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Abstract 
In this thesis, a methodological and algorithmic approach is proposed, for visual 

intention recognition based on the rotation and the vertical motion of the head and the 

hand. The context for which this solution is intended is that of people with disabilities 

whose mobility is made possible by a wheelchair. The proposed system is an 

interesting alternative to classical interfaces such as joysticks and pneumatic switches. 

The video sequence comprising 10 frames is processed using different methods 

leading to the construction of what is referred to in this thesis as an “intention curve”. 

A decision rule is proposed to subsequently classify each intention curve.  

For recognition based on head motions, a symmetry-based approach is proposed to 

estimate the direction intent indicated by a rotation and a Principal Component 

Analysis (PCA) is used to classify speed variation intents of the wheelchair indicated 

by a vertical motion. For recognition of the desired direction based on the rotation of 

the hand, an approach utilizing both a vertical symmetry-based approach and a 

machine learning algorithm (a neural network, a support vector machine or k-means 

clustering) results in a set of two intention curves subsequently used to detect the 

direction intent. Another approach based on the template matching of the finger 

region is also proposed. For recognition of the desired speed variation based on the 

vertical motion of the hand, two approaches are proposed. The first is also based on 

the template matching of the finger region, and the second is based on a mask in the 

shape of an ellipse used to estimate the vertical position of the hand.  

The results obtained display good performance in terms of classification both for 

single pose in each frame and for intention curves. The proposed visual intention 

recognition approach yields in the majority of cases a better recognition rate than 
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most of the methods proposed in the literature. Moreover, this study shows that the 

head and the hand in rotation and in vertical motion are viable intent indicators. 
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Résumé 

Dans cette thèse, nous proposons une approche méthodologique et algorithmique pour 

la reconnaissance visuelle d'intentions, basée sur la rotation et le mouvement vertical 

de la tête et de la main. Le contexte dans lequel cette solution s'inscrit est celui d'une 

personne  handicapée, dont la mobilité est assurée par un fauteuil roulant. Le système 

proposé constitue une alternative intéressante aux interfaces classiques de type 

manette, boutons pneumatiques, etc.  La séquence vidéo, composée de 10 images, est 

traitée en utilisant différentes méthodes pour construire ce qui dans cette thèse est 

désigné par « courbe d'intention ». Une base de règles est également proposée pour 

classifier chaque courbe d'intention.  

Pour la reconnaissance basée sur les mouvements de la tête, une approche utilisant 

la symétrie du visage est proposée pour estimer la direction désirée à partir de la 

rotation de la tête. Une Analyse en Composantes Principales (ACP) est utilisée pour 

détecter l'intention de varier la vitesse de déplacement du fauteuil roulant, à partir du 

mouvement vertical de la tête. Pour la reconnaissance de la direction basée sur la 

rotation de la main, une approche utilisant à la fois la symétrie verticale de la main et 

un algorithme d'apprentissage (réseaux neuronaux, machines à vecteurs supports ou k-

means), permet d’obtenir les courbes d'intentions exploitées par la suite pour la 

détection de la direction désirée. Une autre approche, s’appuyant sur l'appariement de 

gabarits de la région contenant les doigts, est également proposée. Pour la 

reconnaissance de la vitesse variable basée sur le mouvement vertical de la main, 

deux approches sont proposées. La première utilise également l'appariement de 

gabarits de la région contenant les doigts, et la deuxième se base sur un masque en 

forme d'ellipse, pour déterminer la position verticale de la main.  
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Les résultats obtenus montrent de bonnes performances en termes de classification 

aussi bien des positions individuelles dans chaque image, que des courbes 

d'intentions. L’approche de reconnaissance visuelle d’intentions proposée produit 

dans la très grande majorité des cas un meilleur taux de reconnaissance que la plupart 

des méthodes proposées dans la littérature. Par ailleurs, cette étude montre également 

que la tête et la main en rotation et en mouvement vertical constituent des indicateurs 

d'intention appropriés.  

 

 

 



viii 
 

 

Table of Content 

 

Table of Content ...................................................................... viii 

List of Figures ........................................................................... xii 

List of Tables ............................................................................ xv 

Glossary.................................................................................... xvi 

Chapter 1 ............................................................................... - 1 - 

Introduction ........................................................................... - 1 - 

1.1 Problem Statement...................................................................................... - 2 - 

1.2 Motivation and objectives .......................................................................... - 4 - 

1.3 Sub-problems............................................................................................... - 5 - 

1.4 Assumptions................................................................................................. - 6 - 

1.5 Scope............................................................................................................. - 7 - 

1.6 Contribution ................................................................................................ - 7 - 

1.7 Outline .......................................................................................................... - 9 - 

Chapter 2 ............................................................................. - 12 - 

Literature Survey ................................................................ - 12 - 

2.1 Introduction ............................................................................................... - 12 - 

2.2 Intention detection .................................................................................... - 16 - 

2.3 Robotic wheelchairs .................................................................................. - 24 - 



ix 
 

2.4 Head pose estimation ................................................................................ - 29 - 

2.4.1 Model-based solutions .......................................................................... - 30 - 

2.4.2 Appearance and feature-based techniques ............................................ - 32 - 

2.5 Hand gesture recognition ......................................................................... - 35 - 

2.6 Conclusion ................................................................................................. - 43 - 

Chapter 3 ............................................................................. - 45 - 

Head-Based Intent Recognition ......................................... - 45 - 

3.1 Introduction ............................................................................................... - 45 - 

3.2 Pre-processing steps: face detection and tracking ................................. - 47 - 

3.2.1 Histogram-based skin colour detection ................................................ - 48 - 

3.2.2 Adaboost-based skin colour detection .................................................. - 50 - 

3.2.3 Face detection and localisation ............................................................. - 52 - 

3.2.3.1 Erosion .......................................................................................... - 53 - 

3.2.3.2 Dilation and connected component labelling................................ - 54 - 

3.2.3.3 Principal Component Analysis ...................................................... - 57 - 

3.3 Recognition of head-based direction intent ............................................ - 62 - 

3.3.1 Symmetry-based Approach .................................................................. - 64 - 

3.3.2 Centre of Gravity (COG) of the Symmetry Curve ............................... - 65 - 

3.3.3 Linear Regression on the Symmetry Curve .......................................... - 67 - 

3.3.4 Single frame head pose classification ................................................... - 69 - 

3.3.5 Head rotation detection: Head-based direction intent recognition ....... - 71 - 

3.4 Recognition of head-based speed variation intent ................................. - 74 - 

3.5 Adaboost for head-based direction and speed variation recognition ... - 80 - 

3.5.1 Adaboost face detection ........................................................................ - 81 - 

3.5.2 Camshift tracking ................................................................................. - 84 - 



x 
 

3.5.3 Nose template matching ....................................................................... - 86 - 

3.6 Conclusion ................................................................................................. - 94 - 

Chapter 4 ............................................................................. - 96 - 

Hand-Based Intent Recognition ........................................ - 96 - 

4.1 Introduction ............................................................................................... - 96 - 

4.2 Pre-processing steps: Hand detection and tracking .............................. - 98 - 

4.3 Recognition of hand-based direction intent .......................................... - 101 - 

4.3.1 Vertical symmetry-based direction intent recognition ....................... - 102 - 

4.3.2 Artificial Neural Networks (Multilayer Perceptron) .......................... - 106 - 

4.3.3 Support Vector Machines ................................................................... - 108 - 

4.3.4 K-means clustering ............................................................................. - 112 - 

4.3.5 Hand rotation detection: Direction intent recognition ........................ - 114 - 

4.3.6 Template-matching-based direction intent recognition ...................... - 117 - 

4.4 Recognition of hand-based speed variation intent ............................... - 120 - 

4.4.1 Template Matching-based speed variation recognition ...................... - 120 - 

4.4.2 Speed variation recognition based on ellipse shaped mask ................ - 123 - 

4.5 Histogram of oriented gradient (HOG) for hand-based speed variation 

recognition........................................................................................................ - 127 - 

4.6 Conclusion ............................................................................................... - 132 - 

Chapter 5 ........................................................................... - 134 - 

Results and Discussion ..................................................... - 134 - 

5.1 Introduction ............................................................................................. - 134 - 

5.2 Head-based intent recognition ............................................................... - 142 - 



xi 
 

5.2.1 Performance for the recognition of the head in rotation: direction 

recognition ...................................................................................................... - 143 - 

5.2.2 Performance for the recognition of the head in vertical motion: speed 

variation recognition ...................................................................................... - 146 - 

5.3 Hand-based intent recognition............................................................... - 148 - 

5.3.1 Performance for the recognition of the hand in rotation: direction 

recognition ...................................................................................................... - 148 - 

5.3.2 Performance for the recognition of the hand in vertical motion: speed 

variation recognition ...................................................................................... - 150 - 

5.4 Extrapolation for data efficiency ........................................................... - 151 - 

5.5 Concluding remarks ............................................................................... - 157 - 

Chapter 6 ........................................................................... - 159 - 

Conclusion ......................................................................... - 159 - 

6.1 Summary of contributions ..................................................................... - 160 - 

6.2 Concluding remarks ............................................................................... - 162 - 

6.3 Future work ............................................................................................. - 164 - 

List of Publications ........................................................... - 166 - 

Bibliography ...................................................................... - 168 - 



xii 
 

List of Figures 

Figure 1-1: Intention detection system..................................................................... - 3 - 

Figure 3-1: Skin colour histograms in the HSV colour space ................................ - 49 - 

Figure 3-2: Histogram-based skin colour detection for face detection .................. - 56 - 

Figure 3-3: Adaboost-based skin colour detection for face detection ................... - 57 - 

Figure 3-4: Examples of eigenfaces ....................................................................... - 60 - 

Figure 3-5: Face detection and localisation ........................................................... - 62 - 

Figure 3-6: Frontal view of the head (face) in rotation .......................................... - 63 - 

Figure 3-7: Symmetry curves for faces in Figure 3-6 ............................................ - 66 - 

Figure 3-8: Symmetry curves with COG for faces in Figure 3-6 .......................... - 67 - 

Figure 3-9: Lines approximating symmetry curves for faces in Figure 3-6 .......... - 69 - 

Figure 3-10: Intention curves based on COGs and y-intercepts ............................ - 73 - 

Figure 3-11: Frontal view of the head (face) in vertical motion ............................ - 75 - 

Figure 3-12: Examples of eigenfaces for up, centre and down positions .............. - 77 - 

Figure 3-13: Intention curves based on distance measures d1, d2 and d3 ............... - 79 - 

Figure 3-14: Rectangle features [66] ..................................................................... - 83 - 

Figure 3-15: Integral Image and Integral Rectangle [66] ...................................... - 83 - 

Figure 3-16: Cascade of n = 5 adaboost trained strong classifiers ........................ - 84 - 

Figure 3-17: Adaboost face detection and nose template matching ...................... - 90 - 

Figure 3-18:  Intention curves based on differences d1, d2 and d3 ......................... - 92 - 

Figure 3-19: Intention curves based on matching measures M1, M2 and M3 ......... - 93 - 

Figure 4-1: Hand detection using histogram-based skin colour detection ........... - 100 - 

Figure 4-2: Hand detection using adaboost-based skin colour detection............. - 101 - 

Figure 4-3: Three different positions of the hand (dorsal view) in rotation ........ - 104 - 



xiii 
 

Figure 4-4: Symmetry curves corresponding to the hands in Figure 4-3 ............. - 105 - 

Figure 4-5: Features of different positions of the hand in rotation ...................... - 106 - 

Figure 4-6: Multilayer perceptron ........................................................................ - 107 - 

Figure 4-7: Intention curve V1 made of symmetry curves’ means ....................... - 116 - 

Figure 4-8: Detection of hands in rotation and their finger regions..................... - 118 - 

Figure 4-9: Intention curves based on matching measures M1, M2 and M3 ......... - 119 - 

Figure 4-10: Detection of hands in vertical motion and their finger regions ....... - 121 - 

Figure 4-11: Intention curves based on matching measures M1, M2 and M3 ....... - 122 - 

Figure 4-12: Three different positions of an ellipse used as a mask .................... - 125 - 

Figure 4-13: Ellipse mask used to determine the vertical position θ of the hand - 126 - 

Figure 4-14: Intention curves based on changes in θ for each hand motion ........ - 127 - 

Figure 4-15: HOG descriptor for hands in vertical motion .................................. - 130 - 

Figure 4-16: Intention curves based on changes in the HOG components .......... - 131 - 

Figure 5-1: Summary of the methods used for head rotation detection ............... - 136 - 

Figure 5-2: Summary of the methods used for head vertical motion detection ... - 137 - 

Figure 5-3: Summary of the methods used for hand vertical motion detection ... - 138 - 

Figure 5-4: Summary of the methods used for hand rotation detection............... - 139 - 

Figure 5-5: Range of right, left, up and down head poses ................................... - 141 - 

Figure 5-6: Range of right, left, up and down hand poses ................................... - 142 - 

Figure 5-7: Recognition rates for heads in rotation for different numbers of frames 

skipped before selection. ....................................................................................... - 153 - 

Figure 5-8: Recognition rates for heads in vertical motion for different numbers of 

frames skipped before selection ............................................................................ - 154 - 

Figure 5-9: Recognition rates for hands in rotation for different numbers of frames 

skipped before selection ........................................................................................ - 155 - 



xiv 
 

Figure 5-10: Recognition rates for hands in vertical motion for different numbers of 

frames skipped before selection ............................................................................ - 156 - 

 



xv 
 

List of Tables 

Table 3-1: Adaboost algorithm for skin colour learning ........................................ - 51 - 

Table 3-2: Head motion and corresponding direction intention ............................ - 62 - 

Table 3-3: Head motion and corresponding speed variation intention .................. - 75 - 

Table 3-4: The adaboost algorithm [190] ............................................................... - 82 - 

Table 3-5: Camshift Algorithm .............................................................................. - 85 - 

Table 3-6: Head Gesture (Tracked Face) [66] ....................................................... - 89 - 

Table 4-1: Hand motion and corresponding direction intention .......................... - 102 - 

Table 4-2: Hand vertical motion and corresponding speed variation intention ... - 120 - 

Table 5-1: Thresholds used in decision rules ....................................................... - 141 - 

Table 5-2: Single-frame pose classification rate of heads in rotation .................. - 144 - 

Table 5-3: 10-frame intent recognition rate for heads in rotation ........................ - 145 - 

Table 5-4: Single-frame pose classification rate of heads in vertical motion ...... - 147 - 

Table 5-5: 10-frame intent recognition rate for heads in vertical motion ............ - 147 - 

Table 5-6: Single-frame pose classification rate of hands in rotation .................. - 149 - 

Table 5-7: 10-frame intent recognition rate for hands in rotation ........................ - 150 - 

Table 5-8: Single-frame pose classification rate of hands in vertical motion ...... - 151 - 

Table 5-9: 10-frame intent recognition rate for hands in vertical motion ............ - 151 - 

 



xvi 
 

Glossary 

HCI                         Human Computer Interaction 

CCD              Charged Couple Device (camera) 

PCA              Principal Component Analysis 

ADABOOST             Adaptive Boosting 

CAMSHIFT           Continuously Adaptive Mean Shift 

MLP             Multi Layer Perceptron (Neural Network) 

SVM             Support Vector Machines 

HOG             Histogram of Oriented Gradient  

MMHCI           Multimodal Human Computer Interaction 

CFG             Context Free Grammar 

HMM            Hidden Markov Models 

SST             Spatio-Spectral Tracking 

AUTOS                                          Automated Understanding of Task and Operator  

                                                       State 

AHMM          Abstract Hidden Markov Models 

ANFIS           Adaptive Neuro-Fuzzy Inference System 

BP            Back-Propagation 

LMS            Least Mean Square 

PHATT           Probabilistic Hostile Agent Task Tracker 

DNF            Disjunctive Normal Form strategy 

RFID            Radio Frequency Identification  

HaWCoS           Hands-free Wheelchair Control System  



xvii 
 

VFH            Vector Field Histogram 

IW            Intelligent Wheelchair  

OMNI         Office wheelchair with high Manoeuvrability and      

                                                       Navigational Intelligence 

VAHM          Véhicule Autonome pour Handicapé Moteur. 

SIAMO           Integral System for Assisted Mobility (in Spanish) 

LRF                                                Laser Range Finders   

AAM                                             Active Appearance Model 

LDA                     Linear Discriminant Analysis  

LGBP                   Local Gabor Binary Patterns 

RBF                                               Radial Basis Function 

SVR                Support Vector Regression  

KPCA                                 Kernel Principal Component Analysis  

DOF                                              Degree Of freedom  

FORMS                                         Flexible Object Recognition and Modelling System 

IBL                                                Instance-Based Learning  

ASL                                               American Sign Language   

PDP                                               Parallel Distributed Processing 

TSL                                               Taiwanese Sign Language  

COG                                              Centre of Gravity 

SIFT                                              Scale-Invariant Feature Transform descriptors 



Chapter 1: Introduction 

- 1 - 
 

Chapter 1  

Introduction 

One of the main functions of an enabled environment is to provide a setting where 

people with disabilities and the aged can function independently, be active, and 

contribute to society. One of the challenges facing the task of realising such an 

environment is to develop systems that can assist them in performing the tasks they 

wish to carry out without other people’s assistance.  

Formally defined, an intention is a psychological concept, commonly understood 

as the determination to act in a certain manner [3]. Intention recognition, also known 

as plan recognition, refers to the problem of inferring a person’s intentions from 

observations of that person’s behaviour. Good performance in a team environment is 

heavily conditioned by awareness of the intentions of people within society [204]. As 

a result, it can be said that human machine interaction (HMI) where the machine plays 

a support role requires that the intention of the user is well understood by the 

machine. This intention recognition capability is central to the multidisciplinary area 

of HMI and for the more specific area of enabled environment.  

There are many contexts in which intention recognition finds applications, and a 

common one is that of a person with a physical disability whose mobility is enabled 

by the use of a powered wheelchair. In many of these physical disabilities (tetraplegia, 

upper and lower limb disabilities, etc.), the motion of the head usually remains intact, 

and in other cases (lower limb disabilities) even the hand motion is still available.  
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This renders the head and the hand suitable intent indicators for the motion of a 

powered wheelchair. Such a wheelchair, whose mobility is made possible through an 

intent recognition solution that is easier to use than traditional means or in other cases 

that shares control of the motion with the user, becomes a robotic wheelchair. 

 

1.1 Problem Statement 

This thesis proposes a vision-based solution for intention recognition of a person 

from the motions of the head and the hand.     

This solution is intended to be applied in the context of wheelchair bound 

individuals whose intentions of interest are the wheelchair’s direction and speed 

variation indicated by a rotation and a vertical motion respectively. Both head-based 

and hand-based solutions are proposed as an alternative to solutions using joysticks, 

pneumatic switches, etc.  

The data used are video sequences of 576×768 image frames captured from a 

Charge-Coupled Device (CCD) camera (Hi-Resolution Dome Camera - 1/3" CCD, 

470 TV lines, 0.8 lux, 3.6mm (F2.0) Lens) and a “25 frames per second” E-PICOLO-

PRO-2 frame grabber. 

As illustrated in Figure 1-1 the input to the solution is the head/hand motion of a 

subject accessed using the camera and the output is an inferred intention aimed to 

become the command for the wheelchair to move in a certain direction or to vary its 

speed. The subject’s head/hand motion used as input is contained in a video sequence 

of 10 frames and the intention detection task consists of mapping these 10 frames to, 

as referred to in this work, an intention curve.  
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Figure 1-1: Intention detection system 

 

For head rotation, a symmetry-based approach that maps a face image to a symmetry 

curve is adopted. From this symmetry-based approach four different methods are 

proposed according to the feature selection process (centre of gravity (COG) of the 

symmetry curve and y-intercept of the line approximating the symmetry curve) and 

the decision rule (based on the difference of means and the statistics in a Gaussian 

distribution) used for pose and intent recognition. For vertical motion of the head, 

Principal Component Analysis (PCA) is used for pose and intent recognition. A 

method proposed by Jia and Hu [66], [67] is also implemented for comparison. The 

approach uses adaboost for face detection and profile pose estimation, camshift for 

tracking, and nose template matching for vertical pose detection. These methods for 

head-based rotation and vertical motion detection are used to map the given 10-frame 

video sequences as input, to 10-point intention curves that are subsequently classified 

using appropriate decision rules. 

For hand rotation, a variant of the symmetry-based approach used for the head is 

proposed where the symmetry curve is calculated vertically rather than horizontally. 

The statistics (mean and standard deviation) of the symmetry curves are used as two-

dimensional (2D) data features and three different machine learning methods, two 

supervised (a neural network and a support vector machine) and one unsupervised (k-

means clustering) are used for single pose classification. For intent recognition a 
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decision rule that makes use of two different intention curves is used – one 

comprising the output of the single pose classification step resulting from the machine 

learning approaches and the other containing the means of the vertically computed 

symmetry curves. Another method based on a normalised cross-correlation template 

matching is proposed. For the vertical motion of the hand, the geometric constraints 

on the hand’s contour are considered, leading to the use of a mask in the form of an 

ellipse to determine the hand’s vertical position. The other proposed approach is 

based on a normalised cross-correlation template matching. For comparison of the 

proposed methods for vertical motion of the hand, a feature selection found in the 

literature known as the Histogram of Oriented Gradient (HOG) is implemented. These 

methods for hand-based rotation and vertical motion detection are used to map the 10-

frame video sequences to 10-point intention curves that are classified using 

appropriate decision rules. 

 

1.2 Motivation and objectives 

The motivation behind any solution aimed at an enabling environment is to “enable” 

people with disabilities and the aged to be more independent and furthermore to 

contribute to society. The solution proposed in this thesis is a contribution to the task 

of realising such an environment by providing an intent recognition algorithm 

intended to be applied in a robotic wheelchair application. 
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1.3 Sub-problems 

The solution proposed in this thesis can be divided into two, namely a head-based 

solution and a hand-based one both aimed at the same intent indication (direction and 

speed variation intents). Both solutions recognise two different kinds of motion: 

rotation and vertical motion. The input video sequence is made of image frames with 

the head or the hand as the object of interest. A pre-processing step aimed at 

segmenting the head and the hand from each frame is performed before intent 

recognition. Note that for detection and tracking, the frontal view of the head (the 

face) is of interest as well as the dorsal view (as opposed to the palm) of the hand. 

Below is an enumeration of the sub-problems addressed in this thesis. 

 

Sub-problem 1: Face detection and tracking 

Determine the exact location of the face in the input image frame that will be used for 

further processing to achieve intent recognition. 

Sub-problem 2: Head rotation recognition 

Determine whether the head remains centred, moves to the right or to the left 

indicating the direction intent. 

Sub-problem 3: Recognition of the head in vertical motion 

Determine whether the head remains centred, moves up or down indicating the speed 

variation intent. 

Sub-problem 4: Hand detection and tracking 

Determine the exact location of the hand in the input image frame that will be used for 

further processing to achieve intent recognition. 



Chapter 1: Introduction 

- 6 - 
 

Sub-problem 5: Hand rotation recognition   

Determine whether the hand remains centred, moves to the right or to the left 

indicating the direction intent. 

Sub-problem 6: Recognition of the hand in vertical motion 

Determine whether the hand remains centred, moves up or down indicating the speed 

variation intent. 

 

1.4 Assumptions 

Assumption 1: A face viewed from the front is symmetric and presents separable 

patterns for the three different positions: centre, right and left.   

