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ISSUE AND OBJECTIVES

Global issue: noise annoyances prevention and abatement
o health and societal impact of noise

o legislative and regulation framework

LCPC research topic: predicting the noise level in urban environment

o sound propagation modelling in urban area




ISSUE AND OBJECTIVES

@ street = « opened » waveguide
= steady-state phenomena, acoustic « leaks » by the open-tops
o frontages morphology
= diffuse reflections, edge diffraction, absorption
o long distance propagation
= atmospheric effects, ground effects, « unusual » micrometeorological conditions
o temporal variations

[1] [2]

= moving/time varying noise sources' ', micrometeorological conditions fluctutations

esis objective: sound propagation modelling in urban area

e development of a specific time-domain numerical model

= TLM method (Transmission Line Modelling)

@ [1] A. Can. Représentation du trafic et caractérisation dynamique du bruit en miliew urbain. PhD Thesis, Lyon, 2008

@ [2] F. Junker et al.. M ical classification for envi  acoustics - Practical implications due to experimental accuracy and

uncertainty. ICA, Madrid (Espagne), 2007
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E AND OBJECTIVES

urban noise: a complex issue

e street = « opened » waveguide
= steady-state phenomena, acoustic « leaks » by the open-tops
e frontages morphology
=> diffuse reflections, edge diffraction, absorption
e Jong distance propagation
= atmospheric effects, ground effects, « unusual » micrometeorological conditions
e temporal variations
[1]

[2

= moving/time varying noise sources' -, micrometeorological conditions fluctutations

propagation mode urban area

o development of a specific time-domain numerical model
= TLM method (Transmission Line Modelling)

@ [1] A. Can. Représentation du trafic et caractérisation dynamique du
@ [2] F. Junker et al.. Meteorc

uncertainty. ICA, Madrid (Espagne), 2007

en milieu urbain. PhD Thesis, Lyon, 2008,

lassification for environmental acoustics - Practical implications due to experimental accuracy and
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TLM METHOD PRINCIPLE
HOMOGENEOUS AND NON-DISSIPATIVE ATMOSPHERE MODELLING
TLM METHOD OOH R0 RORD N o - NG
HETEROGENEOUS AND DISSIPATIVE ATMOSPHERE MODELLING

BOUND. CONDITION: PRESSURE REFLECTION COEFFICIENT

ANALOGY WITH THE WAVE EQUATION
NUMERIC ERIFICATIONS

ND CONCLUSIONS

HUYGENS principle (1690)

A wavefront can be broken down into

a set of secondary sources that ¢
radiate spherical wavelets of identical . CERERTta) g
. Source:
frequency, amplitude and phase. S
\\ - Wavelet

Numerical adaptation in electromagnetism!!!

o The secondary sources are assimilated to nodes.

o The « diffusion » of the field between nodes is performed by means of transmission lines
in term of pulses.

@ [1] P.B. Johns and R.L. Beurle. Numerical solution of two dimensional scattering problems using a transmission line matrix. Proc. IEE. 118(9).
1971
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© TLM METHOD

@ Homogeneous and non-dissipative atmosphere modelling
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TLM METHOD

NUMERICAL VERIFICATIONS AND CONCLUSIONS

@ Nodal reflection and transmission coefficients:
Zr =71
> > R=—"——,R<0
Zr + 71,
4 T-14+r= 2
—_ = =
7 > Zr+ 27,
Zr : impedance of the termination
a p .7 Zy, : impedance of the incident transmission line
— — —_ 1 —
Incident pulse Scattered pulses from the node (here, Zp=Zand Zy=Z7/3,50 R=— 2 and 7=
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HETEROGENEOUS AND DISSIPATIVE ATMOSPHERE MODELLING
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Simple case in 2D

@ Nodal reflection and transmission coefficients:

TLM METHOD

Zr — Z,
> ) R=T"" <o
Zr + 71,
4 T=1+R Zr
— O = = —
v > Zr 4+ 7

Zr : impedance of the termination
Zy, : impedance of the incident transmission line

Y

Incident pulse Scattered pulses from the node

General case in 2D

@ Matrix relation: ;S =D x /I

(here, Zy=Zand Zp=Z /3,50 R=— % and 7= %)

T
where 712{111711272‘1’3”14} )

