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Abstract

In this thesis, a methodological and algorithmigrapch is proposed, for visual
intention recognition based on the rotation andvigréical motion of the head and the
hand. The context for which this solution is intedds that of people with disabilities
whose mobility is made possible by a wheelchaire Tgroposed system is an
interesting alternative to classical interfaceshsag joysticks and pneumatic switches.
The video sequence comprising 10 frames is prodesseng different methods
leading to the construction of what is referredntshis thesis as an “intention curve”.
A decision rule is proposed to subsequently clagsth intention curve.

For recognition based on head motions, a symmetsgdb approach is proposed to
estimate the direction intent indicated by a rotatand a Principal Component
Analysis (PCA) is used to classify speed variaiients of the wheelchair indicated
by a vertical motion. For recognition of the dedidirection based on the rotation of
the hand, an approach utilizing both a vertical sytry-based approach and a
machine learning algorithm (a neural network, apsupvector machine de-means
clustering) results in a set of two intention cwn\aibsequently used to detect the
direction intent. Another approach based on theptate matching of the finger
region is also proposed. For recognition of therddsspeed variation based on the
vertical motion of the hand, two approaches ar@@sed. The first is also based on
the template matching of the finger region, andgbeond is based on a mask in the
shape of an ellipse used to estimate the vertmsitipn of the hand.

The results obtained display good performancenmgeof classification both for
single pose in each frame and for intention curvége proposed visual intention

recognition approach yields in the majority of Gasebetter recognition rate than



most of the methods proposed in the literature.ddweer, this study shows that the

head and the hand in rotation and in vertical nmoéie viable intent indicators.
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Résumé

Dans cette these, nous proposons une approchedoé&igmue et algorithmique pour
la reconnaissance visuelle d'intentions, basééasutation et le mouvement vertical
de la téte et de la main. Le contexte dans leqet&t colution s'inscrit est celui d'une
personne handicapée, dont la mobilité est asqaean fauteuil roulant. Le systeme
proposé constitue une alternative intéressante iatetfaces classiques de type
manette, boutons pneumatiques, etc. La séquedée,wcomposée de 10 images, est
traitée en utilisant différentes méthodes pour taime ce qui dans cette thése est
désigné par « courbe d'intention ». Une base degéggst également proposée pour
classifier chague courbe d'intention.

Pour la reconnaissance basée sur les mouvemelagéte, une approche utilisant
la symétrie du visage est proposée pour estimeliréction désirée a partir de la
rotation de la téte. Une Analyse en Composantaxipales (ACP) est utilisée pour
détecter l'intention de varier la vitesse de déptant du fauteuil roulant, a partir du
mouvement vertical de la téte. Pour la reconnacesale la direction basée sur la
rotation de la main, une approche utilisant a Ia f@ symétrie verticale de la main et
un algorithme d'apprentissage (réseaux neuronaachimes a vecteurs supportskeu
means), permet d’obtenir les courbes dintentioxglogées par la suite pour la
détection de la direction désirée. Une autre ap@ogappuyant sur I'appariement de
gabarits de la région contenant les doigts, estieegmt proposée. Pour la
reconnaissance de la vitesse variable basée suolwement vertical de la main,
deux approches sont proposées. La premiere utiggement |'appariement de
gabarits de la région contenant les doigts, etlaxig@me se base sur un masque en

forme d'ellipse, pour déterminer la position vexiicde la main.

\Y



Les résultats obtenus montrent de bonnes perfomsagt termes de classification
aussi bien des positions individuelles dans chagquage, que des courbes
d'intentions. L'approche de reconnaissance visudiletentions proposée produit
dans la trés grande majorité des cas un meillexrda reconnaissance que la plupart
des méthodes proposées dans la littérature. Feurrail cette étude montre également
gue la téte et la main en rotation et en mouvemenical constituent des indicateurs

d'intention appropriés.

Vii



Table of Content

Table Of CONIENT. ... et Viil
LiSt Of FIQUIES ...cvve it Xil
LISt Of TADIES ... XV
(€10 1S157= 1 XVi
Chapter L ..o e e eaa -1-
INErOAUCTION < e -1 -
1.1 Problem STAtEMENT. ... ... e e e enaann s -2 -
1.2 Motivation and ODJECLIVES .........uuuuuuiiiii it eeeeeeeeaaaees 4-
1.3 SUD-ProbIEMS. ... -5-
1.4 ASSUMPLIONS. ..ttt e e e e e s e e e e e e e e e e e e e e e e eeabesnn e -6 -
(R IYoTo] o1 TR UPPTRPPRTPT -7-
1.6 CONIIDULION e e aeaaaae -7 -
L7 OULING e e e e e ea e -9-
Chapter 2 ..o e -12 -
Literature SUIVEY .......coiiiiiiiii e -12 -
P2 N [ o {0 To [ U Tex 1o o WU -12 -
2.2 INTENLION AEIECHION ...t et aann -.16 -
2.3 RODOLIC WNEEICNAIIS ... e -24 -

viii



2.4 Head poSe eStiMation ..........cooviiiiiiiiimimmeiiiiieaes e e e e e e e eeeeeeeneeens 229 -
2.4.1 Model-based SOIULIONS ........ccovuiiiiiiii e -30

2.4.2 Appearance and feature-based techniques. .oooeeeeeevviiiiiiiiiienn. - 32 -

2.5 Hand gesture recognition

..................................................................... 53
2.6 CONCIUSION ...ttt e e e e e e e e e e e e s -43 -
Chapter 3 .. - 45 -

Head-Based Intent Recognition..............ccceeeeuinininnnnnn, - 45 -
3.1 INETOAUCTION ...t e - 45 -

3.2 Pre-processing steps: face detection and tracking...............ccceeeeeveee. - 47 -

3.2.1 Histogram-based skin colour detection ..........cccoevvvvviiiiiiiiiieeeeennn. -48 -

3.2.2 Adaboost-based skin colour detection.......cccceeevveeeeiiiiiiieeeeennnene -50 -

3.2.3 Face detection and localiSation.............cooeeeviiieeieiiniiiiiiee e, -52 -
3.2.3. 1 ETOSION ..ettiiiiieeiiiiiie et e ettt emmm et a e 35

3.2.3.2 Dilation and connected component labelling...cccc.................. - 54 -

3.2.3.3 Principal Component ANalySiS.......cccoeeeiireeeeeeeeiiiiiiiiiieiee e -57 -
3.3 Recognition of head-based direction intent...............cccceeeevvvevvveeeninnnns - 62 -
3.3.1 Symmetry-based APProach .........ccccceeiviiiiieeeeiiiccce e - 64 -
3.3.2 Centre of Gravity (COG) of the Symmetry Curve................cc........ - 65 -

3.3.3 Linear Regression on the Symmetry CUIVe... .o eeeeeeeeeeeeeennnnnnnn = 67 -

3.3.4 Single frame head pose classification......ccccccceeevevviiieeiiiiniiiiinnnn. - 69 -

3.3.5 Head rotation detection: Head-based direction tntecognition ....... -71-
3.4 Recognition of head-based speed variation intent

3.5 Adaboost for head-based direction and speed variatn recognition... - 80 -

3.5.1 Adaboost face detection -81

3.5.2 Camshift tracking



3.5.3 Nose template MatChing ..........cooiiiiiiiiceccceei s -86 -

3.6 CONCIUSION ...ttt et e e e e e e e e e -94 -
Chapter 4 ... - 96 -
Hand-Based Intent Recognition .............ccccocceenievivneeeenn, - 96 -

4.1 INFOTUCTION ...ciiiiiie et e e e e e e s e eeeas - 96 -

4.2 Pre-processing steps: Hand detection and tracking................c.c..uvue.. - 98 -

4.3 Recognition of hand-based direction intent.................ccccevvvvvvviiiinnnnns - 101 -

4.3.1 Vertical symmetry-based direction intent recogmitio.................... -102 -
4.3.2 Artificial Neural Networks (Multilayer Perceptron)..........cccceee...... - 106 -
4.3.3 Support Vector MaChiNeS ...........uuuuuuiiiimmeeeeeeeeiieee e e e - 108 -
4.3.4 K-means CIUSIEIING ......cccoeiiiieeeeeeees e - 142
4.3.5 Hand rotation detection: Direction intent recogmiti....................... -114 -
4.3.6 Template-matching-based direction intent recognitio.................. - 117 -

4.4 Recognition of hand-based speed variation intent............................ - 120 -

4.4.1 Template Matching-based speed variation recognition............... -120 -
4.4.2 Speed variation recognition based on ellipse shapesk ................ -123 -

4.5 Histogram of oriented gradient (HOG) for hand-basedspeed variation

(=T oT0 o | 111 o] o -127 -
4.6 CONCIUSION ..oiviiiiiiiiie it mmmr et ree e -132 -
Chapter 5 .. e - 134 -
Results and DiSCUSSION ...........uvuiiiiiiiiiccemee e, -134 -
5.1 INtrOAUCTION ...ttt e e e e e e e e e e e e e mnnnd -134 -

5.2 Head-based intent reCognitioN .........cooiiiiiieeiiiee e -142 -



5.2.1 Performance for the recognition of the head introta direction

[=ToloTo ] a1 (o] o TR PP PP PP PSPPI - 143 -

5.2.2 Performance for the recognition of the head inigakimotion: speed

variation reCOGNItION .........cooiiiiiiiiiiiieeeeee ettt e e e e e e e e e e eeeeees - 146 -
5.3 Hand-based intent reCOgNItION............uuuuemmmmereniaae e e e e e e e e e eeeeeeeeeeeaeens - 148 -

5.3.1 Performance for the recognition of the hand introta direction

=ToTo [ o111 T0] o 1R UPPUPTTRRRRPPRP - 148 -

5.3.2 Performance for the recognition of the hand inigaltmotion: speed

variation reCOGNItION ........ccoeiiiiiiiiiiiieeeeee et e e e e e e e e e e e eeeeeeeeees - 150 -
5.4 Extrapolation for data effiCiency ............ueeeiiiiiiiiiiiiiii e -151 -
5.5 Concluding remMarks ...........uuuuuiiiiiii e 571-
Chapter 6 ...oovei e e - 159 -
CONCIUSION ... e - 159 -
6.1 Summary of ContribUtiONS ..........oovvviiiiicee e - 160 -
6.2 Concluding reMarks ...........ooovviiiiiiiiiiimmmm e e e e e e e e e e e aeees 621-
6.3 FULUIE WOIK ..ot - 164 -
List of PUDIIications .............uviviiiiiiiim e - 166 -
BiblOgraphy ......cooovviiiie e - 168 -

xi



List of Figures

Figure 1-1: Intention deteCtion SYStEM.........coiii i -3
Figure 3-1: Skin colour histograms in the HSV colour space.............cccc........ - 49 -
Figure 3-2 Histogram-based skin colour detection for faceeckon................... - 56 -
Figure 3-3 Adaboost-based skin colour detection for facedsn ................... -57 -
Figure 3-4 Examples of eigenfaces ... - 60
Figure 3-5 Face detection and localiSation ..........ccccceeuviiiiiiiiiiiiiiiiieiii, -62 -
Figure 3-6: Frontal view of the head (face) in rotation................ccceevevviiiinnnnnns -63 -
Figure 3-7: Symmetry curves for faces in Figure 3-6.. . .ceeeeeeeeeeeeerennnnnnnn.. - 66 -
Figure 3-8 Symmetry curves with COG for faces in Figure 3-6..................... - 67 -
Figure 3-9. Lines approximating symmetry curves for faceEigure 3-6 .......... - 69 -
Figure 3-1Q Intention curves based on COGs gAdtercepts .........ccccccvvvvennnnnnn. -73 -
Figure 3-11 Frontal view of the head (face) in vertical matio......................... -75 -
Figure 3-12 Examples of eigenfaces for up, centre and doveitipas .............. -77 -
Figure 3-13 Intention curves based on distance meadlites and @............... -79 -
Figure 3-14 Rectangle features [66] .............cvvvvieeeeemrerenniiiiiieeeeeeeeeeeeeeeeeeieinnnns - 83 -
Figure 3-15 Integral Image and Integral Rectangle [66] .. .cvvveeeiiiiiieeeeeeen. - 83 -
Figure 3-16 Cascade of =5 adaboost trained strong classifiers ..... .uummmm... - 84 -
Figure 3-17 Adaboost face detection and nose template majchin................ -90 -
Figure 3-18 Intention curves based on differendesd; andds......................... -92 -
Figure 3-19 Intention curves based on matching measMgdl, andMs.......... -93-
Figure 4-1: Hand detection using histogram-based skin caletection........... - 100 -
Figure 4-2 Hand detection using adaboost-based skin colewcton............. - 101 -
Figure 4-3 Three different positions of the hand (dorsaiwie rotation ........ - 104 -

Xii



Figure 4-4 Symmetry curves corresponding to the hands inreig-3............. - 105 -

Figure 4-5: Features of different positions of the hand itation ...................... - 106 -
Figure 4-6: Multilayer perCeptroN ... eeeeeeens - 107
Figure 4-7: Intention curveé/; made of symmetry curves’ means................~.116 -
Figure 4-8 Detection of hands in rotation and their fingegions..................... - 118 -
Figure 4-9: Intention curves based on matching meashMgd, andMs.......... -119 -
Figure 4-1Q Detection of hands in vertical motion and theigér regions....... -121 -
Figure 4-11 Intention curves based on matching measMgd, andMs........ -122 -
Figure 4-12 Three different positions of an ellipse used asask.................... - 125 -

Figure 4-13 Ellipse mask used to determine the vertical pms# of the hand - 126 -

Figure 4-14 Intention curves based on change8 far each hand motion........ - 127 -
Figure 4-15 HOG descriptor for hands in vertical motion............................ - 130 -
Figure 4-16 Intention curves based on changes in the HOG ooegs.......... -131 -
Figure 5-1: Summary of the methods used for head rotatioectien............... - 136 -

Figure 5-2 Summary of the methods used for head verticalanatetection... - 137 -

Figure 5-3 Summary of the methods used for hand verticalonatetection... - 138 -

Figure 5-4 Summary of the methods used for hand rotatioadtien............... -139 -
Figure 5-5 Range of right, left, up and down head poses................ccoeeeeeee. - 141 -
Figure 5-6. Range of right, left, up and down hand poSeS....c..........cceeeeeeeee. - 142 -

Figure 5-7: Recognition rates for heads in rotation for déf@ numbers of frames
Skipped Defore SEIECHION. ............ . e e e e - 153 -
Figure 5-8 Recognition rates for heads in vertical motionddferent numbers of
frames skipped before selection.......... . -154 -
Figure 5-9: Recognition rates for hands in rotation for diéfiet numbers of frames

skipped before SEleCtion................... e e - 155 -

Xiii



Figure 5-10 Recognition rates for hands in vertical motionddferent numbers of

frames skipped before selection.......... . - 156 -

Xiv



List of Tables

Table 3-1 Adaboost algorithm for skin colour learningu.........ooceeeeevvvevveeennnn - 51 -
Table 3-2 Head motion and corresponding direction intentian...................... - 62 -
Table 3-3 Head motion and corresponding speed variatieniman .................. -75-
Table 3-4 The adaboost algorithm [190]..........coooeeeieeiiiie -82 -
Table 3-5 Camshift Algorithm ... e 85 -
Table 3-6 Head GestureTfacked Fack[66]...........ccoovvriiiiiiiiiiiiiiiiie s e - 89 -
Table 4-1 Hand motion and corresponding direction intentian.................... -102 -

Table 4-2 Hand vertical motion and corresponding speecdatian intention ... - 120 -

Table 5-1 Thresholds used in deciSion rules........cccoueiiiiieiiiniiiiieeeee -141 -
Table 5-2 Single-frame pose classification rate of head®siation................... - 144 -
Table 5-3 10-frame intent recognition rate for heads imtioh........................ - 145 -
Table 5-4 Single-frame pose classification rate of headsemical motion ...... - 147 -
Table 5-5 10-frame intent recognition rate for heads irtigat motion ............ - 147 -
Table 5-6 Single-frame pose classification rate of hand®tation.................. - 149 -
Table 5-7 10-frame intent recognition rate for hands iratian........................ - 150 -
Table 5-8 Single-frame pose classification rate of handgertical motion....... - 151 -
Table 5-9 10-frame intent recognition rate for hands inticat motion............. - 151 -

XV



HCI

CCD

PCA

ADABOOST

CAMSHIFT

MLP

SVM

HOG

MMHCI

CFG

HMM

SST

AUTOS

AHMM

ANFIS

BP

LMS

PHATT

DNF

RFID

HaWCoS

Glossary

Human Computer Interact
Charged Couple Device (camera)
Principal Component Analysis
Adaptive Boosting
Continuously Adaptive Mean Shift
Multi Layer Perceptron (Neural Neink)
Support Vector Machines
Histogram of Oriented Gradient
Multimodal Human Computer Interamti
Context Free Grammar
Hidden Markov Models
Spatio-Spectral Tracking
Autated Understanding of Task and Operator
State
Abstract Hidden Markov Models
Adaptive Neuro-Fuzzy Inference ®yst
Back-Propagation
Least Mean Square
Probabilistic Hostile Agent Taskatker
Disjunctive Normal Form strategy
Radio Frequency Identification

Hands-free Wheelchair Control &yst

XVi



VFH

OMNI

VAHM

SIAMO

LRF

LDA

LGBP

RBF

SVR

KPCA

DOF

FORMS

IBL

ASL

PDP

TSL

COG

SIFT

Vector Field Histogram
Intelligent Wheelchair
Office wheelchair with high Manoeuvibty and
Navigational Intelligence
Véhicule Autonome pour Handicapé Mate
Integral System for Assisted Motyil(in Spanish)
Laser Range Finders
Aee Appearance Model
Linear Discriminant Analgsi
Local Gabor Binary Patterns
adRal Basis Function
Support Vector Regression
Kernel PrinalgComponent Analysis
ddee Of freedom
Flebei Object Recognition and Modelling System
Instance-Based Learning
m&rican Sign Language
aréllel Distributed Processing
ailvanese Sign Language
e of Gravity

cate-Invariant Feature Transform descriptors

Xvili



Chapter 1: Introduction

Chapter 1

Introduction

One of the main functions of an enabled environnienb provide a setting where
people with disabilities and the aged can functiodependently, be active, and
contribute to society. One of the challenges fadimg task of realising such an
environment is to develop systems that can adsesh tin performing the tasks they
wish to carry out without other people’s assistance

Formally defined, an intention is a psychologicahcept, commonly understood
as the determination to act in a certain mannerlf3¢ntion recognition, also known
as plan recognition, refers to the problem of infgyr a person’s intentions from
observations of that person’s behaviour. Good perdnce in a team environment is
heavily conditioned by awareness of the intentioingeople within society [204]. As
a result, it can be said that human machine intiera¢HMI) where the machine plays
a support role requires that the intention of tlseruis well understood by the
machine. This intention recognition capability entral to the multidisciplinary area
of HMI and for the more specific area of enablediemment.

There are many contexts in which intention recagnifinds applications, and a
common one is that of a person with a physicallilisg whose mobility is enabled
by the use of a powered wheelchair. In many ofehms/sical disabilities (tetraplegia,
upper and lower limb disabilities, etc.), the motmf the head usually remains intact,

and in other cases (lower limb disabilities) evas hand motion is still available.
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This renders the head and the hand suitable inteintators for the motion of a
powered wheelchair. Such a wheelchair, whose ntplidimade possible through an
intent recognition solution that is easier to Udsmnttraditional means or in other cases

that shares control of the motion with the usecolbges a robotic wheelchair.

1.1 Problem Statement

This thesis proposes a vision-based solution feeniion recognition of a person
from the motions of the head and the hand.

This solution is intended to be applied in the eahtof wheelchair bound
individuals whose intentions of interest are theewlbhair’'s direction and speed
variation indicated by a rotation and a verticaltiom respectively. Both head-based
and hand-based solutions are proposed as an #ierta solutions using joysticks,
pneumatic switches, etc.

The data used are video sequences of 576x768 ifnages captured from a
Charge-Coupled Device (CCD) camera (Hi-ResolutiammP Camera - 1/3" CCD,
470 TV lines, 0.8 lux, 3.6mm (F2.0) Lens) and a f@bnes per second” E-PICOLO-
PRO-2 frame grabber.

As illustrated in Figure 1-1 the input to the sauatis the head/hand motion of a
subject accessed using the camera and the outut isferred intention aimed to
become the command for the wheelchair to moveaertain direction or to vary its
speed. The subject’s head/hand motion used as impontained in a video sequence
of 10 frames and the intention detection task cs®f mapping these 10 frames to,

as referred to in this work, an intention curve.

-2-
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Subject’s action (contained Intention detection algorithm:

in a 10 frame video - Maps a 10 frame wvideo Subject’s intention for
sequence): sequence to an intention wheelchair motion:

- Head rotation - curve » - Direction intent
- Head vertical motion - Classify an intention curve - Speed variation
- Hand rotation in classes associated with

- Hand vertical motion the different intentions

Figure 1-1: Intention detection system

For head rotation, a symmetry-based approach thpsra face image to a symmetry
curve is adopted. From this symmetry-based apprdach different methods are
proposed according to the feature selection profmssre of gravity (COG) of the
symmetry curve ang-intercept of the line approximating the symmetwyve) and
the decision rule (based on the difference of meamsthe statistics in a Gaussian
distribution) used for pose and intent recognitior vertical motion of the head,
Principal Component Analysis (PCA) is used for pesel intent recognition. A
method proposed by Jia and Hu [66], [67] is alsplemented for comparison. The
approach uses adaboost for face detection andemise estimation, camshift for
tracking, and nose template matching for verticadepdetection. These methods for
head-based rotation and vertical motion detectreruaed to map the given 10-frame
video sequences as input, to 10-point intentiornesithat are subsequently classified
using appropriate decision rules.

For hand rotation, a variant of the symmetry-bamgoroach used for the head is
proposed where the symmetry curve is calculateticedly rather than horizontally.
The statistics (mean and standard deviation) osymemetry curves are used as two-
dimensional (2D) data features and three differaathine learning methods, two
supervised (a neural network and a support vectmhime) and one unsuperviséd (

means clustering) are used for single pose claatin. For intent recognition a

-3-
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decision rule that makes use of two different itien curves is used — one
comprising the output of the single pose clasdificastep resulting from the machine
learning approaches and the other containing thenmef the vertically computed
symmetry curves. Another method based on a norethlisoss-correlation template
matching is proposed. For the vertical motion & Hand, the geometric constraints
on the hand’s contour are considered, leading éaute of a mask in the form of an
ellipse to determine the hand’s vertical positidine other proposed approach is
based on a normalised cross-correlation templatemmg. For comparison of the
proposed methods for vertical motion of the handeaure selection found in the
literature known as the Histogram of Oriented Geat(HOG) is implemented. These
methods for hand-based rotation and vertical madetection are used to map the 10-
frame video sequences to 10-point intention curtlest are classified using

appropriate decision rules.

1.2 Motivation and objectives

The motivation behind any solution aimed at an énglenvironment is to “enable”
people with disabilities and the aged to be momkependent and furthermore to
contribute to society. The solution proposed is thiesis is a contribution to the task
of realising such an environment by providing amemh recognition algorithm

intended to be applied in a robotic wheelchair @pgibn.
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1.3 Sub-problems

The solution proposed in this thesis can be divithtd two, namely a head-based
solution and a hand-based one both aimed at the sdant indication (direction and
speed variation intents). Both solutions recognise different kinds of motion:

rotation and vertical motion. The input video satgeeis made of image frames with
the head or the hand as the object of interest.ré\ppocessing step aimed at
segmenting the head and the hand from each framgerf®rmed before intent

recognition. Note that for detection and trackititg frontal view of the head (the
face) is of interest as well as the dorsal viewdpposed to the palm) of the hand.

Below is an enumeration of the sub-problems addcessthis thesis.

Sub-problem 1:Face detection and tracking

Determine the exact location of the face in thaitnmage frame that will be used for
further processing to achieve intent recognition.

Sub-problem 2Head rotation recognition

Determine whether the head remains centred, movethd right or to the left
indicating the direction intent.

Sub-problem 3:Recognition of the head in vertical motion

Determine whether the head remains centred, mgves down indicating the speed
variation intent.

Sub-problem 4Hand detection and tracking

Determine the exact location of the hand in thesinmage frame that will be used for

further processing to achieve intent recognition.
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Sub-problem 5Hand rotation recognition

Determine whether the hand remains centred, movethd right or to the left
indicating the direction intent.

Sub-problem 6:Recognition of the hand in vertical motion

Determine whether the hand remains centred, moves down indicating the speed

variation intent.

1.4 Assumptions

Assumption 1:A face viewed from the front is symmetric and prds separable
patterns for the three different positions: cenight and left.

Assumption 2:The disabilities targeted for the proposed sofutice those where the
head and/or the hand are still moving properly.

Assumption 3:The camera used to capture the motions of the Apddhe hand is
assumed to be incorporated into the structure efwtheelchair next to these intent
indicators rendering them close enough to be the siin colour object within the
field of view exempting occlusion problems.

Assumption 4:The camera used to capture the motions of the deddhe hand are
assumed to be incorporated on the wheelchair agr@ftire at a fixed distance from
these indicators exempting any scaling consideratio

Assumption 5:For hand motion recognition, the hand is treatedaarigid object

performing two types of motion: rotation and veatimotion.
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1.5 Scope

Though intended for a wheelchair application, tlgo@thm has not been tested on
actual people with disabilities. This work is lied to the implementation of intent
recognition algorithms using recorded video seqesmd subjects sitting on an office
chair (to mimic a person with a physical disabilgigting on a wheelchair) and
performing the four types of motion of interesthis thesis.

Two motions of the head and the hand are defineidtast indicators, namely,
rotation and vertical motion. For the head, rotatieans the motion with respect to
the vertical axis through the centre of the face aertical motion means the motion
with respect to the horizontal axis through theenofthe face. For the hand however,
rotation consists of a motion relative to the honial axis parallel to the arm, and
vertical motion consists of a motion relative te thertical axis through the joint
articulation linking the hand and the arm (the ris

The hand and the head are independent indicatothéosame type of motions.

No data fusion scheme is used to combine thesenwimn indicators.

1.6 Contribution

- An alternative visual solution for head and handiamdetection aimed at
intent recognition, intended to be applied to ds&sliving is proposed. Its
performance as Chapter 5 reveals is good when aeahga those chosen

from the literature and implemented in this workhisT is an important
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contribution because as shown in the literatures ohthe most promising
sensor technologies associated with assistivegiapplication is machine
vision and thus successful implementation of visa@utions is increasingly
preferred.

For head rotation: A symmetry-based approach id tmepose estimation and
combined with a decision rule for direction inteetognition. This thesis
therefore shows how the symmetry property of thadhean be used for
motion understanding. The other merit of the usehid symmetry-based
approach is its simplicity as opposed to head pstegnation found in the
literature that require sophisticated machine Iearn algorithm for
recognition.

For head in vertical motion: A decision rule is iempented for speed
variation intent recognition using intention curveistained from the PCA-
based pose classification.

For hand rotation: A variant of the symmetry-baapgdroach (the symmetry is
calculated vertically rather than horizontally) ¢é®@mbined with machine
learning algorithms (Neural Networks, Support Ved#achines (SVM) and
k-means clustering) for pose estimation and combinéd a decision rule for
direction intent recognition. An additional propdsapproach is based on a
normalised cross-correlation template matchinglteguin the intention curve
that is classified using an appropriate decisida.ru

For hand in vertical motion: An ellipse shaped maskmplemented for pose
estimation and intention curves generation. An taltkl approach is based on

a normalised cross-correlation template matchindd®@G descriptor is also
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adapted for the same purpose. An appropriate decisile is subsequently
proposed to classify these intention curves.

- As the literature reveals, the solutions of headepestimation and hand
gesture recognition are used in many applicatiomduding wheelchair
motion, allow symbolic commands based on the hedldeohand posture. The
solution proposed in this thesis on the other haedpgnises intents by
classifying the motion contained in a specific n@mbf frames (10 in this
work) rather than the posture in a single frames Tontribution brings the
advantage that even if the position of the headthrdhand is only loosely
detectable, that is, the exact pose cannot be ifjedrto determine which pose
is left, right, up, down or centre and to whichesxtthey are in these poses;
the different kinds of motion can still be robustiietected. The other
advantage is that the misdetection of a single éraatess costly on the overall
performance.

- Gesture recognition solutions found in the literatare made possible looking
at a change in the hand’s contour shape and ipisally applied to sign
language applications. The literature doesn’t dantgesture recognition
solutions where the motion of the hand is a migweration such as the
rotation and vertical motion described in this thekr which the approaches
found in the literature are typically invariant amusable for robust

classification.

1.7 Outline

The remainder of the thesis consists of the filefong chapters:
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Chapter 2
Chapter 2 presents some of the literature founibun areas of research relevant to
the work presented in this thesis:

- Intention detection

- Robotics wheelchairs

- Head pose estimation

- Hand gesture recognition

Chapter 3

Chapter 3 describes the algorithms proposed fod-beaed pose estimation and
intent recognition. For rotation, a symmetry-baapgdroach is used to implement four
different approaches: Two using the centre of gyani the resulting symmetry curve
and a decision rule-based on the difference of s@ad the statistics (means and
standard deviation) in a Gaussian distribution. e other approaches use the same
decision rules ory-intercept of the line approximating the symmetiyve. For
vertical motion, PCA and a decision rule are em@tbyFor comparison, a method
based on adaboost, camshift and template matchapgpged by Jia and Hu [66], [67]

is implemented.

