
HAL Id: tel-00794977
https://theses.hal.science/tel-00794977v1

Submitted on 26 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexité Implicite de Lambda-Calculs Concurrents
Antoine Madet

To cite this version:
Antoine Madet. Complexité Implicite de Lambda-Calculs Concurrents. Programming Languages
[cs.PL]. Université Paris-Diderot - Paris VII, 2012. English. �NNT : �. �tel-00794977�

https://theses.hal.science/tel-00794977v1
https://hal.archives-ouvertes.fr
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Merci à John C., Sonny R. et Florent D. pour leurs musiques et le reste.

Paris, le 21 Novembre 2012.

3
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Chapter 1

Introduction

As programs perform tasks, they consume resources of the computational sys-
tems on which they are executed. These resources are by definition of limited
availability and typically include processor cycles, memory accesses, input/out-
put operations, network accesses, etc. . . The efficiency of programs highly de-
pends on the usage of these resources and therefore it is of chief importance to
be able to control the resource consumption of programs.

The control of resource usages has also many applications in the field of com-
puter security. For example, the increasing mobility of programs raises many
situations where an untrusted code may overuse resources of a host computa-
tional system and provoke a denial of service. Also, the important development
of computational systems with critical amount of resources like smart cards
and embedded systems appeals for an analysis of the resource consumption of
programs.

The resources of computational systems differ quite a lot from one architecture
to another and the analysis of their usages requires an understanding of very
specific low-level details. Rather than computational systems, it is often simpler
to work at the more abstract level of computational models. In these models,
programs are written in abstract languages and consume abstract resources that
usually include computational time, a certain number of computation steps,
and computational space, a certain amount of memory space. The efficiency
of programs, which is also known as their computational complexity, is then
evaluated by analyzing the amount of abstract resources that is consumed for
a given set of input parameters. For example, it is with respect to abstract
resources that a program is said to be computable in polynomial time.

Analyzing the resource usages of programs can be done in two different ways.
One of them is to measure dynamically (at run-time) the consumption of re-
sources and to abort execution when safety limits are overreached. The draw-
back of this approach is that dynamic measurements introduce overhead costs

13



14 CHAPTER 1. INTRODUCTION

which may be critical if few amounts of resources are available. More impor-
tantly, in critical systems it may simply not be acceptable to abort the com-
putation. The alternative approach is to compute statically (at compile-time)
the resource usages of programs, so that it can be decided before their actual
executions if they are safe. Also, static analyzes do not introduce any runtime
cost.

Programmers themselves have the ability to perform manual static resource ana-
lyzes of programs, up to some precision. . . Since they usually work with high-level
programming languages that hide the machinery of low-level resources like pro-
cessor cycles, programmers reason at the more abstract level of computational
complexity. They assign a cost to each operation of the programming language,
that is a number of computation steps and/or memory units, and then evaluate
what is the cost of their program for given inputs. Of course, manual static an-
alyzes do not scale to realistic programs. Moreover, even though static analyzes
can be automatically computed, it is hard to infer precise costs. We identify
mainly two causes to this difficulty:

(1) The high-level nature of mainstream programming languages do not al-
low to analyze concrete resource usages like processor time and memory
accesses. Even though we can reason at the more abstract level of com-
putational resources, they are not obviously related to the consumption
of concrete resources. High-level programs are most of the time compiled
into low-level ones whose concrete resource usages are easier to observe,
but the numerous compilation steps obscure very much the relationship
between high-level programs and their low-level counterparts.

(2) Even if we focus on the abstract level of computational resources, program-
ming languages frequently offer various features like higher-order func-
tions, imperative side effects, multi-threading, object creation, etc. . . that
when used together complicate very much the computation process. In
these cases, computational complexity is hard to determine.

In this thesis, we address item (2). We are interested in static methods to
analyze and control the consumption of computational resources by programs.
In particular, we would like to focus on programs that are higher-order and
concurrent.

1.1 Higher-order concurrent programs

Higher-order concurrent programs are those written by a combination of these
two features:

• Higher-order functions: functions are first-class values which can be passed
as arguments to other functions and which can be returned as values.
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• Concurrency : programs are composed of parallel threads that interact
through a shared state by e.g. receiving/sending messages on channels or
reading/writing references.

The notion of higher-order function is very much central in the family of func-
tional languages such as Ocaml or Haskell. These languages are in fact based
on a fundamental core which has been introduced by A. Church in the 1930s
as the ‘λ-calculus’ [Chu33]. This minimal yet powerful language embodies the
concept of function abstraction, as well as the concept of data abstraction when
equipped with a suitable type system.

In these programming languages (Ocaml, Haskell), it is also possible to write
concurrent programs and various interaction mechanisms (references, channels)
are available. However, the λ-calculus is not well-suited for concurrent programs:
there is no internal notion of state and the result of the computation is always
deterministic. Here is a typical example of program written in OCaml that uses
the above features.

# let l = [ref 2; ref 2; ref 2] in

let update r = r := !r * 2 in

let iter_update l = List.iter update l;;

# Thread.create iter_update l;;

# Thread.create iter_update l;;

We first create a list l of references containing the integer 2. We define a
function update that multiplies the content of a reference, and we define a
function iter_update that iterates the function update on a given list. Then,
we create two threads that both apply the function iter_update on the list l.
Thus, one possible program execution updates the content of each reference to
8:

# l;;

- : int ref list = [{contents = 8}; {contents = 8}; {contents = 8}]

Before analyzing the resource usages of a program, a question that we may
ask is the following: does the program even consume a finite amount of com-
putational resources? Obviously, the above program is terminating and thus
consumes a finite amount of resources. However, in some cases the combina-
tion of imperative side effects and higher-order functions is known to produce
diverging computations. Consider the following program that uses the so-called
Landin’s trick.

# let r = ref (fun x -> x) in

r := fun x -> (!r)x;

!r();;

...

We first initialize a location r with the identity function. Then we assign to
r a function that, when given an argument x, applies the content of r to x.
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Consequently, when we apply the content of r to the unit value (), the program
keeps running forever.

Another question that we may ask is this one: does every execution of a given
program consume the same amount of resources? Consider the following pro-
gram.

# let r = ref (fun x -> x) in

let f g = r := g in

let t1 = Thread.create f (fun x -> (!r)x) in

let t2 = Thread.create f (fun x -> x);;

The order of execution of the two threads t1 and t2 is non-deterministic so that
in some cases the following expression

# !r();;

diverges while in other cases it terminates.

The above program examples suggest that the static analysis of resource usages
of concurrent programs written with higher-order functions is rather difficult.

1.2 Proofs as programs

Instead of trying to analyze any program that could possibly be written, another
approach is to force the programmer to write programs that, by construction,
use restricted amounts of resources. A well-known proposal in this direction is to
express the constraints by means of a type system. More precisely, it consists in
associating a type to each sub-expression of a program in order to limit the kind
of values the sub-expression may produce during execution. The constraints are
actually expressed as typing rules that specify how expressions of given types
can be composed. The goal is to define suitable typing rules so that if a program
is well-typed (i.e. it can be given a type by following the rules), then it uses a
‘safe’ amount of resources. Finally, the static analysis only consists in trying to
infer the type of programs.

Several interpretations of ‘safe amount’ of resources are possible. The first de-
gree of safety that we may ask for is the consumption of a finite amount of com-
putational time, i.e. the termination property. The relationship between type
systems and termination has been extensively studied through the well-known
Curry-Howard correspondence which establishes a direct relation between intu-
itionistic proofs and typed λ-terms, as depicted in the following table.

Intuitionistic Logic λ-calculus
Formula Type

Proof Typed λ-term
Proof reduction Term reduction
Normalization Termination
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The fact that every intuitionistic proof can be reduced to a normal form (i.e. which
cannot be reduced further), which is called the normalization property, corre-
sponds to the fact that every typed λ-term terminates.

Unfortunately, the simply typed λ-calculus is a very restricted fragment of
Ocaml. More generally, ML programs do not correspond to intuitionistic proofs
because features such as recursion and references are not reflected by intuitionis-
tic logic. Consequently, the ML type system does not ensure the termination of
programs; it suffices to check that the above program examples are well-typed.

1.3 Implicit Computational Complexity

Type systems have also been used to guarantee properties stronger than ter-
mination. For example, by designing sufficiently constrained typing rules, well-
typed programs can be proved to terminate in e.g. polynomial time or logarith-
mic space. More generally, numerous other approaches have been proposed to
constrain the complexity of programs. In fact, the design of programming lan-
guages that use safe amounts of resources has been very much inspired by the
research field of Implicit Computational Complexity (ICC). This research area
aims at providing logical principles or language restrictions to characterize vari-
ous complexity classes. Here, “implicit” means that the restrictions do not refer
to any specific machine model or external measuring conditions. The first im-
plicit characterizations of bounded complexity were given by D. Leivant [Lei91]
and then by S. Bellantoni and S. Cook [BC92]. By imposing the principle of
data-ramification, they are able to characterize functions computable in poly-
nomial time. Following these seminal works, various other approaches have
been proposed in the literature such as logical principles, rewriting techniques,
semantic interpretations. . .

What interests us is that ICC has found a natural application in the design of
programming languages that are endowed with static criteria ensuring bounds
on the computational complexity of programs. In this respect, while static cri-
teria should guarantee reasonable complexity bounds, they should also allow
sufficient flexibility to the programmer. The programming flexibility of an ICC
criteria can be determined by the number of “natural” algorithms and program-
ming features (e.g. higher-order functions, imperative side effects, concurrency)
that are supported. Most of the times, ICC criteria are extensionally complete
for e.g. polynomial time in the sense that every mathematical function com-
putable in polynomial time can be represented by a program which satisfies the
criteria. However, they are not intensionally complete in the sense that not
every polynomial time program satisfies the criteria. Therefore, an important
line of research consists in improving the intensional expressivity of these ICC
criteria.
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1.4 Light Logics

One well-known instance of ICC which combines nicely with higher-order func-
tional languages is the framework of Light Logics [Gir98] that originates from
Linear Logic [Gir87].

Linear Logic

In Linear Logic, there is a distinction between formulae that are linear, i.e. that
can be used exactly once, and formulae that can be used arbitrarily many times
and that must be marked with a modality ‘!’ named bang. The discovery of
Linear Logic led to a refinement of the proof-as-program correspondence that
includes an explicit treatment of the process of data duplication, as depicted in
the following table.

Linear Logic Linear λ-calculus
Linear formula Linear type
Modal formula Modal type

Proof Typed linear λ-term

Proof reduction:
- Consumption of formulae
- Duplication of formulae

Term reduction:
- Consumption of data
- Duplication of data

Normalization Termination

Proofs of Linear Logic now correspond to a linear λ-calculus which is a λ-calculus
with a ‘!’ constructor to mark duplicable data. The point is that the distinction
between linear and modal formulae splits proof reductions into two kinds: those
that consume linear formulae and those that duplicate modal formulae. At the
level of terms, this corresponds to distinguishing reduction steps which are linear
(functions use their arguments exactly once) and reductions steps which may
duplicate/erase data.

Light Logics

Light Logics refine further Linear Logic by imposing restrictions on the bang
modality so that the duplication process is restricted. To see why the duplication
of data impacts on computational complexity, consider the following program.

# let f l = l @ l in

f(f(f[1]));;

- : int list = [1; 1; 1; 1; 1; 1; 1; 1]

We define a function f that takes a list l as argument and appends l to itself.
Then we iterate 3 times the function l on a list of one element so that we obtain
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a list of 8 elements. It is straightforward to see that if we iterate n times the
function f, then we obtain a list of length 2n. Here, the exponential growth of
the size of the program is due to the fact that the function f uses its argument
twice.

Light Logic can be seen as a way to bound the complexity of the normaliza-
tion/termination procedure. This is illustrated in the following table.

Light Logic Light λ-calculus
Linear formula Linear type

Weak modal formula Weak modal type
Proof Typed light λ-term

Proof reduction:
- Consumption of formulae
- Weak duplication of formulae

Term reduction:
- Consumption of data
- Weak duplication of data

Bounded complexity
of normalization

Bounded complexity
of termination

In Light Logics, the modality is weaker than in Linear Logic in the sense that it
does not allow to duplicate formulae in an unrestricted way. At the term level,
this amounts to weakening the duplicating power of programs. These restric-
tions allow to show that the normalization of proofs is of bounded complexity
and consequently that typed light λ-terms terminate by consuming bounded
amounts of computational resources.

To be precise, Intuitionistic Logic and Linear Logic already induce bounds on the
complexity of proof/term reduction. These bounds are actually not useful from
the point of view of efficiency and Light Logics generally address complexity
classes corresponding to feasible computation such as polynomial time.

In Light Logics, formulae are decorated with special modalities and each formula
can be assigned a depth which is the number of modalities in which it is enclosed.
The interesting point is that the complexity properties of Light Logics only rely
on the notion of depth. The depth of a formula, thus the depth of a type, can
be somehow reflected at the level of programs by modal constructors which give
a depth to each sub-term of a program. Therefore, the complexity of programs
can be controlled by a depth system which constrains how programs of given
depth can be composed. The use of types can then be seen as a way to guarantee
additional safety properties like ensuring that values are used in a meaningful
way (i.e. the progress property).

Panorama

To summarize, Light Logics are logical and implicit characterizations of com-
plexity classes, which have found a nice application in the design of type sys-



20 CHAPTER 1. INTRODUCTION

tems to control the computational complexity of functional programs. Here is
an overview of the main Light Logics and the related type systems.

The first light logic called Light Linear Logic (LLL) was initially proposed
by Girard [Gir98] as a logical system corresponding to polynomial time: by
imposing suitable restrictions on the depth of occurrences, every proof of LLL
can be normalized in polynomial time and every polynomial time function can
be represented by a proof of LLL. Later, A. Asperti observed [Asp98] that it
is possible to simplify LLL into an affine variant, that is where the discarding
of formulae is unrestricted, and which is called Light Affine Logic (LAL). As a
result of the proof-as-program correspondence, a light logic gives rise to a ‘light
λ-calculus’ whose terms can be evaluated in the same amount of time as the
cut-elimination procedure of the logic. For instance, K. Terui introduced the
Light Affine λ-calculus [Ter07] as the programming counterpart of LAL. Every
program of this calculus terminates in polynomial time and every polynomial
time function can be represented by a term of this calculus.

Elementary Linear Logic (ELL) is perhaps the simplest light logic. It was orig-
inally sketched by Girard [Gir98] as a by-product of LLL that on the one hand
has simpler constraints on the bang modality but on the other hand captures
the larger complexity class of elementary time. We recall that a function is
elementary if it is computable on a Turing machine in time bounded by a tower
of exponentials of fixed height. Every proof of ELL can be normalized in ele-
mentary time and every elementary time function can be represented by a proof
of ELL. Later on, Danos and Joinet extensively studied ELL [DJ03] as a pro-
gramming language. It is also well-known that the affine variant of elementary
linear logic, namely EAL, can be considered without breaking the elementary
time bound.

Another well-known light logic of polynomial time is Y. Lafont’s Soft Linear
Logic (SLL [Laf04]). SLL refines the bang modality in a quite different way than
LLL and therefore a polynomial time function is represented by a SLL proof
that is quite different from the LLL one. The programming counterpart of SLL
is the Soft λ-calculus that was developed by P. Baillot and V. Mogbil [BM04].
Again, the affine variant SAL can be safely considered.

Recently, Gaboardi et al. proposed a characterization of polynomial space [GMR12]
by a λ-calculus extended with conditional instructions and using criteria coming
from SAL.

Expressivity

Both SAL and LAL are extensionally complete: every polynomial time func-
tion can be represented by a program of the logic. However, they are not
intensionally complete: not every polynomial time algorithm can be written in
the language of the logic. An important line of research is about improving
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the intensional expressivity of these light languages that do not allow to write
programs in a natural way. We identify two main directions in the literature:

(1) Programming with modalities is a heavy syntactic burden that hides the
operational meaning of programs. Some work has been carried out to
remove bangs from the syntax of light languages while leaving them at
the level of types. For example Baillot and Terui developed a type system
called DLAL [BT09a] for the standard λ-calculus that guarantees that
λ-terms terminate in polynomial time. In a similar spirit, M. Gaboardi
and S. Ronchi Della Rocca developed a type system called STA [GR09]
for the standard λ-calculus that is based on SAL, and Coppola et al.
developed a type system called ETAS [CDLRDR08] for the call-by-value
λ-calculus that is based en EAL.

(2) Light languages are usually variations of the λ-calculus that do not fea-
ture high-level programming constructs. Recently though, Baillot et al.
derived from LAL a functional language with recursive definitions and
pattern-matching [BGM10], thus providing a significant improvement over
the expressivity of the usual light languages.

1.5 The challenge

The framework of Light Logic, which we have seen is deeply rooted in Lin-
ear Logic, allows to control the complexity of higher-order functional programs
through the proof-as-program correspondence. In this thesis, we would like to
employ Light Logics to control the complexity of higher-order concurrent pro-
grams.

Recently, Light Logics have been applied to a model of concurrency based on
process calculi. The first attempt is from Dal Lago et al. who designed a soft
higher-order π-calculus [LMS10] where the length of interactions are polyno-
mially bounded. Also, Dal Lago and Di Giamberardino built a system of soft
session types [LG11b] where the interaction of a session is again polynomially
bounded. However, process calculi cannot be considered as high-level program-
ming languages and do not directly embody a notion of data representation,
which the λ-calculus is more adapted for. In fact, these works may be seen as
part as a larger project [LHMV12] which is to analyze the complexity of inter-
actions between concurrent and distributed systems rather than analyzing the
termination time of a specific program.

A work which seems closer in terms of objective is the recent framework of com-
plexity information flow of J-Y. Marion [Mar11], which is built on the concepts
of data-ramification and secure information flow to control the complexity of
sequential imperative programs. More recently, Marion and Pechoux [MP12]
proposed an extension of this framework to concurrency that ensures that ev-
ery well-typed and terminating program with a fixed number of threads can be
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executed in polynomial time. The type system captures interesting algorithms
and seems to be the first characterization of polynomial time by a concurrent
language. However, this work only concerns first-order programs and does not
fit into the proof-as-program correspondence. Also, as opposed to Light Logics,
the complexity analysis is dependent of the termination analysis: the complexity
bounds are only valid if programs terminate.

To the best of our knowledge, this thesis is the first effort to statically control the
complexity of higher-order and concurrent programs. We aim at bringing Light
Logics closer to programming by finding new static criteria that are sound for
a call-by-value and non-deterministic evaluation strategy with imperative side
effects.

The application of the concepts of Light Logics to higher-order concurrent pro-
grams is not without raising some crucial questions that we will have to address:

• What is the impact of side effects on the depth of values? Since the
complexity bounds rely on the notion of depth, we may wonder if side
effects can accommodate the complexity properties of Light Logics.

• Can we ensure termination? Light type systems which are built out of the
proof-as-program correspondence ensure the termination (with complexity
bounds) of programs. However, we have seen that usual type systems
cannot guarantee termination when programs produce side effects (see
Landin’s trick). Thus it is not clear whether the complexity bounds can
be ensured without assuming the termination of programs.

• Is the call-by-value strategy compatible with the complexity properties of
Light Logics? The usual proof of complexity bounds in Light Logics often
rely on a very specific reduction strategy which differs from call-by-value.
However, imperative side effects only make sense in a call-by-value setting.

1.6 Contributions

In this thesis, we propose an extension of the framework of Light Logics to
higher-order concurrent programs that provides new static criteria to bound
the complexity of programs. Our developments will be presented gradually:
first, we look at the termination property (and confluence); second, we consider
termination in elementary time and third, we consider termination in polynomial
time. The rest of this section details our contributions.

Concurrent λ-calculi

Firstly, the languages we study are concurrent λ-calculi which are based on a
formalization of R. Amadio [Ama09]. In this calculi, the state of a program is
abstracted into a finite set of regions and side effects are produced by read and
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write operations on these regions. A region is an abstraction of a set of dynam-
ically allocated values that allows to simulate various interaction mechanisms
like references and channels. An operator of parallel composition permits to
generate new threads that may interact concurrently.

Termination

Our first contributed language is an affine-intuitionistic concurrent λ-calculus
in which we can distinguish between values that can be used at most once
(i.e. affine) and values that can be duplicated (i.e. intuitionistic). This is made
possible by the design of a type system inspired by Linear Logic which takes the
duplication power of side effects into account. The difficulty of the contribution
is to show the subject reduction (i.e. well-typing is preserved by reduction) of
the type system in which the bang modality interacts with region types. The
distinction between affine and intuitionistic values allows us to develop a proper
discipline of region usages that can be used to ensure the confluence of programs.
Moreover, we show that region usages smoothly combine with the discipline of
region stratification which ensures the termination of program. The stratifi-
cation of regions has been initially proposed by G. Boudol [Bou10] to ensure
the termination of higher-order concurrent program in a purely intuitionistic
setting.

The above contribution has been presented at the workshop LOLA’10 [ABM10].

Elementary time

Our second contributed language is an elementary concurrent λ-calculus. We
provide an elementary affine type system inspired by EAL that ensures the
termination of programs in elementary time under a call-by-value strategy, and
their progress (i.e. they do not go wrong). In particular, the type system cap-
tures the iteration of functions producing side effects over inductive data struc-
tures.

The results are supported by the following essential contributions:

• The type system is actually built out of a more primitive depth system
which only controls the depth of values. The functional core of the depth
system is inspired by the Light Affine λ-calculus of K. Terui [Ter07] and
the effectful side relies on a careful analysis of the impact of side effects
on the depth of values.

• Programs well-formed in the depth system are shown to terminate in el-
ementary time under a call-by-value strategy. The proof is based on an
original combinatorial analysis of programs which does not assume ter-
mination (i.e. regions stratification is not necessary). Interestingly, in the



24 CHAPTER 1. INTRODUCTION

purely functional case, the combinatorial argument applies to every reduc-
tion strategy while previous proofs assume a specific reduction strategy.

The above contribution has been published in the proceedings of TLCA’11 [MA11].

Polynomial time

Our third contributed language is a polynomial concurrent λ-calculus. We pro-
vide a light linear type system inspired by LLL that ensures the termination of
programs in polynomial time under a call-by-value strategy, and their progress.
As in the elementary case, the type system captures the iteration of functions
producing side effects, but it is of course less permissive.

Contrary to the elementary case, we found no combinatorial argument to bound
polynomially the complexity of the call-by-value evaluation. Thus, we propose
a method which follows Terui’s work on the Light Affine λ-calculus [Ter07]:

1. We provide a light linear depth system which controls the depth of values
during the reduction of programs. We are able to show that a very spe-
cific evaluation strategy terminates in polynomial time by a combinatorial
argument which is simply extended from Terui’s work.

2. Since the polynomial evaluation strategy is really different from call-by-
value, we try to show that every call-by-value reduction sequence can be
transformed into one of the same length that follows the previous evalua-
tion strategy, which would entail that call-by-value is polynomial.

This latter transformation is non-trivial because it requires to evaluate side
effects in a very liberal order. On the other hand, we show that the arbitrary
evaluation of side effects may trigger an exponential blowup of the size of the
computation. Therefore, our contribution is to identify a proper evaluation
strategy for which the transformation succeeds (i.e. returns sequences of the
same length) and that preserves the call-by-value semantics of the program.

The above contribution has been published in the proceedings of PPDP’12 [Mad12].

Quantitative realizability

The above static criteria (depth systems, type systems) induce complexity bounds
which are proved by combinatorial analyzes and syntactic transformations. Our
last contribution is to provide an alternative semantic proof of these complexity
bounds. More precisely, the framework of quantitative realizability has been pro-
posed by Dal Lago and Hofmann [LH11] to give semantic proofs of complexity
soundness of various Light Logics. We introduce an extension of quantitative
realizability to higher-order imperative programs, focusing on a type system in-
spired by LAL. By proving that the type system is sound with respect to the
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realizability model, we obtain that every typable program terminates in poly-
nomial time under a call-by-value strategy. In particular, we do not need to
simulate call-by-value reductions by any other reductions. Moreover, the proof
method is parametric in the type system and could easily be adapted to the
elementary case.

Our interpretation is based on bi-orthogonality (à la Krivine [Kri09]), following
A. Brunel’s extension of quantitative realizability to a classical setting [Bru12].
Realizability in the presence of imperative side effects is usually difficult as it
raises circularity issues; here, our semantic interpretation is indexed by depth
levels which allows to define an inductive interpretation of types. This draws
some interesting connections with other realizability models based on step-
indexing [AM01] and Nakano’s modality [Nak00].

The important drawback of the method is that, at the moment, it does not scale
to multi-threaded programs.

This last contribution is joint work with Alöıs Brunel and is to published in the
proceedings of APLAS’12 [BM12].

1.7 Structure

This document is structured into three parts:

I - Termination and Confluence
The first part is preliminary to the analysis of the complexity of programs.
In Chapter 2, we review a concurrent λ-calculus and the discipline of
region stratification. In Chapter 3, we introduce an affine-intuitionistic
concurrent λ-calculus and show how termination and confluence can be
ensured by region stratification and region usages, respectively.

II - Combinatorial and Syntactic Analyzes
The second part introduces static criteria to control the complexity of pro-
grams and the complexity bounds are proved by combinatorial syntactical
analyzes. The first Chapter 4 and Chapter 5 deal with elementary time
and the last Chapter 6 and Chapter 7 deal with polynomial time. Each
time we start by reviewing the purely functional case before moving to
concurrency.

III - Quantitative Realizability (joint work with Alöıs Brunel)
The unique Chapter 8 introduces quantitative realizability for an imper-
ative λ-calculus. As a case study, we focus on termination in polynomial
time.
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Termination and
Confluence
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Chapter 2

A concurrent λ-calculus

We present in this chapter an extension of the λ-calculus to concurrency which
is based on R. Amadio’s formalization [Ama09]. In this λ-calculus, that we
call λ‖, the state of a program is abstracted by a constant number of regions
and side effects are produced by read and write operations on these regions. In
fact, a region is an abstraction of a set of dynamically allocated values. We
will see that working at the abstract level of regions allows to simulate various
interaction mechanisms like imperative references and communication channels.

In this chapter, we also present a technique to establish the termination of
higher-order concurrent programs. Indeed, the property of termination may
be seen as preliminary to the property of termination in bounded time, the
latter being central in this thesis. The Curry-Howard correspondence estab-
lishes a well known connection between the termination of purely functional
programs and types. However, side effects are not taken into account by the
usual type systems and they may make programs diverge. Type and effect sys-
tems have been introduced by J. Lucassen and D. Gifford [LG88] to approximate
the way programs act on regions. Later, they have been used by M. Tofte and J-
P. Talpin [TT97] to determine statically the management of memory. Recently,
G. Boudol [Bou10] introduced a discipline of region stratification by means of
a type and effect system, to show the termination of higher-order concurrent
programs. This chapter presents the discipline of region stratification in a way
that has been clarified and generalized by R. Amadio [Ama09].

Outline This chapter is organized as follows. In Section 2.1 we present the
syntax and the reduction of the concurrent λ-calculus λ‖. The reduction rules
are defined such that λ‖ simulates a concurrent λ-calculus with references or
channels. In Section 2.2 we present the type and effect system. Here, the effect
of a program is an over approximation of the set of regions it may read or write.
This type and effect system allows some form of circularity: a region r can

29
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contain a value which has an effect on r itself, and this may lead to a diverging
computation. In Section 2.3 we introduce the discipline of region stratification
to prevent this kind of circularity. The intuitive idea is that a region may only
produce side effects on regions which are smaller according to a well-founded
order. Then we review the proof by reducibility candidates which proves that
well-typed stratified programs terminate. Finally, in Section 2.4 we present two
additional concurrent λ-calculi: one with dynamic allocation of references and
one with dynamic allocation of channels, that are respectively called λ‖Ref and
λ‖Chan. We show that the abstract language with regions, namely λ‖, simulates
both λ‖Ref and λ‖Chan. Since we can lift the stratification of regions to the lan-
guages with dynamic values, we are able to show the termination of concurrent
programs with references and channels.

A summary of the presented calculi is illustrated in Figure 2.1. For any calculi

λ
‖Chan
S - λ

‖
S % λ

‖Ref
S

Termination

λ‖Chan - λ‖ % λ‖Ref

stratification

Figure 2.1: Stratification entails termination in every calculi

X,Y , the relation X % Y stands for X simulates Y , and XS stands for the
stratified version of X. We see that in any case, stratified or not, the calcu-
lus with region λ‖ simulates both the one with references λ‖Ref and the one
with channels λ‖Chan. Stratification can be lifted to every calculus and entails
termination.

2.1 Syntax and reduction

The concurrent λ-calculus λ‖ is a call-by-value λ-calculus equipped with regions
and parallel composition. We recall that a region is an abstraction of a set of
dynamically generated values like references and channels. We regard λ‖ as an
abstract, highly non-deterministic language which, as we will see in Section 2.4,
simulates more concrete languages like λ‖Ref and λ‖Chan.
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2.1.1 Syntax

The syntax of the language is presented in Figure 2.2. We have the usual set

-variables x, y, . . .
-regions r, r′, . . .
-values V ::= x | r | ? | λx.M
-terms M ::= V |MM

get(r) | set(r, V )
(M ‖M)

-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P )

Figure 2.2: Syntax of λ‖

of variables x, y, . . . and we also have a set of regions r, r′, . . . Values contain
integers, variables, regions, the unit value ? and λ-abstractions. Terms are
made of values, applications, an operator get(r) to read a value from region,
an operator set(r, V ) to assign a value to a region and the parallel composition
(M ‖ N) to evaluate M and N concurrently. A store S is the composition of
several assignments r ⇐ V in parallel and a program P is the combination of
several terms and stores in parallel. Note that stores are global, i.e. they always
occur in empty contexts.

The set of free variables of M is denoted by FV(M). The capture-avoiding
substitution is written M [V/x] and denotes the term M in which each free
occurrence of x has been substituted by V . As usual the sequential composition
M ;N can be encoded by (λx.N)M where x /∈ FV(N).

2.1.2 Reduction

The call-by-value reduction of λ‖ is given in Figure 2.3 which we comment in
the following paragraphs.

Programs are considered up to a structural equivalence ≡ which is the least
equivalence relation that contains the equations for α-renaming, commutativity
and associativity of parallel composition.

We distinguish two kinds of contexts. An evaluation context E specifies a left-
to-right call-by-value evaluation strategy. A static evaluation context C acts as
an arbitrary scheduler which chooses a random thread to evaluate.

The structural equivalence ≡ is only preserved by static evaluation contexts.
For example we have

(P1 ‖ P2) ‖ P3 ≡ (P2 ‖ P1) ‖ P3
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-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-evaluation contexts-
E ::= [·] | EM | V E
C ::= [·] | (C ‖ P ) | (P ‖ C)

-reduction rules-
(βv) C[E[(λx.M)V ]] −→ C[E[M [V/x]]]
(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]] ‖ r ⇐ V
(set) C[E[set(r, V )]] −→ C[E[?]] ‖ r ⇐ V

Figure 2.3: Call-by-value reduction of λ‖

where the program (P1 ‖ P2) occurs in the static context C = ([·] ‖ P3) but

(λx.M ‖ N)V 6≡ (λx.N ‖M)V

where (M ‖ N) occurs under a λ-abstraction in the context E = [·]V .

