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1.1. PROBLEMS AND NUMERICAL SIMULATIONS OF NUCLEAR WASTE
DISPOSAL.

1.1 Problems and numerical simulations of nuclear waste dis-

posal.

Nuclear waste includes leftovers and products of radioactive materials used to gener-
ate electricity, carry out certain health-care procedures, perform a variety of commercial
processes and conduct university researches. Because di�erent types of nuclear waste have
been varying levels of radioactivity, according to [12], waste is divided into the two main
categories: high-level waste and low-level waste. The goal of long-term radioactive waste
management is to protect humankind and its environment from the e�ects of the materials
comprised in this waste, most importantly from radiological hazards, because the possi-
ble returns to the biosphere of minute amounts of radionuclide can have no unacceptable
health or environmental impact. The object of nuclear waste disposal which is seen as the
reference solution help to ensure the con�nement of radioactivity within a de�nite space, to
be segregated from humankind and the environment in over several tens of thousand years,
in the case of long-lived waste, or even longer. Disposal in deep geological strata (typically,
500 m down) inherently makes for deployment of a more passive technical solution, with
the ability to stand, with no increased risk, an absence of surveillance. The geological en-
vironment of such a disposal facility thus forms a further, essential barrier. Therefore, it is
necessary to research into nuclear waste disposal simulation. In the framework of nuclear
waste disposal simulation, we are interested in the two kinds of equations: the familiar
ground-water �ow equations and the transport equations having a term of radioactive de-
cay. This term of radioactive decay allows to study the migration of a radionuclide (for
example Iodine 129 or Plutonium 242) in highly anisotropic heterogeneous geological layers.

In [36] and [37], the familiar ground-water �ow models are governed by the relations ex-
pressed in Darcy's law and the conservation of mass. The Darcy's law which represents
the rate of �ow water through a porous media related to the properties of the water, the
properties of the porous media, and the gradient of the hydraulic head, is written by:

qi = −Kij
∂h

∂xj
,

where qi is the speci�c discharge, Kij is the hydraulic conductivity of the porous medium,
and h is the hydraulic head.
A general groundwater �ow equation which may be derived by combining Darcy's law with
the continuity equation, are written in Cartesian tensor, follows as:

∂

∂xi

(
Kij

∂h

∂xi

)
= SS

∂h

∂t
+W ∗,

where SS is the speci�c storage, t is time, W ∗ which is the volumetric �ux per unit vol-
ume (positive for out�ow and negative for in�ow), and xi are the Cartesian coordinates.
Fluid properties such as density and viscosity may vary signi�cantly in space or time. This
may occur where water temperature or dissolved-solids concentration changes signi�cantly.
When the water properties are heterogeneous and (or) transient, the relations among water
levels, hydraulic heads, �uid pressures, and �ow velocities are neither simple nor straight-
forward. In such cases, the �ow equation is written and solved in terms of �uid pressures,

14



1.1. PROBLEMS AND NUMERICAL SIMULATIONS OF NUCLEAR WASTE
DISPOSAL.

�uid densities, and the intrinsic permeability of the porous media.

In [10], the transport model of radionuclide (RN) in porous media is described by convection-
di�usion-dispersion equations . These equations are to particularly consider the two con-
centrations of Iodine 129 (C1) and Plutonium 242 (C2) escaping from the repository cave
into the water. They are written by:

Riw

(
∂Ci
∂t

+ λiCi

)
−∇. (Di∇Ci) + u.∇Ci = fi in Ω× (0, T ) i = 1, 2,

where

• Ri is the latency Retardation factor, with value 1 for 129I, 105 for 242Pu in the clay
layer and 1 elsewhere for both Iodine and Plutonium,

• the e�ective porosity w, is equal to 0.001 for 129I, 0.2 for 242Pu in the clay player and
0.1 elsewhere for both,

• λi = log2/Ti with Ti being the half life time of the element: 1.57 107 for 129I, 3.76105

for 242Pu (in year),

• u is the velocity of the �ow,

• fi (i = 1, 2) are the source term,

• the e�ective di�usion/dispersion tensors Di for any i = 1, 2 depend on the Darcy
velocity, as follows:

Di = deiI + |u| [αliE(u) + αti (I − E(u))]

with
Ekj(u) =

ukuj
|u|2

.

We have a sample table of di�usion dispersion coe�cients for the radioactive elements in
the 4 layers:

Iodien 129 Plutonium 242
de1(m2/year) αl1 αt1 de2(m2/year) αl2 αt2

Dogger 5.04E-4 50 1 5.04E-4 50 1
Clay 9.48E-7 0 0 4.42E-4 0 0

Limestone 5.0E-4 50 1 5.04E-4 50 1
Marl 5.0E-4 0 0 5.0E-4 0 0

One of the important ingredients for the numerical solutions of these ground-water �ow
equations and transport equations is the discretization of anisotropic heterogeneous di�u-
sion terms on general meshes. For this complex task, there are many proposed discretization
methods which have been classi�ed by the list of well-known discretization methods. This
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1.1. PROBLEMS AND NUMERICAL SIMULATIONS OF NUCLEAR WASTE
DISPOSAL.

list involves the �nite di�erence method, the �nite element method and the �nite volume
method. Each of these methods has its own advantages and disadvantages.

Firstly, the �nite di�erence method is simple. Nevertheless, it is not widely used in prac-
tical applications, since we need a smoothness assumption of the solution and it is not
applicable for the domains with a complex geometry.

Secondly, the standard �nite element method has the following advantages:

• It can be applied in domains with complex shapes. These domains can be discretized
by triangular meshes.

• It uses the spaces of piecewise polynomials of degree 1 to approximate the solution
function. The basic functions of these spaces have small supports, so the computation
of this method is simple.

Unfortunately, in discontinuous di�usion problems coupled with convective transport mod-
els, the approximate solutions can be inaccurate [56], when they are computed by the stan-
dard �nite element method.

Thirdly, the �nite volume method is known as a accuracy and cheap method for the dis-
cretization of conservation laws to approximate the solutions of anisotropic heterogeneous
di�usion problems. Furthermore, it exists local conservativity of the �uxes that is signi�-
cant in physics. Now, this method is classi�ed into the two main categories:

• �Cell-centered schemes� compute approximate values of the solution function at the
centers of the cells of the primary meshes.

• Other schemes use not only usual cell unknowns but also interface unknowns to
compute approximation values of the solution function. In [20], HFV, MFD and MFV
involve the cell and edge unknowns. These schemes belong to the same family. In
addition, the DDFV schemes in [18], [31] which give precise solutions use techniques
of dual mesh. They depend on the cell and vertex unknowns. Obviously, all schemes
of this category are more expensive than cell-centered schemes, because they use
more unknowns.

Therefore, we pay attention to �Cell-centered schemes� with small stencils and only using
cell unknowns. By these two advantages, they are often used in industrial codes. "Cell-
centered schemes" still have disadvantages. The so-called Multipoint Flux Approximation
(MPFA) [2], [3] involves the reconstruction of the gradient in order to evaluate the �uxes.
But these methods only satisfy coercivity under suitable conditions on both the mesh and
the permeability tensor Λ. In [7], the authors need a coercivity assumption linking the
mesh and the tensor. Additionally, some proposed schemes only need either conditions on
meshes or conditions on the permeability tensor. For examples, in [5], the condition is that
the meshes are not too distorted. In [16], the authors need a su�cient coercivity condition.
In this kind of schemes, let us also cite methods [21, 46, 50, 51, 42, 43], the methods allow
to obtain maximum and minimum principles for di�usion problems on distorted meshes.
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1.2. CONTENT AND OBJECTIVE OF THE THESIS.

1.2 Content and objective of the thesis.

In my work, the proposed scheme is designed on general meshes for heterogeneous and
anisotropic permeability tensors with the main following characteristics:

• The main idea of the scheme is based on that of the standard �nite element method
and a technique of dual mesh. The dual mesh is chosen to be easily recovered a cell
centered scheme, i.e, the dual mesh unknowns are computed by linear combinations
of cell unknowns. This is di�erent from other schemes which use techniques of the
dual mesh such as DDFV schemes, because we can not recover a cell centered scheme
with these dual meshes.

• It is a cell-centered scheme and its stencil is equal or less than nine on quadrangular
meshes and twenty seven on hexahedral meshes.

• In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

• In general cases, using a light assumption (hypothesis 3.1), the matrix which is as-
sociated to our scheme is symmetric and positive de�nite on general meshes.

• It is exact on cell-wise a�ne solutions for cell-wise constant di�usion tensors.

Its name is the �nite element cell-centered scheme (the FECC scheme).

On the other hand, we focus on studying the existence of a maximum principle. This
existence is one of the fundamental properties of approximate solutions for the ground-
water �ow and the transport equations, because violation of the maximum principle can
lead to non-physical solutions. In these equations, the convective term is discretized using
a classical upwind scheme that satis�es the minimum and the maximum principles [49],
[39]. Hence, we only pay attention to the existence of the principles for the di�usion-
dispersive term. However, classical �nite volume and �nite element schemes do not satisfy
these principles for distorted meshes or for high anisotropy ratio of di�usion tensors [19],
[45], [34], [41]. In [45], the authors proved that it is impossible to construct nine-point
methods which unconditionally satisfy the monotonicity criteria when the discretization
satis�es local conservation and exact reproduction of linear potential �elds. The proposed
non-linear �nite volume schemes [21], [29], [35], [51], [43], [55], [30] satisfy the desired prop-
erties and the accurate results, but they are coercive with conditions on the meshes and
on the anisotropy ratio. The FECC scheme also violates the maximum principle (see Test
2 in the section 7.3 of chapter 7). That is why we will study three non-linear corrections
for the FECC schemes. Their constructions are based in the spirit of methods developed
in [53] and [13].

Finally, in this work, the e�ciency of the FECC scheme is demonstrated though numerical
tests of the 5th & 6th International Symposium on Finite Volumes for Complex Appli-
cations - FVCA 5 & 6. In addition, the comparison with classical �nite volume schemes
emphasizes the precision of the method. We show the good behaviour of algorithms for
nonconforming meshes. We also present 3D numerical results for the linear and the non-
linear schemes.
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1.3. STRUCTURE OF THE THESIS.

1.3 Structure of the thesis.

The thesis started with a discussion about problems and numerical simulations of nu-
clear waste disposal. From these problems, we focused on analysis of advantages and
disadvantages of classical numerical schemes used in the discretization of anisotropic het-
erogeneous di�usion equation on general meshes. The thesis is then organized, as follows:

In Chapter 2, we concentrate on the constructions of the dual, the third meshes and the
de�nition of the FECC scheme in isotropic homogeneous cases and in anisotropic hetero-
geneous cases in two dimensions.

In Chapter 3, we present the 3D extension of the constructions of the dual, the third
meshes and the de�nition of the FECC scheme in isotropic homogeneous cases and in
anisotropic heterogeneous cases.

In Chapter 4, we show the mathematical properties of the FECC scheme including the
symmetric positive de�nite matrix associated to the scheme, the small stencil, the rela-
tionship between the FECC scheme and the scheme of [5], the accuracy on cell-wise a�ne
solutions for cell-wise constant di�usion tensors.

In Chapter 5, the convergence of the FECC scheme with the piecewise Lipschitz-continuous
tensor Λ is proved. The key point of the proof consists in showing both the strong and the
weak consistency of the method.

In Chapter 6, we present non-linear corrections for the FECC schemes and the proper-
ties of the modi�ed schemes.

In Chapter 7, we show 2D and 3D numerical results of FVCA 5 & 6 and comparisons
with classical �nite volume schemes. Additionally, we give numerical results to test the
existence, violation of the maximum principle for the FECC schemes and the non-linear
FECC schemes (NLFECC1 and NLFECC2).

In Chapter 8, the conclusion and the perspectives of the schemes are discussed.
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2.1. MOTIVATION.

2.1 Motivation.

In this chapter, we construct a new cell centered scheme for approximating heteroge-
neous anisotropic di�usion operators on general meshes. For this work, we recall that the
Multipoint Flux Approximate (MPFA) [2], [3] involves the reconstruction of the gradient
in order to evaluate the �uxes. Nevertheless, these methods only satisfy coercivity under
suitable conditions on both the mesh and the permeability tensor Λ. In [7], the authors
need a coercivity assumption which links the mesh and the tensor. There are also some
schemes which need either conditions on meshes or conditions on the permeability tensor.
For example, in [5], the condition is that the meshes are not too distorted. In addition,
the Sushi scheme [23] is unconditionally coercive, but its stencil includes the neighbours of
the neighbours of a given control volume.

The proposed scheme [52] has the main characteristics:

• Its main idea is based on the P1 standard �nite element method on the third trian-
gular mesh built from a particular dual mesh.

• It is a cell-centered scheme and its stencil is equal or less than nine on quadrangular
meshes.

• In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

• In general cases, using a light assumption (hypothesis 2.4.1), the matrix which is
associated to our scheme is symmetric and positive de�nite on general meshes.

2.2 The continuous problem.

The approximation of the solutions of the anisotropic heterogeneous di�usion problems
is an important issue in several engineering �elds. We mention a kind of these problems,
as follows: {

−div (Λ(x)∇u) = f in Ω,
u = 0 on ∂Ω,

(2.1)

where the following assumptions hold:

1. Ω is an open bounded connected polygonal subset of Rd with d = 2, 3.

2. The di�usion (or permeability) tensor Λ : Ω→ Rd×d is symmetric, uniformly positive-
de�nite and such that the set of its eigenvalues is included in [λ, λ], with λ and λ
∈ R satisfying 0 < λ ≤ λ.

3. The function f is the source term and belongs to L2(Ω).

With assumptions (1)-(3), u is called the weak solution of (2.1) if u satis�es

u ∈ H1
0 (Ω) and ∀v ∈ H1

0 (Ω),

∫
Ω

(Λ(x)∇u(x)) .∇v(x)dx =

∫
Ω

f(x)v(x)dx. (2.2)
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2.3. NOTATIONS.

Figure 2.1: A sample primary mesh (solid lines) and its dual mesh (dashed lines).

2.3 Notations.

Let Ω be an open bounded polygonal set of R2 with the boundary ∂Ω. We denote the
three discretization families of Ω by D, D∗ and D∗∗, which are given by

2.3.1 The 2D primary discretization family D = (M, E ,P).

The primary discretization family is denoted by D = (M, E ,P), such that:

• M is a �nite family of non empty connected open disjoint subsets of Ω such that
Ω =

⋃
K∈M

K. mK > 0 denotes the measure of K (the "primary control volume").

• E (the set of "edges" of the primary grid) is a set of disjoint subsets of Ω such that,
for all σ ∈ E , σ is a segment in R, mσ > 0 denotes the measure of σ. Let K be an
element ofM, we assume that there exists a subset EK of E such that ∂K =

⋃
σ∈EK

σ

and E =
⋃

K∈M
EK . The set of interior edges is denoted by Eint (resp. Eext) with

Eint = {σ ∈ E|σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E|σ ⊂ ∂Ω}).

• P = (xK)K∈M is a set of all mesh points of the primary grid. For all K ∈ M,
xK ∈ K and K is assumed to be xK-star-shaped, i.e for all x ∈ K, [xK , x] ∈ K.

2.3.2 The 2D dual discretization family D∗ = (M∗, E∗,P∗,V∗).

The dual discretization family D∗ = (M∗, E∗,P∗,V∗) is de�ned, as follows:

• The dual control volumes K∗ are de�ned by connecting mesh points of the primary
control volumes and the midpoints of the edges belonging to ∂Ω . Moreover, we as-
sume that the lines joining their mesh points are inside Ω. In this case,M∗ which is
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2.3. NOTATIONS.

Figure 2.2: An example for the remark 2.3.2.

a set of all dual control volumes such that Ω =
⋃

K∗∈M∗
K∗, is de�ned and we assume

it �ts the initial domain Ω. We denote by mK∗ > 0 the measure of K∗.

Remark 2.3.1: A su�cient condition to de�ne the mesh M∗ is that, for neigh-
bouring control volumes, the line joining their centers intersects their common edge.
This condition is not necessary.

• E∗ (the "edges" of the dual grid) is a set of disjoint subsets of Ω such that, for all
σ∗ ∈ E∗, σ∗ is a segment in R, the measure of σ∗ is denoted by mσ∗ > 0. Let K∗

be an element of M∗, we assume that there exists a subset EK∗ of E∗ such that
∂K∗ =

⋃
σ∈EK∗

σ and E∗ =
⋃

K∗∈M∗
EK∗ .

• P∗ = (xK∗)K∗∈M∗ is the set of all mesh points of the dual grid.

• V∗ is the set of all vertices of the dual meshes which includes the primary mesh
points, the midpoints of the edges belonging to ∂Ω and boundary vertices of Ω.

Remark 2.3.2: We do not always use the vertices of the primary mesh as dual
mesh points {xK∗}K∗∈M∗ . For example, we consider the following polygon Ω: we
can not choose the vertex xK0 of the primary mesh to de�ne the dual mesh of
(xK1 , xK2 , xK3 , xK4) ∈M∗, because it is outside (xK1 , xK2 , xK3 , xK4).

2.3.3 The 2D third discretization family D∗∗ = (M∗∗,V∗∗).

The notation D∗∗ = (M∗∗,V∗∗) which is the third discretization family, is constructed
by:
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2.3. NOTATIONS.

Figure 2.3: the two examples of the third meshes.

Figure 2.4: a dual mesh point xK∗ is on the boundary ∂Ω.

Let be K∗ ∈ M∗, if all edges of EK∗ do not belong to the boundary ∂Ω, the set of
vertices of K∗ only contains mesh points of the primary control volumes. A point xK∗ is
chosen inside K∗ and connected to all vertices of K∗, for examples Figure 2.3.

If K∗ has a vertex xK∗ belonging to the boundary of Ω, its dual mesh point is equal to the
vertex xK∗ (see Figure 2.4). We connect xK∗ to the other vertices of K∗.

In Figures (2.2)-(2.4), we denote that

• The primary mesh is represented by solid black lines.

• The dual mesh is represented by dashed black lines.

• The third mesh is represented by dashed red and black lines.

• The primary mesh points xK1 , xK2 , xK3 , xK4 are elements of P.

• The dual mesh points xK∗ , xL∗ are elements of P∗.

• The edges σ1, σ2 are edges of the boundary of Ω.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

Figure 2.5: the triangle (xA, xB, xC).

• The points xσ1 , xσ2 are midpoints of the edges σ1, σ2.

From the construction of the third grid, this implies that it is a sub-grid of the dual grid.

• M∗∗ is a �nite family of sub-triangles such that Ω = ∪
T∈M∗∗

T .

• V∗∗ is a �nite set of all vertices of the third grid such that, for all T ∈M∗∗,V∗∗T is a
set of three vertices of triangle T and V∗∗ =

⋃
T∈M∗∗

V∗∗T . The set of interior vertices

is denoted by V∗∗int = P ∪ P∗. Moreover, the functions pK and pK∗ with K ∈ M,
K∗ ∈M∗ are piecewise linear continuous functions de�ned by

pK(x) =


1 at x = xK , xK ∈ P,
0 at x ∈ V∗∗int \ {xK} ,

0 on ∂Ω.

pK∗(x) =


1 at x = xK∗ , xK∗ ∈ P∗,

0 at x ∈ V∗∗int \ {xK∗} ,
0 on ∂Ω.

Additionally, we introduce some notations n[xA,xB ], n[xA,xC ], n[xB ,xC ] which are out-
ward normal vectors of the triangle (xA, xB, xC) (Figure 2.5). The lengths of these
vectors are equal to the segments [xA, xB], [xA, xC ], [xB, xC ] and m(xA,xB ,xC) is the
measure of the triangle (xA, xB, xC).

2.4 Presentation of the 2D FECC scheme.

Now, we introduce our scheme A Cell-Centered Scheme For Heterogeneous Anisotropic
Di�usion Problems On General Meshes. We name it FECC for the Finite Element Cell-
Centered scheme.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

De�nition 2.4.1: Let us de�ne the discrete function spaceHD as the set of all ((uK)K∈M, (uK∗)K∗∈M∗),
uK ∈ R, K ∈M, uK∗ ∈ R, K∗ ∈M∗ and uK∗ = 0 if xK∗ belongs to the boundary of Ω.

P (v) which is a function on Ω, is constructed from the value v = ((vK)K∈M, (vK∗)K∗∈M∗).
The function ∇D,Λu is intended to be a discrete gradient of ∇u, taking into account
u = ((uK)K∈M, (uK∗)K∗∈M∗). As a result, equation (2.2) is discretized by the follow-
ing discrete variational formulation∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫
Ω

f(x)P (v)(x)dx for all v ∈ HD. (2.3)

From equation (2.3), we describe the FECC scheme in each of the following cases of Λ.

2.4.1 Isotropic homogeneous cases in 2D.

The main idea of the FECC scheme is the same as that of the standard �nite element
method (P1) on the third triangular mesh. The domain Ω is partitioned by this third
mesh.
For any u = ((uK)K∈M, (uK∗)K∗∈M∗) ∈ HD, P (u) is de�ned by

P (u)(x) =
∑
K∈M

uK .pK(x) +
∑

K∗∈M∗
uK∗ .pK∗(x), (2.4)

and ∇D,Λu is de�ned by

∇D,Idu(x) = ∇D,IdP (u)(x) =
∑
K∈M

uK∇pK(x) +
∑

K∗∈M∗
uK∗∇pK∗(x). (2.5)

Substituting the de�nitions (2.4) and (2.5) into the equation (2.3), for each L ∈M∪M∗,
we choose v = ((vK)K∈M, (vK∗)K∗∈M∗) ∈ HD such that vK = 0 if K 6= L, vK∗ = 0 if
K∗ 6= L, vL = 1 and P (v) = pL. The resulting equation can be re-written in the following
form ∫

Ω

( ∑
K∈M

uK∇pK +
∑

K∗∈M∗
uK∗∇pK∗

)
.∇pL dx =

∫
Ω

f.pL dx. (2.6)

We present the construction of the FECC scheme in an isotropic homogeneous case.

Step 1 Recover all uK∗ with K∗ ∈ M∗ by linear functions of (uK)K∈M and constants
depending on function f .

We choose pL equal to pK∗ . We have∫
Ω

(( ∑
K∈M

uK∇pK

)
.∇pK∗ + uK∗∇pK∗ .∇pK∗

)
dx =

∫
Ω

f.pK∗ dx,
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

because supp{pK∗} is a subset of K∗ for all K∗ ∈M∗.
Thus, uK∗ is equal to ΠK∗

(
{uK}K∈M , f

)
de�ned by

ΠK∗
(
{uK}K∈M , f

)
= −

∑
K∈M

uK

∫
Ω

∇pK(x)
∇pK∗(x)

‖∇pK∗‖2L2(Ω)

dx+

∫
Ω

f(x)
pK∗(x)

‖∇pK∗‖2L2(Ω)

dx.

Step 2 Transform the variables in formula (2.4).

P (u)(x) =
∑
K∈M

uK .pK(x) +
∑

K∗∈M∗
ΠK∗

(
{uK}K∈M , f

)
.pK∗(x). (2.7)

Step 3 Construct a system of linear equations.

Substituting (2.7) into (2.6), for each pL belonging to {pK}K∈M, we get∫
Ω

( ∑
K∈M

uK (∇pK .∇pL) +
∑

K∗∈M∗
ΠK∗

(
{uK}K∈P , f

)
(∇pK∗ .∇pL)

)
dx =

∫
Ω

f.pL dx.