Assumption 2: The disabilities targeted for the proposed solution are those where the 

head and/or the hand are still moving properly. 

Assumption 3: The camera used to capture the motions of the head and the hand is 

assumed to be incorporated into the structure of the wheelchair next to these intent 

indicators rendering them close enough to be the only skin colour object within the 

field of view exempting occlusion problems.  

Assumption 4: The camera used to capture the motions of the head and the hand are 

assumed to be incorporated on the wheelchair and therefore at a fixed distance from 

these indicators exempting any scaling considerations. 

Assumption 5: For hand motion recognition, the hand is treated as a rigid object 

performing two types of motion: rotation and vertical motion.  
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1.5 Scope 

Though intended for a wheelchair application, the algorithm has not been tested on 

actual people with disabilities. This work is limited to the implementation of intent 

recognition algorithms using recorded video sequences of subjects sitting on an office 

chair (to mimic a person with a physical disability sitting on a wheelchair) and 

performing the four types of motion of interest in this thesis.  

Two motions of the head and the hand are defined as intent indicators, namely, 

rotation and vertical motion. For the head, rotation means the motion with respect to 

the vertical axis through the centre of the face and vertical motion means the motion 

with respect to the horizontal axis through the nose of the face. For the hand however, 

rotation consists of a motion relative to the horizontal axis parallel to the arm, and 

vertical motion consists of a motion relative to the vertical axis through the joint 

articulation linking the hand and the arm (the wrist).  

The hand and the head are independent indicators for the same type of motions. 

No data fusion scheme is used to combine these two motion indicators. 

 

1.6 Contribution 

- An alternative visual solution for head and hand motion detection aimed at 

intent recognition, intended to be applied to assistive living is proposed. Its 

performance as Chapter 5 reveals is good when compared to those chosen 

from the literature and implemented in this work. This is an important 
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contribution because as shown in the literature, one of the most promising 

sensor technologies associated with assistive living application is machine 

vision and thus successful implementation of visual solutions is increasingly 

preferred.  

- For head rotation: A symmetry-based approach is used for pose estimation and 

combined with a decision rule for direction intent recognition. This thesis 

therefore shows how the symmetry property of the head can be used for 

motion understanding. The other merit of the use of this symmetry-based 

approach is its simplicity as opposed to head pose estimation found in the 

literature that require sophisticated machine learning algorithm for 

recognition. 

- For head in vertical motion: A decision rule is implemented for speed 

variation intent recognition using intention curves obtained from the PCA-

based pose classification. 

- For hand rotation: A variant of the symmetry-based approach (the symmetry is 

calculated vertically rather than horizontally) is combined with machine 

learning algorithms (Neural Networks, Support Vector Machines (SVM) and 

k-means clustering) for pose estimation and combined with a decision rule for 

direction intent recognition. An additional proposed approach is based on a 

normalised cross-correlation template matching resulting in the intention curve 

that is classified using an appropriate decision rule.  

- For hand in vertical motion: An ellipse shaped mask is implemented for pose 

estimation and intention curves generation. An additional approach is based on 

a normalised cross-correlation template matching. A HOG descriptor is also 
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adapted for the same purpose. An appropriate decision rule is subsequently 

proposed to classify these intention curves. 

- As the literature reveals, the solutions of head pose estimation and hand 

gesture recognition are used in many applications including wheelchair 

motion, allow symbolic commands based on the head or the hand posture. The 

solution proposed in this thesis on the other hand, recognises intents by 

classifying the motion contained in a specific number of frames (10 in this 

work) rather than the posture in a single frame. This contribution brings the 

advantage that even if the position of the head and the hand is only loosely 

detectable, that is, the exact pose cannot be quantified to determine which pose 

is left, right, up, down or centre and to which extent they are in these poses; 

the different kinds of motion can still be robustly detected. The other 

advantage is that the misdetection of a single frame is less costly on the overall 

performance. 

- Gesture recognition solutions found in the literature are made possible looking 

at a change in the hand’s contour shape and it is typically applied to sign 

language applications. The literature doesn’t contain gesture recognition 

solutions where the motion of the hand is a micro-operation such as the 

rotation and vertical motion described in this thesis, for which the approaches 

found in the literature are typically invariant or unusable for robust 

classification. 

  

1.7 Outline 

The remainder of the thesis consists of the five following chapters: 
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Chapter 2 

Chapter 2 presents some of the literature found in four areas of research relevant to 

the work presented in this thesis:  

- Intention detection  

- Robotics wheelchairs 

- Head pose estimation 

- Hand gesture recognition 

 

Chapter 3 

Chapter 3 describes the algorithms proposed for head-based pose estimation and 

intent recognition. For rotation, a symmetry-based approach is used to implement four 

different approaches: Two using the centre of gravity of the resulting symmetry curve 

and a decision rule-based on the difference of means and the statistics (means and 

standard deviation) in a Gaussian distribution. The two other approaches use the same 

decision rules on y-intercept of the line approximating the symmetry curve. For 

vertical motion, PCA and a decision rule are employed. For comparison, a method 

based on adaboost, camshift and template matching proposed by Jia and Hu [66], [67] 

is implemented. 

 

Chapter 4 

Chapter 4 describes the algorithms proposed for hand-based pose estimation and 

intent recognition. For rotation a vertical symmetry-based approach is employed in 

combination with three different methods based on three different machine learning 

algorithms (Neural Network, Support Vector Machines and k-means) and combined 
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with a decision rule. For vertical motion two methods are proposed, one based on a 

normalized cross-correlation template matching and the other, on an ellipse shaped 

mask. For comparison, a HOG descriptor proposed in the literature is also 

implemented and compared to the proposed method. 

 

Chapter 5 

Chapter 5 furnishes the experimental results of the proposed methods. Three sets of 

results are reported for each proposed method: the first set portrays the performance 

for single frame pose classification, the second set illustrates the performance for 

intent recognition through the classification of intention curves and the third set of 

results indicates the performance of each method when fewer frames are used for 

recognition within a 10-frame video sequence. 

 

Chapter 6 

Chapter 6 furnishes a summary of the work proposed in this thesis, some concluding 

remarks, and some suggestions for future work.  
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Chapter 2  

Literature Survey 

2.1 Introduction  

The area of Human Computer Interaction (HCI) is essential to enable efficient and 

effortless communication between humans and computers [1]. It spans through many 

areas of research such as psychology, artificial intelligence and computer vision [2], 

and through four categories of techniques, namely manual, speech, tele-operation and 

vision [1]. An important trend in recent work on HCI is to consider it as a kind of 

collaboration [4] where the computer or machine’s aim is to increase the performance 

of the human user by providing assistance [5], or to perform a task that the user can 

not carry out on his / her own. Three areas of investigation are of interest in HCI:  

- The understanding of the user who interacts with the computer.  

- The understanding of the system (the computer technology and its usability). 

- The understanding of the interaction between the user and the system.  

A more wide-ranging variant of HCI is the Multimodal Human-Computer Interaction 

MMHCI, which similarly to HCI is a multidisciplinary area lying at the crossroads of 

several research areas where psychology and cognitive science are needed to 

understand the user’s perceptual, cognitive, and problem solving skills. Sociology is 

used to understand the wider context of interaction, ergonomics provides an 

understanding of the user’s physical capabilities, graphic design is required to produce 
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effective interface presentation and computer science and engineering are used to 

build the necessary technology [6]. Unlike in traditional HCI applications, however, 

typically consisting of a single user facing a computer and interacting with it via a 

medium such as a mouse or a keyboard, in MMHCI applications,  interactions do not 

always consist of explicit commands, and often involve multiple users (e.g., 

intelligent homes, remote collaboration, arts, etc.). This was made possible by the 

remarkable progress in the last few years in computer processor speed, memory, and 

storage capabilities, matched by the availability of many new input and output devices 

such as phones, embedded systems, laptops, wall size displays, and many others. This 

wide range of computing devices being available, with differing computational power 

and input/output capabilities, enables new ways of interaction through visual methods 

that include large-scale body movements, gestures and head pose, eye blinks or gaze 

[7], and other methods such us speech, haptics and glove mounted devices. 

Vision-based HCI interfaces usually focus on head tracking [8], face and facial 

expression recognition, eye tracking, gaze analysis, gesture recognition, human 

motion analysis and lower arm movement detection, where the recognition methods 

are classified using a human-centred approach using one of the following indicators:  

- Large-scale body movements 

- Hand gestures 

- Gaze.  

Large-scale body movement solutions result from articulated motion analysis where 

three important issues must be addressed:  

- The representation: Joint angles or motion of all the sub-parts  

- The computational paradigms: They can be deterministic or probabilistic 

- Computation reduction  
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A Previous work describes certain methods that use geometric primitives to model 

different components and others that use feature representations based on appearance 

(appearance-based methods). In the first approach, external markers are often used to 

estimate body posture and relevant parameters. While markers can be accurate, they 

place restrictions on clothing and require calibration. They are therefore not desirable 

in many applications. Moreover, the attempt to fit geometric shapes to body parts can 

be computationally expensive and these methods are often not suitable for real-time 

processing. Appearance-based methods, on the other hand, do not require markers, 

but require training [2].  

Gesture recognition (which refers exclusively to hand gesture recognition within 

the computer vision community) plays an essential role in HCI and MMHCI to 

remote collaboration applications. Most of the gesture-based HCI systems allow only 

symbolic commands based on hand posture or 3D pointing. This is due to the 

complexity associated with gesture analysis and the desire to build real-time 

interfaces. Also, most of the systems accommodate only single-hand gestures. Gaze 

detection systems essentially consisting of an eye tracking solution can be grouped 

into wearable or non-wearable, and infrared-based or appearance-based solutions. 

Infrared systems are more accurate than those that are appearance-based; however, 

there are concerns over the safety of prolonged exposure to infrared lights. 

Appearance-based systems usually capture both eyes using two cameras to predict 

gaze direction. Due to the computational cost of processing two streams 

simultaneously, the resolution of the image of each eye is often small making such 

systems less accurate. As an alternative, the use of a single high-resolution image of 

one eye is proposed to improve accuracy. On the other hand, infrared-based systems 

usually use only one camera, although the use of two cameras is proposed to further 
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increase accuracy. Wearable eye trackers have also been investigated mostly for 

desktop applications. The main issues in developing gaze tracking systems are 

intrusiveness, speed, robustness, and accuracy. Gaze analysis can be performed at 

three different levels [2]:  

- Highly detailed low-level micro-events  

- Low-level intentional events  

- Coarse-level goal-based events 

In general, vision-based human motion analysis systems used for HCI and MMHCI 

can be thought of as having mainly four stages:  

- Motion segmentation  

- Object classification  

- Tracking  

- Interpretation  

The literature also makes a distinction between command (actions can be used to 

explicitly execute commands: select menus, etc.) and non-command interfaces 

(actions or events used to indirectly tune the system to the user’s needs) [9].  

Human-Computer collaboration provides a practical and useful application for plan 

recognition techniques. Plan recognition also known as intention detection is a central 

component in many applications among which assistant systems for elders [5]. Intent 

recognition solutions are very useful for mobile robots (among which are robotic 

wheelchairs) as they can help human users on a variety of tasks, such as, material 

handling, transport, surveillance, demining, assistance to people with disabilities and 

housekeeping, provided that it understands the intent of the user [10]. 
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The solution proposed in this thesis has some of the characteristics of an HCI solution 

as it is vision-based, non-intrusive, human centred, and it involves the four stage 

mentioned earlier namely segmentation, classification, tracking and interpretation or 

recognition. The rest of this chapter presents some of the solutions found in the 

literature for areas such as intention detection, robotic wheelchairs, head pose 

estimation, hand gesture and pose recognition as they are relevant in addressing the 

problem at hand. 

  

2.2 Intention detection 

Schmidt et al. [11] first identify the problem of plan recognition also known in some 

cases as intention detection or intent recognition. Since then it is applied to a diversity 

of areas, including natural language understanding and generation [12], [13], dynamic 

traffic monitoring [14], story understanding [11], [15], [16], adventure game [17], 

network intrusion detection [18], multi-agent coordination [19] and multi-agent team 

monitoring [20]. Kautz and Allen [21] present the first formal theory of plan 

recognition where they define it as “identifying a minimal set of top-level actions 

sufficient to explain the observed actions, and use minimal covering set as a principle 

for disambiguation”.  

Research in plan recognition has taken several different directions, the most 

popular being the development of logic theories to provide algebras through which to 

reason about plans from observed agent actions. In [22], the authors introduce the 

theoretical concept of plan knowledge graphs, along with a new formalism, to 

simplify the process of plan recognition. In [23], the authors interpret the assignment 

of intentions to a sequence of incoming behaviours or activities indicated by body 
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trajectories as a pattern recognition problem. The solution proposed is a formalism 

known as Context Free Grammar (CFG). In [24], three distinct behaviours of a rat 

namely the walking behaviours of exploratory locomotion (EL), the grooming (GR) 

and behavioural stillness (BS) are recognised using a visual approach based on a 

supervised neural network, demonstrating the feasibility for automated machine 

learning of behaviour at some level. In [25] Pynadath and Wellman propose a 

probabilistic method based on parsing. Their approach employs probabilistic state-

dependent grammars (PSDGs) to represent an agent’s plan. The PSDG representation, 

together with inference algorithms supports efficient answering of restricted plan 

recognition queries.  The work in [26] addresses the problem of inferring high-level 

intentions from a global positioning system (GPS) using Bayesian networks to predict 

the position and velocity of a traveller in an urban setting, using auto, bus and foot 

travel as the means of locomotion. The vision-based solution described in [27] also 

makes use of Bayesian networks and model-based object recognition to identify 

multi-person actions in the real world indicated by large-scale body movements.  

In [28] a vision-based technique is presented for interpreting the near-term 

intention of an agent performing a task in real-time by inferring the behavioural 

context of the observed agent defined as the path followed by a vehicle in a military 

application (a tank). A hierarchical, template-based reasoning technique is used as the 

basis for intention recognition, where there is a one-to-one correspondence between 

templates and behavioural contexts or sub-contexts. In this approach, the total weight 

associated with each template is critical to the correct selection of a template that 

identifies the agent’s current intention.  A template’s total weight is based on the 

contributions of individual weighted attributes describing the agent’s state and its 

surrounding environment.  The work described develops and implements a novel 
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means of learning these weight assignments by observing actual human performance.  

It accomplishes this by using back-propagation neural networks and fuzzy sets. In 

[29], two mathematical methods are proposed for creating a model to characterise a 

non-rigid motion and its dynamics. The work is based on the observation that every 

activity has an associated structure characterised by a non-rigid shape. In one method 

the activity is modelled using the polygonal shape formed by joining the locations of 

these point masses at any time, using Kendall’s statistical shape theory. A nonlinear 

dynamic model is used to characterise the variations in the 2D or 3D shapes being 

observed. The second method consists of modelling the trajectories of each moving 

object in 3D space. In [30], a system is proposed with a perception level made of a 

sensor fusion system. The system processes the sensing data first, and then gets the 

physical information about the environment, including the large-scale body 

movements of humans. The recognition level is a translator from the crisp data 

processed at perception level to the qualitative expression that contains vague time 

scales by means of fuzzy logic. The intention inference level has groups of fuzzy rules 

using qualitative expression to infer the human's intention for the simple specific 

cooperative task.  

To deal with uncertainty inherent in plan inference, Charniak and Goldman [15], 

[16] built the first probabilistic model of plan recognition based on Bayesian 

reasoning. Their visual system supports automatic generation of a belief network from 

observed human actions indicated by his motion trajectory according to some network 

construction rules. The constructed belief network is then used for actions 

understanding. As a powerful tool for time series prediction problems, many solutions 

make use of Hidden Markov Models (HMM) given the temporal nature of human 

actions. In [31], a visual system is proposed for intent recognition that is robust to 
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illumination changes, background clutter, and occlusion. The system uses a Spatio-

Spectral Tracking module (SST) to determine human motion trajectory and track 

them in the video sequence where the observer robot is assumed to be static. The 

tracking module is composed of three components: 

- Appearance modelling 

- Correspondence matching  

- Model update  

The activity modelling approach uses HMMs in a Bayesian framework that uses 

context to improve the system’s performance. In [4], The AUTOS (Automated 

Understanding of Task and Operator State) model is proposed for team intent 

inference, where the activities of each team member as well as those of the team 

overall indicated by their motion trajectories, are observed. The underlying principles 

stem from the information-on-need paradigm that is viewed as being vital to 

contemporary C2 operations. AUTOS accepts as input speech and text, and calls for 

interfaces that can track progress through tasks and can facilitate those tasks, aiding 

operators without interrupting their work. Three components collectively make up an 

AUTOS system: 

- Direct observation mechanisms  

- Indirect observation mechanisms  

- Task models  

In [32], a general principle of understanding intentions is proposed, which states that 

people have a mechanism for representing, predicting and interpreting each other’s 

actions. Using a novel formulation of HMMs, the proposed visual solution models the 

interactions of several people with the world indicating their intent to performing 

various activities: following, meeting, passing by, picking up an object, and dropping 
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off an object. The distinguishing feature in the HMMs is that they model not only 

transitions between discrete states, but also the way in which parameters encoding the 

goals of an activity change during its performance. This novel formulation of the 

HMM representation allows for recognition of the agent’s intent well before the 

underlying actions indicated by the angle and the distance of each agent in the scene, 

are finalised. In [33], an HMM is used as a representation of simple events indicated 

by the shape of a hand which are recognised by computing the probability that the 

model produces the visual observation sequence. This solution is applied to sign 

language recognition. Visual systems based on parameterised-HMM [34] and 

coupled-HMM [35] are introduced in order to recognise more complex events such as 

interactions of two mobile objects by observing their large scale movements. In [36], 

a vision-based stochastic context-free grammar parsing algorithm is used to compute 

the probability of a temporally consistent sequence of primitive actions recognised by 

HMMs. The actions of interest include bending over and entering a secure area. More 

recently, Bui et al. [37], [38], propose an online probabilistic policy recognition 

method for the recognition of group behaviour, based on the Abstract Hidden Markov 

Model (AHMM) and the extension of AHMM allowing for policies with memories. 

In their frameworks, scalability in policy recognition in the models is achieved using 

an approximate inference scheme called the Rao-Blackwellised Particle Filter. In [39], 

the intention of interest is the change in mode of transportation (e.g., walk, driving a 

car, get on a bus, etc.) and a Hierarchical Markov Model and particle filtering are used 

to predict a user’s changes through spatial information and body motion.  

It must also be noted that following the earlier definition of plan recognition, most 

systems infer a hypothesised plan based on observed actions. Therefore automatic 

human activity recognition usually constitutes the processing component for intent 
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recognition [29]. In computer vision, it involves detecting and tracking mobile objects 

from a video sequence, after which the activities are recognised from the 

characteristics of these tracked objects. The interesting task is therefore to map these 

tracked object characteristics to a specific activity description. This leads to a range of 

approaches, which interprets this task as a matching process between a sequence of 

image features to a set of activity models. The best matched models are then selected 

based on some criteria and their matching degree. The differences among these 

approaches are:  

- Whether image features are computed automatically and independently of 

input image sequences  

- Whether the activity representation is generic and expressive enough to model 

a variety of activities but yet powerful enough to discriminate between similar 

activities (e.g. sitting and squatting)  

- Whether the matching is performed optimally  

The authors in [40] propose a human behaviour detection and activity support in a 

vivid room environment. The behaviour detection in the vivid room is performed 

using the ID4-based learning algorithm that builds decision trees incrementally, and 

three kinds of sensors embedded in the room namely:  

- Magnet sensors: for doors/drawers  

- Micro-switches: for chairs  

- ID-tags: for humans 

The information from these sensors is collected by a sensor server via RF-tag system 

and LAN. The human activity support system takes into account the human 

behaviours in the room using sound and voice. 
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Other vision-based works include solving the problem of capture intention in an 

indoor environment of camcorder users for home video content analysis [41], [42], 

where visual and temporal features are used on a support vector machines. The visual 

solution in [43] tracks a person’s region of interest by both recovering the 3D 

trajectory in the indoor environment and estimating the head pose indicating the 

attention direction. First, a nonlinear graph embedding method is used to robustly 

estimate the head yaw angle under 0o~360o in low resolution images. Second, the 

person’s trajectory is recovered in an affinely-equal manner with uncalibrated 

cameras. In [44], a non-visual approach is presented where sEMG signals are used as 

an indication of hand movements for hand prosthesis control. The approach is based 

on the Adaptive Neuro-Fuzzy Inference System (ANFIS) integrated with a real-time 

learning scheme to identify hand motion commands. The fuzzy system is trained by a 

hybrid method consisting of Back-Propagation (BP) and Least Mean Square (LMS). 

In [45], a boosting-based approach is used for classification of a driver’s lane change 

intent through a computational framework referred to as “mind-tracking architecture”. 

The system simulates a set of possible driver intentions and their resulting behaviours 

using an approximation of a rigorous and validated model of driver behaviour. The 

recognition of the plans of the elderly in relatively unconstrained environments is 

achieved in [46] using a plan/intent recognition framework based on a probabilistic 

model known as PHATT (Probabilistic Hostile Agent Task Tracker), where the 

trajectory of the people in the scene is the intent indicator. Some vision-based 

probabilistic approaches use the Dempster-Shafer (D-S) theory [13], [47], [48] to 

recognise the preferences of the person in the field of view, that is his/her repeated 

behavioural pattern indicated by large-scale body movements. In [13], the author 
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relies on this evidential reasoning to support rational default inference about the user’s 

plan. D-S theory is also used to represent user preferences (i.e., user’s repeated 

behavioural patterns) and facilitate the selection of competing hypotheses. Weiss et 

al. [49] show how to generalise traditional discrete decision trees used for 

classification to regression trees used for functional estimation. This visual approach 

is used for two-dimensional gesture recognition applied to the monitoring of a 

continuous movement stream of a pointing device such as a computer mouse. Like 

decision trees, regression trees perform partitioning based on a Disjunctive Normal 

Form (DNF) strategy, which has the advantages of clarity of knowledge organisation 

and traceability to features. 

As surveyed in this section, many methods that are used for plan recognition and 

intention detection are proposed in the literature. They include grammar parsing, 

Kalman filters, linear models, supervised neural network, fuzzy logic, decision tree, 

Bayesian networks, HMM, parameterised-HMM, coupled-HMM, AHMM combined 

with the Rao-Blackwellised particle filter, a template-based reasoning technique, 

Kendall’s statistical shape theory, spatio-spectral tracking. They vary in the way in 

which intentions or plans are defined as they usually relate to observed actions such as 

large-scale body movements, trajectory, spatial position, speech, handwriting, hand 

gestures, and even American Sign Language (ASL). Some of the application areas 

include pedestrian and transportation safety [50], surveillance [51], crime prevention, 

HCI, and even interpreting sign language. Many sensors can be used, including GPS, 

Radio Frequency Identification (RFID) tags, digital cameras, ultrasound sensors, 

infrared sensors, light sensors, physiological sensors, accelerometers, and motion 

sensors [52]. 
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This thesis addresses the problem of detecting a micro-operation of a user involving 

the motion of the head and the hand rather than explicit and well defined action. 