Chapter 4

Chapter 4 describes the algorithms proposed fod{based pose estimation and
intent recognition. For rotation a vertical symmedbased approach is employed in
combination with three different methods based toed different machine learning

algorithms (Neural Network, Support Vector Machiraesl k-means) and combined
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with a decision rule. For vertical motion two medscare proposed, one based on a
normalized cross-correlation template matching #redother, on an ellipse shaped
mask. For comparison, a HOG descriptor proposedthia literature is also

implemented and compared to the proposed method.

Chapter 5

Chapter 5 furnishes the experimental results ofpttopposed methods. Three sets of
results are reported for each proposed methodfirsteset portrays the performance
for single frame pose classification, the secondilkestrates the performance for

intent recognition through the classification ofeintion curves and the third set of
results indicates the performance of each methoenwbkwer frames are used for

recognition within a 10-frame video sequence.

Chapter 6

Chapter 6 furnishes a summary of the work propasetis thesis, some concluding

remarks, and some suggestions for future work.
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Chapter 2

Literature Survey

2.1 Introduction

The area of Human Computer Interaction (HCI) isee8al to enable efficient and
effortless communication between humans and compit¢ It spans through many
areas of research such as psychology, artifictalligence and computer vision [2],
and through four categories of techniques, namelgual, speech, tele-operation and
vision [1]. An important trend in recent work on HfS to consider it as a kind of
collaboration [4] where the computer or machiné’s & to increase the performance
of the human user by providing assistance [5]oopdrform a task that the user can
not carry out on his / her own. Three areas ofstigation are of interest in HCI:

- The understanding of the user who interacts wighcthmputer.

- The understanding of the system (the computer tdogg and its usability).

- The understanding of the interaction between tlee aisd the system.
A more wide-ranging variant of HCI is the Multimddduman-Computer Interaction
MMHCI, which similarly to HCI is a multidisciplingrarea lying at the crossroads of
several research areas where psychology and ocegnsitience are needed to
understand the user’s perceptual, cognitive, antlem solving skills. Sociology is
used to understand the wider context of interactiergonomics provides an

understanding of the user’s physical capabiliggaphic design is required to produce
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effective interface presentation and computer seieand engineering are used to
build the necessary technology [6]. Unlike in ttamhial HCI applications, however,
typically consisting of a single user facing a cot@p and interacting with it via a
medium such as a mouse or a keyboard, in MMHCliegibns, interactions do not
always consist of explicit commands, and often me@omultiple users (e.g.,
intelligent homes, remote collaboration, arts,)etthis was made possible by the
remarkable progress in the last few years in coerpmtocessor speed, memory, and
storage capabilities, matched by the availabilftynany new input and output devices
such as phones, embedded systems, laptops, walllisizlays, and many others. This
wide range of computing devices being availableéh wiffering computational power
and input/output capabilities, enables new waysiteiaction through visual methods
that include large-scale body movements, gesturdshaad pose, eye blinks or gaze
[7], and other methods such us speech, hapticglamd mounted devices.

Vision-based HCI interfaces usually focus on headking [8], face and facial
expression recognition, eye tracking, gaze analygesture recognition, human
motion analysis and lower arm movement detectidmre the recognition methods
are classified using a human-centred approach wsiagf the following indicators:

- Large-scale body movements

- Hand gestures

-  Gaze.
Large-scale body movement solutions result front@eted motion analysis where
three important issues must be addressed:

- The representation: Joint angles or motion oftedlgub-parts

- The computational paradigms: They can be detertraros probabilistic

- Computation reduction
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A Previous work describes certain methods thatgesmmetric primitives to model
different components and others that use featymesentations based on appearance
(appearance-based methods). In the first appretérnal markers are often used to
estimate body posture and relevant parameters.eWtdrkers can be accurate, they
place restrictions on clothing and require calioratThey are therefore not desirable
in many applications. Moreover, the attempt t@@bmetric shapes to body parts can
be computationally expensive and these methodsftea not suitable for real-time
processing. Appearance-based methods, on the lo#mel, do not require markers,
but require training [2].

Gesture recognition (which refers exclusively todhayesture recognition within
the computer vision community) plays an essentiée in HCI and MMHCI to
remote collaboration applications. Most of the gestased HCI systems allow only
symbolic commands based on hand posture or 3D ipginThis is due to the
complexity associated with gesture analysis and desire to build real-time
interfaces. Also, most of the systems accommodalye single-hand gestures. Gaze
detection systems essentially consisting of anteaeking solution can be grouped
into wearable or non-wearable, and infrared-base@ppearance-based solutions.
Infrared systems are more accurate than thoseatlkabppearance-based; however,
there are concerns over the safety of prolongedomxe to infrared lights.
Appearance-based systems usually capture both uspeg two cameras to predict
gaze direction. Due to the computational cost obcessing two streams
simultaneously, the resolution of the image of eagé is often small making such
systems less accurate. As an alternative, the fugesimgle high-resolution image of
one eye is proposed to improve accuracy. On ther ¢thnd, infrared-based systems

usually use only one camera, although the use ofcameras is proposed to further
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increase accuracy. Wearable eye trackers have baso investigated mostly for
desktop applications. The main issues in develomage tracking systems are
intrusiveness, speed, robustness, and accuracye @sysis can be performed at
three different levels [2]:

- Highly detailed low-level micro-events

- Low-level intentional events

- Coarse-level goal-based events
In general, vision-based human motion analysisegystused for HClI and MMHCI
can be thought of as having mainly four stages:

- Motion segmentation

- Object classification

- Tracking

- Interpretation
The literature also makes a distinction betweenmand (actions can be used to
explicitly execute commands: select menus, etcd aon-command interfaces
(actions or events used to indirectly tune theesysto the user’s needs) [9].

Human-Computer collaboration provides a practical aseful application for plan
recognition techniques. Plan recognition also knawrntention detection is a central
component in many applications among which asdistgstems for elders [5]. Intent
recognition solutions are very useful for mobildoasts (among which are robotic
wheelchairs) as they can help human users on atyasf tasks, such as, material
handling, transport, surveillance, demining, aasist¢ to people with disabilities and

housekeeping, provided that it understands thatmtithe user [10].
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The solution proposed in this thesis has someetharacteristics of an HCI solution
as it is vision-based, non-intrusive, human centged it involves the four stage
mentioned earlier namely segmentation, classibcattracking and interpretation or
recognition. The rest of this chapter presents soimée solutions found in the
literature for areas such as intention detectiahotic wheelchairs, head pose
estimation, hand gesture and pose recognition&s dre relevant in addressing the

problem at hand.

2.2 Intention detection

Schmidtet al.[11] first identify the problem of plan recogniti@iso known in some
cases as intention detection or intent recognit®nce then it is applied to a diversity
of areas, including natural language understandnthgeneration [12], [13], dynamic
traffic monitoring [14], story understanding [11]L5], [16], adventure game [17],
network intrusion detection [18], multi-agent cootion [19] and multi-agent team
monitoring [20]. Kautz and Allen [21] present thesf formal theory of plan
recognition where they define it as “identifyingnanimal set of top-level actions
sufficient to explain the observed actions, andmgemal covering set as a principle
for disambiguation”.

Research in plan recognition has taken severakrdift directions, the most
popular being the development of logic theorieprimvide algebras through which to
reason about plans from observed agent actionf22 the authors introduce the
theoretical concept of plan knowledge graphs, alenth a new formalism, to
simplify the process of plan recognition. In [28]e authors interpret the assignment

of intentions to a sequence of incoming behaviaursctivities indicated by body
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trajectories as a pattern recognition problem. $bkeition proposed is a formalism
known as Context Free Grammar (CFG). In [24], thietinct behaviours of a rat
namely the walking behaviours of exploratory locdimo (EL), the grooming (GR)
and behavioural stillness (BS) are recognised uaingsual approach based on a
supervised neural network, demonstrating the fdagidor automated machine
learning of behaviour at some level. In [25] Pyrthdand Wellman propose a
probabilistic method based on parsing. Their apgroamploys probabilistic state-
dependent grammars (PSDGSs) to represent an agdant'sThe PSDG representation,
together with inference algorithms supports effiti@nswering of restricted plan
recognition queries. The work in [26] addressesploblem of inferring high-level
intentions from a global positioning system (GPShg Bayesian networks to predict
the position and velocity of a traveller in an urbsetting, using auto, bus and foot
travel as the means of locomotion. The vision-bas®dtion described in [27] also
makes use of Bayesian networks and model-basedtotgeognition to identify
multi-person actions in the real world indicatedlidnge-scale body movements.

In [28] a vision-based technique is presented fderpreting the near-term
intention of an agent performing a task in realetitny inferring the behavioural
context of the observed agent defined as the mdiitwled by a vehicle in a military
application (a tank). A hierarchical, template-lshssasoning technique is used as the
basis for intention recognition, where there isn@-to-one correspondence between
templates and behavioural contexts or sub-contéxthis approach, the total weight
associated with each template is critical to theemd selection of a template that
identifies the agent’s current intention. A tentela total weight is based on the
contributions of individual weighted attributes deling the agent’s state and its

surrounding environment. The work described depeland implements a novel
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means of learning these weight assignments by wbgeactual human performance.
It accomplishes this by using back-propagation aleoetworks and fuzzy sets. In
[29], two mathematical methods are proposed foaterg a model to characterise a
non-rigid motion and its dynamics. The work is lthea the observation that every
activity has an associated structure charactebgea non-rigid shape. In one method
the activity is modelled using the polygonal shigrened by joining the locations of

these point masses at any time, using Kendalltssstal shape theory. A nonlinear
dynamic model is used to characterise the variatianthe 2D or 3D shapes being
observed. The second method consists of modeltiagrajectories of each moving
object in 3D space. In [30], a system is proposél & perception level made of a
sensor fusion system. The system processes thmgeateta first, and then gets the
physical information about the environment, inchglithe large-scale body

movements of humans. The recogniti@vel is a translator from the crisp data
processed at perception level to the qualitativeression that contains vague time
scales by means of fuzzy logic. The intention iafeelevel has groups of fuzzy rules
using qualitative expression to infer the humanterition for the simple specific

cooperative task.

To deal with uncertainty inherent in plan inferenCaarniak and Goldman [15],
[16] built the first probabilistic model of plan aegnition based on Bayesian
reasoning. Their visual system supports automaineation of a belief network from
observed human actions indicated by his motioed¢tajy according to some network
construction rules. The constructed belief netwask then used for actions
understanding. As a powerful tool for time seriesdgction problems, many solutions
make use of Hidden Markov Models (HMM) given thenp®ral nature of human

actions. In [31], a visual system is proposed fdgent recognition that is robust to
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illumination changes, background clutter, and osidi. The system uses a Spatio-
Spectral Tracking module (SST) to determine humantian trajectory and track
them in the video sequence where the observer rigsbassumed to be static. The
tracking module is composed of three components:

- Appearance modelling

- Correspondence matching

- Model update
The activity modelling approach uses HMMs in a Bage framework that uses
context to improve the system’s performance. In, [fhe AUTOS (Automated
Understanding of Task and Operator State) modepraposed for team intent
inference, where the activities of each team menalsewell as those of the team
overall indicated by their motion trajectories, aleserved. The underlying principles
stem from the information-on-need paradigm thatviswed as being vital to
contemporary C2 operations. AUTOS accepts as igpeech and text, and calls for
interfaces that can track progress through tasliscan facilitate those tasks, aiding
operators without interrupting their work. Threargmnents collectively make up an
AUTOS system:

- Direct observation mechanisms

- Indirect observation mechanisms

- Task models
In [32], a general principle of understanding irik@ms is proposed, which states that
people have a mechanism for representing, predi@ird interpreting each other’s
actions. Using a novel formulation of HMMs, the posed visual solution models the
interactions of several people with the world irdieg their intent to performing

various activities: following, meeting, passing pycking up an object, and dropping
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off an object. The distinguishing feature in the MBlis that they model not only
transitions between discrete states, but also theimvwhich parameters encoding the
goals of an activity change during its performanthkis novel formulation of the
HMM representation allows for recognition of theeags intent well before the
underlying actions indicated by the angle and tistadce of each agent in the scene,
are finalised. In [33], an HMM is used as a repnéstton of simple events indicated
by the shape of a hand which are recognised by gongpthe probability that the
model produces the visual observation sequences 3diution is applied to sign
language recognition. Visual systems based on peeised-HMM [34] and
coupled-HMM [35] are introduced in order to recagnimore complex events such as
interactions of two mobile objects by observingith&rge scale movements. In [36],
a vision-based stochastic context-free grammainmaedgorithm is used to compute
the probability of a temporally consistent sequesicprimitive actions recognised by
HMMs. The actions of interest include bending o&ed entering a secure area. More
recently, Buiet al [37], [38], propose an online probabilistic pglicecognition
method for the recognition of group behaviour, ldase the Abstract Hidden Markov
Model (AHMM) and the extension of AHMM allowing fqguolicies with memories.
In their frameworks, scalability in policy recogoit in the models is achieved using
an approximate inference scheme called the Rad®itised Particle Filter. In [39],
the intention of interest is the change in modérafisportation (e.g., walk, driving a
car, get on a bus, etc.) and a Hierarchical MaModel and particle filtering are used
to predict a user’s changes through spatial inféionaand body motion.

It must also be noted that following the earliefiidon of plan recognition, most
systems infer a hypothesised plan based on obsewtuhs. Therefore automatic

human activity recognition usually constitutes firecessing component for intent
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recognition [29]. In computer vision, it involvestécting and tracking mobile objects
from a video sequence, after which the activitieg a@ecognised from the
characteristics of these tracked objects. Theasterg task is therefore to map these
tracked object characteristics to a specific atigiescription. This leads to a range of
approaches, which interprets this task as a majghiacess between a sequence of
image features to a set of activity models. The begched models are then selected
based on some criteria and their matching degrée. differences among these
approaches are:
- Whether image features are computed automaticaity independently of
input image sequences
- Whether the activity representation is generic exgressive enough to model
a variety of activities but yet powerful enoughdiscriminate between similar
activities (e.g. sitting and squatting)
- Whether the matching is performed optimally
The authors in [40] propose a human behaviour tdete@and activity support in a
vivid room environment. The behaviour detectiontle vivid room is performed
using the ID4-based learning algorithm that budi@gision trees incrementally, and
three kinds of sensors embedded in the room namely:
- Magnet sensors: for doors/drawers
- Micro-switches: for chairs
- ID-tags: for humans
The information from these sensors is collectec sgnsor server via RF-tag system
and LAN. The human activity support system take® iaccount the human

behaviours in the room using sound and voice.
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Other vision-based works include solving the problef capture intention in an
indoor environment of camcorder users for home osidentent analysis [41], [42],
where visual and temporal features are used omp@osuvector machines. The visual
solution in [43] tracks a person’s region of instrdy both recovering the 3D
trajectory in the indoor environment and estimatthg head pose indicating the
attention direction. First, a nonlinear graph entdaegl method is used to robustly
estimate the head yaw angle und@t3BC in low resolution images. Second, the
person’s trajectory is recovered in an affinely-aqunanner with uncalibrated
cameras. In [44], a non-visual approach is presemteere SEMG signals are used as
an indication of hand movements for hand prosthesigrol. The approach is based
on the Adaptive Neuro-Fuzzy Inference System (ANFiEegrated with a real-time
learning scheme to identify hand motion commande flizzy system is trained by a
hybrid method consisting of Back-Propagation (BR) &deast Mean Square (LMS).
In [45], a boosting-based approach is used forsdlaation of a driver’s lane change
intent through a computational framework referr@@$ “mind-tracking architecture”.
The system simulates a set of possible driver ties and their resulting behaviours
using an approximation of a rigorous and validateatlel of driver behaviour. The
recognition of the plans of the elderly in relatiw@&nconstrained environments is
achieved in [46] using a plan/intent recognitioanfiework based on a probabilistic
model known as PHATT (Probabilistic Hostile Agenask Tracker), where the
trajectory of the people in the scene is the intewlicator. Some vision-based
probabilistic approaches use the Dempster-Shafe®)(Eheory [13], [47], [48] to
recognise the preferences of the person in thd 6élview, that is his/her repeated

behavioural pattern indicated by large-scale bodywements. In [13], the author
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relies on this evidential reasoning to suppororal default inference about the user’s
plan. D-S theory is also used to represent usefienameces (i.e., user’s repeated
behavioural patterns) and facilitate the selecbbrtompeting hypotheses. Weiss
al. [49] show how to generalise traditional discretecidion trees used for
classification to regression trees used for fumeticestimation. This visual approach
is used for two-dimensional gesture recognition liadpto the monitoring of a
continuous movement stream of a pointing devicéh sagc a computer mouse. Like
decision trees, regression trees perform partigriased on a Disjunctive Normal
Form (DNF) strategy, which has the advantagesanitglof knowledge organisation
and traceability to features.

As surveyed in this section, many methods thauaesl for plan recognition and
intention detection are proposed in the literatdreey include grammar parsing,
Kalman filters, linear models, supervised neurdivoek, fuzzy logic, decision tree,
Bayesian networks, HMM, parameterised-HMM, cougidM, AHMM combined
with the Rao-Blackwellised particle filter, a terafd-based reasoning technique,
Kendall’s statistical shape theory, spatio-speditatking. They vary in the way in
which intentions or plans are defined as they ugualate to observed actions such as
large-scale body movements, trajectory, spatialtipos speech, handwriting, hand
gestures, and even American Sign Language (ASLmeSof the application areas
include pedestrian and transportation safety [SOfyeillance [51], crime prevention,
HCI, and even interpreting sign language. Many sensan be used, including GPS,
Radio Frequency Identification (RFID) tags, digitedmeras, ultrasound sensors,
infrared sensors, light sensors, physiological sexsaccelerometers, and motion

sensors [52].
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This thesis addresses the problem of detectingcaoroperation of a user involving
the motion of the head and the hand rather thaticéxpnd well defined action.
Alternative vision-based approaches are proposesuith a purpose, which recognise
motions of the head and the hand of a subjectwelbdefined setting. They make use
principally of a symmetry-based approach, a nomedlicross-correlation template
matching and machine learning algorithms such ascipal component analysis
(PCA), neural networks, support vector machines &mdeans clustering. The
application of interest in this work is an interanot between a human and a robotic
wheelchair. The next section discusses some robartid powered wheelchair

solutions.

2.3 Robotic wheelchairs

Mobile robots can help humans with a variety oksasuch as, material handling,
transport, surveillance, demining, assisting peepta disabilities and housekeeping.
Mobile robot architecture can be classified acauydio the relationship between
sensing, planning and acting components insideatbleitecture. There are therefore
three types of architecture:

- Deliberative architecture

- Reactive architecture

- Hybrid (deliberative/reactive) architecture
In deliberative architectures, there is a plannstgp between sensing and acting.
When we compare deliberative architectures witlttre@ architectures we observe

that deliberative architectures work in a more mtadlle way, have a high
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dependency of a precise and complete model of trElwand can generate optimised
trajectories for the robot. On the other hand, treacarchitectures have a faster
response to dynamic changes in the environmeny; ¢he work without a model of
the world and are computationally much simpler [10]

One important subset of mobile robots can be founthe context of a person
with a physical disability whose mobility is enadblby a wheelchair. Various tools
that increase the mobility of the physically impealy such as (powered) wheelchairs,
walkers, or robotic manipulators, are commercialailable. Many people who
suffer from chronic mobility impairments, such gsnal cord injuries or multiple
sclerosis, use powered wheelchairs to move arodrar tenvironment [53].
Unfortunately, many of the common every-day-lifenmauvres such as docking at a
table or driving through a door are experiencedddicult, time-consuming or
annoying. Severe accidents such as falling dowrssta ramps, collisions with other
chairs or persons, and getting blocked in corridorelevators regularly occur. For
these reasons, several existing mobility tools wegeipped with sensors and a
computerised controller to aid the physically impdi with everyday-life
manoeuvring. Not only in wheelchairs [54], [55],tkalso in walkers [56], robotic
guide canes for the visually impaired [57], andatodbmanipulators [58].

Traditionally, powered wheelchairs have been driweth a joystick, which has
proven to be an intuitive solution. Unfortunatetydrive both efficiently and safely
requires the user to have steady hand-control autl geactions, which can be
impeded due to a variety of physical, perceptiveagnitive impairments [59] and by
factors such as fatigue, degeneration of their itmmdand sensory impairments.
Consequently, alternative methods of interactiom laeing investigated. Work has

been carried out in the fields of speech, visiores{gre and gaze-direction
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recognition) and brain-actuated control and the tnpagpular set of approaches are
vision-based [60], [61], [62].

A method for wheelchair obstacle avoidance is preeske in [63] using the
Canesta 3D time-of-flight infrared laser range sensThe collision avoidance
solution is presented for powered wheelchairs ubgdpeople with cognitive
disabilities (such as Alzheimer's disease and deimetherefore increasing their
mobility and feeling of independence. An integrataf the sensor system with global
mapping and localisation methods as well as coningthods using partially
observable Markov decision processes is perforimefb4], a system called Hands-
free Wheelchair Control System (HaWCoS), which vaopeople with severe
disabilities to reliably navigate an electrical wlahair without the need to use the
hands, is presented. The system monitors a speaiisignal which is the time series
of a certain bodily function of the user (such earbwaves, muscular activity, or eye
posture) and reacts appropriately to the particdé&ected pattern in the monitored
signal. The detection of intentional muscle corttoss involves a piezo-based sensor,
which is almost insensitive to external electro-metge interference.

As stated earlier perhaps the most promising sdestinology (among ultrasonic
acoustic range finder (i.e., sonar), infrared (Mi&hge finder, laser range finders
(LRFs), laser striper, etc.) associated with theseotic wheelchairs is machine
vision. Cameras are much smaller than LRFs ands, tmuch easier to mount in
multiple locations on a wheelchair, they can alsovigle much greater sensor
coverage, the cost of machine vision hardware abenf significantly, and machine
vision software continues to improve. Thus suceggssiplementation of a robotic
wheelchair based on computer vision is increasipgéferred. There are smart and

robotic wheelchairs in the literature [55] that usemputer vision for landmark
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detection (e.g., Rolland, MAid, Computer-Controlledwer Wheelchair Navigation
System) where the visual indicators are the heddegas.

Among the vision-based solution found in the litera, the authors in [65]
propose a Bayesian approach to robotic assistamogheelchair driving, which can
be adapted to a specific user. The proposed framkelw@ble to model and estimate
even complex manoeuvres, and explicitly takes tieedainty of the user's intent into
account. In [66] and [67], the authors proposaraéegrated approach to real-time
detection, tracking and direction recognition ofrtan faces, which is intended to be
used as a human-robot interaction interface fosketic wheelchair. Adaboost face
detection is applied inside the comparatively smafidow, which is slightly larger
than the camshift tracking window, so that the @e@osition, size and frontal,
profile left or profile right direction of the facean be obtained rapidly. If the frontal
face is detected, template matching is used tdhelhose position. In [68], [69] and
[70] the authors present the NavChair assistiveigaséion system based on a
modelling approach to monitoring human control &z in real-time. The
NavChair takes advantage of the capabilities ohlibe user and the machine by
allowing them to share the control of the systertpou The Vector Field Histogram
method, which is an effective sonar-based obstaetedance for mobile robots, is
adapted for use in human-machine systems; the ceimoiigs of the wheelchair
platform in this regard have been overcome. The@gnsystem comprises an array
of 12 Polaroid ultrasonic transducers, a joystickl @onar sensors. In [71], the
authors propose an intelligent wheelchair (IW) colndystem for people with various
disabilities. The proposed system involves theaidace-inclination to determine the
wheelchair direction and mouth-shape information determine whether the

wheelchair must proceed or stop. In the detechm,facial region is first obtained
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using adaboost; thereafter the mouth region iscteddebased on edge information.
The extracted features are sent to the recognmigech recognises the face inclination
and mouth shape using statistical analysiskametans clustering respectively.

In [72], many other platforms that help people heit daily manoeuvring tasks
are surveyed: OMNI, Bremen autonomous wheelchaohChair, Senario, Drive
Assistant, VAHM, Tin man, Wheelesley (stereo-visguided), and NavChair (sonar
guided). These systems are based on “shared cohi@, [74], [75] where the
control of the wheelchair or any other assistiveickeis shared with the user. Often
the developed architectures consist of differegbiihms that each realise specific
assistance behaviour, such as “drive through do®dljow corridor” or “avoid
collision”. The presence of multiple operating medeeates the need to choose from
them, and therefore makes the user responsiblsdiecting the appropriate mode,
which in some instances might be an inconvenieBegeral powered wheelchairs are
available with modular architecture [76], of whithe SIAMO project (Spanish
acronym for Integral System for Assisted Mobilitg)an example [77]. The goal of
this modular architecture is to easily configure thheelchair to suit the needs of a
high variety of users with different disabilitieBhis modular architecture also makes
it easy to adapt new functionalities to the wheaiich78]. For severely disabled
persons one way of controlling a wheelchair is bgans of head movements.
Currently, such devices do exist, such as thodedchead controlled joystick or head
movement interface, mechanical, camera-based pt@glerometer-based [80] and
based on infrared light [81], where active compdseme attached to the head of the
user.

This section shows how rich the field of electiigapowered and robotic

wheelchairs is, where the system sensoring compdneludes ultrasonic acoustic
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range finder (i.e., sonar), infrared (IR) rangeadén laser range finders (LRFs), laser
striper, piezo-sensors for (bio-signal), and vidi@sed. Typical indicators for motion
control include joysticks, gesture, gaze directibead poses, brain signals, speech,
etc. Of interest in this thesis are visual soluifocusing on the pose of the head and
the free hand of the user where several alternajppeoaches are proposed for intent
recognition. The next two sections present somehef solutions found in the

literature for head pose estimation and hand gesaaognition.

2.4 Head pose estimation

In surveillance systems the knowledge of head ppsa#des an important cue for
higher level behavioural analysis and the focusawfindividual's attention often
indicates their desired destination [60]. In adufitto contributing to the task of robust
face recognition for multi-view analysis which isllsa difficult task under pose
variation [82], pose estimation can also be comseii@as a sub problem of the general
area of intention detection as it is useful foeneihce of nonverbal signals related to
attention and intention. This makes head pose astim solutions a key component
for HCI [83]. Existing head pose estimation methodn be grouped into:
- Model-based methods (within which we also clasg\stive Appearance-
based methods) [84]
- Appearance-based methods [85]
- Feature-based approaches [86], [87], [88], [89himitwhich we also classify
appearance-based subspace methods.
Appearance-based techniques use the whole sub-ic@geaining the face while

model-based approaches use a geometric model.
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2.4.1 Model-based solutions

Several works on head pose measurement in lowutesolvideo involve the use of
labelled training examples which are used to tvarnous types of classifiers such as
neural networks [90], [86], [91], support vector chenes [92] or nearest neighbour
and tree-based classifiers [93], [94], [95]. Otl@proaches model the head as an
ellipsoid and either learn a texture from trainohgfa [96] or fit a re-projected head
image to find a relative rotation [97]. In [98]2® ellipse is used to approximate the
head position in the image. The head position tainbd using colour histogram or
image gradients. However, light changes and difes&in colours result in tracking
failures. Another drawback with such an approachhes inability to report head
orientation. In [99], partial orientation informati, such as tilt or yaw is available.
However, the accuracy of those systems is low @up5 degree error in estimating
rotation).

Recently, model-based approaches like the bungbhgapproach, PCA, Eigen
faces and Active Appearance Models (AAMs), haveeirg considerable interest.
AAMs [100] are nonlinear parametric models derift@n linear transformations of a
shape model and an appearance model. A neural rietvem also be trained to
distinguish between different persons or to makistinction between poses of one
person’s face [101]. The system proposed in [108ks neural networks on each
camera view to estimate head orientation in eithisrction. For the fusion of the
multiple views, a Bayesian filter is applied to Ibatiffuse prior estimates (temporal
propagation) as well as search for the most cohenatch of overlapping single view

hypotheses over all the included sensors.
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Unsupervised approaches such us eigenfaces [1034] [learn the subspace for
recognition via the Principle Component Analysi€&) [105] of the face manifold,
while supervised approaches like Fisherfaces [1€&jn the metric for recognition
from labelled data via the Linear Discriminant Aysa$ (LDA). Linear approaches in
head pose estimation are found in [107], [108],9]10t must be noted that the
PCA/LDA approaches for head pose estimation aretddnbecause of the non-
linearity of the underlying manifold structure, andhness in local variations. In
recent years, non-linear methods for high dimeradiomon-linear data modelling,
Locally Linear Embedding (LLE) [110] and Graph Laghn [111], perform very
well in finding manifold structure through embedglia graph structure of the data
derived from the affinity modelling. When the prebl space is large, a kernel
method [112], [113] is employed and in other casbsre complexity is an issue, a
piece-wise linear subspace/metric learning metidd|[is developed to map out the
global nonlinear structure for head pose estimatitemplate matching is another
popular method used to estimate head pose wheletteéemplate can be found via a
nearest-neighbour algorithm and where the poseciaged with this template is
selected as the best pose. Advanced template mgtcan be performed using Gabor
Wavelets and Principle Components Analysis (PCASupport Vector Machines, but
these approaches tend to be sensitive to alignar@htare dependent on the identity
of the person [82].