(2.8)
This is a linear equation which only involves the cell unknowns {uK}K∈M. Hence, we
construct a system of linear equations

A.U = B, (2.9)

where U is a vector (uK)K∈M and A is a square matrix in Rcard(M)×card(M). All unknowns
(uK∗)K∗∈P∗ have been eliminated, the scheme is thus indeed cell-centered.

2.4.2 Anisotropic heterogeneous cases in 2D.

To simplify the description of the FECC scheme, we assume that, for neighbouring
control volumes, the line joining their primary mesh points intersects their common edge.
Hence, the dual mesh is centred around the vertices of the primary mesh and the dual mesh
points are the vertices of the primary mesh. Taking any σ ∈ Eint such thatMσ = {K,L},
xK , xL ∈ P and xK∗ ∈ P∗, (xK , xL, xK∗) is a notation of a triangle of M∗∗. We take
the values uK∗ , uK , uL of u at xK∗ , xK , xL. From values uK∗ , uK , uL, we want to
construct a discrete gradient ∇D,Λu on the triangle (xK∗ , xK , xL) taking into account the
heterogeneity of Λ. We consider the function

P(K∗,K,L)(u) : (xK∗ , xK , xL)→ R,

where it is continuous, linear on (xK∗ , xK , xσ) and (xK∗ , xL, xσ) (two half triangles of
(xK , xL, xK∗)). We introduce a value uK

∗
σ (a temporary unknown) at xσ. The point xσ

is an intersecting point between the line joining two mesh points xK , xL and the internal
edge σ. The discrete gradient ∇D,Λu is then de�ned by

• on the triangle (xK∗ , xK , xσ)

P(K∗,K,L)(u)(x) =


uK x = xK ,
uK∗ x = xK∗ ,
uK
∗

σ x = xσ.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

Figure 2.6: the two sub-triangle (xK∗ , xK , xσ) and (xK∗ , xL, xσ) and their outward normal
vectors.

∇D,Λu = ∇D,ΛP(K∗,K,L)(u)

=
−P(K∗,K,L)(u)(xσ)n[xK∗ ,xK ] − P(K∗,K,L)(u)(xK)nK[xσ ,xK∗ ] − P(K∗,K,L)(u)(xK∗)n[xσ ,xK ]

2m(xK∗ ,xK ,xσ)

=
−uK∗σ n[xK∗ ,xK ] − uKnK[xσ ,xK∗ ] − uK∗n[xσ ,xK ]

2m(xK∗ ,xK ,xσ)
,

where nK[xσ ,xK∗ ] is outer normal vector to the triangle (xK∗ , xK , xσ). The length of

the vector nK[xσ ,xK∗ ] is equal to the length of the segment [xσ, xK∗ ]. If xσ belongs to

the boundary of Ω then uK
∗

σ = 0.

• on the triangle (xK∗ , xL, xσ)

P(K∗,K,L)(u)(x) =


uL x = xK ,
uK∗ x = xK∗ ,
uK
∗

σ x = xσ.

∇D,Λu = ∇D,ΛP(K∗,K,L)(u)

=
−P(K∗,K,L)(u)(xσ)n[xK∗ ,xL] − P(K∗,K,L)(u)(xL)nL[xσ ,xK∗ ] − P(K∗,K,L)(u)(xK∗)n[xσ ,xL]

2m(xK∗ ,xL,xσ)

=
−uK∗σ n[xK∗ ,xL] − uLnL[xσ ,xK∗ ] − uK∗n[xσ ,xL]

2m(xK∗ ,xL,xσ)
,

where nL[xσ ,xK∗ ] is outer normal vector to the triangle (xK∗ , xL, xσ). The length of the

vector nL[xσ ,xK∗ ] is equal to the length of segment [xσ, xK∗ ]. If xσ belongs to boundary

of Ω then uK
∗

σ = 0.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

These de�nitions depend on uK
∗

σ but we �x uK
∗

σ by imposing the Local Conservativity of
the Fluxes condition, i.e

ΛK (∇D,Λu)|(xK∗ ,xK ,xσ) .n
K
[xσ ,xK∗ ] + ΛL (∇D,Λu)|(xK∗ ,xL,xσ) .n

L
[xσ ,xK∗ ] = 0, (2.10)

where ΛK , ΛL are values of Λ on K and L.

Equation (2.10) corresponds to the following equation

uK
∗

σ = βK
∗,σ

K uK + βK
∗,σ

L uL + βK
∗,σ

K∗ uK∗ , (2.11)

with

βK
∗,σ

K =

(
(nK[xσ ,xK∗ ])

TΛKn
K
[xσ ,xK∗ ]

2m(xK∗ ,xK,xσ)

)/(
−

(nK[xσ ,xK∗ ])
TΛKn[xK∗ ,xK ]

2m(xK∗ ,xK,xσ)
−

(nL[xσ ,xK∗ ])
TΛLn[xK∗ ,xL]

2m(xK∗ ,xL,xσ)

)
,

βK
∗,σ

L =

(
(nL[xσ ,xK∗ ])

TΛLn
L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)

)/(
−

(nK[xσ ,xK∗ ])
TΛKn[xK∗ ,xK ]

2m(xK∗ ,xK,xσ)
−

(nL[xσ ,xK∗ ])
TΛLn[xK∗ ,xL]

2m(xK∗ ,xL,xσ)

)
,

βK
∗,σ

K∗ = 1− βK
∗,σ

K − βK
∗,σ

L .

From equation (2.11), the unknown uK
∗

σ is computed by uK , uK∗ and uL. Thus, the
discrete gradient ∇D,Λu on (xK , xL, xK∗) only depends on these three values.

Hypothesis 2.1: we assume(
−

(nK[xσ ,xK∗ ])
TΛKn[xK∗ ,xK ]

2m(xK∗ ,xK,xσ)
−

(nL[xσ ,xK∗ ])
TΛLn[xK∗ ,xL]

2m(xK∗ ,xL,xσ)

)
6= 0.

Remark 2.4.1:

• In isotropic heterogeneous cases, if the primary mesh is an admissible mesh (see
de�nition 3.1, paper 37− 39 in [22]), the unknown uK

∗
σ is computed by

uK
∗

σ = βK
∗,σ

K︸ ︷︷ ︸
>0

uK + βK
∗,σ

L︸ ︷︷ ︸
>0

uL,

because nK[xσ ,xK∗ ]. n[xσ ,xK ] = 0 and nL[xσ ,xK∗ ]. n[xσ ,xL] = 0.

• In isotropic homogeneous cases, we do not need the hypothesis 3.1, since the coe�-
cients are di�erent from 0.

We present the construction of the FECC scheme in anisotropic heterogeneous cases.

Step 1 Recover all uK∗ with K∗ ∈ M∗ by linear functions of (uK)K∈M and constants
depending on function f .
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

For each K∗ ∈ M∗, we choose v = ({vL}L∈M, {vL∗}L∗∈M∗) such that vL = 0 for all
L ∈M, vL∗ = 0 if L∗ 6= K∗ and vK∗ = 1 in equation (2.3)∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫
Ω

f(x)P (v)(x)dx.

The discrete gradient ∇D,Λv is equal to 0 on L∗ which is di�erent from K∗. It implies that∫
Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx is presented by the linear function of (uK)K∈M, uK∗ and

a constant depending on function f . Therefore, the unknown uK∗ is computed by a linear
function of {uK}K∈M and a constant depending on function f . This linear function is also
denoted by ΠK∗

(
{uK}K∈M , f

)
.

Step 2 Reconstruct the discrete gradient ∇D,Λu.

In the de�nition of the discrete gradient∇D,Λu, we transform all the unknowns {uK∗}K∗∈M∗
by
{

ΠK∗
(
{uK}K∈M , f

)}
K∗∈M∗ . Hence,∇D,Λu does not depend on unknowns {uK∗}K∗∈M∗ .

Step 3 Construct a system of linear equations.

In equation (2.3), for each K ∈ M, we choose v = ({vL}L∈M, {vL∗}L∗∈M∗) ∈ HD such
that vL∗ = 0 for all L∗ ∈ M∗, vL = 0 if L 6= K and vK = 1. This resulting equation is a
linear equation which only involves unknowns {uK}K∈M. Thus, we construct a system of
linear equations

A.U = B, (2.12)

where U is the vector (uK)K∈M and A is a square matrix in Rcard(M)×card(M).
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3.1. MOTIVATION.

3.1 Motivation.

In industrial engineering codes, the meshes are generated from the modeling of the
underground geological layers. These layers produce complex shapes, such as: faults, in-
clined wells, highly heterogeneous permeability �elds...By this issue, 2D meshes need to
be extended to 3D meshes, for examples: tetrahedral meshes, prism meshes, hexahedral
meshes, pyramidal meshes...

To take into account these meshes, we present the FECC scheme and the constructions of
the dual, the third meshes in 3D. We recover the same properties as in two dimensions.

3.2 Notations.

Let Ω be a bounded open domain of R3 with the boundary ∂Ω. Before we introduce
the three discretization families D, D∗ and D∗∗ of Ω, we explain some notations in Figures
(3.1)-(3.10):

• The edges of the primary mesh are represented by the black color.

• The edges of the dual mesh are only represented by the blue color.

• The edges of the third mesh are represented by the blue and red colors.

• The mesh points of the primary mesh are represented by the black dots.

• The mesh points of the dual mesh are represented by the blue dots.

• The mesh points of the third mesh are represented by the red dots.

• The edge points are represented by the pink dots.
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3.2. NOTATIONS.

Figure 3.1: an intersecting point xσ on the non distorted primary meshM.

3.2.1 The 3D primary discretization family D = (M, E ,P ,F ,V)

The domain Ω is discretized by the primary meshM. The primary meshM is the set
of open disjoint polyhedral control volumes K ∈ Ω such that

⋃
K∈M

K = Ω.

The set of interfaces of the two control volumes K and L is denoted by FK,L = K ∩ L.
The set FK,L is a subset of Fint with Fint =

⋃
K,L∈M
K∩L6=∅

FK,L. In addition, the set of bound-

ary interfaces of ∂K ∩ ∂Ω is denoted by FK,∂Ω. The set FK,∂Ω belongs to Fext, where
Fext =

⋃
K∈M

∂K∩∂Ω 6=∅

FK,∂Ω. For each edge e on the boundary ∂Ω, a set Feext of which all

elements contain the edge e is a subset of Fext. We then denote the union of Fint and Fext
by F .

Vertices and edges of all faces in F are vertices and edges of M. The two sets of these
vertices and edges are respectively denoted by V and E . Moreover, the set E has the two
subsets Eext and Eint such that E = Eint ∪ Eext. The set Eint (resp. Eext) is the set of all
edges inside Ω (resp. on the boundary ∂Ω). For each edge e ∈ E , the setMe is a subset
ofM, where the edge e is a common edge of all control volumes inMe.

For each K ∈ M, the mesh point xK is an inside point of the control volume K, and
the set of mesh points of all control volumes in M is denoted by P = {xK |K ∈M}.
Besides, we de�ne a face point, as follows:

• Consider the two neighbouring control volumes K and L, σ ∈ Fint, the face point xσ
is de�ned by an intersecting point between the segment [xK , xL] and the face σ.

Remark 3.2.1: if the primary mesh M is not distorted (Figure 3.1), there exists
an unique face point xσ inside the face σ ∈ FK,L. On the contrary, if the primary
mesh M is distorted (Figure 3.2), then there are some face points outside the face
σ ∈ FK,L.

• If a face σ belongs to FK,∂Ω ⊂ Fext, then the face point xσ is an isobarycenter of σ.

Furthermore, let be an edge e belonging to Eext, we de�ne the boundary edge point xe, as
follows:
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3.2. NOTATIONS.

Figure 3.2: the three intersecting points xσ1 , xσ2 and xσ3 on the distorted primary mesh
M.

• On the planar boundary ∂Ω, the boundary edge point xe is an intersecting point
between a segment [xσ1 , xσ2 ] and an edge e (Figure 3.4), where σ1 and σ2 are the two
neighbouring elements of Fext and the edge e also belongs to the boundary ∂Ω.

• On the non planar boundary ∂Ω, the boundary edge point xe is the midpoint of the
edge e (Figure 3.5).

3.2.2 The 3D dual discretization family D∗ = (M∗, E∗,P∗,F∗,V∗)

The set of dual vertices V∗ is de�ned in the two following cases:

• With the planar boundary ∂Ω, the set V∗ is equal to P ∪ {xσ|σ ∈ Fext}.

• With the non planar boundary ∂Ω, the set V∗ contains P ∪ {xσ|σ ∈ Fext} and the
boundary edge points.

To construct the dual faces, we connect all points of V∗, as follows:

• For each edge e ∈ Eint, the dual face σ∗e is de�ned by connecting mesh points of all
elements inMe (Figure 3.3). The point xe is an intersecting point between e and σ∗e .

• For each edge e ∈ Eext, the de�nition of the dual face σ∗e bases on the two types of
the boundary ∂Ω: If the edge e belongs to the planar boundary ∂Ω, the dual face
σ∗e is built by connecting all points in {xK |K ∈ Me} ∪ {xσ|σ ∈ Feext} (Figure 3.4).
If the edge e belongs to the non planar boundary ∂Ω, the dual face σ∗e is built by
connecting all points in {xK |K ∈Me} ∪ {xσ|σ ∈ Feext} ∪ {xe} (Figure 3.5).

The set F∗ is the set of all dual faces. We assume that all dual faces in F∗ are inside Ω,
and each dual face is star shaped. Therefore, the dual meshM∗ which can be de�ned by
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3.2. NOTATIONS.

Figure 3.3: the dual face (xK , xL, xM , xN , xO) of the dual meshM∗.

Figure 3.4: an element (xσ1 , xK , xL, xσ2) of F∗, where e is on the planar boundary ∂Ω.

Figure 3.5: an element (xσ1 , xK , xL, xσ2) of F∗, where e is on the non planar boundary
∂Ω.

37



3.2. NOTATIONS.

Figure 3.6: The triangles (xO, xK , xL), (xO, xL, xM ) and (xO, xM , xN ) are three elements
of F∗∗, with e ∈ Eint.

the set of all dual faces F∗, is the set of dual control volumes K∗ such that
⋃

K∗∈M∗
K
∗

= Ω.

We associate to each control volume K∗ a dual mesh point xK∗ . The dual mesh point xK∗
which is de�ned by either an inside point of K∗ or a vertex of K∗ can be connected to the
other vertices of K∗. Additionally, the set of all dual mesh points is denoted by P∗. The
two sets E∗ and V∗ are respectively the sets of edges and vertices of all dual faces in F∗.

3.2.3 The 3D third discretization family D∗∗ = (M∗∗, E∗∗,P∗∗,F∗∗,V∗∗)

The third meshM∗∗ which is the tetrahedral mesh is constructed, as follows:
For each dual control volume K∗ and each dual face σ∗ of K∗, because the dual face σ∗

is star shaped, there exists a point used to connected to the other vertices of the face σ∗.
This implies that the dual face σ∗ is partitioned by triangles, and the set of these triangles
is denoted by F∗∗. The two sets of vertices and edges of all triangles in F∗∗ are respectively
associated to the notations V∗∗ and E∗∗.

Remark 3.2.3: The set E∗ is a subset of the set E∗∗.

Furthermore, we have Figure-examples (3.6)-(3.7) for some elements of M∗∗, E∗∗, P∗∗,
F∗∗, V∗∗. These �gures correspond to each location of the edge e in Ω :

• the edge e is inside the domain Ω Figure 3.6,

• the edge e is on the boundary ∂Ω Figure 3.7(a) and 3.7(b).

We then connect the dual mesh point xK∗ of K∗ to all vertices of σ∗, so tetrahedra are
constructed from the dual mesh point xK∗ and triangles on the dual face σ∗: these tetra-
hedra are elements of the third meshM∗∗ (see Figure 3.8).
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(a) The triangles (xK , xσ1 , xe),
(xK , xL, xe) and (xL, xσ1 , xe) are
three elements of F∗∗, where e is on
the non planar boundary ∂Ω.

(b) the two elements (xK , xσ1 , xσ2)
and (xK , xL, xσ2) belong to F∗,
where e is on the planar boundary
∂Ω.

Figure 3.7:

Figure 3.8: the three tetrahedra (xK∗ , xK , xL, xO), (xK∗ , xL, xM , xO) and
(xK∗ , xM , xN , xO) ofM∗∗.
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3.3. PRESENTATION OF THE 3D FECC SCHEME.

3.3 Presentation of the 3D FECC scheme.

Firstly, we recall the following de�nitions:

• The discrete function space HD is the set of all vectors
(
(uK)K∈M , (uK∗)K∗∈M∗

)
,

uK ∈ R, K ∈M, uK∗ ∈ R, K∗ ∈M∗ and uK∗ = 0 if xK∗ is on the boundary ∂Ω.

• The function P (v) is de�ned from the value v =
(
(vK)K∈M , (vK∗)K∗∈M∗

)
.

• The gradient operator ∇u is discretized by ∇D,Λu. The discrete gradient ∇D,Λu
takes into account

(
(uK)K∈M , (uK∗)K∗∈M∗

)
∈ HD.

3.3.1 Isotropic homogeneous cases in 3D.

The function P (u) and the discrete gradient ∇D,Λu are de�ned by:

P (u)(x) =
∑
K∈M

uKpK(x) +
∑

K∗∈M∗
uK∗pK∗(x), (3.1)

∇D,Λu(x) =
∑
K∈M

uK .∇pK(x) +
∑

K∗∈M∗
uK∗ .∇pK∗(x), (3.2)

the function pK (resp. pK∗) which is a piecewise linear continuous function, is equal to 1
at xK (resp. xK∗) and 0 at the other primary mesh and dual mesh points.

3.3.2 Anisotropic heterogeneous cases in 3D.

To simplify the description of the 3D FECC scheme, we assume that, for neighbouring
control volumes, the line joining their primary mesh points intersects their common face.

Without loss of generality, we use Figure 3.9 to present the de�nitions of the discrete
gradient ∇D,Λu : The discrete gradient ∇D,Λu must be taken into account of the hetero-
geneity of Λ and considered on the two neighbouring tetrahedra (xK∗ , xA, xB, xD) and
(xK∗ , xB, xC , xD).

Let us consider the tetrahedron (xK∗ , xB, xC , xD). It is partitioned by the four polyhedra
(xK∗ , xB, xσ2 , xe, xσ6), (xK∗ , xC , xσ1 , xe, xσ2), (xK∗ , xD, xσ1 , xe, xσ5), (xe, xσ5 , xσ6 , xK∗).
The discrete gradient ∇D,Λu is de�ned for each sub-polyhedron belonging to the tetrahe-
dron (xK∗ , xB, xC , xD) :

(∇D,Λu)|(xK∗ ,xB ,xσ2 ,xe,xσ6) = (∇D,Λu)|(xK∗ ,xB ,xσe ,xσ2) = (∇D,Λu)|(xK∗ ,xB ,xσe ,xσ6) ,

(∇D,Λu)|(xK∗ ,xC ,xσ1 ,xe,xσ2) = (∇D,Λu)|(xK∗ ,xC ,xσe ,xσ1) = (∇D,Λu)|(xK∗ ,xC ,xσe ,xσ2) ,

(∇D,Λu)|(xK∗ ,xD,xσ1 ,xe,xσ5) = (∇D,Λu)|(xK∗ ,xD,xσe ,xσ1) = (∇D,Λu)|(xK∗ ,xD,xσe ,xσ5) .

We obtain the formulas of the discrete gradients (∇D,Λu)|(xK∗ ,xB ,xe,xσ2), (∇D,Λu)|(xK∗ ,xC ,xe,xσ1),

(∇D,Λu)|(xK∗ ,xC ,xe,xσ2) and (∇D,Λu)|(xK∗ ,xD,xe,xσ1), as follows:
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3.3. PRESENTATION OF THE 3D FECC SCHEME.

Figure 3.9: the two neighbouring tetrahedra (xK∗ , xA, xB, xD) and (xK∗ , xB, xC , xD).

(∇D,Λu)|(xK∗ ,xB ,xe,xσ2) =
−uBnB(xK∗ ,xe,xσ2 ) − u

K∗
e nB(xK∗ ,xB ,xσ2 ) − u

K∗
σ2
nB(xK∗ ,xB ,xe)

− uK∗nB(xB ,xe,xσ2 )

3m(xK∗ ,xB ,xe,xσ2)
,

(∇D,Λu)|(xK∗ ,xC ,xe,xσ1) =
−uCnC(xK∗ ,xe,xσ1 ) − u

K∗
e nC(xK∗ ,xC ,xσ1 ) − u

K∗
σ1
nC,σ1

(xK∗ ,xC ,xe)
− uK∗nC(xC ,xe,xσ1 )

3m(xK∗ ,xC ,xe,xσ1)
,

(∇D,Λu)|(xK∗ ,xC ,xe,xσ2) =
−uCnC(xK∗ ,xe,xσ2 ) − u

K∗
e nC(xK∗ ,xC ,xσ2 ) − u

K∗
σ2
nC,σ2

(xK∗ ,xC ,xe)
− uK∗nC(xC ,xe,xσ2 )

3m(xK∗ ,xC ,xe,xσ2)
,

(∇D,Λu)|(xK∗ ,xD,xe,xσ1) =
−uDnD(xK∗ ,xe,xσ1 ) − u

K∗
e nD(xK∗ ,xD,xσ1 ) − u

K∗
σ1
nD(xK∗ ,xD,xe)

− uK∗nD(xD,xe,xσ1 )

3m(xK∗ ,xD,xe,xσ1)
.

We remark that if the edges σ1, σ2, e belong to the boundary ∂Ω, uK
∗

σ1
, uK

∗
σ2

, uK
∗

e are equal
to 0.

The notations which are used in the above formulas are de�ned in Figure 3.10, where
the vectors n(xA,xB ,xC) = 1

2(xB − xA)× (xC − xA), n(xA,xB ,xD) = 1
2(xB − xA)× (xD − xA),

n(xA,xC ,xD) = 1
2(xC − xA) × (xD − xA) and n(xB ,xC ,xD) = 1

2(xC − xB) × (xD − xB). The
measure m(xA,xB ,xC ,xD) > 0 is the volume of (xA, xB, xC , xD).
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Figure 3.10: A tetrahedron and its outward normal vectors.

Additionally, we introduce a new auxiliary edge unknowns uK
∗

e with e ∈ Eint, computed
by:

uK
∗

e = αeσ1
.uK

∗
σ1

+ αeσ2
.uK

∗
σ2

+ (1− αeσ1
− αeσ2

).uC ,

⇔ uK
∗

e − αeσ1
.uK

∗
σ1
− αeσ2

.uK
∗

σ2
= (1− αeσ1

− αeσ2
).uC , (3.3)

where the two coe�cients αeσ1
and αeσ2

satisfy

xe − xB = αeσ1
(xσ1 − xB) + αeσ2

(xσ2 − xB).

We then apply the Local Conservativity of the Fluxes:

• on the tetrahedron (xK∗ , xB, xC , xe)[
ΛB (∇D,Λu)

∣∣∣(xK∗ ,xB ,xe,xσ2 )

]
.nB(xK∗ ,xe,xσ2 )+

[
ΛC (∇D,Λu)

∣∣∣(xK∗ ,xC ,xe,xσ2 )

]
.nC(xK∗ ,xe,xσ2 ) = 0.