Alternative vision-based approaches are proposed for such a purpose, which recognise 

motions of the head and the hand of a subject in a well defined setting. They make use 

principally of a symmetry-based approach, a normalised cross-correlation template 

matching and machine learning algorithms such as principal component analysis 

(PCA), neural networks, support vector machines and k-means clustering. The 

application of interest in this work is an interaction between a human and a robotic 

wheelchair. The next section discusses some robotic and powered wheelchair 

solutions. 

 

2.3 Robotic wheelchairs 

Mobile robots can help humans with a variety of tasks, such as, material handling, 

transport, surveillance, demining, assisting people with disabilities and housekeeping. 

Mobile robot architecture can be classified according to the relationship between 

sensing, planning and acting components inside the architecture. There are therefore 

three types of architecture:  

- Deliberative architecture  

- Reactive architecture  

- Hybrid (deliberative/reactive) architecture  

In deliberative architectures, there is a planning step between sensing and acting. 

When we compare deliberative architectures with reactive architectures we observe 

that deliberative architectures work in a more predictable way, have a high 
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dependency of a precise and complete model of the world, and can generate optimised 

trajectories for the robot. On the other hand, reactive architectures have a faster 

response to dynamic changes in the environment; they can work without a model of 

the world and are computationally much simpler [10]. 

One important subset of mobile robots can be found in the context of a person 

with a physical disability whose mobility is enabled by a wheelchair. Various tools 

that increase the mobility of the physically impaired, such as (powered) wheelchairs, 

walkers, or robotic manipulators, are commercially available. Many people who 

suffer from chronic mobility impairments, such as spinal cord injuries or multiple 

sclerosis, use powered wheelchairs to move around their environment [53]. 

Unfortunately, many of the common every-day-life manoeuvres such as docking at a 

table or driving through a door are experienced as difficult, time-consuming or 

annoying. Severe accidents such as falling down stairs or ramps, collisions with other 

chairs or persons, and getting blocked in corridors or elevators regularly occur. For 

these reasons, several existing mobility tools were equipped with sensors and a 

computerised controller to aid the physically impaired with everyday-life 

manoeuvring. Not only in wheelchairs [54], [55], but also in walkers [56], robotic 

guide canes for the visually impaired [57], and robotic manipulators [58]. 

Traditionally, powered wheelchairs have been driven with a joystick, which has 

proven to be an intuitive solution. Unfortunately to drive both efficiently and safely 

requires the user to have steady hand-control and good reactions, which can be 

impeded due to a variety of physical, perceptive or cognitive impairments [59] and by 

factors such as fatigue, degeneration of their condition and sensory impairments. 

Consequently, alternative methods of interaction are being investigated. Work has 

been carried out in the fields of speech, vision (gesture and gaze-direction 
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recognition) and brain-actuated control and the most popular set of approaches are 

vision-based [60], [61], [62]. 

A method for wheelchair obstacle avoidance is presented in [63] using the 

Canesta 3D time-of-flight infrared laser range sensor. The collision avoidance 

solution is presented for powered wheelchairs used by people with cognitive 

disabilities (such as Alzheimer’s disease and dementia) therefore increasing their 

mobility and feeling of independence. An integration of the sensor system with global 

mapping and localisation methods as well as control methods using partially 

observable Markov decision processes is performed. In [64], a system called Hands-

free Wheelchair Control System (HaWCoS), which allows people with severe 

disabilities to reliably navigate an electrical wheelchair without the need to use the 

hands, is presented. The system monitors a specific bio-signal which is the time series 

of a certain bodily function of the user (such as brain-waves, muscular activity, or eye 

posture) and reacts appropriately to the particular detected pattern in the monitored 

signal. The detection of intentional muscle contractions involves a piezo-based sensor, 

which is almost insensitive to external electro-magnetic interference. 

As stated earlier perhaps the most promising sensor technology (among ultrasonic 

acoustic range finder (i.e., sonar), infrared (IR) range finder, laser range finders 

(LRFs), laser striper, etc.) associated with these robotic wheelchairs is machine 

vision. Cameras are much smaller than LRFs and, thus, much easier to mount in 

multiple locations on a wheelchair, they can also provide much greater sensor 

coverage, the cost of machine vision hardware has fallen significantly, and machine 

vision software continues to improve. Thus successful implementation of a robotic 

wheelchair based on computer vision is increasingly preferred. There are smart and 

robotic wheelchairs in the literature [55] that use computer vision for landmark 
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detection (e.g., Rolland, MAid, Computer-Controlled Power Wheelchair Navigation 

System) where the visual indicators are the head and eyes.  

Among the vision-based solution found in the literature, the authors in [65] 

propose a Bayesian approach to robotic assistance for wheelchair driving, which can 

be adapted to a specific user. The proposed framework is able to model and estimate 

even complex manoeuvres, and explicitly takes the uncertainty of the user's intent into 

account.  In [66] and [67], the authors propose an integrated approach to real-time 

detection, tracking and direction recognition of human faces, which is intended to be 

used as a human-robot interaction interface for a robotic wheelchair. Adaboost face 

detection is applied inside the comparatively small window, which is slightly larger 

than the camshift tracking window, so that the precise position, size and frontal, 

profile left or profile right direction of the face can be obtained rapidly. If the frontal 

face is detected, template matching is used to tell the nose position. In [68], [69] and 

[70] the authors present the NavChair assistive navigation system based on a 

modelling approach to monitoring human control behaviour in real-time. The 

NavChair takes advantage of the capabilities of both the user and the machine by 

allowing them to share the control of the system output. The Vector Field Histogram 

method, which is an effective sonar-based obstacle avoidance for mobile robots, is 

adapted for use in human-machine systems; the shortcomings of the wheelchair 

platform in this regard have been overcome. The sensory system comprises an array 

of 12 Polaroid ultrasonic transducers, a joystick and sonar sensors.  In [71], the 

authors propose an intelligent wheelchair (IW) control system for people with various 

disabilities. The proposed system involves the use of face-inclination to determine the 

wheelchair direction and mouth-shape information to determine whether the 

wheelchair must proceed or stop. In the detector, the facial region is first obtained 
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using adaboost; thereafter the mouth region is detected based on edge information. 

The extracted features are sent to the recogniser, which recognises the face inclination 

and mouth shape using statistical analysis and k-means clustering respectively.  

In [72], many other platforms that help people in their daily manoeuvring tasks 

are surveyed: OMNI, Bremen autonomous wheelchair, RobChair, Senario, Drive 

Assistant, VAHM, Tin man, Wheelesley (stereo-vision guided), and NavChair (sonar 

guided). These systems are based on “shared control” [73], [74], [75] where the 

control of the wheelchair or any other assistive device is shared with the user. Often 

the developed architectures consist of different algorithms that each realise specific 

assistance behaviour, such as “drive through door”, “follow corridor” or “avoid 

collision”. The presence of multiple operating modes creates the need to choose from 

them, and therefore makes the user responsible for selecting the appropriate mode, 

which in some instances might be an inconvenience. Several powered wheelchairs are 

available with modular architecture [76], of which the SIAMO project (Spanish 

acronym for Integral System for Assisted Mobility) is an example [77]. The goal of 

this modular architecture is to easily configure the wheelchair to suit the needs of a 

high variety of users with different disabilities. This modular architecture also makes 

it easy to adapt new functionalities to the wheelchair [78]. For severely disabled 

persons one way of controlling a wheelchair is by means of head movements. 

Currently, such devices do exist, such as those called head controlled joystick or head 

movement interface, mechanical, camera-based [79], accelerometer-based [80] and 

based on infrared light [81], where active components are attached to the head of the 

user. 

This section shows how rich the field of electrically powered and robotic 

wheelchairs is, where the system sensoring component includes ultrasonic acoustic 
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range finder (i.e., sonar), infrared (IR) range finder, laser range finders (LRFs), laser 

striper, piezo-sensors for (bio-signal), and vision-based. Typical indicators for motion 

control include joysticks, gesture, gaze direction, head poses, brain signals, speech, 

etc. Of interest in this thesis are visual solutions focusing on the pose of the head and 

the free hand of the user where several alternative approaches are proposed for intent 

recognition. The next two sections present some of the solutions found in the 

literature for head pose estimation and hand gesture recognition. 

 

2.4 Head pose estimation 

In surveillance systems the knowledge of head poses provides an important cue for 

higher level behavioural analysis and the focus of an individual’s attention often 

indicates their desired destination [60]. In addition to contributing to the task of robust 

face recognition for multi-view analysis which is still a difficult task under pose 

variation [82], pose estimation can also be considered as a sub problem of the general 

area of intention detection as it is useful for inference of nonverbal signals related to 

attention and intention. This makes head pose estimation solutions a key component 

for HCI [83].  Existing head pose estimation methods can be grouped into:  

- Model-based methods (within which we also classify Active Appearance-

based methods) [84] 

- Appearance-based methods [85]  

- Feature-based approaches [86], [87], [88], [89] within which we also classify 

appearance-based subspace methods.  

Appearance-based techniques use the whole sub-image containing the face while 

model-based approaches use a geometric model. 
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2.4.1 Model-based solutions 

Several works on head pose measurement in low resolution video involve the use of 

labelled training examples which are used to train various types of classifiers such as 

neural networks [90], [86], [91], support vector machines [92] or nearest neighbour 

and tree-based classifiers [93], [94], [95]. Other approaches model the head as an 

ellipsoid and either learn a texture from training data [96] or fit a re-projected head 

image to find a relative rotation [97].  In [98], a 2D ellipse is used to approximate the 

head position in the image. The head position is obtained using colour histogram or 

image gradients. However, light changes and different skin colours result in tracking 

failures. Another drawback with such an approach is the inability to report head 

orientation. In [99], partial orientation information, such as tilt or yaw is available. 

However, the accuracy of those systems is low (up to 15 degree error in estimating 

rotation).  

Recently, model-based approaches like the bunch graph approach, PCA, Eigen 

faces and Active Appearance Models (AAMs), have received considerable interest. 

AAMs [100] are nonlinear parametric models derived from linear transformations of a 

shape model and an appearance model. A neural network can also be trained to 

distinguish between different persons or to make a distinction between poses of one 

person’s face [101]. The system proposed in [102], uses neural networks on each 

camera view to estimate head orientation in either direction. For the fusion of the 

multiple views, a Bayesian filter is applied to both diffuse prior estimates (temporal 

propagation) as well as search for the most coherent match of overlapping single view 

hypotheses over all the included sensors.  
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Unsupervised approaches such us eigenfaces [103], [104] learn the subspace for 

recognition via the Principle Component Analysis (PCA) [105] of the face manifold, 

while supervised approaches like Fisherfaces [106] learn the metric for recognition 

from labelled data via the Linear Discriminant Analysis (LDA). Linear approaches in 

head pose estimation are found in [107], [108], [109]. It must be noted that the 

PCA/LDA approaches for head pose estimation are limited because of the non-

linearity of the underlying manifold structure, and richness in local variations. In 

recent years, non-linear methods for high dimensional non-linear data modelling, 

Locally Linear Embedding (LLE) [110] and Graph Laplacian [111], perform very 

well in finding manifold structure through embedding a graph structure of the data 

derived from the affinity modelling. When the problem space is large, a kernel 

method [112], [113] is employed and in other cases where complexity is an issue, a 

piece-wise linear subspace/metric learning method [114] is developed to map out the 

global nonlinear structure for head pose estimation. Template matching is another 

popular method used to estimate head pose where the best template can be found via a 

nearest-neighbour algorithm and where the pose associated with this template is 

selected as the best pose. Advanced template matching can be performed using Gabor 

Wavelets and Principle Components Analysis (PCA) or Support Vector Machines, but 

these approaches tend to be sensitive to alignment and are dependent on the identity 

of the person [82].  

More accurate systems use 3D geometrical models to represent the head as a rigid 

body. In [115], Yang and Zhang use a rough triangular mesh with semantic 

information. Stereo is used to obtain 3D information, which is matched against the 

known model. A major shortcoming of this method is the amount of time one needs to 

spend to create a precise model. Recent approaches use a cylinder to approximate 
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both the underlying head geometry and texture [116], [117]. Since a cylinder is only a 

rough approximation of head geometry, those methods suffer from inaccuracies in 

estimating rotation, and have difficulties differentiating between small rotations and 

translations. In [118], an approach for 3D head pose estimation from a monocular 

sequence is proposed. To estimate the head pose accurately and simply, an algorithm 

is used based on the geometry information of the individual face and projective model 

without the need of any 3D face model and any special markers on the user’s face. 

Another 3D solution to head pose estimation is presented in [119] where the system 

relies on a novel 3D sensor that generates a dense range image of the scene. In [82], a 

novel discriminative feature is introduced which is efficient for pose estimation. The 

representation is based on the Local Gabor Binary Pattern (LGBP) and encodes the 

orientation information of the multi-view face images into an enhanced feature 

histogram. A Radial Basis Function (RBF) kernel Support Vector Machines (SVM) 

classifier is used to estimate poses. The aim of the work in [83] is to develop a new 

vision-based method which can estimate the 3D head pose with high accuracy with an 

adaptive control of diffusion factors in a motion model of a user’s head used in 

particle filtering. 

 

2.4.2 Appearance and feature-based techniques 

Appearance-based approaches use filtering and image segmentation techniques to 

extract information from the image. Some typical appearance-based techniques 

include optical flow algorithms as well as edge detectors such as Gabor wavelets 

[120]. Filtering and segmentation resulting from appearance-based methods play a 

significant role in head pose estimation, but it must be noted that few head pose 

estimation algorithms are known to be exclusively appearance-based as they require 
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the step of recognising the pose. Among the exceptions are the Gabor head pose 

estimation described in [87] where the weights of a Gabor wavelet network directly 

represent the orientation of the face. Its disadvantage, however, is the computational 

effort involved, which is very user specific. Brolly et al. [121] used Nurbs surface 

with texture to synthesise both appearance and pose, but could not report pose 

accuracy since ground truth was unavailable. Several researchers [122], [123] 

introduced the notion of extended super quadric surface, or Fourier synthesised 

representation of a surface, which possesses a high degree of flexibility to encompass 

the face structure. They use model-induced optical flow to define pose error function. 

The usage of a parameterised surface enables them to resolve ambiguities caused by 

self occlusion.  

The majority of feature-based algorithms use the eyes as features since they are 

easy to detect due to their prominent appearance. The nostrils are also features that are 

used; however, they become invisible as soon as the user tilts his head downwards. 

The mouth is also easy to find except when covered by a moustache or a beard. 

Several authors use a set of these features to estimate a 3D head orientation. In [62], 

the authors address the problem of estimating head pose over a wide range of angles 

from low-resolution images. Faces are detected using chrominance-based features. 

Grey-level normalised face images serve as input for linear auto-associative memory. 

One memory is computed for each pose using a Widrow-Hoff learning rule. Head 

pose is classified with a winner-takes-all process. Fitzpatrick [124] demonstrates a 

feature-based approach to head pose estimation without manual initialisation. For 

feature detection and tracking the cheapest paths across the face region is found, 

whereby the cost of a path depends on the darkness of crossed pixels. The paths will 

therefore avoid dark regions and a pair of avoided regions is assumed to be the pair of 
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eyes. The algorithm is thus dependant on the visibility of the eyes. Head pose is then 

determined based mainly on the head outline and the eye position. Gorodnichy [125] 

demonstrates a way to track the tip of the nose by using the resemblance of the tip of 

the nose with a sphere with diffuse reflection. This template is then searched in the 

image. This approach does not estimate the head pose, but simply tracks the nose tip 

across the video images and therefore a pose recognition task has to be added. In [61], 

a novel approach to estimate head pose from monocular images, which roughly 

classifies the pose as frontal, left profile, or right profile is presented. Subsequently, 

classifiers trained with adaboost using Haar-like features, detect distinctive facial 

features such as the nose tip and the eyes. Based on the positions of these features, a 

neural network finally estimates the three continuous rotation angles used to model 

the head pose. 

Appearance-based subspace methods that treat the whole face as a feature vector 

in some statistic subspace has recently become popular. They avoid the difficulties of 

local face feature detection and face modelling. However, in the subspace, the 

distribution of face appearances under variable pose and illumination is always a 

highly non-linear, non-convex and maybe twisted manifold, which is very difficult to 

analyse directly [126]. Murase and Nayar [127] make a parametric description of this 

nonlinear manifold to estimate pose in a single PCA subspace. Pentland et al. [128] 

construct the view-based subspaces to detect face and estimate pose. The same idea is 

used in [85] to estimate head poses in the Independent Subspace Analysis (ISA) 

subspace. Some approaches solve this problem by kernel-based methods such as 

Support Vector Regression (SVR) [129] and Kernel Principal Component Analysis 

(KPCA) [113]. 
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As shown in this section, the area of head pose estimation is rich and at the same time 

opens to interesting new avenues of investigation. The solutions proposed in this work 

however use two model-based approaches, namely, the template matching and PCA 

and a symmetry-based approach, which can be classified among appearance-based 

approaches. The solutions presented in this section focus mostly on single frame head 

pose estimation but not on the way in which these positions vary. It is, however, an 

important component of the intent recognition solution proposed in this work. The 

next section focuses on hand gesture recognition. 

 

2.5 Hand gesture recognition 

Hand gesture recognition from video images is of considerable interest as a means of 

providing simple and intuitive man-machine interfaces. Possible applications range 

from replacing the mouse as a pointing device to virtual reality, communication with 

the deaf and to Human-Computer Interaction (HCI). M.W. Krueger [130] proposed 

gesture-based interaction as a new form of HCI in the middle of the 1970s initially, 

which has since witnessed a growing interest in aiming at making HCI as natural as 

possible [131]. Much human visual behaviour can be understood in terms of the 

global motion of the hands. Such behaviours include most communicative gestures 

[132], [133] as well as movements performed in order to control and manipulate 

physical or virtual objects [134], [135], [136], [137]. Hand gestures and poses are not 

only extensively employed in human non-verbal communication [138], but are also 

used to complement verbal communication as they are co-expressive and 

complementary channels of a single human language system [139], [140], [141]. The 

primary goal of any automated gesture recognition system is to create an interface that 
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is natural for humans to operate or communicate with a computerised device [142], 

[143]. There are three main categories of hand gesture analysis approaches [144]:  

- Glove-based analysis [145]  

- Vision-based analysis that can be divided into model-based [146] and state-

based [147], and analysis of drawing gestures  

- There are also solutions that approach the problem from a neuroscience point 

of view [148]  

Glove-based approaches have several drawbacks including the fact that they hinder 

the ease and natural way with which the user can interact with the computer-

controlled environment; they also require long calibration and setup procedures [143]. 

The non-intrusive property of vision-based approaches makes them more suitable, 

thus rendering them probably the most natural way of constructing a human-computer 

gesture interface as they do not require any additional devices (e.g. gloves) and can be 

implemented with off-the shelf devices (e.g. webcams) [149]. Yet it is also the most 

difficult type of approach to implement in a satisfactory manner.  

There are two main approaches in hand pose estimation. The first approach is the 

full Degree Of Freedom (DOF) hand pose estimation that targets all the kinematic 

parameters (i.e., joint angles, hand position or orientation) of the skeleton of the hand, 

leading to a full reconstruction of hand motion [143]. The second one consists of 

‘‘partial pose estimation’’ methods that can be viewed as extensions of appearance-

based systems that capture the 3D motion of specific parts of the hand such as the 

fingertip(s) or the palm. These systems rely on appearance-specific 2D image analysis 

to enable simple, low DOF tasks such as pointing or navigation. 3D hand models offer 

a way of more elaborate modelling of hand gestures but lead to computational hurdles 

that have not been overcome given the real-time requirements of HCI. Appearance-
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based models lead to computationally efficient “purposive” approaches that work well 

under constrained situations but seem to lack the generality desirable for HCI [150]. 

There are an increasing number of vision-based gesture recognition methods in 

the literature. Baudel and Beaudouin-Lafom [151], Cipolla et al. [152], and Davis and 

Shah [153] all describe systems based on the use of a passive “data glove” with 

markers that can be tracked relatively easily between frames. A 3D structure from 

image sequences is recovered in [152] but does not attempt to classify gestures. David 

and Shah [154] propose a model-based approach by using a finite state machine to 

model four qualitatively distinct phases of a generic gesture. Hand shapes are 

described by a list of vectors and then matched with the stored vector models. Darrell 

and Pentland [155] propose a space-time gesture recognition method. Signs are 

represented using sets of view models, and then matched to stored gesture patterns 

using Dynamic Time Warping (DTW). Cui and Weng [156] developed a system 

based on a segmentation scheme which can recognise 28 different gestures in front of 

complex backgrounds. In [157] Ohknishi and Nishikawa propose a new technique for 

the description and recognition of human gestures. The proposed method is based on 

the rate of change of gesture motion direction that is estimated using optical flow 

from monocular motion images. Nagaya et al. [158] propose a method to recognise 

gestures using an approximate shape of gesture trajectories in a pattern space defined 

by the inner-product between patterns on continuous frame images. Heap and Hogg 

[159] present a method for tracking a hand using a deformable model, which also 

works in the presence of complex backgrounds. The deformable model describes one 

hand posture and certain variations of it and is not aimed at recognising different 

postures. Zhu and Yuille [160] developed a statistical framework using PCA and 

stochastic shape grammars to represent and recognise the shapes of animated objects. 
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It is called Flexible Object Recognition and Modelling System (FORMS). Rehg and 

Kanade [161] describe a system that does not require special markers. They use a 3D 

articulated hand model that they fit to stereo data but do not attempt gesture 

recognition. Blake et al. [162] describe a tracking system based on a real-time 

“snake” that can deal with arbitrary pose, but treats the hand as a rigid object. 

An important application of hand gesture recognition is sign language 

understanding [132]. In [163], a large set of isolated signs from a real sign language is 

recognised with some success using a low-end instrumented glove using two machine 

learning techniques:  

- Instance-Based Learning (IBL)  

- Decision-tree learning.  

Simple features were extracted from the instrumented gloves, namely the distance, 

energy and time of each sign. They have several advantages among which the most 

important are cost, processing power and the fact that the data extracted from a glove 

are concise and accurate. On the other hand, gloves are an encumbrance to the user 

and today’s most convenient solutions require the property of being non-intrusive. In 

addition to instrumented gloves, early approaches to the hand gesture recognition 

problem in a robot control context involved the use of markers on the finger tips 

[164]. Again, the inconvenience of placing markers on the user’s hand makes this 

solution less suited in practice. Liang et al. [165] developed a gesture recognition 

system for TSL using Data-Glove to capture the flexion of 10 finger joints, the roll of 

palm and other 3D motion information. In [166], [167] and [168], two visual HMM-

based systems are presented for recognising sentence-level continuous American Sign 

Language (ASL) using a single camera to track the user’s unadorned hands. To 

segment each hand initially, the algorithm scans the image until it finds a pixel of the 
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appropriate colour, determined by an a priori model of skin colour. Given this pixel as 

a seed, the region is grown by checking the eight nearest neighbours for the 

appropriate colour. Each pixel checked is considered to be part of the hand. The 

tracking stage of the system does not attempt a fine description of hand shape, instead, 

concentrating on the evolution of the gesture through time. In [169], a gesture 

recognition method for Japanese sign language is presented making use of the 

computational model called Parallel Distributed Processing (PDP) and a recurrent 

neural network for recognition. Huang et al. [170] use a 3D neural network method to 

develop a Taiwanese Sign Language (TSL) recognition system to identify 15 different 

gestures. Lockton et al. [171] propose a real-time gesture recognition system, which 

can recognize 46 ASL letter spelling alphabet and digits. The gestures consist of 

“static gestures” where the hand does not move. 