More accurate systems use 3D geometrical modetptesent the head as a rigid
body. In [115], Yang and Zhang use a rough triaaguhesh with semantic
information. Stereo is used to obtain 3D informatiavhich is matched against the
known model. A major shortcoming of this methothis amount of time one needs to

spend to create a precise model. Recent approadgesa cylinder to approximate
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both the underlying head geometry and texture [1[18]7]. Since a cylinder is only a
rough approximation of head geometry, those metsodfer from inaccuracies in
estimating rotation, and have difficulties diffet@ting between small rotations and
translations. In [118], an approach for 3D headepestimation from a monocular
sequence is proposed. To estimate the head pogeatatg and simply, an algorithm
is used based on the geometry information of tdevidual face and projective model
without the need of any 3D face model and any gpecarkers on the user’s face.
Another 3D solution to head pose estimation isgesd in [119] where the system
relies on a novel 3D sensor that generates a dange image of the scene. In [82], a
novel discriminative feature is introduced whichefficient for pose estimation. The
representation is based on the Local Gabor Binatiefh (LGBP) and encodes the
orientation information of the multi-view face imegyinto an enhanced feature
histogram. A Radial Basis Function (RBF) kernel g Vector Machines (SVM)
classifier is used to estimate poses. The aim @fatbrk in [83] is to develop a new
vision-based method which can estimate the 3D pead with high accuracy with an
adaptive control of diffusion factors in a motiorodel of a user's head used in

particle filtering.

2.4.2 Appearance and feature-based techniques

Appearance-based approaches use filtering and immagmentation techniques to
extract information from the image. Some typicalpegrance-based techniques
include optical flow algorithms as well as edgeedetrs such as Gabor wavelets
[120]. Filtering and segmentation resulting fronpearance-based methods play a
significant role in head pose estimation, but itsinbe noted that few head pose

estimation algorithms are known to be exclusivglpearance-based as they require
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the step of recognising the pose. Among the exaeptare the Gabor head pose
estimation described in [87] where the weights @abor wavelet network directly
represent the orientation of the face. Its disathgan however, is the computational
effort involved, which is very user specific. Biylét al. [121] used Nurbs surface
with texture to synthesise both appearance and, dmste could not report pose
accuracy since ground truth was unavailable. Sévessearchers [122], [123]
introduced the notion of extended super quadridasar or Fourier synthesised
representation of a surface, which possesses adeigiee of flexibility to encompass
the face structure. They use model-induced optical to define pose error function.
The usage of a parameterised surface enables theesdlve ambiguities caused by
self occlusion.

The majority of feature-based algorithms use thesegs features since they are
easy to detect due to their prominent appeararfeendstrils are also features that are
used; however, they become invisible as soon asigbe tilts his head downwards.
The mouth is also easy to find except when covédred moustache or a beard.
Several authors use a set of these features toastia 3D head orientation. In [62],
the authors address the problem of estimating pead over a wide range of angles
from low-resolution images. Faces are detectedgushrominance-based features.
Grey-level normalised face images serve as inputifear auto-associative memory.
One memory is computed for each pose using a Widtoff learning rule. Head
pose is classified with a winner-takes-all procds&zpatrick [124] demonstrates a
feature-based approach to head pose estimatiorowvitnanual initialisation. For
feature detection and tracking the cheapest pathssa the face region is found,
whereby the cost of a path depends on the darlafes®ssed pixels. The paths will

therefore avoid dark regions and a pair of avoidggions is assumed to be the pair of
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eyes. The algorithm is thus dependant on the litsiloif the eyes. Head pose is then
determined based mainly on the head outline ane@ykeposition. Gorodnichy [125]
demonstrates a way to track the tip of the nosadyg the resemblance of the tip of
the nose with a sphere with diffuse reflection.sTtemplate is then searched in the
image. This approach does not estimate the heagl passimply tracks the nose tip
across the video images and therefore a pose réioogiask has to be added. In [61],
a novel approach to estimate head pose from moaocdniages, which roughly
classifies the pose as frontal, left profile, ayhti profile is presented. Subsequently,
classifiers trained with adaboost using Haar-likat@ires, detect distinctive facial
features such as the nose tip and the eyes. Basttk g@ositions of these features, a
neural network finally estimates the three contiumiootation angles used to model
the head pose.

Appearance-based subspace methods that treat thle falce as a feature vector
in some statistic subspace has recently becomdarofiney avoid the difficulties of
local face feature detection and face modellingweler, in the subspace, the
distribution of face appearances under variablee psd illumination is always a
highly non-linear, non-convex and maybe twisted ifioéah which is very difficult to
analyse directly [126]. Murase and Nayar [127] maksarametric description of this
nonlinear manifold to estimate pose in a single PXDAspace. Pentlaret al. [128]
construct the view-based subspaces to detect fatestimate pose. The same idea is
used in [85] to estimate head poses in the Indepen8ubspace Analysis (ISA)
subspace. Some approaches solve this problem melkesised methods such as
Support Vector Regression (SVR) [129] and Kernehdfpal Component Analysis

(KPCA) [113].
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As shown in this section, the area of head posmaton is rich and at the same time
opens to interesting new avenues of investigaiitwe. solutions proposed in this work
however use two model-based approaches, namelyetmglate matching and PCA
and a symmetry-based approach, which can be dtabssifnong appearance-based
approaches. The solutions presented in this seftaus mostly on single frame head
pose estimation but not on the way in which thesgtions vary. It is, however, an
important component of the intent recognition dolutproposed in this work. The

next section focuses on hand gesture recognition.

2.5 Hand gesture recognition

Hand gesture recognition from video images is ofstderable interest as a means of
providing simple and intuitive man-machine intedacPossible applications range
from replacing the mouse as a pointing device ta&i reality, communication with
the deaf and to Human-Computer Interaction (HCI)WMKrueger [130] proposed
gesture-based interaction as a new form of HChenrhiddle of the 1970s initially,
which has since witnessed a growing interest inragnat making HCI as natural as
possible [131]. Much human visual behaviour canubderstood in terms of the
global motion of the hands. Such behaviours inclooest communicative gestures
[132], [133] as well as movements performed in ortte control and manipulate
physical or virtual objects [134], [135], [136],37]. Hand gestures and poses are not
only extensively employed in human non-verbal comivation [138], but are also
used to complement verbal communication as they eweexpressive and
complementary channels of a single human langugsiera [139], [140], [141]. The

primary goal of any automated gesture recognity@tesn is to create an interface that
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is natural for humans to operate or communicaté wicomputerised device [142],
[143]. There are three main categories of handugestnalysis approaches [144]:

- Glove-based analysis [145]

- Vision-based analysis that can be divided into mbdsed [146] and state-

based [147], and analysis of drawing gestures

- There are also solutions that approach the proldlem a neuroscience point

of view [148]

Glove-based approaches have several drawbackglinglthe fact that they hinder
the ease and natural way with which the user caerdot with the computer-
controlled environment; they also require longloaiion and setup procedures [143].
The non-intrusive property of vision-based appreacimakes them more suitable,
thus rendering them probably the most natural wagoostructing a human-computer
gesture interface as they do not require any amfditidevices (e.g. gloves) and can be
implemented with off-the shelf devices (e.g. webspfii49]. Yet it is also the most
difficult type of approach to implement in a sabry manner.

There are two main approaches in hand pose estimathe first approach is the
full Degree Of Freedom (DOF) hand pose estimatimat targets all the kinematic
parameters (i.e., joint angles, hand position @mnbation) of the skeleton of the hand,
leading to a full reconstruction of hand motion 314The second one consists of
“partial pose estimation” methods that can bewee as extensions of appearance-
based systems that capture the 3D motion of spegéits of the hand such as the
fingertip(s) or the palm. These systems rely oneapgnce-specific 2D image analysis
to enable simple, low DOF tasks such as pointingamigation. 3D hand models offer
a way of more elaborate modelling of hand gesthtedead to computational hurdles

that have not been overcome given the real-timaireapents of HCI. Appearance-

-36 -



Chapter 2: Literature Survey

based models lead to computationally efficient fymsive” approaches that work well
under constrained situations but seem to lack émeiglity desirable for HCI [150].
There are an increasing number of vision-basedugesecognition methods in
the literature. Baudel and Beaudouin-Lafom [153padBa et al.[152], and Davis and
Shah [153] all describe systems based on the use pHssive “data glove” with
markers that can be tracked relatively easily betwlames. A 3D structure from
image sequences is recovered in [152] but doeatternpt to classify gestures. David
and Shah [154] propose a model-based approachibyg asfinite state machine to
model four qualitatively distinct phases of a gemegesture. Hand shapes are
described by a list of vectors and then matchet thi¢ stored vector models. Darrell
and Pentland [155] propose a space-time gesturegmémn method. Signs are
represented using sets of view models, and thech®dtto stored gesture patterns
using Dynamic Time Warping (DTW). Cui and Weng [L3fveloped a system
based on a segmentation scheme which can recdgfhidéferent gestures in front of
complex backgrounds. In [157] Ohknishi and Nishikgwopose a new technique for
the description and recognition of human gesturés. proposed method is based on
the rate of change of gesture motion direction thagstimated using optical flow
from monocular motion images. Nagagtal. [158] propose a method to recognise
gestures using an approximate shape of gestueetoages in a pattern space defined
by the inner-product between patterns on contindaree images. Heap and Hogg
[159] present a method for tracking a hand usimdeformable model, which also
works in the presence of complex backgrounds. Hierthable model describes one
hand posture and certain variations of it and is aimed at recognising different
postures. Zhu and Yuille [160] developed a statstiramework using PCA and

stochastic shape grammars to represent and reeddp@ishapes of animated objects.
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It is called Flexible Object Recognition and Modedl System (FORMS). Rehg and
Kanade [161] describe a system that does not regpecial markers. They use a 3D
articulated hand model that they fit to stereo datd do not attempt gesture
recognition. Blakeet al. [162] describe a tracking system based on a nmeal-t
“snake” that can deal with arbitrary pose, buttse¢he hand as a rigid object.

An important application of hand gesture recognitics sign language
understanding [132]. In [163], a large set of isadsigns from a real sign language is
recognised with some success using a low-end msinted glove using two machine
learning techniques:

- Instance-Based Learning (IBL)

- Decision-tree learning.

Simple features were extracted from the instrunteigieves, namely the distance,
energy and time of each sign. They have severarddges among which the most
important are cost, processing power and the Fattthe data extracted from a glove
are concise and accurate. On the other hand, glreean encumbrance to the user
and today’s most convenient solutions require tlopgrty of being non-intrusive. In
addition to instrumented gloves, early approacleeshé hand gesture recognition
problem in a robot control context involved the wudemarkers on the finger tips
[164]. Again, the inconvenience of placing markersthe user’s hand makes this
solution less suited in practice. Liaeg al. [165] developed a gesture recognition
system for TSL using Data-Glove to capture theidle>of 10 finger joints, the roll of
palm and other 3D motion information. In [166], F1Gnd [168], two visual HMM-
based systems are presented for recognising senl&ral continuous American Sign
Language (ASL) using a single camera to track teer's unadorned hands. To

segment each hand initially, the algorithm scaesirtiage until it finds a pixel of the
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appropriate colour, determined by an a priori madedkin colour. Given this pixel as
a seed, the region is grown by checking the eigtdrest neighbours for the
appropriate colour. Each pixel checked is consttléce be part of the hand. The
tracking stage of the system does not attempteadescription of hand shape, instead,
concentrating on the evolution of the gesture tbhotime. In [169], a gesture
recognition method for Japanese sign language esepted making use of the
computational model called Parallel Distributed d&ssing (PDP) and a recurrent
neural network for recognition. Huaegjal. [170] use a 3D neural network method to
develop a Taiwanese Sign Language (TSL) recogn#tystem to identify 15 different
gestures. Locktoet al. [171] propose a real-time gesture recognitionesystwhich
can recognize 46 ASL letter spelling alphabet aigitsd The gestures consist of
“static gestures” where the hand does not move.

More solutions include a fast algorithm proposed[164] for the automatic
recognition of a limited set of gestures from hanthges for a robot control
application. The approach contains steps to segthenhand region based on skin
colour statistics and size constraints, locating fihgers by finding the Centre Of
Gravity (COG) of the hand region as well as thehist point from the COG, and
finally classifying the gesture by constructing i&cle centred at the COG that
intersects all the fingers that are active in thent and subsequently extracting a 1D
binary signal by following the circle. The algomthis invariant to translation,
rotation, and scale of the hand and does not reghe storage of a hand gesture
database. In [138], a robust hand gesture detediwh recognition system for
dynamic environments is proposed. The system iscdbas the use of a cascade of
boosted classifiers for detection of hands andugestcognition, together with the

use of skin colour segmentation and hand tracknoggulures. The authors in [142]
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present a system that performs automatic gesturtegmgion using a unified
technique for segmentation and tracking of faces lands through a skin colour
detection algorithm and a static and dynamic gestacognition system based on
PCA. An HMM-based gesture recognition algorithnpissented in [172] where the
system uses a threshold model that calculateshtieehold likelihood given an input
pattern. For gesture segmentation, it detects ehabte end point of a gesture and
finds the start point by back-tracking the Vitedath from the end point. A visual
hand gesture recognition technique that uses th@rfuof a static and a dynamic
recognition technique is proposed in [144].

The hand gestures can be divided into static hastuges, which are represented
by a single image of the hand, and dynamic hantligess which are represented by a
sequence of images, each one corresponding to @ asture within the gesture
(hand movement). The static signature uses thé twentation histograms in order
to classify the hand gestures. For the dynamicugestecognition algorithm each
gesture is represented by a sequence of imagesdyiemic signature used for
classification is the superposition of all handioagskeletons for each image within
the sequence. The recognition is performed by comgp#his signature with the ones
from a model of the gestures, using Baddeley'sadit as a measure of
dissimilarities between model parameters. The poegssing steps consist of the
following operations:

- Binary image computation

- Binary image enhancement

- Hand region extraction.
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The authors in [173] address the problem of higmmatation cost to solve the finger
inverse kinematics in conventional model-based hgexlure analysis systems. They
propose a fast hand model fitting method for tlaeking of hand motion by finding
the closed-form inverse kinematics solution forfinger fitting process, and defining
the alignment measure for the wrist fitting procelseir proposed method however
requires markers. In [174], a robust method for dharacking in a complex
environment using mean-shift analysis and Kalméarfin conjunction with a 3D
depth map is proposed. Mean-shift analysis usesgthadient of Bhattacharyya
coefficient as a similarity function to derive tibandidate of the hand that is most
similar to a given hand target model and Kalmaerfils used to estimate the position
of the hand target. A real-time vision system igsented in [175], which uses a fast
segmentation process to obtain the moving hand thenwhole image, which is able
to deal with a large number of hand shapes agdifistent backgrounds and lighting
conditions. The recognition process identifies Hand posture from the temporal
sequence of segmented hands through a robust shapearison carried out through
a Hausdorff distance approach operating on edges.nfde system's visual memory
stores all the recognisable postures, their distangnsform, their edge map and
morphologic information. In [176], the author pretea real-time stereo vision hand
tracking system that can be used for interactiomppqses. The system can track the
3D position and 2D orientation of the thumb andeidinger of each hand without
the use of special markers or gloves. The methodidies a background subtraction,
skin colour segmentation, a region extraction, ammbntour-based feature extraction.
In [177], a novel method for hand gesture recognitis presented based on Gabor
filter and SVMs. Gabor filters are first convolvedth images to acquire desirable

hand gesture features. PCA is then used to redeceimensionality of the feature
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space. With the reduced Gabor features, SVM isdchand exploited to perform the
hand gesture recognition task. Other methods uBeabflow where the position of
the moving hand is estimated and segmented intdomdtlobs. Gestures are
recognised using a rule-based technique basedamathristics of the motion blobs
such as relative motion and size [178]. A histog@nocal orientation [179] is also
used as a feature vector for gesture classificatr@hinterpolation.

As discussed in [143], the main difficulties enctarad in the design of hand pose

estimation systems include:

- High-dimensional problem: the hand is an articuaibject with more than 20
DOF.

- Self-occlusions: Since the hand is an articulatgdat, its projection results in
a large variety of shapes with many self-occlusiamsikes it difficult to
segment different parts of the hand and extradt lagel features.

- Processing speed: With the current hardware teolggplsome existing
algorithms require expensive, dedicated hardwarel possibly parallel
processing capabilities to operate in real-time.

- Uncontrolled environments: For widespread use, nk@y systems would be
expected to operate under non-restricted backgsamdl a wide range of
lighting conditions.

- Rapid hand motion: The combination of high speeddhmotion and low
sampling rates introduces additional difficulties fracking algorithms.

Since it is difficult to satisfy all the issuestéd above simultaneously, some studies
apply restrictions on the user and the environméntthis thesis, the problem is
defined in such a manner that both the user andetheronment have some

restrictions. The environment is restricted asgbkition is intended to be used in a
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wheelchair with one camera facing the user’s rigéwbd from its dorsal view and
another camera in front of the user’s face. Foruber, the motions of interest are
rotation with respect to a horizontal axis andieaftmotion of a relatively rigid hand
solving the issue of the multiplicity of DOF. No Ifseocclusion is therefore
anticipated, and the environment is more or lesgrolled as the camera is already
facing the objects of interest.

It is also evident that the types of motion of res# in this thesis are less explicit
and pronounced than the gestures found in thediter for sign language and human-
robot interaction. Furthermore, some of these Bwlat are invariant to rotations
[142], [164], and therefore may not all be ablelébect these hand motions as defined

in this thesis.

2.6 Conclusion

As the literature reveals, intention detection anfer HCI and collaboration is a
fairly rich field of investigation where many putiied work exist, and where there is
still room for new contributions. Furthermore, maropotic and intelligent power
wheelchairs that share control with users or hbkgmt perform the tasks that they
cannot carry out on their own, were developed wlteraputerised intent awareness
of the user constitutes an essential component.uSetil speed and direction intent
indicator for these power wheelchairs is the motbthe head as it remains available
for many physical disabilities. Hand gesture ha® deen shown to be an important
means of non-verbal communication, a complementetbal communication and a

means for interaction with virtual and physicallitya
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The solutions found in the literature for head pesemation applied to wheelchair
motion, allow symbolic commands based on the hegmbsture. The disadvantage is
that the intention is therefore indicated by a En§ame and therefore more
vulnerable to misdetection. Hand gesture recogmisiolutions found in the literature
focus more on the change in the hand’s contoureshag are typically applied to sign
language applications. The literature doesn’t dantaand gesture recognition
solutions where the motion of the hand is a migueration such as the rotation and
vertical motion described in this thesis, for white approaches found in the
literature are typically invariant or unusable fobust classification. The next two

chapters describe the methods proposed in thisthes
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Chapter 3

Head-Based Intent Recognition

3.1 Introduction

One of the visual intent indicators used in thiskvis the frontal view of the head
(face) in motion. The motivation behind this choisats availability and flexibility
for a wide range of disabilities. Moreover, the ¢haa motion is a useful intent
indicator as it presents separable patterns féeréiit poses. The solution consists of
a camera with the head as the object of intereis iireld of view. The head performs
two types of motion: Rotation and vertical motianinidicate an intention in direction
and speed variation respectively. Head rotatioa particular direction (right or left)
is selected to indicate the chosen direction thgesti intends to take. Vertical head
motion (up or down) is chosen to indicate the stitgyespeed variation intent where
the head going up is chosen to indicate a decieageeed, and the head going down
is chosen to indicate an increase.

The visual solution proposed in this thesis accapigleo sequence as the input
with the head in rotation and vertical motion ageobof interest, and gives direction
and speed variation intent respectively as outlmtént recognition is achieved by
analysing the motion of the head through the visieguence rather than looking at a
single frame. In this work 10 frames are requirednput to the proposed algorithm

that maps them into a vector referred to in thiskwas the “intention curve”.
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This chapter provides a detailed description of tiead-based intent recognition
methods proposed in this thesis. The pre-procestens of detection and tracking of
the frontal view of the face within a video sequerare implemented using skin
colour detection and PCA on the detected skin cotegion resulting in a smaller
image frame containing the only face in the fiefdveew. Note that in this work,
tracking only consists of repeating the detectiaskton a smaller region that is
slightly larger than the head detected region efgtevious frame. For recognition of
the head in rotation, a symmetry-based approaakad on each face detected frame
resulting in a symmetry curve where the centreraf/igy (COG) and thg-intercept
of the line approximating that symmetry curve asedito construct the intention
curves. These intention curves are subsequentgitiled using a decision rule based
on their increasing, decreasing or constant tenddfar recognition of the head in
vertical motion the intention curves are constrdaising a PCA-based approach on
each frame of the input sequence, and are classiBang a decision rule also based
on their increasing, decreasing and constant psapyerurthermore, a method by Jia
and Hu [66], [67] based on adaboost, camshift amektemplate matching is also
implemented for the comparison of results.

To distinguish between the two different sets ofiores, rotation detection of the
head for direction intent recognition is perfornfesdt and if no significant change in
position (rotation wise) is observed, detectiorthed vertical motion of the head for

speed variation intent recognition is then perfatme
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3.2 Pre-processing steps: face detection and tracking

The topic of face detection is a very rich areaesfearch in the literature, providing
solutions to determine if a face is present in mage frame as well as the exact
location of that face [180]. The methods for fasealisation in a single frame can be
divided into four categories:
- Knowledge-based methods: They encode human knowledfy what
constitutes a typical face: e.g., the relationshigsveen facial features.
- Feature invariant approaches: They find structieatures of the face that
exist even when the pose, viewpoint, or lightingaitons vary.
- Template matching methods: where the correlaticgtesden an input image
and the stored templates are computed for detection
- Appearance-based methods: where in contrast tolaéenmatching, templates
are learned from a set of training images, whiclouh capture the
representative variability of facial appearance.
The present solution makes use of skin colour tietecwhich is a very popular
feature invariant approach. It was shown that aolsthe most powerful means of
discerning object appearance. So it is better tragscale processing leading to the
detection through facial features such as the apédsthe mouth. Another merit that
may be attributed to skin colour detection overdkeection of other facial feature is
its diversity of application including hand detectithat is of interest in this thesis
(refer to Chapter 4). Two solutions are implementeanodel the skin colour: The

first makes use of a colour histogram in H®V colour space [181], while the second
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makes use of a variant of adaboost to learn the@Kour in the YCrCb colour space

[182].

3.2.1 Histogram-based skin colour detection

Typically skin colour is modelled using a histograarsingle Gaussian distribution or
a mixture of Gaussians, although other approachesatso be found. However,
among those three principal skin colour models, théhors in [183] have
demonstrated that the histogram model is supesidhe¢ others, easier to implement
and computationally efficient. The different cologpaces used in skin colour
detection include HSV, normalised RGB, YCrCb, YIQdaCIELAB. According to
[184], HSV yields the best performance for skinotwlpixel detection. In this colour
space, H stands for the Hue component, which descthe shade of the colour, S
stands for the Saturation component, which deserto@v pure the Hue (colour)
component is, while V stands for the Value compénevhich describes the
brightness. The removal of the V component takes gavarying lighting conditions.
H varies from 0 to 1 on a circular scale, thathg colours represented by H=0 and
H=1 are the same. S varies from 0 to 1, 1 repraspnii00 percent purity of the
colour. H and S scales are partitioned into 10@I&wand the colour histogram is
formed using H and S.

For skin colour training 69 601 pixels are usedngirag 10 different subjects
with different skin colours, to form a separateotwlhistogram for each component H
and S: For each pixel, H and S values are foundlatin corresponding to these H
and S values in the histogram is incremented Wyidure 3-1 depicts the histogram
for the H and the S components separately. Toifjassew pixel as skin colour or

not (background), a common threshdld= 2000 for both components H and S is
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chosen empirically by trial and error accordinghe height of the bins where the skin
colour is sufficiently frequent: Lt be a pixel to be classified as skin colour or non-
skin colour in the input image (refer to Figure 3FPart a) for examples of 576x768
input images)piny andbins the bins in the histogram corresponding to kthand S
component values associated with the ppelhe classification task is performed by
the decision rulén given below (refer to Equation 3-1), and the resglskin colour

detection is depicted in Figure 3-2 (Part b):

skincolour , bing =24 0Obing 21
h(p)= : (3-1)
non-skin colour, else
Histogram for the Hue component
8000 — | | | |
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Figure 3-1 Skin colour histograms in the HSV colour space
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3.2.2 Adaboost-based skin colour detection
The foundational colour space is RGB while the aplspace that displays the best
performance according to [184] is HSV. In [182] lewer, it is asserted that the
choice of the YCrCb colour space as opposed totwloecolour space mentioned
previously is justified by its hardware-oriented vadtages. Y represents the
luminance component, while Cr and Cb representtineminance components of an
image. The approach to learn skin colour pixel asdal on the adaboost learning
algorithm where the key factor for identifying skiolour is intensity. The task of
colour segmentation is therefore based on thetliattcolour distributions at different
intensities have different centres of gravity, elifint means, and different standard
deviations, that is, skin colour has different istatal features with different
intensities. This method, based on skin colouning using adaboost, performs more
robustly than the traditional threshold techniqd&3] for skin colour extraction,
especially under poor or strong lighting conditions

Boosting consists of the addition of a new wealssifeer (refer to Equation 3-2),
until the error is decreased to a specific threshdhe weak classifier is designed to
select a circularity, which can contain as muchmstolour pixels as possible. This
circularity is required to round more than only 50%he points, as a weak classifier
for adaboost needs to be only a little better thmrdom guess. A weak classifier

h;( p)consists of the centreg(cr cb) and the radius and is given as:

1 if (p.Cr-c.Cr)2+(p.Cb-c.Cb)2<:r2

(3-2)
0 otherwise

M(p)={
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where p is a pixel in the image. Given example pixelgY,Cr,Cb)...a(Y,Cr,Cb)
which are all skin pixels (all positive examples)rh images spanning 10 different
subjects in the training set with different skilaos, the algorithm for training skin

colour is given below in Table 3-1.

Table 3-1 Adaboost algorithm for skin colour learning

- Divide these examples intointervals:its...ity, according to specific value ranges
of Y.

- For each intervay:
e . 1 : :
o Initialise weightsyv, =—, where n is the numbég examples.
n
o Fort=1,.. T
= Normalise the weights
w,; =——"—, so thaty; is a probability distribution.
Ry
]—1 ']
= Train a circularity

n
C.Cr D pCrxw;
i=1

n

c.Cbh= ) pChxw
=1

=E@) + d(r), with

n n 1
E() 2 p;l xw; andd(r)=(X(p;l —E(r))*xw ;)2
j=1 j=1

wherngl is distance of; to the centre. The erres evaluated as
€ :Zth,i‘hj( p)—iq
= Update the weights
®i ithi(p)=0
\Nt,' X | i(p)=
We+1i = | 1-¢; ’
W otherwise
= For intervality, the final strong classifier is

. 1
0 otherwise
1_
wherea; =log, il
&t
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For skin colour classification of each pixelin an input image (refer to Figure 3-3
(Part a) for examples of 576x768 input images), fitet step is to determine the
interval ity among them intervals, to whichp belongs. If the pixel doesn’'t belong to
any interval it is discarded as a non-skin colanel otherwise the appropriate strong
classifiers; is subsequently used to determine if the pixeinberval ity is a skin-

colour pixel or not (refer to Equation 3-3). Thesuking skin colour detection is

depicted in Figure 3-3 (Part b).

non- skin colour, Ok={1...m}, pY Uity

map( pY):{Sk(p)' Ok={1,...m}, pY Oity (3-3)

3.2.3 Face detection and localisation

After classifying skin colour pixels and non-skiol@ur pixels in a given image such
as those portrayed in Figures 3-2 (Part a) andRBa8 a), a higher level processing is
required to determine whether a face is presenmadsas the exact location of the
face. Unlike [181] and [182] that made use of say@emetric constraints through

connectivity analysis and identification of the nented region with the shape of a

1+4/5
2

typical face through the well known golden ratio= 7 (wherer is a

tolerance) and a cascade of neural networks wilBthizmann factor respectively,
the proposed method makes use of morphological emacessing operations
namely erosion and dilation, connected compondr&liag and Principal Component

Analysis (PCA).
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3.2.3.1 Erosion

Erosion is a morphological image processing opamatihat removes the extraneous
pixels on object boundaries. It was originally defi for binary images, later being
extended to greyscale images, and subsequentiynplete lattices [186]. It is used
in this work to remove noise from the binary imagsulting from the skin colour
detection step. The erosion uses a specified neighbod. The state of any given
pixel in the output image is determined by applyangile to the neighbourhood of the
corresponding pixel in the input image such thaguéry pixel in the input pixel's
neighbourhood is a skin colour pixel, then the attpixel is a skin colour pixel.
Otherwise, the output pixel is a non-skin colowehi

The neighbourhood can be represented by an aspsteape and size called the
structuring element, and is chosen in this workda 3x3 square. The centre pixel in
the structuring element represents the pixel ofragt, while the elements in the
matrix that are skin colour define the neighbourhdcet| be the binary image such
as those depicted in Figures 3-2 (Part b) andBaBt (0) resulting from the histogram-
based skin colour and the adaboost-based skin rcoflmtection approaches
respectively, andR, a detected skin colour region In The erosion ofR by the

structuring elemerfsis defined as follows:

®S=N R
sOS

tz0 1S, UR} (3-4)
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whereS; is the translation of by the vector, that is,S, ={s+ z|sOS},0z0I (sis

the centre of the structuring eleme®tand z is each pixel in the imagB. The

resulting binary images are illustrated in FiguBe2 (Part c¢) and 3-3 (Part c) for
adaboost-based and histogram-based skin colouctibgtegespectively, and it can be
observed that removing noise also costs on the afdiour detection task. This is

compensated by the dilation operation.