⇔ uK
∗

σ2
− βK∗,σ2

e ue = βK
∗,σ2

B uB + βK
∗,σ2

C uC + βK
∗,σ2

K∗ uK∗ . (3.4)

• on the tetrahedron (xK∗ , xC , xD, xe)[
ΛC (∇D,Λu)

∣∣∣(xK∗ ,xC ,xe,xσ1 )

]
.nC(xK∗ ,xe,xσ1 )+

[
ΛD (∇D,Λu)

∣∣∣(xK∗ ,xD,xe,xσ1 )

]
.nD(xK∗ ,xe,xσ1 ) = 0.

⇔ uK
∗

σ1
− βK∗,σ1

e ue = βK
∗,σ1

C uC + βK
∗,σ1

D uD + βK
∗,σ1

K∗ uK∗ . (3.5)

From (3.3)− (3.5), we get the following system of linear equations:

 1 −αeσ1
−αeσ2

−βK
∗,σ1

e 1 0

−βK
∗,σ2

e 0 1

 ue
uK
∗

σ1

uK
∗

σ2

 =

 0 1− αeσ1
− αeσ2

0 0

0 βK
∗,σ1

C βK
∗,σ1

D βK
∗,σ1

K∗

βK
∗,σ2

B βK
∗,σ2

C 0 βK
∗,σ2

K∗




uB
uC
uD
uK∗

 .
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Hypothesis 3.1: We assume that

det

 1 −αeσ1
−αeσ2

−βK
∗,σ1

e 1 0

−βK
∗,σ2

e 0 1

 6= 0.

Hence, the auxiliary unknowns uK
∗

e , uK∗σ1
and uK∗σ2

are eliminated by linear combinations
depending on uB, uC , uD and uK∗ .

Using again the Local Conservativity of the Fluxes:
[
ΛD (∇D,Λu)

∣∣∣(xK∗ ,xD,xe,xσ5 )

]
.nD(xK∗ ,xe,xσ5 ) +

[
ΛA (∇D,Λu)

∣∣∣(xK∗ ,xe,xσ5 ,xσ6 )

]
.nA(xK∗ ,xe,xσ5 ) = 0,[

ΛB (∇D,Λu)
∣∣∣(xK∗ ,xB ,xe,xσ6 )

]
.nB(xK∗ ,xe,xσ6 ) +

[
ΛA (∇D,Λu)

∣∣∣(xK∗ ,xe,xσ5 ,xσ6 )

]
.nA(xK∗ ,xe,xσ6 ) = 0,

and the linear combination for eliminating uK
∗

e , we can compute uK∗σ5
and uK∗σ6

with linear
combinations depending on uB, uC , uD and uK∗ .

Thanks to the above linear combinations and the Local Conservativity of the Fluxes:[
ΛB (∇D,Λu)

∣∣∣(xK∗ ,xB ,xσ3 ,xσ6 )

]
.nB(xK∗ ,xσ3 ,xσ6 ) +

[
ΛA (∇D,Λu)

∣∣∣(xK∗ ,xA,xσ3 ,xσ6 )

]
.nA(xK∗ ,xσ3 ,xσ6 ) = 0,[

ΛD (∇D,Λu)
∣∣∣(xK∗ ,xD,xσ4 ,xσ5 )

]
.nD(xK∗ ,xσ4 ,xσ5 ) +

[
ΛA (∇D,Λu)

∣∣∣(xK∗ ,xA,xσ4 ,xσ5 )

]
.nA(xK∗ ,xσ4 ,xσ5 ) = 0,

we can transform uK∗σ3
and uK∗σ4

into linear combinations depending on uA, uB, uC , uD and
uK∗ .

Therefore, we can reconstruct the de�nition of the discrete gradient ∇D,Λu which only
depends on (uK)K∈M and (uK∗)K∗∈M∗ .

3.4 Construction in three dimensions.

The main idea of the 3D FECC scheme which is also based on the standard �nite ele-
ment method (P1) on the third tetrahedral meshes is presented by the three following steps:

Step 1 Recover all uK∗ with K∗ ∈ M∗ by linear functions of (uK)K∈M and constants
depending on the function f .

For each K∗ ∈ M∗, we choose v = ({vL}L∈M, {vL∗}L∗∈M∗) such that vL = 0 for all
L ∈M, vL∗ = 0 if L∗ 6= K∗ and vK∗ = 1 in equation (3.3)∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫
Ω

f(x)P (v)(x)dx.

The discrete gradient ∇D,Λv is equal to 0 on L∗ which is di�erent from K∗. We deduce
that

∫
Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx is presented by the linear function of (uK)K∈M, uK∗
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and a constant depending on function f . Therefore, the unknown uK∗ is computed by a
linear function of {uK}K∈M and a constant depending on function f . This linear function
is denoted by ΠK∗

(
{uK}K∈M , f

)
. In isotropic homogeneous cases, ΠK∗

(
{uK}K∈M , f

)
is formulated by:

ΠK∗
(
{uK}K∈M , f

)
= −

∑
K∈M

uK

∫
Ω

∇pK(x)
∇pK∗(x)

‖∇pK∗‖2L2(Ω)

dx+

∫
Ω

f(x)
pK∗(x)

‖∇pK∗‖2L2(Ω)

dx.

Step 2 Reconstruct the discrete gradient ∇D,Λu.

In the de�nition of the discrete gradient∇D,Λu, we transform all the unknowns {uK∗}K∗∈M∗
into

{
ΠK∗

(
{uK}K∈M , f

)}
K∗∈M∗ . Hence,∇D,Λu does not depend on unknowns {uK∗}K∗∈M∗ .

Step 3 Construct a system of linear equations.

In equation (3.3), for each K ∈ M, we choose v = ({vL}L∈M, {vL∗}L∗∈M∗) ∈ HD such
that vL∗ = 0 for all L∗ ∈ M∗, vL = 0 if L 6= K and vK = 1. This resulting equation is a
linear equation that only involves unknowns {uK}K∈M. Thus, we construct a system of
linear equations

A.U = B, (3.6)

where U is the vector (uK)K∈M and A is a square matrix in Rcard(M)×card(M).
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4.1. MOTIVATION.

4.1 Motivation.

In the fourth chapter, we show the main properties of the FECC scheme in isotropic
homogeneous cases and discontinuous anisotropic cases.

• Symmetry and positive de�niteness: these properties are interested in building dis-
cretization schemes for di�using �ows in heterogeneous anisotropic porous media.
Multipoint schemes which are studied in [1], [2], [3], [16] and [27] do not satisfy these
properties. Moreover, the two properties allow us to use e�cient methods to solve
the system of linear equations.

• Small stencil: the FECC scheme is cell-centered scheme. Its stencil is compact, equal
or less than nine on quadrangular meshes and twenty seven on hexahedral meshes.

• We recover the exact solution if Λ is piecewise constant in polygonal sub-domains and
u (the solution of the di�usion problem (2.1)) is a�ne in each of these sub-domains.

• The scheme is convergent in discontinuous anisotropic heterogeneous cases, where
the tensor Λ is piecewise Lipschitz-continuous.

4.2 Symmetry and positive de�niteness of the FECC scheme.

Lemma 4.1 With hypothesis (2.1), for anisotropic heterogeneous cases, the matrix A of
the system (2.12) is symmetric and positive de�nite on general meshes.

Proof of lemma 4.1

By de�nition, the discrete gradient∇D,Λu depends on elements of sets {uK}K∈M, {uK∗}K∗∈M∗
and

{
uK
∗

σ

}
σ∈Eint
K∗∈M∗σ

. The set
{
uK
∗

σ

}
σ∈Eint
K∗∈M∗σ

is only considered in anisotropic heterogeneous

cases. Hence, we can present∫
Ω

(Λ∇D,Λu) .∇D,Λvdx = UTAΛV,

where U , V are de�ned by

U =

 (uK∗)K∗∈M∗
(uK)K∈M(
uK
∗

σ

)
σ∈Eint
K∗∈M∗σ

 , V =

 (vK∗)K∗∈M∗
(vK)K∈M(
vK
∗

σ

)
σ∈Eint
K∗∈M∗σ

 ,

M∗σ = {K∗ ∈M∗ such that σ ∩K∗ 6= ∅} ,
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4.2. SYMMETRY AND POSITIVE DEFINITENESS OF THE FECC SCHEME.

with

(uK)K∈M , (vK)K∈M ∈ M card(M)×1,

(uK∗)K∗∈M∗ , (vK∗)K∗∈M∗ ∈ M card(M∗)×1,

(
uK
∗

σ

)
σ∈Eint
K∗∈M∗σ

,
(
vK
∗

σ

)
σ∈Eint
K∗∈M∗σ

∈ M

{ ∑
σ∈Eint

card(M∗σ)

}
×1

.

Setting m = card(M) + card(M∗) +
∑

σ∈Eint

card(M∗σ) and n = card(M) + card(M∗), we

obtain
AΛ = ((aΛ)ij)i,j∈1,m and U ,V ∈Mm×1.

Moreover, AΛ is symmetric. This is implied from
∫
Ω

(Λ∇D,Λu) .∇D,Λvdx =
∫
Ω

∇D,Λu. (Λ∇D,Λv) dx,

because the tensor Λ is symmetric.

In anisotropic heterogeneous cases, the discrete gradient ∇D,Λu can be re-written by

• on the triangle (xK∗ , xK , xσ)

∇D,Λu = −

 (
βK
∗,σ

K n[xK∗ ,xK ] + nK[xσ ,xK∗ ]

)
uK +

(
βK
∗,σ

L n[xK∗ ,xK ]

)
uL

+
(
βK
∗,σ

K∗ n[xK∗ ,xK ] + n[xσ ,xK ]

)
uK∗


2m(xK∗ ,xK ,xσ)

, (4.1)

• on the triangle (xK∗ , xL, xσ)

∇D,Λu = −

 (βK∗,σK n[xK∗ ,xL]

)
uK +

(
βK
∗,σ

L n[xK∗ ,xL] + nL[xσ ,xK∗ ]

)
uL

+
(
βK
∗,σ

K∗ n[xK∗ ,xL] + n[xσ ,xL]

)
uK∗


2m(xK∗ ,xL,xσ)

, (4.2)

because uK
∗

σ = βK
∗,σ

K uK + βK
∗,σ

L uL + βK
∗,σ

K∗ uK∗ .

Now, the discrete gradient ∇D,Λu depends on elements of set
{

(uK)K∈M , (uK∗)K∗∈M∗
}

in general cases. Therefore, there exists a matrix C∗ ∈ Mm×n such that U = C∗U∗ with
U 6= 0, which implies

UTAΛU = (U∗)T
(
C∗TAΛC

∗
)
U∗,

where C∗ ∈Mm×n and U∗ =

(
(uK∗)K∗∈M∗
(uK)K∈M

)
∈Mn×1.

As the matrix AΛ is symmetric, the matrix G = C∗TAΛC
∗ is also symmetric.
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Figure 4.1: an example triangle T0 = (xK∗ , xσ1 , xK) ∈M∗∗.

According to step 1 of the construction scheme, for each K∗ ∈M∗, we choose
v = ({vL}L∈M, {vL∗}L∗∈M∗) such that vL = 0 for all L ∈ M, vL∗ = 0 if L∗ 6= K∗ and
vK∗ = 1 in equation (2.3)∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫
Ω

f(x)P (v)(x)dx.

From these linear equations, the �rst system of linear equations is constructed by:

DU∗ + EU = F ∗, (4.3)

where F ∗ ∈M card(M∗)×1, D ∈M card(M∗)×card(M∗) and E ∈M card(M∗)×card(M).

According to step 3 of the construction scheme, for each K ∈M, we choose
v = ({vL}L∈M, {vL∗}L∗∈M∗) ∈ HD such that vL∗ = 0 for all L∗ ∈ M∗, vL = 0 if L 6= K
and vK = 1 in equation (2.3). We get the second system of linear equations, as follows:

MU∗ +NU = F, (4.4)

where F ∈M card(M)×1, N ∈M card(M)×card(M) andM ∈M card(M)×card(M∗). Both F and
F ∗ depend on function f .

From (4.3) and (4.4), it follows that G =

(
D E
M N

)
where M = ET and two square

matrices D, N are symmetric, because the matrix G is symmetric.

Next, we prove that the matrix G is positive de�nite. Assume that U∗ 6= 0, there are
two following cases:
In the �rst case where uK 6= 0 for all K ∈ M, we consider T0 = (xK∗ , xσ1 , xK) ∈ M∗∗.
This triangle has an edge belonging to the boundary of Ω as Figure 4.1. On the triangle
T0 = (xK∗ , xσ1 , xK), the discrete gradient ∇D,Λu is de�ned by

∇D,Λu =
−uKn[xK∗ ,xσ1 ]

2m(xK∗ ,xσ1 ,xK)
,
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because uK∗ = uK
∗

σ1
= 0.

All eigenvalues of tensor Λ are equal or greater than λ > 0, thus

U∗TGU∗ =

∫
Ω

(Λ∇D,Λu) .∇D,Λudx ≥ λ

∫
Ω

(∇D,Λu)2 dx

≥ λ

∫
T0

(∇D,Λu)2 dx = λ

(
uKn[xK∗ ,xσ1 ]

)2

4m(xK∗ ,xσ1 ,xK)
> 0.

In the second case, there exists K ∈M such that uK = 0. In this case, we have a triangle
T0 = (xK∗ , xK , xL) such that uL 6= 0 or uK∗ 6= 0 (see the �gure 3.1).
The integral

∫
T0

(∇D,Λu)2 dx is computed by:

∫
T0

(∇D,Λu)2 dx =

∫
(xK∗ ,xσ ,xK)

(∇D,Λu)2 dx+

∫
(xK∗ ,xσ ,xL)

(∇D,Λu)2 dx.

On the triangle (xK∗ , xσ, xK), the discrete gradient ∇D,Λu is de�ned by

∇D,Λu =
−uK∗

(
n[xK ,xσ ] + βK

∗,σ
K∗ n[xK ,xK∗ ]

)
− uLβK

∗,σ
L n[xK ,xK∗ ]

2m(xK∗ ,xσ ,xK)
.

It follows that

∫
(xK∗ ,xσ ,xK)

(∇D,Λu)2 dx =

{
uK∗

(
n[xK ,xσ ] + βK

∗,σ
K∗ n[xK ,xK∗ ]

)
+ uLβ

K∗,σ
L n[xK ,xK∗ ]

}2

4m(xK∗ ,xσ ,xK)
> 0,

since the direction of the vector
(
n[xK ,xσ ] + βK

∗,σ
K∗ n[xK ,xK∗ ]

)
is di�erent from direction of

the vector n[xK ,xK∗ ], β
K∗,σ
L 6= 0 (use hypothesis 3.1) and

[
uL 6= 0,
uK∗ 6= 0.

Similarly to the �rst case, we get

U∗TGU∗ =

∫
Ω

(Λ∇D,Λu) .∇D,Λudx ≥ λ
∫
Ω

(∇D,Λu)2 dx ≥ λ
∫
T0

(∇D,Λu)2 dx > 0.

Therefore, the matrix G is positive de�nite.

From (4.3), U∗ is computed by U∗ = D−1 (F ∗ − EU). In this formula, the matrix D−1

exists, because we apply the property of Schur complement of D in G (see more theorem
1.20, paper 44 in [28]) and G is symmetric, positive de�nite. Thus, (4.4) is transformed as
follows (

N − ETD−1E
)︸ ︷︷ ︸

=A

U = F − ETD−1F ∗︸ ︷︷ ︸
=B

,

where the matrices A, B are de�ned in the systems of linear equations (2.9) and (2.12).
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Figure 4.2: an example for the dual and the third meshes such that the stencil of the 2D
FECC scheme is equal to 9.

Since G, D are symmetric, positive de�nite and using the property of Schur complement
in G (see more theorem 1.12, paper 34 in [28]), we conclude that A is symmetric, posi-
tive de�nite. This allows us to use e�cient solving methods to solve the systems of linear
equations (2.9) and (2.12). �

4.3 Isotropic homogeneous cases.

4.3.1 Small stencil.

Property 4.1 The stencil of the FECC scheme is equal to 9 on quadrangular primary
meshes.

Proof of property 4.1

If the dual grid and the third grid are described by Figure 4.2, then the stencil is equal to
9. Step 1
The intersecting domains are not empty between supp{pK1} and each of the following do-
mains: supp{pK2}, supp{pK4}, supp{pK6}, supp{pK8}, supp{pK∗1 }, supp{pK∗2 }, supp{pK∗3 },
supp{p∗K4

}, and are empty between supp{pK1} and the others: supp{pK3}, supp{pK5},
supp{pK7}, supp{pK9}. Therefore, equation (2.6) can be written as∫
Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK6∇pK6 + uK8∇pK8

+uK∗
1
∇pK∗

1
+ uK∗2∇pK∗2 + uK∗

3
∇pK∗3 + uK∗4∇pK∗4

)
.∇pK1dx =

∫
Ω

f.pK1 dx.

Step 2

uK∗
1

= α
K∗

1
1 uK1 + α

K∗
1

2 uK2 + α
K∗

1
3 uK3 + α

K∗
1

4 uK4 + αK∗1 (f).

uK∗
2

= α
K∗2
1 uK1 + α

K∗2
4 uK4 + α

K∗2
5 uK5 + α

K∗
2

6 uK6 + αK∗2 (f).

uK∗3 = α
K∗3
1 uK1 + α

K∗3
6 uK6 + α

K∗3
7 uK7 + α

K∗
3

8 uK8 + αK∗3 (f).

uK∗4 = α
K∗4
1 uK1 + α

K∗4
2 uK2 + α

K∗4
8 uK8 + α

K∗
4

9 uK9 + αK∗4 (f).
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Figure 4.3: an example for the dual and the third meshes such that the stencil of the 2D
FECC scheme is equal to 7.

Step 3

∫
Ω



uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK6∇pK6 + uK8∇pK8

+
(
α
K∗

1
1 uK1 + α

K∗
1

2 uK2 + α
K∗

1
3 uK3 + α

K∗
1

4 uK4

)
∇pK∗

1

+
(
α
K∗2
1 uK1 + α

K∗2
4 uK4 + α

K∗2
5 uK5 + α

K∗
2

6 uK6

)
∇pK∗2

+
(
α
K∗3
1 uK1 + α

K∗3
6 uK6 + α

K∗3
7 uK7 + α

K∗
3

8 uK8

)
∇pK∗3

+
(
α
K∗4
1 uK1 + α

K∗4
2 uK2 + α

K∗4
8 uK8 + α

K∗
4

9 uK9

)
∇pK∗4


.∇pK1dx =

∫
Ω

{
f.pK1 −

[
αK∗1 (f)∇pK∗1 − αK∗2 (f)∇pK∗2 − αK∗3 (f)∇pK∗3 − αK∗4 (f)∇pK∗4

]
.∇pK1

}
dx.

This equation only depends on nine cell unknowns, so the stencil is equal to nine. �

Remark 4.1: In some particular cases, the stencil can be 7 or even 5. We show two
following examples for these cases:

a) If the dual grid and the third grid are described by Figure 4.3, then the stencil is
equal to 7. In Figure 4.2, the polygon (xK2 , xK4 , xK5 , xK6 , xK8 , xK9) is an element of
the dual grid where the mesh point xK∗ of this element coincides in xK1 .
The intersecting domains are not empty between supp{pK1} and each of the following
domains: supp{pK2}, supp{pK4}, supp{pK5}, supp{pK6}, supp{pK8}, supp{pK9},
and are empty between supp{pK1} and the others: supp{pK3}, supp{pK7}. Hence,
equation (2.6) can be written as∫

Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK5∇pK5

+uK6∇pK6 + uK8∇pK8 + uK9∇pK9

)
.∇pK1dx =

∫
Ω

f.pK1 dx.

There are only seven main unknowns in the equation of step 1, thus the stencil is
equal to seven.

b) We consider a particular case with a primary grid of squares. The dual grid is
constructed as Figure 4.4. In Figure 4.4, the polygon (xK2 , xK4 , xK5 , xK6 , xK8 , xK9)
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Figure 4.4: an example for the dual and the third meshes such that the stencil of the 2D
FECC scheme is equal to 5.

is an element of the dual mesh where the mesh point xK∗ of this element coincides
in xK1 .
The intersecting domains are not empty between supp{pK1} and each of the following
domains: supp{pK2}, supp{pK4}, supp{pK5}, supp{pK6}, supp{pK8}, supp{pK9},
and are empty between supp{pK1} and the others: supp{pK3}, supp{pK7}. Hence,
equation (2.6) can be written as∫

Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK5∇pK5

+uK6∇pK6 + uK8∇pK8 + uK9∇pK9

)
.∇pK1dx =

∫
Ω

f.pK1 dx.

Moreover, we have that

• on the triangle (xK1 , xK4 , xK5)

∇pK5 . ∇pK1 =
n[xK1

,xK4
]. n[xK4

,xK5
](

2m(xK1
,xK4

,xK5)

)2 = 0,

because n[xK1
,xK4

]. n[xK4
,xK5

] is equal to 0,

• on the triangle (xK1 , xK5 , xK6)

∇pK5 . ∇pK1 =
n[xK1

,xK6
]. n[xK5

,xK6
](

2m(xK1
,xK5

,xK6)

)2 = 0,

because n[xK1
,xK6

]. n[xK5
,xK6

] is equal to 0,

• on the triangle (xK1 , xK2 , xK9)

∇pK9 .∇pK1 =
n[xK1

,xK2
]. n[xK2

,xK9
](

2m(xK1
,xK2

,xK9)

)2 = 0,

because n[xK1
,xK2

]. n[xK2
,xK9

] is equal to 0 ,
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Figure 4.5: an example for the dual and the third meshes such that the stencil of the 3D
FECC scheme is equal to 27.

Figure 4.6: an example for the dual and the third meshes such that the stencil of the 3D
FECC scheme is equal to 15.

• on the triangle (xK1 , xK8 , xK9)

∇pK9 .∇pK1 =
n[xK1

,xK8
]. n[xK8

,xK9
](

2m(xK1
,xK8

,xK9)

)2 = 0,

because n[xK1
,xK8

]. n[xK8
,xK9

] is equal to 0 .

Hence, we get∫
Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4

+uK6∇pK6 + uK8∇pK8

)
.∇pK1dx =

∫
Ω

f.pK1 dx,

which implies that the stencil is equal to 5.

The stencil of the 3D FECC scheme is equal or less than 27 on the hexahedral primary
meshes, for examples: Figures 4.5 and 4.6. �
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4.3.2 Relationship between the FECC scheme and the scheme in [5].

According to the construction in isotropic cases, the a�ne function u on (xK∗ , xK , xL)
is also a�ne on (xK∗ , xK , xσ) and (xK∗ , xL, xσ). In addition, this function has continuous
�uxes because Λ is continuous. Therefore, it corresponds to the function u constructed in
the heterogeneous cases, as follows:

(∇D,Idu)|(xK∗ ,xK ,xσ) =
−uK∗σ n[xK∗ ,xK ] − uKnK[xσ ,xK∗ ] − uK∗n[xσ ,xK ]

2m(xK∗ ,xK ,xσ)
,

(∇D,Idu)|(xK∗ ,xL,xσ) =
−uK∗σ n[xK∗ ,xL] − uLnL[xσ ,xK∗ ] − uK∗n[xσ ,xL]

2m(xK∗ ,xL,xσ)
,

where uK
∗

σ is a temporary unknown. This unknown is eliminated by imposing the continuity
of the �uxes:

(∇D,Λu)|(xK∗ ,xK ,xσ) .n
K
[xσ ,xK∗ ] + (∇D,Λu)|(xK∗ ,xL,xσ) .n

L
[xσ ,xK∗ ] = 0.