More solutions include a fast algorithm proposed in [164] for the automatic 

recognition of a limited set of gestures from hand images for a robot control 

application. The approach contains steps to segment the hand region based on skin 

colour statistics and size constraints, locating the fingers by finding the Centre Of 

Gravity (COG) of the hand region as well as the farthest point from the COG, and 

finally classifying the gesture by constructing a circle centred at the COG that 

intersects all the fingers that are active in the count and subsequently extracting a 1D 

binary signal by following the circle. The algorithm is invariant to translation, 

rotation, and scale of the hand and does not require the storage of a hand gesture 

database. In [138], a robust hand gesture detection and recognition system for 

dynamic environments is proposed. The system is based on the use of a cascade of 

boosted classifiers for detection of hands and gesture recognition, together with the 

use of skin colour segmentation and hand tracking procedures. The authors in [142] 
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present a system that performs automatic gesture recognition using a unified 

technique for segmentation and tracking of faces and hands through a skin colour 

detection algorithm and a static and dynamic gesture recognition system based on 

PCA. An HMM-based gesture recognition algorithm is presented in [172] where the 

system uses a threshold model that calculates the threshold likelihood given an input 

pattern. For gesture segmentation, it detects the reliable end point of a gesture and 

finds the start point by back-tracking the Viterbi path from the end point. A visual 

hand gesture recognition technique that uses the fusion of a static and a dynamic 

recognition technique is proposed in [144].  

The hand gestures can be divided into static hand gestures, which are represented 

by a single image of the hand, and dynamic hand gestures, which are represented by a 

sequence of images, each one corresponding to a hand posture within the gesture 

(hand movement). The static signature uses the local orientation histograms in order 

to classify the hand gestures. For the dynamic gesture recognition algorithm each 

gesture is represented by a sequence of images. The dynamic signature used for 

classification is the superposition of all hand region skeletons for each image within 

the sequence. The recognition is performed by comparing this signature with the ones 

from a model of the gestures, using Baddeley’s distance as a measure of 

dissimilarities between model parameters. The pre-processing steps consist of the 

following operations:  

- Binary image computation  

- Binary image enhancement 

- Hand region extraction.  
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The authors in [173] address the problem of high computation cost to solve the finger 

inverse kinematics in conventional model-based hand gesture analysis systems. They 

propose a fast hand model fitting method for the tracking of hand motion by finding 

the closed-form inverse kinematics solution for the finger fitting process, and defining 

the alignment measure for the wrist fitting process. Their proposed method however 

requires markers. In [174], a robust method for hand tracking in a complex 

environment using mean-shift analysis and Kalman filter in conjunction with a 3D 

depth map is proposed. Mean-shift analysis uses the gradient of Bhattacharyya 

coefficient as a similarity function to derive the candidate of the hand that is most 

similar to a given hand target model and Kalman filter is used to estimate the position 

of the hand target. A real-time vision system is presented in [175], which uses a fast 

segmentation process to obtain the moving hand from the whole image, which is able 

to deal with a large number of hand shapes against different backgrounds and lighting 

conditions. The recognition process identifies the hand posture from the temporal 

sequence of segmented hands through a robust shape comparison carried out through 

a Hausdorff distance approach operating on edge maps. The system‘s visual memory 

stores all the recognisable postures, their distance transform, their edge map and 

morphologic information. In [176], the author presents a real-time stereo vision hand 

tracking system that can be used for interaction purposes. The system can track the 

3D position and 2D orientation of the thumb and index finger of each hand without 

the use of special markers or gloves. The method includes a background subtraction, 

skin colour segmentation, a region extraction, and a contour-based feature extraction. 

In [177], a novel method for hand gesture recognition is presented based on Gabor 

filter and SVMs. Gabor filters are first convolved with images to acquire desirable 

hand gesture features. PCA is then used to reduce the dimensionality of the feature 
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space. With the reduced Gabor features, SVM is trained and exploited to perform the 

hand gesture recognition task. Other methods use optical flow where the position of 

the moving hand is estimated and segmented into motion blobs. Gestures are 

recognised using a rule-based technique based on characteristics of the motion blobs 

such as relative motion and size [178]. A histogram of local orientation [179] is also 

used as a feature vector for gesture classification and interpolation.  

As discussed in [143], the main difficulties encountered in the design of hand pose 

estimation systems include:  

- High-dimensional problem: the hand is an articulated object with more than 20 

DOF.  

- Self-occlusions: Since the hand is an articulated object, its projection results in 

a large variety of shapes with many self-occlusions, makes it difficult to 

segment different parts of the hand and extract high level features.  

- Processing speed: With the current hardware technology, some existing 

algorithms require expensive, dedicated hardware, and possibly parallel 

processing capabilities to operate in real-time.  

- Uncontrolled environments: For widespread use, many HCI systems would be 

expected to operate under non-restricted backgrounds and a wide range of 

lighting conditions.  

- Rapid hand motion: The combination of high speed hand motion and low 

sampling rates introduces additional difficulties for tracking algorithms.  

Since it is difficult to satisfy all the issues listed above simultaneously, some studies 

apply restrictions on the user and the environment. In this thesis, the problem is 

defined in such a manner that both the user and the environment have some 

restrictions. The environment is restricted as the solution is intended to be used in a 
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wheelchair with one camera facing the user’s right hand from its dorsal view and 

another camera in front of the user’s face. For the user, the motions of interest are 

rotation with respect to a horizontal axis and vertical motion of a relatively rigid hand 

solving the issue of the multiplicity of DOF. No self occlusion is therefore 

anticipated, and the environment is more or less controlled as the camera is already 

facing the objects of interest.  

It is also evident that the types of motion of interest in this thesis are less explicit 

and pronounced than the gestures found in the literature for sign language and human-

robot interaction. Furthermore, some of these solutions are invariant to rotations 

[142], [164], and therefore may not all be able to detect these hand motions as defined 

in this thesis. 

2.6 Conclusion 

As the literature reveals, intention detection aimed for HCI and collaboration is a 

fairly rich field of investigation where many published work exist, and where there is 

still room for new contributions. Furthermore, many robotic and intelligent power 

wheelchairs that share control with users or help them perform the tasks that they 

cannot carry out on their own, were developed where computerised intent awareness 

of the user constitutes an essential component. One useful speed and direction intent 

indicator for these power wheelchairs is the motion of the head as it remains available 

for many physical disabilities. Hand gesture has also been shown to be an important 

means of non-verbal communication, a complement to verbal communication and a 

means for interaction with virtual and physical reality.  
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The solutions found in the literature for head pose estimation applied to wheelchair 

motion, allow symbolic commands based on the head is posture. The disadvantage is 

that the intention is therefore indicated by a single frame and therefore more 

vulnerable to misdetection. Hand gesture recognition solutions found in the literature 

focus more on the change in the hand’s contour shape and are typically applied to sign 

language applications. The literature doesn’t contain hand gesture recognition 

solutions where the motion of the hand is a micro-operation such as the rotation and 

vertical motion described in this thesis, for which the approaches found in the 

literature are typically invariant or unusable for robust classification. The next two 

chapters describe the methods proposed in this thesis. 
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Chapter 3  

Head-Based Intent Recognition 

3.1 Introduction 

One of the visual intent indicators used in this work is the frontal view of the head 

(face) in motion. The motivation behind this choice is its availability and flexibility 

for a wide range of disabilities. Moreover, the head in motion is a useful intent 

indicator as it presents separable patterns for different poses. The solution consists of 

a camera with the head as the object of interest in its field of view. The head performs 

two types of motion: Rotation and vertical motion to indicate an intention in direction 

and speed variation respectively. Head rotation in a particular direction (right or left) 

is selected to indicate the chosen direction the subject intends to take. Vertical head 

motion (up or down) is chosen to indicate the subject’s speed variation intent where 

the head going up is chosen to indicate a decrease in speed, and the head going down 

is chosen to indicate an increase.  

The visual solution proposed in this thesis accepts a video sequence as the input 

with the head in rotation and vertical motion as object of interest, and gives direction 

and speed variation intent respectively as output. Intent recognition is achieved by 

analysing the motion of the head through the video sequence rather than looking at a 

single frame. In this work 10 frames are required as input to the proposed algorithm 

that maps them into a vector referred to in this work as the “intention curve”. 
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This chapter provides a detailed description of the head-based intent recognition 

methods proposed in this thesis. The pre-processing steps of detection and tracking of 

the frontal view of the face within a video sequence are implemented using skin 

colour detection and PCA on the detected skin colour region resulting in a smaller 

image frame containing the only face in the field of view. Note that in this work, 

tracking only consists of repeating the detection task on a smaller region that is 

slightly larger than the head detected region of the previous frame. For recognition of 

the head in rotation, a symmetry-based approach is used on each face detected frame 

resulting in a symmetry curve where the centre of gravity (COG) and the y-intercept 

of the line approximating that symmetry curve are used to construct the intention 

curves. These intention curves are subsequently classified using a decision rule based 

on their increasing, decreasing or constant tendency. For recognition of the head in 

vertical motion the intention curves are constructed using a PCA-based approach on 

each frame of the input sequence, and are classified using a decision rule also based 

on their increasing, decreasing and constant propensity. Furthermore, a method by Jia 

and Hu [66], [67] based on adaboost, camshift and nose template matching is also 

implemented for the comparison of results.  

To distinguish between the two different sets of motions, rotation detection of the 

head for direction intent recognition is performed first and if no significant change in 

position (rotation wise) is observed, detection of the vertical motion of the head for 

speed variation intent recognition is then performed. 
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3.2 Pre-processing steps: face detection and tracking 

The topic of face detection is a very rich area of research in the literature, providing 

solutions to determine if a face is present in an image frame as well as the exact 

location of that face [180]. The methods for face localisation in a single frame can be 

divided into four categories:  

- Knowledge-based methods: They encode human knowledge of what 

constitutes a typical face: e.g., the relationships between facial features.  

- Feature invariant approaches: They find structural features of the face that 

exist even when the pose, viewpoint, or lighting conditions vary.  

- Template matching methods: where the correlations between an input image 

and the stored templates are computed for detection. 

- Appearance-based methods: where in contrast to template matching, templates 

are learned from a set of training images, which should capture the 

representative variability of facial appearance.  

The present solution makes use of skin colour detection, which is a very popular 

feature invariant approach. It was shown that colour is the most powerful means of 

discerning object appearance. So it is better than greyscale processing leading to the 

detection through facial features such as the eyes and the mouth. Another merit that 

may be attributed to skin colour detection over the detection of other facial feature is 

its diversity of application including hand detection that is of interest in this thesis 

(refer to Chapter 4). Two solutions are implemented to model the skin colour: The 

first makes use of a colour histogram in the HSV colour space [181], while the second 
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makes use of a variant of adaboost to learn the skin colour in the YCrCb colour space 

[182]. 

 

3.2.1 Histogram-based skin colour detection 

Typically skin colour is modelled using a histogram, a single Gaussian distribution or 

a mixture of Gaussians, although other approaches can also be found. However, 

among those three principal skin colour models, the authors in [183] have 

demonstrated that the histogram model is superior to the others, easier to implement 

and computationally efficient. The different colour spaces used in skin colour 

detection include HSV, normalised RGB, YCrCb, YIQ and CIELAB. According to 

[184], HSV yields the best performance for skin colour pixel detection. In this colour 

space, H stands for the Hue component, which describes the shade of the colour, S 

stands for the Saturation component, which describes how pure the Hue (colour) 

component is, while V stands for the Value component, which describes the 

brightness. The removal of the V component takes care of varying lighting conditions. 

H varies from 0 to 1 on a circular scale, that is, the colours represented by H=0 and 

H=1 are the same. S varies from 0 to 1, 1 representing 100 percent purity of the 

colour. H and S scales are partitioned into 100 levels and the colour histogram is 

formed using H and S. 

For skin colour training 69 601 pixels are used spanning 10 different subjects 

with different skin colours, to form a separate colour histogram for each component H 

and S: For each pixel, H and S values are found and the bin corresponding to these H 

and S values in the histogram is incremented by 1. Figure 3-1 depicts the histogram 

for the H and the S components separately. To classify a new pixel as skin colour or 

not (background), a common threshold λ = 2000 for both components H and S is 
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chosen empirically by trial and error according to the height of the bins where the skin 

colour is sufficiently frequent: Let p be a pixel to be classified as skin colour or non-

skin colour in the input image (refer to Figure 3-2 (Part a) for examples of  576×768 

input images), binH and binS the bins in the histogram corresponding to the H and S 

component values associated with the pixel p. The classification task is performed by 

the decision rule h given below (refer to Equation 3-1), and the resulting skin colour 

detection is depicted in Figure 3-2 (Part b): 

 

                      




−
≥∧≥

=
else,colourskinnon

binbin,colourskin
)p(h SH λλ

                        (3-1) 

 

 

        Figure 3-1: Skin colour histograms in the HSV colour space  
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3.2.2 Adaboost-based skin colour detection 

The foundational colour space is RGB while the colour space that displays the best 

performance according to [184] is HSV. In [182] however, it is asserted that the 

choice of the YCrCb colour space as opposed to the two colour space mentioned 

previously is justified by its hardware-oriented advantages. Y represents the 

luminance component, while Cr and Cb represent the chrominance components of an 

image. The approach to learn skin colour pixel is based on the adaboost learning 

algorithm where the key factor for identifying skin colour is intensity. The task of 

colour segmentation is therefore based on the fact that colour distributions at different 

intensities have different centres of gravity, different means, and different standard 

deviations, that is, skin colour has different statistical features with different 

intensities. This method, based on skin colour training using adaboost, performs more 

robustly than the traditional threshold technique [183] for skin colour extraction, 

especially under poor or strong lighting conditions.  

Boosting consists of the addition of a new weak classifier (refer to Equation 3-2), 

until the error is decreased to a specific threshold. The weak classifier is designed to 

select a circularity, which can contain as much skin colour pixels as possible. This 

circularity is required to round more than only 50% of the points, as a weak classifier 

for adaboost needs to be only a little better than random guess. A weak classifier 

)p(h j consists of the centre )cb,cr(c and the radius r and is given as: 
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where p is a pixel in the image. Given example pixels p1(Y,Cr,Cb)...pn(Y,Cr,Cb), 

which are all skin pixels (all positive examples) from images spanning 10 different 

subjects in the training set with different skin colours, the algorithm for training skin 

colour is given below in Table 3-1.  

 

Table 3-1: Adaboost algorithm for skin colour learning 

- Divide these examples into m intervals: it1...itm, according to specific value ranges 
of Y. 

- For each interval itk: 

o Initialise weights
n

wi
1= , where n is the number itk examples. 

o For t = 1, ..., T 
� Normalise the weights 
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For skin colour classification of each pixel p in an input image (refer to Figure 3-3 

(Part a) for examples of 576×768 input images), the first step is to determine the 

interval itk among the m intervals, to which p belongs. If the pixel doesn’t belong to 

any interval it is discarded as a non-skin colour pixel, otherwise the appropriate strong 

classifier sk is subsequently used to determine if the pixel in interval itk is a skin-

colour pixel or not (refer to Equation 3-3). The resulting skin colour detection is 

depicted in Figure 3-3 (Part b). 

 

                   




∈=∃
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=
kk
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        (3-3) 

 

3.2.3 Face detection and localisation 

After classifying skin colour pixels and non-skin colour pixels in a given image such 

as those portrayed in Figures 3-2 (Part a) and 3-3 (Part a), a higher level processing is 

required to determine whether a face is present as well as the exact location of the 

face. Unlike [181] and [182] that made use of some geometric constraints through 

connectivity analysis and identification of the connected region with the shape of a 

typical face through the well known golden ratio: τ±+=
2

51
r (where τ is a 

tolerance) and a cascade of neural networks with the Boltzmann factor respectively, 

the proposed method makes use of morphological image processing operations 

namely erosion and dilation, connected component labelling and Principal Component 

Analysis (PCA).  
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3.2.3.1 Erosion 

Erosion is a morphological image processing operation that removes the extraneous 

pixels on object boundaries. It was originally defined for binary images, later being 

extended to greyscale images, and subsequently to complete lattices [186]. It is used 

in this work to remove noise from the binary image resulting from the skin colour 

detection step. The erosion uses a specified neighbourhood. The state of any given 

pixel in the output image is determined by applying a rule to the neighbourhood of the 

corresponding pixel in the input image such that if every pixel in the input pixel’s 

neighbourhood is a skin colour pixel, then the output pixel is a skin colour pixel. 

Otherwise, the output pixel is a non-skin colour pixel.  

The neighbourhood can be represented by an arbitrary shape and size called the 

structuring element, and is chosen in this work to be a 3×3 square. The centre pixel in 

the structuring element represents the pixel of interest, while the elements in the 

matrix that are skin colour define the neighbourhood. Let I be the binary image such 

as those depicted in Figures 3-2 (Part b) and 3-3 (Part b) resulting from the histogram-

based skin colour and the adaboost-based skin colour detection approaches 

respectively, and R, a detected skin colour region in I. The erosion of R by the 

structuring element S is defined as follows: 

 

                     R Ө S = s
Ss

R−
∈
I  

                                 = }RS|Iz{ z ⊆∈                           (3-4) 
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where Sz is the translation of S by the vector z, that is, Iz},Ss|zs{Sz ∈∀∈+= (s is 

the centre of the structuring element S and z is each pixel in the image I). The 

resulting binary images are illustrated in Figures 3-2 (Part c) and 3-3 (Part c) for 

adaboost-based and histogram-based skin colour detection respectively, and it can be 

observed that removing noise also costs on the skin colour detection task. This is 

compensated by the dilation operation. 

 

3.2.3.2 Dilation and connected component labelling 

Dilation is a morphological image processing operation that adds pixels to the 

boundaries of objects. Similarly to erosion, it was originally defined for binary 

images, later being extended to greyscale images, and subsequently to complete 

lattices [186]. It is used in this work to compensate for the loss in shape resulting from 

the noise removal process through erosion in the previous step: The state of any given 

pixel in the output image is determined by applying a rule to the neighbourhood of the 

corresponding pixel in the input image such that if any pixel in the input pixel’s 

neighbourhood is a skin colour pixel, then the output pixel is a skin colour pixel. 

Otherwise, the output pixel is a non-skin colour pixel. 

The structuring element neighbourhood is chosen in this work to be a 10×10 

square, for probing and expanding the shapes contained in the input image. Let I be 

the binary image such as those displayed in Figures 3-2 (Part b) and 3-3 (Part b) 

resulting from the histogram-based skin colour and the adaboost-based skin colour 

detection approaches respectively, and R, a detected skin colour region in I. The 

dilation of R by the structuring element S is defined as follows:  
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where 'S denotes the symmetric of S, that is, }Ss|Is{S' ∈−∈= .  

As illustrated in Figures 3-2 (Part d) and 3-3 (Part d) for histogram-based and 

adaboost-based skin colour detection respectively, the dilation operation is aimed at 

retrieving the integrity of the skin colour pixels, but retrieves also some of the noise 

that has not been completely removed by the erosion process. To address this problem 

a connected component labelling task is performed using the 8-connected 

neighbourhood approach, that is, two skin pixels belong to the same region if one is in 

any of its 8 neighbouring places of the other [187]. Subsequently, the assumption that 

only one face is present in the field of view and that it corresponds to the highest 

connected component in the image guides a simple decision rule that only retains the 

connected component with the highest number of pixels: Let Ri∈ I, where Ri of size 

Xi×Yi is the i th connected region. The region portrayed in Figures 3-2 (Part e) and 3-3 

(Part e) for histogram-based and adaboost-based skin colour detection respectively, 

chosen to be the face region is Rk where: 
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with n the number of connected components in the binary image resulting from the 

dilation process.  
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     Figure 3-2: Histogram-based skin colour detection for face detection 
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   Figure 3-3: Adaboost-based skin colour detection for face detection 

 

3.2.3.3 Principal Component Analysis  

PCA stems from the fact that it is often advantageous to represent data in a reduced 

number of dimensions for improved classification performance. Essentially, 

dimensionality reduction can be achieved in two different ways:  
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- Feature selection: It identifies those variables that do not contribute to the 

classification task.  

- Feature extraction: Also referred to as feature selection in the transformed space, 

it finds a transformation from the p measurements to a lower dimensional feature 

space.  

PCA belongs to the second category. It is a linear feature extraction approach that 

finds linear projections to derive new variables in decreasing order of importance, 

which are linear combinations of the original variables and are uncorrelated. These 

projections capture the variability of features or separability of classes. 

For face localisation, PCA maps a face into a lower dimensionality space through 

the generation of a set of eigenfaces: Suppose Γ is an N2×1 vector, corresponding to 

an N×N face image I where N = 200: the goal is therefore to represent Γ into a low-

dimensional space. Let the training set of face images be I1, I2... IM made of 10 

different subjects with 5 faces each. These N×N images I i are represented as N2×1 

vectors Γi with i =  {1,…,M}, with M = 50. The mean face image is computed:         

 

                                      ∑
=

=
M

1i
iM

1 ΓΨ                                                               (3-7) 

 

The mean face is subtracted:                       

 

                                            ΨΓΦ −= ii                                                                  (3-8) 

  

The N2×N2 covariance matrix C, which is a measure of how far the set of column 

vectors iΦ  of matrix A is spread out, is given as: 
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where A = [ M...ΦΦΦ 21 ] is an N2×M  matrix. The eigenfaces are found by computing 

a set of eigenvectors of the covariance matrix C. These eigenvectors and their 

associated eigenvalues best describe the distribution of the data, as they represent the 

direction in which the face images in the training set differ from the mean image and 

how much these face images vary from the mean image in that direction respectively. 

Since the covariance matrix C = AAT is too large with a size of N2×N2, rendering the 

computation of the eigenvectors in Equation 3-10 not practical, the eigenvectors of 

the smaller M×M  matrix ATA can be computed (refer to Equation 3-11):  

 

                                            kkk
T vvAA λ=                         (3-10) 

 

                                           kkk
T uAuA λ=                                               (3-11) 

 

                                          kkk
T uAAuAA λ=        

                                                          kk Auλ=                                                       (3-12) 

 

where }M,...,1{k '=  with 'M = 15. From Equations 3-10 and 3-12 it can be 

concluded that if uk is an eigenvector of ATA, then vk = Auk is the eigenvector of C and 

therefore the eigenfaces. It has also been shown that all the M eigenvalues of ATA are 

the M largest eigenvalues of AAT [105]. Only 'M eigenfaces, corresponding to the 
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'M largest eigenvalues among the M eigenvalues ( MM ' < ) are kept. Figure 3-4 

depicts the 10 eigenfaces associated with the 10 highest eigenvalues among the 'M  

used in this work.  

 

 

Figure 3-4: Examples of eigenfaces 

 

These eigenfaces are the basis of the eigenspace (the training face space), and can be 

used to represent a new face by projecting it on the eigenspace and thereby recording 

how that new face differs from the original face: Given a new window in the skin 

colour detected region in the input image where a face must be detected (refer to 

Figures 3-2 (Part e) and 3-3 (Part e)). This window is scanned by an N×N (where N = 

200) sub-windows to localize the face as follows: 

 

- Representation of the sub-window image as an N2×1 vector Γ and normalise as 

follows:  

  

                                             Φ  = Γ – Ψ                                                                 (3-13) 

 

where Ψ is given by Equation 3-7. 
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- Projection of Φ on the eigenspace:  

  

                                     ∑
=
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1k
kkvwΦ                                                            (3-14) 

 

where ΦT
kk vw =  and vk’s are eigenfaces and 

∧
Φ  the projection of Φ  on the 

eigenspace. 