The reduction rules apply modulo structural equivalence and each rule is iden-
tified by its name: (βv) is the usual β-reduction restrained to values; (get) is for
reading some value from a region and (set) is for adding a value to a region.

We remark that the reduction rule (set) generates an assignment which is new
and out of the evaluation contexts; this implies two things:

1. Store assignments are global and shared by every threads.

2. Store assignments are cumulative, that is several values can be assigned
to a region. We will see that this allows a single region to abstract an
unlimited number of memory locations. In turn, reading a region consists
in getting non-deterministically one of the assigned values.

The reader may have noticed that the program set(r,M) is not generated by
the syntax if M is not a value. This choice simplifies the shape of evaluation
contexts since we do not need to consider the context set(r, E). On the other
hand, this does not cause any loss of expressivity since we consider that set(r,M)
is syntactic sugar for (λx.set(r, x))M .

Example 2.1.1. Here is a programming example. Assume we dispose of inte-
gers z for z ∈ Z and their basic operators. Consider the following function F
that takes three arguments g, h and x:

F = λg.λh.λx.set(r, gx) ‖ set(r, hx) ‖ get(r) + get(r)

It generates three concurrent threads which respectively do the following: writ-
ing the result of the application gx into the region r, writing the result of the
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application hx into the region r and reading the region r twice to sum the values.
Now consider the following arguments:

G = λx.x+ 1

H = λx.2

One possible reduction when we apply F to G, H and z is:

((FG)H)z −→+ set(r,Gz) ‖ set(r,Hz) ‖ get(r) + get(r)
−→+ ? ‖ ? ‖ get(r) + get(r) ‖ r ⇐ z + 1 ‖ r ⇐ 2
−→ ? ‖ ? ‖ z + 1 + get(r) ‖ r ⇐ z + 1 ‖ r ⇐ 2
−→ ? ‖ ? ‖ z + 1 + 2 ‖ r ⇐ z + 1 ‖ r ⇐ 2
−→ ? ‖ ? ‖ z + 3 ‖ r ⇐ z + 1 ‖ r ⇐ 2

Other possible reductions lead to structurally equivalent programs, except that
we may find the value 2z + 2 or 4 instead of z + 3, depending on which value is
read from the region r.

2.2 Type and effect system

As we explained in the introduction of this chapter, usual types systems cannot
take side effects into account and thus cannot serve to establish the termination
of concurrent programs. In this section, we present a type and effect system
to statically determine the regions on which side effects are produced. Our
formalism is the one proposed by R. Amadio [Ama09]. We will see in the next
section how this type and effect system can be used to entail the termination of
programs.

2.2.1 Types and contexts

The starting point is to consider effects, denoted with e, e′, . . . as finite sets of
regions. Then, the functional type is annotated with an effect e such that we
write

A
e−→ B

for the type of a function that, when given a value of type A, produces side
effects on the regions in e and returns a program of type B.

We define the syntax of types and contexts in Figure 2.4. We distinguish two
kinds of types:

1. General types are denoted with α, α′, . . . and contain a special behavior
type B which is given to stores or concurrent threads which are not sup-
posed to return a value but just to produce side effects.
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-effects e, e′, . . .
-types α ::= B | A
-value types A ::= Unit | A e−→ α | RegrA
-variable contexts Γ ::= x1 : A1, . . . , xn : An
-region contexts R ::= r1 : A1, . . . , rn : An

Figure 2.4: Syntax of types, effects and contexts

2. Value types are denoted with A,B, . . . and are types of entities that may
return a value. The only ground type is the unit type Unit. The functional
type A

e−→ α ensures that functions are only given values as argument but
may return a program which evaluates into a value or several concurrent
threads. The type RegrA is the type of the region r containing values of
type A. Hereby types may depend on regions.

We distinguish also two kinds of contexts.

1. Variable contexts are made of distinct variables that are associated to
value types, thus we will not be able to build a program of type B

e−→ α.
We write dom(Γ) for the set {x1, . . . , xn}.

2. Region contexts are made of distinct regions that are associated to value
types. The typing system will guarantee that whenever we use a type
RegrA the region context contains a hypothesis r : A. Thus we will
not be able to store non-values in regions. We write dom(R) for the
set {r1, . . . , rn}.

The region type RegrA is carrying an explicit name of region. As we will see
in Section 2.4, this dependency between types and regions allows to simulate a
calculus with dynamic locations by a calculus with regions. However, we have
to be careful in defining the following notions:

• A type is compatible with a region context (judgment R ↓ α).

• A region context is well-formed (judgment R `).

• A type is well-formed in a region context (judgment R ` α), a variable
context is well-formed in a region context (R ` Γ), and a type and effect
is well-formed in a region context (judgment R ` (α, e)).

The rules of these judgments are given in Figure 2.5. A more informal way to
express these conditions is to say that a judgment r1 : A1, . . . , rn : An ` α is
well formed provided that:

1. All the region names occurring in the types A1, . . . , An, α belong to the
set {r1, . . . , rn},

2. All types of the shape RegriB with i ∈ {1, . . . , n} and occurring in the
types A1, . . . , An, α are such that B = Ai.
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R ↓ Int R ↓ Unit R ↓ B

R ↓ A R ↓ α e ⊆ dom(R)

R ↓ A e−→ α

r : A ∈ R
R ↓ RegrA

∀r : A ∈ R R ↓ A
R `

R ` R ↓ α
R ` α

∀x : A ∈ Γ R ` A
R ` Γ

R ` α e ⊆ dom(R)

R ` (α, e)

Figure 2.5: Formation of types and contexts

Example 2.2.1. The judgment r : Unit
{r}−−→ Unit ` can be derived while the

judgments r1 : Regr2Unit
{r2}−−−→ Unit, r2 : Unit

{r1}−−−→ Unit ` and r : RegrA `
cannot.

2.2.2 Rules

A typing judgment has the shape

R; Γ ` P : (α, e)

It gives the type α to the program P and the effect e is an upper bound on the
set of regions that P may read or write. Effects are simply built by exploiting
the region names occurring in the syntax; in particular, we can be sure that
values and stores produce an empty effect while the terms get(r) and set(r, V )
produce an effect {r}. The rules of the type and effect system are spelled out
in Figure 2.6.

Remark 2.2.2. Here are some remarks on the rules.

• Contexts are the same in every rule and each axiom (namely var, unit and
reg) has a premise R ` Γ which ensures that, in all branches of the typing
derivations, every type is well-formed with respect to the region context.

• Effects are initialized by the rules get and set by referring to the explicit
region name of the read/write operator.

• We notice in the rule lam how the effect of a term ends up on the functional
arrow in order to build a λ-abstraction with empty effect. Finally, binary
rules handle effects in an additive way by set union.

• We distinguish two rules for parallel composition. par1 indicates that
a program P in parallel with a store should have the type of P since
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var
R ` Γ x : A ∈ Γ
R; Γ ` x : (A, ∅)

unit
R ` Γ

R; Γ ` ? : (Unit, ∅)

reg
R ` Γ r : A ∈ R
R; Γ ` r : (RegrA, ∅)

lam
R; Γ, x : A `M : (α, e)

R : Γ ` λx.M : (A
e−→ α, ∅)

app
R; Γ `M : (A

e1−→ α, e2) R; Γ ` N : (A, e3)

R; Γ `MN : (α, e1 ∪ e2 ∪ e3)

get
R; Γ ` r : (RegrA, ∅)
R; Γ ` get(r) : (A, {r})

set
R; Γ ` r : (RegrA, ∅) R; Γ ` V : (A, ∅)

R; Γ ` set(r, V ) : (Unit, {r})

store
R; Γ ` r : (RegrA, ∅) R; Γ ` V : (A, ∅)

R; Γ ` r ⇐ V : (B, ∅)

par1
R; Γ ` P : (α, e) R; Γ ` S : (B, ∅)

R; Γ ` P ‖ S : (α, e)

par2
i = 1, 2 R; Γ ` Pi : (αi, e1) Pi not a store

R; Γ ` P1 ‖ P2 : (B, e1 ∪ e2)

Figure 2.6: Type and effect rules of λ‖
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we might be interested in its result. par2 indicates that two concurrent
threads cannot reduce to a single result. (note that we have omitted the
symmetric rules to support commutativity of parallel composition).

We notice that the following rules can be derived for syntactic sugar set(r,M):

setM
R; Γ ` r : (RegrA, ∅) R; Γ `M : (A, e)

R; Γ ` set(r,M) : (Unit, e ∪ {r})

Example 2.2.3. The program F of Example 2.1.1 written

F = λg.λh.λx.set(r, gx) ‖ set(r, hx) ‖ get(r) + get(r)

can be given the following typing judgment:

R;− ` F : ((A
∅−→ Int)

∅−→ (A
∅−→ Int)

∅−→ A
{r}−−→ B, ∅)

where r : Int ∈ R. Also, the programs G = λx.x+ 1 and H = λx.2 can be given

the type and effect (Int
∅−→ Int, ∅) in order to derive the following judgment:

R;− ` ((FG)H)z : (B, {r})

Subtyping

In some cases, the presence of effects may be unnecessarily restrictive. For
example, suppose that we first want to write into a region r a value V1 of type

Unit
∅−→ Unit that may not produce any side effect; then we want to add to r

another value V2 of type Unit
e−→ Unit where e ) ∅. Considering that a region

context associates a unique type to the region r, one of the assignments is not
typable.

In order to allow for some flexibility, it is convenient to introduce a subtyping
relation on types (judgment R ` α ≤ α′) and on types and effects (judgment
R ` (α, e) ≤ (α′, e′)) as specified in Figure 2.7. Intuitively, the new subtyping

R ` α ≤ α

e ⊆ e′ ⊆ dom(R)
R ` A′ ≤ A R ` α ≤ α′

R ` (A
e−→ α) ≤ (A′

e′−→ α′)

e ⊆ e′ ⊆ dom(R)
R ` α ≤ α′

R ` (α, e) ≤ (α′, e′)
sub

R; Γ `M : (α, e)
R ` (α, e) ≤ (α′, e′)

R; Γ `M : (α′, e′)

Figure 2.7: Subtyping induced by effect containment

rule sub has the following consequence: the effect e of a functional type A
e−→ α
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or the effect of a program becomes an upper bound of the set of regions that
may be read/written.

Back to our initial problem, let us define a region context R such that r : Unit
e−→

Unit ∈ R where e ) ∅. By using the subtyping rule, we can give the type and
effect (Unit

e−→ Unit, ∅) to the effect free value V1 = λx.x with the following
derivation:

R;x : Unit ` x : (Unit, ∅)
sub

R;x : Unit ` x : (Unit, e)

R;− ` λx.x : (Unit
e−→ Unit, ∅)

Now take the value V2 of type and effect (Unit
e−→ Unit). Finally, the program

that writes V1 and V2 to r can be given the judgment

R;− ` set(r, V1); set(r, V2) : (Unit, {r})

We notice that the transitivity rule for subtyping

R ` α ≤ α′ R ` α′ ≤ α′′
R ` α ≤ α′′

can be derived via a simple induction on the height of the proofs. Moreover,
the introduction of the subtyping rules has a limited impact on the structure of
the typing proofs. Indeed, if R ` A ≤ B then we know that A and B may just
differ in the effects annotating the functional types. In particular, when looking
at the proof of the typing judgment of a value such as R; Γ ` λx.M : (A, e), we

can always argue that A has the shape A1
e1−→ A2 and, in case the effect e is not

empty, that there is a shorter proof of the judgmentR; Γ ` λx.M : (B1
e2−→ B2, ∅)

where R ` A1 ≤ B1, R ` B2 ≤ A2, and e2 ⊆ e1.

2.2.3 Properties

The usual properties of type systems can be adapted to the type and effect
system.

First, it is possible to weaken variable and region contexts, provided that they
are well-formed.

Lemma 2.2.4 (Weakening). If R; Γ ` P : (α, e) and R,R′ ` Γ,Γ′ then
R,R′; Γ,Γ′ ` P : (α, e).

Typing is also preserved when we substitute a variable for an effect free value
of the same type.

Lemma 2.2.5 (Substitution). If R; Γ, x : A ` P : (α, e) and R; Γ ` V : (A, ∅)
then R; Γ ` P [V/x] : (α, e).
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The above lemmas can be shown by induction on the typing judgments and they
are needed to prove subject reduction. Let us write S|f as the store S restricted
to the regions in f , for any set of regions f .

Proposition 2.2.6 (Subject reduction). If R1, R2; Γ ` P ‖ S : (α, e) and
P ‖ S −→ P ′ ‖ S′ and R1 ` (α, e) then:

1. R1, R2; Γ ` P ′ ‖ S′ : (α, e),

2. P ‖ S|dom(R1) −→ P ′ ‖ S′|dom(R1) and S′|dom(R2) = S|dom(R2).

The first statement simply says that the type and effect is preserved by reduc-
tion. The second statement guarantees that the program can only read/write
regions included in the region context needed to the well-formation of the type
and effect. More generally, this shows that that the effect of a program is an
upper bound of the set of regions on which side effects are produced. The proof
of this statement can be shown by checking that if a program C[E[M ]] has an
effect e and M = get(r) or M = set(r, V ), then r ∈ e.

Finally, a progress property states that if a program cannot reduce, then every
thread is either a value or a term of the shape E[get(r)] where the region r is
empty.

Proposition 2.2.7 (Progress). Suppose P is a typable program which cannot
reduce. Then P is structurally equivalent to a program

M1 ‖ · · · ‖Mm ‖ S m ≥ 0

where Mi is either a value or can be uniquely decomposed as a term E[get(r)]
such that no assignment to r exists in the store S.

The proof is standard and mainly consists in showing that a closed value of type
A

e−→ B must have the shape λx.M , so that a well-typed closed program V N is
guarantee to reduce.

2.2.4 Recursion

The current type and effect system allows to write in a region r a function λx.M
where M produces an effect on r itself, for instance λx.get(r)x. This kind of
circularity may lead to diverging computations like the following one:

set(r, λx.get(r)x); get(r)?
−→∗ get(r)? ‖ r ⇐ λx.get(r)x
−→ (λx.get(r)x)? ‖ r ⇐ λx.get(r)x
−→ get(r)? ‖ r ⇐ λx.get(r)x
−→ . . .

This circularity can be used to define an imperative fixpoint combinator, also
well-known as Landin’s trick. More precisely, we define a combinator

µrf.λx.M = set(r, λx.M [λy.get(r)y/f ]); get(r)?
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that relates to a region r and binds f in M . Then the following reduction rule
can be derived:

(µr) (µrf.λx.M)V −→M [λy.get(r)y/f, V/x] ‖ r ⇐ λx.M [λy.get(r)y/f ]

As an example, this combinator can be used to define a counter that keeps being
incremented forever and each time writes its value to a region r′. Take

λx.M = λx.set(r′, x); f(x+ 1)

Then we observe

(µrf.λx.M)0
−→∗ M [λy.get(r)y/f, 1/x] ‖ r ⇐ λx.M [λy.get(r)y/f ] ‖ r′ ⇐ 0
−→∗ M [λy.get(r)y/f, 2/x] ‖ r ⇐ λx.M [λy.get(r)y/f ] ‖ r′ ⇐ 0 ‖ r′ ⇐ 1
−→∗ M [λy.get(r)y/f, 3/x] ‖ r ⇐ λx.M [λy.get(r)y/f ] ‖ r′ ⇐ 0 ‖ r′ ⇐ 1 ‖ r′ ⇐ 2
−→∗ . . .

Although the type and effect system takes side effects into account, it does not
prevent circularities and the following rule can be derived:

fix
R, r : A

e∪{r}−−−−→ α; Γ, f : A
e∪{r}−−−−→ α ` λx.M : (A

e∪{r}−−−−→ α, ∅)

R; Γ ` µrf.λx.M : (A
e∪{r}−−−−→ α, ∅)

2.3 Termination

G. Boudol introduced [Bou10] the discipline of stratified regions in order to
recover the termination of concurrent programs. Intuitively, the idea is to fix a
well-founded order on regions and make sure that the values stored in a given
region may only produce side effects on smaller regions. Back to the type and

effect system, stratification means that a value of type Unit
{r}−−→ Unit can only

be stored in regions which are larger than r. This discipline can be easily
ensured by redefining the rules of Figure 2.5 governing the formation of types
and contexts .

We give new definitions of the judgments R `, R ` α and R ` (α, e) in Fig-
ure 2.8. Regions are thus ordered from left to right, that is if the judgment

r1 : A1, r2 : A2, . . . , ri : Ai, . . . , rn : An `

can be derived, effects occurring in Ai may only contain regions rj where j < i.

We denote by ‘`S ’ provability in the system where the rules for the formation
of unstratified region contexts (Figure 2.5) are replaced by the rules for the

formation of stratified region contexts (Figure 2.8). We call λ
‖
S the stratified

concurrent λ-calculus. The fixpoint rule fix given in the previous section cannot
be derived in `S since the region context is not stratified (the type of region r
has an effect on r). The following theorem can be established.
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∅ `
R ` A r /∈ dom(R)

R, r : A `

R `
R ` Unit

R `
R ` Int

R `
R ` B

R ` A R ` α e ⊆ dom(R)

R ` (A
e−→ α)

R ` r : A ∈ R
R ` RegrA

R ` α e ⊆ dom(R)

R ` (α, e)

Figure 2.8: Stratified formation of types and contexts

Theorem 2.3.1 (Termination). If R; Γ `S P : (α, e) then P terminates.

The proof is based on an extension of the reducibility candidates method to
programs with stores and was originally presented in G. Boudol’s paper [Bou10]
and later simplified by R. Amadio [Ama09]. The latter version of the proof can
be summarized in the following items.

• The starting idea is to define the interpretation R ` of a stratified region
context R as a set of stores and to define the interpretation R ` (α, e)
of a type and effect (α, e) as a set of terms that terminate with re-
spect to stores of R `. The interpretations are thus mutually defined but
well-founded because stratification allows for an inductive definition of
the stored values. For instance, the interpretation r1 : A1, r2 : A2 ` (α, e)
refers to r1 : A1, r2 : A2 ` which is a set of stores where all the values of r2

can only have an effect on r1 and thus belong to r1 : A1 ` (A2, e), which
in turn refers to the ‘smaller’ interpretation r1 : A1 `,. . .

• A key point of the proof is that region contexts are interpreted as ‘sat-
urated’ stores which already contains all the values that can be possibly
written. This gives a simple argument to extend the proof to concurrent
programs. Indeed, we know that each thread taken separately terminates
with respect to a saturated store. If the parallel composition of a set of
threads diverges, then one of the threads must diverge. But since the
saturated store cannot be updated by the set of threads, this contradicts
the hypothesis that each single thread taken apart terminates.

In Chapter 8, we give another realizability interpretation that takes quantitative
information into account so that the length of reductions of an imperative λ-
calculus can be bounded.



42 CHAPTER 2. A CONCURRENT λ-CALCULUS

2.4 Dynamic locations

To conclude this chapter, we introduce a type and effect system for two con-
current λ-calculi with dynamic memory locations instead of regions: one with
references that we call λ‖Ref , and one with channels that we call λ‖Chan. Since
λ‖Ref and λ‖Chan still relate to regions at the level of types, we are able to lift
the stratification discipline to these calculi. Moreover, λ‖ simulates λ‖Ref and
λ‖Chan by exact correspondence of reduction steps, therefore we can prove the
termination of λ‖Ref and λ‖Chan.

First, let us present the relation between the systems with dynamic locations and
the system with abstract regions informally. In λ‖, read and write operators refer
to region names. On the other hand, the languages λ‖Chan and λ‖Ref introduce
terms of the form νx.M to generate a new memory location x whose scope is
M . We can thus write a program

νx.(λy.set(y, V ); get(y))x

that generates a fresh location x and gives it as argument to a function that
writes and reads at this location. In ML style, this would correspond to the
program

let x = ref V in !x

There is a simple typed translation from λ‖Chan and λ‖Ref to λ‖. For this, a
memory location must be a variable that relates to an abstract region r by having
the type RegrA for some type A. Then the translation consists in replacing each
(free or bound) variable that relates to a region r by the name r. We will see that
the program with regions obtained by translation simulates the original because
each reduction step in λ‖Chan and λ‖Ref is mapped to exactly one reduction step
of λ‖. Therefore we can apply the termination theorem to λ‖Chan and λ‖Ref .

The formalization of λ‖Chan and λ‖Ref is summarized in Figure 2.9. They have
the same syntax and typing rules, they only differ in their reduction rules.
Concretely:

• The syntax of the languages does not contain region names, instead read
and write operators and stores relate to memory locations (that is vari-
ables). We also find a ν binder with two associated structural rules (νE)
and (νC) for scope extrusion.

• Each language has its own set of reduction rules (in addition to (βv)).
Specifically, when we read a reference the value is copied from the store
and when we write a reference the value overwrites the previous one (we
assume that the ν binder generates a location with a dummy value that is
overwritten at the first write). When we write a channel we add the value
to the store and when we read a channel we consume one of the value in
the channel. Thus channels are asynchronous, unbounded and unordered.
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-extended syntax-
M ::= . . . | get(x) | set(x, V ) | νx.M
S ::= x⇐ V | (S ‖ S)
E ::= . . . | νx.E

-new structural rules-
(νC) C[νx.M ] ≡ νx.C[M ] if x /∈ FV(C)
(νE) E[νx.M ] ≡ νx.E[M ] if x /∈ FV(E)

-reductions rules of λ‖Ref -
(get ref) C[E[get(x)]] ‖ x⇐ V −→ C[E[V ]] ‖ x⇐ V
(set ref) C[E[set(x, V )]] ‖ x⇐ V ′ −→ C[E[?]] ‖ x⇐ V

-reductions rules of λ‖Chan-
(get chan) C[E[get(x)]] ‖ x⇐ V −→ C[E[V ]]
(set chan) C[E[set(x, V )]] −→ C[E[?]] ‖ x⇐ V

-additional and replacing typing rules-

new
R; Γ, x : RegrA `M : (B, e)

R; Γ ` νx.M : (B, e)
get

R; Γ ` x : (RegrA, ∅)
R; Γ ` get(x) : (A, {r})

set
R; Γ ` x : (RegrA, ∅) R; Γ ` V : (A, ∅)

R; Γ `δ set(x, V ) : (Unit, {r})

store
R; Γ ` x : (RegrA, ∅) R; Γ ` V : (A, ∅)

R; Γ ` x⇐ V : (B, ∅)

Figure 2.9: Overview of λ‖Chan and λ‖Ref

• The typing rule reg is no longer necessary but we introduce a rule called
new that allows to bind variables of region type. The rules get, set and store
replace the previous ones and the effect of programs can still be inferred by
referring to the region names occurring in the types of memory locations.

Clearly, subject reduction (Proposition 2.2.6) and progress (Proposition 2.2.7)
can be lifted to λ‖Chan and λ‖Ref .

Concerning termination, the proof goes by a translation phase from λ‖Chan or
λ‖Ref to λ‖. Without loss of generality, we illustrate this on a concrete program-
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ming example of λ‖Ref . Consider the following reduction:

νx.νy.(λz.set(z, n) ‖ set(y, get(z)))x
−→ νx.νy.set(x, n) ‖ set(y, get(x))
−→ νx.νy.? ‖ set(y, get(x)) ‖ x⇐ n
−→ νx.νy.? ‖ set(y, n) ‖ x⇐ n
−→ νx.νy.? ‖ ? ‖ x⇐ n ‖ y ⇐ n

The location x is passed to a function which generates two threads. The first
thread writes an integer n in reference x, the second thread read n from reference
x and propagates it into reference y. The program may be given the following
type and effect derivation by taking that references x and y relate to a single
region r:

...
r : Int;x : RegrInt, y : RegrInt ` (λz.set(z, n) ‖ set(y, get(z)))x : (B, {r})

r : Int;− ` νx.νy.(λz.set(z, n) ‖ set(y, get(z)))x : (B, {r})

The translation consists in (1) erasing all ν binders and (2) replacing each
variable of region type with the corresponding region name. This gives us the
following program whose reductions steps are in one-to-one correspondence with
the original reductions:

(λz.set(r, n) ‖ set(r, get(r)))r
−→ set(r, n) ‖ set(r, get(r))
−→ ? ‖ set(r, get(r)) ‖ r ⇐ n
−→ ? ‖ set(r, n) ‖ r ⇐ n
−→ ? ‖ ? ‖ r ⇐ n ‖ r ⇐ n

We observe that the region r ‘accumulates’ two values n because r relates to
two references x and y. In general, the λ‖ program may produce additional
assignments since stored values are never erased, but at least one reduction
sequence will simulate the original one. The translated program can be given
the following type and effect

r : Int;− ` (λz.set(r, n) ‖ set(r, get(r)))r : (B, {r})

which is the same as the original program except that the free memory locations
x and y do not occur anymore in the variable contexts of the derivation. Since
the stratification of regions is preserved by translation we can conclude that

the stratified systems λ
‖Ref
S and λ

‖Chan
S terminate. Indeed, if there is an infinite

reduction in λ
‖Ref
S or λ

‖Chan
S , there must be an infinite reduction in λ‖ and this

contradicts Theorem 2.3.1.

It should be noted that using a single region r to abstract every locations is a
rather drastic solution. In our example, we could have alternatively associated a
distinct region to each channel x and y. In the context of region-based memory
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management [TT97], the problem of region inference which consists in finding an
assignment from locations to regions in the most optimal way with respect to the
performance of the language is a crucial question which is beyond the scope of
this thesis. The reader may consult a report on the MLKit compiler [TBE+06]
that implements a region-based garbage collector; a retrospective on region-
based memory management is also available [TBEH04].
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Chapter 3

An affine-intuitionistic
concurrent λ-calculus

In this chapter, we propose to refine the concurrent λ-calculus λ‖ so that we can
distinguish between data that can be used at most once and data that can be
duplicated. This is our starting point to study the time complexity of concurrent
programs in the later parts of this thesis. More concretely, our refinement of λ‖

relies on the following distinction:

• Ordinary values (variables, λ-abstractions) should not be used more than
once and are called affine.

• A new constructor named bang and written ‘!’ is introduced to mark values
as duplicable. These duplicable values are called intuitionistic.

We denote by λ!‖ the affine-intuitionistic concurrent λ-calculus.

This formalization does not come from nowhere and can be traced back to J-Y.
Girard’s discovery of Linear Logic [Gir87] where the bang modality ‘!’ is intro-
duced at the level of proofs to control the multiplicity of formulae. Through the
proof-as-program correspondence, the bang constructor can be used to control
the multiplicity of data in functional programs, and there have been several at-
tempts [BBdPH93, Ben94, Plo93, MOTW99, Bar96]1 at producing a functional
programming language based on these ideas and with a reasonably handy syn-
tax. To be precise, in these languages there are linear values which must be
used exactly once. For our purpose, it is sufficient and more general to consider
affine values which can be used at most once.

The major contribution of this chapter is to design an affine-intuitionistic type
system for λ!‖ where regions and the bang modality interact and so that types

1We recommend P. Wadler’s introduction on Linear Logic and the proof-as-program cor-
respondence [Wad93].

47
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are preserved by reduction. There have been previous work on mixing regions
with linear types [WW01, FMA06] to deal with the problem of heap-memory
deallocation but the approaches were quite different and the relationship with
Linear Logic not very clear. A key point in the soundness of this system is
that the primitive read operation of the language is refined so that it is not
source of duplication. Moreover, we analyze when we can safely duplicate a
value containing side effects.

It turns out that the distinction between affine and intuitionistic values allows
us to develop another contribution which is a proper discipline of region usage
that is used to ensure the confluence of programs. This discipline relies on the
following point:

• We distinguish between regions that can be read at most once and written
at most once from those that can be read and written arbitrarily many
times.

Moreover, by decorating the affine-intuitionistic type system with effects, we
can smoothly combine the notion of region usage and region stratification so
that confluence and termination are guaranteed.

Outline The chapter is organized as follows. In Section 3.1, we present an
affine-intuitionistic λ-calculus in order to familiarize ourselves with the bang
modality in the functional case. We also show how it relates to the simply
typed λ-calculus. In Section 3.2 we present the syntax and reduction of an
affine-intuitionistic concurrent λ-calculus, called λ!‖. We introduce its type
system and the notion of region usage in Section 3.3 and show that it enjoys
the subject reduction property. In Section 3.4, we show how we can tame
region usages so that confluence is ensured. Finally, in Section 3.5 we extend
the affine-intuitionistic type system with effects so that stratification can be
combined with region usages to ensure confluence and termination.

The diagram given in Figure 3.1 illustrates the developments of the chapter.
For any calculus X, XS represent the stratified version and XC represents the
version with restricted region usages.

3.1 An affine-intuitionistic λ-calculus

In the simply typed λ-calculus, λ-abstraction has the power of duplication and
erasure which is given by the ability to bind arbitrarily many occurrences of a
variable. This happens as follows:

(λx.x(xy))M −→M(My) (3.1)

(λz.x(xy))M −→ x(xy) (3.2)
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Termination λ
!‖
SC Confluence

λ
!‖
S λ

!‖
C

λ!‖

stratification
restriction of region usages

Figure 3.1: Combination of stratification and region usages

In reduction (3.1) the argument M is duplicated by a λ-abstraction that binds
two occurrences of its parameter and that may be given the typing judgment

y : A ` (λx.x(xy)) : (A→ A)→ A (3.3)

In reduction (3.2) the argument M is erased by a λ-abstraction that binds zero
occurrences of its parameter and that may be given the same type.

In this section, we introduce a typed affine-intuitionistic λ-calculus named λ!.
We will see that it renders the process of duplication explicit.

3.1.1 Syntax and reduction

The syntax of λ! is defined in Figure 3.2. As in the standard λ-calculus, we find

M ::= x | λx.M |MM | !M | let !x = M in M

Figure 3.2: Syntax of λ!

variables, λ-abstractions and applications. The new objects are:

• !-terms (or modal terms) written !M that will be duplicable,

• let !-expressions that will be used to bind more than one occurrence of a
variable. An expression let !x = N in M binds x in M .
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The reduction rules are given in Figure 3.3. An evaluation context E is any

E ::= [·] | λx.E | EM |ME | !E
let !x = E in M | let !x = M in E

(β) E[(λx.M)N ] −→ E[M [N/x]]
(!) E[let !x = !N in M ] −→ E[M [N/x]]

Figure 3.3: Reduction of λ!

term with a hole [·]. Apart from the usual (β) rule, the reduction comes with
an additional rule (!) that eliminates the bang constructor of modal terms.

3.1.2 Typing

Up to now, the process of duplication is not yet explicit since λ-abstractions
can still bind many occurrences of variables. We thus introduce an affine-
intuitionistic type system that distinguishes between affine (non duplicable)
and intuitionistic (duplicable) terms, and ensures that (!) is the only duplicat-
ing reduction rule.