(
αKσ + αLσ

)
uK
∗

σ = αKuK + αLuL +
(
αKK∗ + αLK∗

)
uK∗ , (4.5)

where

αK = −
nK[xσ ,xK∗ ]. n

K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
, αKK∗ = −

n[xσ ,xK ]. n
K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
, αKσ =

n[xK∗ ,xK ]. n
K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
,

αL = −
nL[xσ ,xK∗ ]. n

L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)
, αLK∗ = −

n[xσ ,xL]. n
L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)
, αLσ =

n[xK∗ ,xL]. n
L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)
.

The following property presents a formula to compute the unknown uσ in terms of the
unknowns uK , uL.

Property 4.2 The unknown uK
∗

σ of (4.5) satis�es

uK
∗

σ =
dL,σ

dK,σ + dL,σ
uK +

dK,σ
dK,σ + dL,σ

uL, (4.6)

which is the value obtained by the scheme described in [5] using the harmonic averaging
points.

In (4.6), dK,σ, dL,σ are greater than 0 and denote the measures of the segments [xK , xK,σ],
[xL, xL,σ], respectively. Two points xK,σ, xL,σ are the two orthogonal projection points of
xK and xL onto σ.

Proof of property 4.2

The coe�cients of equation (4.5) which are computed in detail are based on Figure 4.7.
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Figure 4.7: an element (xK∗ , xK , xL) of a third mesh and its angles.

Figure 4.8: xK,σ, xL,σ are the two orthogonal projection points of xK , xL on σ.

a) Calculation of the coe�cient uK∗ :

αKK∗ + αLK∗ = −
n[xσ ,xK ]. n

K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
−
n[xσ ,xL].n

L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)

=
m[xσ ,xK ]. mσ cos

(
ϕK,K

∗

2

)
m[xσ ,xK ]. mσ sin

(
ϕK,K

∗

2

) +
m[xσ ,xL]. mσ cos

(
ϕL,K

∗

2

)
m[xσ ,xL]. mσ sin

(
ϕL,K

∗

2

)
=

cos
(
ϕK,K

∗

2

)
sin
(
ϕK,K

∗

2

) +
cos
(
ϕL,K

∗

2

)
sin
(
ϕL,K

∗

2

)
=

cos
(

Π− ϕL,K
∗

2

)
sin
(

Π− ϕL,K
∗

2

) +
cos
(
ϕL,K

∗

2

)
sin
(
ϕL,K

∗

2

) = 0.
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b) Calculation of the coe�cient uσ:

αKσ + αLσ =
n[xK∗ ,xK ]. n

K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
+
n[xK∗ ,xL].n

L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)

=
m[xK∗ ,xK ]. mσ. cos

(
ϕK,K

∗

1

)
mσ. dK,σ

+
m[xK∗ ,xL].mσ. cos

(
ϕL,K

∗

1

)
mσ. dL,σ

= −
m[xK∗ ,xK,σ ]

dK,σ
−
m[xK∗ ,xL,σ ]

dL,σ

=
mσ. (dK,σ + dL,σ)−m[xK,σ ,xσ ].dK,σ +m[xL,σ ,xσ ].dL,σ

dK,σ.dL,σ

= −
mσ (dK,σ + dL,σ)

dK,σ dL,σ
,

becausem[xK∗ ,xK,σ ] = m[xK∗ ,xσ ]−m[xK,σ ,xσ ],m[xK∗ ,xL,σ ] = m[xK∗ ,xσ ]+m[xL,σ ,xσ ],m[xK,σ ,xσ ]. dL,σ =
m[xL,σ ,xσ ]. dK,σ.

c) Calculation of the coe�cient uK :

αK = −

(
nK[xσ ,xK∗ ]

)2

2m(xK∗ ,xK ,xσ)
= − (mσ)2

mσ. dK,σ
= − mσ

dK,σ
.

d) Calculation of the coe�cient uL:

αL = −

(
nL[xσ ,xK∗ ]

)2

2m(xK∗ ,xL,xσ)
= − (mσ)2

mσdL,σ
= − mσ

dL,σ
.

From the above calculations, we get:(
−
mσ (dK,σ + dL,σ)

dK,σ dL,σ

)
uK
∗

σ = − mσ

dK,σ
uK −

mσ

dL,σ
uL.

uK
∗

σ =
dL,σ

dK,σ + dL,σ
uK +

dK,σ
dK,σ + dL,σ

uL. �

Remark 4.2: In heterogeneous strongly anisotropic cases, the harmonic averaging point
in [5] does not provide an "acceptable" interpolation uσ. Even in this case, in Test 5 (see
numerical results), we show that the FECC scheme can obtain precise results.

Remark 4.3: In property 4.1.2, we show a relationship between the FECC scheme and
the scheme introduced in [5]. However, even in isotropic homogeneous cases, there is a
di�erence between these two schemes.

For a grid of squares (the length of each edge is equal to a, see Figure 4.9), we consider two
control volumes Ki,j (mesh point xi,j) and Ki+1,j (mesh point xi+1,j) of the primary grid
such that their edges do not belong to the boundary ∂Ω. The third grid is de�ned in the
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Figure 4.9: the dual and the third meshes are used in Remark 4.3.

following �gure (dashed red and black lines): Using the scheme described in [5], for a given
constant function f ( 6= 0), we get the two following linear equations at xi,j and xi+1,j :

4ui,j − ui,j+1 − ui−1,j − ui+1,j − ui,j−1 =

∫
Ki,j

fdx = f.a2,

4ui+1,j − ui,j − ui+1,j+1 − ui+2,j − ui+1,j−1 =

∫
Ki+1,j

fdx = f.a2.

Using the FECC scheme, we get the two following linear equations at xi,j and xi+1,j :

4ui,j − ui,j+1 − ui−1,j − ui+1,j − ui,j−1 =

∫
(xi,j+1;xi+1,j ;xi,j−1;xi−1,j)

f.pi,jdx =
2.f.a2

3
,

4ui+1,j − ui,j − ui+1,j+1 − ui+2,j − ui+1,j−1 =

∫
(xi,j+1;xi+2,j+1;xi+2,j−1;xi,j−1)

f.pi+1,jdx =
4.f.a2

3
.

At each point xi,j and xi+1,j , we observe that the right hand sides of the two linear equations
are di�erent and that the left hand sides are the same. �

4.4 Discontinuous anisotropic heterogeneous cases.

4.4.1 Exact solution on piecewise a�ne functions.

In the property 4.3, we assume that, for neighbouring control volumes, the line joining
their primary mesh points intersects their common edge. Hence, the dual meshes can be
centred around the vertices of the primary meshes, where the dual mesh points are the
vertices of the primary meshes.

Property 4.3 Let the tensor Λ be piecewise constant in polyhedral sub-domains and the
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Figure 4.10: the two elements (xK∗ , xK , xL), (xL∗ , xK , xL) of the third mesh.

vector u =
(
(uK)K∈M , (uK∗)K∗∈M∗

)
∈ HD such that, for each K ∈ M, there exists

GK ∈ R2

uK∗ − uK = GK . (xK∗ − xK) , (4.7)

for all xK∗ ∈ VK , K∗ ∈ M∗ and such that for any σ ∈ EK ∪ EL which is the interface
between the two neighbouring control volume K and L,

ΛKGK .nK,L + ΛLGL.nK,L = 0, (4.8)

where nK,L is a outward normal unit vector of K at σ. Moreover, basing on Figure 4.10,
we have

(∇D,Λu)
∣∣
(xK ,xK∗ ,xσ).

(xσ − xK∗)
m[xσ ,xK∗ ]

+ (∇D,Λu)
∣∣
(xK ,xL∗ ,xσ).

(xσ − xL∗)
m[xσ ,xL∗ ]

= 0. (4.9)

Then u is the unique solution of the discrete di�usion problem:

∀v ∈ HD,
∫
Ω

Λ(x)∇D,Λu(x).∇D,Λv(x) dx = 0. (4.10)

Proof of property 4.3

For each K ∈ M, σ ∈ EK ∩ EL with L ∈ M, the Local Conservativity of the Fluxes
is imposed on σ, we obtain:

• on the triangle (xK , xL, xK∗),

uK
∗

σ

(
γK
∗,σ

K + γK
∗,σ

L + γK
∗,σ

K∗

)
= γK

∗,σ
K uK + γK

∗,σ
L uL + γK

∗,σ
K∗ uK∗ , (4.11)

• on the triangle (xK , xL, xL∗),

uL
∗

σ

(
γL
∗,σ

K + γL
∗,σ

L + γL
∗,σ

L∗

)
= γL

∗,σ
K uK + γL

∗,σ
L uL + γL

∗,σ
L∗ uL∗ . (4.12)

The coe�cients are computed, as follows:
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• in (4.11),

γK
∗,σ

K =

(
ΛKn

K
[xK∗ ,xσ ]

)
.nK[xK∗ ,xσ ]

2m(xK∗ ,xK ,xσ)
=

(
ΛKn

K
[xK∗ ,xσ ]

)
.nK[xK∗ ,xσ ].m[xK∗ ,xσ ]

dK,σ
,

γK
∗,σ

L =

(
ΛLn

L
[xK∗ ,xσ ]

)
.nL[xK∗ ,xσ ]

2m(xK∗ ,xL,xσ)
=

(
ΛLn

L
[xK∗ ,xσ ]

)
.nL[xK∗ ,xσ ].m[xK∗ ,xσ ]

dL,σ
,

γK
∗,σ

K∗ =

(
ΛKn

K∗

[xK ,xσ ]

)
.nK[xK∗ ,xσ ]

2m(xK∗ ,xK ,xσ)
+

(
ΛLn

K∗

[xL,xσ ]

)
.nL[xK∗ ,xσ ]

2m(xK∗ ,xL,xσ)

=

(
ΛKn

K∗

[xK ,xσ ]

)
.nK[xK∗ ,xσ ].m[xK∗ ,xσ ]

dK∗,[xK ,xL]
+

(
ΛLn

K∗

[xL,xσ ]

)
.nL[xK∗ ,xσ ].m[xK∗ ,xσ ]

dK∗,[xK ,xL]
,

• in (4.12),

γL
∗,σ

K =

(
ΛKn

K
[xL∗ ,xσ ]

)
.nK[xL∗ ,xσ ]

2m(xL∗ ,xK ,xσ)
=

(
ΛKn

K
[xL∗ ,xσ ]

)
.nK[xL∗ ,xσ ].m[xL∗ ,xσ ]

dK,σ
,

γL
∗,σ

L =

(
ΛLn

L
[xL∗ ,xσ ]

)
.nL[xL∗ ,xσ ]

2m(xL∗ ,xL,xσ)
=

(
ΛLn

L
[xL∗ ,xσ ]

)
.nL[xL∗ ,xσ ].m[xL∗ ,xσ ]

dL,σ
,

γL
∗,σ

L∗ =

(
ΛKn

L∗

[xK ,xσ ]

)
.nK[xL∗ ,xσ ]

2m(xL∗ ,xK ,xσ)
+

(
ΛLn

L∗

[xL,xσ ]

)
.nL[xL∗ ,xσ ]

2m(xL∗ ,xL,xσ)

=

(
ΛKn

L∗

[xK ,xσ ]

)
.nK[xL∗ ,xσ ].m[xL∗ ,xσ ]

dL∗,[xK ,xL]
+

(
ΛLn

L∗

[xL,xσ ]

)
.nL[xL∗ ,xσ ].m[xL∗ ,xσ ]

dL∗,[xK ,xL]
,

where the vectors nK[xK∗ ,xσ ], n
L
[xK∗ ,xσ ], n

K∗

[xK ,xσ ], n
K∗

[xL,xσ ], n
K
[xL∗ ,xσ ], n

L
[xL∗ ,xσ ], n

L∗

[xK ,xσ ] and

nL
∗

[xL,xσ ] are respectively the unit vectors of nK[xK∗ ,xσ ], n
L
[xK∗ ,xσ ], n

K∗

[xK ,xσ ], n
K∗

[xL,xσ ], n
K
[xL∗ ,xσ ],

nL[xL∗ ,xσ ], n
L∗

[xK ,xσ ] and n
L∗

[xL,xσ ]. The notations dK∗,[xK ,xL] and dL∗,[xK ,xL] are the two dis-
tances from xK∗ to [xK , xL] and from xL∗ to [xK , xL].

By the above computations of the coe�cients of (4.11) and (4.12), we get the relation-
ships between their coe�cients:

γK
∗,σ

K

m[xK∗ ,xσ ]
=

γL
∗,σ

K

m[xL∗ ,xσ ]
;

γK
∗,σ

L

m[xK∗ ,xσ ]
=

γL
∗,σ

L

m[xL∗ ,xσ ]
;

γK
∗,σ

K∗ = −γL
∗,σ

L∗ because of
m[xK∗ ,xσ ]

dK∗,[xK ,xL]
=

m[xL∗ ,xσ ]

dxL∗ ,[xK ,xL]
.

Let (4.11)
m[xK∗ ,xσ ]

subtracts (4.12)
m[xL∗ ,xσ ]

, we get(
γK
∗,σ

K + γK
∗,σ

L

m[xK∗ ,xσ ]

)
.
(
uK
∗

σ − uL
∗

σ

)
= −

γK
∗,σ

K∗

m[xK∗ ,xσ ]
.
(
uK
∗

σ − uK∗
)

+
γL
∗,σ

L∗

m[xL∗ ,xσ ]
.
(
uL
∗

σ − uL∗
)
.

(4.13)
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Figure 4.11: xK , xL ∈ P; xK∗ , xL∗ ∈ P∗; and the two intersecting points xσK , xσK .

Thanks to (4.9) and de�nitions of (∇D,Λu)
∣∣∣(xK,xK∗ ,xσ) and (∇D,Λu)

∣∣∣(xK,xL∗ ,xσ) , we de-

duce uK
∗

σ = uL
∗

σ = uσ from (4.13).

By (4.9) and uK
∗

σ = uL
∗

σ = uσ, we obtain:

uσ − uK∗
m[xK∗ ,xσ ]

+
uσ − uL∗
m[xL∗ ,xσ ]

= 0. (4.14)

The left hand side of (4.14) is computed, as follows:

uσ − uK∗
m[xK∗ ,xσ ]

+
uσ − uL∗
m[xL∗ ,xσ ]

=
uσ − uK + uK − uK∗

m[xK∗ ,xσ ]
+
uσ − uK + uK − uL∗

m[xL∗ ,xσ ]

= (uσ − uK) .

(
1

m[xK∗ ,xσ ]
+

1

m[xL∗ ,xσ ]

)
+
GK .(xK − xK∗)

m[xK∗ ,xσ ]
+
GK .(xK − xL∗)

m[xL∗ ,xσ ]

= (uσ − uK) .

(
1

m[xK∗ ,xσ ]
+

1

m[xL∗ ,xσ ]

)
+

(
1

m[xK∗ ,xσ ]
+

1

m[xL∗ ,xσ ]

)
GK .(xK − xσ)

+
GK .(xσ − xK∗)

m[xK∗ ,xσ ]
+
GK .(xσ − xL∗)

m[xL∗ ,xσ ]︸ ︷︷ ︸
=0

,

which implies that uσ − uK = GK .(xσ − xK). Therefore, for each K ∈ M, the discrete
gradient (∇D,Λu) |K is equal to GK .
Then we prove:

∀v ∈ HD,
∫
Ω

Λ(x)∇D,Λu(x).∇D,Λv(x) dx = 0 (4.15)

with the following two steps and Figure 4.11:

a) For each K∗ ∈ M∗, let a basic function vK∗ be continuous piecewise linear on Ω, such
that vK∗(xK∗) = 1, vK∗(xL) = 0 and vK∗(xσ) = 0, where each control volume L belongs
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to {M∪M∗}\ {K∗}, xσ is an intersecting point between [xK , xL] and σ ∈ EK ∩ EL ∩ Eint.
Moreover, vK∗ is also equal to 0 on the boundary ∂Ω.

Using supp(vK∗) and the constructions of the dual and the third meshes, we obtain:∫
Ω

Λ(x)∇D,Λu(x).∇D,ΛvK∗(x) dx =
1

4

∑
xK∈VK∗
K∈M

σK ,σK∈EK

[
(ΛKGK) .nK

∗

[xK ,xσK ] + (ΛKGK) .nK
∗

[xK ,xσK ]

]

=
1

4

∑
xK∈VK∗
K∈M

σK ,σK∈EK

[
− (ΛKGK) .nK[xK∗ ,xσK ] − (ΛKGK) .nK[xK∗ ,xσK ]

]
. (4.16)

Applying (4.8) in (4.16), we get:

∀K∗ ∈M∗,
∫
Ω

Λ(x)∇D,Λu(x).∇D,ΛvK∗(x) dx = 0. (4.17)

b) For each K ∈M, let a basic function vK be continuous piecewise linear on Ω, such that
vK(xK) = 1 and vK(xL) = 0, where each control volume L belongs to {M ∪M∗}\ {K}.
Besides, vK is also equal to 0 on the boundary ∂Ω.

We compute the integral
∫
Ω

Λ(x)∇D,Λu(x).∇D,ΛvK(x) dx

=
1

4

∑
σK∈EK∩EL

σK=[xK∗ ,xL∗ ]
L∈M,K∗ andL∗∈M∗

 (ΛKGK) .nK[xK∗ ,xL∗ ]

+vK(xσK ). (ΛKGK) .nK[xK ,xK∗ ] + vK(xσK ). (ΛLGL) .nL[xL,xK∗ ]

+vK(xσK ). (ΛKGK) .nK[xK ,xL∗ ] + vK(xσK ). (ΛLGL) .nL[xL,xL∗ ]


+

1

4

∑
σK∈Eext

σK=[xK∗ ,xL∗ ]
K∗ andL∗∈M∗

(ΛKGK) .nK[xK∗ ,xL∗ ]

=
1

4

∑
σK∈EK∩EL

σK=[xK∗ ,xL∗ ]
L∈M,K∗ andL∗∈M∗

[
(ΛKGK) .nK[xK∗ ,xL∗ ]

−vK(xσK ). (ΛKGK) .nK[xK∗ ,xL∗ ] − vK(xσK ). (ΛLGL) .nL[xK∗ ,xL∗ ]

]

+
1

4

∑
σK∈Eext

σK=[xK∗ ,xL∗ ]
K∗ andL∗∈M∗

(ΛKGK) .nK[xK∗ ,xL∗ ]

=
1

4

∑
σK∈EK∩EL

σK=[xK∗ ,xL∗ ]
L∈M, K∗ andL∗∈M∗

(ΛKGK) .nK[xK∗ ,xL∗ ] +
1

4

∑
σK∈Eext

σK=[xK∗ ,xL∗ ]
K∗ andL∗∈M∗

(ΛKGK) .nK[xK∗ ,xL∗ ].

(4.18)
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Applying (4.8) in (4.18), it follows that

∀K ∈M,

∫
Ω

Λ(x)∇D,Λu(x).∇D,ΛvK(x) dx = 0. (4.19)

The uniqueness of u is implied from Lemma 4.1. �
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5.1. MOTIVATION.

5.1 Motivation.

We are interested in this chapter by the theoretical convergence of the FECC scheme
in the general case where the tensor Λ(x) can be discontinuous. The key point of the proof
includes showing both the strong and the weak consistency of the FECC scheme.

5.2 Proof of the convergence.

We denote by P1(v) the traditional P1 function on Ω, constructed on M∗∗. We �rst
show the convergence of a variant of the original scheme, which we call FECCB, which
satis�es the following discrete variational formulation:

u ∈ HD
∫
Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫
Ω

f(x)P1(v)(x)dx for all v ∈ HD. (5.1)

To simplify the presentation, we assume that, for neighbouring control volumes, the line
joining their primary mesh points intersects their common edge. Let

M∗∗Λ = {K ∈M∗∗ | Λ(x) is not continuous on K}, M∗∗Const = {K ∈M∗∗ | Λ(x) is constant on K}.

If ∀K ∈M∗∗\M∗∗Const, let us assume that Λ(x) = Λ1 onK1 (K1 is the triangle (xK , xσ, xK∗)
and that Λ(x) = Λ2 on K2 (K2 is the triangle (xL, xσ, xK∗)) (see Figure 5.1).

For K ∈ M∗∗Λ , we only choose two discontinuities to simplify the presentation but the
method can be generalized to a greater number of discontinuities.

We denote by hK the diameter of the triangleK and ρK = sup{diam(S) : S is a ball contained in K}.

As described in section 2, we recall that V∗∗K is the set of the vertices of the triangle
K ∈M∗∗. Moreover, the size of the discretization is de�ned by

hM∗∗ = sup{hK ,K ∈M∗∗}

For all the triangular cells belonging toM∗∗, we join the centers of gravity of the triangles
xbar,K to the midpoints of the edges (xK,K∗ , xK,L, xK∗,L). The vectors ~τK,K∗ , ~τK∗,L , ~τL,K
are orthogonal vectors (with the same length) to the sides [xK,K∗ , xbar,K ], [xK∗,L, xbar,K ],
[xK,L, xbar,K ].

We denote by AiK , AiL and AiK∗ , the polygons (xK , xK,L, xbar,K , xK,K∗),
(xL, xK,L, xbar,K , xK∗,L) and (xK∗ , xK∗,L, xbar,K , xK,K∗). The vectors ~nK , ~nK∗ , ~nL, ~nσ,
~nK∗,1 and ~nK∗,2 are orthogonal vectors (with the same length) to the sides [xK∗ , xL],
[xK , xL], [xK∗ , xK ], [xK∗ , xσ], [xK , xσ] and [xσ, xL] (see Figure 5.1). We de�ne Π0

D∗∗u
which is a piecewise constant reconstruction by:

Π0
D∗∗u(x) = Π0

Ku = uK if x ∈ AiK ,
Π0
D∗∗u(x) = Π0

Lu = uL if x ∈ AiL,
Π0
D∗∗u(x) = Π0

K∗u = uK∗ if x ∈ AiK∗ .

66



5.2. PROOF OF THE CONVERGENCE.

Figure 5.1: the triangle (xK∗ , xK , xL), its sub-polygons AiK = (xK , xK,L, xbar,K , xK,K∗),
AiL = (xL, xK,L, xbar,K , xK∗,L), AiK∗ = (xK∗ , xK∗,L, xbar,K , xK,K∗) and their outward
normal vectors.

We de�ne the discrete H1 norm of u by:

||u||21,D∗∗ =
∑

K∈M∗∗

|~τK,L|
d(K,L)

(uK − uL)2 +
|~τK,K∗ |
d(K,K∗)

(uK − uK∗)2 +
|~τL,K∗ |
d(L,K∗)

(uL − uK∗)2,

where d(K,L) is the distance between xK and [xK,L, xbar,K ] (d(K,L) = d(L,K)), d(K,K∗)
is the distance between xK∗ and [xK,K∗ , xbar,K ] (d(K,K∗) = d(K∗,K)) and d(L,K∗) is
the distance between xL and [xK∗,L, xbar,K ] (d(L,K∗) = d(K∗, L)).

