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1.1. PROBLEMS AND NUMERICAL SIMULATIONS OF NUCLEAR WASTE
DISPOSAL.

1.1 Problems and numerical simulations of nuclear waste dis-
posal.

Nuclear waste includes leftovers and products of radioactive materials used to gener-
ate electricity, carry out certain health-care procedures, perform a variety of commercial
processes and conduct university researches. Because different types of nuclear waste have
been varying levels of radioactivity, according to [12], waste is divided into the two main
categories: high-level waste and low-level waste. The goal of long-term radioactive waste
management is to protect humankind and its environment from the effects of the materials
comprised in this waste, most importantly from radiological hazards, because the possi-
ble returns to the biosphere of minute amounts of radionuclide can have no unacceptable
health or environmental impact. The object of nuclear waste disposal which is seen as the
reference solution help to ensure the confinement of radioactivity within a definite space, to
be segregated from humankind and the environment in over several tens of thousand years,
in the case of long-lived waste, or even longer. Disposal in deep geological strata (typically,
500 m down) inherently makes for deployment of a more passive technical solution, with
the ability to stand, with no increased risk, an absence of surveillance. The geological en-
vironment of such a disposal facility thus forms a further, essential barrier. Therefore, it is
necessary to research into nuclear waste disposal simulation. In the framework of nuclear
waste disposal simulation, we are interested in the two kinds of equations: the familiar
ground-water flow equations and the transport equations having a term of radioactive de-
cay. This term of radioactive decay allows to study the migration of a radionuclide (for
example Todine 129 or Plutonium 242) in highly anisotropic heterogeneous geological layers.

In [36] and [37], the familiar ground-water flow models are governed by the relations ex-
pressed in Darcy’s law and the conservation of mass. The Darcy’s law which represents
the rate of flow water through a porous media related to the properties of the water, the
properties of the porous media, and the gradient of the hydraulic head, is written by:

oh
4 = —Kz‘jaTjj,
where ¢; is the specific discharge, K;; is the hydraulic conductivity of the porous medium,
and h is the hydraulic head.
A general groundwater flow equation which may be derived by combining Darcy’s law with
the continuity equation, are written in Cartesian tensor, follows as:

) oh oh
(K22 ) = Sg— .
oz, ( ]8xi> Ssgr TW

where Sg is the specific storage, t is time, W* which is the volumetric flux per unit vol-
ume (positive for outflow and negative for inflow), and x; are the Cartesian coordinates.
Fluid properties such as density and viscosity may vary significantly in space or time. This
may occur where water temperature or dissolved-solids concentration changes significantly.
When the water properties are heterogeneous and (or) transient, the relations among water
levels, hydraulic heads, fluid pressures, and flow velocities are neither simple nor straight-
forward. In such cases, the flow equation is written and solved in terms of fluid pressures,
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1.1. PROBLEMS AND NUMERICAL SIMULATIONS OF NUCLEAR WASTE
DISPOSAL.

fluid densities, and the intrinsic permeability of the porous media.

In [10], the transport model of radionuclide (RN) in porous media is described by convection-
diffusion-dispersion equations . These equations are to particularly consider the two con-
centrations of lodine 129 (C;) and Plutonium 242 (Cs3) escaping from the repository cave
into the water. They are written by:

R,w <8actiz + )\ch> — V. (DIVC’Z) +u.VC; = f; in Qx (O,T) 1=1,2,

where

e R; is the latency Retardation factor, with value 1 for 2°I, 10° for 24?Pu in the clay
layer and 1 elsewhere for both lodine and Plutonium,

o the effective porosity w, is equal to 0.001 for 2°T, 0.2 for 242Pu in the clay player and
0.1 elsewhere for both,

e \; = log2/T; with T} being the half life time of the element: 1.57 107 for 12, 3.7610°
for 242Pu (in year),

e u is the velocity of the flow,
e f; (i =1, 2) are the source term,

e the effective diffusion/dispersion tensors D; for any ¢ = 1,2 depend on the Darcy
velocity, as follows:

D = deil + |ul [ag E(u) + oy (I — E(u))]

with
U Uy

Ek](u) = |u’2 .

We have a sample table of diffusion dispersion coefficients for the radioactive elements in
the 4 layers:

lodien 129 Plutonium 242
de, (m?[year) | ay, | au, | dey(m?/year) | ay, | au,
Dogger 5.04E-4 50 1 5.04E-4 50 1
Clay 9.48E-7 0] 0 1.42E-4 0| 0
Limestone 5.0E-4 50 | 1 5.04E-4 50 | 1
Marl 5.0E-4 0 0 5.0E-4 0 0

One of the important ingredients for the numerical solutions of these ground-water flow
equations and transport equations is the discretization of anisotropic heterogeneous diffu-
sion terms on general meshes. For this complex task, there are many proposed discretization
methods which have been classified by the list of well-known discretization methods. This

15



1.1. PROBLEMS AND NUMERICAL SIMULATIONS OF NUCLEAR WASTE
DISPOSAL.

list involves the finite difference method, the finite element method and the finite volume
method. Each of these methods has its own advantages and disadvantages.

Firstly, the finite difference method is simple. Nevertheless, it is not widely used in prac-
tical applications, since we need a smoothness assumption of the solution and it is not
applicable for the domains with a complex geometry.

Secondly, the standard finite element method has the following advantages:

e It can be applied in domains with complex shapes. These domains can be discretized
by triangular meshes.

e [t uses the spaces of piecewise polynomials of degree 1 to approximate the solution
function. The basic functions of these spaces have small supports, so the computation
of this method is simple.

Unfortunately, in discontinuous diffusion problems coupled with convective transport mod-
els, the approximate solutions can be inaccurate [56], when they are computed by the stan-
dard finite element method.

Thirdly, the finite volume method is known as a accuracy and cheap method for the dis-
cretization of conservation laws to approximate the solutions of anisotropic heterogeneous
diffusion problems. Furthermore, it exists local conservativity of the fluxes that is signifi-
cant in physics. Now, this method is classified into the two main categories:

e “Cell-centered schemes” compute approximate values of the solution function at the
centers of the cells of the primary meshes.

e Other schemes use not only usual cell unknowns but also interface unknowns to
compute approximation values of the solution function. In [20], HFV, MFD and MFV
involve the cell and edge unknowns. These schemes belong to the same family. In
addition, the DDFV schemes in [18], [31] which give precise solutions use techniques
of dual mesh. They depend on the cell and vertex unknowns. Obviously, all schemes
of this category are more expensive than cell-centered schemes, because they use
more unknowns.

Therefore, we pay attention to “Cell-centered schemes” with small stencils and only using
cell unknowns. By these two advantages, they are often used in industrial codes. "Cell-
centered schemes" still have disadvantages. The so-called Multipoint Flux Approximation
(MPFA) [2], [3] involves the reconstruction of the gradient in order to evaluate the fluxes.
But these methods only satisfy coercivity under suitable conditions on both the mesh and
the permeability tensor A. In [7], the authors need a coercivity assumption linking the
mesh and the tensor. Additionally, some proposed schemes only need either conditions on
meshes or conditions on the permeability tensor. For examples, in [5], the condition is that
the meshes are not too distorted. In [16], the authors need a sufficient coercivity condition.
In this kind of schemes, let us also cite methods [21, 46, 50, 51, 42, 43], the methods allow
to obtain maximum and minimum principles for diffusion problems on distorted meshes.

16



1.2. CONTENT AND OBJECTIVE OF THE THESIS.

1.2 Content and objective of the thesis.

In my work, the proposed scheme is designed on general meshes for heterogeneous and
anisotropic permeability tensors with the main following characteristics:

e The main idea of the scheme is based on that of the standard finite element method
and a technique of dual mesh. The dual mesh is chosen to be easily recovered a cell
centered scheme, i.e, the dual mesh unknowns are computed by linear combinations
of cell unknowns. This is different from other schemes which use techniques of the
dual mesh such as DDFV schemes, because we can not recover a cell centered scheme
with these dual meshes.

e It is a cell-centered scheme and its stencil is equal or less than nine on quadrangular
meshes and twenty seven on hexahedral meshes.

e In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

e In general cases, using a light assumption (hypothesis 3.1), the matrix which is as-
sociated to our scheme is symmetric and positive definite on general meshes.

e It is exact on cell-wise afline solutions for cell-wise constant diffusion tensors.

Its name is the finite element cell-centered scheme (the FECC scheme).

On the other hand, we focus on studying the existence of a maximum principle. This
existence is one of the fundamental properties of approximate solutions for the ground-
water flow and the transport equations, because violation of the maximum principle can
lead to non-physical solutions. In these equations, the convective term is discretized using
a classical upwind scheme that satisfies the minimum and the maximum principles [49],
[39]. Hence, we only pay attention to the existence of the principles for the diffusion-
dispersive term. However, classical finite volume and finite element schemes do not satisfy
these principles for distorted meshes or for high anisotropy ratio of diffusion tensors [19],
[45], [34], [41]. In [45], the authors proved that it is impossible to construct nine-point
methods which unconditionally satisfy the monotonicity criteria when the discretization
satisfies local conservation and exact reproduction of linear potential fields. The proposed
non-linear finite volume schemes [21], [29], [35], [51], [43], [55], [30] satisfy the desired prop-
erties and the accurate results, but they are coercive with conditions on the meshes and
on the anisotropy ratio. The FECC scheme also violates the maximum principle (see Test
2 in the section 7.3 of chapter 7). That is why we will study three non-linear corrections
for the FECC schemes. Their constructions are based in the spirit of methods developed
in [53] and [13].

Finally, in this work, the efficiency of the FECC scheme is demonstrated though numerical
tests of the bth & 6th International Symposium on Finite Volumes for Complex Appli-
cations - FVCA 5 & 6. In addition, the comparison with classical finite volume schemes
emphasizes the precision of the method. We show the good behaviour of algorithms for
nonconforming meshes. We also present 3D numerical results for the linear and the non-
linear schemes.

17



1.3. STRUCTURE OF THE THESIS.

1.3 Structure of the thesis.

The thesis started with a discussion about problems and numerical simulations of nu-
clear waste disposal. From these problems, we focused on analysis of advantages and
disadvantages of classical numerical schemes used in the discretization of anisotropic het-
erogeneous diffusion equation on general meshes. The thesis is then organized, as follows:

In Chapter 2, we concentrate on the constructions of the dual, the third meshes and the
definition of the FECC scheme in isotropic homogeneous cases and in anisotropic hetero-
geneous cases in two dimensions.

In Chapter 3, we present the 3D extension of the constructions of the dual, the third
meshes and the definition of the FECC scheme in isotropic homogeneous cases and in
anisotropic heterogeneous cases.

In Chapter 4, we show the mathematical properties of the FECC scheme including the
symmetric positive definite matrix associated to the scheme, the small stencil, the rela-
tionship between the FECC scheme and the scheme of [5], the accuracy on cell-wise affine
solutions for cell-wise constant diffusion tensors.

In Chapter 5, the convergence of the FECC scheme with the piecewise Lipschitz-continuous
tensor A is proved. The key point of the proof consists in showing both the strong and the
weak consistency of the method.

In Chapter 6, we present non-linear corrections for the FECC schemes and the proper-
ties of the modified schemes.

In Chapter 7, we show 2D and 3D numerical results of FVCA 5 & 6 and comparisons
with classical finite volume schemes. Additionally, we give numerical results to test the
existence, violation of the maximum principle for the FECC schemes and the non-linear

FECC schemes (NLFECC1 and NLFECC2).

In Chapter 8, the conclusion and the perspectives of the schemes are discussed.

18
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2.1. MOTIVATION.

2.1 Motivation.

In this chapter, we construct a new cell centered scheme for approximating heteroge-
neous anisotropic diffusion operators on general meshes. For this work, we recall that the
Multipoint Flux Approximate (MPFA) [2], |3] involves the reconstruction of the gradient
in order to evaluate the fluxes. Nevertheless, these methods only satisfy coercivity under
suitable conditions on both the mesh and the permeability tensor A. In [7], the authors
need a coercivity assumption which links the mesh and the tensor. There are also some
schemes which need either conditions on meshes or conditions on the permeability tensor.
For example, in [5], the condition is that the meshes are not too distorted. In addition,
the Sushi scheme [23] is unconditionally coercive, but its stencil includes the neighbours of
the neighbours of a given control volume.

The proposed scheme [52] has the main characteristics:

e Its main idea is based on the P1 standard finite element method on the third trian-
gular mesh built from a particular dual mesh.

e [t is a cell-centered scheme and its stencil is equal or less than nine on quadrangular
meshes.

e In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

e In general cases, using a light assumption (hypothesis 2.4.1), the matrix which is
associated to our scheme is symmetric and positive definite on general meshes.

2.2 The continuous problem.

The approximation of the solutions of the anisotropic heterogeneous diffusion problems
is an important issue in several engineering fields. We mention a kind of these problems,

as follows:
—div (A(z)Vu) = f in Q, (2.1)
u=0 on 0}, '

where the following assumptions hold:

1. © is an open bounded connected polygonal subset of R? with d = 2, 3.

2. The diffusion (or permeability) tensor A : Q — R9*? is symmetric, uniformly positive-
definite and such that the set of its eigenvalues is included in [, A], with A and A
€ R satisfying 0 < A < A.

3. The function f is the source term and belongs to L?(12).

With assumptions (1)-(3), u is called the weak solution of (2.1) if u satisfies

u € H}(Q) and Vo € H}(Q), [ (A(x)Vu(z)) . Vu(z)de = | f(zx (2.2)
/ st
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2.3. NOTATIONS.

Figure 2.1: A sample primary mesh (solid lines) and its dual mesh (dashed lines).

2.3 Notations.

Let € be an open bounded polygonal set of R? with the boundary 9. We denote the
three discretization families of Q by D, D* and D**, which are given by

2.3.1 The 2D primary discretization family D = (M, &, P).
The primary discretization family is denoted by D = (M, £, P), such that:

e M is a finite family of non empty connected open disjoint subsets of 2 such that

Q= U K. mg >0 denotes the measure of K (the "primary control volume").
KeM

e & (the set of "edges" of the primary grid) is a set of disjoint subsets of Q such that,
for all o € £, o is a segment in R, m, > 0 denotes the measure of 0. Let K be an

element of M, we assume that there exists a subset £x of £ such that 0K = |J o
oefk
and &€ = |J Ek. The set of interior edges is denoted by Eint (resp. Eexy) with
KeM
Eint = {0 € E|lo ¢ 00} (resp. Eext = {0 € EJo C IN}).

e P = (rx)kem is a set of all mesh points of the primary grid. For all K € M,
xx € K and K is assumed to be x-star-shaped, i.e for all x € K, [zk, 2] € K.

2.3.2 The 2D dual discretization family D* = (M* E* P* V*).
The dual discretization family D* = (M*, £*, P*, V*) is defined, as follows:

e The dual control volumes K* are defined by connecting mesh points of the primary
control volumes and the midpoints of the edges belonging to 02 . Moreover, we as-
sume that the lines joining their mesh points are inside €2. In this case, M* which is

23



2.3. NOTATIONS.

» the notation of primary mesh points

¢ the notation of dual mesh points

¢ the notation of midpoints of edges belonging to
the boundary of &

Figure 2.2: An example for the remark 2.3.2.

a set of all dual control volumes such that @ = |J K*, is defined and we assume
K*eM*
it fits the initial domain 2. We denote by mg+ > 0 the measure of K*.

Remark 2.3.1: A sufficient condition to define the mesh M* is that, for neigh-
bouring control volumes, the line joining their centers intersects their common edge.
This condition is not necessary.

E* (the "edges" of the dual grid) is a set of disjoint subsets of € such that, for all
o* € £, o* is a segment in R, the measure of ¢* is denoted by my+ > 0. Let K*
be an element of M™*, we assume that there exists a subset g+ of £* such that

OK*= |J cand & = |J &k~
UEEK* K*eM*

P* = (vi+)K+*em= is the set of all mesh points of the dual grid.

V* is the set of all vertices of the dual meshes which includes the primary mesh
points, the midpoints of the edges belonging to € and boundary vertices of .

Remark 2.3.2: We do not always use the vertices of the primary mesh as dual
mesh points {x+} e rq-- For example, we consider the following polygon €2: we
can not choose the vertex g, of the primary mesh to define the dual mesh of
(K, TRy Thy, Tk, ) € M, because it is outside (Tx,, iy, Tiss Tk, )-

2.3.3 The 2D third discretization family D** = (M** V**).

The notation D** = (M**, V**) which is the third discretization family, is constructed

by:
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2.3. NOTATIONS.

Figure 2.3: the two examples of the third meshes.

Figure 2.4: a dual mesh point zx~+ is on the boundary 9f).

Let be K* € M*, if all edges of Ex+ do not belong to the boundary 0f2, the set of
vertices of K* only contains mesh points of the primary control volumes. A point xg~ is
chosen inside K* and connected to all vertices of K*, for examples Figure 2.3.

If K* has a vertex x i~ belonging to the boundary of €, its dual mesh point is equal to the
vertex x i+ (see Figure 2.4). We connect z+ to the other vertices of K*.

In Figures (2.2)-(2.4), we denote that
e The primary mesh is represented by solid black lines.
e The dual mesh is represented by dashed black lines.

e The third mesh is represented by dashed red and black lines.

The primary mesh points zx,, Tk,, Tk,, Tk, are elements of P.

The dual mesh points x g+, 7+ are elements of P*.

The edges o1, o2 are edges of the boundary of .
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24.

PRESENTATION OF THE 2D FECC SCHEME.

n
ENE

n
[XA’ 733]

Figure 2.5: the triangle (x4, xp,zc).

e The points z,,, 5, are midpoints of the edges o1, o9.

From the construction of the third grid, this implies that it is a sub-grid of the dual grid.

M** is a finite family of sub-triangles such that Q = . S\J/l T.
e * %k
V** is a finite set of all vertices of the third grid such that, for all T'€ M**, V7" is a

set of three vertices of triangle T and V** = |J Vj*. The set of interior vertices
TeM**
is denoted by Vi* = P U P*. Moreover, the functions px and pg+ with K € M,

int
K* € M* are piecewise linear continuous functions defined by

1 atz=2g, zx € P,
pr(z) =< 0 atx eV \{zk},
0 on 99.

1 atx=axg+, v € P*,
pi+(x) = 0 atzx eV \{zg-},
0 on 99.

Additionally, we introduce some notations nj;, +.1, Nz, z0]> Mrg.ec] Which are out-
ward normal vectors of the triangle (z4,xp,xc) (Figure 2.5). The lengths of these
vectors are equal to the segments [va, 25|, [va,2c], [v5,2zc] and m is the
measure of the triangle (z4,zp, z¢).

TA,ZB,TC)

2.4 Presentation of the 2D FECC scheme.

Now, we introduce our scheme A Cell-Centered Scheme For Heterogeneous Anisotropic

Diffusion Problems On General Meshes. We name it FECC for the Finite Element Cell-
Centered scheme.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

Definition 2.4.1: Let us define the discrete function space Hp as the set of all ((ux)kem, (Ui+*)K*em*),
ug € R, K € M, ug- € R, K* € M* and ug- = 0 if i~ belongs to the boundary of €.

P(v) which is a function on €2, is constructed from the value v = ((vK) ke, (Vk+) K*em=*)-
The function Vp au is intended to be a discrete gradient of Vu, taking into account
u = ((ug)rkem, (Uk=*)K*em=). As a result, equation (2.2) is discretized by the follow-
ing discrete variational formulation

/(A($)VD7Au(x)) Vpav(z)de = /f (x)dx for all v € Hp. (2.3)
Q

From equation (2.3), we describe the FECC scheme in each of the following cases of A.

2.4.1 Isotropic homogeneous cases in 2D.

The main idea of the FECC scheme is the same as that of the standard finite element
method (P1) on the third triangular mesh. The domain € is partitioned by this third
mesh.

For any u = ((ux)kem, (ur+)kem*) € Hp, P(u) is defined by

= > ugpr(@)+ D ukepre(x (2.4)

KeM K*eM*

and Vp au is defined by

Vp,rau(r) = VpgP(u)(x) = Y ugVpi(z)+ Y ug=Vpg-(z). (2.5)
Kem K*eM=

Substituting the definitions (2.4) and (2.5) into the equation (2.3), for each L € M U M*,
we choose v = ((vi)Kem, (Vi+*)K*em=) € Hp such that vg = 0if K # L, vg- = 0 if
K*# L, vy =1 and P(v) = pr. The resulting equation can be re-written in the following

form
/(Z ugVpr + Z uK*VpK*> Vpr, dx—/pr dx. (2.6)

& \KeM K*eM*
We present the construction of the FECC scheme in an isotropic homogeneous case.

