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Cette thèse est consacrée à l'étude des opérateurs strictement hyperboliques à coecients peu réguliers, aussi bien qu'à l'étude du système d'Euler incompressible à densité variable.

Dans la première partie, on montre des estimations a priori pour des opérateurs strictement hyperboliques dont les coecients d'ordre le plus grand satisfont une condition de continuité log-Zygmund par rapport au temps et une condition de continuité log-Lipschitz par rapport à la variable d'espace. Ces estimations comportent une perte de dérivées qui croît en temps. Toutefois, elles sont susantes pour avoir encore le caractère bien posé du problème de Cauchy associé dans l'espace H ∞ (pour des coecients du deuxième ordre ayant assez de régularité).

Dans un premier temps, on considère un opérateur complet en dimension d'espace égale à 1, dont les coecients du premier ordre sont supposés hölderiens et celui d'ordre 0 seulement borné.

Après, on traite le cas général en dimension d'espace quelconque, en se restreignant à un opérateur de deuxième ordre homogène: le passage à la dimension plus grande exige une approche vraiment diérente.

Dans la deuxième partie de la thèse, on considère le système d'Euler incompressible à densité variable.

On montre son caractère bien posé dans des espaces de Besov limites, qui s'injectent dans la classe des fonctions globalement lipschitziennes, et on établit aussi des bornes inférieures pour le temps de vie de la solution ne dépendant que des données initiales.

Cela fait, on prouve la persistance des structures géometriques, comme la régularité stratiée et conormale, pour les solutions de ce système.

À la diérence du cas classique de densité constante, même en dimension 2 le tourbillon n'est pas transporté par le champ de vitesses. Donc, a priori on peut s'attendre à obtenir seulement des résultats locaux en temps. Pour la même raison, il faut aussi laisser tomber la structure des poches de tourbillon.

La théorie de Littlewood-Paley et le calcul paradiérentiel nous permettent d'aborder ces deux diérents problèmes. En plus, on a besoin aussi d'une nouvelle version du calcul paradiérentiel, qui dépend d'un paramètre γ ≥ 1, pour traiter les opérateurs à coecients peu réguliers.

Le cadre fonctionnel adopté est celui des espaces de Besov, qui comprend en particulier les ensembles de Sobolev et de Hölder. Des classes intermédiaires de fonctions, de type logarithmique, entrent, elles aussi, en jeu.
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xi in a crucial way in the study of strictly hyperbolic operators with low regularity coecients (see chapter 3), because it allows a more rened analysis.

After this brief overview about the theoretical tools we needed in our analysis, let us explain better the two dierent guidelines of our research work.

, for some constant C s depending only on s. The original idea of the work of Colombini, De Giorgi and Spagnolo was smoothing out coecients using a convolution kernel, and then linking the approximation parameter (say) ε with the dual variable ξ: they got, in this way, a dierent approximation in dierent zones of the phase space. The We came back to the main ideas of the work of Colombini and Del Santo. In particular, the energy associated to u was dened in the same way, and we handled highest order terms as they did.

Again, we obtained an energy estimate of the same kind of (6): as one can expect, the presence of lower order terms involves no substantial problems in getting it. Nevertheless, Hölder regularity of coecients of rst order terms comes into play in the analysis of commutator terms [∆ ν , b j ] multiplier associated to the divergence-free constraint over the velocity.

We assume that the space variable x belongs to the whole R N , with N ≥ 2. The case in which the uid is supposed to be homogeneous, i.e. ρ ≡ ρ (strictly positive) constant and the system reads (10)

was deeply studied and there is a broad literature devoted to it.

In contrast, not so many work were devoted to the study of the non-homogeneous case. First results for equations (9) in smooth bounded domains of R 2 or R 3 were obtained by Beirão da Veiga and Valli for Hölder continuous initial data (see papers [5], [6] and [4]). The Sobolev spaces framework was considered instead by Valli and Zaj aczowski in [59], and by Itoh and Tani in [46]. In

and so one can't get conservation of Lebesgue norms, which was the key to the global in time existence issue, due to the presence of the density term.

), Danchin was able to prove the well-posedness result for (9) in any Besov space B s p,r , with 1 < p < +∞, embedded in the set C 0,1 of the globally Lipschitz functions.

) are well-posed. Moreover, he obtained his results for any initial density state, with no smallness, or closeness to a positive constant, requirements on it. However, he had to assume the velocity eld u to belong to L 2 to handle the pressure term. As a matter of fact, in the non-constant density case ∇Π satises an elliptic equation (in divergence form) with low regularity coecients,

-div (a ∇Π) = div F , (here we set a := 1/ρ) and it can be solved independently of a only in the energy space L 2 . Let us point out that the control on the L 2 (or in general L p ) norm of ∇Π was needed also to bound its Besov norm.

Requiring the initial velocity u 0 ∈ L 2 , however, is somehow restrictive: in the two-dimensional case this condition implies the vorticity to have average 0 over R 2 , and this fact precludes us from considering, for instance, vortex patches structures. Therefore, Danchin also proved wellposedness (in any dimension N ≥ 2) for data in the space B s p,r → C 0,1 , with 2 ≤ p ≤ 4. So, no nite energy hypothesis were formulated, even if the previous assumption allows us to recover ∇Π ∈ L 2 again. In particular, this result applies (thanks to Biot-Savart law) to any suitably smooth velocity eld whose vorticity is compactly supported.

). The condition to extend

and, in the case s > 1 + N/p, it is possible to replace ∇u with the vorticity Ω.

Finally, Danchin also tackled the case of the spaces B s ∞,r → C 0,1 , but requiring moreover u 0 to belong to L p (for some 1 < p < +∞) and ρ 0 to be close (in B s ∞,r norm) to a constant state Finally, the last part of the thesis is devoted to the study of the density-dependent incompressible Euler equations. Chapter 4 is devoted to well-posedness issues in endpoint Besov spaces embedded in the space of globally Lipschitz functions. We will provide also a continuation criterion and a lower bound for the lifespan of the solutions. This chapter is based on paper [29] in collaboration with Danchin.

.

Alors, donnée une u ∈ S , on peut dénir 2 ∆ 0 u := χ(D)u et ∆ j u := ϕ j (D)u pour tout j ≥ 1. où, en plus des hypothèse (19) et (20), nous avons supposé aussi que b 0 et b

Nous avons recouru aux idées principales du travail de Colombini et Del Santo. En particulier, On suppose que la variable d'espace x appartient à l'espace entier R N , avec N ≥ 2. Le cas où le uide est supposé homogène, c'est-à-dire ρ ≡ ρ constante (strictement positive) et le système devient (22) ∂ t u + u • ∇u + ∇Π = 0 div u = 0 , * + ∂ X u C ε u C 1 * , and therefore (5.34)

Putting inequalities (5.32), (5.33) and (5.34) all together, we nally get (5.35)

for some constant C which depends also on ρ * and ρ * .

Before going on, let us state a simple lemma.
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Introduction

The present thesis is devoted to the analysis of some kinds of partial dierential equations arising from the study of physical models. In particular, it developed into two dierent directions: the study of strictly hyperbolic operators with low regularity coecients and that of the densitydependent incompressible Euler system.

On the one hand, we studied the Cauchy problem for a general wave operator, whose second order coecients were supposed to be non-Lipschitz. In contrast to the Lipschitz case, one can't expect to get well-posedness in any Sobolev space H s any more. Nevertheless, well-posedness in the space H ∞ still holds true, but with a nite loss of derivatives, which is proved to be, in a certain sense, necessary.

A wide number of works are devoted to this topic under dierent hypothesis. The general idea is to compensate the loss of regularity in time with suitable hypothesis with respect to the space variable. So, the rst situation to consider is when the coecients depend only on time: in this case, one can prove energy estimates with (in general) a constant loss of derivatives.

When coecients depend also on x, instead, the loss is (in general) linearly increasing in time.

In particular this is also our case, in which we combined log-Zygmund and log-Lipschitz continuity conditions: we imposed the coecients to satisfy the former one in time and the latter one in space, uniformly with respect to the other variable.

On the other hand, we considered the density-dependent incompressible Euler system, which describes the dynamics of a non-homogeneous inviscid incompressible uid.

The classical case, in which the density is supposed to be constant, was deeply studied. Main research interests were questions such as well-posedness in Besov spaces embedded in the class C 0,1 of globally Lipschitz functions, continuation criteria and global in time existence, propagation of geometric structures. Our purpose was to extend (or invalidate) previous results to the more realistic situation of variable density. In particular, in a rst time we investigated well-posedness in endpoint Besov spaces, and then we considered propagation of striated and conormal regularity.

The main dierence with respect to the classical system is that, this time, even in the twodimensional case, one can expect to get only local in time existence results. As a matter of fact, the vorticity is no more transported by the ow associated to the velocity eld (which was the key to the proof of the global existence issue for homogeneous uids), because of the presence of a density term in its equation. The global in time existence issue is still an open problem.

The techniques we used to handle the two dierent problems were mostly based on Fourier Analysis. In particular, an extensive use of Littlewood-Paley theory and of paradierential calculus, as introduced by J.-M. Bony in the famous paper [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], was needed.

The main idea is to dene a dyadic partition of unity in the phase space, thanks to suitable smooth, compactly supported functions:

χ(ξ) + j≥1 ϕ j (ξ) ≡ 1 ∀ ξ ∈ R N ,
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Now, given a u ∈ S , we can dene1 ∆ 0 u := χ(D)u and ∆ j u := ϕ j (D)u for all j ≥ 1. We get, in this way, the vittlewoodEley deomposition of a tempered distribution u:

u = +∞ j=0 ∆ j u in S .
By Paley-Wiener theorem, each dyadic item ∆ j u is a smooth function. Moreover, thanks to spectral localization, integrability properties of ∆ j u are strictly linked with those of their derivatives D α ∆ j u (see lemma 1.2 below). These facts are fundamental and widely used in the analysis of partial dierential equations.

Using Littlewood-Paley decomposition, one can dene what a Besov space is. For all s ∈ R and all (p, r) ∈ [1, +∞] 2 , the nonEhomogeneous fesov spe B s p,r is dened as the set of tempered distributions u for which the quantity [START_REF] Alinhac | Interaction d'ondes simples pour des équations complètement non-linéaires[END_REF] u B s p,r := 2 js ∆ j u L p j∈N r < +∞ .

These functional spaces extend Sobolev and Hölder classes: it turns out that H s ≡ B s 2,2 for all s ∈ R and C ω ≡ B ω ∞,∞ for all ω ∈ ]0, 1[ . Properties of Besov spaces were deeply studied (see e.g. [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] and [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF]) and they are now a classical topic. Nevertheless, in paper [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF] the authors considered Sobolev spaces of logarithmic type and gave a dyadic characterization of them. Inspired by this fact, we dened the class of logarithmic Besov spaces, putting, in denition [START_REF] Alinhac | Interaction d'ondes simples pour des équations complètement non-linéaires[END_REF], the new weight 2 js (1 + j) α (for some α ∈ R) instead of the single exponential term. We also proved that they enjoy properties analogous to the classical Besov spaces.

Using Littlewood-Paley decomposition again, one can write the fony9s deomposition (see paper [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]) of the product of two tempered distributions:

(2)

u v = T u v + T v u + R(u, v) ,
where we have dened the paraproduct and remainder operators respectively as

T u v := j S j-1 u ∆ j v and R(u, v) := j |k-j|≤1 ∆ j u ∆ k v .
These operators have nice continuity properties on the class of Besov spaces. Moreover, paraproduct plays an important role also in nonlinear analysis (see for instance the paralinearization theorem 1.33 below). We will make an extensive use of decomposition [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] throughout all this manuscript. However, paraproduct is nothing else than an example of paradierential operator, associated to a function which depends only on the space variable x.

More in general, we can associate a paradierential operator to every symbol a(x, ξ) which is smooth with respect to ξ, only locally bounded in x and its ξ-derivatives satisfy particular growth conditions (see e.g. [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF]). First of all, xed a suitable cut-o function ψ, one can smooth out a with respect to x, dening a classical symbol σ a (x, ξ) strictly related to it. Then one can dene the paradierential operator associated to a, still denoted by T a , as the paradierential operator associated to this classical symbol, i.e. σ a (x, D x ). On the one hand, the whole construction is independent of the cut-o function ψ, up to lower order terms. On the other hand, one can make it depend on a parameter γ ≥ 1, as done in e.g. [START_REF] Métivier | Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace[END_REF] and [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]. This simple change came into play Introduction xiii Strictly hyperbolic operators with low-regularity coecients Consider a second order strictly hyperbolic operator L dened in a strip [0, T ] × R N , for some T > 0 and any dimension N ≥ 1:

(3)

Lu := ∂ 2 t u - N j,k=1
∂ j (a jk (t, x) ∂ k u)

and assume that there exist two constants 0 < λ 0 ≤ Λ 0 such that

λ 0 |ξ| 2 ≤ N j,k=1
a jk (t, x) ξ j ξ k ≤ Λ 0 |ξ| 2 for all (t, x) ∈ [0, T ] × R N and all ξ ∈ R N . The inequality on the left is the condition of strict hyperbolicity, while that on the right is a boundedness requirement on the coecients of our operator.

It is well-known (see e.g. [START_REF] Hörmander | viner prtil di'erentil opertors[END_REF] or [START_REF] Mizohata | he theory of prtil di'erentil equtions[END_REF]) that, if coecients a jk are Lipschitz continuous with respect to t and only measurable and bounded in x, then the Cauchy problem for L is well-posed in H 1 × L 2 . Hence, if a jk are C ∞ and bounded with all their derivatives with respect to the space variable, one can recover well-posedness in H s+1 × H s for all s ∈ R. Moreover, for all s ∈ R one gets (for a constant C s depending only on s) the energy estimate

sup 0≤t≤T u(t, •) H s+1 + ∂ t u(t, •) H s ≤ (4) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 Lu(t, •) H s dt
for all u ∈ C([0, T ]; H s+1 (R N )) ∩ C 1 ([0, T ]; H s (R N )) such that Lu ∈ L 1 ([0, T ]; H s (R N )).

In particular, estimate (4) still holds for every u ∈ C 2 ([0, T ]; H ∞ (R N )), and this implies that the Cauchy problem for L is well-posed in H ∞ with no loss of derivtives.

If the Lipschitz continuity (in time) hypothesis is not fullled, then (4) is no more true.

Nevertheless, one can still recover H ∞ well-posedness, but this time with a loss of derivatives in the energy estimate. This loss can not be avoided, as shown in paper [START_REF] Cicognani | Modulus of continuity of the coecients and loss of derivatives in the strictly hyperbolic Cauchy problem[END_REF]. As a matter of fact, the authors proved there that, if the regularity of the coecients is measured by a modulus of continuity, then every modulus of continuity worse than the Lipschitz one always entails a loss of derivatives.

The rst case to consider is when the a jk 's depend only on time: so, by Fourier transform one can pass to the phase space, in which the problem becomes an ordinary dierential equation. In paper [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF], Colombini, De Giorgi and Spagnolo assumed a log-Lipschitz integral continuity condition, while Tarama (see [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF]) considered the more general class of (integral) log-Zygmund functions. In both the previous hypothesis, one can get an energy estimate with onstnt loss of derivtives: there exists a constant δ > 0 such that, for all s ∈ R, the inequality

sup 0≤t≤T u(t, •) H s+1-δ + ∂ t u(t, •) H s-δ ≤ (5)
≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + improvement of Tarama, instead, was obtained dening a new energy, which involves also rst derivatives of the smoothed coecients, in such a way to compensate lower regularity.

The case of dependence both in time and in space variables was considered by Colombini and Lerner in paper [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF]: they assumed the a jk 's to satisfy a pointwise isotropic log-Lipschitz condition. They studied the related Cauchy problem, and they found an energy estimate with loss of derivtives inresing in time: for all s ∈ ]0, 1/4], there exist positive constants β and C s and a time T * ∈ ]0, T ] such that

sup 0≤t≤T * u(t, •) H -s+1-βt + ∂ t u(t, •) H -s-βt ≤ (6) 
≤ C s u(0, •)

H -s+1 + ∂ t u(0, •) H -s + T * 0 Lu(t, •) H -s-βt dt for all u ∈ C 2 ([0, T ]; H ∞ (R N )).
Due to the dependence of the a jk 's on x, it was no more possible to perform a Fourier transform to pass in the phase space. To overcome this problem, they took advantage of the Littlewood-Paley decomposition: they dened a localized energy for each localized component ∆ ν u of the solution u, and then they performed a weighed summation over ν to dene a total energy. Again, they smoothed out coecients in time and they linked the approximation parameter to ν, which exactly corresponds to get dierent approximation in dierent regions of the phase space: recall that |ξ| ∼ 2 ν on the spectrum of ∆ ν u. A quite hard work was required to control the operator norm (over L 2 ) of commutator terms [∆ ν , a jk ], coming from the equation for the localized part ∆ ν u.

More recently (see paper [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]), Colombini and Del Santo imposed a pointwise log-Zygmund condition with respect to time and a pointwise log-Lipschitz condition with respect to space, uniforlmy with respect to the other variable. These hypothesis read in the following way: there exists a constant K 0 such that, for all τ > 0 and all y ∈ R N \{0}, one has sup (t,x) |a jk (t + τ, x) + a jk (t -τ, x) -2a jk (t, x)| ≤ K 0 τ log 1 + 1 τ 

Again, they decomposed the energy in localized parts, even if each of these items were dened in a new way, following the original idea of Tarama to control the bad behaviour in time of the coecients. Moreover, the regularization of the coecients by a convolution kernel was performed with respect to both time and space. They obtained an energy estimate analogous to [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF] (and so a well-posedness issue in the space H ∞ for coecients a jk smooth enough with respect to x), but only in the case of one space dimension, i.e. N = 1: it wasn't so clear how to dene a Tarama-like energy (which was somehow necessary) in higher dimensions.

In a rst time, in paper [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] in collaboration with Colombini, we extended the result of [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF] to the Cauchy problem (again in dimension N = 1) for a complete second order strictly hyperbolic operator P u := ∂ 2 t u -∂ x (a(t, x) ∂ x u) + b 0 (t, x) ∂ t u + b 1 (t, x) ∂ x u + c(t, x) u , where, in addition to hypothesis [START_REF] Bony | Propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], we assumed also b 0 and b 1 to belong to L ∞ ([0, T ]; C ω ) (for some ω ∈ ]0, 1[ ) and c ∈ L ∞ ([0, T ] × R).

Introduction xv (for j = 1 , 2), and it entails a constraint on the Sobolev index s for which inequality [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF] holds true (see theorem 2.1).

Recently, in [START_REF] Colombini | Timedependent loss of derivatives for hyperbolic operators with non-regular coecients[END_REF] with Colombini, Del Santo and Métivier, we considered operator (3) under hypothesis [START_REF] Bony | Propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] in any space dimension N ≥ 1. Let us point out that we focused on a homogeneous operator to make our computations not too complicated, but the same technique actually works also for complete second order operators. We managed to get an energy estimate analogous to [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF] (this time for any s ∈ ]0, 1[ ), which entails the well-posedness issue in H ∞ (for a jk of class C ∞ b in space). To get the improvement, we resorted to a new energy: as already pointed out, Tarama's energy doesn't admit a straightforward generalization in higher space dimension. So, we came back to the original denition of Colombini and Del Santo again, but this time we replaced multiplication by functions a(t, x) with low regularity modulus of continuity, by action of paradierential operators T a associated to them (as briey explained above). Let us also point out that this construction already involves a smoothing eect with respect to the space variables, so that it was enough to perform a mollication of the coecients only in time.

Nevertheless, positivity hypothesis on a (required for dening a strictly hyperbolic problem) doesn't translate, in general, to positivity of the corresponding operator, which is fundamental in obtaining energy estimates. So, we had to take advantage of paradierential calculus depending on a parameter γ ≥ 1, as developed by Métivier (see [START_REF] Métivier | Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace[END_REF]) and by Métivier and Zumbrun (see paper [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]). This tool allowed us to perform a more rened analysis: in particular, we could dene a paraproduct operator starting from high enough frequencies, so that it is a positive operator, if the corresponding symbol is. We had also to deal with a dierent class of Sobolev spaces, of logarithmic type, already considered by Colombini and Métivier in [23]. This comes from the fact that the action of paradierential operators associated to log-Lipschitz (in x) and log-Zygmund (in t) symbols, such those we considered in our strictly hyperoblic problem, involves a logarithmic loss of regularity.

Density-dependent incompressible Euler system

The density-dependent incompressible Euler system (9)

     ∂ t ρ + u • ∇ρ = 0 ρ (∂ t u + u • ∇u) + ∇Π = ρ f div u = 0
describes the evolution of a non-homogeneous incompressible uid under the action of a body force f = f (t, x) ∈ R N . The function ρ(t, x) ∈ R + represents the density of the uid, u(t, x) ∈ R N its velocity eld and Π(t, x) ∈ R its pressure. The term ∇Π can be also seen as the Lagrangian paper [START_REF] Itoh | Cauchy problem for the Euler equations of a nonhomogeneous ideal incompressible uid[END_REF], Itoh studied instead the evolution in the whole R 3 for initial data (∇ρ 0 , u 0 ) ∈ H 2 ×H 3 , and Danchin (see [START_REF] Danchin | The inviscid limit for density-dependent incompressible uids[END_REF]) extended the results to any dimension N ≥ 2 and to any Sobolev space with high enough regularity index.

In the same paper [START_REF] Danchin | The inviscid limit for density-dependent incompressible uids[END_REF], Danchin considered also the case of data in the endpoint Besov space B 1+N/2 2,1

. Before, Zhou (see [START_REF] Zhou | Local well-posedness for the incompressible Euler equations in the critical Besov spaces[END_REF]) had proved well-posedness for system [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF] in spaces B 1+N/p p,1 for any 1 < p < +∞, but he had to assume the initial density ρ 0 to be a small perturbation of a constant state.

Let us note that, in the case of the whole R N , the hypothesis on the adopted framework almost always entailed a L 2 condition over the velocity eld, and if not (as e.g. in the last mentioned work of Zhou), additional smallness assumptions over the density term were required.

Let us also point out that all the well-posedness results stated for system [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF] are only local in time, even in the two-dimensional case. As a matter of fact, as already remarked, for N = 2 the vorticity equation reads [START_REF] Chemin | Sur le mouvement des particules d'un uide parfait incompressible bidimensionnel[END_REF] ρ. Under these additional assumptions, the equation for the pressure term can be rewritten (as already done by Zhou in paper [START_REF] Zhou | Local well-posedness for the incompressible Euler equations in the critical Besov spaces[END_REF]) in the form -a ∆Π = div F + div ((a -a)∇Π) ,

with a := 1/ρ. So, using standard L p estimates for Laplace operator (which hold for all 1 < p < +∞) and the smallness hypothesis on the density, one can absorb last term of the right-hand side of the previous equation.

In paper [START_REF] Danchin | The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces[END_REF] in collaboration with Danchin, we focused on this last case: we managed to extend the well-posedness result in B s ∞,r without assuming any smallness condition on the initial density. Let us point out that this framework is quite interesting, as it includes also the particular case of Hölder spaces of the type C 1,α and the endpoint Besov space B 1 ∞,1 , which is the largest one embedded in C 0,1 , and so the largest one in which one can expect to recover well-posedness for system [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF]. Of course, we still had to assume u 0 to belong to the energy space L 2 , in order to assure the existence of the solution ∇Π to [START_REF] Chemin | Persistance de structures géométriques dans les uides incompressibles bidimensionnels[END_REF]: we recall again that this equation can be solved independetely of a only in L 2 . Now, the improvement with respect to the previous result was due to the dierent method used to handle the pressure term, which actually works for all p ∈ [1, +∞]. In particular, we separated ∇Π into low and high frequencies, using Littlewood-Paley decomposition. Low frequencies could be controlled by the Lebesgue norm; high frequencies, instead, could be controlled in terms of ∆Π, which satises the equation

-∆Π = ∇ (log a) • ∇Π + 1 a div (f + u • ∇u) .
First term of the previous relation is of lower order: so, it can be absorbed interpolating between the L 2 estimate and the higher regularity estimates for the Laplace operator. We were also able to state a continuation criterion analogous to that of Danchin for the case B s p,r , 1 < p < +∞.

Moreover, for the same reasons explained above, we considered also innite energy data: in this case, vorticity (which was a fundamental quantity in the constant density case) comes into play by Biot-Savart law. We still assumed integrability properties for u 0 and its vorticity Ω 0 , in order to assure the pressure term to belong to L 2 , a requirement we could not bypass. Also under these hypothesis, we got well-posedness for equations [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF]. In particular, this result applies (as in the analogous case considered by Danchin) to any velocity eld with suitably smooth compactly supported vorticity.

As already pointed out before, all the results we got were local in time. Nevertheless, in our paper we were able to give an estimate on the lifespan of the solutions. We rst showed that in any space dimension, if the initial velocity is of order ε (with ε small enough), then the existence time is at least of order ε -1 . In this case, no restriction on the non-homogeneity are needed: the result is a straightforward consequence of rescaling properties for equations [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF]. Next, taking advantage of equality [START_REF] Chemin | Sur le mouvement des particules d'un uide parfait incompressible bidimensionnel[END_REF] and of more rened estimates for transport equation (established recently by Vishik in [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] and then generalized by T. Hmidi and S. Keraani in [START_REF] Hmidi | Incompressible viscous ows in borderline Besov spaces[END_REF]), we showed that the lifespan of the solution tends to innity if ρ 0 -1 goes to 0. More precisely, if

ρ 0 -1 B 1 ∞,1 = ε and ω 0 B 0 ∞,1 + u 0 L 2 = U 0
with ε small enough, then the lifespan is at least of order U -1 0 log(log ε -1 ).

This having been done, in [START_REF] Fanelli | Conservation of geometric structures for non-homogeneous inviscid incompressible uids[END_REF] we studied the problem of propagations of striated and conormal regularity for solutions to [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF], in any dimension N ≥ 2. We considered the initial velocity u 0 and the initial vorticity Ω 0 to be in some Lebesgue spaces, in order to guarantee, once again, ∇Π ∈ L 2 . We also supposed Ω 0 to have regularity properties of geometric type. Moreover, we required the initial density ρ 0 to be bounded with its gradient and to satisfy geometric assumptions analogous to those for Ω 0 . Under these hypothesis, we proved existence (obviously, local in time) and uniqueness of a solution to [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF], and propagation of these geometric structures. Let us point out that no explicit Lipschitz continuity hypothesis over the velocity eld were formulated. This property follows from striated regularity for the vorticity, and it works as in the homogeneous case. As a matter of fact, proving it relies only on Biot-Savart law, hence nothing changes with respect to the classical instance: in particular, no further hypothesis on the density term were needed. Let us point out that we also obtained propagation of geometric structures to the velocity eld and to the pressure term. Moreover, in the same work, we gave an estimate from below for the lifespan of the solution in terms of inital data only, in any dimension N ≥ 2. Let us recall that, in the classical case of constant density, it was given (up to a multiplicative constant) by

T cl := Ω 0 L q ∩L ∞ log e + Ω 0 C ε X 0 Ω 0 L q ∩L ∞ -1
(see paper [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF]). For the non-homogeneous system, instead, we got that the lifespan is given by

T nh := V (0) (1 + ∇ρ 0 L ∞ ) 3+δ 1 + R 0 + Γ 7/3 0 -1
, where the exponent δ > 1 came out in the estimates for the pressure term, the quantities R 0 and Γ 0 are related to the geometric properties of the initial data and we dened

V (0) := u 0 L p + Ω 0 L q ∩L ∞ + Ω 0 C ε X 0 ≥ c Ω 0 L q ∩L ∞ log e + Ω 0 C ε X 0 Ω 0 L q ∩L ∞ .
Hence, up to multiplication by a constant, T nh ≤ T cl . Let us point out that we made the logarithmic dependence disappear in estimating the Lipschitz norm of the velocity eld, to simplify our computations, but maybe this is a quite rough result.

Finally, in the physical case N = 2 or 3, we rened our result on conormal regularity: if the initial hypersurface Σ 0 is also connected, then it denes a bounded domain D 0 ⊂ R N of which it is the boundary, and this property propagates in time (as the ow of the solution is a dieomorphism). By analogy with the structure of vortex patches, we wanted to investigate the dynamics into the bounded domain. Obviously, even in dimension N = 2, even if the initial vorticity is a vortex patch, we cannot expect to propagate this property, because of the presence of the density term in equation [START_REF] Chemin | Sur le mouvement des particules d'un uide parfait incompressible bidimensionnel[END_REF]. Nevertheless, we proved that, if initial density and vorticity are Hölder continuous inside the domain D 0 (in addition to satisfy global hyposthesis in order to assure persistence of conormal properties), than their regularity is preserved in time evolution. The main diculty was to prove that Hölder continuity propagates also to the velocity eld and the pressure term: in last analysis, we had to prove these two quantities to be regular enough at the boundary of the domain D 0 transported by the ow. Now, the required smoothness was ensured by the previously proved conormal regularity.

The thesis is structured in the following way.

In the rst part, we will present the Fourier Analysis tools we needed in our study. We will expound, in a quite complete way, the classical Littlewood-Paley theory. We will recall the denition and the basic properties of the classical non-homogeneous Besov spaces, and we will quote also some fundamental results on paradierential calculus. For doing this, we will strictly follow the presentation given in [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF], and, as these results are classical, we will omit their proofs.

Then, we will pass to consider logarithmic Besov spaces, and we will show that previous properties hold true (up to suitable slight modications) also for this class. This time, we will give here all the details.

In the last part of this chapter, we will explain also the main ideas of paradierential calculus depending on parameters, mainly following the presentation of [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], and we will quote some results we will need in the sequel.

xix Then, we will consider the problem of second order strictly hyperbolic operators with low regularity coecients.

In chapter 2 we will analyse the case of a complete operator in one space dimension. This chapter contains the results proved in paper [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] in collaboration with Colombini. In chapter 3, instead, we will present the issues got in [START_REF] Colombini | Timedependent loss of derivatives for hyperbolic operators with non-regular coecients[END_REF] with Colombini, Del Santo and Métivier. We will extend previous result in any space dimension, but only for a homogeneous operator, i.e. without lower order terms.

In each of these sections, we will introduce also some additional tools. In particular, we will analyse properties of functions with low regularity modulus of continuity and of the corresponding paradierential operators.

Introduction

Cette thèse est consacrée à l'analyse de quelques modèles d'équations diérentielles à dérivées partielles qui naissent de l'étude des models physiques. En particulier, elle se développe dans deux directions diérentes: l'étude des opérateurs hyperboliques à coecients peu réguliers et celle du système d'Euler incompressible à densité variable.

Dans la première partie, on a étudié le problème de Cauchy pour un opérateur des ondes général, dont les coecients du deuxième ordre étaient supposés non-Lipschitz. Au contraire du cas Lipschitz, on ne peut pas s'attendre à avoir encore le caractère bien posé dans n'importe quel espace de Sobolev H s . Toutefois, le caractère bien posé dans l'espace H ∞ est encore vrai, mais avec une perte de dérivées, qui a été prouvée d'être, dans un certain sense, nécessaire.

Beaucoup de travaux sont dédiés à ce sujet, sous de diérentes hypothèses. L'idée générale est celle de compenser la perte de régularité en temps avec des hypothèses convenables par rapport à la variable d'espace. Donc,la première situation à cosindérer est quand les coecients ne dépendent que du temps: dans ce cas, on peut prouver des estimations de l'énergie avec (en général) une perte constante de dérivées.

Par contre, quand les coecients dépendent aussi de x, la perte est (en général) linéairement croissante dans le temps. En particulier, c'est aussi notre cas, où nous avons mélangé les conditions log-Zygmund et log-Lipschitz: nous avons imposé que les coecients satisfont la première en temps et l'autre dans la variable d'espace, uniformément par rapport à l'autre variable.

Dans la deuxième partie de la thèse, on a considéré le système d'Euler incompressible à densité variable, qui décrit la dynamique d'un uide non-visqueux, incompressible et non-homogène.

Le cas classique, où la densité est supposée constante, a été étudié à fond. Parmi les questions principales d'intérêt, il y avait le caractère bien posé dans des espaces de Besov contenus dans la classe C 0,1 des fonctions globalement lipschitziennes, des critères de prolongement et l'existence globale en temps, la propagation des structures géométriques. Notre but était d'élargir (ou d'invalider) les résultats précédents au cas, bien plus réaliste, de densité variable. En particulier, dans un premier temps on a examiné le caractère bien posé dans des espaces de Besov limites, et après on a considéré la propagation de la régularité stratiée et conormale.

La diérence principale avec le système classique est que, cette fois, même dans le cas de dimension 2, on peut s'attendre seulement des résultats d'existence locale en temps. En fait, le tourbillon n'est plus transporté par le ot associé au champs de vitesses (qui était la clé pour la preuve de l'existence globale pour des uides homogènes), à cause de la présence d'un terme dépendant de la densité dans son équation.

Les techniques utilisées pour traiter ces deux problèmes diérents étaient essentiellement basées sur l'Analyse de Fourier. En particulier, c'était nécessaire un vaste emploi de la théorie de Littlewood-Paley et du calcul paradiérentiel, comme présenté par J.-M. Bony dans le célèbre article [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

L'idée principale est de dénir une partition de l'unitée dyadique dans l'espace des phases, grâce à des fonctions convenablement régulières et à support compact: 

χ(ξ) + j≥1 ϕ j (ξ) ≡ 1 ∀ ξ ∈ R N , où χ et ϕ j (pour tout j) appartiennent à C ∞ 0 (R N ξ ),
s ∈ R et C ω ≡ B ω ∞,∞ pour n'importe quel ω ∈ ]0, 1[ .
Les propriétés des espaces de Besov ont été étudiées à fond (voir par exemple [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] et [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF]) et ils sont maintenant un sujet classique. De toute façon, dans l'article [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF] les auteurs ont considéré des espaces de Sobolev de type logarithmique et ils ont donné une leur caractérisation dyadique. Inspiré par ce fait, nous avons déni la classe des espaces de Besov logarithmiques, en rempleçant le terme exponentiel par le nouveau poids 2 js (1 + j) α (pour quelque α ∈ R). Nous avons aussi prouvé qu'ils jouissent des propriétés analogues à celles des espaces de Besov classiques.

En utlisant encore la décomposition de Littlewood-Paley, on peut écrire la déomposition de fony (voir l'article [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]) d'un produit de deux distributions temperées: [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] 

u v = T u v + T v u + R(u, v) ,
où on a déni les opérateurs de paraproduit et de reste respectivement comme

T u v := j S j-1 u ∆ j v et R(u, v) := j |k-j|≤1 ∆ j u ∆ k v .
Ces opérateurs ont d'agréables propriétés de continuité sur la classe des espaces de Besov. De plus, le paraproduit joue un rôle important aussi dans l'analyse non-linéaire (voir par exemple le théorème de paraliéairisation 1.33 en dessous). Nous allons faire un large emploi de la décomposition [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF]dans tout le manuscrit. Cependant, le paraproduit n'est qu'un seul exemple d'opérateur paradiérentiel, associé à une fonction qui dépend seulement de la variable d'espace x.

Plus en général, on peut associer un opérateur paradiérentiel à tout symbol a(x, ξ) lisse par rapport à ξ, seulement localement borné en x et dont les dérivées en ξ satisfont de particulières conditions de croissance (voir par exemple [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF]). Avant tout, ayant xé une convenable fonction de coupage ψ, on peut régulariser a par rapport à la variable x: on obtient ainsi un symbole classique σ a (x, ξ) strictement relié à a. Après, on peut dénir l'opérateur paradiérentiel associé à a, indiqué par T a , comme l'opérateur pseudodiérentiel associé au symbol classique, c'est-àdire σ a (x, D x ). D'un côté, la construction entière est indépendante de la fonction de coupure ψ, à moin de termes d'ordre inférieur. De l'autre côté, on peut faire la dépendre d'un paramètre γ ≥ 1, comme fait dans [START_REF] Métivier | Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace[END_REF] et [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF] par exemple. Ce très simple changement va entrer en jeu d'une façon essentielle dans l'étude des opérateurs hyperboliques à coecients peu réguliers (voir le chapitre 3), parce qu'il permet une analyse plus ranée.

Après cette brève présentation à l'égard des outils théoriques dont on aura besoin dans notre analyse, on va expliquer plus en détail les deux diérentes directions principales de notre travail de recherche.

Opérateurs strictement hyperboliques à coecients peu réguliers

On considère un opérateur strictement hyperbolique du deuxième ordre L sur une bande [0, T ] × R N , pour quelque T > 0 et toute diménsion N ≥ 1:

(15) Lu := ∂ 2 t u - N j,k=1 ∂ j (a jk (t, x) ∂ k u) ,
et on suppose qu'il y a deux constants 0 < λ 0 ≤ Λ 0 telles que

λ 0 |ξ| 2 ≤ N j,k=1 a jk (t, x) ξ j ξ k ≤ Λ 0 |ξ| 2 pour n'importe quel (t, x) ∈ [0, T ] × R N et tout ξ ∈ R N .
L'inégalité à gauche est la condition de stricte hyperbolicité, tandis que celle à droite dit que les coecients de l'opérateur sont bornés.

C'est bien connu (voir par exemple [START_REF] Hörmander | viner prtil di'erentil opertors[END_REF] ou [START_REF] Mizohata | he theory of prtil di'erentil equtions[END_REF]) que, si les coecients a jk sont lipschitziens par rapport à t et seulement mesurable et bornés en x, alors le problème de Cauchy pour L a un caractère bien posé dans l'espace H 1 × L 2 . Donc, si les a jk sont C ∞ et bornés avec toutes leurs dérivées par rapport à la variable d'espace, on peut retrouver le caractère bien posé en H s+1 × H s pour tout s ∈ R. De plus, pour n'importe quel s ∈ R on obtient (pour une certaine constante C s dépendent seulement de s) l'estimation de l'énergie

sup 0≤t≤T u(t, •) H s+1 + ∂ t u(t, •) H s ≤ (16) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 Lu(t, •) H s dt pour toute u ∈ C([0, T ]; H s+1 (R N )) ∩ C 1 ([0, T ]; H s (R N )) telle que Lu ∈ L 1 ([0, T ]; H s (R N )).
En particulier, l'estimation [START_REF] Cicognani | Modulus of continuity of the coecients and loss of derivatives in the strictly hyperbolic Cauchy problem[END_REF] est vraie pour toute u ∈ C 2 ([0, T ]; H ∞ (R N )), et ça implique que le problème de Cauchy pour L est bien posé dans H ∞ ve uune perte de dérivées.

Si l'hypothèse de continuité Lipschitz (en temps) n'est pas satisfaite, alors (16) n'est plus vraie.

Cependant, on peut encore retrouver le caractère bien posé dans H ∞ , mais cette fois avec une perte de dérivées dans l'estimation de l'énergie. Cette perte ne peut pas être évitée, comme il est prouvé dans l'article [START_REF] Cicognani | Modulus of continuity of the coecients and loss of derivatives in the strictly hyperbolic Cauchy problem[END_REF]. En fait, les auteurs y prouvent que, si la régularité des coecients est mesurée par un module de continuité, alors chaque module de continuité pire que le lipschitzien comporte toujours une perte de dérivées.

Le premier cas à considérer est quand les a jk dépendent seulement du temps: alors, en utilisant la transformée de Fourier, on peut passer à l'espace des phases, où le problème devient une équation diérentielle ordinaire. Dans l'article [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF], Colombini, De Giorgi et Spagnolo ont supposé une condition log-Lipschitz intégrale, tandis que Tarama (voir [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF]) a considéré la classe plus générale des fonctions log-Zygmund (intégrales). Sous toutes les deux hypothèses, on obtient une estimation de l'énergie ve une perte onstnte de dérivées: il y a une constante δ > 0 telle que, pour n'importe quel s ∈ R, on a l'inégalité

sup 0≤t≤T u(t, •) H s+1-δ + ∂ t u(t, •) H s-δ ≤ (17) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 Lu(t, •) H s dt pour toute u ∈ C 2 ([0, T ]; H ∞ (R N ))
, pour une certaine constante C s qui dépende seulement de s. L'idée originelle de Colombini, De Giorgi et Spagnolo était de régulariser les coecients en utilisant un noyau de convolution, et après de relier le paramètre d'approximation ε avec la xxiii variable duale ξ: ainsi, ils ont exécuté une diérente approximation dans de diérentes zones de l'espace des phases. L'amélioration de Tarama, plutôt, a été obtenue en dénissant une nouvelle énergie, qui concerne aussi les premières dérivées des coecients lissés, de façon de compenser la pire régularité.

Le cas de dépendence en temps aussi bien qu'en espace a été considéré par Colombini et Lerner dans l'article [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF]: ils ont supposé que les a jk satisfaisaient une condition log-Lipschitz ponctuelle dans toutes les variables. Ils ont donc étudié le problème de Cauchy connexe, et ils ont trouvé une estimation de l'énergie ve une perte de dérivées qui roît en temps: pour chaque s ∈ ]0, 1/4], il y a des constantes positives

β et C s et un temps T * ∈ ]0, T ] tels que sup 0≤t≤T * u(t, •) H -s+1-βt + ∂ t u(t, •) H -s-βt ≤ (18) ≤ C s u(0, •) H -s+1 + ∂ t u(0, •) H -s + T * 0 Lu(t, •) H -s-βt dt pour n'importe quelle u ∈ C 2 ([0, T ]; H ∞ (R N ))
. À cause de la dépendence des a jk de x, maintenant ce n'était plus possible d'utiliser la transformée de Fourier pour passer à l'espace des phases. Pour surmonter ce problème, ils ont proté de la décomposition de Littlewood-Paley: ils ont déni une énergie localisée pour chaque composante ∆ ν u de la solution u, et après ils ont exécuté une somme pesée sur ν pour dénir l'énergie totale. Encore une fois, ils ont régularisé les cocients en temps et ils ont lié le paramètre d'approximation avec ν, fait qui correspond exactement à choisir une diérente approximation dans de diérentes zones de l'espace des phases: il faut se rappeler que |ξ| ∼ 2 ν sur le spectre de ∆ ν u. Un travail assez dur était exigé pour contrôler la norm (sur l'espace L 2 ) des opérateurs de commutation [∆ ν , a jk ] venant de l'équation pour la partie localisée ∆ ν u.

Plus récemment (voir l'article [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]) Colombini et Del Santo ont imposé une condition log-Zygmund ponctuelle par rapport au temps et une log-Lipschitz ponctuelle par rapport à l'espace, uniformément par rapport à l'autre variable. Ces hypthèses se traduisent de la façon suivante: il y a une constant K 0 telle que, pour n'importe quel τ > 0 et quel y ∈ R N \{0}, on a sup (t,x)

|a jk (t + τ, x) + a jk (t -τ, x) -2a jk (t, x)| ≤ K 0 τ log 1 + 1 τ (19) sup (t,x) |a jk (t, x + y) -a jk (t, x)| ≤ K 0 |y| log 1 + 1 |y| . (20) 
Dans ce cas aussi, ils ont décomposé l'énergie dans des parties localisées, même si chacune d'elles était dénie d'une nouvelle façon, en suivant l'idée originelle de Tarama, pour contrôler le mauvais comportement des coecients par rapport au temps. De plus, la régularisation des coecients par un noyau de convolution était exécutée et en temps, et en espace. Ainsi, ils ont obtenu un estimation de l'énergie analogue à (18) (et donc le caractère bien posé dans l'esapce H ∞ pour des cocients a jk assez réguliers par rapport à x), mais seulement dans le cas de dimension d'espace N = 1: en fait, ce n'était pas clair du tout comment dénir une énergie de type Tarama (qui était, d'une certaine façon, nécessaire) en dimension plus grande.

Dans un premier temps, dans l'article [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] en collaboration avec Colombini, on a élargi le résultat de [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF] au problème de Cauchy (encore en dimension N = 1) pour un opérateur hyperbolique du deuxième ordre complet

P u := ∂ 2 t u -∂ x (a(t, x) ∂ x u) + b 0 (t, x) ∂ t u + b 1 (t, x) ∂ x u + c(t, x) u ,
l'énergie associée à u était dénie de la même façon, et on a traité les termes d'ordre le plus grand comme eux. Encore, on a trouvé une estimation de l'énergie du même type que [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF]: comme on peut s'attendre, la présence des termes d'ordre inférieur n'entraîne pas de problèmes considérables pour l'obtenir. Cependant, la régularité hölderienne des coecients des termes du premier ordre entre en jeu dans l'analyse des commutateurs [∆ ν , b j ] (pour j = 1 , 2), et elle comporte une contrainte sur l'exposant de Sobolev s pour lequel [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF] est vrai (voir aussi le théorème 2.1).

Dernièrement, dans [START_REF] Colombini | Timedependent loss of derivatives for hyperbolic operators with non-regular coecients[END_REF] avec Colombini, Del Santo et Métivier, on a considéré l'opérateur [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes[END_REF] sous les hypothèses [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF] and [START_REF] Colombini | Timedependent loss of derivatives for hyperbolic operators with non-regular coecients[END_REF] dans n'importe quelle diménsion N ≥ 1. On fait remarquer que on s'est intéressé à un opérateur homogène pour n'alourdir pas trop nos calculs, mais la même technique marche en fait pour un opérateur du deuxième ordre complet. Nous sommes arrivés à trouver une estimation de l'énergie analogue à (18) (cette fois pour tout s ∈ ]0, 1[ ), et donc le caractère bien posé dans H ∞ (pour des a jk de classe C ∞ b dans l'espace). Pour obtenir l'amélioration, nous sommes recourus à une nouvelle énergie: comme on vient de remarquer, la dénition de Tarama n'admet pas une généralisation directe en diménsion plus grande. Donc, on a fait appel encore à la dénition originelle de Colombini et Del Santo, mais en remplaçant la multiplication par des fonctions a(t, x) avec un module de continuité peu régulier par l'action des opérateurs paradiérentiels T a , à elles associés (comme on a brièvement expliqué en dessus). On veut remarquer aussi que cette construction comporte déjà un eet de régularisation dans la variable d'espace, de façon que c'était susant d'exécuter la convolution avec un noyau lisse seulement par rapport au temps.

Toutefois, l'hypothèse de positivité sur a (exigée pour dénir un problème strictement hyperbolique) ne se traduit pas, en général, dans la positivité de l'opérateur correspondant, qui est fondamentale dans les estimations de l'énergie. Ainsi, nous avons dû proter du calcul paradiérentiel dépendant d'un paramètre γ ≥ 1, comme développé par Métivier (voir [START_REF] Métivier | Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace[END_REF]) et par Métivier et Zumbrun (voir l'article [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]). Cet outil nous permet d'exécuter une analyse plus ne: en particulier, on peut dénir un opérateur de paraproduit à partir des frequences assez grandes, de façon qu'il soit un opérateur positif, si le symbole correspondant est positif. On a dû aussi traiter avec de diérentes classes d'espaces de Sobolev, de type logarithmique, déjà considérés par Colombini et Métivier dans [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF]. Cela vient du fait que l'action des opérateurs paradiérentiels associés aux symboles log-Lipschitz (en x) et log-Zygmund (en t), tels que ceux qu'on considère dans notre problème strictement hyperbolique, comporte une perte de régularité logarithmique. Au contraire, pas beaucoup de travaux ont été consacrés à l'étude du cas non-homogène. De premiers résultats pour les équations [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] dans des domaines lisses de R 2 ou R 3 ont été obtenus par Beirão da Veiga et Valli pour des données initiales hölderiennes (voir les articles [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF], [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF] et [START_REF] Beirão | Existence of C ∞ solutions of the Euler equations for nonhomogeneous uids[END_REF]). Le cadre des espaces de Sobolev était considéré plutôt par Valli et Zaj aczowski dans [START_REF] Valli | About the motion of nonhomogeneous ideal incompressible uids[END_REF], et par Itoh et Tani dans [START_REF] Itoh | Solvability of nonstationary problems for nonhomogeneous incompressible uids and the convergence with vanishing viscosity[END_REF]. Dans l'article [START_REF] Itoh | Cauchy problem for the Euler equations of a nonhomogeneous ideal incompressible uid[END_REF], Itoh a étudié l'évolution dans R 3 entier, pour des données initiales (∇ρ 0 , u 0 ) ∈ H 2 × H 3 , et Danchin (voir [START_REF] Danchin | The inviscid limit for density-dependent incompressible uids[END_REF]) a agrandi les résultats à n'importe quelle dimension N ≥ 2 et à tout espace de Sobolev avec un exposant de régularité assez grand.