Following the de�nition given in [26], we measure the strong consistency with the in-
terpolation error function S(ϕ) = {||P1(ϕ)− ϕ||2L2(Ω) + ||∇D,Λϕ−∇ϕ||2L2(Ω)2}

1
2 ,

ϕ ∈ [C∞c (Ω)] and the dual consistency with the conformity error function

WD∗∗(~ϕ) = maxu∈HD ||
1

∇D,Λu(x)
||
∫

Ω
(∇D,Λu(x).~ϕ+P1(u)(x)div~ϕ(x))dx,∀~ϕ ∈ [C∞c (Ω)]2. �

Lemma 5.1With hypothesis 2.1, let S be a sequence of discretizations D∗∗ = (HD, hM∗∗ , P1(u),∇D,Λ)
previously de�ned. We assume that there exists θ such that for all D∗∗ ∈ S,
for K ∈M∗∗\{M∗∗Λ ∪M∗∗Const},

min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)
|~nL|

|K1|
|K|

> θ and
min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)

|~nK |
|K2|
|K|

> θ.
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Then, for K ∈M∗∗\M∗∗Λ the gradient ∇D,Λu satis�es:

|K|∇D,Λu = (uK∗−uK)(~τK,K∗+~εK,K∗)+(uL−uK∗)(~τK∗,L+~εK∗,L)+(uK−uL)(~τL,K+~εL,K)

with limhM∗∗→0
|~εK,K∗ |
|~τK,K∗ |

= 0, limhM∗∗→0
|~εK∗,L|
|~τK∗,L|

= 0 and limhM∗∗→0
|~εL,K |
|~τL,K | = 0.

Proof of lemma 5.1

First case: Λ1 = Λ2.

Using the stokes formula, we obtain (see Figure 5.1):

2|K|∇D,Λu = −uK∗~nK∗ − uL~nL − uK~nK

which becomes

|K|∇D,Λ =
1

6
{(uK∗ − uK)(~nK − ~nK∗) + (uK − uL)(~nL − ~nK) + (uL − uK∗)(~nK∗ − ~nL)}.

As the vectors ~τL,K , ~τK,K∗ and ~τK∗,L satisfy ~τL,K = 1
6(~nL − ~nK),

~τK,K∗ = 1
6(~nK − ~nK∗), ~τK∗,L = 1

6(−~nL + ~nK∗), we obtain:

|K|∇D,Λu = (uK∗ − uK)~τK,K∗ + (uL − uK∗)~τK∗,L + (uK − uL)~τL,K .

Second case: Λ1 6= Λ2.

For x ∈ K1, the gradient ∇D,Λu satis�es:

2|K1|∇D,Λu = −uK∗~nK∗,1 − uσ~nL − uK~nσ.

We can write
uσ = βKuK + βLuL + βK∗uK∗ ,

with βK + βL + βK∗ = 1, limhM∗∗→0βK∗ = 0, limhM∗∗→0βK = [xL,xσ ]
[xL,xK ] ,

and limhM∗∗→0βL = [xK ,xσ ]
[xL,xK ] because, for K ∈M

∗∗\{M∗∗Λ ∪M∗∗Const} (Λ(x) is continuous),
limhM∗∗→0||Λ1 − Λ2|| = 0.

The gradient becomes:

2|K1|∇D,Λu = −uK∗(~nK∗,1 +εK∗~nL)−uL(
[xK , xσ]

[xL, xK ]
+εL)~nL−uK(~nσ+~nL(εK +

[xL, xσ]

[xL, xK ]
)),

with εK + εL + εK∗ = 0, limhM∗∗→0εK∗ = 0, limhM∗∗→0εK = 0 and limhM∗∗→0εL = 0.

As
(~nσ+

[xL,xσ ]

[xL,xK ]
~nL)

|K1| = ~nK
|K| ,

[xK,xσ ]

[xL,xK ]
~nL

|K1| = ~nL
|K| and

~nK∗,1
|K1| = ~nK∗

|K| , we deduce:

2|K|∇D,Λu = −uK∗(~nK∗ +
|K|
|K1|

εK∗~nL)− uL(1 +
|K|
|K1|

εL)~nL − uK(~nK +
|K|
|K1|

εK~nL)

= −uK∗~pK∗ − uL~pL − uK~pK .
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Finally, we obtain:

|K|∇D,Λu =
1

6
{(uK∗ − uK)(~pK − ~pK∗) + (uK − uL)(~pL − ~pK) + (uL − uK∗)(~pK∗ − ~pL)}.

Using the assumption on the grid (
min(|~τK,L|,|~τK,K∗ |,|~τK,K∗ |)

|~nL|
|K1|
|K| > θ), choosing

~εK,K∗ = − |K|
|K1|

εK∗~nL +
|K|
|K1|

εK~nL,

~εK∗,L =
|K|
|K1|

εK∗~nL −
|K|
|K1|

εL~nL,

~εL,K =
|K|
|K1|

εL~nL −
|K|
|K1|

εK~nL

and using the values of ~τL,K ,~τK,K∗ and ~τK∗,L, we obtain the desired property for x ∈ K1.

For x ∈ K2, the computation of the gradient is similar. �

Lemma 5.2With hypothesis 2.1, let S be a sequence of discretization D∗∗ = (HD, hM∗∗ , P1(u),∇D,Λ)
previously de�ned. We assume that there exists θ, such that for all D∗∗ ∈ S , for K ∈M∗∗Λ

• |~nσΛ2~nK
|K2| −

~nσΛ1~nL
|K1| | ≥ θ(

~nσΛ1~nσ
|K1| + ~nσΛ2~nσ

|K2| ), (H1)

• min(|~τK,L|,|~τK,K∗ |,|~τK,K∗ |)
max(|~nσ |,|~nK∗,1|,|~nK∗,2|)

> θ, (H2).

Then, there exists a constant C2 such that the gradients ∇K1u and ∇K2u satisfy:

|K1|∇K1u = (uK∗ − uK)~θ1(K,K∗) + (uL − uK∗)~θ1(K∗, L) + (uK − uL)~θ1(L,K)

and

|K2|∇K2u = (uK∗ − uK)~θ2(K,K∗) + (uL − uK∗)~θ2(K∗, L) + (uK − uL)~θ2(L,K).

with |~θ1(K,K∗)| ≤ C2
θ2 |~τK,K∗ |, |~θ1(K∗, L)| ≤ C2

θ2 |~τK∗,L|, |~θ1(L,K)| ≤ C2
θ2 |~τL,K |, |~θ2(K,K∗)| ≤

C2
θ2 |~τK,K∗ |, |~θ2(K∗, L)| ≤ C2

θ2 |~τK∗,L| and |~θ2(L,K)| ≤ C2
θ2 |~τL,K |.

Remark 5.1: In order to satisfy assumption (H1), it is su�cient to choose the primary
mesh points xK and xL close enough from xσ. In practice, this is a light hypothesis.

Proof of lemma 5.2

Let us denote Det = −~nσΛ1~nL
|K1| + ~nσΛ2~nK

|K2| .
We can write:

uσ = βKuK + βLuL + βK∗uK∗ (5.2)
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with βK + βL + βK∗ = 1 where βK = ~nσΛ1~nσ
Det|K1| , βL = ~nσΛ2~nσ

Det|K2| and βK∗ = 1− βK − βL.

Using assumption (H1), we obtain |Det| ≥ θ(~nσΛ1~nσ
|K1| + ~nσΛ2~nσ

|K2| ).

We deduce |βK | ≤ 1
θ , |βL| ≤

1
θ and βK∗ ≤ 2

θ + 1. Using the formula:

2|K1|∇K1u = −(uK∗ − uσ)~nK∗,1 − (uK − uσ)~nσ,

2|K2|∇K2u = −(uK∗ − uσ)~nK∗,2 − (uL − uσ)~nσ

and equality (5.2), we obtain: ~θ1(K,K∗) = −βK
2 ~nK∗,1 + βK∗

2 ~nσ, ~θ1(K∗, L) = βL
2 ~nK∗,1,

~θ1(L,K) = −βL
2 ~nσ,

~θ2(K,K∗) = −βK
2 ~nK∗,2,

~θ2(K∗, L) = βL
2 ~nK∗,2 −

βK∗
2 ~nσ

and ~θ2(L,K) = βL
2 ~nσ.

We conclude using assumption (H2). �

Proposition 5.1: With hypothesis 2.1, let S be a sequence of discretizations D∗∗ =
(HD, hM∗∗ , P1(u),∇D,Λ) previously de�ned. We assume that there exists θ, such that for
all D∗∗ ∈ S:

• ρK > θhK ∀K ∈M∗∗Const (H1),

• ρK1 > θhK1 ∀K ∈M∗∗\M∗∗Const (H2),

• ρK2 > θhK2 ∀K ∈M∗∗\M∗∗Const (H3),

• d(K,L) > 1
θ |~τK,L|, d(K,K∗) > 1

θ |~τK,K∗ |, d(L,K∗) > 1
θ |~τL,K∗ |, ∀K ∈M

∗∗ (H4),

• |~nσΛ2~nK
|K2| −

~nσΛ1~nL
|K1| | ≥ θ(

~nσΛ1~nσ
|K1| + ~nσΛ2~nσ

|K2| ) for K ∈M∗∗Λ (H5),

• min(|~τK,L|,|~τK,K∗ |,|~τK,K∗ |)
max(|~nσ |,|~nK∗,1|,|~nK∗,2|)

> θ for K ∈M∗∗Λ (H6),

• min(|~τK,L|,|~τK,K∗ |,|~τK,K∗ |)
|~nL|

|K1|
|K| > θ and

min(|~τK,L|,|~τK,K∗ |,|~τK,K∗ |)
|~nK |

|K2|
|K| > θ for K ∈M∗∗\{M∗∗Λ ∪M∗∗Const} (H7).

Then, the FECCB scheme is coercive, that is to say there exists CD∗∗ such that

||P1(u)||L2(Ω) ≤ CD∗∗ ||∇D,Λu||, u ∈ HD.

Moreover ∀ϕ ∈ [C∞c (Ω)], limhM∗∗→0S(ϕ) = 0 and ∀~ϕ ∈ [C∞c (Ω)]2

limhM∗∗→0WD∗∗(~ϕ) = 0. With these three properties, we can apply the corollary 2.3 de-
scribed in [26]. It means that the FECCB scheme is convergent, that is to say, P1(u)
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converges to the exact solution uexa of the problem and ∇D,Λu tends to ∇uexa as hM∗∗ → 0.

Proof of proposition 5.1:

Following Lemma 5.3 in [23], there exists C3 only depending on θ (Poincaré inequality)
such that:

||Π0
D∗∗u||2L2(Ω) ≤ C3||u||21,D∗∗ ,∀u ∈ HD.

Let us show that there exists C4 only depending on Ω and θ such that:

||u||21,D∗∗ ≤ C4||∇D,Λu(x)||2{L2(Ω)}2 . (5.3)

The proof is close to the one described in [26] (lemma 3.1). We denote by ∇Ku the value
of ∇D,Λu(x) if K ∈M∗∗Const, and ∇K1u (resp. ∇K2u ) the value of ∇D,Λu(x) on K1 (resp.
K2) if K ∈M∗∗\M∗∗Const. For all K ∈M∗∗Const, for all s ∈ V∗∗K and r ∈ V∗∗K , we can write:

us − ur = ∇Ku.(s− r).

We obtain:

||∇Ku||2 ≥
1

3
(
(uK − uL)2

[xK , xL]2
+

(uK − uK∗)2

[xK , xK∗ ]2
+

(uL − uK∗)2

[xL, xK∗ ]2
)

and

|K|||∇Ku||2 ≥
1

3
((uK − uL)2 ρK

[xK , xL]
+ (uK − uK∗)2 ρK

[xK , xK∗ ]
+ (uL − uK∗)2 ρK

[xL, xK∗ ]
).

(5.4)

For K ∈M∗∗\M∗∗Const, we get:

||∇K1u||2 ≥
1

2
(
(uK − uσ)2

[xK , xσ]2
+

(uK − uK∗)2

[xK , xK∗ ]2
)

and

||∇K2u||2 ≥
1

2
(
(uL − uσ)2

[xσ, xL]2
+

(uL − uK∗)2

[xL, xK∗ ]2
).

We deduce that there exists C5 such that:

|K1|||∇K1u||2 + |K2|||∇K2u||2 ≥ C5{(min(
ρK1

[xK ,xσ ] ,
ρK2

[xL,xσ ])(uK − uσ)2 + (uL − uσ)2)+

ρK1
[xK ,xK∗ ](uK − uK∗)

2 +
ρK2

[xL,xK∗ ](uL − uK∗)
2}.

(5.5)

Using the inequality (uK − uσ)2 + (uL − uσ)2 ≥ 1
2(uK − uL)2, we obtain that there exists

C21 such that:∑
K∈M∗∗\M∗∗Const

|K1|||∇K1u||2 + |K2|||∇K2u||2 ≥
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C21
∑

K∈M∗∗\M∗∗Const
min(

ρK1
[xK ,xσ ] ,

ρK2
[xL,xσ ])(uK − uL)2 +

ρK1
[xK ,xK∗ ](uK − uK∗)

2 +

ρK2
[xL,xK∗ ](uL − uK∗)

2.

Using assumptions (H1), (H2), (H3) and inequality (5.4), there exists C23 such that:

||∇D,Λu(x)||2 ≥ C23

∑
K∈M∗∗

θ(uK − uL)2 + θ(uK − uK∗)2 + θ(uL − uK∗)2.

Using assumption (H4), we get:

||∇D,Λu(x)||2 ≥ C23

∑
K∈M∗∗

|~τK,L|
d(K,L)

(uK−uL)2+
|~τK,K∗ |
d(K,K∗)

(uK−uK∗)2+
|~τL,K∗ |
d(L,K∗)

(uL−uK∗)2,

which is the desired inequality.

Moreover, for K ∈M∗∗, we write:

if x ∈ AiK , P1(u)(x) = Π0
D∗∗u(x) +∇P1,K

u.(x− xK),

if x ∈ AiL, P1(u)(x) = Π0
D∗∗u(x) +∇P1,L

u.(x− xL),

if x ∈ AiK∗ , P1(u)(x) = Π0
D∗∗u(x) +∇P1,K∗u.(x− xK∗).

We obtain that

||P1(u)||L2(Ω) ≤ ||Π0
D∗∗u||L2(Ω) + hM∗∗ ||∇P1u(x)||{L2(Ω)}2 . (5.6)

With Lemma 5.1, we obtain the formulation:

|K|∇P1u = (uK−uK∗)~τK,K∗+(uK∗−uL)~τK∗,L+(uL−uK)~τL,K for x ∈ K, for K ∈M∗∗.

We de�ne SK = ((K,L), (K,K∗), (K∗, L)). Using the Cauchy-Schwarz inequality and∑
K∈M∗∗

∑
(M,N)∈SK |~τM,N |d(M,N) = 2|Ω|, we get that there exists C20 such that:

||∇P1u||{L2(Ω)}2 ≤ C20||u||1,D∗∗ . (5.7)

Using (5.3), (5.6) and (5.7), we obtain that there exists C22 such that:

||P1(u)||L2(Ω) ≤ C22||∇D,Λu(x)||{L2(Ω)}2 . (5.8)

We conclude that the scheme is coercive.

Let us estimate the strong consistency of the discretization. Let ϕ ∈ [C∞c (Ω)]. As we
use the Stokes formula to approximate the gradient, with assumptions (H1), (H2) and
(H3), we obtain in the same way as lemma 4.3 described in [23] that there exists C6 only
depending on θ and ϕ such that

||∇D,Λϕ−∇ϕ||L2(Ω)2 ≤ C6hM∗∗ .
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Moreover, using Lemma 3.1 in [54], we obtain that ||P1(ϕ)− ϕ||L2(Ω) ≤ hM∗∗ ||∇ϕ||L2(Ω)2 .
We deduce that the interpolation error function S(ϕ) tends toward zero if hM∗∗ tends to-
ward zero.

Let ~ϕ ∈ [C∞c (Ω)]2. Let us compute T =
∫

Ω(∇D,Λu(x).~ϕ+ P1(u)div~ϕ(x))dx.

We denote by ~ϕK the average value of ~ϕ(x) if K ∈ M∗∗\M∗∗Λ , ~ϕK1 (resp. ~ϕK2) the
average value of ~ϕ(x) on K1 (resp. K2) if K∗∗ ∈M∗∗Λ , ~ϕM,N(M,N)∈SK the average value of
~ϕ(x) on ~τM,N,(M,N)∈SK .

We get T = T1 + T2 + T3 with

T1 =
∑

K∈M∗∗Const

|K|∇Ku.~ϕK +
∑

K∈M∗∗\{M∗∗Const∪M
∗∗
Λ }

|K1|∇K1u.~ϕK1

+ |K2|∇K2u.~ϕK∗∗2 +
∑

K∈M∗∗Λ

|K1|∇K1u.~ϕK1 + |K2|∇K2u.~ϕK∗∗2

= T11 + T12 + T13 + T14 + T15,

T2 =
∑

K∈M∗∗
(uK − uK∗)~τK,K∗ .~ϕK,K∗ + (uK∗ − uL)~τK∗,L.~ϕK∗,L + (uL − uK)~τL,K .~ϕK,L,

T3 =
∑

K∈M∗∗

∫
AiK

∇P1,K
u.(x− xK)div~ϕ(x)dx+

∫
AiL

∇P1,L
u.(x− xL)div~ϕ(x)dx

+

∫
AiK∗

∇P1,K∗u.(x− xK∗)div~ϕ(x)dx.

We obtain:

|T3| ≤ h∗∗M||∇P1u||{L2(Ω)}2 ||div~ϕ||L2(Ω). (5.9)

With assumption (H7) and Lemma 5.1, we get:

T11 + T12 + T13 =
∑

K∈M∗∗\M∗∗Λ

{(uK∗ − uK)(~τK,K∗ + ~εK,K∗) +

(uL − uK∗)(~τK∗,L + ~εK∗,L) + (uK − uL)(~τL,K + ~εL,K)}.~ϕK .

On the other hand, with Lemma 5.2, we write:

T14 =
∑

K∈M∗∗Λ

((uK∗ − uK)~θ1(K,K∗) + (uL − uK∗)~θ1(K∗, L) + (uK − uL)~θ1(L,K)).~ϕK1

and

T15 =
∑

K∈M∗∗Λ

((uK∗ − uK)~θ2(K,K∗) + (uL − uK∗)~θ2(K∗, L) + (uK − uL)~θ2(L,K)).~ϕK2 .
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Let us de�ne

Term1 =
∑

K∈M∗∗\M∗∗Λ

∑
(M,N)∈SK

(|~τM,N |+ |~εM,N )|)d(M,N)(|~ϕK − ~ϕM,N |2)

and

Term2 =
∑

K∈M∗∗Λ

∑
(M,N)∈SK

|~τM,N |d(M,N)(|
~θ1(M,N).~ϕK1

|~τM,N |
+
θ2(M,N)~ϕK2

|~τM,N |
− ~ϕM,N |2).

Using the Cauchy-Schwarz inequality, we obtain:

|T1 + T2|2 ≤ ||u||21,D∗∗(Term1 + Term2).

Besides, using the regularity of ~ϕ, there exists a constant Cφ such that

∀(M,N) ∈ SK |ϕK − ϕM,N |2 ≤ Cφh2
M∗∗ .

Using
∑

K∈M∗∗
∑

(M,N)∈SK |~τM,N |d(M,N) = 2|Ω|, and Lemma 5.1, there exists C30 such
that

Term1 ≤ C30|Ω|(h2
M∗∗(1 + ε1(hM∗∗)))

with limhM∗∗→0ε1(hM∗∗) = 0.

Moreover, using the regularity of ~ϕ, assumptions (H5), (H6) and Lemma 5.2, we get that
there exists C10 depending on θ and ~ϕ such that

∀(M,N) ∈ SK (|
~θ1(M,N).~ϕK1

|~τM,N |
+
θ2(M,N)~ϕK2

|~τM,N |
− ~ϕM,N |2) ≤ C10.

Following the same arguments as those described in [21] (Theorem 3.8), as the tensor λ(x) is
piecewise Lipschitz-continuous, we deduce that

∑
K∈M∗∗Λ

∑
(M,N)∈SK |~τM,N |d(M,N) tends

toward zero if hM∗∗ tends toward zero. (It means that the dimension of the zones where
the tensor λ(x) is discontinuous is inferior to one.)

We �nally obtain that there exists C8 such that:

|T1 + T2| ≤ C8||u||1,D∗∗(hM∗∗ + ε2(hM∗∗))

with limhM∗∗→0ε2(hM∗∗) = 0. Using (5.3), (5.9) and (5.7), we deduce that there exists C9

only depending on θ and ~ϕ such that WD∗∗(~ϕ) ≤ C9(hM∗∗ + ε(hM∗∗)). This is the dual
consistency described in [26]. �

Corollary 5.1With hypothesis 2.1, let S be a sequence of discretizations D∗∗ = (HD, hM∗∗ , P (u),∇D,Λ)
de�ned in (2.3). Under the assumptions of Proposition 5.1, the FECC scheme is conver-
gent, that is to say, P (u) converges to the exact solution uexa of the problem and ∇D,Λu
tends to ∇uexa as hM∗∗ → 0.
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Proof of corollary 5.1

We measure the strong consistency of the FECC scheme with the interpolation error func-
tion Si(ϕ) = {||P (ϕ) − ϕ||2L2(Ω) + ||∇D,Λϕ − ∇ϕ||2L2(Ω)2}

1
2 , ϕ ∈ [C∞c (Ω)] and the dual

consistency with the conformity error function

Wi,D∗∗(~ϕ) = maxu∈HD ||
1

∇D,Λu(x)
||
∫

Ω
(∇D,Λu(x).~ϕ+ P (u)(x)div~ϕ(x))dx,∀~ϕ ∈ [C∞c (Ω)]2.

Using the de�nition of P (u) and P1(u), we obtain that:

||P (u)− P1(u)||L2(Ω) ≤ hM∗∗(||∇P1u||L2(Ω)2 + ||∇D,Λu||L2(Ω)2).

With (5.3) and (5.7), there exists C40 such that:

||P (u)− P1(u)||L2(Ω) ≤ C40hM∗∗ ||∇D,Λu||L2(Ω)2 . (5.10)

In the same way, for ϕ ∈ [C∞c (Ω)], we get that:

||P (ϕ)− P1(ϕ)||L2(Ω) = ε3(hM∗∗) (5.11)

with limhM∗∗→0ε3(hM∗∗) = 0. Using (5.8), we deduce that there exists C41 such that

||P (u)||L2(Ω) ≤ C41||∇D,Λu(x)||{L2(Ω)}2 . (5.12)

We deduce that the FECC scheme is coercive. Using proposition 5.1, (5.10) and (5.11), we
obtain that ∀ϕ ∈ [C∞c (Ω)], limhM∗∗→0Si(ϕ) = 0 and ∀~ϕ ∈ [C∞c (Ω)]2 limhM∗∗→0Wi,D∗∗(~ϕ) =
0. We conclude applying corollary 2.3 described in [26]. �
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6.1. MOTIVATION.