T

1 1 2 o3 o4
S=[i8",i52,8%,:8%]

R T T T

_ T R T T

and D=| - -~ » -

T T T R

v
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on lines network = ¢

1 _ 2
+ad () = S _1) 9

S22
(i—1,)
i—1,j > @ i)
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TLM METHOD PRINCIPLE
HOMOGENEOUS AND NON-DISSIPATIVE ATMOSPHERE MODELLING
TLM METHOD 5 N .
HETEROGENEOUS AND DISSIPATIVE ATMOSPHERE MODELLING
BOUNDARY CONDITION: PRE:! REFLECTION COEFFICIENT

Diffusion in the tra
1 Q2
el gy =181

2 1
+ad Gy =S (i)

ENAEL GUILLAUME




TLM METHOD PRINCIPLE

HOMOGENEOUS AND NON-DISSIPATIVE ATMOSPHERE MODELLING
HETEROGENEOUS AND DISSIPATIVE ATMOSPHERE MODELLING
BOUND. CONDITION: PRESSURE REFLECTION COEFFICIENT
ANALOGY WITH THE WAVE EQUATION

NUMERIC ERIFICATIONS AND CONCLUSIONS

TLM METHOD

1 2
ad ) = SG -1
12 _ Sl
A (i) T 19 (i+1,))

3 4
mrad Gy =18 i)
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1 2
rhad () = S G-1))

4
AL )

p————
R
&
o
g

2 1
+ad Gy =S (i)

3 4
mrad Gy =18 i)

4 3
o Gy =S4
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1 2
rhad () = S G-1))

2 1 ’1(4",/')
+ad Gy =S (i)

2
i)

3 4
mrad Gy =18 i)

4 3
o Gy =S4
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TLM METHOD

Heterogeneous propagation medium elling

addition of an open-circuited branch, of impedance Z /7,
to the nodal original configuration to introduce
refraction and turbulence where the parameter 7 is
calculated by!!l:

N, = _f% )
o iCeff (i) 7

where  ceff, ) = 4 wn T Wy -

@ [1] G. Dutilleux. Applicability of TLM to wind turbine noise prediction, 2" Int. Meeting on Wind Turbine Noise, Lyon (France), 2007
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NUMERIC ERIFICATIONS AND CONCLUSIONS

TLM METHOD

ative propagation medium Iling (

addition of an anechoic terminated branch, of
impedance Z /¢, to the original nodal configuration
where the attenuation factor ¢ is defined by!!':

a0
Sapy = \/7’(1/) A= q

with @ = f (T,Pg,H) the atmospheric absorption
coefficient (expressed in dB.m™!) and Al the spatial step
(in m).

@ [1] J. Hofmann and K. Heutschi. Numerical si ion of sound wave | with sound absorption in time domain. Appl. Acoust.. 68(2)

2007
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TLM METHOD

T
where Ly =[5, 1% 135 0% %]
5

y T
ts(i,j) - {/Sl ; 1S-§ 1S3; 1S4; ,S } )

and 1D(i,j)

i.j) +,C(,,,-) +1) and b My [ S

with ag,) ===, ) W = Ty )
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Heterogeneous and
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o Matrix relation: ,

T
) T
Sapy =S5 8% 875487, ] .
all1q
2 lalln
and D) = 2 L 1Talnl
My o 411140
A RER IR IS B AP
Mgy , Sai N Ciy
with Aepy =~ %4,%4,1 and lb(i,j) = G (ZJ) ! (2,1) 12

: . 5 _
@ Connexion laws: ""A’I(id) = ,S(,.’j)




)D PRINCIPLE
S AND NON-DISSIPATIVE ATMOSPHERE MODELL
HETEROGENEOUS AND D! ATIVE ATMOSPHERE MODELLING
BOUNDARY CONDITION: St REFLECTION COEFFICIENT

TLM METHOD

ANALOGY WITH THE WAVE EQUATION
NUMERICAL VERIFICATIONS AND CONCLUSIONS

Heterogeneous and dissipative p:

o Matrix relation: ,S; ) = D ;) X L),

T
where /I(ixj):{/1”112;113?114;115} ,

y T
ts(i,j) - {/Sl ; 152§ 1S3; 1S4; zss} )