Système d'Euler incompressible à densité variable

     ∂ t ρ + u • ∇ρ = 0 ρ (∂ t u + u • ∇u) + ∇Π = ρ f div u = 0 décrit l'évolution d'un uide incompressible non-homogène et non-visqueux sous l'action d'une force externe f = f (t, x) ∈ R N . La fonction ρ(t, x) ∈ R + représente la densité du uide, u(t, x) ∈ R N son champs de vitesses et Π(t, x) ∈ R sa
Dans le même article [START_REF] Danchin | The inviscid limit for density-dependent incompressible uids[END_REF], Danchin a considéré aussi le cas de données dans l'espaces de Besov limite B

1+N/2 2,1

. Avant, Zhou (voir [START_REF] Zhou | Local well-posedness for the incompressible Euler equations in the critical Besov spaces[END_REF]) avait prouvé le caractère bien posé pour le système [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] dans les espaces B 1+N/p p,1 pour tout 1 < p < +∞, mais en supposant aussi que la densité initiale ρ 0 était une petite perturbation d'un état constant.

Il faut noter que, dans le cas de R N entier, l'hypothèse sur le cadre adopté implique presque toujours une condition L 2 sur le champs de vitesses, et si ce n'est pas le cas (comme, par exemple, dans le travail de Zhou qu'on vient de citer), des suppositions de petitesse sur la densité étaient demandées.

Il faut aussi remarquer que tous les résultats sur le caractère bien posé énoncé pour le système (21) sont seulement locaux en temps, même dans le cas deux-dimensionnel. En fait, comme on a déjà dit, pour N = 2 l'équation du tourbillon devient (23)

∂ t ω + u • ∇ω + ∇ 1 ρ ∧ ∇Π = 0 ,
donc on ne peut pas s'attendre la conservation des normes de Lebesgue, fait qui était la clé pour le résultat d'existence globale en temps, à cause du terme de densité.

Récemment (voir l'article [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF]), Danchin a prouvé le résultat sur le caractère bien posé du système [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] dans tout espace de Besov B s p,r , avec 1 < p < +∞, contenu dans l'ensemble C 0,1 des fonctions globalement lipschitiziennes. En fait, notre système est essentiellement un couplage de deux équations de transport par le champ de vitesses u: alors, aucun gain de régularité peut être attendu, tandis que, si on veut la préserver, il faut demander que u soit au moins localement lipschitzienne par rapport à la variable d'espace. Donc, Danchin a demontré que le cadre fonctionnel convenable pour l'étude de [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] est le même que pour les équations [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF]. De plus, il est arrivé à obtenir son résultat pour n'importe quel état de densité initial, sans de conditions addittionelles de petitesse. De toute façon, il a dû supposé que le champ de vitesses u appartenait à L 2 pour traiter le terme de pression. En fait, dans le cas de densité non constante, ∇Π satisfait une équation elliptique (en forme de divergence) à coecients peu réguliers,

-div (a ∇Π) = div F (ici on a posé a := 1/ρ), et elle peut être résolue de façon indépendente de a seulement dans l'espace d'énergie L 2 . Le contrôle sur la norme L 2 (ou, en général, L p ) de ∇Π était nécessaire aussi pour borner sa norme de Besov.

Toutefois, la condition u 0 ∈ L 2 est, d'une certaine manière, assez restrictive: dans le cas deux-dimensionnel, elle implique que le tourbillon doit avoir moyenne nulle sur R 2 , et ce fait nous empêche de considérer, par exemple, des structures de type poches de tourbillon. Donc, Danchin a prouvé aussi le caractère bien posé (dans n'importe quelle dimension N ≥ 2) pour des données dans des espaces B s p,r → C 0,1 , avec 2 ≤ p ≤ 4. Aucune hypothèse d'énergie nite était formulée, même si la condition précédente nous permet de retrouver encore ∇Π ∈ L 2 . En particulier, ce résultat s'applique (grâce à la loi de Biot-Savart) à tout champ de vitesses assez lisse dont le tourbillon est à support compact.

Dans le même travail, Danchin a prouvé aussi un critère de continuation dans le même esprit de celui, bien connu, de Bealo, Kato et Majda (voir l'article [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]). La condition qui permet de prolonger les solutions au-delà d'un certain temps T est

T 0 ∇u(t) L ∞ + ∇Π(t) B s-1 p,r dt < +∞ ,
et, dans le cas s > 1 + N/p, c'est possible de remplacer ∇u avec le tourbillon Ω.

Finalement, Danchin a attaqué aussi le cas des espaces B s ∞,r → C 0,1 , mais en demandant en plus que u 0 appartenait à L p (pour quelques 1 < p < +∞) et que ρ 0 était proche (dans la norme B s ∞,r ) à un état constant ρ. Sous ces hypothèses supplémentaires, l'équation pour le terme de pression peut s'écrire (comme déjà fait dans l'article [START_REF] Zhou | Local well-posedness for the incompressible Euler equations in the critical Besov spaces[END_REF] de Zhou) dans la forme -a ∆Π = div F + div ((a -a)∇Π) , avec a := 1/ρ. Alors, en utilisant les estimations L p habituelles pour l'opérateur de Laplace (qui sont valables pour tout 1 < p < +∞) et l'hypothèse de petitesse sur la densité, on peut absorber le dernier terme du membre de droite de l'équation précédente.

Dans l'article [START_REF] Danchin | The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces[END_REF] en collaboration avec Danchin, on s'est concentré sur ce dernier cas: on est arrivé à élargir le résultat sur le caractère bien posé dans B s ∞,r sans supposer aucune condition de petitesse sur la densité initiale. Il faut remarquer que ce cadre fonctionnel est assez intéressant, car il comprend aussi les cas particuliers des espaces de Hölder du type C 1,α et l'espaces de Besov limite B 1 ∞,1 , qui est le plus grand contenu dans C 0,1 , et donc le plus grand où on peut s'attendre à retrouver le caractère bien posé pour le système [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF]. Bien sûr, on a dû supposer que u 0 était dans L 2 , pour avoir l'existence d'une solution ∇Π de [START_REF] Danchin | Évolution temporelle d'une poche de tourbillon singulière[END_REF]. L'amélioration par rapport au résultat précédent a été obtenue grâce à une diérente méthode utilisée pour traiter le terme de pression, qui en fait marche pour n'importe quel p ∈ [1, +∞]. En particulier, on a séparé ∇Π dans les basses et les hautes fréquences, en utilisant la décomposition de Littlewood-Paley. Les basses fréquences pouvaient être contrôlées par la norme de Lebesgue, tandis que les hautes étaient bornées par la norme de ∆Π, qui satisfait l'équation

-∆Π = ∇ (log a) • ∇Π + 1 a div (f + u • ∇u) .
Le premier terme de la rélation précédente est d'ordre inférieur, et donc il peut être absorbé en interpolant entre les estimations L 2 et celles, d'ordre plus grand, pour l'opérateur de Laplace.

Nous étions aussi capables de formuler un critère de prolongement analogue à celui de Danchin pour le cas B s p,r , 1 < p < +∞. De plus, pour les mêmes raisons qu'on a expliquées tout à l'heure, on a considéré aussi des données ayant énergie innie: dans ce cas, le tourbillon (qui était une quantité fondamentale dans le cas de densité constante) est entré en jeu via la loi de Biot-Savart.

On a encore supposé des propriétés d'intégrabilité pour u 0 et son tourbillon Ω 0 , an d'assurer que le terme de pression appartenait à L [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF]. Après, grâce à l'égalité [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF] et à des estimations plus précises pour l'équation de transport (récemment établies par Vishik dans [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] et généralisées par T. Hmidi et S. Keraani dans [START_REF] Hmidi | Incompressible viscous ows in borderline Besov spaces[END_REF]), on a montré que le temps de vie de la solution tend à l'inni si ρ 0 -1 devient proche de 0. Plus exactement, si

ρ 0 -1 B 1 ∞,1 = ε et ω 0 B 0 ∞,1 + u 0 L 2 = U 0
xxvii avec ε assez petit, alors le temps de vie est au moins d'ordre U -1 0 log(log ε -1 ).

Cela fait, dans [START_REF] Fanelli | Conservation of geometric structures for non-homogeneous inviscid incompressible uids[END_REF] on a étudié le problème de la propagation de la régularité stratiée et conormale pour les solutions de [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF], dans toute dimension N ≥ 2. 

T cl := Ω 0 L q ∩L ∞ log e + Ω 0 C ε X 0 Ω 0 L q ∩L ∞ -1
(voir l'article [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF]). Dans le cas non-homogène, au contraire, nous avons trouvé qu'il est borné par

T nh := V (0) (1 + ∇ρ 0 L ∞ ) 3+δ 1 + R 0 + Γ 7/3 0 -1
, où l'exposant δ > 1 vient des estimations pour le terme de pression, les quantités R 0 et Γ 0 sont liées aux propriétés géometriques des données initiales et on a déni

V (0) := u 0 L p + Ω 0 L q ∩L ∞ + Ω 0 C ε X 0 ≥ c Ω 0 L q ∩L ∞ log e + Ω 0 C ε X 0 Ω 0 L q ∩L ∞ .
Alors, à moins de multiplication par des constantes, T nh ≤ T cl . Nous voulons remarquer qu'on a laissé tomber la dépendence logarithmique dans l'estimation de la norme Lipschitz du champ de vitesses pour simplier les calculs, mais peut-être ce résultat est assez approximatif.

Finalement, dans les cas physiques N = 2 ou 3, on est arrivé à raner notre résultat sur la régularité conormale: si l'hypersurface initiale Σ 0 est aussi connèxe, alors elle dénit un domaine borné D 0 ⊂ R N dont elle est le contour, et cette propriété se propage en temps (car le ot de la solution est un diéomorphisme). Par analogie avec la structure des poches de tourbillon, nous voulions étudier la dynamique dans le domaine borné. Évidemment, même en dimension N = 2, même si la donnée initiale est un poche de tourbillon, on ne peut pas s'attendre à conserver cette propriété, à cause de la presence du terme de densité dans l'équation [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF]. Cependant, nous avons prouvé que, si la densité et le tourbillon initials sont hölderiens à l'intérieur du domaine D 0 (et ils satisfont des hypothèses globales pour garantir la persistance des propriétés conormales), alors leur régularité est préservée dans l'évolution temporelle. La diculté la plus grande était de prouver que la continuité hölderienne se propageait aussi au champ de vitesses et au terme de pression: enn, on devait prouver que ces deux quantités étaient assez régulières à la frontière du domaine D 0 transporté par le ot. Maintenant, ça était garanti par la régularité conormale qu'on venait de prouver.

La thèse est structurée de la façon suivante. Dans la première partie, on va présenter les outils de l'Analyse de Fourier dont on aura besoin dans notre étude. On donne un cadre assez général de la théorie classique de Littlewood-Paley. On va rappeler la denition et les propriétés principales des espaces de Besov non-homogènes, et on va citer aussi quelques résultats fondamentaux à l'égard du calcul paradiérentiel. Pour faire ça, on va suivre dèlement la préséntation donnée dans [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF], et, comme ces résultats sont classiques, on va omettre leurs preuves.

Après, on va considérer les espaces de Besov logarithmiques, et on va montrer que les propriétés précédentes sont encore valables (à moins des changements appropriés) aussi pour cette classe. Cette fois, on va donner tous les détails des preuves.

Dans la dernière partie de ce chapitre, on va expliquer les idées principales du calcul paradiérentiel à paramètre, en suivant principalement la présentation de [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], et on va citer quelques résultats dont on aura besoin dans la suite.

Après, on va considérer le problème des opérateurs du deuxième ordre strictement hyperboliques à coecients peu réguliers.

Dans le chapitre 2 on va analyser le cas d'un opérateur complet en dimension d'espace égale à un. Ce chapitre contient les résultats prouvés dans l'article [START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF] en collaboration avec Colombini.

Dans le chapitre 3, plutôt, on va présenter les résultats obtenus dans [START_REF] Colombini | Timedependent loss of derivatives for hyperbolic operators with non-regular coecients[END_REF] avec Colombini, Del Santo et Métivier. On élargit le précédent au cas de n'importe quelle dimension d'espace, mais (pour simplier les calculs) seulement pour un opérateur homogène, c'est-à-dire sans les termes d'ordre inférieur.

Dans chaqu'une de ces sections, on va introduire aussi quelques outils en plus que ceux qu'on a présentés dans le chapitre 1. En particulier, on va analyser les propriétés des fonctions ayant un module de continuité peu régulier et celles des opérateurs paradiérentiels correspodants.

Finalement, la dernière partie de la thése est dévouée à l'étude des équations d'Euler incompressibles à densité variable. Le chapitre 4 est consacré à la preuve du caractère bien posé dans des espaces de Besov limites, contenus dans l'espace des fonctions globalement lipschitziennes. On va aussi donner un critère de prolongement et une borne du dessous pour le temps de vie des solutions. Ce chapitre est basé sur l'article [START_REF] Danchin | The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces[END_REF] en collaboration avec Danchin.

Après, on va considérer le problème de la propagation des structures géometriques pour ce système. On va se concentrer sur la régularité stratiée et celle conormale, et sur la propagation de la continuité hölderienne à l'intérieur d'un domaine borné de R 2 ou R 3 (comme expliqué avant).

Ceci est le sujet du chapitre 5, et il contient les résultats prouvés dans l'article [START_REF] Fanelli | Conservation of geometric structures for non-homogeneous inviscid incompressible uids[END_REF].

Part I Fourier Analysis methods for

Partial Differential Equations

Chapter 1

Littlewood-Paley Theory

This chapter is devoted to the presentation of the main tools, mostly based on Fourier Analysis, we will need in the study of some partial dierential equations.

The basic idea is to split a tempered distribution into a sum of smooth functions, whose Fourier transform is compactly supported in a ball or an annulus and which have, due to this spectral localization, very nice properties. This will be explained in the rst section. Then, taking advantage of the previous decomposition, we will introduce the class of (nonhomogeneous) Besov spaces and we will recall its main properties. Next section will be devoted to the classical paradierential calculus. In particular, we will analyse the product of two tempered distributions using the well-known paraproduct decomposition, introduced rst by J.-M. Bony in the paper [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. Moreover, we will consider also composition of Besov functions by a smooth one.

Unless otherwise specied, one can nd the proof of all the results quoted up to now in chapter 2 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] (see also [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF], chapter 4).

In section 1.4, instead we will introduce a new class of Besov spaces, in a certain sense of logarithmic type. We will see that most of the classical results holds true also in this new setting. As this part is not classical, we will give also the details of the proofs.

Finally, last section of this chapter is devoted to paradierential calculus depending on a parameter γ ≥ 1 and to more general classes of paradierential operators. These topics have been already introduced in paper [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], appendix B (see also [START_REF] Métivier | Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace[END_REF]): we will essentially follow it in our presentation. However, we will allow symbols to have also a logarithmic growth, and we will analyse their action on the class of logarithmic Besov spaces, introduced before.

Littlewood-Paley decomposition

Let us dene the so called vittlewoodEley deomposition, based on a dyadic partition of unity with respect to the Fourier variable. So, x a smooth radial function χ supported in (say) the ball B(0, 8/5), equal to 1 in a neighborhood of B(0, 5/4) and such that r → χ(r e) is nonincreasing over R + for all unitary vector e ∈ R N . Moreover, set ϕ (ξ) = χ (ξ) -χ (2ξ): obviously, its support is contained in the annulus C = ξ ∈ R N | 5/8 ≤ |ξ| ≤ 8/5 . Now we quote some fundamental properties, which are easy to verify. First of all,

∀ ξ ∈ R N , χ(ξ) + j≥1 ϕ 2 -j ξ = 1 and ∀ ξ ∈ R N \{0} , j∈Z ϕ 2 -j ξ = 1 .
Moreover, if we dene the annulus C = C + B(0, 2/5), we have 2 j C ∩ 2 k C = ∅ for all |j -k| ≥ 3, and we have also

|j -k| ≥ 2 =⇒ supp ϕ 2 -j • ∩ supp ϕ 2 -k • = ∅ j ≥ 2 =⇒ supp χ ∩ supp ϕ 2 -j • = ∅ .
For convenience, set g = F -1 χ and h = F -1 ϕ. The dyadic blocks (∆ j ) j∈Z are dened by 1

∆ j := 0 if j ≤ -1, ∆ 0 := χ(D) = g * • and ∆ j := ϕ(2 -j D) = 2 jN h 2 j • * • if j ≥ 0 ,
while the low frequency cut-o operator is dened as

S j u := χ(2 -j+1 D) = k≤j-1 ∆ k = 2 (j-1)N g 2 j-1 • * • for j ≥ 1 .
The above dened operators map L p into L p (for all p ∈ [1, +∞]) continuously, with norms independent of the indeces j and p. Moreover, formally we have the decomposition Id = j ∆ j , which makes sense in S , as next result says. Proposition 1.1. por ny u ∈ S D one hs u = lim j→+∞ S j u in S F For the sequel, it's important to understand properties of spectrally localized functions 2 : hence, the following two lemmas will be fundamental. The former one describes, by the so called fernstein9s inequlities, the way derivatives take eect on such a class of functions, while the latter concerns the action of Fourier multipliers. Lemma 1.2. vet 0 < r < RF e onstnt C exists so thtD for ny nonnegtive integer kD ny ouple (p, q) in [1, +∞] 2 with p ≤ q nd ny funtion u ∈ L p D we hveD for ll λ > 0D

supp u ⊂ B(0, λR) =⇒ ∇ k u L q ≤ C k+1 λ k+N 1 p -1 q u L p supp u ⊂ {ξ ∈ R N | rλ ≤ |ξ| ≤ Rλ} =⇒ C -k-1 λ k u L p ≤ ∇ k u L p ≤ C k+1 λ k u L p .
Lemma 1.3. vet C e n nnulusD m ∈ R nd σ e smooth funtion on R N \{0} suh thtD for ny α ∈ N N D there exists onstnt C α for whih

∀ ξ ∈ R N , |∂ α σ(ξ)| ≤ C α |ξ| m-|α| .
henD there exists onstnt CD depending only on the C α for |α| ≤ N + 2D suh thtD for ny p ∈ [1, +∞]D ny λ > 0 nd ny funtion u ∈ L p spetrlly supported in λ CD we hve

σ(D)u L p ≤ C λ m u L p .

Non-homogeneous Besov spaces

Using the Littlewood-Paley decomposition, one can dene what a Besov space B s p,r is. Denition 1.4. Let u be a tempered distribution, s a real number, and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space B s p,r is dened as the subset of tempered distributions u for which u B s p,r := 2 js ∆ j u L p j∈N r < +∞ .

From the above denition, it is easy to show that for all s ∈ R, the Besov space B s 2,2 coincides with the non-homogeneous Sobolev space H s , while for all s ∈ R + \N, the space B s ∞,∞ is actually the Hölder space C s (see e.g. [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF], chapter 4, for the proof of these two facts). If s ∈ N, instead, we set C s * := B s ∞,∞ , to distinguish it from the space C s of the dierentiable functions with continuous partial derivatives up to the order s. Moreover, the strict inclusion C s b → C s * holds, where C s b denotes the subset of C s functions bounded with all their derivatives up to the order s.

If s < 0, we dene the negative Hölder space C s as the Besov space B s ∞,∞ .

Finally, let us also point out that for any k ∈ N and p ∈ [1, +∞], we have the following chain of continuous embeddings:

B k p,1 → W k,p → B k p,∞
, where W k,p denotes the set of L p functions with derivatives up to order k in L p .

Besov spaces have many nice properties which will be recalled in a while. For the time being, let us just mention that if the condition

(1.1) s > 1 + N p or s = 1 + N p and r = 1
holds true, then B s p,r is an algebra continuously embedded in the set C 0,1 of bounded Lipschitz functions, and that (by Bernstein's inequalities) the gradient operator maps B s p,r in B s-1 p,r . First of all, let us show that denition 1.4 is independent of the choice of the cut-o functions dening the Littlewood-Paley decomposition. Lemma 1.5. vet 

C ⊂ R N e n nnulusD s ∈ R nd (p, r) ∈ [1, +∞] 2 F vet (u j ) j∈N e sequene of smooth funtions suh tht supp u j ⊂ 2 j C nd 2 js u j L p j∈N r < +∞ .
hen u := j∈N u j elongs to B s p,r nd u B s p,r ≤ C s 2 js u j L p j∈N r .

Bernstein's inequalities immediately imply the following embedding result.

Proposition 1.6. he spe B s 1 p 1 ,r 1 is ontinuously emedded in the spe B s 2 p 2 ,r 2 for ll indies

stisfying 1 ≤ p 1 ≤ p 2 ≤ +∞ nd s 2 < s 1 -N 1 p 1 - 1 p 2 or s 2 = s 1 -N 1 p 1 - 1 p 2 nd 1 ≤ r 1 ≤ r 2 ≤ +∞ .
The following statement is of great importance for proving existence results for partial dierential equations in the Besov spaces framework. We introduce now the following notation:

• for any index q ∈ [1, +∞], we denote with q its conjugate exponent, i.e. q ∈ [1, +∞] is dened by the relation (1/q) + (1/q ) = 1;

• the symbol ( • , • ) L 2 will indicate the scalar product in L 2 .
Let us recall also some duality properties of Besov spaces.

Proposition 1.11. por ll

s ∈ R nd (p, r) ∈ [1, +∞] 2 D the mp B s p,r × B -s p ,r -→ R (u , φ) -→ u, φ := |j-k|≤1 (∆ j u, ∆ k φ) L 2
de(nes ontinuous iliner funtionl on the spe B s p,r × B -s p ,r F woreoverD for ll u ∈ S

u B s p,r ≤ C sup φ∈S, φ B -s p ,r ≤1 u, φ .
More generally, the space B -s p ,r can be identied with the dual space of the completion of D for the B s p,r norm. Now let us consider the action of Fourier multipliers on non-homogeneous Besov spaces. First of all, a denition is in order. Denition 1.12. A smooth function f : R N -→ R is said to be a S m Emultiplier if, for all multi-index α ∈ N N , there exists a constant C α such that

∀ ξ ∈ R N , |∂ α f (ξ)| ≤ C α (1 + |ξ|) m-|α| . Proposition 1.13. vet m ∈ R nd f e S m EmultiplierF hen for ll s ∈ R nd (p, r) ∈ [1, +∞] 2 the opertor f (D) mps B s p,r into B s-m p,r ontinuouslyF
Next statement considers instead the case of homogeneous (away from the origin) multipliers: it will be useful in part III. Proposition 1.14. vet F : R N → R e smooth funtionF vet us suppose lso tht F is homogeneous of degree m ∈ R wy from neighorhood of the originX there exists rel numer

> 0 suh tht ∀ |ξ| ≥ , ∀ λ > 0 , F (λξ) = λ m F (ξ) .
hen for ll (p, r) ∈ [1, +∞] 2 nd ll s ∈ RD the opertor F (D) mps B s p,r in B s-m p,r F Remark 1.15. Let P be the Leray projector over divergence free vector elds and Q := Id -P.

Recall that, in Fourier variables, for all vector elds u we have

Qu(ξ) = ξ |ξ| 2 ξ • u(ξ) .
Therefore, both (Id -∆ 0 )P and (Id -∆ 0 )Q satisfy the assumptions of the above proposition with m = 0, hence they are self-maps on B s p,r for ny s ∈ R nd 1 ≤ p, r ≤ +∞. 

C -|s|+1 u B s p,r ≤ 2 js S j u L p j∈N r ≤ C 1 + 1 |s| u B s p,r .
Finally, let us conclude this section with a fundamental interpolation result.

Theorem 1.17. here exists onstnt C suh thtD for ny two rel numers

s 1 < s 2 D ny θ ∈ ]0, 1[ nd ny (p, r) ∈ [1, +∞] 2 D one hs u B θs 1 +(1-θ)s 2 p,r ≤ u θ B s 1 p,r u 1-θ B s 2 p,r u B θs 1 +(1-θ)s 2 p,1 ≤ C s 2 -s 1 1 θ + 1 1 -θ u θ B s 1 p,∞ u 1-θ B s 2 p,∞
.

Time-dependent Besov spaces

Littlewood-Paley decomposition plays a fundamental role in the analysis of partial dierential equations in the Besov spaces framework.

The standard procedure lies in writing the equation for each localized part of the solution, then estimating it in some space L ([0, T ]; L p ) using classical results for smooth solutions and nally performing a weighted r summation.

In this way, however, one doesn't get estimates in the space L ([0, T ]; B s p,r ), because the time integration comes before the summation. So, the following denition gains relevance.

Denition 1.18. Given a T > 0, s ∈ R and (p, r) ∈ [1, +∞] 2 , we dene the space L T (B s p,r ) as the subset of tempered distributions u over ]0,

T [ × R N such that u L T (B s p,r ) := 2 js ∆ j u L T (L p ) j∈N r < +∞ .
The previous denition was introduced rst in paper [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes[END_REF] in the Sobolev spaces framework, and then in [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] for the general Besov classe.

The relation between this space and the classical L T (B s p,r ) := L ([0, T ]; B s p,r ) can be easily got by Minkowski's inequality: one has

u L T (B s p,r ) ≤ u L T (B s p,r ) if ≤ r u L T (B s p,r ) ≥ u L T (B s p,r ) if ≥ r .
Paradierential calculus results, such as (for instance) continuity of composition and of paraproduct and remainder operators, hold true also for this class of Besov spaces. One has to pay attention only to the time exponent , which follows the rules of Hölder inequality. For instance, as we will see, we have

u v L T (B s p,r ) ≤ C u L 1 T (L ∞ ) v L 2 T (B s p,r ) + u L 3 T (B s p,r ) v L 4 T (L ∞ ) , with 1/ = 1/ 1 + 1/ 2 = 1/ 3 + 1/ 4 .

Homogeneous Besov spaces

For completeness, let us spend a few words on homogeneous Besov spaces. First of all, let us dene a subclass of the space S (R N ).

Denition 1.19. We dene S h (R N ) to be the space of tempered distributions u such that, for all θ ∈ D(R N ), one has

(1.2) lim λ→+∞ θ (λD) u L ∞ = 0 .
This requirement is actually a condition on low frequencies only: as a matter of fact, the following proposition holds true. Proposition 1.20. u ∈ S h if nd only if there exists θ ∈ D(R N ) whih stis(es reltion (1.2) nd moreover θ(0) = 0F

For instance, it's easy to verify the following claims.

• Let u ∈ S ; if u is locally integrable near 0, then u ∈ S h .

In particular, one has the inclusion E (R N ) ⊂ S h (R N ).

• Let u be a tempered distribution such that θ(D)u ∈ L p , for some p ∈ [1, +∞[ and some function θ ∈ D with θ(0) = 0. Then u ∈ S h .

• Let P be a nonzero polynomial. Then P ∈ S h , but e i(•,η) P ∈ S h for all η ∈ R N \{0}.

In particular, S h is not a closed subset of S for the weak- * topology. Now, keeping in mind that j∈Z ϕ 2 -j ξ ≡ 1 for all ξ ∈ R N \{0}, we dene, for all j ∈ Z, the homogeneous dyadic blocks D is ompleteF woreoverD in the se s < N/p it stis(es lso the ptou9s propertyF Note that if the condition on indices in previous theorem is not veried, Ḃs p,r is no longer a Banach space: the problem lies in convergence for low frequencies. Let us spend a few words about that.

∆j u := ϕ 2 -j D u = 2 jN h 2 j • *
We start from the remark that ∆j f = 0 for all j ∈ Z if and only if f is a polynomial. As a matter of fact, thanks to Fourier transform it's quite easy to see that the condition ∆j f = 0 for all j ∈ Z is equivalent to require supp f ⊂ {0}. Now, as for all k ∈ Z the identity Id = S k + j≥k ∆j holds (note that S k is the nonhomogeneous low frequencies cut-o operator), we have

f = j∈Z ∆j f in S ⇐⇒ lim k→-∞ S k f = 0 in S .
Next lemma explains us the meaning to give to condition on the right-hand side.

Lemma 1.23. por ll tempered distriution f ∈ S (R N )D there exist n integer n ∈ N nd fmily of polynomils

(P k (f )) k∈Z D of degrees d k ≤ nD suh tht lim k→-∞ S k f -P k (f ) = 0
uniformly on ll ompt susets of R N nd in the S topologyF Therefore, the equality f = j∈Z ∆j f means that

lim k→-∞   j≥k ∆j f -P k (f )   = f in L ∞ loc (R N ) ∩ S (R N ) .
See also [START_REF] Cannone | yndelettesD prproduits et xvierEtokes[END_REF] and the references therein for a more complete treatment of this construction. However, previous arguments lead to another denition of the homogeneous Besov spaces, modulo polynomials, in such a way to get a Banach space independentely of the regularity indices. It turns out that the two denitions coincide in the case s < N/p or s = N/p and r = 1.

Let us nally remark that most of the results stated for the non-homogenous framework are still true also in this case. Moreover, one can characterize homogeneous Besov spaces in terms of the heat ow or of nite dierences. We refer to [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] for the details of these and other properties of spaces Ḃs p,r .

Non-homogeneous paradierential calculus

This section is devoted to the study of the action of some operators on non-homogeneous Besov spaces. In particular, we are going to focus on the product of two tempered distributions and on left and right composition of a smooth function with a Besov one. In section 1.5, instead, we will introduce more general paradierential operators.

For the proofs of all the results quoted here, we refer again to [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF], chapter 2.

Bony's paraproduct decomposition

Given two tempered distributions u and v, formally one has u v = j,k ∆ j u ∆ k v. Now, due to the spectral localization of cut-o operators, we can write the following fony9s deomposition:

(1.3) u v = T u v + T v u + R(u, v) ,
where we have dened

T u v := j S j-1 u ∆ j v and R(u, v) := j |k-j|≤1 ∆ j u ∆ k v .
The above operator T is called paraproduct, whereas R is called remainder. Sometimes we will also write

u v = T u v + T v u with T v u := j S j+2 v ∆ j u .
Let us immediately note that the generic term S j-1 u ∆ j v is spectrally supported in the dyadic annulus 2 j C, while ∆ j u ∆ k v is spectrally localized in a ball of radius proportional to 2 j .

Let us now recall some continuity properties of paraproduct and remainder operators on nonhomogeneous Besov spaces. Theorem 1.24. @iA por ny (s, p, r

) ∈ R × [1, +∞] 2 nd t > 0, the prprodut opertor T mps L ∞ × B s p,r in B s p,r D nd B -t ∞,r 1 × B s p,r 2 in B s-t
p,q D with 1/q := min {1 , 1/r 1 + 1/r 2 }F woreoverD the following estimtes hold trueX

T u v B s p,r ≤ C u L ∞ ∇v B s-1 p,r nd T u v B s-t p,q ≤ C u B -t ∞,r 1 ∇v B s-1 p,r 2 . @iiA por ny (s 1 , p 1 , r 1 ) nd (s 2 , p 2 , r 2 ) in R×[1, ∞] 2 suh tht s 1 +s 2 ≥ 0, 1/p := 1/p 1 +1/p 2 ≤ 1 nd 1/r := 1/r 1 + 1/r 2 ≤ 1 the reminder opertor R mps B s 1 p 1 ,r 1 × B s 2 p 2 ,r 2 in B s 1 +s 2 p,r D nd one hsX R(u, v) B s 1 +s 2 p,r ≤ C s 1 +s 2 +1 s 1 + s 2 u B s 1 p 1 ,r 1 v B s 2 p 2 ,r 2 if s 1 + s 2 > 0 R(u, v) B 0 p,∞ ≤ C s 1 +s 2 +1 u B s 1 p 1 ,r 1 v B s 2 p 2 ,r 2 if s 1 + s 2 = 0 , r = 1 .
Remark 1.25. Actually, under the assumptions of the above proposition, one can prove more accurate estimates for the paraproduct operator: for all k ∈ N,

T u v B s p,r ≤ C u L ∞ ∇ k v B s-k p,r
and

T u v B s-t p,q ≤ C u B -t ∞,r 1 ∇ k v B s-k p,r 2 
.

Let us also quote a lemma, which continuity properties for the remainder operator are based on, and which will turn out to be useful in the applications. Lemma 

ab B s p,r ≤ C a L ∞ b B s p,r + b L ∞ ∇a B s-1 p,r
.

In applications, we will often have to handle compositions between a paraproduct operator and a Fourier multiplier. We already know how each of them acts on the Besov class; now, we want to focus on their commutator operator. Before doing this, however, let us quote a preliminary result. Lemma 1.28. vet 

θ ∈ C 1 (R N ) suh tht the funtion (1 + | • |) θ ∈ L 1 F
hen there exists onstnt C suh thtD for ny vipshitz funtion f nd ny u ∈ L p with p ∈ [1, +∞]D for ll λ > 0 one hs

θ(λ -1 D) , f u L p ≤ C λ -1 ∇f L ∞ u L p .
In particular, if we take θ = ϕ and λ = 2 j , this lemma may be interpreted as a gain of one derivative by commutation between the localization operator ∆ j and the multiplication by a Lipschitz function. It will be interesting to compare this result with what we will get in chapter 2, where we will assume f to be non-Lipschitz (see lemma 2.3). Now let us state commutator estimates between a paraproduct operator and a Fourier multiplier, as announced. Lemma 1.29. vet 

m ∈ RD R > 0 nd f ∈ C ∞ (R N ) e homogeneous smooth funtion of degree m out of the ll B(0, R)F woreoverD let σ ∈ [0, 1[ D s ∈ R nd (p, r) ∈ [1, +∞] 2 F
henD there exists onstnt C @depending only on RD σ nd N A suh tht

(1.4) [T u , f (D)] v B s-m+σ p,r ≤ C ∇u B σ-1 ∞,∞ v B s p,r .
sn the limit se σ = 1D the previous estimte is still true with ∇u L ∞ in the ple of

∇u B σ-1 ∞,∞ F 1.3.

The paralinearization theorem

In this paragraph, we want to investigate the eect of composition by smooth functions on Besov spaces. We will focus on left composition, while we refer to chapter 5 for some properties of right composition. Let us state a rst fundamental result (whose proof can be found e.g. in [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF]) for the general situation.

Theorem 1.30

. vet f ∈ C ∞ (R) suh tht f (0) = 0D s > 0 nd (p, r) ∈ [1, +∞] 2 F sf u ∈ L ∞ ∩ B s p,r D then so does f • u nd moreover f • u B s p,r ≤ C u B s p,r , for onstnt C depending only on sD f nd u L ∞ F
We can state another result (see [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], section 2, for its proof), which is strictly related to the previous one.

Proposition 1.31. vet 

I ⊂ R e n open intervl nd f : I -→ R e smooth funtionF henD for ll ompt suset J ⊂ ID s > 0 nd (p, r) ∈ [1, +∞] 2 D there exists onstnt C suh thtD for ll funtions u vlued in J nd with grdient ∇u ∈ B s-1 p,r D we hve tht lso ∇(f • u) ∈ B s-1 p,r nd ∇ (f • u) B s-1 p,r ≤ C ∇u B s-1 p,r . In the case f ∈ C ∞ b (R), theorem 1.
30 can be a little bit improved (see again [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] for te proof).

Theorem

1.32. vet f ∈ C ∞ b (R) suh tht f (0) = 0D s > 0 nd (p, r) ∈ [1, +∞] 2 F vet us tke u ∈ B s p,r suh tht ∇u ∈ B -1 ∞,∞ F hen lso f • u ∈ B s p,r nd there exists onstnt CD depending only on sD f nd ∇u B -1 ∞,∞ D for whih f • u B s p,r ≤ C u B s p,r .
If u is more regular, one can expect to get more informations on f • u. The paralinearization theorem says that, up to a remainder term which turns out to be more regular than u, one can write the composition f • u as a paraproduct involving f • u and u. See also chapter 2 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] for more details. Theorem 1.33. vet 

sD > 0D with ∈ NF vet lso p ∈ [1, +∞]D 1 ≤ r 1 ≤ r 2 ≤ +∞ nd set 1/r := min {1 , 1/r 1 + 1/r 2 }F pinllyD let f ∈ C ∞ (R)F henD for ny funtion u ∈ B s p,r 1 ∩ B ∞,r 2 there exists onstnt CD whih depends only on f nd u L ∞ D suh tht f • u -T f •u u B s+ p,r ≤ C u B ∞,r 2 u B s p,r 1 .

Logarithmic Besov spaces

As pointed out at the beginning of section 1.2, classical Sobolev spaces can be characterized via dyadic decomposition: for all s ∈ R there exists a constant C s > 0 such that

(1.5) 1 C s +∞ ν=0 2 2νs ∆ ν u 2 L 2 ≤ u 2 H s ≤ C s +∞ ν=0 2 2νs ∆ ν u 2 L 2 .
In other words, the H s norm of a tempered distribution u is equivalent to the 2 norm of the sequence (2 sν ∆ ν u L 2 ) ν∈N . Now, one may ask what we get if, in the sequence, we put weights different to the exponential term 2 sν . Before answering this question, we introduce some denitions.

For the details of the presentation, we refer also to [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF], section 3.

Let us set Π(D) := log(2 + |D|), i.e. its symbol is π(ξ) := log(2 + |ξ|).

Denition 1.34. For all α ∈ R, we dene the space H s+α log as the space Π -α H s , i.e.

f ∈ H s+α log ⇐⇒ Π α f ∈ H s ⇐⇒ π α (ξ) 1 + |ξ| 2 s/2 f (ξ) ∈ L 2 .
From the denition, it's obvious that the following inclusions hold for s 1 > s 2 , α 1 > α 2 > 0:

(1.6)

H s 1 +α 1 log → H s 1 +α 2 log → H s 1 → H s 1 -α 2 log → H s 1 -α 1 log → H s 2 .
We have the following dyadic characterization of these spaces (see [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF], proposition 4.1.11).

Proposition 1.35. vet sD α ∈ RF e tempered distriution u elongs to the spe

H s+α log if nd only ifX @iA for ll k ≥ 0D ∆ k u ∈ L 2 (R N )Y @iiA set δ k := 2 ks (1 + k) α ∆ k u L 2 for ll k ∈ ND the sequene (δ k ) k elongs to 2 (N)F woreoverD u H s+α log ∼ (δ k ) k 2 F
Hence, this proposition generalizes property (1.5). This new class of Sobolev spaces, which are in a certain sense of logarithmic type, will come into play in analysis of strictly hyperbolic operators with low regularity coecients. However, inspired by their dyadic characterization, we want to dene the more general class of logarithmic Besov spaces. Denition 1.36. Let s and α be real numbers, and 1 ≤ p, r ≤ +∞. The nonEhomogeneous logrithmi fesov spe B s+α log p,r is dened as the subset of tempered distributions u for which

u B s+α log p,r := 2 js (1 + j) α ∆ j u L p j∈N r < +∞ .
Now, we want to investigate some basic properties of this new class of functions. We will see that most of the results stated in the classical case hold also for them. The proofs can be obtained from the previous ones with little modications; anyway, we want to give here the most of the details.

General properties

First of all, let us show that denition 1.36 is independent of the choice of the cut-o functions dening the Littlewood-Paley decomposition. Lemma 1.37. vet 

C ⊂ R N e ringD (s, α) ∈ R 2 nd (p, r) ∈ [1, +∞] 2 F vet (u j ) j∈N e sequene of smooth funtions suh tht supp u j ⊂ 2 j C nd 2 js (1 + j) α u j L p j∈N r < +∞ . hen u := j∈N u j elongs to B s+α log p,r nd u B s+α log p,r ≤ C s,α 2 js (1 + j) α u j L p j∈N r .
roofF By spectral localization, we gather that there exists a n 0 ∈ N such that ∆ k u j = 0 for all |k -j| > n 0 . Therefore

∆ k u L p ≤ |j-k|≤n 0 ∆ k u j L p ≤ C |j-k|≤n 0 u j L p .
From these relations it immediately follows that

2 ks (1 + k) α ∆ k u L p ≤ C |j-k|≤n 0 2 (k-j)s (1 + k) α (1 + j) α 2 js (1 + j) α u j L p .
Now, as very often in the sequel, we use the fact that

(1 + k)/(1 + j) ≤ 1 + |k -j|. Hence, 2 ks (1 + k) α ∆ k u L p ≤ C (θ * δ) k ,
where we have set (here I A denote the characteristic function of the set A)

θ h := 2 hs (1 + h) α I [0,n 0 ] (h) and δ j := 2 js (1 + j) α u j L p .
Passing to the r norm and applying Young's inequality for convolutions complete the proof.

Logarithmic Besov spaces are intermediate classes of functions between the classical ones. As a matter of facts, a chain of embeddings analogous to (1.6) still holds. Let us recall that, in the classical case, a loss of regularity is needed to lower the summation index: B s p,∞ → B s-ε p,1 for all ε > 0. It's very easy to see that, in fact, only a logarithmic loss is required:

B s p,∞ → B s-α log p,1 ∀ α > 1 .
Therefore, proposition 1.6 admits the following generalization:

Proposition 1.38. he spe B s 1 +α 1 log p 1 ,r 1 is ontinuously emedded in the spe B s 2 +α 2 log p 2 ,r 2 whenE ever 1 ≤ p 1 ≤ p 2 ≤ +∞ nd one of the following onditions holds trueX • s 2 < s 1 -N (1/p 1 -1/p 2 ) • s 2 = s 1 -N (1/p 1 -1/p 2 ) nd α 1 -α 2 > 1 • s 2 = s 1 -N (1/p 1 -1/p 2 ) D α 2 ≤ α 1 nd 1 ≤ r 1 ≤ r 2 ≤ +∞ F
Let us now state a simple lemma, which turns out to be important in the sequel. Lemma 1.39. roofF Let us take a u ∈ B s+α log p,r , with r < +∞. Obviously, we have that lim j→+∞ k≥j

2 ksr (1 + k) rα ∆ k u L p = 0 .
Then, the thesis follows observing that u -S j u = k≥j ∆ k u.

As one can expect, Fatou's property holds true also for the new class of Besov spaces.

Theorem

1.40. vet (s, α) ∈ R 2 nd (p, r) ∈ [1, +∞] 2 F he set B s+α log p,r stis(es the ptou propertyX if (u j ) j∈N is ounded sequene in B s+α log p,r D then there exist n element u ∈ B s+α log p,r
nd susequene u ψ(j) j∈N suh tht

lim j→+∞ u ψ(j) = u in S nd u B s+α log p,r ≤ C lim inf j→+∞ u ψ(j) B s+α log p,r
.

roofF By Bernstein inequalities, for all n ∈ N, the sequence (∆ n u j ) j∈N is bounded in L p ∩ L ∞ . Therefore, Cantor's diagonal process assures that there exist a subsequence u ψ(j) j and a sequence ( u n ) n of C ∞ functions whose Fourier transform is supported in the ring 2 n C, such that, for all j ∈ N and all f ∈ S, one has

lim j→+∞ ∆ n u ψ(j) , f = u n , f and u n L p ≤ lim inf j→+∞ ∆ n u ψ(j) L p .
Now, let us consider the sequence

2 ns (1 + n) α ∆ n u ψ(j) L p n j∈N : it is obviously bounded in r (because (u j ) j ⊂ B s+α log p,r
is bounded). Hence, there exists a (c n ) n ∈ r which (up to an extraction) it converges to in r for the weak- * topology: for all (δ n ) n ⊂ R + such that δ n = 0 only for a nite number of indices, one has lim j→+∞ n∈N

2 ns (1 + n) α ∆ n u ψ(j) L p δ n = n∈N c n δ n .
Moreover, we have that

(c n ) n r ≤ lim inf j→+∞ u ψ(j) B s+α log p,r
.

Passing to the limit, we get that the sequence (2

ns (1 + n) α u n ) n ∈ r . Therefore, lemma 1.37 guarantees that u := n u n ∈ B s+α log p,r
. By spectral localization, we obtain also that there exists a n 0 ∈ N such that, for all n < n 0 and all f ∈ S,

n 0 m=n ∆ m u , f S ×S = n 0 m=n |m-h|≤1 ∆ m u h , f S ×S .
Then, due to the denition of u h , we have

n 0 m=n ∆ m u = lim j→+∞ n 0 m=n ∆ m u ψ(j) in S .
We apply previous equality for n = 0. Moreover, lemma 1.39 implies (Id

-S k )u ψ(j) -→ k→+∞ 0 in B s+α log p,r
(or in B s-1 p,∞ if r = +∞) uniformly with respect to j. From these facts we gather

u = lim k→+∞ k m=0 ∆ m u ≡ lim j→+∞ u ψ(j) in S ,
and this completes the proof of the theorem. and a subsequence u ψ(n) n∈N which converges to u in S . Obviously, also u ψ(n) n∈N is a Cauchy sequence: for any ε > 0, there exists an index n ε such that, for all m ≥ n ≥ n ε , we have

u ψ(m) -u ψ(n) B s+α log p,r < ε . In particular, we infer that u ψ(m) -u ψ(n) m is bounded in B s+α log p,r
. Then, thanks to the Fatou property (note that this time it's not necessary to pass to another extraction: the whole u ψ(m) m converges to u in S ), we have

u ψ(n) -u B s+α log p,r ≤ C lim inf m→+∞ u ψ(n) -u ψ(m) B s+α log p,r ≤ C ε , i.e. u ψ(n) n∈N converges to u also in B s+α log p,r . Now, the whole (u n ) n must have limit u in B s+α log p,r
, because it is a Cauchy sequence in this space. The theorem is proved.

Let us quote a density result, analogous to proposition 1.9. Now, let us take a cut-o function θ ∈ D supported in the ball B(0, 2), such that 0 ≤ θ ≤ 1 and equal to 1 on the ball B(0, 1). For all R > 0, we dene θ R (•) := θ(•/R).

If we set h = max{0, [s] + 2} (where [s] denotes the biggest integer smaller than or equal to s), for all j ≥ 1 Bernstein's inequalities give us

2 js (1 + j) α ∆ j (θ R S k u -S k u) L p ≤ C 2 -j (1 + j) α D h (θ R S k u -S k u) L p .
Therefore, taking the r norm we gather

θ R S k u -S k u B s+α log p,r ≤ C D h (θ R S k u -S k u) L p + θ R S k u -S k u L p .
Now, as p < +∞, Leibniz rule and Lebesgue's dominated convergence theorem ensure us that

θ R S k u -S k u B s+α log p,r

< ε

for some R > 0 big enough. As S k u ∈ C ∞ , this concludes the proof. 

B s+α log p,r × B -s-α log p ,r -→ R (u, φ) -→ u, φ := |j-k|≤1 (∆ j u, ∆ k φ) L 2
de(nes ontinuous iliner funtionl on the spe

B s+α log p,r × B -s-α log p ,r F woreoverD let us denote with S -s,-α p ,r the set of φ ∈ S suh tht φ B -s-α log p ,r ≤ 1F henD for ll u ∈ S D one hs u B s+α p,r ≤ C sup φ∈S -s,-α p ,r u, φ .
roofF For |j -k| ≤ 1, we have

| ∆ j u, ∆ k φ | ≤ ∆ j u L p ∆ k φ L p 2 (j-k)s (1 + j) α (1 + k) α ω k,j ,
where we have dened

ω k,j := 2 (k-j)s (1 + k) α (1 + j) α .
As done in the end of the proof to lemma 1.37, it's easy to see that ω k,j can be bounded in terms of the dierence |k -j| only; hence |ω k,j | ≤ C. Therefore, by Hölder inequality we get

| u, φ | ≤ C u B s+α log p,r φ B -s-α log p ,r
. Now, let us call r n the set of sequences (b j ) j such that b j = 0 for all j > n and (b j ) j r ≤ 1.

Then we have

u B s+α log p,r = sup n∈N I [0,n] (j) 2 js (1 + j) α ∆ j u L p j∈N r = sup n∈N sup (b j ) j ∈ r n j≤n b j 2 js (1 + j) α ∆ j u L p .
By duality for Lebesgue spaces and density of S ⊂ L p , we know that for any xed ε > 0, for all j ≥ 0 there exists a function φ j ∈ S, φ j L p ≤ 1, for which

∆ j u L p ≤ R N ∆ j u(x) φ j (x) dx + ε 2 -js (1 + j) -α (1 + |b j |) (1 + j 2 )
.

We have to notice that

R N ∆ j u(x) φ j (x) dx = F (∆ j u φ j ) |ξ=0 = R N η ϕ(2 -j η) u(η) φ j (η) dη ;
so it's enough to consider the frequencies of φ j caught by operator ∆ j :

R N ∆ j u(x) φ j (x) dx = R N ∆ j u(x) (∆ j-1 + ∆ j + ∆ j+1 ) φ j (x) dx .
Let us now dene

Φ n := j≤n b j 2 js (1 + j) α ∆ j φ j .
It's quite obvious that Φ n ∈ S -s,-α p ,r for all n, and (by lemma 1.37) that Φ n B -s-α log p ,r ≤ C independentely of n. Then we have

I [0,n] (j) 2 js (1 + j) α ∆ j u L p j∈N r ≤ u, Φ n + ε
for all n ∈ N, from which we infer the result.