Step 1 Recover all ug~ with K* € M* by linear functions of (ur)kxem and constants
depending on function f.

We choose pr, equal to pg+. We have

/ << Z UKVPK> Vpg+ +UK*VPK*'VPK*> dr = /f‘pK* dx,
Q Q

KeM
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

because supp{px-} is a subset of K* for all K* € M*.
Thus, ug+ is equal to ILx« ({uK}KEM ,f) defined by

Vpic .
Mg ({uxtgemf) = UK/VPK PK ( _Vpk-(x) dx +/f($)pf<('§> .
KeM ‘VPK* L2(Q) IVpr- 12(0)

Step 2 Transform the variables in formula (2.4).

= > urpr(@)+ Y Tk ({untgenm f) pre(@). (2.7)

KeM K*eM*

Step 3 Construct a system of linear equations.

Substituting (2.7) into (2.6), for each pr, belonging to {px} g We get

/ ( Z urg (Vpg.Vpr) + Z Mg+ ({uk}gep,f) (VpK*.VpL)> dr = /f.pL dz.
Q

& \KeM KreMx

(2.8)
This is a linear equation which only involves the cell unknowns {ug}cr . Hence, we
construct a system of linear equations

AU = B, (2.9)

M) xcard(M)

where U is a vector (ux)xear and A is a square matrix in Red( . All unknowns

(ug+)g+ep+ have been eliminated, the scheme is thus indeed cell-centered.

2.4.2 Anisotropic heterogeneous cases in 2D.

To simplify the description of the FECC scheme, we assume that, for neighbouring
control volumes, the line joining their primary mesh points intersects their common edge.
Hence, the dual mesh is centred around the vertices of the primary mesh and the dual mesh
points are the vertices of the primary mesh. Taking any o € &ing such that M, = {K, L},
T, xp € P and xg+ € P*, (xk,xr,TK+) is a notation of a triangle of M**. We take
the values ug~», ug, ur of u at rg+, rx, xr. From values ug+, ug, ur, we want to
construct a discrete gradient Vp pu on the triangle (zx+, xx,z) taking into account the
heterogeneity of A. We consider the function

P(K*JQL)(U) : (:L'K*,ZUK,-TL) — R7

where it is continuous, linear on (zx+,zk,,) and (xg+, 2L, x,) (two half triangles of
(5, rp,25+)). We introduce a value uX” (a temporary unknown) at z,. The point z,
is an intersecting point between the line joining two mesh points zx, x; and the internal

edge 0. The discrete gradient Vp au is then defined by
e on the triangle (zx+, zx, z5)

Uug I =7TK,
P rpy(u)(@) = ugs ==k,
U T = Z,.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

e ] - 5 Plxgch % ]

— L /
!oaK R

e _._lom o .
7‘]3(\/ o oK % \ L
Mzg, %71

b 7 |

Figure 2.6: the two sub-triangle (xx+, zx, z,) and (zx+, zL, xs) and their outward normal
vectors.

Vpau = VpaP g+ i )(u)
— Pl 16,1y (W (@0 )0 i) — Pice ie,py (W) @r)nfs o = Poce i, n) (W (@) 2]
2m(

Zpx LK Lo )
_ K _ K _
Ug n[wK* K] uKn[Z’ml‘K*] uK*n[rme]
- M

2M (0o 20)

where nX is outer normal vector to the triangle (xg+,xx,2,). The length of
[To,T g ] g g
the vector nX ] is equal to the length of the segment [x,,zx+]. If 2, belongs to

[zo'er*

the boundary of Q then v = 0.
e on the triangle (zx+,zr, xy)

ur T =7TK,

Pice iy (u)(@) = § ugs @ =K,
*
UOI'( r=2Zs-

Vpau = VpaP g+ i 1)(u)

—P(K*,K,L) (U)(%)n[mK*,mL] - P(K*,K,L) (U)(iﬂL)”[Lxme*} - P(K*,K,L) (U)(fL’K*)n[%,mL]

Zm(

T pc* 1'/1:L71‘U)

*’U/K*n —Uu TLL — UK*N
o Vzgxar] LWz @ pex] K*zo,ar)]

- )

2m($K* TL,To)
where ”[Lxc, xee] is outer normal vector to the triangle (zx+,xp,xs). The length of the
vector n[L% xce] is equal to the length of segment [z, zx+]. If 2, belongs to boundary

of Q then uf™ = 0.



2.4. PRESENTATION OF THE 2D FECC SCHEME.

These definitions depend on uf" but we fix u®" by imposing the Local Conservativity of
the Fluxes condition, i.e

K L _
AR (VDA @y aie.a0) Plaoesd T AL VDA @ 0y 00) Mo} =00 (210)
where Ak, Aj, are values of A on K and L.
Equation (2.10) corresponds to the following equation
uk" = B Tug + By Tur + B s, (2.11)

with

[xﬂ ’mK*

/BK*’U —
1% =
JCK* TK,To) Qm(xK* TK,Tq) 2Tn(ﬂﬁK* TL,To)

K [on-yl'K*]>/<_ (n[limng*})TAKn[xK*,xK] _ (n[l‘/z-”,xK*})TALn[IK*,IL}

zK* Zr, To) 2m(zK*,xK’xg) 2m(zK*,xL7:pg)

K* K*
/BK* 7= BL 7.
From equation (2.11), the unknown uX" is computed by ug, ug+ and ur. Thus, the
discrete gradient Vp au on (g, 2, xk+) only depends on these three values.

Hypothesis 2.1: we assume

(T SSID KL VCs s R (M ) K VA T
B 2m( B 2m( 7& 0-

T+, TR, To) T+ ,TL, To)

Remark 2.4.1:

e In isotropic heterogeneous cases, if the primary mesh is an admissible mesh (see
definition 3.1, paper 37 — 39 in [22]), the unknown v/ is computed by

“ _ gK*, K,
ul" =g Tuk + B ur,

—— ~——
>0 >0
K _
because Mgz Mooswr] = 0 and n[:z: o] Meoxr] = 0.

e In isotropic homogeneous cases, we do not need the hypothesis 3.1, since the coeffi-
cients are different from 0.

We present the construction of the FECC scheme in anisotropic heterogeneous cases.

Step 1 Recover all ug~ with K* € M* by linear functions of (ux)kxem and constants
depending on function f.
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2.4. PRESENTATION OF THE 2D FECC SCHEME.

For each K* € M*, we choose v = ({vr}rem, {vr*}rem+) such that vy = 0 for all
Le M, v~ =0if L* # K* and vg+ = 1 in equation (2.3)

/ (A2)Vpau(z)) Voao(e) de — / F(2)P () () da.
Q

Q

The discrete gradient Vp pv is equal to 0 on L* which is different from K*. It implies that
J (A(x)Vpau(z)) .Vpav(x) do is presented by the linear function of (ug)xem, uk+ and
Q

a constant depending on function f. Therefore, the unknown wug~ is computed by a linear
function of {ux} ¢ and a constant depending on function f. This linear function is also

denoted by Hg+ ({uk}erss f)-
Step 2 Reconstruct the discrete gradient Vp zu.

In the definition of the discrete gradient Vp pu, we transform all the unknowns {ug} g+car-
by {HK* ({“K}KeM , f) }K*e/\/t*' Hence, Vp pru does not depend on unknowns {wg« } e

Step 3 Construct a system of linear equations.

In equation (2.3), for each K € M, we choose v = ({vr}rem,{vr+}rrem+) € Hp such
that vp» = 0 for all L* € M*, vy, =0if L # K and vg = 1. This resulting equation is a
linear equation which only involves unknowns {ux } ke r. Thus, we construct a system of
linear equations

AU = B, (2.12)

where U is the vector (ux)ger and A is a square matrix in Reard(M)xcard(M)
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3.1. MOTIVATION.

3.1 Motivation.

In industrial engineering codes, the meshes are generated from the modeling of the
underground geological layers. These layers produce complex shapes, such as: faults, in-
clined wells, highly heterogeneous permeability fields...By this issue, 2D meshes need to
be extended to 3D meshes, for examples: tetrahedral meshes, prism meshes, hexahedral
meshes, pyramidal meshes...

Zone radiale '
Grille hexaédrique Grille hybride

To take into account these meshes, we present the FECC scheme and the constructions of
the dual, the third meshes in 3D. We recover the same properties as in two dimensions.

3.2 Notations.

Let © be a bounded open domain of R? with the boundary 9. Before we introduce
the three discretization families D, D* and D** of (), we explain some notations in Figures
(3.1)-(3.10):

e The edges of the primary mesh are represented by the black color.

e The edges of the dual mesh are only represented by the blue color.

e The edges of the third mesh are represented by the blue and red colors.

e The mesh points of the primary mesh are represented by the black dots.

e The mesh points of the dual mesh are represented by the blue dots.

e The mesh points of the third mesh are represented by the red dots.

e The edge points are represented by the pink dots.
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3.2. NOTATIONS.

Figure 3.1: an intersecting point x, on the non distorted primary mesh M.

3.2.1 The 3D primary discretization family D = (M, &, P, F,V)

The domain €2 is discretized by the primary mesh M. The primary mesh M is the set
of open disjoint polyhedral control volumes K € Q such that |J K = Q.
KeM
The set of interfaces of the two control volumes K and L is denoted by Fg 1 = KnL.

The set Fk 1, is a subset of Fy,y with Fie = |J  Fk . In addition, the set of bound-
K,LeM
KNL#)

ary interfaces of 0K N 0N is denoted by Fgi an. The set Fi oo belongs to Fep, where
Fext = U Froa. For each edge e on the boundary 02, a set F¢,, of which all

KeM ’
K NIN£D
elements contain the edge e is a subset of F.,:. We then denote the union of Fjny and Feyt
by F.

Vertices and edges of all faces in F are vertices and edges of M. The two sets of these
vertices and edges are respectively denoted by V and £. Moreover, the set £ has the two
subsets Eept and Eipny such that & = &y U Eerr. The set Eipy (resp. Eext) is the set of all
edges inside  (resp. on the boundary 09). For each edge e € &£, the set M, is a subset
of M, where the edge e is a common edge of all control volumes in M..

For each K € M, the mesh point zx is an inside point of the control volume K, and
the set of mesh points of all control volumes in M is denoted by P = {zx|K € M}.
Besides, we define a face point, as follows:

e Consider the two neighbouring control volumes K and L, o € F;y, the face point z,
is defined by an intersecting point between the segment [xx, 2] and the face o.

Remark 3.2.1: if the primary mesh M is not distorted (Figure 3.1), there exists
an unique face point z, inside the face o € Fk 1. On the contrary, if the primary
mesh M is distorted (Figure 3.2), then there are some face points outside the face
(NS ]:K,L-

e If a face o belongs to Fi gn C Fesxt, then the face point z, is an isobarycenter of o.

Furthermore, let be an edge e belonging to &+, we define the boundary edge point x., as
follows:
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3.2. NOTATIONS.

Figure 3.2: the three intersecting points z,,, 25, and z,, on the distorted primary mesh

M.

e On the planar boundary 92, the boundary edge point z. is an intersecting point
between a segment [z, , Ts,] and an edge e (Figure 3.4), where o1 and o9 are the two
neighbouring elements of F;; and the edge e also belongs to the boundary 0.

e On the non planar boundary 052, the boundary edge point x. is the midpoint of the
edge e (Figure 3.5).
3.2.2 The 3D dual discretization family D* = (M* E* P* F* V*)
The set of dual vertices V* is defined in the two following cases:

e With the planar boundary 909, the set V* is equal to P U {z,|0 € Fept}-

e With the non planar boundary 952, the set V* contains P U {x,|0 € Feyr} and the
boundary edge points.

To construct the dual faces, we connect all points of V*, as follows:

e For each edge e € &, the dual face o} is defined by connecting mesh points of all
elements in M. (Figure 3.3). The point z. is an intersecting point between e and o;..

e For each edge e € Eqyt, the definition of the dual face o) bases on the two types of
the boundary 092: If the edge e belongs to the planar boundary 95, the dual face
o} is built by connecting all points in {zx|K € M.} U{zs|o € FS,} (Figure 3.4).

If the edge e belongs to the non planar boundary 0f2, the dual face o} is built by
connecting all points in {xx|K € M.} U{xy|o € F&} U{xe} (Figure 3.5).

The set F* is the set of all dual faces. We assume that all dual faces in F* are inside Q,
and each dual face is star shaped. Therefore, the dual mesh M* which can be defined by
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3.2. NOTATIONS.

Figure 3.3: the dual face (zx, 2, zpr, TN, zo) of the dual mesh M*.

Figure 3.4: an element (z,,, 2K, 2L, Zs,) of F*, where e is on the planar boundary 9€Q.

Figure 3.5: an element (z,,,2x,%r,%s,) of F*, where e is on the non planar boundary
09,
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3.2. NOTATIONS.

Figure 3.6: The triangles (zo,zx,xr), (xo,xr,zr) and (xo, 2y, TN) are three elements
of F**, with e € &y

the set of all dual faces F*, is the set of dual control volumes K* such that |J K = Q.
K*eM*

We associate to each control volume K* a dual mesh point xg=. The dual mesh point xx~

which is defined by either an inside point of K* or a vertex of K* can be connected to the

other vertices of K*. Additionally, the set of all dual mesh points is denoted by P*. The

two sets £* and V* are respectively the sets of edges and vertices of all dual faces in F*.

3.2.3 The 3D third discretization family D** = (M** % P** F** V)

The third mesh M** which is the tetrahedral mesh is constructed, as follows:
For each dual control volume K* and each dual face o* of K*, because the dual face o*
is star shaped, there exists a point used to connected to the other vertices of the face o*.
This implies that the dual face o* is partitioned by triangles, and the set of these triangles
is denoted by F**. The two sets of vertices and edges of all triangles in F** are respectively
associated to the notations V** and £**.

Remark 3.2.3: The set £* is a subset of the set £**.

Furthermore, we have Figure-examples (3.6)-(3.7) for some elements of M™*  £** P**
F** V**_ These figures correspond to each location of the edge e in 2 :

e the edge e is inside the domain 2 Figure 3.6,

e the edge e is on the boundary 09 Figure 3.7(a) and 3.7(b).

We then connect the dual mesh point xx+ of K* to all vertices of o*, so tetrahedra are
constructed from the dual mesh point 2+ and triangles on the dual face o*: these tetra-
hedra are elements of the third mesh M** (see Figure 3.8).
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3.2. NOTATIONS.

(a) The triangles (zx,To,,Te), (b) the two elements (zx,Ts;,Toy)

(zr,zr,2.) and (Tr,%o,,Tc) are and (zk,zr,Zs,) belong to F~,
three elements of F**, where e is on where e is on the planar boundary
the non planar boundary 9. onN.

Figure 3.7:

Figure 3.8: the three tetrahedra (zx+,zx,zr,20), (Tx+,Tr,Trp,x0) and

(xK*axM7$N7:CO) of M™*.
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3.3. PRESENTATION OF THE 3D FECC SCHEME.

3.3 Presentation of the 3D FECC scheme.

Firstly, we recall the following definitions:

e The discrete function space Hp is the set of all vectors ((uk)geng> (UK*) grenss)s
ug € R, K € M, ug- € R, K* € M* and ug+ = 0 if xx~ is on the boundary 9.

e The function P(v) is defined from the value v = ((vk) gers > (VE*) ore g ) -

e The gradient operator Vu is discretized by Vp au. The discrete gradient Vp au
takes into account ((uK)KEM , (uK*)K*eM*) € Hp.

3.3.1 Isotropic homogeneous cases in 3D.

The function P(u) and the discrete gradient Vp pu are defined by:

P(u)(x) = > ukpr(z)+ Y ugpr-(@), (3.1)

KeM K*eM*
Vopau(z) = Z ug.Vpr(x) + Z ug+.Vpr=(x), (3.2)
KeM K*eM*

the function pg (resp. px+) which is a piecewise linear continuous function, is equal to 1
at rx (resp. xk~+) and 0 at the other primary mesh and dual mesh points.

3.3.2 Anisotropic heterogeneous cases in 3D.

To simplify the description of the 3D FECC scheme, we assume that, for neighbouring
control volumes, the line joining their primary mesh points intersects their common face.

Without loss of generality, we use Figure 3.9 to present the definitions of the discrete
gradient Vp au : The discrete gradient Vp au must be taken into account of the hetero-
geneity of A and considered on the two neighbouring tetrahedra (xg+,z,2p,zp) and
(rx+*, B, xC,TD).

Let us consider the tetrahedron (zx~+,xp,zc,zp). It is partitioned by the four polyhedra

(xK*va7x027x67mO'6)a ('rK*a‘rC?xUlvxnyag)a (xK*anyxO'pxeva':)); (x€7$0'57x0'67$K*)'
The discrete gradient Vp au is defined for each sub-polyhedron belonging to the tetrahe-
dron (xg+,xp,Tc,xp) :

(Vo au)l(
(Vp,au)l(

= (Vpau)l ) = (Voaul( ;
(Vpau)l

= (Vpau)l(

Tic* LB Ty Te,Tog ) Tpx BB Loe Loy Tpc* LB Toe Tog )

= (Vpau)l(

wK*7$C7IUl’mezx0'2) xK*7xC7xD'evxo'1> (IK*>IC7$O'e"TO'2) ’

(Voau) — (Voau)q

T*,TDToq ,:ce,x%) xK*,xD,mge,xgl) T e+ ,xD,xge,x%) :

We obtain the formulas of the discrete gradients (Vp au) \( ) (Vp,au) \(

TR*TByTe,Log IK*"TC7:BE71'G'1)7

(VD7AU)|($K*1$07$61I02) and (VD7AU)|< ) as follows:

TE*,TDTe, Loy
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X
C

Figure 3.9: the two neighbouring tetrahedra (zx+,x4,zp,zp) and (zx+,zpB,Tc,Zp).

(Voau)l

TR* 73737-73675562)

(Vpau)l(

TR*,LCTe Loy )

(Vp,au)l(

T * ax07x€7'rc72)

(Vpau)l(

TR va:x&xal)

We remark that if the edges o1, 09, e belong to the boundary 09, u

to 0.

9

I

I

_ B _ * B _ ., K* B _ B
uBn(IK*vx&xog) Ue n(IK*vayxag) U0.2 (xK*:xB:xe) uK*n(xByxe,zcrg)
3m($K*7$B,$e,I02)

_ C . K* C _ . K* Cio N C
ucn(zK*’IE:xvl) ue n(mK*vxC:xvl) 71 n(xK*yxCer) uK*n(x07w673301)
3m
(IK*»IC‘:x&xal)
_ C . K*, C _ . K* Cioo . C
ucn(zK*’IE:xUQ) Ue n(IK*’IC:xGQ) uUZ (IK*,IC,IE) uK*n(xC,'ymmwog)
3m
(IK*»IC‘:xeﬂtag)

_ D _ ., K* D _ ., K* D _ D
an(xK*:xmxo‘l) Ue n(xK*:nyxcrl) ual n(xK*:nyxe) uK*n(ID:x&xo’l)
3m(xK*7xD7$eyxo-1)

K* K* K*
o1 > Uy 5 Ue  are equal

The notations which are used in the above formulas are defined in Figure 3.10, where
the vectors 1y, vp 20) = $(xp—z4) X (0 —T4), Naazpap) = 3(xp—z4) X (xp — 2 4),
Nwazoap) = %(wc —xa) X (xp —x4) and N(yp, 20 2p) = %(xc —xp) X (xp —xp). The

MeASUTe My, 2 zc,
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3.3. PRESENTATION OF THE 3D FECC SCHEME.

I
B X Xp )

Figure 3.10: A tetrahedron and its outward normal vectors.

Additionally, we introduce a new auxiliary edge unknowns v~ with e € &, computed
by:
K* _ e K* e * e e
u, =g Uy, +ag,uy, +(1—-af —ag,).uc,
K* e K* e K* _ e e
& U, —ag gy —og Uy = (1—ag, —af,)uc, (3.3)

where the two coefficients af, and ag, satisfy
Te — 2B = g (o, — TB) + 5, (Toy — TB).
We then apply the Local Conservativity of the Fluxes:

e on the tetrahedron (zx+,zp,xc, x.)

C _
n(xK* 7x673302) =0.

AB (V'D,Au) (Tg*,XB,Te,Tog) 'n(B;K*@e,mag)"i_ AC (V'D,AU)

(xK*7$C7xe7$0'2)i| '
K* K*, K*,02 K*,02 K*,02
S u, —Be Pue = Py TPup + B Puc + By T uk. (3.4)

e on the tetrahedron (zx+,zc,p, Te)

C

D _
Ac (VDA |(@ger 20,20 ,20,) -%K*,xe,@,lﬁ[AD (VDAY (@ sapsest0y) | s wertoy) = O

* * K, K, K,
S ull’ — BE T, = BL T uc + By Trup + B T ukce. (3.5)

From (3.3) — (3.5), we get the following system of linear equations:

u
1 —ag, —ag, Ue 0 1-af —at, 0 0 B
_gkKren 0 K| _ 0 gE K*o1  gK*o1 uc
€ a1 - C D K* U
_BK*,O'Q 0 1 UK* 5](*,0'2 5K*,O'2 O K*,o’g D
€ g2 B C K* uK*
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3.4. CONSTRUCTION IN THREE DIMENSIONS.