1 2
al117
2 lalln
and Diy=—"—-""-—|11aln|
My o 411140
A RER IR IS B AP
] _ My | S _ My S
with Ay == T + T +1 and lb(i,.i) =— — T +2

g 5 5
° 8 . .
Connexion laws '+Al1(;,,) ,S(,’/)

4
o — 2 5
o Nodal pressure: ,p(; jy = iy Fan T nZ::l ,I(’;J) + M4 ’I(iJ)

v
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@ Boundary condition: pressure reflection coefficient
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TLM METHOD

ure reflection coefficient

o Example: node (i, /) located at the vicinity of a west side wall defined by a pressure
reflection coefficient Ry

wadfyy = RixiSgy,
wadfy = Siy)
wadly = Sl
wad(y = St

Alj2

o Relation between the pressure reflection coefficient Ry and the absorption coefficient in
energy o

a;=1-— ‘R1|2




ATMOSPHERE MODELLING
MODELLING

LM METHOD PRINCIPLE
%

HETEROGENEOUS AND DISSIPATIVE ATMOSPHE
ESSURE REFLECTION COEFFICIENT

1OMOGENEOUS AND NON-DISSIPA’

TLM METHOD
BOUNDARY CONDITION: PR
ANALOGY WITH THE WAVE EQUATION

S AND CONCLUSIONS

NUMERICAL VERIFICATIO!

© TLM METHOD

@ Analogy with the wave equation
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TLM METHOD

y with the wave equatio

ENAEL GUILLAUME



TLM METHOD PRINCIPLE
TLM METHOD Ilu\lm:l.jl,m,\ §\m V(\V:MR\‘IP\! IVE ATMOSPHERE MODE 1_1:[\4«;

HETEROGENEOUS AND DISSIPATIVE ATMOSPHERE MODELLING

BOUNDAR DITION: PRESSURE REFLECTION COEFFICIENT

ANALOGY WITH THE WAVE EQUATION

NUMERICAL VERIFICATIONS AND CONCLUSIONS

nalogy
o Combination of the matrix relation, the connexion laws and the nodal pressure definition:

b (i) 9P (i j)

M) T4AE P @) =28 ) Fioal () oy DLl () ~ —al () _
AL 500 AR 2 At

2 A2
P (i+1) — 24P (i) TP (i—1,) B P (ij+1) = 2.P (ij) TP (ij—1)
AR AP
5P (i)

P (i.j)
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nalogy
o Combination of the matrix relation, the connexion laws and the nodal pressure definition:

B i) A (i,j)
M) T4AE P @) =28 ) Fioal () oy DLl () ~ —al () _
2 AR AP ) AR 2 At
D (i+17) — 24P (i) TP (i—1,) 4 PGy = 2.0 (ij) TP (1,j—1)
AR A2
%L (i j) AP (i.j)

o Helmbholtz equation in a heterogeneous and dissipative medium:
2
w w( (i) Al
A+ ———j—==||PiHn=0 c=—
2 TN @) At

CTLM




)D PRINCIPLE
TLM METHOD DUS AND NON-DISSIPATIVE ATMOSPHERE MODELLING
SURE REFLECTION COEFFICIENT
EQUATION
NUMERICAL VERIFICATIONS AND CONCLUSIONS

alogy with the wave

o Combination of the matrix relation, the connexion laws and the nodal pressure definition:

B i) A (i,j)
M) T4AE P @) =28 ) Fioal () oy DLl () ~ —al () _
2 AR AP ) AR 2 At
D (i+17) — 24P (i) TP (i—1,) 4 PGy = 2.0 (ij) TP (1,j—1)
AR A2
%L (i j) AP (i.j)

o Helmbholtz equation in a heterogeneous and dissipative medium:

wz WC o5 Al
A+ (5= =) | Py =0, c==
@ cAl At
@ Celerity correction:
2 i) +4
Chm — 4/ ———¢ = = 7'7](1‘]) (o)
Miy) T4 2
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@ Numerical verifications and conclusions
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TLM METHOD

Room acoustics applications

25 T T T T
* TLM
—%-Sabine
2 —+—Eyring
SPPS (diffuse)
~ 15 *
=z
o
=1 ¥
O‘X
e s
o ‘ T ===
0 0.2 04 06 08
@
Figure: Eigenmode (2, 1) of a 2D room with perfectly Figure: Reverberation time of a 3D room
reflecting walls e dimensions: (5m X 4m X 3 m)
e dimensions: (6.75m X 5.23 m) o discretization: Al = 5cmand Ar =8 x 107 s
o discretization: Al = 16 cm and Ar = 0.3 ms e gaussian pulse source frequency: 500 Hz

e sinusoidal source frequency: 60.5 Hz
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TLM METHOD