Now we want to consider the action of Fourier multipliers on non-homogeneous logarithmic Besov spaces. First of all, we have to give a more general denition of symbols. Denition 1.44. A smooth function f : R N -→ R is said to be a S m+δ log Emultiplier if, for all multi-index ν ∈ N N , there exists a constant C ν such that

∀ ξ ∈ R N , |∂ ν f (ξ)| ≤ C ν (1 + |ξ|) m-|ν| log δ (1 + |ξ|) . Proposition 1.45. vet m, δ ∈ R nd f e S m+δ log EmultiplierF hen for ll rel numers s nd α nd ll (p, r) ∈ [1, +∞] 2 D the opertor f (D) mps B s+α log p,r into B (s-m)+(α-δ) log p,r
ontinuouslyF roofF According to lemma 1.37, it's enough to prove that, for all j ≥ 0,

2 (s-m)j (1 + j) α-δ f (D) ∆ j u L p ≤ C 2 js (1 + j) α ∆ j u L p .
Let us consider rst low frequencies. Let us take a θ ∈ D(R N ) such that θ ≡ 1 in a neighborhood of suppχ: passing to the phase space, it's easy to see that f (D) ∆ 0 u = (θf )(D)∆ 0 u. As F -1 (θf ) ∈ L 1 , Young's inequality for convolutions gives us the desired estimate for j = 0.

Now, let us focus on high frequencies: for all j ≥ 1 we can write

f (D) ∆ j u = F j * u , with F j = F -1 f (ξ) ϕ(2 -j ξ) .
For all M ∈ N, we have:

(1 + |x| 2 ) M F j (x) = 1 (2π) N R N ξ e ix•ξ (Id -∆ ξ ) M f (ξ) ϕ(2 -j ξ) dξ = |β|+|γ|≤2M C β,γ (2π) N 2 -j|γ| R N ξ e ix•ξ ∂ β f (ξ) ∂ γ ϕ(2 -j ξ) dξ .
In fact, the integration is not performed on the whole R N , but only on the support of ϕ(2 -j •), where we have

∂ β f (ξ) ∂ γ ϕ(2 -j ξ) ≤ C β,γ (1 + |ξ|) m-|β| log δ (1 + |ξ|) |ξ|∼2 j ≤ C β,γ 2 j(m-|β|) (1 + j) δ .
Therefore, one gathers

(1 + |x| 2 ) M |F j (x)| ≤ C M 2 jm (1 + j) δ , which implies that, for M big enough, F j ∈ L 1 (R N x ) and F j L 1 ≤ C 2 mj (1 + j) δ . Young's
inequality for convolution leads to the thesis.

Let us now state two simple interpolation inequalities.

Theorem 1.46. ke rel numers

s 1 ≤ s ≤ s 2 nd α 1 ≤ α ≤ α 2 D nd (p, r) ∈ [1, +∞] 2 F vet θ ∈ ]0, 1[ e suh tht s = θs 1 + (1 -θ)s 2 nd α = θα 1 + (1 -θ)α 2 .
hen there exists onstnt CD depending only on s 1 D s 2 nd θD suh tht the following inequlities holdX

u B s+α log p,r ≤ u θ B s 1 +α 1 log p,r u 1-θ B s 2 +α 2 log p,r u B s+α log p,1 ≤ C u θ B s 1 +α 1 log p,∞ u 1-θ B s 2 +α 2 log p,∞ .
roofF The former estimate immediately follows from Hölder inequality.

Let us focus on the proof of the latter one. Keeping in mind the denition of Besov norms, for all j ≥ 0 we can write:

2 js (1 + j) α ∆ j u L p ≤ 2 j(1-θ)(s 2 -s 1 ) (1 + j) (1-θ)(α 2 -α 1 ) u B s 1 +α 1 log p,∞ 2 -jθ(s 2 -s 1 ) (1 + j) -θ(α 2 -α 1 ) u B s 2 +α 2 log p,∞
.

Therefore, for all k ∈ N we get

u B s+α log p,1 ≤ u B s 1 +α 1 log p,∞ j≤k 2 j(1-θ)(s 2 -s 1 ) (1 + j) (1-θ)(α 2 -α 1 ) + (1.7) + u B s 2 +α 2 log p,∞ j>k 2 -jθ(s 2 -s 1 ) (1 + j) -θ(α 2 -α 1 )
.

Obviously, we have

j>k 2 -jθ(s 2 -s 1 ) (1 + j) -θ(α 2 -α 1 ) ≤ j>k 2 -jθ(s 2 -s 1 ) = 2 -kθ(s 2 -s 1 ) 1 -2 -θ(s 2 -s 1 )
, while for all ε > 0 we can write

j≤k 2 j(1-θ)(s 2 -s 1 ) (1 + j) (1-θ)(α 2 -α 1 ) ≤ j≤k 2 j(1-θ)(s 2 -s 1 +ε) = 2 k(1-θ)(s 2 -s 1 +ε) 2 (1-θ)(s 2 -s 1 +ε) -1 . So, (1.7) becomes u B s+α log p,1 ≤ u B s 1 +α 1 log p,∞ 2 k(1-θ)(s 2 -s 1 +ε) 2 (1-θ)(s 2 -s 1 +ε) -1 + u B s 2 +α 2 log p,∞ 2 -kθ(s 2 -s 1 ) 1 -2 -θ(s 2 -s 1 ) . Now, taking k ≥ 1 large enough such that 2 (k-1)(s 2 -s 1 ) ≤ u B s 2 +α 2 log p,∞ u B s 1 +α 1 log p,∞ ≤ 2 k(s 2 -s 1 )
and ε = k -2 , for instance, completes the proof.

Remark 1.47. Let us remark that a wider set of results of this kind can be easily proved, slightly modifying the previous argument. For instance, one may allow the interpolation parameter pertaining to α to be dierent from that pertaining to s.

Paraproducts

Let us end this section generalizing theorem 1.24 to logarithmic Besov spaces framework. First of all, let us state a characterization of logarithmic Besov spaces in terms of the low frequencies cut-o operators.

Proposition 1.48.

vet s < 0 nd α ∈ RD or s = 0 nd α < -1F vet lso (p, r) ∈ [1, +∞] 2 F pinllyD let u ∈ S givenF hen u ∈ B s+α log p,r if nd only if the sequene 2 js (1 + j) α S j u L p j∈N ∈ r F woreoverD C u B s p,r ≤ 2 js (1 + j) α S j u L p j∈N r ≤ C u B s p,r
for some onstnts CD C depending only on s nd αF roofF From the denitions, we have ∆ j = S j+1 -S j . So we can write:

2 js (1 + j) α ∆ j u L p ≤ 2 js (1 + j) α S j+1 u L p + S j u L p ≤ 2 (j+1)s (2 + j) α S j+1 u L p (1 + j) α (2 + j) α 2 -s + 2 js (1 + j) α S j u L p .
By Minowski's inequality, we get the rst part of the thesis.

On the other hand, using the denition of the operator S j , we have

2 js (1 + j) α S j u L p ≤ 2 js (1 + j) α k≤j-1 ∆ k u L p ≤ k≤j-1 2 (j-k)s (1 + j) α (1 + k) α 2 ks (1 + k) α ∆ k u L p ≤ C (θ * δ) j ,
where we have argued as in proving lemma 1.37, setting

θ h := 2 hs (1 + h) α and δ k := 2 ks (1 + k) α ∆ k u L p .
By the made hypothesis on s and α, the sequence (θ h ) h ∈ 1 ; hence, Young's inequality for convolution allows us to conclude.

Let us now analyse the action of paraproduct operator.

Theorem 1.49.

vet s nd α ∈ RY let lso t > 0 nd β ∈ RD or t = 0 nd β < -1F pinllyD let (p, r, r 1 , r 2 ) elong to [1, +∞] 4 F he prprodut opertor T mps L ∞ × B s+α log p,r in B s+α log p,r D nd B -t+β log ∞,r 2 × B s+α log p,r 1 in B (s-t)+(α+β) log p,q
D with 1/q := min {1 , 1/r 1 + 1/r 2 }F woreoverD the following estimtes holdX

T u v B s+α log p,r ≤ C u L ∞ ∇v B (s-1)+α log p,r T u v B (s-t)+(α+β) log p,q ≤ C u B -t+β log ∞,r 2 ∇v B (s-1)+α log p,r 1 .
roofF As already remarked before theorem 1.24, the generic term S j-1 u ∆ j v is spectrally supported in the ring 2 j C. Hence, thanks to lemma 1.37, it's enough to estimate its L p norm. Then, applying proposition 1.48 gives us the thesis.

Before going on, let us prove the analogous of lemma 1.26.

Lemma 1.50. vet B e ll of R N D the ouple (p, r) elong to [1, +∞] 2 F vet s > 0 nd α ∈ RD or s = 0 nd α < -1F vet (u j ) j∈N e sequene of smooth funtions suh tht supp u j ⊂ 2 j B nd 2 js (1 + j) α u j L p j∈N ∈ r .
hen the funtion u := j∈N u j elongs to the spe B s+α log p,r F woreoverD there exists onstnt CD depending only on s nd αD suh tht

u B s+α log p,r ≤ C 2 js (1 + j) α u j L p j∈N r . roofF We have to estimate ∆ k u L p ≤ j ∆ k u j L p .
From our hypothesis on the support of each u j , we infer that there exists an index n 0 ∈ N such that ∆ k u j ≡ 0 for all k > j + n 0 . Therefore, arguing as already done in previous proofs,

2 ks (1 + k) α ∆ k u L p ≤ j≥k-n 0 2 (k-j)s (1 + k) α (1 + j) α (1 + j) α u j L p ≤ j≥k-n 0 2 (k-j)s (1 + |k -j|) α (1 + j) α u j L p .
So we can conclude thanks to Young's inequality for convolutions (recall hypothesis over the indices s and α).

Now we are ready to prove continuity properties of the remainder operator.

Theorem

1.51. vet (s, t, α, β) ∈ R 4 nd (p 1 , p 2 , r 1 , r 2 ) ∈ [1, +∞] 4 e suh tht 1 p := 1 p 1 + 1 p 2 ≤ 1 nd 1 r := 1 r 1 + 1 r 2 ≤ 1 . @iA sf s + t > 0D or s + t = 0 nd α + β < -1D for ny (u, v) ∈ B s+α log p 1 ,r 1 × B t+β log p 2 ,r 2 we hve R(u, v) B (s+t)+(α+β) log p,r ≤ C u B s+α log p 1 ,r 1 v B t+β log p 2 ,r 2 . @iiA sf s + t = 0D α + β ≥ -1 nd r = 1D for ny (u, v) ∈ B s+α log p 1 ,r 1 × B t+β log p 2 ,r 2 we hve R(u, v) B (α+β) log p,∞ ≤ C u B s+α log p 1 ,r 1 v B t+β log p 2 ,r 2 .
roofF (i) We can write R(u, v) = j R j , where we have set

R j := |h-j|≤1 ∆ j u ∆ h v .
As already pointed out before theorem 1.24, each R j is spectrally localized on a ball of radius proportional to 2 j . Hence, from lemma 1.50 and Hölder's inequality we immediately infer rst estimate.

(ii) In the second case, lemma 1.50 doesn't apply; nevertheless, we can control the norm of the remainder term if the index of summation is +∞. As a matter of facts, we use the following inequality, which holds true for all k ≥ 0:

(1 + k) α+β ∆ k R(u, v) L p ≤ C j≥k-n 0 (1 + j) α ∆ j u L p 1 (1 + j) β ∆ j v L p 2 ,
where, for simplicity, instead of the full R j , we have considered only the term ∆ j u ∆ j v, the other ones being similar to it.

Paradierential calculus with parameters

Paraproduct operator is the simplest example of paradierential operator. The aim of this section is to introduce a more general paradierential calculus (see e.g. [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF], chapters 5 and 6). For convenience, we allow it to depend on some parameter γ ≥ 1: this apparently harmless fact will come into play in a crucial way in chapter 3.

Here we will give only the main denitions and the basic properties: we refer to paper [START_REF] Métivier | Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace[END_REF] and, in particular, to paper [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], appendix B, for a complete and detailed presentation of this topic. Moreover, in chapter 3 we will analyse in detail the action of paradierential operators associated to low regularity symbols on the class of logarithmic Sobolev spaces.

New classes of symbols

Fix a parameter γ ≥ 1 and take a cut-o function ψ ∈ C ∞ (R N × R N ) which veries the following properties:

• there exist 0 < ε 1 < ε 2 < 1 such that ψ(η, ξ) = 1 for |η| ≤ ε 1 (γ + |ξ|) 0 for |η| ≥ ε 2 (γ + |ξ|) ; • for all (β, α) ∈ N N × N N , there exists a constant C β,α such that ∂ β η ∂ α ξ ψ(η, ξ) ≤ C β,α (γ + |ξ|) -|α|-|β| .
We will call such a function an admissible cut-o.

For example, if γ = 1, one can take

ψ(η, ξ) ≡ ψ 0 (η, ξ) := +∞ k=1 χ k-1 (η) ϕ k (ξ) ,
where χ and ϕ are the localization (in phase space) functions associated to a Littlewood-Paley decomposition: see e.g. ex. 5.1.5 of [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF]. Similarly, if γ > 1 it is possible to nd a suitable integer µ ≥ 0 such that (1.8)

ψ µ (η, ξ) := χ µ (η) χ µ (ξ) + +∞ k=µ+1 χ k-1 (η) ϕ k (ξ)
is an admissible cut-o function.

Remark 1.52. Let us immediately point out that we can also dene a dyadic decomposition depending on the parameter γ. First of all, we set

Λ(ξ, γ) := γ 2 + |ξ| 2 1/2 .
Then, taken the usual smooth function χ associated to a Littlewood-Paley decomposition, we dene

χ ν (ξ, γ) := χ 2 -ν Λ(ξ, γ) , S γ ν := χ ν (D x , γ) , ∆ γ ν := S γ ν+1 -S γ ν .
The usual properties of the support of the localization functions still hold, and for all xed γ ≥ 1 and all tempered distributions u, we have

u = +∞ ν=0 ∆ γ ν u in S .
Moreover, we can introduce logarithmic Besov spaces using the new localization operators S γ ν , ∆ γ ν .

For the details see section B.1 of [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]. What is important to retain is that, once we x γ ≥ 1, the previous construction is equivalent to the classical one, and one can still recover previous results.

For instance, if we dene the space H s+α log γ as the set of tempered distributions for which (1.9)

u 2 H s+α log γ := R N ξ Λ 2s (ξ, γ) log 2α (1 + γ + |ξ|) | u(ξ)| 2 dξ < +∞ ,
for every xed γ ≥ 1 it coincides with H s+α log , the respective norms are equivalent and the characterization given by proposition 1.35 still holds true.

Let us come back to the cut-o function ψ introduced above. Thanks to it, we can dene more general paradierential operators, associated to low regularity functions: let us explain how.

Dene the function G ψ as the inverse Fourier transform of ψ with respect to the variable η:

G ψ (x, ξ) := F -1 η ψ (x, ξ) .
The following properties hold true (see lemma 5.1.7 of [START_REF] Métivier | rEdi'erentil lulus nd pplitions to the guhy prolem for nonliner systems, volume 5 of gentro di ier wtemti innio he qiorgi @gwA eries[END_REF] for the proof).

Lemma 1.53. por ll

(β, α) ∈ N N × N N D ∂ β x ∂ α ξ G ψ (•, ξ) L 1 (R N x ) ≤ C β,α (γ + |ξ|) -|α|+|β| , (1.10) | • | log 2 + 1 | • | ∂ β x ∂ α ξ G ψ (•, ξ) L 1 (R N x ) ≤ C β,α (γ + |ξ|) -|α|+|β|-1 log(1 + γ + |ξ|). (1.11)
Thanks to G, we can smooth out a symbol a in the x variable and then dene the paradierential operator associated to a as the classical pseudodierential operator associated to this smooth function.

First of all, let us dene the new calss of symbols we are dealing with, which actually includes the space of Fourier multipliers S m+δ log introduced in denition 1. [START_REF] Huang | Singular integral system approach to regularity of 3D vortex patches[END_REF]. In what follows, we take a subspace X of L ∞ . This is convenient for our analysis, but denitions and some other basic properties actually make sense also for a general X ⊂ S .

Denition 1.54. Let X ⊂ L ∞ be a Banach space, and m and δ be two given real numbers.

(i) We denote with Γ m+δ log (X ) the space of functions a(x, ξ, γ) which are locally bounded over R N × R N × [1, +∞[ and of class C ∞ with respect to ξ, and which satisfy the following property: for all α ∈ N N , there exists a C α > 0 such that, for all (ξ, γ),

(1.12)

∂ α ξ a(•, ξ, γ) X ≤ C α (γ + |ξ|) m-|α| log δ (1 + γ + |ξ|) .
In a quite natural way, we can equip Γ m+δ log (X ) with the seminorms

(1.13) a (m,δ,k) := sup |α|≤k sup R N ξ ×[1,+∞[ (γ + |ξ|) -m+|α| log -δ (1 + γ + |ξ|) ∂ α ξ a(•, ξ, γ) X .
(ii) Σ m+δ log (X ) is the space of symbols σ ∈ Γ m+δ log (X ) for which there exists a 0 < < 1 such that, for all (ξ, γ), the spectrum of the function x → σ(x, ξ, γ) is contained in the ball {|η| ≤ (γ + |ξ|)}.

By spectral localization and Paley-Wiener theorem, a symbol σ ∈ Σ m+δ log (X ) is smooth also in the x variable. So, we can dene the subspaces Σ m+δ log µ+ log (X ) (for µ and ∈ R) of symbols σ which verify (1.12) and also, for all β > 0,

(1.14) ∂ β x ∂ α ξ σ(•, ξ, γ) X ≤ C β,α (γ + |ξ|) m-|α|+|β|+µ log δ+ (1 + γ + |ξ|) .
Now, given a symbol a ∈ Γ m+δ log (X ), we can dene

(1.15) σ ψ a (x, ξ, γ) := ( ψ(D x , ξ) a ) (x, ξ, γ) = G ψ (•, ξ) * x a(•, ξ, γ) (x) .
Proposition 1.55. @iA por ll mD δ ∈ RD the smoothing opertor

R : a(x, ξ, γ) → σ ψ a (x, ξ, γ) is ounded from Γ m+δ log (X ) to Σ m+δ log (X )F
@iiA sf a is lso di'erentile with respet to xD with ∇ x a ∈ X D then a -σ ψ a ∈ Γ (m-1)+δ log (X )F @iiiA sn prtiulrD if ψ 1 nd ψ 2 re two dmissile utEo' funtionsD then the di'erene of the two smoothed symolsD σ ψ 1 a -σ ψ 2 a D elongs to the spe Σ (m-1)+δ log (X )F woreoverD for ll k ∈ N one hs

σ ψ 1 a -σ ψ 2 a (m-1,δ,k) ≤ C k ∇ x a (m,δ,k) .
Remark 1.56. As we will see in a while, part (ii) of previous proposition says that the dierence between the original symbol and the classical one associated to it is more regular. Part (iii), instead, infers that the whole construction is independent of the cut-o function xed at the beginning. Nevertheless, we have to require at least X ⊂ W 1,∞ .

Repeating the same steps of the proof (see e.g. proposition B.7 of [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]), it's easy to see that it's enough to consider symbols a which are L ∞ (R N x ) and admitting a (even rough) modulus of continuity. Also under this assumption there is a gain of regularity (obviously no more of order 1, as in proposition 1.55, but logarithmic, for instance), which will allows us to recover previous properties. This will be always our case in chapter 3.

General paradierential operators

As already mentioned, we can now dene the paradierential operator associated to a using the classical symbol corresponding to it:

(1.16)

T ψ a u(x) := σ ψ a ( • , D x , γ) u (x) = 1 (2π) N R N ξ e ix•ξ σ ψ a (x, ξ, γ) u(ξ) dξ .
For instance, if a = a(x) ∈ L ∞ and if we take the cut-o function ψ 0 , then T ψ a is actually the usual paraproduct operator. If we take ψ µ as dened in (1.8), instead, we get a paraproduct operator which starts from high enough frequencies, which will be indicated with T µ a (see section 3.3 of [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF]).

For convenience, we x the regularity with respect to x: from now on, we will always work with X = L ∞ . Therefore, we will miss it out in the notation.

Sometimes, additional regularity in x will be required. Following the presentation of [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], we will suppose a(x, ξ, γ) to be W 1,∞ with respect to the rst variable. However, we always have to keep in mind remark 1.56. We refer to chapter 3 for the analysis of some particular classes of symbols.

Let us now study the action of general paradierential operators on the class of logarithmic Besov spaces. First of all, a denition is in order. Denition 1.57. We say that an operator P is of order m + δ log if, for every (s, α) ∈ R The next fundamental result generalizes proposition B.9 of [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], which is stated for the Sobolev class. For simplicity, we temporarily drop out the dependence of symbols on γ in the notations. . We can write

σ( • , D x ) u = j≥0 σ( • , D x ) ∆ j u ,
where each item σ( • , D x )∆ j u is supported in a dyadic ring proportional to 2 j . As a matter of fact, on the phase space we have

F x (σ( • , D x )∆ j u) (ξ) = 1 (2π) N R N ζ (F x σ) (ξ -ζ, ζ) ϕ(2 -j ζ) u(ζ) dζ .
On the one hand, localization properties of

F x σ implies (1 -)|ζ| -γ ≤ |ξ| ≤ (1 + )|ζ| + γ.
On the other hand, we have |ζ| ∼ 2 j , and this proves our claim.

Therefore, thanks to lemma 1.37, it's enough to prove that there exists a constant C > 0 for which, for all j ≥ 0,

2 j(s-m) (1 + j) α-δ σ( • , D x )∆ j u L p ≤ C 2 js (1 + j) α ∆ j u L p .
For all j ≥ 0 we can write:

σ(x, D x )∆ j u(x) = R N y K j (x, x -y) u(y) dy ,
where we have dened the kernel 

K j (x, z) := 1 (2π) N R N ξ e iz•ξ σ(x, ξ) ϕ(2 -j ξ) dξ = F -1 ξ σ(x, • ) ϕ(2 -j • ) (z)
a ∈ Γ m+δ log (W 1,∞ )D then the di'erene T ψ 1 a -T ψ 2 a is of order (m -1) + δ logF
Therefore, changing the cut-o function ψ doesn't change the paradierential operator associated to a, up to lower order terms. So, in what follows we will miss out the dependence of σ a and T a on ψ.

Symbolic calculus

Symbolic calculus still holds true also for general paradierential operators. For convenience, we restrict ourselves to logarithmic Sobolev spaces framework (i.e. H s+α log ≡ B s+α log 2,2

). First of all, let us quote two fundamental results (as usual, see e.g. [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], appendix B, for their proofs) about composition and adjoint operators.

Theorem 1.61. vet a ∈ Γ m+δ log (W 1,∞ ) nd b ∈ Γ µ+ log (W 1,∞ )F hen a b ∈ Γ (m+µ)+(δ+ ) log (W 1,∞ )F woreoverD the di'erene T a • T b -T ab is n opertor of order (m + µ -1) + (δ + ) logF sf b is independent of xD then T a • T b ≡ T ab F Theorem 1.62. vet a ∈ Γ m+δ log (W 1,∞ )F vet
us denote with a * the omplex onjugte of the symol aD nd with (T a ) * the djoint opertor @over L 2 A of T a F hen the di'erene (T a ) * -T a * is n opertor of order (m -1) + δ logF

The two previous theorems obviously extend to matrix valued symbols and operators.

Let us now state an estimate, which immediately follows from theorem 1.62 and from theorem B.19 of [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]. It will be of great importance in chapter 3.

Theorem 1.63. vet a ∈ Γ 2m+2δ log (W 1,∞ ) nd suppose there exists onstnt λ > 0 suh thtD

for ll (x, ξ)D one hs Re a(x, ξ, γ) ≥ λ (γ + |ξ|) 2m+2δ log .
hen there exist onstnt C > 0 nd n index k ∈ N suh thtD for ll u ∈ H m+δ log γ D the following estimte holds trueX

(1.17) λ 2 u 2 H m+δ log γ ≤ Re (T a u, u) L 2 + C ∇ x a 2 (m,k) u 2 H (m-1)+δ log γ .
he onstnt C is uniformly ounded for symols vrying in ounded setF

Here, ( • , • ) L 2 denotes the scalar product in L 2 , which extends by duality to the coupling H s+α log × H -s-α log .

Part II Hyperbolic Equations with low-regularity coefficients

Chapter 2

Non-Lipschitz coecients: the one-dimensional case

In this chapter we obtain an energy estimate for a complete strictly hyperbolic operator over R t × R x , whose second order coecient satises a log-Zygmund continuity condition in the t variable, uniformly with respect to x, and a log-Lipschitz continuity condition in x, uniformly with respect to t. Moreover, we will suppose the coecients of the rst order part to be Hölder continuous and the coecient of the 0-th order term to be only bounded.

Such a energy estimate allows to get the well-posedness of the Cauchy problem in the space H ∞ in the case the coecients of the operator are smooth enough with respect to x.

In the next chapter, we will tackle the same problem, but in the more general case of several space variables. The reason why we decided to separate these two instances is that they require two really dierent approaches.

As explained below, in the one-dimensional case the Tarama's energy (introduced in [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF] for coecients depending only on time) admits a straightforward generalization. Combining it with the main ideas of paper [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF] by Colombini and Lerner is enough to get energy estimates (see also paper [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF], which deal with homogeneous operators).

Dealing with x ∈ R N , N ≥ 2, instead, requires to pass from multiplication by functions to action by paradierential operators associated to particular classes of symbols. So, the involved techniques are quite dierent to the preivous ones, even if the leading ideas are the same. Obviously, the same machinery works also for N = 1. Nevertheless, we decided to present these two cases separately: we think that, being simpler, the one-dimensional instance is a good introduction to the problem, and that in this way technical diculties are better pointed out.

Introduction

Let us consider the second order operator (2.1)

P = ∂ 2 t - N i,j=1 ∂ x i (a ij (t)∂ x j )
and suppose that P is strictly hyperbolic with bounded coecients, i.e. there exist two positive real numbers λ 0 ≤ Λ 0 such that (2.2)

λ 0 |ξ| 2 ≤ N i,j=1 a ij (t) ξ i ξ j ≤ Λ 0 |ξ| 2 for all t ∈ R and all ξ ∈ R N .
Chapter 2. Non-Lipschitz coecients: 1-D case

It is well-known (see e.g. [START_REF] Hörmander | viner prtil di'erentil opertors[END_REF] and [START_REF] Trèves | fsi liner prtil di'erentil equtions[END_REF]) that, if the coecients a ij are Lipschitz-continuous, then the following energy estimate holds for the operator P : for all s ∈ R, there exists a constant

C s > 0 such that sup t∈[0,T ] ( u(t, •) H s+1 + ∂ t u(t, •) H s ) ≤ (2.3) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 P u(t, •) H s dt for every function u ∈ C 2 ([0, T ]; H ∞ (R N )).
In particular, the previous energy estimate implies that the Cauchy problem for (2.1) is well-posed in the space H ∞ , with no loss of derivatives.

On the contrary, if the coecients a ij are not Lipschitz-continuous, then (2.3) is no more true in general, as it is shown by an example given by Colombini, De Giorgi and Spagnolo in paper [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF]. Nevertheless, under suitable weaker regularity assumptions on the coecients, one can recover the H ∞ -well-posedness again, but this time from an energy estimate which involves a loss of derivatives.

A rst result of this type was obtained in the quoted paper [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF]. The authors supposed that a constant C > 0 exists such that, for all ε ∈]0, T ],

(2.4)

T -ε 0 |a ij (t + ε) -a ij (t)| dt ≤ C ε log 1 + 1 ε .
The Fourier trasform with respect to x of the equation, together with the new approximate energy technique (i.e. the approximation of the coecients is dierent in dierent zones of the phase space), enabled them to obtain the following energy estimate: there exist strictly positive constants K (independent of s) and C s such that

sup t∈[0,T ] ( u(t, •) H s+1-K + ∂ t u(t, •) H s-K ) ≤ (2.5) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 P u(t, •) H s dt for all u ∈ C 2 ([0, T ]; H ∞ (R n )).
Considering again the case in which the coecients of P depend only on the time variable, in the recent paper [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF] (see also [START_REF] Yamazaki | On the L 2 (R n ) well-posedness of some singular or degenerate partial dierential equations of hyperbolic type[END_REF]) Tarama weakened the regularity hypothesis further, supposing a log-Zygmund type integral condition, i.e. that there exists a constant C > 0 such that, for all ε ∈]0, T /2],

(2.6)

T -ε ε |a ij (t + ε) + a ij (t -ε) -2a ij (t)| dt ≤ C ε log 1 + 1 ε .
Nevertheless, he was still able to prove the well-posedness to the Cauchy problem for (2.1) in the space H ∞ : the improvement with respect to [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF] was obtained introducing a new type of approximate energy, which involves the second derivatives of the approximating coecients.

Much more diculties arise if the operator P has coecients depending both on the time variable t and on the space variables x. This case was considered by Colombini and Lerner in paper [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF]. They supposed a pointwise isotropic log-Lipschitz regularity condition, i.e. that there exists C > 0 such that, for all ε ∈]0, T ],

(2.7) sup y,z∈[0,T ]×R N |z|=ε |a ij (y + z) -a ij (y)| ≤ C ε log 1 + 1 ε .
Because the coecients of the operator P depend also on the space variables, here the Littlewood-Paley dyadic decomposition with respect to x takes the place of the Fourier trasform. Moreover it turns out to be, together with the approximate energy technique, the key tool to obtain the energy estimate: for all xed θ ∈]0, 1/4], there exist β, C > 0 and T

* ∈ ]0, T ] such that sup t∈[0,T * ] ( u(t, •) H -θ+1-βt + ∂ t u(t, •) H -θ-βt ) ≤ (2.8) ≤ C u(0, •) H -θ+1 + ∂ t u(0, •) H -θ + T 0 P u(t, •) H -θ-βt dt for all u ∈ C 2 ([0, T * ]; H ∞ (R N )).
In this case, the loss of derivatives gets worse with the increasing of time.

In the recent paper [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF], Colombini and Del Santo considered the case of one space variable (i.e. N = 1) and studied again the case of the coecient a depending both on t and x, but under a special regularity condition: they mixed condition (2.6) together with (2.7). In particular, they supposed a to be log-Zygmund continuous with respect to t, uniformly with respect to x, and log-Lipschitz continuous with respect to x, uniformly with respect to t. The dyadic decomposition technique and the Tarama's approximate energy enabled them to obtain an estimate similar to (2.8).

The reason why they focused on the special instance N = 1 is that the case of several space variables needs some dierent and new ideas in the denition of the microlocal energy. In particular, to handle the problem one has to appeal to paradierential calculus with parameters. We refer to the next chapter for the complete treatement of the more general case.

In the present chapter, instead, we are considering the case of the non-homogeneous operator (2.9)

Lu = ∂ 2 t u -∂ x (a(t, x)∂ x u) + b 0 (t, x)∂ t u + b 1 (t, x)∂ x u + c(t, x)u in dimension N = 1.
Here we assume the coecient a to satisfy the same regularity assumptions as in [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF] (see conditions (2.10) to (2.12) below). We will also suppose b

0 , b 1 ∈ L ∞ (R t ; C ω (R x ))
for some ω > 0, where we have set C ω to be the space of ω-Hölder continuous functions, and c to be bounded on the whole R t × R x . We will apply the Littlewood-Paley decomposition and the Tarama's approximate energy again to obtain an energy estimate with a loss of derivatives that depends on t, as in (2.8). As one can expect, the presence of lower order terms doesn't change the essence of the result.

One can nd the estimate of the second order coecient a in paper [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF], however, for reader's convenience, we will give here all the details.

Main result

Let a : R 2 → R be a function such that, for positive constants λ 0 ≤ Λ 0 , (2.10)

λ 0 ≤ a(t, x) ≤ Λ 0 .
These inequalities mean that operator L, as we will dene in (2.15), is strictly hyperbolic with bounded coecients. Let us assume also that a is log-Zygmund continuous with respect to t and log-Lipschitz continuous with respect to x, uniformly with respect to the other variable:

sup (t,x) |a(t + τ, x) + a(t -τ, x) -2 a(t, x)| ≤ C 0 τ log 1 τ + 1 (2.11) sup (t,x) |a(t, x + y) -a(t, x)| ≤ C 0 y log 1 y + 1 .
(2.12)

Moreover, let (2.13) b 0 , b 1 ∈ L ∞ (R t ; C ω (R x )) ,
for some real number ω > 0, and

(2.14) c ∈ L ∞ (R t × R x ) .
Theorem 2.1. vet us onsiderD on the whole spe R 2 D the omplete seond order opertor (2.15)

Lu = ∂ 2 t u -∂ x (a(t, x)∂ x u) + b 0 (t, x)∂ t u + b 1 (t, x)∂ x u + c(t, x)u ,
whose oe0ients aD b 0 D b 1 nd c stisfy hypothesis (2.10)E(2.14)F henD for ll (xed

θ ∈ 0, min 1 2 , ω 1 + log 2 , there exist β * > 0D T ∈ R nd C > 0 suh tht sup t∈[0,T ] ( u(t, •) H 1-θ-β * t + ∂ t u(t, •) H -θ-β * t ) ≤ (2.16) ≤ C u(0, •) H -θ+1 + ∂ t u(0, •) H -θ + T 0 Lu(t, •) H -θ-β * t dt for ll u ∈ C 2 ([0, T ]; H ∞ (R x ))F

Proof

Let us tackle the proof of theorem 2.1. Following the main ideas of [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF], we will smooth out the coecient of the second order part both with respect to t and x; in the same time, we will perform a dyadic decomposition of the function u with respect to the space variable. Then we will link the approximation parameter with the dual variable, in order to obtain dierent approximations in dierent zones of the phase space.

Approximation of the coecient a(t, x)

Let ρ ∈ C ∞ 0 (R) be an even function, supported on the interval [-1, 1], such that 0 ≤ ρ ≤ 1 and ρ(s)ds = 1. Moreover, let us suppose also that |ρ (s)| ≤ 2.

For all 0 < ε ≤ 1, we set ρ ε (s) = (1/ε) ρ(s/ε), and then we dene (2.17)

a ε (t, x) := Rt×Rx ρ ε (t -s) ρ ε (x -y) a(s, y) ds dy .
Let us state some properties of the approximate coecients.

Lemma 2.2. he following fts hold true for every

ε ∈ ]0, 1]F IF por ll (t, x) ∈ R 2 D one hs (2.18) λ 0 ≤ a ε (t, x) ≤ Λ 0 . woreoverD (2.19) sup (t,x) |a ε (t, x) -a(t, x)| ≤ 3 2 C 0 ε log 1 ε + 1 . PF por ll σ ∈ ]0, 1[ D onstnt C σ > 0 @independent of εA exists suh tht (2.20) sup (t,x) |∂ t a ε (t, x)| ≤ C σ (Λ 0 + C 0 ) ε σ-1 .
QF pinllyD the derivtives of a ε stisfyX 

sup (t,x) |∂ x a ε (t, x)| ≤ C 0 ρ L 1 log 1 ε + 1 (2.21) sup (t,x) ∂ 2 t a ε (t, x) ≤ C 0 2 ρ L 1 1 ε log 1 ε + 1 (2.22) sup (t,x) |∂ t ∂ x a ε (t, x)| ≤ C 0 ρ 2 L 1 1 ε log 1 ε + 1 . ( 2 
a ε (t, x) -a(t, x) = 1 2 Rt ρ ε (s) Ry ρ ε (x -y)(a(t + s, y) + a(t -s, y) -2a(t, y)) dy ds ,
where we have used the fact that ρ is an even function.

Moreover, one has 

∂ 2 t a ε (t, x) = 1 2 ρ ε (s) ρ ε (x -y)(a(t + s, y) + a(t -s, y) -2a(t,
|a(t + τ, x) -a(t, x)| ≤ c σ (Λ 0 + C 0 ) τ σ .
Starting from this relation, it's easy to prove (2.20).

Approximate and total energy

Let T 0 > 0 and u ∈ C 2 ([0, T 0 ]; H ∞ (R x )). Let us perform a Littlewood-Paley decomposition of u with respect to the space variable, setting u 0 (t, x) = χ(D x )u(t, x) and, for all ν ≥ 1, u ν (t, x) = ϕ ν (D x )u(t, x). So, each u ν is an entire analytic function belonging to L 2 . Moreover, keep in mind that H s ≡ B s 2,2 for all s ∈ R and so these spaces enjoy the general properties of Besov spaces stated in chapter 1. In particular, let us recall that for all s ∈ R there exists a constant C s > 0 such that

(2.25) 1 C s +∞ ν=0 2 2νs u ν 2 L 2 ≤ u 2 H s ≤ C s +∞ ν=0 2 2νs u ν 2 L 2
and that Bernstein's inequalities hold:

∂ x u ν L 2 ≤ C 2 ν u ν L 2 for all ν ≥ 0 (2.26) u ν L 2 ≤ C 2 -ν ∂ x u ν L 2 for all ν ≥ 1 .
(2.27)

Moreover, let us quote a result on commutation between localization in phase space operators and multiplication by a log-Lipschitz or a Hölder function (recall also lemma 1.29). Here we denote with L(L 2 ) the space of bounded linear operators from L 2 to L 2 . Lemma 2.3. IF here exist C > 0 nd ν 0 ∈ N suh thtD for ll a ∈ L ∞ (R) stisfyingD for ll

y > 0D sup x∈R |a(x + y) -a(x)| ≤ C 0 y log 1 + 1 y , one hsD for ll ν ≥ ν 0 D (2.28) [∆ ν , a(x)] L(L 2 ) ≤ C ( a L ∞ + C 0 ) 2 -ν ν .
PF here exist C ω > 0 @depending only on the (xed rölder index ωA nd ν 0 ∈ N suh thtD for

ll b ∈ C ω (R) nd ll ν ≥ ν 0 D one hs (2.29) [∆ ν , b(x)] L(L 2 ) ≤ C ω b C ω 2 -ων .
roofF Former part of previous lemma is proved in [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF]. The latter one, instead, easily follows observing that the kernel of operator

[∆ ν , b] is κ(x, y) = ϕ(2 ν (x -y)) 2 ν (b(t, x) -b(t, y)) ,
and then applying the Schur's criterion (see also lemma 2.6).

Let us localize equation (2.15) applying operator ∆ ν : we gather that u ν satises

(Lu) ν = ∂ 2 t u ν -∂ x (a(t, x)∂ x u ν ) -∂ x ([ϕ ν (D x ), a]∂ x u) + (2.30) + b 0 (t, x)∂ t u ν + [ϕ ν (D x ), b 0 ]∂ t u + b 1 (t, x)∂ x u ν + [ϕ ν (D x ), b 1 ]∂ x u + + c(t, x)u ν + [ϕ ν (D x ), c]u .
Now we introduce the approximate energy of u ν (see [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF] and [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF]), setting

(2.31) e ν,ε (t) := R 1 √ a ε ∂ t u ν + ∂ t √ a ε 2 √ a ε u ν 2 + √ a ε |∂ x u ν | 2 + |u ν | 2 dx .
This particular quantity will turn out to be suitable for our computations. On the one hand, it is strictly related to the Sobolev norm of u (see also remark 2.4). On the other hand, its time derivative will produce fundamental cancellations which allow us to get rid of the bad behaviour of the coecient a. Now, taken θ as in the hypothesis of theorem 2.1, we dene the total energy of u:

(2.32)

E(t) := +∞ ν=-1 e -2β(ν+1)t 2 -2νθ e ν,2 -ν (t) ,
where the index β > 0 will be xed later on. 

E(0) ≤ C θ ( ∂ t u(0, •) H -θ + u(0, •) H 1-θ ) E(t) ≥ C θ ( ∂ t u(t, •) H -θ-β * t + u(t, •) H 1-θ-β * t )
where we have set β * = β(log 2) -1 .

Before going on with computing the time derivative of e ν,ε , let us note that, as L is a linear operator with real valued coecients, one has L(v + iw) = Lv + iLw. So, without loss of generality, we can assume u to be real valued, too.

Moreover, for notation convenience, we dene

v ν,ε := ∂ t u ν + ∂ t √ a ε 2 √ a ε u ν and R ε f := ∂ t ∂ t √ a ε 2 √ a ε f - ∂ t √ a ε 2 √ a ε 2 f.
Now, let us we dierentiate e ν,ε , dened by (2.31), with respect to t, and we obtain

d dt e ν,ε (t) = 2 √ a ε ∂ 2 t u ν v ν,ε dx + 2 √ a ε R ε u ν v ν,ε dx + + ∂ t √ a ε |∂ x u ν | 2 dx + 2 u ν ∂ t u ν dx + + 2 √ a ε ∂ x u ν ∂ x ∂ t u ν dx .
Now, we can put in the previous relation the value of ∂ 2 t u ν , given by (2.30). Integrating by parts and taking advantage of the spectral localisation of u ν , we have

2 √ a ε ∂ x (a∂ x u ν ) v ν,ε dx = 2 ∂ x √ a ε a ε a ∂ x u ν v ν,ε dx - ∂ t √ a ε a ε a |∂ x u ν | 2 dx - - 2 a √ a ε ∂ x u ν ∂ x ∂ t u ν dx - - a √ a ε ∂ x ∂ t √ a ε √ a ε ∂ x u ν u ν dx .
Finally we obtain the complete expression for the time derivative of the approximate energy:

d dt e ν,ε (t) = 2 √ a ε (Lu) ν v ν,ε dx + 2 √ a ε R ε u ν v ν,ε dx + (2.33) + ∂ t √ a ε 1 - a a ε |∂ x u ν | 2 dx + 2 √ a ε - a √ a ε ∂ x u ν ∂ x ∂ t u ν dx + + 2 ∂ x √ a ε a ε a ∂ x u ν v ν,ε dx - a √ a ε ∂ x ∂ t √ a ε √ a ε ∂ x u ν u ν dx + + 2 u ν ∂ t u ν dx + 2 √ a ε (∂ x ([ϕ ν (D x ), a]∂ x u)) v ν,ε dx - - 2 √ a ε b 0 (t, x) ∂ t u ν v ν,ε dx - 2 √ a ε ([ϕ ν (D x ), b 0 ]∂ t u) v ν,ε dx - - 2 √ a ε b 1 (t, x) ∂ x u ν v ν,ε dx - 2 √ a ε ([ϕ ν (D x ), b 1 ]∂ x u) v ν,ε dx - - 2 √ a ε c(t, x) u ν v ν,ε dx - 2 √ a ε ([ϕ ν (D x ), c]u) v ν,ε dx .

Estimate for the approximate energy

We want to obtain an estimate for the time derivative of the energy (2.32); so, let us start to control each term of (2.33).

Throughout the rest of the proof, we will denote with C, C , C and C constants depending only on λ 0 , Λ 0 , C 0 , dened by conditions (2.10)-(2.12), and on the norms of b 0 , b 1 and c in their respective functional spaces. These constants are allowed to vary from line to line.

Terms with a and a ε Thanks to relations (2.10), (2.20) with σ = 1/2, (2.22) and Bernstein's inequalities, we deduce that there exists C > 0, depending only on λ 0 , Λ 0 and C 0 , such that, for all ν ≥ 0,

2 √ a ε R ε u ν v ν,ε dx ≤ C 1 ε log 1 ε + 1 2 -ν e ν,ε (t) .
In the same way, from (2.10), (2.19) and (2.20), we have

∂ t √ a ε 1 - a a ε |∂ x u ν | 2 dx ≤ C log 1 ε + 1 e ν,ε (t) ,
for a constant C depending again only on λ 0 , Λ 0 and C 0 .

Moreover, keeping in mind (2.10), (2.19) and Bernstein's inequalities, we obtain

2 √ a ε - a √ a ε ∂ x u ν ∂ x ∂ t u ν dx ≤ C ε log 1 ε + 1 ∂ x u ν L 2 ∂ x ∂ t u ν L 2 ≤ C ε log 1 ε + 1 2 ν ∂ x u ν L 2 ∂ t u ν L 2 . Now we can estimate ∂ t u ν writing ∂ t u ν L 2 ≤ ∂ t u ν + ∂ t √ a ε 2 √ a ε u ν L 2 + ∂ t √ a ε 2 √ a ε u ν L 2
.

The former term is actually the energy (up to multiplication by a constant); the latter one can be brought to it thanks to followig relations:

∂ t √ a ε 2 √ a ε u 0 L 2 ≤ C ε -1/2 u 0 L 2 and ∀ ν ≥ 1 , ∂ t √ a ε 2 √ a ε u ν L 2 ≤ C ε -1/2 2 -ν ∂ x u ν L 2 .
Hence, we gather the bound (2.34)

∂ t u ν L 2 ≤ C 1 + ε -1/2 2 -ν (e ν,ε ) 1/2 ;
therefore, we nally arrive to

2 √ a ε - a √ a ε ∂ x u ν ∂ x ∂ t u ν dx ≤ C (ε 2 ν + 1) log 1 ε + 1 e ν,ε (t) .
In a very similar way, from (2.21) one has 

2 ∂ x √ a ε a ε a ∂ x u ν v ν,ε dx ≤ C log 1 ε + 1 e ν,ε ( 
a √ a ε ∂ x ∂ t √ a ε √ a ε ∂ x u ν u ν dx ≤ C 1 ε log 1 ε + 1 2 -ν e ν,ε (t) .
Finally, arguing as done before, we have

2 u ν ∂ t u ν dx ≤ C ε -1/2 2 -ν e ν,ε (t) .
Terms with b 0 , b 1 and c

Thanks to the hypothesis (2.13)-(2.14), one has that there exist suitable constants, depending only on λ 0 , Λ 0 , C 0 , on the norms of b 0 and b 1 in the space L ∞ (R t ; C ω (R x )) and on that of

c in L ∞ (R t × R x ), such that 2 √ a ε b 0 (t, x) ∂ t u ν v ν,ε dx ≤ C ∂ t u ν L 2 v ν,ε L 2 ≤ (C + C 2 -ν ε -1/2 ) e ν,ε (t) ; 2 √ a ε b 1 (t, x) ∂ x u ν v ν,ε dx ≤ C 4 √ a ε |∂ x u ν | 1 4 √ a ε |v ν,ε | dx ≤ C √ a ε |∂ x u ν | 2 + 1 √ a ε |v ν,ε | 2 dx ≤ C e ν,ε (t) ; 2 √ a ε c(t, x) u ν v ν,ε dx ≤ C |u ν | 1 4 √ a ε |v ν,ε | dx ≤ C e ν,ε (t) ,
where we delt with ∂ t u ν L 2 as before.

Now, we join the approximation parameter ε with the dual variable ξ, following the original idea of Colombini, De Giorgi and Spagnolo in paper [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF]. As |ξ| ∼ 2 ν on the support of u ν , we set

ε = 2 -ν .
Therefore, from (2.33) and the previous inequalities, we obtain

d dt e ν,2 -ν (t) ≤ C (ν + 1) e ν,2 -ν + 2 √ a 2 -ν (Lu) ν v ν,2 -ν dx + (2.35) + 2 √ a 2 -ν (∂ x ([∆ ν , a]∂ x u)) v ν,2 -ν dx - - 2 √ a 2 -ν ([∆ ν , b 0 ]∂ t u) v ν,2 -ν dx - - 2 √ a 2 -ν ([∆ ν , b 1 ]∂ x u) v ν,2 -ν dx - - 2 √ a 2 -ν ([∆ ν , c]u) v ν,2 -ν dx ,
for a suitable constant C, which depends only on λ 0 , Λ 0 , C 0 and on the norms of the coecients of the operator L in their respective functional spaces.

Estimates for commutator terms

Now, we have to deal with commutator terms. As we will see, it's useful to consider immediately the sum over ν ≥ 0.

