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The urban noise: a complex issue

street ≡ « opened » waveguide
⇒ steady-state phenomena, acoustic « leaks » by the open-tops

frontages morphology
⇒ diffuse reflections, edge diffraction, absorption

long distance propagation
⇒ atmospheric effects, ground effects, « unusual » micrometeorological conditions

temporal variations
⇒ moving/time varying noise sources[1], micrometeorological conditions fluctutations[2]

Thesis objective: sound propagation modelling in urban area

• development of a specific time-domain numerical model

⇒ TLM method (Transmission Line Modelling)

[1] A. Can. Représentation du trafic et caractérisation dynamique du bruit en milieu urbain. PhD Thesis, Lyon, 2008.

[2] F. Junker et al.. Meteorological classification for environmental acoustics - Practical implications due to experimental accuracy and

uncertainty. ICA, Madrid (Espagne), 2007.
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HUYGENS principle (1690)

A wavefront can be broken down into
a set of secondary sources that
radiate spherical wavelets of identical
frequency, amplitude and phase.

Numerical adaptation in electromagnetism[1]

The secondary sources are assimilated to nodes.

The « diffusion » of the field between nodes is performed by means of transmission lines
in term of pulses.

[1] P.B. Johns and R.L. Beurle. Numerical solution of two dimensional scattering problems using a transmission line matrix. Proc. IEE, 118(9),

1971.
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Simple case in 2D
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Nodal reflection and transmission coefficients:

R=
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, R < 0

T = 1 +R =
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ZT : impedance of the termination
ZL : impedance of the incident transmission line(

here, ZL=Z and ZT=Z/3, soR=− 1
2 and T= 1
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Diffusion in the transmission lines network⇒ connexion laws
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Heterogeneous propagation medium modelling (micrometeorological conditions)

addition of an open-circuited branch, of impedance Z/η,
to the nodal original configuration to introduce
refraction and turbulence where the parameter η is
calculated by[1]:

tη(i,j) = 4

( c0

tceff(i,j)

)2

− 1

 ,

where tceff(i,j) =
√
γ R tT(i,j) + tW(i,j) .tu(i,j) .

1
(Z)

2(Z)

3

(Z)

4

(Z)

5

(
Z5= Z

η

)

[1] G. Dutilleux. Applicability of TLM to wind turbine noise prediction, 2nd Int. Meeting on Wind Turbine Noise, Lyon (France), 2007.
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Dissipative propagation medium modelling (atmospheric attenuation)

addition of an anechoic terminated branch, of
impedance Z/ζ, to the original nodal configuration
where the attenuation factor ζ is defined by[1]:

tζ(i,j) = −α
√

tη(i,j) + 4 ∆l
ln (10)

20
,

with α = f (T,P0,H) the atmospheric absorption
coefficient (expressed in dB.m-1) and ∆l the spatial step
(in m).

1
(Z)

2(Z)

3

(Z)

4

(Z)

6

(
Z6= Z

ζ

)

[1] J. Hofmann and K. Heutschi. Numerical simulation of sound wave propagation with sound absorption in time domain. Appl. Acoust., 68(2),

2007.
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Heterogeneous and dissipative propagation medium modelling

Matrix relation: t S(i,j) = t D(i,j) × t I(i,j),

where t I(i,j) =
[

t I
1 ; t I

2 ; tI
3 ; tI

4 ; tI
5
]T
,

t S(i,j) =
[

tS
1 ; tS

2 ; tS
3 ; tS

4 ; tS
5
]T
,

and t D(i,j) =
2

tη(i,j) + tζ(i,j) + 4

t


a 1 1 1 η
1 a 1 1 η
1 1 a 1 η
1 1 1 a η
1 1 1 1 b


(i,j)

,

with ta(i,j) = −
(

tη(i,j)

2
+

tζ(i,j)

2
+ 1

)
and t b(i,j) =

tη(i,j)

2
−
(

tζ(i,j)

2
+ 2

)
.