« Open-space » applicatio;

°R
Ss 10
H_Yi IHR ""‘N\ oo
o ™. il
T
~ " /7
o -10
@ Hi=1m,H, =2mandx, =20m 3 /
. 3 -20
o perfectly reflective ground j
@ discretization: Al = 2 cm and -30 > s
Ar=4.1x10"5g ‘ Analytical
-40
@ gaussian pulse source frequency: 1500 Hz =00 Heq&gggy (Hz)1500 2000
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HOMOGENEOUS ) NON-DISSIPATIVE ATMOSPHERE MODELLING
AND DISSIPATIVE ATMOSPHERE MODELLING
SL REFLECTION COEFFICIENT

TLM METHOD

Literature study

o few developments

o few validations sometimes limited or even arguable
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TLM METHOD IERE MODELLING

Literature study

o few developments
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v
Thesis contributions

o analytical formulation of a TLM model combining most of the propagative phenomena

o achievement of a generic 2D/3D formulation and numerical implementation

o rigorous validation of the model for academic cases
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OMOGENEOL NON-DIS \ S RE MODELLING
TLM METHOD HOMOGENS {ERE MODELLINC
HETEROG A E MODELLING

Bo EFLECTION COEFFICIENT

ANALOGY WITH THE WAVE EQUATION
NUMERICAL VERIFICA

Literature study

o few developments

o few validations sometimes limited or even arguable

Thesis contributions

o analytical formulation of a TLM model combining most of the propagative phenomena
o achievement of a generic 2D/3D formulation and numerical implementation

o rigorous validation of the model for academic cases

Main limitations of the model

@ no relevant virtual boundary condition formulation in TLM for acoustic modelling

@ no realistic boundaries conditions

A\
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CLASSICAL FORMULATION

] IMPEDANCE REPRESENTATION
BOUNDARY CONDITION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

© IMPEDANCE BOUNDARY CONDITION
@ Classical formulation
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CLASSICAL FORMULATION

. ] IMPEDANCE REPR
IMPEDANCE BOUNDARY CONDITION

ENTATION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERIC

AL VALIDATION

edance boundary

o in the frequency domain:

o in the time domain:

“+oo
Py O =20 2wy 0= [z

— 00

where z (1) = §~! [Z (w)]




CLASSICAL FORMULATION
IMPEDANCE REPRESENTATION
T'LM IMPEDANCE BOUND.
NUMERICAL VALIDATION

IMPEDANCE BOUNDARY C(

Y CONDITION FORMULATION

Classical impedance boundary ¢

dition formulation:
o in the frequency domain:

Py (W) =Z(w) X Va, (w)
o in the time domain:

“+oo
Py 0 =20 vy ) = |

— 00

() X g (1= )
where z (1) = §~! [Z (w)]

Necessary conditions to transpose Z (w) in the time domain:!!

o causality
@ passivity

o reality

@ [1] S.W. Rienstra. Impedance models in time domain including the extended Helmholtz resonator model. 12"
Massachusetts (USA), 2006.

IAA/CEAS Conf

Cambridge
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CLASSICAL FORMULATION
! . IMPEDANCE REPRESENTATION
IMPEDANCE BOUNDARY C( =
T'LM IMPEDANCE BOUND.

Y CONDITION FORMULATION
NUMERICAL VALIDATION

Classical impedance boundary condition formulation:

@ in the frequency domain:

Py () =Z(w) X Vi, ()
o in the time domain:

“+oo
Py (1) = 2(1) x vy (1) = /_ 2(1) X vngy (1 =1') dt’
where z (1) = §~! [Z (w)]

Necessary conditions to transpose Z (w) in the time domain:!!)

o causality
@ passivity
o reality
@ [1] S.W. Rienstra. Impedance models in time domain including the extended Helmholtz resonator model. 12"
Massachusetts (USA), 2006

IAA/CEAS Conf., Cambridge
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CLASSICAL FORMULATION
IMPEDANCE REPRESENTATION
T'LM IMPEDANCE BOUND.
NUMERICAL VALIDATION