First of all, we report an elementary lemma (see also [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]), which we will use very often in next computations. Lemma 2.5. here exist two ontinuousD deresing funtions

α 1 D α 2 : ]0, 1[ → ]0, +∞[ suh tht lim δ→0 + α j (δ) = +∞ for j = 1 , 2 nd suh thtD for ll δ ∈]0, 1] nd ll n ≥ 1D the following inequlities holdX n j=1 e δj j -1/2 ≤ α 1 (δ) e δn n -1/2 , +∞ j=n e -δj j 1/2 ≤ α 2 (δ) e -δn n 1/2 .
Following what done in [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF] and [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF], in the present subsection we will often use the next result, sometimes referred in literature as Schur's Lemma, see e.g. [START_REF] Hörmander | he nlysis of liner prtil di'erentil opertorsF sss[END_REF]. Here we quote a general version, more suitable for our purposes, whose proof can be found in [START_REF] Taylor | seudodi'erentil opertors nd nonliner hi, volume 100 of rogress in wthemtis[END_REF], paragraph 0.5. Lemma 2.6. vet (X, µ) e mesure speF uppose tht k(x, y) is mesurle funtion on

X × X suh tht sup y∈X X |k(x, y)| dµ(x) ≤ C 1 nd sup x∈X X |k(x, y)| dµ(y) ≤ C 2 .
hen for ll p ∈ [1, +∞]D the opertor T D de(ned y

T u(x) = X k(x, y) u(y) dµ(y)
mps ontinuously L p (X, µ) into itselfF woreover we hve

T u L p ≤ C 1/p 1 C 1/p 2 u L p , where p ∈ [1, +∞] is suh tht (1/p) + (1/p ) = 1F
Before going on, we x β > 0 and T ∈]0, T 0 ] such that (2.36)

β T = θ 2 log 2 .
Remark 2.7. Notice that, thanks to the hypothesis of theorem 2.1, this condition implies

β T ≤ ω -θ 2 .
Moreover, for all t ∈ [0, T ], we have:

0 < θ 2 log 2 ≤ β t + θ 2 log 2 ≤ θ log 2 < 1 0 < 1 -3 2 θ log 2 ≤ (1 -θ) log 2 -β t ≤ (1 -θ) log 2 < 1 .
Finally, we set (with the same notations used in chapter 1)

ψ µ = ϕ µ-1 + ϕ µ + ϕ µ+1 (ϕ -1 ≡ 0) .
As ψ µ ≡ 1 on the support of ϕ µ , we can write

∂ x u µ = ∆ µ ∂ x u = Ψ µ (∆ µ ∂ x u) = Ψ µ ∂ x u µ ,
where we have dened Ψ µ := ψ µ (D x ). So, given a generic function f (t, x), one has (2.37)

[∆ ν , f ]∂ x u = [∆ ν , f ]   µ≥0 ∂ x u µ   = µ≥0 ([∆ ν , f ]Ψ µ ) ∂ x u µ .
After these preliminary remarks, we can go on with commutators' estimates.

Term with [∆ ν , a]

Due to Bernstein's inequalities, we have

∂ x v ν,2 -ν L 2 ≤ C 2 ν e ν,2 -ν (t) 1/2 .
So, using (2.37) and the fact that a ε is real-valued, one has

2 √ a 2 -ν ∂ x ([∆ ν , a]∂ x u) v ν,2 -ν dx ≤ ≤ C µ ([∆ ν , a]Ψ µ )∂ x u µ L 2 2 ν e ν,2 -ν (t) 1/2 ≤ C µ [∆ ν , a]Ψ µ L(L 2 ) e µ,2 -µ (t) 1/2 2 ν e ν,2 -ν (t) 1/2 ,
with the constant C depending only on λ 0 , Λ 0 and C 0 . Hence,

ν≥0 e -2β(ν+1)t 2 -2νθ 2 √ a 2 -ν ∂ x ([∆ ν , a]∂ x u) v ν,2 -ν dx ≤ ≤ C ν,µ k νµ (ν + 1) 1/2 e -β(ν+1)t 2 -νθ e ν,2 -ν 1/2 (µ + 1) 1/2 e -β(µ+1)t 2 -µθ e µ,2 -µ 1/2 ,
where we have set (2.38) 

k νµ = e -(ν-µ)βt 2 -(ν-µ)θ 2 ν (ν + 1) -1/2 (µ + 1) -1/2 [∆ ν , a]Ψ µ L(L 2 ) . Observe that, if |ν -µ| ≥ 3, then ϕ ν ψ µ ≡ 0, so [∆ ν , a]Ψ µ = ∆ ν [a, Ψ µ ].
[∆ ν , a(t, x)]Ψ µ L(L 2 ) ≤    C 2 -ν (ν + 1) if |ν -µ| ≤ 2 , C 2 -max{ν,µ} (max{ν, µ} + 1) if |ν -µ| ≥ 3 ,
where the constant C depends only on Λ 0 and C 0 . Now our aim is to apply Schur's lemma 2.6, so to estimate the quantity (2.39)

sup µ ν |k νµ | + sup ν µ |k νµ | .
To do this, we will use lemma 2.5 and the inequalities stated in remark 2.7.

1. Fix µ ≤ 2. We have

ν≥0 |k νµ | ≤ C e (µ+1)βt 2 (µ+1)θ (µ + 1) -1 2 ν e -(ν+1)βt 2 -(ν+1)θ (ν + 1) 1 2 
= C e (µ+1)βt 2 (µ+1)θ (µ + 1) -1 2 ν e -(ν+1)(βt+θ log2) (ν + 1)

1 2
≤ C e 3βt 2 3θ α 2 (βt + θ log 2) ≤ C 2

2. Now, take µ ≥ 3 and consider rst

µ-3 ν=0 |k νµ | ≤ C e (µ+1)βt 2 -(µ+1)(1-θ) (µ + 1) 1 2 µ-3 ν=0 e -(ν+1)βt 2 (ν+1)(1-θ) (ν + 1) -1 2 ≤ C e (µ+1)βt 2 -(µ+1)(1-θ) (µ + 1) 1 2 µ-3 ν=0 e (ν+1)(-βt+(1-θ) log 2) (ν + 1) -1 2 ≤ C e (µ+1)βt 2 -(µ+1)(1-θ) (µ + 1) 1 2 α 1 (-βt + (1 -θ) log 2) • • e (-βt+(1-θ) log 2)(µ-2) (µ -2) -1 2 ≤ C 2 9 2 θ α 1 1 - 3 2 θ log 2 .
For the second part of the sum, one has

+∞ ν=µ-2 |k νµ | ≤ C e (µ+1)βt 2 (µ+1)θ (µ + 1) -1/2 +∞ ν=µ-2 e -(ν+1)βt 2 -(ν+1)θ (ν + 1) 1/2 ≤ C e (µ+1)βt 2 (µ+1)θ (µ + 1) -1/2 α 2 (βt + θ log 2) • • e -(βt+θ log 2)(µ-1) (µ -1) 1/2 ≤ C 2 7 2 θ α 2 (θ log 2) . 3. Fix now ν ≥ 0; we have ν+2 µ=0 |k νµ | ≤ C e -(ν+1)βt 2 -(ν+1)θ (ν + 1) 1/2 ν+2 µ=0 e (µ+1)βt 2 (µ+1)θ (µ + 1) -1/2 ≤ C e -(ν+1)βt 2 -(ν+1)θ (ν + 1) 1/2 α 1 (βt + θ log 2) • • e (βt+θ log 2)(ν+3) (ν + 3) -1/2 ≤ C 2 7 2 θ α 1 (θ log 2) .
For the second part of the series, the following inequality holds:

+∞ µ=ν+3 |k νµ | ≤ C e -(ν+1)βt 2 (ν+1)(1-θ) (ν + 1) -1 2 +∞ µ=ν+3 e (µ+1)βt 2 -(µ+1)(1-θ) (µ + 1) 1 2 ≤ C e -(ν+1)βt 2 (ν+1)(1-θ) (ν + 1) -1 2 α 2 (-βt + (1 -θ) log 2) • • e (-βt+(1-θ) log 2)(ν+4) (ν + 4) 1 2 ≤ C 2 9 2 θ α 2 1 - 3 2 θ log 2 .
In conclusion, there exists a positive function Π, with lim θ→0 + Π(θ) = +∞, such that sup µ ν

|k νµ | + sup ν µ |k νµ | ≤ C Π(θ) ;
then, by Schur's lemma we gather

ν≥0 e -2β(ν+1)t 2 -2νθ 2 √ a 2 -ν ∂ x ([∆ ν , a]∂ x u) v ν,2 -ν dx ≤ ≤ C Π(θ) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν,2 -ν (t) .
Terms with

[∆ ν , b 0 ] and [∆ ν , b 1 ]
Now, let us consider commutator terms involving rst order coecients of operator L. The analysis is essentially the same carried out in the previous paragraph, nevertheless we will give here all the details. Let us start with considering the term

2 √ a 2 -ν [∆ ν , b 0 (t, x)]∂ t u v ν,2 -ν dx ≤ 2 [∆ ν , b 0 (t, x)]∂ t u L 2 1 √ a 2 -ν v ν,2 -ν L 2 ≤ 2 [∆ ν , b 0 (t, x)]∂ t u L 2 (e ν,2 -ν (t)) 1/2 .
Thanks to relation (2.37), we have

[∆ ν , b 0 (t, x)]∂ t u L 2 = [∆ ν , b 0 (t, x)] µ≥0 Ψ µ ∂ t u µ L 2 ≤ µ≥0 [∆ ν , b 0 (t, x)]Ψ µ L(L 2 ) ∂ t u µ L 2 .
On the one hand, estimate (2.34) with ε = 2 -ν gives us

∂ t u µ L 2 ≤ C e µ,2 -µ 1/2 .
on the other hand, from lemma 2.3 we get

[∆ ν , b 0 (t, x)]Ψ µ L(L 2 ) ≤    C 2 -νω if |ν -µ| ≤ 2 C 2 -max{µ,ν}ω if |ν -µ| ≥ 3
where C is a constant depending only on b 0 L ∞ (Rt; C ω (Rx)) .

Therefore,

ν≥0 e -2βt(ν+1) 2 -2νθ 2 √ a 2 -ν [∆ ν , b 0 ]∂ t u v ν,2 -ν dx ≤ ≤ ν,µ≥0
e -βt(ν+1) 2 -νθ e ν,2 -ν 1/2 e -βt(µ+1) 2 -µθ e µ,2 -µ 1/2 l νµ ,

where we have dened (2.40)

l νµ := e -(ν-µ)βt 2 -(ν-µ)θ [∆ ν , b 0 (t, x)]Ψ µ L(L 2 ) .
As made before, we are going to estimate l νµ applying Schur's lemma. ≤ C e µ(βt-(ω-θ) log 2) (µ -2)

≤ C e -µ(ω-θ 2 ) log 2 (µ -2) ≤ C M (ω, θ) ,
where M (ω, θ) is the maximum of the function z → e -γz (z -2), with γ = ω -θ 2 log 2.

For the second part of the sum, we have instead

+∞ ν=µ-2 |l νµ | ≤ C e (µ+1)βt 2 (µ+1)θ +∞ ν=µ-2 e -(ν+1)βt 2 -(ν+1)θ 2 -νω (ν + 1) 1/2 (ν + 1) 1/2 ≤ C e (µ+1)βt 2 (µ+1)θ (µ -1) -1/2 α 2 (βt + θ log 2) • • e -(µ-1)βt 2 -(µ-1)θ (µ -1) 1/2 ≤ C e 2(βt+θ log 2) α 2 (θ log 2) ≤ C 2 9 
2 θ α 2 (θ log 2) .

3. Fix now ν. Initially, we have

ν+2 µ=0 |l νµ | ≤ C e -(ν+1)βt 2 -(ν+1)θ 2 -νω ν+2 µ=0 e (µ+1)(βt+θ log 2) (µ + 1) 1/2 (µ + 1) 1/2 ≤ C e -(ν+1)βt 2 -(ν+1)θ 2 -νω (ν + 3) 1/2 α 1 (βt + θ log 2) • • e (ν+3)βt 2 (ν+3)θ (ν + 3) -1/2
≤ C e 2(βt+θ log 2) α 1 (θ log 2) ≤ C 2 3θ α 1 (θ log 2) .

Moreover, we have

+∞ µ=ν+3 |l νµ | ≤ C e -νβt 2 -νθ +∞ µ=ν+3 e -µ(-βt+(ω-θ) log 2) µ 1/2 µ 1/2 ≤ C e -νβt 2 -νθ (ν + 3) -1/2 α 2 ((ω -θ) log 2 -βt) • • e (ν+3)βt 2 -(ν+3)(ω-θ) (ν + 3) 1/2 ≤ C e 3βt 2 3θ 2 -(ν+3)ω α 2 ω - 3 2 θ log 2 ≤ C 2 9 2 θ α 2 ω - 3 2 θ log 2 .
From all these inequalities, thanks to Schur's lemma, one has that there exists a constant M (ω, θ), depending only on b 0 L ∞ (Rt; C ω (Rx)) and on the xed parameter θ, such that sup µ ν

|l νµ | + sup ν µ |l νµ | ≤ C M (ω, θ) ; from this relation, we nally get ν≥0 e -2βt(ν+1) 2 -2νθ 2 √ a 2 -ν [∆ ν , b 0 ]∂ t u v ν,2 -ν dx ≤ ≤ C M (ω, θ) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν,2 -ν (t) .
The term with the commutator [∆ ν , b 1 (t, x)] is analogous. Arguing as before, we discover that

2 √ a 2 -ν [∆ ν , b 1 ]∂ x u v ν,2 -ν dx ≤ ≤ C µ≥0 [∆ ν , b 1 ]Ψ µ L(L 2 ) 4 √ a 2 -ν ∂ x u µ L 2 1 4 √ a 2 -ν v ν,2 -ν L 2 ≤ C µ≥0 [∆ ν , b 1 ]Ψ µ L(L 2 ) e ν,2 -ν 1/2 e µ,2 -µ 1/2 .
Therefore, we get

ν≥0 e -2βt(ν+1) 2 -2νθ 2 √ a 2 -ν [∆ ν , b 1 ]∂ x u v ν,2 -ν dx ≤ ≤ C ν,µ≥0 e -β(ν+1)t 2 -νθ e ν,2 -ν 1/2 e -β(µ+1)t 2 -µθ e µ,2 -µ 1/2 l νµ ,
where we have set again

l νµ = e -(ν-µ)βt 2 -(ν-µ)θ [∆ ν , b 1 ]Ψ µ L(L 2 ) .
As b 0 and b 1 satisfy to the same hypothesis, the commutator [∆ ν , b 1 ] veries the same inequalities as [∆ ν , b 0 ]; so, if we repeat the same computations, we obtain

ν≥0 e -2βt(ν+1) 2 -2νθ 2 √ a 2 -ν [∆ ν , b 1 ]∂ x u v ν,2 -ν dx ≤ ≤ C M (ω, θ) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν,2 -ν (t) .
Term with [∆ ν , c] First of all, observe that there exist constants such that

2 √ a 2 -ν [∆ ν , c]∂ x u v ν,2 -ν dx ≤ C [∆ ν , c]u L 2 1 4 √ a 2 -ν v ν,2 -ν L 2 ≤ C µ≥0 [∆ ν , c]Ψ µ L(L 2 ) u µ L 2 e ν,2 -ν (t) 1/2 ≤ 2 C µ≥0 [∆ ν , c]Ψ µ L(L 2 ) 2 -µ ∂ x u µ L 2 e ν,2 -ν (t) 1/2 ≤ 2 C µ≥0 [∆ ν , c]Ψ µ L(L 2 ) 2 -µ e µ,2 -µ (t) 1/2 e ν,2 -ν (t) 1/2 .
Thereby, we get the estimate

ν≥0 e -2βt(ν+1) 2 -2νθ 2 √ a 2 -ν [∆ ν , c]∂ x u v ν,2 -ν dx ≤ ≤ 2 C ν,µ≥0 e -βt(ν+1) 2 -νθ e ν,2 -ν (t) 1/2 e -βt(µ+1) 2 -µθ e µ,2 -µ (t) 1/2 m νµ ,
where we have dened, as usual,

m νµ = e -(ν-µ)βt 2 -(ν-µ)θ 2 -µ [∆ ν , c]Ψ µ L(L 2 ) . Now, the kernel of the operator [∆ ν , c] is h(x, y) = ψ(2 ν (x -y)) 2 ν (c(t, y) -c(t, x)) ;
so, remembering that c is bounded over R × R, from Schur's lemma one gets

[∆ ν , c] L(L 2 ) ≤ C ∀ ν ≥ 0 ,
where the constant C depends only on c L ∞ (Rt×Rx) .

Again, we are going to estimate the kernel m νµ to apply Schur's lemma.

1. First, we take µ ≤ 2 and we have

ν≥0 |m νµ | ≤ C e (µ+1)βt 2 (µ+1)θ 2 -µ ν≥0 e -(ν+1)βt 2 -(ν+1)θ ≤ C e 3βt 2 3θ ν≥0 e -(ν+1)(βt+θ log 2) (ν + 1) 1/2 ≤ C e 3βt 2 3θ α 2 (βt + θ log 2) ≤ C 2 9 2 θ α 2 (θ log 2) .
2. Now, we x µ ≥ 3 and we consider the rst part of the series:

µ-3 ν=0 |m νµ | ≤ C e (µ+1)βt 2 -(µ+1)(1-θ) 2 -µ µ-3 ν=0 e -(ν+1)βt 2 (ν+1)(1-θ) 2 µ-ν (ν + 1) 1/2 (ν + 1) 1/2 ≤ C e (µ+1)βt 2 -(µ+1)(1-θ) (µ -2) 1/2 µ-3 ν=0 e (ν+1)((1-θ) log 2-βt) (ν + 1) -1/2 ≤ C e (µ+1)βt 2 -(µ+1)(1-θ) (µ -2) 1/2 α 1 ((1 -θ) log 2 -βt) • • e -(µ-2)βt 2 (µ-2)(1-θ) (µ -2) -1/2 ≤ C e 3βt 2 3θ α 1 1 - 3 2 θ log 2 ≤ C 2 9 2 θ α 1 1 - 3 2 θ log 2 .
For the second part, one has:

+∞ ν=µ-2 |m νµ | ≤ C e (µ+1)βt 2 (µ+1)θ 2 -µ +∞ ν=µ-2 e -(ν+1)βt 2 -(ν+1)θ (ν + 1) 1/2 (ν + 1) 1/2 ≤ C e (µ+1)βt 2 (µ+1)θ 2 -µ α 2 (βt + θ log 2) e -(µ-1)βt 2 -(µ-1)θ ≤ C 2 3θ α 2 (θ log 2) .
3. Now, we x ν ≥ 0. Initially, we consider

ν+2 µ=0 |m νµ | ≤ C e -(ν+1)βt 2 -(ν+1)θ ν+2 µ=0 e (µ+1)(βt+θ log 2) 2 -µ (µ + 1) 1/2 (µ + 1) 1/2 ≤ C e -(ν+1)βt 2 -(ν+1)θ (ν + 3) 1/2 α 1 (βt + θ log 2) • • e (ν+3)βt 2 (ν+3)θ (ν + 3) -1/2
≤ C e 2(βt+θ log 2) α 1 (θ log 2) ≤ C 2 3θ α 1 (θ log 2) .

The second part of the series, instead, can be treated as follow:

+∞ µ=ν+3 |m νµ | ≤ C e -(ν+1)βt 2 (ν+1)(1-θ) +∞ µ=ν+3 e (µ+1)βt 2 -µ 2 -(µ+1)(1-θ) 2 µ-ν (µ + 1) 1 2 
(µ + 1)

1 2 ≤ C e -(ν+1)βt 2 (ν+1)(1-θ) (ν + 4) -1 2 +∞ µ=ν+3 e -(µ+1)((1-θ) log 2-βt) (µ + 1) 1 2 ≤ C e -(ν+1)βt 2 (ν+1)(1-θ) α 2 ((1 -θ) log 2 -βt) e (ν+4)βt 2 -(ν+4)(1-θ) ≤ C 2 9 2 θ α 2 1 - 3 2 θ log 2 .
Finally, we obtain:

ν≥0 e -2βt(ν+1) 2 -2νθ 2 √ a 2 -ν [∆ ν , c]∂ x u v ν,2 -ν dx ≤ ≤ C Π(θ) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν,2 -ν (t) ,
where the function Π is the same used in the estimate of the term [∆ ν , a].

End of the proof of theorem 2.1

Now we are able to complete the proof of theorem 2.1. First of all, remembering the denition of the total energy given by (2.32), we gather that there exists a constant C > 0, depending only on θ, such that

+∞ ν=0 e -β(ν+1)t 2 -2νθ 2 √ a ε (Lu) ν • v ν,2 -ν dx ≤ C (E(t)) 1/2 Lu H -θ-β * t .
Now, we put estimates just proved in paragraph 2.3.4 into relation (2.35). Therefore, if we set Π(ω, θ) = max{ M (ω, θ), Π(θ)}, we have that, for suitable constants, depending only on λ 0 , Λ 0 , C 0 and on the norms of the coecients of operator L in their respective functional spaces, the following inequality holds true for all t ∈ [0, T ]:

d dt E(t) ≤ C + C Π(ω, θ) -2β +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν,2 -ν (t) + + C (E(t)) 1/2 Lu H -θ-β * t .
Now, let us x β large enough, such that C + C Π(ω, θ) -2β ≤ 0. We can always do this, on condition that we take T small enough: recall that, by (2.36), only the product βT has been xed untill now. With this choice, we have

d dt E(t) ≤ C (E(t)) 1/2 Lu H -θ-β * t ;
and the conclusion of the theorem follows from Gronwall's lemma, keeping in mind remark 2.4.

Chapter 3

Non-Lipschitz coecients: the general N -dimensional case

In this chapter we will keep studying the Cauchy problem for strictly hyperbolic operators with low regularity coecients. As in previous chapter, we will suppose the coecients to be log-Zygmund continuous in time and log-Lipschitz continuous in space, but we will tackle the case of any space dimension N ≥ 1. Again, we will nd an energy estimate with a time-dependent loss of derivatives, which allows to get the well-posedness issue in the space H ∞ for the related Cauchy problem (if the coecients are smooth enough with respect to x).

Paradierential calculus with parameters will be the main tool to handle the problem and get the improvement with respect to the previous chapter. Let us note that, thanks to it, it will be needed to perform a mollication of the coecients only in the time variable.

Let us point out that here, for simplicity, we will focus only on a homogeneous second order hyperbolic operator, but the same techniques work also for dealing with lower order terms.

Introduction

This chapter is devoted to the study of the Cauchy problem for a second order strictly hyperbolic operator dened in a strip [0, T ] × R N , for some T > 0 and N ≥ 1. Consider a second order operator of the form (3.1)

Lu := ∂ 2 t u - N j,k=1 ∂ j (a jk (t, x) ∂ k u)
and assume that L is strictly hyperbolic with bounded coecients, i.e. there exist two constants 0 < λ 0 ≤ Λ 0 such that

λ 0 |ξ| 2 ≤ N j,k=1 a jk (t, x) ξ j ξ k ≤ Λ 0 |ξ| 2 for all (t, x) ∈ [0, T ] × R N and all ξ ∈ R N .
It is well-known (see e.g. [START_REF] Hörmander | viner prtil di'erentil opertors[END_REF] or [START_REF] Mizohata | he theory of prtil di'erentil equtions[END_REF]) that, if the coecients a jk are Lipschitz continuous with respect to t and even only measurable in x, then the Cauchy problem for L is well-posed in H 1 L 2 . If the a jk 's are Lipschitz continuous with respect to t and C ∞ b (i.e. C ∞ and bounded with all their derivatives) with respect to the space variables, one can recover the well-posedness in H s+1 H s for all s ∈ R. Moreover, in the latter case, one gets, for all s ∈ R and for a constant C s depending only on it, the following energy estimate:

sup 0≤t≤T u(t, •) H s+1 + ∂ t u(t, •) H s ≤ (3.2) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 Lu(t, •) H s dt for all u ∈ C([0, T ]; H s+1 (R N )) ∩ C 1 ([0, T ]; H s (R N )) such that Lu ∈ L 1 ([0, T ]; H s (R N )).
Let us explicitly remark that previous inequality involves no loss of regularity for the function u: it holds true for every u ∈ C 2 ([0, T ]; H ∞ (R N )) and the Cauchy problem for L is well-posed in H ∞ with no loss of derivtives.

If the Lipschitz continuity (in time) hypothesis is not fullled, then (3.2) is no more true.

Nevertheless, one can still try to recover H ∞ -well-posedness, with a loss of derivtives in the energy estimate.

The rst case to consider is when the coecients a jk depend only on t:

Lu = ∂ 2 t u - N j,k=1 a jk (t) ∂ j ∂ k u .
In [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF], Colombini, De Giorgi and Spagnolo assumed the coecients to satisfy an integral log-Lipschitz condition:

(3.3) T -ε 0 |a jk (t + ε) -a jk (t)| dt ≤ C ε log 1 + 1 ε ,
for some constant C > 0 and all ε ∈ ]0, T ]. To get the energy estimate, they rst smoothed out coecients using a mollier kernel (ρ ε ). Then, by Fourier transform, they dened an approximated energy E ε (ξ, t) in phase space, where the problem becomes a family of ordinary dierential equations. At that point, the key idea was to perform a dierent approximation of the coecients in dierent zones of the phase space: in particular, they set ε = |ξ| -1 . Finally, they obtained an energy estimate with (xed loss of derivtives: there exists a constant δ > 0 such that, for all s ∈ R, the inequality

sup 0≤t≤T u(t, •) H s+1-δ + ∂ t u(t, •) H s-δ ≤ (3.4) ≤ C s u(0, •) H s+1 + ∂ t u(0, •) H s + T 0 Lu(t, •) H s dt holds true for all u ∈ C 2 ([0, T ]; H ∞ (R N ))
, for some constant C s depending only on s. Let us remark that if the coecients a jk are not Lipschitz continuous, then a loss of regularity cannot be avoided, as shown by Cicognani and Colombini in [START_REF] Cicognani | Modulus of continuity of the coecients and loss of derivatives in the strictly hyperbolic Cauchy problem[END_REF]. Besides, in this paper the authors prove that, if the regularity of the coecients a jk is measured by a modulus of continuity, any intermediate modulus of continuity between the Lipschitz and the log-Lipschitz ones necessarily entails a loss of regularity, which, however, can be made arbitrarily small. Recently Tarama (see paper [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF]) analysed the problem when coecients satisfy an integral log-Zygmund condition: there exists a constant C > 0 such that, for all j, k and all ε ∈ ]0, T /2[, one has

(3.5) T -ε ε |a jk (t + ε) + a jk (t -ε) -2 a jk (t)| dt ≤ C ε log 1 + 1 ε .
On the one hand, this assumption is somehow related to the pointwise condition (for a function [START_REF] Yamazaki | On the L 2 (R n ) well-posedness of some singular or degenerate partial dierential equations of hyperbolic type[END_REF], and hence it is a requirement on the growth of the second derivative of a. On the other hand, it's obvious that, if the a jk 's satisfy (3.3), then they satisfy also (3.5): so, a more general class of functions is considered.

a ∈ C 2 ([0, T ]) ) |a(t)| + |t a (t)| + |t 2 a (t)| ≤ C, considered by Yamazaki in
Again, Fourier transform, smoothing out the cocients and linking the approximation parameter with the dual variable were fundamental tools in the analysis of Tarama. The improvement with respect to paper [START_REF] Colombini | Sur les équations hyperboliques avec des coecients qui ne dépendent que du temps. ennF uol xormF upF is glF iF @RA[END_REF], however, was obtained dening a new energy, which involved (by derivation in time) second derivatives of the approximated coecients. Finally, he got an estimate analogous to (3.4), which implies, in particular, well-posedness in the space H ∞ .

In paper [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF], Colombini and Lerner considered instead the case in which coecients a jk depend both on time and on space variables. In particular, they assumed an isotropic pointwise log-Lipschitz condition, i.e. there exists a constant C > 0 such that, for all ζ = (τ,

ξ) ∈ R × R N , one has sup z=(t,x)∈R×R N |a jk (z + ζ) -a jk (z)| ≤ C |ζ| log 1 + 1 |ζ| .
Once again, smoothing out coecients with respect to the time variable is required; on the contrary, one cannot use the Fourier transform, due to the dependence of a jk on x. The authors bypassed this problem appealing to the Littlewood-Paley decomposition and paradierential calculus. They dened an energy concerning each localized part ∆ ν u of the solution u, and then they performed a weighed summation to put all these pieces together. Also in this case, they had to consider a dierent approximation of the coecients in dierent zones of the phase space, which was obtained setting ε = 2 -ν (recall that 2 ν is the size of the frequencies in the ν-th ring, see chapter 1). In the end, they got the following statement: for all s ∈ ]0, 1/4], there exist positive constants β and C s and a time

T * ∈ ]0, T ] such that sup 0≤t≤T * u(t, •) H -s+1-βt + ∂ t u(t, •) H -s-βt ≤ (3.6) ≤ C s u(0, •) H -s+1 + ∂ t u(0, •) H -s + T * 0 Lu(t, •) H -s-βt dt for all u ∈ C 2 ([0, T ]; H ∞ (R N )).
Let us point out that the bound on s was due to this reason: the product by a log-Lipschitz function is well-dened in H s if and only if |s| < 1. Note also that this fact gives us a bound on the lifespan of the solution: the regularity index -s + 1 -βT * has to be strictly positive, so one can expect only local in time existence of a solution. Moreover in the case the coecients a jk are C ∞ b in space, the authors proved inequality (3.6) for all s: so, they still got well-posedness in H ∞ , but with loss of derivtives inresing in time.

The case of a complete strictly hyperbolic second order operator,

Lu = N j,k=0 ∂ y j (a jk ∂ y k u) + N j=0 b j ∂ y j u + ∂ y j (c j u) + d u (here we set y = (t, x) ∈ R t × R N
x ), was tackled by Colombini and Métivier in [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF]. They assumed the same isotropic log-Lipschitz condition of [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF] on the coecients of the second order part of L, while b j and c j were supposed to be α-Hölder continuous (for some α ∈ ]1/2, 1[ ) and d to be only bounded. The authors considered questions such as local existence and uniqueness, and also nite propagation speed for local solutions.

Recently, Colombini and Del Santo, in [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF] (for a rst approach to the problem see also [START_REF] Del | The Cauchy problem for a hyperbolic operator with log-Zygmund coefcients[END_REF], where smoothness in space were required), came back to the Cauchy problem for the operator (3.1), mixing up a Tarama-like hypothesis (concerning the dependence on the time variable) with the one of Colombini and Lerner (with respect to x). More precisely, they assumed a pointwise log-Zygmund condition in time and a pointwise log-Lipschitz condition in space, uniformly with respect to the other variable (see conditions (3.9) and (3.10) below). However, they had to restrict themselves to the case of space dimension N = 1: as a matter of fact, a Tarama-type energy was somehow necessary to compensate the bad behaviour of the coecients with respect to t, but it was not clear how to dene it in higher space dimensions. Again, localizing energy by use of Littlewood-Paley decomposition and linking approximation parameter and dual variable together lead to an estimate analogous to (3.6).

The aim of the present chapter is to extend the result of Colombini and Del Santo to any dimension N ≥ 1. As just pointed out, the main diculty was to dene a suitable energy related to the solution. So, the rst step is to pass from functions a(t, x) with low regularity modulus of continuity, to more general symbols σ a (t, x, ξ) (obviously related to the initial function a) satisfying the same hypothesis in t and x, and then to consider paradierential operators associated to these symbols. Nevertheless, positivity hypothesis on a (required for dening a strictly hyperbolic problem) does not translate, in general, to positivity of the corresponding operator, which is fundamental in obtaining energy estimates. At this point, paradierential calculus depending on a parameter γ ≥ 1, as presented in chapter 1, comes into play and allows us to recover positivity of the (new) paradierential operator associated to a. Dening a localized energy and an approximation of the coecients depending on the dual variable are, once again, basic ingredients in closing estimates. Hence, in the end we will get an inequality similar to (3.6), for any s ∈ ]0, 1[ . The chapter is organized as follows.

First of all, we will present the work hypothesis for our strictly hyperbolic problem, and we will state our main results.

A complete treatement about functions with low regularity modulus of continuity follows.

In particular, we will focus on log-Zymgund and log-Lipschitz conditions: by a broad use of paradierential calculus, we will state properties of functions satisfying such hypothesis and of the relative smoothed-in-time (by a convolution kernel) ones. Hence, we will pass to consider more general symbols and the associated paradierential operators, for which we will develop also a symbolic calculus and we will state a fundamental positivity estimate. This section is deeply based on the theory developed in chapter 1 This having been done, we will be then ready to tackle the proof of our main result: we will go back to the main ideas of paper [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]. First of all, taking advantage of a convolution kernel, we will smooth out the coecients, but with respect to the time variable only. As a matter of fact, low regularity in x will be compensated by considering paradierential operators associated to our coecients. Then, we will decompose the solution u to the Cauchy problem for (3.1) into dyadic blocks ∆ ν u, for which we will dene an approximate localized energy e ν : the dependence on the approximation parameter ε will be linked to the phase space localization, setting ε = 2 -ν . The piece of energy e ν will be of Tarama type, but this time multiplication by functions will be replaced by action of paradierential operators associated to them. A weighted summation of these pieces will dene the total energy E(t) associated to u. The rest of the proof is classical: we will dierentiate E with respect to time and, using Gronwall's lemma, we will get a control for it in terms of initial energy E(0) and external force Lu only.

Basic denitions and main result

This section is devoted to the presentation of our work setting and of our main result.

Let us consider the operator over [0, T 0 ] × R N (for some T 0 > 0 and N ≥ 1)

(3.7) Lu = ∂ 2 t u - N i,j=1 ∂ i (a ij (t, x) ∂ j u) ,
and let us suppose L to be strictly hyperbolic with bounded coecients, i.e. there exist two positive constants 0 < λ 0 ≤ Λ 0 such that, for all (t, x) ∈ R t × R N x and all ξ ∈ R N , one has

(3.8) λ 0 |ξ| 2 ≤ N i,j=1 a ij (t, x) ξ i ξ j ≤ Λ 0 |ξ| 2 .
Moreover, let us suppose the coecients to be log-Zygmund-continuous in the time variable t, uniformly with respect to x, and log-Lipschitz-continuous in the space variables, uniformly with respect to t. This hypothesis reads as follow: there exists a constant K 0 such that, for all τ > 0 and all y ∈ R N \ {0}, one has sup (t,x) 

|a ij (t + τ, x) + a ij (t -τ, x) -2a ij (t, x)| ≤ K 0 τ log 1 + 1 τ (3.9) sup (t,x) |a ij (t, x + y) -a ij (t, x)| ≤ K 0 |y| log 1 + 1 |y| . ( 3 
sup 0≤t≤T u(t, •) H -θ+1-β * t + ∂ t u(t, •) H -θ-β * t ≤ (3.11) ≤ C u(0, •) H -θ+1 + ∂ t u(0, •) H -θ + T 0 Lu(t, •) H -θ-β * t dt , holds true for ll u ∈ C 2 ([0, T ]; H ∞ (R N ))F
So, it's possible to control the Sobolev norms of solutions to (3.7) in terms of those of initial data and of the external force only: the price to pay is a loss of derivatives, increasing (linearly) in time.

Tools

The main tools we need to prove our statement all come from Fourier Analysis. We will broadly make use of the methods developed in chapter 1: in particular, Littlewood-Paley decomposition, logarithmic Sobolev spaces and paradierential calculus depending on parameters.

In this section we use the just mentioned techniques to study functions having low regularity modulus of continuity. In particular, we will focus on log-Zygmund and log-Lipschitz functions: dyadic decomposition allows us to get some of their properties. Moreover, we will analyse also the convolution of a log-Zygmund function by a smoothing kernel. Finally, taking advantage of paradierential calculus with parameters, we will consider general symbols having such a low regularity in time and space variables. Under suitable hypothesis on such a symbol, we will also get positivity estimates for the associated paradierential operator.

On log-Lipschitz and log-Zygmund functions

Let us now give the rigorous denitions of the modulus of continuity of funtions we are dealing with, and state some of their properties. Denition 3.2. A function f ∈ L ∞ (R N ) is said to be log-Lipschitz, and we write f ∈ LL(R N ),

if the quantity |f | LL := sup x∈R N sup 0<|y|<1   |f (x + y) -f (x)| |y| log 1 + 1 |y|   < +∞ . We dene f LL := f L ∞ + |f | LL .
Let us dene also the space of log-Zygmund functions. We will give the general denition in R N , even if one dimensional case will be the only relevant one for our purposes.

Denition 3.3. A function g ∈ L ∞ (R N ) is said to be log-Zygmund, and we write g ∈ LZ(R N ),

if the quantity

|g| LZ := sup x∈R N sup 0<|y|<1   |g(x + y) + g(x -y) -2 g(x)| |y| log 1 + 1 |y|   < +∞ .
We dene g LZ := g L ∞ + |g| LZ .

Remark 3.4. Let us immediately point out that, by monotonicity of logarithmic function, we can replace the factor log (1 + 1/|y|) in previous denitions with log (1 + γ + 1/|y|), for all parameters γ ≥ 1. As paradierential calculus with parameters will play a fundamental role in our computations, it's convenient to perform such a change, and so does also in hypothesis (3.9) and (3.10) of section 3.2.

Let us give a characterization of the space LZ. Recall that the space of Zygmund functions is actually B 1 ∞,∞ : following the same proof of this case (see e.g. [START_REF] Chemin | Fluides parfaits incompressibles[END_REF]) one can prove next proposition. Proposition 3.5. he spe LZ(R N ) oinides with the logrithmi fesov spe B 1-log ∞,∞ D iFeF the spe of tempered distriutions u suh tht (3.12)

sup k≥0 2 k (1 + k) -1 ∆ k u L ∞ < +∞ . roofF (i) Let us rst consider a u ∈ B 1-log
∞,∞ and take x and y ∈ R N , with |y| < 1. For all xed n ∈ N we can write:

u(x + y) + u(x -y) -2u(x) = k<n (∆ k u(x + y) + ∆ k u(x -y) -2∆ k u(x)) + + k≥n (∆ k u(x + y) + ∆ k u(x -y) -2∆ k u(x)) .
First, we take advantage of the Taylor's formula up to second order to handle the former terms; then, we use property (3.12). Hence we get

|u(x + y) + u(x -y) -2u(x)| ≤ C |y| 2 k<n ∇ 2 ∆ k u L ∞ + 4 k≥n ∆ k u L ∞ ≤ C   |y| 2 k<n 2 k (k + 1) + k≥n 2 -k (k + 1)   ≤ C (n + 1) |y| 2 2 n + 2 -n .
Now, as |y| < 1, the choice n = 1 + [log 2 (1/|y|)] (where with [ ] we mean the greatest positive integer less than or equal to ) completes the proof of the rst part.

(ii) Now, given a log-Zygmund function u, we want to estimate the L ∞ norm of its localized part ∆ k u.

Let us recall that applying the operator ∆ k is the same of the convolution with the inverse Fourier transform of the function ϕ(2 -k •), which we call h k . Now, h k (x) = 2 kN h(2 k x), where we set h = F -1 ξ (ϕ). As ϕ is an even function, so does h; moreover we have

h(z) dz = F -1 ξ (ϕ)(z) dz = ϕ(ξ) |ξ=0 = 0 .
Therefore, we can write:

∆ k u(x) = 2 kN -1 h(2 k y) (u(x + y) + u(x -y) -2u(x)) dy ,
and noting that → log (1 + γ + 1/ ) is increasing over ]0, +∞[ completes the proof to the second part of the proposition.

From denitions 3.2 and 3.3, it's obvious that LL(R N ) → LZ(R N ): proposition 3.3 of [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF] explains this property in terms of dyadic decomposition. We quote here its statement.

Proposition 3.6. here exists onstnt C suh thtD for ll a ∈ LL(R N ) nd ll integers k > 0D

we hve

(3.13) ∆ k a L ∞ ≤ C (k + 1) 2 -k a LL .
woreoverD for ll k ∈ N we hve

a -S k a L ∞ ≤ C (k + 1) 2 -k a LL (3.14) S k a C 0,1 ≤ C (k + 1) a LL . (3.15) 
Remark 3.7. Note that, again from proposition 3.3 of [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF], property (3.15) is a characterization of the space LL(R N ).

Using dyadic characterization of the space LZ and following the same ideas as those of the proof of proposition 3.5, we can prove the following property. This time we consider a log-Zygmund function a depending only on the time variable t, which is enough for our purposes, but the same reasoning holds true also in higher dimensions. Lemma 

sup t∈R |a(t + τ ) -a(t)| ≤ C |τ | log 2 1 + γ + 1 |τ | .
roofF As done in proving proposition 3.5, for all n ∈ N we can write

a(t + τ ) -a(t) = k<n (∆ k a(t + τ ) -∆ k a(t)) + k≥n (∆ k a(t + τ ) -∆ k a(t)) ,
where, obviously, the localization in frequencies is performed in one dimension (with respect to the time variable). For the former terms we use the mean value theorem, while for the latter ones we use characterization (3.13); hence, we get

|a(t + τ ) -a(t)| ≤ k<n d dt ∆ k a L ∞ |τ | + 2 k≥n ∆ k a L ∞ ≤ C   n 2 |τ | + k≥n 2 -k k   .
The series in the right-hand side of the previous inequality can be bounded, up to a multiplicative constant, by 2 -n n; therefore

|a(t + τ ) -a(t)| ≤ C n n |τ | + 2 -n ,
and the choice n = 1 + [log 2 (1/|τ |)] completes the proof. Now, given a log-Zygmund function a(t), we can regularize it by convolution. So, take an even function ρ ∈ C ∞ 0 (R t ), 0 ≤ ρ ≤ 1, whose support is contained in the interval [-1, 1] and such that ρ(t)dt = 1. Dene then the mollier kernel

ρ ε (t) := 1 ε ρ t ε ∀ ε ∈ ]0, 1] .
We smooth out the function a setting, for all ε ∈ ]0, 1],

(3.17)

a ε (t) := (ρ ε * a) (t) = Rs ρ ε (t -s) a(s) ds .
The following proposition holds true.

Proposition 3.9. vet a e logEygmund funtionF por ll γ ≥ 1D there exist onstnts C γ suh tht

|a ε (t) -a(t)| ≤ C γ a LZ ε log 1 + γ + 1 ε (3.18) |∂ t a ε (t)| ≤ C γ a LZ log 2 1 + γ + 1 ε (3.19) ∂ 2 t a ε (t) ≤ C γ a LZ 1 ε log 1 + γ + 1 ε . (3.20) 
roofF For rst and third inequalities, the proof is the same as in [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]. We have to pay attention only to (3.19). As ρ has null integral, the relation

∂ t a ε (t) = 1 ε 2 |s|≤ε ρ s ε (a(t -s) -a(t)) ds
holds, and hence, taking advantage of (3.16), it implies

|∂ t a ε (t)| ≤ C ε 2 |s|≤ε ρ s ε |s| log 2 1 + γ + 1 |s| ds .
Observing that the function ν → ν log 2 (1 + γ + 1/ν) is increasing in the interval [0, 1], and so does in [0, ε], allows us to complete the proof.

Low regularity symbols and calculus

For the analysis of our strictly hyperbolic problem, it's important to pass from LZ t -LL x functions to more general symbols in variables (t, x, ξ) which have this same regularity in t and x.

We want to investigate properties of such symbols and of the associated operators. For reasons which will appear clear in the sequel, we will have to take advantage not of the classical paradierential calculus, but of the calculus with parameters. Therefore, we will allow also the symbols to depend on a parameter γ ≥ 1.

So, let us take a symbol a(t, x, ξ, γ) of order m ≥ 0, such that a is log-Zygmund in t and log-Lipschitz in x, uniformly with respect to the other variables. Then we smooth out a with respect to time, as done in (3.17). As a matter of fact, paradierential calculus already implies a regularization of symbols with respect to x, so that we don't need to apply convolution also in the space variable (as done, for instance, in chapter 2).

Next lemma provides us some estimates on classical symbols associated to a ε (recall formula (1.15)) and its time derivatives. For notation convenience, in what follows we drop out the dependence of the construction on the admissible cut-o function ψ (recall also remark 1.56). Lemma 3.10. he lssil symols ssoited to a ε nd its time derivtives stisfyX

∂ α ξ σ aε ≤ C α (γ + |ξ|) m-|α| ∂ β x ∂ α ξ σ aε ≤ C β,α (γ + |ξ|) m-|α|+|β|-1 log (1 + γ + |ξ|) ∂ α ξ σ ∂taε ≤ C α (γ + |ξ|) m-|α| log 2 1 + γ + 1 ε ∂ β x ∂ α ξ σ ∂taε ≤ C β,α (γ + |ξ|) m-|α|+|β|-1 log (1 + γ + |ξ|) 1 ε ∂ α ξ σ ∂ 2 t aε ≤ C α (γ + |ξ|) m-|α| log 1 + γ + 1 ε 1 ε ∂ β x ∂ α ξ σ ∂ 2 t aε ≤ C β,α (γ + |ξ|) m-|α|+|β|-1 log (1 + γ + |ξ|) 1 ε 2 .
roofF The rst inequality is a quite easy computation.

For the second one, we have to observe that

∂ i G(x -y, ξ)dx = ∂ i G(z, ξ)dz = F -1 η (η i ψ(η, ξ)) dz = (η i ψ(η, ξ)) |η=0 = 0 .
So, we have

∂ i σ aε = ∂ i G(y, ξ) (a ε (t, x -y, ξ, γ) -a ε (t, x, ξ, γ)) dy ,
and from this, remembering lemma 1.53, we get the nal control.

The third estimate immediately follows from the hypothesis on a and from (3.19).

Moreover, in the case of space derivatives, we can take advantage once again of the fact that ∂ i G has null integral:

∂ i σ ∂taε = ∂ i G(x -y, ξ) ∂ t a ε (t, y, ξ, γ) dy = Rs 1 ε 2 ρ t -s ε R N y ∂ i G(y, ξ) (a(s, x -y, ξ, γ) -a(s, x, ξ, γ)) dy ds .
Hence, the estimate follows from the log-Lipschitz continuity hypothesis and from inequality (1.11) about G. Now we handle the ∂ 2 t a ε term. The rst estimate comes from (3.20), while for the second one we argue as before:

∂ i σ ∂ 2 t aε = ∂ i G(x -y, ξ) ∂ 2 t a ε (t, y, ξ, γ) dy = R N y ∂ i G(x -y, ξ) 1 ε 3 Rs ρ t -s ε (a(s, y, ξ, γ) -a(s, x, ξ, γ)) ds dy = 1 ε 3 Rs ρ t -s ε R N y ∂ i G(y, ξ) (a(s, x -y, ξ, γ) -a(s, x, ξ, γ)) dy ds ,
and the thesis follows again from log-Lipschitz continuity condition and from (1.11).

Note that rst and second inequalities are fullled also by the symbol a (not smoothed with respect to the time variable). Now let us quote some basic facts on symbolic calculus, which follow from previous lemma and the general theory developed in section 1.5 (recall in particular theorems 1.61 and 1.62). Proposition 3.11. @iA vet a e symol of order m whih is LL in the x vrileF hen T a mps H s+α log γ into H s-m+α log γ F @iiA vet us tke two symols aD b of order m nd m respetivelyF uppose tht aD b re LL in the

x vrileF he omposition of the ssoited opertors n e pproximted y the symol ssoited to the produt a bD up to reminder termX

T a • T b = T ab + R . he reminder opertor R mps H s+α log γ into H s-m-m +1+(α+1) log γ
@rell de(nition (1.9)AF @iiiA vet a e symol of order m whih is LL in the x vrileF he djoint @over L 2 A opertor of T a isD up to reminder opertorD T a F he reminder opertor mps H s+α log γ into H s-m+1+(α+1) log γ F Let us end this subsection stating a basic positivity estimate. In this situation, paradierential calculus with parameters comes into play. Proposition 3.12. vet a(t, x, ξ, γ) e symol of order 2mD whih is logEvipshitz ontinuous in the x vrile nd suh tht

Re (a(t, x, ξ, γ)) ≥ λ 0 (γ + |ξ|) 2m .
henD there exists onstnt λ 1 D depending only on |a| LLx nd on λ 0 @soD not on γAD suh thtD for γ lrge enoughD one hs

Re (T a u, u) L 2 ≥ λ 1 u 2 H m γ .
roofF Going along the lines of the proof to theorem 1.63 (see [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]) and keeping in mind lemma 3.10, we arrive to the following estimate, analogous to (1.17):

λ 0 2 u 2 H m γ ≤ Re (T a u, u) L 2 + C u 2 H (m-1)+(δ+1) log γ ,
where the constant C depends only on |a| LLx . Now, as

lim γ→+∞ log 2(δ+1) (1 + γ + |ξ|) (γ 2 + |ξ| 2 ) = 0 ,
for γ ≥ 1 large enough we can absorb the last term of the right-hand side into the left-hand side of the previous relation.

Remark 3.13. Let us note the following fact, which comes again from theorem 1.63. If the positive symbol a has low regularity in time and we smooth it by convolution with respect to this variable, we obtain a family (a ε ) ε of positive symbols, with same constant λ 0 . Now, all the paradierential operators associated to these symbols will be positive operators, uniformly in ε: i.e. the constant λ 1 of previous inequality can be choosen independently of ε.