6.1 Motivation.

For di�usion terms in models of �ows in porous media, for coupling transport equations
with a chemical model and for heat �ows from a cold material to a hot one, the existence
of a maximum principle of their solutions plays very important role, because violation
of the maximum principle might lead to non-physical solutions. Unfortunately, classical
�nite volume and �nite element schemes fail to satisfy the maximum principle for distorted
meshes or for high anisotropy ratio of di�usion tensors [19], [45], [34], [41]. In [11], to
satisfy the maximum principle, almost the discretization schemes for the Laplace operator
must comply with some type of geometrical constraint on the mesh, such as 2D & 3D acute
type condition in [14], [38]. Additionally, in [45], the authors proved that it is impossible to
construct nine-point methods which unconditionally satisfy the monotonicity criteria when
the discretization satis�es local conservation and exact reproduction of linear potential
�elds. However, in practical, these conditions are di�cult to satisfy, especially in three
dimensions. The FECC scheme also violates the discrete maximum principle: examples are
shown in the section 7.3 of chapter 7. Our objective is to construct non-linear corrections
for the FECC schemes providing a discrete maximum principle. The non-linear FECC
schemes still preserve the main properties of the scheme including coercivity, symmetry,
existence of a solution. Moreover, we also have the condition for convergence toward the
solution of (2.1) when the size of the meshes tends to 0. Besides, it is easy for us to
implement this modi�cation, because we can use the computed data of the linear systems
associated to the FECC schemes. The spirit of these non-linear corrections is based on the
methods presented in [53] and [13]. In fact, some authors also proposed non-linear �nite
volume schemes [21], [29], [35], [51], [43], [55], [30] to discretize elliptic problems. These
schemes satisfy the desired properties and accurate results. However, they are coercive
with conditions on the meshes and on the anisotropy ratio.

6.2 Notations.

Firstly, we introduce some notations and de�nitions used in this chapter:

• For the de�nition of E , we further assume that, for all σ ∈ E , either σ ∈ ∂Ω or
σ = K ∩ L for (K,L) ∈M×M.

• For σ ∈ E , we set dσ =

{
dK,σ + dL,σ if σ = K|L ∈ Eint

dK,σ if σ = EK ∩ Eext
, where dK,σ is the orthog-

onal distance between xK and the hyperplane containing σ.

• The size of the meshes is denoted by size(D) = sup
K∈M

diam(K),

• The coe�cient η which is a positive constant is considered in the section 7.3 of
Chapter 7.
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• The regularities of the primary and dual meshes are de�ned by:

regul(D) = sup
K∈M

{
max

(
diam(K)d

ρdK
,Card(EK)

)}
+ sup

K∈M
σ∈EK

{
diam(K)

dK,σ

}
+ sup

K∈Eint
σ=K|L

{
dL,σ
dK,σ

}
,

regul(D∗) = sup
K∗∈M∗

{Card(E∗K∗)}+ sup
K∗∈M∗
σ∗∈E∗

K∗

{
diam(K∗)

dK∗,σ∗

}
+ sup

K∗∈E∗int
σ=K∗|L∗

{
dL∗,σ∗

dK∗,σ∗

}
,

where for K ∈M, ρK is the supremum of the radius of the balls contained in K, and
d = 2, 3.

• HM is the set of all functions u containing u = (uK)K∈M ∈ RCard(M) such that u
is de�ned on Ω, is constant on each control volume ofM and takes the value uK in
the cell K ∈M. The space HM is equipped with the discrete norm de�ned by:

∀u ∈ HM, ||u||2D =
∑

σ∈Eint
σ∈EK∩EL

|σ| |uK − uL|
2

dσ
+
∑
σ∈Eext

|σ| |uK |
2

dσ
.

• The set V(K) is de�ned in the two following cases:

To correct the initial FECC scheme: For each K ∈ M ∪ M∗, V (K) which
belongs to {M∪M∗ ∪ Eext} corresponds to the stencil of the two systems (6.3) and
(6.4). The stencil is symmetric, i.e.

∀(K,L) ∈ (M∪M∗,M∪M∗), L ∈ V (K)⇒ K ∈ V (L). (6.1)

To correct the second FECC scheme: For each K ∈ M, V (K) is a subset
of M ∪ Eext corresponding to the stencil of the system (6.6). The stencil is also
symmetric, i.e.

∀(K,L) ∈M2, L ∈ V (K)⇒ K ∈ V (L). (6.2)

• De�nition 6.1 (Discrete Maximum Principle). The non-linear FECC schemes sat-
isfy the following discrete maximum principle: if f ≥ 0 on Ω, then the solution
u = (uK)K∈M of the non-linear FECC schemes satisfy minK∈MuK ≥ 0.

Before we represent the non-linear corrections, we recall the initial FECC scheme and in-
troduce another FECC scheme named "the second FECC scheme".

The initial FECC scheme: From (4.3) and (4.4) of chapter 2, we construct the two
systems of linear equations

DU∗ + EU = F ∗, (6.3)

MU∗ +NU = F. (6.4)
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where U = (UK)K∈M, U∗ = (U∗K∗)K∗∈M∗ ,D ∈MCard(M∗)×Card(M∗), E ∈MCard(M∗)×Card(M),
M ∈MCard(M)×Card(M∗), N ∈MCard(M)×Card(M). The two operators F , F ∗ ∈MCard(M∗)×1

are de�ned by:

F =

∫
Ω

f(x).P (pK)(x)dx


K∈M

, F ∗ =

∫
Ω

f(x).P (pK∗)(x)dx


K∗∈M∗

,

where let be K belonging toM∪M∗, we de�ne P (pK)(xK) = 1 and P (pK)(xL) = 0 with
L 6= K and L ∈ M∪M∗. Moreover, for all K ∈ M∪M∗, P (pK)(x) is equal to 0 on the
boundary ∂Ω.

Both left hand sides of (6.3) and (6.4)

(
D E
M N

)
.

(
U∗

U

)
can be rewritten by−AD,D∗(u),

where u ∈ HD and the discrete linear operator AD,D∗ : HD → HD is de�ned by:

∀u ∈ HD, ∀K ∈ {M∪M∗}, AD,D
∗

K (u) =
∑

Z∈V (K)

αK,Z(uZ − uK).

From the two systems (6.3) and (6.4), the system of linear equations (6.5) is built as (2.9)
(in 2D homogeneous isotropic cases), or (2.12) (2D heterogeneous anisotropic cases), or
(3.6) (in three dimensions)

A︸︷︷︸
N−ETD−1E

.U = B︸︷︷︸
F−ETD−1F ∗

. (6.5)

On the other hand, we can reconstruct the right hand side of (6.5) by:

F
∗

= 0, F = (|K|fK)K∈M, B = F ,

where fK denotes the mean value of f on the cell K.

The second FECC scheme is de�ned by:

A.u = B with u ∈ HM, (6.6)

where the matrix A is the same as the matrix A in (6.5). The left hand side of (6.6) can be
also rewritten by −AD(u), where the discrete linear operator AD : HM → HM is de�ned
by:

∀u ∈ HM, ∀K ∈M, ADK(u) =
∑

Z∈V (K)

αK,Z(uZ − uK).

6.3 Construction of non-linear corrections.

6.3.1 First non-linear FECC scheme.

For all u =
(
(uK)K∈M , (uK∗)K∗∈M∗

)
∈ HD, and all Z ∈ {V (K) ∪ V (K∗)} ⊂ {M∪M∗ ∪ Eext},

we de�ne the �rst non-linear FECC scheme (NLFECC1), as follows: for each K ∈
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M∪M∗,

SD,D
∗

K (u) = −AD,D
∗

K (u) +
∑

Z∈V (K)

βK,Z(u)(uK − uZ) =

∫
Ω

f(x).P (pK)(x)dx, (6.7)

we remark that if xK , xZ are on the boundary ∂Ω, uK∗ , uZ are equal to 0.

In (6.7), for any K belonging to M ∪M∗, βK,Z is de�ned by the following non-linear
corrections:

The �rst correction βD,D
∗
:

• If Z = σ ∈ Eext, then:

βD,D
∗

K,σ (u) = η.

∣∣∣AD,D∗K (u)
∣∣∣∑

Y ∈V (K)

|uY − uK |
.

• If Z = L ∈M∪M∗, then:

βD,D
∗

K,L (u) = η.


∣∣∣AD,D∗K (u)

∣∣∣∑
Y ∈V (K)

|uY − uK |
+

∣∣∣AD,D∗L (u)
∣∣∣∑

Y ∈V (L)

|uY − uL|

 .

We note that
∑

Y ∈V (K)

|uY − uK | or
∑

Y ∈V (L)

|uY − uL| is equal to 0, then the term∣∣∣AD,D∗K (u)
∣∣∣∑

Y ∈V (K)

|uY −uK | or

∣∣∣AD,D∗L (u)
∣∣∣∑

Y ∈V (L)

|uY −uL| disappears.

The second correction β
D,D∗

:

• If Z = σ ∈ Eext, then:

β
D,D∗
K,σ (u) = η.

∣∣∣AD,D∗K (u)
∣∣∣∑

Y ∈V (K)

1
2 (|uY |+ |uK |)

.

• If Z = L ∈M∪M∗, then:

β
D,D∗
K,L (u) = η.


∣∣∣AD,D∗K (u)

∣∣∣∑
Y ∈V (K)

1
2 (|uY |+ |uK |)

+

∣∣∣AD,D∗L (u)
∣∣∣∑

Y ∈V (L)

1
2 (|uY |+ |uL|)

 .

The third correction β̃D,D
∗
:
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• If Z = σ ∈ Eext, then:

β̃D,D
∗

K,σ (u) = η.

∣∣∣AD,D∗K (u)
∣∣∣∑

Y ∈V (K)

1
2 (|uY |+ |uK |)

.

• If Z = L ∈M∪M∗, then:

β̃D,D
∗

K,L (u) = η. sup


∣∣∣AD,D∗K (u)

∣∣∣∑
Y ∈V (K)

1
2 (|uY |+ |uK |)

,

∣∣∣AD,D∗L (u)
∣∣∣∑

Y ∈V (L)

1
2 (|uY |+ |uL|)

 .

6.3.2 Second non-linear FECC scheme

For all u ∈ HM, all K ∈ M and all Z ∈ V (K), the second non-linear FECC scheme
(NLFECC2) is de�ned by:

SDK(u) = −ADK(u) +
∑

Z∈V (K)

βK,Z(u)(uK − uZ) = |K|.fK . (6.8)

For any K belonging toM, we use the following corrections to de�ne βK,Z in (6.8):

The �rst correction βD:

• If Z = σ ∈ Eext, then:

βDK,σ(u) = η.

∣∣ADK(u)
∣∣∑

Y ∈V (K)

|uY − uK |
,

• If Z = L ∈M, then:

βDK,L(u) = η.

 ∣∣ADK(u)
∣∣∑

Y ∈V (K)

|uY − uK |
+

∣∣ADL (u)
∣∣∑

Y ∈V (L)

|uY − uL|

 .

We remark that
∑

Y ∈V (K)

|uY − uK | or
∑

Y ∈V (L)

|uY − uL| is equal to 0, then the term

|ADK(u)|∑
Y ∈V (K)

|uY −uK | or
|ADL (u)|∑

Y ∈V (L)

|uY −uL| disappears.

The second correction β
D

:

• If Z = σ ∈ Eext, then:

β
D
K,σ(u) = η.

∣∣ADK(u)
∣∣∑

Y ∈V (K)

1
2 (|uY |+ |uK |)

.
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• If Z = L ∈M, then:

β
D
K,L(u) = η.


∣∣ADK(u)

∣∣∑
Y ∈V (K)

1
2 (|uY |+ |uK |)

+

∣∣ADL (u)
∣∣∑

Y ∈V (L)

1
2 (|uY |+ |uL|)

 .

The third correction β̃D:

• If Z = σ ∈ Eext, then:

β̃DK,σ(u) = η.

∣∣ADK(u)
∣∣∑

Y ∈V (K)

1
2 (|uY |+ |uK |)

.

• If Z = L ∈M, then:

β̃DK,L(u) = η. sup


∣∣ADK(u)

∣∣∑
Y ∈V (K)

1
2 (|uY |+ |uK |)

,

∣∣ADL (u)
∣∣∑

Y ∈V (L)

1
2 (|uY |+ |uL|)

 .

6.4 Properties of the non-linear FECC schemes.

Now, we consider properties of the NLFECC2 scheme using the �rst non-linear correc-
tion βD. For the other non-linear FECC schemes, we prove similarly.

The family β = (βK,L)K∈M,Z∈V (K) satis�es the two following properties:

• symmetry: ∀K ∈M, ∀Z ∈ V (K) ∩M, βK,Z = βZ,K .

• positivity: ∀K ∈M,∀Z ∈ V (K), βK,Z ≥ 0.

These properties are useful to consider the following properties:

6.4.1 Coercivity.

Proposition 6.1 Let θ ≥ regul(D), regul(D∗) be given, then there exists a positive constant
C1 depending on θ, Ω, such that∑

K∈M
SDK(u)uK = −AD(u) +

∑
K∈M

uK
∑

Z∈V (K)

βDK,L(u)(uK − uZ) ≥ C1||u||2D. (6.9)

Proof of proposition 6.1

We �rstly prove that there exists C > 0 only depending on θ, Ω such that:∫
Ω

(Λ(x)∇D,Λu(x)) .∇D,Λu(x) dx ≥ C.||u||2D. (6.10)
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Using the de�nition of V∗, let each σ∗ ∈ E∗int, there exist two points xK and xL belonging to
P are vertices of σ∗. Besides, we de�ne an intersecting point xσ between σ∗ and σ = EK∪EL.
This intersecting point is inside σ (see Figure 4.10). At a triangle (xK , xL, xK∗) ∈M∗∗, we
estimate the absolute value of ∇D,Λu on each a sub-triangle (xK∗ , xK , xσ), (xK∗ , xL, xσ)
of (xK , xL, xK∗), as follows:

{
(∇D,Λu)(xK∗ ,xK ,xσ) .(xσ − xK) = uK

∗
σ − uK ,

(∇D,Λu)(xK∗ ,xL,xσ) .(xσ − xL) = uK
∗

σ − uL.
⇒


∣∣∣(∇D,Λu)(xK∗ ,xK ,xσ)

∣∣∣ ≥ ∣∣∣uK∗σ −uK ∣∣∣
m[xK,xσ ]

,∣∣∣(∇D,Λu)(xK∗ ,xL,xσ)

∣∣∣ ≥ ∣∣∣uK∗σ −uL∣∣∣
m[xL,xσ ]

.

(6.11)
Hence, we get that

∫
TK∗,σ∗=(xK ,xL,xK∗ )

|∇D,Λu|2 dx =

∫
(xK∗ ,xK ,xσ)

|∇D,Λu|2 dx+

∫
(xK∗ ,xL,xσ)

|∇D,Λu|2 dx

≥ m(xK∗ ,xK ,xσ).

(∣∣uK∗σ − uK∣∣
m[xK ,xσ ]

)2

+m(xK∗ ,xL,xσ).

(∣∣uK∗σ − uL∣∣
m[xL,xσ ]

)2

≥ dK∗,σ∗

∣∣uK∗σ − uK∣∣2
m[xK ,xσ ]

+ dK∗,σ∗

∣∣uK∗σ − uL∣∣2
m[xL,xσ ]

≥ dK∗,σ∗
|uK − uL|2

|σ∗|
.

Similarly,

∫
TL∗,σ∗=(xK ,xL,xL∗ )

|∇D,Λu|2 dx ≥ dL∗,σ∗
|uK − uL|2

|σ∗|
.

For each K∗ ∈M∗, σ∗ ∈ E∗K∗ , there exists σ ∈ EK with K ∈M, such that σ ∩σ∗ 6= ∅. We

�nd a relationship between |σ|dσ and dσ∗
|σ∗| :


θ ≥ regul(D) ≥ diam(K)

dK,σ
≥ |σ|

dK,σ
≥ |σ|dσ

θ ≥ regul(D∗) ≥ diam(K∗)
dK∗,σ∗

≥ |σ∗|
dK∗,σ∗

≥ |σ
∗|

dσ∗

|σ| ≥ dσ∗ and dσ ≤ |σ∗|
⇒ θ2.

dσ∗

|σ∗|
≥ |σ|
dσ
≥ dσ∗

|σ∗|
, (6.12)

where dσ∗ is equal to

{
dK∗,σ∗ + dL∗,σ∗ if σ = K∗|L∗ ∈ E∗int

dK∗,σ∗ if σ = E∗K∗ ∩ E∗ext
with the two orthogonal

distances from xK∗ and xL∗ to σ∗ denoted by dK∗,σ∗ , dL∗,σ∗ respectively.
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By (6.11) and (6.12), it follows that

∫
Ω

|∇D,Λu|2 dx =
∑

σ∗∈E∗int
σ∗=E∗

K∗∩E
∗
L∗

 ∫
TK∗,σ∗∈M∗∗

|∇D,Λu|2 dx+

∫
TL∗,σ∗∈M∗∗

|∇D,Λu|2 dx



+
∑

σ∗∈E∗ext
σ∗=E∗

K∗∩E
∗
ext

 ∫
TK∗,σ∗∈M∗∗

|∇D,Λu|2 dx


≥

∑
σ∗∈E∗int

σ∩σ∗ 6=∅,σ=EK∩EL∈Eint

(
dσ∗ |uK − uL|2

|σ∗|

)
+

∑
σ∗∈E∗int

σ∩σ∗ 6=∅, σ∈EK∩Eext

(
dσ∗ |uK |2

|σ∗|

)

+
∑

σ∗∈E∗ext
σ∩σ∗ 6=∅,σ∈EK∩Eext

(
dσ∗ |uK |2

|σ∗|

)

≥ 1

θ2

 ∑
σ∈Eint
σ∈EK∩EL

|σ| |uK − uL|
2

dσ
+
∑
σ∈Eext

|σ| |uK |
2

dσ

 = θ2||u||2D.

Therefore, the left hand side of (6.10) is estimated by∫
Ω

(Λ(x)∇D,Λu(x)) .∇D,Λu(x)dx ≥ λ
∫
Ω

|∇D,Λu(x)|2 dx ≥ λ
1

θ2︸︷︷︸
=C

||u||D.

Using the symmetry and positivity properties of the family βD and (6.2), it implies that∑
K∈M

uK
∑

Z∈V (K)

βDK,L(u)(uK − uZ) =
∑
K∈M

∑
Z∈V (K)∩M

βDK,Z(u)(uK − uZ)2

+
∑
K∈M

∑
Z∈V (K)∩Eext

βDK,Z(u)(uK)2 ≥ 0.

Together (6.10), we get
∑

K∈M
SDK(u)uK ≥ C1||u||2D. �

6.4.2 A prior estimate.

Proposition 6.2 If θ ≥ regul(D), regul(D∗), there then exists C2 only depending on Ω and
θ such that for any solution u to the NLFECC2 scheme SD:

||u||D ≤ C2||f ||L2(Ω). (6.13)

Proof of proposition 6.2
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From proposition 6.1, we get that

C1||u||2D ≤
∑
K∈M

SDK(u)uK =
∑
K∈M

|K|fKuK

=

∫
Ω

f.u dx ≤
Holder

||f ||L2(Ω)||u||L2(Ω) ≤ C3||f ||L2(Ω)||u||D.

The inequation ||u||L2(Ω) ≤ C3||u||D is implied by the discrete Poincare inequality. This
inequality can be deduced from Lemma 5.3 of [23]. It states that there exists C3 only
depending on Ω and θ. Similarly, we also have the following priori estimate of the second
FECC scheme: for any solution u ∈ HM of the second FECC scheme, there exists C4 such
that

||u||D ≤ C4||f ||L2(Ω). �

6.4.3 Existence of a solution.

Proposition 6.3 There exists one solution to the NLFECC2 scheme (6.8) with the cor-
rection βD.

Proof of proposition 6.3

Due to the proof of Proposition 3.4 [13](http://hal.archives-ouvertes.fr/hal-00643838/),
we put the function

H : [0, 1]×HM → HM

(t, u) → H(t, u) = −AD(u) + t

( ∑
Z∈V (K)

βDK,Z(uK − uZ)

)
K∈M

= (1− t)
[
−AD(u)

]
+ tSD(u),

we have H(0, u) = −AD(u) and H(1, u) = SD(u).

The operator H(t, .) is continuous on HM for all t ∈ [0, 1], because for all K ∈ M and all
Z ∈ V (K), we have the following inequation

βDK,Z(u)|uK − uZ | ≤
{
η.
(
|ADK(u)|+ |ADZ (u)|

)
if Z ∈ V (K) ∩M,

η.|ADK(u)| if Z ∈ V (K) ∩ Eext.

Because of results of the two propositions 6.1 and 6.2, the set of all solutions of H(t, u) =
(|K|fK)K∈M is bounded in HM.

Therefore, H is a homotopy, the degree of H(0,.) is di�erent from 0. We then deduce
existence of a solution for H(1, .) = (|K|fK)K∈M by applying the Brouwer's theorem. �

6.4.4 Convergence.

In this section, we will show conditions to get the convergence of the NLFECC2 scheme.

Proposition 6.4 If we have the following two conditions:
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• There exists θ > 0 not depending on D such that

θ > regul(D) + regul(D∗) + sup
K∈M,L∈V (K)

diam(L)

diam(K)
, (6.14)

•
sup
K∈M

{
|ADK(u)|diam(K)

|K|

}
→ 0 as size(D)→ 0, (6.15)

then for each ϕ ∈ C∞c (Ω), ϕD = (ϕK)K∈M ∈ HM with ϕK = ϕ(xK), we obtain∑
K∈M

ϕK
∑

Z∈V (K)

βDK,Z(uK − uZ)→ 0 as size(D)→ 0,

where u ∈ HM is a solution of the NLFECC2 scheme SD.

Proposition 6.4 relates to the convergence of the NLFECC2 scheme, as follows:
When the equation (6.8) is multiplied by ϕK on K and summed over K ∈M, it is trans-
formed into:

−
∑
K∈M

ADK(u)ϕK +
∑
K∈M

ϕK
∑

Z∈V (K)

βDK,Z(u)(uK − uZ) =
∑
K∈M

|K|fKϕK .

∑
K∈M

|K|fKϕK tends to the integral
∫
Ω

fϕ. Moreover, by the existence of the consistency

of the second FECC scheme, it ensures that

−
∑
K∈M

ADK(u)ϕK →
∫
Ω

Λ∇u∇ϕ dx as size(D)→ 0.

Proof of proposition 6.4

This proposition is the same proof as Proposition 3.6 [13]. From the symmetric family
βD and (6.2), we can write:∑

K∈M
ϕK

∑
Z∈V (K)

βDK,Z(uK − uZ) =
∑
K∈M

∑
Z∈V (K)∩M

βDK,Z(u)(uK − uZ)(ϕK − ϕZ)

+
∑
K∈M

∑
Z∈V (K)∩Eext

βDK,Z(u)(uK)(ϕK)

≤
∑
K∈M

∑
Z∈V (K)∩M

βDK,Z(u) |uK − uZ | |ϕK − ϕZ |

+
∑
K∈M

∑
Z∈V (K)∩Eext

βDK,Z(u) |uK | |ϕK | .

Together |uK−uZ |∑
Y ∈V (K)

|uK−uY | ≤ 1 for all K ∈M, all Z ∈ V (K), we then get

∑
K∈M

ϕK
∑

Z∈V (K)

βDK,Z(uK − uZ) ≤
∑
K∈M


∑

Z∈V (K)∩M

(∣∣ADK(u)
∣∣ |ϕK − φZ |+ ∣∣ADZ (u)

∣∣ |ϕK − ϕZ |)
+

∑
σ∈V (K)∩Eext

(∣∣ADK(u)
∣∣ |ϕK |)

.
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Note that for eachK ∈M, each Z ∈ V (K), there existsK∗ ∈M∗ satisfying xK , xZ ∈ V∗K∗ .
Thanks to (6.14), we �nd a positive constant C5 not depending on D such that

|ϕK − ϕZ | ≤ C5diam(K) for all K ∈M and all Z ∈ V (K)

with the function ϕ ∈ C∞0 (Ω).
Therefore,∑
K∈M

ϕK
∑

Z∈V (K)

βDK,Z(uK − uZ) ≤ C7

∑
K∈M

diam(K)|ADK(u)| ≤ C7|Ω| sup
K∈M

{
|ADK(u)|diam(K)

|K|

}
.