 

- The face Φ  is therefore transformed into its eigenface components and 

represented by the vector: 

 

                                          T
'M21 ]w...ww[=Ω                                             (3-15) 

 

- Calculation of the distance ε between the face image Φ  and its projection 
∧

Φ :                

   

                                     
∧

−= ΦΦεd                                                                (3-16) 

 

- If εd < λd, then Γ is a face, with λd = 1.85 

 

Figure 3-5 (Part a) exhibits the face detection and localization for four different 

subjects using a histogram-based skin colour detection approach, and Figure 3-5 (Part 

b) illustrates the face detection and localization for four different subjects using an 
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adaboost-based skin colour detection method. Note that the tracking phase is 

implemented by repeating this detection task on a smaller search window around the 

detected face region of the previous frame.  

 

 

Figure 3-5: Face detection and localisation 

 

3.3 Recognition of head-based direction intent 

The estimated position of the face in rotation as depicted in Figure 3-6 is used as an 

intent indicator according to Table 3-2. As mentioned earlier, one of the motivations 

behind the choice of the head in motion as the intent indicator is its availability and 

flexibility for a wide range of disabilities.  

 

Table 3-2: Head motion and corresponding direction intention 

Motion of the head Inferred Intention 
Left rotation Intent to go left 

Right rotation Intent to go  right 
  No rotation (Centred position) Intent to go straight 
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A symmetry-based approach is used to extract symmetry curves associated with the 

frontal view of the face. The assumption is that different positions of the face display 

different symmetry properties and therefore provide different symmetry curves. Intent 

recognition is implemented using the COGs of the symmetry curves and the y-

intercepts of the lines approximating the symmetry curves combined with two 

different decision rules based on the difference of means and the statistics (means and 

standard deviation) in a Gaussian distribution of the COGs and the y-intercepts for 

single pose recognition but also based on the difference of means and the statistics 

(means and standard deviation) in a Gaussian distribution of the increasing, 

decreasing and constant tendencies, of the COG-based and y-intercept-based intention 

curves for intent recognition.  

 

 

      Figure 3-6: Frontal view of the head (face) in rotation 
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3.3.1 Symmetry-based Approach 

The underlying assumption is that human faces viewed from the front are symmetric 

and when moved from their initial position (centred position), the symmetry they 

display breaks down. These separable patterns presented by these symmetry curves 

give the indication of a motion from the initial centred position to a new position 

(right or left). The symmetry curve, based on the work in [188], is given by 
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                      (3-17) 

 

The symmetry-value )x(f  is evaluated ]kXk[x −+∈∀ 1  where x is a pixel-

column in the image, by taking the sum of the differences of two pixels at a variable 

distance kw:w ≤≤1  from it on both sides making the pixel-column the centre of 

symmetry. This process is performed for each row and the resulting symmetry-value 

is the summation of these differences. The symmetry curve is composed of these 

symmetry-values calculated for all the pixel-columns in the interval k+1 ≤ x ≤ X-k. It 

was empirically established that the value of the maximum distance k that yields more 

separable symmetry curves associated with the head of the subjects among the 

different positions is k = 9. Figure 3-6 portrays three different positions of detected 

faces for five different subjects and Figure 3-7 depicts the symmetry curves associated 

with the different head poses depicted in Figure 3-6. 
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3.3.2 Centre of Gravity (COG) of the Symmetry Curve  

The COG, also known as centre of mass, is the location in the symmetry curve at 

which all the values of the curve are considered to be centred and is given by  
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where the symmetry curve is defined by the function: )x(fx:f →  with )x(f  given 

by Equation 3-17 and x a pixel column in the face image. The symmetry curves 

displayed in Figure 3-7 differ for the three different positions of the face with which 

they are associated and therefore yield different COGs giving an indication of the 

position of the head. Figure 3-8 depicts the symmetry curves and the COGs associated 

with them for different positions of the head in rotation shown by the vertical lines on 

the plot of the symmetry curves. 
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Figure 3-7: Symmetry curves for faces in Figure 3-6 
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     Figure 3-8: Symmetry curves with COG for faces in Figure 3-6 

 

 

3.3.3 Linear Regression on the Symmetry Curve  

Another way to classify the symmetry curves is to find the lines that approximate the 

symmetry curves as their y-intercepts differ for the three different positions. This can 
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be achieved by a linear regression approach on the symmetry curves: Given a curve y 

= f(x), the goal of linear regression is to find the line that best predicts y from x where 

x is the independent variable and y the dependent one. Linear regression does this by 

finding the line that minimises the sum of the squares of the point’s vertical distances 

from the line: Let )x(fYX:f =→  be a function describing a symmetry curve, a 

linear regression is a form of regression analysis in which the relationship between y 

and x is modelled by a least squares function called linear regression equation: 

 

                                                  εβ += XY                                                           (3-19) 
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The least squares estimate is thus given by  

 

                                                 
Y'X)X'X( 1−=β                                                 (3-20) 

 

where β  gives the values of the y-intercept β(1) and the angle β(2) of the line with 

respect to the x-axis. It was empirically established that the y-intercepts of the 

resulting lines are more discriminative than the angles. Figure 3-9 displays the 

symmetry curves associated with the faces in rotation in Figure 3-6 with the lines 

approximating them resulting from this linear regression approach.  
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Figure 3-9: Lines approximating symmetry curves for faces in Figure 3-6 

 

 

3.3.4 Single frame head pose classification 

Two approaches are used to classify the heads’ different positions into classes ω1, ω2, 

ω3 corresponding to the centre, right and left position respectively:  
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Difference of means: Given a training set of symmetry curves associated with faces 

from each class (centre, right and left): The means µn of the symmetry curves’ COGs 

and the y-intercepts of the lines approximating these symmetry curves are calculated 

for each training set. The difference between the COG/y-intercept C of the symmetry 

curve associated with the new face to be classified and the COG/y-intercept’s mean 

for each class is obtained as  

 

                                       dn = |C-µn| ∀ n = {1,2,3}                                               (3-21) 

 

The decision rule h chooses the class n for which dn is the smallest:                             

  

                                       h(C) = ωm : m  = 
n

minarg  ({dn}n={1,2,3})                          (3-22) 

 

Mean and standard deviation in a Gaussian distribution: Given a training set of 

symmetry curves associated with each class (centre, right and left): The means and the 

standard deviations of the symmetry curves’ COGs/y-intercepts of the lines 

approximating these symmetry curves are calculated for each training set. 

Subsequently, they are each associated with a Gaussian distribution along with the 

symmetry curve’s COG/y-intercept C resulting from the new face to be classified:  
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The resulting highest probability measure corresponds to the class to which the given 

COG/y-intercept belongs: The decision rule h chooses the class ωm for which Pn is the 

highest:                          

                        

                                       h(C) = ωm : m  = 
n

maxarg  ({Pn}n={1,2,3})                         (3-24) 

 

3.3.5 Head rotation detection: Head-based direction intent recognition 

The task of intent recognition in the context of this work involves the detection of the 

direction that the subject intends to take looking at the motion of the head. In this 

section, the problem of monitoring the time sequence of individual positions of the 

head in rotation is addressed by looking at the sequence of the COG of the symmetry 

curves and the sequence of its y-intercepts obtained from a linear regression.  

COG-based intention curve: Let E = {I i : I i is the i th frame in a sequence of N = 10 

frames}: For each image frame in E the symmetry curve and its COG are obtained 

using Equations 3-17 and 3-18 respectively to form the intention curve:  
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∀ pixel column xi in face images I i belonging to a 10-frame video sequence and 

where n is the length of the symmetry curve. Figure 3-10 (Part a) displays the 
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resulting intention curves for the three different motions indicating that they exhibit 

separable patterns. 

Y-intercept-based intention: Let E = {I i : I i is the i th frame in a sequence of N = 10 

frames}: For each image frame in E the symmetry curve is obtained using Equation 3-

17 and the y-intercept of the line approximating the symmetry curve is obtained using 

Equation 3-20 to form the intention curve:  

 

                                       { } }10,...,1{ii )1(V(i) == β                                                    (3-26) 

 

∀ face images I i in a 10-frame video sequence. Figure 3-10 (Part b) displays the 

resulting intention curves for the three different motions indicating that they exhibit 

separable patterns.  

Note that the intention curves made of y-intercepts and those made of COG exhibit 

opposite patterns for left and right motion as illustrated in Figure 3-10.  

Let {Vn(i)} i= {1,…,10} be the intention curve (refer to Equations 3-25 and 3-26) in 

class ωn ∀ n = {1,2,3} corresponding to the centre, right and left intentions 

respectively. The difference between these classes is determined by the constant, 

decreasing and increasing tendencies of the values in {Vn(i)} i= {1,…,10} and is trained as 

follows:    

 

                              δn = ∑
−
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with N = 10 (the length of the intention curve), Vn∈ωn and n = {1,2,3}. Let nµ  and 

nσ  be the statistics (means and standard deviations) of δn associated with the 

intention curves in the training set for class ωn. 

 

 

                   Figure 3-10: Intention curves based on COGs and y-intercepts 

 

For a new intention curve {V(i)} i= {1,…,10} to be classified, δ is obtained using Equation 

3-27 and a decision rule h is defined in Equation 3-29 based on the “difference of 

means” approach (refer to Equation 3-28) and in Equation 3-31 based on the 

“statistics in Gaussian distribution” approach (refer to Equation 3-30). 

 

                             ||d nn µδ −=  ∀ n = {1,2,3}                                                     (3-28) 
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where n = {1,2,3}, ω1, ω2, ω3 represent straight, right and left intents respectively. 

Note that if the straight motion intent is detected the next step is to determine the 

vertical motion of the head. 

3.4 Recognition of head-based speed variation intent  

The estimated position of the face in vertical motion as illustrated in Figure 3-11, is 

used as an intent indicator according to Table 3-3. The intents include moving at 

varied speeds (within the acceptable range for a wheelchair motion application) and 

stopping. 
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Table 3-3: Head motion and corresponding speed variation intention 

Motion of the head Inferred Intention 
Down vertical motion Increased speed intent 

Up vertical motion Decreased speed intent 
  No vertical motion (Centred position) Intent to retain current speed  

 

In a previous work [189], satisfactory results are obtained for the recognition of the 

vertical motion of carefully cropped faces from each frame of a video sequence using 

a symmetry-based approach, computed vertically, and where the resulting intention 

curves comprise the different positions of the symmetry curve’s COG associated with 

the face as it moves through each frame of the video sequence. The results are 

however less convincing when performing the pre-processing steps of face detection 

and tracking.  

 

 

   Figure 3-11: Frontal view of the head (face) in vertical motion 
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In this thesis, the proposed solution makes use of another layer of PCA, where instead 

of using it for face detection and localisation in a skin colour detected region as 

described in Section 3.2.3, it is used to perform single vertical pose classification of 

the given faces into classes },,{m,m 321=∀ω corresponding to the centre, up and 

down position respectively. At the training stage three sets of k eigenfaces m
kv  (with 

m = {1,2,3}) are obtained from the training sets of N×N images Im with the head in 

centre, up and down positions respectively: Figure 3-12 illustrates the 5 eigenfaces 

corresponding to the 5 highest eigenvalues of the covariance matrix 

∑
=

=
M

1n

T
n,mn,mm M

1
C ΦΦ , where mΦ  is the normalized N2×1 image in the mth class and 

M is the number of example in the training set for each class. The weight vector 

associated with the mean image mΨ  of each class is subsequently obtained as follows: 

 

                               ∀= ,vw m
T

k,mk,m Ψ m = {1,2,3}                                         (3-32) 

 

where mΨ  is given by Equation 3-7, }M,...,1{k '=  with 'M = 10, and the weight 

vector representing the mean face for each class is given by: 

 

                                T
'M,m2,m1,mm ]w...ww[=Ω                                            (3-33) 

 

Given a new face Φ  whose vertical position must be classified, it is projected into the 

three eigenspaces associated with the three classes and the weight vectors mΩ  

representing the new image face projected on the eigenspace associated with each 

class comprise the following weights: 
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                                 ∀= ,vw T
k,m

m
k Φ  m = {1,2,3}                                         (3-34) 

 

 

     Figure 3-12: Examples of eigenfaces for up, centre and down positions 

 

 
The class ωm is chosen to be the detected pose of the face for the m where the 

difference below (refer to Equation 3-35) is the lowest and below the threshold λ, that 

is:  

 

                                  
λΩΩ <= m

m

m
m -mind

                                               
     (3-35) 

 

where mΩ  and mΩ  are the weight vector representing the new face image to be 

classified and the mean image for each class respectively, both projected on the 

eigenspace associated with class m, and the threshold λ = 0.8. 
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For intent recognition, let {dm(i), ∀ m = 1,2,3}i={1,…,10} be the set of intention 

curves (refer to Figure 3-13) made of sequences (made of 10 frames) of error 

measures based on Euclidean distance of a the given head image through the sequence 

m
iΩ ∀ i = {1,…,10} and a generic face example Ωm in a centred, up and down 

position of the head respectively.  

 

                                               { }
},...,{i

m
m
im -)i(d

101=
= ΩΩ                              (3-36) 

 

This set is used for classification into ω1,…,ω5 corresponding to the centre, up (from 

centre-up), down (from centre-down), down (from up-centre) and up (from down-

centre) intentions respectively, depending on their constant, decreasing and increasing 

values for i = {1,…,10}.  

The patterns of these set of n intention curves associated with each of the m classes 

is achieved as follows:  

 

                                               δm = ∑
−

=

1

1

N

i
mm 1)+(id - (i)d                                         (3-37) 

 

with N = 10 (the length of the intention curve), {dm ,∀ m = 1,2,3}∈ωm. δm (∀ m = 

1,2,3) is the tendency associated with the intention curves for class ωm, obtained using 

sequences (made of 10 frames) of error measures based on the Euclidean distance 

between the mean face in class m and the given face to be classified projected on the 

eigenspace associated with vertical position associated with class ωm. 
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Figure 3-13: Intention curves based on distance measures d1, d2 and d3 
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The classification of these intention curves is performed with the decision rule h 

defined below:  
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           (3-38) 

 

i∀ = {1,…,10} and λ ≥ 0    

 

3.5 Adaboost for head-based direction and speed variation 

recognition 

To emphasise the merit of the proposed approach, an algorithm developed by Jia and 

Hu [66], [67] for an application similar to the one proposed in this thesis, is 

implemented in order to compare the results. The aim of their method is the detection, 

tracking, and recognition of the direction and the vertical position of human faces, 

which is intended to be used as a human-robot interaction interface for an intelligent 

wheelchair. Adaboost [190] is used for face detection and in subsequent frames 

camshift is used for tracking. A layer of adaboost is subsequently applied inside the 

comparatively small window, which is slightly bigger than the camshift tracking 

window, so that the precise position and direction (frontal, profile left or profile right) 
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of the face can be obtained rapidly. If the frontal (centred) face is detected, template 

matching [191] is used to indicate the nose position, and therefore to classify the 

centre, up and down positions for speed variation recognition. 

  

3.5.1 Adaboost face detection 

In Section 3.2.2, the adaboost algorithm is used to train skin colour as an alternative to 

classical threshold techniques as it performs more robustly especially, under poor or 

strong lighting conditions. In this section, however the classical adaboost algorithm 

for face detection proposed by Viola and Jones [190] and adapted by Jia and Hu [66], 

[67], is described: The adaboost algorithm uses a training set: )y,x(),...,y,x( nn11 , 

where Xxi ∈  (the domain, which in our case represents sample examples of the 

object of interest, that is, the face, and sample examples of non-faces) and Yyi ∈  (a 

class label set whose elements 0 or 1 indicate the category of the sample examples 

being non-faces or faces respectively). It calls a weak learning algorithm repeatedly in 

a series of T = 10 rounds giving weights to the training sets and updating the weights 

of these sets each time by utilising data from the last run of the weak learner and 

current weights. Each weak classifier is given by 
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where the polarity pj indicates the direction of the inequality sign. At each round of 

boosting, the best weak classifier ht with the lowest error εt is chosen.  
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Table 3-4: The adaboost algorithm [190] 

- Given examples: (xi,yi),∀ i = {1,…,N}, where xi is the i th example and yi 
is its associated class label:  
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For Haar like feature selection, instead of using the standard rectangle features used 

by Viola and Jones [190], a modified and enriched representation of the rectangle 

feature is used that includes edge features, centre-surround features, and line features 

as depicted in Figure 3-14. Fast feature computation is made possible by the use of 

integral images and their variant: Rotated Integral Image, Integral Rectangle, Rotated 

Integral Rectangle initially proposed in [192] and illustrated in Figure 3-15. For 

classification given a new image containing a face, a cascade of 5 strong classifiers 

trained with adaboost in a degenerated decision tree structure is used as represented in 

Figure 3-16. 

 

Figure 3-14: Rectangle features [66] 

 

 

 

Figure 3-15: Integral Image and Integral Rectangle [66] 
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Figure 3-16: Cascade of n = 5 adaboost trained strong classifiers 

 

3.5.2 Camshift tracking 

Camshift stands for “Continuously Adaptive Mean Shift”, which was introduced by 

Bradsky [193], [194] in 1998. It combines the basic Mean Shift algorithm with an 

adaptive region-sizing step using a kernel which is a simple step function applied to a 

skin colour probability map. Colour is represented as the Hue component from the 

HSV colour space. Since the kernel is a step function, the mean shift at each iteration 

is simply the average x and y of skin colour probability contributions within the 

current region. This is determined by dividing the first moments of the region by its 

zeroth moment at each iteration and shifting the region to the probability centroid as 

demonstrated in Table 3-5 that summarizes the steps of the camshift algorithm applied 

to the region Φ ⊂  I containing the detected face (resulting from the adaboost 

classification illustrated in Figure 3-16) in the input image frame I. 
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Table 3-5: Camshift Algorithm 

1. Let Φ be the search window: Ψ ⊂  Φ ⊂ I (Φ slightly 
larger than Ψ)  

2. Choose centre of the initial location: (xc,yc)∈ Φ  
3. Calculate Φ’ the colour probability distribution in Φ 

∀ (x,y)∈ Φ. 
4. Compute the mean location in Φ’  using mean shift: 

      - Find the zeroth moment:  

              ∑∑=
x y

' )y,x(M Φ00
 

           - Find the first moment for x and y: 

                    ∑∑=
x y

' )y,x(xM Φ10 ; 

                    ∑∑=
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            - The mean search window location (the centroid) is     

              
00

01

00
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M

M
y;

M

M
x cc ==           

5. Centre the new 'Φ  at (xc,yc) 
6. Repeat Steps 4 and 5 until convergence (or until the mean 
location moves less than a preset threshold). 

 

 

The resulting centre (xc,yc) indicates the centre and therefore the window location of 

the face Ψ  in the new frame. Another layer of adaboost is subsequently applied inside 

the comparatively small window Φ which is slightly bigger than the camshift tracking 

window, so that the precise face position and direction (frontal, profile left or profile 

right) can be determined. This is achieved by training frontal, left and right faces 

using adaboost for each class resulting in the weights i
tα  and the selected weak 

classifiers i
th , where i = {1,2,3} designate the frontal, left and right positions of the 

face respectively. Position classification is determined as follows: 
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If the frontal face is detected, that is p = 1, nose template matching as described below 

(refer to Section 3.5.3) is used to indicate the vertical position of the head. 

 

3.5.3 Nose template matching 

For nose template matching a normalised cross-correlation template matching [191] is 

implemented: Given a face image Ψ of size X×Y, let gi be an m×n nose template of a 

face in vertical position i = {1,2,3} corresponding to the centre, up and down position 

respectively. This template’s instance must be detected in the face image Ψ: The 

obvious approach is to place the template at a location in an image and to detect its 

presence at that point by comparing intensity values in the template with the 

corresponding values in the image. Since in practice it is rare that the intensity values 

will match exactly, the criterion that the match should be perfect is unrealistic. As an 

alternative, a measure of dissimilarity between n the intensity values of the template 

and the corresponding values of the image can be used. The most popular measure, 

the sum of the squared errors is employed: 
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This measure can be computed indirectly and the computational cost can be reduced 

as follows: 
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The latter expression clearly shows that the greater the middle term, the smaller the 

measure of dissimilarity and the more alike the image region with the template. This 

middle term can therefore be considered as the match measure between gi and Ψ. 

Now, if we assume that Ψ and g are fixed, then ∑∑
m n

igΨ  gives a good measure of a 

mismatch: the mismatch Mai(x,y) between the nose template gi and each region in the 

image Ψ is computed from pixel Ψ(x,y) to pixel Ψ(x+m,y+n), as      

                                  

                             ∑ ∑
= =

++=
m

1k

n

1l
ii )ly,kx()l,k(g)y,x(Ma Ψ                      (3-44) 

 

This operation is called the cross-correlation between Ψ and gi. A minor problem in 

the above computation is that Ψ and gi are assumed to be constant. When applying 

this computation to images, the template g is constant, but the value of Ψ will vary. 

The value of Mai will then depend on Ψ and hence will not give a correct indication of 

the match at different locations. This problem is solved using a normalised cross-

correlation. The match measure Mai(x,y) between the nose template gi and each region 

in the image Ψ is computed from pixel Ψ(x,y) to pixel Ψ(x+m,y+n), as 
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where k and l are the displacements with respect to the template in the image. To find 

the location of the nose in the face image, this normalised cross-correlation operation 

is performed throughout the given face image for each template g1, g2 and g3 

associated with classes ω1, ω2, ω3, corresponding to the centre, up and down positions 

respectively. The highest matching measure Mi for each template is obtained: 

  

                           {Mi = max [Mai(x,y)]} i= {1,2,3} Xx∈∀ and Yy∈                          (3-46) 

 

Each of the highest matches Mi is subsequently classified using h to determine the 

vertical position of the face where again the highest match is chosen:  

            

                           h(Ψ) = ωm : m =
i

maxarg  ({ Mi} i= {1,2,3})                                      (3-47) 

 

The best match in the image is the highest value. Since this highest value criterion is 

not sufficient in cases where an image does not contain the object of interest, this 

highest value should also be above a certain threshold λ = 2.5 obtained empirically to 

indicate a match, that is, λ≥= )}Mmax({ },,{ii 321 . Note that these three nose 

templates are acquired from a single subject in the training set. 
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Table 3-6 provides a summary of the algorithm by Jia and Hu [66]. Figure 3-17 

illustrates face detection using adaboost (Part a) and nose localisation (Part b) through 

a normalised cross-correlation template matching on the first frame in the video 

sequences of four different subjects. It must be noted that unlike the proposed 

approach in this thesis that looks at the entirety of the motion in order to make a 

decision, this approach looks at a single frame pose of the head to decide on the 

intention to move the wheelchair in a certain direction or varying its speed. The 

advantage of this method is that only one frame is used for intent recognition making 

it data efficient and fast. The disadvantage however is that when the head is in the left 

going to the right, the intention will remain left as long as the face is on the left side, 

while our proposed method makes provision for such back motions. A modified 

version of the approach by Jia and Hu is hence proposed to address this back motion 

problem. 