Let us observe that previous proposition generalizes corollary 3.12 of [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF] (stated for the paraproduct by a positive LL function) to the more general case of a paradierential operator with a strictly positive symbol of order m.

Finally, thanks to proposition 3.11 about the remainder operator for the adjoint, we have the following corollary, which turns out to be fundamental in our energy estimates. Corollary 3.14. vet a e positive symol of order 1 nd suppose tht a is LL in the x vrileF hen there exists γ ≥ 1D depending only on the symol aD suh tht

T a u L 2 ∼ ∇u L 2 for ll u ∈ H 1 (R N )F roofF Obviously, T a u L 2 ≤ ∇u L 2 , because a is of order 1.
In order to prove the opposite inequality, we use proposition 3.11 and we write

T a u L 2 = ((T a ) * T a u, u) L 2 = (T a 2 u, u) + (Ru, u) ,
where R is a remainder operator with symbol equal to ∂ x ∂ ξ a, and so it has order m -1 + log.

Hence, applying proposition 3.12 allows us to conclude the proof.

Proof of the energy estimate for L

Finally, we are able to tackle the proof of theorem 3.1. We argue in a stadard way: rst of all, we dene an energy associated to a solution of equation (3.7), and then we prove estimates on its time derivative in terms of the energy itself. In the end, we will close the estimates thanks to Gronwall's lemma.

The key idea to the proof is to split the total energy into localized components e ν , each one of them associated to the dyadic block ∆ ν u, and then to put all these pieces together (see also [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF] and [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]). Let us see the proof into details.

Approximate and total energy

Let us rst regularize coecients a ij in the time variable by convolution, as done in (3.17): as already pointed out, due to the use of paradierential calculus, we don't need to perform a regularization of our coecients also in space.

Then, inspired by Tarama's energy (see [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF]), let us dene the 0-th order symbol

α ε (t, x, ξ) := γ 2 + |ξ| 2 -1/2   γ 2 + i,j a ij,ε (t, x) ξ i ξ j   1/2 .
We take ε = 2 -ν (see also [START_REF] Colombini | Hyperbolic operators with non-Lipschitz coecients[END_REF] and [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]), and (for notation convenience) we will miss out the ε.

Before going on, let us x a real number γ ≥ 1, which will depend only on λ 0 and on the sup i,j a ij LLx , such that (see corollary 3.14)

(3.21) T α -1/2 w L 2 ≥ λ 0 2 w L 2 and T α 1/2 (γ 2 +|ξ| 2 ) 1/2 w L 2 ≥ λ 0 2 ∇w L 2
for all w ∈ H ∞ . Let us remark that the choice of γ is equivalent to the choice of the parameter µ in (1.8) and from now on, we will consider paraproducts starting from this µ, according to denition (1.8), even if we will omit it in the notations.

Consider in (3.7) a function u ∈ C 2 ([0, T 0 ]; H ∞ ). We want to get energy estimate for u. We rewrite the equation using paraproduct operators by the coecients a ij : 

∂ 2 t u = i,j ∂ i (a ij ∂ j u) + Lu = i,j ∂ i T a ij ∂ j u + Lu, where Lu = Lu + i,j ∂ i (a ij -T a ij )∂ j u . Let
∂ 2 t u ν = i,j ∂ i T a ij ∂ j u ν + i,j ∂ i ∆ ν , T a ij ∂ j u + ( Lu) ν ,
where u ν = ∆ ν u, ( Lu) ν = ∆ ν ( Lu) and ∆ ν , T a ij is the commutator between ∆ ν and the paramultiplication by a ij . Now, following again the original idea of Tarama in [START_REF] Tarama | Energy estimate for wave equations with coecients in some Besov type class. iletronF tF hi'erentil iqutions[END_REF], but replacing product with symbols by action of paradierential operators, we set

v ν (t, x) := T α -1/2 ∂ t u ν -T ∂t(α -1/2 ) u ν w ν (t, x) := T α 1/2 (γ 2 +|ξ| 2 ) 1/2 u ν z ν (t, x) := u ν .
These functions are relevant in our analysis, because on the one hand they are strictly related to the Sobolev norms of ∂ t u and u (see also inequalities (3.25) and (3.26) below), and on the other hand the presence of the weights (depending on α) will produce fundamental cancellations in our computations. Now we can dene the approximate energy associated to the ν-th component of u (as already done in [START_REF] Colombini | A note on hyperbolic operators with log-Zygmund coecients[END_REF]):

(3.23) e ν (t) := v ν (t) 2 L 2 + w ν (t) 2 L 2 + z ν (t) 2 L 2 .
Remark 3.15. Let us note that, thanks to hypothesis (3.8) and our choice of the frequence µ from which dening the paraproduct, we have that w ν (t

) 2 L 2 ∼ ∇u ν 2 L 2 ∼ 2 2ν u ν 2 L 2 .
Now, we x a θ ∈ ]0, 1[ , as required in hypothesis, and we take a β > 0 to be chosen later; we can dene the total energy associated to the solution u to be the quantity

(3.24) E(t) := ν≥0 e -2β(ν+1)t 2 -2νθ e ν (t) .
It's not dicult to prove (see also inequality (3.28) below) that there exist constants C θ and C θ , depending only on the xed θ, for which one has:

(E(0)) 1/2 ≤ C θ ( ∂ t u(0) H -θ + u(0) H -θ+1 ) (3.25) (E(t)) 1/2 ≥ C θ ( ∂ t u(t) H -θ-β * t + u(t) H -θ+1-β * t ) , (3.26)
where we have set β * = β (log 2) -1 .

Time derivative of the approximate energy

We want to nd an estimate on time derivative of the energy in order to get a control on it by Gronwall's lemma. Let us start analysing each term of (3.23).

z ν term

For the third term we have:

(3.27) d dt z ν (t) 2 L 2 = 2 Re (u ν , ∂ t u ν ) L 2 .
Now, we have to control the term ∂ t u ν : using positivity of operator T α -1/2 , we have

(3.28) ∂ t u ν L 2 ≤ C T α -1/2 ∂ t u ν L 2 ≤ C v ν L 2 + T ∂t(α -1/2 ) u ν L 2 ≤ C (e ν ) 1/2 .
So, we get the estimate:

(3.29) d dt z ν (t) 2 L 2 ≤ C e ν (t) . v ν term Straightforward computations show that ∂ t v ν (t, x) = T α -1/2 ∂ 2 t u ν -T ∂ 2 t (α -1/2 ) u ν .
Therefore, putting relation (3.22) in the previous one, we easily get:

d dt v ν (t) 2 L 2 = -2 Re v ν , T ∂ 2 t (α -1/2 ) u ν L 2 + (3.30) + 2 i,j Re v ν , T α -1/2 ∂ i T a ij ∂ j u ν L 2 + + 2 i,j Re v ν , T α -1/2 ∂ i ∆ ν , T a ij ∂ j u L 2 + +2 Re v ν , T α -1/2 Lu ν L 2
.

Obviously, we have

(3.31) 2 Re v ν , T α -1/2 Lu ν L 2 ≤ C (e ν ) 1/2 Lu ν L 2
, while from lemma 3.10 we immediately get

2 Re v ν , T ∂ 2 t (α -1/2 ) u ν L 2 ≤ C v ν L 2 log 1 + γ + 1 ε 1 ε u ν L 2 (3.32) ≤ C (ν + 1) e ν ,
where we have used the fact that ε = 2 -ν . The other two terms of (3.30) will be treated later.

w ν term

We now derive w ν with respect to the time variable: thanks to a broad use of symbolic calculus, we get the following sequence of equalities:

d dt w ν 2 L 2 = 2Re T ∂t(α 1/2 )(γ 2 +|ξ| 2 ) 1/2 u ν , w ν L 2 + 2Re T α 1/2 (γ 2 +|ξ| 2 ) 1/2 ∂ t u ν , w ν L 2 (3.33) = 2 Re T α(γ 2 +|ξ| 2 ) 1/2 T -∂t(α -1/2 ) u ν , w ν L 2 + 2 Re (R 1 u ν , w ν ) L 2 + + 2 Re T α(γ 2 +|ξ| 2 ) 1/2 T α -1/2 ∂ t u ν , w ν L 2 + 2 Re (R 2 ∂ t u ν , w ν ) L 2 = 2 Re v ν , T α(γ 2 +|ξ| 2 ) 1/2 w ν L 2 + 2 Re (v ν , R 3 w ν ) L 2 + + 2 Re (R 1 u ν , w ν ) L 2 + 2 Re (R 2 ∂ t u ν , w ν ) L 2 = 2 Re v ν , T α -1/2 T α 3/2 (γ 2 +|ξ| 2 ) 1/2 w ν L 2 + 2 Re (v ν , R 4 w ν ) L 2 + + 2 Re (v ν , R 3 w ν ) L 2 + 2 Re (R 1 u ν , w ν ) L 2 + 2 Re (R 2 ∂ t u ν , w ν ) L 2 = 2 Re v ν , T α -1/2 T α 2 (γ 2 +|ξ| 2 ) u ν L 2 + + 2 Re (v ν , T α -1/2 R 5 u ν ) L 2 + 2 Re (v ν , R 4 w ν ) L 2 + + 2 Re (v ν , R 3 w ν ) L 2 + 2 Re (R 1 u ν , w ν ) L 2 + 2 Re (R 2 ∂ t u ν , w ν ) L 2 .
The important fact is that remainder terms are not bad and can be controlled in terms of approximate energy. As a matter of facts, taking advantage of proposition 3.11 and lemma 3.10, we get the following estimates.

• R 1 has principal symbol equal to ∂ ξ α(γ

2 + |ξ| 2 ) 1/2 ∂ x ∂ t (α -1/2 ), so |2 Re (R 1 u ν , w ν ) L 2 | ≤ C (ν + 1) e ν . (3.34) • The principal symbol of R 2 is instead ∂ ξ α(γ 2 + |ξ| 2 ) 1/2 ∂ x (α -1/2
), so, remembering also the control on ∂ t u ν L 2 , we have:

(3.35) |2 Re (R 2 ∂ t u ν , w ν ) L 2 | ≤ C ν (e ν ) 1/2 w ν L 2 ≤ C (ν + 1) e ν .
• Symbolic calculus tells us that the principal part of R 3 is given by ∂

ξ ∂ x α(γ 2 + |ξ| 2 ) 1/2 , therefore (3.36) |2 Re (v ν , R 3 w ν ) L 2 | ≤ C v ν L 2 ν w ν L 2 ≤ C (ν + 1) e ν . • Now, R 4 has ∂ ξ α -1/2 ∂ x α 3/2 (γ 2 + |ξ| 2 ) 1/2 as principal symbol, so (3.37) |2 Re (v ν , R 4 w ν ) L 2 | ≤ C v ν L 2 ν w ν L 2 ≤ C (ν + 1) e ν .
• Finally, R 5 is given, at the higher order, by the product of symbols ∂ ξ α 3/2 (γ 2 + |ξ| 2 ) 1/2 and ∂ x α 1/2 (γ 2 + |ξ| 2 ) 1/2 , and so we get

(3.38) 2 Re (v ν , T α -1/2 R 5 u ν ) L 2 ≤ C v ν L 2 2 ν ν u ν L 2 ≤ C (ν + 1) e ν .
Principal part of the operator L Now, thanks to previous computations, it's natural to pair up the second term of (3.30) with the rst one of the last equality of (3.33). As α is a symbol of order 0, we have

2 Re   v ν , T α -1/2 i,j ∂ i T a ij ∂ j u ν   L 2 + 2 Re v ν , T α -1/2 T α 2 (γ 2 +|ξ| 2 ) u ν L 2 ≤ C v ν L 2 ζ ν L 2 ,
where we have set (3.39)

ζ ν := T α 2 (γ 2 +|ξ| 2 ) u ν + i,j ∂ i T a ij ∂ j u ν = ij T a ij,ε ξ i ξ j +γ 2 u ν + ∂ i T a ij ∂ j u ν .
We remark that

∂ i T a ij ∂ j u ν = T ∂ i a ij ∂ j u ν -T a ij ξ i ξ j u ν ,
where, with a little abuse of notations, we have written the derivative ∂ i a ij meaning that we are taking the derivative of the classical symbol associated to a ij .

First of all, we have that

T ∂ i a ij ∂ j u ν L 2 ≤ S µ ∂ i a ij L ∞ S µ ∂ j u ν L 2 + k≥µ+1 ∇S k-1 a ij L ∞ ∆ k ∇u ν L 2 (3.40) ≤ C (µ + 1) sup i,j a ij LLx ∇u ν L 2 + + k≥µ+1 , k∼ν (k + 1) sup i,j a ij LLx ∇∆ k u ν L 2 ≤ C µ (ν + 1) sup i,j a ij LLx (e ν ) 1/2 ,
where µ is the parameter xed in (1.8) and we have also used (3.15). Next, we have to control the term

T a ij,ε ξ i ξ j +γ 2 u ν -T a ij ξ i ξ j u ν = T (a ij,ε -a ij )ξ i ξ j u ν + T γ 2 u ν .
It's easy to see that

T (a ij,ε -a ij )ξ i ξ j u ν L 2 ≤ C ε log 1 + 1 ε 2 ν ∇u ν L 2 ,
and so, keeping in mind that ε = 2 -ν , (3.41)

T (a ij,ε -a ij )ξ i ξ j +γ 2 u ν L 2 ≤ C γ (ν + 1) (e ν ) 1/2 .
Therefore, from (3.40) and (3.41) we nally get

(3.42) 2Re   v ν , T α -1/2 i,j ∂ i T a ij ∂ j u ν   L 2 + 2Re v ν , T α -1/2 T α 2 (γ 2 +|ξ| 2 ) u ν L 2 ≤ C(ν + 1)e ν ,
where the constant C depends on the log-Lipschitz norm of coecients a ij of the operator L and on the xed parameters µ and γ. 

+ 2 i,j Re v ν , T α -1/2 ∂ i ∆ ν , T a ij ∂ j u L 2 .

Commutator term

We want to estimate the quantity

i,j Re v ν , T α -1/2 ∂ i ∆ ν , T a ij ∂ j u L 2 .
We start by remarking that

[∆ ν , T a ij ]w = [∆ ν , S µ a]S µ w + +∞ k=µ+1 [∆ ν , S k-1 a ij ] ∆ k w,
where µ is xed, as usual. In fact ∆ ν and ∆ k commute so that

∆ ν (S µ a ij S µ w) -S µ a ij (S µ ∆ ν w) = ∆ ν (S µ a ij S µ w) -S µ a ij ∆ ν (S µ w),
and similarly

∆ ν (S k-1 a ij ∆ k w) -S k-1 a ij ∆ k (∆ ν w) = ∆ ν (S k-1 a ij ∆ k w) -S k-1 a ij ∆ ν (∆ k w).
Consequently, taking into account also that S k and ∆ k commute with ∂ j , we have

∂ i [∆ ν , T a ij ] ∂ j u = ∂ i ([∆ ν , S µ a ij ] ∂ j (S µ u)) + ∂ i   +∞ k=µ+1 [∆ ν , S k-1 a ij ] ∂ j (∆ k u)   .
Let's consider rst the term

∂ i ([∆ ν , S µ a ij ] ∂ j (S µ u)) .
Looking at the support of the Fourier transform of [∆ ν , S µ a ij ] ∂ j (S µ u), we have that it is contained in {|ξ| ≤ 2 µ+2 } and moreover [∆ ν , S µ a ij ] ∂ j (S µ u) is identically 0 if ν ≥ µ + 3. From Bernstein's inequality and theorem 35 of [START_REF] Coifman | eu delà des opérteurs pseudoEdi'érentiels, volume 57 of estérisque[END_REF] we have that

∂ i ([∆ ν , S µ a ij ] ∂ j (S µ u)) L 2 ≤ C µ sup i,j a ij LLx S µ u L 2 ,
hence, putting all these facts together, we have

+∞ ν=0 e -2β(ν+1)t 2 -2νθ ij 2 Re v ν , T α -1/2 ∂ i ([∆ ν , S µ a ij ]∂ j (S µ u) ) L 2 ≤ (3.44) ≤ C µ sup i,j a ij LLx µ+2 ν=0 e -2β(ν+1)t 2 -2νθ v ν L 2 µ h=0 u h L 2 ≤ C µ sup i,j a ij LLx e β(µ+3)T 2 (µ+2)θ µ+2 ν=0 e -β(ν+1)t 2 -νθ v ν L 2 • • µ+2 h=0 e -β(h+1)t 2 -hθ u h L 2 ≤ C µ sup i,j a ij LLx e β(µ+3)T 2 (µ+2)θ µ+2 ν=0
e -2β(ν+1)t 2 -2νθ e ν (t) .

Next, let's consider

∂ i   +∞ k=µ+1 [∆ ν , S k-1 a ij ] ∂ j (∆ k u)   .
Looking at the support of the Fourier transform, it is possible to see that

[∆ ν , S k-1 a ij ] ∂ j (∆ k u)
is identically 0 if |k -ν| ≥ 3. Consequently the sum over k is reduced to at most 5 terms:

∂ i ([∆ ν , S ν-3 a ij ] ∂ j (∆ ν-2 u)) + • • • + ∂ i ([∆ ν , S ν+1 a ij ] ∂ j (∆ ν+2 u))
, each of them having the support of the Fourier transform contained in {|ξ| ≤ 2 ν+1 }. Let's consider one of these terms, e.g.

∂ i ([∆ ν , S ν-1 a ij ] ∂ j (∆ ν u))
, the computation for the other ones being similar. We have, from

Bernstein's inequality,

∂ i ([∆ ν , S ν-1 a ij ] ∂ j (∆ ν u)) L 2 ≤ C 2 ν [∆ ν , S ν-1 a ij ] ∂ j (∆ ν u) L 2 .
On the other hand, using theorem 35 of [START_REF] Coifman | eu delà des opérteurs pseudoEdi'érentiels, volume 57 of estérisque[END_REF] again, we have:

[∆ ν , S ν-1 a ij ]∂ j (∆ ν u) L 2 ≤ C ∇S ν-1 a ij L ∞ ∆ ν u L 2 ,
where C does not depend on ν. Consequently, using also (3.15), we deduce

∂ i ([∆ ν , S ν-1 a ij ] ∂ j (∆ ν u)) L 2 ≤ C 2 ν (ν + 1) sup i,j a ij LLx ∆ ν u L 2 .
From this last inequality and similar ones for the other terms, it is easy to obtain that i,j

Re

  v ν , T α -1/2 ∂ i   +∞ k=µ+1 [∆ ν , S k-1 a ij ] ∂ j (∆ k u)     L 2 ≤ C sup i,j a ij LLx (ν + 1) e ν (t)
and then

+∞ ν=0 e -2β(ν+1)t 2 -2νθ ij 2 Re   v ν , T α -1/2 ∂ i   +∞ k=µ+1 [∆ ν , S k-1 a ij ] ∂ j (∆ k u)     L 2 ≤ (3.45) ≤ C sup i,j a ij LLx +∞ ν=0
(ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) .

Collecting the informations from (3.44) and (3.45), we obtain

+∞ ν=0 e -2β(ν+1)t 2 -2νθ ij 2 Re v ν , T α -1/2 ∂ i ∆ ν , T a ij ∂ j u L 2 ≤ (3.46) ≤ C 3 +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) ,
where C 3 depends on µ, sup i,j a ij LLx , on θ and on the product β T .

Final estimate

From (3.43) and (3.46) we get

d dt E(t) ≤ (C 1 + C 3 -2β) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) + + C 2 +∞ ν=0 e -2β(ν+1)t 2 -2νθ (e ν (t)) 1/2 Lu(t) ν L 2 ≤ (C 1 + C 3 -2β) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) + + C 2 +∞ ν=0 e -2β(ν+1)t 2 -2νθ (e ν (t)) 1/2   i,j ∂ i (a ij -T a ij )∂ j u   ν L 2 + + C 2 +∞ ν=0 e -2β(ν+1)t 2 -2νθ (e ν (t)) 1/2 (Lu(t)) ν L 2 .
Now, applying Hölder inequality for series implies

+∞ ν=0 e -2β(ν+1)t 2 -2νθ (e ν (t)) 1/2   i,j ∂ i (a ij -T a ij )∂ j u   ν L 2 ≤ ≤ +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) 1/2 • •   +∞ ν=0 e -2β(ν+1)t 2 -2νθ (ν + 1) -1   i,j ∂ i (a ij -T a ij )∂ j u   ν 2 L 2   1/2
, and, by denition, one has

  +∞ ν=0 e -2β(ν+1)t 2 -2νθ (ν + 1) -1   i,j ∂ i (a ij -T a ij )∂ j u   ν 2 L 2   1/2 = = i,j ∂ i (a ij -T a ij )∂ j u H -θ-β * t-1 2 log
.

From proposition 3.4 of [START_REF] Colombini | The Cauchy problem for wave equations with non Lipschitz coecients; application to continuation of solutions of some nonlinear wave equations[END_REF] we have that

(3.47) i,j ∂ i (a ij -T a ij )∂ j u H -s-1 2 log ≤ C sup i,j a ij LLx u H 1-s+ 1 2 log , with C uniformly bounded for s in a compact set of ]0, 1[ . Consequently,   +∞ ν=0 e -2β(ν+1)t 2 -2νθ (ν + 1) -1   i,j ∂ i (a ij -T a ij )∂ j u   ν 2 L 2   1/2 ≤ ≤ C sup i,j a ij LLx u H 1-θ-β * t+ 1 2 log ≤ C +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) 1/2
, and nally

+∞ ν=0 e -2β(ν+1)t 2 -2νθ (e ν (t)) 1/2   i,j ∂ i (a ij -T a ij )∂ j u   ν L 2 ≤ ≤ C 4 +∞ ν=0 (ν + 1)e -2β(ν+1)t 2 -2νθ e ν (t) ,
with C 4 uniformly bounded for β * t + θ in a compact set of ]0, 1[ . So, if we take β > 0 and T ∈ ]0, T 0 ] such that (recall that β * = β(log 2) -1 ) (3.48)

β * T = δ < 1 -θ , we have 0 < θ ≤ θ + β * t ≤ θ + δ < 1. Therefore we obtain d dt E(t) ≤ (C 1 + C 4 C 2 + C 3 -2β) +∞ ν=0 (ν + 1) e -2β(ν+1)t 2 -2νθ e ν (t) + + C 2 +∞ ν=0 e -2β(ν+1)t 2 -2νθ (e ν (t)) 1/2 (Lu(t)) ν L 2 .
Now, taking β large enough such that C 1 + C 4 C 2 + C 3 -2β ≤ 0, which corresponds to take T > 0 small enough, we nally arrive to the estimate The well-posedness issue in endpoint Besov spaces

d dt E(t) ≤ C 2 (E(t))
In the recent paper [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], Danchin proved well-posedness for the density-dependent incompressible

Euler system in Besov spaces B s p,r embedded in the set of globally Lipschitz continuous functions, for all p ∈ ]1, +∞[ . In this chapter we will focus on the limit case B s ∞,r for which condition (1.1) still holds. This functional framework contains also the particular cases of Hölder spaces C 1,α and of the endpoint Besov space B 1 ∞,1 . In this setting and under non-vacuum assumption, we will establish the local well-posedness and a continuation criterion in the spirit of that of Beale, Kato and Majda (see also [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]). Moreover, in the last part of the chapter we will give lower bounds for the lifespan of a solution, pointing out that, in dimension two, it tends to innity when the initial density tends to be a constant.

Introduction and main results

This chapter is, in a certain sense, the continuation of the recent paper [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF] by Danchin, devoted to the densityEdependent inompressile iuler equtions:

(4.1)      ∂ t ρ + u • ∇ρ = 0 ρ (∂ t u + u • ∇u) + ∇Π = ρ f div u = 0 .
Recall that the above equations describe the evolution of the density ρ = ρ(t, x) ∈ R + and of the velocity eld u = u(t, x) ∈ R N of a non-homogeneous inviscid incompressible uid. The time dependent vector-eld f stands for a given body force and the gradient of the pressure ∇Π is the Lagrangian multiplier associated to the divergence free constraint over the velocity. We assume that the space variable x belongs to the whole R N with N ≥ 2.

There is an important literature devoted to the standard incompressible Euler equations, that is to the case where the initial density is a positive constant, an assumption which is preserved during the evolution. In contrast, not so many works have been devoted to the study of (4.1) in the nonconstant density case. In the situation where the equations are considered in a suitably smooth bounded domain of R 2 or R 3 , the local well-posedness issue has been investigated by H.

Beirão da Veiga and A. Valli in [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF], [START_REF] Beirão | On the Euler equations for nonhomogeneous uids[END_REF], [START_REF] Beirão | Existence of C ∞ solutions of the Euler equations for nonhomogeneous uids[END_REF] for data with high enough Hölder regularity. In [START_REF] Danchin | The inviscid limit for density-dependent incompressible uids[END_REF] Danchin proved well-posedness in H s with s > 1 + N/2 and studied the inviscid limit in this framework. Data in the limit Besov space B N 2 +1 2,1 were also considered. As for the standard incompressible Euler equations, any functional space embedded in the set C 0,1 of bounded globally Lipschitz functions is a candidate for the study of the well-posedness issue. This stems from the fact that system (4.1) is a coupling between transport equations. Hence preserving the initial regularity requires the velocity eld to be at least locally Lipschitz with respect to the space variable. As a matter of fact, the classical Euler equations have been shown to be well posed in any Besov space B s p,r embedded in C 0,1 (see [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF], [START_REF] Chemin | Fluides parfaits incompressibles[END_REF], [START_REF] Chul | Existence of solution for the Euler equations in a critical Besov space B 1 ∞,1 (R n ). gommF rtil hi[END_REF], [START_REF] Zhou | Local well-posedness for the incompressible Euler equations in the critical Besov spaces[END_REF] and the references therein), a property which holds if and only if indices s ∈ R and (p, r) ∈ [1, +∞] 2 satisfy condition (1.1), which we recall here:

s > 1 + N p or s = 1 + N p and r = 1 .
In [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], Danchin extended the results of the homogeneous case to (4.1) (see also [START_REF] Fan | On the density dependent incompressible Euler equations in the critical Besov spaces[END_REF] for a similar study in the periodic framework). Under condition (1.1) with 1 < p < +∞ he established the local well-posedness for any data (ρ 0 , u 0 ) in B s p,r such that ρ 0 is bounded away from zero. However, he didn't treat the limit case p = +∞ unless supposing the initil density to e smll perturtion of onstnt density stte, a technical artifact due to the method he used to handle the pressure term.

In fact, in contrast to the classical Euler equations, computing the gradient of the pressure involves an elliptic equation with nononstnt oe0ients, namely Getting appropriate a priori estimates given tht we expet the funtion ρ to hve extly the sme regulrity s ∇Π is the main diculty. In the L 2 framework and, more generally, in the Sobolev framework H s , this may be achieved by means of a classical energy method. This is also quite straightforward in the B s p,r framework if a is a small perturbation of some positive constant function a, as the above equation may be rewritten a ∆Π = div F + div ( (a -a)∇Π ) . Now, if a -a is small enough, then one may take advantage of regularity results for the Laplace operator in order to absorb the last term.

If 1 < p < +∞ and a is bounded away from zero, then it turns out that combining energy arguments similar to those of the H s case and a harmonic analysis lemma allows to handle the elliptic equation (4.2). This is the approach Danchin used in [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], but it fails for the limit cases p = 1 and p = +∞.

In this chapter, we propose another method for proving a priori estimates for (4.2). In addition to being simpler, this will enable us to treat all the cases p ∈ [1, +∞] indistinctly whenever the density is bounded away from zero. Our approach relies on the fact that the pressure Π satises (here we take f ≡ 0 to simplify)

(4.3) ∆Π = -ρ div (u • ∇u) + ∇ (log ρ) • ∇Π .
Obviously, the last term is of lower order. In addition, the classical L 2 theory ensures that, if there exists some positive constant m such that a(t, x) ≥ m for all (t, x)

∈ [0, T ] × R N , then m ∇Π(t, •) L 2 (R N ) ≤ (u • ∇u)(t, •) L 2 (R N )
for all t ∈ [0, T ] .

Therefore interpolating between the high regularity estimates for the Laplace operator and the L 2 estimate allows to absorb the last term in the right-hand side of (4.3).

In the rest of the chapter, we focus on the case p = +∞ as it is the only denitely new one and as it covers both Hölder spaces with exponent greater than 1 and the limit space B 1 ∞,1 , which is the largest one in which one may expect to get well-posedness.

Before going further into the description of our results, let us introduce a few notation.

• Throughout the chapter, C stands for a harmless constant the meaning of which depends on the context.

• If a = (a 1 , a 2 ) and b = (b 1 , b 2 ), then we denote a ∧ b := a 1 b 2 -a 2 b 1 .
• The vorticity Ω associated to a vector-eld u over R N is the matrix valued function with entries

Ω ij := ∂ j u i -∂ i u j .
If N = 2 then the vorticity may be identied with the scalar function ω := ∂ 1 u 2 -∂ 2 u 1 and if N = 3 with the vector eld ∇ × u.

• For all Banach space X and interval I of R, we denote by C(I; X) (resp. C b (I; X)) the set of continuous (resp. continuous bounded) functions on I with values in X. If X has predual X * , then we denote by C w (I; X) the set of bounded measurable functions f : I → X such that for any φ ∈ X * , the function t → f (t), φ X×X * is continuous over I.

• For p ∈ [1, +∞], the notation L p (I; X) stands for the set of measurable functions on I with values in X such that t → f (t) X belongs to L p (I). In the case I = [0, T ] we alternately use the notation L p T (X). • We denote by L p loc (I; X) the set of those functions dened on I and valued in X which, restricted to any compact subset J of I, are in L p (J; X).

• Finally, for any real valued function a over R N , we denote Let us now state our main well-posedness result in the case of a nite energy initial velocity eld.

a * := inf x∈R N a(x)
Theorem 4.1. vet r e in [1, +∞] 

nd s ∈ R stisfy s > 1 if r = 1 nd s ≥ 1 if r = 1F
vet ρ 0 e positive funtion in B s ∞,r ounded wy from 0D nd u 0 e divergeneEfree vetor (eld with oe0ients in B s ∞,r ∩ L 2 F pinllyD suppose tht the externl fore f hs oe0ients in

L 1 ([-T 0 , T 0 ]; B s ∞,r ) ∩ C([-T 0 , T 0 ]; L 2 )
for some positive time T 0 F hen there exists time T ∈ ]0, T 0 ] suh tht system (4.1) with initil dt (ρ 0 , u 0 ) hs unique solution

(ρ, u, ∇Π) on [-T, T ] × R N D withX • ρ in C([-T, T ]; B s ∞,r ) nd ounded wy from 0D • u in C([-T, T ]; B s ∞,r ) ∩ C 1 ([-T, T ]; L 2 ) nd • ∇Π in L 1 ([-T, T ]; B s ∞,r ) ∩ C([-T, T ]; L 2 )F sf r = +∞
then one hs only wek ontinuity in time with vlues in the fesov spe B s ∞,∞ F

In the above functional framework, one may state a continuation criterion for the solution to (4.1) similar to that of theorem 2 of [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF]. Theorem 4.2. vet (ρ, u, ∇Π) e solution to system (4.1) on [0, T * [×R N D with the properties desried in theorem RFI for ll T < T * F uppose lso tht we hve (4.4)

T * 0 ∇u L ∞ + ∇Π B s-1 ∞,r dt < +∞ .
sf T * is (niteD then (ρ, u, ∇Π) n e ontinued eyond T * into solution of (4.1) with the sme regulrityF woreoverD if s > 1 then one my reple in (4.4) the term ∇u L ∞ with Ω L ∞ F e similr result holds true lso for negtive timesF

From this result, as our assumption on (r, s) As pointed out in [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], hypothesis u 0 ∈ L 2 is somewhat restrictive in dimension N = 2 as if, say, the initial vorticity ω 0 is in L 1 , then ω 0 is forced to have average 0 over R 2 . In particular, assuming u 0 ∈ L 2 (R 2 ) precludes our considering general data with compactly supported nonnegative initial vorticity (e.g. vortex patches as in [START_REF] Chemin | Fluides parfaits incompressibles[END_REF]; see also next chapter).

implies that B s-1 ∞,r → B 0 ∞,1 → L ∞ ,
The following statement aims at considering initial data with in(nite energy. For simplicity, we suppose the external force to be 0. Theorem 4.4. vet (s, r) e s in theorem RFIF vet ρ 0 ∈ B s ∞,r e ounded wy from 0 nd u 0 ∈ B s ∞,r ∩ W 1,4 F hen there exist positive time T nd unique solution (ρ, u, ∇Π) on [-T, T ] × R N of system (4.1) with externl fore f ≡ 0D stisfying the following propertiesX

• ρ ∈ C([-T, T ]; B s ∞,r ) ounded wy from 0D • u ∈ C([-T, T ]; B s ∞,r ∩ W 1,4 ) nd ∂ t u ∈ C([-T, T ]; L 2 )D • ∇Π ∈ L 1 ([-T, T ]; B s ∞,r ) ∩ C([-T, T ]; L 2 )F
es oveD the ontinuity in time with vlues in B s ∞,r is only wek if r = +∞F Remark 4.5. Under the above hypothesis, a continuation criterion in the spirit of theorem 4.2 may be proved. The details are left to the reader.

Remark 4.6. Let us also point out that in dimension N ≥ 2, any velocity eld with suitably smooth compactly supported vorticity is in W 1,4 . Furthermore, there is some freedom over the W 1,4 assumption (see remark 4.14 below).

On the one hand, the existence results we stated so far are lol in time even in the twodimensional case. On the other hand, it is well known that the classical two-dimensional incompressible Euler equations are globally well-posed, a result that goes back to the pioneering work by V. Wolibner in [START_REF] Wolibner | Un theorème sur l'existence du mouvement plan d'un uide parfait, homogène, incompressible, pendant un temps inniment long[END_REF] (see also [START_REF] Judovi£ | Non-stationary ows of an ideal incompressible uid[END_REF], [START_REF] Hmidi | Existence globale pour le système d'Euler incompressible 2-D dans B 1 ∞,1 . gF F wthF edF iF ris[END_REF], [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] for global results in the case of less regular data). In the homogeneous case, the global existence stems from the fact that the vorticity ω is transported by the ow associated to the solution: we have

∂ t ω + u • ∇ω = 0 .
In the non-homogeneous context, we have instead the following more complicated identity:

(4.5)

∂ t ω + u • ∇ω + ∇ 1 ρ ∧ ∇Π = 0 .
If the classical homogeneous case has been deeply studied, to our knowledge there is no literature about the time of existence of solutions for the density-dependent incompressible Euler system. In the last section of this paper, we establish lower bounds for the lifespan of a solution to (4.1).

We rst show that in any space dimension, if the initial velocity is of order ε (ε small enough), without ny restrition on the nonEhomogeneity, then the lifespan is at least of order ε -1 (see the exact statement in theorem 4.15).

Next, taking advantage of equality (4.5) and of an estimate for the transport equation that has been established recently by M. Vishik in [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] (and generalized by T. Hmidi and S. Keraani in [START_REF] Hmidi | Incompressible viscous ows in borderline Besov spaces[END_REF]), we show that the lifespan of the solution tends to innity if ρ 0 -1 goes to 0. More precisely, theorem 4.16 states that if

ρ 0 -1 B 1 ∞,1 = ε and ω 0 B 0 ∞,1 + u 0 L 2 =
U 0 with ε small enough, then the lifespan is at least of order U -1 0 log(log ε -1 ).

The chapter is organized as follows. In the next section, we introduce the tools (in addition to those presented in chapter 1) needed for proving our results: some classical results about transport equations in the B s p,r framework and about elliptic equations in divergence form with non-constant coecients. Sections 4.3 and 4.4 are devoted to the proof of our local existence statements rst in the nite energy case and next if the initial velocity is in W 1,4 . Finally, in the last section we state and prove results about the lifespan of a solution to our system, focusing on the particular case of space dimension N = 2.

Tools

Our results concerning equations (4.1) rely strongly on a priori estimates in Besov spaces for the transport equation

(T ) ∂ t a + v • ∇a = f a |t=0 = a 0 .
Therefore we shall often use the following result, the proof of which may be found e.g. in chapter 3 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF].

Proposition 4.7.

vet 1 ≤ r ≤ +∞ nd σ > 0 @σ > -1 if div v = 0AF vet a 0 ∈ B σ ∞,r , f ∈ L 1 ([0, T ]; B σ ∞,r ) nd v e time dependent vetor (eld in C b ([0, T ] × R N ) suh tht ∇v ∈ L 1 ([0, T ]; L ∞ ) if σ < 1, ∇v ∈ L 1 ([0, T ]; B σ-1 ∞,r ) if σ > 1, or σ = r = 1. hen eqution (T ) hs unique solution a inX • the spe C([0, T ]; B σ ∞,r ) if r < ∞,
• the spe

σ <σ C([0, T ]; B σ ∞,∞ ) C w ([0, T ]; B σ ∞,∞ ) if r = +∞. woreoverD for ll t ∈ [0, T ], we hve (4.6) e -CV (t) a(t) B σ ∞,r ≤ a 0 B σ ∞,r + t 0 e -CV (τ ) f (τ ) B σ ∞,r dτ with V (t) := ∇v(t) L ∞ if σ < 1, ∇v(t) B σ-1 ∞,r if σ > 1, or σ = r = 1. sf v ≡ a thenD for ll σ > 0 @σ > -1 if div v = 0AD estimte (4.6) holds with V (t) := ∇a(t) L ∞ .
Finally, we shall make an extensive use of energy estimates for the following elliptic equation:

(4.7) -div (a∇Π) = div F in R N ,
where a = a(x) is a measurable bounded function satisfying (4.8)

a * := inf x∈R N a(x) > 0 .
The following result based on Lax-Milgram's theorem (see section 3 of [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF] for the proof), will be of great importance for us. 

a * ∇Π L 2 ≤ F L 2 .

Proof of the main well-posedness result

Obviously, one may extend the force term for any time so that it is not restrictive to assume that T 0 = +∞. Owing to time reversibility of system (4.1), we can consider the problem of evolution for positive times only. For convenience we will assume r < +∞; for treating the case r = +∞, it is enough to replace the strong topology by the weak topology, whenever regularity up to index s is involved.

We will not work on system (4.1) directly, but rather on

(4.10)      ∂ t a + u • ∇a = 0 ∂ t u + u • ∇u + a∇Π = f -div (a∇Π) = div (u • ∇Pu -f ) ,
where we have set a := 1/ρ.

The equivalence between (4.1) and (4.10) is given in the following statement (see again [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], section 4 for its proof). Lemma 4.9. vet u e vetor (eld with oe0ients in

C 1 ([0, T ] × R N ) nd suh tht Qu ∈ C 1 ([0, T ]; L 2 )F uppose lso tht ∇Π ∈ C([0, T ]; L 2 )F pinllyD let ρ e ontinuous funtion on [0, T ] × R N suh tht (4.11) 0 < ρ * ≤ ρ ≤ ρ * , nd de(ne a := 1/ρF sf div u(0, •) ≡ 0 in R N D then (ρ, u, ∇Π) is solution to (4.1) if nd only if (a, u, ∇Π) is solution to (4.10)F
This section unfolds as follows. First, we shall prove a priori estimates for suitably smooth solutions of (4.1) or (4.10). They will be most helpful to get the existence. As a matter of fact, the construction of solutions which will be proposed in the next subsection amounts to solving inductively a sequence of liner equations. The estimates for those approximate solutions turn out to be the same as those for the true solutions. In the last two subsections, we shall concentrate on the proof of the uniqueness part of theorem 4.1 and of the continuation criterion stated in theorem 4.2 (up to the endpoint case s = r = 1 which will be studied in the next section).

A priori estimates

Let (a, u, ∇Π) be a smooth solution of system (4.10) with the properties described in the statement of theorem 4.1. In this subsection, we show that on a suitably small time interval (the length of which depends only on the norms of the data), the norm of (a, u, ∇Π) may be bounded in terms of the data.

Recall that, according to proposition 1.31, the quantities a B s ∞,r and ρ B s ∞,r are equivalent under hypothesis (4.11). This fact will be used repeatedly in what follows.

Estimates for the density and the velocity eld Let us assume for a while that div u = 0. Then (ρ, u, ∇Π) satises system (4.1) and the following energy equality holds true: (4.12)

ρ(t) u(t) 2 L 2 = √ ρ 0 u 0 2 L 2 + 2 t 0 R N ρ f • u dx dτ .
Moreover, from the equation satised by the density, we have that ρ(t, x) = ρ 0 ψ -1 t (x) , where ψ is the ow associated with u; so, ρ satises (4.11). Hence, from relation (4.12), we obtain the control of the L 2 norm of the velocity eld: for all t ∈ [0, T 0 ], we have, for some constant C depending only on ρ * and ρ * ,

(4.13) u(t) L 2 ≤ C u 0 L 2 + t 0 f (τ ) L 2 dτ .
Next, in the general case where div u need not be 0, applying proposition 4.7 yields the following estimates:

a(t) B s ∞,r ≤ a 0 B s ∞,r exp C t 0 u B s ∞,r dτ (4.14) u(t) B s ∞,r ≤ exp C t 0 u B s ∞,r dτ • u 0 B s ∞,r + (4.15) + t 0 e -C τ 0 u B s ∞,r dτ f B s ∞,r + a B s ∞,r ∇Π B s ∞,r dτ ,
where, in the last line, we have used the fact that B s ∞,r , under our hypothesis, is an algebra.

Remark 4.10. Of course, as ρ and a verify the same equations, they satisfy the same estimates.

Estimates for the pressure term

Let us use the low frequency localization operator ∆ -1 to separate ∇Π into low and high frequencies. We get

∇Π B s ∞,r ≤ ∆ -1 ∇Π B s ∞,r + (Id -∆ -1 )∇Π B s ∞,r .
Observe that (Id -∆ -1 )∇Π may be computed from ∆Π by means of a homogeneous multiplier of degree -1 in the sense of proposition 1.14. Hence (4.16)

(Id -∆ -1 )∇Π B s ∞,r ≤ C ∆Π B s-1 ∞,r .
For the low frequencies term, however, the above inequality fails. Now, remembering the denition of • B s ∞,r and the spectral properties of operator ∆ -1 , one has that

∆ -1 ∇Π B s ∞,r ≤ C ∆ -1 ∇Π L ∞ ≤ C ∇Π L 2 ,
where we used also Bernstein's inequality in writing last relation. So putting together (4.16) and the above inequality, we nally obtain (4.17)

∇Π B s ∞,r ≤ C ∇Π L 2 + ∆Π B s-1 ∞,r
.

First of all, let us see how to control ∆Π B s-1

∞,r
. Recall the third equation of (4.10):

div (a ∇Π) = F with F := div (f -u • ∇Pu).
Developing the left-hand side of this equation, we obtain 

∇(log a) • ∇Π B s-1 ∞,r ≤ C ∇a B s-1 ∞,r ∇Π B s-1 ∞,r . Now, as L 2 → B -N 2 ∞,∞ (see proposition 1.6) and B s-1 ∞,r is an intermediate space between B -N 2 ∞,∞ and B s ∞,
∇Π B s-1 ∞,r ≤ C ∇Π θ L 2 ∇Π 1-θ B s ∞,r
for some θ ∈]0, 1[ . 

∇Π B s ∞,r ≤ C 1 + ∇a γ B s-1 ∞,r ∇Π L 2 + F a B s-1 ∞,r
, where the exponent γ depends only on the space dimension N and on s.

In the limit case s = r = 1, the space B 0 ∞,1 is no more an algebra and we have to modify the above argument: we use the Bony decomposition (1.3) to write

∇(log a) • ∇Π = T ∇(log a) ∇Π + T ∇Π ∇(log a) + R(∇(log a), ∇Π) .
To estimate rst and second term, we can apply theorem 1.24 and proposition 1.31: we get

T ∇(log a) ∇Π B 0 ∞,1 ≤ C ∇(log a) L ∞ ∇Π B 0 ∞,1 (4.21) ≤ C ∇a L ∞ ∇Π B 0 ∞,1 , T ∇Π ∇(log a) B 0 ∞,1 ≤ C ∇Π L ∞ ∇(log a) B 0 ∞,1 (4.22) 
≤ C ∇Π L ∞ ∇a B 0 ∞,1 .
A similar inequality is no more true for the remainder term, though. However, one may use that ∇Π is in fact more regular: it belongs to B 1/2 ∞,1 for instance. Hence, using the embedding

B 1/2 ∞,1 → B 0
∞,1 and theorem 1.24, we can write

R(∇(log a), ∇Π) B 0 ∞,1 ≤ C ∇(log a) L ∞ ∇Π B 1/2 ∞,1 , ≤ C ∇a L ∞ ∇Π B 1/2 ∞,1
.

Putting the above inequality together with (4.21) and (4.22), and using that

B 0 ∞,1 → L ∞ , we conclude that ∇(log a) • ∇Π B 0 ∞,1 ≤ C ∇a B 0 ∞,1 ∇Π B 1/2 ∞,1
. Now, using interpolation between Besov spaces, as done for proving (4.19), we get for some

suitable θ ∈]0, 1[, ∇(log a) • ∇Π B 0 ∞,1 ≤ C ∇a B 0 ∞,1 ∇Π 1-θ B 1 ∞,1 ∇Π θ L 2 . Hence ∇Π B 1 ∞,1
still satises Inequality (4.20) for some convenient γ > 0.

Next, let us bound the last term of (4.18). By virtue of Bony's decomposition (1.3), we have

F/a = ρ F = T ρ F + T F ρ + R(ρ, F ) ;
from theorem 1.24 we infer that:

• T ρ F B s-1 ∞,r ≤ C ρ * F B s-1 ∞,r , • T F ρ B s-1 ∞,r ≤ C F B -1 ∞,∞ ρ B s ∞,r ≤ C F B s-1 ∞,r ρ B s ∞,r , • R(ρ, F ) B s-1 ∞,r ≤ R(ρ, F ) B s ∞,r ≤ C ρ B 1 ∞,∞ F B s-1 ∞,r ≤ C ρ B s ∞,r F B s-1 ∞,r
.

Now the problem is to bound the Besov norm of F = div (f -u • ∇u). It is clear that div f B s-1 ∞,r
can be bounded by f B s ∞,r . For the second term of F we have to take advantage, once again, of Bony's decomposition (1.3) as follows:

div (u • ∇Pu) = i,j ∂ i u j ∂ j (Pu) i = i,j T ∂ i u j ∂ j Pu i + T ∂ j Pu i ∂ i u j + ∂ i R(u j , ∂ j Pu i ) ,
where we have used also the fact that div Pu = 0. Now, for all i and j we have:

T ∂ i u j ∂ j Pu i B s-1 ∞,r ≤ C ∇u L ∞ ∇Pu B s-1 ∞,r T ∂ j Pu i ∂ i u j B s-1 ∞,r ≤ C ∇Pu L ∞ ∇u B s-1 ∞,r ∂ i R(u j , ∂ j Pu i ) B s-1 ∞,r ≤ R(u j , ∂ j Pu i ) B s ∞,r ≤ C u B s ∞,r ∇Pu B s-1 ∞,r . Because, by embedding, ∇Pu L ∞ ≤ C ∇Pu B s-1 ∞,r , we have div (u • ∇Pu) B s-1 ∞,r ≤ C u B s ∞,r ∇Pu B s-1 ∞,r .
In order to bound Pu, let us decompose it into low and high frequencies as follows:

Pu = ∆ -1 Pu + (Id -∆ -1 )Pu.
On the one hand, combining Bernstein's inequality and the fact that P is an orthogonal projector over

L 2 yields ∆ -1 ∇Pu L ∞ ≤ C u L 2 .
On the other hand, according to remark 1.15, one may write that

(Id -∆ -1 )Pu B s ∞,r ≤ C u B s ∞,r .
Therefore we get (4.23)

∇Pu B s-1 ∞,r ≤ C u B s ∞,r ∩L 2 ,
from which it follows that (4.24)

F a B s-1 ∞,r ≤ C a B s ∞,r f B s ∞,r + u 2 B s ∞,r ∩L 2 .
It remains us to control ∇Π L 2 . Keeping in mind lemma 4.8, from the third equation of system (4.10) and inequality (4.23), we immediately get

a * ∇Π L 2 ≤ f L 2 + u • ∇Pu L 2 ≤ f L 2 + u L 2 ∇Pu L ∞ ≤ f L 2 + C u 2 B s ∞,r ∩L 2 .
Putting all these inequalities together, we nally obtain

∇Π L 1 t (L 2 ) ≤ C f L 1 t (L 2 ) + t 0 u 2 B s ∞,r ∩L 2 dτ (4.25) ∇Π L 1 t (B s ∞,r ) ≤ C 1 + ∇a γ L ∞ t (B s-1 ∞,r ) ∇Π L 1 t (L 2 ) + (4.26) + a L ∞ t (B s ∞,r ) f L 1 t (B s ∞,r ) + t 0 u 2 B s ∞,r ∩L 2 dτ .