Hypothesis 3.1: We assume that

e e
11<* —Qg, —Qg,
det | —pBe 7! 1 0 £ 0.
K*
—Be 7? 0 1
Hence, the auxiliary unknowns uf", uffl* and ufz* are eliminated by linear combinations

depending on up, uc, up and ug~.
Using again the Local Conservativity of the Fluxes:

[AD (Vp.au)
[AB (Vp.au)

A _
'n(IK* :1671'05) - 0’

D
(IK*szyxeyxa5):| 'n(IK*,Ieﬂ?a{)) + [AA (VD7AU) (xK*:$671'0'57x06):|

A _
(ertestogstg) | Mg oag) = O

(z e ,xB,xe,x%.)} 'nch* ,x57x06) + [AA (VD,AU)

Kx

Kx . :
o and ug” with linear

and the linear combination for eliminating uf , We can compute u
combinations depending on up, uc, up and ug-.

Thanks to the above linear combinations and the Local Conservativity of the Fluxes:

B A

[AB (Vp,au) (mK*,xB,%S,m%)} T s oy tog) T [AA (Vp,au) (xK*,xA,m(,B,%G)} Mo oy itog) = O
D A

[AD (V'DyAU) (xK*7$D7x0'47x05):| 'n(:rK*,:rM,a:gs) + [AA (VDJ\U) (IK*,xA,ﬂCayv’Cas)} 'n(asK*,xg4,xg5) = O’

Kx

we can transform wu,

and uf,i* into linear combinations depending on w4, up, uc, up and
UK.

Therefore, we can reconstruct the definition of the discrete gradient Vp au which only

depends on (ur)xkem and (ur+)K*erm=

3.4 Construction in three dimensions.

The main idea of the 3D FECC scheme which is also based on the standard finite ele-
ment method (P;) on the third tetrahedral meshes is presented by the three following steps:

Step 1 Recover all ug~ with K* € M* by linear functions of (ux)kxem and constants
depending on the function f.

For each K* € M*, we choose v = ({vr}rem, {vr*}rrem+) such that vy = 0 for all
Le M, v~ =0if L* # K* and vg+ = 1 in equation (3.3)

/(A(a:)prAu(x)).Vp,Av(x) d:c:/f(@P(v)(x)dx.
Q

Q

The discrete gradient Vp av is equal to 0 on L* which is different from K*. We deduce
that [ (A(z)Vpau(z)).Vpav(z) dz is presented by the linear function of (ug)xenm, wk-
Q
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3.4. CONSTRUCTION IN THREE DIMENSIONS.

and a constant depending on function f. Therefore, the unknown wug+ is computed by a
linear function of {ux} ¢, and a constant depending on function f. This linear function
is denoted by IIx+ ({UK}KGM ,f). In isotropic homogeneous cases, I~ ({“K}KGM ,f)
is formulated by:

_ Vpg+(z) Pr+()
O~ e [ e [

KeM IVpr-lz L2(Q K* L2(Q)

Step 2 Reconstruct the discrete gradient Vp au.

In the definition of the discrete gradient Vp pu, we transform all the unknowns {wg} x=e
into {HK* ({UK}KEM , f) }K*e/\/t*' Hence, Vp au does not depend on unknowns {ug+ } e =

Step 3 Construct a system of linear equations.

In equation (3.3), for each K € M, we choose v = ({vr}rem, {vr}rem*) € Hp such
that vy~ = 0 for all L* € M*, vy = 0if L # K and vg = 1. This resulting equation is a
linear equation that only involves unknowns {ux}xear. Thus, we construct a system of
linear equations

AU = B, (3.6)

where U is the vector (ux)ger and A is a square matrix in Reard(M)xcard(M),
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4.1. MOTIVATION.

4.1 Motivation.

In the fourth chapter, we show the main properties of the FECC scheme in isotropic
homogeneous cases and discontinuous anisotropic cases.

e Symmetry and positive definiteness: these properties are interested in building dis-
cretization schemes for diffusing flows in heterogeneous anisotropic porous media.
Multipoint schemes which are studied in [1], [2], [3], [16] and [27] do not satisfy these
properties. Moreover, the two properties allow us to use efficient methods to solve
the system of linear equations.

e Small stencil: the FECC scheme is cell-centered scheme. Its stencil is compact, equal
or less than nine on quadrangular meshes and twenty seven on hexahedral meshes.

e We recover the exact solution if A is piecewise constant in polygonal sub-domains and
u (the solution of the diffusion problem (2.1)) is affine in each of these sub-domains.

e The scheme is convergent in discontinuous anisotropic heterogeneous cases, where
the tensor A is piecewise Lipschitz-continuous.

4.2 Symmetry and positive definiteness of the FECC scheme.

Lemma 4.1 With hypothesis (2.1), for anisotropic heterogeneous cases, the matriz A of
the system (2.12) is symmetric and positive definite on general meshes.

Proof of lemma 4.1

By definition, the discrete gradient Vp au depends on elements of sets {ur } gre pgr {UK* } e c e
and {ul"} ;e - Theset {ul"},cq., is only considered in anisotropic heterogeneous
K*eM; K*eM;

o o

cases. Hence, we can present

/ (AVpau) . Vp avde = UT ALV,
Q

where U, V are defined by

(k) v e e (0r+) e pte
U= (ufl((zKeM , V= (UII(<ZKEM ,
(UU ) Uegint (UO' ) Uegint
K*eM? K*eM?:

M = {K* € M* such that o N K* # (0},
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4.2. SYMMETRY AND POSITIVE DEFINITENESS OF THE FECC SCHEME.

with

c Mcard(./\/l) x1

)

(ur) gems (VK)Kem
e Mcard(./\/l*) x1

)

(k) grerms > (VK*) gre s

* * Z card(/\/[j;) } X1
(uf )Uegint I (Ui{ > Jegint (= M{Gegint .
KreM; K*eM;
Setting m = card(M) + card(M*) + >~ card(My) and n = card(M) + card(M*), we
Uegint
obtain

Ap = ((an)ij); jerz  and U,V € M
Moreover, Ay is symmetric. This is implied from [ (AVp au) .Vpavde = [ Vpau. (AVp av)dz,
& Q

because the tensor A is symmetric.

In anisotropic heterogeneous cases, the discrete gradient Vp pu can be re-written by

e on the triangle (vg+, Tk, T5)

K*, K*,
(BK Mo ar] + ”fia,xm) uK + (5L e e ,m) ur

K*
" (5K* Nager,zic] F P ,i] ) UK

Vpau=— , (4.1)
2M g i o)
e on the triangle (vx+, 21, xy)
K* o K* o
(BK n[xK*vxL]) UK + (BL n[xK*7$L] + néo’vxK*]> UL
K*,o
+ (BK* Nzges,zp] T Nag,zp] ) WK
Vpau= — , (4.2)

2m(

TRc* 7xL7xo')

* K*, K*, K*,
because ul™ = B Tug + 87 Tur + B K.

Now, the discrete gradient Vp pau depends on elements of set {(“K)KGM , (“K*)K*GM*}
in general cases. Therefore, there exists a matrix C* € M™*" such that U = C*U* with
U # 0, which implies

Ut Azt = (U)F (C*TAAC*) u*,

where C* € M™ ™ and U* = (ur) e pae e Mnx1,
(UK>KGM

As the matrix A, is symmetric, the matrix G = C*T AyC* is also symmetric.
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4.2. SYMMETRY AND POSITIVE DEFINITENESS OF THE FECC SCHEME.

Figure 4.1: an example triangle Ty = (vx+, T, Tx) € M*.

According to step 1 of the construction scheme, for each K* € M*, we choose
v = ({vr}trem, {vr*}Lrem=) such that vy = 0 for all L € M, vy~ = 0 if L* # K* and
v+ = 1 in equation (2.3)

/ (A(2)Voau(z)) .Voav(z) de = / F(2)P(v) () da.
Q

Q

From these linear equations, the first system of linear equations is constructed by:
DU*+ EU = F*, (4.3)

where F* Mcard(./\/l*)xl’ De Meard(M*)xcard(M*) ond B c Mcard(M™)xcard(M)

According to step 3 of the construction scheme, for each K € M, we choose
v = ({UL}LEMa {'UL*}L*GM*) € Hp such that vp~ =0 for all L* € M*, vy =0if L # K
and v = 1 in equation (2.3). We get the second system of linear equations, as follows:

MU* + NU = F, (4.4)

where F € Mcard(/\/()xlj N e Mcard(M)xcard(M) 41 q M c Meard(M)xcard(M*) Both F and
F* depend on function f.

From (4.3) and (4.4), it follows that G = ( b E

M N
matrices D, N are symmetric, because the matrix G is symmetric.

> where M = ET and two square

Next, we prove that the matrix G is positive definite. Assume that U* # 0, there are
two following cases:

In the first case where ux # 0 for all K € M, we consider Ty = (xg*, Ty, Tx) € M.
This triangle has an edge belonging to the boundary of ) as Figure 4.1. On the triangle
To = (zk+, To,, Tk ), the discrete gradient Vp pu is defined by

_uKn[xK* 73701]

)
TR*,Toq ,CEK)

VD’AU - 2m(
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4.2. SYMMETRY AND POSITIVE DEFINITENESS OF THE FECC SCHEME.

— K —
because ug+ = uy, = 0.

All eigenvalues of tensor A are equal or greater than A\ > 0, thus

urqu* :/(AVD,Au) NVpaudxr > )\/(VD,AU)2 dx
0 Q

2
UK N g jex ,xgl})

> A
- 4m(

A (Vpau)®de =\ > 0.

—

T* Loy 7$K)
To

In the second case, there exists K € M such that ux = 0. In this case, we have a triangle
To = (xg+, Tk, xr) such that uz, # 0 or ug~ # 0 (see the figure 3.1).

The integral [ (Vp au)?dz is computed by:
To

/ (VD,Au)2 dr = / (VD,AU)2 dzr + / (VD7AU)2 dz.
To (Tg*,To, XK ) (zg*,xo,xL)
On the triangle (zx+, 25, 2k ), the discrete gradient Vp au is defined by

K*o K*,o
—UR* (n[évaa] +6K* n[azKJJK*]) o ULBL Nz e, g+

2m(

Vpau =
Zpcx Lo, TR )

It follows that

K*7o’ K*,O' 2
{UK* (n[mx,xa] =+ BK* n[:ch,:}cK*]) + ULBL n[mK@K*]}

/ (VD,Au)2 dr = > 0,

AM (g pen 02K

(xg* ToyZE)

since the direction of the vector (n[x wowo] T 5?:’071@ Ko K*]> is different from direction of

ur, # 0,

K*, .
the vector Ny, 2.1, B 7 # 0 (use hypothesis 3.1) and [ S

Similarly to the first case, we get

uwrou = / (AVp au) .Vprudz > )\/ (VD,AU)2 dx > /\/ (VD,Au)2 dx > 0.
Q

0 To

Therefore, the matrix G is positive definite.

From (4.3), U* is computed by U* = D! (F* — EU). In this formula, the matrix D!
exists, because we apply the property of Schur complement of D in G (see more theorem
1.20, paper 44 in [28]) and G is symmetric, positive definite. Thus, (4.4) is transformed as
follows
(N-E"D'EYU=F-E"D'F*,
=A =B

where the matrices A, B are defined in the systems of linear equations (2.9) and (2.12).

51



4.3. ISOTROPIC HOMOGENEOUS CASES.

Figure 4.2: an example for the dual and the third meshes such that the stencil of the 2D
FECC scheme is equal to 9.

Since G, D are symmetric, positive definite and using the property of Schur complement
in G (see more theorem 1.12, paper 34 in [28]), we conclude that A is symmetric, posi-
tive definite. This allows us to use efficient solving methods to solve the systems of linear
equations (2.9) and (2.12). O

4.3 Isotropic homogeneous cases.

4.3.1 Small stencil.

Property 4.1 The stencil of the FECC scheme is equal to 9 on quadrangular primary
meshes.

Proof of property 4.1

If the dual grid and the third grid are described by Figure 4.2, then the stencil is equal to
9. Step 1

The intersecting domains are not empty between supp{px, } and each of the following do-
mains: supp{px, }, supp{pk, }, supp{pi,}, supp{pis}, supp{pr:}, supp{px;}, supp{pi:},
supp{p}4}, and are empty between supp{pg,} and the others: supp{pr,}, supp{pk;},
supp{pk. }, supp{pk, }. Therefore, equation (2.6) can be written as

ur, Vi, + Uk, VDK, + Uk, Vi, + UKk VDK + UK VDK Sodo— [ fon s
JrUKprKT +UK;VpK; +UK§VPK§ +uKvaKZ VDK, = DK, .
Q

Step 2

* * K* K*

UKy =0 Yug, + Qg T £ ag g + oy ik + ok f)-

f)-
)
)

*

K K K K
uk; = o 2ug, + oy tug, +og Puk, + og 2 Uk —i—aK;(
K K K K
ury = o) Pug, + g uk, + oy Puk, +ag Pukg + aks (f)-
*

K} K} K} K
uRy = o fug, o tuk, +og fukg + oy tuk, +ak;(f)-
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4.3.

ISOTROPIC HOMOGENEOUS CASES.

Figure 4.3: an example for the dual and the third meshes such that the stencil of the 2D
FECC scheme is equal to 7.

Step 8
ur, VPK, + UK, VDK, + Uk, VDK, + UK VDK + UK VDK
K K K K
+ (a1 UK, + Qy Uk, + Qg Uk + 0y UK4> VPK;
K K Kz K
/ + (0412u[(1 + oy P ug, + o P Uk +a62uK6) VPK; Vpr,dx =
K* K K: K
Q +(a13uK1 + oy ur, +on Pug, + og "UK8> Vng

K} K} K} K}
+ (a1 fug, oy fug, + Qg Yug, + Qg 4uK9) VPKZ

/{f-pKl — [oks (F)Vprs — ary (F)Vprs — ax: (£)Vprs — ax: (f)Vpks:] Vg, | de.
0

This equation only depends on nine cell unknowns, so the stencil is equal to nine. O

Remark 4.1: In some particular cases, the stencil can be 7 or even 5. We show two
following examples for these cases:

a)

If the dual grid and the third grid are described by Figure 4.3, then the stencil is
equal to 7. In Figure 4.2, the polygon (zk,,Tk,, Tk, TKs, TKss TKy) 1S an element of
the dual grid where the mesh point zx+ of this element coincides in z .

The intersecting domains are not empty between supp{pr, } and each of the following
domains: supp{pr,}, supp{pk,}, supp{pr,}, supp{pre}, supp{ris}, supp{pre},
and are empty between supp{pk,} and the others: supp{px,}, supp{pk,}. Hence,
equation (2.6) can be written as

/ ( uK, VPK, + UK, VDK, + UK, VDK, + UK VDK,

+uK6vpK6 + quVPKS + Ungng ) Pk, /pr1
Q

Q

There are only seven main unknowns in the equation of step 1, thus the stencil is
equal to seven.

We consider a particular case with a primary grid of squares. The dual grid is
constructed as Figure 4.4. In Figure 4.4, the polygon (zx,, Tk, TKs, TKg, TKg> TKo)
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Figure 4.4: an example for the dual and the third meshes such that the stencil of the 2D
FECC scheme is equal to 5.

is an element of the dual mesh where the mesh point z g+ of this element coincides
in rg, .
The intersecting domains are not empty between supp{px, } and each of the following

domains: supp{pr,}, supp{pk,}. supp{pr;}, supp{pk.}, supp{pks}, supp{pr,},
and are empty between supp{pk,} and the others: supp{px,}, supp{pk,}. Hence,
equation (2.6) can be written as

/ < UK, VPK, + UK, VDK, + UK, VDK, + UK VDK,

+ury VK, + UKy VDK + UKy VDK, ) DK, /pr1
Q

Q

Moreover, we have that
e on the triangle (vx,, Tk, Tk,)
Nk, or,] Mok, wrs]

2
<2m(xK1 75'3K47IK5)>

is equal to 0,

VoK. Vpi, = =0,

because Mok, wr,] Mok, @)

e on the triangle (zx,, Tk, TK,)

Nzg, wrgl Meky wig)

Vpks. Vok, = =0,

2
<2m(xK1 79[”K57””K6)>

is equal to 0,

because Mok, wicg) Mok @)

e on the triangle (zx,, TK,, TK,)

Nk oy ek, org) 0
2 Y

(Qm(xKl’mezKy))

because Mok, wicy) My @) 19 equal to 0 ,

vng . VPKl =
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4.3. ISOTROPIC HOMOGENEOUS CASES.

Figure 4.5: an example for the dual and the third meshes such that the stencil of the 3D
FECC scheme is equal to 27.

Figure 4.6: an example for the dual and the third meshes such that the stencil of the 3D
FECC scheme is equal to 15.

e on the triangle (zx,, ks, Tiy)

n[mKl 71'K8} : n[szyng}

2
(Qm(‘rKl TKg 7IK9))

is equal to O .

VoK, Vi, = =0,

because Mok, wicg) Moy i)

Hence, we get

/ ( ur, VpK, + UK, Vpr, + vk, VDK,

.v d — . d ,
+ugs VDK + UKy VDK ) Pk, ax Q/fm(1 z

which implies that the stencil is equal to 5.

The stencil of the 3D FECC scheme is equal or less than 27 on the hexahedral primary
meshes, for examples: Figures 4.5 and 4.6. 0
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4.3. ISOTROPIC HOMOGENEOUS CASES.

4.3.2 Relationship between the FECC scheme and the scheme in [5].

According to the construction in isotropic cases, the affine function u on (zx+, zx, xr)
is also affine on (xk+, Tk, z,) and (xg+, 2, z,). In addition, this function has continuous
fluxes because A is continuous. Therefore, it corresponds to the function u constructed in
the heterogeneous cases, as follows:

_uK — K —
Ue n[:l?K*,xK] uKn[Ig,Z’K*] uK*n[x”’mK]

u =
(VD,Id )|(xK*,xK,xg) 2m(xK TR, Zo) )
* Lo
. K* _ L — *
(V ’LL) _ Uy n[IEK*,QTL] uLn[xovxK*} UK n[x(T’xL}
DId%)\(zgew xr,w0) 2m($K TL,To) 7
* Lo
K

where uX" is a temporary unknown. This unknown is eliminated by imposing the continuity
of the fluxes:

K _
(VD’AU)‘(mK*va»mO') Mg,z px] + (VD7AU)‘(IK*’IL7IU) Nzgape] = 0.
K L K* K L
(g + o) uy = akurx +arur + (g + afe) ugs, (4.5)
where
K K
Magzges] "Moo ags] K e oK) Mag ] K _ Mok wk] Mg ]
aK = - 2 Y aK* = - 2 9 aa = 2 9
M (g v 21,0 M(zpex 3K ,20) Mg s ,a5,70)
L L L L
n[mme*}' n[x(,,zK*] L n[xme]. n[xq,mK*] L n[xK* xr] n[x(,,zK*]
ap=-—— , Qe = , ag = )
Mg e, 30) Mg v ,xp,20) Mz pex,xp,20)

The following property presents a formula to compute the unknown wu, in terms of the
unknowns ug, ur,.

Property 4.2 The unknown uX™ of (4.5) satisfies

K L,o K,o
U, = UK + ur,
7 dko +dr e dgo +dr e

(4.6)

which is the value obtained by the scheme described in [5] using the harmonic averaging
points.

In (4.6), dk s, d1 o are greater than 0 and denote the measures of the segments [xk, Tk o],
(1,21 0|, respectively. Two points Tk o, 1, are the two orthogonal projection points of
zi and x5, onto o.

Proof of property 4.2

The coefficients of equation (4.5) which are computed in detail are based on Figure 4.7.
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4.3. ISOTROPIC HOMOGENEOUS CASES.

Figure 4.8: i, ¥1, are the two orthogonal projection points of xg, 7 on o.

a) Calculation of the coefficient wg:

K L
aK + aL . n[ffmx}d‘ n[:ﬁ[,,xK*] n[IU@L]'n[zg,mK*}
K* T Qg = — -
2myy * LK, Lo 2myy *, L[, Lo
K K

K,K* LK*
m[xme] . Mg COS 802 m[mmxd. Mg COS (,02

: K,K* . L.K*
Mgy ,xx]- Mo S (()02 > Mz, zp] Mo S <g02 )
( K,K*) . ( L, K*)
cos ( ©y cos ( ¢y
() " on ()
sin ( 5
cos <H L, K*> cos (gpg K)
( = 0.