The syntax of types and typing context is given in Figure 3.4. Unit is the unit

A ::= Unit | A( A | !A
Γ ::= x1 : (u1, A1), . . . , xn : (un, An)

Figure 3.4: Types and contexts

ground type. A( A is the type of functions that use their argument once and
!A is the type of terms that can be duplicated. In a context, each variable is
associated with a type and an usage u ∈ {λ, !} which specifies if the variable can
be bound by a λ-abstraction (usage λ) or a let !-expression (usage !). Therefore a
variable x such that x : (u,A) ∈ Γ ranges over terms of type A and can be bound
according to u. In the following we write Γu for x1 : (u,A1), . . . , xn : (u,An).

A typing judgment takes the shape

Γ `M : A

and ensures that, if x occurs free in M and:

• if x : (λ,B) ∈ Γ then x does not occur inside a modal subterm of M ,

• if x : (!, B) ∈ Γ and then x may occur inside a modal subterm of M .

The typing rules are introduced in Figure 3.5. The following remarks should
give intuitions on the rules.
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var
x : (u,A) ∈ Γ

Γ ` x : A

lam
FO(x,M) ≤ 1 Γ, x : (λ,A) `M : B

Γ ` λx.M : A( B

app
Γ `M : A( B Γ ` N : A

Γ `MN : B

prom
Γ! `M : A

Γ!,∆λ ` !M : !A
elim

Γ `M : !A Γ, x : (!, A) ` N : B

Γ ` let !x = M in N : B

Figure 3.5: Typing rules of λ!
AI

• In order to mark a term as duplicable, the rule prom (for promotion)
requires that all the free variables of the term have the usage ‘!’. Notice
that a context ∆λ can be weakened in order to get the general weakening
property.

• The rule lam, where FO(x,M) stands for the number of free occurrences of
x in M , ensures that a λ-abstraction can bind at most once occurrence of a
variable. Whereas the rule elim allows a let !-expression to bind arbitrarily
many occurrences of a variable.

Remark 3.1.1. In affine-intuitionistic type systems there is usually an explicit
‘contraction’ rule which only applies to intuitionistic hypotheses. In our system,
contexts are handled in an additive way but we use a predicate FO(x,M) ≤ 1
in the rule lam to control the number of bound occurrences. This presentation
which is inspired by Terui [Ter07] simplify a bit the type system.

3.1.3 Translation from the simply typed λ-calculus

The explicit rendering of duplication in λ! can be better explained by giving a
natural translation · from the simply typed λ-calculus to λ!. The translation,
which is also known as Girard’s translation [Gir87], is defined by induction on
the typing of standard λ-terms:

Unit = Unit
A→ B = !A( B

x1 : A1, . . . , xn : An = x1 : (!, A1), . . . , xn : (!, An)

x = x
λx.M = λx.let !x = x in M
MN = M !N
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Intuitively, the translation expresses the fact that in the simply typed λ-calculus,
every argument of an application is potentially duplicated. Thus, the translation
of a λ-abstraction internalizes a let !-expression that can bind arbitrarily many
occurrences of a variable and effectively allows duplication. Also, each argument
of an application has to be marked with a bang such as being duplicable. This is
exemplified with the reduction (3.1) that translates to the following reduction:

(λx.x(xy))M = (λx.let !x = x in x(!(x!y)))!M

−→ let !x = !M in x(!(x!y))
−→ M(!M(!y))

Therefore, the single duplicating (β) step of reduction (3.1) is decomposed into
a linear (β) step followed by a duplicating (!) step. And the judgment (3.3)
translates to

y : (!, A) ` λx.let !x = x in x(!(x!y)) : !(!A( A)( A

In fact, the following simulation property can be shown.

Proposition 3.1.2 (Simulation). Assume `ST and −→ST respectively denote
provability and the call-by-name reduction in the simply typed λ-calculus. If
Γ `ST M : A and M −→ST M

′ then Γ `M : A and M −→M ′.

Remark 3.1.3. The proposed translation, also known as ‘Girard’s translation’
or ‘call-by-name translation’ is not optimal in the sense that it collapse all terms
of the simply typed λ-calculus to duplicable terms of the affine-intuitionistic λ-
calculus, whether they are effectively duplicated or not. The problem of finding
a translation that only put bangs where necessary have been studied by Danos
et al. at the level of proofs [DJS95].

3.2 An affine-intuitionistic concurrent λ-calculus

We now present a concurrent version of the affine-intuitionistic λ-calculus that
we call λ!‖.

A crucial preliminary observation is that, as we have seen that the (β) reduction
is potentially source of duplication (see Equation 3.1), side effects may also
generate duplication. In particular, the reading rule

(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]] ‖ r ⇐ V (3.4)

taken from the reduction of λ‖ given in Figure 2.3, copies the value V from the
store (this is also what happens when a reference cell is read). Therefore, in
the hope of designing a sound affine-intuitionistic type system, we are going to
define a reduction where values are consumed as follows:

C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]]

In fact, we will see in Section 3.3.4 that we can still recover the copying mech-
anism of reduction (3.4).
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3.2.1 Syntax

The syntax of λ!‖ is presented in Figure 3.6. It simply is the combination of

-variables x, y, . . .
-regions r, r′, . . .
-values V ::= x | r | ? | λx.M | !V
-terms M ::= V |MM

!M | let !x = V in M
get(r) | set(r, V )
(M ‖M)

-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P )

Figure 3.6: Syntax of λ!‖

constructs from λ‖ (Figure 2.2) and λ! (Figure 3.2). Notice that !M is only
considered a value if M is a value. The notations FV(M) and M [V/x] extend in
a straightforward way and the sequential composition M ;N is encoded as usual
(see Section 2.1.1).

3.2.2 Reduction

The reduction of λ!‖ is given in Figure 3.7. It is built from the reduction of λ!

-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-evaluation contexts-
E ::= [·] | EM | V E | !E
C ::= [·] | (C ‖ P ) | (P ‖ C)

-reduction rules-
(βv) C[E[(λx.M)V ]] −→ C[E[M [V/x]]]
(!v) C[E[let !x = !V in M ]] −→ C[E[M [V/x]]]
(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]]
(set) C[E[set(r, V )]] −→ C[E[?]] ‖ r ⇐ V

Figure 3.7: Call-by-value reduction of λ!‖

(Figure 3.3) and λ‖ (Figure 2.3) so that programs follow a left-to-right call-by-
value evaluation strategy. More precisely:
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• Arguments are evaluated before substitution in the rules (βv) and (!v).

• Evaluation contexts do not allow reduction steps to take place under
binders. However, it is possible to evaluate under bangs with the con-
text !E.

• As announced in preamble of this section, the rule (get) consumes the
value from the store.

Remark 3.2.1. We also define a new syntactic abbreviation (in addition to
set(r,M)). Since let !x = N in M is not generated by the syntax, we consider
it as syntactic sugar for (λx.let !x = x in M)N . Again, this choice simplifies
the shape of evaluation contexts because we do not need to consider the context
let !x = E in M .

3.3 An affine-intuitionistic type system

We now present the affine-intuitionistic type system of λ!‖ which renders the
process of data duplication explicit explicit even in the presence of side effects.
In addition, the system includes a discipline of region usages that distinguish
regions that are read once and written once from other ones. In the next section,
we will see that region usages can be tamed to ensure the confluence of programs.

3.3.1 Types, contexts and usages

We define the syntax of types and contexts in Figure 3.8. It is built from types

-types α ::= B | A
-value types A ::= Unit | A( α | !A | RegrA
-variable contexts Γ ::= x1 : (u1, A1), . . . , xn : (un, An)
-region contexts R ::= r1 : (U1, A1), . . . , rn : (Un, An)

Figure 3.8: Syntax of types and contexts of λ!‖

and contexts of λ‖ (Figure 2.4) and λ! (Figure 3.4) except that we do not use
effects.

As seen previously, a variable usage u ∈ {λ, !} specifies if the variable can be
bound by a λ-abstraction or a let !-expression. The novelty lies in the introduc-
tion of region usages in region contexts. A region usage U is a pair that counts
reads and writes on a given region. Concretely, U denotes an element of one of
the following three sets:

U ∈ {[∞,∞]} ∪ {[1,∞], [0,∞]} ∪ {[0, 0], [1, 0], [0, 1], [1, 1]}
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By convention we reserve the left component to describe the write usage and
the right component to describe the read usage. Therefore, a region with usage
[1,∞] should be written at most once but can be read many times, while a
region with usage [0, 1] cannot be written but can be read at most once.

Distinguishing three sets of region usages is necessary to definite a sufficient
condition that ensures the confluence of programs. The reason will become
clear in the next section. For now, the intuition is that if we can write at most
one value into a region, reading the region should be deterministic.

Writing r : (U,A) ∈ R thus means that region r contains values of type A and
can be used according to the usage U . We would like to be able to combine the
region usages that are used at different points of a program. For example, if a
thread M1 reads a region r that can be read at most once, we should not be able
to put M1 in parallel with another thread M2 that also reads r. To this end,
we first define a partial binary operation ] : {0, 1,∞} × {0, 1,∞} → {0, 1,∞}
such that

x ] 0 = x

0 ] x = x

∞]∞ =∞

and which is undefined otherwise. Then, the addition U1]U2 is defined provided
that:

1. the component-wise addition is defined,

2. U1 and U2 are in the same set of usages.

The reason for the second condition will become clear in the next section.

Example 3.3.1. [∞,∞] ] [0,∞] and [1, 0] ] [1, 0] are undefined while [1, 0] ]
[0, 1] = [1, 1].

Notice that in each set of usages, there is a ‘neutral’ usage U0 such that U0]U =
U for all U in the same set.

The sum on region usages is extended to region contexts as follows:

1. R1 ]R2 is defined provided that dom(R1) = dom(R2),

2. if r : (U1, A) ∈ R1 and r : (U2, A) ∈ R2 then r : (U1 ] U2, A) ∈ R1 ] R2

only if U1 ] U2 is defined.

There is no loss of generality in the first condition because if, say r : (U,A) ∈ R1

and r /∈ dom(R2) then we can always add r : (U0, A) to R2 where U0 is the
neutral usage of the set which contains U .
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Example 3.3.2.

r1 : ([1,∞], A), r2 : ([0, 1], B)

] r1 : ([0,∞], A), r2 : ([1, 0], B)

= r1 : ([1,∞], A), r2 : ([1, 1], B)

We recall that types depend on region names and, as we did for λ‖ (Figure 2.5),
we state in Figure 3.9 when a type is well-formed in a region context. The

R ↓ Int R ↓ Unit R ↓ B

R ↓ A
R ↓ !A

R ↓ A R ↓ α
R ↓ A( α

r : (U,A) ∈ R
R ↓ RegrA

∀r : (U,A) ∈ R R ↓ A
R `

R ` R ↓ α
R ` α

∀x : (u,A) ∈ Γ R ` A
R ` Γ

Figure 3.9: Formation of types and contexts (unstratified)

difference is that we do not consider effects (they will be added later on to
recover the termination property), and that we consider the affine-intuitionistic
types !A and A( α into account.

3.3.2 Rules

We now introduce the typing rules in Figure 3.10. The rules are built from the
type systems of λ‖ (Figure 2.6) and λ! (Figure 3.5) and moreover they handle
region usages. The following paragraphs give the required explanations.

First, observe that the reading rule get (respectively the writing rules set and
store) requires that the read usage (resp. the write usage) of the region is not
null. Then, to control the duplication of region usages, binary rules can only be
applied if the sum R1]R2 is defined. In a typing derivation, the region contexts
thus only differ on region usages.

The formulation of the promotion rule (prom) that introduces the bang con-
structor is crucial and needs to be explained. Intuitively:

• A term whose typing depends on a region which can be read or written
at most once should not be duplicated.

• A term which reads a region should only be duplicated if the content of
the region is duplicable.
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var
R ` Γ x : (u,A) ∈ Γ

R; Γ ` x : A
unit

R ` Γ
R; Γ ` ? : Unit

reg
R ` Γ r : (U,A) ∈ R

R; Γ ` r : RegrA

lam
FO(x,M) ≤ 1 R; Γ, x : (λ,A) `M : α

R; Γ ` λx.M : A( α

app
R1; Γ `M : A( α R2; Γ ` N : A

R1 ]R2; Γ `MN : α

prom
naff(R) R; Γ! `M : A

R,R′; Γ!,∆λ ` !M : !A

elim
R1; Γ ` V : !A R2; Γ, x : (!, A) ` N : α

R1 ]R2; Γ ` let !x = V in N : α

get
r : ([x, y], A) ∈ R y 6= 0 R ` Γ

R; Γ ` get(r) : A

set
R = r : ([x, y], A) ]R′ x 6= 0 R′; Γ ` V : A

R; Γ ` set(r, V ) : Unit

store
R = r : ([x, y], A) ]R′ x 6= 0 R′; Γ ` V : A

R; Γ ` r ⇐ V : B

par1
R1; Γ ` P : α R2; Γ ` S : B

R1 ]R2; Γ ` P ‖ S : α

par2
i = 1, 2 Ri; Γ ` Pi : αi
R1 ]R2; Γ ` P1 ‖ P2 : B

Figure 3.10: Typing rules of λ!‖
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In order to take these two recommendations into account, we define a predicate
naff(R) (read R is not affine) which is true when these two conditions are
verified:

1. The regions usages occurring in R are only built from components of the
set {0,∞}.

2. If r : ([x, y], A) ∈ R and y 6= 0 then A is of the shape !B.

Then, it suffices to add the premise naff(R) to the promotion rule so that the
region usages can be safely duplicated. Indeed, if naff(R) is true then R]R = R.
To conclude on the promotion rule, note that we can add an arbitrary region
context R′ so that we get a general weakening property on contexts.

As in λ‖, we can derive typing rules for syntactic sugar expressions; in particular,
we have:

elimM

R1; Γ `M : !A R2; Γ, x : (!, A) ` N : α

R1 ]R2; Γ ` let !x = M in N : α

We give a typing example that illustrates why affine region usages (i.e. whose
components may contain ‘1’) would not be compatible with a purely intuition-
istic type system as the one of λ‖.

Example 3.3.3. Take the derivable typing judgment

r : ([0, 0], Int);− ` λf1.λf2.(f1? ‖ f2?) : (Unit( Int)( (Int( Unit)( B

of a function that takes two other functions f1 and f2 as arguments and call
them in parallel. Note that the usages of region r are null. Now suppose we
want to pass the values V1 = λx.get(r) and V2 = λx.set(r, x) to this function.
They can be given the typing judgments

r : ([0, 1], Int);− ` λx.get(r) : Unit( Int

r : ([1, 0], Int);− ` λx.set(r, x) : Int( Unit

which respectively contain an affine read usage and an affine write usage on
region r. It is then possible to derive the judgment

r : ([1, 1], Int);− ` ((λf1.λf2.(f1? ‖ f2?))V1)V2 : B

and we obtain the region usage [1, 1] which guarantees that r will be read and
written at most once. Such an affine region usage would not be compatible
with an intuitionistic type system that cannot guarantee that the arguments of
a function are used at most once. In fact, V1 and V2 cannot be marked with a
bang since the predicate naff(R) is not compatible with affine region usages.

3.3.3 Properties

The properties established for the purely intuitionistic type system of λ‖ can be
lifted to the affine-intuitionistic type system of λ!‖.
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First, the weakening property adapts in a straightforward way.

Lemma 3.3.4 (Weakening). If R; Γ ` P : α and R ] R′ ` Γ,Γ′ then R ]
R′; Γ,Γ′ ` P : α.

Proof. By induction on the typing of P . It should be noted that the proof
relies on the fact that the promotion rule permits to extend variable and region
contexts with affine hypotheses.

The substitution lemma should ensure that if a term M , where x occurs free,
reads a region r which can be read at most once, it should not be possible to
substitute a value V for x if V also reads r. Therefore, the lemma can only be
applied if the region usages of M and V can be summed together. Moreover,
we distinguish between the substitution of affine and intuitionistic variables and
require in the affine case that x occur at most once such that no affine region
usages can be duplicated.

Lemma 3.3.5 (Substitution). If R1 ]R2 is defined then:

1. if R1; Γ, x : (λ,A) ` M : α and FO(x,M) ≤ 1 and R2; Γ ` V : A then
R1 ]R2; Γ `M [V/x] : α.

2. if R1; Γ, x : (!, A) `M : α and R2; Γ ` !V : !A then R1 ]R2; Γ `M [V/x] :
α.

Proof. By induction on the typing of M . We highlight the two representative
cases of application (rule app) and promotion (rule prom).

(app) We treat the affine and intuitionistic sub-cases separately.

1. We have

R3; Γ, x : (λ,A) `M : B( α R4; Γ, x : (λ,A) ` N : B

R3 ]R4; Γ, x : (λ,A) `MN : α

Since FO(x,M) ≤ 1, x may only occur in M or N . Without loss of
generality assume x occurs in N . By induction hypothesis we have

R4 ]R2; Γ ` N [V/x] : B

and since x does not occur in M , we also have

R3; Γ `M [V/x] : B( α

which let us conclude

R3Γ `M [V/x] : B( α R4 ]R2; Γ ` N [V/x] : B

R3 ]R4 ]R2; Γ ` (MN)[V/x] : α

2. We have

R3; Γ, x : (!, A) `M : B( α R4; Γ, x : (!, A) ` N : B

R3 ]R4; Γ, x : (!, A) `MN : α
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and the last rule applied to !V must be

naff(R5) R; ∆! ` V : A

R2; Γ ` !V : !A

where R2 = R5 ] R′ and Γ = ∆!,Θλ for any Θλ and R′. By taking
Θλ and R′ to be empty the inductive hypotheses are

R3 ]R5; Γ `M [V/x] : B( α

R4 ]R5; Γ ` N [V/x] : B

The crucial point is to remark that R5 does not contain affine region
usages (naff(R5)) such that we get R5]R5 = R5. We can then derive

R3 ]R5; Γ `M [V/x] : B( α R4 ]R5; Γ ` N [V/x] : B

R3 ]R4 ]R5; Γ ` (MN)[V/x] : α

By weakening (Lemma 3.3.4) we conclude

R3 ]R4 ]R2; Γ ` (MN)[V/x] : α

(prom) 1. We have
naff(R1) R1; Γ! `M : B

R1 ]R′; Γ!,∆λ, x : (λ,A) ` !M : !B

It follows that x does not occur free in !M and we get

R1 ]R′; Γ!,∆λ ` (!M)[V/x] : !B

and by weakening (Lemma 3.3.4) we get

R1 ]R′ ]R2; Γ!,∆λ ` (!M)[V/x] : !B

2. We have
naff(R1) R1; Γ!, x : (!, A) `M : B

R1 ]R′; Γ!, x : (!, A),∆λ ` !M : !B

and the last rule applied to !V must be

naff(R2) R2; Γ! ` V : A

R2, R
′′; Γ!,∆λ ` !V : !A

By taking R′′ and ∆λ to be empty the inductive hypothesis is

R1 ]R2; Γ!,`M [V/x] : B

Since naff(R1) and naff(R2) we have naff(R1 ]R2) and we can con-
clude

naff(R1 ]R2) R1 ]R2; Γ! `M [V/x] : B

R1 ]R2, R
′, R′′; Γ!,∆λ ` !M [V/x] : !B



3.3. AN AFFINE-INTUITIONISTIC TYPE SYSTEM 61

We then want to show that typing is preserved by reduction.

Proposition 3.3.6 (Subject reduction). If R; Γ ` P : α and P −→ P ′ then
R; Γ ` P ′ : α.

To prove the subject reduction property, we need to state in the following lem-
mas that the structural equivalence and the reduction rules preserve typing.

Lemma 3.3.7 (Structural equivalence preserves typing). If R; Γ ` P : α and
P ≡ P ′ then R; Γ ` P ′ : α.

Proof. By induction on the proof of structural equivalence. This is is mainly a
matter of reordering the pieces of the typing proof of P so as to obtain a typing
proof of P ′.

Lemma 3.3.8 (Contexts preserve typing). Suppose that in the proof of R; Γ `
C[E[M ]] : α we prove R′; Γ′ ` M : A. Then replacing M with a M ′ such that
R′; Γ′ `M ′ : A, we can still derive R; Γ ` C[E[M ′]] : α.

Proof. By induction on the structure of E and C.

Lemma 3.3.9 (Functional redexes). If R; Γ ` C[E[∆]] : α where ∆ has the
shape (λx.M)V or let !x = V in M then R; Γ ` C[E[M [V/x]]] : α.

Proof. If ∆ = (λx.M)V it must be the case that FO(x,M) ≤ 1 and we can
appeal to the affine substitution lemma (Lemma 3.3.5-1) and if ∆ = let !x =
V in M we rely on the intuitionistic lemma (Lemma 3.3.5-2). This settles the
case where the evaluation context E is trivial. If it is complex then we also need
Lemma 3.3.8.

Lemma 3.3.10 (Side effect redexes). If R; Γ ` ∆ : α where ∆ is one of the
programs on the left-hand side of the rules below then R; Γ ` ∆′ : α where ∆′ is
the corresponding program on the right-hand side.

(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]]
(set) C[E[set(r, V )]] −→ C[E[?]] ‖ r ⇐ V

Proof. We proceed by case analysis.

(get) We have

R1 ]R2; Γ ` C[E[get(r)]] ‖ r ⇐ V : α

which must be derived from

r : ([x, y], A) ∈ R3 y 6= 0

R3; Γ ` get(r) : A

...
R1; Γ ` C[E[get(r)]] : α

for some R3 and
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R2 = r : ([x, y], A) ]R′2 x 6= 0 R′2; Γ ` V : A

R2; Γ ` r ⇐ V : B

We distinguish two cases: whether E is of the shape E1[!E2] or not.

(a) E 6= E1[!E2].
Since R1]R2 is defined it is clear that R2]R3 is also defined. Hence
by weakening we have

R′2 ]R3; Γ ` V : A

Moreover E is not of the shape E1[!E2] hence it is clear that the
promotion rule prom is not used to type C[E[get(r)]]. Therefore we
can derive

R1 ]R2; Γ ` C[E[V ]] : α

even though naff(R2 ]R3) is false.

(b) E = E1[!E2].
The promotion rule prom must be used to type C[E[get(r)]], hence
the predicate naff(R3) must be true, which implies that A is of the
shape !B and so that V is of the shape !V ′. Thus the last rule applied
to !V ′ must be prom:

naff(R4) R4; Γ ` V ′ : B

R2; Γ ` !V ′ : !B

where R2 = R4, R5 for some R5. Since R4 ]R3 must be defined, by
weakening we have

R4 ]R3; Γ ` !V ′ : !B

By observing that naff(R4 ]R3) is true we can derive

R1 ]R2; Γ ` C[E[!V ′]] : α

where the context R5 may be weakened in the end of the derivation.

(set) We have

R1 = r : ([x, y], A) ]R′1 x 6= 0 R′1; Γ ` V : A

R1; Γ ` set(r, V ) : Unit

...
R; Γ ` C[E[set(r, V )]] : α

for some R1. Therefore we also have

R1; Γ ` r ⇐ V : Unit

Then from
R0; Γ ` ? : Unit
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where R0 only contains neutral region usages we can derive

R2; Γ ` C[E[?]] : α

such that R1 ]R2 = R. Thus we conclude

R; Γ ` C[E[?]] ‖ r ⇐ V : α

With the above lemmas we can now turn to the proof of subject reduction.

Proof of Proposition 3.3.6 (subject reduction). We recall that P −→ P ′ means
that P ≡ ∆ such that ∆ reduces to ∆′ without using structural equivalence and
∆′ ≡ P ′. By Lemma 3.3.7 we get R; Γ ` ∆ : α. By Lemmas 3.3.9 and 3.3.10 we
derive R; Γ ` ∆′ : α. Again by Lemma 3.3.7 we conclude R; Γ ` P ′ : α.

Finally we can state the progress property.

Proposition 3.3.11 (Progress). Suppose P is closed typable program which
cannot reduce. Then P is structurally equivalent to a program

M1 ‖ · · · ‖Mm ‖ S m ≥ 0

where Mi is either a value or can be uniquely decomposed as a term E[get(r)]
such that no assignment to r exists in the store S.

The proof follows by observing that a closed value of type !A must have the
shape !V , which is formalized in the following lemma.

Lemma 3.3.12 (Classification). Assume R;− ` V : A. Then:

• if A = A1 ( A2 then V = λx.M ,

• if A = !A1 then V = !V1

Proof. By observing that the last typing rules applied to V must be lam or
prom.

Then we are sure that a well-typed closed term let !x = V in M is guaranteed
to reduce since V must match the pattern !V ′. The general proof is a follows.

Proof of Proposition 3.3.11. We proceed by induction on the structure of the
threads Mi to show that each one of them is either a value or a stuck get. We
highlight two relevant cases.

• Mi = PQ
By looking at the evaluation contexts we know that P cannot reduce. By
induction hypothesis we have two cases: either P is a value or P is a stuck
get.
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– Suppose P is a value. We have

R1;− ` P : A( α R2;− ` Q : A

R1 ]R2;− ` PQ : α

and by Lemma 3.3.12 we get P = λx.M . It must be the case that Q
cannot reduce but it cannot be a value for otherwise PQ reduces by a
(βv) step. Hence Q is a stuck get and PQ is of the form PE[get(r)].

– Suppose P is a stuck get. Then PQ is of the form E[get(r)]Q.

• Mi = let !x = P in Q
We know that let !x = P in Q cannot reduce which by looking at the
evaluation contexts means that P cannot reduce. By induction hypothesis
we have two cases: either P is a value or P is a stuck get.

– Suppose P is a value. We have

R1;− ` P : !A R2;x : (!, A) ` Q : α

R1 ]R2;− ` let !x = P in Q : α

By Lemma 3.3.12 we have P = !V hence let !x = !V in Q is a redex
and this contradicts the hypothesis that let !x = P in Q cannot
reduce. Thus P cannot be a value.

– Suppose P is a stuck get. Then let !x = P in Q is of the form
let !x = E[get(r)] in Q.

3.3.4 References

We have seen in Section 3.1 that λ! simulates the simply typed λ-calculus. We
may then wonder if λ!‖ simulate λ‖. The only ambiguous point comes from the
reading rule (get). Recall that in λ‖, reading a region amounts to copy the value
from the store with the following rule:

get(r) ‖ r ⇐ V −→ V ‖ r ⇐ V

We have omitted the evaluation contexts for simplicity. In λ!‖, for duplication
reasons, reading a region amounts to consume the value from the store:

get(r) ‖ r ⇐ V −→ V (3.5)

In other words, λ!‖ allows the implementation of the operational semantics of
communication channels but apparently not the one of imperative references.

The goal of this subsection is to quickly show that in λ!‖, a region may abstract
a set of references only if the content of the region is duplicable. For this it
suffices to use a consume-and-rewrite mechanism as follows:

let !x = get(r) in set(r, !x); !x ‖ r ⇐ !V −→∗ !V ‖ r ⇐ !V (3.6)
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After being consumed, the value !V is duplicated: one occurrence is immediately
rewritten to the store and the other one is made available to the rest of the
program. This program is typable if the region r is associated to a type of the
shape !A.

We notice however that the above program (3.6) requires the usage [1, 1] or
[∞,∞] for r whereas the program (3.5) only requires the usage [0, 1] or [0,∞]
where the write component is neutral. The consume-and-rewrite mechanism
thus implies that no affine write usage can be used at another point of the
program. We will see in the next section that write usages are precious, and in
order to get around this limitation it is convenient to consider these two reading
rules in λ!‖:

(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]] if V 6= !V ′

(get!) C[E[get(r)]] ‖ r ⇐ !V −→ C[E[!V ]] ‖ r ⇐ !V

The (get!) rule internalizes the consume-and-rewrite mechanism. The side condi-
tion of the rule (get) ensures that the choice of the reduction rule is deterministic
if V is of the shape !V .

To conclude, the rule (get!) provides a mechanism to implement the reading of
a reference with a neutral write usage and it is straightforward to see that the
proofs of subject reduction (Proposition 3.3.6) and progress (Proposition 3.3.11)
can be adapted. In the rest of this chapter we consider that λ!‖ make the
distinction between (get) and (get!).

3.4 Confluence

We now explain how region usages can be tamed to ensure the confluence of
well-typed programs.

In λ!‖, non-determinism may come from accesses to the store. For example if
different values (whether they are affine or intuitionistic) are stored in the same
region:

get(r) ‖ r ⇐ V1 ‖ r ⇐ V2

V1 ‖ r ⇐ V2 V2 ‖ r ⇐ V1

(3.7)

get(r) ‖ r ⇐ !V1 ‖ r ⇐ !V2

!V1 ‖ r ⇐ !V1 ‖ r ⇐ !V2 !V1 ‖ r ⇐ !V1 ‖ r ⇐ !V2

(3.8)
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where V1 and V2 are not of the shape !V . Or if there is a race condition on a
region that contains an affine value:

E1[get(r)] ‖ E2[get(r)] ‖ r ⇐ V

E1[V ] ‖ E2[get(r)] E1[get(r)] ‖ E2[V ]

(3.9)

where V is not of the shape !V ′. On the other hand, a race condition on an
intuitionistic value such as

E1[get(r)] ‖ E2[get(r)] ‖ r ⇐ !V

E1[!V ] ‖ E2[get(r)] ‖ r ⇐ !V E1[get(r)] ‖ E2[!V ] ‖ r ⇐ !V

E1[!V ] ‖ E2[!V ] ‖ r ⇐ !V

(3.10)

does not compromise determinism because the two possible reductions commute.

We propose two conditions to rule out the problematic situations (3.7), (3.8)
and (3.9):

1. Every region can be assigned one value, at most.

2. Affine stores (that contain non duplicable values) can be read at most
once.

The first condition can be imposed by removing the usage [∞,∞] and for
the second condition it suffices to type affine regions with usages of the set
{[1, 1], [1, 0], [0, 1], [0, 0]}. To this end, we introduce in Figure 3.11 rules for the
typing of writes and stores that are alternative to those of Figure 3.10. We
denote with `C provability in this restricted system.

It is easy to see that the program (3.10) is still typable in this restricted system.
If we assume E1 and E2 do not contain any write operation on r, the typing
of E1[get(r)] ‖ E2[get(r)] requires r to have the usage [0,∞]. And since the
store contains an intuitionistic value, we can use the rule store! to associate the
usage [1,∞] to r. We conclude that the program is typable by observing that
[0,∞] ] [1,∞] is defined.

This system still enjoys the subject reduction property and moreover the typable
programs are strongly confluent.

Proposition 3.4.1 (Subject reduction and confluence). Suppose R; Γ `C P : α.
Then:
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region usages are restricted to these two sets :
{[1,∞], [0,∞]} ∪ {[1, 1], [1, 0], [0, 1], [0, 0]}

set

A 6= !B U ∈ {[1, 1], [1, 0]}
R = r : (U,A) ]R′ R′; Γ ` V : A

R; Γ ` set(r, V ) : Unit

store

A 6= !B U ∈ {[1, 1], [1, 0]}
R = r : (U,A) ]R′ R′; Γ ` V : A

R; Γ ` r ⇐ V : B

set!