Final estimate

First of all, let us x T > 0 so small as to satisfy

(4.27) exp C T 0 u B s ∞,r dt ≤ 2 ,
which is always possible because of the boundedness of u with respect to the time variable.

Then, setting

U (t) := u(t) L 2 ∩B s ∞,r = u(t) L 2 + u(t) B s ∞,r U 0 (t) := u 0 L 2 ∩B s ∞,r + t 0 f L 2 ∩B s ∞,r dτ
and combining estimates (4.13), (

U (t) ≤ C U 0 (t) + t 0 U 2 (τ ) dτ for all t ∈ [0, T ], 4.14), (4.15), (4.25) and (4.26), we get (4.28) 
where the constant C depends only on s, N, a 0 B s ∞,r , a * and a * . So, taking T small enough and changing once more the multiplying constant C if needed, a standard bootstrap argument allows to show that

U (t) ≤ C U 0 (t)
for all t ∈ [0, T ] .

Existence of a solution to density-dependent Euler system

We proceed in two steps: rst we construct inductively a sequence of smooth global approximate solutions, dened as solutions of linear equations, and then we prove the convergence of this sequence to a solution of the nonlinear system (4.10) with the required properties. Recall that to simplify the presentation we have assumed T 0 = +∞ and that we focus on the evolution for positive times only.

Construction of the sequence of approximate solutions

First, we smooth out the data (by convolution for instance) so as to get a sequence (a n 0 , u n

0 , f n ) n∈N such that u n 0 ∈ H ∞ , f n ∈ C(R + ; H ∞ ), a n
0 and its derivatives at any order are bounded and

(4.29) a * ≤ a n 0 ≤ a * , with in addition • a n 0 → a 0 in B s ∞,r , • u n 0 → u 0 in L 2 ∩ B s ∞,r , • f n → f in C(R + ; L 2 ) ∩ L 1 (R + ; B s ∞,r ).
In order to construct a sequence of smooth approximate solutions, we argue by induction. We rst set a 0 = a 0 0 , u 0 = u 0 0 and ∇Π 0 = 0. Now, suppose we have already built a smooth approximate solution (a n , u n , ∇Π n ) over R + ×R N with a n satisfying (4.11). In order to construct the (n + 1)-th term of the sequence, we rst dene a n+1 to be the solution of the linear transport equation

∂ t a n+1 + u n • ∇a n+1 = 0 with initial datum a n+1 | t=0 = a n+1 0 .
Given that u n is Lipschitz continuous in the space varaible (in fact, it belongs to B s ∞,r by a priori estimates), its ow ψ n is smooth too. In particular, ψ n t is, at every xed time t, a C 1 dieomorphism on the whole R N (see also proposition 3.10 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF]). Hence a n+1 (t, x) = a n+1 0 (ψ n t ) -1 (x)

is smooth and satises (4.11). Furthermore, by virtue of proposition 4.7, (4.30)

a n+1 (t) B s ∞,r ≤ a n+1 0 B s ∞,r exp C t 0 u n B s ∞,r dτ .
Note that the reciprocal function ρ n+1 of a n+1 satises ρ n+1 (t, x) = ρ n+1 0 (ψ n t ) -1 (x) , together with (4.11) and the equation (4.31)

∂ t ρ n+1 + u n • ∇ρ n+1 = 0 .
Hence it also fullls inequality (4.30) up to a change of a n+1 0 in ρ n+1 0 .

At this point, we dene u n+1 as the unique smooth solution of the linear transport equation

∂ t u n+1 + u n • ∇u n+1 = f n+1 -a n+1 ∇Π n u n+1 | t=0 = u n+1 0 .
Since the right-hand side belongs to L 1 loc (R + ; L 2 ), from classical results for transport equation we get that u n+1 ∈ C(R + ; L 2 ). Besides, as ρ n = (a n ) -1 for all n, if we dierentiate

ρ n+1 u n+1 2 L 2
with respect to time and use the equations for ρ n+1 and u n+1 , we obtain

1 2 d dt ρ n+1 u n+1 2 L 2 = 1 2 ρ n+1 |u n+1 | 2 div u n dx + ρ n+1 u n+1 • f n+1 dx - ∇Π n • u n+1 dx.
Observe that u n and u n+1 need not to be divergence free; nevertheless, applying Gronwall's lemma, it is easy to see that

ρ n+1 (t)u n+1 (t) L 2 ≤ ρ n+1 0 u n+1 0 L 2 + C t 0 f n+1 L 2 + ∇Π n L 2 dτ × (4.32) × exp 1 2 t 0 div u n L ∞ dτ .
Finally, we have to dene the approximate pressure Π n+1 . We have already proved that a n+1 satises the ellipticity condition (4.11); so we can consider the elliptic equation

div a n+1 ∇Π n+1 = div f n+1 -u n+1 • ∇Pu n+1 .
As f n+1 and u n+1 are in C(R + ; H ∞ ), the classical theory for elliptic equations ensures that the above equation has a unique solution ∇Π n+1 in C(R + ; H ∞ ). In addition, going along the lines of the proof of (4.25), we get (4.33)

∇Π n+1 L 1 t (L 2 ) ≤ C f n+1 L 1 t (L 2 ) + t 0 u n+1 2 B s ∞,r ∩L 2 dτ .
Of course, by embedding, we have ∇Π n+1 ∈ C(R + ; B s ∞,r ). Hence, arguing as for proving (4.26), we gather

∇Π n+1 L 1 t (B s ∞,r ) ≤ C a n+1 L ∞ t (B s ∞,r ) f n+1 L 1 t (B s ∞,r ) + t 0 u n+1 2 B s ∞,r ∩L 2 dτ + (4.34) + C 1 + ∇a n+1 γ L ∞ t (B s-1 ∞,r ) ∇Π n+1 L 1 t (L 2 ) .
Note also that the norms of the approximate data that we use in (4.30), (4.32), (4.33) and (4.34) may be bounded independently of n. Therefore, repeating the arguments leading to (4.28) and to theorem 1 of [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], one may nd some positive time T , which may depend on ρ 0 B s

∞,r , u 0 B s ∞,r ∩L 2 and f L 1 ([0,T ];B s ∞,r ∩L 2 ) but is independent of n, such that • (a n ) n∈N is bounded in L ∞ ([0, T ]; B s ∞,r ), • (u n ) n∈N is bounded in L ∞ ([0, T ]; B s ∞,r ∩ L 2 ), • (∇Π n ) n∈N is bounded in L 1 ([0, T ]; B s ∞,r ) ∩ L ∞ ([0, T ]; L 2 ).

Convergence of the sequence

Let us observe that the function a n : = a n -a n 0 satises

∂ t a n = -u n-1 • ∇a n a n | t=0 = 0 . Because u n-1 ∈ C([0, T ]; L 2 ) and ∇a n ∈ C b ([0, T ] × R N ), it immediately follows that a n ∈ C 1 ([0, T ]; L 2
). Now we want to prove that the sequence ( a n , u n , ∇Π n ) n∈N , built in this way, is a Cauchy sequence in C([0, T ]; L 2 ). So let us dene for n ∈ N and p ∈ N * ,

δa n p := a n+p -a n , δ a n p := a n+p -a n = δa n p -δa n p (0) , δρ n p := ρ n+p -ρ n , δu n p := u n+p -u n , δΠ n p := Π n+p -Π n , δf n p := f n+p -f n .
Let us emphasize that, by assumption and embedding, we have

(4.35) a n 0 → a 0 in C 0,1 , u n 0 → u 0 in L 2 , f n → f in C([0, T ]; L 2 ).
This will be the key to our proof of convergence.

Let us rst focus on a n . By construction, δ a n p belongs to C 1 ([0, T ]; L 2 ) and satises the equation

∂ t δ a n p = -u n+p-1 • ∇δ a n p -δu n-1 p • ∇a n -u n+p-1 • ∇δa n p (0)
from which, taking the scalar product in L 2 with δ a n , we obtain

1 2 d dt δ a n p 2 L 2 = 1 2 δ a n p 2 div u n+p-1 dx - δu n-1 p • ∇a n δ a n p dx -u n+p-1 • ∇δa n p (0) δ a n p dx .
So, keeping in mind that δ a n p (0) = 0 and integrating with respect to the time variable one has

δ a n p (t) L 2 ≤ t 0 1 2 div u n+p-1 L ∞ δ a n p L 2 + (4.36) + ∇a n L ∞ δu n-1 p L 2 + u n+p-1 L 2 ∇δa n p (0) L ∞ dτ .
Equally easily, one can see that the following equality holds true:

ρ n+p ∂ t δu n p + u n+p-1 • ∇δu n p + ∇δΠ n-1 p = ρ n+p δf n p -δu n-1 p
• ∇u n -δa n p ∇Π n-1 ; taking the scalar product in L 2 with δu n p , integrating by parts and remembering equation (4.31) at (n + p)-th step, we nally get

ρ n+p (t)δu n p (t) L 2 ≤ t 0 div u n+p-1 L ∞ ρ n+p δu n p L 2 dτ + t 0 ∇u n L ∞ ρ n+p δu n-1 p L 2 + ρ n+p ∇Π n-1 L ∞ δ a n p L 2 + ρ n+p ∇Π n-1 L 2 δa n p (0) L ∞ + ∇δΠ n-1 p ρ n+p L 2 + ρ * δf n p L 2 dτ .
From (4.36), Gronwall's Lemma and (4.29), we thus get, for some constant C depending only on a * and a * ,

(δ a n p , δu n p )(t) L 2 ≤ C e A n p (t) δu n p (0) L 2 + t 0 e A n p (t)-A n p (τ ) (∇a n , ∇u n ) L ∞ δu n-1 p L 2 + ∇δΠ n-1 p L 2 + ∇Π n-1 L 2 δa n p (0) L ∞ + u n+p-1 L 2 ∇δa n p (0) L ∞ + δf n p L 2 dτ ,
where we have set

A n p (t) := t 0 div u n+p-1 L ∞ + ρ n+p ∇Π n-1 L ∞ dτ .
Of course, the uniform a priori estimates of the previous step allow us to control the exponential term for all t ∈ [0, T ] by some constant C T .

Next, we have to deal with the term ∇δΠ n-1 p . We notice that it satises the elliptic equation

-div a n-1 ∇δΠ n-1 p = div -δa n-1 p ∇Π n-1+p -u n-1 • ∇Pδu n-1 p -δu n-1 p • ∇Pu n+p-1 + δf n-1 p .
Now we apply the following algebraic identity,

div (v • ∇w) = div (w • ∇v) + div (v div w) -div (w div v) , to v = u n-1 and w = Pδu n-1 p
. Remembering that div Pδu n-1 p = 0, from the previous relation we infer

div a n-1 ∇δΠ n-1 p = div Pδu n-1 p div u n-1 -Pδu n-1 p • ∇u n-1 - -δu n-1 p • ∇Pu n+p-1 -δa n-1 p ∇Π n-1+p + δf n-1 p .
Then, from lemma 4.8 and the fact that P L(L 2 ;L 2 ) = 1, one immediately has the following inequality:

a * ∇δΠ n-1 p L 2 ≤ δ a n-1 p L 2 ∇Π n L ∞ + δa n-1 p (0) L ∞ ∇Π n L 2 + δf n-1 p L 2 (4.37) + δu n-1 p L 2 div u n-1 L ∞ + ∇u n-1 L ∞ + ∇Pu n+p-1 L ∞ .
Due to a priori estimates, we nally obtain, for all t ∈ [0, T ],

(δ a n p , δu n p )(t) L 2 ≤ C T δu n p (0) L 2 + t 0 (δa n-1 p , δu n-1 p ) L 2 + + ∇δΠ n-1 p L 2 + δa n p (0) C 0,1 + δf n p L 2 dτ ∇δΠ n-1 p L 2 ≤ C T δ a n-1 p L 2 + δu n-1 p L 2 + δa n-1 p (0) L ∞ + δf n-1 p L 2 .
Therefore, plugging the second inequality in the rst one, we nd out that, for all t ∈ [0, T ] and all integers p ≥ 1 and n ≥ 1,

(4.38) (δ a n p , δu n p )(t) L 2 ≤ ε n + C T t 0 (δ a n-1 p , δu n-1 p ) L 2 dτ
where we have dened 

ε n := C T sup p≥1 δu n p (0) L 2 + T 0 δf n-1 p L 2 + δf n p L 2 + δa n-1 p (0) C 0,1 + δa n p (0) C 0,1 dt .
lim n→+∞ ε n = 0 .
Hence, one may conclude that

lim n→+∞ sup p≥1 sup t∈[0,T ] δ a n p (t) L 2 + δu n p (t) L 2 = 0 .
In other words, ( a n ) n∈N and (u n ) n∈N are Cauchy sequences in C([0, T ]; L 2 ); therefore they converge to some functions a, u ∈ C([0, T ]; L 2 ). In the same token, it is clear that (∇Π n ) n∈N converges to some ∇Π ∈ C([0, T ]; L 2 ).

Dening a := a + a 0 , it remains to show that a, u and ∇Π are indeed solutions of the initial system (4.10). We already know that a, u and ∇Π ∈ C([0, T ]; L 2 ). In addition,

• thanks to the Fatou's property for Besov spaces, as (a

n ) n∈N is bounded in L ∞ ([0, T ]; B s ∞,r ), we obtain that a ∈ L ∞ ([0, T ]; B s ∞,r
) and satises (4.29);

• in the same way, u ∈ L ∞ ([0, T ]; B s ∞,r ) because also (u n ) n∈N is bounded in the same space;

• nally, ∇Π ∈ L 1 ([0, T ]; B s ∞,r ) because the sequence (∇Π n ) n∈N is bounded in the same functional space.

By interpolation we get that the sequences converge strongly to the solutions in every intermediate space between C([0, T ]; L 2 ) and C([0, T ]; B s ∞,r ), which is enough to pass to the limit in the equations satised by (a n , u n , ∇Π n ). So, (a, u, ∇Π) veries system (4.10).

Finally, continuity properties of the solutions with respect to the time variable can be recovered from the equations fullled by them, using proposition 4.7.

Uniqueness of the solution

Uniqueness of the solution to system (4.1) is a straightforward consequence of the following stability result, the proof of which can be found in [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], section 4. Proposition 4.11. vet (ρ 1 , u 1 , ∇Π 1 ) nd (ρ 2 , u 2 , ∇Π 2 ) stisfy ystem (4.1) with externl fores f 1 nd f 2 D respetivelyF uppose tht ρ 1 nd ρ 2 oth stisfy (4.11)F essume lso thtX

• δρ := ρ 2 -ρ 1 nd δu := u 2 -u 1 oth elong to C 1 ([0, T ]; L 2 )D • δf := f 2 -f 1 ∈ C([0, T ]; L 2 )D • ∇ρ 1 D ∇u 1 nd ∇Π 1 elong to L 1 ([0, T ]; L ∞ )F hen for ll t ∈ [0, T ] we hve e -A(t) δρ(t) L 2 + ( √ ρ 2 δu) (t) L 2 ≤ δρ(0) L 2 + ( √ ρ 2 δu) (0) L 2 + t 0 e -A(τ ) ( √ ρ 2 δf ) L 2 dτ ,
where we hve de(ned

A(t) := t 0 ∇ρ 1 √ ρ 2 L ∞ + ∇Π 1 ρ 1 √ ρ 2 L ∞ + ∇u 1 L ∞ dτ .
roof of uniqueness in theorem RFIF Let us suppose that there exist two solutions (ρ 1 , u 1 , ∇Π 1 ) and (ρ 2 , u 2 , ∇Π 2 ) to system (4.1) corresponding to the same data and satisfying the hypotheses of theorem 4.1. Then, as one can easily verify, these solutions satisfy the assumptions of proposition 4.11. For instance, that δρ ∈ C1 ([0, T ]; L 2 ) is an immediate consequence of the fact that, for i = 1, 2, the velocity eld

u i is in C([0, T ]; L 2 ) and ∇ρ i is in C([0, T ]; L ∞ ), so that ∂ t ρ i ∈ C([0, T ]; L 2 ). So, proposition 4.11 implies that (ρ 1 , u 1 , ∇Π 1 ) ≡ (ρ 2 , u 2 , ∇Π 2 ).

The vorticity equation and applications

This section is devoted to the proof of the blow-up criterion and of theorem 4.4. Both results rely on the vorticity equation associated to system (4.1). As done in section 4.3, we shall restrict ourselves to the evolution for positive times and make the usual convention as regards time continuity, if r < +∞.

On the vorticity

As in all this section the vorticity will play a fundamental role, let us spend some words about it.

Given a vector-eld u, we set ∇u its Jacobian matrix and t ∇u the transposed matrix of ∇u. We dene the vorticity associated to u by Ω := ∇u -t ∇u.

Recall that, in dimension N = 2, Ω can be identied with the scalar function ω = ∂ 1 u 2 -∂ 2 u 1 , while for N = 3 with the vector-eld ω = ∇ × u.

It is obvious that, for all q ∈ [1, +∞], if ∇u ∈ L q , then also Ω ∈ L q . Conversely, if u is divergence-free, then for all 1 ≤ i ≤ N we have ∆u i = N j=1 ∂ j Ω ij , and so, formally,

∇u i = -∇ (-∆) -1 N j=1 ∂ j Ω ij .
As the symbol of the operator

-∂ i (-∆) -1 ∂ j is σ(ξ) = ξ i ξ j /|ξ| 2 , the classical Calderon-Zygmund theorem ensures that 1 for all q ∈ ]1, +∞[ if Ω ∈ L q , then ∇u ∈ L q and (4.39) ∇u L q ≤ C Ω L q .
The above relation also implies that

u = ∆ -1 u -(Id -∆ -1 )(-∆) -1 j ∂ j Ω ij .
Hence combining Bernstein's inequality and proposition 1.14, we gather that (4.40)

u B s ∞,r ≤ C u L p + Ω B s-1 ∞,r
for all p ∈ [1, +∞].

From now on, let us assume that Ω is the vorticity associated to some solution (ρ, u, ∇Π) of (4.1), dened on [0, T ] × R N . From the velocity equation, we gather that Ω satises the following transport-like equation:

(4.41) ∂ t Ω + u • ∇Ω + Ω • ∇u + t ∇u • Ω + ∇ 1 ρ ∧ ∇Π = F
where F ij := ∂ j f i -∂ i f j and, for two vector elds v and w, we have set v ∧ w to be the skewsymmetric matrix with components

(v ∧ w) ij = v j w i -v i w j .
Using classical L q estimates for transport equations and taking advantage of Gronwall's lemma, from (4.41) we immediately get

Ω(t) L q ≤ exp 2 t 0 ∇u L ∞ dτ (4.42) 
× Ω(0

) L q + t 0 e -2 τ 0 ∇u L ∞ dτ F L q + 1 ρ 2 ∇ρ ∧ ∇Π L q dτ .
Let us notice that, in the case of space dimension N = 2, equation (4.41) becomes

∂ t ω + u • ∇ω + ∇ 1 ρ ∧ ∇Π = F ,
so that one obtains the same estimate as before, but without the exponential growth:

ω(t) L q ≤ ω(0) L q + t 0 F L q + 1 ρ 2 ∇ρ ∧ ∇Π L q dτ .
Therefore, the two-dimensional case is in a certain sense better. We shall take advantage of that in section 4.5. As concerns the results of this section, the proof will not depend on the dimension.

So for the time being we assume that the dimension N is any integer greater than or equal to 2.

Proof of the continuation criterion

Now, we want to prove the continuation criterion for the solution to (4.1). As usual, we will suppose condition (1.1) to be satised with p = +∞.

We proceed in two steps. The rst one is given by the following lemma.

Lemma 4.12. vet (ρ, u, ∇Π) e solution of system (4.1) on [0,

T * [×R N suh tht 2 • u ∈ C([0, T * [ ; B s ∞,r ) ∩ C 1 ([0, T * [ ; L 2 )D • ρ ∈ C([0, T * [ ; B s ∞,r ) nd stis(es (4.11)F
uppose lso tht ondition (4.4) holds nd tht T * is (niteF hen

sup t∈[0,T * [ u(t) B s ∞,r ∩L 2 + ρ(t) B s ∞,r < + ∞ .
roof of lemm RFIPF It is only a matter of repeating a priori estimates of the previous section, but in a more accurate way. Note that a := 1/ρ satises the same hypothesis as ρ, so we will work without distinction with these two quantities, according to which is more convenient for us.

Hence, set q = ρ or a: recall that it satises

∂ t q + u • ∇q = 0 .
Hence, applying operator ∆ j yields

∂ t ∆ j q + u • ∇∆ j q = [u • ∇, ∆ j ]q , whence, for all t ∈ [0, T * [ , (4.43) 
2 js ∆ j q(t) L ∞ ≤ 2 js ∆ j q 0 L ∞ + t 0 2 js [u • ∇, ∆ j ]q L ∞ dτ.
Now, lemma 2.100 in [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] ensures that

2 js [u • ∇, ∆ j ]q L ∞ j r ≤ C ∇u L ∞ q B s ∞,r + ∇q L ∞ ∇u B s-1 ∞,r .
Hence, performing an r summation in (4.43), we get (4.44)

q(t) B s ∞,r ≤ q 0 B s ∞,r + C t 0 ∇u L ∞ q B s ∞,r + ∇q L ∞ u B s ∞,r dτ.
As regards to the velocity eld, according to (4.13) we have

(4.45) u(t) L 2 ≤ C u 0 L 2 + t 0 f L 2 dτ ,
while, we use (4.40) with p = 2 to bound its Besov norm. So, the problem is now to control the vorticity in B s-1 ∞,r . From equation (4.41) and proposition 4.7 (recall that div u = 0), we readily get

Ω(t) B s-1 ∞,r ≤ exp C t 0 ∇u L ∞ dτ Ω 0 B s-1 ∞,r + t 0 F B s-1 ∞,r dτ + (4.46) + t 0 ∇a ∧ ∇Π B s-1 ∞,r + Ω • ∇u + t ∇u • Ω B s-1 ∞,r dτ .
The following inequalities hold true:

∇a ∧ ∇Π B s-1 ∞,r ≤ C ∇a L ∞ ∇Π B s-1 ∞,r + ∇Π L ∞ ∇a B s-1 ∞,r , (4.47) 
Ω • ∇u + t ∇u • Ω B s-1 ∞,r ≤ C ∇u L ∞ ∇u B s-1 ∞,r . (4.48) 
In the case s > 1, they immediately come from theorem 1.24. We claim that they are still true in the limit case s = r = 1: the proof relies on Bony's decomposition (1.3) and algebraic cancellations. Indeed, we observe that

∂ i a ∂ j Π -∂ j a ∂ i Π = T ∂ i a ∂ j Π -T ∂ j a ∂ i Π + T ∂ j Π ∂ i a -T ∂ i Π ∂ j a+ +∂ i R(a -∆ -1 a, ∂ j Π) -∂ j R(a -∆ -1 a, ∂ i Π) + R(∂ i ∆ -1 a, ∂ j Π) + R(∂ j ∆ -1 a, ∂ i Π).
Applying theorem 1.24 thus yields (4.47).

Next, we notice that, as div u = 0, then

Ω • ∇u + t ∇u • Ω ij = k ∂ i u k ∂ k u j -∂ j u k ∂ k u i , = k ∂ k u j ∂ i u k -∂ k u i ∂ j u k . Therefore, Ω • ∇u + t ∇u • Ω ij = k T ∂ i u k ∂ k u j -T ∂ j u k ∂ k u i + T ∂ k u j ∂ i u k -T ∂ k u i ∂ j u k + +∂ k R(u j -∆ -1 u j , ∂ i u k ) -∂ k R(u i -∆ -1 u i , ∂ j u k ) + R(∆ -1 ∂ k u j , ∂ i u k ) + R(∆ -1 ∂ k u i , ∂ j u k ) .
Hence theorem 1.24 again implies (4.48).

Plugging (4.47) and (4.48) in (4.46), using the energy inequality (4.45) and inequality (4.40)

with p = 2, we easily get

u(t) B s ∞,r ∩L 2 ≤ C exp C ∇u L ∞ dτ u 0 B s ∞,r ∩L 2 + t 0 f B s ∞,r ∩L 2 dτ + + t 0 ∇a L ∞ ∇Π B s-1 ∞,r + ∇Π L ∞ a B s ∞,r dτ . Hence, denoting X(t) := a(t) B s ∞,r + u(t) B s
∞,r ∩L 2 , adding up inequality (4.44) and using Gronwall's inequality, we end up with

X(t) ≤ C exp C t 0 (∇u, ∇a, ∇Π) L ∞ dτ X(0) + t 0 f B s ∞,r ∩L 2 + ∇a L ∞ ∇Π B s-1 ∞,r dτ .
Now, the equation for ∇a and Gronwall's inequality immediately ensure that (4.49)

∇a(t) L ∞ ≤ ∇a 0 L ∞ exp t 0 ∇u L ∞ dτ ,
which implies, thanks to hypothesis (4.4), that ∇a is bounded in time with values in L ∞ . Moreover, by hypothesis ∇Π ∈ L 1 ([0, T * [ ; B s-1 ∞,r ) and ∇u ∈ L 1 ([0, T * [ ; L ∞ ). At this point, keeping in mind the embedding B s-1 ∞,r → L ∞ , previous inequality gives us the thesis of the lemma.

The second result, which will enable us to complete the proof of theorem 4.2, reads in the following way. Lemma 4.13. vet (ρ, u, ∇Π) e the solution of system (4.1) suh tht3 

• ρ ∈ C([0, T * [ ; B s ∞,r ) nd (4.11)Y • u ∈ C([0, T * [ ; B s ∞,r ) ∩ C 1 ([0, T * [ ; L 2 )Y • ∇Π ∈ C([0, T * [ ; L 2 ) ∩ L 1 ([0, T * [ ; B s ∞,r )F woreoverD suppose tht u L ∞ T * (B s ∞,r ∩L 2 ) + ∇a L ∞ T * (B s-1 ∞,r ) < + ∞ .
hen (ρ, u, ∇Π) n e ontinued eyond the time T * into solution of (4.1) with the sme regulrityF roof of lemm RFIQF From the proof of theorem 4.1 we know that there exists a time ε, depending only on ρ * , N, s, u

L ∞ T * (B s ∞,r ∩L 2 ) , ∇a L ∞ T * (B s-1
∞,r ) and on the norm of the data, such that, for all T < T * , Euler system with data (ρ( T ), u( T ), f ( T + •)) has a unique solution until time ε. Now, taking for example T = T * -ε/2, we thus obtain a solution, which is (by uniqueness) the continuation of the initial one, (ρ, u, ∇Π), until time T + ε/2.

Let us complete the proof of theorem 4.2. The rst part is a straightforward consequence of these two lemmas. Indeed: lemma 4.12 ensures that u L ∞ T * (B s ∞,r ∩L 2 ) and ∇a L ∞ T * (B s-1 ∞,r ) are nite. As for the last claim (the Beale-Kato-Majda type continuation criterion), it is a classical consequence of the well-known logarithmic interpolation inequality (see e.g. [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF])

∇u L ∞ ≤ C u L 2 + Ω L ∞ log e + Ω B s-1 ∞,r Ω L ∞ . 4.4.3 Proof of theorem 4.4
We rst prove a priori estimates, and then we will get from them existence and uniqueness of the solution. In fact, it will turn out to be possible to apply theorem 4.1 after performing a suitable cut-o on the initial velocity eld and thus to work directly on system (4.1), without passing through the equivalence with (4.10) or with a sequence of approximate linear systems.

A priori estimates

As in the previous section, remembering also remark 4.10, the following estimates hold true:

∇ρ(t) B s-1 ∞,r ≤ ∇ρ 0 B s-1 ∞,r exp C t 0 u B s ∞,r dτ (4.50) u(t) B s ∞,r ≤ exp C t 0 u B s ∞,r dτ × (4.51) × u 0 B s ∞,r + t 0 e -C τ 0 u B s ∞,r dτ ρ B s ∞,r ∇Π B s ∞,r dτ .
Moreover, from the transport equation satised by the velocity eld, we easily gather that

u(t) L 4 ≤ u 0 L 4 + t 0 ∇Π ρ L 4 dτ.
Therefore, using interpolation in Lebesgue spaces and embedding (see proposition 1.6),

u(t) L 4 ≤ u 0 L 4 + 1 ρ * t 0 ∇Π 1 2 L ∞ ∇Π 1 2 L 2 dτ (4.52) ≤ u 0 L 4 + C ρ * t 0 ∇Π B s ∞,r ∩L 2 dτ.
In order to bound the vorticity in L 4 , one may use the fact that

1 ρ 2 ∇ρ ∧ ∇Π L 4 ≤ 1 (ρ * ) 2 ∇ρ ∧ ∇Π L 4 ≤ 1 (ρ * ) 2 ∇ρ L ∞ ∇Π L 4 ≤ C (ρ * ) 2 ∇ρ B s-1 ∞,r ∇Π B s ∞,r ∩L 2 .
From this and (4.42), we thus get 

Ω(t) L 4 ≤ exp t 0 ∇u B s-1 ∞,r dτ Ω 0 L 4 + (4.53) + C (ρ * ) 2 t 0 e -τ 0 ∇u B s-1 ∞,r dτ ∇ρ B s-1 ∞,r ∇Π B s ∞,r ∩L 2 dτ .
(B s ∞,r ) ≤ C 1 + ∇a γ L ∞ t (B s-1 ∞,r ) ∇Π L 1 t (L 2 ) + ρ L ∞ t (B s ∞,r ) t 0 u 2 B s ∞,r ∩L 4 dτ .
In order to bound the L 2 norm of ∇Π, we take the divergence of the second equation of system (4.1). We obtain 

-div ∇Π ρ = div (u •
1 ρ * ∇Π L 2 ≤ u • ∇u L 2 ≤ u L 4 ∇u L 4 ≤ C u L 4 Ω L 4 .
Putting 

u(t) B s ∞,r ≤ 2 u 0 B s ∞,r + C 0 ∇Π L 1 t (B s ∞,r ) , ∇Π L 1 t (B s ∞,r ) ≤ C 0 t 0 u L 4 Ω L 4 + u 2 B s ∞,r ∩L 4 dτ, u(t) L 4 ≤ u 0 L 4 + C 0 ∇Π L 1 t (B s ∞,r ) + C 0 t 0 u L 4 Ω L 4 dτ, Ω(t) L 4 ≤ 2 Ω 0 L 4 + C 0 ∇Π L 1 t (B s ∞,r ) ,
where the constant C 0 depends on s, ρ * , ρ * , N and ρ 0 B s ∞,r . Therefore, applying Gronwall Lemma and assuming that T has been chosen so that (in addition to (4.27)) we have

T 0 u W 1,4 dτ ≤ c
where c is a small enough constant depending only on C 0 , it is easy to close the estimates. Remark 4.14. Exhibiting an L 2 estimate for ∇Π even though u is not in L 2 is the key to the proof. This has been obtained in (4.56). Note however that we have some freedom there: one may rather assume that u 0 ∈ L p and ∇u 0 ∈ L q , with p and q in [2, +∞] such that 1/p + 1/q ≥ 1/2, and get a statement similar to that of theorem 4.4 under these two assumptions. The details are left to the reader.

Existence of a solution

We want to take advantage of the existence theory provided by theorem 4.1. However, under the assumptions of theorem 4.4, the initial velocity does not belong to L 2 . To overcome this, we shall introduce a sequence of truncated initial velocities. Then theorem 4.1 will enable us to solve system (4.1) with these modied data and the previous part will provide uniform estimates in the right functional spaces on a small enough (xed) time interval. Finally, convergence will be proved by an energy method similar to that we used for theorem 4.1.

pirst stepX onstrution of the sequene of pproximte solutions Take any Φ ∈ C ∞ 0 (R N x ) with Φ ≡ 1 on a neighborhood of the origin, and set Φ n (x) = Φ(x/n). Then let us dene u n 0 := Φ n u 0 for all n ∈ N. Note that this ensures that u n 0 → u 0 in the distribution meaning.

Given that u n 0 is continuous and compactly supported, it obviously belongs to L 2 . Of course, we still have u n 0 ∈ B s ∞,r ∩W 1,4 ∩L 2 , so we fall back into hypothesis of theorem 4.1. From it, we get the existence of some time T n and of a solution (ρ n , u n , ∇Π n ) to (4.1) with data (ρ 0 , u n 0

) such that ρ n ∈ C([0, T n ]; B s ∞,r ), u n ∈ C 1 ([0, T n ]; L 2 )∩C([0, T n ]; B s ∞,r ) and ∇Π n ∈ C([0, T n ]; L 2 )∩L 1 ([0, T n ]; B s ∞,r ).
From (4.55), the vorticity equation and the velocity equation, it is easy to see that, in addition, ,4 ).

u n ∈ C([0, T n ]; W 1
Finally, as the norm of u n 0 in W 1,4 ∩ B s ∞,r may be bounded independently of n, the a priori estimates that have been performed in the previous paragraph ensure that one may nd some positive lower bound T for T n such that (ρ n , u n , ∇Π n ) satises estimates independent of n on [0, T ] in the desired functional spaces.

eond stepX onvergene of the sequene As done in the previous section, we dene ρ n = ρ n -ρ 0 , and then

δρ n := ρ n+1 -ρ n , δu n := u n+1 -u n , δΠ n := Π n+1 -Π n .
Resorting to the same type of computations as in the previous section (it is actually easier as, now, div u n = 0 for all n), we can prove that ( ρ n , u n , ∇Π n ) n∈N is a Cauchy sequence in C([0, T ]; L 2 ). Hence it converges to some ( ρ, u, ∇Π) which belongs to the same space. Now, dening ρ := ρ 0 + ρ, bearing in mind the uniform estimates of the previous step and using the Fatou property, we easily conclude that

• ρ ∈ L ∞ ([0, T ]; B s ∞,r ) and ρ * ≤ ρ ≤ ρ * ; • u ∈ L ∞ ([0, T ]; B s ∞,r ) ∩ L ∞ ([0, T ]; W 1,4 ); • ∇Π ∈ L 1 ([0, T ]; B s ∞,r ) ∩ L ∞ ([0, T ]; L 2 ).
Finally, by interpolation we can pass to the limit in the equations at step n, so we get that (ρ, u, ∇Π) satises (4.1), while continuity in time follows from proposition 4.7.

Remarks on the lifespan of the solution

In this section, we exhibit lower bounds for the lifespan of the solution to the density-dependent incompressible Euler equations. We rst establish that, like in the homogeneous case, in any dimension, if the initial velocity is of order ε then the lifespan is at least of order ε -1 even in the fully nonhomogeneous se. Next we focus on the two-dimensional case: in the second part of this section, we show that for small perturbations of a constant density state, the lifespan tends to be very large. Therefore, for nonhomogeneous incompressible uids too, the two-dimensional case is somewhat nicer than the general situation. It is clear that if we set ρ , u , ∇ Π (t, x) := ρ , ε u , ε 2 ∇Π (ε t , x) , then ( ρ, u, ∇ Π) is a solution to (4.1) on [ε -1 T * , ε -1 T * ] with data (ρ 0 , u 0 , f ) if and only if (ρ, u, ∇Π) is a solution to (4.1) on [T * , T * ] with data (ρ 0 , u 0 , f ).

Hence, putting together the results of the previous section, we can conclude to the following statement.

Theorem 4.15. vet (ρ 0 , u 0 ) stisfy the ssumptions of theorem RFI or RFRD nd f ≡ 0. here exists positive time T * depending only on s, N, ρ * , ρ 0 B 1 ∞,1 nd u 0 B 1 ∞,1 suh thtD for ny ε > 0D the upper ound T * ε of the mximl intervl of existene for the solution to (4.1) with initil dt (ρ 0 , ε u 0 ) stis(es T * ε ≥ ε -1 T * . e similr result holds for the lower ound of the mximl intervl of existeneF

The two-dimensional case

Recall that for the homogeneous equations, any solution corresponding to suitably smooth data is global, a fact which relies on the conservation of the vorticity by the ow. Now, in our case, the vorticity equation reads (if f ≡ 0)

(4.57) ∂ t ω + u • ∇ω + ∇a ∧ ∇Π = 0 with ∇a ∧ ∇Π := ∂ 1 a ∂ 2 Π -∂ 2 a ∂ 1 Π.
Owing to the new term involving the pressure and the nonhomogeneity, it is not clear at all that global existence still holds. Nevertheless, we are going to prove that the lifespan may be very large if the nonhomogeneity is small.

To simplify the presentation, we focus on the case where ρ 0 ∈ B 1 ∞,1 (R 2 ) and u 0 ∈ B 1 ∞,1 (R 2 ) (note that corollary 4.3 ensures that this is not restrictive) and assume, in addition, that u 0 ∈ L 2 (R 2 ) (this lower order assumption may be somewhat relaxed too). We aim at proving the following result. Theorem 4.16. nder the ove ssumptionsD there exists onstnt cD depending only on ρ * nd ρ * D suh tht the lifespn of the solution to the twoEdimensionl densityEdependent inompressile iuler equtions with initil dt (ρ 0 , u 0 ) nd no soure term is ounded from elow y

c u 0 L 2 ∩B 1 ∞,1 log 1 + c log 1 ∇a 0 B 0 ∞,1 .
roofF Let ]T * , T * [ denote the maximal interval of existence of the solution (ρ, u, ∇Π) corresponding to (ρ 0 , u 0 ). To simplify the presentation, we focus on the evolution for positive times.

The key to the proof relies on the fact that in the two-dimensional case, the vorticity equation satises (4.57). Now, it turns out that, as discovered by M. Vishik in [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] and by T. Hmidi and S. Keraani in [START_REF] Hmidi | Incompressible viscous ows in borderline Besov spaces[END_REF], the norms in Besov spaces with null regulrity index of solutions to transport equations satisfy better estimates, namely in our case 

ω(t) B 0 ∞,1 ≤ C ω 0 B 0 ∞,1 + t 0 ∇a ∧ ∇Π B 0 ∞,
ω(t) B 0 ∞,1 ≤ C ω 0 B 0 ∞,1 + t 0 ∇a B 0 ∞,1 ∇Π B 0 ∞,1 dτ 1 + t 0 ∇u L ∞ dτ .
Bearing in mind inequality (4.40) and the energy inequality for u, we thus get (4.59)

X(t) ≤ C X 0 + t 0 A(τ ) ∇Π(τ ) B 0 ∞,1 dτ 1 + t 0 X dτ ,
where we have dened

X(t) := u(t) L 2 ∩B 1 ∞,1
and

A(t) := ∇a(t) B 0 ∞,1 .
Bounding A is easy, given that

∂ t ∂ i a + u • ∇∂ i a = -∂ i u • ∇a for i = 1, 2 .
Indeed, combining inequality (4.6) and paraproduct estimates ensures that

∇a(t) B 0 ∞,1 ≤ ∇a 0 B 0 ∞,1 exp C t 0 ∇u B 0 ∞,1 dτ . Therefore, (4.60) 
A(t) ≤ A 0 exp C t 0 X dτ .
Bounding the pressure term in B 0 ∞,1 is our next task. In fact, we shall rather bound its B 1 ∞,1 norm 4 . Recall that, according to inequality (4.20), there exists some exponent γ ≥ 1 so that (4.61)

∇Π B 1 ∞,1 ≤ C 1 + ∇a γ B 0 ∞,1 ∇Π L 2 + ρ div (u • ∇u) B 0 ∞,1
.

Combining Bony's decomposition with the fact that div (u • ∇u) = ∇u : ∇u, we get

div (u • ∇u) B 0 ∞,1 ≤ u 2 B 1 ∞,1
.

From the denition of B 1 ∞,1 and proposition 1.31, it is also clear that

ρ B 1 ∞,1 ≤ C ρ * + ∇a B 0 ∞,1
.

Finally, given that -div (a ∇Π) = div (u • ∇u) , 

a * ∇Π L 2 ≤ u L 2 ∇u L ∞ .
So plugging the above inequalities in (4.61), one may conclude that (4.63)

∇Π B 1 ∞,1 ≤ C (1 + A γ ) X 2 ,
for some constant C depending only on a * and a * .

It 

X(t) ≤ C X 0 + A 0 + A β 0 t 0 e C τ 0 X dτ X 2 dτ 1 + t 0 X dτ .
Let T 0 denote the supremum of times t ∈ [0, T * [ so that (4.65)

A 0 + A β 0 t 0 e C τ 0 X dτ X 2 dτ ≤ X 0 .
From (4.64) and Gronwall's Lemma, we gather that X(t) ≤ 2 C X 0 e 2 C t X 0 for all t ∈ [0, T 0 [ .

Note that this inequality implies that for all t ∈ [0, T 0 [ , we have

t 0 e C τ 0 X dτ X 2 dτ ≤ C X 0 e 4 C t X 0 -1 exp C e 2 C t X 0 -1 .
Therefore, using (4.65) and a bootstrap argument (based on the continuation theorems that we proved in the previous sections), it is easy to show that T 0 is greater than any time t such that

A 0 + A β 0 e 4 C t X 0 -1 exp C e 2 C t X 0 -1 ≤ 1 .
Taking the logarithm and using that log y ≤ y -1 for y > 0, we see that the above inequality is satised whenever

e 2 C t X 0 ≤ 1 + 1 2C log 1 A 0 + A β 0 .
This completes the proof of the lower bound for T * .

Remark 4.17. If ω 0 has more regularity (say ω 0 ∈ C r for some r ∈ ]0, 1[ ), then one may rst write an estimate for ω L ∞ and next use the classical logarithmic inequality for bounding ∇u L ∞ in terms of ω L ∞ and ω C r . The proof is longer, requires more regularity and, at the same time, the lower bound for the lifespan does not improve.

Chapter 5

Propagation of geometric structures

In this chapter we obtain a result about propagation of geometric properties for solutions of nonhomogeneous incompressible Euler system in any dimension N ≥ 2. In particular, we investigate conservation of striated and conormal regularity, which is a natural way of generalising the 2-D structure of vortex patches. The results we get are only local in time, even in the dimension N = 2: in contrast with the homogeneous case, the global existence issue is still an open problem, because the vorticity is not preserved during the time evolution. Moreover we will be able to give an explicit lower bound for the lifespan of the solution, in terms of the norms of initial data only. In the case of physical dimension N = 2 or 3, we will investigate also propagation of Hölder regularity in the interior of a bounded domain.

Introduction

In this chapter we are interested in studying conservation of geometric properties for solutions of the density-dependent incompressible Euler system (5.1)

     ∂ t ρ + u • ∇ρ = 0 ρ (∂ t u + u • ∇u) + ∇Π = 0 div u = 0 ,
which describes the evolution of a non-homogeneous inviscid uid with no body force acting on it, an assumption we will make throughout all this chapter to simplify the presentation. Here, ρ(t, x) ∈ R + represents the density of the uid, u(t, x) ∈ R N its velocity eld and Π(t, x) ∈ R its pressure. The term ∇Π can be also seen as the Lagrangian multiplier associated to the divergence-free constraint over the velocity.

We will always suppose that the variable x belongs to the whole space R N .

The problem of preserving geometric structures came out already in the homogeneous case, for which ρ ≡ 1 and system (5.1) becomes

(E) ∂ t u + u • ∇u + ∇Π = 0 div u = 0 ,
in studying 2-dimensional vortex patches, that is to say the initial vorticity Ω 0 is the characteristic function of a bounded domain D 0 . As we will explain below, in the case of higher dimension N ≥ 3

this notion was generalized by the properties of striated and conormal regularity.

We recall here that the vorticity of the uid is dened as the skew-symmetric matrix (5.2)

Ω := ∇u -t ∇u and in the homogenous case it satises the equation

∂ t Ω + u • ∇Ω + Ω • ∇u + t ∇u • Ω = 0 .
In dimension N = 2 it can be identied with the scalar function ω = ∂ 1 u 2 -∂ 2 u 1 , while for N = 3 with the vector-eld ω = ∇ × u. Let us recall also that in the bidimensional case this quantity is transported by the velocity eld: it fullls

∂ t ω + u • ∇ω = 0 .
The notion of vortex patches was introduced in [START_REF] Judovi£ | Non-stationary ows of an ideal incompressible uid[END_REF] and gained new interest after the survey paper [START_REF] Majda | Vorticity and the mathematical theory of incompressible uid ow[END_REF] of Majda. In the case N = 2 Yudovich's theorem ensures the existence of a unique global solution of the homogeneous Euler system, which preserves the geometric structure: the vorticity remains the characteristic function of the evolution (by the ow associated to this solution) of the domain D 0 . Vortex patches in bounded domains of R 2 were also studied by Depauw (see [START_REF] Depauw | Poche de tourbillon pour Euler 2D dans un ouvert à bord[END_REF]), while Dutrifoy in [START_REF] Dutrifoy | On 3-D vortex patches in bounded domains[END_REF] focused on the case of domains in R 3 . Moreover, in [START_REF] Chemin | Sur le mouvement des particules d'un uide parfait incompressible bidimensionnel[END_REF] Chemin proved that, if the initial domain has boundary ∂D 0 of class C 1+ε for some ε > 0, then this regularity is preserved during the evolution for small times; in [START_REF] Chemin | Persistance de structures géométriques dans les uides incompressibles bidimensionnels[END_REF] he also showed a global in time persistence issue. In [START_REF] Danchin | Évolution temporelle d'une poche de tourbillon singulière[END_REF] Danchin considered instead the case in which initial data of the Euler system are vortex patches with singular boundary: he proved that if ∂D 0 is regular apart from a closed subset, then it remains regular for all times, apart from the closed subset transported by the ow associated to the solution.

In the case N ≥ 3 one can't expect to have global results anymore, nor to preserve the initial vortex patch structure, because of the presence of the stretching term in the vorticity equation.

Nevertheless, it's possible to introduce the denition of strited regulrity, which generalizes in a quite natural way the previous one of vortex patch: it means that the vorticity is more regular along some xed directions, given by a nondegenerate family of vector-elds (see denition 5.1 below). This notion was introduced rst by Bony in [START_REF] Bony | Propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] in studying hyperbolic equations, and then adapted by Alinhac (see [START_REF] Alinhac | Interaction d'ondes simples pour des équations complètement non-linéaires[END_REF]) and Chemin (see [START_REF] Chemin | Calcul paradiérentiel précisé et applications à des équations aux dérivées partielles non semilinéaires[END_REF]) for nonlinear partial dierential equations.

In [START_REF] Gamblin | On three-dimensional vortex patches[END_REF], Gamblin and Saint-Raymond proved that striated regularity is preserved during the evolution in any dimension N ≥ 3, but, as already remarked, only locally in time (see also [START_REF] Serfati | Régularité stratiée et équation d'Euler 3D à temps grand[END_REF]).

They also obtained global results if initial data have other nice properties (e.g., if the initial velocity is axisymmetric).

As Euler system is, in a certain sense, a limit case of the Navier-Stokes system as the viscosity of the uid goes to 0, it's interesting to study if there is also convergence of the geometric properties of the solutions. Recently Danchin proved results on striated regularity for the solutions of the Navier-Stokes system

(NS ν ) ∂ t u + u • ∇u -ν ∆u + ∇Π = 0 div u = 0 ,
in [START_REF] Danchin | Poches de tourbillon visqueuses[END_REF] for the 2-dimensional case, in [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF] for the general one. Already in the former paper, he had to dismiss the vortex patch structure stricto sensu due to the presence of the viscous term, which comes out also in the vorticity equation and has a smoothing eect; however, he still got global in time results. Moreover, in both his works he had to handle with spaces of type B 1+ε Let us immediately clarify that these problems have been recently solved by Hmidi in [START_REF] Hmidi | Régularité höldérienne des poches de tourbillon visqueuses[END_REF] (see also [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF]), and this fact allows us to consider again the Hölder spaces framework. In the above mentioned works Danchin proved also a priori estimates for solutions of (NS ν ) independent of the viscosity ν, therefore preservation of the geometric structures in passing from solutions of (NS ν ) to solutions of (E) in the limit ν → 0.