LK* * LK*\
sin ( IT — ¢5” ) sin <ap2 )

sin
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ISOTROPIC HOMOGENEOUS CASES.

b) Calculation of the coefficient u,:

K
Nz wrc] n[:pg,xK*]

L
n[xK* 7$L] 'n[:vg,xK*]

ozf + oy
2M g i 20)

K,K*
Mg pn 5] Mo COS (gol ) Mg per 1] Mo COS <<p

2m(ﬂ»‘K* TL,To)
L
1

K*)

Me. dK o

m[xK*#ﬂK,o}

Me. dr, o

o m[wK*vaL,a]

dK,U
me. (dK,O' + dL,o)

dL,J
— Mgy o ae]- Ak + My, 2,]- L0

Mo (dK,O' + dL,cf)
dK,O' dL,O'

)

because Mz . ayc ;] = Mizger 20] "M o 20]) M

m[zL,o'vl'a] ° dK,O"

c¢) Calculation of the coefficient ug:

dK,cr-dL,o

[IK* 7IL,U] = m[IK*vxa}—i_m[IL,J:xo]’ m[xK,aal'cr}' dng =

2
K
ag = — (n[%@K*]) _ (mg)Q __ Mo
2M (g en 2 20) Me. dK o dx o
d) Calculation of the coefficient up,:
2
L
agp, = (n[%’mK*O o (m0)2 Mg
Qm(xK* L, Zo) madL,a dL,O'
From the above calculations, we get:
(_ma (dK,cr + dL,o)) uK* _ My Ug — meg ur,
dK,U dL70' 7 dK,U dL,O’
K ,0 Red
U, = ur + ur,. Il
7 dK,U + dL,J dK70' + dL,O’

Remark 4.2: In heterogeneous strongly anisotropic cases, the harmonic averaging point
in [5] does not provide an "acceptable" interpolation u,. Even in this case, in Test 5 (see
numerical results), we show that the FECC scheme can obtain precise results.

Remark 4.3: In property 4.1.2, we show
the scheme introduced in [5].
difference between these two schemes.

a relationship between the FECC scheme and

However, even in isotropic homogeneous cases, there is a

For a grid of squares (the length of each edge is equal to a, see Figure 4.9), we consider two

control volumes K; ; (mesh point x; ;) and
such that their edges do not belong to the

Kit1,; (mesh point ;41 ;) of the primary grid
boundary 0f2. The third grid is defined in the
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4.4. DISCONTINUOUS ANISOTROPIC HETEROGENEOUS CASES.

Rio1,j+l X1+l Firljrl| Pzl
. ] *-------- R R »
B N S
| I X E I X [ .
-1, 1 s x L iH3,
. M e | R
P S SO . TR R R PR
X X X .
1-1,j-1 1Lj—1 +1,j-1 +2,j—

Figure 4.9: the dual and the third meshes are used in Remark 4.3.

following figure (dashed red and black lines): Using the scheme described in [5], for a given
constant function f (5 0), we get the two following linear equations at z; ; and ;41 j:

2
A g — Ui g1 — Wim1j — Uiglj — Wij—1 = / fdz = f.a,
Ki,;
2
4’U,Z'+17j — ui,j — ui+1,j+1 — ui+2,j — ui+1,j—1 = / fd.l‘ = f.a .
Kiy1,5

Using the FECC scheme, we get the two following linear equations at x; ; and ;11 ;:

f.a?
Auij — Uij1 — Uim1j — Uikl,j — Uij—1 = fpijde = —o—,
(®i 15 Tit 1,55 Tij—1; Ti—1,5)
4.f.a®
Aigrj — Wij — Uitl i1 — Uiy — Uitlj-1 = fpivrjde = —5—.

(Ti 415 Tit2,j415Tit2,j—15Tij—1)

At each point x; ; and ;11 ;, we observe that the right hand sides of the two linear equations
are different and that the left hand sides are the same. O

4.4 Discontinuous anisotropic heterogeneous cases.

4.4.1 Exact solution on piecewise affine functions.

In the property 4.3, we assume that, for neighbouring control volumes, the line joining
their primary mesh points intersects their common edge. Hence, the dual meshes can be
centred around the vertices of the primary meshes, where the dual mesh points are the
vertices of the primary meshes.

Property 4.3 Let the tensor A be piecewise constant in polyhedral sub-domains and the
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4.4. DISCONTINUOUS ANISOTROPIC HETEROGENEOUS CASES.

Figure 4.10: the two elements (zx+, xx,xr), (1, Tk, xr) of the third mesh.

vector u = ((uk)ens» (UK*) renre) € Hop such that, for each K € M, there ezists
GK S R2

ug —ug = Gg. (T — TK), (4.7)
for all xg~ € Vi, K* € M* and such that for any o € Ex U EL which 1s the interface
between the two neighbouring control volume K and L,

AxGg.ngr + A Grng =0, (4.8)
where ng 1, 45 a outward normal unit vector of K at o. Moreover, basing on Figure 4.10,
we have
(To — TK) (o —21+)
\Y /4 (V —==0. 4.9
( D’AU) ’(JCK’:CK*’:CU) Mz, o] +( D’AU) ’(xK’xL*JU) Mzq2px] ( )
Then u is the unique solution of the discrete diffusion problem:
Y € ’HD,/A(x)VD,Au(x).VQAU(x) dxr = 0. (4.10)
Q

Proof of property 4.3

For each K € M, 0 € Ex N & with L € M, the Local Conservativity of the Fluxes
is imposed on o, we obtain:

e on the triangle (vx,zr, Tx~),
a7 ) = Tuk b Tun b e, (1)
e on the triangle (v, zp, x+),
Wl (VT AT AT ) = T T g T (4.12)
The coeflicients are computed, as follows:
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4.4. DISCONTINUOUS ANISOTROPIC HETEROGENEOUS CASES.

e in (4.11),
K K —K =K
K*o (AK”[zK* ,wa]) Mager 0] (AK”[xK* ,xal) M e o) e o]
Y = = >
K 2m(mK*,mK,xa) dK,o
L L =L =L
N (A2 ) e _ (A2t ) T M
L 2m($K*7$L1$0) dL?O— ’
K* K K* L
K*,o (AKn[$K7$G]> 'n[fBK* o) (ALn[xL@o]) 'n[mK*,mo]
r)/K* - +
2m($K*,$K,$a) 2m($K*,$L,Ia)
—K* —K —K* —I
- (AKn[:BK,:Bg]> 'n[:vK*,:vg]'m[xK*7xa] n (ALn[acL,zg]) 'n[zK*,zg]'m[:cK*,xa]
dK*»[‘TK’IL] dK*7[xK7xL} 7
o in (4.12),
K K =K =K
’yL*’U (AKn[zL*,xg}) 'n[xL* o) . (AKn[xL* ,:vg]> 'n[:vL*,xU]'m[xL*vxo]
K 2m($L* :xKﬂ?U) dK,O' ’
L L =L =L
,-YL*vo' — (ALn[xL*7I0]> 'n[xL* T _ (ALn[xL*va']> .n[xL*’za].m[mL*vxd}
L 2m(:pL* JLL,Zo) dL,a ’
L* K L* L
e (M) (AenE o) o
P)/L* - +
2m(33L* TR To ) Qm(xL*,xL,Ia)
—L* =K —=L* =L
o (AKn[:cK,:ca]) 'n[:cL*@[,]'m[fL* o) n (ALn[xL,xJ]) ’n[xL*,xg]'m[zL*vzo}
dL*,[xK,xL] dL*,[a:K,a:L] ’

* * *

where the vectors 7 (-
Lo

7L*
M o)
L L* L*
n[zL*vxcr}’ n[IK@U] and n[wL:xo]. 7[zK’zL
tances from zx+ to [xx,xr] and from xp« to [xx, xL].

K —L —K — —K —L
[oxce o]’ Magertol’ Mok zol Mapaol Mapsaol Mg o) and

. . K
are respectively the unit vectors of Ngee 2ol Marezol? Mol Man.aol? Mape o]’

j and dp« | ] are the two dis-

7
*

The notations dy« Tr,TL

By the above computations of the coefficients of (4.11) and (4.12), we get the relation-
ships between their coefficients:
K*,o

s L*,o K*,o L* o
Tk _ YK . 7L L
- 9 - )
m[xK*sz'] m[zL*va'} m[xK*sz'] m[xL*va']
K* L* mi *, T Mg *,T
Vg = —vr. because of y lrceto] y [z 2a]
K*,[rr,xr] T, 2r,2r)
4.11 4.12
Let — ) subtracts #7 we get
[.’LK*,(LU] m(L'L*,(L'cr
ny*J _’_ryK*,O' ,)/K*ﬂ' ,YL*7O'
L1k A DS G S (S S S (P A
m[IK*)IO'] m[‘rK*#rO‘] m[zL*v‘rO‘]
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4.4. DISCONTINUOUS ANISOTROPIC HETEROGENEOUS CASES.

Figure 4.11: zg, x1, € P; v+, x1+ € P*; and the two intersecting points x4, , T5 .

Thanks to (4.9) and definitions of (Vp au) (x s o) and (Vpau) (excwpes) WC de-
duce uX" = ul” = u, from (4.13).
By (4.9) and uX" = u%" = u,, we obtain:
A S A —} (4.14)
m[mK*,aza} m[.Z’L* o)
The left hand side of (4.14) is computed, as follows:
Uy — UK* +ug—uL* B Uy — UK + UK — UK +ug—uK—|—uK—uL*
m[mK*vma} m[IL* 71‘0] m[mK*va] m[a;L*vma]
1 1 Gr.(rg — xK~ Gg.(rg — xp
:(ua—uK)-( + >+ K-(TK K)+ KTk — 1)
m[$K*7$U} m[xL*ﬂ;U] m[xK*ﬁCU} m[xL*vxa]
1 1 1 1
= (us —ug). ( + ) + ( + > Gr.(tx — z5)
m[xK*va} m['rL*sz'] m[IK*’IJ] m[xL*7xO']
n Gg.(to — TK+) n Gg.(ry — Jcp)7
m[rK*vrﬂ'} m[:EL’WxD’]
=0

which implies that v, — ux = Gg.(zs — k). Therefore, for each K € M, the discrete
gradient (Vp au) |k is equal to G.
Then we prove:
Y € HD,/A(:J:)vaAu(x).VQAv(:r) dx =0 (4.15)
Q
with the following two steps and Figure 4.11:

a) For each K* € M*, let a basic function v+ be continuous piecewise linear on €2, such
that vg«(zx+) = 1, vg=(xr) = 0 and vi+(x,) = 0, where each control volume L belongs
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4.4. DISCONTINUOUS ANISOTROPIC HETEROGENEOUS CASES.

to {MUM*}\ {K*}, z, is an intersecting point between [xx, ] and o € Ex NEL N Eins.
Moreover, vg+ is also equal to 0 on the boundary 0.

Using supp(vi~+) and the constructions of the dual and the third meshes, we obtain:

1
/ A()Vp au(e) Vo avie (a) do = ;E:V (AcGro) nlS 1+ (AicGre) ol ]
“ KeM'
O'K,O'KEEK
1
=1 X [F@akGo - (AkGr)nf (4.16)
T EV*
KeM
oK, 0K EEK
Applying (4.8) in (4.16), we get:
VK* € M*,/A(x)prAu(:J:).VD,AvK*(:L') de = 0. (4.17)
Q

b) For each K € M, let a basic function vk be continuous piecewise linear on €2, such that
v (k) =1 and vk (xr) = 0, where each control volume L belongs to {M U M*}\ {K}.
Besides, vk is also equal to 0 on the boundary 0f).

We compute the integral [ A(z)Vp au(z).Vpavk(z)de
Q

Z +UK(IUK) (AKGK) xKx ‘] —I-UK( )(ALGL) i?ULJK*]
o €EERNEL —H}K(ng). (AKGK) . ] + ’UK( ) (ALGL)

O =[T pox T %]
LeM, K*and L*e M*

Z (AKGK) n[xK* L% ]

0K E€ext
O =[x T %]
K*and L*e M*

N

[CﬂK,fEL* [zL’-'EL*]

N

—UK(%K) (AkG).n

-

| = VK (Tay ). (ALGL) 1],

o €EKNEL [IK* WL L* T Rc* xL*]
TR =T g+ %]

LeM,K* and L*eM*

> (AkGK) Ny e 0y

0k €Eext
ox=[zg*,zpx]
K*and L*e M*

AN

1
Z (AKGK) n[xK* o] + Z Z (AKGK) [IK* T

o €EKNEL 0K E€ext
O =[x ,px] oK =[Tpcx,Tpx]
LeM, K* and L*e M* K*and L*e M*

o |

(4.18)
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4.4. DISCONTINUOUS ANISOTROPIC HETEROGENEOUS CASES.

Applying (4.8) in (4.18), it follows that

VK € M,/A(J})VDJ\U(I).V’D’A’UK(‘T) dx = 0. (4.19)
Q

The uniqueness of u is implied from Lemma 4.1. O
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Chapter 5

Convergence of the FECC scheme.
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5.1. MOTIVATION.

5.1 Motivation.

We are interested in this chapter by the theoretical convergence of the FECC scheme
in the general case where the tensor A(z) can be discontinuous. The key point of the proof
includes showing both the strong and the weak consistency of the FECC scheme.

5.2 Proof of the convergence.

We denote by Pj(v) the traditional P; function on 2, constructed on M**. We first
show the convergence of a variant of the original scheme, which we call FECCB, which
satisfies the following discrete variational formulation:

w e Hp / (A@)Voau(z)) Voav(z) de = / F@)PL)(@)dz for all v € Hp. (5.1
Q Q

To simplify the presentation, we assume that, for neighbouring control volumes, the line
joining their primary mesh points intersects their common edge. Let

MY ={K € M*™ | A(z) is not continuous on K}, Mg, = {K € M*™ | A(x) is constant on K}.

IfVEK € M*\MZ ., let us assume that A(x) = Ay on K (K is the triangle (vx, o, Tx+)
and that A(x) = Ay on Ky (K> is the triangle (z1, 25, xk+)) (see Figure 5.1).

For K € M}*, we only choose two discontinuities to simplify the presentation but the
method can be generalized to a greater number of discontinuities.

We denote by hx the diameter of the triangle K and px = sup{diam(S) : S is a ball contained in K}.

As described in section 2, we recall that Vi* is the set of the vertices of the triangle
K € M**. Moreover, the size of the discretization is defined by

hpge = sup{hg, K € M*™}

For all the triangular cells belonging to M**, we join the centers of gravity of the triangles
Tpar,k t0 the midpoints of the edges (xx k+, Tk 1, TK+ ). The vectors T i+, Tk*I , TL.K
are orthogonal vectors (with the same length) to the sides [zx K+, Zpar k], [TK*,L, Tbar K],
[xK,Ly mbar,K]~

We denote by Aig, Air, and Aig~, the polygons (xx, Tk, L, Toar, i, TK,K*);
(IvaK,Laxbar,KaxK*,L) and (xK*)-TK*,prbm-,K,xK,K*)- The vectors ﬁ[(, ﬁK*, ﬁL, ’r_ig,
fig+1 and fig=2 are orthogonal vectors (with the same length) to the sides [zg«,zp],
[Tr, L), [Tk, K], [TK* To], [Tk, o] and [zy,21] (see Figure 5.1). We define II%..u
which is a piecewise constant reconstruction by:

Mheu(z) = Mhu=ug ifz € Aig,
Mheu(z) = Mu=ug ifz € Aigp,
Mheu(z) = Mu=ug- if x€ Aig.
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5.2. PROOF OF THE CONVERGENCE.

Figure 5.1: the triangle (xx+, 2k, xr), its sub-polygons Aix = (¢k, TK,L, Tbar, K, TK,K* ),
Ai;, = (xL7$K,L7$baT,K7$K*,L)J Aigs = (a:K*,wK*yL,xbanK,xK,K*) and their outward
normal vectors.

We define the discrete H' norm of u by:

lullfpe =

KeM**

—

1Tk L
d(K, L)

7_" * 7_" *
(e = w4 s e = e TR = e,

where d(K, L) is the distance between x g and [z, 1., Tpar k] (d(K, L) = d(L, K)), d(K, K*)
is the distance between g+ and [xk i+, Tpar k] (d(K, K*) = d(K*, K)) and d(L, K*) is
the distance between zy, and [xx+ 1, Tpar i) (d(L, K*) = d(K*, L)).

Following the definition given in [26], we measure the strong consistency with the in-
terpolation error function S(p) = {||P1(¢) — QDH%Q(Q) + [|[Vpap — V(pHiQ(Q)Q}%,
p € [C(2)] and the dual consistency with the conformity error function

Wi (2) = maucns llg—rs| [ (Vo xu(e)-f+Pi () @)divg(a))de, V5 € [C (@) D

Vp

Lemma 5.1 With hypothesis 2.1, let S be a sequence of discretizations D** = (Hp, ha=+, P1(u), Vp.a)
previously defined. We assume that there exists 8 such that for all D** € S,
f07” K e M**\{M;k\* U >|é*onst ’

min(|Tk Ll |7k i+ |, | T g+ ]) [ K| > 0 and min(|Tk L], [Tk i+ |; | Ti 1+ ]) | K2

- = > 0.
|7iL| K| 7k | K|

67



5.2. PROOF OF THE CONVERGENCE.

Then, for K € M*\M}" the gradient Vp zu satisfies:

|K|Vpau = (ugs—ug)(Tk K+ +€x i+ )+ (ur =g ) (Tro L +€x )+ (ur —ur) (7L x +€L,K)

€0l _
[7x*, Ll

€5 1|

_ ; €L, k| _
e ee] 0, llmhM**—m 0.

with limp, .. 50 7kl —

=0 and limp, .. 0
Proof of lemma 5.1
First case: A1 = As.

Using the stokes formula, we obtain (see Figure 5.1):
2|K’VD7AU = —uK*ﬁK* - uLﬁL — uKﬁK

which becomes

1
|K‘VD7A = 6{(1”(* — UK)(ﬁK — ﬁK*) + (UK — uL)(ﬁL — ﬁK) + (uL — UK*)(ﬁK* — ﬁL)}

As the vectors FL,K, ?K,K* and FK*,L satisfy 7_"L,K = %(ﬁL — ﬁK),
Fr i+ = (g — i), Tiowr, = s(—7ig + figc+), we obtain:

|K|Vpau= (ur~ — ug)Tr i+ + (ur — ug)Tro L + (U — up) 7L i

Second case: A1 # As.

For z € K1, the gradient Vp pu satisfies:
2| K1 |Vpau = —ug=Nig+1 — UsTlL, — UKTio.

We can write
Uy = Bruk + Brur + Bruk+,

with Bk + Br + B+ = 1, limp, 0Bk = 0, limhM**aoﬁK = %;
and limy,, .. 5081 = gfx"% because, for K € M**\{M}* Gronst) (A(z) is continuous),
limhM**—)D| Al - A2H =0.

The gradient becomes:

[xlnxff]
(2L, TK]

[xKva]

+en)iip —ur (e +7L(ex +
1, xK]

21K |Vpau = —up= (k=1 +ex=nr) —ur(

with ex +ep + e+ = 0, limp o s0€x+ = 0, limy, .. soex = 0 and limy, ... o€ = 0.

s S e EER g and it = B wo deduce
B |K| K| S Kl
2|K|Vpau = —ug«(fgs + +ex=mig) —ur(l+ er)itp — uk (Mg + €KTiL)
| K1 | K| [ K|

= —ug+Pr+* — ULPL — UKDPK-
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5.2. PROOF OF THE CONVERGENCE.

Finally, we obtain:

1 . . . . - .
|K|Vpau = 6{(“[(* —ug)(Px — Pr+) + (ux —ur)(PL — Pr) + (ur — ur+)(Pr* — Pr)}-

min(|Tk L, Tre i+ |, Tre k< |) | K1 |

" 6), choosing

Using the assumption on the grid (

[Tz
€K Kx = — K| €x+nr + | €KL,
| K1 | K1
€K1 = K| eEx+Tp — meLﬁL
’ | K1 | K1 ’
€ELK = K] eLng — meﬁL
’ | K| | K4

and using the values of 77, k,7k K+ and Tg~ 1, we obtain the desired property for x € Kj.