1
(Z)

2(Z)

3

(Z)

4

(Z)

5

(
Z5= Z

η

)

6

(
Z6= Z

ζ

)

Connexion laws: t+∆tI 5
(i,j) = tS 5

(i,j)

Nodal pressure: t p(i,j) = 2
tη(i,j)+tζ(i,j)+4

(
4∑

n=1
t I

n
(i,j) + tη(i,j) t I

5
(i,j)

)
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Heterogeneous and dissipative propagation medium modelling

Matrix relation: t S(i,j) = t D(i,j) × t I(i,j),

where t I(i,j) =
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Wall characterized by a pressure reflection coefficient

Example: node (i, j) located at the vicinity of a west side wall defined by a pressure
reflection coefficient R1

t+∆tI 1
(i,j) = R1 × tS 1

(i,j)

t+∆tI 2
(i,j) = tS 1

(i+1,j)

t+∆tI 3
(i,j) = tS 4

(i,j−1)

t+∆tI 4
(i,j) = tS 3

(i,j+1)

1
2

3

4

5

6

t S 1
(i,j)

t+∆t I 1
(i,j)

(i, j)

∆l/2

Relation between the pressure reflection coefficient R1 and the absorption coefficient in
energy α1:

α1 = 1− |R1|2
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Analogy with the wave equation

Combination of the matrix relation, the connexion laws and the nodal pressure definition:

tη(i,j) + 4

2
∆t2

∆l2

∂2
ttp(i,j)︷ ︸︸ ︷

t+∆t p (i,j) − 2 t p (i,j) + t−∆t p (i,j)

∆t2
+tζ(i,j)

∆t
∆l2

∂tp(i,j)︷ ︸︸ ︷
t+∆t p (i,j) − t−∆t p (i,j)

2 ∆t
=

t p (i+1,j) − 2 t p (i,j) + t p (i−1,j)

∆l2︸ ︷︷ ︸
∂2

xxp(i,j)

+
t p (i,j+1) − 2 t p (i,j) + t p (i,j−1)

∆l2︸ ︷︷ ︸
∂2

yyp(i,j)

Helmholtz equation in a heterogeneous and dissipative medium:[
∆ +

(
ω2

c2
TLM

− j
ω ζ(i,j)

c ∆l

)]
P(i,j) = 0, c =

∆l
∆t

Celerity correction:

cTLM =

√
2

tη(i,j) + 4
c ⇒ c =

√
tη(i,j) + 4

2
c0
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Room acoustics applications

Figure: Eigenmode (2, 1) of a 2D room with perfectly
reflecting walls
• dimensions: (6.75 m × 5.23 m)
• discretization: ∆l = 16 cm and ∆t = 0.3 ms
• sinusoidal source frequency: 60.5 Hz

Figure: Reverberation time of a 3D room
• dimensions: (5 m × 4 m × 3 m)

• discretization: ∆l = 5 cm and ∆t = 8× 10−5 s
• gaussian pulse source frequency: 500 Hz
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« Open-space » application

S
R

HS
HR

xR

HS = 1 m, HR = 2 m and xR = 20 m

perfectly reflective ground

discretization: ∆l = 2 cm and
∆t = 4.1× 10−5 s

gaussian pulse source frequency: 1500 Hz
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Literature study

few developments

few validations sometimes limited or even arguable

Thesis contributions

analytical formulation of a TLM model combining most of the propagative phenomena

achievement of a generic 2D/3D formulation and numerical implementation

rigorous validation of the model for academic cases

Main limitations of the model

no relevant virtual boundary condition formulation in TLM for acoustic modelling

no realistic boundaries conditions
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Classical impedance boundary condition formulation:

in the frequency domain:

P(b) (ω) = Z (ω)× Vn(b) (ω)

in the time domain:

p(b) (t) = z (t) ∗ vn(b) (t) =

∫ +∞

−∞
z
(
t′
)
× vn(b)

(
t − t′

)
dt′

where z (t) = F−1 [Z (ω)]

Necessary conditions to transpose Z (ω) in the time domain:[1]

causality

passivity

reality

[1] S.W. Rienstra. Impedance models in time domain including the extended Helmholtz resonator model. 12th AIAA/CEAS Conf., Cambridge,

Massachusetts (USA), 2006.
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Impedance representation by a sum of 1st order linear systems[1]

in the frequency domain (response of K linear systems):

