letan, Ventilation by natural convection of a one-story building, Energy and Buildings, vol.34, issue.1, pp.91-102, 2002.
DOI : 10.1016/S0378-7788(01)00080-9

%. Sur-le-débit-horaire, Cependant, les écarts deviennent très importants pour la séquence 10 (277 % sur le temps de décroissance, 71 % sur le débit horaire) Cela provient du fait que les conditions extérieures étaient très différentes lors de cette séquence particulière (vent fort). La faible fréquence d

. Dans-le-cas-particulier-de-la-ouate-de-cellulose, utilisée ici comme isolant, il a été mis en évidence lors de sa mise en oeuvre que ce matériau n'était pas homogène, ce qui pouvait se traduire par de fortes variations de ses propriétés thermo-hygriques. Par contre, l'épaisseur de la couche du matériau est mieux maîtrisée. Aussi, il semble raisonnable d'utiliser une valeur de la conductivité thermique de la ouate de cellulose différente de celle de la mesure faite en laboratoire pour chercher à s'approcher des mesures expérimentales

. Ecole-doctorale:-mega-(-mécanique, G. Energétique, and . Civil, Acoustique) Spécialité : Génie Civil RESUME : L'évolution actuelle des exigences en termes de performance énergétique des bâtiments a fait apparaître de nouveaux enjeux et problématiques scientifiques, dont ceux liés à l'humidité. Cette étude s'appuie sur une cellule expérimentale construite sur la technologie des maisons à ossature bois et soumise aux conditions climatiques réelles de Grenoble. L'instrumentation de ce bâtiment et le suivi de l'évolution en température et en humidité

H. Dans-cet-objectif,-un-modèle-existant-nommé, La démarche de validation a été décomposée en plusieurs étapes, de manière à cibler des transferts spécifiques et d'en améliorer la modélisation Ces études localisées concernent les transferts couplés de chaleur et de masse à travers les parois solides, la modélisation des transferts de chaleur à travers une lame d'air ventilée et enfin la modélisation du renouvellement de l'air intérieur en conditions naturelles. Pour estimer la précision globale du modèle, c'est-à-dire à l'échelle du bâtiment, une séquence expérimentale a été simulée en prenant en compte l'ensemble des transferts couplés simultanément. Les performances du modèle sont discutées à partir des mesures locales, c'est-à-dire dans les parois, puis globales. La bonne concordance entre mesures et résultats de simulation permet de conclure sur la validité et la généricité de la démarche mise en oeuvre et les hypothèses de simulation. Plus particulièrement, il est apparu que l'outil de modélisation permet de prédire