For z € K>, the computation of the gradient is similar. O

Lemma 5.2 With hypothesis 2.1, let S be a sequence of discretization D** = (Hp, hpag==, P1(u), Vp a)

previously defined. We assume that there exists 0, such that for all D** € S, for K € M}*

° |ﬁ0A2ﬁK ﬁoAlﬁL| Z e(ﬁciAlTjo + ﬁ0A2ﬁd)’ (Hl)

Ko [Ki] K [Ka]

min(|Tx LTk k|, Tr x* 1)
LT L >0, (Hy).
maz(|fiq |, [T 115k 2]) ’ ( 2)

Then, there exists a constant Cy such that the gradients Vi, u and Vi, u satisfy:
|K1|Vieu = (ugs — ug )0 (K, K*) + (ur, — uge<)01 (K*, L) + (ure — ug)01(L, K)

and

— — —

|K2|VK2U = (uK* — uK)GQ(K, K*) + (uL — uK*)QQ(K*,L) + (UK — UL)GQ(L,K).

with |61 (K, K*)| < S3| 7 i+ |, 100 (K%, L)| < G |7k 1], 101(L, K)| < $3|71 k], 02(K, K*)| <
, 02(K*, L) < $2|7Fk 1| and |02(L, K)| < $2|71 k.

%!FK,K*

Remark 5.1: In order to satisfy assumption (Hp), it is sufficient to choose the primary
mesh points xx and xy, close enough from x,. In practice, this is a light hypothesis.

Proof of lemma 5.2

_ _flgMAig fig AoTi i
Let us dethe Det = e + Ted
We can write:

Us = BruK + Brur + BrruK+ (5.2)
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5.2. PROOF OF THE CONVERGENCE.

3 ﬂo'A ﬂo‘ — ﬂaA ﬂcf —
with Bx + Br + Bk~ = 1 where B8x = %eﬂl[?ﬂ, Br = TlL?et\QI?ﬂ and B =1 — Bk — BrL.

Using assumption (H;), we obtain |Det| > 0(?”‘#{11?“ + ﬁ‘ﬁ\é?")

We deduce Bk | < 5, |81] < 5 and B+ < 2 4+ 1. Using the formula:
2|K1|VK1U = _(uK* - UO')ﬁK*,l - (uK - Uo)ﬁch

Q‘KQ‘VKQU = —(UK* - Ug)ﬁK*,Q - (UL - ua)ﬁa

and equality (5.2), we obtain: 6, (K, K*) = %{nK* 1+ ’32 v, L (K* L) = %ﬁK*J,
01 (L, K) = =55, Oa(K, K*) = —5iirc o, Oo(K*, L) = St o — 251,

and 05(L, K) = @L .

We conclude using assumption (Ha). O

Proposition 5.1: With hypothesis 2.1, let S be a sequence of discretizations D** =
(Hp, hpe=, Pi(u), Vp o) previously defined. We assume that there exists 0, such that for
allD** € S:

pr > Ohx VK € Mg, (H1),

e pi, > Ohg, VK € M*™\ME . (H2),

o pi, > Ohg, VK € M*\M%. . (Hs),

o d(K,L) > §|7x,|, d(I,K*) > 5|7k i+ |, d(L, K*) > §|70 k|, VK € M*™* (Hy),

fig Aol Mo A7l o A1, No Aol
o [P — SRl = 0(R5Te + Bede) for K € MY (Hs),

° ml”(|TIi,L‘7|jK,K*|7|_TK,K*‘) >0 fOT' K € M;k{k (HG);

max(lndlv‘nK*,l|7‘nK*,2D

min(|Tx, LTk, k* |, Tre, k1) | K1

i = > 0 and
e
min(|Tr, LTk k* bITK k*|) [ K2 ok .
[Tk | KT >0 fOT KeM \{MA Const} (H7)

Then, the FECCB scheme is coercive, that is to say there exists Cp« such that

1P (u)l]L2(0) < Cpe

Moreover Vo € [C2°(Q)], limp,,,..0S(p) = 0 and V@ € [C°(Q)]?
limp, o 0Wp= (§) = 0. With these three properties, we can apply the corollary 2.3 de-
scribed in [26]. It means that the FECCB scheme is convergent, that is to say, Pi(u)

VDAUH u € Hp.
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5.2. PROOF OF THE CONVERGENCE.

converges to the exact solution uczq of the problem and Vp au tends to Vuezq as hag — 0.
Proof of proposition 5.1:
Following Lemma 5.3 in 23], there exists C3 only depending on 6 (Poincaré inequality)

such that:
HHOD**uHiz(Q) < CgHuHiD**,Vu € Hp.

Let us show that there exists Cy only depending on €2 and 6 such that:

[ull2 pee < Call Vo p (@) 2 g0 (5.3)
The proof is close to the one described in [26] (lemma 3.1). We denote by Vu the value
of Vpau(x) if K € MF, ., and Vi, u (resp. Vi,u ) the value of Vp pu(z) on K (resp.

Kj) if K € M*™\Mg, - Forall K e Mg, . forall s € Vi and r € Vi, we can write:

us — up = Vru.(s —r).

We obtain:
Vsl 2 (=) Qv ) s ]
— 3 [zk,xr)? [z K, TR+ ] [z, xE+]?
and
1 PK PK PK
K 2> - —up)?—"— — )P — S LS A S,
BNV rull™ 2 g (e =) er =g 4 (e =) 2 = o+ (un = i) [:cL,mK(*] |
5.4

For K € M*\Mg. ., we get:

((UK —u)® | (ur —uk-)?
[Tk, 25]? (2K, T K]

1
2
and
1, (up —ug)?  (up —ug~)?

Vicul[? > =
” K2U|| - 2( [:Ecr’:UL]Z [$L7xK*]2

We deduce that there exists C5 such that:

K1 llIV i ul|? + [ Kol Viul P = Os{(min( 5oty 5752 ) (un — ue)® + (ur — ug)?)+

['rKv'rU} ’ [vamU]

PKq
[ 5, o]

(ur = uc-)® + 2y (ur — uge)*}

(5.5)

2

Using the inequality (ux — ug)? + (up — uy)? > %(uK — up ), we obtain that there exists

(91 such that:
KeM**\ME 1 K3 2 Ko =
S kemtenzs KV s ull? o+ [l [Vl 2
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5.2. PROOF OF THE CONVERGENCE.

. p p p
On Ygem\mz,,.., " g o] Tpae)) (ke = wn)? + oy (ur — uge)? +
p
[J:L,I;i{*] (uL - uK*)Q'

Using assumptions (Hy), (Hz), (H3) and inequality (5.4), there exists Cag such that:

IVpau(@)|* > Cas D O(ur —ur) + 0(ux — ug-)* + 0(ur, — ug)*.
KeM**

Using assumption (Hy), we get:

|TKL| 2, TRk~ 2, |TLk~| 2
> — _ — * _ — *
||V au(z Ca3 Z K (ug—ur) +d(K,K*)<UK UR+) +d(L’K*)(UL ug+)",
which is the desired inequality.
Moreover, for K € M™** we write:
if € Aige, Pi(u)(z) = ODHeu(x) + Vp gu(r —zK),
if © € Aip, Py(u)(x) = Theu(z) + Vp, gu(z —xp),
if € Aige, Pp(u)(z) = heu(z) + VP, et (T — TR+ ).
We obtain that
1Py (u)ll 220 < [Hperttl|r20) + haee= [V pw(@) [ r2(0)2- (5.6)

With Lemma 5.1, we obtain the formulation:
‘K’Vplu = (’LLK—UK*)FKJ(* —I—(’U,K* —uL)?K*7L+(uL—uK)FL7K fO?“ r e K, fO?“ K e M*.

We define Sk = ((K,L),(K,K*),(K*,L)). Using the Cauchy-Schwarz inequality and
D Keme 2o (MN)esy |TMN]d(M, N) = 2[Q|, we get that there exists Co such that:

Ve ullr2)y2 < Collulli,pe. (5.7)
Using (5.3), (5.6) and (5.7), we obtain that there exists Cao such that:
[Pr(u)|[ L2y < Co2|IVpau(@)||{r2(0))2- (5.8)

We conclude that the scheme is coercive.

Let us estimate the strong consistency of the discretization. Let ¢ € [C°(2)]. As we
use the Stokes formula to approximate the gradient, with assumptions (H;), (Hz) and
(H3), we obtain in the same way as lemma 4.3 described in [23] that there exists Cg only
depending on 6 and ¢ such that

||VD,A<P - VQOHLQ(Q)Q < Cghppes.
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5.2. PROOF OF THE CONVERGENCE.

Moreover, using Lemma 3.1 in [54], we obtain that [[Pi(¢) — ¢|[r2(q) < hars V@||L2(Q)z.

We deduce that the interpolation error function S(¢) tends toward zero if hps+« tends to-
ward zero.

Let @ € [C2°(Q)]2. Let us compute T' = [o(Vpau(z).¢ + Pi(u)divg(z))dz.

We denote by @k the average value of g(z) if K € M*\MY |, Pk, (resp. @k,) the
average value of @g(x) on Kj (resp. Ka) if K™ € MY, Gy niu,nyesy the average value of

@) on Ty N (M, N)eSK -

We get T'="T1 + 15 + T3 with

o= Z |K‘VKU'SBK+ Z ‘K1|VK1U.()5K1
KeM*F KEM**\{M** UM?\*

Const Const

+ |K2|VKQU.<,BK5*+ Z |K1|VK1’LL.<,5K1—|—‘K2‘VK2u.g5KS*
KeMyr

= Ty +Tho+Tiz + Ty + T1s,

Ty = Y (uk —ugs)Tx e Brie + (Ui — up)Fice LB + (U — k)7L K- PK. Ly

KEM**
T3 = Z Vp, gu.(r — 2 )divg(z)dr + Vp, pu(z — xp)divg(z)de

KeM** AzK AZL

+ Ve, o ti-( — 2+ )divg(x)de.
Ai pex ’
We obtain:
T5] < R3alIV poull 2y 1divd] | L2 q)- (5.9)

With assumption (H7) and Lemma 5.1, we get:

Ti+Te+Tis = Z {(ur+ —uk)(Tk K+ + €K, K+) +
KeM\M3*

(ur, — up)(Tre 1 + €x= 1) + (U —up)(TLKx + €LK)} Pk

On the other hand, with Lemma 5.2, we write:
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5.2. PROOF OF THE CONVERGENCE.

Let us define

Termi= Y > (Funl+ 1Eun)dM, N)(|Fx — Grnl?)
KeM**\M3* (M,N)eSk

and

—

91(M7 N)~§BK1 + 02(M7 N)SEKQ

= > — Gun ).
|Tv, N | | T, N |

Termg = Z Z ‘FJM,N’d(MvN)(‘

KeMy® (M,N)eSk
Using the Cauchy-Schwarz inequality, we obtain:
Ty + To|? < HUH%D** (Termy + Termsy).
Besides, using the regularity of ¢, there exists a constant Cy such that
V(M,N) € S |ox — pun|? < CphA g

Using >~ geper 2o(m,Nyesy [TM N[d(M, N) = 2|, and Lemma 5.1, there exists C'3p such
that
Term; < 030|Q‘(h3\4**(1 + 61(hM**)))

with limhM**_mél(hM**) =0.

Moreover, using the regularity of g, assumptions (Hs), (Hg) and Lemma 5.2, we get that
there exists Cp depending on 6 and ¢ such that

—

Hl(Ma N)‘)ZKH + 92(M7 N)‘)ZKE
| 7M. | [T, |

V(M,N) € Sk (] — @un|?) < Cio.

Following the same arguments as those described in [21] (Theorem 3.8), as the tensor \(x) is
piecewise Lipschitz-continuous, we deduce that ) . M 2o (MN)esy | TMN|d(M, N) tends
toward zero if hag++ tends toward zero. (It means that the dimension of the zones where
the tensor A\(z) is discontinuous is inferior to one.)

We finally obtain that there exists Cg such that:
Ty + To| < Gsllull1, e (hpre + €2(rt))

with limp, .. so€2(hage+) = 0. Using (5.3), (5.9) and (5.7), we deduce that there exists C
only depending on 0 and @ such that Wps«(F) < Co(hpq=+ + €(hpaq#+)). This is the dual
consistency described in [26]. O

Corollary 5.1 With hypothesis 2.1, let S be a sequence of discretizations D** = (Hp, hag==, P(u), Vp A)
defined in (2.3). Under the assumptions of Proposition 5.1, the FECC scheme is conver-

gent, that is to say, P(u) converges to the exact solution uezq of the problem and Vp au

tends t0 Vuegq as hap — 0.
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5.2. PROOF OF THE CONVERGENCE.

Proof of corollary 5.1

We measure the strong consistency of the FECC scheme Wilth the interpolation error func-
tion Si(¢) = {IIP(¢) ~ @l + [[Voap — Vel g2}, ¢ € [C(Q)] and the dual
consistency with the conformity error function

Wip+=(P) = mazueiy || . m!l/Q(VD,AU(x)-SBJrP(U)(fﬂ)div@(ﬁﬂ))dﬁvaw6 [Ce ().

Vp.au(z)
Using the definition of P(u) and P;(u), we obtain that:
1P() = Pr ()l < hates (19 py oy + 1190t g
With (5.3) and (5.7), there exists Cyo such that:
1P@) = Puw)ll () < Crohages [V aull oy (5.10)
In the same way, for ¢ € [C°(Q)], we get that:
[[P(¢) — Pi(p)l[2(0) = €3(har+) (5.11)
with limy, .. s0€3(hage) = 0. Using (5.8), we deduce that there exists Cy; such that
1P(w)]|12(0) < Carl[VDau(@)l[r2(0))2- (5.12)
We deduce that the FECC scheme is coercive. Using proposition 5.1, (5.10) and (5.11), we

obtain that Vi € [C2°(Q)], limy,, ... 0Si(¢) = 0 and V@ € [C(Q)]? limy, e 0 Wips+ (F) =
0. We conclude applying corollary 2.3 described in [26]. O
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Chapter 6

Non-linear corrections of the FECC
schemes
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6.1. MOTIVATION.

6.1 Motivation.

For diffusion terms in models of flows in porous media, for coupling transport equations
with a chemical model and for heat flows from a cold material to a hot one, the existence
of a maximum principle of their solutions plays very important role, because violation
of the maximum principle might lead to non-physical solutions. Unfortunately, classical
finite volume and finite element schemes fail to satisfy the maximum principle for distorted
meshes or for high anisotropy ratio of diffusion tensors [19], [45], [34], [41]. In [11], to
satisfy the maximum principle, almost the discretization schemes for the Laplace operator
must comply with some type of geometrical constraint on the mesh, such as 2D & 3D acute
type condition in [14], [38]. Additionally, in [45], the authors proved that it is impossible to
construct nine-point methods which unconditionally satisfy the monotonicity criteria when
the discretization satisfies local conservation and exact reproduction of linear potential
fields. However, in practical, these conditions are difficult to satisfy, especially in three
dimensions. The FECC scheme also violates the discrete maximum principle: examples are
shown in the section 7.3 of chapter 7. Our objective is to construct non-linear corrections
for the FECC schemes providing a discrete maximum principle. The non-linear FECC
schemes still preserve the main properties of the scheme including coercivity, symmetry,
existence of a solution. Moreover, we also have the condition for convergence toward the
solution of (2.1) when the size of the meshes tends to 0. Besides, it is easy for us to
implement this modification, because we can use the computed data of the linear systems
associated to the FECC schemes. The spirit of these non-linear corrections is based on the
methods presented in [53] and [13]. In fact, some authors also proposed non-linear finite
volume schemes [21], [29], |35], [51], [43], [55], |30] to discretize elliptic problems. These
schemes satisfy the desired properties and accurate results. However, they are coercive
with conditions on the meshes and on the anisotropy ratio.

6.2 Notations.

Firstly, we introduce some notations and definitions used in this chapter:

For the definition of £, we further assume that, for all ¢ € &, either ¢ € 9Q or
c=KnNLfor (K, L)€ M x M.

de + dLJ ifo= K|L € Eint
dK,U ito= Exn gext
onal distance between xx and the hyperplane containing o.

For o € &€, we set d, = , where dg , is the orthog-

The size of the meshes is denoted by size(D) = sup diam(K),
KeM

The coefficient i which is a positive constant is considered in the section 7.3 of
Chapter 7.
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6.2.

NOTATIONS.

The regularities of the primary and dual meshes are defined by:

iam (K)? iam (K

regul(D) = sup {max (W,Card(&d)}—{— sup {da()}—{— sup
KeM Pk Kem U dko K€t
o€EK oc=K|L

jam(K* dr« o+
regul(D*) = sup {Card(Ei-)}+ sup {da()} + sup {LU},

K*eM- Krems | die o K*egr, \di+o

0T EE K o=K*|L*

where for K € M, pg is the supremum of the radius of the balls contained in K, and
d=2,3.

Haq is the set of all functions u containing u = (ug)germ € REHM) guch that u
is defined on 2, is constant on each control volume of M and takes the value ug in
the cell K € M. The space H, is equipped with the discrete norm defined by:

UK UK
et llp= Y ol 5 sl
o€&int o0€€eut
oc€ENEL

The set V(K) is defined in the two following cases:

To correct the initial FECC scheme: For each K € M U M*, V(K) which
belongs to {M U M* U &g} corresponds to the stencil of the two systems (6.3) and
(6.4). The stencil is symmetric, i.e.

V(K,L) € MUM*,MUM*), LeV(K)= K e V(L). (6.1)

To correct the second FECC scheme: For each K € M, V(K) is a subset
of M U &gz corresponding to the stencil of the system (6.6). The stencil is also
symmetric, i.e.

V(K,L)e M?, LeV(K)=KcV(L). (6.2)

Definition 6.1 (Discrete Maximum Principle). The non-linear FECC schemes sat-
isfy the following discrete maximum principle: if f > 0 on €2, then the solution
u = (ur)kem of the non-linear FECC schemes satisfy mingepmug > 0.

Before we represent the non-linear corrections, we recall the initial FECC scheme and in-
troduce another FECC scheme named "the second FECC scheme".

The initial FECC scheme: From (4.3) and (4.4) of chapter 2, we construct the two
systems of linear equations

DU*+EU = F*, (6.3)
MU*+NU = F. (6.4)
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6.3. CONSTRUCTION OF NON-LINEAR CORRECTIONS.

where U = (UK)KeMa U* = (U*K*)K*EM*a De MCard(M*)XCard(M*)7 Ec ]WCGer(/\/i*)><Carcl(/\/l)7
M € ]\40(17“d(./\/l)><Ca7“d(/\/l“)7 N e M Card(M)xCard(M) The two operators I, F* € M Card(M*)x1
are defined by:

F- / f@) P @)de |, Fr = / f(2).P(px-) () da ,
Q M Q

Ke K*eM*

where let be K belonging to M U M*, we define P(pk)(zx) =1 and P(px)(zr) = 0 with
L # K and L € MU M*. Moreover, for all K € MU M*, P(pg)(z) is equal to 0 on the
boundary 0f).

Both left hand sides of (6.3) and (6.4) < ]\D4 ﬁ ) . ( %, ) can be rewritten by —APP" (u),

where u € Hp and the discrete linear operator APP" : Hp — Hp is defined by:

Yu € Hp, VK € {M UM*}, AI’%D* (u) = Z 04K7z(uZ — uK).
ZeV(K)

From the two systems (6.3) and (6.4), the system of linear equations (6.5) is built as (2.9)
(in 2D homogeneous isotropic cases), or (2.12) (2D heterogeneous anisotropic cases), or
(3.6) (in three dimensions)

A U= B . (6.5)
~~ ~—
N—-ETD-1E F—-ETD-1F*

On the other hand, we can reconstruct the right hand side of (6.5) by:
F' =0, F = (|K|fx)xem, B=F,
where fx denotes the mean value of f on the cell K.
The second FECC scheme is defined by:
Au=DB with u € H, (6.6)

where the matrix A is the same as the matrix A in (6.5). The left hand side of (6.6) can be
also rewritten by —AP (u), where the discrete linear operator AP : Hq — Hoy is defined
by:
Vu € Hap, VK € M, AR (u) = Z i z(uz —uk).
ZeV(K)

6.3 Construction of non-linear corrections.

6.3.1 First non-linear FECC scheme.

Forallu = ((uk) gep (Wk+)grerqs) € Hp,andall Z € {V(K) UV (K*)} C{MUM* UEept},
we define the first non-linear FECC scheme (NLFECC1), as follows: for each K €
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6.3. CONSTRUCTION OF NON-LINEAR CORRECTIONS.

MU M*,

SRP (W) = AR W+ Y Pk —uz) = [ F@)-Pi)(e)ds. (©67)

ZeV(K) 0

we remark that if xx, Tz are on the boundary 99, ug~, uz are equal to 0.