 

Table 3-6: Head Gesture (Tracked Face) [66] 

if Frontal face is detected then  
    Keep Straight 
    Nose template matching for speed intent 
recognition 
else if Only profile left face is detected then  
    Turn Left 
else if Only profile right face is detected then         
    Turn Right 
else if Both profile left/right faces are detected 
then 
       if left size > right size then  
          Turn Left 
       else if (left size < right size) then  
          Turn Right  
       else then  

          Keep Straight 
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  Figure 3-17: Adaboost face detection and nose template matching  

 

For direction intent recognition through head rotation, intention curves of each motion 

are represented using changes in the difference between the linear combination of 

weighted weak classifiers for a given face and the resulting thresholds from adaboost 

learning associated with each class. As depicted in Table 3-4, the strong classifier 

trained by adaboost and used to distinguish between frontal, profile right and profile 

left is given by:  
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with Ψ a new instance (a face) to be classified as face or non-face. It was empirically 

established that the closer the two terms forming the inequality, the closer the instance 

x is to the examples in the training set. 
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Let {dm(i),∀ m = 1,2,3}i={1,…,10} be the set of intention curves each composed of the 

difference between the linear combination of weighted weak classifiers used to 

classify each frame Ψi in sequence {Ψi} i= {1,…,10} for a given face and the resulting 

thresholds from adaboost learning associated with each class: 
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As illustrated in Figure 3-18 a set of intention curves {dm(i),∀ m = 1,2,3} i = {1,…,10} is 

obtained for each class ω1,…,ω5, corresponding to the centre, right (from centre-

right), left (from centre-left), left (from right-centre) and right (from left-centre) 

intentions respectively. For a new input sequence, a set of intention curves {dm(i),∀ m 

= 1,2,3}i={1,…,10} is obtained using Equation 3-49, δm is obtained using Equation 3-37 

and classification is performed using Equation 3-38. In case of a centre intention, the 

next step is to determine the vertical motion of the head.   

For speed variation intent recognition through vertical motion of the head, the 

intention curves of each motion are represented by the changes in template matching 

measures between the detected nose and the nose templates associated with a centre, 

an up and a down position of the head: Let {Mm(i),∀ m = 1,2,3}i={1,…,10} be the set of 

intention curves each composed of 10 matching measures (refer to Equation 3-45) of 

the given nose in the sequence of face images to be classified, with a centred nose 

template, an up nose template and a down nose template respectively. These sets of m 

intention curves {Mm(i),∀ m = 1,2,3}i={1,…,10} portrayed in Figure 3-19 exhibit 

different patterns for each of the intent classes ω1,…, ω5, corresponding to the centre, 
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up (from centre- up), down (from centre-down), down (from up-centre) and up (from 

down-centre) intentions respectively (refer to Figure 3-19 ), and can therefore be 

classified using an appropriate decision rule.  

 

 

         Figure 3-18:  Intention curves based on differences d1, d2 and d3 
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Figure 3-19: Intention curves based on matching measures M1, M2 and M3 

  

For a new input sequence, a set of intention curves {Mm(i),∀ m = 1,2,3}i={1,…,10} is 

obtained using Equation 3-45 and 3-46, δm is obtained using Equation 3-37 where dm 

= Mm, and classification is performed with the decision rule h defined in Equation 3-

50.  
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i∀ = {1,…,10} and λ ≥ 0 

 

3.6 Conclusion 

In summary, this chapter offers a detailed description of the algorithms proposed in 

this work aimed at visual head-based motion detection for intent recognition. The pre-

processing steps (detection and tracking of the face) are implemented using skin 

colour detection, some image processing operations (erosion, dilation and connected 

components labelling) and PCA on the resulting skin colour region. The overview of 

the intent recognition algorithms consists of using a 10-frame video sequence as input 

that is mapped to a 10-point intention curve that presents separable patterns for each 

intention.  

 

For direction intent recognition, a symmetry-based approach is used where the COGs 

and the y-intercepts of the resulting symmetry curves throughout the sequence form 

the intention curve. For speed variation intent recognition, a PCA-based algorithm is 

employed where the varying error distances throughout the sequence form the 
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intention curve. The appropriate decision rules are subsequently used to classify these 

intention curves for intent recognition.  

The algorithm developed by Jim and Hu [66], [67] based on adaboost, camshift 

and nose template matching also aimed at detecting faces in rotation and vertical 

motion is implemented and compared with the solutions proposed in this work.  

The next chapter discusses the solutions proposed for recognition of the hand in 

rotation and vertical motion and Chapter 5 (Section 5.2) discusses the results. 
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Chapter 4  

Hand-Based Intent Recognition 

4.1 Introduction 

The second visual intent indicator used in this work is the hand in free motion without 

the constraint of manoeuvring a joystick. The aim is to provide an alternative to the 

joystick, where the hand is more flexible, especially in scenarios where the disabilities 

did not impair the hand, but at the same time where manoeuvring the joystick is a 

difficult task. The solution therefore requires a camera with the dorsal view of the 

hand as the object of interest in its field of view. The hand performs two types of 

motions, rotation and vertical motion, to indicate an intention in direction and speed 

variation respectively. Hand rotation in a particular direction (right or left) is selected 

to indicate the chosen direction that the subject intends to take, while vertical hand 

motion (up or down) is chosen to indicate the subject’s speed variation intent where 

the hand going up is chosen to indicate a decrease in speed.  

The proposed visual solution accepts a video sequence as input, with the hand in 

rotation and vertical motion as the object of interest and gives direction and speed 

variation intent respectively as output. Intent recognition is achieved by analysing the 

motion of the hand through the video sequence rather than looking at a single frame 

and 10 frames are used as input to the proposed algorithm and mapped to an intention 

curve. 
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This chapter furnishes a detailed description of the hand-based intent recognition 

methods proposed in this thesis. The pre-processing steps of detection and tracking of 

the dorsal view of the hand within a sequence are implemented using the same skin 

colour detection schemes used in Section 3.2 for face detection and tracking.  

Skin colour detection combined with a prior knowledge of the length of a typical 

hand is therefore sufficient for hand segmentation. Similarly to the face, the tracking 

task only consists of repeating the detection task on a smaller region that is slightly 

bigger than the hand detected region of the previous frame. For hand-based direction 

recognition through hand rotation detection, a variant to the symmetry-based 

approach used in Section 3.3.1 for head rotation is employed to calculate the 

symmetry vertically rather than horizontally as previously. The statistics (mean and 

standard deviation) of the symmetry curves are used as 2D data features and three 

different machine learning methods (two supervised and one unsupervised) are 

employed for classification, namely, a neural network, a support vector machine, and 

k-means clustering. Another method is proposed based on a normalised cross-

correlation template matching of the region in the hand containing the fingers, as 

previously implemented in Section 3.5.3 for nose detection to indicate the vertical 

motion of the head. For the vertical motion of the hand, the same template matching-

based approach is implemented on the region of the hand containing the fingers and 

another proposed approach is based on the geometric constraints of the hand contour, 

where a mask in the shape of an ellipse is used to determine its vertical position. For 

comparison to the proposed methods for vertical motion of the hand, a feature 

selection found in the literature known as the Histogram of Oriented Gradient (HOG) 

[195] is implemented.  
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All these approaches result in intention curves, and appropriate decision rules are used 

to classify these intention curves for intent recognition.  

To distinguish between the two different sets of motions, detection of the vertical 

motion of the hand for speed variation intent recognition is first performed. If no 

significant change in its vertical pose is observed, rotation detection of the hand for 

direction intent recognition is then performed. Note also that although for in this 

thesis the right hand is used, all these methods can be adapted for the use of the left 

hand. 

 

4.2 Pre-processing steps: Hand detection and tracking 

Section 3.2 furnishes the details of the skin colour detection approaches and the image 

processing operations used for hand detection except that the erosion operation is not 

required since very little noise is present in the binary image resulting from the skin 

colour detection process as depicted for the hands of the four subjects in Figures 4-1 

(Part b) and 4-2 (Part b) for histogram-based and adaboost-based skin colour detection 

respectively. The dilation and the connected component labelling (refer to Section 

3.2.3.2) are performed as illustrated in Figures 4-1 (Part c) and 4-2 (Part c) for 

histogram-based and adaboost-based skin colour detection respectively.  

The assumptions for the proposed solution offer a field of view constraint such that 

only the hand and a part of the arm can be skin colour regions and where the camera 

is intended to be positioned at a fixed distance from the hand. A prior knowledge of 

the length of a typical hand is used for hand segmentation from the arm as follows:  
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Two points in the skin colour detected region are obtained at the right (assumed to be 

the tip of the fingers in the present application) and the left limit of the region: Let R 

be the skin colour detected region in the resulting binary image: 

 

                                       xmax = max(x), xmin = min(x), ∀ (x,y)∈R,                          (4-1) 

 

                                       y1 = max(y),∀ y∈R(xmax,y)                                                (4-2) 

 

                                       y2 = min(y),∀ y∈R(xmin,y)                                                 (4-3) 

 

These two points (xmax,y1) and (xmin,y2)∈R are used to determine a line with angle θ 

with respect to the horizontal, which is considered parallel to the hand: 

 

                                       
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yy
tan 211θ                                                   (4-4) 

 

If the hand is not horizontal, its length is used as the hypotenuse of the right triangle 

with the horizontal and vertical lines as the other two sides. The segmentation is then 

performed using the right limit of the skin colour detected region as it is assumed to 

be the tip of the finger and therefore the end of the hand from which the fixed distance 

of the hand is measured to get the other end so as to keep the arm out of the region in 

the image containing the segmented hand: Let Hp = Length of the typical hand (30 

pixels), the four points of the bounding box for detection are (xmin,ymin); (xmin,ymax); 
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(xmax,ymax) and (xmax,ymin), where xmax is given above in Equation 4-1, and xmin, ymax and 

ymin are given below: 

 

                                       xmin = xmax - Hp×cosθ                                                          (4-5) 

 

                                       ymax = max(y) and ymin = min(y), ∀ y∈R                            (4-6) 

  

Figures 4-1 (Part d) and 4-2 (Part d) exhibit the resulting hand detection for four 

different subjects using the histogram-based and the adaboost-based skin colour 

detection respectively. 

 

 

     Figure 4-1: Hand detection using histogram-based skin colour detection 
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     Figure 4-2: Hand detection using adaboost-based skin colour detection 

 

4.3 Recognition of hand-based direction intent 

The object of interest is the dorsal view of the detected hand in rotation (refer to 

Figures 4-1 (Part a) and 4-2 (Part a)) and the change in the estimated position of the 

hand over a sequence is used as an intent indicator, according to Table 4-1.  
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Table 4-1: Hand motion and corresponding direction intention 

Motion of the hand Inferred Intention  
Left rotation Intent to go left 

Right rotation Intent to go  right 
No rotation (Centred position) Intent to go straight 

   
 

4.3.1 Vertical symmetry-based direction intent recognition 

The underlying assumption is that the dorsal view of a human hand, although not as 

symmetric as the face (refer to Section 3.3.1), exhibits separable symmetry properties 

for different positions (for the hand in rotation) when the symmetry is calculated 

vertically rather than horizontally: A particular symmetry signature is given when the 

hand is centred, and that symmetry signature changes when the hand is moved from 

this centred position. This gives the indication of a motion from the initial centred 

position to a new position (right or left). The symmetry curve is calculated vertically 

as follows: 

 

                                      
∑ ∑
= =

+−−=
k

w

X

x
|)wy,x(I)wy,x(I|)y(f

1 1
                                   (4-7) 

 

The symmetry-value )y(f  is evaluated ]kYk[y −+∈∀ 1  where y is a pixel-row in 

the image, by taking the sum of the differences of two pixels at a variable distance w : 

1 ≤ w ≤ k from it on both sides, making the pixel-row the centre of symmetry.  This 

process is repeated for each column and the resulting symmetry-value is the 

summation of these differences. The symmetry curve is composed of these symmetry-

values calculated for all the pixel-rows in interval k+1 ≤ y ≤ Y-k. It was empirically 

established that the value of the maximum distance k that gives more separable 
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symmetry curves among the different positions is given by k = 35. Figure 4-3 portrays 

the three different positions of the hand of four subjects and Figure 4-4 depicts their 

corresponding symmetry curves. For classification of these symmetry curves, two 

statistical features of the curves are used namely the means µ and standard deviations 

δ: 
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where )k()kY(N 1+−−= . Figure 4-5 illustrates the scatter plot of the feature 

points given by xi = (µi,σi) ∀ i = {1,2,3}, the symmetry curve’s statistics for the three 

different categories ω1, ω2, ω3 corresponding to the centre, right and left hand position 

respectively. Two are therefore sufficient to provide separable patterns for the vertical 

symmetry curves associated with hands in these different positions. Three machine 

learning approaches; a multilayer perceptron artificial neural network (a projection-

based classification), a support vector machine (a kernel-based classification method) 

and k-means clustering; are used for single frame hand pose classification. The choice 

of these particular machine learning approaches simply aims at showing the merit of 

the proposed ‘vertical symmetry curve’ approach in extracting features that can be 

easily classified using different classification methods, supervised and unsupervised. 

For the choice of supervised approaches however, non-linear methods had to be used 

given the nature of the data that are not linearly separable, that is, there is no 
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discriminant function 0,i
T
ii wxw)x(g +=  that separates the data as depicted in Figure 

4-5. The MLP is a modification of the standard linear perceptron, which can 

distinguish data that is not linearly separable. It is a very flexible model, giving good 

performance on a wide range of problems in discrimination including the one at hand 

as revealed in Chapter 5. SVMs can produce accurate and robust classification results, 

even when input data are non-linearly separable as is the case in this work. To 

emphasize further the merit of the vertical symmetry-based approach, the statistics of 

the resulting symmetry curves as illustrated in Figure 4-5 can be approached as an 

unsupervised learning problem where the data points are assumed not to be labelled, 

and k-means clustering is used to label each data point. 

 

 

Figure 4-3: Three different positions of the hand (dorsal view) in rotation 
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   Figure 4-4: Symmetry curves corresponding to the hands in Figure 4-3 
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Figure 4-5: Features of different positions of the hand in rotation 

 

 

4.3.2 Artificial Neural Networks (Multilayer Perceptron) 

As a powerful data modelling tool, the neural network’s ability to learn non-linear 

relationships [196] from data such as those portrayed in Figure 4-5 is used. A 

multilayer perceptron (MLP), which is a feedforward artificial neural network, 

produces a transformation of a pattern x kR∈ to a q-dimensional space according to 

Equation 4-10. From the empirical study conducted with the given data, the topology 

of the multilayer perceptron (MLP) is chosen to be a 3 layers perceptron, consisting of 

a 2 neurons input layer (k = 2), a 10 neurons hidden layer and a 3 neurons output layer 

(q = 3) as illustrated in Figure 4-6. Note that different authors refer to the above 

network as having either 3 layers according to the number of layers of neuron (input, 
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hidden and output), or 2 layers according to the number of layers of adaptive weights, 

and this work uses the former convention. 

 

 

Figure 4-6: Multilayer perceptron 

 

The training is performed using a back propagation algorithm. Given a labelled 

training set consisting of n data points xip = [µip,σip]∈ωj, where i = {1,…,n}, p = 

{1,2,3} corresponding to the centre, right and left position respectively, and with their 

accompanying labels yp = [yl,p] l={1,2,3}  where yl,p =




≠
=

lp,0

lp,1
. The MLP produces the 

transformation g(x) of a pattern x∈R2 to a 3-dimensional space according to 
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where m = 2 is the number of input neurons xi from the previous layer, k
jw  is the 

weight associated with xi, b is the offset from the origin of the feature space and f is 

the activation function chosen to be the sigmoid function: 
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The weights are updated using  
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 and yk and gk are the target and actual 

output of the network respectively and the weights i
jα  are updated in the same 

manner. 

 

4.3.3 Support Vector Machines 

Support Vector Machines (SVM) have become increasingly popular tools in data 

mining tasks such as regression, novelty detection and classification [197] and can 

therefore be used for the classification problem at hand: Given a labelled training set 

consisting of a set of data points xi= [µi,σi] with their accompanying labels yi and i = 

{1,2,3}, corresponding to the centre, right and left position respectively. The 

discriminant function is given by  
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                                               bw,x)x(g +=                                                      (4-13) 

 

where w and b are the weights (giving the shape of the hyperplane) and the offset 

from the origin respectively, and x is the data. The SVM can be considered as a tool 

for finding the optimal separating hyperplane for linearly separable data that can be 

extended to situations when the data are not linearly separable. For non-linear 

problem (refer to Figure 4-5), the kernel trick is used to construct the hyper plane that 

consists in mapping the data into a transformed feature space with a higher dimension, 

and to construct a linear classifier in that space [197], [198].       

                                                       

                                              b)x(w)x(g T += φ                                                   (4-14) 

 

where )x(φ  is the transformation. 

- 10 ω∈⇒> x)x(g represented by the numeric value yi = +1 

- 20 ω∈⇒< x)x(g represented by the numeric value yi = -1 

The SVM method determines the maximum margin solution through the 

maximisation of the dual form of the Lagrangian given by  

 

                                              ∑ ∑∑
= = =

−=
n

i

n

i
j

n

j
i

T
jijiiD )x()x(yyL

1 1 12

1 φφααα            (4-15) 

 

where yi = ± 1 are class indicator values and αi is the i th Lagrange multiplier satisfying 

- 0 ≤ αi ≤ C (for a regularisation parameter C) 
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The value of w and b that maximises the margin between the hyperplane and the 

support vectors is obtained using 
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in which SV is the set of support vectors with associated values of αi satisfying 0 < 

αi < C and SV’ is the set of NSV’ support vectors at the target distance of 
|w|

1
 from the 

separating hyperplane, and where αi is the i th Lagrange multiplier and NSV are the 

numbers of support vectors which are found to be 63, 253 and 122 for the centred 

class, the right class and the left class respectively. Classification of a new data 

sample x is performed according to the sign of g(x) given below: 
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To avoid computing the transformation )x(φ  explicitly, a kernel function K can 

replace the scalar product:  

                                                

                                               )y()x()y,x(K T φφ=                                             (4-20) 

 

Different types of kernel may be used in SVM. They must be expressible as an inner 

product in a feature space: A kernel K(x,y) with pRy,x ∈ , is an inner product in a 

feature space, that is )y()x()y,x(K T φφ= if and only if  

- K(x,y) = K(y,x) 

- ∫ ≥ 0dxdz)z(f)x(f)y,x(K  

The polynomial kernel K(x,y) = (1 + xT y)d is used and the discriminant function 

becomes 
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where the degree of the polynomial kernel d = 1. Note that SVMs are binary 

classifiers, and therefore for the three class problem described in this thesis, a “one 

against one” decomposition of the binary classifiers is used. The “one against one” 

strategy, also known as “pairwise coupling”, “all pairs” or “round robin”, consists in 

constructing one SVM for each pair of classes. Thus, for a problem with c = 3 classes, 

c(c-1)/2 = 3 binary classifiers are trained to distinguish the samples of one class from 
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the samples of another class. The classification of an unknown pattern is therefore 

performed according to the maximum voting, where each SVM votes for one class. 

 

4.3.4 K-means clustering 

K-means is one of the simplest unsupervised learning algorithms that solve the well 

known clustering problem [199], [200]. The procedure follows a simple and easy way 

to classify a given data set through a certain number of clusters (three clusters in the 

case at hand namely: centre, right and left) fixed a priori. An objective function is 

used that expresses how good a representation is, and then an algorithm is constructed 

to obtain the best representation. To obtain the objective function given the three 

clusters, a centre is defined for each cluster: Let cj be the centre of the j th cluster and 

the i th element to be clustered is described by a feature vector xi: The assumption is 

that elements are close to the centre of their cluster, yielding an objective function that 

represents the sum of point-to-centre distances, summed over all k clusters: 
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where 
2

j
)j(

i cx − = ( j
)j(

i cx − )T × ( j
)j(

i cx − ) is a chosen distance measure known 

as the squared Euclidean distance between a given data point )j(
ix in a cluster and the 

cluster centre cj. This measure is an indicator of the distance of the n data points from 

their respective cluster centres. The k-means algorithm uses a two-phase iterative 

algorithm to minimise the objective function: 

- Phase 1: Assume the cluster centres are known, and allocate each point to the 

closest cluster centre to form a cluster Cj:  
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where each xi belongs to one Cj and t indicate the tth iteration. 

- Phase 2: Assume the allocation is known, and choose a new set of cluster centres: 
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Initially the cluster centres are randomly chosen, and then the iteration between these 

two stages is performed until the process eventually converges to a local minimum of 

the objective function.  

The k-means algorithm is used for clustering the training set into three classes. For 

validation the distance (squared Euclidean distance) between a given test point 

2Rx ∈ and the centre 2Rc j ∈ of each class resulting from the k-means clustering 

algorithm is measured and the class associated with the closest centre is chosen: 
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4.3.5 Hand rotation detection: Direction intent recognition 

Direction intent recognition is achieved by mapping a video sequence of 10 frames 

with the hand in rotation as the object of interest to a set of two intention curves 

{ V1(i),V2(i)} i={1,…,10}, consisting of the means of the symmetry curves V1 associated 

with the faces in each frame and the outputs V2 = g(x) (refer to Equations 4-10, 4-21 

and 4-26) from the above mentioned single frame pose classification using the three 

different machine learning techniques (refer to Sections 2.1.1, 2.1.2 and 2.1.3) 

respectively. Let E = {I i : I i is the i th frame and 1 ≤ i ≤ 10 frames}, a sequence of 10 

consecutive frames: ,EI i ∈∀   
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where fi is the symmetry curve (refer to Equation 3-17) associated with I i. The 

resulting intention curve V1 is depicted in Figure 4-7 for each scenario and it can be 

observed that rotation from the centre to either side (right or left) exhibits the same 

patterns while rotation from either side to the centre also exhibits the same patterns, 

but is different from that of the previously mentioned rotation from the centre to either 

side. It is therefore possible using V1, to distinguish between a rotation from the centre 

position to either side and a rotation from either side to the centre position. However, 

insufficient information is provided to distinguish between rotation to the left and 

rotation to the right. To address this problem, a preliminary step is implemented that 

consists of using the other intention curve V2 consisting of the output classes n = 

{1,2,3} of the MLP, the SVM or the K-means corresponding to the centre, right and 
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left positions respectively. For a centred motion, 10 consecutive 1s are expected, 

while 10 consecutive or at least a majority of 2s and 3s are expected for right and left 

scenarios respectively. A majority vote scheme is used, which counts the number of 

1s, 2s and 3s that are found in V2, and classify it as a centre, right or left indicator:  

 

                         d’(n) = ∑({V2(i)} i= {1,…10} == n), ∀ n = {1,2,3}                           (4-28) 

 

                         n’ = 
n

maxarg  (d’)                                                                          (4-29) 

 

Let {V1(i)} i={1,…,10} be the intention curve (refer to Equation 4-27) to be classified into 

classes ω1,…,ω5 corresponding to the centre, right (from centre-right), left (from 

centre-left), left (from right-centre) and right (from left-centre) intentions 

respectively. δ is obtained using Equation 3-27 (where V1 replaces ) and dn and Pn are 

obtained using Equations 3-28 and 3-30 respectively: A decision rule h is defined 

using Equation 4-30 for a “difference of means approach”, and Equation 4-31 for a 

“statistics in Gaussian distribution” approach:  
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where λ ≥ 0 

 

 

Figure 4-7: Intention curve V1 made of symmetry curves’ means 
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4.3.6 Template-matching-based direction intent recognition 

The other proposed solution is based on the difference in appearance of the different 

positions (centre, right and left) of the hand due to the difference in finger edge 

appearance and orientation. A template matching [188], [191], which is a simple task 

of performing cross-correlation between a template and a new image, is performed on 

the hand region containing the fingers to classify a single frame hand pose, and a 

decision rule is used to classify the resulting intention curve represented by the 

varying template matching measures throughout a 10-frame video sequence. The 

template consists of the region of the hand containing the fingers and the template 

matching task first detects the sub-window within the image containing the hand 

(refer to Figure 4-3 for examples of hand images) that is closest to each template 

(refer to Equation 3-46). Subsequently, the inferred position corresponds to that of the 

template where the match to the given hand is the highest (refer to Equation 3-47). 