3.2.3.2 Dilation and connected component labelling

Dilation is a morphological image processing operatthat adds pixels to the
boundaries of objects. Similarly to erosion, it wasginally defined for binary
images, later being extended to greyscale imagaes, sabsequently to complete
lattices [186]. It is used in this work to compeesfar the loss in shape resulting from
the noise removal process through erosion in teeipus step: The state of any given
pixel in the output image is determined by applyangile to the neighbourhood of the
corresponding pixel in the input image such thaanfy pixel in the input pixel's
neighbourhood is a skin colour pixel, then the attpixel is a skin colour pixel.
Otherwise, the output pixel is a non-skin colowepbi

The structuring element neighbourhood is chosetthis work to be a 10x10
square, for probing and expanding the shapes cmuatan the input image. Létbe
the binary image such as those displayed in Fig@f2s(Part b) and 3-3 (Part b)
resulting from the histogram-based skin colour #mel adaboost-based skin colour
detection approaches respectively, d&da detected skin colour region In The

dilation of R by the structuring elemeftis defined as follows:
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ROS= U Rg
sOS

={zOI|(S ), nRzg (3-5)

where S denotes the symmetric 8f that isS ={sOl |-sOS}.

As illustrated in Figures 3-2 (Part d) and 3-3 (R#jr for histogram-based and
adaboost-based skin colour detection respectiviedy dilation operation is aimed at
retrieving the integrity of the skin colour pixelsjt retrieves also some of the noise
that has not been completely removed by the ergsiocess. To address this problem
a connected component labellintask is performed using the 8-connected
neighbourhood approach, that is, two skin pixelsrmgto the same region if one is in
any of its 8 neighbouring places of the other [1&(Jbsequently, the assumption that
only one face is present in the field of view ahdttit corresponds to the highest
connected component in the image guides a simglside rule that only retains the
connected component with the highest number oflqixest R 11, whereR of size
XixY; is thei™ connected region. The region portrayed in Fig@&s(Part e) and 3-3
(Part e) for histogram-based and adaboost-basedcskour detection respectively,

chosen to be the face regiorRswhere:

Xi Y
k = arg m.ax{ > > R( x,y)} (3-6)
| i={1,...n}

x=1y=1

with n the number of connected components in the binagge resulting from the

dilation process.
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Histogram-based skin colour detection

b w " " ko l-'"--" = ¥ g .::-.E:.:‘

Subject1: Frame1 Subject?: Framel Subject3: Frame1 Subjectd: Frame1

Figure 3-2 Histogram-based skin colour detection for faceckon
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Adaboost-based skin colour defection

Subject1: Frame1 Subject2: Frame1 Subject3: Frame 1 Subjectd4: Frame1

Figure 3-3 Adaboost-based skin colour detection for facecein

3.2.3.3 Principal Component Analysis

PCA stems from the fact that it is often advantaget represent data in a reduced
number of dimensions for improved classificationrfpenance. Essentially,

dimensionality reduction can be achieved in twdedént ways:
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- Feature selection: It identifies those variableat tdo not contribute to the
classification task.

- Feature extraction: Also referred to as featureddin in the transformed space,
it finds a transformation from the measurements to a lower dimensional feature
space.

PCA belongs to the second category. It is a lirfeature extraction approach that

finds linear projections to derive new variablesdiecreasing order of importance,

which are linear combinations of the original vates and are uncorrelated. These
projections capture the variability of featureseparability of classes.

For face localisation, PCA maps a face into a losherensionalityspace through
the generation of a set of eigenfaces: SuppoiseanN°x1 vector, corresponding to
an NxN face imagd whereN = 200: the goal is therefore to represEnhto a low-
dimensional space. Let the training set of facegesabel,, I,... Iy made of 10
different subjects with 5 faces each. ThékeN imagesl; are represented a¢x1

vectors/; withi = {1,...,M, with M = 50. The mean face image is computed:

1 M
w="237 (37
M3
The mean face is subtracted:
@ =r-v¥ (3-8)

The N?>xN? covariance matrixC, which is a measure of how far the set of column

vectors®p; of matrixA is spread out, is given as:
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®,@) = AAT (3-9)
1

M=z

c=1
M

n

whereA=[®, @,..®,,]is an N?xM matrix. The eigenfaces are found by computing

a set of eigenvectors of the covariance ma@ix These eigenvectors and their
associated eigenvalues best describe the distiibofi the data, as they represent the
direction in which the face images in the trainggg differ from the mean image and
how much these face images vary from the mean inmatf&at direction respectively.
Since the covariance matrx = AA' is too large with a size d#*xN?, rendering the
computation of the eigenvectors in Equation 3-10 practical, the eigenvectors of

the smalleMxM matrix A'A can be computed (refer to Equation 3-11):

AATVk = /1ka (3-10)

AT Auy = Ay (3)11

AAT Al = Ad Uy

= /]kAuk (3'12)

where k:{l,...,M'} with M = 15. From Equations 3-10 and 3-12 it can be

concluded that ify is an eigenvector &f'A, thenvi = Aug is the eigenvector of and

therefore the eigenfaces has also been shown that all feeigenvalues oA'A are

the M largest eigenvalues gfA" [105]. Only M eigenfaces, corresponding to the
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M largest eigenvalues among the eigenvalues I(/II < M) are kept. Figure 3-4

depicts the 10 eigenfaces associated with the difekt eigenvalues among thé

used in this work.

Figure 3-4 Examples of eigenfaces

These eigenfaces are the basis of the eigenspgacé&dining face space), and can be
used to represent a new face by projecting it erneigenspace and thereby recording
how that new face differs from the original facavé&h a new window in the skin
colour detected region in the input image wherea@e fmust be detected (refer to
Figures 3-2 (Part €) and 3-3 (Part e)). This wind®acanned by aNxN (whereN =

200) sub-windows to localize the face as follows:

- Representation of the sub-window image asN&xl vector/” and normalise as

follows:
O =r-vy (3-13)

where? is given by Equation 3-7.
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Projection of® on the eigenspace:

o M
@ = ZWka (3'14)
k=1

O
where w :VICD and v's are eigenfaces and the projection of@ on the

eigenspace.

The face @ is therefore transformed into its eigenface comptseand

represented by the vector:

Q=[w Wy W 17 (3-15)
O
Calculation of the distaneebetween the face imag2 and its projection? :
0
£g =|o-@ (3-16)

If eg <Aq, thenlis a face, withlg= 1.85

Figure 3-5 (Part a) exhibits the face detection &whlization for four different

subjects using a histogram-based skin colour deteapproach, and Figure 3-5 (Part

b) illustrates the face detection and localizationfour different subjects using an
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adaboost-based skin colour detection method. Nb&t the tracking phase is
implemented by repeating this detection task omaller search window around the

detected face region of the previous frame.

Histogram-based skin colour detection

-

Subject2: Frame1 Subject3: Framet Subjectd: Frame
AdaBoost-based skin colour detection

Subject!: Frame1 Subject?: Frame1 Subjectd: Frame1 Subjectd: Frame1

Figure 3-5 Face detection and localisation

3.3 Recognition of head-based direction intent

The estimated position of the face in rotation epicted in Figure 3-6 is used as an
intent indicator according to Table 3-2. As mengédrearlier, one of the motivations
behind the choice of the head in motion as thentnitedicator is its availability and

flexibility for a wide range of disabilities.

Table 3-2 Head motion and corresponding direction intention

Motion of the head Inferred Intention
Left rotation Intent to go left

Right rotation Intent to go right

No rotation (Centred position) Intent to go Hi
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A symmetry-based approach is used to extract syngneetves associated with the
frontal view of the face. The assumption is théfedent positions of the face display
different symmetry properties and therefore prowddterent symmetry curves. Intent
recognition is implemented using the COGs of thenrsgtry curves and thg-
intercepts of the lines approximating the symmaeatyves combined with two
different decision rules based on the differenceneéins and the statistics (means and
standard deviation) in a Gaussian distributionhef COGs and thg-intercepts for
single pose recognition but also based on therdifilee of means and the statistics
(means and standard deviation) in a Gaussian lison of the increasing,
decreasing and constant tendencies, of the COGl zamly-intercept-based intention

curves for intent recognition.

Subject5 Subjectt Subject8 Subjectd

£

Centre: Frame1 Right: Frame25

Left: Frame75

Figure 3-6: Frontal view of the head (face) in rotation
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3.3.1 Symmetry-based Approach

The underlying assumption is that human faces wiefn@n the front are symmetric
and when moved from their initial position (centrgdsition), the symmetry they
display breaks down. These separable patternsregséy these symmetry curves
give the indication of a motion from the initialnteed position to a new position

(right or left). The symmetry curve, based on tleeknn [188], is given by

K
f(x):ZEHI(x—w,y)—l(x+w,y)| (3-17)

w=ly=1

The symmetry-valué(x) is evaluateddxO[k+1 X —k] wherex is a pixel-

column in the image, by taking the sum of the défeces of two pixels at a variable
distancew:1<w<k from it on both sides making the pixel-column tentre of
symmetry. This process is performed for each rod the resulting symmetry-value
is the summation of these differences. The symmetirye is composed of these
symmetry-values calculated for all the pixel-colmn the intervak+1 < x < X-k. It
was empirically established that the value of tleximum distancé that yields more
separable symmetry curves associated with the loéatthe subjects among the
different positions ik = 9. Figure 3-6 portrays three different positionsdetected
faces for five different subjects and Figure 3-pides the symmetry curves associated

with the different head poses depicted in Figug 3-
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3.3.2 Centre of Gravity (COG) of the Symmetry Curve
The COG, also known as centre of mass, is theitotan the symmetry curve at

which all the values of the curve are consideredet@entred and is given by

% £(x )
C:l—

= 18)
20%)

where the symmetry curve is defined by the functfonx — f(x) with f(x) given

by Equation 3-17 ana a pixel column in the face image. The symmetryesr
displayed in Figure 3-7 differ for the three ditfat positions of the face with which
they are associated and therefore yield differe®G8 giving an indication of the
position of the head. Figure 3-8 depicts the symymairves and the COGs associated
with them for different positions of the head ination shown by the vertical lines on

the plot of the symmetry curves.
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Figure 3-7. Symmetry curves for faces in Figure 3-6
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Figure 3-8 Symmetry curves with COG for faces in Figure 3-6

3.3.3 Linear Regression on the Symmetry Curve
Another way to classify the symmetry curves isital the lines that approximate the

symmetry curves as thefrintercepts differ for the three different positsorhis can
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be achieved by a linear regression approach osyimenetry curves: Given a curye

= f(x), the goal of linear regression is to find the lhat best predictg from x where

X is the independent variable apdhe dependent one. Linear regression does this by
finding the line that minimises the sum of the ggsaof the point’s vertical distances
from the line: Letf : X - Y = f(x) be a function describing a symmetry curve, a
linear regression is a form of regression analysishich the relationship betwegn

andx is modelled by a least squares function callegllimegression equation:

Y=XB+¢ (3-19)

-
1 1.1

whereY =[y; y2...yN] andX:[ } .
X1 X2 ... XN

The least squares estimate is thus given by

B=(X X)XY 28)
where [ gives the values of thginterceptf(1) and the anglg(2) of the line with
respect to thex-axis. It was empirically established that tientercepts of the
resulting lines are more discriminative than thegyles. Figure 3-9 displays the

symmetry curves associated with the faces in wtaiin Figure 3-6 with the lines

approximating them resulting from this linear reggien approach.
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Figure 3-9 Lines approximating symmetry curves for faceEigure 3-6

3.3.4 Single frame head pose classification
Two approaches are used to classify the head®rdiit positions into classes, wo,

w3 corresponding to the centre, right and left positiespectively:
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Difference of meansGiven a training set of symmetry curves assodiatéh faces
from each class (centre, right and left): The means the symmetry curves’ COGs
and they-intercepts of the lines approximating these symynetrves are calculated
for each training set. The difference between thEGE-interceptC of the symmetry
curve associated with the new face to be classdisd the COGFintercept’s mean

for each class is obtained as

2@ [C-un| On=1{1,2,3} (3-21)

The decision rulé chooses the classfor whichd, is the smallest:

h(C)&n: m = arg mnin ({dn}n=q1.2,3}) (3-22)

Mean and standard deviation in a Gaussian distitnut Given a training set of
symmetry curves associated with each class (cargtd,and left): The means and the
standard deviations of the symmetry curves’ CQ@@gercepts of the lines
approximating these symmetry curves are calculated each training set.
Subsequently, they are each associated with a @audsstribution along with the

symmetry curve’'s COGfinterceptC resulting from the new face to be classified:

1 (C-u ) .
nP \/Zmn exp{ 7} On={1,2,3} (3-23)

n
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The resulting highest probability measure corregpdo the class to which the given
COGMH-intercept belongs: The decision rilehooses the class, for whichP, is the

highest:

mcyamrn=zﬂgW?XGP&muga) (3-24)

3.3.5 Head rotation detection: Head-based direction intarecognition

The task of intent recognition in the context agtiork involves the detection of the
direction that the subject intends to take lookatghe motion of the head. In this
section, the problem of monitoring the time seqeeat individual positions of the
head in rotation is addressed by looking at theisece of the COG of the symmetry
curves and the sequence ofyiiitercepts obtained from a linear regression.
COG-based intention curveet E = {I; : I; is thei™ frame in a sequence df = 10
frames}: For each image frame ihthe symmetry curve and its COG are obtained

using Equations 3-17 and 3-18 respectively to forenintention curve:

V()= (3-25)

=1 i={1,...10}

0 pixel columny; in face imaged; belonging to a 10-frame video sequence and

where n is the length of the symmetry curve. Figure 3-Bar{ a) displays the
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resulting intention curves for the three differembtions indicating that they exhibit
separable patterns.

Y-intercept-based intentioret E = {I; : I; is thei™ frame in a sequence &f = 10
frames}: For each image framelthe symmetry curve is obtained using Equation 3-
17 and thegy-intercept of the line approximating the symmetuyve is obtained using

Equation 3-20 to form the intention curve:
M) =6 (D)1 10 (3-26)

[J face imaged; in a 10-frame video sequence. Figure 3-10 (Pardigplays the
resulting intention curves for the three differembtions indicating that they exhibit
separable patterns.
Note that the intention curves madeyaihtercepts and those made of COG exhibit
opposite patterns for left and right motion assitated in Figure 3-10.

Let {Vn(i)}i=(1,...10; be the intention curve (refer to Equations 3-28 8r26) in
class w, On = {1,2,3} corresponding to the centre, right aneft lintentions
respectively. The difference between these classatetermined by the constant,

decreasing and increasing tendencies of the valué.(i)}i=¢1,... .10y and is trained as

.....

follows:

N ARALE (3-27)

i=1
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with N = 10 (the length of the intention curve)},,Dwn andn = {1,2,3}. Lety, and

o, be the statistics (means and standard deviatiohs), associated with the

intention curves in the training set for class

Intention Curves for Centre intent Intention Curves for Right intent Intention Curves for Left infent

0
COGs

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Intention Curves for Centre intent Intention Curves for Right intent Intention Curves for Left infent

°
y-intercepts

Frame Number Frame Number Frame Number

Figure 3-10ntention curves based on COGs grdtercepts

For a new intention curve(i)}i=q1,... 10y t0 be classified) is obtained using Equation
3-27 and a decision rule is defined in Equation 3-29 based on the “diffeesiof
means” approach (refer to Equation 3-28) and inadfiqn 3-31 based on the

“statistics in Gaussian distribution” approach ¢retb Equation 3-30).

dy 33—, On={1,2,3} (3-28)
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@, dp ==min([dn]n=(123})
hV()}i=q...10) = { @y, dp == min([dp In=(1,2,3}) (3-29)
@3, d3 == min([dp In=(1,2,3})

, 1 (0-t)? ]
= J2na, Pt 20% } #=0

@y ,PL == max([Pn]n=(1,2,3})
h(V(}i=qw....101) = @2 ,Po == max([Pp 1 n=11,2,3}) (3-31)
w3,P3 == max([Pn Jn=(1,2,3})

wheren = {1,2,3}, w1, w2, w3 represent straight, right and left intents respebt.
Note that if the straight motion intent is detectbd next step is to determine the

vertical motion of the head.

3.4 Recognition of head-based speed variation intent

The estimated position of the face in vertical motas illustrated in Figure 3-11, is
used as an intent indicator according to Table 3% intents include moving at

varied speeds (within the acceptable range for eelechair motion application) and

stopping.
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Table 3-3 Head motion and corresponding speed variaticaniin

Motion of the head Inferred Intention
Down vertical motion Increased speed intent
Up vertical motion Decreased speed intent
No vertical motion (Centred position) Intent &ain current speed

In a previous work [189], satisfactory results ab#ained for the recognition of the
vertical motion of carefully cropped faces from lediame of a video sequence using
a symmetry-based approach, computed vertically, vainere the resulting intention

curves comprise the different positions of the swtrigncurve’s COG associated with
the face as it moves through each frame of theovislequence. The results are

however less convincing when performing the prezessing steps of face detection

and tracking.

Subject1 Subject2 Subject3 Subjectd Subject5

Figure 3-11 Frontal view of the head (face) in vertical matio

Up: Frame40

Up! Frame1

Up: Frame 75
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In this thesis, the proposed solution makes usmother layer of PCA, where instead
of using it for face detection and localisationanskin colour detected region as
described in Section 3.2.3, it is used to perfomngle vertical pose classification of

the given faces into classes,,,[lm={123} corresponding to the centre, up and

down position respectively. At the training stabese sets ok eigenfacesyy’ (with

m = {1,2,3}) are obtained from the training setsM{N imagesl, with the head in
centre, up and down positions respectively: FI@RHE2 illustrates the 5 eigenfaces

corresponding to the 5 highest eigenvalues of thevamance matrix

1 M
Cm = M Z ®mn, Where @, is the normalizetN?x1 image in ther” class and

M is the number of example in the training set facke class. The weight vector

associated with the mean ima#g, of each class is subsequently obtained as follows:
Wik =Vmk%m, 0 m={1,2,3} (3-32)

where ¥, is given by Equation 3-7k:{1,...,M'} with M = 10, and the weight

vector representing the mean face for each clagses by:

- T i
Om=[Wm1 W2 ...Wm’M- ] (3-33)

Given a new fac& whose vertical position must be classified, pisjected into the

three eigenspaces associated with the three classkghe weight vectors2™
representing the new image face projected on thenspace associated with each

class comprise the following weights:
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wl'=vl @, 0m={123} (3-34)

mKk

Figure 3-12 Examples of eigenfaces for up, centre and doveitipas

Centre eigenfaces Up eigenfaces

Down eigenfaces

The classwn, is chosen to be the detected pose of the faceahtom where the
difference below (refer to Equation 3-35) is thevdést and below the thresholdthat

is:

dpy = minHQm i _QmH <) (3-35)
m

where @™ and Q,, are the weight vector representing the new facagamnto be

classified and the mean image for each class régpelgc both projected on the

eigenspace associated with classand the threshold= 0.8.
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For intent recognition, letdy(i), OUm = 1,2,3}-;1,.. 10 be the set of intention

curves (refer to Figure 3-13) made of sequencesdéna 10 frames) of error

measures based on Euclidean distance of a the geashimage through the sequence

QM0Oi = {1,...,10} and a generic face exampi®, in a centred, up and down

position of the head respectively.

{dm(i )= Hgim ) QmH}i =(1,...10} (3-39)

This set is used for classification intq,...,ws corresponding to the centre, up (from
centre-up), down (from centre-down), down (from agmire) and up (from down-
centre) intentions respectively, depending on tbenstant, decreasing and increasing
values for ={1,...,10}.

The patterns of these setrointention curves associated with each ofrthelasses

is achieved as follows:

N-1
o= 2 dm(@) -dmy(i + 1) (3-37)
i=1

with N = 10 (the length of the intention curve)d{,0m =1,2,3}wmn. dm (Om =
1,2,3)is the tendency associated with the intention cufee classom, obtained using
sequences (made of 10 frames) of error measuresl s the Euclidean distance
between the mean face in clamsand the given face to be classified projectedhen t

eigenspace associated with vertical position aasetiwith classm.
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di-based

b Il'.:l- Intention curve di-based Intention curve ds-based Intention curve
8.4 86 T

85

: . 2.4
0 5 0 0 5 M 0

9.4

(b

9

(¢)

(d)

(e}

5
Frame number Frame number Frame number

Figure 3-13 Intention curves based on distance meadiites and ¢
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The classification of these intention curves isf@ened with the decision rulé

defined below:

h{ d,(i),0m= 11213}i:{1,...,10})

@ | O | A 0dy(1)== min([d, ()] =123 )
@Wy,0;<A 100, >A 0 d,(i)== min([d, ()] n=12.3;)
=1w3,0, <A 003> O dy(i)== min([d, ()] n=1.2.3)
wy,0,>A 00, <A O d,(1)== min([d, ()] =1 2.3)
w5 ,0;>A 005 <A 0 dy(i)== min([d,,(1)] n=1.2,3))

(3-38)

Oi = {1,...,10} andi >0

3.5 Adaboost for head-based direction and speed variatn

recognition

To emphasise the merit of the proposed approach|gamithm developed by Jia and
Hu [66], [67] for an application similar to the ormoposed in this thesis, is
implemented in order to compare the results. Theditheir method is the detection,
tracking, and recognition of the direction and tlegtical position of human faces,
which is intended to be used as a human-robotaatien interface for an intelligent
wheelchair. Adaboost [190] is used for face detectand in subsequent frames
camshift is used for tracking. A layer of adabogssubsequently applied inside the
comparatively small window, which is slightly biggéhan the camshift tracking

window, so that the precise position and direcffoontal, profile left or profile right)
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of the face can be obtained rapidly. If the frorftantred) face is detected, template
matching [191] is used to indicate the nose pasitiand therefore to classify the

centre, up and down positions for speed variagmognition.

3.5.1 Adaboost face detection

In Section 3.2.2, the adaboost algorithm is usddaia skin colour as an alternative to
classical threshold techniques as it performs maobeistly especially, under poor or
strong lighting conditions. In this section, howetiee classical adaboost algorithm
for face detection proposed by Viola and Jones][48d adapted by Jia and Hu [66],

[67], is described: The adaboost algorithm usesaiaibg set:(X1,Y1),---{ Xn+¥Yn ) »
where x, 0 X (the domain, which in our case represents samydenples of the
object of interest, that is, the face, and sampéamples of non-faces) ang Y (a

class label set whose elements 0 or 1 indicatecditegory of the sample examples
being non-faces or faces respectively). It callgeak learning algorithm repeatedly in
a series off = 10rounds giving weights to the training sets and tipdahe weights

of these sets each time by utilising data from ltdst run of the weak learner and

current weights. Each weak classifier is given by

if P fi(x)<pjb;

hi(x)= 3-39
i05) {O otherwise (3-39)

where the polarityy indicates the direction of the inequality sign. éstch round of

boosting, the best weak classifigmwith the lowest erros; is chosen.
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Table 3-4 The adaboost algorithm [190]

Given examplesx(y;), Ji = {1,...,N}, wherex; is thei™ example ang;
is its associated class label:
y _{O, for negative examples
P =

1, for positive examples

Initialise weights:
1
Wi = N’
whereN is the number training examples

Fort=1, .. T
= Normalise the weights:
%, so thaty; is a probability distributior
k=1 Wik
= For each featurg train a classifieh;: The error is evaluated
with respect to the weight; ;:

Wi =

£ :Zth,i‘hj( p)—iq,
0 ()< pib;
where hj(xi): P] J( ,l) Pi J,
1 otherwise
_ &
By 1-¢,
= Update the weights:
£ .
AL TR — if h(x)=y
Wet1i = 1-¢&
W ; otherwise

The final strong classifier is obtained by combinatigthe selected wea

e . 1-¢
classifiersh; with a; =log, Las:
&t
: 1
1 fyl_oh(p)z=3l_ 0
H(X): I Zt_]_ t t(p) Zzt_l t
0 otherwise
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For Haar like feature selection, instead of usimg $tandard rectangle features used
by Viola and Jones [190], a modified and enrichedr@sentation of the rectangle
feature is used that includes edge features, ecentreund features, and line features
as depicted in Figure 3-14. Fast feature computaianade possible by the use of
integral images and their variant. Rotated Integredge, Integral Rectangle, Rotated
Integral Rectangle initially proposed in [192] ailldistrated in Figure 3-15. For
classification given a new image containing a faceascade of 5 strong classifiers

trained with adaboost in a degenerated decisienstireicture is used as represented in

Figure 3-16.
(a) Edgefeatures (b} Centre-surround features

Tm=Es® e

(c) Line features

Figure 3-14 Rectangle features [66]

li(xy) :
ii(x.y) o
XY
['.'I:q}'} ‘l.,}
(a) Integralimage (b} Rotated Integral (c)integral Rectangle (d}Rotatedintegral
Image Rectangle

Figure 3-15 Integral Image and Integral Rectangle [66]
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Correct classification

Rejected Subwindows

Figure 3-16 Cascade of = 5 adaboost trained strong classifiers

3.5.2 Camshift tracking

Camshift stands for “Continuously Adaptive Meanf8hwhich was introduced by
Bradsky [193], [194] in 1998. It combines the baBlean Shift algorithm with an
adaptive region-sizing step using a kernel which ssmple step function applied to a
skin colour probability map. Colour is representedthe Hue component from the
HSV colour space. Since the kernel is a step fancthe mean shift at each iteration
is simply the average& andy of skin colour probability contributions within ¢h
current region. This is determined by dividing tirestfmoments of the region by its
zeroth moment at each iteration and shifting tlggoreto the probability centroid as
demonstrated in Table 3-5 that summarizes the sfejpe camshift algorithm applied
to the region® LI | containing the detected face (resulting from tlbmost

classification illustrated in Figure 3-16) in thput image framé.
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Table 3-5 Camshift Algorithm

1. Let @ be the search window? LI @ LII (& slightly
larger than¥)
Choose centre of the initial location:(y) @
Calculate @’ the colour probability distribution ing
O (x,y)_ .
4. Compute the mean location i using mean shift:

- Find the zeroth moment:

Moo = ZZ‘D( X,Y)
Xy
- Find the first moment for x and y:

Mo =ZZX¢"( X,y):
Xy

Mo =22 y@ (XY)
Xy
- The mean search window location {&etroid) is
_Myp. = Mo1
Moo Moo
5. Centre the new at (x.,Yc)

6. Repeat Steps 4 and 5 until convergence (or theiimean
location moves less than a preset threshold).

w N

Xc

The resulting centrex{y.) indicates the centre and therefore the windovatioa of
the face¥ in the new frame. Another layer of adaboost lsssqguently applied inside
the comparatively small windo@ which is slightly bigger than the camshift traagkin
window, so that the precise face position and tdwadfrontal, profile left or profile

right) can be determined. This is achieved by trgjnirontal, left and right faces

using adaboost for each class resulting in the hmigrti and the selected weak

classifiershti , Wherei = {1,2,3} designate the frontal, left and rightsitions of the

face respectively. Position classification is detieed as follows:
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p = arg mind (3-40)
AN 1 .

di = Zat'ht'(‘,U)—Eat' , 0i={123} (3-41)
t=1

If the frontal face is detected, thafpis 1, nose template matching as described below

(refer to Section 3.5.3) is used to indicate theie@ position of the head.

3.5.3 Nose template matching

For nose template matching a normalised cross{atioe template matching [191] is
implemented: Given a face imageof sizeXxY, let g be anmxn nose template of a
face in vertical position = {1,2,3} corresponding to the centre, up and dgasition
respectively. This template’s instance must be dede the face imag&”: The
obvious approach is to place the template at aitotén an image and to detect its
presence at that point by comparing intensity \alue the template with the
corresponding values in the image. Since in pragtics rare that the intensity values
will match exactly, the criterion that the matclosld be perfect is unrealistic. As an
alternative, a measure of dissimilarity betweemae intensity values of the template
and the corresponding values of the image can bd. dshe most popular measure,

the sum of the squared errors is employed:

M =Y (%-gi)? (3-42)
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This measure can be computed indirectly and the atatipnal cost can be reduced

as follows:

M =Y 3 (%2 -2% + g%
m n

DR RLEI I EDH - (3-43)

The latter expression clearly shows that the graatmiddle term, the smaller the
measure of dissimilarity and the more alike thegeeegion with the template. This
middle term can therefore be considered as the mateasure betweeg and Y.

Now, if we assume that andg are fixed, then). > ¢; gives a good measure of a
m n

mismatch: the mismatdda;(x,y) between the nose templajeand each region in the

image? is computed from pixeP(x,y)to pixel ¥(x+m,y+n), as

Ma(xy) =2 > gi(kD¥(x+ky+l) (3-44)
k=11=1

This operation is called the cross-correlation betw# andg,. A minor problem in
the above computation is th#tandg, are assumed to be constant. When applying
this computation to images, the templgtes constant, but the value &f will vary.