By the condition (6.15), we deduce that∑
K∈M

ϕK
∑

Z∈V (K)∩M

βDK,Z(uK − uZ)→ 0 size(D)→ 0. �

6.4.5 Discrete maximum principle.

Proposition 6.5 The NLFECC2 scheme with the �rst correction βD satis�es the discrete
maximum principle (see De�nition 6.1).

Proof of proposition 6.5

Proposition 6.5 is also proved as Proposition 2.1 [13]. We put uK0 = min
K∈M

uK with

K0 ∈M. From (6.8), we consider SDK0
(u):

SDK0
(u) =

∑
Z∈V (K0)

ADK0
(u)

|uK0 − uZ |∑
Y ∈V (K0)

|uK0 − uY |
+

∑
σ∈V (K0)∩Eext

 ∣∣ADK0
(u)
∣∣∑

Y ∈V (K0)

|uK0 − uY |

 .uK0

+
∑

Z∈V (K0)∩M

 ∣∣ADK0
(u)
∣∣∑

Y ∈V (K0)

|uK0 − uY |
+

∣∣ADZ (u)
∣∣∑

Y ∈V (K0)

|uZ − uY |

 .(uK0 − uZ)

= |K0|fK0 ≥ 0.

⇔ SDK0
(u) =

∑
Z∈V (K0)∩M


ADK0

(u).sgn(uK0
−uZ)∑

Y ∈V (K0)
|uK0

−uY | +

∣∣∣ADK0
(u)
∣∣∣∑

Y ∈V (K0)
|uK0

−uY |

+
|ADZ (u)|∑

Y ∈V (K0)

|uZ−uY |


︸ ︷︷ ︸

≥0

.(uK0 − uZ)

+
∑

σ∈V (K0)∩Eext

 ADK0
(u).sgn(uK0)∑

Y ∈V (K0)

|uK0 − uY |
+

∣∣ADK0
(u)
∣∣∑

Y ∈V (K0)

|uK0 − uY |


︸ ︷︷ ︸

≥0

.uK0 = |K0| fK0 ≥ 0.
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Obviously, uK0 must be equal or great than 0. �
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Numerical tests in 2D and 3D

93





Chapter 7

Numerical results

Contents
7.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 2D numerical tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Notations in 2D numerical tests. . . . . . . . . . . . . . . . . . . 96

7.2.2 2D numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.3 Comments about 2D numerical results. . . . . . . . . . . . . . . 104

7.3 3D numerical tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Notations in 3D numerical tests. . . . . . . . . . . . . . . . . . . 106

7.3.2 3D numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.3 Comments about 3D numerical results. . . . . . . . . . . . . . . 109

7.4 3D numerical tests of the non-linear FECC schemes for Dis-

crete Maximum Principle. . . . . . . . . . . . . . . . . . . . . . . 110

7.4.1 Notations in tests for Discrete Maximum Principle. . . . . . . . . 110

7.4.2 3D numerical results of the non-linear FECC schemes. . . . . . . 113

95



7.1. MOTIVATION.

7.1 Motivation.

In this chapter, the e�ciency of the 2D & 3D FECC schemes is demonstrated through
numerical tests of the 5th and 6th International Symposium on Finite Volumes for Com-
plex Applications - FVCA 5 & 6. Moreover, the comparison with classical �nite volume
schemes emphasizes the precision of the method. We also show the good behaviour of the
algorithm for nonconforming meshes. Besides, in the section (7.3), there are examples for
the maximum principle violations of the FECC schemes and 3D numerical results with
non-linear corrections.

7.2 2D numerical tests.

7.2.1 Notations in 2D numerical tests.

We introduce some notations for all the tests in the section 7.2:

• nunkw: number of unknowns.

• umin: value of the minimum of the approximate solution.

• umax: value of the maximum of the approximate solution.

Let us denote by uana the exact solution, uM = (uK)K∈M the piecewise constant approx-
imate solution.

• erl2, the relative discrete L2 norm of the error, as follows:

erl2 =


∑

K∈M
|K|(uana(xK)− uK)2∑

K∈M
|K|uana(xK)2


1
2

.

• ergrad, the relative L2 norm of the error on the gradient.

• ratiol2: for i ≥ 2,

ratiol2(i) = −2
ln(erl2(i))− ln(erl2(i - 1))

ln(nunkw(i))− ln(nunkw(i - 1))
.

• ratiograd, for i ≥ 2, the same formula as above with ergrad instead of erl2.

7.2.2 2D numerical results.

We use numerical tests in the 2D benchmark on discretization schemes FVCA 5.

Test 2D.1: Mild anisotropy
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We consider a homogeneous anisotropic tensor, as follows:

Λ =

(
1.5 0.5
0.5 1.5

)
.

Test 2D.1.1 : The exact solution uana and the source term f
uana(x, y) = 16x(1− x)y(1− y) in (0, 1)× (0, 1) ,
uana(x, y) =0 on the boundary of [0, 1]× [0, 1],
f(x, y) = −∇. (Λ∇uana) .

nunkw erl2 ratiol2 umin umax ergrad ratiograd
56 9.74303E-03 9.12E-02 9.28E-01 1.46E-02
224 2.44889E-03 1.99E+00 2.54E-02 9.28E-01 8.15E-03 0.848
896 6.08651E-04 2.00E+00 6.70E-03 9.95E-01 4.26E-03 0.936
3584 1.52175E-04 1.99E+00 1.73E-03 9.99E-01 2.17E-03 0.967
14336 3.81026E-05 1.99E+00 4.36E-04 1.00E+00 1.10E-03 0.983

Mesh 1 - regular triangular mesh.

nunkw erl2 umin umax ergrad
289 2.68581E-03 1.26800E-02 1.0020E+00 2.81E-02

Mesh 4.1 - distorted quadrangular mesh.

nunkw erl2 umin umax ergrad
1089 7.60982E-04 3.48999E-03 1.0007E+00 1.29E-02

Mesh 4.2 - distorted quadrangular mesh.

Mesh 4.1 - distorted quadrangular mesh. Mesh 4.2 - distorted quadrangular mesh.
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Test 2D.1.2 : The exact solution and the source term f

{
uana(x, y) = sin((1− x)(1− y)) + (1− x)3(1− y)2,
f(x, y) = −∇.(Λ∇uana).

nunkw erl2 ratiol2 umin umax ergrad ratiograd
56 2.25334E-03 7.16810E-03 1.3786 1.56E-03
224 6.03417E-04 1.90E+00 1.77495E-03 1.5973 9.52E-04 0.718
896 1.54969E-04 1.96E+00 4.42261E-04 1.7160 5.44E-04 0.808
3584 3.91813E-05 1.98E+00 1.10442E-04 1.7779 2.93E-04 0.890
14336 9.84396E-06 1.99E+00 2.75983E-05 1.8095 1.53E-04 0.938

Mesh 1 - regular triangular mesh.

nunkw erl2 ratiol2 ergrad ratiograd
40 5.41026E-03 2.43e-02
160 1.29132E-03 2.06E+00 1.35E-02 0.848
640 3.06998E-04 2.07E+00 7.12E-03 0.926
2560 7.43874E-05 2.04E+00 3.65E-03 0.964
10240 1.82906E-05 2.02E+00 1.84E-03 0.982

Mesh 3 - locally re�ned nonconforming rectangular mesh.

The error between the exact solution and the computed solution

Left: Result of the MPFA scheme [2]. Right: Result of the FECC scheme.
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Mesh 1 - regular triangular mesh. Mesh 3 - locally re�ned nonconforming rectangular mesh.

Test 2D.2: Heterogeneous rotating anisotropy

The tensor Λ satis�es the equation:

Λ =
1

(x2 + y2)

(
10−3x2 + y2

(
10−3 − 1

)
xy(

10−3 − 1
)
xy x2 + 10−3y2

)
.

We de�ne the exact solution and the source term f as:


uana(x, y) = sin(πx) sin(πy) in (0, 1)× (0, 1) ,
uana(x, y) =0 on the boundary of [0, 1]× [0, 1],
f(x, y) = −∇. (Λ∇uana) .

nunkw erl2 ratiol2 umin umax ergrad ratiograd
16 7.02265E-02 1.35E-01 9.34E-01 9.04E-02
64 1.67141E-02 2.07E+00 3.68E-02 9.8E-01 5.03E-02 0.770
256 4.25124E-03 1.97E+00 9.5E-03 9.94E-01 2.80E-02 0.919
1024 1.09645E-03 1.95E+00 2.4E-03 9.98E-01 1.43E-02 0.970
4096 2.81843E-04 1.96E+00 6.02E-04 9.99E-01 7.21E-03 0.988

Mesh 2 - uniform rectangular mesh.
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Mesh 2 - uniform rectangular mesh.

We consider the problem:

{
div (Λ∇u) = div (Λ∇uana) in Ω = (0, 1)× (0, 1) ,
u(x, y) = uana(x, y) on ∂Ω,

for the following tests:

Test 2D.3: Discontinuous anisotropy (see for more detail in the section 4.2.1 of [21])

The analytical solution is

{
uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5,
uana(x, y) = 0.01 cos(πx) sin(πy) if x > 0.5.

Consider the tensor

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
100 0
0 0.01

)
if x > 0.5.

nunkw erl2 ratiol2 umin umax ergrad ratiograd
56 5.45056E-03 -9.07E-03 9.06E-01 8.131501E-03
224 1.37517E-03 1.98E+00 -9.76E-03 9.75E-01 6.623965E-03 0.296
896 3.44881E-04 1.99E+00 -9.93E-03 9.93E-01 3.741116E-03 0.824
3584 8.65861E-05 1.99E+00 -9.98E-03 9.98E-01 1.972594E-03 0.923
14336 2.17672E-05 1.99E+00 -9.99E-03 9.99E-01 1.011825E-03 0.963

Mesh 1 - regular triangular mesh.

The error between the exact solution and the computed solution
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Left: Result of the Diamond scheme [16]. Right: Result of the FECC scheme.

Test 2D.3.b: Discontinuous anisotropy

The analytical solution is{
uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5,
uana(x, y) = 0.01 cos(πx) sin(πy) if x > 0.5.

The tensor is

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
100 0
0 0.01

)
if x > 0.5.

We use the harmonic averaging points yσ introduced by [5] to de�ne the dual grid.

yσ =
λLdK,σyL + λKdL,σyK
λLdK,σ + λKdL,σ

+
dK,σdL,σ

λLdK,σ + λKdL,σ
(λσK − λσL) ,

where notations are de�ned in Lemma 2.1 of [5], page 2.

We obtain the following numerical results with this modi�cation:

nunkw erl2 ratiol2 umin umax
56 4.99875E-03 -9.07E-03 9.06E-01
224 1.28975E-03 1.95E+00 -9.76E-03 9.75E-01
896 3.32247E-04 1.95E+00 -9.93E-03 9.93E-01
3584 8.47105E-05 1.97E+00 -9.98E-03 9.98E-01
14336 2.14672E-05 1.98E+00 -9.99E-03 9.99E-01

The results are slightly more accurate than the previous results.

Test 2D.4: Discontinuous strong anisotropy
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The analytical solution is{
uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5,
uana(x, y) = 10−6 cos(πx) sin(πy) if x > 0.5.

Consider the tensor

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
106 0
0 0.01

)
if x > 0.5.

nunkw erl2 ratiol2 umin umax ergrad ratiograd
56 5.45798E-03 -9.07E-07 9.06E-01 8.138566E-03
224 1.37250E-03 1.99E+00 -9.76E-07 9.75E-01 6.624536E-03 0.296
896 3.43047E-04 2.00E+00 -9.93E-07 9.93E-01 3.741224E-03 0.824
3584 8.58622E-05 1.99E+00 -9.98E-07 9.98E-01 1.972620E-03 0.923
14336 2.14862E-05 1.99E+00 -9.99E-07 9.99E-01 1.011832E-03 0.963

Mesh 1 - regular triangular mesh.

Test 2D.4.b: Discontinuous strong anisotropy

We also use the harmonic averaging points yσ introduced by [5] to de�ne the dual grid.
The analytical solution is{

uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5,
uana(x, y) = 10−6 cos(πx) sin(πy) if x > 0.5.

The tensor is

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
106 0
0 0.01

)
if x > 0.5.

We obtain the following numerical results:

nunkw erl2 ratiol2 umin umax
56 5.03257E-03 -9.07E-07 9.06E-01
224 1.29392E-03 1.95E+00 -9.76E-07 9.75E-01
896 3.32255E-04 1.96E+00 -9.93E-07 9.93E-01
3584 8.44700E-05 1.97E+00 -9.98E-07 9.98E-01
14336 2.13100E-05 1.98E+00 -9.99E-07 9.99E-01

The results are slightly more accurate than before.

Remark 7.1: In test 2D.3.b and test 2D.4.b, the tensors are discontinuous on the line
(d): x = 0.5. All the points yσ belong to the edges σ which are common edges of the two
adjacent control volumes, computed by

yσ =
λLdK,σyL + λKdL,σyK
λLdK,σ + λKdL,σ

,

102



7.2. 2D NUMERICAL TESTS.

because all the vectors λσK , λ
σ
L are equal to 0.

In test 5, we show that [5] does not provide an "acceptable" yσ.

Test 2D.5: Discontinuous anisotropy (case where the harmonic averaging points
are not always de�ned).

The analytical solution is
uana(x, y) = sin(πx).

The tensor is

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
1 9
9 100

)
if x > 0.5.

We obtain the following numerical results with the FECC scheme:

nunkw erl2 ratiol2 umin umax
56 2.81812E-01 1.51E-01 1.80E+00
224 2.59236E-02 3.44E+00 7.81E-02 1.10E+00
896 3.56133E-03 2.86E+00 3.92E-02 1.02E+00
3584 5.81922E-04 2.61E+00 1.96E-02 1.00E+00
14336 1.43293E-04 2.02E+00 9.81E-03 1.00E+00

Here, the FECC scheme is de�ned because the dual mesh is de�ned. Initially, the primary
mesh points were located at the barycentre of each triangle cell. We chose to move them
slightly such that the hypothesis 3.1 is satis�ed for any edge of the primary grid.

We give here the coordinates of a few yσ for the coarse grid.

nunkw K L x
(K,L)
s x

(K,L)
s′ yσ

56 6 18 (0.5, 0) (0.5, 0.25) (0.5,−0.105128205)

14 24 (0.5, 0.25) (0.5, 0.5) (0.5, 0.120512821)

The scheme of [5] is not de�ned, because there are some harmonic averaging points yσ
which are outside the edges σ.
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7.2. 2D NUMERICAL TESTS.

In this �gure, the edge σ which is a common edge between K and L, has two vertices
x

(K,L)
s and x(K,L)

s′ .

By test 5, we see another di�erence between the FECC scheme and the scheme of [5].

7.2.3 Comments about 2D numerical results.

In test 2D.1.1, for triangular cells, when the mesh and the solution are regular, we
obtain a second order convergence in the L2 norm and an order close to 1 for the gradient.

In test 2D.1.2, we obtain an order of convergence in the L2 norm close to 2 for regular
triangular meshes and locally re�ned nonconforming rectangular meshes. The order of
convergence of the gradient tends toward 1 for regular triangular meshes and locally re�ned
nonconforming rectangular meshes.

In test 2D.2, for uniform rectangular meshes where Λ is an heterogeneous tensor, we
obtain an order of convergence near to 2 in the L2 norm and the order of convergence of
the gradient tends toward 1.
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From the graphs which describe the number of unknowns and relative discrete L2 norm of
the error, we see that the errors of the FECC scheme are less important than the errors
of [6], [9], [23], [44], [48], [32], [40], [33] and the orders for the gradient of the scheme are
close to those of the Galerkin �nite element method (see [9]).

In test 2D.3, for regular triangular meshes where Λ is discontinuous, we obtain an or-
der of convergence near to 2 in the L2 norm and the order of convergence for the gradient
tends toward 1. With the same number of unknowns, the errors of the scheme in the L2

norm are less than the errors of [16].

e) In test 2D.4, for regular triangular meshes where Λ is an heterogeneous tensor with
a strong anisotropy, we obtain an order of convergence in the L2 norm near to 2 and the
order of convergence for the gradient also tends toward 1.

The participating schemes are used to compare with the FECC scheme:

Cell centered schemes:

• CMPFA: Compact-stencil MPFA method for heterogeneous highly anisotropic second-
order elliptic problems, [44].
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• FVHYB: A symmetric �nite volume scheme for anisotropic heterogeneous second-
order elliptic problems, [6].

• FVSYM: Numerical results with two cell-centered �nite volume schemes for hetero-
geneous anisotropic di�usion operators, [48, 47].

• SUSHI: A scheme using stabilization and Hybrid Interfaces for anisotropic heteroge-
neous di�usion problems, [23].

Discrete duality �nite volume schemes:

• DDFV-HER: Numerical experiments with the DDFV method, [32].

Finite elements schemes:

• FEP1: A Galerkin �nite element solution, [9].

Mixed or hybrid methods:

• MFD-BLS: Mimetic �nite di�erence method, [40].

• MFV: Use of mixed �nite volume method, [33].

7.3 3D numerical tests.

We use numerical tests in the 3D benchmark on discretization schemes FVCA 6.

7.3.1 Notations in 3D numerical tests.

We use the following notations in all tests of the section 7.3:

• The relative L2 norm of the gradient of the error is given by:

ergrad =


∑

T∈M∗∗
m(T )|∇Tu−∇TP (uana)|2∑

T∈M∗∗
m(T )|∇TP (uana)|2


1
2

,

whereM∗∗ is the set of all tetrahedral elements of the third meshes, m(T ) > 0 is the
measure of the tetrahedron T .

• The convergence rates are de�ned by: for i ≥ 2,

ratiol2(i) = −3
log(erl2(i)/erl2(i− 1))

log(nu(i)/nu(i− 1))
,

ratiograd(i) = −3
log(ergrad(i)/ergrad(i− 1))

log(nu(i)/nu(i− 1))
.
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7.3.2 3D numerical results.

Test 3D. 1: Flow on random meshes.

The anisotropy tensor is

Λ(x, y, z) =

 1 0 0
0 1 0
0 0 103


The analytical solution is

uana(x, y, z) = sin(2πx) sin(2πy) sin(2πz)

with min = 0, max = 1.

We consider on the random meshes

random mesh.

We get the following numerical results:

nunkw umin umax erl2 ratiol2 ergrad ratiograd
64 -0.928 0.740 1.957E-01 2.935E-01
512 -1.037 1.013 1.004E-01 0.963 2.578E-01 0.186
4096 -1.015 1.006 3.403E-02 1.561 1.501E-01 0.771

Test 3D. 2: Flow around a well.

The tensor is given by

Λ(x, y, z) =

 1 0 0
0 1 0
0 0 0.2


with min = 0, max = 5.415.

The domain Ω and the exact solution are detailed in [4]. Moreover, the domain Ω is
partitioned by the well meshes:
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well mesh.

We obtain the following numerical results:

nunkw umin umax erl2 ratiol2
890 0.390 5.316 6.089E-03
2232 0.231 5.327 2.624E-03 2.745
5016 0.151 5.328 1.173E-03 2.982
11220 0.116 5.330 6.004E-04 2.495

Test 3D. 3: Discontinuous anisotropy.

We consider the discontinuous anisotropic permeability, as follows:

Λ(x, y, z) =

 1 0 0
0 1 0
0 0 1

 if x ≤ 0.5, Λ(x, y, z) =

 1000 0 0
0 1 0
0 0 1

 if x > 0.5.

The analytical solution is{
uana(x, y, z) = cos(πx) sin(πy) sin(πz) if x ≤ 0.5.
uana(x, y, z) = 0.001 cos(πx) sin(πy) sin(πz) if x > 0.5.

The cube meshes are used:

cube mesh.
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The numerical results of Test 3D. 3 are shown in the following three cases:

• Case 1: The source term is computed by
∫
Ω

f(x).P (pK)(x)dx for all K ∈ M and∫
Ω

f(x).P (pK∗)(x)dx for all K∗ ∈M∗.

• Case 2: The source term is computed by
∫
K

f(x)dx for all K ∈M.

• Case 3: We use harmonic averaging points and the edge unknowns uσ in the equation
(37)− (40) [26].

Case 1 Case 2 Case 3
nunkw erl2 ratiol2 erl2 ratiol2 erl2 ratiol2

64 4.614E-02 2.702E-01 6.413E-02
512 1.163E-02 1.98 6.313E-02 2.09 1.579E-02 2.02
4096 2.914E-03 1.99 1.541E-02 2.03 3.883E-03 2.02
16000 1.180E-03 1.99 6.101E-03 2.04 1.558E-03 2.01

7.3.3 Comments about 3D numerical results.

We use the following classical schemes to compare with the 3D FECC scheme:

Cell-centered schemes:

• LS-FVM: The cell-centered �nite volume method using least squares vertex recon-
struction (diamond scheme), by Y. Coudiére and G. Manzini [15].

Finite element schemes:

• MELODIE: A linear �nite element solver, by H. Amor, M. Bourgeois, and G. Mathieu
[8].

Gradient schemes:

• SUSHI: The SUSHI scheme, by R. Eymard, T. Gallouët and R. Herbin [24].

• VAG: The VAG scheme, by R. Eymard, C. Guichard and R. Herbin [25].

Nonlinear schemes:

• FVMON: A monotone nonlinear �nite volume method for di�usion equations on poly-
hedral meshes, by A. Danolov and Y. Vassilevski [17].

In test 3D.1, for the random meshes, the order of convergence in the L2 norm and the
order of convergence of the gradient of the FECC scheme increase, which is similar to the
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numerical results of the 3D Sushi scheme in the same test.

In test 3D.2, for the well meshes, the order of convergence in the L2 norm is greater than 2.

For test 3D.1 and test 3D.2, we obtain the following �gures:

In test 3D.3, for the cube meshes and the discontinuous anisotropic tensor, we compare
with the three di�erent source terms. These methods are often used to compute the discrete
source terms in classical �nite volume and �nite element schemes. We see that, in the three
cases, the orders of convergence in the L2 norm are close to 2.

7.4 3D numerical tests of the non-linear FECC schemes for

Discrete Maximum Principle.

7.4.1 Notations in tests for Discrete Maximum Principle.

The following notations are used to present the numerical results:
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• numkw: number of unknowns.

• uminADi : minimum value of the approximate solution,

• umaxADi : maximum value of the approximate solution,

• erl2ADi : the relative L2 norm of the error,

• ergradADi : the relative L2 norm of the error,

• ratiol2ADi : the convergence rate,

where the values i = 1, 2 correspond to the initial and the second FECC scheme.

We de�ne, for the �rst non-linear FECC scheme (NLFECC1),

• uminSDj : minimum value of the approximate solution,

• umaxSDj : maximum value of the approximate solution,

• erl2SDj : the relative L2 norm of the error,

• ratiol2SDj : the convergence rate,

• nitSDj : number of iterations needed to compute the approximate solution of SD,

•
(
AK0
|K0|

)
SDj

= max
{
|AK(u)|
|K| , ∀K ∈M

}
,

where the values j = 1, 3 correspond to the values of η = 0.25, 0.5, 1, 2.

For the second non-linear FECC scheme (NLFECC2), we use the notations uminSD,D∗j
,

umaxSD,D∗j
, erl2SD,D∗j

, ratiol2SD,D∗j
and nitSD,D∗j

.