Figure 4-8 depicts the hands in rotation for three different positions (Part a) and their 

corresponding sub-windows containing only the finger region (Part b). 

Let g be an m×n template of the finger region of a hand and its instances must be 

detected in an image I. A normalised cross-correlation template matching is 

implemented using Equations 3-45, 3-46 and 3-47 for single pose classification. Three 

templates from a single subject are used, consisting of the region comprising the 

fingers in a centred, right and left hand as portrayed in Figure 4-8 (Part b). The best 

match in the image is the highest value of M(r,c). Since this highest value criterion is 

not sufficient; in cases where an image does not contain the object of interest, this 

highest value should also be above a certain threshold λ = 2.5 obtained empirically by 

trial and error to indicate a match, that is, { }( ) λ≥= },,{iiMmax 321 . 
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For direction intent recognition through rotation of the hand, the intention curves of 

each motion are represented by the changes in template matching measures between 

the detected hand region and the hand region templates associated with a centre, right 

and left position of the hand. 

 

 

       Figure 4-8: Detection of hands in rotation and their finger regions 

 

Let {Mm(i),∀ m = 1,2,3}i={1,…,10} be the set of intention curves each composed of a 10-

point sequence of matching measures (refer to Equation 3-45) of the finger region of 

the hand images with a centred, a right and a left finger region template respectively. 

These sets of m intention curves {Mm(i),∀ m = 1,2,3}i={1,…,10} depicted in Figure 4-9 

exhibit separable patterns for each of the intent classes ω1,…,ω5, corresponding to the 

centre, right (from centre-right), left (from centre-left), left (from right-centre) and 

right (from left-centre) intentions respectively. δm is obtained using Equation 3-37 

where dn,m = Mn,m, and a decision rule h is defined using Equation 3-50. 
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Figure 4-9: Intention curves based on matching measures M1, M2 and M3 
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4.4 Recognition of hand-based speed variation intent  

Speed variation is inferred by observing the vertical motion of the hand according to 

Table 4-2. Two solutions are proposed: The first is a normalised cross-correlation 

template matching as described in the previous section (Section 4.3.6) for hand 

rotation. The second solution is based on the position of the detected hand’s contour 

using an ellipse shaped mask. 

 

Table 4-2: Hand vertical motion and corresponding speed variation intention 

Motion of the hand Inferred Intention  
Down vertical motion Increased speed 

Up vertical motion Decreased speed 
No vertical motion (Centred position) Intent to remain in current speed 

 

 

4.4.1 Template Matching-based speed variation recognition 

This approach is based on the difference in appearance of the different positions 

(centre, up, down) of the hand where the orientation of the edges of the fingers 

presents separable patterns for those different vertical positions. Figure 4-10 displays 

three different positions of the hands in vertical motion (Part a) and their 

corresponding sub-windows containing only the finger region (Part b). A normalised 

cross-correlation template matching (refer to Sections 3.5.3 and 4.3.6 where the same 

approach is used for nose template matching head vertical motion detection and for 

hand direction recognition respectively) is used to classify the different single frame 

positions of the hand. 
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For speed variation intent recognition through vertical motion of the hand, the 

intention curves of each motion are represented by the changes in template matching 

measures between the detected hand region and the hand region templates associated 

with a centre, right and left position of the hand: Let {Mm(i),∀ m = 1,2,3}i={1,…,10} be 

the set of intention curves each composed of a 10-point sequences of matching 

measures (refer to Equation 3-45) of the given finger region in the hand images with a 

centred, up and down finger region template respectively. These sets of m intention 

curves {Mm(i),∀ m = 1,2,3}i={1,…,10} illustrated in Figure 4-11 exhibit separable 

patterns for each of the intent classes ω1,…,ω5, corresponding to the centre, up (from 

centre- up), down (from centre-down), down (from up-centre) and up (from down-

centre) intentions respectively. δm is obtained using Equation 3-37 where dn,m = Mn,m, 

and a decision rule h is defined using Equation 3-50. 

 

    Figure 4-10: Detection of hands in vertical motion and their finger regions 
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   Figure 4-11: Intention curves based on matching measures M1, M2 and M3 
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4.4.2 Speed variation recognition based on ellipse shaped mask  

This approach is based on the position of the detected hand’s contour with respect to 

the horizontal line evaluated using a mask in the shape of an ellipse whose major axis’ 

length is equal to the length (determined empirically) of a typical hand at a fixed 

distance from the camera. As illustrated in the binary image in Figure 4-13 (Part a), 

the detected skin colour region R corresponding to the hand has a shape close to that 

of an ellipse. The centre (xc,yc) of R is found and an ellipse centred at that point (xc,yc) 

is used as a contour mask. Subsequently, a search is performed by rotating the ellipse 

mask around that point until the maximum number of skin colour pixels within the 

ellipse is reached. The rotation ranges from –π/6 to π/6, a practical range for a hand in 

vertical motion: Let θ = {θi: –π/6 ≤ θi ≤ π/6} be the set of angles between the line ym 

containing the major axis of the ellipse Ei },,{i 321=∀ (corresponding to the centre, 

up and down position respectively) and the horizontal line y = yc through the ellipse’s 

centre (xc,yc) (refer to Figure 4-12 that shows θ for three different positions of the 

ellipse corresponding to the three different positions of the hand):  

Let Φ =
},,{ii

)y,x(
321=












∑
θ

iER)y,x( ∩∈∀ , that is (x,y) is a skin colour pixel 

and ∈∀ iθ θ (Φ is therefore a function of θi) the inclination corresponding to the 

vertical position of the hand is given below:  

 

                                               )(maxarg i
i

θϕ
θ

Φ=                                                 (4-32) 
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The resulting position ϕ  of the ellipse corresponds to the position of the hand and 

belongs to the class ωi ∀  i = {1,2,3} corresponding to the centre, up and down 

position respectively, according to the decision rule h defined as: 

 

                                              h(ϕ ) = 

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where λ1 > 0. Figure 4-13 (Part b) depicts the binary image containing the detected 

skin colour region corresponding to the hand for three different positions of the hand, 

and the ellipse mask associated with them. The inclination angle ϕ  (in radian) 

between the major axis of the ellipse ym and the horizontal axis through the centre y = 

yc determines the single frame hand pose and varies differently for the different 

motions (centre, up and down).  

For speed variation intent recognition through vertical motion of the hand, the 

intention curves for each motion are represented by the changes in angle values 

between the major axis ym of the ellipse mask approximating the skin colour detected 

region and the horizontal axis y = yc for hands in vertical motion: Let {θ(i)} i= {1,…,10} 

be a sequence of angles between the major axis of the ellipse and the horizontal axis 

through all the frames in a sequence of 10 frames and 'θ  the angle of the ellipse mask 

associated with the first frame in the sequence. δ is defined in Equation 4-34 as the 

constant, increasing and decreasing tendencies of the successive values of the 

sequences {θ(i)} i= {1,…,10} that exhibit different patterns for the different motions as 

portrayed in Figure 4-14. h is used for classification of these intention curves in 

classes ω1,…,ω5, corresponding to the centre, up (from centre-up), down (from 
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centre-down), down (from up-centre) and up (from down-centre) intentions 

respectively.   

  

                                       δ = ∑
−

=

1

1

N

i
1)+(i - (i) θθ                                                         (4-34) 
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where λ1, λ2 > 0 

 

 

 

 

Figure 4-12: Three different positions of an ellipse used as a mask 
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Figure 4-13: Ellipse mask used to determine the vertical position θ of the hand 
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Figure 4-14: Intention curves based on changes in θ for each hand motion 

 

4.5 Histogram of oriented gradient (HOG) for hand-based 

speed variation recognition 

To emphasise the merit of the proposed approach, an algorithm based on HOG is 

implemented to compare the results for detection of hands in vertical motion. For 

hands in rotation, the methods surveyed in the literature including the HOG remain 

inadequate because of the nature of the motion where these methods would detect 

little changes. Therefore, no comparative method is proposed and implemented.  
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The literature indicates that hand gesture recognition can be achieved by using 

orientation histograms [179]. For the application at hand, however, unlike classical 

gesture recognition where the hand significantly changes its shape or contour and 

where significant translations of the hand occur, the shape of the hand remains rigid, 

merely changing its vertical position. A more appropriate approach turns out to be the 

HOG used in the literature for human activity recognition [195], [201], [202]. HOG is 

a feature descriptor inspired by the Scale-Invariant Feature Transform (SIFT) 

descriptors. The essential idea behind the HOG descriptors is that local object 

appearance and shape within an image can be described by the distribution of 

intensity edge directions.  

The implementation of these descriptors is achieved by dividing the input image I 

into small 4×4 non-overlapping rectangular regions R, called cells. For each cell, a 

histogram of gradient orientations is compiled for the pixels within the cell by 

counting the occurrences of the gradient orientation in that cell: A rectangular 

Gaussian filter Grect is used to produce the rectangular regions R by means of the 

convolution of the edge image IE resulting from a canny edge detection approach, with 

this rectangle filter Grect: 

 

                                               Grect(x,y) =  
2

22

2
22

1 σ
πσ

)yx(

e

+−
                      (4-36) 

 

                                               R(x,y) = Grect(x,y) ⊗  IE(x,y)                                     (4-37)   

 

R)y,x( ∈∀ and where Grect is a zero-padded rectangular patch of the 2D Gaussian. 
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The combination of these histograms represents the HOG descriptor with five 

components: the horizontal component, the vertical, the two diagonals, and the non-

directional component. This descriptor is a good detector of the orientation of finger 

edges as illustrated in Figure 4-15 where three different positions of a hand in vertical 

motion and the HOG descriptors associated with them are given, using only three of 

the five gradient orientation components namely the horizontal, and the two diagonal 

orientations.  

For single frame hand pose classification, a centred hand is selected if the 

horizontal component is the highest, an up hand is chosen if the first diagonal 

component is the highest and a down hand is classified if the second diagonal 

component is the highest. For speed variation intent recognition, through vertical 

motion of the hand, the intention curves for each motion are represented by the 

changes in this set of three HOG components for hands in vertical motion: Let {Sn(i) 

∀ n =1,2,3}i={1,…,10}, be the set of sequences for the horizontal, first diagonal and 

second diagonal components respectively in the HOG descriptor associated with a 

sequence of hand images. As depicted in Figure 4-16, they exhibit separable patterns 

for different motions and therefore classification of these set of sequences into 

ω1,…,ω5, corresponding to the centre, up (from centre-up), down (from centre-down), 

down (from up-centre) and up (from down-centre) intentions respectively is achieved 

as follows: 
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h({ Sn(i) ∀ n =1,2,3,4}i={1,…,10})                            
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where λ = 2 and was chosen empirically by trial and error. 

 

 

 

    Figure 4-15: HOG descriptor for hands in vertical motion 
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Figure 4-16: Intention curves based on changes in the HOG components 
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4.6 Conclusion 

In summary, this chapter offers a detailed description of the algorithms proposed in 

this thesis aimed at visual hand-based motion detection for intent recognition. The 

pre-processing steps (detection and tracking of the hand) are implemented using skin 

colour detection, some image processing operation (dilation and connected 

components labelling) and a prior knowledge of the dimensions of a typical hand. The 

overview of the intent recognition algorithm consists of using a 10-frame video 

sequence as input that is mapped to an intention curve that presents separable patterns 

for each possible intention.  

For direction intent recognition, a vertical symmetry-based approach along with 

three machine learning approaches (neural network, support vector machines and k-

means clustering) are used to form two sets of intention curves. Another approach is 

based on template matching where the varying matching measures are used to form 

the intention curves. For speed variation intent recognition, the template matching 

approach is also used to form the intention curve, while the other proposed method 

uses a mask in the shape of an ellipse to determine the vertical position of the hand. 

The intention curve is formed using the varying vertical position throughout the 

sequence. For comparison with the proposed solutions for detection of vertical motion 

of the hand, an HOG descriptor [195] is implemented and the resulting intention 

curves are formed using the varying values of 3 of the 5 HOG components namely the 

horizontal and the two diagonal components. The appropriate decision rule is then 

used to classify these intention curves for intent recognition.  
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The next chapter discusses the results of the methods described in this chapter 

(refer to Section 5.3) as well as those described in Chapter 3 (refer to Section 5.2). 
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Chapter 5  

Results and Discussion 

5.1 Introduction 

As mentioned in Section 1.1, the type of datum used is a sequence of 576×768 image 

frames captured from a CCD camera (Hi-Resolution Dome Camera - 1/3" CCD, 470 

TV lines, 0.8 lux, 3.6mm (F2.0) Lens) and a “25 frames per second” E-PICOLO-

PRO-2 frame grabber. The two intent indicators considered in this work are the head 

and the hand in motion and are therefore the objects of interest in the video sequences. 

Experimental results have therefore been obtained by collecting 2 sets of video 

sequences of 20 different subjects with 5 long sequences each, with the head and the 

hand in motion as objects of interest respectively. These long video sequences are 

divided into several 10-frame sequences for intention inference. The video sequences 

of 10 subjects are used for all the training tasks, and the video sequences of the 10 

others are used for validation.  

For head rotation (refer to Chapter 3, Section 3.3), the symmetry property of the head 

is used as the basis of the proposed method where a symmetry-based approach that 

maps a face to a symmetry curve is implemented. From this symmetry-based 

approach four different methods are proposed according to the feature selection 

process (centre of gravity of the symmetry curve or y-intercept of the line 

approximating the symmetry curve) and the decision rule (based on difference of 
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means or statistics in a Gaussian distribution) for pose and intent recognition. Figure 

5-1 summarizes the methods used for head rotation detection given video frames from 

the testing set. For the vertical motion of the head (refer to Chapter 3, Section 3.4), 

PCA is used for pose and intent recognition. A method proposed by Jia and Hu [66], 

[67] based on adaboost, camshift and nose template matching is also implemented for 

comparison. The approach uses adaboost and camshift for face detection and tracking, 

and another layer of adaboost and a nose template matching for rotation and vertical 

motion recognition respectively (refer to Figure 5-2). For the vertical motion of the 

hand (refer to Chapter 4, Section 4.4), an ellipse shaped mask is used to determine its 

position. The other proposed approach is based on a normalised cross-correlation 

template matching and for comparison to the proposed methods for vertical motion of 

the hand; a feature selection technique found in the literature known as histogram of 

oriented gradient [195] is implemented. For hand rotation (refer to Chapter 4, Section 

4.3), a vertical symmetry-based approach is used. For classification, the statistics 

(mean and standard deviation) of the resulting symmetry curves are subsequently used 

as 2D data features for three different machine learning methods (two supervised and 

one unsupervised): a neural network, a support vector machine and k-means 

clustering. Another method is proposed based on a normalised cross-correlation 

template matching. Figures 5-3 and 5-4 summarize the proposed methods for vertical 

motion and rotation detection of the hand respectively. 
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Figure 5-1: Summary of the methods used for head rotation detection 
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Figure 5-2: Summary of the methods used for head vertical motion detection 
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 Figure 5-3: Summary of the methods used for hand vertical motion detection 
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            Figure 5-4: Summary of the methods used for hand rotation detection 
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For performance evaluation this work makes use of the hold-out method where the 

data set at hand is divided in two mutually exclusive parts; one for training while the 

other is held out for testing. This is a popular method to assess the system’s 

performance [203] and appropriate for our data sets where the subjects used for 

testing are different from those used for training. This method makes an inefficient 

use of the data (using only part of it to train the classifier) and therefore gives a 

pessimistically biased error estimate [198].  

Three sets of results are given below for each proposed and implemented method: 

the first set shows the performance for single frame pose classification, and the 

second set depicts the performance for intent recognition through classification of 

intention curves. For single frame pose classification, Figure 5-5 depicts the range of 

right head poses from (a) to (b), left head poses from (c) to (d), up head poses from (e) 

to (f) and down head poses from (g) to (h). After detection/tracking, the frame is 

converted from colour to greyscale. A similar illustration is given for the hand in 

Figure 5-6. For intent recognition, the right/left intents include motion from centre to 

right/left as well as the back motion from right to centre for left motion and left to 

centre for right motion. The same applies for up/down intents. The third set of results 

depicts the performance when in a 10-frame video sequence, the number of processed 

frames is reduced by choosing every 2,3,4,5 frames resulting in the respective 

numbers of processed frames 5,3,2,2 to form the intention curves that are 

subsequently extrapolated into a 10-point intention curve. Note that the values of the 

thresholds used in decision rules described in Equations 3-38, 3-50, 4-30, 4-31 and 4-

35 and set empirically by trial and error using the training sets are given in Table 5-1 

below: 
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       Table 5-1: Thresholds used in decision rules 

Equation λ 
(3-38) λ  = 0.8 
(3-50) λ  = 0.35 
(4-30) λ  = 0.6 
(4-31) λ  = 0.6 
(4-33) λ1 = 0.01 
(4-35) λ1 = 0.01 rad , λ2 = 0.5 

 
 
 
 
 
 

 

Figure 5-5: Range of right, left, up and down head poses 
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Figure 5-6: Range of right, left, up and down hand poses 

 

5.2 Head-based intent recognition 

For classification of single frame positions, a set of 650 frames was selected for each 

class (centre, right, left, up and down) through all the 20 subjects and divided in half 

to form a training  set (through 10 subjects) and a testing set (through 10 subjects) 

made of 325 frames each. Figure 5-5 depicts the range within which a head is labelled 

right (from (a) to (b)), left (from (c) to (d)), up (from (e) to (f)) and down (from (g) to 

(h)). For intent recognition, groups of 10 frames are processed resulting in 10-point 

intention curves. For head rotation, the training set is made of 400 intention curve 

examples while the testing set also contains 400 intention curves used for validation, 
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and for vertical motion of the head, the training set comprises 600 intention curve 

examples while the testing set also contains 600 intention curves used for validation. 

  

5.2.1 Performance for the recognition of the head in rotation: direction 

recognition 

As depicted in Tables 5-2 and 5-3, good results are obtained because as mentioned in 

Section 5.1, in a hold out approach for performance evaluation an inefficient use of 

the data is made, giving a pessimistic recognition rate that is mostly above 80% in this 

work. This demonstrates the viability of the proposed algorithms as an alternative 

visual head pose estimation for direction intent recognition. For single frame head 

pose classification, it is evident that the symmetry-based approach combined with the 

difference of means of the resulting symmetry curve’s COG yields the best 

recognition rate with 95.5%. The adaboost-based approach found in the literature 

[66], [67] and implemented for comparison, yields a slightly better recognition rate 

than all the proposed methods (95.3%) except the one previously referred to based on 

the difference of means of the symmetry curve’s COG. It is also evident that the COG 

of a symmetry curve is a better pose indicator than the y-intercept of the line 

approximating that symmetry curve: Table 5-2 shows the recognition rate of 95.5% 

and 93.3% for the approach based on the difference of means and the approach based 

on the statistics in a Gaussian distribution respectively, both used on the symmetry 

curves COGs, against 92.4% and 92% for these same methods used on the y-intercept 

of the line approximating the resulting symmetry curve.   

For head direction intent recognition, it can be observed that the proposed 

approach based on the statistics (mean and standard deviation) in a Gaussian 

distribution of COG-based intention curves, exhibits the best recognition rate with 



Chapter 5: Results and Discussion  

- 144 - 
 

93.7%. For each method, the centre class is the one where the recognition rate is the 

best. The proposed method by Jia and Hu in [66], [67], instead of looking at the 

motion of the head throughout a sequence of frames, looks at the position of the head 

in a single frame yielding the second best single frame pose classification rate of 

95.3% as depicted in Table 5-2. For such a solution however, only the last frame in 

the sequence is used for intent recognition and the disadvantage is that back motions 

(from left to centre, and right to centre for right and left motions respectively) are 

misclassified, thus significantly affecting the overall results (refer to Table 5-3 where 

it displays the worst result with 72%). A modified version of the method in [66] that 

uses the full 10-frame video sequence for recognition rather than the last frame, is 

proposed, which yields better results (87. 7%).  

 

Table 5-2: Single-frame pose classification rate of heads in rotation 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

Difference of 
means of 
symmetry curve’s 
COG 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

320 
286 
325 

 
931 

5 
39 
0 
 

44 

98. 5% 
88% 
100% 

 
95.5% 

Statistics a in 
Gaussian 
distribution of 
symmetry curve’s 
COG 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

320 
290 
290 

 
900 

5 
30 
30 
 

65 

98.5% 
90.8% 
90.8% 

 
93.3% 

Difference of 
means for y-
intercepts (of lines 
approximating a 
symmetry curve) 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

312 
266 
323 

 
900 

13 
59 
2 
 

74 

96% 
81.8% 
99.4% 

 
92.4% 

Statistics in a 
Gaussian 
distribution of y-
intercepts (of lines 
approximating a 
symmetry curve) 

Centre: 
Right: 
Left: 
 
 
Total: 

325 
325 
325 

 
 

975 

325 
325 
325 

 
 

975 

306 
266 
325 

 
 

897 

19 
59 
0 
 
 

78 

94.1% 
81.8% 
100% 

 
 

92% 
Adaboost 
(combined with 
nose template 
matching) [66] 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

324 
312 
293 

 
929 

1 
13 
32 
 

46 

99.7% 
96% 

90.1% 
 

95.3% 
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It can also be observed that the intention curves based on the COGs of symmetry 

curves throughout a sequence is a slightly better intent indicator than the intention 

curve based on y-intercepts of the line approximating these symmetry curves when 

using the same approach (difference of means: 86.6% and 85% respectively, and 

statistics in Gaussian distribution: 93.7% and 93.4%). 