The value oMa; will then depend ot and hence will not give a correct indication of
the match at different locations. This problem i$ve@ using a normalised cross-
correlation. The match measwa;(x,y) between the nose templajeand each region

in the image? is computed from pixeP(x,y) to pixel ¥(x+m,y+n), as
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iznlgi(k,l WW(x+k,y+l)
Mg (x,y) = :le:l _ (3.45)
\/ZZW(“ Ky +] )\/Zng(k,l)
k=11=1 k=11=1

wherek and| are the displacements with respect to the tempiatee image. To find
the location of the nose in the face image, thisnmadised cross-correlation operation
is performed throughout the given face image fochetemplateg;, g, and gs
associated with classes, w», @z, corresponding to the centre, up and down postion

respectively. The highest matching measydréor each template is obtained:

{Mi = max Mal(X,y)]} i={1,2,3} OxO X andyDY (3_46)

Each of the highest match&4 is subsequently classified usiigto determine the

vertical position of the face where again the hgglmeatch is chosen:

K0 = om: m=arg miax {Mi}iz1.2.31) (3-47)

The best match in the image is the highest valueeSihis highest value criterion is
not sufficient in cases where an image does notagorthe object of interest, this
highest value should also be above a certain thleégh= 2.5 obtained empirically to

indicate a match, that ismax({Mj }i=(123;)24. Note that these three nose

templates are acquired from a single subject inrtiring set.
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Table 3-6 provides a summary of the algorithm by aha Hu [66]. Figure 3-17
illustrates face detection using adaboost (Paahd)nose localisation (Part b) through
a normalised cross-correlation template matchingthan first frame in the video
sequences of four different subjects. It must bédahat unlike the proposed
approach in this thesis that looks at the entigdtyhe motion in order to make a
decision, this approach looks at a single frameepafsthe head to decide on the
intention to move the wheelchair in a certain dimet or varying its speed. The
advantage of this method is that only one framesed for intent recognition making
it data efficient and fast. The disadvantage howes/grat when the head is in the left
going to the right, the intention will remain lefs long as the face is on the left side,
while our proposed method makes provision for sbhelkk motions. A modified
version of the approach by Jia and Hu is henceqsegh to address this back motion

problem.

Table 3-6 Head Gesturelfacked Facg[66]

if Frontal face is detecteithen
Keep Straight
Nose template matching for speed intent
recognition
else ifOnly profile left face is detecteden
Turn Left
else ifOnly profile right face is detectdten
Turn Right
else ifBoth profile left/right faces are detected
then
if left size > right size¢hen
Turn Left
else if(left size < right sizgthen
Turn Right
else then
Keep Straight
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Subject1: Frame1 Subject2: Frame1 Subject3: Frame1 Subjectd: Frame1

v

S

g T 8 W | i
5 el i L
s i ity T

| AE

Figure 3-17 Adaboost face detection and nose template majchin

=5

For direction intent recognition through head riotatintention curves of each motion
are represented using changes in the differencgekat the linear combination of
weighted weak classifiers for a given face andréseilting thresholds from adaboost
learning associated with each class. As depicte@ainle 3-4, the strong classifier
trained by adaboost and used to distinguish betvresal, profile right and profile

left is given by:

T 1T
1 if Yy ah(¥)z- Yoy
t=1 2¢=1

0 otherwise

H(¥)= (3-48)

with ¥ a new instance (a face) to be classified as facwio-face. It was empirically
established that the closer the two terms formieginequality, the closer the instance

X is to the examples in the training set.
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Let {dn(i),0m = 1,2,3}-11,... 10y be the set of intention curves each composedeof th

difference between the linear combination of wesghtveak classifiers used to

classify each framé&; in sequence ¥i}i-11....10p for a given face and the resulting

thresholds from adaboost learning associated vaith elass:

T
{dm(i):Z(am,tht(wi)_%am,t) (3-49)

t=1 }i={1,...10}

As illustrated in Figure 3-18 a set of intentioma@s {dm(i),Im=1,2,3}i = (1,... 10} IS
obtained for each class,,...,ws, corresponding to the centre, right (from centre-
right), left (from centre-left), left (from rightentre) and right (from left-centre)
intentions respectively. For a new input sequeaceet of intention curvesdf(i),0m
= 1,2,3}=p,...10y IS Obtained using Equation 3-48, is obtained using Equation 3-37
and classification is performed using Equation 3188ase of a centre intention, the
next step is to determine the vertical motion ef tiead.

For speed variation intent recognition through iealtmotion of the head, the
intention curves of each motion are representethéychanges in template matching
measures between the detected nose and the ngslatEsrassociated with a centre,

an up and a down position of the head: dt.(i), I m = 1,2,3}-;1,...10; be the set of

intention curves each composed of 10 matching meagtefer to Equation 3-45) of
the given nose in the sequence of face images tadssified, with a centred nose
template, an up nose template and a down nose agmngispectively. These setsnof

intention curves M(i),0m = 1,2,3}-;1....10p portrayed in Figure 3-19 exhibit

different patterns for each of the intent classes.., ws, corresponding to the centre,
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up (from centre- up), down (from centre-down), doffrom up-centre) and up (from
down-centre) intentions respectively (refer to FeB3-19 ), and can therefore be

classified using an appropriate decision rule.

, d;-based Intention curve 1 d;-based Intention curve ds-based Intention curve
- 1 1

6 i { 10]-- ; 10
{a) :
5 g1 T e ) F—— - SE—
4 '
0 A 10 % 5 10 % 5 10

: . 0 :
0 9 10 0 5 10 0 5 10

Frame number Frame number Frame number

Figure 3-18 Intention curves based on differendesd, andds
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Mi-based Intentioncurve  Mi-based Intention curve M;-based Intention curve
6.25 r 44 , 49 ,
: : 488} f N e N
: A 86}
(a) 43 484 .
6.15 . 49 : :
0 5 10 ¢ L] 10 0 5 10
6.5 - 55
L TN—- — ;
T ] ettt ToREE et :
5 45 i 44
0 5 10 ¢ 5 10 5 10

(c)

(d)

(e)

0 ] 10 5 10 0 9 10
Frame number Frame number Frame number

Figure 3-19 Intention curves based on matching measMedl, andMs

For a new input sequence, a set of intention cu{Wg(i),0m = 1,2,3}=1,.. 10} IS
obtained using Equation 3-45 and 3-4§,is obtained using Equation 3-37 wheke
= My, and classification is performed with the decisiale h defined in Equation 3-

50.
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h({Mmn(i),0m=1,23}i=1 . 10})

@ | 0| A O M1(i)== max((Mn()] n=(1,2,31)

W, 01> Udp <A O Mj(i)== max(IMn()] n=(1,2,3})
= 13,00 >4 0d3<A U M3(i)== max((Mn()] n=(1,2,3})
Wy, 01 <A 0> A0 Mq(i)== max((Mn()] n=(1,2,3;)
5,01 <A 033>A 0 Mq(i)) == max(IMp ()] n=(1,2,3})

(3-50)

Oi ={1,...,10} and% > 0

3.6 Conclusion

In summary, this chapter offers a detailed dedompof the algorithms proposed in
this work aimed at visual head-based motion deiedtr intent recognition. The pre-
processing steps (detection and tracking of the)face implemented using skin
colour detection, some image processing opera{@msion, dilation and connected
components labelling) and PCA on the resulting skilour region. The overview of
the intent recognition algorithms consists of usant0-frame video sequence as input
that is mapped to a 10-point intention curve thasents separable patterns for each

intention.

For direction intent recognition, a symmetry-baap@roach is used where the COGs
and they-intercepts of the resulting symmetry curves thireug the sequence form
the intention curve. For speed variation intenogedtion, a PCA-based algorithm is

employed where the varying error distances throughbe sequence form the
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intention curve. The appropriate decision rulessanigsequently used to classify these
intention curves for intent recognition.

The algorithm developed by Jim and Hu [66], [67%dxh on adaboost, camshift
and nose template matching also aimed at dete&iogs in rotation and vertical
motion is implemented and compared with the sohstiproposed in this work.

The next chapter discusses the solutions propasecktognition of the hand in

rotation and vertical motion and Chapter 5 (Sech@) discusses the results.
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Chapter 4

Hand-Based Intent Recognition

4.1 Introduction

The second visual intent indicator used in thisknsrthe hand in free motion without
the constraint of manoeuvring a joystick. The asma provide an alternative to the
joystick, where the hand is more flexible, espégial scenarios where the disabilities
did not impair the hand, but at the same time wimeamoeuvring the joystick is a
difficult task. The solution therefore requires amera with the dorsal view of the
hand as the object of interest in its field of viellhe hand performs two types of
motions, rotation and vertical motion, to indicai® intention in direction and speed
variation respectively. Hand rotation in a partasudlirection (right or left) is selected
to indicate the chosen direction that the subjet#nds to take, while vertical hand
motion (up or down) is chosen to indicate the stttyespeed variation intent where
the hand going up is chosen to indicate a declieasgeed.

The proposed visual solution accepts a video semuas input, with the hand in
rotation and vertical motion as the object of iagtrand gives direction and speed
variation intent respectively as output. Intentogration is achieved by analysing the
motion of the hand through the video sequence rdtfan looking at a single frame
and 10 frames are used as input to the proposedtalnp and mapped to an intention

curve.
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This chapter furnishes a detailed description @& tland-based intent recognition
methods proposed in this thesis. The pre-processens of detection and tracking of
the dorsal view of the hand within a sequence m@amented using the same skin
colour detection schemes used in Section 3.2 twr detection and tracking.

Skin colour detection combined with a prior knovgedf the length of a typical
hand is therefore sufficient for hand segmentatimilarly to the face, the tracking
task only consists of repeating the detection taska smaller region that is slightly
bigger than the hand detected region of the pravicame. For hand-based direction
recognition through hand rotation detection, a amrito the symmetry-based
approach used in Section 3.3.1 for head rotatiorengloyed to calculate the
symmetry vertically rather than horizontally asvpoesly. The statistics (mean and
standard deviation) of the symmetry curves are @se@D data features and three
different machine learning methods (two supervisewl one unsupervised) are
employed for classification, namely, a neural nekya support vector machine, and
k-means clustering. Another method is proposed based normalised cross-
correlation template matching of the region in ttend containing the fingers, as
previously implemented in Section 3.5.3 for noséd®on to indicate the vertical
motion of the head. For the vertical motion of tHand, the same template matching-
based approach is implemented on the region ohdmel containing the fingers and
another proposed approach is based on the geornetrstraints of the hand contour,
where a mask in the shape of an ellipse is usel@termine its vertical position. For
comparison to the proposed methods for verticalionobf the hand, a feature
selection found in the literature known as the éfisam of Oriented Gradient (HOG)

[195] is implemented.
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All these approaches result in intention curves, gppropriate decision rules are used
to classify these intention curves for intent reatgn.

To distinguish between the two different sets otiores, detection of the vertical
motion of the hand for speed variation intent rextgn is first performed. If no
significant change in its vertical pose is observedtation detection of the hand for
direction intent recognition is then performed. &atlso that although for in this
thesis the right hand is used, all these methodsheaadapted for the use of the left

hand.

4.2 Pre-processing steps: Hand detection and tracking

Section 3.2 furnishes the details of the skin cotietection approaches and the image
processing operations used for hand detection éxlbapthe erosion operation is not
required since very little noise is present in tingary image resulting from the skin
colour detection process as depicted for the hahdlse four subjects in Figures 4-1
(Part b) and 4-2 (Part b) for histogram-based alabbaost-based skin colour detection
respectively. The dilation and the connected corepbmabelling (refer to Section
3.2.3.2) are performed as illustrated in Figure$ @art c) and 4-2 (Part c) for
histogram-based and adaboost-based skin colowteteespectively.

The assumptions for the proposed solution offeeld bf view constraint such that
only the hand and a part of the arm can be skiouralegions and where the camera
is intended to be positioned at a fixed distanoenfthe hand. A prior knowledge of

the length of a typical hand is used for hand segati®n from the arm as follows:
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Two points in the skin colour detected region aramed at the right (assumed to be
the tip of the fingers in the present applicatianyl the left limit of the region: L&

be the skin colour detected region in the resulbimgry image:

ma& = maXé(), Xmin = min(X), 0 (X’y)E| R’ (4-1)
1% maxg), 0 yUR(XmaxY) -2
2 ¥ minfy), 0 yURXmin,Y) 4-3)

These two pointsxfaxy1) and &miny2) LIR are used to determine a line with an@le

with respect to the horizontal, which is considepadallel to the hand:

6= tan_l(&j 4-4)

Xmax ~ Xmin

If the hand is not horizontal, its length is useditae hypotenuse of the right triangle
with the horizontal and vertical lines as the ottvav sides. The segmentation is then
performed using the right limit of the skin coladetected region as it is assumed to
be the tip of the finger and therefore the endcheftiand from which the fixed distance
of the hand is measured to get the other end o kesep the arm out of the region in
the image containing the segmented hand:Hget Length of the typical hand (30

pixels), the four points of the bounding box fortetgion are Xmin,Ymin); (Xmin,Ymax);
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(XmaxYmaxy) and &maxYmin), Wherexmax is given above in Equation 4-1, axgh, Ymaxand

Ymin @re given below:

Xmin = Xmax- HpX0085 (4'5)

mdk = Mmaxy) andymin = min(y), OyOR (4-6)

Figures 4-1 (Part d) and 4-2 (Part d) exhibit thsuitting hand detection for four

different subjects using the histogram-based armd attaboost-based skin colour

detection respectively.

Histogram-based skin colour detection

i

M
Subjectt: Frame1 Subject2: Frame1 Subject3: Frame1 Subject4: Frame1

Figure 4-1: Hand detection using histogram-based skin caletection
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Adaboost-based skin colour detection
T

Subject1: Frame1 Subject2: Frame1 Subject3: Frame1 Subject4: Frame

Figure 4-2 Hand detection using adaboost-based skin coletaction

4.3 Recognition of hand-based direction intent

The object of interest is the dorsal view of theedeed hand in rotation (refer to
Figures 4-1 (Part a) and 4-2 (Part a)) and the gidhaém the estimated position of the

hand over a sequence is used as an intent indieaiwording to Table 4-1.
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Table 4-1 Hand motion and corresponding direction intention

Motion of the hand Inferred Intention
Left rotation Intent to go left
Right rotation Intent to go right
No rotation (Centred position Intent to go straigh

4.3.1 Vertical symmetry-based direction intent recognitio

The underlying assumption is that the dorsal viéva buman hand, although not as
symmetric as the face (refer to Section 3.3.1)jtehseparable symmetry properties
for different positions (for the hand in rotatiomhen the symmetry is calculated
vertically rather than horizontally: A particulagyrsmetry signature is given when the
hand is centred, and that symmetry signature clsawpen the hand is moved from
this centred position. This gives the indicationaomotion from the initial centred

position to a new position (right or left). The symtry curve is calculated vertically

as follows:

k X
fly)=2 2I1(xy=-w)=1(xy+w)]| (4-7)

w=1x=1

The symmetry-valuef (y) is evaluatedlyO[ k +1Y —-k] wherey is a pixel-row in
the image, by taking the sum of the differenceswvaf pixels at a variable distanee:

1 <w < k from it on both sides, making the pixel-row thette of symmetry. This
process is repeated for each column and the negukymmetry-value is the
summation of these differences. The symmetry cise@mposed of these symmetry-
values calculated for all the pixel-rows in intdrkal <y < Y-k It was empirically

established that the value of the maximum distandbat gives more separable
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symmetry curves among the different positionsvegibyk = 35. Figure 4-3 portrays

the three different positions of the hand of foubjscts and Figure 4-4 depicts their
corresponding symmetry curves. For classificatibrthese symmetry curves, two
statistical features of the curves are used nathelyneang and standard deviations

0.

1 Y-k
p=y XY (4-8)
y=k+1
Y-k
5=\/ﬁ > (F(y)-u) (4-9)
y=k+1

where N =(Y -k)—-(k+1). Figure 4-5 illustrates the scatter plot of thatiee
points given by = (u,0i) O = {1,2,3}, the symmetry curve’s statistics for ttheee
different categorie&1, w», w3z corresponding to the centre, right and left haositpn
respectively. Two are therefore sufficient to poe/separable patterns for the vertical
symmetry curves associated with hands in theserdift positions. Three machine
learning approaches; a multilayer perceptron adifineural network (a projection-
based classification), a support vector machinke(ael-based classification method)
andk-means clustering; are used for single frame harse plassification. The choice
of these particular machine learning approacheglgisms at showing the merit of
the proposed ‘vertical symmetry curve’ approactextracting features that can be
easily classified using different classificationthws, supervised and unsupervised.
For the choice of supervised approaches howeverjinear methods had to be used

given the nature of the data that are not lineadparable, that is, there is no
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discriminant functiong;( x) = W,TX+WiD that separates the data as depicted in Figure

4-5. The MLP is a modification of the standard &neperceptron, which can
distinguish data that is not linearly separables k& very flexible model, giving good
performance on a wide range of problems in diseramon including the one at hand
as revealed in Chapter 5. SVMs can produce accaratgobust classification results,
even when input data are non-linearly separablésake case in this work. To
emphasize further the merit of the vertical symmbtrsed approach, the statistics of
the resulting symmetry curves as illustrated inuFeg4-5 can be approached as an
unsupervised learning problem where the data pairgsassumed not to be labelled,

andk-means clustering is used to label each data point.

Subjects Subjectt Subject? Subjectd

Left: Frame125

Frame1

Centre:

Right: Frame75

Figure 4-3 Three different positions of the hand (dorsaiwie rotation
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Centre

20 40 60 80 100120

20 40 60 80 100120

20 40 60 80 100 120 20 40 60 80 100120

Figure 4-4 Symmetry curves corresponding to the hands iar€ig-3
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Feature Space
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Figure 4-5: Features of different positions of the hand itation

4.3.2 Artificial Neural Networks (Multilayer Perceptron)
As a powerful data modelling tool, the neural netis ability to learn non-linear
relationships [196] from data such as those poettain Figure 4-5 is used. A

multilayer perceptron (MLP), which is a feedforwaadtificial neural network,

produces a transformation of a patte:(Rkto a g-dimensional space according to

Equation 4-10. From the empirical study conductéti the given data, the topology
of the multilayer perceptron (MLP) is chosen toab@ layers perceptron, consisting of
a 2 neurons input layek € 2), a 10 neurons hidden layer and a 3 neurotmiblayer

(q = 3) as illustrated in Figure 4-6. Note that difiet authors refer to the above

network as having either 3 layers according tontmaber of layers of neuron (input,
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hidden and output), or 2 layers according to thalmer of layers of adaptive weights,

and this work uses the former convention.

Figure 4-6. Multilayer perceptron

The training is performed using a back propagatdgorithm. Given a labelled
training set consisting af data pointsi, = [Wip,0ip] Uw;, wherei = {1,....n}, p =
{1,2,3} corresponding to the centre, right and |edition respectively, and with their

1 p=I
accompanying labelg, = [ipli=(1,2,33 Whereyp :{O :))il . The MLP produces the

transformatiorg(x) of a pattern JR? to a3-dimensional space according to

m K n . . 0
g)=f( X wif(Xajx +ap)+w;) (4-10)
k=1 i=1
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wherem = 2 is the number of input neuromsfrom the previous Iayervvlj< is the

weight associated witk, b is the offset from the origin of the feature spacéf is

the activation function chosen to be the sigmoitttion:

f(z)=— = (4-11)
1+e ¢
The weights are updated using
wh = wj +Aw, (4-12)
e 1% 2
where Aw'j =- ﬁ E = > (Y —9k)° andyx andgq are the target and actual
j k=1

output of the network respectively and the Weigbf]s are updated in the same

manner.

4.3.3 Support Vector Machines

Support Vector Machines (SVM) have become increggipopular tools in data
mining tasks such as regression, novelty detediuh classification [197] and can
therefore be used for the classification problerhaatd: Given a labelled training set
consisting of a set of data poin§s [i,si] with their accompanying labelg andi =
{1,2,3}, corresponding to the centre, right andt Ig@losition respectively. The

discriminant function is given by
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g(x)=(xw)+b (4-13)

wherew andb are the weights (giving the shape of the hypegjlaand the offset
from the origin respectively, andis the data. The SVM can be considered as a tool
for finding the optimal separating hyperplane fioielrly separable data that can be
extended to situations when the data are not lyeseparable. For non-linear
problem (refer to Figure 4-5), the kernel trickused to construct the hyper plane that
consists in mapping the data into a transformetlifeaspace with a higher dimension,

and to construct a linear classifier in that sa&&], [198].
g(x)=w'gx)+ b 4-14)

where ¢(x) is the transformation.
- g(x)>0= xUw represented by the numeric valge +1
- g(x)<0= xOw,represented by the numeric vajye -1

The SVM method determines the maximum margin smbutithrough the

maximisation of the dual form of the Lagrangianegi\by

Lo =30 -3 aayy,d (rx)  (@15)
i=1

i=1j=1

wherey; = + 1 are class indicator values amds thei™ Lagrange multiplier satisfying

- 0< ¢ <C (for aregularisation parametey

n
- 24y =0
=
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The value ofw andb that maximises the margin between the hyperplamk the

support vectors is obtained using

argmax(L, ) (4-16)
wh
yielding W= %ai V(%) (4-17)
i=1
b= Nl {Z Yi — ZaiYiCUT(Xi YA X )} (4-18)
sv |iOsv idsv, josv

in which SVis the set of support vectors with associatedesbfq; satisfying 0 <

. . 1
0i < C andSV’is the set oNs\ support vectors at the target dlstancei—eﬁ from the
w

separating hyperplane, and whereis thei™ Lagrange multiplier andNsy are the
numbers of support vectors which are found to be263 and 122 for the centred
class, the right class and the left class respagtivClassification of a new data

samplex is performed according to the signggk) given below:

a(x)= Y ayi@ (% )@Ax)+b (4-19)

iasv
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To avoid computing the transformatiop(x) explicitly, a kernel functionrK can

replace the scalar product:

K(xy)=¢" () y) (4-20)

Different types of kernel may be used in SVM. Thmeyst be expressible as an inner
product in a feature space: A kernél,y) with x,yORP, is an inner product in a

feature space, thatkq x,y) = @' (x)& y)if and only if

- K(le) = K(y,X)

- JK(xy)f(x)f(z)dxdz= 0

The polynomial kerneK(x,)) = 1 + X" y)d is used and the discriminant function

becomes

9(x)= X ajyiK(x ,x)+b
igsv

= Yayi(L+x y)d+b (4-21)
iasv

where the degree of the polynomial kermel= 1. Note that SVMs are binary
classifiers, and therefore for the three class lprabdescribed in this thesis, a “one
against one” decomposition of the binary classifisr used. The “one against one”
strategy, also known as “pairwise coupling”, “adlifs” or “round robin”, consists in
constructing one SVM for each pair of classes. Thrsa problem wittc = 3 classes,

c(c-1)/2 = 3 binary classifiers are trained to distiistp the samples of one class from
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the samples of another class. The classificatioarotinknown pattern is therefore

performed according to the maximum voting, wherehedVM votes for one class.

4.3.4 K-means clustering

K-means is one of the simplest unsupervised learaliggrithms that solve the well
known clustering problem [199], [200]. The procesltollows a simple and easy way
to classify a given data set through a certain remalb clusters (three clusters in the
case at hand namely: centre, right and left) figegdriori. An objective function is
used that expresses how good a representationdghan an algorithm is constructed
to obtain the best representation. To obtain theablbe function given the three
clusters, a centre is defined for each cluster:d_be the centre of th¢ cluster and
thei™ element to be clustered is described by a featectorx: The assumption is
that elements are close to the centre of theitetugielding an objective function that

represents the sum of point-to-centre distancespsed over alk clusters:

n

3 xi(j)—chZ, (4-22)

j=1=1

. 2 : .
where HX'( 1) —ch = () —cj)" x (X! ~¢;) is a chosen distance measure known

as the squared Euclidean distance between a gb}tarpdintxi( Din a cluster and the

cluster centre;. This measure is an indicator of the distancénehtdata points from
their respective cluster centres. Tkeneans algorithm uses a two-phase iterative
algorithm to minimise the objective function:

- Phase 1. Assume the cluster centres are knownabmchte each point to the

closest cluster centre to form a clustgr
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Cgt) :{xi :Hxi —c(jt)H < Hxi —c%)H 0l<m< k} (4-23)

where eaclx; belongs to on€; andt indicate tha™ iteration.

- Phase 2: Assume the allocation is known, and chaasav set of cluster centres:

c™ = i) > X (4-24)
Cf0] et

Initially the cluster centres are randomly chosem] then the iteration between these

two stages is performed until the process eventuaalhverges to a local minimum of

the objective function.

Thek-means algorithm is used for clustering the trajrset into three classes. For

validation the distance (squared Euclidean disfafmdween a given test point

xOR%and the centrec U R?of each class resulting from themeans clustering

algorithm is measured and the class associatedthigthlosest centre is chosen:

1
2 - )\2
dj = {Z(xi ~c| )ZJZ (4-25)
i=1
p arg mind (4-26)

J

-113-



Chapter 4: Hand-based Intent Recognition

4.3.5 Hand rotation detection: Direction intent recogndn

Direction intent recognition is achieved by mappagideo sequence of 10 frames
with the hand in rotation as the object of interesta set of two intention curves
{Va(i),Va(i)}i=1.... 105, cOnsisting of the means of the symmetry cuiVesssociated
with the faces in each frame and the outpits g(x) (refer to Equations 4-10, 4-21
and 4-26) from the above mentioned single framee mbgssification using the three
different machine learning techniques (refer toti®as 2.1.1, 2.1.2 and 2.1.3)
respectivelyLet E = {I; : I; is thei™ frame and ki < 10 frames}, a sequence of 10

consecutive frame&t |; OE,

k=1

1 N
{V1(|)=szi()’)} (4-27)
i={1,..10}

where f; is the symmetry curve (refer to Equation 3-17)oagged withl;. The
resulting intention curv&/; is depicted in Figure 4-7 for each scenario archit be
observed that rotation from the centre to eithde gright or left) exhibits the same
patterns while rotation from either side to thetoemlso exhibits the same patterns,
but is different from that of the previously memigal rotation from the centre to either
side. It is therefore possible usi¥g to distinguish between a rotation from the centre
position to either side and a rotation from eitbigle to the centre position. However,
insufficient information is provided to distinguidietween rotation to the left and
rotation to the right. To address this problemyeliminary step is implemented that
consists of using the other intention cuvg consisting of the output classaes=

{1,2,3} of the MLP, the SVM or th&-means corresponding to the centre, right and
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left positions respectively. For a centred moti@0, consecutive 1s are expected,
while 10 consecutive or at least a majority of 8d 8s are expected for right and left
scenarios respectively. A majority vote schemesisdy which counts the number of

1s, 2s and 3s that are foundvs and classify it as a centre, right or left indica

d'(n) 2 ({Va2()}i=@...100 == n), On ={1,2,3} (4-28)

n’ =arg max (d’) (4-29)
n

Let {V1(i)}i=(1.... 10y be the intention curve (refer to Equation 4-27peéoclassified into
classesws,...,ws corresponding to the centre, right (from centgi), left (from
centre-left), left (from right-centre) and right rdfin left-centre) intentions
respectivelyo is obtained using Equation 3-27 (whé&tereplaces ) and, andP, are
obtained using Equations 3-28 and 3-30 respectivilgecision ruleh is defined
using Equation 4-30 for a “difference of means apph”, and Equation 4-31 for a

“statistics in Gaussian distribution” approach:

h({V1(),VoD}i=11,..10p)

w,n==10[d|<sA Ody ==min([dp]n=(1,2,3})
N==200<A0dy, =min([d ] =

w, . 2==m ([dnTn=(1,2,3}) (4-30)

=<w3,N==3005 < A Odz==min([dp]n=(1,2,3})

w4’n' =20J0>A 01 d2 == min([dn]n={1,2,3})

%,n' =30d>A01 d3 == min([dn]n={1,2,3})
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h({V1(),V2()}i=1..,10p)

@ ,n==10|3|<A 0P ==max((PIn=(1.23})
wp N == 200 < A 0Py ==max([Py]n=(1,2,3))
={ay,N==305<A 0P
N ==200>A0P,
ws N ==308> A 0Py ==max((P]n=(12,3))

== max([ P ] n:{1,2,3})
== max([P,] n={1,2,3})

(4-31)

wherei >0
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4.3.6 Template-matching-based direction intent recognitio

The other proposed solution is based on the differen appearance of the different
positions (centre, right and left) of the hand daethe difference in finger edge
appearance and orientation. A template matching][1891], which is a simple task
of performing cross-correlation between a tempdaie a new image, is performed on
the hand region containing the fingers to classifgingle frame hand pose, and a
decision rule is used to classify the resultingemtion curve represented by the
varying template matching measures throughout drdifie video sequenceThe
template consists of the region of the hand comgithe fingers and the template
matching task first detects the sub-window withive@ timage containing the hand
(refer to Figure 4-3 for examples of hand imagésit is closest to each template
(refer to Equation 3-46). Subsequently, the infpesition corresponds to that of the
template where the match to the given hand is tbkeelst (refer to Equation 3-47).
Figure 4-8 depicts the hands in rotation for thaegferent positions (Part a) and their
corresponding sub-windows containing only the finggion (Part b).

Let g be anmxn template of the finger region of a hand and istances must be
detected in an imagé. A normalised cross-correlation template matchisg
implemented using Equations 3-45, 3-46 and 3-4Bifggle pose classification. Three
templates from a single subject are used, congistinthe region comprising the
fingers in a centred, right and left hand as pgéedain Figure 4-8 (Part b). The best
match in the image is the highest valueMtf,c). Since this highest value criterion is
not sufficient; in cases where an image does notaoo the object of interest, this
highest value should also be above a certain thleégh= 2.5 obtained empirically by

trial and error to indicate a match, thatrisax{{Mi}i —{ 1,2’3})2 A.
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For direction intent recognition through rotatiohtbe hand, the intention curves of
each motion are represented by the changes in aéenplatching measures between
the detected hand region and the hand region téespdessociated with a centre, right

and left position of the hand.