The iterative algorithm of the NLFECC1 scheme is presented, as follows:

With a �xed point iteration i, we �x u in βK,Z(u) by the value of solution ui.

Step 1: For all K∗ ∈ M∗, we construct the system of linear combinations depending
on
(
(ui+1
K∗ )K∗∈M∗int , (u

i+1
K )K∈M

)
with the following linear equation:

−AD,D
∗

K∗ (ui+1) +
∑

Z∈V (K∗)

βK∗,Z(ui)(ui+1
K∗ − u

i+1
Z ) =

∫
Ω

f(x).P (pK∗)(x)dx.

We note that the set V (K∗) does not contain L∗ ∈ M∗ such that L∗ 6= K∗. Hence we
compute ui+1

K∗ by linear combinations depending on (ui+1
K )K∈M.
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Step 2: For all K ∈ M, we also have the system of linear combinations depending on(
(ui+1
K∗ )K∗∈M∗int , (u

i+1
K )K∈M

)
by the following linear equation:

−AD,D
∗

K (ui+1) +
∑

Z∈V (K)

βK,Z(ui)(ui+1
K − ui+1

Z ) =

∫
Ω

f(x).P (pK)(x)dx.

By Step 1, we transform ui+1
K∗ for all K∗ ∈M∗int into the linear combinations depending on

(ui+1
K )K∈M. Therefore, we can rewrite the system of linear equations in Step 2 by another

system of linear equations only depending on (ui+1
K )K∈M.

In the iterative algorithm of the NLFECC2 scheme, we also �x u = ui in βK,L(u), where ui

is the value of the solution, i is a �xed point iteration. This iterative algorithm is written
by:

−ADK(ui+1) +
∑

Z∈V (K)

βK,Z(ui)(ui+1
K − ui+1

Z ) = |K|.fK , ∀K ∈M.

The two algorithms are stopped by the criterion ||u
i+1−ui||
||ui|| ≤ 10−4.
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7.4.2 3D numerical results of the non-linear FECC schemes.

Test 1: Stationary analytical solution

The strong anisotropic permeability is

Λ(x, y, z) =

 100 0 0
0 1 0
0 0 1

 .
The analytical solution is given by:

u(x, y, z) = sin
(π

2
x
)
. sin

(π
2
y
)
. sin

(π
2
z
)
.

The domain Ω is partitioned by the cube meshes:

the unit cube.

In test 1, we consider accuracy, the order of convergence in the L2 norm and existence of
the discrete maximum principle for the FECC schemes and the non-linear FECC schemes.
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numkw 64 512 4096
uminAD1 8.023E-3 1.238E-3 1.748E-4

uminSD,D∗1
(η = 0.25) 9.334E-3 1.407E-3 1.917E-4

uminSD,D∗2
(η = 0.5) 1.108E-2 1.630E-3 2.129E-4

uminSD,D∗3
(η = 1) 1.490E-2 2.199E-3 2.666E-4

umaxAD1 0.9622 0.9907 0.9976

umaxSD,D∗1
0.9443 0.9844 0.9958

umaxSD,D∗2
0.9330 0.9805 0.9946

umaxSD,D∗3
0.9193 0.9757 0.9931

erl2AD1 1.569E-2 4.274E-3 1.043E-3

erl2SD,D∗1
9.403E-3 7.585E-3 4.216E-3

erl2SD,D∗2
2.706E-2 1.651E-2 8.502E-3

erl2SD,D∗3
5.476E-2 3.189E-2 1.612E-2

ratiol2AD1 1.88 2.03

ratiol2SD,D∗1
0.31 0.84

ratiol2SD,D∗2
0.71 0.96

ratiol2SD,D∗3
0.78 0.98

nitSD,D∗1
6 6 5

nitSD,D∗2
8 7 7

nitSD,D∗3
11 12 15

Table 1.1, the NLFECC1 schemes SD,D
∗
with the �rst correction βD,D

∗
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD1 8.023E-3 1.238E-3 1.748E-4

uminSD,D∗1
(η = 0.25) 8.917E-3 1.331E-3 1.822E-4

uminSD,D∗2
(η = 0.5) 1.001E-2 1.440E-3 1.910E-4

uminSD,D∗3
(η = 1) 1.248E-2 1.698E-3 2.139E-4

umaxAD1 0.9622 0.9907 0.9976

umaxSD,D∗1
0.9580 0.9902 0.9976

umaxSD,D∗2
0.9541 0.9897 0.9975

umaxSD,D∗3
0.9474 0.9888 0.9975

erl2AD1 1.569E-2 4.274E-3 1.043E-3

erl2SD,D∗1
8.432E-3 2.419E-3 6.383E-4

erl2SD,D∗2
9.980E-3 3.085E-3 7.821E-4

erl2SD,D∗3
2.486E-2 7.753E-3 1.880E-3

ratiol2AD1 1.88 2.03

ratiol2SD,D∗1
1.80 1.92

ratiol2SD,D∗2
1.69 1.98

ratiol2SD,D∗3
1.68 2.04

nitSD,D∗1
5 4 4

nitSD,D∗2
6 5 5

nitSD,D∗3
7 8 8

Table 1.2, the NLFECC1 schemes SD,D
∗
with the second correction β

D,D∗
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD1 8.023E-3 1.238E-3 1.748E-4

uminSD,D∗1
(η = 0.25) 9.365E-3 1.383E-3 1.865E-4

uminSD,D∗2
(η = 0.5) 1.105E-2 1.558E-3 2.001E-4

uminSD,D∗3
(η = 1) 1.460E-2 1.988E-3 2.441E-4

umaxAD1 0.9622 0.9907 0.9976

umaxSD,D∗1
0.9549 0.9898 0.9976

umaxSD,D∗2
0.9488 0.9889 0.9975

umaxSD,D∗3
0.9391 0.9873 0.9973

erl2AD1 1.569E-2 4.274E-3 1.043E-3

erl2SD,D∗1
7.243E-3 2.359E-3 6.479E-4

erl2SD,D∗2
1.776E-2 6.010E-3 1.565E-3

erl2SD,D∗3
4.065E-2 1.409E-2 3.697E-3

ratiol2AD1 1.88 2.03

ratiol2SD,D∗1
1.62 1.86

ratiol2SD,D∗2
1.56 1.94

ratiol2SD,D∗3
1.53 1.93

nitSD,D∗1
5 5 5

nitSD,D∗2
7 6 7

nitSD,D∗3
9 11 13

Table 1.3, the NLFECC1 schemes SD,D
∗
with the third correction β̃D,D

∗
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

Comments about Table 1.1, 1.2 and 1.3: for the strong anisotropic tensor and the
cube meshes, we obtain a second order in the L2 norm for the initial FECC scheme. With
the NLFECC1 schemes constructed from the �rst corrections, their orders of convergence
in the L2 norm are near to 1 with η = 0.25, 0.5, 1. On the other hand, when we consider the
NLFECC1 schemes with the second and the third corrections, the orders of convergence
in the L2 norm are close to 2 with η = 0.25, 0.5, 1. All these schemes satisfy the discrete
maximum principle.

In the following �gures, we show the comparison between the initial FECC scheme and the
non-linear schemes:

the �rst correction. the second correction.

the third correction.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD2 8.501E-3 1.278E-3 1.777E-4

uminSD1 (η = 0.25) 1.091E-2 1.545E-3 2.019E-4

uminSD2 (η = 0.5) 1.364E-2 1.870E-3 2.313E-4

uminSD3 (η = 1) 1.828E-2 2.548E-3 2.962E-4

umaxAD2 1.0172 1.0096 1.0033

umaxSD1 0.9850 0.9981 0.9998

umaxSD2 0.9653 0.9913 0.9977

umaxSD3 0.9432 0.9837 0.9955

erl2AD2 9.634E-2 4.453E-2 1.848E-2

erl2SD1 6.508E-2 2.945E-2 1.294E-2

erl2SD2 5.292E-2 2.507E-2 1.202E-2

erl2SD3 5.909E-2 3.311E-2 1.730E-2

ratiol2AD2 1.11 1.27

ratiol2SD1 1.14 1.18

ratiol2SD2 1.08 1.06

ratiol2SD3 0.84 0.94

nitSD1 6 6 6

nitSD2 8 8 9

nitSD3 12 16 60

Table 1.4, the NLFECC2 schemes SD with the �rst correction βD.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD2 8.501E-3 1.278E-3 1.777E-4

uminSD1 (η = 0.25) 1.041E-2 1.457E-3 1.910E-4

uminSD2 (η = 0.5) 1.243E-2 1.651E-3 2.059E-4

uminSD3 (η = 1) 1.610E-2 2.041E-3 2.411E-4

umaxAD2 1.0172 1.0096 1.0033

umaxSD1 1.0084 1.0085 1.0032

umaxSD2 1.0009 1.0075 1.0031

umaxSD3 0.9883 1.0056 1.0029

erl2AD2 9.634E-2 4.453E-2 1.848E-2

erl2SD1 8.115E-2 4.040E-2 1.767E-2

erl2SD2 6.990E-2 3.715E-2 1.698E-2

erl2SD3 5.782E-2 3.306E-2 1.595E-2

ratiol2AD2 1.11 1.27

ratiol2SD1 1.01 1.19

ratiol2SD2 0.91 1.13

ratiol2SD3 0.81 1.05

nitSD1 5 5 5

nitSD2 6 6 6

nitSD3 7 9 11

Table 1.5, the NLFECC2 schemes SD with the second correction β
D
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD2 8.501E-3 1.278E-3 1.777E-4

uminSD1 (η = 0.25) 1.119E-2 1.544E-3 1.982E-4

uminSD2 (η = 0.5) 1.397E-2 1.828E-3 2.204E-4

uminSD3 (η = 1) 1.832E-2 2.361E-3 2.862E-4

umaxAD2 1.0172 1.0096 1.0033

umaxSD1 1.0026 1.0076 1.0031

umaxSD2 0.9911 1.0058 1.0029

umaxSD3 0.9737 1.0027 1.0025

erl2AD2 9.634E-2 4.453E-2 1.848E-2

erl2SD1 7.363E-2 3.774E-2 1.704E-2

erl2SD2 6.041E-2 3.335E-2 1.596E-2

erl2SD3 5.605E-2 3.057E-2 1.587E-2

ratiol2AD2 1.11 1.27

ratiol2SD1 0.96 1.15

ratiol2SD2 0.85 1.06

ratiol2SD3 0.87 0.94

nitSD1 5 5 6

nitSD2 6 7 8

nitSD3 8 19 38

Table 1.6, the NLFECC2 schemes SD with the third correction β̃D.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

Comments about Table 1.4, 1.5 and 1.6: for the strong anisotropic tensor and the
cube meshes, the order of convergence in the L2 norm for the second FECC scheme is not
second order, because we do not use enough meshes. However, we observe the orders for all
the NLFECC2 schemes are close to 1 with η = 0.25, 0.5, 1. All these schemes also satisfy
the discrete maximum principle.

In the following �gures, we show the comparison between the second FECC scheme and
the non-linear schemes:

the �rst correction. the second correction.

the third correction.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

Test 2: Stationary non analytical solution

The permeability is

Λ(x, y, z) =

 100 0 0
0 1 0
0 0 1

 .
The analytical solution is equal to 0 on the boundary ∂Ω.

The source term is a discontinuous function on Ω :

f(x, y, z) =

{
1000 if (x, y, z) ∈ (0, 5; 0, 75)× (0, 5; 0, 75)× (0, 5; 0, 75).
0 if Ω/(0, 5; 0, 75)× (0, 5; 0, 75)× (0, 5; 0, 75).

The primary meshes are the cube meshes:

the unit cube.

Test 2 is used to evaluate the respect of the discrete maximum principle. We obtain the
following numerical results:
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD1 -4.733E-2 -3.435E-2 -1.101E-2

uminSD,D∗1
(η = 0.25) -2.621E-2 -9.054E-3 -5.247E-4

uminSD,D∗2
(η = 0.5) -4.950E-3 -6.112E-4 -3.355E-5

uminSD,D∗3
(η = 1) 3.923E-4 1.518E-5 2.919E-8

umaxAD1 0.5031 0.4220 0.4651

umaxSD,D∗1
0.3956 0.3519 0.3909

umaxSD,D∗2
0.3040 0.2879 0.3398

umaxSD,D∗3
0.1798 0.2028 0.2701

nitSD,D∗1
11 9 8

nitSD,D∗2
19 14 11

nitSD,D∗3
24 37 23

Table 2.1, the NLFECC1 schemes SD,D
∗
with the �rst correction βD,D

∗
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

For η = 0.25,

For η = 0.5,

For η = 1,
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD1 -4.733E-2 -3.435E-2 -1.101E-2

uminSD,D∗1
(η = 0.25) -1.637E-2 -1.669E-2 -7.162E-4

uminSD,D∗2
(η = 0.5) 4.676E-5 8.092E-8 -9.163E-7

uminSD,D∗3
(η = 1) 4.780E-4 6.297E-6 1.913E-9

umaxAD1 0.5031 0.4220 0.4651

umaxSD,D∗1
0.3579 0.3823 0.4493

umaxSD,D∗2
0.2638 0.3321 0.4334

umaxSD,D∗3
0.1763 0.2709 0.4037

nitSD,D∗1
12 10 7

nitSD,D∗2
16 14 9

nitSD,D∗3
16 22 17

Table 2.2, the NLFECC1 schemes SD,D
∗
with the second correction β

D,D∗
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

For η = 0.25,

For η = 0.5,

For η = 1,
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD1 -4.733E-2 -3.435E-2 -1.101E-2

uminSD,D∗1
(η = 0.25) -9.517E-3 -6.994E-3 �4.698E-4

uminSD,D∗2
(η = 0.5) 1.190E-4 6.376E-7 2.371E-11

uminSD,D∗3
(η = 1) 6.931E-4 2.086E-5 2.653E-8

umaxAD1 0.5031 0.4220 0.4651

umaxSD,D∗1
0.3348 0.3593 0.4375

umaxSD,D∗2
0.2350 0.3010 0.4117

umaxSD,D∗3
0.1439 0.2284 0.3677

nitSD,D∗1
14 11 7

nitSD,D∗2
19 15 11

nitSD,D∗3
17 37 28

Table 2.3, the NLFECC1 schemes SD,D
∗
with the third correction β̃D,D

∗
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

For η = 0.25,

For η = 0.5,

For η = 1,
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD2 -6.311E-2 -4.287E-2 -1.301E-2

uminSD1 (η = 0.25) -3.341E-2 -6.052E-3 -3.034E-4

uminSD2 (η = 0.5) -2.243E-3 -1.661E-5 -4.651E-7

uminSD3 (η = 1) 1.107E-3 2.816E-5 5.755E-8

umaxAD2 0.6708 0.5584 0.5027

umaxSD1 0.5156 0.4322 0.4168

umaxSD2 0.3715 0.3363 0.3539

umaxSD3 0.1965 0.2166 0.2701

nitSD1 12 10 9

nitSD2 20 15 13

nitSD3 20 29 68

Table 2.4,the NLFECC2 schemes with the �rst correction β
D
.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

For η = 0.25,

For η = 0.5,

For η = 1,
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAD2 -6.311E-2 -4.287E-2 -1.301E-2

uminSD1 (η = 0.25) -1.086E-2 -2.809E-3 -3.263E-4

uminSD2 (η = 0.5) 2.792E-4 9.661E-7 4.000E-11

uminSD3 (η = 1) 1.251E-3 1.835E-5 1.239E-8

umaxAD2 0.6708 0.5584 0.5027

umaxSD1 0.4238 0.4416 0.4784

umaxSD2 0.2855 0.3618 0.4517

umaxSD3 0.1725 0.2679 0.4041

nitSD1 13 9 7

nitSD2 14 14 11

nitSD3 10 33 25

Table 2.5, the NLFECC2 schemes with the second correction β
D
.

131



7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

For η = 0.25,

For η = 0.5,

For η = 1,
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

In Test 2, although we do not know the analytical solution, this solution is equal or greater
than 0 because of the positive source term and the discrete maximum principle (DMP).

Comments about Table 2.1, 2.2, 2.4: for the cube meshes, the strong anisotropic
tensor and the discontinuous source term, the FECC schemes and the non-linear schemes
with η = 0.25, 0.5 violate DMP. The non-linear schemes with η = 1 satisfy DMP. How-
ever, number of iterations needed to compute the approximate solution of the non-linear
schemes with η = 1 (nit) are greater than nit of the other non-linear schemes.

Comments about Table 2.3, 2.5: for the cube meshes, the strong anisotropic tensor
and the discontinuous source term, the FECC schemes and the non-linear schemes with
η = 0.25 do not satisfy DMP. On the other hand, with η = 0.5, 1, the non-linear schemes
satisfy DMP.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.
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8.1. CONCLUSION

8.1 Conclusion

The objective of this work was to represent a new cell-centered scheme and study its
main properties for heterogeneous anisotropic di�usion problem (2.1) on general meshes.
Its name is the Finite Element Cell-Centered scheme (the FECC scheme). The FECC
scheme has the following main characteristics:

• Its ideas are based on the standard �nite element method.

• It uses a particular de�nition of dual meshes.

• In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

• It is a cell-centered scheme, its stencil is equal or less than nine on quadrangular
meshes and twenty seven on hexahedral meshes.

• It is exact on cell-wise a�ne solutions for cell-wise constant di�usion tensors.

• In general cases, with light assumption (hypothesis 2.1 and 3.1), the matrix which is
associated to our scheme is symmetric and positive de�nite on general meshes.

• It takes into account nonconforming meshes. This is helpful to use Adaptive Mesh
Re�nement to locally increase the precision.

• It is convergent for discontinuous tensors which are piecewise Lipschitz-continuous.

• It is very precise in L2 norm in comparison with classical �nite volume schemes
(FVCA 5 & 6 tests).

The other objectives were to study the non-linear FECC schemes with non-linear correc-
tions to satisfy the maximum principle. It is well-known that classical �nite volume and
�nite element schemes fail to satisfy the maximum principle for distorted meshes or for
high anisotropy ratio of di�usion tensors [19], [45], [34], [41]. Moreover, in [45], the authors
proved that it is impossible to construct nine-point methods which unconditionally sat-
isfy the monotonicity criteria when the discretization satis�es local conservation and exact
reproduction of linear potential �elds. In these papers, they propose some conditions to sat-
isfy the maximum principle. However, these conditions are di�cult to satisfy, especially in
three dimensions. The FECC scheme also violates the discrete maximum principle. Hence,
we used non-linear corrections to correct the initial and the second FECC schemes. These
non-linear schemes are named the NLFECC1 and the NLFECC2 schemes satisfying the
maximum principle and preserving the main properties: symmetry, positive-de�niteness,
coercivity, a priori estimate, existence of solution to the schemes and the condition for
convergence toward the solution of (2.2) when the size of the meshes tends to 0. Besides,
it is easy for us to implement, because we can use the computed data of the linear system
associated to the FECC schemes. In the section 7.4, we showed 3D numerical results of
the non-linear schemes and comparisons between the FECC schemes and these schemes.
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8.2. PERSPECTIVES

8.2 Perspectives

A natural extension could be to use the FECC scheme in a convection di�usion dis-
persion equation. If one needs to satisfy the minimum and the maximum principles, the
NLFECC1 and the NLFECC2 schemes will be coupled to a classical cell-centered convec-
tive scheme. Another application could be a coupling with a chemical model, where it is
crucial to obtain a solution satisfying the physical bounds.
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Résumé

Nous présentons de nouveaux schémas numériques pour l'approximation de problèmes
de di�usion hétérogène et anisotrope sur des maillages généraux. Sous des hypothèses cor-
respondant aux cas industriels, nous montrons qu'un premier schéma, qui est centré sur les
mailles, possède un petit stencil et converge dans le cas de tenseurs discontinus. La preuve
de la convergence repose sur des propriétés de consistance des gradients discrets issus du
schéma. Dans une seconde partie, nous proposons des méthodes de correction non linéaire
du schéma initial pour obtenir le principe du maximum.

L'e�cacité de ces schémas est étudiée sur des tests numériques ayant fait l'objet de
bancs d'essais d'une grande variété de schémas de volumes �nis. Les comparaisons avec les
schémas volumes �nis classiques montrent l'apport de ces schémas en termes de précision.
Nous montrons ainsi le bon comportement de ces schémas sur des maillages déformés,
et le maintien de la précision des schémas non-linéaires, alors que les oscillations ont été
supprimées.

Mots clés : Di�usion hétérogène anisotrope, maillages généraux, volumes �nis, schéma
centré sur les mailles, principe du maximum.
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Abstract

We present a new scheme for the discretization of heterogeneous anisotropic di�usion
problems on general meshes. With light assumptions, we show that the algorithm can
be written as a cell-centered scheme with a small stencil and that it is convergent for
discontinuous tensors. The key point of the proof consists in showing both the strong and
the weak consistency of the method. Besides, we study non-linear corrections to correct
the FECC scheme, in order to satisfy the discrete maximum principle (DMP).

The e�ciency of the scheme is demonstrated through numerical tests of the 5th & 6th
International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6.
Moreover, the comparison with classical �nite volume schemes emphasizes the precision of
the method. We also show the good behaviour of the algorithm for nonconforming meshes.
In addition, we give some numerical tests to check the existence for the non-linear FECC
schemes.

Keywords : Heterogeneous anisotropic di�usion, general grids, �nite volumes, �nite
elements, cell-centered scheme, discrete maximum principle.
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Résumé:

Nous présentons de nouveaux schémas numériques pour l'approximation de problèmes
de di�usion hétérogène et anisotrope sur des maillages généraux. Sous des hypothèses
correspondant aux cas industriels, nous montrons qu'un premier schéma, qui est centré sur
les mailles, possède un petit stencil et converge dans le cas de tenseurs discontinus. La
preuve de la convergence repose sur des propriétés de consistance des gradients discrets
issus du schéma. Dans une seconde partie, nous proposons des méthodes de correction non
linéaire du schéma initial pour obtenir le principe du maximum.

L'e�cacité de ces schémas est étudiée sur des tests numériques ayant fait l'objet de
bancs d'essais d'une grande variété de schémas de volumes �nis. Les comparaisons avec les
schémas volumes �nis classiques montrent l'apport de ces schémas en termes de précision.
Nous montrons ainsi le bon comportement de ces schémas sur des maillages déformés,
et le maintien de la précision des schémas non-linéaires, alors que les oscillations ont été
supprimées.

Mots clés :

Di�usion hétérogène anisotrope, maillages généraux, volumes �nis, schéma centré sur
les mailles, principe du maximum.

Abstract :

We present a new scheme for the discretization of heterogeneous anisotropic di�usion
problems on general meshes. With light assumptions, we show that the algorithm can
be written as a cell-centered scheme with a small stencil and that it is convergent for
discontinuous tensors. The key point of the proof consists in showing both the strong and
the weak consistency of the method. Besides, we study non-linear corrections to correct
the FECC scheme, in order to satisfy the discrete maximum principle (DMP).

The e�ciency of the scheme is demonstrated through numerical tests of the 5th & 6th
International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6.
Moreover, the comparison with classical �nite volume schemes emphasizes the precision of
the method. We also show the good behaviour of the algorithm for nonconforming meshes.
In addition, we give some numerical tests to check the existence for the non-linear FECC
schemes.

Keywords :

Heterogeneous anisotropic di�usion, general grids, �nite volumes, �nite elements, cell-
centered scheme, discrete maximum principle.