U ∈ {[1,∞]} ∪ {[1, 1], [1, 0]}
R = r : (U, !A) ]R′ R′; Γ ` V : !A

R; Γ ` set(r, V ) : Unit

store!

U ∈ {[1,∞]} ∪ {[1, 1], [1, 0]}
R = r : (U, !A) ]R′ R′; Γ ` V : !A

R; Γ ` r ⇐ V : B

Figure 3.11: Restricted region usages and rules for confluence

1. If P −→ P ′ then R; Γ `C P ′ : α.

2. If P ′′ ←− P −→ P ′ then there is a Q such that P ′ −→ Q←− P ′′.

Proof.

1. We just have to reconsider the case of the rule (set) and see that the proof
simply adapts from the one of Proposition 3.3.6.

2. Let us consider each problematic critical pair and see how the restrictions
on region usages forbid their typing.

• (3.7) and (3.8). Clearly, the rules store and store! do not allow the
typing of several stores in parallel.

• (3.9) The two get(r)s in parallel require r to have the usage [0,∞]
while the the affine store which must be typed with the rule store
associates r with the usage [1, 0]. But since [0,∞] and [1, 0] do not
belong to the same set of usages they cannot be summed.

Remark 3.4.2. We note that the rules for ensuring confluence require that
at most one value is associated with a region, which usually called a single-
assignment discipline. This is quite restrictive but one has to keep in mind
that it targets regions that can be accessed concurrently by several threads. Of
course, the discipline could be relaxed for the regions that are accessed by one
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single sequential thread and this could perhaps be realized with the help of an
effect system.

Related work The conditions to guarantee confluence are inspired by the
work of Kobayashi et al. on linearity in the π-calculus [KPT99] and one should
expect a comparable expressive power. Also, much more elaborate notions of
usages have been proposed to analyze the resource usage of programs [Kob02,
IK05]. And recently, Amadio and Dogguy derived a notion of affine usage in the
context of synchronous programming [AD08] that guarantees the determinacy
of programs.

3.5 Termination

In this last section we show that the discipline of region stratification that we
introduced earlier for λ‖ combines smoothly with the discipline of region usage,
so that confluence and termination can be guaranteed.

The general approach is similar to the intuitionistic case: we decorate the affine-
intuitionistic type system with effects and we impose the stratification of regions
via well-formation rules on region contexts. In order to prove the termination

of a stratified λ
!‖
S , it suffices to give a translation from the affine-intuitionistic

system to the intuitionistic system that maps a reduction step of λ
!‖
S to exactly

one reduction step of λ
‖
S . Therefore, termination in λ

‖
S (Theorem 2.3.1) entails

termination in λ
!‖
S .

3.5.1 An affine-intuitionistic type and effect system

First we need to extend the syntax of types presented in Figure 3.8 such that
the affine functional type is decorated with an effect:

A
e
( α

We can then state in Figure 3.12 the rules that stratify region contexts. Similarly
to the stratified region contexts of λ‖ (Figure 2.8), a region may only contain
values that have side effects on ‘lower’ regions.

A type and effect judgment has the shape

R; Γ ` P : (α, e)

where the effect e provides and upper bound on the set of regions on which the
program P may read or write. The rules of the affine-intuitionistic type and
effect system are spelled out in Figure 3.13.
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∅ `
R ` A r /∈ dom(R)

R, r : (U,A) `

R `
R ` Unit

R `
R ` B

R ` A
R ` !A

R ` A R ` α e ⊆ dom(R)

R ` (A
e
( α)

R ` r : (U,A) ∈ R
R ` RegrA

R ` α e ⊆ dom(R)

R ` (α, e)

Figure 3.12: Stratified formation of types and contexts

Also, subtyping rules adapt in a straightforward way to affine typing as specified
in Figure 3.14.

It is easy to verify that the stratified system is a restriction of the unstratified
one and that the subject reduction property still holds in the restricted stratified
system. If confluence is required, it suffices to add the restrictions spelled out
in Figure 3.11.

3.5.2 A forgetful translation

In this last section we show that λ‖ simulates λ!‖ by a forgetful translation such
that reduction steps are in one-to-one correspondence. This allows us at the

end to prove the termination of λ
!‖
S .

We recall that there is a standard forgetful translation from affine-intuitionistic
logic to intuitionistic logic which amounts to forget about usages and the bang
modality, and to regard the affine implication as an ordinary intuitionistic im-

plication. In Figure 3.15, we lift the forgetful translation to go from λ
!‖
S to λ

‖
S .

To avoid confusion, in the following we write `!S and −→!S (respectively `S
and −→S) for provability and the reduction relation in λ

!‖
S (resp. λ

‖
S).

Lemma 3.5.1. The forgetful translation preserves provability in the following
sense:

1. If R `!S then R `S.

2. If R `!S α then R `S α.

3. If R `!S (α, e) then R `S (α, e).
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var
R ` Γ x : (u,A) ∈ Γ

R; Γ ` x : (A, ∅)
unit

R ` Γ
R; Γ ` ? : (Unit, ∅)

reg
R ` Γ r : (U,A) ∈ R
R; Γ ` r : (RegrA, ∅)

lam
FO(x,M) ≤ 1 R; Γ, x : (λ,A) `M : (α, e)

R; Γ ` λx.M : (A
e
( α, ∅)

app
R1; Γ `M : (A

e1
( α, e2) R2; Γ ` N : (A, e3)

R1 ]R2; Γ `MN : (α, e1 ∪ e2 ∪ e3)

prom
naff(R) R; Γ! `M : (A, e)

R,R′; Γ!,∆λ ` !M : (!A, e)

elim
R1; Γ ` V : (!A, ∅) R2; Γ, x : (!, A) ` N : (α, e)

R1 ]R2; Γ ` let !x = V in N : (α, e)

get
r : ([x, y], A) ∈ R y 6= 0 R ` Γ

R; Γ ` get(r) : (A, {r})

set
R = r : ([x, y], A) ]R′ x 6= 0 R′; Γ ` V : (A, ∅)

R; Γ ` set(r, V ) : (Unit, {r})

store
R = r : ([x, y], A) ]R′ x 6= 0 R′; Γ ` V : (A, ∅)

R; Γ ` r ⇐ V : (B, ∅)

par1
R1; Γ ` P : (α, e) R2; Γ ` S : (B, ∅)

R1 ]R2; Γ ` P ‖ S : (α, e)

par2
i = 1, 2 Ri; Γ ` Pi : (αi, ei)

R1 ]R2; Γ ` P1 ‖ P2 : (B, e1 ∪ e2)

Figure 3.13: Affine-intuitionistic type and effect system of λ!‖
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R ` α ≤ α
R ` A ≤ A′
R ` !A ≤ !A′

e ⊆ e′ ⊆ dom(R)
R ` A′ ≤ A R ` α ≤ α′

R ` (A
e
( α) ≤ (A′

e′

( α′)

e ⊆ e′ ⊆ dom(R)
R ` α ≤ α′

R ` (α, e) ≤ (α′, e′)
sub

R; Γ `M : (α, e)
R ` (α, e) ≤ (α′, e′)

R; Γ `M : (α′, e′)

Figure 3.14: Subtyping induced by effect containment

Unit = Unit
Int = Int

A
e
( α = A

e−→ α
!A = A

r1 : (U1, A1), . . . , rn : (Un, An) = r1 : A1, . . . , rn : An
x1 : (u1, A1), . . . , xn : (un, An) = x1 : A1, . . . , xn : An

x = x
r = r
? = ?

λx.M = λx.M
MN = M N

!M = M
let !x = V in M = (λx.M)V

get(r) = get(r)

set(r, V ) = set(r, V )

r ⇐ V = r ⇐ V
P ‖ P = P ‖ P

Figure 3.15: Forgetful typed translation from λ!‖ to λ‖
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4. If R `!S α ≤ α′ then R `S α ≤ α′.

5. If R `!S (α, e) ≤ (α′, e′) then R `S (α, e) ≤ (α′, e′).

6. If R `!S Γ then R `S Γ.

7. If R; Γ `!S P : (α, e) then R; Γ `S P : (α, e).

Proof. By induction on the provability relation `!S . Concerning the rules for
types and region contexts formation and for subtyping, the forgetful translation
provides a one-to-one mapping from the rules of the affine-intuitionistic system
to the rules of the intuitionistic one (the only exception are the rules for !A
which become trivial in the intuitionistic framework). Also note that dom(R) =
dom(R) and if R1]R2 is defined then R1 = R2 = R1 ]R2. With these remarks
in mind, the proofs are straightforward.

Next we want to relate the reduction of a program and of its translation. The
little subtlety is that in the intuitionistic system values are copied from the store
while they might be consumed in the affine-intuitionistic system. Consequently,
a reduction such as:

get(r) ‖ r ⇐ V −→!S V

where V is not of the shape !V ′ might be simulated by

get(r) ‖ r ⇐ V −→S V ‖ r ⇐ V

In other terms, the translated program may contain more values in the store than
the source program. To account for this, we introduce a ‘simulation’ relation S
indexed on a pair R; Γ such that R ` Γ:

SR;Γ = {(P,Q) | R; Γ `!S P : (α, e),

R; Γ `S Q : (α, e),

Q ≡ (P ‖ S)}

Lemma 3.5.2 (Simulation). If (P,Q) ∈ SR;Γ and P −→!S P
′ then Q −→S Q

′

and (P ′, Q′) ∈ SR;Γ.

Proof. Suppose (P,Q) ∈ SR;Γ. First note that the typing must be preserved
by subject reduction of `!S and `S . Then by definition, P −→!S P ′ means
that P is structurally equivalent to a process P1 which can be decomposed in
a redex C[E[M ]]. We notice that the forgetful translation preserves structural
equivalence, namely if P ≡ P1 then P ≡ P1. Indeed, the commutativity and
associativity rules of the affine-intuitionistic system match those of the intu-
itionistic system. We also remark that the forgetful translation can be extended
to evaluation contexts simply by defining [·] = [·]. Then we note that the
translation of an evaluation context is an intuitionistic evaluation context. In
particular, this holds because the translation of a value is still a value.

Following these remarks, we can derive thatQ ≡ C[E[M ]] ‖ S. Thus it is enough
to focus on M and show that each reduction in the affine-intuitionistic system is
mapped to a reduction in the intuitionistic one and that the resulting program is
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still related to the program P ′ via the relation SR;Γ. To this end, we notice that
the translation commutes with the substitution so that M [V/x] = M [V /x].
Then one proceeds by case analysis of M . Let us look at two cases in some
detail.

• M = let !x = !V in N .
We have

let !x = !V in N −→!S N [V/x]

and then
let !x = !V in N = (λx.N)V

−→S N [V /x]
= N [V/x]

• get(r) ‖ r ⇐ V where V is not of the shape !V ′.
We have

get(r) ‖ r ⇐ V −→!S V

and then
get(r) ‖ r ⇐ V = get(r) ‖ r ⇐ V

−→S V ‖ r ⇐ V

Notice that in this case we have an additional store r ⇐ V which is the
reason why in the definition of the relation S we relate a program to its
translation in parallel with some additional store.

Corollary 3.5.3 (Termination). If R; Γ `!S P : (α, e) then all reductions start-
ing from P terminate.

Proof. By contradiction. We have (P, P ) ∈ SR;Γ and R; Γ `S P : (α, e). If
there is an infinite reduction starting from P then the simulation Lemma 3.5.2
entails that there is an infinite reduction starting form P and this contradicts
the termination of the intuitionistic system (Theorem 2.3.1).
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Chapter 4

An elementary λ-calculus

In this chapter, we introduce an elementary λ-calculus based on EAL. The
main contribution is to prove that a class of well-formed programs terminate
in elementary time under an arbitrary reduction strategy. The proof is based
on an original combinatorial analysis which, as we will see in the next chapter,
extends smoothly to concurrency.

Outline The chapter is organized as follows. In Section 4.1 we recall the
syntax and reduction of the elementary λ-calculus which is that of λ!. At the
same time, we also introduce formally the notion of depth. The key point of
EAL is to stratify programs by depth levels1 so that the depth of occurrences is
preserved by reduction. We present in Section 4.2 the principle of stratification
by depth levels and show intuitively why it entails termination in elementary
time of a specific reduction strategy. The starting point of our contribution is
to propose in Section 4.3 a formal system called elementary affine depth system
(λ!
EAD), that stratifies programs by depth levels and which is a variant of the

system proposed by Terui for the Light Affine λ-calculus [Ter07]. It is usually
shown that a specific shallow-first reduction strategy (i.e. redexes are eliminated
in depth-increasing order) can be computed in elementary time [DJ03]. In
Section 4.4, we extend this result by showing that terms well-formed in λ!

EAD

are guaranteed to terminate in elementary time under an arbitrary reduction
strategy. For this we provide an original combinatorial proof that relies on an
analysis of the depth of occurrences.

The contribution can be summarized by the diagram of Figure 4.1.

1Not to be confused with the stratification of regions introduced in Chapter 2.
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λ!
EAD

λ!

stratification by
depth levels

Elementary time

Figure 4.1: Every strategy of λ!
EAD is elementary time

4.1 Syntax, reduction and depth

The syntax and reduction of the elementary λ-calculus is that of λ! which we
recall in Figure 4.2. It is based on the Light Affine λ-calculus of Terui [Ter07]

-terms-
M ::= x | λx.M |MM | !M | let !x = M in M

-evaluation contexts-
E ::= [·] | λx.E | EM |ME | !E

let !x = E in M | let !x = M in E

-reduction rules-
(β) E[(λx.M)N ] −→ E[M [N/x]]
(!) E[let !x = !N in M ] −→ E[M [N/x]]

Figure 4.2: Syntax and reduction of λ!

except that we do not consider the paragraph modality ‘§’ which will be used
for polynomial time. We stress that an evaluation context can be any arbitrary
term with a hole [·].

We define

!0M = M

!n+1M = !(!nM)

Terms λx.M and let †x = N in M bind occurrences of x in M . The set of free
variables of M is denoted by FV(M). The number of free occurrences of x in
M is denoted by FO(x,M). The number of free occurrences in M is denoted
by FO(M). M [N/x] denotes the term M in which each free occurrence of x has
been substituted by N .
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In the reduction rules, the redex denotes the term inside the context of the left
hand-side and the contractum denotes the term inside the context of the right
hand-side.

In order to define the notion of depth it is easier to represent a term by
an abstract syntax tree. Variables, regions and unit constants are leaves, λ-
abstractions and !-terms have one child, and applications and let !-operators
have two children. A path starting from the root to a node of the tree denotes

M = λx.let !x = x in x!(x!x)

λx

let !x

x @

x !

@

x !

x
(a)

ε

0

00 01

010 011

0110

01100 01101

011010
(b)

Figure 4.3: Syntax tree and addresses of M

an occurrence of the program whose address is a word w ∈ {0, 1}∗. As an exam-
ple, see the syntax tree given in Figure 4.3(a) and the corresponding addresses
in Figure 4.3(b).

Then, we define the notion of depth.

Definition 4.1.1 (Depth). The depth d(w) of an occurrence w in a term M
is the number of ‘!’ labels that the path leading to the end node crosses. The
depth d(M) of the term M is the maximum depth of its occurrences.

With reference to Figure 4.3 we have:

d(ε) = d(0) = d(00) = d(01) = d(010) = d(011) = 0

d(0110) = d(01100) = d(01101) = 1

d(011010) = 2

d(M) = 2

What matters in computing the depth of an occurrence is the number of !’s that
precede strictly the end node.

In the sequel, we write
i−→ when the redex occurs at depth i.
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Finally, we define the size of a term as follows.

Definition 4.1.2 (Size). The size s(M) of a term M is the number of occur-
rences in M . The size at depth i si(M) is the number of occurrences at depth
i in M .

4.2 Stratification by depth levels

The logic EAL is designed so that the depth of occurrences is preserved by
reduction. This is called the stratification of programs by depth levels. Inter-
estingly, this stratification principle only relies on the notion of depth (types are
not necessary) and the two following syntactic criteria:

1. if a λ-abstraction occurs at depth i and binds a variable x, then x must
occur at most once and x must occur at depth i.

2. if a let !-expression occurs at depth i and binds a variable x, then x must
occur at depth i+ 1 and x may occur arbitrarily many times.

We give examples of stratified and unstratified programs in Figure 4.4. For

λx.xy λx.xx λx.y(!x) let !x = z in !(xx) let !x = z in x(!x)

λxi

@i

xi yi

λxi

@i

xi xi

λxi

@i

yi !i

xi+1

let !xi

zi !i

@i+1

xi+1 xi+1

let !xi

zi @i

xi !i

xi+1

Figure 4.4: Stratified and unstratified terms

convenience, each occurrence is labelled with its depth. Underlined terms are
stratified while underlined terms with a dashed line are not stratified. We
explain why they are not: in (λx.xx), more than one occurrence of x is bound;
in (λx.y(!x)), x does not occur at depth i; and in let !x = z in x(!x), one
occurrence of x does not occur at depth i+ 1.

It is easy to observe that these two criteria are enough to preserve the depth of
occurrences by reduction. Let us consider each reduction rule:

(β) E[(λx.M)N ] −→ E[M [N/x]]
Suppose the redex (λx.M)N occurs at depth i in E. By stratification, x
may occur at most once and at depth i in M . By observing the reduction
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on syntax trees, we see that N stays at depth i:

@i

λxi

M i

xi

N i

M i

N i

i

(4.1)

(!) E[let !x = !N in M ] −→ E[M [N/x]]
Suppose the redex let !x = !N in M occurs at depth i in E. By stratifi-
cation, x may occur arbitrarily many times and at depth i+ 1 in M . We
see that N stays at depth i+ 1:

let !xi

!i

N i+1

M i

!i

xi+1

!i

xi+1

M i

!i

N i+1

!i

N i+1

i

(4.2)

In fact, we can show that stratification entails the following properties: when

M
i

−→∗ M ′,

d(M ′) ≤ d(M) (4.3)

sj(M
′) ≤ sj(M) for j < i (4.4)

si(M
′) < si(M) (4.5)

s(M ′) ≤ 2s(M) (4.6)

Property (4.3) immediately follows from the fact that the depth of occurrences
is preserved. Properties (4.4) and (4.5) follow from the fact that (!) is the only
duplicating rule and that duplication happens at higher depth than the redex.
Property (4.6) can be shown by an analysis of the size of terms.

The proof of termination in elementary time usually relies on a specific reduction
strategy which applies redexes in depth-increasing order. This strategy is often
referred in the literature as the depth-by-depth strategy but we prefer the more
explicit name of shallow-first strategy.

Definition 4.2.1 (Shallow-first). A shallow-first reduction sequence M1
i1−→

M2
i2−→ . . .

in−→Mn is such that m < n implies im ≤ in. A shallow-first strategy
is a strategy that produces shallow-first sequences.
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Let us prove that the shallow-first evaluation of a stratified term can be com-
puted in elementary time. We recall that a function f on integers is elementary
if there exists a k such that for any n, f(n) can be computed in time O(t(n, k))
where:

t(n, 0) = n

t(n, k + 1) = 2t(n,k)

Proposition 4.2.2 (Elementary bounds). The shallow-first evaluation of a
stratified term M terminates in at most t(s, d) steps where s = s(M) and
d = d(M). Moreover the size of the final term is bounded by t(s, d).

Proof. For simplicity, assume M is a program such that d(M) = 2. By proper-
ties (4.3),(4.4),(4.5) we can eliminate all the redexes of M with the shallow-first

sequence M
0

−→∗ M ′
1

−→∗ M ′′
2

−→∗ M ′′′. By property (4.6), s(M ′′) ≤ 22s(M)

.

We can safely assume that s(M ′′′) ≤ s(M ′′) ≤ 22s(M)

. By properties (4.5) the
length l of the sequence is such that l ≤ s(M) + s(M ′) + s(M ′′) = p. Since we

can show that p ≤ 22s(M)

, we conclude that the shallow-first evaluation of M
can be computed in t(s(M), 2) steps.

4.3 An elementary affine depth system

In this section, we introduce an elementary affine depth system (λ!
EAD) as a

set of inferences rules. Every term which is well-formed in this depth system
is stratified by depth levels and terminates in elementary time for an arbitrary
reduction strategy.

First, we introduce variable contexts Γ as follows:

Γ = x1 : δ1, . . . , xn : δn

Each variable xi is associated with a natural number δi. We write dom(Γ) for
the set {x1, . . . , xn}. A depth judgment has the shape

Γ `δ M

It should entail that if xi occurs free in M then xi occurs at depth δi in !δM .

The inference rules of the depth system are presented in Figure 4.5. Note how
the depth of the bound variable in the rules lam and elim is such as to match
the syntactic criteria presented at the beginning of Section 4.2. λ-abstraction
are affine by the predicate FO(x,M) ≤ 1. The depth δ of the judgment is
decremented by the rule prom; the intuition is that if we look at the abstract
syntax tree of !M , M occurs deeper than !M .

Definition 4.3.1 (Well-formedness). A term M is well-formed if for some Γ
and δ a judgment Γ `δ M can be derived.
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var
Γ, x : δ `δ x

lam
FO(x,M) ≤ 1 Γ, x : δ `δ M

Γ `δ λx.M
app

Γ `δ M Γ `δ N
Γ `δ MN

prom
Γ `δ+1 M

Γ `δ !M
elim

Γ `δ N Γ, x : (δ + 1) `δ M
Γ `δ let !x = N in M

Figure 4.5: Elementary affine depth system λ!
EAD

Example 4.3.2. The term λx.let !y = x in !(yy) is well-formed:

x : δ `δ x

x : δ, y : δ + 1 `δ+1 y x : δ, y : δ + 1 `δ+1 y

x : δ, y : δ + 1 `δ+1 yy

x : δ, y : δ + 1 `δ !(yy)

x : δ `δ let !y = x in !(yy)

`δ λx.let !y = x in !(yy)

On the other hand the term of Figure 4.3 is not well-formed.

The following proposition will be useful to analyze the depth of occurrences
during reduction.

Proposition 4.3.3. If Γ `δ M and x occurs free in M then x : δ′ belongs to Γ
and all occurrences of x in !δM are at depth δ′.

Proof. By induction on the inference rules. We only present the case prom. We
have

Γ `δ+1 M

Γ `δ !M

Suppose x occurs free in !M . By induction x : δ′ ∈ Γ and all occurrences of x
are at depth δ′ in !δ+1M . It follows that all occurrences of x are at depth δ′ in
!δ(!M).

The depth system satisfies a subject reduction property. First, we need to
establish the following lemmas.

Lemma 4.3.4 (Weakening). If Γ `δ M then Γ,Γ′ `δ M .

Proof. By induction on the inference rules.

Lemma 4.3.5 (Substitution). If Γ, x : δ′ `δ M and Γ `δ′ N then:

1. Γ `δ M [N/x],

2. d(!δM [N/x]) ≤ max (d(!δM), d(!δ
′
N)).
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Proof. Item 1 can be proved by induction on the inference rules. Let us consider
item 2. By item 1, we know that all occurrences of x in !δM are at depth δ′.
By definition of depth, it follows that δ′ ≥ δ and the occurrences of x in M
are at depth (δ′ − δ). An occurrence in !δ

′
N at depth δ′ + δ′′ will generate an

occurrence in !δM [N/x] at the same depth δ + (δ′ − δ) + δ′′.

Proposition 4.3.6 (Subject reduction). If Γ `δ M and M −→ N then Γ `δ N
and d(M) ≥ d(N).

Proof. By case analysis on the reduction rules, Lemma 4.3.4 (weakening) and
Lemma 4.3.5 (substitution).

4.4 Termination in elementary time

In this section, we prove that well-formed terms in λ!
EAD terminate in ele-

mentary time under an arbitrary reduction strategy. To this end, we define a
measure on terms based on the number of occurrences at each depth.

Definition 4.4.1 (Measure). Given a term M and 0 ≤ i ≤ d(M), assume
si(M) ≥ 2. We define µin(M) for n ≥ i ≥ 0 as follows:

µin(M) = (sn(M), . . . , si+1(M), si(M))

We write µn(M) for µ0
n(M).

We order vectors of n + 1 natural number with the well-founded lexicographic
order > from right to left. Therefore shallow occurrences have more weight than
deeper occurrences. For example we have:

(5, 4, 3) > (10, 6, 2)
(10, 6, 2) > (8, 5, 2)

We derive a termination property by observing that the measure strictly de-
creases during reduction.

Proposition 4.4.2 (Termination). If M is well-formed, M −→ M ′ and n ≥
d(M) then µn(M) > µn(M ′).

Proof. We proceed by case analysis on the reduction rules. We assume the
redexes occur at depth i in E and for convenience we refer to the reduction on
syntax trees (4.1) and (4.2).

(β) E[(λx.M)N ] −→M ′ = E[M [N/x]]
The restrictions on the formation of terms require that x occurs at most
once in M at depth i. We see that si(M)−3 ≥ si(M ′) because we remove
the nodes for application and λ-abstraction and either N disappears or
the occurrence of the variable x in M disappears (both being at the same
depth as the redex). Clearly sj(M) = sj(M

′) if j 6= i, hence

µn(M ′) ≤ (sn(M), . . . , si+1(M), si(M)− 3, µi−1M) (4.7)
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and µn(M) > µn(M ′).

(!) E[let !x =!N in M ] −→ E[M [N/x]]
The restrictions on the formation of terms require that x may only occur
in M at depth i+ 1. We have that si(M) ≤ si(M)− 2 because at least a
let ! node and a ! node disappear. Clearly sj(M) = sj(M

′) if j < i. The
number of occurrences of x in M is bounded by k = si+1(M) ≥ 2. Thus
if j > i we have sj(M

′) ≤ k · sj(M). For 0 ≤ i ≤ n, let us note

µin(M) · k = (sn(M) · k, sn−1(M) · k, . . . , si(M) · k)

We have
µn(M ′) ≤ (µi+1

n (M) · k, si(M)− 2, µi−1(M)) (4.8)

and we conclude µn(M) > µn(M ′).

We now want to show that termination is in elementary time. We refer to
Proposition 4.2.2 for a definition of elementary time functions.

Definition 4.4.3 (Tower functions). We define a family of tower functions
tα(x1, . . . , xn) by induction on n where we assume α ≥ 1 and xi ≥ 2:

tα() = 0

tα(x1, x2, . . . , xn) = (α · x1)2tα(x2,...,xn)

n ≥ 1

In the following, we write x for any vector of n natural numbers (x1, x2, . . . , xn).
Also, for anym ≥ 1 we write tα(y1, y2, . . . , ym,x) for tα(y1, y2, . . . , ym, x1, x2, . . . , xn).

We need to prove the following crucial lemma.

Lemma 4.4.4 (Shift). Assuming α ≥ 1 and β ≥ 2, the following property holds
for the tower functions with x,x ranging over numbers greater or equal to 2:

tα(β · x, x′,x) ≤ tα(x, β · x′,x)

Some intermediate arithmetic properties are needed to prove it. We start by
remarking some basic inequalities.

Lemma 4.4.5. The following properties hold on natural numbers.

1. ∀x ≥ 2, y ≥ 0 (y + 1) ≤ xy

2. ∀x ≥ 2, y ≥ 0 (x · y) ≤ xy

3. ∀x ≥ 2, y, z ≥ 0 (x · y)z ≤ x(y·z)

4. ∀x ≥ 2, y ≥ 0, z ≥ 1 xz · y ≤ x(y·z)

5. If x ≥ y ≥ 0 then (x− y)k ≤ (xk − yk)

Proof. See Appendix A.
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We also need the following property.

Lemma 4.4.6 (Pre-shift). Assuming α ≥ 1 and β ≥ 2, the following property
holds for the tower functions with x,x ranging over numbers greater or equal
than 2:

β · tα(x,x) ≤ tα(β · x,x)

Proof. This follows from β ≤ β2tα(x)

.

Then we can derive the proof of the shift lemma as follows.

Proof of Lemma 4.4.4. Let k = tα(x′,x) ≥ 2. Then

tα(β · x, x′,x) = β · (α · x)2k ≤ (α · x)β·2
k

(by Lemma 4.4.5-3)

≤ (α · x)(β·2)k

≤ (α · x)2(β·k)
(by Lemma 4.4.5-3)

and by Lemma 4.4.6, β · tα(x′,x) ≤ tα(β · x′,x). Hence

(α · x)2(β·k)
≤ (α · x)2tα(β·x′,x)

= tα(x, β · x′,x)

Now, by a closer look at the shape of the lexicographic ordering during reduction,
we are able to compose the decreasing measure with a tower function.

Theorem 4.4.7 (Elementary bound). Let M be a well-formed term with α =
d(M) and let tα denote the tower function with α+ 1 arguments. If M −→M ′

then tα(µα(M)) > tα(µα(M ′)).

Proof. By case analysis on the reduction rules. The case of the rule (β) is trivial
since we see that exactly one component of the measure is strictly decreasing in
Equation (4.7). We illustrate the crucial case of the duplicating rule (!) where

E[let !x = !N in M ] −→ E[M [N/x]]

For simplicity assume α = 2 and E = [·] (we provide a complete proof in
Appendix A).

Let
µ2(let !x = !N in M) = (x, y, z)

such that

x = s2(let !x = !N in M)

y = s1(let !x = !N in M)

z = s0(let !x = !N in M)

We want to show

t2(µ2(M [N/x])) < t2(µ2(let !x = !N in M))
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We have

t2(µ2(M [N/x])) ≤ t2(x · y, y · y, z − 2) by Inequality (4.8)
≤ t2(x, y3, z − 2) by Lemma 4.4.4

Hence we are left to show

t2(y3, z − 2) < t2(y, z) i.e. (2y3)22(z−2)

< (2y)22z

We have

(2y3)22(z−2) ≤ (2y)3·22(z−2)

Thus we need to show
3 · 22(z−2) < 22z

Dividing by 22z we get
3 · 2−4 < 1

which is obviously true. Hence t2(µ2(M ′)) < t2(µ2(M)).

This shows that the number of reduction steps of a term M is bound by an
elementary time function where the height of the tower depends on d(M). The
following corollary lifts the result to elementary time.

Corollary 4.4.8 (Elementary time). The reduction of a well-formed term M
can be computed by a Turing machine in time bounded by a tower of exponentials
whose height only depends on d(M).

Proof. It suffices to remark that each reduction step Mi −→ Mi+1 can be per-
formed in time quadratic in the size of Mi, which is bounded by t(s(M), d(M)).
Indeed, in the worst situation, the reduction rule (!) is substituting an argument
of size bounded by s(Mi) for at most s(Mi) occurrences of a free variable.
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Chapter 5

An elementary concurrent
λ-calculus

In this chapter, we present an elementary concurrent λ-calculus. The main
result is that we characterize a class of well-formed concurrent programs that
terminate in elementary time under a call-by-value reduction strategy. Our
developments can be summarized in the following items:

• We contribute an analysis of the impact of side effects on the depth of
occurrences that leads to the design of an elementary affine depth system

λ
!‖
EAD that stratifies regions by depth levels. Termination in elementary

time then strongly relies on this depth system.

• We show that the depth system λ
!‖
EAD captures concurrent programs that

iterate side effects over inductive data structures. Moreover, we provide an

elementary affine type system λ
!‖
EAT that also captures these programming

examples.