IMPEDANCE BOUNDARY C(

Y CONDITION FORMULATION

Classical impedance boundary condition formulation:

o in the frequency domain:

Py (W) =Z(w) X Vi, (w)
o in the time domain:

“+oo
Py (0) =2(1) * vag, (1) = L z (1) x Vn(p) (t—1)ar
where z (f) = ! [Z (w)]

Necessary conditions to transpose Z (w) in the time domain:!!

o causality
@ passivity

o reality

@ [1] S.W. Rienstra. Impedance models in time domain including the extended Helmholtz resonator model. 12" AIAA/CEAS (
Massachusetts (USA), 2006

Cambridge
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CLASSICAL FORMULATION

IMPEDA] REPRESENTAT]

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

IMPEDANCE BOUNDARY CONDITION

© IMPEDANCE BOUNDARY CONDITION

o Impedance representation
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CLASSICAL FORMULATION

IMPEDANCE REPRESENTATION

TLM IMPEDANCE BOUND. CONDITION FORMULATION
NUMERICAL VALIDATION

IMPEDANCE BOUNDARY C(

where )\ are real poles (A\y > 0)
o in the time domain (sum of K impulse responses):
K
Z (t) = Z Akei/\ktH (l)
k=1

where H () is the HEAVISIDE function

@ [1] Y. Reymen et al.. Time-domain impedance formulation based on recursive convolution. 12" AIAA/CEAS Conf., Cambridge, Massachusetts

(USA), 2006
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CLASSICAL FORMULATION

v L REPRESENTATION
IMPEDANCE BOUNDARY CONDITION N )
DANCE BOUNDARY CONDITION FORMULATION

ZWIKKER and KOSTEN impedance model app

o Model expression:

2
1+ jwr Pty .
Z (W) = Zoo 7]1‘]7_ where 7= RsQY a time constant
and Zoo = po;zoq the impedance at the limit w7 — oo

o Transposition in the time domain'*:
1 _
2(t) =Zoo |0 (t) + —f ()| where 7=1t/T
T

o Impulse response approximation f (t):

7 - - K
L eT? 7 7 i} N
f(t): L =)+ = H(l): g Are AH(f)
2 2 2
k=1
@ [1] C. Zwikker and C. W. Kosten. Sound absorbing materials. Elsevier Ed., New York, 1949
@ [2] V. E. Ostashev et al. Padé approximation in time-domain boundary conditions of porous surfaces. JASA, 122(1), 2007
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CLASSICAL FORMULATION

. ] IMPEDANCE REPRESENTATION
IMPEDANCE BOUNDARY CONDITION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

© IMPEDANCE BOUNDARY CONDITION

o TLM impedance boundary condition formulation
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CLASSICAL FORMULATION

IMPEDANCE REPRESENTATION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

IMPEDANCE BOUNDARY C(

K
p(mAL) =Z' | vy (mAt) + Z Ay (mAr)
k=1

where the accumulators v are given by (=- recursive convolution method)

(1 _ o MAT ) ,
e (mA0) = v (mA) S + e MA Yy ((m — 1) Ar)

o ZWIKKER and KOSTEN model: Z’ = Zoo, A} = Ag and Ar' = At

o MikI model®: Z’ = Z, A, = F( b ) and At = At

(=)

[1]1 Y. Reymen et al. Time-domain impedance formulation based on recursive convolution.
(USA), 2006.

12" AIAA/CEAS Conf., Cambridge, Massachusetts

[=)

[2] B. Cotté Propagation acoustique en milieu extérieur complexe: problémes spécifiques au ferroviaire dans le contexte des trains a grande

vitesse. PhD Thesis, LMFA, Ecole Centrale de Lyon (France), 2008
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CLASSICAL FORMULATION

IMPEDANCE RE

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

IMPEDANCE BOUNDARY CONDITION

o Introduction of a virtual node
@ Boundary pressure definition: 1
At 3 a Al/2
P <’+ 7) =8y T e8G-n

o Normal particle velocity:

S3. . — St
v <,+g> ) B (V)
poC

Al/2

2




CLASSICAL FORMULATION
CE BOUNDARY C( LDTITRY(EL HON

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION

NUMERICAL VALIDATION

M model matching
o Scattered pulse from the virtual node:

K

—1+ Ay VA _ ’
4 — } : A Ar
tms(i,j—l) 7’1115’(“]) |: 1+A :| 1+A o k t,y,fAtwk

4 7)\kAr

VA
here Ay=—1[1+ Al
W = Z e

o Accumulators:

<1m—A1S3 (i7j) —

PoC

4 (s — A
_AST(i,j—1 1 —e M _ /
S*( )) Fe A

—At"f’k = N

ENAEL GUILLAUME
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CLASSICAL FORMULATION

IMPEDANCE REPRESENTATION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
UMERICAL VALIDATION

IMPEDANCE BOUNDARY CONDITION

© IMPEDANCE BOUNDARY CONDITION

@ Numerical validation
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IMPEDANCE BOUNDARY CONDITION

Heterogeneous plane ground: ZWIKKER and KO

SR
Seo
H
H] K
(Rg, - q1.€21) (Rs,» 42, 2)
D
—_—

R
@ Hi=1m,H, =2mandx, =20m
o discontinuity at x;, = 10 m from the source
@ Ry, =10 kN.s.m®, g1 =+/3.5and Q; = 0.2
o Rs, = 100 kN.s.m™, g, = /10 and 2, = 0.5

CLASSICAL FORMULATION
IMPEDANCE REPRESENTATION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

edance model

3
° TLM
2 —— Analytical Zzx
« Analytical Zoppron
—
m
T f/—u,
§ “ o000
3 0
<
-1

500 1000 1500
Frequency (Hz)

2000
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IMPEDANCE BOUNDARY CONDITION

CLASSICAL FORMULATION
IMPEDANCE REPRESENTATION

TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

Heterogeneous plane ground: MIKI impedance model

oR
Se
H
i3
H
®s,) ®s,)
*D
—

R
@ Hi=1m,H, =2mandx; =20m
o discontinuity at x,, = 10 m from the source
® Ry, = 10kN.s.m*
o Rg, = 1000 kN.s.m™

B
-15 A

£ o TLM
-20 . —— Analytical Zpgips

H - Analytical Zoppros
2 500 1000 1500 2000

Frequency (Hz)
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TLM ABSORBING CONDITIONS RE
PROPOSED TLM A

VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

© VIRTUAL BOUNDARY CONDITION
o TLM absorbing conditions review
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TLM ABSORBING CONDITIONS REVIEW
PROPOSED TLM ABSORBING LAYERS FORMULATION

JAL BOUNDARY CONDITION NUMERICAL VALIDATION

@ [1] S. El-Masri et al.. Vocal tract acoustics using the transmission line matrix (TLM). ICSLP, Philadelphia (USA), 1996,

@ [2]J. Hofmann and K. Heutschi. Numerical si ion of sound wave ion with sound absorption in time domain. Appl. Acoust., 200

@ 3] D. De Cogan et al.. Transmission Line Matrix in Computational Mechanics. CRC Press. 2005
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TLM ABSORBING CONDITIONS REVIE
PROPOSED TLM A
VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

Absorbing boundaries: application of a « non-reflective »
termination

o definition of the pressure field on the limit by a TAYLOR
series expansion!!!

@ application of a purely real impedance condition!?!

@ [1] S. El-Masri et al.. Vocal tract acoustics using the transmission line matrix (TLM). ICSLP, Philadelphia (USA), 1996,

@ [2]J. Hofmann and K. Heutschi. Numerical simulation of sound wave propagation with sound absorption in time domain. Appl. Acoust.. 2007

@ [3] D. De Cogan et al.. Transmission Line Matrix in Computational Mechanics. CRC Press, 2005
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TLM ABSORBING CONDITIONS REVIE
PROPOSED TLM ABSOR RS FORMULATION
VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

Absorbing boundaries: application of a « non-reflective »
termination

o definition of the pressure field on the limit by a TAYLOR
series expansion!!!