Z (ω) =

K∑
k=1

Ak

λk − jω

where λk are real poles (λk > 0)

in the time domain (sum of K impulse responses):

z (t) =
K∑

k=1

Ake−λk tH (t)

where H (t) is the HEAVISIDE function

[1] Y. Reymen et al.. Time-domain impedance formulation based on recursive convolution. 12th AIAA/CEAS Conf., Cambridge, Massachusetts

(USA), 2006.
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ZWIKKER and KOSTEN impedance model application[1]

Model expression:

Z (ω) = Z∞

√
1 + jωτ

jωτ
where τ =

ρ0q2γ

RSΩ
a time constant

and Z∞=
ρ0c0q

Ω
the impedance at the limit ωτ →∞

Transposition in the time domain[2]:

z (t) = Z∞

[
δ (t) +

1
τ

f (t)
]

where t = t/τ

Impulse response approximation f
(
t
)
:

f (t) =
e−t/2

2

[
I1

(
t
2

)
+ I0

(
t
2

)]
H (t) =

K∑
k=1

Ake−λk tH (t)

[1] C. Zwikker and C. W. Kosten. Sound absorbing materials. Elsevier Ed., New York, 1949.

[2] V. E. Ostashev et al. Padé approximation in time-domain boundary conditions of porous surfaces. JASA, 122(1), 2007.
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Time domain impedance boundary condition formulation[1]

p (m∆t) = Z′
[

vn (m∆t) +
K∑

k=1

A′kψk (m∆t)

]

where the accumulators ψk are given by (⇒ recursive convolution method)

ψk (m∆t) = vn (m∆t)

(
1− e−λk∆t′

)
λk

+ e−λk∆t′ψk ((m− 1) ∆t)

ZWIKKER and KOSTEN model: Z′ = Z∞, A′k = Ak and ∆t′ = ∆t

MIKI model[2]: Z′ = Z0, A′k = Akµ
Γ(−bM)

and ∆t′ = ∆t.

[1] Y. Reymen et al. Time-domain impedance formulation based on recursive convolution. 12th AIAA/CEAS Conf., Cambridge, Massachusetts

(USA), 2006.

[2] B. Cotté Propagation acoustique en milieu extérieur complexe: problèmes spécifiques au ferroviaire dans le contexte des trains à grande

vitesse. PhD Thesis, LMFA, École Centrale de Lyon (France), 2008.

GWENAËL GUILLAUME 28



ISSUE AND OBJECTIVES
TLM METHOD

IMPEDANCE BOUNDARY CONDITION
VIRTUAL BOUNDARY CONDITION

CONCLUSIONS AND OUTLOOK

CLASSICAL FORMULATION
IMPEDANCE REPRESENTATION
TLM IMPEDANCE BOUNDARY CONDITION FORMULATION
NUMERICAL VALIDATION

Boundaries modelling in a TLM model: case of the ground

Introduction of a virtual node

Boundary pressure definition:

p
(

t +
∆t
2

)
= tS 3

(i,j) + tS 4
(i,j−1)

Normal particle velocity:

vn

(
t +

∆t
2

)
=

tS 3
(i,j) − tS 4

(i,j−1)

ρ0 c

1 2

3

4

5

6

(i, j)

1 2

3

4

5

6

(i, j − 1)

t S 3
(i,j)

t S 4
(i,j−1) ∆l/2

∆l/2
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TLM model matching

Scattered pulse from the virtual node:

tm S 4
(i,j−1) = tm S 3

(i,j)

[
−1 + Λk

1 + Λk

]
+

Z′

1 + Λk

K∑
k=1

A′ke−λk∆t′
tm−∆tψk

where Λk =
Z′

ρ0 c

(
1 +

K∑
k=1

A′k
1− e−λk∆t′

λk

) 1 2

3

4

5

6

(i, j)

1 2

3

4

5

6

(i, j − 1)

t S 3
(i,j)

t S 4
(i,j−1)

Accumulators:

tm−∆tψk =

(
tm−∆tS3 (i, j)− tm−∆tS4 (i, j− 1)

ρ0 c

)(
1− e−λk∆t′

λk

)
+ e−λk∆t′

tm−2∆tψk
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Heterogeneous plane ground: ZWIKKER and KOSTEN impedance model