• The interesting point is that the depth system λ
!‖
EAD does not rely on

the stratification of regions by effects, as seen in Chapter 2 and 3, but on
the stratification of regions by depth levels that appears to allow for some
more flexibility.

Outline The chapter is organized as follows. The syntax and reduction of the
elementary λ-calculus is that of λ!‖ which is recalled in Section 5.1 with the
notion of depth. In Section 5.2, we provide an analysis of the impact of side
effects on the depth of the occurrences which leads us to revise the notion of

depth and design the system λ
!‖
EAD that stratifies regions by depth levels. We

show in Section 5.3 that it guarantees termination of programs in elementary
time under a call-by-value evaluation strategy. Surprisingly, the combinatorial

89
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proof requires very few adaptions from the functional case. In Section 5.4, we
refine the depth system into a second order (polymorphic) elementary affine

type system λ
!‖
EAT and show that the resulting system enjoys subject reduction

and progress (besides termination in elementary time). Finally, in Section 5.5
we discuss the expressivity of the elementary affine type system. We first check
that the usual encoding of elementary time functions goes through. Then, and
more interestingly, we provide examples of iterative concurrent programs with
side effects. Also, we compare the expressive power offered by the stratification
of regions depth levels with respect to stratification by effects.

The contributions can be summarized by the diagram of Figure 5.1.

(iteration of side effects)
⊆

λ
!‖
EAT

λ
!‖
EAD

λ!‖

stratification
by depth levels

typing

Elementary time

Progress

Figure 5.1: From λ!‖ to concurrent iterations in λ
!‖
EAT

5.1 Syntax, reduction and depth

The syntax and reduction of the elementary concurrent λ-calculus is exactly
that of λ!‖ given in Figure 3.6 and Figure 3.7. We recall it in Figure 5.2.

Abstract syntax trees extend straightforwardly to concurrent programs as ex-
emplified in Figure 5.3.
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-variables x, y, . . .
-regions r, r′, . . .
-values V ::= x | r | ? | λx.M | !V
-terms M ::= V |MM | !M

let !x = V in M
get(r) | set(r, V )
(M ‖M)

-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P )

-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-evaluation contexts-
E ::= [·] | EM | V E | !E
C ::= [·] | (C ‖ P ) | (P ‖ C)

-reduction rules-
(βv) C[E[(λx.M)V ]] −→ C[E[M [V/x]]]
(!v) C[E[let !x = !V in M ]] −→ C[E[M [V/x]]]
(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]]
(set) C[E[set(r, V )]] −→ C[E[?]] ‖ r ⇐ V

Figure 5.2: Syntax and reduction of λ!‖

P = let !x = !get(r) in !set(r, x) ‖ r ⇐ !(λx.x?)

‖

let !x

!

get(r)

!

set(r)

x

r ⇐

!

λx

@

x ?
(a)

ε

0

00

000

01

010

0100

1

10

100

1000

10000 10001
(b)

Figure 5.3: Syntax tree and addresses of P
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We recall the definition of depth.

Definition 5.1.1 (Depth). The depth d(w) of an occurrence w in a term M
is the number of ‘!’ labels that the path leading to the end node crosses. The
depth d(M) of the term M is the maximum depth of its occurrences.

5.2 An elementary affine depth system

In this section, we present the elementary affine depth system λ
!‖
EAD. As a first

step, we analyze in Section 5.2.1 the impact of side effects on the depth of occur-
rences, which leads us to revise the notion of depth. Then, in Section 5.2.2 we

present the inference rules of λ
!‖
EAD. Well-formed programs in the depth system

preserve the depth of their occurrences by reduction, even though they tran-
sit through the store. Finally, in Section 5.2.3 we derive the subject reduction
property.

5.2.1 Revised depth

We observe that side effects may change the depth of occurrences, thus breaking
the stratified nature of programs. In the reduction sequence

(λx.set(r, x) ‖ !get(r))!V −→∗ !get(r) ‖ r ⇐ !V

−→ !!V
(5.1)

the occurrence V moves from depth 1 to depth 2 during the last reduction step,
because the read occurs at depth 1 while the write occurs at depth 0.

We propose to introduce region contexts in order to constrain the depth at which
side effects occur. A region context

R = r1 : δ1, . . . , rn : δn

associates a natural number δi to each region ri in a finite set of regions
{r1, . . . , rn} that we write dom(R). We write R(ri) for δi. The idea is then
to extend the functional depth system λ!

EAD so that get(ri) and set(ri,M) may
only occur at the fixed depth δi, thus rejecting (5.1).

We also remark that, since stores are global, they always occur at depth 0 and
assigning a term to a region breaks stratification whenever δi > 0. Indeed, in
the reduction

!set(r, V ) −→ !? ‖ r ⇐ V (5.2)

where R(r) should be 1, the occurrence V moves from depth 1 to depth 0.
Therefore, we propose to revise the definition of depth as follows.
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Definition 5.2.1 (Revised depth). Let P be a program and R a region context
where dom(R) contains all the regions of P . The revised depth rd(w) of an
occurrence w of P is the number of ‘!’ labels that the path leading to the end
node crosses, plus R(r) if the path crosses a store label ‘r ⇐’. The revised depth
rd(P ) of a program P is the maximum revised depth of its occurrences.

Note that, on functional terms, the revised depth exactly corresponds to the
standard depth notion given in Definition 5.1.1. But in reduction (5.2), the
occurrence V now stays at revised depth 1, and in Figure 5.3 we get

rd(ε) = rd(0) = rd(00) = rd(01) = rd(1) = 0

rd(000) = rd(010) = rd(0100) = 1

rd(10) = R(r)

rd(100) = rd(1000) = rd(10000) = rd(10001) = R(r) + 1

In the sequel, we will exclusively use the revised definition of depth, we will
simply say ‘depth’ for ‘revised depth‘ and write d(w) for rd(w).

5.2.2 Rules

A depth judgment has the shape

R; Γ `δ P

and it should entail the following:

• if x : δ′ ∈ Γ and x occurs free in P then all free occurrences of x appear
at depth δ′ in †δP ,

• if r : δ′ ∈ R then get(r)/set(r) may only occur at depth δ′ in †δP .

The inference rules are given in Figure 5.4. The key rules are get and set where
we require R(r) = δ so that side effects preserve the depth of occurrences. Also,
since stores are global, the rule store gives depth 0 to store assignments whereas
the stored value has depth R(r). This reflects the revised notion of depth where
one has to count R(r) if an occurrence appears in a store assignment.

Definition 5.2.2 (Well-formedness). A program P is well-formed if for some
R, Γ, δ a judgment R; Γ `δ P can be derived.

Example 5.2.3. The program of Figure 5.3 is well-formed with the following
derivation where R(r) = 1:

R; Γ `1 get(r)

R; Γ `0 !get(r)

R; Γ, x : 1 `1 x

R; Γ, x : 1 `1 set(r, x)

R; Γ, x : 1 `0 !set(r, x)

R; Γ `0 let !x = !get(r) in !set(r, x)

...

R; Γ `0 r ⇐ !(λx.x?)

R; Γ `0 let !x = !get(r) in !set(r, x) ‖ r ⇐ !(λx.x?)
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var
R; Γ, x : δ `δ x

reg
R; Γ `δ r

unit
R; Γ `δ ?

lam
FO(x,M) ≤ 1 R; Γ, x : δ `δ M

R; Γ `δ λx.M
app

R; Γ `δ M R; Γ `δ N
R; Γ `δ MN

prom
R; Γ `δ+1 M

R; Γ `δ !M
elim

R; Γ `δ V R; Γ, x : (δ + 1) `δ M
R; Γ `δ let !x = V in M

get
R, r : δ; Γ `δ get(r)

set
R, r : δ; Γ `δ V

R, r : δ; Γ `δ set(r, V )

store
R, r : δ; Γ `δ V

R, r : δ; Γ `0 r ⇐ V
par

i = 1, 2 R; Γ `δ Pi
R; Γ `δ (P1 ‖ P2)

Figure 5.4: The elementary affine depth system λ
!‖
EAD

We see that the troublesome program (5.1) considered in the introduction of
this section is not well-formed since the read and write operation do not occur
at the same depth. On the other hand, program (5.2) is well-formed provided
that R(r) = 1.

5.2.3 Properties

We derive a property of subject reduction in a way similar to the functional
case.

Proposition 5.2.4. If R; Γ `δ P then:

• if x : δ′ ∈ Γ and x occurs free in P then all occurrences of x appear at
depth δ′ in †δP ,

• if r : δ′ ∈ R then get(r)/set(r) may only occur at depth δ′ in †δP .

Proof. By induction on the inference rules.

Lemma 5.2.5 (Weakening). If R; Γ `δ P then R,R′; Γ,Γ′ `δ P .

Proof. By induction on the inference rules.

Lemma 5.2.6 (Substitution). If R; Γ, x : δ′ `δ M and R; Γ `δ′ V then:

1. R; Γ `δ M [V/x],

2. d(!δM [V/x]) ≤ max (d(!δM)(!δ
′
V )).



5.3. TERMINATION IN ELEMENTARY TIME 95

Proof. Item 1 can be proved by induction on the typing rules and Item 2 can
be shown as in the functional case.

Proposition 5.2.7 (Subject reduction). If R; Γ `0 P and P −→ P ′ then
R; Γ `0 P ′ and d(P ′) ≤ d(P ).

Proof. By case analysis on the reduction rules and the above lemmas. We only
highlight the rules with side effects.

(set) C[E[set(r, V )]] −→ C[E[?]] ‖ r ⇐ V
We have R; Γ `0 C[E[set(r, V )]] from which we derive

R; Γ `δ V
R; Γ `δ set(r, V )

for some δ ≥ 0 with r : δ ∈ R. Hence we can derive

R; Γ `δ V
R; Γ `0 r ⇐ V

Moreover, we have R; Γ `δ ? thus we can derive R; Γ `0 C[E[?]]. Applying
the rule par we finally get

R; Γ `0 C[E[?]] ‖ r ⇐ V

Concerning the depth bound we clearly have d(C[E[?]] ‖ r ⇐ V ) =
d(C[E[set(r, V )]]).

(get) C[E[get(r)] ‖ r ⇐ V −→ C[E[V ]]
We have R; Γ `0 C[E[get(r)]] ‖ r ⇐ V from which we derive

R; Γ `δ get(r)

and
R; Γ `δ V

R; Γ `0 r ⇐ V

for some δ ≥ 0 with r : δ ∈ R. Hence we can derive

R; Γ `0 C[E[V ]]

Concerning the depth bound we clearly have d(E[V ]) = d(E[get(r)] | r ⇐
V ).

5.3 Termination in elementary time

In this section, we prove that programs well-formed in λ
!‖
EAD terminate in ele-

mentary time under a call-by-value reduction strategy. The combinatorial anal-
ysis requires very few adaptations from the functional case and in fact, the main
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contribution has been to carefully design the depth system so that it takes side
effects into account.

The measure on the occurrences of terms given in Definition 4.4.1 extends triv-

ially to programs of λ
!‖
EAD. We recall it here.

Definition 5.3.1 (Measure). Given a program P and 0 ≤ i ≤ d(P ), assume
si(P ) ≥ 2. We define µin(P ) for n ≥ i ≥ 0 as follows:

µin(P ) = (sn(P ), . . . , si+1(P ), si(P ))

We write µn(P ) for µ0
n(P ).

We also recall that vectors of n + 1 natural are ordered by the well-founded
lexicographic order > from right to left (e.g. (10, 6, 2) > (12, 5, 2)).

In order to simplify the combinatorial analysis of programs, we assume that the
occurrences labelled with ‘‖’ and ‘r ←’ do not count and that ‘set(r)’ counts
for two occurrences. In this way the measure strictly decreases on the rule (set)
and we can derive the termination property.

Proposition 5.3.2 (Termination). If P is well-formed, P −→ P ′ and n ≥ d(P )
then µn(P ) > µn(P ′).

Proof. By a case analysis on the reduction rules. We only highlight the two
cases with side effects.

(set) C[E[set(r, V )]] −→ C[E[?]] ‖ r ⇐ V
Suppose R; Γ `0 C[E[set(r, V )]] with R(r) = i. By Proposition 5.2.4 the
redex set(r, V ) occurs at depth i in C[E] and by Proposition 5.2.7 we have
R; Γ `0 r ⇐ V , therefore V must occur at depth i in the store. Let us
observe the reduction on syntax trees where occurrences are labelled with
their depth:

C[E]0

set(r)i

V i

‖0

C[E]0

?i

r ⇐0

V i

i

We remark that the occurrence set(r) that counts for two disappears while
only one new occurrence ? appears (‖ and r ⇐ do not count). Thus:

si(C[E[?]] ‖ r ⇐ V ) = si(C[E[set(r, V )]])− 1

Since the numbers of occurrences at other depths stay unchanged, we
conclude

µn(C[E[set(r, V )]]) > µn(C[E[?]] ‖ r ⇐ V )
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(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]]
SupposeR; Γ `0 C[E[get(r)]] ‖ r ⇐ V withR(r) = i. By Proposition 5.2.4
the redex get(r) occurs at depth i and by definition of depth V also occurs
at depth i in the store. By Proposition 5.2.7 we have R; Γ `0 C[E[V ]]
therefore V stays at depth i. Let us observe the reduction on syntax
trees:

‖0

C[E]0

get(r)i

r ⇐0

V i

C[E]0

V i

i

We remark that exactly one occurrence get(r) disappears (‖ and r ⇐ do
not count). Thus:

si(C[E[V ]]) = si(C[E[get(r)]] ‖ r ⇐ V )− 1

Since the number of occurrences at other depths stay unchanged, we con-
clude

µn(C[E[get(r)]] ‖ r ⇐ V ) > µn(C[E[V ]])

We are then able to state an elementary bound.

Theorem 5.3.3 (Elementary bound). Let P be a well-formed program with
α = d(P ) and let tα denote the tower function with α + 1 arguments. Then if
P −→ P ′ then tα(µα(P )) > tα(µα(P ′)).

Proof. The proof requires very few adaptions from the functional one. Indeed
the rules with side effects (get) and (set) do not duplicate anything and we
remark in the above proof of termination that exactly one component of the
measure is decreasing while other components stay unchanged. Therefore it is
trivial to show that the value of the tower function is strictly decreasing.

Corollary 5.3.4. The call-by-value reduction of a well-formed program P of
depth d can be computed by a Turing machine in time bounded by a tower of
exponentials of whose height only depends on d.

5.4 An elementary affine type system

The depth system λ
!‖
EAD entails termination in elementary time but does not

guarantee that programs ‘do not go wrong’. In particular, the well-formed
program

let !y = (λx.x) in !(yy) (5.3)
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which is not a value cannot reduce further. In this section, we propose a solution
to this problem by introducing a polymorphic elementary affine type system

λ
!‖
EAT which is simple decoration of λ

!‖
EAD with types. Then, we derive a progress

proposition which guarantees that well-typed programs cannot deadlock (except
when trying to read an empty region).

We define the syntax of types and contexts in Figure 5.5. The only difference

-type variables t, t′, . . .
-types α ::= B | A
-res. types A ::= t | Unit | A( α | !A | ∀t.A | RegrA
-var. contexts Γ ::= x1 : (δ1, A1), . . . , xn : (δn, An)
-reg. contexts R ::= r1 : (δ1, A1), . . . , rn : (δn, An)

Figure 5.5: Types and contexts of λ
!‖
EAT

with types and contexts of λ!‖ (see Figure 3.8) is that we added the polymor-
phic type ∀t.A and that contexts use natural numbers δi instead of usages. In
contexts, natural numbers play the same role as in the depth system. Writing
x : (δ, A) means that the variable x ranges on terms of type A and may occur
at depth δ. Writing r : (δ, A) means that the region r contain terms of type A
and that get(r) and set(r, V ) may only occur at depth δ.

As usual, types depend on region names and we have to be careful in stating in
Figure 5.6 when a type is well-formed in a region context.

R ↓ t R ↓ Unit R ↓ B

R ↓ A
R ↓ !A

R ↓ A R ↓ α
R ↓ (A( α)

r : (δ, A) ∈ R
R ↓ RegrA

R ↓ A t /∈ R
R ↓ ∀t.A

∀r : (δ, A) ∈ R R ↓ A
R `

R ` R ↓ α
R ` α

∀x : (δ, A) ∈ Γ R ` A
R ` Γ

Figure 5.6: Formation of types and contexts

We notice the following substitution property on types.

Proposition 5.4.1. If R ` ∀t.A and R ` B then R ` A[B/t].

Proof. By induction on A.

A typing judgment takes the form:

R; Γ `δ P : α
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It attributes a type α to the program P occurring at depth δ, according to
region context R and variable context Γ.

Figure 5.7 introduces the rules of λ
!‖
EAD. The skeleton of the rules is the el-

var
R ` Γ x : (δ, A) ∈ Γ

R; Γ `δ x : A
unit

R ` Γ

R; Γ `δ ? : Unit

reg
R ` Γ r : (δ′, A) ∈ R
R; Γ `δ r : RegrA

lam
FO(x,M) ≤ 1 R; Γ, x : (δ, A) `δ M : α

R; Γ `δ λx.M : A( α

app
R; Γ `δ M : A( α R; Γ `δ N : A

R; Γ `δ MN : α

prom
R; Γ `δ+1 M : A

R; Γ `δ !M : !A

elim
R; Γ `δ V : !A R; Γ, x : (δ + 1, A) `δ M : B

R; Γ `δ let !x = V in M : B

forall
R; Γ `δ M : A t /∈ (R; Γ)

R; Γ `δ M : ∀t.A
inst

R; Γ `δ M : ∀t.A R ` B
R; Γ `δ M : A[B/t]

get
r : (δ, A) ∈ R R ` Γ

R; Γ `δ get(r) : A

set
r : (δ, A) ∈ R R; Γ `δ V : A

R; Γ `δ set(r, V ) : Unit
store

r : (δ, A) ∈ R R; Γ `δ V : A

R; Γ `0 r ⇐ V : B

par1
R; Γ `δ P : α R; Γ `δ S : B

R; Γ `δ (P ‖ S) : α
par2

Pi not a store i = 1, 2
R; Γ `δ Pi : αi

R; Γ `δ (P1 ‖ P2) : B

Figure 5.7: The elementary affine type system λ
!‖
EAT

ementary affine depth system λ
!‖
EAD while the type machinery is that of the

affine-intuitionistic type system of λ!‖ (see Figure 3.10). The only new rules are
the polymorphic rules forall and inst.

Definition 5.4.2 (Well-typing). A program P is well-typed if for some R, Γ,
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δ, α a judgment R; Γ `δ P : α can be derived.

Example 5.4.3. The program of Figure 5.3 is well-typed since the judgment

R;− `δ let !x = !get(r) in !set(r, x) ‖ r ⇐ !(λx.x?) : !Unit

can be derived with R = r : (δ + 1,∀t.!((Unit ( t) ( t)). However the
program (5.3) (page 97) is not well-typed.

Remark 5.4.4. We can easily see that a well-typed program is also well-formed.

The usual weakening and substitution properties can be established.

Lemma 5.4.5 (Weakening). If R; Γ `δ P : α and R,R′ ` Γ,Γ′ then R,R′; Γ,Γ′ `δ
P : α.

Proof. By induction on the typing of P .

Lemma 5.4.6 (Substitution). If R; Γ, x : (δ′, A) `δ P : α and R; Γ `δ′ V : A
then R; Γ `δ P [V/x] : α.

Proof. By induction on the typing of P .

This allows us to derive the subject reduction property.

Proposition 5.4.7 (Subject reduction). If R; Γ `0 P : α and P −→ P ′ then
R; Γ `0 P ′ : α.

Proof. We proceed similarly to the proof of subject reduction for the affine-
intuitionistic type system (Proposition 3.3.6). We first show that structural
equivalence preserves typing. Then by Lemma 5.4.6 we can show that functional
redexes preserve typing. There remains to check that redexes with side effects
preserve typing which can be easily shown by looking at the proof of subject
reduction of the depth system.

Finally, we establish a progress proposition which shows that any well-typed
program reduces to several threads in parallel which are values or deadlocking
reads.

Proposition 5.4.8 (Progress). Suppose P is a closed typable call-by-value pro-
gram which cannot reduce. Then P is structurally equivalent to a program

M1 ‖ · · · ‖Mm ‖ S m ≥ 0

where Mi is either a value or can only be decomposed as a term E[get(r)] such
that no value is associated with the region r in the store S.

Proof. Again the proof is similar to that of the affine-intuitionistic system
(Proposition 3.3.11). The main ingredient is to observe that values of type
!A are of the shape !V , so that a well-typed term let !x = V in M is guaranteed
to reduce.
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5.5 Expressivity

In this section, we evaluate the expressivity of λ
!‖
EAT . We first show that every

elementary time function is representable (Section 5.5.1). Then we evaluate how
one can program in this type system by giving an example iterating program
producing side effects over an inductive data structure (Section 5.5.2). Finally
we compare the stratification of regions by effects system and the stratification
of regions by depth levels (Section 5.5.3).

5.5.1 Completeness

We show that every elementary time function can be represented by a well-typed

program, that is λ
!‖
EAT is extensionally complete. The result is adapted from

Danos and Joinet’s proof [DJ03]. Since it only relies on the functional core of
the system, we omit region contexts for simplicity.

The precise notion of representation is spelled out in the following definitions.
We denote with N the set of natural numbers and by strong β-reduction we
mean that reduction under binders is allowed.

Definition 5.5.1 (Number representation). Let ∅ `δ M : Nat. We say M
represents n ∈ N, written M  n, if M −→∗ n by strong β-reduction.

Definition 5.5.2 (Function representation). Let ∅ `δ F : (Nat1 ( . . . (
Natk) ( !pNat where p ≥ 0 and f : Nk → N. We say F represents f , written
F  f , if for all Mi and ni ∈ N where 1 ≤ i ≤ k such that ∅ `δ Mi : N and
Mi  ni we have FM1 . . .Mk  f(n1, . . . , nk).

Building on the standard concept of Church numeral, Figure 5.8 provides a
representation for natural numbers and some arithmetic functions. It is also
necessary to use pairs to represent subtraction and bounded summation/prod-
uct. Their representation with the projection functions are given in Figure 5.9.

We can then derive the following theorem.

Theorem 5.5.3 (Completeness). Every function which can be computed by a
Turing machine in time bounded by an elementary function of height d can be
represented by a term of type Nat( !dNat.

Proof. The elementary time functions are characterized as the smallest class
of functions containing zero, successor, projection, subtraction, composition,
bounded summation and bounded product. We have to check that they are
representable in the sense of Definition 5.5.2. The proof which involves tedious
syntactic manipulations and is adapted from Danos and Joinet [DJ03] is left to
Appendix A.
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Nat = ∀t.!(t( t)( !(t( t) (type of numerals)

zero : Nat (zero)
zero = λf.!(λx.x)

succ : Nat( Nat (successor)
succ = λn.λf.let !f = f in

let !y = n!f in !(λx.f(yx))

n : Nat (numerals)
n = λf.let !f = f in !(λx.f(· · · (fx) · · · ))

add : Nat( (Nat( Nat) (addition)
add = λn.λm.λf.let !f = f in

let !y = n!f in
let !y′ = m!f in !(λx.y(y′x))

mult : Nat( (Nat( Nat) (multiplication)
mult = λn.λm.λf.let !f = f in n(m!f)

Figure 5.8: Representation of natural numbers and some arithmetic functions

A×B = ∀t.(A( B( t)( t (type of pairs)

〈M,N〉 : A×B (pair representation)
〈M,N〉 = λx.xMN

fst : ∀t, t′.t× t′( t (left destructor)
fst = λp.p(λx.λy.x)

snd : ∀t, t′.t× t′( t′ (right destructor)
snd = λp.p(λx.λy.y)

Figure 5.9: Representation of pairs
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5.5.2 Elementary programming

We now would like to demonstrate the intensional expressivity of λ
!‖
EAT . As a

first step, we show that it is possible to implement the operational semantics of
references. Then we show how to program the iteration of operations producing
side effects on an inductive data structure, possibly in parallel. Eventually we
show to what extent it is possible to exchange data between regions of different
depths.

Implementing references

The primitive read operation (get) of λ
!‖
EAT is to consume the value from the

store, that is the operational semantics of communication channels. We have
seen that, in the affine-intuitionistic system of λ!‖, we can copy a value from
the store only if the value is duplicable, i.e. of the shape !V (see Section 3.3.4).
This amounts to simulate the operational semantics of imperative references.

We would like to point out that references can also be implemented in λ
!‖
EAT .

Indeed it is easy to see that the consume-and-rewrite mechanism recalled in

Equation (5.4) can be typed in λ
!‖
EAT .

let !x = get(r) in set(r, !x); !x ‖ r ⇐ !V −→∗ !V ‖ r ⇐ !V (5.4)

Therefore, in the rest of this section we assume that we dispose of these two
reading rules as primitive operations:

(get) C[E[get(r)]] ‖ r ⇐ V −→ C[E[V ]] if V 6= !V ′

(get!) C[E[get(r)]] ‖ r ⇐ !V −→ C[E[!V ]] ‖ r ⇐ !V

Since (get!) can be translated into a consume-and-rewrite mechanism, we can
safely assume that the elementary bound (Theorem 5.3.3) is still valid with
these two reading rules. Subject reduction (Proposition 5.4.7) and progress
(Proposition 5.4.8) also remain valid.

Iteration with side effects

Now we show that it is possible to program the iteration of operations produc-
ing side effects on an inductive data structure, possibly in parallel. In order
to ease the programming style, we assume the language features dynamic loca-
tions rather than constant regions names. For a more detailed correspondence
between locations and regions see Section 2.4.

Following Church encodings, we define the representation of lists and the asso-
ciated foldr function in Figure 5.10. In the following we abbreviate λx.let !x =
x in M by λ!x.M and we write set(r,M) for (λx.set(r, x))M .
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ListA = ∀t.!(A( t( t)( !(t( t) (type of lists)

[u1, . . . , un] : ListA (list represent.)
[u1, . . . , un] = λf.let !f = f in !(λx.fu1(fu2 . . . (funx))

foldr : ∀u.∀t.!(u( t( t)( List u( !t( !t (fold right)
foldr = λf.λl.λz.let !z = z in let !y = lf in !(yz)

Figure 5.10: Representation of lists

Here is the function update taking as argument a memory location x related to
region r and multiplying by 2 the numeral stored at that location:

r : (3, !Nat);− `2 update : !Regr!Nat( !Unit( !Unit
update = λ!x.λz.!set(x, let !y = get(x) in !(mult 2 y))

Then we define the program run that iterates the function update over a list
[!x, !y, !z] of 3 memory locations:

r : (3, !Nat);− `1 run : !!Unit
run = foldr !update [!x, !y, !z] !!?

All addresses have type !Regr!Nat and thus relate to the same region r. Finally,
the program run in parallel with some store assignments reduces as expected:

run ‖ x⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗ !!? ‖ x⇐ !2m ‖ y ⇐ !2n ‖ z ⇐ !2p

Building on this example, suppose we want to write a program of three threads
where each thread concurrently increments the numerals pointed by the memory
locations of the list. Here is the function gen threads taking a functional f and
a value x as arguments and generating three threads where f is applied to x:

r : (3, !Nat);− `0 gen threads : ∀t.∀t′.!(t( t′)( !t( B
gen threads = λ!f.λ!x.!(fx) ‖ !(fx) ‖ !(fx)

We define the functional F like run but parametric in the list:

r : (3, !Nat);− `1 F : List !Regr!Nat( !!Unit
F = λl.foldr !update l !!?

Finally the concurrent iteration is defined in run threads:

r : (3, !Nat);− `0 run threads : B
run threads = gen threads !F ![!x, !y, !z]
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The program is well-typed and has depth 4 with side effects occurring at depth
3. Different thread interleavings are possible and here is one of them:

run threads ‖ x⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗ !!!? ‖ x⇐ !6m ‖ y ⇐ !6n ‖ z ⇐ !6p

Remark 5.5.4. The reader may have noticed a flaw in the above programming
examples. The Church representation of data types assumes a strong reduction
that allows reduction under binders, while we only use a call-by-value evaluation
strategy. For example, the program mult 2 1 which should reduces to 2 only
reduces to λf.let !f = f in 2(1!f) with a call-by-value strategy.

One solution is to consider primitive data types instead of Church-style encod-
ings. For natural numbers, this requires to add a new reduction rule

C[E[n ∗m]] −→ C[E[n ∗m]]

where ∗ stands for any arithmetic operation and to consider the evaluation
contexts E ∗M and V ∗E. Additional typing rules also have to be considered.
We preferred not to introduce primitive data types in order keep the language
as simple as possible.

A second solution is to extend −→ to be the largest reduction relation, thus
allowing reductions under binders. This would require to extend the proofs of
elementary bound, subject reduction and progress to this new reduction relation.
We are confident that the proof extensions would hold since they do in the
functional case. However, strong reduction does not make any sense in ML-like
languages with side effects.

Exchanging data between regions

In the above programming example, we see that the depth of a region is deter-
mined by the structure of the program. A natural question that arises is if it is
possible to exchange data between regions of different depth. We show that the
answer is positive if the depth of the exchanged data can be preserved.

Let us consider an untyped region context

R = r : δ, r′ : δ′

with two regions r and r′ such that δ < δ′. We first consider the case where we
want to transfer a value from r to r′ and then the converse.

1. Intuitively, if we want to transfer a value V which is stored at depth δ in r
to a deeper region r′, V must be of the shape !δ

′−δV ′ so that the depth of
V ′ can be preserved. Let us define the following abbreviation by induction
on i ≥ 1:

(let !1x = M in !1N) = (let !x = M in !N)
(let !ix = M in !iN) = (let !x = M in !(let !i−1x = x in !i−1N)) i > 1
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The program

P = !δ(let !δ
′−δz = get(r) in !δ

′−δset(r′, z))

is well-formed with region context R. Indeed, the read on r occurs at
depth δ and the write on r′ occurs at depth δ′. The transfer then happens
as follows:

P ‖ r ⇐ !δ
′−δV ′ −→+ !δ

′
? ‖ r′ ⇐ V ′

2. To transfer a value V from r′ to the shallower region r take the program

Q = !δ((λz.set(r, z))!δ
′−δget(r′))

It is well-formed with region context R because the write on r occurs at
depth δ and the read on r′ occurs at depth δ′. The transfer happens as
follows:

Q ‖ r′ ⇐ V −→+ !δ? ‖ r ⇐ !δ
′−δV

We observe that the operation consists in adding the required bangs such
that the depth of V is preserved.

5.5.3 On stratification

It is interesting to note that the stratification of regions by means of a type and
effect system, as seen in Chapter 2, is not required to ensure the termination
of programs. Instead, the elementary affine depth system stratifies regions by
depth levels. For example, take

Mr = let !z = get(r) in !(z?)

We can write a diverging program that keeps incrementing its depth:

!Mr ‖ r ⇐ !(λy.Mr)
−→∗ !!Mr ‖ r ⇐ !(λy.Mr)
−→∗ !!!Mr ‖ r ⇐ !(λy.Mr)
−→∗ . . .