@ application of a purely real impedance condition!?!

o Perfectly Matched Layers (PML)?

v

@ [1] S. El-Masri et al.. Vocal tract acoustics using the transmission line matrix (TLM). ICSLP, Philadelphia (USA), 1996,

@ [2]J. Hofmann and K. Heutschi. Numerical simulation of sound wave propagation with sound absorption in time domain. Appl. Acoust.. 2007

@ [3] D. De Cogan et al.. Transmission Line Matrix in Computational Mechanics. CRC Press, 2005
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TLM ABSORBING CONDITIONS REVIE
PROPOSED TLM ABSOR RS FORMULATION
VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

Absorbing boundaries: application of a « non-reflective »
termination

o definition of the pressure field on the limit by a TAYLOR
series expansion!!!

@ application of a purely real impedance condition!?!

o Perfectly Matched Layers (PML)?

@ modification of the whole connexion laws for the nodes
located inside the layer

v

@ [1] S. El-Masri et al.. Vocal tract acoustics using the transmission line matrix (TLM). ICSLP, Philadelphia (USA). 1996,

@ [2]J. Hofmann and K. Heutschi. Numerical simulation of sound wave propagation with sound absorption in time domain. Appl. Acoust.. 2007

@ [3] D. De Cogan et al.. Transmission Line Matrix in Computational Mechanics. CRC Press, 2005
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PROPOSED TLM ABSORBING LAYERS FORMULATION

VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

© VIRTUAL BOUNDARY CONDITION

@ Proposed TLM absorbing layers formulation
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TLM ABSORBING CONDITIONS REVIEW
PROPOSED TLM ABSORBING LAYERS FORMULATION

VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

DE COGAN et al. formulation
mad(y =Faj) XSGy
t+A11(2i,j) =F ) X ’SéiJrl‘./’)
1+Ar1(3,-1/-) =F ) x /S?r,ffl)

4 o3
mradiy =Fa g XSG00




TLM ABSORBING CONDITION IEW
PROPOSED TLM ABSORBING RS FORMULATION
VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

Proposed absorbing layers formulation

@ modification of the connexion law only for
the incident pulse propagating in the
direction of the computational domain
limit

DE COGAN et al. formulation Proposed formulation
1 2 1 2
1+A11(,‘,j) =Fqj X rS(f,l‘j) 1+A/I(iJ) =F@j x ’S(i*h/’)
2 J 2 1
+ad(y =Fig X S oy =S (it1)
3 4 3 4
’+A’](fJ) =F;j X ,b<’._i71) r+Atl(iJ) = fs(i,_/fl)

4 2 4 3
rady =Fap XS 40 mad iy =400

GWENAEL GUILLAUME 37



TLM ABS! NG CONDITIONS

PROPOSED TLM ABSORBING LAYERS FORMULATION

VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

an absorbing layer of thickne:

=1 atthe interface

F (d(iy jy) = 0)
on the limit, e € ]0, 1]

Looking for a function such as: {
Flda j) = ea

2
— (dgiy) —ea)

)=e

F(d(ig)) =(l+e)fexp B
AN e?
=zt and B = — AL

withe,, = A7

NAEL GUILLAUME 8



TLM AE ING CONDITIO!
PROPOSED TLM ABSORBING IULATION

VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

© VIRTUAL BOUNDARY CONDITION

@ Numerical validation
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TLM ABSORBING CONDITIONS REVIEW
PROPOSED TLM ABSORBING LAY FORMULATION
UAL BOUNDARY CONDITION NUMERICAL VALIDATION

Comparison of the virtual boundary conditions efficiency

T
E Ipff (x7y7t) 7p(x7y»t)‘2
error (x,y) = 101og,; =2

T

2
2 1P (x5, 7)]
t=!

Figure: Computational domain
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TLM ABSORBING CONDITIONS REVIEW
PROPOSED TLM ABSORBING LAY FORMULATION
UAL BOUNDARY CONDITION NUMERICAL VALIDATION

Comparison of the virtual boundary conditions efficiency

T
E Iprf (x,y,t) *P(X,)% t)|2
error (x,y) = 101og,; =2

T
Z() [P (Xv)’vt)'z
=

Figure: Free-field computation
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IEW
FORMULATION

VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

arison of the virtual boundary conditions efficiency

T
E |pﬁ(x,y,t)fp 7y:t)|2

error (x,y) = 101og,; =2

T
2
ZO |pff (%, y,1)|
1=

Figure: Virtual free-field computation
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IEW
FORMULATION
VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

arison of the virtual boundary conditions efficiency

T
E Ipff (x7y7t) 7p(x7y»t)‘2
error (x,y) = 101og,; =2

T

2
2 1P (x5, 7)]
t=!

