Dynamics of epithelial gap closure using microfabrication and micromechanical approaches - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Dynamics of epithelial gap closure using microfabrication and micromechanical approaches

Dynamique de la fermeture des trous épithéliaux en utilisant des techniques de micromécanique et de microfabrication

Résumé

Most cells migrate under the appropriate conditions or stimuli; understanding the mechanisms of migration, the players involved, and their regulation, is pivotal to tackle the pathological situations where migration becomes an undesired effect. While largely overshadowed by the study of single cell migration, collective cell migration is a very relevant process that takes place during development as well as in adult life. Collective migration is very relevant for the formation and maintenance of epithelial layers: extensive migratory processes occur during the shape of the embryo, as well as during the healing of a skin incision in the adult. When openings or discontinuities appear in the epithelia, it is crucial that the appropriate mechanisms are activated.In the present work we attempt at deciphering what are the mechanisms involved in gap closure. Until now, most of the literature concerning the subject has reported contradictory results, mainly arising from the complexity of the process and the lack of systematic analysis. We have designed a novel approach to address epithelial gap closure under well-defined and controlled conditions. By using our gap patterning method, we have observed that epithelial cells extend lamellipodia when exposed to a newly available space. Interestingly, we found that the closure of such gap depends on the size: small gaps are closed by a passive physical mechanism, while large gaps are closed through a Rac-dependent cell crawling mechanism, in a collective migration-like manner. 11Abstract (English)Most cells migrate under the appropriate conditions or stimuli; understanding the mechanisms of migration, the players involved, and their regulation, is pivotal to tackle the pathological situations where migration becomes an undesired effect. While largely overshadowed by the study of single cell migration, collective cell migration is a very relevant process that takes place during development as well as in adult life. Collective migration is very relevant for the formation and maintenance of epithelial layers: extensive migratory processes occur during the shape of the embryo, as well as during the healing of a skin incision in the adult. When openings or discontinuities appear in the epithelia, it is crucial that the appropriate mechanisms are activated.In the present work we attempt at deciphering what are the mechanisms involved in gap closure. Until now, most of the literature concerning the subject has reported contradictory results, mainly arising from the complexity of the process and the lack of systematic analysis. We have designed a novel approach to address epithelial gap closure under well-defined and controlled conditions. By using our gap patterning method, we have observed that epithelial cells extend lamellipodia when exposed to a newly available space. Interestingly, we found that the closure of such gap depends on the size: small gaps are closed by a passive physical mechanism, while large gaps are closed through a Rac-dependent cell crawling mechanism, in a collective migration-like manner. Next, we also addressed the mechanical component of epithelial gap closure. In this study, we took advantage of a laser-ablation system to disrupt some cells within an epithelial monolayer, and study how the remaining cells sealed that gap. By measuring the traction forces that cells exert on the substrate along the closure, we observed that cells first pulled on the substrate to propel themselves. By the last steps of closure, there is a transition in the direction of the force, so that cells are pulled to the center of the gap due to the assembly of a supracellular actin cable. Altogether, this work provides valuable knowledge on the current understanding of the mechanisms accounting for epithelial gap closure. We believe that a better comprehension of these mechanisms can help to shed light in clinically relevant situations where epithelial gap closure is impaired.
Les cellules peuvent migrer sous différentes conditions qui dépendent de l’environnement biochimique ou mécanique. Connaître les mécanismes de la migration, les protéines impliquées et leur régulation est essentiel pour comprendre les processus de morphogénèse ou certaines situations pathologiques. Dans ce contexte, la migration collective des cellules est un processus clé qui intervient pendant le développement ainsi que dans la vie adulte. Elle joue un rôle très important pour la formation et l’entretien des couches épithéliales, notamment au cours du développement embryonnaire et pendant la cicatrisation des trous épithéliaux résultant, par exemple, d’une blessure. Lorsque l’épithélium présente une discontinuité, des mécanismes actifs qui impliquent une migration coordonnée des cellules sont nécessaires pour préserver l’intégrité des tissus. Dans ce travail, nous avons étudié les mécanismes impliqués dans la fermeture des trous dans un épithélium. Pour des blessures de faible taille, le mode de fermeture dit de purse string est souvent évoqué, impliquant la contraction d’un anneau contractile d’acto-myosine qui ferme la blessure. Pour des blessures de tailles plus importantes, il est courant d’observer un mécanisme différent conduisant { la migration active des cellules du bord qui couvrent la surface “libre”.Pour étudier ces aspects de manière quantitative et reproductible, nous avons développé une nouvelle méthode basée sur des techniques de microfabrication et de lithographie dite « molle » qui permet de faire une étude quantitative de la fermeture des trous épithéliaux. Nous avons fabriqué des substrats de micropiliers de diamètre et de forme variés dans les quels les cellules sont libres de pousser entre les microstructures. Lorsqu’elles sont parvenues à confluence, on retire le substrat qui laisse apparaître des trous contrôlés.De cette manière, nous avons observé que les cellules épithéliales forment des lamellipodes pour la fermeture de ces trous. Le mécanisme de fermeture dépend de la taille des trous et nous avons pu observer différents régimes en fonction de diamètre des piliers. Les trous petits (de la taille d’une seule cellule) sont fermés par un mécanisme passif alors que la fermeture de trous plus larges nécessite un mécanisme actif de migration conduisant à la formation de lamellipodes et à des modes de migration collective. Par la suite, nous nous sommes intéressés à l’aspect mécanique de la fermeture des trous épithéliaux. Pour cela, nous avons utilisé un système d’ablation laser pour rompre quelques cellules dans une monocouche épithéliale. Nous avons alors mesuré les forces de traction que les cellules exercent au substrat et leur évolution temporelle et spatiale. Nous avons pu mettre en évidence différents modes de traction: au début, les cellules exercent des forces de traction importantes sur leur substrat pour laisser place à des contraintes mécaniques qui sont davantage issues d’un processus collectif au travers de la formation d’un câble multicellulaire qui les relie les cellules de bord entre elles. En conclusion, ce travail nous a permis d’obtenir des informations sur les mécanismes dynamiques de fermeture des tissus épithéliaux qui sont évidemment impliqués dans la cicatrisation des blessures mais aussi dans certains problèmes de malformations congénitales lors l’embryogenèse.
Fichier principal
Vignette du fichier
va_Anon_Ester.pdf (10.34 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-00793440 , version 1 (22-02-2013)

Identifiants

  • HAL Id : tel-00793440 , version 1

Citer

Ester Anon. Dynamics of epithelial gap closure using microfabrication and micromechanical approaches. Agricultural sciences. Université René Descartes - Paris V, 2012. English. ⟨NNT : 2012PA05T061⟩. ⟨tel-00793440⟩
202 Consultations
1316 Téléchargements

Partager

Gmail Facebook X LinkedIn More