This program is not well-formed since get(r) occurs at depth R(r) + 1 in the
store. In fact, a duplicable value which is stored in a region r cannot generate
side effects on the region r itself.

The stratification by depth levels allows however to consider programs which
would not be stratified by a type and effect system. Take

Nr = get(r)?

We have
Nr ‖ r ⇐ λy.Nr ‖ r ⇐ λy.Nr

−→∗ Nr ‖ r ⇐ λy.Nr
−→∗ Nr
6−→∗
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This program is well-formed since get(r) occurs at depth R(r) = 0 in every part
of the program. In fact, Landin’s trick that we recall in Equation (5.5)

µrf.λx.M = set(r, λx.M [λy.get(r)y/f ]); get(r)? (5.5)

is even well-formed since every get(r)/set(r) occurs at the same fixed depth.
However, while we have seen in Section 2.2.4 that it can produce divergence,
here it gets stuck due to the consumption of the stored values. Take

λx.M = λx.set(r′, x); f(x+ 1)

We observe
(µrf.λx.M)0

−→∗ M [λy.get(r)y/f, 1/x] ‖ r′ ⇐ 0
−→∗ get(r)2 ‖ r′ ⇐ 0 ‖ r′ ⇐ 1
6−→

This shows that the stratification by depth levels allows to consider circular side
effects, as long as the stored values are not duplicable. Yet, we do not know if
this has a practical application.
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Chapter 6

A polynomial λ-calculus

In this chapter, we introduce a polynomial λ-calculus and prove that a class of
well-formed programs terminate in polynomial time under an arbitrary reduc-
tion strategy. We precise that this result is not our contribution but a recasting
of K. Terui’s work on the light affine λ-calculus [Ter07].

Considering a class of well-formed programs, the specific shallow-first strat-
egy1 is known to be polynomial by a combinatorial argument that goes back
to Girard [Gir98]. Contrary to our contribution on the elementary case, the
combinatorial argument does not lift to every reduction strategy. Terui’s con-
tribution [Ter07] is to show that every strategy terminates in polynomial time
by proving that every reduction sequence can be transformed into a longer one
which is shallow-first.

This chapter is of particular importance because it presents the above trans-
formation method which we will use to contribute a polynomial concurrent λ-
calculus in the next chapter.

Outline The chapter is organized as follows. In Section 6.1, we present the
syntax and reduction of the polynomial λ-calculus. It features two modalities
‘!’ (bang) and ‘§’ (paragraph), thus we call it λ!§. In Section 6.2, we present the
principle of light stratification by depth levels and show why it entails termina-
tion in polynomial time of the shallow-first strategy. In Section 6.3, we propose
a light linear depth system (λ!§

LLD) that applies light stratification on programs
and which is a linear variant of Terui’s system [Ter07]. In Section 6.4 we show
how arbitrary reduction sequences can be transformed into longer shallow-first
sequences. The strict linearity of the system allows for a much simpler presenta-
tion than Terui. Finally, in Section 6.5 we prove that the shallow-first strategy
is polynomial, which entails that every strategy is polynomial.

1Redexes are eliminated in depth-increasing order.

109
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In Figure 6.1, we illustrate the difference of proof method between the elemen-
tary case and the polynomial case. In λ!

EAD, a combinatorial argument suffices

λ!
EAD λ!§

LLD

−→ ⊆ ELEMENTARY −→ C+ −→sf ⊆ Ptime

Figure 6.1: Comparison of proof methods

to show that every reduction strategy−→ is in elementary time. In λ!§
LLD, a com-

binatorial argument only shows that the shallow-first strategy −→sf is in polyno-
mial time. Then, one proves that every reduction sequence can be transformed
into a shallow-first sequence which is longer (that is written −→ C+ −→sf).
Thus we conclude that every reduction strategy is in polynomial time.

6.1 Syntax and reduction

The logic LAL is bimodal: in addition to the bang modality ‘!’, it features
a paragraph modality ‘§’. We will see in the next section how they are used
to characterize polynomial time. In this section, we introduce the syntax and
reduction of the polynomial λ-calculus (λ!§) that has two modal constructors ‘!’
and ‘§’, and the corresponding let ! and let §-expressions.

The syntax and reduction of λ!§ is introduced in Figure 6.2. They correspond
exactly to the syntax and reduction of the light affine λ-calculus given by
Terui [Ter07]. The reduction handles the two modalities in a uniform way.
The only difference with λ! (Figure 4.2) is the addition of constructs for the
paragraph modality.

In the sequel, we write † for any † ∈ {!, §} and we define

†0M = M

†n+1M = †(†nM)

For example †2M represents !!M , !§M , §!M and §§M .

The representation of terms by abstract syntax trees extends trivially to λ!§ and
we denote and count occurrences of terms as previously. The notion of depth is
extended to count both the number of bangs and paragraphs.
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-terms-
M ::= x | λx.M |MM | !M | §M

let !x = M in M | let §x = M in M

-evaluation contexts-
E ::= [·] | λx.E | EM |ME | !E | §E

let !x = E in M | let !x = M in E
let §x = E in M | let §x = M in E

-reduction rules-
(β) E[(λx.M)N ] −→ E[M [N/x]]
(!) E[let !x = !N in M ] −→ E[M [N/x]]
(§) E[let §x = §N in M ] −→ E[M [N/x]]

Figure 6.2: Syntax and reduction of λ!§

Definition 6.1.1 (Depth). The depth d(w) of an occurrence w in a term M
is the number of ‘†’ labels that the path leading to the end node crosses. The
depth d(M) of the term M is the maximum depth of its occurrences.

In the functional case, it makes no difference whether the definition is revised
(Definition 5.2.1) or not.

6.2 Light stratification

In this section, we present the principle of light stratification that is inherent to
LAL and shows why it entails the termination in polynomial time of programs.

As in the elementary case, the principle of light stratification is to preserve the
depth of occurrences by reduction. We have seen that this can be ensured by
the two following criteria:

1. if a λ-abstraction occurs at depth i and binds a variable x, then x must
occur at most once and x must occur at depth i;

2. if a let !-expression occurs at depth i and binds a variable x, then x must
occur at depth i+ 1 and x may occur arbitrarily many times.

These criteria are guaranteed by the elementary affine depth system and ensure
that programs terminate in elementary time. It is instructive to observe how
these criteria let the size of a term grow exponentially. Consider the following
term borrowed from Terui [Ter07]:

Z = λx.let !y = x in !(yy) (6.1)
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It satisfies the above criteria; then observe the following reduction:

Z . . . (Z(Z︸ ︷︷ ︸
n times

!z)) −→∗ !(zz . . . z︸ ︷︷ ︸
2n times

)
(6.2)

The size of the term explodes exponentially by repeated application of the du-
plicating rule (!). In order to get down to polynomial time, Terui considers these
two additional criteria:

3. if a let §-expression occurs at depth i and binds a variable x, then x must
occur at depth i+ 1 and x must occur at most once;

4. a term !M contain at most one occurrence of free variable while a term
§M can contain arbitrarily many occurrences of free variables.

The term Z in (6.1) does not respect the fourth criterion since its subterm !(xx)
contains two occurrences of free variables. We will see that this fourth criteria
is intended to guarantee a quadratic size growth of the term. By replacing the
bang modality of the term Z with a paragraph modality, we obtain the term Y
which respects the four criteria:

Y = λx.let !y = x in §(yy) (6.3)

We observe that it is not possible to apply the rule (!) repeatedly with Y :

Y . . . (Y (Y︸ ︷︷ ︸
n times

!z)) −→∗ Y . . . (Y (Y︸ ︷︷ ︸
n−2 times

(let !y = §(zz) in §(yy)))) 6−→
(6.4)

Now if we consider
W = λx.let §y = x in §(yy)

we can produce an exponential blowup by repeated application of the rule (§).
However W is not be well-formed because of the third criterion. In fact, the
only duplicating rule is the (!) rule.

As in the elementary case, the polynomial soundness relies on a shallow-first
strategy which eliminate redexes in depth-increasing order (see Definition 4.2.1).

More precisely, the following properties are shown when M
i

−→∗ M ′:

d(M ′) ≤ d(M) (6.5)

s(M ′)j ≤ s(M)j for j < i (6.6)

s(M ′)i < s(M)i (6.7)

s(M ′) ≤ s(M)2 (6.8)

Comparing with the properties induced by elementary stratification (Section 4.2),
the only difference is that here the size of the term grows at most quadratically.
By applying the same arithmetic reasoning, we can show the following proposi-
tion.
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Proposition 6.2.1 (Polynomial bounds). The shallow-first evaluation of a

lightly stratified term M terminates in at most s(M)2d steps where d is the

depth of M . Moreover the size of the final term is bounded by s(M)2d .

Proof. For simplicity, assume M is a term such that d(M) = 2. By Proper-
ties (6.5),(6.6),(6.7) we can eliminate all the redexes of M with the shallow-first

sequence M
0

−→∗ M ′
1

−→∗ M ′′
2

−→∗ M ′′′. By Property (6.8), s(M ′′) ≤ s(M)4.
We can safely assume that s(M ′′′) ≤ s(M ′′) ≤ s(M)4. By Property (6.7) the
length l of the sequence is such that l ≤ s(M) + s(M ′) + s(M ′′) = p. Since we
can show that p ≤ s(M)4 we can conclude.

6.3 A light linear depth system

In this section we introduce a light linear depth system (λ!§
LLD) that guarantees

that terms respect the four criteria presented in the previous section. The
system λ!§

LLD is a linear reformulation of Terui’s affine system [Ter07] as a set
of inference rules. In fact, our system is strictly linear in the sense that it is not
possible to bind 0 occurrences of variables and thus it is not possible to discard
data. This is a notable restriction but we will see in Section 6.4 that it simplifies
the transformation of reduction sequences into shallow-first ones. Also, we will
see in the next chapter that side effects can be used to discard data even though
the depth system is strictly linear.

While the elementary affine depth system λ!
EAD is exclusively based on the

notion of depth, λ!§
LLD is based on the notion of usage to distinguish between

occurrences that appear under bangs and occurrences that appear under para-
graphs. We chose to keep the name ‘depth system’ since usages control the
depth of occurrences.

First, we define variable contexts Γ as follows:

Γ = x1 : u1, . . . , xn : un

A variable context associates each variable with a usage u ∈ {λ, §, !} which
constrains the variable to be bound by a λ-abstraction, a let §-binder or a let !-
binder respectively. We write Γu if dom(Γ) only contains variables with usage
u.

A depth judgement has the shape

Γ `M

It should entail the following:

• if x : λ ∈ Γ and x occurs free in M then all free occurrences of x appear
at depth 0 in M ;
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• if x : ! ∈ Γ and x occurs free in M then all free occurrences of x appear
at depth 1 in M ;

• if x : § ∈ Γ and x occurs free in M then all free occurrences of x appear
at depth 1 in M , and it must be in the scope of a § constructor.

The inference rules of the depth system are presented in Figure 6.3. We give

var
x : λ ∈ Γ

Γ ` x

lam
FO(x,M) = 1 Γ, x : λ `M

Γ ` λx.M app
Γ `M Γ ` N

Γ `MN

prom!

FO(M) ≤ 1 Γλ `M
Γ!,∆§,Ψλ ` !M

elim!

FO(x,N) ≥ 1 Γ `M Γ, x : ! ` N
Γ ` let !x = M in N

prom§
Γλ,∆λ `M

Γ!,∆§,Ψλ ` §M
elim§

FO(x,N) = 1 Γ `M Γ, x : § ` N
Γ ` let §x = M in N

Figure 6.3: A light linear depth system

some intuitions on the rules in the following two items:

• Variables are introduced with usage λ by the rule var. The rule prom! up-
dates the usage of variables to ! if they all previously had usage λ. The rule
prom§ updates the usage of variables to § for one part and ! for the other
part if they all previously had usage λ. In both rules prom! and prom§,
contexts with other usages can be weakened. In fact, λ-abstractions bind
variables occurring at depth 0, let !-expressions bind variables occurring at
depth 1, and let §-expressions bind variables occurring at depth 1 in the
scope of a §-terms.

• To control the duplication of data, the rules for binders have predicates
which specify how many occurrences can be bound. λ-abstractions and
let §-expressions are linear by the predicate FO(x,M) = 1 and let !-expressions
are at least linear by the predicate FO(x,M) ≥ 1. It is therefore not pos-
sible to bind 0 occurrences.

Definition 6.3.1 (Well-formedness). A term M is well-formed if a judgement
Γ `M can be derived for some Γ.

Example 6.3.2. The term Y in (6.3) is well-formed with the following deriva-
tion:
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x : λ ` x

x : λ, y : λ ` y x : λ, y : λ ` y
x : λ, y : λ ` yy
x : λ, y : ! ` §(yy)

x : λ ` let !y = x in §(yy)

` λx.let !y = x in §(yy)

The term Z of Equation (6.1) is not well-formed since the rule prom! cannot be
applied on (yy) for FO(yy) > 1.

The light linear depth systems has the subject reduction property which is based
on weakening and substitution lemmas.

Lemma 6.3.3 (Weakening). If Γ `M then Γ,Γ′ `M .

Proof. By induction on the depth judgement.

The substitution lemma comes into three flavors.

Lemma 6.3.4 (Substitution).

1. If Γ, x : λ `M and Γ ` N then Γ `M [N/x].

2. If Γ, x : § `M and Γ ` §N then Γ `M [N/x].

3. If Γ, x : ! `M and Γ ` !N then Γ `M [N/x].

Proof. By induction on the depth judgement of M .

Proposition 6.3.5 (Subject reduction). If Γ `M and M −→M ′ then Γ `M ′
and d(M) ≥ d(M ′).

Proof. By case analysis on the reduction rules and the above lemmas.

6.4 Shallow-first transformation

In this section we review the method to transform arbitrary reduction sequences
into longer shallow-first ones. The strict linearity of λ!§

LLD allows for a much
simpler presentation than Terui, although we loose the possibility to discard
data. Yet, this discarding power will be recovered with the help of side effects.

The transformation procedure is an iterating process where each iteration con-
sists in commuting two consecutive reduction steps which appear in deep-first2

order. Concretely, we want to prove the following lemma.

Lemma 6.4.1 (Swapping). If M is a well-formed term such that M
i−→

M1
j−→M2 and i > j, then there exists M ′ such that M

j−→M ′
i

−→+ M2.

2By deep-first we mean redexes are applied in depth-decreasing order (the contrary of
shallow-first).
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The key point of the swapping lemma is to return a reduction sequence which of
length longer (or equal) than the initial one. We have to be careful of situations
where we may obtain shorter sequences. Consider the term

λx.M

where x does not occur free in M . We see in the following diagram where i > 0
that the deep-first sequence becomes a single reduction step if we eliminate
redexes in shallow-first order:

(λx.M)!N ′

(λx.M)!N M

M 6−→

i

0

0

(6.9)

It turns out that this case does not need to be considered since λx.M is not
well-formed (it is not strictly linear). As a result, a redex can never be discarded
and this ensures that the swapping procedure returns longer sequences.

Let us illustrate the case where the swapping lemma returns a strictly longer
sequence. Consider the well-formed term

let !x = !M in N

where x occurs free more than once in N . Clearly, the deep-first sequence of
the following diagram can be transformed into a shallow-first one:

let !x = !N ′ in M

let !x = !N in M M [N ′/x]

M [N/x]

i

0 i
+

0

(6.10)

Since x occurs more than once in N , the redex of depth i is duplicated by the
(!) reduction of depth 0 and several reduction steps are needed to eliminate all
of its occurrences.

With the above observations in mind, let us now consider the proof of the
swapping lemma.
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Proof of Lemma 6.4.1 (swapping). We write Nc the contractum of the reduc-

tion M
i−→ M1 and Nr the redex of the reduction M1

j−→ M2. Assume they
respectively occur at addresses wc and wr in M1. For any w ∈ {0, 1}∗ we write
w v w′ when w is a prefix of w′. We distinguish three cases:

1. Nc and Nr are separated (neither wc v wr nor wc w wr);

2. Nc contains Nr (wc v wr);

3. Nr strictly contains Nc (wc w wr and wc 6= wr).

We discuss them separately:

1. In this case Nc and Nr must occur in different branches of the syntax
tree of M1 and it makes no difficulty to swap the two reduction steps.
Moreover it does not change the length of the reduction sequence.

2. If the contractum Nc contains the redex Nr, Nr may not exist yet in
M which makes the swapping impossible. We remark that, for any well-

formed term T such that T
d−→ T ′, both the redex and the contractum

occur at depth d. As a result, Nc must occur at depth i and Nr must
occur at depth j. Since i > j, it is clear that the contractum Nc cannot
contain the redex Nr and this case is void.

3. This case would cover situations like (6.9) where the length of the reduc-
tion sequence is shortened but we have seen that the strict linearity of the
depth system prevents any redex to be discarded. This case also covers
situations like (6.10) where the length of the reduction sequence can be
increased and which is not an issue.

Remark 6.4.2. The swapping procedure we propose is much simpler than
Terui’s version. This is due to the fact that his well-formedness system is affine
whereas ours is strictly linear and so that his procedure might shorten sequences
by discarding redexes as in example (6.9). His solution is to introduce an auxil-
iary calculus with explicit discarding and to show that every discarding step can
be postponed at the end of the reduction, after other steps have been swapped
into shallow-first order. As a result, the reduction sequence is not shortened.
This is however at the price of introducing quite a lot of extra work: once
it is shown that discarding steps can be postponed, additional commutation
rules come to complicate the swapping lemma. We conclude that strict linear-
ity brings major proof simplifications. The disadvantage is of course to cause
a loss of expressivity but we argue in the next chapter that side effects can be
used to recover the discarding power of the language without breaking the strict
linearity condition.

The swapping lemma can be generalized to sequences.

Lemma 6.4.3 (Swapping of sequences). If M is a well-formed term such that

M
i

−→+ M1

j

−→+ M2 and i > j, then there exists M ′ such that M
j

−→+
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M ′
i

−→+ M2.

Proof. By repeated application of Lemma 6.4.1. Note that the intermediate
steps between M and M ′ (respectively M ′ and M2) differ from the ones between
M and M1 (resp. M1 and M2).

Finally we can show that any reduction sequence can be simulated by a shallow-
first sequence.

Proposition 6.4.4 (Shallow-first transformation). To any reduction sequence
M1 −→∗ Mn of a well-formed term M1 corresponds a shallow-first reduction
sequence M1 −→∗ Mn which is of length equal or longer.

Proof. By simple application of the bubble sort algorithm: traverse the initial
sequence from M1 to Mn, compare the depth of each sequence of fixed depth,
swap them by Lemma 6.4.3 if they are in deep-first order. Repeat the traversal

until no swap is needed. For example, in Figure 6.4, the sequence M
2−→M ′

1−→

M ′′
0−→M ′′′ is transformed into M

0

−→+ C
1

−→+ B
2

−→+ M ′′′.

M
2−→ M ′

1−→ M ′′
0−→ M ′′′

M
1−→ A

2

−→+ M ′′
0−→ M ′′′

M
1−→ A

0−→ B
2

−→+ M ′′′

M
0−→ C

1

−→+ B
2

−→+ M ′′′

Figure 6.4: Transformation of M −→∗ M ′′′ into shallow-first order

6.5 Shallow-first soundness

In this section, we prove that the shallow-first strategy admits polynomial
bounds for well-formed terms. As a corollary, this implies that every reduction
strategy is polynomial. This section is a reformulation of Terui’s combinatorial
analysis.

First, for a given depth i, we define an unfolding transformation on terms that
is intended to duplicate statically the occurrences that will be duplicated dy-
namically by redexes occurring at depth i.

Definition 6.5.1 (Unfolding). The unfolding at depth i of a term M , written
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]i(M), is defined as follows:

]i(x) = x
]i(λx.M) = λx.]i(M)
]i(MN) = ]i(M)]i(N)

]i(†M) =

{
†]i−1(M) if i > 0
†M if i = 0

]i(let †x = M in N) =



if i = 0,M = !M ′ and † = ! :
let !x = MM . . .M︸ ︷︷ ︸

k times

in ]0(N)

where k = FO(x, ]0(N))

otherwise:
let †x = ]i(M) in ]i(N)

For example, take the following reductions occurring at depth 0:

M = let !x = !N in (let !y = !x in §(yy))(let !y = !x in §(yy))

0

−→∗ §(NN)§(NN)

The well-formed term M duplicates the occurrence N four times. We observe
that the unfolding at depth 0 of M reflects this duplication:

]0(M) = let !x = !N !N !N !N in

(let !y = !x!x in §(yy))(let !y = !x!x in §(yy))

Unfolded terms are not intended to be reduced. However, the size of an unfolded
term (the number of occurrences in the unfolded term) can be used as a non
increasing measure in the following way.

Lemma 6.5.2. Let M be a well-formed term such that M
i−→ M ′. Then

s(]i(M ′)) ≤ s(]i(M)).

Proof. It is clear that (!) is the only reduction rule that can make the size of a
term increase, so let us consider

M = E[let !x = !N2 in N1]
i−→M ′ = E[N1[N2/x]]

We have

]i(M) = E′[let !x = !N2!N2 . . . !N2︸ ︷︷ ︸
n times

in ]0(N1)]

]i(M ′) = E′[]0(N1[N2/x])]
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for some context E′ and n = FO(x, ]0(N1)). Therefore we are left to show

s(]0(N1[N2/x])) ≤ s(let !x = !N2!N2 . . . !N2︸ ︷︷ ︸
n times

in ]0(N1))

which is clear since N2 must occur n times in ]0(N1[N2/x]).

We observe in the following lemma that the size of an unfolded term bounds
quadratically the size of the original term.

Lemma 6.5.3. If M is well-formed, then for any depth i ≤ d(M):

1. FO(]i(M)) ≤ s(M),

2. s(]i(M)) ≤ s(M) · (s(M)− 1),

Proof. By induction on M and i. The crucial case is when i = 0 and M =
let !x = !N2 in N1.

1. We have

FO(]0(M))

= FO(!N2) · FO(x, ]0(N1)) + FO(]0(N1))− FO(x, ]0(N1))

≤ FO(]0(N1))

≤ s(N1)

≤ s(let !x = !N2 in N1)

The first inequality is because FO(!N2) ≤ 1 by well-formedness.

2. We have

s(]0(M)) ≤ s(!N2) · FO(x, ]0(N1)) + s(]0(N1))
≤ s(!N2) · s(N1) + s(N1) · (s(N1)− 1)
= s(N1) · (s(!N2) + s(N1)− 1)
< s(M) · (s(M)− 1)

The second inequality is by Lemma 6.5.3-1 and induction hypothesis.

We can then bound the size of a term after reduction.

Lemma 6.5.4 (Squaring). Let M be a well-formed term such that M
i

−→∗ M ′.
Then:

1. s(M ′) ≤ s(M) · (s(M)− 1)

2. the length of the sequence is bounded by s(M)

Proof.

1. By Lemma 6.5.2 it is clear that s(]i(M ′)) ≤ s(]i(M)). Then by Lemma 6.5.3-
2 we obtain s(]i(M ′)) ≤ s(M) · (s(M) − 1). Finally it is clear that
s(M ′) ≤ s(]i(M ′)) thus s(M ′) ≤ s(M) · (s(M)− 1).

2. It suffices to remark s(M ′)i < s(M)i ≤ s(M).
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Finally we are able to bound polynomially the shallow-first strategy.

Theorem 6.5.5 (Polynomial bounds). Let M be a well-formed term such that
d(M) = d and M −→∗ M ′ is shallow-first. Then:

1. s(M ′) ≤ s(M)2d

2. the length of the reduction sequence is bounded by s(M)2d

Proof. The sequence M −→∗ M ′ can be decomposed as

M = M0

0

−→∗ M1

1

−→∗ . . .
d−1

−→∗ Md

d

−→∗ Md+1 = M ′

1. We observe that by iterating Lemma 6.5.4-1 we obtain s(Md) ≤ s(M0)2d .

Moreover it is clear that s(Md+1) ≤ s(Md). Hence s(M ′) ≤ s(M)2d .

2. We first prove by induction on d that s(M0) + s(M1) + . . . + s(Md) ≤
s(M0)2d . For d = 0 it is trivial. When d > 0:

s(M0) + s(M1) + . . .+ s(Md)

≤ s(M0)2d−1

+ s(Md) (by induction)

≤ s(M0)2d−1

+ s(Md−1) · (s(Md−1)− 1) (by Lemma 6.5.4)

≤ s(M0)2d−1

+ s(M0)2d−1

· (s(M0)2d−1

− 1) (by induction)

= s(M0)2d

By Lemma 6.5.4-2, it is clear that the length of the reduction M −→∗ M ′
is bounded by s(M0) + s(M1) + . . .+ s(Md), which is in turn bounded by

s(M0)2d .

Remark 6.5.6. A minor difference with Terui’s result is that he bounds the
length of a sequence by a polynomial of degree d + 1. Informally the reason is
that, due to commutation rules, the size of terms is decreasing at a slower pace.
Concretely, this means that in his version of Lemma 6.5.4-2, the length of the
sequence is bounded by s(M)2.

We conclude that any reduction strategy can be computed in polynomial time.

Corollary 6.5.7 (Strong termination in polynomial time). The evaluation of

a well-formed term M of size s and depth d can be computed in time O(s2d+2

).

Proof. Let M −→∗ M ′ be the reduction sequence of the well-formed term M .
By Proposition 6.4.4 we can transform the sequence into a shallow-first sequence
M −→∗ M ′ of the same length. By Theorem 6.5.5 we know that its length is

bounded by s(M)2d and that s(M ′) ≤ s(M)2d . To conclude, it suffices to remark
that each reduction step Mi −→ Mi+1 can be performed in time quadratic in

the size of Mi. Therefore the running time is bounded by O(s2d·2 · s2d) ≤
O(s2d+2

).
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Chapter 7

A polynomial concurrent
λ-calculus

In this chapter, we present a polynomial concurrent λ-calculus. The main con-
tribution is the characterization of a class of well-formed concurrent programs
that terminate in polynomial time under a peculiar call-by-value strategy. We
provide a type system that captures the set well-formed programs that do not
go wrong. In particular, we are able to type programs that iterate side effects
over inductive data structures.

The polynomial bounds are proved by following Terui’s method (see Chapter 6):
first, we prove that the shallow-first strategy is polynomial by a combinatorial
argument; then, we try to show that every call-by-value reduction sequence
can be transformed into a shallow-first one of the same length, which would
entail that call-by-value is polynomial. However, the transformation is made
non-trivial by the presence of side effects and we proceed as follows:

(1) Let −→v be the call-by-value reduction. The transformation may intro-
duce side effects which are not evaluated in call-by-value. Thus, we have
to consider a larger reduction −→)−→v that is very liberal with the eval-
uation of side effects.

(2) It turns out that the transformation fails for sequences of an arbitrary re-
duction−→. We identify a smaller outer-bang reduction−→ob (i.e. redexes
are not reduced under bangs) for which the transformation succeeds. In
particular, the transformation succeeds on an outer-bang by-value reduc-
tion −→obv⊆−→ob, which shows that −→obv is polynomial.

The above reasoning is illustrated in Figure 7.1. For any reduction −→x,−→y,
we write −→x B −→y when −→x simulates −→y by reduction sequences of
the same length. Therefore if −→x B −→y and −→x ⊆ Ptime, then −→y ⊆
Ptime.

123
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−→

6

−→obv ( −→ob C −→sf ⊆ Ptime

Figure 7.1: The outer-bang-by-value strategy is polynomial

Outline The chapter is organized as follows. We start by presenting the syn-
tax and reduction of the polynomial concurrent λ-calculus (λ!§‖) in Section 7.1.

Then, we introduce a light linear depth system (λ
!§‖
LLD) in Section 7.2 to control

the depth of program occurrences. Well-formed programs in the depth system
follow Terui’s discipline [Ter07] on the functional side and the stratification of
regions by depth levels. We prove in Section 7.3 that outer-bang reduction
sequences can be transformed into shallow-first ones of the same length. In par-
ticular, outer-bang by-value sequences can be transformed. We review the proof
of polynomial soundness of the shallow-first strategy in Section 7.4, which entails
that outer-bang by-value is polynomial. We provide a light linear type system

(λ
!§‖
LLT ) in Section 7.5 which results from a simple decoration of the light linear

depth system with linear types. We derive the standard subject reduction and
progress properties. Finally, we illustrate the expressivity of the type system
in Section 7.6 by showing that it is complete with respect to polynomial time
in the extensional sense and we give a programming example of a concurrent
iteration producing side effects over an inductive data structure. To conclude,
we draw a quick comparison with the expressive power offered by soft λ-calculi.

The contributions can be summarized by the diagram of Figure 7.2.

7.1 Syntax and reduction

In this section, we present the syntax and reduction of λ!§‖. Contrary to the
languages introduced previously, we need to define here a reduction which is
larger than call-by-value so that we can prove shallow-first transformation in
Section 7.3. Thus, we will see that side effects can be produced in non standard
ways.

The syntax of λ!§‖ is presented in Figure 7.3. It is built from the syntax of λ!§

(Figure 6.2) and λ‖ (Figure 2.2). The difference is that we do not define the
syntactic category of values.

As usual, each program can be represented by an abstract syntax tree as in
Figure 7.4.

The reduction of λ!§‖ is given in Figure 7.5. The following items highlight the
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(iteration of side effects)

⊆

λ
!§‖
LLT

λ
!§‖
LLD

λ!§‖

stratification
by depth levels

typing

Polynomial time

Progress

Figure 7.2: From λ!§‖ to λ
!§‖
LLT

-variables x, y, . . .
-regions r, r′, . . .
-terms M ::= x | r | ? | λx.M |MM | !M | §M

let !x = M in M | let §x = M in M
get(r) | set(r,M) | (M ‖M)

-stores S ::= r ⇐M | (S ‖ S)
-programs P ::= M | S | (P ‖ P )

Figure 7.3: Syntax of λ!§‖
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P = let !x = get(r) in set(r, (!x)(§x)) ‖ r ⇐ !(λx.x?)

‖

let !x

get(r) set(r)

@

!

x

§

x

r ⇐

!

λx

@

x ?
(a)

ε

0

00 01

010

0100

01000

0101

01010

1

10

100

1000

10000 10001
(b)

Figure 7.4: Syntax tree and addresses of P

-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-evaluation contexts-
E ::= [·] | λx.E | EM |ME | !E | §E

let !x = E in M | let §x = E in M
let !x = M in E | let §x = M in E
set(r, E) | r ⇐ E | (E ‖ P ) | (P ‖ E)

-reduction rules-
(β) E[(λx.M)N ] −→ E[M [N/x]]
(!) E[let !x = !N in M ] −→ E[M [N/x]]
(§) E[let §x = §N in M ] −→ E[M [N/x]]
(get) E[get(r)] ‖ r ⇐M −→ E[M ]
(set) E[set(r,M)] −→ E[?] ‖ r ⇐M if FV(M) = ∅
(gc) E[? ‖M ] −→ E[M ]

Figure 7.5: Reduction of λ!§‖
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notable differences with the previously defined call-by-value reductions:

• We can read/write any term to the store. Since the rule (set) generates a
global assignment (i.e. out of the evaluation context), we require M to be
closed such that it does not contain variables bound in E.