hgurc: virtual boundary conditions e imency
(AL:Nx,, =Sande=107")

Figure: Virtual free-field computation
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TLM ABSORBING CONDITIONS REVIEW
PROPOSED TLM ABSORBING LAYERS FORMULATION
VIRTUAL BOUNDARY CONDITION NUMERICAL VALIDATION

Urban applicati

Figure: Street section Figure: Sound levels along the receivers axis
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CONCLUSION
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IONS AND OUTLOOK

© CONCLUSIONS AND OUTLOOK
@ Conclusion
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CONCLUSION
¢

AN APPLICATION EXAMPLES
OUTLOOK
CONCLUSIONS AND OUTLOOK

o analytical formulation and numerical implementation of a 2D/3D TLM model integrating
most of the propagative phenomena
@ improvement of the method

o matched impedance boundary condition formulation
o new formulation of absorbing layers

o validation of the model by comparison with analytical and numerical solutions in
academic cases (room acoustics, outdoor sound propagation)
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CONCLUSIONS AND OUTLOOK

© CONCLUSIONS AND OUTLOOK

o Urban application examples
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URBAN APPLICATION EXAMPLES
OUTLOOK

ONCLUSIONS AND OUTLOOK

Parallel streets geometry (quiet street)

20m 8m 6m, 8m 20m

Y
A
Y
A
Y
A
Y
A
Y

29m

Source

Figure: Gaussian pulse propagation
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CONCLUSIONS AND OUTLOOK

Urban noise barriers

18 2 2 2 » =

Figure: Without barrier

45
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Figure: Perfectly reflective L-shaped barrier

CONCLUSION
URBAN APPLICATION EXAMPLES
OUTLOOEK

E
Figure: Green flat barrier

" om 2 # » =
Figure: Green L-shaped barrier
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© CONCLUSIONS AND OUTLOOK

@ Outlook
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CONCLUSIONS AND OUTLOOK

Outlook concerning our contribution

o thickness consideration in the impedance boundary condition
= coefficients identification in the frequency domain

o rigorous PML formulation for TLM in acoustics
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3 ICATION EXAMPLES
OUTLOOK
IONS AND OUTLOOK

Outlook concerning our contribution

o thickness consideration in the impedance boundary condition
= coefficients identification in the frequency domain

o rigorous PML formulation for TLM in acoustics

V.

Outlook concerning the TLM model

o atmospheric attenuation frequency dependency
= digital filters!"!

o sound transmission
= transmission coefficient
= wall acoustic propagation modelling
o tetrahedral 3D mesh!?!
= 3D simulations with 2D cartesian simulations computational burden

@ numerical scheme analysis

y

@ [1] T. Tsuchiya. Numerical simulation of sound wave propagation with sound absorption in time domain. 13" Int. Cong. Sound Vib., Vienne
2006

@ [2] S.J. Miklavcic and J. Ericsson Practical impl ion of the 3D tetrahedral TLM method and visualization of room acoustics. ITN Resarch

t ISSN, 2004
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Outlook in terms of validation

@ micrometeorological conditions implementation

@ comparison with experimental results

NAEL GUILLAUME

49



CONCLUSIONS AND OUTLOOK

Outlook in terms of validation

@ micrometeorological conditions implementation

@ comparison with experimental results

Outlook in terms of applications

o auralization (soundscape virtual modelling)

o coupling with road trafic models

A
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Wave propagation equations in absorbing layers

o theoretical wave propagation equation in PML!!:

18% & 1 o Ou O
Ror o aTa TPy Ty

o discrete wave propagation equation obtained with the proposed method:

A2 APy = 2P0 + APl Pty = 2P + Py _

A2 A2 A2
AP Py — AP (i) — () Fivy —F) (S}
_f,— W mArl Foo—r) W o) W, P
O AR At tofo T Tt tap
with © = —Fy) [15%,-) = ’Séi)] + [Fy — 1] t—ArSéi) —2F@ tS%ifl)

- [F(iJrl) - 1] t—AtS%i) + tSE,-) + ts%,-) - [—Atséi)'

@ [1] Q. Qi and T.L. Geers. Evaluation of the perfectly matched layer for computational acoustics. J. Comput. Phys.. 139(1), 1997
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