In (6.7), for any K belonging to M U M*, Bk, z is defined by the following non-linear
corrections:

The first correction PP

o If 7 =0 € &y, then:

D, D* ’A,[,?’D* (U) ‘
B (u) =mn. )
’ > |uy —ukl
YeV(K)
o If Z7=Lec MUM*, then:
D,D* D,D*
DD*( ) ’AK (u)‘ ’AL (u)‘
’ u)=mnm.
KoL Y Ty —akl T Y Juy ol
YEV(K) YeV(L)

We note that > |uy —ug| or > |uy —ug| is equal to 0, then the term

YEV(K) Yev(L)

AR AT

S Tuy—ur] TS Juy —ug| GSappears.
YEV(K) YEV(L)

*

. —=D,D
The second correction (8 :

o If Z =0 € &y, then:

D,D*
BDJ)*( ) ’AK (U)’
s (u)=mn. .
a > 5 (luy|+ Juk)
YeV(K)
o If Z=Lec MUM?* then:
o AR AT
u) = 1.
ok > 5 (Juy |+ Juk]) > 5 (Juy |+ Jurl)
YeV(K) YeV(L)

The third correction BD’D*:

83



6.3. CONSTRUCTION OF NON-LINEAR CORRECTIONS.

o If 7 =0 € &y, then:

3P D*( ) ‘A?D* (u)‘

o (u)=mn. .

B > 5 (luy| + Jukl)

YeV(K)
o If Z=Lec MUM?* then:
B ) AR ) 42 w)
" (u) = n.sup ,
b > gluyl+luxh)” > 5 (Juy|+ luzl)
YeV(K) vev(L)

6.3.2 Second non-linear FECC scheme

For all u € Hpq, all K € M and all Z € V(K), the second non-linear FECC scheme
(NLFECC?2) is defined by:

SR(u) = —ARW) + > Brz(u)(ux —uz) = K| fx. (6.8)
ZeV(K)

For any K belonging to M, we use the following corrections to define Sk 7 in (6.8):
The first correction GP:

o If Z =0 € &y, then:
[AR ()]

> Juy —ugl’
YEV(K)

o If Z =L e M, then:

AR AP
> luy —ukl| > |uy —ug

YeV(K) Yev(L)

5}?@(“) =1

We remark that > |uy —ug|or > |uy —ug|is equal to 0, then the term

YeV(K) Yev(L)
[AR ()] | AP ()] :
S Ty —ax] O TS fuy—ur] disappears.
YeV(K) YEV(L)

The second correction BD:
o If Z =0 € &y, then:

—D |AR ()]

Bro(u)=n -
o > L (Juy| + [ukl)
YeV(K)
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6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

o If Z7 =L e M, then:

. AP (u) AP (u)
ﬁK,L(u) =7 ’1 K ’ + |1 L ’
> 3 (luy|+ |ukl) > g (luy|+fucl)
YeV(K) YEV(L)
The third correction BD:
o If Z =0 € &y, then:
-~ AL (u
BID(,U(u) =1 ‘1 K( )‘ .
> 5 (Juy |+ Jukl)
YeV(K)
o If Z =L e M, then:
~ AP (u AP (u
B2 1) = n.sup Al A
> gluy[+ukl)” > 5 (luy|+|ucl)
YeV(K) Yev(L)

6.4 Properties of the non-linear FECC schemes.

Now, we consider properties of the NLFECC2 scheme using the first non-linear correc-
tion AP. For the other non-linear FECC schemes, we prove similarly.

The family 8 = (Bk,1) kem,zev (k) satisfies the two following properties:
e symmetry: VK e M\VZ e V(K)NM, Brz=PBzk.
e positivity: VK € M,VZ € V(K), Pkz>0.

These properties are useful to consider the following properties:

6.4.1 Coercivity.

Proposition 6.1 Let 0 > requl(D), requl(D*) be given, then there exists a positive constant
Ch depending on 0, Q, such that

> SRwux =—AP W)+ > ux Y BRp(u)(uk —uz) > Cillullp. (6.9)
KeM KeM  ZeV(K)

Proof of proposition 6.1

We firstly prove that there exists C' > 0 only depending on 6, € such that:

/(A(x)VDAu(x)) Vopau(z) dr > C.||ul|b. (6.10)
Q

85



6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

Using the definition of V*, let each o* € £ ,, there exist two points xx and x, belonging to
P are vertices of o*. Besides, we define an intersecting point x, between ¢* and 0 = EgUE.
This intersecting point is inside o (see Figure 4.10). At a triangle (vx, 2, xg+) € M*™, we
estimate the absolute value of Vp au on each a sub-triangle (xg+, vk, 25), (Tx*, 2L, To)

of (g, xr,rK+), as follows:

) u{;*w\
(VD.00) e ) (0 = 00) = 0" =iy (Vos) | 2
(VDvAu)(z’K*,xL,xo) (2o —xp) =u; —ur. v ‘uf —uy,
‘( ’D,Au)(xK* 7:1,‘L,$g) — m[quzg] .
(6.11)
Hence, we get that
/ \Vpaul®de = / IVp.aul® dz + / |Vpaul? de
TK*,U*:(zK’vamK*) (IK*>IK>IU) (‘TK*7:EL"'L'G')

K* 2 K

>2

m[ajKJ:o] m[.Z‘L,:L‘O-]
K* K* 2
u — u — U —
> dK*,o-*‘ o K‘ +dK*,a*| o L| > dpes U*M
m[]}}(,]}g] [xLny} ’0- ’
Similarly,
|ure — ug|”

|;’DAU‘ dedL* o*
’ ’ ‘O'*‘
Z[*,U*—*(IK,JJ[,CL‘[*)

For each K* € M*, 0* € .., there exists 0 € Eg with K € M, such that cNo* # (. We
dU .

o]

find a relationship between |d%| and

0 > regul(D) > %K) » o o]

0 > reguIEDi)_> dim(K*;jK’U'”"_l d0> o o g2 B s lol s o (6.12)
— g — dK*,U* — dK*,U* — Cla* ‘O-*‘ - dO’ - |O-*|’

lo| > do~ and d, < |0

Ko+ Lror 1 *0 N L7 € & with the two orthogonal
dK*,a* ifo=E&.N ot

distances from x g+ and x« to o* denoted by dg+ 5+, dr+ o+ respectively.

where d,~ is equal to {
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6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

By (6.11) and (6.12), it follows that

/‘prAUde = Z / |VD’AU|2d$—|- / |VD,AU|2dJ:
Q

+ Z / ]VQAu]Qda:

veer, e

o* zs* Bk e ov €M
> Z do.* — U,L’Q + Z do-* ’UK‘
- |o*| |o*|

or €&l ore&l
oNo*#£),o0= €Kﬂ€L€8mt oNo*#D, 0€EE K NEext
Ay lugc|?
S ("|'*,K )
0¥ el g

O'I"IO'*#Q U'Egngezt
D S DR aa) EYEITY
- 92 dy

g€Ent oc€€ext
ceEKNEL

Therefore, the left hand side of (6.10) is estimated by
/(A(:J;)VQAU(JJ)) Nopau(z)de > )\/ \Vpau(z)® de > )\ 5 |[ullp-
@ =C

Using the symmetry and positivity properties of the family P and (6.2), it implies that

ZUK Z 6KL Juk —uz) = Z Z ﬁ}%Z(U)(UK_UZ)z

KeM  ZeV(K) KeM zZeV(K)NM

+ Y > BRw)(uk)? >0,

KEM ZeV (K)NEext

Together (6.10), we get > SP(u)ur > Cy||u|l3. O
KeM

6.4.2 A prior estimate.

Proposition 6.2 If 0 > requl(D), requl(D*), there then exists Cy only depending on Q0 and
0 such that for any solution u to the NLFECC2 scheme SP:

llullp < Cal[f]lz2()- (6.13)

Proof of proposition 6.2
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6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

From proposition 6.1, we get that

Cillullp < > SRwux = > |K|fxux
KeM KeM

= [ fu dng 2 llulle @) < Csllfllz2o llullp-

older
Q

The inequation ||ul[z2(q) < Cs|lul|p is implied by the discrete Poincare inequality. This
inequality can be deduced from Lemma 5.3 of [23]. It states that there exists C3 only
depending on 2 and 6. Similarly, we also have the following priori estimate of the second
FECC scheme: for any solution u € H . of the second FECC scheme, there exists Cy such
that

ullp < Cullfllr2@)- O
6.4.3 Existence of a solution.

Proposition 6.3 There exists one solution to the NLFECC2 scheme (6.8) with the cor-
rection 7.

Proof of proposition 6.3

Due to the proof of Proposition 3.4 [13](http://hal.archives-ouvertes.fr/hal-00643838/),
we put the function

H:[071]XHM—>HM

(t,u) — H(t,u) = —AP(u) +t ( > ﬂ?z(uK — uz)> =(1-1) [—AD(U)} + tSP(u),
ZeV(K) KeM

we have H(0,u) = —AP(u) and H(1,u) = SP(u).

The operator H(t,.) is continuous on Hq for all ¢ € [0, 1], because for all K € M and all
Z € V(K), we have the following inequation

0. (AR ()| + [AZ(w)]) if Z € V(K) N M,
B2 (Wl — uz] < { et e

Because of results of the two propositions 6.1 and 6.2, the set of all solutions of H (t,u) =
(IK|fr)Kkem is bounded in H .

Therefore, H is a homotopy, the degree of H(0,.) is different from 0. We then deduce
existence of a solution for H(1,.) = (|K|fkx)xem by applying the Brouwer’s theorem. [J

6.4.4 Convergence.

In this section, we will show conditions to get the convergence of the NLFECC2 scheme.

Proposition 6.4 If we have the following two conditions:
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6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

o There exists 0 > 0 not depending on D such that

diam(L)
0 > regul(D) + regul(D*) + sup — 6.14
@) ™ KeM,LeV (K) diam(K) ( )
[ J
diam(K
sup {|A2(u)|mm()} — 0 as size(D) — 0, (6.15)
KeM K|

then for each p € C°(Q), pp = (VK )Kem € Hm with px = p(rK), we obtain

Z YK Z Bg,z(uK —uz) =0 as size(D) — 0,
KeM ZeV(K)

where u € Hpy is a solution of the NLEECC2 scheme SP.

Proposition 6.4 relates to the convergence of the NLFECC2 scheme, as follows:
When the equation (6.8) is multiplied by ¢ on K and summed over K € M, it is trans-
formed into:

_ZAK ¢K+ZSDK Z BKZ UK—UZ)ZZ\KU”K@K.

KeM KeM  ZeV(K) KeM

> |K|fkpk tends to the integral [ fo. Moreover, by the existence of the consistency
KeM Q
of the second FECC scheme, it ensures that

- Z AR (w)pr — /AVqup dx as size(D) — 0.
KeM

Proof of proposition 6.4

This proposition is the same proof as Proposition 3.6 [13]. From the symmetric family
BP and (6.2), we can write:

Yowx D>, BRolux—uz) = D Y BRzw)(ux —uz)(pk — ¢z)

KeM  ZeV(K) KeM ZeV(K)NM

+ Z Z BR z(u)(uk)(¢x)

KeM ZEV )mgezt

Z Z Biz(W) lug —uzl ek — ¢z

KeM ZeV(K)NM

+ Z B2 5 (u) |ux| |ox|

KeM ZeV (K)NEext

IN

Together % <1lforall K € M,all Z € V(K), we then get
YeV(K

s (ARGl 21 + | AD W) ok — o)
2, v 2. Rl —uz)< 3 | TS

KeM  ZeV(K) KeM V(R Eans w)| lexl)
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6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

Note that for each K € M, each Z € V(K), there exists K* € M* satisfying v, xz € Vic..
Thanks to (6.14), we find a positive constant C5 not depending on D such that

o — ¢z| < Csdiam(K) for all K € M and all Z € V(K)

with the function ¢ € C5°().
Therefore,

diam(K
Do B FRatuc—un) SO 3 dam()AR (] < Ol pup {l et
KeM  ZeV(K KeM KeM

By the condition (6.15), we deduce that

Z YK Z BIZ?,Z(UK —uz)— 0 size(D) — 0. O
KeM ZeV(K)NM

6.4.5 Discrete maximum principle.

Proposition 6.5 The NLFECC2 scheme with the first correction T satisfies the discrete
mazimum principle (see Definition 6.1).

Proof of proposition 6.5

Proposition 6.5 is also proved as Proposition 2.1 [13]. We put ug, = [?11}\1/1 ug with
€
K° € M. From (6.8), we consider S}go (u):

SD ( ) _ A ’uKo _’U'Z’ ‘A20<u)‘
Ko\t Z S Juk, — uy| + Z S Jur, — uy] UK,
ZeV (Ko) YeV(Ko) o€V (Ko)NEeut YeV(Ko)
AP (u AD(u
L 3 [ AR, ()] n |AZ (u)] (uke, — ug)
ZeV(Ko)nM > uky —uyl >, luz —uy|
€V (Ko)n Y eV (Ko) YeV(Kop)
= |Ko|fx, > 0.
AR (u)sgn(urcy—uz) AR, ()|
‘uKO_“Y| > ‘UKO_“Y|
> Yevikg) YeV(Kg)
@SKO(U) = '(uKo _UZ)
ZEV(KnM | | A (u)]
> luz—uy]|
YEeV(Kg)
>0
Ly [ AR AR K 0
> luk, —uy| > luk, —uy| ‘-
7EVKoINEeat \ yeir(Ko) v eV (Ko)
>0
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6.4. PROPERTIES OF THE NON-LINEAR FECC SCHEMES.

Obviously, ug, must be equal or great than 0. 0
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Part V

Numerical tests in 2D and 3D
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Numerical results
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7.1. MOTIVATION.

7.1 Motivation.

In this chapter, the efficiency of the 2D & 3D FECC schemes is demonstrated through
numerical tests of the 5th and 6th International Symposium on Finite Volumes for Com-
plex Applications - FVCA 5 & 6. Moreover, the comparison with classical finite volume
schemes emphasizes the precision of the method. We also show the good behaviour of the
algorithm for nonconforming meshes. Besides, in the section (7.3), there are examples for
the maximum principle violations of the FECC schemes and 3D numerical results with
non-linear corrections.

7.2 2D numerical tests.

7.2.1 Notations in 2D numerical tests.

We introduce some notations for all the tests in the section 7.2:

e nunkw: number of unknowns.
e umin: value of the minimum of the approximate solution.

e umax: value of the maximum of the approximate solution.

Let us denote by ugn, the exact solution, up = (uk)kem the piecewise constant approx-
imate solution.

e erl2, the relative discrete L? norm of the error, as follows:

1
> K |(uana(zk) —u)?\ ?
KeM

Z |K‘uana(xK)2
KeM

erl2 =

e ergrad, the relative L? norm of the error on the gradient.
e ratiol2: for ¢ > 2,

In(erl2(i)) — In(erl2(i - 1))
In(nunkw(i)) — In(nunkw(i - 1)) -

ratiol2(i) = —2
e ratiograd, for ¢ > 2, the same formula as above with ergrad instead of erl2.

7.2.2 2D numerical results.

We use numerical tests in the 2D benchmark on discretization schemes FVCA 5.

Test 2D.1: Mild anisotropy
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7.2. 2D NUMERICAL TESTS.

We consider a homogeneous anisotropic tensor, as follows:
1.5 0.5
A= < 0.5 1.5 ) '
Test 2D.1.1: The exact solution ua,, and the source term f

uana(xu y) = 16‘/1:(1 - LU)y(l - y) in (07 1) X (07 1) )
Uana(Z,y) =0 on the boundary of [0, 1] x [0, 1],
f(@,y) = =V.(AVuana) -

nunkw erl2 ratiol2 urmin umax ergrad | ratiograd
56 || 9.74303E-03 9.12E-02 | 9.28E-01 | 1.46E-02

224 || 2.44889E-03 | 1.99E+00 | 2.54E-02 | 9.28E-01 | 8.15E-03 0.848

896 || 6.08651E-04 | 2.00E+00 | 6.70E-03 | 9.95E-01 | 4.26E-03 0.936

3584 || 1.52175E-04 | 1.99E+00 | 1.73E-03 | 9.99E-01 | 2.17E-03 0.967

14336 || 3.81026E-05 | 1.99E+00 | 4.36E-04 | 1.00E+00 | 1.10E-03 0.983

Mesh 1 - regular triangular mesh.

nunkw erl2 umin umax ergrad

289 || 2.68581E-03 | 1.26800E-02 | 1.0020E+00 | 2.81E-02

Mesh 4.1 - distorted quadrangular mesh.

nunkw erl2 umin umax ergrad

1089 || 7.60982E-04 | 3.48999E-03 | 1.0007E-+00 | 1.29E-02

Mesh 4.2 - distorted quadrangular mesh.
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Mesh 4.1 - distorted quadrangular mesh. Mesh 4.2 - distorted quadrangular mesh.
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7.2. 2D NUMERICAL TESTS.

Test 2D.1.2: The exact solution and the source term f

{ Uana(2,y) = sin((1 —z)(1 —y)) + (1 —2)3(1 — )%
f(z,y) = =V.(AVugpa).

nunkw erl2 ratiol2 umin | umax ergrad | ratiograd
56 || 2.25334E-03 7.16810E-03 | 1.3786 | 1.56E-03
224 || 6.03417E-04 | 1.90E+00 | 1.77495E-03 | 1.5973 | 9.52E-04 0.718
896 || 1.54969E-04 | 1.96E+00 | 4.42261E-04 | 1.7160 | 5.44E-04 0.808
3584 || 3.91813E-05 | 1.98E+400 | 1.10442E-04 | 1.7779 | 2.93E-04 0.890
14336 || 9.84396E-06 | 1.99E+00 | 2.75983E-05 | 1.8095 | 1.53E-04 0.938
Mesh 1 - regular triangular mesh.
nunkw erl2 ratiol2 ergrad | ratiograd
40 || 5.41026E-03 2.43e-02
160 || 1.29132E-03 | 2.06E+00 | 1.35E-02 0.848
640 || 3.06998E-04 | 2.0TE+00 | 7.12E-03 0.926
2560 || 7.43874E-05 | 2.04E4-00 | 3.65E-03 0.964
10240 || 1.82906E-05 | 2.02E400 | 1.84E-03 0.982

Mesh 3 - locally refined nonconforming rectangular mesh.

The error between the exact solution and the computed solution

2P9E-4

Left: Result of the MPFA scheme [2].

(e e ea e e e g e e e ma ma a end
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Right: Result of the FECC scheme.
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7.2. 2D NUMERICAL TESTS.

Mesh 1 - regular triangular mesh. Mesh 3 - locally refined nonconforming rectangular mesh.

Test 2D.2: Heterogeneous rotating anisotropy

The tensor A satisfies the equation:

1 107327 + 9% (1073 — 1) ay
2 4+ 2 1073 —1) 2y 22+ 10732
Y

We define the exact solution and the source term f as:

Uana(X,y) = sin(7x) sin(my) in (0,1) x (0,1),
Uana(X,y) =0 on the boundary of [0, 1] x [0, 1],
f(z,y) = =V.(AVuana) -
nunkw erl2 ratiol2 umin umax ergrad | ratiograd
16 || 7.02265E-02 1.35E-01 | 9.34E-01 | 9.04E-02
64 || 1.67141E-02 | 2.07TE+00 | 3.68E-02 | 9.8E-01 | 5.03E-02 0.770
256 || 4.25124E-03 | 1.97E+00 | 9.5E-03 | 9.94E-01 | 2.80E-02 0.919
1024 || 1.09645E-03 | 1.95E4+00 | 2.4E-03 | 9.98E-01 | 1.43E-02 0.970
4096 || 2.81843E-04 | 1.96E+400 | 6.02E-04 | 9.99E-01 | 7.21E-03 0.988

Mesh 2 - uniform rectangular mesh.
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7.2. 2D NUMERICAL TESTS.

Mesh 2 - uniform rectangular mesh.

We consider the problem:

in Q=(0,1) % (0,1),

div (AVu) = div (AVuana,)
on 0,

U(J}, y) = Uana(x, y)
for the following tests:
Test 2D.3: Discontinuous anisotropy (see for more detail in the section 4.2.1 of [21])

The analytical solution is

if x <0.5,

Uana (7, y) = cos(mz) sin(ry)
if x > 0.5.

Uana(T,y) = 0.01 cos(mz) sin(my)

Consider the tensor

A(z,y) = < (1) (1) ) if £ <0.5, Az,y) = < 180 0.%1 ) if x > 0.5.
nunkw erl2 ratiol2 umin umax ergrad | ratiograd
56 || 5.45056E-03 -9.07E-03 | 9.06E-01 | 8.131501E-03
224 || 1.37517E-03 | 1.98E+00 | -9.76E-03 | 9.75E-01 | 6.623965E-03 0.296
896 || 3.44881E-04 | 1.99E+00 | -9.93E-03 | 9.93E-01 | 3.741116E-03 0.824
3584 || 8.65861E-05 | 1.99E-+00 | -9.98E-03 | 9.98E-01 | 1.972594E-03 0.923
14336 || 2.17672E-05 | 1.99E+00 | -9.99E-03 | 9.99E-01 | 1.011825E-03 0.963

Mesh 1 - regular triangular mesh.