• The reduction can take place at any program point and is completely non-
deterministic since an evaluation context can be any program with a hole
[·]. In particular, contexts of the shape r ⇐ E allow evaluation in the
store. We give an example of such reduction in Figure 7.6.

• A new reduction rule (gc) permits to garbage collect a terminated thread.
This rule will be used to simulate the discarding of data, even though we
adopt a strictly linear depth system.

set(r, λx.M)

set(r, λx.get(r)) ‖ r ⇐M ? ‖ r ⇐ λx.M

? ‖ r ⇐ λx.get(r) ‖ r ⇐M

Figure 7.6: Reducing in the store

In the rules (β), (!), (§) and (gc), the redex denotes the term inside the context
of the left hand-side and the contractum denotes the term inside the context of
the right hand-side. In the rule (get), the redex is get(r) and the contractum
is M . In the rule (set), the redex is set(r,M) and the contractum is M . As
usual −→+ denotes the transitive closure of −→ and −→∗ denotes the reflexive
closure of −→+.

7.2 A light linear depth system

In this section, we introduce the light linear depth system λ
!§‖
LLD that charac-

terizes a class of well-formed programs. It is built from the functional system
λ!§
LLD (see Section 6.3) and the stratification of regions by depth levels (see Sec-

tion 5.2.1). We will see that even though the depth system is strictly linear, we
can simulate the discarding of data.

We first extend the revised notion of depth to count both modalities.
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Definition 7.2.1 (Revised depth). Let P be a program and R a region context
where dom(R) contains all the regions of P . The revised depth rd(w) of an
occurrence w of P is the number of ‘†’ labels that the path leading to the end
node crosses, plus R(r) if the path crosses a store label ‘r ⇐’. The revised depth
rd(P ) of a program P is the maximum revised depth of its occurrences.

As in the elementary case, we will simply say ‘depth’ and write d(w) for short.

Then we introduce variable and region context in Figure 7.7. Region contexts

R = r1 : δ1, . . . , rn : δn
Γ = x1 : u1, . . . , xn : un

Figure 7.7: Variable and region contexts of λ
!§‖
LLD

come from λ!
EAD (Section 5.2) and variable contexts come from λ!§ (Section 6.3).

A region context associates a natural number δi to each region ri and the rules
of the depth system will be designed so that get(ri) and set(ri,M) may only
occur at depth δi. A variable context associates each variable with a usage
u ∈ {λ, §, !} which constrains the variable to be bound by a λ-abstraction, a
let §-binder or a let !-binder respectively. We write Γu if dom(Γ) only contains
variables with usage u.

A depth judgment has the shape

R; Γ `δ P

where δ is a natural number. It should entail the following:

• if x : λ ∈ Γ and x occurs free in M then all free occurrences of x appear
at depth 0 in M ;

• if x : ! ∈ Γ and x occurs free in M then all free occurrences of x appear
at depth 1 in M ;

• if x : § ∈ Γ and x occurs free in M then all free occurrences of x appear
at depth 1 in M , and it must be in the scope of a § constructor.

• if r : δ′ ∈ R then get(r)/set(r) may only occur at depth δ′ in †δP .

The inference rules of the depth system are presented in Figure 7.8. They are a
combination of the rules of λ!§ (Figure 6.3) and the rules of λ!

EAD (Figure 5.4)
dealing with side effects. In fact, we combine usages and depth indexes to
control the depth of occurrences. In particular, the depth δ of the judgment is
decremented by the rules prom! and prom§. This allows to stratify regions by
depth levels by requiring δ = R(r) in the rules get and set.

Definition 7.2.2 (Well-formedness). A program P is well-formed if a judgment
R; Γ `δ P can be derived for some R, Γ and δ.
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var
x : λ ∈ Γ

R; Γ `δ x
unit

R; Γ `δ ?
reg

R; Γ `δ r

lam

FO(x,M) = 1
R; Γ, x : λ `δ M
R; Γ `δ λx.M

app
R; Γ `δ M R; Γ `δ N

R; Γ `δ MN

prom!

FO(M) ≤ 1
R; Γλ `δ+1 M

R; Γ!,∆§,Ψλ `δ !M
elim!

FO(x,N) ≥ 1 R; Γ `δ M
R; Γ, x : ! `δ N

R; Γ `δ let !x = M in N

prom§
R; Γλ,∆λ `δ+1 M

R; Γ!,∆§,Ψλ `δ §M
elim§

FO(x,N) = 1 R; Γ `δ M
R; Γ, x : § `δ N

R; Γ `δ let §x = M in N

get
r : δ ∈ R

R; Γ `δ get(r)
set

r : δ ∈ R R; Γ `δ M
R; Γ `δ set(r,M)

store
r : δ ∈ R R; Γ `δ M

R; Γ `0 r ⇐M
par

i = 1, 2 R; Γ `δ Pi
R; Γ `δ (P1 ‖ P2)

Figure 7.8: The light linear depth system λ
!§‖
LLD
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Example 7.2.3. The program P of Figure 7.4 is well-formed by composing the
two derivation trees of Figure 7.9 with the rule par.

r : 0;− `0 r

r : 0;− `0 get(r)

r : 0;x : ! `0 r

r : 0;x : λ `1 x

r : 0;x : ! `0 !x

r : 0;x : λ `1 x

r : 0;x : ! `0 §x
r : 0;x : ! `0 !x§x

r : 0;x : ! `0 set(r, !x§x)

r : 0;− `0 let !x = get(r) in set(r, !x§x)

r : 0;x : λ `1 x r : 0;x : λ `1 ?

r : 0;x : λ `1 x?

r : 0;− `1 λx.x?

r : 0;− `0 !(λx.x?)

r : 0;− `0 r ⇐ !(λx.x?)

Figure 7.9: Derivation trees

The system λ
!§‖
LLD enjoys the subject reduction property which is based on the

following weakening and substitution lemmas.

Lemma 7.2.4 (Weakening). If R; Γ `δ P then R; Γ,Γ′ `δ P .

Proof. By induction on the derivation of P .

Lemma 7.2.5 (Substitution).

1. If R; Γ, x : λ `δ M and R; Γ `δ N then R; Γ `δ M [N/x].

2. If R; Γ, x : § `δ M and R; Γ `δ §N then R; Γ `δ M [N/x].

3. If R; Γ, x : ! `δ M and R; Γ `δ !N then R; Γ `δ M [N/x].

Proof. By induction on the derivation of M .

Proposition 7.2.6 (Subject reduction). If R; Γ `0 P and P −→ P ′ then
R; Γ `0 P ′ and d(P ) ≥ d(P ′).

Proof. By case analysis on the reduction rules and the above lemmas.

Discarding The depth system λ
!§‖
LLD is strictly linear in the sense that it is

not possible to bind 0 occurrences. We have seen in Section 6.4 that it greatly
simplifies the proof of shallow-first transformation. However, the impossibility
to discard data is quite restrictive. In call-by-value, the sequential composition
M ;N is usually encoded by the term

(λz.N)M
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where z /∈ FV(N). The argument z is used to discard the terminal value of M .
We show that side effects can be used to simulate the discarding of data even
though the depth system is strictly linear. Assume that we dispose of a specific
region gr collecting ‘garbage’ values at each depth level of a program. Then
M ;N could be encoded as the well-formed program

(λz.set(gr, z) ‖ N)M

By using a call-by-value semantics, we would observe the following reduction
sequence

M ;N −→∗ V ;N −→ set(gr, V ) ‖ N −→ ? ‖ N ‖ gr ⇐ V

−→ N ‖ gr ⇐ V

where ? has been erased by (gc) and V has been garbage collected into gr.
Therefore, we claim that the strict linearity condition does not cause a loss of
expressivity.

7.3 Shallow-first transformation

In this section, we show that the so-called outer-bang by-value reduction se-
quences (to be defined in Figure 7.11) can be transformed into shallow-first ones
of the same length. We first explain in Section 7.3.1 why we need to identify
an outer-bang strategy, and then we show in Section 7.3.2 how the transforma-
tion applies on outer-bang sequences, in particular on the subset of outer-bang
by-value sequences.

7.3.1 The outer-bang strategy

We recall that transforming a reduction sequence into a shallow-first one is
an iterating process where each iteration consists in swapping two consecutive
reduction steps which occur in ‘deep-first’ order (see Section 6.4).

First, let us show that this swapping may introduce side effects that are not
executed in call-by-value style. Informally, assume †V denotes a value. In the
following diagram,

set(r, †V )

set(r, †M) ? ‖ r ⇐ †V

? ‖ r ⇐ †M

1

0 1

0
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the deep-first call-by-value sequence at the top swaps into the shallow-first one
at the bottom with unusual side effects: we write a non-value †M to the store
and we reduce in the store! As another example, consider the diagram

(λx.λy.xy)†V

(λx.λy.xy)†M λy.(†V )y

λy.(†M)y

1

0 1

0

where the top deep-first call-by-value sequence swaps into a shallow-first one at
the bottom. This latter sequence is not in call-by-value style because it reduces
inside a λ-abstraction and this is not compatible with the usual notion of value.
Therefore the above two diagrams show that we need to consider a reduction
larger than call-by-value.

On the other hand, sequences of an arbitrary larger reduction cannot be trans-
formed into shallow-first ones. For instance, in the following diagram,

let !x = !M in §(xx) §(MM)

let !x = !get(r) in §(xx) ‖ r ⇐M

§(get(r)get(r)) ‖ r ⇐M §(Mget(r))

1

0

1

0

stuck

(7.1)
it is not possible to produce a shallow-first sequence that is confluent with the
deep-first one for we try to read the region two times by duplicating the redex
get(r).

In the presence of side effects, it is not surprising that some sequences cannot be
transformed into shallow-first ones because they may require exponential time.
Consider the well-formed λ-abstraction

M = λx.let §x = x in §set(r, x); !get(r) (7.2)

which transforms a §-term into a !-term (think of the type §A( !A that would
be rejected in LAL). Then, building on program Z given in (6.1) (page 111),
take

Z ′ = λx.let !x = x in M§(xx)
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We observe an exponential explosion of the size of the following well-formed
program:

Z ′Z ′ . . . Z ′︸ ︷︷ ︸
n times

!?

−→∗ Z ′Z ′ . . . Z ′︸ ︷︷ ︸
n−1 times

(M§(??))

−→∗ Z ′Z ′ . . . Z ′︸ ︷︷ ︸
n−1 times

(!(??)) ‖ gr ⇐ §?

−→∗ !(? ? . . . ?︸ ︷︷ ︸)
2n times

‖ gr ⇐ §? ‖ . . . ‖ gr ⇐ §?︸ ︷︷ ︸
n times

(7.3)

where gr is a region collecting the garbage produced by the sequential composi-
tion operator of M (see the encoding in Section 7.2). This previous sequence is
not shallow-first since the redexes set(r,M) and get(r) occurring at depth 1 are
alternatively applied with other redexes occurring at depth 0. A shallow-first
strategy would produce the reduction sequence

Z ′Z ′ . . . Z ′︸ ︷︷ ︸
n times

!? −→∗ !(? ? get(r)get(r) . . . get(r)︸ ︷︷ ︸
n−1 times

) ‖ S 6−→

where S is the same garbage store as previously but we observe no size explosion.

By taking the above observations into account, our contribution is to identify an
outer-bang strategy whose sequences can be transformed into shallow-first ones
of the same length. This strategy is completely liberal except that it does not
evaluate in the scope of bang constructors. For example, the sequence at the
top of diagram (7.1) is not outer-bang since the redex get(r) is applied in the
scope of a bang. We define the outer-bang evaluation contexts F in Figure 7.10.
They are not decomposable in contexts of the shape E[!E′] and thus cannot

F ::= [·] | λx.F | FM |MF | §F
let !x = F in M | let !x = M in F
let §x = F in M | let §x = M in F
set(r, F ) | (F ‖M) | (M ‖ F ) | r ⇐ F

Figure 7.10: Outer-bang evaluation contexts

be used to evaluate under bangs, but they are still decomposable in contexts
of the shape E[§E′]. In the sequel of this chapter, −→ob denotes reduction
modulo outer-bang evaluation contexts F instead of regular evaluation contexts
E (Figure 7.5).
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7.3.2 From outer-bang to shallow-first

We now show how to transform every outer-bang sequence into a shallow-first
one of the same length. We also define an outer-bang by-value strategy which
allows to program in call-by-value style sequences and for which the transfor-
mation applies.

A difficulty is that the transformation should preserve the final state of the
program and thus be careful with the evaluation order of side effects. For
example, assuming F1 and F2 do not contain any assignment to region r, the
following two reduction steps do not commute:

F1[set(r,Q)] ‖ F2[get(r)]
i−→ F1[?] ‖ F2[get(r)] ‖ r ⇐ Q

j−→ F1[?] ‖ F2[Q]
(7.4)

We claim that this is not an issue because the depth system enforces that side
effects on a given region can only occur at fixed depth. Therefore i must be
equal to j and in general we should never need to swap a read with a write on
the same region.

We can prove the crucial swapping lemma.

Lemma 7.3.1 (Swapping). If P is a well-formed program such that P
i−→ob

P1
j−→ob P2 and i > j, then there exists P ′ such that P

j−→ob P
′ i−→ob P2.

Proof. We write M the contractum of the reduction P
i−→ob P1 and N the

redex of the reduction P1
j−→ob P2. Assume they occur at addresses wm and

wn in P1. As in the functional case we distinguish three cases:

1. M and N are separated (neither wm v wn nor wm w wn);

2. M contains N (wm v wn);

3. N strictly contains M (wm w wn and wm 6= wn).

For each of them we discuss a crucial sub-case:

1. Assume M is the contractum of a (set) rule and that N is the redex of
a (get) rule related to the same region. This case has been introduced
in example (7.4) where M and N are separated by a parallel node. By
well-formedness of P , the redexes get(r) and set(r,Q) must occur at the
same depth, that is i = j, and we conclude that we do not need to swap
the reductions.

2. If the contractum M contains the redex N , N may not exist yet in P which
makes the swapping impossible. We remark that, for any well-formed

program Q such that Q
d−→ob Q′, both the redex and the contractum

occur at depth d. In particular, this is true when a contractum occurs in
the store as follows:

Q = F [set(r, T )]
d−→ob Q

′ = F [?] ‖ r ⇐ T
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By well-formedness of Q, there exists a region context R such that R(r) =
d and the redex set(r, T ) occurs at depth d. By the revised definition of
depth, the contractum T occurs at depth d in the store. As a result of
this remark, M occurs at depth i and N occurs at depth j. Since i > j, it
is clear that the contractum M cannot contain the redex N and this case
is void.

3. Let N be the redex let §x = §R in Q and let the contractum M appears
in R as in the following reduction sequence

P = F [let §x = §R′ in Q]

i−→ob P1 = F [let §x = §R in Q]

j−→ob P2 = F [Q[R/x]]

By well-formedness, x occurs exactly once in Q. This implies that applying

first P
j−→ P ′ cannot discard the redex in R′. Hence, we can produce the

following shallow-first sequence of the same length:

P = F [let §x = §R′ in Q]

j−→ob P
′ = F [Q[R′/x]]

i−→ob P2 = F [Q[R/x]]

Moreover, the reduction P ′
i−→ob P2 must be outer-bang for x cannot

occur in a !-term in Q.

Remark 7.3.2. There is a notable difference with the functional version of the
swapping procedure (Lemma 6.4.1) which is that the latter may return a longer
sequence than the initial one while the present procedure may only return a
sequence of the exact same length. The reason is that the outer-bang strategy
already duplicates every redex that occurs in the scope of a bang, as in the
bottom sequence of diagram (7.1). Therefore the swapping procedure cannot
duplicate more redexes. Note also that this explains why we do not generalize
the swapping lemma to sequences as in Lemma 6.4.3.

Eventually, we show that any outer-bang sequence can be transformed into a
shallow-first one of the same length.

Proposition 7.3.3 (Outer-bang to shallow-first). To any reduction sequence
P1 −→∗ob Pn of a well-formed program P1 corresponds a shallow-first reduction
sequence P1 −→∗ob Pn of the same length.

Proof. As in the functional case we can transform the sequence into a shallow-
first one by using a ‘bubble sort’ like procedure (see Proposition 6.4.4).

Outer-bang by-value It is convenient to define an outer-bang by-value strat-
egy for programming. The idea is simple: the evaluation is outer-bang and
follows a left-to-right call-by-value strategy.
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The syntax and reduction of the outer-bang by-value strategy is given in Fig-
ure 7.11. We highlight the differences with respect to the arbitrary strategy

-values V ::= x | ? | r | λx.M | !V | §V
-terms M ::= V |MM | §M

let !x = V in M | let †x = V in M
get(r) | set(r, V ) | (M ‖M)

-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P )
-evaluation contexts G ::= [·] | GM | V G | §G
-static contexts C ::= [·] | (C ‖ P ) | (P ‖ C)

-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-reduction rules-
(βobv) C[G[(λx.M)V ]] −→obv C[G[M [V/x]]]
(!obv) C[G[let !x = !V in M ]] −→obv C[G[M [V/x]]]
(§obv) C[G[let §x = §V in M ]] −→obv C[G[M [V/x]]]
(getobv) C[G[get(r)]] ‖ r ⇐ V −→obv C[G[V ]]
(setobv) C[G[set(r, V )]] −→obv C[G[?]] ‖ r ⇐ V
(gcobv) C[G[? ‖M ]] −→obv C[G[M ]]

Figure 7.11: Syntax and reduction of the outer-bang by-value strategy

(Figure 7.3 and Figure 7.5):

• we integrate a category of values V , in particular, !V and §V are values;

• terms M are as expected except that we cannot construct !M if M is not
a value;

• store assignments are restricted to values;

• evaluation contexts are outer-bang and follow a left-to-right call-by-value
discipline (obviously we do not evaluate in stores); static contexts permit
to separate the activation of a thread from the proper evaluation.

The outer-bang by-value reduction is denoted by −→obv.

Remark 7.3.4. By not considering !M in the syntax of terms if M is not a
value, we prevent the reduction to get stuck on terms of the shape !M . This
will allow us to prove a progress property for the outer-bang by-value reduction
(Proposition 7.5.7). It does not cause a loss of expressivity since we can still
prove the completeness of our type system and type interesting programs in the
next Section 7.6. This is due to the fact that we can still evaluate in the scope
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of paragraph constructors. In the elementary case where ! is the only modality,
such a restriction breaks the completeness Theorem 5.5.3 and the outer-bang
strategy is way too severe since it only allows to reduce at depth 0.

The contexts G are obviously outer-bang because they cannot be decomposed
as E[!E′]. Therefore the reduction −→ob contains the reduction −→obv and we
obtain the following corollary.

Corollary 7.3.5 (From outer-bang by-value to shallow-first). To any reduction
sequence P1 −→∗obv Pn of a well-formed program P1 corresponds a shallow-first
reduction sequence P1 −→∗ob Pn of the same length.

Remark 7.3.6. The shallow-first sequence obtained by transformation is not
‘by-value’. Indeed, after some iterations of the swapping lemma, one needs to
reduce in the store and in the scope of binders. This justifies the fact that we
needed to consider a reduction −→ob larger than −→obv.

7.4 Shallow-first is polynomial

In this section, we prove that well-formed programs admit polynomial bounds
with a shallow-first strategy. As a corollary, we obtain that the outer-bang
by-value strategy can be computed in polynomial time. We precise that this
section closely follows the functional case (Section 6.5). The main difficulty has
been to extend the light linear depth system so that the combinatorial analysis
can be easily adapted.

We recall that, for any depth i, an unfolding transformation on terms is intended
to duplicate statically the occurrences that will be duplicated by redexes occur-
ring at depth i. The definition is extended to λ!§‖ in a straightforward way.

Definition 7.4.1 (Unfolding). The unfolding at depth i of a program P , written



138 CHAPTER 7. A POLYNOMIAL CONCURRENT λ-CALCULUS

]i(P ), is defined as follows:

]i(x) = x
]i(r) = r
]i(?) = ?

]i(λx.M) = λx.]i(M)
]i(MN) = ]i(M)]i(N)

]i(†M) =

{
†]i−1(M) if i > 0
†M if i = 0

]i(let †x = M in N) =



if i = 0,M = !M ′ and † = ! :
let !x = MM . . .M︸ ︷︷ ︸

k times

in ]0(N)

where k = FO(x, ]0(N))

otherwise:
let †x = ]i(M) in ]i(N)

]i(get(r)) = get(r)
]i(set(r,M)) = set(r, ]i(M))
]i(r ⇐M) = r ⇐ ]i(M)
]i(P1 ‖ P2) = ]i(P1) ‖ ]i(P2)

We refer the reader to Section 6.5 for a concrete illustration of unfolding. Un-
folded programs are not intended to be reduced but the size of an unfolded
program can be used as a non increasing measure in the following way.

Lemma 7.4.2. Let P be a well-formed program such that P
i−→ P ′. Then

s(]i(P ′)) ≤ s(]i(P )).

Proof. First we assume the occurrences labelled with ‘‖’ and ‘r ⇐’ do not count
in the size of a program and that ‘set(r)’ counts for two occurrences, such that
the size strictly decreases by the rule (set). Then, it is clear that (!) is the only
reduction rule that can make the size of a program increase. We refer to the
functional case for details (Lemma 6.5.2).

We observe in the following lemma that the size of an unfolded program bounds
quadratically the size of the original program.

Lemma 7.4.3. If P is well-formed, then for any depth i ≤ d(P ):

1. FO(]i(P )) ≤ s(P ),

2. s(]i(P )) ≤ s(P ) · (s(P )− 1),

Proof. By induction on P and i. See Lemma 6.5.3.

We can then bound the size of a program after reduction.

Lemma 7.4.4 (Squaring). Let P be a well-formed program such that P
i

−→∗ P ′.
Then:



7.5. A LIGHT LINEAR TYPE SYSTEM 139

1. s(P ′) ≤ s(P ) · (s(P )− 1)

2. the length of the sequence is bounded by s(P )

Proof. We proceed as in the functional case (Lemma 6.5.4).

Finally we obtain the following theorem for a shallow-first reduction.

Theorem 7.4.5 (Polynomial bounds). Let P be a well-formed program such
that d(P ) = d and P −→∗ P ′ is shallow-first. Then:

1. s(P ′) ≤ s(P )2d

2. the length of the reduction sequence is bounded by s(P )2d

Proof. The proof proceeds exactly as in the functional case (see Theorem 6.5.5).

It is worth noticing that the first bound takes the size of all the threads into
account and that the second bound is valid for any thread interleaving.

Corollary 7.4.6 (Outer-bang by-value is polynomial). The outer-bang by-value
evaluation of a well-formed program P of size s and depth d can be computed in

time O(s2d+2

).

Proof. Let P −→∗obv P
′ be the outer-bang by-value reduction sequence of the

well-formed program P . By Corollary 7.3.5 we can transform the sequence into
a shallow-first sequence P −→∗ob P

′ of the same length. By Theorem 7.4.5 we

know that its length is bounded by s2d and that s(P ′) ≤ s2d . To conclude,
it suffices to remark that each reduction step Pi −→ Pi+1 can be performed
in time quadratic in the size of Pi. Therefore the running time is bounded by

O(s2d·2 · s2d) ≤ O(s2d+2

).

7.5 A light linear type system

As in the elementary case, the light linear depth system cannot guarantee that
programs do not go wrong. We recall that a well-formed program like

let !y = (λx.x) in §(yy) (7.5)

stops on a non-value. In this section we propose a polymorphic light linear

type system λ
!§‖
LLT which is intended to be used with the outer-bang by-value

reduction. We obtain a progress property which states that every well-typed
program reduces on a value or gets stuck when it tries to read an empty region.

The light linear type system can be seen as a simple decoration of the light
linear depth system with linear types plus additional rules for polymorphism.
The following points should give some primary intuitions on the modal types:

• !A is the type of data that can be duplicated;
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• §A is the type of data that has been duplicated and cannot be duplicated
further;

• A ( B where A 6= !A′ is the type of a function that uses its argument
only once;

• !A( B is the type of a function that uses its argument more than once.

7.5.1 Types and contexts

We define the syntax of types and contexts in Figure 7.12. The difference with

-type variables t, t′, . . .
-types α ::= B | A
-result types A ::= t | Unit | A( α | !A | §A | ∀t.A | RegrA
-variable contexts Γ ::= x1 : (u1, A1), . . . , xn : (un, An)
-region contexts R ::= r1 : (δ1, A1), . . . , rn : (δn, An)

Figure 7.12: Syntax of types and contexts of λ
!§‖
LLT

types and contexts of λ
!‖
EAT (Figure 5.5) is that we added the modal type §A

and that variable contexts have usages instead of depths. Usages play the same
role as in λ!§

LLD (Section 6.3). Writing x : (u,A) means that the variable x
ranges on terms of type A and can be bound according to u. Writing r : (δ, A)
means that the region r contain terms of type A and that get(r) and set(r,M)
may only occur at depth δ.

As usual, we state in Figure 7.13 when a type is well-formed with respect to a
region context.

R ↓ t R ↓ Unit R ↓ B

R ↓ A R ↓ α
R ↓ (A( α)

R ↓ A
R ↓ †A

r : (δ, A) ∈ R
R ↓ RegrA

R ↓ A t /∈ R
R ↓ ∀t.A

∀r : (δ, A) ∈ R
R ↓ A
R `

R ` R ↓ α
R ` α

∀x : (δ, A)e ∈ Γ
R ` A
R ` Γ

Figure 7.13: Formation of types and contexts

We still notice the following substitution property on types.
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Proposition 7.5.1. If R ` ∀t.A and R ` B then R ` A[B/t].

Proof. By induction on A.

7.5.2 Rules

A typing judgment takes the form

R; Γ `δ P : α

It attributes a type α to the program P occurring at depth δ, according to
region context R and variable context Γ.

Figure 7.14 introduces the rules of λ
!§‖
LLT . The skeleton of the rules is the light

linear depth system λ
!§‖
LLD. We comment on some of the rules:

• In lam, a λ-abstraction may only take a term of result-type as argument,
that is two threads in parallel are not considered an argument.

• The typing of !-terms in the rule prom! is limited to values. Indeed, the
type system is intended to be used with an outer-bang by-value syntax
which does not allow to put bangs on non-values (see Figure 7.11).

• There exists two rules for typing parallel programs. The rule par1 indicates
that a program P2 in parallel with a store or a thread producing a terminal
value should have the type of P2 since we might be interested in its result
(note that we omit the symmetric rule for the program (P2 ‖ P1)). The
rule par2 indicates that two programs in parallel cannot reduce to a single
result.

Example 7.5.2. The program of Figure 7.4 (page 126) is well-typed according
to the following derivable judgment:

R;− `δ let !x = get(r) in set(r, (!x)(§x)) ‖ r ⇐ !(λx.x?) : Unit

where R = r : (δ, ∀t.!((Unit( t)( t)). Whereas the program in Equation (7.5)
(page 139) is not.

Remark 7.5.3. We easily see that a well-typed program is also well-formed.

Sequential composition We proposed in Section 7.2 to encode the sequential
composition as

M ;N = (λz.set(r, z) ‖ N)M

where r is a ‘garbage collecting’ region. Assuming that N is of type α, we
would like to show that M ;N can be given type α. By using the rule par1 we
can derive

R; Γ, z : (λ,A) `δ set(r, z) : Unit R; Γ, z : (λ,A) `δ N : α

R; Γ, z : (λ,A) `δ set(r, z) ‖ N : α
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var
R ` Γ x : (λ,A) ∈ Γ

R; Γ `δ x : A
unit

R ` Γ

R; Γ `δ ? : Unit

reg
R ` Γ

R; Γ `δ r : RegrA

lam
FO(x,M) = 1 R; Γ, x : (λ,A) `δ M : α

R : Γ `δ λx.M : A( α

app
R; Γ `δ M : A( α R; Γ `δ N : A

R; Γ `δ MN : α

prom!

FO(M) ≤ 1 R; Γλ `δ+1 V : A

R; Γ!,∆§,Ψλ `δ !V : !A

elim!

FO(x,N) ≥ 1 R; Γ `δ V : !A R; Γ, x : (!, A) `δ M : α

R; Γ `δ let !x = V in M : α

prom§
R; Γλ,∆λ `δ+1 M : A

R; Γ§,∆!,Ψλ `δ §M : §A

elim§
FO(x,N) = 1 R; Γ `δ V : §A R; Γ, x : (§, A) `δ M : α

R; Γ `δ let §x = V in M : α

forall
t /∈ (R; Γ) R; Γ `δ M : A

R; Γ `δ M : ∀t.A
inst

R; Γ `δ M : ∀t.A R ` B
R; Γ `δ M : A[B/t]

get
R ` Γ r : (δ, A) ∈ R
R; Γ `δ get(r) : A

set
r : (δ, A) R; Γ `δ M : A

R; Γ `δ set(r,M) : Unit

store
r : (δ, A) R; Γ `δ M : A

R; Γ `0 r ⇐M : B

par1
R; Γ `δ P1 : Unit or P1 = S R; Γ `δ P2 : α

R; Γ `δ (P1 ‖ P2) : α

par2
R; Γ `δ Pi : αi

R; Γ `δ (P1 ‖ P2) : B

Figure 7.14: The light linear type system λ
!§‖
LLT
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with r : (δ, A) ∈ R. It is then straightforward to see that the rule

seq
R; Γ `δ M : A R; Γ `δ N : α

R; Γ `δ M ;N : α

can be derived.

7.5.3 Properties

The light linear type system λ
!§‖
LLT enjoys the subject reduction and progress

properties for the outer-bang by-value reduction −→obv. The usual weakening
and substitution properties need to be established first.

Lemma 7.5.4 (Weakening). If R; Γ `δ P : α and R,R′ ` Γ,Γ′ then R,R′; Γ,Γ′ `δ
P : α.

Proof. By induction on the typing of P .

Lemma 7.5.5 (Substitution).

1. If R; Γ, x : (λ,A) `δ M : B and R; Γ `δ V : A then R; Γ `δ M [V/x] : B.

2. If R; Γ, x : (§, A) `δ M : B and R; Γ `δ §V : §A then R; Γ `δ M [V/x] : B.

3. If R; Γ, x : (!, A) `δ M : B and R; Γ `δ !V : !A then R; Γ `δ M [V/x] : B.

Proof. By induction on the typing of M .

Proposition 7.5.6 (Subject reduction). If R; Γ `δ P : α and P −→obv P
′ then

R; Γ `δ P ′ : α.

Proof. By case analysis on the reduction rules and Lemma 7.5.4 and 7.5.5.

Proposition 7.5.7 (Progress). Suppose P is a closed typable outer-bang by-
value program which cannot reduce. Then P is structurally equivalent to a pro-
gram

M1 ‖ · · · ‖Mm ‖ S1 ‖ · · · ‖ Sn m,n ≥ 0

where Mi is either a value or can only be decomposed as a term Fv[get(r)] such
that no value is associated with the region r in the stores S1, . . . , Sn.