In this chapter we will come back to the inviscid case and we will study the non-homogeneous incompressible Euler system (5.1). We want to investigate if preservation of geometric properties of initial data, such as striated and conormal regularity, still holds in this setting, as in the classical (homogeneous) one. Let us note that in the 2-dimensional case the equation for the vorticity reads

∂ t ω + u • ∇ω + ∇ 1 ρ
∧ ∇Π = 0 , so it's not better than in higher dimension due to the presence of the density term, which doesn't allow us to get conservation of Lebesgue norms. This is also the reason why it's not clear if Yudovich's theorem still holds true for non-homogeneous uids: having ω 0 ∈ L q ∩ L ∞ , combined with suitable hypothesis on ρ 0 , doesn't give rise to a local solution. So, we will immediately focus on the general case N ≥ 2. We will assume the initial velocity u 0 and the initial vorticity Ω 0 to be in some Lebesgue spaces, in order to assure the pressure term to belong to L 2 , a requirement we could not bypass. As a matter of fact, ∇Π satises an elliptic equation with low regularity coecient,

-div (a ∇Π) = div F , and it can be solved independently of a only in the energy space L 2 . Moreover, we will suppose Ω 0

to have regularity properties of geometric type. Obviously, we will require some natural but quite general hypothesis also on the initial density ρ 0 of the uid: we suppose ρ 0 to be strictly positive and bounded with its gradient and that it satises geometric assumptions analogous to those for Ω 0 . Let us point out that proving the velocity eld to be Lipschitz, which was the key part in the homogeneous case, works as in this setting: it relies only on Biot-Savart law and it requires no further hypothesis on the density term. Let us also remark that no smallness conditions over the density are needed. Of course, we will get only local in time results. Moreover, we will see that geometric structures propagate also to the velocity eld and to the pressure term.

The present chapter is organized in the following way.

In the rst part, we will recall basic facts about Euler system: some properties of the vorticity and how to associate a ow to the velocity eld. In this section we will also give the denition of the geometric properties we are studying and we will state the main results we got about striated and conormal regularity.

The mathematical techniques we need to prove our claims are mostly those introduced in chapter 1, even if in the particular case of spaces C s ≡ B s ∞,∞ . Hence, we don't recall them. Nevertheless, we need to introduce the notion of paravector-eld, as dened in [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF]: it will play a fundamental role in our analysis, because it is, in a certain sense, the principal part of the derivation operator along a xed vector-eld. Moreover, we need also to analyse right composition of a C s function with a smooth one. Section 5.3 is devoted to the presentation of these additional tools.

This having been done, we will nally be able to tackle the proof of our result about striated regularity. First of all, we will state a priori estimates for suitable smooth solutions of the Euler system (5.1). Then from them we will get, in a quite classical way, the existence of a solution with the required properties: we will construct a sequence of regular solutions of system (5.1) with approximated data, and, using a compactness argument, we will show the convergence of this sequence to a real solution. Proving preservation of the geometric structure requires instead strong convergence in rough spaces of type C -α (for some α > 0). Uniqueness of the solution will follow from a stability result for our equations. In the following section, we will also give an estimate from below for the lifespan of the solution.

Finally, we will spend a few words about conormal regularity: proving its propagation from the previous result is standard and can be done as in the homogenous setting. As a consequence, inspired by what done in Huang's paper [START_REF] Huang | Singular integral system approach to regularity of 3D vortex patches[END_REF], in the physical case of space dimension N = 2 or 3 we can improve our result: we will also show that, if the initial data are Hölder continuous in the interior of a suitably smooth bounded domain, the solution conserves this property during the time evolution, i.e. it is still Hölder continuous in the interior of the domain transported by the ow.

Basic denitions and main results

Let (ρ, u, ∇Π) be a solution of the density-dependent incompressible Euler system (5.1) over [0, T ] × R N and let us denote the vorticity of the uid by Ω. As in the homogeneous case, it will play a fundamental role throughout all this chapter, so let us spend a few words about it.

From the denition (5.2), it is obvious that, for all q ∈ [1, +∞], if ∇u ∈ L q , then also Ω ∈ L q . Conversely, if u is a divergence-free vector-eld, then for all 1 ≤ i ≤ N we have ∆u i = N j=1 ∂ j Ω ij , and so, formally, (

u i = -(-∆) -1 N j=1 ∂ j Ω ij . 5.3) 
This is the Biot-Savart law, and it says that a divergence free vector-eld u is completely determined by its vorticity. From (5.3) we immediately get (5.4)

∇u i = -∇ (-∆) -1 N j=1 ∂ j Ω ij .
Now, as the symbol of the operator -∂ i (-∆) -1 ∂ j is σ(ξ) = ξ i ξ j /|ξ| 2 , the classical Calderon-Zygmund theorem ensures that 1 for all q ∈ ]1, +∞[ , if Ω ∈ L q then ∇u ∈ L q and

(5.5)

∇u L q ≤ C q 2 q -1 Ω L q .
In dimension N = 2 the vorticity equation is simpler than in the general case due to the absence of the stretching term. Nevertheless, as remarked above, the exterior product involving density and pressure terms makes it impossible to get conservation of Lebesgue norms, which was the basic point to get global existence for the classical system (E). So, we immediately focus on the case N ≥ 2 whatever, in which the vorticity equation reads (5.6)

∂ t Ω + u • ∇Ω + Ω • ∇u + t ∇u • Ω + ∇ 1 ρ ∧ ∇Π = 0 ,
where, for two vector-elds v and w, we have set v ∧ w to be the skew-symmetric matrix with components

(v ∧ w) ij = v j w i -v i w j .
Finally, recall that we can associate a ow ψ to the velocity eld u of the uid: it is dened by the relation

ψ(t, x) ≡ ψ t (x) := x + t 0 u(τ, ψ τ (x)) dτ for all (t, x) ∈ [0, T ] × R N and it is, for all xed t ∈ [0, T ], a dieomorphism over R N , if ∇u ∈ L ∞ .
Let us remark that the ow is still well-dened (in a generalized sense) even if u is only log-Lipschitz continuous, but it is no more a dieomorphism (see e.g. chapter 3 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF], or [START_REF] Chemin | Fluides parfaits incompressibles[END_REF], for more details).

Let us now introduce the geometric properties we are handling throughout this chapter. The rst notion we are interested in is the strited regulrity, that is to say initial the data are more regular along some given directions.

So, let us take a family X = (X λ ) 1≤λ≤m of m vector-elds with components and divergence of class C ε for some xed ε ∈ ]0, 1[. We also suppose this family to be non-degenerate, i.e.

I(X)

:= inf x∈R N sup Λ∈Λ m N -1 N -1 ∧ X Λ (x) 1 N -1 > 0 .
Here Λ ∈ Λ m N -1 means that Λ = (λ 1 , . . . , λ N -1 ), with each λ i ∈ {1, . . . , m} and λ i < λ j for i < j, while the symbol

N -1 ∧ X Λ stands for the element of R N such that ∀ Y ∈ R N , N -1 ∧ X Λ • Y = det X λ 1 . . . X λ N -1 , Y .
For each vector-eld of this family we put 

X λ C ε := X λ C ε + div X λ C ε ,
[ε, 1 + ε]. A function f ∈ L ∞ is said to be of class C η along Y , and we write f ∈ C η Y , if div (f Y ) ∈ C η-1 R N .
If X = (X λ ) 1≤λ≤m is a non-degenerate family of vector-elds as above, we dene

C η X := 1≤λ≤m C η X λ and f C η X := 1 I(X) f L ∞ |||X||| C ε + ||| div (f X) ||| C η-1 .
Remark 5.2. Our aim is to investigate Hölder regularity of the derivation of f along the xed vector-eld (say) Y , i.e. the quantity

∂ Y f := N i=1 Y i ∂ i f .
If f is only bounded, however, this expression has no meaning: this is why we decided to focus on div (f Y ), as done in the literature about this topic (see also [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF], section 1). Lemma 5.14 below will clarify the relation between these two quantities. Now, let us take a vector-eld X 0 and dene its time evolution X(t):

(5.7)

X(t, x) ≡ X t (x) := ∂ X 0 (x) ψ t ψ -1 t (x) ,
that is X(t) is the vector-eld X 0 transported by the ow associated to u. From this denition, it immediately follows that [∂ X , ∂ t + u • ∇] = 0, i.e. X(t) satises the following system:

(5.8)

(∂ t + u • ∇) X = ∂ X u X |t=0 = X 0 .
We are now ready for stating our rst result, on striated regularity.

Theorem 5.3. pix ε ∈ ]0, 1[ nd tke nonEdegenerte fmily of vetorE(elds

X 0 = (X 0,λ ) 1≤λ≤m over R N D whose omponents nd divergene re in C ε F vet the initil veloity (eld u 0 ∈ L p D with p ∈ ]2, +∞]D nd its vortiity Ω 0 ∈ L ∞ ∩ L q D with q ∈ [2, +∞[ suh tht 1/p + 1/q ≥ 1/2F vet us suppose Ω 0 ∈ C ε X 0 F pinllyD let the initil density ρ 0 ∈ W 1,∞ e suh tht 0 < ρ * ≤ ρ 0 ≤ ρ * nd ∇ρ 0 ∈ C ε X 0 F hen there exist time T > 0 nd unique solution (ρ, u, ∇Π) of system (5.1)D suh thtX • ρ ∈ L ∞ ([0, T ]; W 1,∞ ) ∩ C b ([0, T ] × R N )D suh tht 0 < ρ * ≤ ρ ≤ ρ * t every timeY • u ∈ C([0, T ]; L p ) ∩ L ∞ ([0, T ]; C 0,1 )D with ∂ t u ∈ C([0, T ]; L 2 ) nd vortiity Ω ∈ C([0, T ]; L q )Y • ∇Π ∈ C([0, T ]; L 2 )D with ∇ 2 Π ∈ L ∞ ([0, T ]; L ∞ )F
woreoverD the fmily of vetorE(elds trnsported y the )ow still reminsD t every timeD nonE degenerte nd with omponents nd divergene in C ε D nd strited regulrity is preservedX t every time t ∈ [0, T ]D one hs

• ∇ρ(t) nd Ω(t) ∈ C ε X(t) D • u(t) nd ∇Π(t) ∈ C 1+ε X(t)
uniformly on [0, T ]F

Another interesting notion, strictly related to the previous one, is that of onorml regulrity.

First of all, we have to recall a denition (see again section 1 of [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF]). 

H of Σ. Given a η ∈ [ε, 1 + ε], we say that a function f ∈ L ∞ belongs to the space C η Σ if ∀ X ∈ T ε Σ , f ∈ C η X , i.e. div (f X) ∈ C η-1 .
Similarly to what happens for striated regularity, also conormal structure propagates during the time evolution. Theorem 5.5. pix

ε ∈ ]0, 1[ nd tke ompt hypersurfe Σ 0 ⊂ R N of lss C 1+ε F vet us suppose the initil veloity (eld u 0 ∈ L p D with p ∈ ]2, +∞]D nd its vortiity Ω 0 ∈ L ∞ ∩ L q D with q ∈ [2, +∞[ suh tht 1/p + 1/q ≥ 1/2F woreoverD let us suppose Ω 0 ∈ C ε Σ 0 F pinllyD let the initil density ρ 0 ∈ W 1,∞ e suh tht 0 < ρ * ≤ ρ 0 ≤ ρ * nd ∇ρ 0 ∈ C ε
Σ 0 F hen there exist time T > 0 nd unique solution (ρ, u, ∇Π) of system (5.1)D whih veri(es the sme properties of theorem SFQF woreoverD if we de(ne Σ(t) := ψ t (Σ 0 ) , Σ(t) isD t every time t ∈ [0, T ]D hypersurfe of lss C 1+ε of R N D nd onorml regulrity is preservedX t every time t ∈ [0, T ]D one hs

• ∇ρ(t) nd Ω(t) ∈ C ε Σ(t) D • u(t) nd ∇Π(t) ∈ C 1+ε Σ(t)
uniformly on [0, T ]F

More on paradierential calculus

The proof to our results is essentially based on the Fourier Analysis methods presented in chapter 1. In this section we will introduce some additional tools we need. As we are interested in the class of Hölder spaces, we will focus only on this case. First of all, let us quote a result (see [START_REF] Danchin | Poches de tourbillon visqueuses[END_REF] for the proof) pertaining to the right composition of functions in Besov spaces, which will be of great importance in the sequel. For the sake of completnees, let us also state what proposition 1.31 becomes in the particular case of Hölder continuous functions. Proposition 5.6. @iA vet I e n open intervl of R nd F : I → R smooth funtionF hen for ll ompt suset J ⊂ I nd ll s > 0D there exists onstnt C suh thtD for ll funtion u vlued in J nd with grdient in

C s-1 D we hve ∇(F • u) ∈ C s-1 nd ∇(F • u) C s-1 ≤ C ∇u C s-1 .

Propagation of striated regularity

Now we are ready to tackle the proof of theorem 5.3. We will carry out it in a standard way: rst of all we will prove a priori estimates for solutions of the non-homogeneous Euler equations. Then, we will construct a sequence of regular approximated solutions. Finally, thanks to upper bounds proved in the rst part, we will get convergence of this sequence to a solution of our initial system, with the required properties.

A priori estimates

First of all, we will prove a priori estimates for a smooth solution (ρ, u, ∇Π) of system (5.1).

Estimates for density and velocity eld

From rst equation of (5.1), it follows that ρ(t, x) = ρ 0 ψ -1 t (x) , so, as the ow ψ t is a dieomorphism over R N at all xed time, we have that (5.9)

0 < ρ * ≤ ρ(t) ≤ ρ * .
Applying the operator ∂ i to the same equation, using classical L p estimates for the transport equation and Gronwall's lemma, we get (5.10)

∇ρ(t) L ∞ ≤ ∇ρ 0 L ∞ exp C t 0 ∇u L ∞ dτ .
From the equation for the velocity, instead, we get, in a classical way,

u(t) L p ≤ u 0 L p + t 0 ∇Π ρ L p dτ ;
so, using (5.9) and Hölder inequalities, for a certain θ ∈ ]0, 1[ , the following estimate holds:

(5.11)

u(t) L p ≤ u 0 L p + C ρ * t 0 ∇Π θ L 2 ∇Π 1-θ L ∞ dτ .
Remark 5.10. Let us observe that, as regularity of the pressure goes like that of the velocity eld, one can try to estimate directly the L p norm of the pressure term. Unfortunately, we can't solve its (elliptic) equation in this space without assuming a smallness condition on the density or its gradient. So, we will prove that ∇Π is in L 2 ∩ L ∞ , which is actually stronger than previous property and requires no further hypothesis on ρ.

Already from (5.10) it's clear that we need an estimate for the L ∞ norm of the gradient of the velocity. As remarked before, we can't expect to get it from the hypothesis Ω ∈ L ∞ ; the key will be the further assumption, i.e. the hypothesis of more regularity of the vorticity along the xed directions given by the family X 0 .

Here we quote also a fundamental lemma, whose proof can be found in [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] (chapter 7) for the 2-dimensional case, in [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF] (section 3) and [START_REF] Gamblin | On three-dimensional vortex patches[END_REF] (again section 3) for the general one. It is the main point to get the velocity eld to be Lipschitz and it turns out to be immediately useful in the sequel. Lemma 5.11. pix 

ε ∈ ]0, 1[ nd n integer m ≥ N -1D nd tke nonEdegenerte fmily Y = (Y λ ) 1≤λ≤m of C ε vetorE(elds over R N suh tht lso their divergenes re in C ε F henD for ll indies 1 ≤ i, j ≤ N D there exist C ε funtions a ij D b kλ ij @with 1 ≤ k ≤ N D 1 ≤ λ ≤ mA suh thtD for ll (x, ξ) ∈ R N × R N D the following equlity holdsX ξ i ξ j = a ij (x)|ξ| 2 + k,λ b kλ ij (x) (Y λ (x) • ξ) ξ k .
woreoverD the funtions in the previous reltion ould e hosen suh tht

a ij L ∞ ≤ 1 b kλ ij C ε ≤ C m 2N -2 I(Y ) |||Y ||| 9N -10 C ε
. Now, we can state the stationary estimate which says that the velocity eld u is Lipschitz.

This can be done as in the classical case, because it's based only on the Biot-Savart law, or better on it's gradient version (5.4).

Proposition 5.12. pix ε ∈ ]0, 1[ nd q ∈ ]1, +∞[ Y moreoverD tke nonEdegenerte fmily Y = (Y λ ) 1≤λ≤m of C ε vetorE(elds over R N suh tht lso their divergenes re of lss C ε F hen there exists onstnt CD depending only on the spe dimension N nd on the numer of vetorE(elds mD suh thtD for ll skewEsymmetri mtries Ω with oe0ients in L q ∩ C ε Y D the orresponding divergeneEfree vetorE(eld uD given y (5.3)D stis(es

(5.12) ∇u L ∞ ≤ C q 2 q -1 Ω L q + 1 ε (1 -ε) Ω L ∞ log e + Ω C ε Y Ω L ∞ .

Estimates for the vorticity

Using the well-known L q estimates for transport equation and taking advantage of Gronwall's lemma and Hölder inequality in Lebesgue spaces, from (5.6) we obtain

Ω(t) L q ≤ C exp t 0 ∇u L ∞ dτ × (5.13) × Ω 0 L q + 1 (ρ * ) 2 t 0 e -τ 0 ∇u L ∞ dτ ∇ρ L ∞ ∇Π γ L 2 ∇Π 1-γ L ∞ dτ ,
for a certain γ ∈ ]0, 1[ . Of course an analogue estimate holds true also for the L ∞ norm:

Ω(t) L ∞ ≤ C exp t 0 ∇u L ∞ dτ × (5.14) × Ω 0 L ∞ + 1 (ρ * ) 2 t 0 e -τ 0 ∇u L ∞ dτ ∇ρ L ∞ ∇Π L ∞ dτ .
Remark 5.13. Let us x the index p pertaining to u and let us call q the real number in [2, +∞[ such that 1/p + 1/q = 1/2. From our hypothesis, it's clear that q ≤ q; therefore, thanks to Hölder and Young inequalities, we have

Ω L q ≤ Ω η L q Ω 1-η L ∞ ≤ Ω L q ∩L ∞ .
Estimates for the pressure term

Now, let us focus on the pressure term: taking the divergence of the second equation of system (5.1), we discover that it solves the elliptic equation (5.15)

-div ∇Π ρ = div (u • ∇u) .

From this, remembering our hypothesis and remark 5.13, estimate (5.5) and lemma 4.8, the control of the L 2 norm immediately follows:

(5.16)

1 ρ * ∇Π L 2 ≤ C u L p Ω L q ∩L ∞ .
Moreover, we have that ∇Π belongs also to L ∞ , and so, by interpolation, ∇Π ∈ L b for all b ∈ [2, +∞]. As a matter of fact, now we are going to show a stronger claim, that is to say ∇Π ∈ C 1 * . Cutting in low and high frequencies, we have that

∇Π C 1 * ≤ ∆ -1 ∇Π C 1 * + (Id -∆ -1 )∇Π C 1 * ≤ C ∇Π L 2 + ∆Π C 0 *
. Now, from (5.15) we get (5.17)

-∆Π = ∇ (log ρ) • ∇Π + ρ div (u • ∇u) .
From this last relation, from the fact that div (u • ∇u) = ∇u : ∇u and the immersion L ∞ → C 0 * , we obtain

∆Π C 0 * ≤ ∆Π L ∞ ≤ ∇ (log ρ) • ∇Π L ∞ + ρ div (u • ∇u) L ∞ ≤ C ∇ρ L ∞ ∇Π L ∞ + ρ * ∇u 2 L ∞ . Now, C 1 * → C η → L ∞
for all η ∈ ]0, 1[ ; taking for instance η = 1/2 and using interpolation inequalities between Besov spaces, we thus have, for a certain

β ∈ ]0, 1[ , ∇Π L ∞ ≤ ∇Π C 1/2 ≤ C ∇Π β C -N/2 ∇Π 1-β C 1 * ≤ C ∇Π β L 2 ∇Π 1-β C 1 *
.

Thanks to Young's inequality, from this relation and (5.16) one nally gets (5.18)

∇Π C 1 * ≤ C 1 + ∇ρ δ L ∞ u L p Ω L q ∩L ∞ + ρ * ∇u 2 L ∞ ,
for some δ depending only on the space dimension N . So we have proved our claim, i.e. ∇Π ∈ C 1 * , and so it belongs also to L ∞ .

Finally, we want to prove boundedness of second derivatives of the pressure term. This property is a consequence of striated regularity for ∇Π we will show in next section: for the time being, let us admit this fact. So, passing in Fourier variables and using lemma 5.11, for all 1 ≤ i , j ≤ N we can write

ξ i ξ j Π(ξ) = a ij (x)|ξ| 2 Π(ξ) + k,λ b kλ ij (x) (X λ (x) • ξ) ξ k Π(ξ) .
Applying the inverse Fourier transform F -1 ξ and passing to L ∞ norms, we get

∇ 2 Π L ∞ ≤ C ( ∆Π L ∞ + ∂ X ∇Π L ∞ ) .
Proposition 2.104 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF] tells us that 

∂ X ∇Π L ∞ ≤ C ε ∂ X ∇Π C 0 * log e + ∂ X ∇Π C ε ∂ X ∇Π C 0 * .
∇ 2 Π L ∞ ≤ C ∇ρ L ∞ ∇Π C 1 * + ρ * ∇u 2 L ∞ + (5.19) + X C ε ∇Π C 1 * log e + ∂ X ∇Π C ε X C ε ∇Π C 1 * .

A priori estimates for striated regularity

After having established the classical estimates, let us now focus on the conservation of striated regularity. The most important step lies in nding a priori estimates for the derivations along the vector-eld X. So, let us now state a lemma which explains the relation between the operators ∂ X and div ( • X) (see also remark 5.2).

Lemma 5.14. por every vetorE(eld X with omponents nd divergene in C ε D nd every funtion

f ∈ C η for some η ∈ ]0, 1]D we hve div (f X) -∂ X f C min{ε,η} ≤ C X C ε f C η .
woreoverD the previous inequlity is still true in the limit se η = 0D with f L ∞ insted of f C 0 * F roofF The thesis immediately follows from the identity div (f X) -∂ X f = f divX and from Bony's paraproduct decomposition.

So, it's enough for us to focus on the operator ∂ X .

The evolution of the family of vector-elds

First of all, we want to prove that the family of vector-elds X(t) = (X λ (t)) 1≤λ≤m , where each X λ (t) is dened by (5.7), still remains non-degenerate for all t, and that each X λ (t) still has components and divergence in C ε . Throughout this paragraph we will denote by Y (t) a generic element of the family X(t).

Applying the divergence operator to (5.8), an easy computation shows us that div Y satises

(∂ t + u • ∇) div Y = 0 , which immediately implies div Y (t) ∈ C ε for all t and (5.20) div Y (t) C ε ≤ C div Y 0 C ε exp c t 0 ∇u L ∞ dτ .
Moreover, starting again from (5.8), we get (for the details, see proposition 4.1 of [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF])

(∂ t + u • ∇) N -1 ∧ X λ = t ∇u • N -1 ∧ X λ , from which it follows N -1 ∧ X λ (t, x) = N -1 ∧ X λ (0, ψ -1 t (x)) - t 0 t ∇u • N -1 ∧ X λ (τ, ψ -1 t (ψ τ (x))) dτ .
This relation gives us

N -1 ∧ X λ (0, ψ -1 t (x)) ≤ N -1 ∧ X λ (t, x) + + t 0 ∇u(t -τ ) L ∞ N -1 ∧ X λ (t -τ, ψ -1 τ (x)) dτ ,
and by Gronwall's lemma one gets

N -1 ∧ X λ (t, x) ≥ N -1 ∧ X 0,λ (ψ -1 t (x)) e -c t 0 ∇u L ∞ dτ .
From this inequality we immediately gather that the family X(t) still remains non-degenerate at every time t:

(5.21)

I(X(t)) ≥ I(X 0 ) exp -c t 0 ∇u L ∞ dτ .
Finally, again from the evolution equation (5.8), it's clear that, to prove that Y (t) is of class C ε , we need a control on the norm in this space of the term ∂ Y u. To get this, we use, as very often in the sequel, the following decomposition:

∂ Y u = T Y u + (∂ Y -T Y ) u , with (by lemma 5.8) (∂ Y -T Y ) u C ε ≤ C Y C ε ∇u L ∞ .
Moreover, for all 1 ≤ i ≤ N thanks to (5.3) we can write

T Y u i = - k,j ∂ k (-∆) -1 T Y j ∂ j Ω ik -∂ k (-∆) -1 , T Y j ∂ j Ω ik .
Obviously, from lemma 5.8 we have

∂ k (-∆) -1 j T Y j ∂ j Ω ik C ε ≤ T Y Ω C ε-1 ≤ ∂ Y Ω C ε-1 + C Y C ε Ω L ∞ ,
while for the commutator term we use lemma 1.29, which gives us the following control:

∂ k (-∆) -1 , T Y j ∂ j Ω ik C ε ≤ C Y C ε Ω L ∞ .
So, in the end, from the hypothesis of striated regularity for the vorticity we get that also the velocity eld u is more regular along the xed directions and

(5.22)

∂ Y u C ε ≤ C ∂ Y Ω C ε-1 + Y C ε ∇u L ∞ .
Moreover, applying proposition 4.7 to (5.8) and using (5.22), (5.20) and Gronwall's inequality nally give us

(5.23) Y (t) C ε ≤ C exp c t 0 ∇u L ∞ dτ Y 0 C ε + t 0 e -c τ 0 ∇u L ∞ dτ ∂ Y Ω C ε-1 dτ .
These estimates having being established, from now on for simplicity we will consider the case of a single vector-eld X(t): the generalization to the case of a nite family is quite obvious, and where the dierence is substantial, we will suggest references for the details.

Striated regularity for the density

Now, we want to investigate propagation of striated regularity for the density. First of all, let us state a stationary lemma.

Lemma 5.15. vet f e funtion in

C 1 * F @iA sf ∂ X f ∈ C ε nd ∇f ∈ L ∞ D then one hs ∂ X ∇f ∈ C ε-1 nd the following inequlity holdsX (5.24) ∂ X ∇f C ε-1 ≤ C ∂ X f C ε + X C ε f C 1 * + ∇f L ∞ . @iiA gonverselyD if ∂ X ∇f ∈ C ε-1 D then ∂ X f ∈ C ε nd one hs (5.25) ∂ X f C ε ≤ C X C ε f C 1 * + ∇f L ∞ + ∂ X ∇f C ε-1 .
roofF (i) Using the paravector-eld operator (remember denition 5.7), we can write:

∂ X ∇f = (∂ X -T X ) ∇f + T X ∇f .
From lemma 5.8, we have that the rst term of the previous equality is in C ε-1 and

(5.26)

(∂ X -T X ) ∇f C ε-1 ≤ C X C ε ∇f L ∞ .
Now, we have to estimate the paravector-eld term: note that

T X ∇f = ∇ (T X f ) + [T X , ∇] f .
From hypothesis of the lemma, it's obvious that ∇ (T X f ) ∈ C ε-1 . For the last term, remembering that ∇ and T X are operators of order 1, we can use lemma 1.29 and get

(5.27) [T X , ∇] f C ε-1 ≤ C X C ε f C 1 * .
Putting together (5.26), (5.27) and the control for ∇ (T X f ) C ε-1 gives us the rst part of the lemma.

(ii) For the second part, we write again

∂ X f = T X f + (∂ X -T X ) f .
By denition of the space C ε X , we know that ∇f is bounded: so, second term can be easily controlled in C ε thanks to lemma 5.8. Now let us dene the operator Ψ such that, in Fourier variables, for all vector-elds v we have

F x (Ψv) (ξ) = -i 1 |ξ| 2 ξ • v(ξ) .
So, noting that the paravector term involves only high frequencies of f , we can write 

T X f = T X (Ψ ∇f ) = Ψ T X ∇f + [T X , Ψ] ∇f .
b ∈ [1, +∞]) is such that ∇f ∈ L ∞ , then f ∈ C 1 * (indeed f ∈ C 0,1
) and (separating low and high frequencies)

f C 1 * ≤ C ( f L b + ∇f L ∞ ) .
Both u and ρ satisfy such an estimate, respectively with b = p and b = +∞.

Thanks to lemma 5.15, we can equally deal with ρ or ∇ρ: as the equation for ρ is very simple, we choose to work with it. Keeping in mind that [X(t) , ∂ t + u • ∇] = 0, we have

∂ t (∂ X ρ) + u • ∇ (∂ X ρ) = 0 ,
from which (remember also (5.25)) it immediately follows that

(5.28) ∂ X(t) ρ(t) C ε ≤ C X 0 C ε (ρ * + ∇ρ 0 L ∞ ) + ∂ X 0 ∇ρ 0 C ε-1 exp c t 0 ∇u L ∞ dτ .
Therefore, one gets also

∂ X(t) ∇ρ(t) C ε-1 ≤ C exp c t 0 ∇u L ∞ dτ × (5.29) × (ρ * + ∇ρ 0 L ∞ ) X 0 C ε + ∂ X 0 ∇ρ 0 C ε-1 + + t 0 e -τ 0 ∇u L ∞ dτ ∂ X Ω C ε-1 dτ .

Striated regularity for the pressure term

In this paragraph we want to show that geometric properties propagates also to the pressure term, i.e. we want to prove ∂ X ∇Π ∈ C ε . Again, we use the decomposition ∂ X ∇Π = T X (∇Π) + (∂ X -T X ) ∇Π.

As usual, lemma 5.8 gives us 

(∂ X -T X ) ∇Π C ε ≤ C X C ε ∇ 2 Π L ∞ .
X 2 C ε ∇Π C 1 * ≤ C X C ε ∇Π C 1 * + X 3 C ε ∇Π C 1 *
, and nally we can control (∂ X -T X ) ∇Π C ε by the quantity (5.30)

C ρ W 1,∞ X C ε ∇Π C 1 * + X C ε ∇u 2 L ∞ + X 3 C ε ∇Π C 1 * + 1 2 ∂ X ∇Π C ε .
To deal with the paravector term, we keep in mind that ∇Π = ∇ (-∆) -1 (g 1 + g 2 ), where we have set

g 1 = -∇ (log ρ) • ∇Π and g 2 = ρ div (u • ∇u) . So it's enough to prove that both T X ∇ (-∆) -1 g 1 and T X ∇ (-∆) -1 g 2 belong to C ε .
Let us consider rst the term (5.31)

T X ∇ (-∆) -1 g 2 = ∇ (-∆) -1 T X g 2 + T X , ∇ (-∆) -1 g 2 .
From lemma 1.29 one immediately gets that (5.32)

T X , ∇ (-∆) -1 g 2 C ε ≤ C X C ε g 2 C 0 * ≤ C ρ * X C ε ∇u 2 L ∞ , while it's obvious that ∇ (-∆) -1 T X g 2 C ε ≤ C T X g 2 C ε-1 .
Now we use Bony's paraproduct decomposition and write

T X g 2 = T X T ρ div (u • ∇u) + T X T div (u•∇u) ρ + T X R (ρ, div (u • ∇u)) .
From theorem 1.24 and the equality div (u • ∇u) = ∇u : ∇u, it follows that (5.33)

T X T div (u•∇u) ρ C ε-1 ≤ C X L ∞ T div (u•∇u) ρ C ε ≤ C X C ε ρ C 1 * ∇u 2 L ∞ ,
and the same estimate holds true for the remainder term T X R (ρ, div (u • ∇u)). Lemma 5.9, instead, provides a control for T X T ρ div (u • ∇u) C ε-1 by (up to multiplication by a constant)

X C ε ρ C 1 * ∇u 2 L ∞ + ∇u 2 L ∞ T X ρ C ε-1 + ρ C 1 * T X div (u • ∇u) C ε-1 , where T X ρ C ε-1 ≤ C X C ε ρ C 1 * by theorem 1.24. Now the problem is the control of the C ε-1 norm of T X div (u • ∇u). Writing T X div (u • ∇u) = i,j 2 T X T ∂ i u j ∂ j u i + T X ∂ i R(u j , ∂ j u i ) = i,j,k 2 T X k ∂ k T ∂ i u j ∂ j u i + ∂ i T X k ∂ k R(u j , ∂ j u i ) -T ∂ i X k ∂ k R(u j , ∂ j u i ) ,
by use of lemma 5.9 we can easily see that it's bounded by

X C ε u C 1 * ∇u L ∞ + u C 1 * T X ∇u C ε-1 + ∇u L ∞ T X u C ε .
Hence, keeping in mind lemmas 5.8 and 5.15, we discover

T X div (u • ∇u) C ε-1 ≤ C X C ε u 2 C 1 Lemma 5.17. pix ε ∈ ]0, 1[ nd n open intervl I ⊂ RF vet X e C ε vetorE(eld with divergene in C ε D nd F : I → R e smooth funtionF hen for ll ompt set J ⊂ I nd ll ρ ∈ W 1,∞ vlued in J nd suh tht ∂ X ρ ∈ C ε D one hs tht ∂ X (F • ρ) ∈ C ε nd ∂ X ∇(F • ρ) ∈ C ε-1 F woreoverD the following estimtes hold trueX ∂ X (F • ρ) C ε ≤ C ρ W 1,∞ ∂ X ρ C ε ∂ X ∇(F • ρ) C ε-1 ≤ C ρ W 1,∞ ∂ X ρ C ε + X C ε ρ W 1,∞ ,
for onstnt C depending only on F nd on the (xed suset JF roofF The rst inequality is immediate, keeping in mind identity ∂

X (F • ρ) = F (ρ) ∂ X ρ and estimate F (ρ) C ε ≤ C F L ∞ (J) ρ C ε ≤ C F L ∞ (J) ρ W 1,∞ .
For the second one, we write:

∂ X ∇(F • ρ) = ∂ X F (ρ) ∇ρ = F (ρ) ∂ X ∇ρ + F (ρ) ∂ X ρ ∇ρ .
Let us observe that the rst term is well-dened in C ε-1 , and using decomposition in paraproducts and remainder operators, we have

F (ρ) ∂ X ∇ρ C ε-1 ≤ C F (ρ) W 1,∞ ∂ X ∇ρ C ε-1 .
Now, the conclusion immediately follows from lemma 5.15.

To handle the paravector term, we proceed in the following way. First of all, we note that, as div u = 0, we can write

Ω • ∇u + t ∇u • Ω ij = k ∂ i u k ∂ k u j -∂ j u k ∂ k u i = k ∂ k u j ∂ i u k -∂ k u i ∂ j u k .
So, we have to estimate the C ε-1 norm of terms of the type T X T ∇u ∇u and T X ∇R(u, ∇u) . Using the same trick as in (5.31) for the remainder terms and applying lemmas 5.9 and 1.29 give us the control of T X Ω • ∇u

+ t ∇u • Ω in C ε-1 by the quantity X C ε ( u L p + ∇u L ∞ ) 2 + ( u L p + ∇u L ∞ ) T X ∇u C ε-1 + ∇u L ∞ T X u C ε .
So, from lemmas 5.8 and 5.15 it easily follows

∂ X Ω • ∇u + t ∇u • Ω C ε-1 ≤ C X C ε ( u L p + ∇u L ∞ ) 2 + (5.42) + ∂ X u C ε ( u L p + ∇u L ∞ ) .
Now, let us analyse the rst term of (5.41). It can be written as the sum of three items:

∂ X 1 ρ 2 ∇ρ ∧ ∇Π = - 2 ρ 3 (∂ X ρ) (∇ρ ∧ ∇Π) + 1 ρ 2 (∂ X ∇ρ) ∧ ∇Π + 1 ρ 2 ∇ρ ∧ (∂ X ∇Π) .
So, let us consider each one separately and prove that it belongs to the space C ε-1 . Obviously, from previous estimates we have that rst and third terms are actually in L ∞ , which is embedded in C ε-1 , and satisfy

1 ρ 3 (∂ X ρ) (∇ρ ∧ ∇Π) C ε-1 ≤ C (ρ * ) 3 ∂ X ρ C ε ∇ρ L ∞ ∇Π C 1 * 1 ρ 2 ∇ρ ∧ (∂ X ∇Π) C ε-1 ≤ C (ρ * ) 2 ∇ρ L ∞ ∂ X ∇Π C ε .
Now, let us nd a C ε-1 control for the second term. Note that it is well-dened, due to the fact that both ρ and ∇Π are in C 1 * (the product of a C σ function, σ < 0, with a L ∞ one is not even well-dened). With a little abuse of notation (in the end, we have to deal with the sum of products of components of the two vector-elds), we write

(∂ X ∇ρ) ∇Π = T (∂ X ∇ρ) ∇Π + T ∇Π (∂ X ∇ρ) + R (∂ X ∇ρ, ∇Π) ; remembering theorem 1.24 and the embeddings C 1 * → L ∞ → C 0 * , we get (∂ X ∇ρ) ∧ ∇Π C ε-1 ≤ C ∂ X ∇ρ C ε-1 ∇Π C 1 * .
In the same way, as 1/ρ 2

C 1 * ≤ 1/ρ 2 W 1,∞ , we get 1 ρ 2 (∂ X ∇ρ) ∧ ∇Π C ε-1 ≤ C (ρ * ) 2 1 + ∇ρ L ∞ ρ * ∂ X ∇ρ C ε-1 ∇Π C 1 * .
So, using also lemma 5.15, we nally obtain, for a constant C depending also on ρ * and ρ * ,

∂ X 1 ρ 2 ∇ρ ∧ ∇Π C ε-1 ≤ C X C ε ρ 2 W 1,∞ ∇Π C 1 * + ∇ρ L ∞ ∂ X ∇Π C ε + (5.43) + ρ W 1,∞ ∂ X ∇ρ C ε-1 ∇Π C 1 *
.

Therefore, from equation (5.41), classical estimates for transport equation in Hölder spaces and inequalities (5.42) and (5.43), we obtain

∂ X Ω(t) C ε-1 ≤ C exp c t 0 ∇u L ∞ dτ × (5.44) × ∂ X 0 Ω 0 C ε-1 + t 0 e -t 0 ∇u L ∞ dτ Υ(τ ) dτ ,
where we have dened

Υ(t) := X C ε u 2 L p,∞ + ∂ X u C ε u L p,∞ + ∇ρ L ∞ ∂ X ∇Π C ε + (5.45) + X C ε ρ 2 W 1,∞ ∇Π C 1 * + ρ W 1,∞ ∇Π C 1 * ∂ X ∇ρ C ε-1 .

Final estimates

First of all, thanks to Young's inequality and estimates (4.56) and (5.18), for all η ∈ [0, 1] we have (5.46) 

∇Π η L 2 ∇Π 1-η L ∞ ≤ ∇Π L 2 ∩ C 1 * ≤ C 1 + ∇ρ δ L ∞ u L p Ω L q ∩L ∞ + ρ * ∇u 2 L ∞ . So, setting L(t) := u(t) L p + Ω(t) L q ∩L ∞ , putting (5 
L(t) ≤ C exp c t 0 ∇u L ∞ dτ L(0) + t 0 ∇u 2 L ∞ dτ + t 0 L 2 (τ ) dτ ,
with constants C, c depending only on N , ε, ρ * and ρ * . Now, if we dene (5.47)

T := sup t > 0 t 0 e -τ 0 L(τ )dτ L(τ ) + ∇u(τ ) 2 L ∞ dτ ≤ 2L(0) ,
from previous inequality and Gronwall's lemma and applying a standard bootstrap procedure, we manage to estimate the norms of the solution on [0, T ] in terms of initial data only:

L(t) ≤ C L(0) and ρ(t) W 1,∞ ≤ C ρ 0 W 1,∞ .
From this, keeping in mind (5.46) and (5.47), we also have

∇Π L ∞ t (L 2 )∩L 1 t (C 1 * ) ≤ C 1 + ∇ρ 0 δ L ∞ L 2 (0) .
Now, let us focus on estimates about striated regularity. First of all, from (5.21) we get that the family X(t) remains non-degenerate: I(X(t)) ≥ C I(X 0 ). Now, for notation convenience, let us come back to the case of only one vector-eld, which we keep to call X, and set S(t) := ∂ X(t) Ω(t) C ε-1 . Let us note that the constants C which will occur in our estimates depend on the functional norms of the initial data, but also on the time T .

From (5.23) We will repeatedly use it in what follows.

Now, let us focus on ∂ X ∇Π: for convenience, we want to estimate its L 1 t (C ε ) norm, starting from the bound (5.40) and the ones we have just found. First of all, we have

t 0 ρ W 1,∞ ∂ X ρ C ε ∇Π C 1 * dτ ≤ C t 0 ∇Π C 1 * X C ε ρ 2 W 1,∞ dτ ≤ ∇Π L 1 t (C 1 * ) X L ∞ t (C ε ) ≤ C 1 + t 0 S(τ )dτ .
Exactly in the same way, using also Jensen's inequality, we get Finally, let us handle the term S(t): from (5.44), we see that we have to control the L 1 t norm of ι, dened by (5.45). First of all, we have t 0

t 0 X 3 C ε ∇Π C 1 * dτ ≤ C ∇Π L 1 t (C 1 * ) X 3 L ∞ t (C ε ) ≤ C 1 +
X C ε u 2 L p,∞ dτ , t 0 u L p,∞ ∂ X u C ε dτ ≤ C 1 + t 0 S(τ ) dτ :
we have just analysed the same items multiplied by ρ W 1,∞ , which we controlled by a constant.

Moreover, one immediately nd

t 0 ∇ρ L ∞ ∂ X ∇Π C ε dτ ≤ C ∂ X ∇Π L 1 t (C ε ) , while the term X C ε ρ 2 W 1,∞ ∇Π C 1 *
already occurred in considering ∂ X ∇Π, and so it can be absorbed in the previous inequality. Finally, we have

t 0 ρ W 1,∞ ∇Π C 1 * ∂ X ∇ρ C ε-1 dτ ≤ C 1 + t 0 S(τ ) dτ .
one has that the sequence (∂ t ρ n ) n is bounded in L ∞ ([0, T ]; C -α ). Therefore (ρ n ) n is bounded in C 0,1 ([0, T ]; C -α ), and in particular uniformly equicontinuous in the time variable. Now, up to multiply by a ϕ ∈ D(R N ) (recall theorem 2.94 of [START_REF] Bahouri | pourier nlysis nd nonliner prtil di'erentil equtions, volume 343 of qrundlehren der wthemtishen issenshften pundmentl riniples of wthemtil ienes[END_REF]) and extract a subsequence, Ascoli-Arzelà theorem and Cantor diagonal process ensure us that ρ n → ρ in the space C([0, T ]; C -α loc ). Exactly in the same way, one can show that (ρ n ) n is bounded in C b ([0, T ]×R N ) and it converges to ρ in this space.

Finally, remember that ρ ∈ L ∞ ([0, T ]; W 1,∞ ), by compacteness of bounded sets of this space for the weak- * topology. Therefore, by interpolation one can recover convergence also in L ∞ ([0, T ]; C 1-η loc ) for all η > 0. We repeat the same argument for the velocity eld. For all n, we have

∂ t u n = -u n • ∇u n -a n ∇Π n ,
where we have set a n := (ρ n ) -1 . Let us notice that, as ρ 0 , a 0 := (ρ 0 ) -1 satisfy the same hypothesis and a n , ρ n satisfy the same equations, they enjoy also the same properties.

Keeping this fact in mind, let us consider each term separately.

• Thanks to what we have just said, (a n ) n is a bounded sequence in C b ([0, T ] × R N ) ∩ L ∞ ([0, T ]; C 1 * ). Moreover, from a priori estimates, we see that also (∇Π n ) n is bounded in the space L ∞ ([0, T ]; C 1 * ). Therefore, it follows that the sequence (a n ∇Π n ) n is bounded in L ∞ ([0, T ]; C -α ).

• In the same way, as (u n ) n ⊂ L ∞ ([0, T ]; C 1 * ) and (∇u n ) n ⊂ L ∞ ([0, T ]; L ∞ ) are both bounded sequences, one has that the sequence (u n • ∇u n ) n is bounded in L ∞ ([0, T ]; C -α ).

Therefore, exactly as done for the density, we get that (u n ) n is bounded in C 0,1 ([0, T ]; C -α ), so uniformly equicontinuous in the time variable. This fact implies that u n → u in C([0, T ]; C -α loc ). Finally, thanks to uniform bounds and Fatou's property of Besov spaces, we have that u ∈ L ∞ ([0, T ]; C 1 * ) and, by interpolation, that u n → u in C([0, T ]; C 1-η loc ) for all η > 0. So, thanks to strong convergence properties, if we test the equations on a ϕ ∈ C 1 ([0, T ]; S(R N )) (here we have set S to be the Schwartz class), we can pass to the limit and get that (ρ, u, ∇Π) is indeed a solution to the Euler system (5.1).

Before going on with the striated regularity, let us establish continuity properties of the solutions with respect to the time variable.

First of all, from ∂ t ρ = -u • ∇ρ , as u ∈ C([0, T ]; L ∞ ) (from the properties of convergence stated before) and ∇ρ ∈ L ∞ ([0, T ]; L ∞ ), we obtain that ρ ∈ C 0,1 ([0, T ]; L ∞ ), and the same holds for a := ρ -1 . Remember that u ∈ L ∞ ([0, T ]; L p ), ∇u and a ∈ L ∞ ([0, T ]; L ∞ ). Moreover, as ∇Π ∈ L ∞ ([0, T ]; L 2 ) ∩ L ∞ ([0, T ]; L ∞ ), it belongs also to L ∞ ([0, T ]; L p ). So, from the equation ∂ t u = -u • ∇u -a ∇Π , we get that ∂ t u ∈ L ∞ ([0, T ]; L p ), which implies u ∈ C 0,1 ([0, T ]; L p ).

In the same way, from (5.6) we get that Ω ∈ C([0, T ]; L q ), and therefore the same holds true also for ∇u.

Now, using elliptic equation (5.15) and keeping in mind the properties just proved for ρ and a, one can see that ∇Π ∈ C([0, T ]; L 2 ). So, coming back to the previous equation, we discover that also ∂ t u belongs to the same space.

Final checking about striated regularity It remains us to prove that also properties of striated regularity are preserved in passing to the limit. For doing this, we will follow the outline of the proof in [START_REF] Danchin | Poches de tourbillon visqueuses[END_REF].

gonvergene of the )ow

Let ψ n and ψ be the ows associated respectively to u n and u; for all xed ϕ ∈ D(R N ), by denition we have: So, from convergence properties stated in previous part, we have that ψ n → ψ in the space L ∞ ([0, T ]; Id + L ∞ loc ). Moreover, it's easy to see that

∇ψ n (t) L ∞ ≤ C exp t 0 ∇u n L ∞ dτ ,
which tells us that the sequence (ψ n ) n is bounded in L ∞ ([0, T ]; Id + C 0,1 ). Hence, nally we discover that ψ n → ψ also in the spaces L ∞ ([0, T ]; Id + C 1-η loc ) for all η > 0.

egulrity of ∂ X 0 ψ

First of all, let us notice that, by denition, ∂ X 0 (x) ψ n (t, x) = X n t (ψ n (t, x)) ; applying proposition 5.6, we get (5.50)

∂ X 0 ψ n t C ε = X n t • ψ n t C ε ≤ c ∇ψ n t L ∞ X n t C ε ,
which implies that (∂ X 0 ψ n ) n is bounded in the space L ∞ ([0, T ]; C ε ). Now we note that, for every xed ϕ ∈ D(R N ), we have

ϕ ∂ X 0 ψ n -ϕ ∂ X 0 ψ = ∂ X 0 (ϕψ n -ϕψ) -(∂ X 0 ϕ) (ψ n -ψ) ;
the second term is compactly supported, hence it converges in L ∞ because of what we have already proved. So let us focus on the rst one and consider the dierence ∂ X 0 (ϕ ψ n ) -∂ X 0 (ϕ ψ) = div (X 0 ⊗ ϕ(ψ n -ψ)) -ϕ(ψ n -ψ) div X 0 ;

decomposing both terms in paraproduct and remainder and remembering hypothesis over X 0 , it's easy to see that

∂ X 0 (ϕ ψ n ) -∂ X 0 (ϕ ψ) C ε-1 ≤ c ϕ ψ n -ϕ ψ C ε X 0 C ε .
Therefore, from what we have just proved, ∂ X 0 ψ n → ∂ X 0 ψ in L ∞ ([0, T ]; C ε-1 loc ); moreover, by Fatou's property, one gets that ∂ X 0 ψ ∈ L ∞ ([0, T ]; C ε ) and it veries estimate (5.50). So, by interpolation, convergence occurs also in L ∞ ([0, T ]; C ε-η loc ) for all η > 0.