Centred hand: Frame 4 Right hand: Frame 33 Left hand: Frame 67

Figure 4-8 Detection of hands in rotation and their fingegions

Let {Mn(i),0m=1,2,3}-11,....10y be the set of intention curves each composedlOf a

point sequence of matching measures (refer to Equdt45) of the finger region of
the hand images with a centred, a right and diteger region template respectively.

These sets ah intention curves Mm(i), I m = 1,2,3}=1,... 10y depicted in Figure 4-9

exhibit separable patterns for each of the inteagseso,, ...,ws, corresponding to the
centre, right (from centre-right), left (from cesieft), left (from right-centre) and

right (from left-centre) intentions respectively, is obtained using Equation 3-37

whered, m= M, and a decision ruleis defined using Equation 3-50.
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M-based Intention curve Mz-based Intention curve M:-based Intention curve
15 - 935 - 7
1}.- : 7l N
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Figure 4-9. Intention curves based on matching meashMgM, andMz
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4.4 Recognition of hand-based speed variation intent

Speed variation is inferred by observing the vattiootion of the hand according to
Table 4-2. Two solutions are proposed: The firsaigsormalised cross-correlation
template matching as described in the previousisedSection 4.3.6) for hand
rotation. The second solution is based on the iposdf the detected hand’s contour

using an ellipse shaped mask.

Table 4-2 Hand vertical motion and corresponding speecatian intention

Motion of the hand Inferred Intention
Down vertical motion Increased speed
Up vertical motion Decreased speed
No vertical motion (Centred position) Intent to @min current speed

4.4.1 Template Matching-based speed variation recognition

This approach is based on the difference in appearaf the different positions
(centre, up, down) of the hand where the orientatb the edges of the fingers
presents separable patterns for those differeticaepositions. Figure 4-10 displays
three different positions of the hands in verticabtion (Part a) and their
corresponding sub-windows containing only the fingegion (Part b). A normalised
cross-correlation template matching (refer to $esti3.5.3 and 4.3.6 where the same
approach is used for nose template matching heditalemotion detection and for
hand direction recognition respectively) is usedlassify the different single frame

positions of the hand.
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For speed variation intent recognition through iealt motion of the hand, the
intention curves of each motion are representethbychanges in template matching
measures between the detected hand region anditigerbgion templates associated
with a centre, right and left position of the hahdt {Mm(i),Dm = 1,2,3}-,..,
the set of intention curves each composed of adl@psequences of matching
measures (refer to Equation 3-45) of the givendirmggion in the hand images with a
centred, up and down finger region template respEygt These sets ah intention

curves My(i),0m = 1,2,8}-1,..10; illustrated in Figure 4-11 exhibit separable

patterns for each of the intent clasags..,ws, corresponding to the centre, up (from
centre- up), down (from centre-down), down (fromagmtre) and up (from down-
centre) intentions respectivel§y, is obtained using Equation 3-37 whelg, = My m

and a decision rule is defined using Equation 3-50.

Centred hand: Frame 4 Up hand: Frame 57 Down hand: Frame 109

Centred hand fingers Up hand fingers

(b)

Figure 4-10 Detection of hands in vertical motion and theigér regions
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M-based Intention curve  Ms-based Intention curve  Ms-based Intention curve

g : 3.4 T 4
: P L Y .Y
32 ; :
: 39
3 ’ 385
0 5 0 0 5 10
T 5 4

0 5 10 3
Frame number Frame number Frame number

Figure 4-1% Intention curves based on matching measMedl, andMs
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4.4.2 Speed variation recognition based on ellipse shapeakk

This approach is based on the position of the teddtand’s contour with respect to
the horizontal line evaluated using a mask in treps of an ellipse whose major axis’
length is equal to the length (determined empiygabf a typical hand at a fixed
distance from the camera. As illustrated in theatyrnimage in Figure 4-13 (Part a),
the detected skin colour regiéhcorresponding to the hand has a shape closetto tha
of an ellipse. The centre(y.) of Ris found and an ellipse centred at that potgd)

is used as a contour mask. Subsequently, a seapshformed by rotating the ellipse
mask around that point until the maximum numbesloh colour pixels within the
ellipse is reached. The rotation ranges frotf6-+ton/6, a practical range for a hand in
vertical motion: LetW = {6;: —n/6 < 6; < /6} be the set of angles between the fne
containing the major axis of the ellipge i ={1,2,3} (corresponding to the centre,
up and down position respectively) and the horiabimey =y, through the ellipse’s
centre X.Y.) (refer to Figure 4-12 that showésfor three different positions of the

ellipse corresponding to the three different posgiof the hand):

Let @ ={Z(x,y)} O(x,y)ORN Ej, that is k) is a skin colour pixel
4 i={12,3}

anddJg 0@ (@ is therefore a function of;) the inclination corresponding to the

vertical position of the hand is given below:

¢ =arg ”;aqu( &) %2)
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The resulting positionp of the ellipse corresponds to the position of hlaed and

belongs to the class; O i = {1,2,3} corresponding to the centre, up and down

position respectively, according to the deciside hudefined as:

Ww,|pl<h
()=, <M (4)33
w3, 9> N

wherel; > 0. Figure 4-13 (Part b) depicts the binary imagataining the detected
skin colour region corresponding to the hand foe¢hdifferent positions of the hand,

and the ellipse mask associated with them. Thenitobn angle ¢ (in radian)

between the major axis of the ellipggand the horizontal axis through the centre
ye determines the single frame hand pose and varfesremtly for the different
motions (centre, up and down).

For speed variation intent recognition through ieattmotion of the hand, the
intention curves for each motion are representedhigy changes in angle values
between the major axig, of the ellipse mask approximating the skin coldetected
region and the horizontal axys=y. for hands in vertical motion: Let#i)}i=1,.... 10}
be a sequence of angles between the major axiedllipse and the horizontal axis
through all the frames in a sequence of 10 framesfa the angle of the ellipse mask
associated with the first frame in the sequeicis. defined in Equation 4-34 as the
constant, increasing and decreasing tendencieshefsticcessive values of the

sequences (i)} i=q1,...10y that exhibit different patterns for the differemitions as

portrayed in Figure 4-14h is used for classification of these intention @svin
classeswy,...,ws, corresponding to the centre, up (from centre-wown (from
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centre-down), down (from up-centre) and up (fromwdeaentre) intentions

respectively.

N-1
o= Y6 -6(i+1) (4-34)
i=1

@,|0]<A0d]<A;

W, <00 > 1,

90} i=,..10) = w5, 8> A O < Ay (4-35)
wy,@<M0d< A,

w5, 0>M00> 4

whereliq, 1, >0

Ellipse mask for a centered hand Elipse mask for an up hand Elipse mask for a down hand

ym
8=0 \\___/ GW 6= 115

X-axis X-axis X-axis

yaxis

Figure 4-12 Three different positions of an ellipse used asask
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Centred hand: Frame 4 Up hand: Frame 57 Down hand:: Frame 109

Centred hand with mask Up hand with mask Down hand with mask

(b)

Inclination 8 =-0.037 =0 Inclination 6 =-0.5791 Inclination 6 = 0.3218

Figure 4-13 Ellipse mask used to determine the vertical pms# of the hand
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- Centre intention curve Up intention curve Down intention curve
6 : X =

g i 115 -
g 0 5 10
Frame number
Up (Down-Centre) intention curve Down (Down-Centre) intention curve

1.15 _ 00

106 boereerereemnanereeNheees

(b)
1L 5 B} NTPPRA
. 14
0.9 i 16
0 5 10 0 5 10
Frame number Frame number

Figure 4-14 Intention curves based on change8 far each hand motion

4.5 Histogram of oriented gradient (HOG) for hand-based

speed variation recognition

To emphasise the merit of the proposed approactalgorithm based on HOG is
implemented to compare the results for detectiomarids in vertical motion. For
hands in rotation, the methods surveyed in thealitee including the HOG remain
inadequate because of the nature of the motionentiegse methods would detect

little changes. Therefore, no comparative methqueposed and implemented.
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The literature indicates that hand gesture recmgnitan be achieved by using
orientation histograms [179]. For the applicatianrhand, however, unlike classical
gesture recognition where the hand significanthanges its shape or contour and
where significant translations of the hand occlie, $shape of the hand remains rigid,
merely changing its vertical position. A more apprate approach turns out to be the
HOG used in the literature for human activity remtign [195], [201], [202]. HOG is

a feature descriptor inspired by the Scale-Invarigeature Transform (SIFT)
descriptors. The essential idea behind the HOG rigtss is that local object
appearance and shape within an image can be dadchp the distribution of
intensity edge directions.

The implementation of these descriptors is achidedividing the input imagé
into small 4x4 non-overlapping rectangular regi®scalled cells. For each cell, a
histogram of gradient orientations is compiled fbe pixels within the cell by
counting the occurrences of the gradient oriemtatio that cell: A rectangular
Gaussian filterGe.; is used to produce the rectangular regiBnBy means of the
convolution of the edge imaderesulting from a canny edge detection approactn wi

this rectangle filteGyect:

_(x%+y?)
Gealx)) = ——5e 20° (4-36)
2710
R(X,Y)= Grect(X,y) O le(X,Y) (4-37)

0( x,y) O Rand where5,e; is a zero-padded rectangular patch of the 2D Gauss
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The combination of these histograms represents HO% descriptor with five
components: the horizontal component, the vertite,two diagonals, and the non-
directional component. This descriptor is a gootkcter of the orientation of finger
edges as illustrated in Figure 4-15 where threferdinht positions of a hand in vertical
motion and the HOG descriptors associated with thegngiven, using only three of
the five gradient orientation components namelyhtbezontal, and the two diagonal
orientations.

For single frame hand pose classification, a cdntrtand is selected if the
horizontal component is the highest, an up hanahigsen if the first diagonal
component is the highest and a down hand is dedsif the second diagonal
component is the highest. For speed variation tntenognition, through vertical
motion of the hand, the intention curves for eacbtiom are represented by the
changes in this set of three HOG components fodsiam vertical motion: Let §(i)

On =1,2,3}=1,..105, be the set of sequences for the horizontal, firagonal and

second diagonal components respectively in the Hi@&riptor associated with a
sequence of hand images. As depicted in Figure, 4he§ exhibit separable patterns
for different motions and therefore classificatioh these set of sequences into
w1,...,ws, corresponding to the centre, up (from centre-dpyyn (from centre-down),

down (from up-centre) and up (from down-centregmions respectively is achieved

as follows:

N-1
= TS50 S+ 1) (4)38
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h{S() Un=1,2,3,4}-q...10))

W, 0 |=A08(1)>S,(i),0m={234},i ={1,...10}
w,,0,>A00;<A0| 05| >]|9,| Um={124}
w;,0,>A00,<A0|9,]>]J,| Om={123} (4-39)
Wy, 0, <A00;>A00,>5,0m={124}
w,0,<A00,>A09, >J5,0m={123}

N

wherel = 2 and was chosen empirically by trial and error.

Centred hand: Frame 4 Up hand: Frame 57 Down hand: Frame 109

120 ) | 80
100 [~ 1 : ¢ ' ' ' ¢
- : ; (G10) SEEEEREEE PR ER— Fome e G0t e Ik —
SR 1 B R oo = = =
o : ! : : :
o . . : ; :
c 60 f--------- —40 B B AQf-menoe AT RRRRRRRIAS R —
2 : : : :
e R oo | |
- : ; 20 [ b 20 - —
P oo s |
. t T, ? |
0 1 2 3 0 1 2 3 1] 1 2 3
Bins for edge onentation Bins for edge orientation Bins for edge orientation

Figure 4-15 HOG descriptor for hands in vertical motion
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Infention curve: Intention curve: Intention curve:
Variation of the Variation of the Variation of the
Horizontal components diagonall components diagonal2 components

75 , 55 , 100

55 : 100 : 5

0 5 10 0 5 10 0 5 10
Frame number Frame number Frame number

Figure 4-16 Intention curves based on changes in the HOG ooeis
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4.6 Conclusion

In summary, this chapter offers a detailed dedompof the algorithms proposed in
this thesis aimed at visual hand-based motion tetedor intent recognition. The
pre-processing steps (detection and tracking ohdred) are implemented using skin
colour detection, some image processing operatiditatibn and connected
components labelling) and a prior knowledge ofdimeensions of a typical hand. The
overview of the intent recognition algorithm consi®f using a 10-frame video
sequence as input that is mapped to an intentiorechat presents separable patterns
for each possible intention.

For direction intent recognition, a vertical symmebased approach along with
three machine learning approaches (neural netvguport vector machines aie
means clustering) are used to form two sets ohtrde curves. Another approach is
based on template matching where the varying majchieasures are used to form
the intention curves. For speed variation intembgaition, the template matching
approach is also used to form the intention cuwigle the other proposed method
uses a mask in the shape of an ellipse to detertheneertical position of the hand.
The intention curve is formed using the varyingtieat position throughout the
sequence. For comparison with the proposed sokifmmdetection of vertical motion
of the hand, an HOG descriptor [195] is implemented the resulting intention
curves are formed using the varying values of thef5 HOG components namely the
horizontal and the two diagonal components. The@pmte decision rule is then

used to classify these intention curves for inteabgnition.
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The next chapter discusses the results of the metdescribed in this chapter

(refer to Section 5.3) as well as those describedhapter 3 (refer to Section 5.2).
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Chapter 5

Results and Discussion

5.1 Introduction

As mentioned in Section 1.1, the type of datum usedsequence of 576x768 image
frames captured from a CCD camera (Hi-ResolutiomBP&amera - 1/3" CCD, 470
TV lines, 0.8 lux, 3.6mm (F2.0) Lens) and a “25nfes per second” E-PICOLO-
PRO-2 frame grabber. The two intent indicators mered in this work are the head
and the hand in motion and are therefore the abmfanterest in the video sequences.
Experimental results have therefore been obtaingdtdilecting 2 sets of video
sequences of 20 different subjects with 5 long seges each, with the head and the
hand in motion as objects of interest respectivélyese long video sequences are
divided into several 10-frame sequences for inbeniinference. The video sequences
of 10 subjects are used for all the training tasksl the video sequences of the 10
others are used for validation.

For head rotation (refer to Chapter 3, Section, 3 symmetry property of the head
is used as the basis of the proposed method wheyenmetry-based approach that
maps a face to a symmetry curve is implementedmFthis symmetry-based
approach four different methods are proposed acuprtb the feature selection
process (centre of gravity of the symmetry curve yantercept of the line

approximating the symmetry curve) and the decisude (based on difference of
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means or statistics in a Gaussian distribution)pfmse and intent recognition. Figure
5-1 summarizes the methods used for head rotagtection given video frames from
the testing set. For the vertical motion of thechéafer to Chapter 3, Section 3.4),
PCA is used for pose and intent recognition. A m@throposed by Jia and Hu [66],
[67] based on adaboost, camshift and nose temmlatehing is also implemented for
comparison. The approach uses adaboost and carfastidte detection and tracking,
and another layer of adaboost and a nose templatiehmg for rotation and vertical
motion recognition respectively (refer to Figur@)s-For the vertical motion of the
hand (refer to Chapter 4, Section 4.4), an ellgisgped mask is used to determine its
position. The other proposed approach is based aor@alised cross-correlation
template matching and for comparison to the progposethods for vertical motion of
the hand; a feature selection technique found enlitarature known as histogram of
oriented gradient [195] is implemented. For hartdtion (refer to Chapter 4, Section
4.3), a vertical symmetry-based approach is used.ckssification, the statistics
(mean and standard deviation) of the resulting sgtryrcurves are subsequently used
as 2D data features for three different machinmiag methods (two supervised and
one unsupervised): a neural network, a supportoveatachine andk-means
clustering. Another method is proposed based ormomnalised cross-correlation
template matching. Figures 5-3 and 5-4 summariegtbposed methods for vertical

motion and rotation detection of the hand respebtiv
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Inputreceived: 10-frame video sequence
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detection and trackingin the
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1¥ frame and subsequent 1¥! frame and subsequent adaboosttrained strong
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! ! :
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dilation, connectedregion labelling subsequent frames
and PCA

v
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facemeach frame
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Figure 5-1 Summary of the methods used for head rotatioectien
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Headrotation detection
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Figure 5-2 Summary of the methods used for head verticalanatetection
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Figure 5-3 Summary of the methods used for hand verticalonatetection
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Figure 5-4 Summary of the methods used for hand rotatioaaien
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For performance evaluation this work makes usehefhold-out method where the
data set at hand is divided in two mutually exalagparts; one for training while the
other is held out for testing. This is a populartme to assess the system’s
performance [203] and appropriate for our data sdisre the subjects used for
testing are different from those used for trainiis method makes an inefficient
use of the data (using only part of it to train tlassifier) and therefore gives a
pessimistically biased error estimate [198].

Three sets of results are given below for eachgweg and implemented method:
the first set shows the performance for single &apose classification, and the
second set depicts the performance for intent r@tog through classification of
intention curves. For single frame pose classificatFigure 5-5 depicts the range of
right head poses from (a) to (b), left head posa® f(c) to (d), up head poses from (e)
to () and down head poses from (g) to (h). Aftetedtion/tracking, the frame is
converted from colour to greyscale. A similar ithagion is given for the hand in
Figure 5-6. For intent recognition, the right/leftents include motion from centre to
right/left as well as the back motion from rightdentre for left motion and left to
centre for right motion. The same applies for upddantents. The third set of results
depicts the performance when in a 10-frame videoesgce, the number of processed
frames is reduced by choosing every 2,3,4,5 framessilting in the respective
numbers of processed frames 5,3,2,2 to form theniimn curves that are
subsequently extrapolated into a 10-point intentorve. Note that the values of the
thresholds used in decision rules described in #ops3-38, 3-50, 4-30, 4-31 and 4-
35 and set empirically by trial and error using tit@ning sets are given in Table 5-1

below:
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Table 5-1 Thresholds used in decision rules

Equation A
(3-38) J =0.8
(3-50) 4 =0.35
(4-30) . =0.6
(4-31) J =0.6
(4-33) 41= 0.0
(4-35) |2;=0.01rad ,A,=0.5

Frame 62 Frame 32 Frame 16 Frame 23

{a) Right Head {b) Right Head (c) Left Head (d) Left Head

Frame 35 Frame 23 Frame 72 Frame 82

{e} UpHead (f) Up Head g) Down Head {h) Down Head

Figure 5-5 Range of right, left, up and down head poses
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Frame 85 Frame 35 Frame 159 Frame 185

{a) RightHand {b) Right Hand {c} LeftHand (d) LeftHand

Frame &0 Frame 30 Frame 130 Frame 169

—

(e} UpHand (f) UpHand {g) Down Hand (h)} Down Hand

Figure 5-6. Range of right, left, up and down hand poses

5.2 Head-based intent recognition

For classification of single frame positions, a@e650 frames was selected for each
class (centre, right, left, up and down) throudrtted 20 subjects and divided in half
to form a training set (through 10 subjects) anesding set (through 10 subjects)
made of 325 frames each. Figure 5-5 depicts thgeranthin which a head is labelled
right (from (a) to (b)), left (from (c) to (d)), uffrom (e) to (f)) and down (from (g) to
(h)). For intent recognition, groups of 10 frames processed resulting in 10-point
intention curves. For head rotation, the trainieg is made of 400 intention curve

examples while the testing set also contains 4@hiion curves used for validation,
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and for vertical motion of the head, the trainired somprises 600 intention curve

examples while the testing set also contains 6@hiion curves used for validation.

5.2.1 Performance for the recognition of the head in rdtan: direction
recognition

As depicted in Tables 5-2 and 5-3, good resultohtained because as mentioned in
Section 5.1, in a hold out approach for performagealuation an inefficient use of
the data is made, giving a pessimistic recognitata that is mostly above 80% in this
work. This demonstrates the viability of the progesalgorithms as an alternative
visual head pose estimation for direction intergogmition. For single frame head
pose classification, it is evident that the symméimsed approach combined with the
difference of means of the resulting symmetry cisrv€OG vyields the best
recognition rate with 95.5%. The adaboost-basedaoagp found in the literature
[66], [67] and implemented for comparison, yieldslightly better recognition rate
than all the proposed methods (95.3%) except tleepoeviously referred to based on
the difference of means of the symmetry curve’s COG also evident that the COG
of a symmetry curve is a better pose indicator tkiaay-intercept of the line
approximating that symmetry curve: Table 5-2 sheélesrecognition rate of 95.5%
and 93.3% for the approach based on the differehogeans and the approach based
on the statistics in a Gaussian distribution respely, both used on the symmetry
curves COGs, against 92.4% and 92% for these sastieods used on theintercept
of the line approximating the resulting symmetryveu

For head direction intent recognition, it can besesed that the proposed
approach based on the statistics (mean and stardkandtion) in a Gaussian

distribution of COG-based intention curves, exlsiltite best recognition rate with
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93.7%. For each method, the centre class is thevbieee the recognition rate is the
best. The proposed method by Jia and Hu in [66]], [(istead of looking at the

motion of the head throughout a sequence of fratoeks at the position of the head
in a single frame yielding the second best singdgné pose classification rate of
95.3% as depicted in Table 5-2. For such a solutmnrever, only the last frame in

the sequence is used for intent recognition andlibedvantage is that back motions
(from left to centre, and right to centre for riggmd left motions respectively) are
misclassified, thus significantly affecting the oaféresults (refer to Table 5-3 where
it displays the worst result with 72%). A modifigdrsion of the method in [66] that

uses the full 10-frame video sequence for recagmitather than the last frame, is

proposed, which yields better results (87. 7%).

Table 5-2 Single-frame pose classification rate of head®iation

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate

Difference of Centre: 325 325 320 5 98. 5%
means of Right: 325 325 286 39 88%
symmetry curve’s | Left: 325 325 325 0 100%
COG

Total: 975 975 931 44 95.5%
Statistics a in Centre: 325 325 320 5 98.5%
Gaussian Right: 325 325 290 30 90.8%
distribution of Left: 325 325 290 30 90.8%
symmetry curve’s
COG Total: 975 975 900 65 93.3%
Difference of Centre: 325 325 312 13 96%
means fory- Right: 325 325 266 59 81.8%
intercepts (of lines| Left: 325 325 323 2 99.4%
approximating a
symmetry curve) | Total: 975 975 900 74 92.4%
Statistics in a Centre: 325 325 306 19 94.1%
Gaussian Right: 325 325 266 59 81.8%
distribution ofy- Left: 325 325 325 0 100%
intercepts (of lines
approximating a
symmetry curve) | Total: 975 975 897 78 92%
Adaboost Centre: 325 325 324 1 99.7%
(combined with Right: 325 325 312 13 96%
nose template Left: 325 325 293 32 90.1%
matching) [66]

Total: 975 975 929 46 95.3%
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It can also be observed that the intention cuneseth on the COGs of symmetry
curves throughout a sequence is a slightly betttemt indicator than the intention
curve based og-intercepts of the line approximating these symynetrrves when

using the same approach (difference of means: 8&66&685% respectively, and

statistics in Gaussian distribution: 93.7% and 93.4

Table 5-3 10-frame intent recognition rate for heads iration

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate
COG-based Centre: 400 400 400 0 100%
rotation Right: 400 400 326 74 81.5%
detection using| Left: 400 400 313 87 78.2%
Difference of
means Total: 1200 1200 1039 161 86.6%
COG-based Centre: 400 400 382 18 95.5%
rotation Right: 400 400 379 21 94.7%
detection Left: 400 400 363 37 90.7%
Statistics in a
Gaussian
distribution Total: 1200 1200 1124 76 93.7%
y-intercept- Centre: 400 400 400 0 100%
based rotation | Right: 400 400 322 78 80.5%
detection using| Left: 400 400 298 102 74.5%
Difference of
means Total: 1200 1200 1020 180 85%
y-intercept - Centre: 400 400 391 9 97.7%
based rotation | Right: 400 400 373 27 93.2%
detection using Left: 400 400 357 43 89.2%
Statistics in a
Gaussian
distribution Total: 1200 1200 1121 79 93.4%
Adaboost- Centre: 400 400 398 2 99.5%
based rotation | Right: 400 400 264 136 66%
detection [66] | Left: 400 400 202 198 50.5%
Total: 1200 1200 864 336 72%
Modified Centre: 400 400 398 2 99.5%
adaboost-based Right: 400 400 322 78 80.5%
rotation Left: 400 400 332 68 83%
detection
Total: 1200 1200 1052 148 87.7%
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5.2.2 Performance for the recognition of the head in vexdl motion: speed
variation recognition
As displayed in Tables 5-4 and 5-5, good resuls {he same reasons given in
Section 5.2.1) were obtained and demonstrate &ia@lwy of the proposed algorithms
as an alternative visual head pose estimation geed variation intent recognition.
For single frame head pose classification, bothhoat perform very well with our
proposed PCA-based approach yielding a slightliebe¢cognition rate (97.8%) than
the adaboost-based method proposed in [66] (96.8%).each method, the centre
class is the one where the recognition rate isbés with 100% recognition. For
head-based speed variation intent recognitionant lne observed once more that our
proposed PCA-based approach exhibits the betteignéiton rate with 91.2%. For
each method, the centre class is again the oneewtherrecognition rate is the best
with 100% for the adaboost-based approach (inctuthe modified version proposed
in this thesis), against 93.7% for the proposed #@sed approach.

As mentioned earlier, instead of looking at the iorotof the head throughout a
sequence of frames, the proposed method in [6&klabthe position of the head in a
single frame. For such a solution, only the laatrfe in a sequence is used for intent
recognition and the disadvantage is that back mst{rom down to centre, and up to
centre for up and down motions respectively) arectassified, significantly affecting
the overall results (refer to Table 5-5 where #pthys the worst result with 61.2%). It
can also be noted from Table 5-5 that the clasgiba rate of this method for the ‘up’
class (24.2%) is much lower than the one for thewid class (59.3%). This
difference can be explained by the fact that th® faotion is only detected by this

method when the head has gone sufficiently far friesncentred position, while the
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Note also that a modified version of the methofb®l, which uses the full 10-frame

video sequence for recognition rather than theftaste yields improved results (83.

8%).
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Table 5-4 Single-frame pose classification rate of headgentical motion

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate
PCA Centre: 325 325 325 0 100%
Up: 325 325 325 0 100%
Down: 325 325 304 21 93.5%
Total: 975 975 954 21 97.8%
Adaboost | Centre: 325 325 325 0 100%
(combined | Up: 325 325 305 20 93.8%
with nose | Down: 325 325 314 11 96.6%
template
matching)
[66] Total: 975 975 944 31 96.8%

Table 5-5 10-frame intent recognition rate for heads irtigal motion

Methods Class Trainind Testing Correct Incorrect Classification
set set classification| classification rate

PCA-based | Centre: 600 600 562 38 93.7%
vertical Up: 600 600 560 40 93.3%
motion Down: 600 600 520 80 86.7%
detection

Total: 1800 1800 1642 158 91.2%
Adaboost- | Centre: 600 600 600 0 100%
based Up: 600 600 145 455 24.2%
vertical Down: 600 600 356 160 59.3%
motion
detection
[66] Total: 1800 1800 1101 615 61.2%
Modified Centre: 600 600 600 0 100%
Adaboost- | Up: 600 600 482 118 80.3%
based Down: 600 600 426 174 71%
vertical
motion
detection Total: 1800 1800 1508 292 83.8%
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5.3 Hand-based intent recognition

As described in Chapter 4, for classification afgbe frame positions, a set of 650
frames was selected for each class (centre, tgfhtup and down) through all the 20
subjects and was divided into half to form a tnagnset (through 10 subjects) and a
testing set (through 10 subjects) comprising 32mn#&s each. Figure 5-6 depicts the
range within which a hand is labelled right (froa) fo (b)), left (from (c) to (d)), up

(from (e) to (f)) and down (from (g) to (h)). Fomtént recognition, groups of 10

frames are processed, resulting in intention curivesboth hand rotation and vertical
motion, the training set consists of 600 intenttoimve examples while the testing set

also contains 600 intention curves used for vabdat

5.3.1 Performance for the recognition of the hand in radian: direction
recognition
As depicted in Tables 5-6 and 5-7, the task ofstiggag hands in rotation using the
vertical symmetry-based approach is not as suadessffor the face because it is not
a symmetrical object. However, it yields a recagnitrate far greater than 50%
(78.5%, 81.5% and 81.2% for MLP, SVM akdaneans respectively for single frame
hand pose classification and 76.8%, 79.3% and 77T®%WILP, SVM andk-means
respectively for hand-based direction intent rettomm because the rotation of the
hand to some extent presents separable symmetwessuwhose statistics can be
learned by a machine learning approach (in thisisha neural network, a support
vector machine andk-means clustering are used). The template matdbasgd

approach, however, performs better (93.4% for sifigine hand poses classification
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and 89% for hand-based direction intent recognjtiofFhese satisfactory results
demonstrate the viability of the proposed algorghas alternative visual hand pose
estimation solutions for direction intent recogoriti

Note that no method for comparison with our proposeethod is found in the
literature because typical hand gesture recognin@thod requires a more explicit
motion of the hand than the micro-operation (rotatidefined in this thesis. It can
also be observed that for the hand in rotation]dfigoose and intent display the worst
results due to the similarity in appearance betweftrthands and centred hands (refer
to Figure 5-6) especially when the left hand isseloto the centre (refer to Figure 5-

6.c). The entire false negatives for the left ckgstherefore found in the centre class.