The error between the exact solution and the computed solution
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Left: Result of the Diamond scheme [16].

Test 2D.3.b: Discontinuous anisotropy

The analytical solution is

{

1

The tensor is

M= )

 Adroyr + Axdr oYK

Uana (T, y) = cos(mzx) sin(my)
Uana (T, y) = 0.01 cos(mz) sin(my)

Right: Result of the FECC scheme.

if £ <0.5,
if x > 0.5.

100

> if 2 < 0.5, M%MZ( 0 001

We use the harmonic averaging points y, introduced by [5] to define the dual grid.

dK,adL,a

Yo =

ALdi o + Axdr s

ALdg o+ Akdr o

where notations are defined in Lemma 2.1 of [5], page 2.

We obtain the following numerical results with this modification:

(A& — A7),

> if x > 0.5.

nunkw erl2 ratiol2 umin umax
56 || 4.99875E-03 -9.07E-03 | 9.06E-01

224 || 1.28975E-03 | 1.95E+00 | -9.76E-03 | 9.75E-01
896 || 3.32247E-04 | 1.95E400 | -9.93E-03 | 9.93E-01
3584 || 8.47105E-05 | 1.97E+00 | -9.98E-03 | 9.98E-01
14336 || 2.14672E-05 | 1.98E+00 | -9.99E-03 | 9.99E-01

The results are slightly more accurate than the previous results.

Test 2D.4: Discontinuous strong anisotropy
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7.2. 2D NUMERICAL TESTS.

The analytical solution is

{ Uana (T, y) = cos(mx) sin(my)
Uana (T, y) = 107° cos(mz) sin(my)

Consider the tensor

if x <0.5

)

if > 0.5.

6
Az, y) = < (1) (1) > if x <0.5, A(z,y)= ( 18 0.%1 > if > 0.5.
nunkw erl2 ratiol2 umin umax ergrad | ratiograd
56 || 5.45798E-03 -9.07E-07 | 9.06E-01 | 8.138566E-03
224 || 1.37250E-03 | 1.99E+00 | -9.76E-07 | 9.75E-01 | 6.624536E-03 0.296
896 || 3.43047E-04 | 2.00E+00 | -9.93E-07 | 9.93E-01 | 3.741224E-03 0.824
3584 || 8.58622E-05 | 1.99E-+00 | -9.98E-07 | 9.98E-01 | 1.972620E-03 0.923
14336 || 2.14862E-05 | 1.99E+00 | -9.99E-07 | 9.99E-01 | 1.011832E-03 0.963

Mesh 1 - regular triangular mesh.

Test 2D.4.b: Discontinuous strong anisotropy

We also use the harmonic averaging points y, introduced by [5]| to define the dual grid.

The analytical solution is

if 2 < 0.5,

{ Uana (T, y) = cos(mx) sin(my)
Uana (T, 7y) = 1076 cos(mz) sin(7y)

The tensor is

if

> 0.5.

1 0Y . 100 0 :
Az, y) (0 1) if x <0.5, A(z,y) ( 0 0.01> ifx>0.5
We obtain the following numerical results:
nunkw erl2 ratiol2 umin umax
56 || 5.03257E-03 -9.07E-07 | 9.06E-01
224 | 1.29392E-03 | 1.95E+00 | -9.76E-07 | 9.75E-01
896 | 3.32255E-04 | 1.96E+00 | -9.93E-07 | 9.93E-01
3584 || 8.44700E-05 | 1.97E400 | -9.98E-07 | 9.98E-01
14336 || 2.13100E-05 | 1.98E+00 | -9.99E-07 | 9.99E-01

The results are slightly more accurate than before.

Remark 7.1: In test 2D.3.b and test 2D.4.b, the tensors are discontinuous on the line
(d): x =0.5. All the points y, belong to the edges o which are common edges of the two

adjacent control volumes, computed by

_ Adroyr + Axdr oYk

Yo =
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7.2. 2D NUMERICAL TESTS.

because all the vectors A%, A7 are equal to 0.
In test 5, we show that [5] does not provide an "acceptable" y,-.

Test 2D.5: Discontinuous anisotropy (case where the harmonic averaging points
are not always defined).

The analytical solution is
Uana(2,y) = sin(mx).

The tensor is

A(x,y)z(é (1)> if x <0.5, A(x,y)z(é 18()) if x > 0.5.

We obtain the following numerical results with the FECC scheme:

nunkw erl2 ratiol2 umin umax
56 || 2.81812E-01 1.51E-01 | 1.80E4-00

224 || 2.59236E-02 | 3.44E+00 | 7.81E-02 | 1.10E+00
896 || 3.56133E-03 | 2.86E+00 | 3.92E-02 | 1.02E+00
3584 || 5.81922E-04 | 2.61E+00 | 1.96E-02 | 1.00E4-00
14336 || 1.43293E-04 | 2.02E+00 | 9.81E-03 | 1.00E4-00

Here, the FECC scheme is defined because the dual mesh is defined. Initially, the primary
mesh points were located at the barycentre of each triangle cell. We chose to move them
slightly such that the hypothesis 3.1 is satisfied for any edge of the primary grid.

We give here the coordinates of a few y, for the coarse grid.

K,L) (K,L)

nunkw || K| L :zg T, Yo
56 6| 18 (0.5,0) | (0.5,0.25) | (0.5,—0.105128205)
14 | 24 | (0.5,0.25) | (0.5,0.5) (0.5,0.120512821)

The scheme of [5] is not defined, because there are some harmonic averaging points y,
which are outside the edges o.

(KL
X -

g

&L
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7.2. 2D NUMERICAL TESTS.

In this figure, the edge o which is a common edge between K and L, has two vertices

(K.L)

K,L
a:f9 L) and

By test 5, we see another difference between the FECC scheme and the scheme of [5].

7.2.3 Comments about 2D numerical results.

In test 2D.1.1, for triangular cells, when the mesh and the solution are regular, we
obtain a second order convergence in the L? norm and an order close to 1 for the gradient.

our scheme —+—
HYB %~
EEP]1 --%--

MEY --C-
SUSHI - ©-
FVSYM - & -
MED-BLS —+-
DDFY-HER - X -
CMPEA —X—

Relative discrete 1.2 norm of the e

0T

iz} '\'I

224

896 3584 14336
Number of unknowns

Mesh 1 — regular triangular mesh

In test 2D.1.2, we obtain an order of convergence in the L? norm close to 2 for regular
triangular meshes and locally refined nonconforming rectangular meshes. The order of
convergence of the gradient tends toward 1 for regular triangular meshes and locally refined

nonconforming rectangular meshes.

our scheme —+—
FEVHYRB

ERelative discrete 1.2 norm of the ermor

56 224 896 353 14336

Number of unknowns
Mesh 3 — Locally refined nonconforming rectangular mesh

our scheme ——
FVHYB

Relative discrete L2 norm of the ermor

56 224 896 3584 14336
Number of unknowns
Mesh 1 — regular triangular mesh

In test 2D.2, for uniform rectangular meshes where A is an heterogeneous tensor, we
obtain an order of convergence near to 2 in the L? norm and the order of convergence of

the gradient tends toward 1.
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ou:rF:s.cheme —0—x 10%.. CorTTT T
MEY --%--
SUSHI - -EF -
EVSYM - ¢- 1
MED-BLS - &
DDEV-HER —+-
MPEA - X 01

0.01 |

0.001 |

0.000] Lt v
16 64 256 1024 4096

Number of unknowns
Mesh 2 — uniform rectangular mesh

Relative discrete L2 nomm of the error

From the graphs which describe the number of unknowns and relative discrete L? norm of
the error, we see that the errors of the FECC scheme are less important than the errors
of [6], [9], [23], [44], [48], [32], [40], [33] and the orders for the gradient of the scheme are
close to those of the Galerkin finite element method (see [9]).

In test 2D.3, for regular triangular meshes where A is discontinuous, we obtain an or-
der of convergence near to 2 in the L? norm and the order of convergence for the gradient
tends toward 1. With the same number of unknowns, the errors of the scheme in the L?
norm are less than the errors of [16].

1¢ —————————————

r . ourscheme, —— 1
F Diamond scheme -
01E .
*e-

001 F

0.001 |

0.0001 |

1e-05 T

Jem06 Lt e ]
56 224 896 3584 14336

Number of unknowns
Mesh | — regular triangular mesh

Relative discrete L2 norm of the error

e) In test 2D.4, for regular triangular meshes where A is an heterogeneous tensor with
a strong anisotropy, we obtain an order of convergence in the L? norm near to 2 and the
order of convergence for the gradient also tends toward 1.

The participating schemes are used to compare with the FECC scheme:

Cell centered schemes:

o CMPFA: Compact-stencil MPFA method for heterogeneous highly anisotropic second-
order elliptic problems, [44].
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7.3. 3D NUMERICAL TESTS.

e FVHYB: A symmetric finite volume scheme for anisotropic heterogeneous second-
order elliptic problems, (6.

e FVSYM: Numerical results with two cell-centered finite volume schemes for hetero-
geneous anisotropic diffusion operators, [48, 47].

e SUSHI: A scheme using stabilization and Hybrid Interfaces for anisotropic heteroge-
neous diffusion problems, [23].

Discrete duality finite volume schemes:

e DDFV-HER: Numerical experiments with the DDFV method, |32].
Finite elements schemes:

o FEP1: A Galerkin finite element solution, |9].
Mixed or hybrid methods:

e MFD-BLS: Mimetic finite difference method, [40].

e MFV: Use of mized finite volume method, [33].

7.3 3D numerical tests.

We use numerical tests in the 3D benchmark on discretization schemes FVCA 6.

7.3.1 Notations in 3D numerical tests.

We use the following notations in all tests of the section 7.3:

e The relative L? norm of the gradient of the error is given by:

1
S m(T)|Vru — VrP(uana)|?\ 2
TeM**

2> m(T)|VrP(uana)? ’
TEM**

ergrad =

where M** is the set of all tetrahedral elements of the third meshes, m(7") > 0 is the
measure of the tetrahedron 7.

e The convergence rates are defined by: for ¢ > 2,

log(erl2(i)/erl2(i — 1))
log(nu(i)/nu(i — 1)) ’

log(ergrad(i)/ergrad(i — 1))
log(nu(i)/nu(i — 1))

ratiol2(i) = -3

ratiograd(i) = -—
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7.3. 3D NUMERICAL TESTS.

7.3.2 3D numerical results.

Test 3D. 1: Flow on random meshes.

The anisotropy tensor is

10 O
Az,y,2)=| 0 1 0
0 0 10°
The analytical solution is
Uana (T, Y, 2) = sin(27z) sin(27y) sin(27z2)

with min = 0, max = 1.

We consider on the random meshes

random mesh.

We get the following numerical results:

nunkw || umin | umax erl2 | ratiol2 ergrad | ratiograd
64 || -0.928 | 0.740 | 1.957E-01 2.935E-01
512 || -1.037 | 1.013 | 1.004E-01 | 0.963 | 2.578E-01 0.186
4096 || -1.015 | 1.006 | 3.403E-02 | 1.561 | 1.501E-01 0.771
Test 3D. 2: Flow around a well.
The tensor is given by
1 0 0
Az,y,2)=1 0 1 0
0 0 02

with min = 0, max = 5.415.

The domain  and the exact solution are detailed in [4].
partitioned by the well meshes:

Moreover, the domain € is
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7.3. 3D NUMERICAL TESTS.

well mesh.

We obtain the following numerical results:

nunkw || umin | umax erl2 | ratiol2
890 || 0.390 | 5.316 | 6.089E-03
2232 || 0.231 | 5.327 | 2.624E-03 | 2.745
5016 || 0.151 | 5.328 | 1.173E-03 | 2.982
11220 || 0.116 | 5.330 | 6.004E-04 | 2.495

Test 3D. 3: Discontinuous anisotropy.

We consider the discontinuous anisotropic permeability, as follows:

1 0 0 1000 0 O
Az,y,2)=| 0 1 0 if x <0.5, Az, y,z) = 0 10 if x> 0.5.
0 01 0 0 1

The analytical solution is

Uana (T, Y, 2) = cos(mz) sin(my) sin(nz) if x < 0.5.
Uana (T, Y, ) = 0.001 cos(mx) sin(my) sin(rz) if z > 0.5.

The cube meshes are used:

cube mesh.
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7.3. 3D NUMERICAL TESTS.

The numerical results of Test 3D. 3 are shown in the following three cases:

e Case 1: The source term is computed by [ f(z).P(px)(z)dz for all K € M and
Q
| f(z).P(pk~)(x)dx for all K* € M*.
Q

e Case 2: The source term is computed by [ f(z)dz for all K € M.
K

e Case 3: We use harmonic averaging points and the edge unknowns u, in the equation
(37) — (40) [26].

Case 1 Case 2 Case 3
nunkw erl2 | ratiol2 erl2 | ratiol2 erl2 | ratiol2
64 || 4.614E-02 2.702E-01 6.413E-02

512 || 1.163E-02 1.98 | 6.313E-02 2.09 | 1.579E-02 2.02
4096 || 2.914E-03 1.99 | 1.541E-02 2.03 | 3.883E-03 2.02
16000 || 1.180E-03 1.99 | 6.101E-03 2.04 | 1.558E-03 2.01

7.3.3 Comments about 3D numerical results.
We use the following classical schemes to compare with the 3D FECC scheme:
Cell-centered schemes:

o LS-FVM: The cell-centered finite volume method using least squares vertexr recon-
struction (diamond scheme), by Y. Coudiére and G. Manzini [15].

Finite element schemes:

e MELODIE: A linear finite element solver, by H. Amor, M. Bourgeois, and G. Mathieu
[8]-

Gradient schemes:

e SUSHI: The SUSHI scheme, by R. Eymard, T. Gallouét and R. Herbin [24].
e VAG: The VAG scheme, by R. Eymard, C. Guichard and R. Herbin [25].

Nonlinear schemes:

e FVMON: A monotone nonlinear finite volume method for diffusion equations on poly-
hedral meshes, by A. Danolov and Y. Vassilevski [17].

In test 3D.1, for the random meshes, the order of convergence in the L? norm and the
order of convergence of the gradient of the FECC scheme increase, which is similar to the
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numerical results of the 3D Sushi scheme in the same test.

In test 3D.2, for the well meshes, the order of convergence in the L? norm is greater than 2.

For test 3D.1 and test 3D.2, we obtain the following figures:

Test 3D.1 — the random mesh

Relative discrete L"2 norm of the error

FECC —¥—
LS—FyM —5—
FVMON
SUSHI |
MELODIE —%—
vAG

Relative discrete L"2 norm of the error

0,009

0.008

0,007

©.006

©,005

0,004

0.003

0,002

0.001

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of unknowns

Test 3D.2 — the well mesh

e ——r

FECC —¥—
LS-FvM —B—
FYMON
SUSHI
MELODIE —%— |
vnG

—

[+]

2000 4000 8000 8000

Number of unknowns

10000

12000 14000

In test 3D.3, for the cube meshes and the discontinuous anisotropic tensor, we compare
with the three different source terms. These methods are often used to compute the discrete
source terms in classical finite volume and finite element schemes. We see that, in the three
cases, the orders of convergence in the L? norm are close to 2.

7.4 3D numerical tests of the non-linear FECC schemes for
Discrete Maximum Principle.

7.4.1

Notations in tests for Discrete Maximum Principle.

The following notations are used to present the numerical results:
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DISCRETE MAXIMUM PRINCIPLE.

e numkw: number of unknowns.
e umin 4p : minimum value of the approximate solution,
T

e umax 4p : maximum value of the approximate solution,
e erl2 4o : the relative L? norm of the error,

e crgrad 4o : the relative L? norm of the error,

e ratiol2 AP the convergence rate,
where the values i = 1,2 correspond to the initial and the second FECC scheme.
We define, for the first non-linear FECC scheme (NLFECC1),

e umin sp minimum value of the approximate solution,

® umaxgp : maximum value of the approximate solution,

° erlQSjp : the relative L? norm of the error,

e ratiol2 sP the convergence rate,

e nitgp : number of iterations needed to compute the approximate solution of SP.
J

o (AK0> :max{‘A x (W) VKEM}
ot ) s Iy
where the values j = 1,3 correspond to the values of n = 0.25, 0.5, 1, 2.

For the second non-linear FECC scheme (NLFECC2), we use the notations umin gp,
i

umaxsjp,m , erlZS]p,D*, rat1012$jp,p* and nltSJp,D* .

The iterative algorithm of the NLFECC1 scheme is presented, as follows:
With a fixed point iteration 4, we fix u in Bk z(u) by the value of solution u'.

Step I: For all K* € M, we construct the system of linear combinations depending
on ((ul[(ﬁ ) K*eM* (u’;l)KeM) with the following linear equation:

int’

PP W)+ Y B o) (g — i / f(@).P(px-) (@)de.

ZeV(K*)

We note that the set V(K*) does not contain L* € M* such that L* # K*. Hence we

compute ul+1 by linear combinations depending on (ul'(" YKeM-

111



7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

Step 2: For all K € M, we also have the system of linear combinations depending on
((u%ﬂ VK eM:,, s (u[{H)KGM) by the following linear equation:

ZeV(K

By Step 1, we transform ulH for all K* € M , into the linear combinations depending on

(u?l) Kkem- Therefore, we can rewrite the system of linear equations in Step 2 by another
system of linear equations only depending on (u’;l) KeM-
In the iterative algorithm of the NLFECC?2 scheme, we also fix u = u’ in S 1 (u), where u’
is the value of the solution, i is a fixed point iteration. This iterative algorithm is written
by:
—.AD z+1 Z BKZ z H—l z+1) |K‘ ij VK € M.
ZeV(K

The two algorithms are stopped by the criterion [[ut” T _H“l” <1074,
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

7.4.2 3D numerical results of the non-linear FECC schemes.

Test 1: Stationary analytical solution

The strong anisotropic permeability is

Aaz,y,z) =

S O O
O = O
= o O

The analytical solution is given by:
(#202) = sin () sin () sin (32)
=sin(—z).sin(—-y).sin(=z).
u(®,y,2) =sin| gz ).sin{5y).sin{ 5z

The domain 2 is partitioned by the cube meshes:

the unit cube.

In test 1, we consider accuracy, the order of convergence in the L? norm and existence of
the discrete maximum principle for the FECC schemes and the non-linear FECC schemes.