S
R

HS
HR

xR

xD

(RS1
, q1, Ω1) (RS2

, q2, Ω2)

HS = 1 m, HR = 2 m and xR = 20 m

discontinuity at xD = 10 m from the source

RS1 = 10 kN.s.m-4, q1 =
√

3.5 and Ω1 = 0.2

RS2 = 100 kN.s.m-4, q2 =
√

10 and Ω2 = 0.5
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Heterogeneous plane ground: MIKI impedance model

S
R

HS
HR

xR

xD

(RS1
) (RS2

)

HS = 1 m, HR = 2 m and xR = 20 m

discontinuity at xD = 10 m from the source

RS1 = 10 kN.s.m-4

RS2 = 1000 kN.s.m-4
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Absorbing boundaries: application of a « non-reflective »
termination

definition of the pressure field on the limit by a TAYLOR
series expansion[1]

application of a purely real impedance condition[2]

Absorbing layers: introduction of an anisotropic absorbing region

Perfectly Matched Layers (PML)?

modification of the whole connexion laws for the nodes
located inside the layer[3]

[1] S. El-Masri et al.. Vocal tract acoustics using the transmission line matrix (TLM). ICSLP, Philadelphia (USA), 1996.

[2] J. Hofmann and K. Heutschi. Numerical simulation of sound wave propagation with sound absorption in time domain. Appl. Acoust., 2007.

[3] D. De Cogan et al.. Transmission Line Matrix in Computational Mechanics. CRC Press, 2005.
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Proposed absorbing layers formulation

modification of the connexion law only for
the incident pulse propagating in the
direction of the computational domain
limit

DE COGAN et al. formulation

t+∆tI 1
(i,j) = F(i,j) × tS2

(i−1,j)

t+∆tI 2
(i,j) = F(i,j) × tS1

(i+1,j)

t+∆tI 3
(i,j) = F(i,j) × tS4

(i,j−1)

t+∆tI 4
(i,j) = F(i,j) × tS3

(i,j+1)

⇒

Proposed formulation

t+∆tI 1
(i,j) = F(i,j) × tS2

(i−1,j)

t+∆tI 2
(i,j) = tS1

(i+1,j)

t+∆tI 3
(i,j) = tS4

(i,j−1)

t+∆tI 4
(i,j) = tS3

(i,j+1)
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Attenuation factor for an absorbing layer of thickness eAL

Looking for a function such as:
{

F
(
d(iN ,jN) = 0

)
= 1 at the interface

F
(
d(i1,j1) = eAL

)
= ε on the limit, ε ∈ ]0, 1]

F
(
d(i,j)

)
= (1 + ε)− exp

[
−
(
d(i,j) − eAL

)2

B

]

with eAL =
λNλAL

∆l and B = −
e 2

AL
ln ε
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Comparison of the virtual boundary conditions efficiency

error (x, y) = 10 log10

T∑
t=0
|pff (x, y, t)− p (x, y, t)|2

T∑
t=0
|pff (x, y, t)|2

Figure: Computational domain

GWENAËL GUILLAUME 40



ISSUE AND OBJECTIVES
TLM METHOD

IMPEDANCE BOUNDARY CONDITION
VIRTUAL BOUNDARY CONDITION

CONCLUSIONS AND OUTLOOK

TLM ABSORBING CONDITIONS REVIEW
PROPOSED TLM ABSORBING LAYERS FORMULATION
NUMERICAL VALIDATION

Comparison of the virtual boundary conditions efficiency

error (x, y) = 10 log10

T∑
t=0
|pff (x, y, t)− p (x, y, t)|2

T∑
t=0
|pff (x, y, t)|2

Figure: Free-field computation
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Comparison of the virtual boundary conditions efficiency

error (x, y) = 10 log10

T∑
t=0
|pff (x, y, t)− p (x, y, t)|2

T∑
t=0
|pff (x, y, t)|2

Figure: Virtual free-field computation

Figure: Virtual boundary conditions efficiency
(AL: NλAL = 5 and ε = 10−5)
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Urban application