Table 5-6 Single-frame pose classification rate of hand®tation

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate
MLP Centre: 325 325 259 66 79.7%
Right: 325 325 261 64 80.3%
Left: 325 325 245 80 75.4%
Total: 975 975 765 210 78.5%
SVM Centre: 325 325 300 25 92.3%
Right: 325 325 253 72 77.8%
Left: 325 325 242 83 74.5%
Total: 975 975 795 180 81.5%
KMEANS | Centre: 325 325 255 70 78.5%
Right: 325 325 262 63 80.6%
Left: 325 325 255 70 78.5%
Total: 975 975 792 203 81.2%
Cross- Centre: 325 325 325 0 100%
correlation | Right: 325 325 315 10 96.9%
template Left: 325 325 271 54 83.4%
matching
Total: 975 975 911 64 93.4%
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Table 5-7 10-frame intent recognition rate for hands iratioin

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate

MLP- Centre: 600 600 493 107 82.2%
based Right: 600 600 470 130 78.3%
rotation Left: 600 600 419 181 69.8%
detection

Total: 1800 1800 1382 418 76. 8%
SVM- Centre: 600 600 518 82 86.3%
based Right: 600 600 482 118 80.3%
rotation Left: 600 600 427 173 71.2%
detection

Total: 1800 1800 1427 373 79.3%
KMEANS- | Centre; 600 600 506 94 84.3%
based Right: 600 600 474 126 79%
rotation Left: 600 600 422 178 70.3%
detection

Total: 1800 1800 1402 398 77. 9%
Template | Centre: 600 600 600 0 100%
matching- | Right: 600 600 572 28 95.3%
based Left: 600 600 431 169 71.8%
rotation
detection Total: 1800 1800 1603 197 89%

5.3.2 Performance for the recognition of the hand in verdl motion: speed
variation recognition
As displayed in Tables 5-8 and 5-9, good resules abtained, demonstrating the
viability of the proposed algorithms as alternativisual hand pose estimation
methods for speed variation intent recognition. FRangle frame hand pose
classification, the approach based on the ellipsapesd mask vyields the best
recognition rate (97.2%) and the HOG-based approaplemented for comparison
with our proposed methods, displays the worst reitimgp rate (94%). For hand-
based speed variation intent recognition, it caolimerved once more that our ellipse

shaped mask approach exhibits the best recogmaterwith 94.7%.
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Table 5-8 Single-frame pose classification rate of handgeirtical motion

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate
Cross- Centre: 325 325 325 0 100%
correlation | Up: 325 325 293 32 90.1%
template Down: 325 325 325 0 100%
matching
Total: 975 975 943 32 96.7%
Ellipse Centre: 325 325 308 17 94.8%
shaped Up: 325 325 316 9 97.2%
Mask based| Down: 325 325 324 1 99.7%
approach
Total: 975 975 948 27 97.2%
HOG-based| Centre: 325 325 325 0 100%
approach Up: 325 325 303 22 93.2%
Down: 325 325 289 36 88.9%
Total: 975 975 917 58 94%

Table 5-9 10-frame intent recognition rate for hands intieal motion

Methods Class Training Testing Correct Incorrect Classification
set set classification| classification rate

Template Centre: 600 600 600 0 100%
matching- | Up: 600 600 507 93 84.5%
based Down: 600 600 521 79 86.8%
vertical
motion Total: 1800 1800 1628 172 90.4%
detection
Ellipse Centre: 600 600 600 0 100%
shaped Up: 600 600 549 51 91.5%
Mask-based Down: 600 600 556 44 92.7%
vertical
motion Total: 1800 1800 1705 95 94.7%
HOG-based| Centre: 600 600 545 55 90.8%
vertical Up: 600 600 559 41 93.2%
motion Down: 600 600 549 51 91.5%
detection

Total: 1800 1800 1653 143 91.8%

5.4 Extrapolation for data efficiency

So far, intent recognition was performed by map@ntp-frame video sequence to a

10-point vector referred to in this work as “intemnt curve” that is subsequently used
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for the classification task. An experiment thatgists of using fewer frames for intent
recognition, and observing how the recognition iatenpacted, is performed. This
experiment aims at reducing the amount of data @izedecognition resulting in a
faster and more data efficient recognition algonitiHowever, instead of using fewer
consecutive frames, a numhbeof frames are skipped throughout a sequence of 10
frames: In a set of 10 frames, everframes whera = {1,2,3,4,5} is considered, the
intention curve consisting of onty points wheran< 10andm ={10,5,3,2,2} is then
obtained and used to extrapolate a 10-point irdargurve.

The extrapolation is performed as follows: For gvéx,y.) and (XY two
consecutive points in the intention curve, we detee a mean point{y.) that we
assume belongs to the intention curve suchxhak. < x, andy, < Y. <y, wherex; =
Xat (Xp-Xa)X [T and Y. = Yat(Yp-Ya)x 11, wherell is a uniformly distributed pseudo-
random number (& /7 < 1). This process is repeated until the curve costdi0
points.

A subset of our dataset was used for this expetimganning all the 20 subjects
using one long video sequence of each. Figures$%87,5-9 and 5-10 illustrate the
recognition rate changes whendrames are skipped (with = {1,2,3,4,5}) for the
head in rotation, the head in vertical motion, Hand in rotation and the hand in
vertical motion respectively. It can be observeat for each case, the higher the value
of n, the lower the recognition rate.

For head rotation, it can be observed that althabghrecognition rate decreases
asn increases, it still remains above 75% and 70%Hemroposed methods based on
the difference of means and the statistics (medmstandard deviation) in a Gaussian
distribution of COG-based intention curves respetyi The other methods including

the method by Jia and Hu [66] decrease furtheretovb 65%. For vertical motion of
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the head, it is evident that the recognition raereases for both methods (PCA-based
and adaboost-based); however, the overall perfaceneamains above 70%. For hand
rotation, thek-means-based approach excluded (where the reamgméte decreases
almost to 60%), the overall recognition rate doe$ decrease below 70%. For
vertical motion of the hand, both proposed methbdsed on template matching and
ellipse shaped mask) do not decrease below 85% il method implemented for

hand vertical motion comparison based on HOG dseseto nearly 80%.

Difference of means' “Statistics in Gaussian distribution’ Difference of means’ decision
decision rule on Decision rule on COG-based rule on y-intercept-based
COG-based intention curves intention curves intention curves

Performance (%)

“Statistics in Gaussian distribution’
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Figure 5-7: Recognition rates for heads in rotation for déf®@ numbers of
frames skipped before selection.
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Figure 5-8 Recognition rates for heads in vertical motiondiferent numbers
of frames skipped before selection
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5.5 Concluding remarks

Overall, the methods proposed in this work yielddjoesults. Three sets of results
are given for each proposed and implemented methbd. first set depicts the

performance for single frame head and hand posssifitation, the second set
illustrates the performance for intent recognitibnough classification of intention

curves obtained by processing 10 frames, and tlvel et demonstrates the
performance of each method when fewer frames a&@ i0s recognition within a 10-

frame video sequence.

In summary, it was observed that for single franeachpose classification the
best method is the symmetry-based approach bastuweahifference of means of the
resulting symmetry curve’s COG; therefore the C@G ibetter pose indicator than
the y-intercept of the line approximating that symmetwyrve. For head direction
intent recognition, the best approach is the prepasethod based on the statistics
(mean and standard deviation) in a Gaussian digioito of COG-based intention
curves. For head in vertical motion, the propos€&iased approach performs
better than the adaboost-based method [66], [63th bor single frame head pose
classification and for intent recognition. For haradation our proposed template
matching-based approach performs the best for lsmtigle frame head pose
classification and intent recognition. Finally, ftwands in vertical motion, our
proposed ellipse shaped mask approach yields stedxmgnition rate.

It was also demonstrated that an attempt could lelemfor the proposed
approaches to execute faster and be more dat&gfflry selecting only a few frames

within the 10-frame video sequence, and extrapadathe 10-point intention curve
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used for intent recognition. However, the recognitrate decreases revealing the
necessity of a trade off that can be decided betweeognition rate and data
efficiency. It must also be noted that as the tes@veal, better performance in pose
classification does not necessarily mean bettdopaance in intent recognition.

The next chapter furnishes a conclusion and progosge avenues that can be

explored for future work.
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Chapter 6

Conclusion

This thesis proposes an alternative visual solution head and hand motion
recognition aimed at intent recognition, intendedé applied to assistive living as a
substitute to conventional wheelchair control desisuch as joysticks, pneumatic
switches or other control devices for wheelchaibiiity. The input to the solution is
a video sequence comprising 576x768 image framasireal from a charge-coupled
device (CCD) camera (Hi-Resolution Dome Camera3* ©CD, 470 TV lines, 0.8
lux, 3.6mm (F2.0) Lens) and a “25 frames per setdPICOLO-PRO-2 frame
grabber. Results are obtained by collecting twe eévideo sequences of 20 different
subjects with five long sequences each, with thedhand the hand in motion as
objects of interest respectively. The video seqgasmé 10 subjects are used for all the
training tasks, and the video sequences of theli€r®are used for validation. These
long video sequences are divided into several 49wy sequences for intention
inference. As intent indicators, the objects oéiest are the frontal view of the head
in motion and the dorsal view (as opposed to thepaf the hand in motion. Intent
recognition is obtained using 10 frames with thachand the hand as the object of
interest, and through the algorithms proposed is thesis, these 10 frames are
mapped to a 10-point intention curve that is subeetly classified using an

appropriate decision rule. This work provides atgbuation to the task of realising an
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enabled environment allowing people with disalatiand the elderly to be more

independent and as a result more active in society.

6.1 Summary of contributions

For head rotation recognition (refer to Section),3a83symmetry-based approach that
maps a face to a symmetry curve is used. This syrgroerve is subsequently used
in 4 different proposed methods according to tlauie selection process (centre of
gravity of the symmetry curve grintercept of the line approximating the symmetry
curve) and the decision rule (based on differeriameans or statistics in a Gaussian
distribution) used for pose and intent recognitiBar vertical motion recognition of
the head (refer to Section 3.4), PCA is used faepnd intent recognition. A method
proposed by Jia and Hu [66], [67] is also impleradrfbr the purpose of comparison.
The approach uses adaboost for face detection mfilegpose estimation, camshift
for tracking, and nose template matching for vaftpose detection.

For hand rotation recognition (refer to Section)4& vertical symmetry-based
approach is used where symmetry is calculatedcadistirather than horizontally. The
statistics (mean and standard deviation) of theultiag symmetry curves are
subsequently used as 2D data features inputs & thifferent machine learning
methods for classification: a neural network, apsupvector machine ankkmeans
clustering. Another method is proposed based ormomnalised cross-correlation
template matching. For the vertical motion of tlamdh (refer to Section 4.4), a mask
in the shape of an ellipse is used to determinevéingcal position of the hand. The
other proposed approach is based on a normalissd-correlation template matching

for pose detection and a decision rule is usethtent recognition. For comparison of
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the proposed methods for vertical motion of thedham feature selection approach
found in the literature known as histogram of thiertted gradient is implemented for
pose estimation. All these methods are combinell aitlecision rule to classify the
resulting intention curve for intent classification

Three sets of results are given for each proposddraplemented algorithm in
this thesis. The first set focuses on the perfooedor single frame head and hand
pose classification, the second set illustratesprdormance for intent recognition
through classification of intention curves obtairgdprocessing 10 frames, and the
third set shows the performance of each method wass frames are used for
recognition within a 10-frame video sequence chapsvery 2,3,4 or 5 frames rather
than every frame. Overall, these techniques ar@lsito implement and yield very
good results on the given validation set, indiagatimeir merits.

In summary, it was observed that for single fraraachpose classification for the
head in rotation, the best method is the symmedsetl approach based on the
difference of means of the resulting symmetry cisn@OG with 95.5% recognition
rate in the validation set. The COG is thereforeetter pose indicator than tlye
intercept of the line approximating that symmetorve. For head direction intent
recognition, the best approach is the proposed adeliased on the statistics (mean
and standard deviation) in a Gaussian distribubbrCOG-based intention curves
(93.7%). For head in vertical motion our proposd&@iAfbased approach performs
better than the adaboost-based method [66], [67b&ih single frame head pose
classification and intent recognition (97.8% and.2%24 respectively). For hand
rotation our proposed template matching-based agprperforms the best for both
single frame head pose classification and intembgeition (93.4% and 89%

respectively). And finally for hand in vertical nar, our proposed ellipse shaped
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mask approach yields the best recognition ratesbéih single frame hand pose
classification and intent recognition (97.2% andr/94 respectively).

It was also demonstrated that an attempt can be noalde more data efficient by
selecting only a few frames within the 10-frameeadsequence, and extrapolate the
intention curve used for intent recognition. Howeuwae recognition rate decreases
revealing the necessity of a trade off that cadd®ded between recognition rate and

data efficiency.

6.2 Concluding remarks

The head and the hand in motion are therefore useient indicators, and the
proposed methods are able to recognise their neotsndefined in this thesis for
intent recognition. When compared to the work@6][and [67], implemented in this
work, it can be observed that overall, the propasethods perform better and are
therefore suitable alternative intention detectimethods that can be applied to
wheelchair motion.

Similarly to the above mentioned work in the litera the assumptions guiding
the data acquisition process does not constityteoblem since the user who still
retains the full use of her head and hand motiooulsl be trained to use the solution.

As mentioned in Section 1.6, this alternative vissalution is an important
contribution because as shown in the literatures ohthe most promising sensor
technologies associated with assistive living aggion is machine vision and thus a
successful implementation of visual solutions @@asingly favoured.

This thesis also shows how the symmetry propertthefhead can be used for

motion understanding through a symmetry-based apgprthat is simple as opposed
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to head pose estimation found in the literaturd teguire sophisticated machine
learning algorithm for recognition.

As shown in the literature, many head pose estomatnd hand gesture
recognition solutions used in different applicationcluding wheelchair motion allow
symbolic commands based on individual postures.sbh&ion proposed in this thesis
on the other hand, recognizes intents based omtiteon contained in a specific
number of frames (10 in this work) rather than posture in a single frame. This
brings the advantage that even if the positiorhefltead and the hand is only loosely
detectable, that is the exact pose cannot be deantd determine which pose is left,
right, up, down or centre; the different kinds odtion can still be robustly detected.
The other advantage is that the misdetection ahglesframe is less costly on the
overall performance.

Gesture recognition solutions found in the literatare made possible looking at a
change in the hand’'s contour shape and it is tligiapplied to sign language
applications. The literature doesn’t contain gestrgcognition solutions where the
motion of the hand is a micro-operation such asrtitation and vertical motion
described in this thesis, for which the approadbasd in the literature are typically
invariant or unusable for robust classificationrtRarmore this thesis proposes two
novel methods for motion recognition of the handvértical motion. The first one
makes use of an ellipse shaped mask for pose ¢gtimand intention curves

generation and the second one uses a HOG descriptor
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6.3 Future work

As the scope (refer to Section 1.5) of this thesigals, there are still some avenues

that can be explored in this work:

Proposed solutions applied to people with disabiigés: Though intended for a
wheelchair mobility application, the algorithm hagt been tested on actual people
with disabilities. This work is limited to the imgghentation of intent recognition
algorithms using recorded video sequences of sisbgted on an office chair (to
mimic a person with a physical disability in a wlobair) and performing the four
types of motion described in this thesis. With theper legal requirements,
consisting of approvals from the university ethicammittee, that of the research
ethic group at provincial and district level as mas the hospital’s, more work can
consist of testing these algorithms on real peoptk disabilities whose mobility is

made possible by the use of a wheelchair.

Real-time implementation: The algorithm was tested on recorded video se@senc

Real-time implementation is also an important esim of this work.

Data fusion: The head and the hand are independent indicatothd same type of
motions. No data fusion scheme was used to conthase two motion indicators. A
data fusion scheme looking at both motions rathan tone at a time can also be the

object of further investigation.
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Performance comparison between a joystick and therpposed intent indicators:
A study can be conducted to compare the propodetists that are head-based and
hand-based indicators for wheelchair motion, wijbyatick. This comparison can be

conducted from the perspective of performance, ebase and speed of response.

- 165 -



List of publications

List of Publications

Conference Proceedings:

1. Luhandjula T., Monacelli E., Hamam Y., van Wyk B.Willlams Q., 2009.
Visual Intention Detection for Wheelchair Motiom: Proceedings of the™s
International Symposium on Visual Computing (ISVSpringer-Verlag Las
Vegas, USA407-416.

2. Luhandjula T., Hamam Y., van Wyk B.J., Williams QQ09. Symmetry-based
head pose estimation for intention detectibm.Proceedings of the 3@nnual
Symposium of the Pattern Recognition AssociatioBanith Africa, Stellenbosch,
South Africa93-98.

3. Luhandjula T., Djouani K., Hamam Y., van Wyk BWilliams Q, 2010. A hand-
based visual intent recognition algorithm for witkelir motion.In: Proceedings
of the & International IEEE Conference on Human Systenraatéons Rzeszow,
Poland,749-756.

4. Lubandjula T., Williams Q., Hamam Y., Djouani Karv Wyk B.J, 2010. Visual
head pose estimation algorithm for fast intent gadion. In: Proceedings of the
21°" Annual Symposium of the Pattern Recognition Aationi of South Africa

Stellenbosch, South Africh65-170.
Book Chapter:

Luhandjula T., Djouani K., Hamam Y., van Wyk BWijlliams Q, 2011. A visual

hand motion detection algorithm for wheelchair mntiZ.S. Hippe, J.L. Kulikowski

- 166 -



List of publications

(Editors), Human-Computer Systems Interaction. Backgrounds Agmalications 2

Rzeszow, Poland Springer-Verlag Co. in the serégafices in Soft Computing

- 167 -



Bibliography

Bibliography

Fai Y.C., Amin H.M., Fisal N., Su, E.L.M., 2005. {l@opment and evaluation
of various modes of human robot interface for mnolbdbot.In: Proceedings of
the 9" International Conference on Mechatronics Technglaguala Lumpur,
Malaysia.

Jaimes A., Sebe N., 2007. Multimodal human—compuniraction: a survey.
Computer Vision and Image Understandit§8:116-134.

Mei T., Hua X.S., 2005. Intention-based home bragsin: Proceedings of the
13th annual ACM International Conference on Multihiae Singapore.

Bell B., Franke J., Mendenhall H., 2000. Leveragiagk models for team intent
inference. In: Proceedings of the International Conference ontifisial
Intelligence.

Lesh N., Rich C., Sidner C.L., 1999. Using planoggation in human—computer
collaboration. In: Proceedings of the "7 International Conference on User
Modelling, Banff, Canada.

Aarno D.K.E., 2007. Intention recognition in humamachine collaborative
systemsLicentiate Thesis, Stockholm Sweden.

Grauman K., Betke M., Lombardi J., Gips J., Bradski 2003. Communication
via eye blinks and eyebrow raises: video-based heroanputer interfaces.
Universal Access in the Information Sociétfs):359-373.

Burgoon J., Adkins M., Kruse Jet al, 2005. An approach for intent
identification by building on deception detectidn: Proceedings of the 38

Hawaii International Conference on System Scient@d.a.

- 168 -



Bibliography

10.

11.

12.

13.

14.

15.

16.

17.

Baklouti M., Monacelli E., Guitteny V., Couvet 2008. Intelligent assistive
exoskeleton with vision based interfadeecture Notes in Computer Science
5120:123-135.

Junior V.G., Parikh S.P., Okamoto J., 2006. Hybddliberative/reactive
architecture for human-robot interactiomn: Proceedings of the ABCM
Symposium Series in Mechatroni2zss63-570.

Schmidt C.F., Sridharan N.S., Goodson J.L., 197Be Pplan recognition
problem: an intersection of psychology and artficintelligence. Artificial
Intelligence 11(1-2):45-83.

Allen J.F., Perrault R., 1980. Analyzing intention utterances.Artificial
Intelligence 15(3):143-178.

Carberry S., 1990. Plan recognition on natural lagg dialogueMIT Press
Pynadath D.V., Wellman M.P., 1995. Accounting fontext in plan recognition,
with application to traffic monitoringln: Proceedings of the f1international
Conference on Uncertainty in Artificial Intelligesc

Charniak E., Goldman R., 1989. A semantic for pbaisic quantifier-free first-
order languages, with particular application to rnstainderstanding In:
Proceedings of the Minternational Joint Conference on Atrtificial Inliglence,
Detroit, Michigan, USA1074-1079.

Charniak E., Goldman R., 1993. A Bayesian modgllah recognitionAtrtificial
Intelligence 64(1):53-79.

Albrecht D.W., Zukerman I., Nicholson A.E., 199&\®sian models for keyhole
plan recognition in an Adventure Gaméser Modelling and Use-Adapted

Interaction 8(1-2):5-47.

- 169 -



Bibliography

18.

19.

20.

21.

22.

23.

24,

25.

Geib C.W., Goldman R.P., 2001. Plan recognitiomirusion detection systems.
In: Proceedings of the"? DARPA Information Survivability Conference and
Exposition, Anaheim, California, USA46-55.

Huber, M.J., Durfee E.H., Wellman M.P., 1994. Théoaated mapping of plans
for plan recognitionln: Proceedings of the 10International Conference on
Uncertainty in Artificial Intelligence.

Kaminka G., Pynadath D.V., Tambe M., 2002. Monitgrieams by overhearing:
a multi-agent plan recognition approachbournal of Artificial Intelligence
Research17:83-135.

Kautz H.A., Allen J.F., 1986. Generalized plan gguton. In: Proceedings of
the 8" National Conference on Artificial Intelligenc8an Mateo, CA, US/&82-
37.

Jiang Y.F., Ma N., 2002. Plan recognition algorithased on plan knowledge
graph.Journal of Softwarel3(4):686-692.

Ivanov Y., Bobick A., 2000. Recognition of visualtizities and interactions by
stochastic parsinglEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI)22(8):852-872.

Austin K.B., Rose G.M., 1997. Automated behaviowcaognition using
continuous-wave Doppler radar and neural netwdrksProceedings of the 19
Annual International Conference of the IEEE Engmeg in Medicine and
Biology Society: Magnificent Milestones and Emegg®pportunities in Medical
Engineering, Chicago, lllinois, USA;1458-1461

Pynadath D.V., Wellman M.P., 2000. Probabilistatstdependent grammars for
plan recognitionsIn: Proceedings of the {6 Conference on Uncertainty in

Artificial Intelligence 507-514.

-170 -



Bibliography

26.

27.

28.

29.

30.

31.

32.

Patterson D., Liao L., Fox D., Kautz H., 2003. hnifeg high level behaviours
from low level sensorgn: Proceedings of the "5 Annual Conference on
Ubiquitous Computing (UBICOMP), Seattle, Washingtd8A,73-89.

Intille S.S., Bobick A.F., 2001. Recognising pladnenulti-person action.
Computer Vision and Image Understandiff(3):414-445.

Gonzalez A.J., Gerber W.J., DeMara R.F., Georgilmsoi/., 2004. Context-
driven near-term intention recognitiodournal of Defence Modelling and
Simulation,1(3):122-143.

Erhard M.J., 2007. Visual intent recognition in altiple camera environmenA
Thesis Submitted in Partial Fulfilment of the Reguients for the Degree of
Master of Science in Computer Engineering

Yasuhiro |., Hirosi S., Hideyuki A., Shuitiro O.,asuo U., 1995. Behaviour-
based intention inference for intelligent robotoperating with humanin:
Proceedings of the™IEEE International Conference on Fuzzy Systemsthad
2" International Fuzzy Engineering Symposium, Yokaehardapan, 3:1695-
1700.

Tavakkoli A., Kelley R., King C., Nicolescu M., BsbG., 2008. A Visual
tracking framework for intent recognition in videoéddvances in Visual
Computing 450-459.

Kelley R., Nicolescu M., Tavakkoli A., King C., BsbG., 2008. Understanding
human intentions via Hidden Markov Models in autmoois mobile robotdn:
Proceedings of the 8 ACM/IEEE International Conference on Human robot

interaction, Amsterdam, Netherlan@&57-374.

-171 -



Bibliography

33. Starner T., Pentland A., 1995. Real-time Americagn3.anguage recognition
from video using Hidden Markov Model$n: Proceedings of International
Symposium on Computer Vision, Coral Gables, Flgrid8A,265-270.

34. Wilson A., Bobick A., 1998. Recognition and intefation of parametric
gesture.In: Proceedings of the International Conference on QaerpVision
Bombay, India329-336.

35. Brand M., Oliver N., Pentland A., 1997. Coupled ¢d Markov Models for
complex action recognitionn: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern RecamnitSan Juan, Puerto
Rico,994-999.

36. Bobick A., Ivanov Y.A., 1998. Action recognitioning probabilistic parsindn:
Proceedings of the IEEE Computer Society ConferencEomputer Vision and
Pattern Recognition, Santa Barbara, Californi®6-202.

37. Bui H.H., Venkatesh S., West G., 2002. Policy rectgn in the abstract Hidden
Markov Model.Journal of Artificial Intelligence Research7:451-499.

38. Bui H.H., 2003. A general model for online probait plan recognitionin:
Proceedings of the"8nternational Joint Conference on Atrtificial Intiglence,
18:1309-1318.

39. Kiefer P., Schlieder C., 2007. Exploring contextsavity in spatial intention
recognition. In: Proceedings of the Workshop on Behaviour Monitgprand
Interpretation, Osnabriick, Germany02-116.

40. Nakauchi Y., Noguchi K., Somwong P., Matsubara Namatame A., 2003.
Vivid room: human intention detection and activisupport environment
ubiquitous autonomyln: Proceedings of the 2003 IEEE/RSJ International

Conference on Intelligent Robots and Systems, bgad/ Nevadal:773-778.

-172 -



Bibliography

41. Mei T., Hua X.S., Zhou H.Q., 2005. Tracking useepture intention: a novel
complementary view for home video content analysis.Proceedings of the
13th annual ACM International Conference on Multiliae Singapore.

42. Mei T., Hua X.S., Zhou H.Q.et al 2005. To mine capture intention of
camcorder users.Visual Communications and Image Processing, 5960,
Bellingham, WA: SPIE.

43. Wu C., Aghajan H., 2008. Head pose and trajectecpovery in uncalibrated
camera networks — region of interest tracking iraknmome applicationdn:
Proceedings of the ACM/IEEE International Confereran distributed smart
cameras, Stanford, CA, USA7.

44. Khezri M., Jahed M., 2007. Real-Time intelligenttpen recognition algorithm
for surface EMGBIiomedical Engineering Onlin€&(45).

45, Salvucci D.D., 2004. Inferring driver intent: A easstudy in lane-change
detection.In: Proceedings of the 4BAnnual Meeting of the Human Factors
Ergonomics Societyganta Monica, CA, USA.

46. Geib C.W., 2002. Problems with intent recognitioar felder care.In:
Proceedings of the Conference of the Associationttie Advancement of
Artificial Intelligence Conferencel3-17.

47. Bauer M., Dempster-Shafer A., 1995. Approach to ellody agent preferences
for plan recognitionUser Modelling and User-Adapted Interactids(3-4):317-
348.

48. Bauer M., 1996. Acquisition of user preferences fdan recognition.In:
Proceedings of the"5International Conference on User Modellingawaii,

USA

-173 -



Bibliography

49.

50.

51.

52.

53.

54.

55.

56.

57.

Weiss S.M., Indurkhya N., 1995. Rule-based mach&aning methods for
functional predictionJournal of Artificial Intelligence ResearcB:383-403.
Pentland A., Liu A., 1999. Modelling and predictiohhuman behaviouNeural
computation11(1):229-42.

Bodor R., Morlok R., Papanikolopoulos N., 2004. Beeamera system for multi-
level activity recognition.In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and SystelnG13-648.

Lin L., Patterson D.J., Fox D., Kautz H., 2004. Belbur recognition in assisted
cognition. In: Proceedings of the "9 National Conference on Artificial
Intelligence,San Jose, California.

Braga R.A.M., Petry M., Moreira A.P., Reis L.P.,030 Intellwheels: a
development platform for intelligent wheelchairsr fdisabled peopleln:
Proceedings of the "5 International Conference on Informatics in Control
Automation and Robotics, Madeira, Portughl5-121.

Tzafestas S.G., 2001. Reinventing the wheelchautormmous robotic
wheelchair projects in Europe improve mobility asafety.IEEE Robotics and
Automation Magazin8:1.

Simpson R.C., 2005. Smart wheelchairs: A literatuexiew. Journal of
Rehabilitation Research & Developme#®(4):423-436.

Yu H., Spenko M., Dubowsky S., 2003. An adaptivared control system for an
intelligent mobility aid for the elderlyAutonomous Robot$5(1):53-66.

Aigner P., McCarragher B.J., 2000. Modelling andnstoaining human
interactions in shared control utilizing a discredgent framework.IEEE
Transactions on Systems, Man, and Cybernetics t RaBystems and Humans.

30(3):369-379.

-174 -



Bibliography

58. Martens C., Ruchel N., Lang O., Ivlev O., GrAaser 2001. A friend for
assisting handicapped peoplEEE Robotics & Automation Magazin&(1):57-
65.

59. Carlson T., Demiris Y., 2008. Human-wheelchair @otiration through
prediction of intention and adaptive assistanice.Proceedings of the IEEE
International Conference on Robotics and AutomatiBasadena, CA3926-
3931.