 

Table 5-3: 10-frame intent recognition rate for heads in rotation 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

COG-based 
rotation 
detection using 
Difference of 
means  

Centre: 
Right: 
Left: 
 
Total: 

400 
400 
400 

 
1200 

400 
400 
400 

 
1200 

400 
326 
313 

 
1039 

0 
74 
87 
 

161 

100% 
81.5% 
78.2% 

 
86.6% 

COG-based 
rotation 
detection 
Statistics in a 
Gaussian 
distribution  

Centre: 
Right: 
Left: 
 
 
Total: 

400 
400 
400 

 
 

1200 

400 
400 
400 

 
 

1200 

382 
379 
363 

 
 

1124 

18 
21 
37 
 
 

76 

95.5% 
94.7% 
90.7% 

 
 

93.7% 
y-intercept-
based rotation 
detection using 
Difference of 
means  

Centre: 
Right: 
Left: 
 
Total: 

400 
400 
400 

 
1200 

400 
400 
400 

 
1200 

400 
322 
298 

 
1020 

0 
78 
102 

 
180 

100% 
80.5% 
74.5% 

 
85% 

y-intercept -
based rotation 
detection  using 
Statistics in a 
Gaussian 
distribution  

Centre: 
Right: 
Left: 
 
 
Total: 

400 
400 
400 

 
 

1200 

400 
400 
400 

 
 

1200 

391 
373 
357 

 
 

1121 

9 
27 
43 
 
 

79 

97.7% 
93.2% 
89.2% 

 
 

93.4% 
Adaboost-
based rotation 
detection [66] 

Centre: 
Right: 
Left: 
 
Total: 

400 
400 
400 

 
1200 

400 
400 
400 

 
1200 

398 
264 
202 

 
864 

2 
136 
198 

 
336 

99.5% 
66% 

50.5% 
 

72% 
Modified 
adaboost-based 
rotation 
detection 

Centre: 
Right: 
Left: 
 
Total: 

400 
400 
400 

 
1200 

400 
400 
400 

 
1200 

398 
322 
332 

 
1052 

2 
78 
68 
 

148 

99.5% 
80.5% 
83% 

 
87.7% 



Chapter 5: Results and Discussion  

- 146 - 
 

 

5.2.2 Performance for the recognition of the head in vertical motion: speed 

variation recognition 

As displayed in Tables 5-4 and 5-5, good results (for the same reasons given in 

Section 5.2.1) were obtained and demonstrate the viability of the proposed algorithms 

as an alternative visual head pose estimation for speed variation intent recognition. 

For single frame head pose classification, both methods perform very well with our 

proposed PCA-based approach yielding a slightly better recognition rate (97.8%) than 

the adaboost-based method proposed in [66] (96.8%). For each method, the centre 

class is the one where the recognition rate is the best with 100% recognition. For 

head-based speed variation intent recognition, it can be observed once more that our 

proposed PCA-based approach exhibits the better recognition rate with 91.2%. For 

each method, the centre class is again the one where the recognition rate is the best 

with 100% for the adaboost-based approach (including the modified version proposed 

in this thesis), against 93.7% for the proposed PCA-based approach.  

As mentioned earlier, instead of looking at the motion of the head throughout a 

sequence of frames, the proposed method in [66] looks at the position of the head in a 

single frame. For such a solution, only the last frame in a sequence is used for intent 

recognition and the disadvantage is that back motions (from down to centre, and up to 

centre for up and down motions respectively) are misclassified, significantly affecting 

the overall results (refer to Table 5-5 where it displays the worst result with 61.2%). It 

can also be noted from Table 5-5 that the classification rate of this method for the ‘up’ 

class (24.2%) is much lower than the one for the ‘down’ class (59.3%). This 

difference can be explained by the fact that the ‘up’ motion is only detected by this 

method when the head has gone sufficiently far from its centred position, while the 
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‘down’ motion is already detected when the head is closer to the centred position. 

Note also that a modified version of the method in [66], which uses the full 10-frame 

video sequence for recognition rather than the last frame yields improved results (83. 

8%). 

 

     Table 5-4: Single-frame pose classification rate of heads in vertical motion 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

PCA Centre: 
Up: 
Down: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

325 
325 
304 

 
954 

0 
0 
21 
 

21 

100% 
100% 
93.5% 

 
97.8% 

Adaboost 
(combined 
with nose 
template 
matching) 
[66] 

Centre: 
Up: 
Down: 
 
 
Total: 

325 
325 
325 

 
 

975 

325 
325 
325 

 
 

975 

325 
305 
314 

 
 

944 

0 
20 
11 
 
 

31 

100% 
93.8% 
96.6% 

 
 

96.8% 

 

 

Table 5-5: 10-frame intent recognition rate for heads in vertical motion 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

PCA-based 
vertical 
motion 
detection 

Centre: 
Up: 
Down: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

562 
560 
520 

 
1642 

38 
40 
80 
 

158 

93.7% 
93.3% 
86.7% 

 
91.2% 

Adaboost-
based 
vertical 
motion 
detection 
[66] 

Centre: 
Up: 
Down: 
 
 
Total: 

600 
600 
600 

 
 

1800 

600 
600 
600 

 
 

1800 

600 
145 
356 

 
 

1101 

0 
455 
160 

 
 

615 

100% 
24.2% 
59.3% 

 
 

61.2% 
Modified 
Adaboost-
based 
vertical 
motion 
detection 

Centre: 
Up: 
Down: 
 
 
Total: 

600 
600 
600 

 
 

1800 

600 
600 
600 

 
 

1800 

600 
482 
426 

 
 

1508 

0 
118 
174 

 
 

292 

100% 
80.3% 
71% 

 
 

83.8% 
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5.3 Hand-based intent recognition 

As described in Chapter 4, for classification of single frame positions, a set of 650 

frames was selected for each class (centre, right, left, up and down) through all the 20 

subjects and was divided into half to form a training set (through 10 subjects) and a 

testing set (through 10 subjects) comprising 325 frames each. Figure 5-6 depicts the 

range within which a hand is labelled right (from (a) to (b)), left (from (c) to (d)), up 

(from (e) to (f)) and down (from (g) to (h)). For intent recognition, groups of 10 

frames are processed, resulting in intention curves. For both hand rotation and vertical 

motion, the training set consists of 600 intention curve examples while the testing set 

also contains 600 intention curves used for validation.  

 

5.3.1 Performance for the recognition of the hand in rotation: direction 

recognition 

As depicted in Tables 5-6 and 5-7, the task of classifying hands in rotation using the 

vertical symmetry-based approach is not as successful as for the face because it is not 

a symmetrical object. However, it yields a recognition rate far greater than 50% 

(78.5%, 81.5% and 81.2% for MLP, SVM and k-means respectively for single frame 

hand pose classification and 76.8%, 79.3% and 77.9% for MLP, SVM and k-means 

respectively for hand-based direction intent recognition) because the rotation of the 

hand to some extent presents separable symmetry curves, whose statistics can be 

learned by a machine learning approach (in this thesis a neural network, a support 

vector machine and k-means clustering are used). The template matching-based 

approach, however, performs better (93.4% for single frame hand poses classification 
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and 89% for hand-based direction intent recognition). These satisfactory results 

demonstrate the viability of the proposed algorithms as alternative visual hand pose 

estimation solutions for direction intent recognition.  

Note that no method for comparison with our proposed method is found in the 

literature because typical hand gesture recognition method requires a more explicit 

motion of the hand than the micro-operation (rotation) defined in this thesis. It can 

also be observed that for the hand in rotation, the left pose and intent display the worst 

results due to the similarity in appearance between left hands and centred hands (refer 

to Figure 5-6) especially when the left hand is closer to the centre (refer to Figure 5-

6.c). The entire false negatives for the left class are therefore found in the centre class. 

 

        Table 5-6: Single-frame pose classification rate of hands in rotation 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

MLP  
 
 
 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

259 
261 
245 

 
765 

66 
64 
80 
 

210 

79.7% 
80.3% 
75.4% 

 
78.5% 

SVM  
 
 
 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

300 
253 
242 

 
795 

25 
72 
83 
 

180 

92.3% 
77.8% 
74.5% 

 
81.5% 

KMEANS Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

255 
262 
255 

 
792 

70 
63 
70 
 

203 

78.5% 
80.6% 
78.5% 

 
81.2% 

Cross-
correlation 
template 
matching 

Centre: 
Right: 
Left: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

325 
315 
271 

 
911 

0 
10 
54 
 

64 

100% 
96.9% 
83.4% 

 
93.4% 
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 Table 5-7: 10-frame intent recognition rate for hands in rotation 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

MLP-
based 
rotation 
detection 

Centre: 
Right: 
Left: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

493 
470 
419 

 
1382 

107 
130 
181 

 
418 

82.2% 
78.3% 
69.8% 

 
76. 8% 

SVM-
based 
rotation 
detection 

Centre: 
Right: 
Left: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

518 
482 
427 

 
1427 

82 
118 
173 

 
373 

86.3% 
80.3% 
71.2% 

 
79.3% 

KMEANS-
based 
rotation 
detection 

Centre: 
Right: 
Left: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

506 
474 
422 

 
1402 

94 
126 
178 

 
398 

84.3% 
79% 

70.3% 
 

77. 9% 
Template 
matching-
based 
rotation 
detection 

Centre: 
Right: 
Left: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

600 
572 
431 

 
1603 

0 
28 
169 

 
197 

100% 
95.3% 
71.8% 

 
89% 

 

 

5.3.2 Performance for the recognition of the hand in vertical motion: speed 

variation recognition 

As displayed in Tables 5-8 and 5-9, good results are obtained, demonstrating the 

viability of the proposed algorithms as alternative visual hand pose estimation 

methods for speed variation intent recognition. For single frame hand pose 

classification, the approach based on the ellipse shaped mask yields the best 

recognition rate (97.2%) and the HOG-based approach implemented for comparison 

with our proposed methods, displays the worst recognition rate (94%). For hand-

based speed variation intent recognition, it can be observed once more that our ellipse 

shaped mask approach exhibits the best recognition rate with 94.7%.  
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    Table 5-8: Single-frame pose classification rate of hands in vertical motion 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

Cross-
correlation 
template 
matching  

Centre: 
Up: 
Down: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

325 
293 
325 

 
943 

0 
32 
0 
 

32 

100% 
90.1% 
100% 

 
96.7% 

Ellipse 
shaped 
Mask based 
approach 

Centre: 
Up: 
Down: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

308 
316 
324 

 
948 

17 
9 
1 
 

27 

94.8% 
97.2% 
99.7% 

 
97.2% 

HOG-based 
approach 

Centre: 
Up: 
Down: 
 
Total: 

325 
325 
325 

 
975 

325 
325 
325 

 
975 

325 
303 
289 

 
917 

0 
22 
36 
 

58 

100% 
93.2% 
88.9% 

 
94% 

 

Table 5-9: 10-frame intent recognition rate for hands in vertical motion 

Methods Class Training 
set 

Testing 
set 

Correct 
classification 

Incorrect 
classification 

Classification 
rate 

Template 
matching-
based 
vertical 
motion 
detection   

Centre: 
Up: 
Down: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

600 
507 
521 

 
1628 

0 
93 
79 
 

172 

100% 
84.5% 
86.8% 

 
90.4% 

Ellipse 
shaped 
Mask-based 
vertical 
motion  

Centre: 
Up: 
Down: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

600 
549 
556 

 
1705 

0 
51 
44 
 

95 

100% 
91.5% 
92.7% 

 
94.7% 

HOG-based 
vertical 
motion 
detection  

Centre: 
Up: 
Down: 
 
Total: 

600 
600 
600 

 
1800 

600 
600 
600 

 
1800 

545 
559 
549 

 
1653 

55 
41 
51 
 

143 

90.8% 
93.2% 
91.5% 

 
91.8% 

 

5.4 Extrapolation for data efficiency 

So far, intent recognition was performed by mapping a 10-frame video sequence to a 

10-point vector referred to in this work as “intention curve” that is subsequently used 
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for the classification task. An experiment that consists of using fewer frames for intent 

recognition, and observing how the recognition rate is impacted, is performed. This 

experiment aims at reducing the amount of data used for recognition resulting in a 

faster and more data efficient recognition algorithm. However, instead of using fewer 

consecutive frames, a number n of frames are skipped throughout a sequence of 10 

frames: In a set of 10 frames, every n frames where n = {1,2,3,4,5} is considered, the 

intention curve consisting of only m points where m ≤ 10 and m = {10,5,3,2,2} is then 

obtained and used to extrapolate a 10-point intention curve.  

The extrapolation is performed as follows: For every (xa,ya) and (xb,yb) two 

consecutive points in the intention curve, we determine a mean point (xc,yc) that we 

assume belongs to the intention curve such that xa < xc < xb and ya < yc < yb where xc = 

xa+(xb-xa)×Π and yc = ya+(yb-ya)×Π, where Π is a uniformly distributed pseudo-

random number (0 ≤ Π ≤ 1). This process is repeated until the curve contains 10 

points.   

A subset of our dataset was used for this experiment spanning all the 20 subjects 

using one long video sequence of each. Figures 5-7, 5-8, 5-9 and 5-10 illustrate the 

recognition rate changes where n frames are skipped (with n = {1,2,3,4,5}) for the 

head in rotation, the head in vertical motion, the hand in rotation and the hand in 

vertical motion respectively. It can be observed that for each case, the higher the value 

of n, the lower the recognition rate. 

For head rotation, it can be observed that although the recognition rate decreases 

as n increases, it still remains above 75% and 70% for the proposed methods based on 

the difference of means and the statistics (mean and standard deviation) in a Gaussian 

distribution of COG-based intention curves respectively. The other methods including 

the method by Jia and Hu [66] decrease further to below 65%. For vertical motion of 
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the head, it is evident that the recognition rate decreases for both methods (PCA-based 

and adaboost-based); however, the overall performance remains above 70%. For hand 

rotation, the k-means-based approach excluded (where the recognition rate decreases 

almost to 60%), the overall recognition rate does not decrease below 70%. For 

vertical motion of the hand, both proposed methods (based on template matching and 

ellipse shaped mask) do not decrease below 85% while the method implemented for 

hand vertical motion comparison based on HOG decreases to nearly 80%.    

 

 

Figure 5-7: Recognition rates for heads in rotation for different numbers of 
frames skipped before selection. 
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Figure 5-8: Recognition rates for heads in vertical motion for different numbers 
of frames skipped before selection  
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Figure 5-9: Recognition rates for hands in rotation for different numbers of 
frames skipped before selection 
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Figure 5-10: Recognition rates for hands in vertical motion for different 
numbers of frames skipped before selection 
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5.5 Concluding remarks 

Overall, the methods proposed in this work yield good results. Three sets of results 

are given for each proposed and implemented method. The first set depicts the 

performance for single frame head and hand pose classification, the second set 

illustrates the performance for intent recognition through classification of intention 

curves obtained by processing 10 frames, and the third set demonstrates the 

performance of each method when fewer frames are used for recognition within a 10-

frame video sequence. 

In summary, it was observed that for single frame head pose classification the 

best method is the symmetry-based approach based on the difference of means of the 

resulting symmetry curve’s COG; therefore the COG is a better pose indicator than 

the y-intercept of the line approximating that symmetry curve. For head direction 

intent recognition, the best approach is the proposed method based on the statistics 

(mean and standard deviation) in a Gaussian distribution of COG-based intention 

curves. For head in vertical motion, the proposed PCA-based approach performs 

better than the adaboost-based method [66], [67], both for single frame head pose 

classification and for intent recognition. For hand rotation our proposed template 

matching-based approach performs the best for both single frame head pose 

classification and intent recognition. Finally, for hands in vertical motion, our 

proposed ellipse shaped mask approach yields the best recognition rate. 

It was also demonstrated that an attempt could be made for the proposed 

approaches to execute faster and be more data efficient by selecting only a few frames 

within the 10-frame video sequence, and extrapolating the 10-point intention curve 
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used for intent recognition. However, the recognition rate decreases revealing the 

necessity of a trade off that can be decided between recognition rate and data 

efficiency. It must also be noted that as the results reveal, better performance in pose 

classification does not necessarily mean better performance in intent recognition.  

The next chapter furnishes a conclusion and propose some avenues that can be 

explored for future work. 
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Chapter 6  

Conclusion 

This thesis proposes an alternative visual solution for head and hand motion 

recognition aimed at intent recognition, intended to be applied to assistive living as a 

substitute to conventional wheelchair control devices such as joysticks, pneumatic 

switches or other control devices for wheelchair mobility. The input to the solution is 

a video sequence comprising 576×768 image frames captured from a charge-coupled 

device (CCD) camera (Hi-Resolution Dome Camera - 1/3" CCD, 470 TV lines, 0.8 

lux, 3.6mm (F2.0) Lens) and a “25 frames per second” E-PICOLO-PRO-2 frame 

grabber. Results are obtained by collecting two sets of video sequences of 20 different 

subjects with five long sequences each, with the head and the hand in motion as 

objects of interest respectively. The video sequences of 10 subjects are used for all the 

training tasks, and the video sequences of the 10 others are used for validation. These 

long video sequences are divided into several 10-frame sequences for intention 

inference. As intent indicators, the objects of interest are the frontal view of the head 

in motion and the dorsal view (as opposed to the palm) of the hand in motion. Intent 

recognition is obtained using 10 frames with the head and the hand as the object of 

interest, and through the algorithms proposed in this thesis, these 10 frames are 

mapped to a 10-point intention curve that is subsequently classified using an 

appropriate decision rule. This work provides a contribution to the task of realising an 
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enabled environment allowing people with disabilities and the elderly to be more 

independent and as a result more active in society. 

 

6.1 Summary of contributions  

For head rotation recognition (refer to Section 3.3), a symmetry-based approach that 

maps a face to a symmetry curve is used. This symmetry curve is subsequently used 

in 4 different proposed methods according to the feature selection process (centre of 

gravity of the symmetry curve or y-intercept of the line approximating the symmetry 

curve) and the decision rule (based on difference of means or statistics in a Gaussian 

distribution) used for pose and intent recognition. For vertical motion recognition of 

the head (refer to Section 3.4), PCA is used for pose and intent recognition. A method 

proposed by Jia and Hu [66], [67] is also implemented for the purpose of comparison. 

The approach uses adaboost for face detection and profile pose estimation, camshift 

for tracking, and nose template matching for vertical pose detection. 

For hand rotation recognition (refer to Section 4.3), a vertical symmetry-based 

approach is used where symmetry is calculated vertically rather than horizontally. The 

statistics (mean and standard deviation) of the resulting symmetry curves are 

subsequently used as 2D data features inputs to three different machine learning 

methods for classification: a neural network, a support vector machine and k-means 

clustering. Another method is proposed based on a normalised cross-correlation 

template matching. For the vertical motion of the hand (refer to Section 4.4), a mask 

in the shape of an ellipse is used to determine the vertical position of the hand. The 

other proposed approach is based on a normalised cross-correlation template matching 

for pose detection and a decision rule is used for intent recognition. For comparison of 
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the proposed methods for vertical motion of the hand, a feature selection approach 

found in the literature known as histogram of the oriented gradient is implemented for 

pose estimation. All these methods are combined with a decision rule to classify the 

resulting intention curve for intent classification. 

Three sets of results are given for each proposed and implemented algorithm in 

this thesis. The first set focuses on the performance for single frame head and hand 

pose classification, the second set illustrates the performance for intent recognition 

through classification of intention curves obtained by processing 10 frames, and the 

third set shows the performance of each method when less frames are used for 

recognition within a 10-frame video sequence choosing every 2,3,4 or 5 frames rather 

than every frame. Overall, these techniques are simple to implement and yield very 

good results on the given validation set, indicating their merits.  

In summary, it was observed that for single frame head pose classification for the 

head in rotation, the best method is the symmetry-based approach based on the 

difference of means of the resulting symmetry curve’s COG with 95.5% recognition 

rate in the validation set. The COG is therefore a better pose indicator than the y-

intercept of the line approximating that symmetry curve. For head direction intent 

recognition, the best approach is the proposed method based on the statistics (mean 

and standard deviation) in a Gaussian distribution of COG-based intention curves 

(93.7%). For head in vertical motion our proposed PCA-based approach performs 

better than the adaboost-based method [66], [67] for both single frame head pose 

classification and intent recognition (97.8% and 91.2% respectively). For hand 

rotation our proposed template matching-based approach performs the best for both 

single frame head pose classification and intent recognition (93.4% and 89% 

respectively). And finally for hand in vertical motion, our proposed ellipse shaped 
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mask approach yields the best recognition rates for both single frame hand pose 

classification and intent recognition (97.2% and 94.7% respectively). 

It was also demonstrated that an attempt can be made to be more data efficient by 

selecting only a few frames within the 10-frame video sequence, and extrapolate the 

intention curve used for intent recognition. However, the recognition rate decreases 

revealing the necessity of a trade off that can be decided between recognition rate and 

data efficiency.  

 

6.2 Concluding remarks  

The head and the hand in motion are therefore useful intent indicators, and the 

proposed methods are able to recognise their motions as defined in this thesis for 

intent recognition.  When compared to the work in [66] and [67], implemented in this 

work, it can be observed that overall, the proposed methods perform better and are 

therefore suitable alternative intention detection methods that can be applied to 

wheelchair motion. 

Similarly to the above mentioned work in the literature the assumptions guiding 

the data acquisition process does not constitute a problem since the user who still 

retains the full use of her head and hand motion, should be trained to use the solution. 

As mentioned in Section 1.6, this alternative visual solution is an important 

contribution because as shown in the literature, one of the most promising sensor 

technologies associated with assistive living application is machine vision and thus a 

successful implementation of visual solutions is increasingly favoured. 

This thesis also shows how the symmetry property of the head can be used for 

motion understanding through a symmetry-based approach that is simple as opposed 
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to head pose estimation found in the literature that require sophisticated machine 

learning algorithm for recognition. 

As shown in the literature, many head pose estimation and hand gesture 

recognition solutions used in different applications including wheelchair motion allow 

symbolic commands based on individual postures. The solution proposed in this thesis 

on the other hand, recognizes intents based on the motion contained in a specific 

number of frames (10 in this work) rather than the posture in a single frame. This 

brings the advantage that even if the position of the head and the hand is only loosely 

detectable, that is the exact pose cannot be quantified to determine which pose is left, 

right, up, down or centre; the different kinds of motion can still be robustly detected. 

The other advantage is that the misdetection of a single frame is less costly on the 

overall performance. 

Gesture recognition solutions found in the literature are made possible looking at a 

change in the hand’s contour shape and it is typically applied to sign language 

applications. The literature doesn’t contain gesture recognition solutions where the 

motion of the hand is a micro-operation such as the rotation and vertical motion 

described in this thesis, for which the approaches found in the literature are typically 

invariant or unusable for robust classification. Furthermore this thesis proposes two 

novel methods for motion recognition of the hand in vertical motion. The first one 

makes use of an ellipse shaped mask for pose estimation and intention curves 

generation and the second one uses a HOG descriptor.  
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6.3 Future work  

As the scope (refer to Section 1.5) of this thesis reveals, there are still some avenues 

that can be explored in this work: 

 

Proposed solutions applied to people with disabilities: Though intended for a 

wheelchair mobility application, the algorithm has not been tested on actual people 

with disabilities. This work is limited to the implementation of intent recognition 

algorithms using recorded video sequences of subjects sited on an office chair (to 

mimic a person with a physical disability in a wheelchair) and performing the four 

types of motion described in this thesis. With the proper legal requirements, 

consisting of approvals from the university ethical committee, that of the research 

ethic group at provincial and district level as well as the hospital’s, more work can 

consist of testing these algorithms on real people with disabilities whose mobility is 

made possible by the use of a wheelchair. 

 

Real-time implementation: The algorithm was tested on recorded video sequences. 

Real-time implementation is also an important extension of this work. 

 

Data fusion: The head and the hand are independent indicators for the same type of 

motions. No data fusion scheme was used to combine these two motion indicators. A 

data fusion scheme looking at both motions rather than one at a time can also be the 

object of further investigation. 
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Performance comparison between a joystick and the proposed intent indicators: 

A study can be conducted to compare the proposed solutions that are head-based and 

hand-based indicators for wheelchair motion, with a joystick. This comparison can be 

conducted from the perspective of performance, ease of use and speed of response. 
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