Figure: Street section Figure: Sound levels along the receivers axis
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Work done

analytical formulation and numerical implementation of a 2D/3D TLM model integrating
most of the propagative phenomena
improvement of the method

matched impedance boundary condition formulation
new formulation of absorbing layers

validation of the model by comparison with analytical and numerical solutions in
academic cases (room acoustics, outdoor sound propagation)
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Parallel streets geometry (quiet street)

Figure: Gaussian pulse propagation
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Urban noise barriers

Figure: Without barrier Figure: Green flat barrier

Figure: Perfectly reflective L-shaped barrier Figure: Green L-shaped barrier
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Outlook concerning our contribution

thickness consideration in the impedance boundary condition

⇒ coefficients identification in the frequency domain

rigorous PML formulation for TLM in acoustics

Outlook concerning the TLM model

atmospheric attenuation frequency dependency

⇒ digital filters[1]

sound transmission

⇒ transmission coefficient

⇒ wall acoustic propagation modelling

tetrahedral 3D mesh[2]

⇒ 3D simulations with 2D cartesian simulations computational burden

numerical scheme analysis

[1] T. Tsuchiya. Numerical simulation of sound wave propagation with sound absorption in time domain. 13th Int. Cong. Sound Vib., Vienne,

2006.

[2] S.J. Miklavcic and J. Ericsson Practical implementation of the 3D tetrahedral TLM method and visualization of room acoustics. ITN Resarch

Report ISSN, 2004.

GWENAËL GUILLAUME 48



ISSUE AND OBJECTIVES
TLM METHOD

IMPEDANCE BOUNDARY CONDITION
VIRTUAL BOUNDARY CONDITION

CONCLUSIONS AND OUTLOOK

CONCLUSION
URBAN APPLICATION EXAMPLES
OUTLOOK

Outlook concerning our contribution

thickness consideration in the impedance boundary condition

⇒ coefficients identification in the frequency domain

rigorous PML formulation for TLM in acoustics

Outlook concerning the TLM model

atmospheric attenuation frequency dependency

⇒ digital filters[1]

sound transmission

⇒ transmission coefficient

⇒ wall acoustic propagation modelling

tetrahedral 3D mesh[2]

⇒ 3D simulations with 2D cartesian simulations computational burden

numerical scheme analysis

[1] T. Tsuchiya. Numerical simulation of sound wave propagation with sound absorption in time domain. 13th Int. Cong. Sound Vib., Vienne,

2006.

[2] S.J. Miklavcic and J. Ericsson Practical implementation of the 3D tetrahedral TLM method and visualization of room acoustics. ITN Resarch

Report ISSN, 2004.

GWENAËL GUILLAUME 48



ISSUE AND OBJECTIVES
TLM METHOD

IMPEDANCE BOUNDARY CONDITION
VIRTUAL BOUNDARY CONDITION

CONCLUSIONS AND OUTLOOK

CONCLUSION
URBAN APPLICATION EXAMPLES
OUTLOOK

Outlook in terms of validation

micrometeorological conditions implementation

comparison with experimental results
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Wave propagation equations in absorbing layers

theoretical wave propagation equation in PML[1]:

1
c2

0

∂2p
∂t2
−
∂2p
∂x2

= −
1
c2

0
qx
∂p
∂t

+ ρ0qx
∂ux

∂x
+ ρ0ux

∂qx

∂x

discrete wave propagation equation obtained with the proposed method:

∆t2

∆l2
t+∆tP(i) − 2 tP(i) + t−∆tP(i)

∆t2
−

tP(i+1) − 2 tP(i) + tP(i−1)

∆l2
=

−F(i)
∆t2

∆l2
tP(i) − t−∆tP(i)

∆t
+ ρ0 F(i)

tu(i+1) − tu(i)

∆l
+ ρ0 tu(i)

F(i+1) − F(i)

∆l
+

Θ

∆l2

with Θ = −F(i+1)

[
tS2

(i) − tS1
(i)

]
+
[
F(i) − 1

]
t−∆tS1

(i) − 2 F(i) tS2
(i−1)

−
[
F(i+1) − 1

]
t−∆tS2

(i) + tS1
(i) + tS2

(i) − t−∆tS1
(i).

[1] Q. Qi and T.L. Geers. Evaluation of the perfectly matched layer for computational acoustics. J. Comput. Phys., 139(1), 1997.
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