60. Benfold B., Reid I., 2008. Colour invariant heads@oclassification in low
resolution videoln: Proceedings of the ®British Machine Vision Conference,
Leeds, UK.

61. Vatahska T., Bennewitz M., Behnke S., 2007. Fedbaseed head pose
estimation from imagesln: Proceedings of the IEEE-RAS" Anternational
Conference on Humanoid Robots (Humanoids), PitgiipuPennsylvania, USA,
330-335.

62. Gourier N., Maisonnasse J., Hall D., Crowley J2007. Head pose estimation
on low resolution imagedMultimodal Technologies for Perception of Human.
Springer Berlin/Heidelberg.

63. Hoey J., Gunn D., Mihailidis A.et al 2006. Obstacle avoidance wheelchair
system. In: Proceedings of the International Conference on Roboand
Automation, Orlando, Florida, USA.

64. Felzer T., Nordman R., 2007. Alternative wheelcleaintrol. In: Proceedings
of the International IEEE-BAIS Symposium on Redeamn Assistive
Technologies, Dayton, OH, USB7-74.

65. Demeester E., thtemann A., Vanhooydonck D., Vanacker G., Van Belsk,

Nuttin M., 2008. User-adapted plan recognition asdr-adapted shared control:

-175-



Bibliography

66.

67.

68.

69.

70.

71.

72.

a Bayesian approach to semi-autonomous wheelchaingl Autonomous
Robots24(2):193-211.

Jia P., Hu H., 2005. Head gesture based contrahahtelligent wheelchaiin:
Proceedings of the Conference of the Chinese Audiomand Computing
Society in the UK.

Hu H.H., Jia P., Lu T., Yuan K., 2007. Head gest@eognition for hands-free
control of an intelligent wheelchaimdustrial Robot: An International Journal,
34(1):60-68.

Bell D.A., Levine S.P., Koren Y., Jaros L., BorexstJ., 1993. An identification
techniqgue for adaptive shared control in human-nm&chsystems In:
Proceedings of the ¥5Annual International Conference of the IEEE299-
1300.

Bell D.A., Borenstein J., Levine S.P., Koren Y.ralaL., 1994. An assistive
navigation system for wheelchairs based upon mabbet obstacle avoidance.
In: Proceedings of the IEEE transaction on Robotics Aatbmation, San Diego
CA, 3:2018-2022.

Simpson R., Levine S.P., Bell D.A., Koren Y., Bastain J., Jaros L.A., 1995.
The NavChair assistive navigation systdm.Proceedings of the International
Joint Conference on Artificial Intelligence, MoratéQuébec, Canada.

Ju J.S., Shin Y., Kim E.Y., 2009. Vision based iifstee system for hands free
control of an intelligent wheelchairJournal of NeuroEngineering and
Rehabilitation,6:33.

Demeester E., Nuttin M., Vanhooydonck D., BrusgkY., 2003. Assessing the

user's intent using Bayes' rule: application to eltteair controlln: Proceedings

-176 -



Bibliography

73.

74.

75.

76.

77.

78.

79.

of the first International Workshop on Advancedervice Robotics, Bardolino,
ltaly, 117-124.

Braga R.A.M., Petry M., Oliveira E., Reis L.P., 30Multi-level control of an
intelligent wheelchair in a hospital environmeningsa cyber-mouse simulation
system. In: Proceedings of the International Conference on rimfatics in
Control Automation and Robotics, Madeira, Portugel9-182.

Urdiales C., Peula J.M., Barrué C., Pérez E.J.cls#&mTato |..et al 2008. A
new collaborative-shared control strategy for cwmus elder/robot assisted
navigation Gerontechnology7(2):229.

Carlson T., 2006. Adaptive shared control for ateliiyent wheelchairlnitial
Research Plan

Nelisse M.W., 1998. Integration strategies usingnadular architecture for
mobile robots in the rehabilitation fieldlournal of Intelligent and Robotic
Systems, Journal of Intelligent and Robotic Syste2(8-4):181-190.

Mazo M.,et al, 2001. An integral system for assisted mobiliBEE Robotics &
Automation Magazine3:46-56.

Garcia J.C., Mazo M., Bergasa L.M., Urefia J., Ladak., Escudero M., Marron
M., Sebastian E., 2005. Human-machine interfacelss@msory systems for an
autonomous wheelchaiAssistive Technology on the Threshold of the New
Millennium. Assistive Technology Research Se@g5,2-277

Bergasa L.M., Mazo M., Gardel A., Berea R., Boquete2000. Commands
generation by face movements applied to the gumlasfca wheelchair for
handicapped peopl&n: Proceedings of the Binternational Conferencel:660-

663

-177 -



Bibliography

80.

81.

82.

83.

84.

85.

86.

87.

Taylor P.B., Nguyen H.T., 2003. Performance of adamovement interface for
wheelchair control. In: Engineering in Medicine and Biology Society.
Proceedings of the 35Annual International Conference of the IEEE-21(2):
1590-1593.

Evans D.G., Drew R., Blenkhorn P., 2000. Contrgllimouse pointer position
using an infrared head-operated joystitkEE Transactions on Rehabilitation
Engineering8:107-117.

Ma B., Zhang W., Shan S., Chen X., Gao W., 200&aURbhead pose estimation
using LGBP.In: Proceedings of the 18International conference on pattern
recognition, Hong Kong, Chin2:512-515.

Oka K., Sato Y., Nakanishi Y., Koike H., 2005. Heaolse estimation system
based on patrticle filtering with adaptive diffusicontrol.IEICE Transactions on
Information and System&;1601-1613.

Cootes T.F., Walker K., Taylor C.J., 2000. View-sactive appearance
models.In: Proceedings of the"4International Conference on Automatic Face
and Gesture Recognition, Grenoble, Fran227-232.

Li S.Z., Lu X., Zhang H. 2001. View-Based Clusteriof Object Appearances
Based on Independent Subspace Analysis. Proceeding of the "8 IEEE
International Conference on Computer Vision, VanvaruCanada9-12.

Brown L.M., Tian Y., 2002. Comparative studies ohrse head pose estimation.
In: Proceedings of the IEEE Workshop on Motion andedi Computing,
Washington, DC, USA,25.

Wei Y., Fradet L., Tan T., 2001. Head pose estiomatising Gabor eigenspace
modelling. Technical report, National Laboratory of Pattern d®gnition,

Institute of Automation, Chinese Academy of Sciehce

-178 -



Bibliography

88.

89.

90.

91.

92.

93.

94.

95.

Gee A, Cipolla R., 1994. Determining the gazeawfes in imagedmage and
Vision Computing12(10).

Chen Q., Wu H.et al 1998. 3D head pose estimation without featureking.
In: Proceedings of theBIEEE International Conference on Automatic Face an
Gesture Recognition, Nara Japa&8-93.

Tian Y., Brown L., Connell J.H., Pankanti S., HamppaA., Senior A.W., Bolle
R.M., 2003. Absolute head pose estimation from lowad wide-angle cameras.
In: Proceedings of the IEEE International WorkshopAmralysis and Modelling
of Faces and Gestures, Nice, Fran82;99.

Voit M., Nickel K., Stiefelhagen R., 2006. Bayesiapproaches for multi-view
head pose estimatioin: Proceedings of the IEEE International Conference on
Multisensor Fusion and Integration for IntelligeBystems31-34.

Wang C., Brandstein M., 2000. Robust head posemastn by machine
learning.In: Proceedings of the International Conference omdm Processing
(ICIP), Vancouver, BC, Canadé3)210-213.

Robertson N., Reid I., 2006. Estimating gaze dioectfrom low-resolution faces
in video.Lecture Notes in Computer Scien8852:402-415.

Niyogi S., Freeman W.T., 1996. Example-based hestking.In: Proceedings
2" [EEE International Conference on Automatic Face &esture Recognition,
Killington, Vermont, USA374-378.

Ba S.O., Odobez J.M., 2005. Evaluation of multiplee head poses estimation
algorithms in natural environments: Proceedingsof the IEEE International

Conference on Multimedia and Expo, Amsterdam, Meimes, 1330-1333.

-179 -



Bibliography

96. Wu Y., Toyama K., 2000. Wide-range, person- angmihation-insensitive head
orientation estimatiorin: Proceedings of the™IEEE International Conference
on Automatic Face and Gesture Recognition. Grendbience,183-188.

97. Pappu R., Beardsley P.A., 1998. A qualitative apphoto classifying gaze
direction. In: Proceedings of the 3rd International Conference Bace &
Gesture, Nara, Japari,60-165.

98. Birchfield S., 1998. Elliptical head tracking usigensity gradients and colour
histograms.In: Proceedings of the IEEE Computer Society Confezenn
Computer Vision and Pattern Recognition, Santa BeapCA, USA232-237.

99. Russakoff D.B., Herman M., 2002. Head tracking gsstereoMachine Vision
Applications 13(3):164.173.

100.Matthews |., Baker S., 2004. Active appearance nsodisited.International
Journal of Computer Visiqré60(2):135-164.

101.Rowley H., Baluja S., Kanade T., 1998. Neural nekMoased face detection.
IEEE Transactions on Pattern Analysis and Machmtelligence 20(1):23-38

102.Voit M., Nickel K., Stiefelhagen R., 2007. Head paastimation in single- and
multi-view environments — results on the CLEAR’O7erBhmarks. In:
Proceedings of the"? International Evaluation Workshop on Classificatiof
Events, Activities and Relationships, Baltimore, , MI3A,4625:307-316.

103.Turk M., Pentland A.P., 1991. Face recognition gsieigenfaces.In:
Proceedings of the IEEE Computer Society ConferencEomputer Vision and
Pattern RecognitionMaui, Hawaii, USA586-591.

104.Huang K.S., Trivedi M.M., Gandhi T., 2003. Driveedd pose and view

estimation with single omnidirectional video stredam Proceedings of the IEEE

Intelligent Vehicle Symposium, Columbus, Ohio, USA.

- 180 -



Bibliography

105.Turk M., Pentland A.P., 1991. Eigenfaces for redogm Journal of Cognitive
Neuroscience3(1):71-86.

106.Belhumeur P.N., Hespanha J.P., Kriegman D.J., 19Bigenfaces vs.
Fisherfaces: recognition using class specific lirgajection.|IEEE Transactions
on Pattern Analysis and Machine Intelligen&8(7):711-720.

107.Fu Y., Huang T.S., 2006. Graph embedded analysisdad pose estimatiolmn:
Proceedings of the" IEEE International Conference on Automatic Facel an
Gesture Recognitiorgouthampton, UK3-8.

108.Tu J.L., Fu Y., Hu Y.X., Huang T.S., 2006. Evaloatiof head pose estimation
in studio dataln: Proceedings of the Classification of Events, Wties and
Relationships Evaluation Workshop, England.

109.Chen L.B., Zhang L., Hu Y.X., Li M.J., Zhang H.20Q03. Head pose estimation
using fisher manifold learningln: Proceedings of the IEEHnternational
Workshop on Analysis and Modelling of Faces and@es, Nice, France203-
207.

110.Roweis S.T., Saul L.K., 2000. Nonlinear dimensidggateduction by locally
linear embeddingScience290(5500):2323-2326.

111.Belkin M., Niyogi P., 2001. Laplacian eigenmap aspkctral techniques for
embedding and clusteringn: Proceedings of Advances heural Information
Processing Systemgancouver, British Columbia, Canada.

112.Mdiller K.R., Mika S., Ratsch G., Tsuda K., Schélkdp, An introduction to
kernel-based learning algorithm$EEE Transactions on Neural Networks,
12(2):181-201.

113.Li S.Z., Fu Q.D., Gu L., Scholkopf B., Cheng Y.Mhang H.J., 2001. Kernel

machine based learning for multi-view face detecwmd pose estimatiom:

-181 -



Bibliography

Proceedings of the "8IEEE International Conference on Computer Vision.
Vancouver, Canad&:674-679.

114.Li Z., Gao L., Katsaggelos A.K., 2006. Locally erdded linear subspaces for
efficient video indexing and retrievaln: Proceedings of IEEE International
Conference on Multimedia and Expmronto, Ontario, Canaddl, 765-1768.

115.Yang R., Zhang Z., 2002. Model-based head poskitrgavith stereovisionln:
Proceedings of the'Binternational Conference on Automatic Face and tGres
Recognition, Washington, D.C., US%5-260.

116.La Cascia M., Isidoro J., Sclaroff S., Head tragkina robust registration in
texture map imagesn: Proceedings of the Conference on Computer Viaiuh
Pattern Recognition, Santa Barbara, California, USA8-514.

117.Brown L.M., 2001. 3D head tracking using motion @tdae texture-mappindn:
Proceedings of the IEEE Computer Society ConferencEomputer Vision and
Pattern RecognitioKauai, Hawaii, USA1:998-1003.

118.Ke W., Yanlai W., Baocai Y., Dehui K., 2003. Facesp estimation with a
knowledge-based moddh: Proceedings of the IEEE International Conference
Neural Networks and Signal Processing, Nanjingnah2:1131-1134.

119.Malassiotis S., Strintzis M.G., 2005. Robust realet 3D head pose estimation
from range dataPattern Recognition38(8):1153-1165.

120.McKenna S.J., Gong S., 1998. Real-time face posenason. Real-Time
Imaging,4(5):333347.

121.Brolly X.L.C., Stratelos C., Mulligan J.B. 2003. Mel-based head pose
estimation for air-traffic controllerdn: Proceedings of the IEEE International

Conference on Image Processing, Barcelona, Cataldspain2:113-116.

-182 -



Bibliography

122.Malciu M., Prieteux F.J., 2000. A robust model-lthepproach for 3D head
tracking in video sequencedn: Proceedings of the IEEE International
Workshop on Analysis and Modelling of Faces and@es, Grenoble, France,
169-175.

123.Zhang Y., Kambhamettu C., 2000. Robust 3D headkimgcunder partial
occlusion.In: Proceedings of the™4IEEE International Workshop on Analysis
and Modelling of Faces and Gestur&€enoble, Francel76-182.

124 Fitzpatrick P., 2000. Head pose estimation withoo&nual initialization.
Technical report, Al Lab, MIT, Cambridge, USA

125.Gorodnichy D.O., 2002. On importance of nose focefatracking. In:
Proceedings of the"5IEEE International Conference on Automatic Facel an
Gesture Recognition Washington, DC, U$88-196.

126.Gong S., Mckenna S., Collins J., 1996. An Invesioga into face pose
distribution. In: Proceedings of the "2 IEEE International Conference on
Automatic Face and Gesture Recognition, Killingtdarmont, USA265-270.

127 Murase H., Nayar S.K., 1995. lllumination planniog objects recognition using
parametric eigenface$he IEEE Transactions on Pattern Analysis and Maghi
Intelligence 16(12):1219-1227.

128.Pentland A., Moghaddam B., Starner T., Oliyide Tutk M., 1993. View-based
and modular eigenspaces for face recognitibechnical Report 245M.1.T
Media Lab.

129.Li Y., Gong S., Liddell H., 2000. Support vectolgression and classification
based multi-view face detection and recognition Proceedings of the™IEEE
International Conference on Face and Gesture Reitiogn Grenoble, France,

300-305.

- 183 -



Bibliography

130.Krueger M.W., 1991. Artificial reality lIAddison-Wesley

131.Yin X., Xie M., 2007. Finger identification and hhrposture recognition for
human-robot interactiommage and Vision Computing 25:1291-1300

132.Derpanis K.G., 2004. A review of vision-based hgedture (Unpublished).

133.Wilson A.D., Bobick A.F., Cassell J., 1996. Recangrthe temporal structure of
natural gestureln: Proceedings of the"2 IEEE International Conference on
Automatic Face and Gesture Recognition, Killingtdermont, USAG6-71.

134.0’'Hagan R.G., Zalensky A., Rougeaux S., 2002. Migesture interfaces for
virtual environmentsinteracting with Computers4:231-250.

135.McAllister G., McKenna S.J., Ricketts I.W., 2002atl tracking for behaviour
understandingmage and Vision Computing(:827-840.

136.Ahmad T., Taylor C.J., Lanitis A., Cootes T.F., I99racking and recognising
hand gestures using statistical shape modeisge and Vision Computing,
15(5):345-352.

137.Garg P., Aggarwal N., Sofat S., 2009. Vision-bakadd gesture recognition.
World Academy of Science, Engineering and Techyplt)972-977.

138.Francke H., Ruiz-del-Solar J., Verschae R., 200@alfime hand gesture
detection and recognition using boosted classifi@ngl active learningin:
Proceedings of the"?Pacific Rim Conference on Advances in image adédovi
technology, Santiago, Chil653-547.

139.Xiong Y., Quek F., 2006. Hand motion gesture fremye properties and
multimodal discourse analysidnternational Journal of Computer Visipn

69(3):353-371.

-184 -



Bibliography

140.Wu S., Hong L., 2005. Hand tracking in a naturalvasational environment by
the interacting multiple model and probabilistictadassociation (IMM-PDA)
algorithm.Pattern Recognition38:2143-2158.

141.Chen F.S., Fu C.M., Huang C.L., 2003. Hand gestecegnition using a real-
time tracking method and Hidden Markov Modétsage and Vision Computing
21:745-758.

142.Coogan T., Awad G., Han J., Sutherland A., 2006alfdime hand gesture
recognition including hand segmentation and tragkiAdvances in Visual
Computing 495-504.

143.Erol A., Bebis G., Nicolescu M., Boyle R.D., TworghbX., 2007. Vision-based
hand pose estimation: A reviewomputer Vision and Image Understanding
108:52-73.

144.lonescu B., Coquin D., Lambert P., Buzuloiu V., 20@ynamic hand gesture
recognition using the skeleton of the hadalirnal on Applied Signal Processing
(EURASIP) 13:2101-21009.

145.Sturman D.J., Zeltzer D., 1994. A survey of glowsdd input)]EEE Computer
Graphics and Applicationsl4:30-39.

146.Takahashi T., Kishino F., 1992. A hand gesture gaitmn method and its
application,Systems and Computers in Japa8(3):38-48.

147.Bobick A.F., Wilson A.D., 1995. A state-based tdgie for the summarization
and recognition of gesturén: Proceedings fifth international conference on
computer vision382-388.

148.Shamaie A., Sutherland A., 2005. Hand trackingimamual movements$mage

and Vision Computing23:1131-1149.

- 185 -



Bibliography

149.lannizzotto G., Villari M., Vita L., 2001. Hand tking for human computer
interaction with gray level visual glove: turningdk to the simple wayin:
Proceedings of the workshop on Perceptive userfates, Orlando, Florida,
USA.

150.Pavlovic V.l., Sharma R., Huang T.S., 1997. Visu#krpretation of hand
gestures for human-computer interaction: a reviédBEE Transactions on
Pattern Analysis and Machine intelligend®(7): 677-695.

151.Baudel T., Beaudouin-Lafom M., 1993. Charade: renuaintrol of objects using
gestures.In: Proceedings of the ®1Conference on Computer Scient®93
Indianapolis, IndianalJSA,28-35.

152 Cipolla R., Okamoto Y., Kuno Y., 1993. Robust stae from motion using
motion Parallax.In: Proceedings of the IEEE International Conferenme
Computer VisionBerlin, Germany, 374-382.

153.Davis J., Shah M., 1994. Recognising hand gestlme®roceedings of the'3
European Conference on Computer Vision, Stockn®lmeden331-340.

154.Davis J., Shah M., 1994. Visual gesture recognition IEE Proceedings -
Vision Image Signal Processint}1(2):101-106.

155.Darrell T., Pentland A., 1992. Recognition of sptoee gestures using a
distributed representatiorf.echnical Report, N0.197, MIT Media Laboratory
Perceptual Computing Group

156.Cui Y., Weng J.J., 1996. Hand sign recognition friotensity image sequences
with complex backgroundsln: Proceedings of the "2 IEEE International
Conference on Automatic Face and Gesture Recognitdlington, Vermont,

USA,259-264.

- 186 -



Bibliography

157.0hknishi A., Nishikawa A., 1997. Curvature-basegnsentation and recognition
of hand gesturegn: Proceedings of the Annual Conference on Rob&msety
of Japan401-407.

158.Nagaya S., Seki S., Oka R., 1996. A theoreticakicmmation of pattern space
trajectory for gesture spotting recognitiodn: Proceedings IEEE "
International Workshop on Automatic Face and Gesfecognition, Killington,
Vermont, USA72-77.

159.Heap T., Hogg D., 1996. Towards 3D hand trackinggia deformable model.
In: Proceedings of the"2 IEEE International Conference on Automatic Face
and Gesture Recognition, Killington, Vermont, U$40-145.

160.Zhu S.C., Yuille A.L., 1995. FORMS: A flexible olge recognition and
modelling system.ln: Proceedings of the "5 International Conference on
Computer Visiorg65-472.

161.Rehg J.M., Kanade T., 1994. Visual tracking of hiz@F articulated structures:
an application to human hand trackidg: Proceedings of the '3 European
Conference on Computer Vision, Stockholm, Swetidh;45.

162.Blake A., Curwen R., Zisserman A., 1993. A framekvdor spatiotemporal
control in the tracking of visual contourtnternational Journal Computer
Vision, 11:127-145.

163.Kadous M.W., 1995. Machine recognition of Auslagrsi using power gloves:
towards large lexicon recognition of Sign Languag@hesis for Bachelor in
Computer Science, University of new South Wales

164.Malima A., Ozgur E., Cetin M., 2006. A fast algbrit for vision-based hand
gesture recognition for robot contréih. Proceeding of the IEEE Y4aconference

on Signal Processing and Communications Applicatidmtalya, Turkeyl-4.

-187 -



Bibliography

165.Liang R.H., Ouhyoung M., 1998. A real-time contingogesture recognition
system for sign languagk: Proceedings IEEE '3 International Conference on
Automatic Face and Gesture Recognition, Nara, Jap&B8-565.

166.Starner T., Pentland A., 1995. Visual recognitidnAmerican Sign Language
using Hidden Markov Modeldn: Proceedings of International Workshop on
Automatic Face- and Gesture-Recognition, ZurichiZnand,189-194.

167.Campbell L.W., Becker D.A., Azarbayejani A., BobiékF., Pentland A., 1996.
Invariant features for 3D gesture recognitiom: Proceedings IEEE
International Workshop on Automatic Face and Gestecognition, Killington,
Vermont, USA157-162.

168.Starner T., Weaver J., Pentland A., 1998. Real-thneerican Sign Language
recognition using desk and wearable computer bagksb. IEEE Transactions
on Pattern Analysis and Machine Intelligen26(12):1371-1375.

169.Murakami K., Taguchi H., 1991. Gesture recognitiasing recurrent neural
networks. In: Proceeding of the SIGCHI conference on Human ofactin
computing systems: Reaching through technol2g98(1-3)1915-1922.

170.Huang C.L., Huang W.Y., 1998. Sign language redagmniusing model-based
tracking and a 3D hopfield neural netwoMachine Vision and Applications
10:292-307.

171.Lockton R., Fitzgibbon A.W., 2002. Real-time gesturecognition using
deterministic boostingln: Proceedings of British Machine Vision Conference,
Cardiff, UK.

172.Lee H.K., Kim J.H., 1999. An HMM-based thresholddebapproach for gesture
recognition.IEEE Transactions on Pattern Analysis and Machiniliigence

21(10):961-973.

-188 -



Bibliography

173.Lien C.C., Huang C.L., 1998. Model-based articuldtand motion tracking for
gesture recognitionmage and Vision Computirigs:121-134.

174 Elmezain M., Al-Hamadi A., Niese R., Michaelis 20Q10. A robust method for
hand tracking using mean-shift algorithm and Kalnfdter in stereo colour
image sequencedNorld Academy of Science, Engineering and Techgplog
WASET3:131-135.

175.Sanchez-Nielsen E., Antén-Canalis L., Hernandeefadyl., 2004. Hand gesture
recognition for human-machine interactiom: Proceedings of the 1?2
International Conference in Central Europe on Cotepu Graphics,
Visualization and Computer (WSCG), Plzen-Bory, @6&epublic395-402.

176.Malik S., 2003. Real-time hand tracking and fingeacking for interaction.
CSC2503F Project Report

177.Huang D.Y., Hu W.C., Chang S.H., 2009. Vision-bakadd gesture recognition
using PCA + Gabor filters and SVMn: Proceeding of the ' International
conference on Intelligent Information Hiding and lktuedia Signal processing
(IIH-MSP’09), Kyoto, Japan]-4.

178.Cutler R., Turk M., 1998. View-based interpretatmfireal-time optical flow for
gesture recognitiorin: Proceedings of the'BIEEE International Conference on
Automatic Face and Gesture Recognition, Nara, Jagaf-421.

179.Freeman W.T., Roth M., 1994. Orientation histografos hand gesture
recognition.In: Proceedings of the International Workshop on auwdtic face-
and gesture-recognition, Bichsel, M., editor, ZtriSwitzerland12:296-301.

180.Yang M.H., Kriegman D.J., Ahuja N., 2002. Detectfiages in images: a survey.

IEEE Transactions on pattern and Machine Intelliger24(1):34-58.

-189 -



Bibliography

181.Sandeep K., Rajagopalan A.N., 2002. Human facectietein cluttered colour
images using skin colour and edge informatianProceedings of the3Indian
Conference on Computer Vision, Graphics and Imagedéssing, Ahmadabad,
India.

182.Zhanjie W., Li T., 2008. A face detection systensdxh skin colour and neural
network.In: Proceedings of the International Conference on QatempScience
and Software EngineerinyVuhan Hubei, Chind61-964.

183.Jones M.J., Rehg J.M., 1999. Statistical colour el®avith application to skin
detection. In: IEEE Computer Society Conference on Computerowisand
Pattern Recognition, Fort Collins, CO, US274-280.

184.Zarit B.D., Super B.J., Quek F.K.H., 1999. Compamisf five colour models in
skin pixel classification.In: Proceedings of the International Workshop on
Recognition, Analysis and Tracking of Faces andi@es in Real-Time systems,
Corfu, Greeceb8-63.

185.Chai D., Ngan K.N., 1999. Face segmentation usikip-&lour map in
videophone application$EEE Transactions on Circuits and Systems for Video
Technology9(4)551-564

186.John C.R., 2002. The Image Processing HandbgdE¢). CRC Press LLC

187.Gonzalez R., Woods R., 1992. Digital Image ProogssAddison-Wesley
Publishing Company Chap. 2

188.Luhandjula, K.T., van Wyk, B.J., Kith, K., van WyK|.A., 2006. Eye detection
for fatigue assessmerh: Proceedings of the'7International Symposium of the

Pattern Recognition Society of South AfriBarys, South Africa.

-190 -



Bibliography

189.Luhandjula K.T., Monacelli E., Hamam Y., van WykJB.Williams Q., 2009.
Visual intention detection for wheelchair motiom: proceedings of the "5
International Symposium on Visual Computing, Lagage USA407-416.

190.Viola P., Jones M., 2001. Rapid object detectiomgi® boosted cascade of
simple featuresln: Proceedings of the IEEE Computer Society Conferemce
computer Vision and Pattern Recognition (CVPR’@1511-518.

191.Peng K., Chen L., Ruan S., Kukharev G., 2005. Auspland efficient algorithm
for eye detection on grey intensity facés, Proceedings of the International
Workshop on Pattern Recognition for Crime PreventidSecurity and
Surveillance, Bath, UK302-308.

192.Bradski G., Kaehler A. Pisarevsky V., 2005. Leagibased computer vision
with Intel's open source computer vision libramptel Technology Journal
9(2):119-130.

193.Bradski G., 1998. Real-time face and object tragkas a component of a
perceptual user interfacdn: Proceedings of the "4 IEEE Workshop on
Applications of Computer Vision, Princeton, NJ, U324-219.

194 Bradski G., 1998. Computer vision faces tracking dee in a perceptual user
interface.Intel Technology Journal.

195.1kizler N., Duygulu P., 2009. Histogram of orienteglctangles: A new pose
descriptor for human action recognitidmage and Vision Computing;1515-
1526.

196.Bishop C., 1995. Neural networks for pattern redigm Oxford University

Press: New York

-191 -



Bibliography

197 Cristianini N., Shawe-Taylor J., 2000. An introdoat to support vector
machines and other kernel-based learning metl@aisibridge University Press:
New York

198.Webb A.R., 2002. Statistical Pattern RecognitiZli Ed). Wiley:

199.MacQueen J.B., 1967. Some Methods for classifinataod Analysis of
Multivariate Observations.In; 5™ Berkeley Symposium on Mathematical
Statistics and ProbabilityBerkeley, USA281-297.

200.A tutorial on clustering algorithmk-means clustering [online]. Available from:

http://home.dei.polimi.it/matteucc/Clustering/tutdr html/kmeans.html

[Accessed: 14-11-2011].

201.Ikizler N., Duygulu P., 2007. Human action recogmtusing distribution of
oriented rectangular patchebk: Proceedings of the Workshop on Human
Motion-Understanding, Modelling, Capture and Animat 271-284.

202.Dalal N., Triggs B., 2005. Histograms of orienteddjents for human detection.
In: Proceedings of the IEEE Conference on Computesiodi and Pattern
Recognition):886—1:893.

203.Micheli-Tzanakou E. 2000Supervised and Unsupervised Pattern Recognition:
Feature Extraction and Computational Intelligerioeustrial electronics series,
Rutgers University Chap.1.

204.Kanno, T., Nakata, K., Furuta, K. 2003. Method feam intention inference.

Human-Computer Studigs8:393-413.

-192 -