3. egulrity of X t

Remembering the denitions X t (x) := ∂ X 0 (x) ψ (t, ψ -1 t (x)) div X t = div X 0 • ψ -1 t , from proposition 5.6 it immediately follows that X t and div X t both belong to C ε . Moreover, the same proposition implies that X n → X in the space L ∞ ([0, T ]; C ε-η loc ) for all η > 0, and the same holds for the divergence. In particular, we have convergence also in L ∞ ([0, T ]; L ∞ loc ), which nally tells us that X t remains non-degenerate for all t ∈ [0, T ], i.e. I(X t ) ≥ c I(X 0 ).

trited regulrity for the density nd the vortiity

Let us rst prove that regularity of the density with respect to the vector eld X t is preserved during the time evolution. To simplify the presentation, we will omit the localisation by ϕ ∈ D(R N ): formally, we should repeat the same reasoning applied to prove regularity of ∂ X 0 ψ. So, let us consider ∂ X n ρ n -∂ X ρ = div (ρ n (X n -X)) -ρ n div (X n -X) + div ((ρ n -ρ) X) -(ρ n -ρ) div X and prove the convergence in L ∞ ([0, T ]; C -1 loc ). Using Bony's paraproduct decomposition, it's not dicult to see that rst and third terms can be bounded by ρ n L ∞ X n -X L ∞ + ρ n -ρ L ∞ X L ∞ , while second and last terms can be controlled by ρ n L ∞ div (X n -X) C ε/2 + ρ n -ρ L ∞ div X C ε/2 , for instance. So, from the convergence properties stated for (ρ n ) n and (X n ) n , we get that ∂ X n ρ n → ∂ X ρ in the space L ∞ ([0, T ]; C -1 loc ), as claimed. Moreover, from a priori bounds and Fatou's property of Besov spaces, we have that ∂ X ρ ∈ L ∞ ([0, T ]; C ε ) and so, by interpolation, convergence occurs also in L ∞ ([0, T ]; C ε-η loc ) for all η > 0. Now we consider the vorticity term (again, we omit the multiplication by a D(R N ) function):

∂ X n Ω n -∂ X Ω = div ((X n -X) ⊗ Ω n ) -Ω n div (X n -X) + + div (X ⊗ (Ω n -Ω)) -(Ω n -Ω) div X .
From the convergence properties of (u n ) n , we get that Ω n → Ω in L ∞ ([0, T ]; C -η loc ) for all η > 0, so for instance also for η = ε/2. From this, using again paraproduct decomposition as done before, one can prove that ∂ X n Ω n → ∂ X Ω in L ∞ ([0, T ]; C -1-ε/2 loc ). Therefore, as usual from a priori estimates and Fatou's property of Besov spaces, we have that ∂ X Ω ∈ L ∞ ([0, T ]; C ε-1 ), and moreover convergence remains true (by interpolation) in spaces L ∞ ([0, T ]; C ε-1-η loc ) for all η > 0.

So, all the properties linked to striated regularity are now veried, and this concludes the proof of the existence part of theorem 5.3.

Uniqueness

Let us spend a few words on proof of uniqueness: it is an immediate consequence of the following stability result. Proposition 5.20. vet ρ 1 , u 1 , ∇Π 1 nd ρ 2 , u 2 , ∇Π 2 e solutions of system (5.1) with

0 < ρ * ≤ ρ 1 , ρ 2 ≤ ρ * .
vet us suppose tht δρ := ρ 1 -ρ 2 ∈ C([0, T ]; L 2 ) nd tht δu := u 1 -u 2 ∈ C 1 ([0, T ]; L 2 )F pinllyD ssume tht ∇ρ 2 D ∇u 1 D ∇u 2 nd ∇Π 2 ll elong to L 1 ([0, T ]; L ∞ )F henD for ll t ∈ [0, T ]D we hve the following estimteX δρ(t) L 2 + δu(t) L 2 ≤ C e c I(t) ( δρ(0) L 2 + δu(0) L 2 ) , where we hve de(ned

I(t) := t 0 ∇ρ 2 L ∞ + ∇u 1 L ∞ + ∇u 2 L ∞ + ∇Π 2 L ∞ dτ .
roofF From ∂ t δρ + u Now, in order to get bounds for ∇δΠ, we analyse its equation:

-div ∇δΠ ρ 1 = div - ∇Π 2 ρ 1 ρ 2 δρ + u 1 • ∇δu + δu • ∇u 2 = div - ∇Π 2 ρ 1 ρ 2 δρ + δu • (∇u 1 + ∇u 2 ) ,
where, to get the second equality, we have used the algebraic identity div (v • ∇w) = div (w • ∇v) + div (v div w) -div (w div v) .

So, from lemma 4.8 we obtain

∇δΠ L 2 ≤ C ∇Π 2 L ∞ δρ L 2 + δu L 2 ∇u 1 L ∞ + ∇u 2 L ∞
, and Gronwall's inequality completes the proof of the proposition. Now, let us prove uniqueness: let ρ 1 , u 1 , ∇Π 1 and ρ 2 , u 2 , ∇Π 2 satisfy system (5.1) with same initial data (ρ 0 , u 0 ), under hypothesis of theorem 5.3.

As δu(0) = 0 and u ∈ C([0, T ]; L p ), ∇u ∈ C([0, T ]; L q ), one easily gets that δu ∈ C 1 ([0, T ]; L 2 ). Moreover, from this fact, observing that also δρ(0) = 0, the equation for δρ tells us that δρ ∈ C([0, T ]; L 2 ). Hence proposition 5.20 can be applied and uniqueness immediately follows.

On the lifespan of the solution

The aim of this section is to establish, in the most accurate way, an explicit lower bound for the lifespan of the solution of system (4.1) in terms of initial data only.

For notation convenience, let us dene L 0 := u 0 L p + Ω 0 L q ∩L ∞ and A 0 := ∇ρ 0 L ∞ . Now, thanks to (a + b) 3 ≤ C(a 3 + b 3 ) and Jensen's inequality we infer

X 3 C ε ∇Π C 1 * ≤ Γ 0 + t 0 S 3 (τ )dτ 1 + A δ 0 Θ 2 (t) .
Finally, the fact that u(t) L p,∞ ≤ Θ(t) and hence this regularity is preserved if we restrict ∂ X i f only to Σ. So, proposition 5.26 and remark 5.27 both imply that f |Σ ∈ C 1+ε (Σ).

implies ρ W 1,∞ X C ε u 2 L p,∞ ≤ (1 + A 0 ) Γ 0 + t 0 S(τ )dτ Θ 2 (t) ρ W 1,∞ u L p,∞ ∂ X u C ε ≤ (1 + A 0 ) Θ(t
Now, let us come back to the situation of theorem 5.5. Moreover, let us suppose that the hypersurface Σ 0 is also connected: then it separates the whole space R N into two connected components, the rst one bounded and the other one unbounded, and whose boundary is exactly Σ 0 . In dimension 2, this is nothing but the Jordan curve theorem, while in the general case N ≥ 3 it's a consequence of the Alexander duality theorem (see e.g. [START_REF] Hatcher | elgeri topology[END_REF], theorem 3.44). For the sake of completeness, we will quote the exact statement and its proof, actually due to A. Lerario, in section 5.7.

So, let us set D 0 to be the bounded domain of R N whose boundary is ∂D 0 = Σ 0 and let us dene D(t) = ψ t (D 0 ). As the ow ψ t is a dieomorphism for every xed time t, we have that ∂D(t) = Σ(t) and also the complementary region is transported by ψ: D(t) c = ψ t (D c 0 ). Let us denote by χ A the characteristic function of a set A.

Theorem 5.29. nder hypothesis of theorem SFSD suppose lso tht the initil dt n e deE omposed in the following wyX ρ 0 (x) = ρ i 0 (x) χ D 0 (x) + ρ e 0 (x) χ D c 0 (x) nd Ω 0 (x) = Ω i 0 (x) χ D 0 (x) + Ω e 0 (x) χ D c 0 (x) , with ρ i 0 ∈ C 1+ε (D 0 ) nd Ω i 0 ∈ C ε (D 0 )F henD the previous deomposition still holds for the solution t every time t ∈ [0, T ]X ρ(t, x) = ρ i (t, x) χ D(t) (x) + ρ e (t, x) χ D(t) c (x)

(5.57) Ω(t, x) = Ω i (t, x) χ D(t) (x) + Ω e (t, x) χ D(t) c (x) .

(5. [START_REF] Trèves | fsi liner prtil di'erentil equtions[END_REF] woreoverD rölder ontinuity in the interior of the domin D(t) is preservedD uniformly on [0, T ]X t every time tD we hve ρ i (t) ∈ C 1+ε (D(t))

nd Ω i (t) ∈ C ε (D(t)) .

sn dditionD regulrity on D(t) propgtes lso for the veloity (eld nd the pressure termX u(t) nd ∇Π(t) oth elong to Thanks to the rst equation of (5.1), relation (5.57) obviously holds, with ρ i,e (t, x) = ρ i,e 0 ψ -1 t (x) .

So, we immediately get that ρ i (t) belongs to the space C 1+ε (D(t)). Let us observe also that a decomposition analogous to (5.57) holds also for a = 1/ρ, and its components a i,e have the same properties of the corresponding ones of ρ.

Now let us handle the vorticity term. We can always decompose the solution in a component localized on D(t) and the other one supported on the complementary set, dening Ω i (t, x) := Ω(t, x) χ D(t) (x) , Ω e (t, x) := Ω(t, x) χ D(t) c (x) ,

and therefore obtain relation (5.58). By virtue of this fact, equation (5.6) restricted on the domain D(t) reads as follows: 

∂ t Ω i + u • ∇Ω i = -Ω i • ∇u + t ∇u • Ω i + ∇a i ∧ ∇Π ,
Ω i (t) C ε ≤ C Ω i 0 C ε + t 0 Ω i • ∇u + t ∇u • Ω i C ε + ∇a i ∧ ∇Π C ε dτ .
We claim that the rst term under the integral can be controlled in C ε . As a matter of facts, by Let us note that, as pointed out in [START_REF] Gilbarg | illipti prtil di'erentil equtions of seond order[END_REF], a priori the constant C depends on ∂D(t) through the C 1+ε norms of its local parametrizations, so nally on exp t 0 ∇u L ∞ dτ . However relation (5.59) allows us to control it uniformy on [0, T ]. Therefore, in D(t) one gets the following inequality:

Ω i • ∇u + t ∇u • Ω i C ε (D(t)) ≤ C ∇u L ∞ Ω i C ε (D(t)) + Ω L ∞ u C 1+ε (D(t)) ,
which proves our claim.

Finally, let us handle the pressure term. From what we have proved, ∇a i is in C ε ; so

∇a i ∧ ∇Π C ε ≤ C ∇a i C ε ∇Π C 1 * (R N )
. However, we want to prove that an improvement of regularity in the interior of D(t) occurs also for ∇Π. In fact, keeping in mind (5.17), Π satises the elliptic equation -∆Π = ∇(log ρ i ) • ∇Π + ρ i ∇u : ∇u in the bounded domain D(t). Now, from what we have proved, the right-hand side obviously belongs to C ε (D(t)). Moreover, by theorem 5.5 and corollary 5.28, we have ∇Π |∂D(t) ∈ C 1+ε (∂D(t)): in particular, as Σ(t) is compact, Π |∂D(t) is continuous and bounded. Finally, as D(t) is of class C 1+ε , it satises the exterior cone condition (see [START_REF] Dautray | wthemtil nlysis nd numeril methods for siene nd tehnologyF olF I[END_REF], page 340). So, theorem 6.13 of [START_REF] Gilbarg | illipti prtil di'erentil equtions of seond order[END_REF] applies: from it, we gather Π(t) ∈ C 2+ε (D(t)). Therefore, ∇Π(t) |D(t) ∈ C 1+ε (D(t)) and its norm is bounded by

∇Π |∂D(t) C 1+ε (∂D(t)) + ∇a i C ε (D(t)) ∇Π C 1 * (R N ) + ρ i C 1+ε (D(t)) ∇u 2 C ε (D(t)) .
Putting all these inequalities together and applying Gronwall's lemma, we nally get a control for the C ε norm of Ω i in the interior of D(t), and this completes the proof of the theorem.

Complements from Algebraic Topology

Here we want to prove the following theorem, which we used in last section of the present chapter.

For the technical denitions, notions and results, we refer to [START_REF] Hatcher | elgeri topology[END_REF].

Theorem 5.30. por ny dimension N ≥ 2D let Σ ⊂ R N e omptD onneted hypersurfe without oundryF hen R N \Σ hs two onneted omponents @syA B nd U D one ounded nd the other one unoundedD whose oundry is just ΣF The previous result implies in particular that Σ is orientable (see theorem 5.31).

Let us note that, if we already assumed this (redundant) hypothesis in theorem 5.30, then the proof would be easier (see e.g. [START_REF] Elon | The Jordan-Brouwer separation theorem for smooth hypersurfaces[END_REF]).

The proof we quote here is actually due to A. Lerario.

roofF With standard notations, for a submanifold M ⊂ R N and an abelian group G, we denote with H k (M; G) and H k (M; G)

the k-th reduced homology and cohomology groups of M with coecients in G.

Let us compactify R N by adding the point at innity: in this way, we reconduct ourselves to work with the N -dimensional sphere S N = R N ∪ {∞}. Obviously, R N \Σ and S N \Σ have the same number of connected components.

By Alexander duality theorem (see theorem 3.44 of [START_REF] Hatcher | elgeri topology[END_REF]) with coecients in Z 2 , we have

H k (S N \Σ; Z 2 ) H N -k-1 (Σ; Z 2 ) ∀ k ≥ 0 .
In particular, this is true for k = 0:

H 0 (S N \Σ; Z 2 ) H N -1 (Σ; Z 2 ) .
Now, as Σ is compact, connected and without boundary, theorem 3.26 of [START_REF] Hatcher | elgeri topology[END_REF] applies, and gives us

H N -1 (Σ; Z 2 ) Z 2
(independentely whether Σ is orientable or not). In particular, also H 0 (S N \Σ; Z 2 ) is isomorphic to the same group, and this implies that the homology group (not reduced!)

(5. Hence, U and B are the two connected components of R N \Σ. Moreover, it's easy to see (for instance, by stereographic projection with respect to the point ∞) that U is unbounded, while B is bounded. Finally, obviously ∂B ≡ ∂U ≡ Σ.

As already pointed out, theorem 5.30 entails the following fundamental result. Even if it lies outside of the topics of the present manuscript, we decided to quote it to give a more complete and detailed picture of the framework we adopted in section 5.6.

Again, the proof is due to A. Lerario.

Theorem 5.31. vet Σ ⊂ R N @for some N ≥ 2A e omptD onneted hypersurfe without oundryF hen Σ is orientleF roofF The starting point is relation (5.60) in the previous proof. Actually, it holds true for any submanifold M and any abelian group G:

(5.61)

H 0 (M; G) H 0 (M; G) ⊕ G .

Moreover, it is always true that H 0 (M; G) is isomorphic to the direct product of n copies of G, where n is the number of connected components of M:

(5.62)

H 0 (M; G) G ⊕n

(see [START_REF] Hatcher | elgeri topology[END_REF] for the proof of these facts).

In the previous proof, we established that the rank of H 0 (S N \Σ; Z 2 ) is 2. Then, by (5.62) we have that it is still 2 if we consider the homology with coecients in Z: rk H 0 (S N \Σ; Z) = 2 .

Therefore, keeping in mind (5.61) and the Alexander duality theorem, we gather H 0 (S N \Σ; Z) Z =⇒ H N -1 (Σ; Z) Z .
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  methods for Partial Differential Equations

  |a jk (t, x + y) -a jk (t, x)| ≤ K 0 |y| log 1 + 1 |y| .

  pression. Le terme ∇Π peut être vu aussi comme le multiplicateur de Lagrange associé à la contrainte de divergence nulle sur la vitesse. Introduction xxv a été étudié à fond et il y a une vaste littérature à lui consacrée.

  vet 1 ≤ r < +∞F por ll u ∈ B s+α log p,r D we hve lim j→+∞ u -S j u B s+α log p,r = 0 .

Proposition 1 .

 1 42. pix p nd r (niteF hen the spe of test funtions D(R N ) is densely emedded in B s+α log p,r (R N )F roofF Let us x a ε > 0. By lemma 1.39, there exists a k > 0 such that u -S k u B s+α log p,r < ε .

2

 2 and every (p, r) ∈ [1, +∞] 2 , P maps B s+α log p,r into B (s-m)+(α-δ) log p,r continuously.

Lemma 1 .

 1 58. por ll σ ∈ Σ m+δ log D the orresponding opertor σ( • , D x ) is of order m + δ logF roofF Let us take a u ∈ B s+α log p,r

1 . 2 ≤ 3 ν=0 3 ν=0e

 1233 Let us x µ ≤ 2. Then ν≥0 |l νµ | ≤ C e (µ+1)βt 2 (µ+1)θ ν≥0 e -(ν+1)βt 2 -(ν+1)θ 2 -νω ≤ C e 3βt 2 3θ ν≥0 e -(ν+1)(βt+θ log 2) (ν + 1) 1/C e 3βt 2 3θ α 2 (βt + θ log 2) ≤ C 22. Now, take µ ≥ 3 and consider rst µ-|l νµ | ≤ C e µβt 2 µθ 2 -µω µ--νβt 2 -νθ

Finally, we have

  to deal with the commutator [∆ ν , c(t, x)].

(4. 2 )

 2 div (a∇Π) = div F , with F := f -u • ∇u and a := 1/ρ .

(4. 18 ) 1 ∞,r with ∇a B s- 1 ∞,r according to proposition 1 . 31 .

 1811131 ∆Π = -∇(log a) • ∇Π + F a •Let us consider the rst term of the right-hand side of the previous equation.If s > 1 then one may use that B s-1 ∞,r is an algebra and bound ∇(log a) B s-So we get

4. 5 . 1

 51 The general case Let ρ 0 , u 0 and f satisfy the assumptions of theorem 4.1 or 4.4. Denote u 0 (x) := ε u 0 (x) and f (t, x) := ε 2 f (ε t, x) .

(

  with p ∈ ]2, +∞[ and ε ∈ ]2/p, 1[ ) due to technical reasons which come out with a viscous uid.

  while we will use the symbol ||| • ||| in considering the supremum over all indices λ ∈ Λ m 1 = {1 . . . m}. Denition 5.1. Take a vector-eld Y with components and divergence in C ε and x a η ∈

Now, applying lemmas 5 .

 5 8 and 1.29 completes the proof. Remark 5.16. Let us note that, if f ∈ L b (for some

  .10) and (5.46) into (5.11), (5.13) and(5.14), for all xed T > 0 we obtain, in the time interval [0, T ], an inequality of the form

t 0 S 3 0 ρ W 1 , 0 S(τ ) dτ t 0 ρ W 1 , 0 S(τ ) dτ + t 0 ∇u 0 ( 1 + 0 S 3

 0301001000103 (τ ) dτ , while, keeping in mind the denition of the L p,∞ norm (see remark 5.16) and inequality (5.48), we easily ndt ∞ X C ε u 2 L p,∞ dτ ≤ C 1 + t ∞ u L p,∞ ∂ X u C ε dτ ≤ C 1 + t L ∞ S(τ ) dτ .Therefore, in the end we get∂ X ∇Π L 1 t (C ε ) ≤ C 1 + t ∇u L ∞ )S(τ ) dτ + t (τ ) dτ .

  |ϕ(x) (ψ n (t, x) -ψ(t, x))| ≤ t 0 |ϕ(x) (u n (τ, ψ n (τ, x)) -u(τ, ψ(τ, x)))| dτ ≤ t 0 |ϕ(x) (u n -u) (τ, ψ n (τ, x))| + + |ϕ(x)u n (τ, ψ n (τ, x)) -ϕ(x)u n (τ, ψ(τ, x))| dτ ≤ t 0 ∇u n L ∞ |ϕ(x) (ψ n -ψ) (τ, x)| dτ + + t 0 ϕu n -ϕu L ∞ dτ .

M 0 := ( 1 + 0 S(τ )dτ ≤ 1 + A δ+2 0 ( 1 + 0 S 0 Θ 2 (τ ) 1 + τ 0 S 3 0 Θ 2 (τ ) 1 + τ 0 S 3 0 t 0 Θ 2 0 Θ 2 (τ ) 1 + τ 0 S 3

 10101002030203020203 A 0 )M 0 . Finally, ρ W 1,∞ ∇Π C 1 * ∂ X ∇ρ C ε-1 ≤ ≤ (1 + A 0 ) 1 + A δ 0 Θ 2 (t) (1 + A 0 )Γ 0 + R 0 + t Γ 0 + R 0 ) Θ 2 (t) 1 + t (τ )dτ .So, putting all these inequalitites together, we discover that, in [0, T 1 ],S(t) ≤ C S 0 + M 0 t (τ )dτ + Θ(τ )S(τ ) dτ ,and, in the end, by use of Gronwall's lemma this impliesS(t) ≤ C e c t 0 Θ(τ )dτ S 0 + M 0 t (τ )dτ dτ .Dene T 2 as the supremum of the times t > 0 for which both the relations M (τ )dτ ≤ 2L 0 and M 0 t (τ )dτ dτ ≤ 2S 0 are fullled. Note that, by Cauchy-Schwarz inequality, this implies in particular t 0 Θ(τ )dτ ≤ C: so, thanks to (5.52), we can suppose T 2 ≤ T 1 . Hence, keeping in mind(5.53), in [0, T 2 ] one hasS(t) ≤ C 1 S 0 , L(t) ≤ C 2 L 0 and Θ(t) ≤ C 3 Θ 0 ,because the function (λ, σ) → λ log(e + σ/λ) is increasing both in λ and σ.

  C 1+ε (D(t))F roofF First of all, let us recall that, by theorem 5.5, on [0, T ] we have (5.59) T 0 ∇u(t) L ∞ dt ≤ C .

5. 7 .

 7 Complements from Algebraic Topology 123 which gives us the estimate (keep in mind also (5.59))

( 5 . 3 )

 53 we know that the velocity eld satises the elliptic equation-∆u k = N j=1 ∂ j Ω i kj in D(t), with the boundary condition (by theorem 5.5 and corollary 5.28) u |∂D(t) ∈ C 1+ε (∂D(t)). So (see theorem 8.33 of[START_REF] Gilbarg | illipti prtil di'erentil equtions of seond order[END_REF]) we have that u ∈ C 1+ε (D(t)) and the following inequality holds:u C 1+ε (D(t)) ≤ C u(t) L ∞ (D(t)) + u |∂D(t) C 1+ε (∂D(t)) + Ω i C ε (D(t)) .

60 ) 2 has rank equal to 2 .

 6022 H 0 (S N \Σ; Z 2 ) H 0 (S N \Σ; Z 2 ) ⊕ Z But the rank of H 0 (M; G) is always the number of the connected components of M. Hence, S N \Σ has two connected components, A and B.Let us suppose that ∞ ∈ A; thenS N \Σ = A ∪ B =⇒ R N \Σ = (A\{∞}) ∪ B .Now, as N ≥ 2, U := A\{∞} is still connected.

  Grâce au théorème de Paley-Wiener, chaque unité dyadique ∆ j u est une fonction lisse. En plus, grâce à la localisation spectrale, les propriétés d'integrabilité de ∆ j u sont strictement liées avec celles de leurs dérivées D α ∆ j u (voir aussi le lemme 1.2 en dessous). Ces faits sont fondamentals et largement utilisés dans l'analyse des équations diérentielles à dérivées partielles.En utilisant la décomposition de Littlewood-Paley, on peut dénir ce qu'un espace de Besov est. Pour tout s ∈ R and tout (p, r) ∈ [1, +∞] 2 , l9espe de fesov nonEhomogène B s js ∆ j u L p j∈N r < +∞ . espaces fonctionels agrandissent les classes de Sobolev et de Hölder: on a H s ≡ B s

			xxi
	De cette façon, on a la déomposition de vittlewoodEley d'une distribution temperée u:
	+∞		
	u =	∆ j u	dans S .
	j=0		
			p,r est déni
	comme l'ensemble des distributions temperées u pour lesquelles la quantité
	(13) 2 Ces 2,2 pour u B s p,r :=
	tout		
			avec

  On a supposé que la vitesse initiale u 0 et son tourbillon Ω 0 étaient dans quelques espaces de Lebesgue, an d'assurer, encore une fois, ∇Π ∈ L 2 . On a supposé aussi des propriétés de type géometrique pour Ω 0 . De plus, on a demandé que la densité initiale ρ 0 était bornée avec son gradient et qu'elle satisfaisait des conditions géomotriques analogues à celles pour Ω 0 . Sous ces hypothèses, on est arrivé à prouver l'existence (bien sûr, localement en temps) et l'unicité des solutions de[START_REF] Colombini | A note on non-homogeneous hyperbolic operators with low regularity coecients[END_REF], et la persistance de ces structures géometriques. Il faut remarquer qu'on n'a pas demandé expressément que le champ de vitesses était lipschitizien. Cette propriété suit de la régularité stratiée pour le tourbillon, et elle est vraie comme dans le cas homogène. En fait, sa preuve repose seulement sur la loi de Biot-Savart, et donc rien ne change par rapport au cas classique: en particulier, aucune condition en plus était demandée. Il faut dire aussi que les structures géometriques se propagent au champ de vitesses et au terme de pression. Dans le même travail, on a donné une estimation du dessous pour le temps de vie de la solution en termes seulement des données initiales, dans toute dimension N ≥ 2. Dans le cas de densité constante, il faut se rappeler qu'il était donné (à moins de multiplication par des constantes) par

  Remark 1.10. If r = +∞, instead, the closure of D(R N ) for the B s p,r norm is the subset of tempered distributions u ∈ S such that lim j→+∞ 2 js ∆ j u L p = 0.

	Proposition 1.9. pix p nd r (niteF				
	hen the spe of test funtions D(R N ) is densely emedded in B s p,r (R N )F
	Theorem 1.7. he set B s p,r is fnh speF woreoverD it stis(es the ptou propertyX if (u j ) j∈N is ounded sequene of B s p,r D then there exist
	n element u ∈ B s p,r nd susequene u ψ(j) j∈N suh tht	
	lim j→+∞	u ψ(j) = u in S	nd	u B s p,r ≤ C lim inf j→+∞	p,r u ψ(j) B s	.
	Let us also quote a density result.				
	Lemma 1.8. vet r < +∞F por ll u ∈ B s p,r we hve		
		lim j→+∞	u -S j u B s p,r	= 0 .	

  Now, let us state a characterization of Besov spaces with negative index of regularity in terms of the low frequencies cut-o operators. Proposition 1.16. here exists onstnt C for whih the following result holdsF vet s < 0D (p, r) ∈ [1, +∞] 2 nd u ∈ S F hen u ∈ B s p,r if nd only if the sequene 2 js S j u L p j∈N ∈ r F woreoverD

are ready to dene the homogeneous Besov space Ḃs p,r . Denition 1.21

  . Let s ∈ R and (p, r) ∈ [1, +∞] 2 . The space Ḃs

							u ,
	and the homogeneous low frequencies cut-o operators
				Ṡj u =		∆k .
						k≤j-1
	So, formally, one can write Id =	j∈Z ∆j .	
	Now, we p,r is dened as the subset of
	distributions u ∈ S h such that				
		u Ḃs p,r	:=	2 js	∆j u	L p j∈Z r	< +∞ .
	The space Ḃs p,r , endowed with • Ḃs p,r	, is a normed space, but it is not complete, in general.
	Theorem 1.22. vet s ∈ R nd (p, r) ∈ [1, +∞] 2 suh tht
	s <	N p		or			s =	N p	nd r = 1 .
	hen the spe Ḃs p,r D endowed with the norm • Ḃs p,r

  1.26. vet B e ll of R N D s > 0 nd (p, r) ∈ [1, +∞] 2 F vet (u j ) j∈N e sequene of smooth funtions suh tht supp u j ⊂ 2 j B nd 2 js u j L p j∈N r < +∞ . ≤ C s 2 js u j L p j∈N r .

	hen u := j∈N u j elongs to B s p,r nd
	u B s p,r Combining the theorem 1.24 with Bony's decomposition (1.3), we easily get the following
	tame estimate:
	Corollary 1.27. vet a e ounded funtion suh tht ∇a ∈ B s-1 p,r for some s > 0 nd (p, r) ∈ [1, +∞] 2 . hen for ny b ∈ B s p,r ∩ L ∞ we hve ab ∈ B s p,r ∩ L ∞ nd there exists onstnt CD
	depending only on N, p nd sD suh tht

  1.4.2 Duality, multipliers, interpolationLet us now investigate duality properties of logarithmic Besov spaces. Also in this case, it's not hard to generalize the corresponding classical result.

Proposition 1.43. por ll sD α ∈ R nd (p, r) ∈ [1, +∞] 2 D the mp

  Now, arguing as in proposition 1.45 completes the proof. Lemma 1.58 immediately implies the following theorem, which describes the action of the new class of paradierential operators.Theorem 1.59. qiven symol a ∈ Γ m+δ log D for ny dmissile utEo' funtion ψD the opertor

T ψ a is of order m + δ logF

As already remarked, the construction does not depends on the cut-o function ψ used at the beginning. Next result says that main features of a paradierential operator depend only on its symbol, if it is regular enough.

Proposition 1.60. sf ψ 1 nd ψ 2 re two dmissile utEo' funtions nd

  .23) roofF Inequalities in (2.18) immediately follow from the fact that |ρ| ≤ 1.

	Relation (2.19), instead, follows from (2.11), after one has observed that

  t) ,

	while, from (2.20) with σ = 1/2, (2.21) and (2.23) we deduce

  .10) Now, let us state our main result, i.e. an energy estimate for the operator (3.7). Theorem 3.1. vet us onsider the opertor L de(ned in (3.7)D nd let us suppose L to e stritly hyperoli with ounded oe0ientsD iFeF reltion (3.8) holds trueF woreoverD let us suppose tht the a ij 9s stisfy lso onditions (3.9) nd (3.10)F henD for ll (xed θ ∈ ]0, 1[ D there exist some β * > 0D some time T > 0 nd some onstnt C > 0 suh tht the following estimteD

  3.16. Let us point out that condition(3.48) gives us a condition on the lifespan T of a solution to the Cauchy problem for (3.7). It depends on θ ∈ ]0, 1[ and on β * > 0, hence on constants C 1 . . . C 4 . Going after the guideline of the proof, one can see that, in the end, the time T depends only on the index θ, on the parameter µ dened by conditions(3.21), on the constants λ 0 and Λ 0 dened by (3.8) and on the quantities sup i,j a ij LZt and sup i,j a ij LLx .

	Chapter 4
	Part III
	Density-dependent Incompressible
	Euler system

1/2 Lu(t) H -θ-β * t ; applying Gronwall's lemma and keeping in mind (3.25) and (3.26) give us estimate (3.11). Remark

  we immediately get the following corollary. Corollary 4.3. he lifespn of solution in B s ∞,r with s > 1 is the sme s the lifespn in B 1 ∞,1 F sn prtiulrD ondition (4.4) holds true with ∇Π B 0 ∞,1 F

  Lemma 4.8. por ll vetor (eld F with oe0ients in L 2 , there exists tempered distriution Π, unique up to onstnt funtionsD suh tht ∇Π ∈ L 2 nd eqution (4.7) is stis(edF sn dditionD we hve

	(4.9)

  r , standard interpolation inequalities (see theorem 1.17) ensure that(4.19) 

  Now, in order to close the estimates, we need to control the pressure term. Its Besov norm can be bounded as in section 4.3, up to a change of u L 2 into u L 4 ; indeed it is clear that in inequality (4.23) the L 2 norm of u may be replaced by any L p norm with p < +∞.

	As a
	consequence, combining the (modied) inequality (4.24) and (4.20) yields
	(4.54) ∇Π L 1 t

  ∇u) ,

	from which, applying elliptic estimates of lemma 4.8 and
	(4.55)	∇u L 4 ≤ C Ω L 4 ,
	we get	
	(4.56)	

  together inequalities (4.50), (4.51), (4.52), (4.55), (4.54), (4.53) and (4.56) enables us to close the estimates on some nontrivial time interval [0, T ] depending only on the norm of the data. In eect, assuming that T has been chosen so that Inequality (4.27) is satised, we get from the above inequalities

  is now time to insert inequalities (4.60) and (4.63) in (4.59); setting β = γ + 1, we get (4.64)

  Denition 5.4. Let Σ ⊂ R N be a compact hypersurface of class C 1+ε . Let us denote by T ε Σ the set of all vector-elds X with components and divergence in C ε , which are tangent to Σ, i.e. ∂ X H |Σ ≡ 0 for all local equations

  Using Bony's paraproduct decomposition to handle the norm in C 0 * and noticing that the function ζ → ζ log(e + k/ζ) is nondecreasing, we nally get

  and (5.22) we nd(5.28) and(5.29) give us∂ X ρ C ε ≤ C and ∂ X(t) ∇ρ(t) C ε-1 ≤ C 1 +Before going on, let us notice the following fact, which is a direct consequence of the integral condition in (5.47): for m = 1, 2 we have

				t
				S(τ ) dτ .
				0
	t	τ	t	
	(5.48)	S(τ )dτ	∇u(τ ) m L ∞ dτ ≤ C	S(τ ) dτ .
	0	0	0	

X(t) C ε ≤ C X 0 C ε + t 0 S(τ ) dτ ∂ X(t) u(t) C ε ≤ C S(t) + X(t) C ε ∇u(t) L ∞ , while

  1 • ∇δρ = -δu • ∇ρ 2 , we immediately getδρ(t) L 2 ≤ δρ(0) L 2 +Moreover, the equation for δu reads as follows:∂ t δu + u 1 • ∇δu = -δu • ∇u 2 -∇δΠ ρ 1 + ∇Π 2 ρ 1 ρ 2 δρ ,where we have set δΠ = Π 1 -Π 2 . So, from standard L p estimates for transport equations, one infers thatδu(t) L 2 ≤ δu(0) L 2 + C t 0 δu L 2 ∇u 2 L ∞ + ∇δΠ L 2 + ∇Π 2 L ∞ δρ L 2 dτ .

	t		
	0	δu L 2 ∇ρ 2	L ∞ dτ .

  ) S(t) + Γ 0 + A 0 )(1 + Γ 0 ) S(t) + Θ(t) Θ(t) + (1 + A 0 )Θ 2 (t) let us focus on the striated norm of the vorticity, estimated in(5.44). Analysing each term which occurs in the denition (5.45) of Υ, we see that rst, second and fourth items can be bounded by ∂ X(t) ∇Π(t) C ε , and the third one is controlled as in (5.54), up to replace M 0 by

		t
		S(τ ) dτ Θ(t)
		0
	≤ (1 + t	S(τ )dτ .
		0
	Let us dene	
	M 0 := 1 + A δ+2 0	1 + Γ 3 0 + R 0 ;
	Now	

as S ≤ 1 + S 3 , in the end we get (5.54)

∂ X(t) ∇Π(t) C ε ≤ C M 0 Θ 2 (t) 1 + t 0 S 3 (τ )dτ + Θ(t)S(t) .

Throughout we agree that f (D) stands for the pseudo-dierential operator u → F -1 (f Fu).

Dans tout le manuscrit on convient que f (D) est l'opérateur pseudodiérentiel u → F -1 (f Fu).

Throughout we agree that f (D) stands for the pseudo-dierential operator u → F -1 (f Fu).

θ α 2 (θ log 2) .

this time the extreme values of q are not included.

with the usual convention that continuity in time is weak if r = +∞.

with the usual convention that continuity in time is weak if r = +∞.

We do not know how to take advantage of the fact that only the B 0 ∞,1 norm is needed.

This time the extreme values of q are not included.
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@iiA vet s > 0 nd m ∈ N e suh tht m > sF vet u ∈ C s nd ψ ∈ C m b suh tht the toin of ψ -1 is oundedF

Now, let us introduce the notion of paravector-eld, which we will broadly use in our computations.

Denition 5.7. Let X be a vector-eld with components in S . We can formally dene the paravector-eld operator T X in the following way: for all u ∈ S ,

The following result (see section 2 of [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF] for the proof) says that the paravector-eld operator is, in a certain sense, the principal part of the derivation ∂ X : the derivative along X is more regular if and only if the paraderivation along X is. Lemma 5.8. por ll vetor (eld X ∈ C s nd ll u ∈ C t D we hveX

woreoverD (rst nd lst inequlities re still true even in the se t = 1D provided tht one reples ∇u C 0 * with ∇u L ∞ D while the seond is still true even if t = 0D with u L ∞ insted of u C 0 * F

We will heavily use also the following statement about composition of paravector-eld and paraproduct operators (see the appendix in [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF] for its proof). Lemma 5.9. pix s ∈ ]0, 1[F here exist onstnts CD depending only on sD suh thtD for ll

Chapter 5. Propagation of geometric structures

Let us come back to g 1 : using the same trick as in (5.31), it's enough to estimate

Again, the control of the commutator term follows from lemma 1.29:

(5.36)

For the other term, we use again Bony's paraproduct decomposition:

Thanks to theorem 1.24 we immediately nd (5.37)

and the same control holds true also for the remainder. Moreover, a direct application of lemma 5.9 implies (5.38)

Now, from lemmas 5.8 and 5.17 we easily get

Putting this last relation into (5.38) and keeping in mind inequalities (5.36) and (5.37), we nd (5.39)

, where, as before, C may depend also on ρ * and ρ * .

Therefore, putting (5.30), (5.35) and (5.39) together, we nally get

Striated regularity for the vorticity

Let us now establish a control on the regularity of Ω along the vector-elds (X λ ) 1≤λ≤m . Applying the operator ∂ X to (5.6), we obtain the evolution equation for ∂ X Ω:

(5.41)

Second and third terms of the right-hand side of (5.41) can be treated taking advantage once again of the following decomposition:

Putting all these inequalitites together, in the end we nd the control for S(t) on [0, T ]:

Now, suppose that T was chosen so small that, in addition to (5.47), for all t ∈ [0, T ] one has also (5.49)

Then Gronwall's lemma allows us to get the bound

for a constant C depending only on T , N , p, q, ε, ρ * and ρ * and on the norms of initial data in the relative functional spaces.

Let us note that this inequality allows us to recover a uniform bound, on [0, T ], for ∇u L ∞ and ∇Π C 1 * , which we previously controlled only in L 1 t .

Remark 5.18. The lifespan T of the solution is essentially determined by conditions (5.47) and

(5.49). In section 4.5 we will establish an explicit lower bound for T in terms of the norms of initial data only and we will compare it with the classical result in the case of constant density.

Proof of the existence of a solution

After establishing a priori estimates, we want to give the proof of the existence of a solution for system (5.1) under our assumptions. We will get it in a classical way: rst of all, we will construct a sequence of approximate solutions to our problem, for which a priori estimates of the previous section hold uniformly, and then we will show the convergence of such a sequence to a solution of (5.1). Now, we will work only for positive times, but it goes without saying that the same argument holds true also for negative times evolution.

Construction of a sequence of approximate solutions

For each n ∈ N, let us dene u n 0 := S n u 0 ; obviously u n 0 ∈ L p , and an easy computation shows that it belongs also to the space B σ p,r for all σ ∈ R and all r ∈

∞,r ; in particular, from

(5.5) we get ∇u n 0 ∈ L q . Now let us take an even radial function θ ∈ C ∞ 0 (R N ), supported in the unitary ball, such that 0 ≤ θ ≤ 1 and R N θ(x) dx = 1, and set θ n (x) = n N θ(nx) for all n ∈ N. We dene ρ n 0 := θ n * ρ 0 : it belongs to B s ∞,r and it satises the bounds 0 < ρ * ≤ ρ n 0 ≤ ρ * . Moreover, by properties of localisation operators S n and of θ n , we also have:

So, for each n, theorem 3 and remark 4 of [START_REF] Danchin | The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces[END_REF] give us a unique solution of (5.1) such that:

For such a solution, a priori estimates of the previous section hold at every step n. Moreover, remembering previous properties about approximated initial data and that the function y → y log e + c y is nondecreasing, we can nd a control independent of n ∈ N. So, we can nd a positive time T ≤ T n for all n ∈ N, such that in [0, T ] approximate solutions are all dened for every n and satisfy uniform bounds.

Convergence of the sequence of approximate solutions

To prove convergence of the obtained sequence, we appeal to a compactness argument. Actually, we weren't able to apply the classical method used for the homogeneous case, i.e. proving estimates in rough spaces as C -α (α > 0): we couldn't solve the elliptic equation for the pressure term in this framework.

We know that (ρ

) and, thanks to a priori estimates, all these sequences are bounded in the respective functional spaces.

Due to the reexivity of L 2 and L p and seeing L ∞ as the dual of L 1 , we obtain the existence of functions ρ, u and ∇Π such that (up to a subsequence)

Nevertheless, we are not able to prove that (ρ, u, ∇Π) is indeed a solution of system (5.1):

passing to the limit in nonlinear terms requires strong convergence in (even rough) suitable functional spaces. So let us argue in a dierent way and establish strong convergence properties, which will be useful also to prove preservation of striated regularity.

First of all, let us recall that, by construction, u n 0 → u 0 in L p and Ω n 0 → Ω 0 in L q , and (ρ n 0 ) n is bounded in W 1,∞ . So, for α > 0 big enough (for instance, take α = max {N/p , N/q}), we have that (ρ n 0 ) n , (u n 0 ) n , (Ω n 0 ) n are all bounded in the space C -α .

Remark 5.19. It goes without saying that the sequences (u n 0 ) n and (Ω n 0 ) n still converge in C -α ; moreover, also ρ n 0 → ρ 0 in this space. Remember that ρ 0 belongs to the space C 1 * , which coincides (see [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for the proof) with the Zygmund class, i.e. the set of bounded functions f for which there exists a constant Z f such that

for all x, y ∈ R N . So, using the symmetry of θ, we can write

from this identity we get that ρ n 0 → ρ 0 in L ∞ , and hence also in C -α . Now, let us consider the equation for ρ n :

From a priori estimates we get that (u n ) n is bounded in L ∞ ([0, T ]; C 1 * ) and (∇ρ n ) n is bounded in the space L ∞ ([0, T ]; L ∞ ); so, from the properties of paraproduct and remainder operators, Theorem 5.21. nder the hypothesis of theorem SFQD the lifespn T of solution to system (4.1) with initil dt (ρ 0 , u 0 ) is ounded from elowD up to multiplition y onstnt @depending only on the spe dimension N D εD pD qD ρ * nd ρ * AD y the quntity (5.51)

where δ > 1 is the exponent whih ours in (5.18)F roofF Our starting point is subsection 5.4.3. With the same notations, let us also dene the following quantities:

It's only matter of repeating previous computations in a more accurate way.

Let us notice that, from inequality (5.12), for all time t one has (5.52)

we will make a broad use of these facts. Now, let us dene the time T 1 := sup {t > 0 | U (t) ≤ log 2}. Then, on [0, T 1 ] we have (from (5.9) and (5.10))

and so, keeping in mind (5.11), (5.13), (5.14) and (5.46), we get also

In addition, (5.21) implies I(X(t)) ≥ CI(X 0 ), while from (5.23) and (5.22) it follows

Finally, (5.28) and (5.29) together entail

From the inequalities we've just established, the control of the striated norm of ∇Π immediately follows.

Let us proceed carefully, as done in subsection 5.4.3. After some simply (even if rough) manipulations, we get (up to multiplication by constant terms)

Chapter 5. Propagation of geometric structures

Let us put these bounds in the integral conditions dening T 2 : we discover that T 2 is greater than or equal to every time t for which (5.55)

.

Therefore, if we dene (5.56)

where K > 0 is a constant, then both the inequalities in (5.55) are veried, for some suitable value of K. Hence, T ≤ T 2 , and the theorem is now proved.

Remark 5.22. Let us notice that, in the classical case (constant density), the lifespan of a solution was controlled from below by

(see also [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF]). We have just proved that in our case the lifespan is given by (5.51), instead. The two lower bounds are quite similar, even if in our case also the initial density comes into play, and there are some additional items, basically due to the more complicate analysis of the pressure term.

Remark 5.23. Note also that, in the two dimensional case, the stretching term in the vorticity equation disappears. This fact translates, at the level of a priori estimates, into the absence of the rst two items in the right-hand side of (5.45). Nevertheless, as we have seen, the analysis of ∇Π produces terms of this kind: for this reason, in dimension N = 2 we weren't able to improve the lower bound (5.51).

Hölder continuous vortex patches

First of all, let us prove conservation of conormal regularity.

Given a compact hypersurface Σ ⊂ R N of class C 1+ε , we can always nd, in a canonical way, a family X of m = N (N + 1)/2 vector-elds such that the inclusion

For completeness, let us recall the result (see proposition 5.1 of [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF]), which turns out to be important in the sequel.

Proposition 5.24. vet Σ e ompt hypersurfe of lss C 1+ε F hen there exists nonEdegenerte fmily of m = N (N + 1)/2 vetorE(elds

Hence, thanks to theorem 5.3 we propagate striated regularity with respect to this family. Finally, in a classical way, from this fact one can recover conormal properties of the solution, and so get the thesis of theorem 5.5 (see e.g. [START_REF] Gamblin | On three-dimensional vortex patches[END_REF], sections 5 and 6, and [START_REF] Danchin | Persistance de structures géométriques et limite non visqueuse pour les uides incompressibles en dimension quelconque[END_REF], section 5, for the details).

Actually, in the case of space dimension N = 2 , 3 (nally, the only relevant ones from the physical point of view) one can improve the statement of theorem 5.5. To avoid traps coming from dierential geometry, let us clarify our work setting.

In considering a submanifold Σ ⊂ R N of dimension k and of class C 1+ε (for some ε > 0), we mean that Σ is a manifold of dimension k endowed with the dierential structure inherited from its inclusion in R N , and the transition maps are of class C 1+ε . In particular, for all x ∈ Σ there is an open ball B ⊂ R N containing x, and a C 1+ε local parametrization ϕ : R k → B ∩ Σ with inverse of class C 1+ε . This is equivalent to require local equations H : B → R k of class C 1+ε such that H |B∩Σ ≡ 0.

Let us explicitly point out that, when we speak about generic submanifolds, we always mean submanifolds without boundary, while, in the other case, we have clearly to specify the property with boundary.

Given a local parametrization ϕ on U := Σ ∩ B, its dierential ϕ * : T R k → T U ∼ = T Σ induces, in each point x ∈ R k , a linear isomorphism between the tangent spaces, ϕ * ,x : T x R k → T ϕ(x) Σ. Moreover, the dependence of this map on the point x ∈ R k is of class C ε : in coordinates, ϕ * is given by the Jacobian matrix ∇ϕ.

Finally, we say that a function f dened on Σ is (locally) of class C α (for α > 0) if the composition f • ϕ : R k → R is α-Hölder continuous for any local parametrization ϕ.

Before stating our claim, some preliminary results are in order. Let us start with a very simple lemma.

Lemma 5.25. vet f ∈ L ∞ (R N ) suh tht its grdient is αErölder ontinuous for some α > 0F hen f ∈ C 1+α (R N )F roofF It's obvious using dyadic characterization of Hölder spaces and Bernstein's inequalities. Now, by analogy, one may ask if this property still holds true for a function dened on a submanifold, with Hölder continuous tangential derivatives. In fact, with some additional hypothesis on the submanifold, one can prove that also in this case there is a gain of regularity. 

Moreover, for all 1 ≤ i ≤ k let us set ϕ * (∂ i ) = X i : then, X i is obviously of class C ε . Hence we have ∂ i g(x) = X i (f )(ϕ(x)), i.e. ∂ i g in a point x is the derivation X i applied to the function f , and evaluated in the point ϕ(x). In our notations, we get ∂ i g = (∂ X i f ) • ϕ.

Therefore, from our hypothesis it follows that ∇g ∈ C ε , and so, by lemma 5.25, g ∈ C 1+ε (R k ).

In conclusion, we have proved that f composed with any local parametrization ϕ is of class C 1+ε on R k . Therefore f ∈ C 1,ε (Σ), and, as Σ is compact, we can bound its Hölder norm globally. Remark 5.27. Let us note that the operator ∂ X depends linearly on the vector-eld X. Hence, in the hypothesis of previous lemma it's enough to assume that one can nd, locally on Σ, a family {X 1 , . . . , X k } of linearly independent vector-elds of class C ε such that ∂ X i f ∈ C ε (Σ) for all 1 ≤ i ≤ k.

Corollary 5.28. vet Σ ⊂ R N e ompt hypersurfe of lss C 1+ε D nd let f ∈ C 1 * (R N )F sf f ∈ C 1+ε Σ D then f |Σ ∈ C 1+ε (Σ)F roofF By proposition 5.24 and non-degeneracy condition, we can nd, locally on Σ, N -1 linearly independent vector-leds X 1 . . . X N -1 , dened on the whole R N and of class C ε , which are tangent to Σ and such that div (f X i ) ∈ C ε (R N ) for all 1 ≤ i ≤ N -1.

Moreover, also the divergence of these vector-elds is ε-Hölder continuous; therefore, using once again Bony's paraproduct decomposition, we gather that