113



7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096

uminA? 8.023E-3 | 1.238E-3 | 1.748E-4

uminslp,m (n=0.25) || 9.334E-3 | 1.407E-3 | 1.917E-4
uminsg,m (n=20.5) || 1.108E-2 | 1.630E-3 | 2.129E-4
uminsgp,p* (n=1) || 1.490E-2 | 2.199E-3 | 2.666E-4
umax 4p 0.9622 0.9907 0.9976
umaxslp,m 0.9443 0.9844 0.9958
umaxsf,m 0.9330 0.9805 0.9946

Umax gp,p+ 0.9193 0.9757 0.9931

erlQAlp 1.569E-2 | 4.274E-3 | 1.043E-3

erlQS?,p* 9.403E-3 | 7.585E-3 | 4.216E-3

er12$2p,m 2.706E-2 | 1.651E-2 | 8.502E-3

er12$§>,m 5.476E-2 | 3.189E-2 | 1.612E-2

ratiolQAlD 1.88 2.03
ratiolQSF,D* 0.31 0.84
ratiolQSf,p* 0.71 0.96
ratiolZSE,D* 0.78 0.98
nitslo,o* 6 )

nitSQD,D* 7 7

nitsf,p* 11 12 15

Table 1.1, the NLFECC1 schemes SP-P"
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminA? 8.023E-3 | 1.238E-3 | 1.748E-4

uminSD,D*(n:()QB) 8.917E-3 | 1.331E-3 | 1.822E-4
1

uminsp,m(n:()ﬁ) 1.001E-2 | 1.440E-3 | 1.910E-4
2

uminsp,p*(nzl) 1.248E-2 | 1.698E-3 | 2.139E-4
3

umax 4p 0.9622 0.9907 0.9976
Umax ;p,p* 0.9580 0.9902 0.9976

1

UmMax ¢p,p* 0.9541 0.9897 0.9975

2

Umax ¢p, p* 0.9474 0.9888 0.9975
3

erlQA? 1.569E-2 | 4.274E-3 | 1.043E-3
erlQSD,D* 8.432E-3 | 2.419E-3 | 6.383E-4

1

erl2¢pp+ || 9.980E-3 | 3.085E-3 | 7.821E-4

2

erl2 p o || 2.486E-2 | 7.753E-3 | 1.880E-3

3

ratiolQAlD 1.88 2.03
ratiolQSD,D* 1.80 1.92
1
ratiolQSD,D* 1.69 1.98
2
ratiolZSD,D* 1.68 2.04
3
nits}””* 5 4 4
nit&f,p* 6 5 5
nitS’D,D* 7 8 8

3

Table 1.2, the NLFECC1 schemes SP'P" with the second correction BD’D*.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminA? 8.023E-3 | 1.238E-3 | 1.748E-4

umin g, (n = 0.25) || 9.365E-3 | 1.383E-3 | 1.865E-4
1
umin gp,p- (n = 0.5) || 1.105E-2 | 1.558E-3 | 2.001E-4
2
umingpp- (= 1) || 1460E-2 | 1.988E-3 | 2.441E-4
3

umax 4p 0.9622 0.9907 0.9976
Umax ;p,p* 0.9549 0.9898 0.9976

1

UmMax gp,p* 0.9488 0.9889 0.9975

2

Umax ¢p, p* 0.9391 0.9873 0.9973
3

er12Alp 1.569E-2 | 4.274E-3 | 1.043E-3
erlQSD,D* 7.243E-3 | 2.359E-3 | 6.479E-4

1

erl2¢pp+ || 1.776E-2 | 6.010E-3 | 1.565E-3

2

erl2 p o || 4.065E-2 | 1.409E-2 | 3.697E-3

3

ratiolQAlD 1.88 2.03
I‘atiOIQSD,D* 1.62 1.86
1
ratiolQSD,D* 1.56 1.94
2
ratiolZSD,D* 1.53 1.93
3
nitslo,m 5 5 5
nitSQD,D* 7 6 7
nitsp,p* 9 11 13

3

Table 1.3, the NLFECC1 schemes SP'P" with the third correction ED’D*.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

Comments about Table 1.1, 1.2 and 1.3: for the strong anisotropic tensor and the
cube meshes, we obtain a second order in the L? norm for the initial FECC scheme. With
the NLFECC1 schemes constructed from the first corrections, their orders of convergence
in the L? norm are near to 1 with n = 0.25,0.5, 1. On the other hand, when we consider the
NLFECCI schemes with the second and the third corrections, the orders of convergence
in the L? norm are close to 2 with n = 0.25,0.5,1. All these schemes satisfy the discrete
maximum principle.

In the following figures, we show the comparison between the initial FECC scheme and the
non-linear schemes:
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DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminA;J 8.501E-3 | 1.278E-3 | 1.777E-4

umingp (7 = 0.25) || 1.091E-2 | 1.545E-3 | 2.019E-4
umingp (7 = 0.5) || 1364E-2 | 1.870E-3 | 2.313E-4
umingp (7 = 1) || 1.828E-2 | 2.548E-3 | 2.962E-4

umax 4p 1.0172 1.0096 1.0033
umaxgp 0.9850 0.9981 0.9998
umaxgp 0.9653 0.9913 0.9977
umaxgp 0.9432 0.9837 0.9955

erlQA%; 9.634E-2 | 4.453E-2 | 1.848E-2
erl2slp 6.508E-2 | 2.945E-2 | 1.294E-2
er12$§> 5.292E-2 | 2.507E-2 | 1.202E-2
er12$§> 5.909E-2 | 3.311E-2 | 1.730E-2

ratiolQAQD 1.11 1.27
ratiolQSID 1.14 1.18
rati0123273 1.08 1.06
ratiolQSSD 0.84 0.94
nitslp 6 6 6
nitszp 8 8 9
nits?? 12 16 60

Table 1.4, the NLFECC2 schemes S? with the first correction 7.
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DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminA;J 8.501E-3 | 1.278E-3 | 1.777E-4

uminszp (n=0.25) || 1.041E-2 | 1.457E-3 | 1.910E-4
uminsg (n=20.5) || 1.243E-2 | 1.651E-3 | 2.059E-4
uminsgz; (n=1) || 1.610E-2 | 2.041E-3 | 2.411E-4

umax 4p 1.0172 1.0096 1.0033
umaxgp 1.0084 1.0085 1.0032
umaxgp 1.0009 1.0075 1.0031
umaxgp 0.9883 1.0056 1.0029

erIQA;; 9.634E-2 | 4.453E-2 | 1.848E-2
erl25%> 8.115E-2 | 4.040E-2 | 1.767E-2
erlZSgp 6.990E-2 | 3.715E-2 | 1.698E-2
er12$§> 5.782E-2 | 3.306E-2 | 1.595E-2

ratiolQAQD 1.11 1.27
ratiolQSP 1.01 1.19
ratiol2$2p 0.91 1.13
ratiolQSgJ 0.81 1.05
Hitle 5 5 5
nitS2D 6 6 6
nitsz? 7 9 11

Table 1.5, the NLFECC2 schemes S? with the second correction BD.
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DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminA;J 8.501E-3 | 1.278E-3 | 1.777E-4

umingp (n = 0.25) | L119E-2 | 1.544E-3 | 1.982E-4
umingp (7 = 0.5) || 13976-2 | 1.828E-3 | 2.204E-4
umingp (7 = 1) || 1.832E-2 | 2.361E-3 | 2.862E-4

umax 4p 1.0172 1.0096 1.0033
umaxgp 1.0026 1.0076 1.0031
umaxgp 0.9911 1.0058 1.0029
umaxgp 0.9737 1.0027 1.0025

er12A;3 9.634E-2 | 4.453E-2 | 1.848E-2
erl25F 7.363E-2 | 3.774E-2 | 1.704E-2
er125§> 6.041E-2 | 3.335E-2 | 1.596E-2
er12$§> 5.605E-2 | 3.057E-2 | 1.587E-2

ratiolQAQD 1.11 1.27
ratiolQSID 0.96 1.15
rati0123273 0.85 1.06
ratiolQSSD 0.87 0.94
nitle 5 5 6
nit52p 6 7 8
nits?? 8 19 38

Table 1.6, the NLFECC2 schemes S” with the third correction ED.

120



7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

Comments about Table 1.4, 1.5 and 1.6: for the strong anisotropic tensor and the
cube meshes, the order of convergence in the L? norm for the second FECC scheme is not
second order, because we do not use enough meshes. However, we observe the orders for all
the NLFECC2 schemes are close to 1 with n = 0.25,0.5,1. All these schemes also satisfy

the discrete maximum principle.

In the following figures, we show the comparison between the second FECC scheme and
the non-linear schemes:
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DISCRETE MAXIMUM PRINCIPLE.

Test 2: Stationary non analytical solution

The permeability is

100 0 0
Az,y,2z) = 0 10
0 01
The analytical solution is equal to 0 on the boundary 0f2.

The source term is a discontinuous function on €2 :

Fagzy = { 1000 if (z,y,2) € (0,5;0,75) x (0,5;0,75) x (0,5;0,75).
DEIT 00 it Q/(0,5:0,75) x (0,5;0,75) x (0,5;0,75).

The primary meshes are the cube meshes:

the unit cube.

Test 2 is used to evaluate the respect of the discrete maximum principle. We obtain the
following numerical results:
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096
uminAP -4.733E-2 | -3.435E-2 | -1.101E-2
umin gp, p* (n=10.25) || -2.621E-2 | -9.054E-3 | -5.247E-4
1
umin gp o+ (7 = 0.5) || -4.950E-3 | -6.112E-4 | -3.355E-5
2
umin ¢p,p (n=1) 3.923E-4 | 1.518E-5 | 2.919E-8
3
umax 4o 0.5031 0.4220 0.4651
Umax oo o= 0.3956 0.3519 0.3909
1
Umax oo o+ 0.3040 0.2879 0.3398
2
umax ¢p,p* 0.1798 0.2028 0.2701
3
nitSF,D* 11 9 8
nit .p.p+ 19 14 11
82
nitSD,D* 24 37 23
3

Table 2.1, the NLFECC1 schemes SP-P"

The approximate solution of the initial FECC scheme
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

For n = 0.25,

The computed solution of the NLFECC1 scheme with the first corection

For n = 0.5,

The computed salution of the NLFECCT schere with the first correction
0.01

0.005

Forn=1,

The computed solution of the MLFECC1 scherme with the first correction
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 1096
umin_gp || -4.733E-2 | -3.435E-2 | -1.101E-2
umin oo+ (1 = 0.25) || -1.637E-2 | -1.669E-2 | -7.162E-4
1
umin go.o+ (1 = 0.5) || 4.676E-5 | 8.092E-8 | -9.163E-7
2
umingpo (= 1) || 4.780E-4 | 6.297E-6 | 1.913E-9
3

umax 4p 0.5031 0.4220 0.4651
UMax p o+ 0.3579 0.3823 0.4493

1
1MAax gp o+ 0.2638 0.3321 0.4334

2
Umax gp, o+ 0.1763 0.2709 0.4037

3
nit p,or 12 10 7

1
nit p,or 16 14 9

2
nit g, o- 16 22 17

3

Table 2.2, the NLFECC1 schemes SP'P" with the second correction BD’D*.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

For n = 0.25,

The computed solution of the MLFECC1 scheme with the second correction
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0.005
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+0.015
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-0.025

-0.03

For n = 0.5,

The computed solution of the NLFECC1 scherne with the second correction
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The computed solution of the NLFECC1 scherme with the second correction
0.01

0.005

+0.005
+0.01
+H0.015

-0.02

-0.025

-0.03

126

The computed solution of the NLFECC1 scheme with the second correction
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 1096

umin_gp || -4.733E-2 | -3.435E-2 | -1.101E-2

umin o o+ (5 = 0.25) | -9.517E-3 | 6.994E-3 | ~4.698E-4
umin o o+ (5 = 0.5) | 1.190E-4 | 6.376E-7 | 2.371E-11
uminp o+ (5 = 1) | 6.931E-4 | 2.086E-5 | 2.653E-8

umax 4o 0.5031 0.4220 0.4651

umax ¢p,p* 0.3348 0.3593 0.4375
1

umax ¢p,p* 0.2350 0.3010 0.4117
2

umax ¢p,p 0.1439 0.2284 0.3677
3

nit o, o+ 14 11 7
1

nit .p o+ 19 15 11

Sy

nit o o+ 17 37 28

3

Table 2.3, the NLFECC1 schemes SP'P" with the third correction ED’D*.

127



7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

For n = 0.25,

The computed solution of the NLFECC1 scheme with the third correction
0.01

0.005

+0.005
F0.01
+0.015

-0.02

-0.025

-0.03

For n = 0.5,

The computed solution of the NLFECC1 scheme with the third correction
0.01

0.005

Forn=1,

The computed solution of the NLFECC scheme with the third correction
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The computed solution of the NLFECC1 scheme with the third correction

03
O
0 02 0.4 0E 0 1 i

The computed solution of the NLFECC1 scheme with the third correction

1 0.01
ue D 0.005
o D
0.005
001
0015
002
0.025
0 02 04 05 08 1

-0.03

The computed solution of the NLFECGCT scheme with the third correction
1

ﬂ
0 .
o 0z 0.4 0.6 0a 1



7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096

uminAgp -6.311E-2 | -4.287E-2 | -1.301E-2

umins%a (n=0.25) || -3.341E-2 | -6.052E-3 | -3.034E-4
umingp (n = 05) || -2.2435-3 | -1.661F-5 | -4.651E-7
umingp (n=1) || 1.107E-3 | 2.816E-5 | 5.755E-8
umax 4p 0.6708 0.5584 0.5027
umaxgp 0.5156 0.4322 0.4168
umaxgp 0.3715 0.3363 0.3539
umaxgp 0.1965 0.2166 0.2701

nit gp 12 10 9

nitgp 20 15 13

nit gp 20 29 68

Table 2.4, the NLFECC2 schemes with the first correction BD.

The approximate solution of the second FECC scheme
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

For n = 0.25,

The computed solution of the NLFECC2 scheme with the first correction
0.01

0.005

+0.005
F0.01
+0.015

-0.02

-0.025

-0.03

For n = 0.5,

The computed solution of the MLFECCZ scheme with the first correction
0.01
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Forn=1,

The computed solution of the NLFECC2 scheme with the first corection
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0025

-0.03
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

numkw 64 512 4096

uminAgp -6.311E-2 | -4.287E-2 | -1.301E-2

uminsF (n=0.25) || -1.086E-2 | -2.809E-3 | -3.263E-4
uminszp (n=20.5) || 2.792E-4 | 9.661E-7 | 4.000E-11
uminsg); (n=1) 1.251E-3 | 1.835E-5 | 1.239E-8
umax 4p 0.6708 0.5584 0.5027
umaxgp 0.4238 0.4416 0.4784
umaxgp 0.2855 0.3618 0.4517
umaxgp 0.1725 0.2679 0.4041

nitslp 13 9 7

nitsgp 14 14 11

nitsga 10 33 25

Table 2.5, the NLFECC2 schemes with the second correction ED.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR

DISCRETE MAXIMUM PRINCIPLE.

For n = 0.25,

The computed solution of the MLFECC2 scherne with the second correction
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.

In Test 2, although we do not know the analytical solution, this solution is equal or greater
than 0 because of the positive source term and the discrete maximum principle (DMP).

Comments about Table 2.1, 2.2, 2.4: for the cube meshes, the strong anisotropic
tensor and the discontinuous source term, the FECC schemes and the non-linear schemes
with n = 0.25, 0.5 violate DMP. The non-linear schemes with n = 1 satisfy DMP. How-
ever, number of iterations needed to compute the approximate solution of the non-linear
schemes with n = 1 (nit) are greater than nit of the other non-linear schemes.

Comments about Table 2.3, 2.5: for the cube meshes, the strong anisotropic tensor
and the discontinuous source term, the FECC schemes and the non-linear schemes with
n = 0.25 do not satisfy DMP. On the other hand, with n = 0.5, 1, the non-linear schemes
satisfy DMP.
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7.4. 3D NUMERICAL TESTS OF THE NON-LINEAR FECC SCHEMES FOR
DISCRETE MAXIMUM PRINCIPLE.
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8.1. CONCLUSION

8.1 Conclusion

The objective of this work was to represent a new cell-centered scheme and study its
main properties for heterogeneous anisotropic diffusion problem (2.1) on general meshes.
Its name is the Finite Element Cell-Centered scheme (the FECC scheme). The FECC
scheme has the following main characteristics:

e Its ideas are based on the standard finite element method.
e It uses a particular definition of dual meshes.
e In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

e It is a cell-centered scheme, its stencil is equal or less than nine on quadrangular
meshes and twenty seven on hexahedral meshes.

e It is exact on cell-wise afline solutions for cell-wise constant diffusion tensors.

e In general cases, with light assumption (hypothesis 2.1 and 3.1), the matrix which is
associated to our scheme is symmetric and positive definite on general meshes.

e [t takes into account nonconforming meshes. This is helpful to use Adaptive Mesh
Refinement to locally increase the precision.

e It is convergent for discontinuous tensors which are piecewise Lipschitz-continuous.

e It is very precise in L? norm in comparison with classical finite volume schemes

(FVCA 5 & 6 tests).

The other objectives were to study the non-linear FECC schemes with non-linear correc-
tions to satisfy the maximum principle. It is well-known that classical finite volume and
finite element schemes fail to satisfy the maximum principle for distorted meshes or for
high anisotropy ratio of diffusion tensors [19], [45], [34], [41]. Moreover, in [45], the authors
proved that it is impossible to construct nine-point methods which unconditionally sat-
isfy the monotonicity criteria when the discretization satisfies local conservation and exact
reproduction of linear potential fields. In these papers, they propose some conditions to sat-
isfy the maximum principle. However, these conditions are difficult to satisfy, especially in
three dimensions. The FECC scheme also violates the discrete maximum principle. Hence,
we used non-linear corrections to correct the initial and the second FECC schemes. These
non-linear schemes are named the NLFECC1 and the NLFECC2 schemes satisfying the
maximum principle and preserving the main properties: symmetry, positive-definiteness,
coercivity, a priori estimate, existence of solution to the schemes and the condition for
convergence toward the solution of (2.2) when the size of the meshes tends to 0. Besides,
it is easy for us to implement, because we can use the computed data of the linear system
associated to the FECC schemes. In the section 7.4, we showed 3D numerical results of
the non-linear schemes and comparisons between the FECC schemes and these schemes.
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8.2. PERSPECTIVES

8.2 Perspectives

A natural extension could be to use the FECC scheme in a convection diffusion dis-
persion equation. If one needs to satisfy the minimum and the maximum principles, the
NLFECC1 and the NLFECC2 schemes will be coupled to a classical cell-centered convec-
tive scheme. Another application could be a coupling with a chemical model, where it is
crucial to obtain a solution satisfying the physical bounds.
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Résumé

Nous présentons de nouveaux schémas numériques pour ’approximation de problémes
de diffusion hétérogene et anisotrope sur des maillages généraux. Sous des hypotheses cor-
respondant aux cas industriels, nous montrons qu’un premier schéma, qui est centré sur les
mailles, posséde un petit stencil et converge dans le cas de tenseurs discontinus. La preuve
de la convergence repose sur des propriétés de consistance des gradients discrets issus du
schéma. Dans une seconde partie, nous proposons des méthodes de correction non linéaire
du schéma initial pour obtenir le principe du maximum.

Lefficacité de ces schémas est étudiée sur des tests numériques ayant fait I’objet de
bancs d’essais d’une grande variété de schémas de volumes finis. Les comparaisons avec les
schémas volumes finis classiques montrent ’apport de ces schémas en termes de précision.
Nous montrons ainsi le bon comportement de ces schémas sur des maillages déformeés,
et le maintien de la précision des schémas non-linéaires, alors que les oscillations ont été
supprimées.

Mots clés :  Diffusion hétérogéne anisotrope, maillages généraux, volumes finis, schéma
centré sur les mailles, principe du maximum.
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Abstract

We present a new scheme for the discretization of heterogeneous anisotropic diffusion
problems on general meshes. With light assumptions, we show that the algorithm can
be written as a cell-centered scheme with a small stencil and that it is convergent for
discontinuous tensors. The key point of the proof consists in showing both the strong and
the weak consistency of the method. Besides, we study non-linear corrections to correct
the FECC scheme, in order to satisfy the discrete maximum principle (DMP).

The efficiency of the scheme is demonstrated through numerical tests of the 5th & 6th
International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6.
Moreover, the comparison with classical finite volume schemes emphasizes the precision of
the method. We also show the good behaviour of the algorithm for nonconforming meshes.
In addition, we give some numerical tests to check the existence for the non-linear FECC
schemes.

Keywords :  Heterogeneous anisotropic diffusion, general grids, finite volumes, finite
elements, cell-centered scheme, discrete maximum principle.
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Résumé:

Nous présentons de nouveaux schémas numériques pour ’approximation de problémes
de diffusion hétérogéne et anisotrope sur des maillages généraux. Sous des hypothéses
correspondant aux cas industriels, nous montrons qu'un premier schéma, qui est centré sur
les mailles, posséde un petit stencil et converge dans le cas de tenseurs discontinus. La
preuve de la convergence repose sur des propriétés de consistance des gradients discrets
issus du schéma. Dans une seconde partie, nous proposons des méthodes de correction non
linéaire du schéma initial pour obtenir le principe du maximum.

L’efficacité de ces schémas est étudiée sur des tests numériques ayant fait 'objet de
bancs d’essais d’une grande variété de schémas de volumes finis. Les comparaisons avec les
schémas volumes finis classiques montrent ’apport de ces schémas en termes de précision.
Nous montrons ainsi le bon comportement de ces schémas sur des maillages déformés,
et le maintien de la précision des schémas non-linéaires, alors que les oscillations ont été
supprimées.

Mots clés :

Diffusion hétérogéne anisotrope, maillages généraux, volumes finis, schéma centré sur
les mailles, principe du maximum.

Abstract :

We present a new scheme for the discretization of heterogeneous anisotropic diffusion
problems on general meshes. With light assumptions, we show that the algorithm can
be written as a cell-centered scheme with a small stencil and that it is convergent for
discontinuous tensors. The key point of the proof consists in showing both the strong and
the weak consistency of the method. Besides, we study non-linear corrections to correct
the FECC scheme, in order to satisfy the discrete maximum principle (DMP).

The efficiency of the scheme is demonstrated through numerical tests of the 5th & 6th
International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6.
Moreover, the comparison with classical finite volume schemes emphasizes the precision of
the method. We also show the good behaviour of the algorithm for nonconforming meshes.
In addition, we give some numerical tests to check the existence for the non-linear FECC
schemes.
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Heterogeneous anisotropic diffusion, general grids, finite volumes, finite elements, cell-
centered scheme, discrete maximum principle.