Proof. The proof is similar to that of λ
!‖
EAT (Proposition 5.4.8) and also crucially

relies on the fact that !M is not typable if M is not a value. Indeed this term
locks the outer-bang by-value reduction.

7.6 Expressivity

In this section we evaluate the expressivity of λ
!§‖
LLT . First, in Section 7.6.1

we recall briefly that every polynomial time function is representable in λ
!§‖
LLT .

Then, in Section 7.6.2 we test the programming capabilities offered by the type
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system (iteration of side effects) and highlight the loss of expressivity with re-
spect to the elementary case. To conclude, we draw a quick comparison with
the expressive power offered by soft λ-calculi.

7.6.1 Completeness

The representation of polynomial functions relies on the representation of binary
natural numbers whose encoding is given in Figure 7.15.

BNat = ∀t.!(t( t)( !(t( t)( §(t( t)

for w = i0 . . . in ∈ {0, 1}∗,

w : BNat
w = λ!x0.λx

!
1.§(λz.xi0(. . . (xinz)))

Figure 7.15: Representation of binary natural numbers

The precise notion of representation is spelled out in the following definitions
(we omit region contexts since we only rely on functional terms).

Definition 7.6.1 (Binary natural number representation). Let − `δ M :
§pBNat for some δ, p ∈ N. We say M represents w ∈ {0, 1}∗, written M  w, if
M −→∗ §pw.

Definition 7.6.2 (Function representation). Let − `δ F : BNat ( §dBNat
where δ, d ∈ N and f : {0, 1}∗ → {0, 1}∗. We say F represents f , written F  f ,
if for any M and w ∈ {0, 1}∗ such that − `δ M : BNat and M  w, FM  f(w).

The following theorem is a restatement of Girard [Gir98] and Asperti [Asp98].

Theorem 7.6.3 (Polynomial completeness). Every function f : {0, 1}∗ →
{0, 1}∗ which can be computed by a Turing machine in time bounded by a poly-
nomial of degree d can be represented by a term of type BNat( §dBNat.

Remark 7.6.4. Note that the type of the representing term depends on the
degree of the polynomial. This lack of uniformity complicates the programming
and implies to go through various typing coercions.

7.6.2 Polynomial programming

We now examine the programming capabilities offered by λ
!§‖
LLT . We first quickly

show that the operational semantics of references can be implemented like in

the elementary type system λ
!‖
EAT . Then, we show how to program the iteration

of operations producing side effects on an inductive data structure, and remark
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that several restrictions arise compared to the elementary case. Eventually, we
show that we can still exchange data between regions of different depths, but in
a restricted way.

Implementing references

The primitive read operation (get) of λ
!§‖
LLD is to consume the value from the

store, that is the operational semantics of communication channels. Copying
values from the store, in the style of references, can be implemented and typed

the same way as in λ
!‖
EAT , by using the consume-and-rewrite mechanism. See

Section 5.5.2 for details.

Iteration with side effects

We want to program the concurrent iteration of operations producing side effects
on an inductive data structure. In order to compare with the expressive power
of the elementary case, we will try to write the same programming example.

We assume the language has dynamic locations rather than constant regions
names. For a more detailed correspondence between locations and regions see
Section 2.4.

We define the representation of natural number, some arithmetic functions and
lists in Figure 7.16 where we abbreviate λx.let †x = x in M by λ†x.M . We
see that the multiplying function mult has a type !Nat( Nat( §Nat whereas

it had type Nat ( Nat ( Nat in λ
!‖
EAT (see the encodings in Figure 5.8).

Therefore, it is no more possible to iterate e.g. the function

mult2 = (λx.mult !2 x)

since it has type Nat( §Nat and the iterator int it may only iterate functions
with a type of the shape A ( A. This is not surprising because it prevents
to represent the exponential function f(n) = 2n. We will see that it has some
consequences on programming.

In the programming example of λ
!‖
EAT , we provide a function update that takes

a memory location as argument and multiply by 2 the number stored at that

location. In λ
!§‖
LLT , the type of mult2 does not allow to do this. Indeed, once we

have multiplied the number, its type has gained a paragraph modality but the
type of the memory location did not change. Instead, the update function can
use the encoding add to add 2 to the content of the location:

r : (3, !Nat);− `2 update : !Regr!Nat( §Unit( §Unit
update = λ!x.λ§z.§(set(x, let !y = get(x) in !(add 2 y)) ‖ z)

Another difference with the elementary update function is that here the second
argument z is to be garbage collected by the rule (gc).
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Nat = ∀t.!(t( t)( §(t( t)
n : Nat
n = λ!f.§(λx.f(. . . (f︸ ︷︷ ︸

n times

x)))

int it : ∀t.Nat( !(t( t)( §t( §t
int it = λn.λf.λ§x.let §y = nf in §(yx)

add : Nat( Nat( Nat
add = λm.λn.λ!f.let §y = m!f in

let §z = n!f in §(λx.y(zx))

mult : !Nat( Nat( §Nat
mult = λm.let !m = m in λn.int it n !(add m) §0

ListA = ∀t.!(A( t( t)( §(t( t)
[u1, . . . , un] : ListA
[u1, . . . , un] = λf !.§(λx.fu1(fu2 . . . (funx)))

foldr : ∀u.∀t.!(u( t( t)( List u( §t( §t
foldr = λf.λl.λ§x.let §y = lf in §(yx)

Figure 7.16: Encodings of natural number, arithmetic functions and lists
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We then define the program run that iterates the function update over a list
[!x, !y, !z] of 3 memory locations:

r : (3, !Nat);− `1 run : §§Unit
run = foldr !update [!x, !y, !z] §§?

The source code of run is the same as in λ
!‖
EAT , it reduces as expected when put

in parallel with some store assignments:

run ‖ x⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗ §§? ‖ x⇐ !2 +m ‖ y ⇐ !2 + n ‖ z ⇐ !2 + p

To write a program of three threads where each thread concurrently increments
the numerals pointed by the memory locations of the list, we proceed as in the
elementary case; the minor difference being that the unit value is of type §§Unit
instead of !!Unit. Here is the function gen threads taking a functional f and a
value x as arguments and generating three threads where x is applied to f :

r : (3, !Nat);− `0 gen threads : ∀t.∀t′.!(t( t′)( !t( B
gen threads = λ!f.λ!x.§(fx) ‖ §(fx) ‖ §(fx)

We define the functional F like run but parametric in the list:

r : (3, !Nat);− `1 F : List !Regr!Nat( §§Unit
F = λl.foldr !update l §§?

Finally, the concurrent iteration is defined in run threads:

r : (3, !Nat);− `0 run threads : B
run threads = gen threads !F ![!x, !y, !z]

The program is well-typed and has depth 4 with side effects occurring at depth
3. Different thread interleavings are possible and here is one of them:

run threads ‖ x⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗ §§§? ‖ x⇐ !6 +m ‖ y ⇐ !6 + n ‖ z ⇐ !6 + p

Supposing that the size of this program is n, every thread interleaving must run
in at most n16 steps by Theorem 7.4.5.

Remark 7.6.5. As in the elementary case, the Church representation of data
types requires to reduce under binders. See Remark 5.5.4.

Exchanging data between regions

In λ
!§‖
LLT , it is possible to exchange data between regions of different depth. We

recall that in λ
!‖
EAT , the trick is to add or remove bangs on the exchanged value

so that its depth is preserved (see Section 5.5.2). However, as in many program
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of the elementary (concurrent) λ-calculus, we have to reduce under bangs, and

this is not compatible with the outer-bang reduction. Therefore, in λ
!§‖
LLT the

trick is to add or remove paragraphs so that the depth of the exchanged value
is preserved. The direct consequence is that one cannot exchange values that
are duplicable (of the shape !V ) between regions of different depth, and this is
a notable restriction with respect to the elementary case.

In the following, we recall the encodings to exchange data between regions
of different depth. They are as in the elementary case, except that we only
manipulate paragraphs instead of bangs. Let us consider an untyped region
context

R = r : δ, r′ : δ′

with two regions r and r′ such that δ < δ′. We first consider the case where we
want to transfer a value from r to r′ and then the converse.

1. Intuitively, if we want to transfer a value V which is stored at depth δ
in r to a deeper region r′, V must be of the shape §δ′−δV ′ such that the
depth of V ′ can be preserved. Let us define the following abbreviation by
induction on i > 1:

let §1x = M in §1N = let §x = M in §N
let §ix = M in §iN = let §x = M in §(let §i−1x = x in §i−1N) i > 1

The program

P = §δ(let §δ
′−δz = get(r) in §δ

′−δset(r′, z))

is well-formed with region context R because the read on r occurs at depth
δ and the write on r′ occurs at depth δ′. The transfer then happens as
follows:

P ‖ r ⇐ §δ
′−δV ′ −→+ §δ

′
? ‖ r′ ⇐ V ′

2. To transfer a value V from r′ to the shallower region r take the program

Q = §δ((λz.set(r, z))§δ
′−δget(r′))

It is well-formed with region context R because the write on r occurs at
depth δ and the read on r′ occurs at depth δ′. The transfer happens as
follows:

Q ‖ r′ ⇐ V −→+ §δ? ‖ r ⇐ §δ
′−δV

7.6.3 Soft linear logic

The polynomial calculi that we proposed are inspired from the light affine λ-
calculus of Terui [Ter07], which is itself designed from the light logic LAL [Asp98].
There exists another light logic which corresponds to polynomial time, namely
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SAL (originally SLL [Laf04]). In this last section, we quickly justify why we
settled on calculi based on LAL instead of SAL.

As other light logics, SAL relies on the notion of depth to control the complexity
of reduction. However, while LAL uses two modalities bang and paragraph,
SAL is built with a single modality bang which is sufficient to ensure both
soundness and completeness with respect to polynomial time. In particular,
the combinatorial proof of soundness is quite simple and works for an arbitrary
reduction strategy while LAL relies on a non-trivial transformation of reduction
sequences into shallow-first ones (see Chapter 6).

Also, we could think that the less number of modalities we have to manipulate,
the more easier it is to program. It turns out that the second modality para-
graph of LAL allows to hide some complexity details which have to appear in
SAL. This can be exemplified at the level of types. We recall that in λ!§

LLT ,
a uniform type Nat is given to the Church encoding of natural numbers and
that the addition and multiplication functions are given the following types (see
Figure 7.16):

add : Nat( Nat( Nat

mult : !Nat( Nat( §Nat

In a soft calculus (see [GR09]), the type of Church natural numbers Nati is not
uniform, it is indexed by a number i ∈ N>0 and the addition and multiplication
functions have the following types:

add : Nati( Natj ( Natmax(i,j)+1

mult : Natj ( !jNati( Nati+j

This lack of uniformity complicates the programming. In particular, if we as-
sume a soft calculus with regions, we cannot update the content of a region with

one of these functions since the type of the region is fixed. In λ
!§‖
LLT , we are at

least able to define a function update that applies the function add on a region
content (see Section 7.6.2).

Considering that we wanted to favor expressivity of the type system over sim-
plicity of the soundness proof, we decided to base our polynomial calculi on
LAL. Yet, we are conscious that the programming style offered by LAL is
highly constrained by the stratification by depth levels.
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Chapter 8

Quantitative realizability
for an imperative λ-calculus

This chapter is joint work with Alöıs Brunel.

In the unique chapter of this part, we propose a semantic method to control the
complexity of higher-order imperative programs. The framework of quantitative
realizability has been proposed by U. Dal Lago and M. Hofmann [LH11] to give
semantic proofs of complexity soundness of various light logics. Our contribu-
tion is to extend quantitative realizability to higher-order imperative programs,
taking a light affine type system as case study. By proving that the type system
is adequate with the realizability model, we prove that every typable program
terminates in polynomial time under a call-by-value strategy.

Contrary to the combinatorial methods presented in the previous part, quan-
titative realizability allows to give uniform proofs of complexity soundness of
various type systems. They key point is to parametrize the interpretation by a
so-called quantitative monoid which depends on the underlying type system and
whose elements contain information on the running time of programs. Moreover,
our interpretation is based on bi-orthogonality (à la Krivine [Kri09]), following
A. Brunel’s extension of quantitative realizability to a classical setting [Bru12].
This should ease the addition of e.g. control operators. Interestingly, the pro-
posed realizability framework allows to deal with affine terms (that can bind 0
occurrences of free variables), but the important drawback is that it currently
does not scale to multi-threaded programs. Table 8.1 summarizes the compari-
son between the combinatorial proofs and the realizability ones.

We want to emphasize on the fact that the adequacy of the light affine type sys-
tem with respect to the realizability interpretation is partly due to the fact that
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Combinatorial Realizability
Untyped

√

Multi-threading
√

Modularity
√

Affinity
√

Table 8.1: Comparison of proof features in the polynomial case

the type system is built on the depth system λ
!§‖
LLD provided in Chapter 7. Re-

alizability in the presence of imperative side effects is usually difficult and raises
circularity issues; here, our notion of stratification of regions by depth levels,
guaranteed by the type system, allows to give a well-defined interpretation.

Outline The chapter is organized as follows. In Section 8.1, we present an
imperative λ-calculus together with a light affine type system which is the se-

quential subset of λ
!§‖
LLT . In Section 8.2, we present the realizability model.

We start in Section 8.2.1 by introducing the quantitative monoid whose ele-
ments contain information on the execution time of programs. Then, in Sec-
tion 8.2.2 we present a notion of orthogonality which takes stores into account
. In Section 8.2.3, we define the interpretation and prove that the type system
is adequate to the interpretation. This allows us to associate every well-typed
program with an element of the quantitative monoid that guarantees its termi-
nation in polynomial time. Finally, in Section 8.3 we discuss the pros and cons
of the realizability method with respect to the combinatorial ones, with respect
to a monadic translation, and we highlight connections with related work.

8.1 A light affine imperative λ-calculus

In this section, we first present the syntax and semantics of an imperative λ-
calculus which is based on the sequential subset of λ!§‖ (Section 7.1). Then, we
introduce a light affine type system which is an affine variant of the sequential

subset of λ
!§‖
LLT (Section 7.5).

8.1.1 An imperative λ-calculus

The syntax of terms of the imperative λ-calculus (λ!§Reg) is given in Figure 8.1.
It is like the syntax of the call-by-value λ!§‖ (Figure 7.11), except that there is
no parallelism constructs. We denote the set of values by V and the set of terms
by Λ. We consider terms up to α-renaming.

Contrary to the languages presented previously, we present the operational se-
mantics of λ!§Reg by an abstract machine. This presentation allows for a clear
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-values V ::= x | ? | r | λx.M | !V | §V
-terms M ::= V |MM | §M

let !x = V in M | let §x = V in M
get(r) | set(r, V )

Figure 8.1: Syntax of λ!§Reg

symmetrization between terms and contexts, and this will be very useful to
define an orthogonality relation later on in Section 8.2.2.

The configurations of the abstract machine, which evaluates programs with a
left-to-right call-by-value strategy, are described in Figure 8.2. A configuration

-stacks π ::= � | V � π |M · π | § · π
-stores S ::= r ⇐ V | (S ] S)
-configurations C ::= 〈M,π, S〉

Figure 8.2: Configuration of the abstract machine of λ!§Reg

of the machine is a triplet of a term, a stack and a store. We denote the set
of stacks by Π and the set of stores by Σ. As usual, a store is a multiset of
assignments (note that we use the operator ‘]’ instead of ‘‖’ to combine store
assignments).

A stack keeps track of the the rest of the program to be evaluated. The empty
stack is denoted by ‘�’ and there are the following operations:

• (V � π) is to push a function V on the stack π and evaluate its argument
on its right;

• (M · π) is to push an argument M on the stack π and evaluate the calling
function on its left;

• (§·π) is to push a paragraph constructor on the stack π and evaluate what
was under this paragraph.

Remark 8.1.1. The reduction is outer-bang since there is no stack of the shape
(! · π). The reason is extensively discussed in Section 7.3.1.

To give some more intuitions, a stack may be seen as the finite composition
of elementary evaluation contexts. The following translation from stacks to
outer-bang by-value evaluation contexts (see Figure 7.11) illustrates the corre-
spondence:

� = [·]
V � π = π[V [·]]
M · π = π[[·]M ]
§ · π = π[§[·]]
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A configuration of the abstract machine is executed according to the rules of
Figure 8.3. As usual, reading a region amounts to consume a value from the

〈MN,E, S〉 −→ 〈M,N · E,S〉
〈V,M · E,S〉 −→ 〈M,V � E,S〉

〈V, λx.M � E,S〉 −→ 〈M [V/x], E, S〉
〈§M,E, S〉 −→ 〈M, § · E,S〉 if M /∈ V
〈V, § · E,S〉 −→ 〈§V,E, S〉

〈let !x = !V in M,E, S〉 −→ 〈M [V/x], E, S〉
〈let §x = §V in M,E, S〉 −→ 〈M [V/x], E, S〉
〈get(r), E, r ⇐ V ] S〉 −→ 〈V,E, S〉

〈set(r, V ), E, S〉 −→ 〈?,E, r ⇐ V ] S〉

Figure 8.3: Reduction rules of the abstract machine

store and writing to a region amounts to add the value to the store.

Example 8.1.2. Here is an example of reduction. Take the function

F = λx.let !y = x in set(r, §y)

that writes its argument to region r. It can be used to transfer a value from
another region r′ as follows:

〈Fget(r′), �, r′ ⇐ !V 〉
−→ 〈F, get(r′) · �, r′ ⇐ !V 〉
−→ 〈get(r′), F � �, r′ ⇐ !V 〉
−→ 〈!V, F � �, ∅〉
−→ 〈let !y = !V in set(r, §y), �, ∅〉
−→ 〈set(r, §V ), �, ∅〉
−→ 〈?, �, r ⇐ §V 〉

The following notation will be useful to measure the execution time of programs.

Definition 8.1.3 (Time). We write C⇓n when the configuration C terminates
in n steps of the abstract machine.

8.1.2 A light affine type system

In this section, we introduce the light affine type system λ!§Reg
LAT . It differs from

the light linear type system λ
!§‖
LLT (Section 7.5) in several ways:

• There are explicit rules for the weakening and contraction of variables; this
allows for a simpler presentation of the latter adequacy theorem (Theo-
rem 8.2.23).
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• It is affine in the sense that it allows to bind 0 occurrences of free vari-
ables and thus to discard data without garbage collecting regions (see
Section 7.5.2).

• It has no polymorphic types, which keeps the realizability interpretation
simpler. Note that we therefore loose the completeness property (Theo-
rem 7.6.3).

Types and contexts

The syntax of types and contexts is given in Figure 8.4. Comparing to the types

-types A ::= Unit | A( A | !A | §A | RegrA
-variable contexts Γ ::= x1 : (u1, A1), . . . , xn : (un, An)
-region contexts R ::= r1 : (δ1, A1), . . . , rn : (δn, An)

Figure 8.4: Syntax of types and contexts of λ!§Reg
LAT

and contexts of λ
!§‖
LLT (Figure 7.12), we note the absence of the behavior type

B that was used for parallelism and the polymorphic type ∀t.A

As usual, we state in Figure 8.5 when a type is well-formed with respect to a
region context.

R ↓ t R ↓ Unit

R ↓ A R ↓ α
R ↓ (A( α)

R ↓ A
R ↓ †A

r : (δ, A) ∈ R
R ↓ RegrA

∀r : (δ, A) ∈ R R ↓ A
R `

R ` R ↓ α
R ` α

∀x : (δ, A) ∈ Γ R ` A
R ` Γ

Figure 8.5: Formation of types and contexts of λ!§Reg
LAT

Typing rules

A typing judgment takes the form

R; Γ `δ M : A

where δ is a depth. It It should entail the following:
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• if x : (λ,A) ∈ Γ then x may occur at most once in M , and it must not be
in the scope of a modal constructor;

• if x : (§, A) ∈ Γ then x may occur at most once in M , and it must be in
the scope of a paragraph constructor;,

• if x : (!, A) ∈ Γ then x may occur arbitrarily many times in M , and it
must be in the scope of a modal constructor;

• if r : (δ′, A) ∈ R then get(r) and set(r) occur at depth δ′ in †δM .

The rules are given in Figure 8.6.

var
R `

R;x : (λ,A) `δ x : A
unit

R `
R;− `δ ? : Unit

reg
R ` r : (δ, A) ∈ R
R;− `δ r : RegrA

contr
R; Γ, x : (!, A), y : (!, A) `δ M : B

R; Γ, z : (!, A) `δ M [z/x, z/y] : B
weak

R; Γ `δ M : B R ` Γ, x : (u,A)

R; Γ, x : (u,A) `δ M : B

lam
R; Γ, x : (λ,A) `δ M : B

R; Γ `δ λx.M : A( B
app

R; Γ `δ M1 : A( B R; ∆ `δ M2 : A

R; Γ,∆ `δ M1M2 : B

prom!

R;x : (λ,A) `δ+1 V : A

R;x : (!, A) `δ !V : !A
elim!

R; Γ `δ V : !A R; ∆, x : (!, A) `δ M : B

R; Γ,∆ `δ let !x = V in M : B

prom§
R; Γλ,∆λ `δ+1 M : A

R; Γ§,∆! `δ §M : §A
elim§

R; Γ `δ V : §A R; ∆, x : (§, A) `δ M : B

R; Γ,∆ `δ let §x = V in M : B

get
R;− `δ r : RegrA

R;− `δ get(r) : A

set
R;− `δ r : RegrA R; Γ `δ V : A

R; Γ `δ set(r, V ) : Unit
store

R;− `δ r : RegrA R; Γ `δ V : A

R; Γ `0 r ⇐ V : Unit

Figure 8.6: The light affine type system λ!§Reg
LAT

Remark 8.1.4. In binary rules, we implicitly require that the contexts Γ and
∆ are disjoints. There are explicit rules weak and contr for the weakening and
contraction of variables. In particular, the rule contr may only be applied to
variable hypotheses with usage ‘!’ and this has the following consequences:

• in lam, FO(x,M) ≤ 1

• in prom!, FO(M) ≤ 1
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• in elim§, FO(x,M) ≤ 1

The above predicates which are explicitly given (in strictly linear forms) in the

typing rules of λ
!§‖
LLT are here implicitly guaranteed by the rules of contraction

and weakening. Therefore the duplication and erasure points are explicit in
typing derivation and this simplifies the presentation of the adequacy theorem
(Theorem 8.2.23).

We introduce a notion of well-typing that will ensure that our realizability in-
terpretation can be defined inductively.

Definition 8.1.5 (Well-typing). We say that a program M is well-typed if a
judgment R; Γ `δ M : A can be derived for some R, Γ, δ such that if r : (δ′, B) ∈
R, then B = §C.

Remark 8.1.6. The definition of well-typing is slightly more constrained than

in λ
!§‖
LLT since region types have to be guarded by a modality. This modality is

necessary to guarantee that the interpretation is well-founded. Moreover, this
modality has to be a paragraph for quantitative reasons. All this will become
clear when defining the interpretation in Section 8.2.3. On the other hand, we

discuss the induced loss of expressivity with respect to λ
!§‖
LLT in Section 8.3.

We conclude this section by claiming that the subject reduction and progress

properties can be adapted from λ
!§‖
LLT in a straightforward way (see Proposi-

tion 7.5.6 and 7.5.7).

8.2 Quantitative realizability

In this section, we present a quantitative realizability model of the light affine
type system λ!§Reg

LAT by means of bi-orthogonality à la Krivine [Kri09]. At the
end, we prove that the type system is adequate to the interpretation and this
allows us to associate every well-typed program with an element of a quantitative
monoid that guarantees its termination in polynomial time.

The realizability method, which was introduced by Kleene [Kle73], has been
used to give interpretations of many computational systems. Recently, U. Dal
Lago and M. Hofmann [LH10, LH11] extended realizability with quantitative
information in order to model various light logics. Their idea is to take programs
running in bounded time as realizers, where bounds are represented by elements
of a resource monoid. Later on, A. Brunel showed [Bru12] how this quantitative
extension can be adapted to a framework based on bi-orthogonality, namely
Krivine’s classical realizability [Kri09].

Here is an overview of our model:

• The model is quantitative which means that the type interpretation A is a
set of pairs (M,p) where M is a term and p is a weight which is an element
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of a so-called quantitative monoid that gives information on the running
time of M . We present a particular instance of quantitative monoid in
Section 8.2.1.

• The type interpretation A is defined as the orthogonal of a set of pairs
(π, f) where π is a stack and f is a function on the light monoid. Besides,
the orthogonality relation is parametrized by a set of pairs (S, s) where S
is a store and s an element of the light monoid. This means roughly that
A is the set of all (M,p) such that the configuration 〈M,π, S〉 terminates
in a number of steps that depends on f(p + s), where + is the monoid
operation. The orthogonality relation is presented in Section 8.2.2.

• The actual type interpretation `δ A is indexed by a depth level δ which
allows us to give an inductive interpretation in the presence of region
types, which usually entail circularity issues. The indexed interpretation
of types is given in Section 8.2.3.

Having defined the model, in Section 8.2.4 we derive a theorem of quantitative
adequacy which gives us an automatic way to infer an element of the quantitative
monoid from a well-typed program. By analyzing the shape of this element we
conclude that the program runs in polynomial time.

8.2.1 The light monoid

The quantitative realizability framework [LH11] is parametrized by a resource
monoid whose elements contain information on the execution time of programs.
The resource monoid should have properties that match the structure of the
logic that is intended to be interpreted, while the realizability structure does
not change. In his work on quantitative classical realizability [Bru12], Brunel in-
troduced quantitative monoids as a generalization and simplification of resource
monoids. In this section, we present the light monoid which is a particular
instance of quantitative monoid that matches the structure of λ!§Reg

LAT .

Let us introduce the light monoid step by step. The general intuition is that
a program will be associated to an element p (a weight) of the monoid which
gives information on its execution time. We should have a way to associate a
weight to the interaction of two programs and a way to compute the concrete
quantity associated to a weight. For this, we need a quantitative monoid.

Definition 8.2.1 (Quantitative monoid). A quantitative monoid is a structure
(M,+,0,1,≤, ‖·‖) where:

• (M,+,0) is a monoid such that:

– (M,≤) is a preordered set;

– ∀p, q, r, s ∈M such that p ≤ q and r ≤ s, we have p+ r ≤ q + s

• ‖·‖ :M→ N is a function such that:
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– for every p, q ∈M, we have ‖p‖+ ‖q‖ ≤ ‖p+ q‖;

– if p ≤ q then ‖p‖ ≤ ‖q‖

• 1 ∈M is such that 1 ≤ ‖1‖.

Example 8.2.2. The set N is a simple instance of quantitative monoid, taking
‖n‖ = n.

In the sequel, we use lower-case consonant letters p, q,m, v, . . . to denote ele-
ments of a quantitative monoid, that we may also call weights. Moreover, n
denotes the element of M defined as 1 + · · ·+ 1︸ ︷︷ ︸

n times

.

Remark 8.2.3. Here are some intuitions about the previous definition.

• The operation + computes the weight of the interaction of two programs.

• The elements of M are abstract quantities, so given such an abstract
quantity p ∈M, ‖p‖ provides the concrete quantity associated to it.

• The inequality ∀p, q, ‖p‖ + ‖q‖ ≤ ‖p + q‖ informally represents the fact
that the amount of resources consumed by the interaction of two pro-
gram entities is more than the total amount of resources that they use
independently.

• Assuming that the program M has weight p and that M ′ −→ M , the
program M ′ will be given weight p+ 1.

We need an operation ! :M→M to associate the program !M with the weight
!p, given that the program M has weight p. In a similar way, we should be able
to compute the weight §p of the program §M . That is why we need sensible
functions.

Definition 8.2.4 (sensible function). Given a quantitative monoid, we say that
a function f :M→M is sensible if whenever p ∈ M we have f(p) ≤ f(p+ 1)
and ‖f(p)‖ 6= ‖f(p+ 1)‖.

Finally, the sensible functions should satisfy a given set of properties that depend
on the type system which is interpreted. We enumerate them through the
structure of light monoid.

Definition 8.2.5 (Light monoid). We call light monoid a quantitative monoid
M equipped with three sensible functions !, §, F :M→M such that for every
p, q ∈M, the following properties hold:

• (weak dereliction) There is some p′ such that p ≤ p′ and §p′ ≤ !p

• (monoidalness) §(p+ q) ≤ §p+ §q

• (distributivity) There are p′, q′ such that p ≤ p′ and q ≤ q′, that enjoy
§p′ + §q′ ≤ §(p+ q)

• (contraction) !p+ !p ≤ !p+ 1
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• (functoriality) !(p+ q) ≤ F (p) + !q

Such a light monoid exists, as witnessed by the following example.

Example 8.2.6. We define the structure (Ml,+,0,1,≤, ‖·‖) where

• M is a set of triples (n,m, f) ∈ N × N × NN where f is a polynomially-
bounded function

• (n,m, f) + (l, k, g) = (n+ l,max(m, k),max(f, g))

• 0 = (0, 0, x 7→ 0)

• 1 = (1, 0, x 7→ x)

• (n,m, f) ≤ (l, k, g)⇐⇒ n ≤ l ∧ n+m ≤ l + k ∧ f ≤ g

• If (n,m, f) ∈M, ‖(n,m, f)‖ = n · f(m+ n).

ThenMl is a quantitative monoid. Moreover, we can define the three following
operations !, §, F on Ml:

• § = (n,m, f) 7→ (dn/me,m, x 7→ x2f(x2))

• ! = (n,m, f) 7→ (1, n+m,x 7→ x3f(x3))

• F = (n,m, f) 7→ (1 + n+m,m, x 7→ x3f(x3))

Proposition 8.2.7. (Ml,+,0,1,≤, ‖·‖, !, §, F ) is a light monoid.

Remark 8.2.8. In the monoid Ml, the operations !, § and F make the degree
of the third component of any element of Ml grow. Therefore we will be able
to relate the degree of the bounding polynomial with the depth of the program.

8.2.2 Orthogonality

In a non quantitative setting, orthogonality is usually defined between a program
and a stack or any kind of environment [Kri09]. Following Brunel [Bru12], we are
going to define an orthogonality relation between a pair (M,p) and a pair (π, f)
where M is a term, π is a stack, p ∈ M and f ∈ MM. The key contribution
of the present section is to parametrize the orthogonality relation by a set of
pairs (S, s) where S is a store and s ∈M such that s represents the sum of the
weight of the values of S.

In orthogonality-based models, we first define a notion of ‘correct’ computation
with respect to some property like e.g. termination, progress,. . . This is done
by fixing a set ‚ called the observable. Here, it contains configurations that
execute in bounded time.

Definition 8.2.9 (Observable). The observable ‚ is a set of pairs (C, p) such
that the configuration C terminates in at most ‖p‖ steps:

‚ = {(C, p) | C⇓n ∧ n ≤ ‖p‖}
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Proposition 8.2.10. This observable satisfies some important properties:

• (≤-saturation) If (C, p) ∈‚ and p ≤ q then (C, q) ∈‚.

• (−→-saturation) If (C, p) ∈‚ and C ′ −→ C then (C ′, p+ 1) ∈‚.

The property of −→-saturation will be extensively used to count precisely the
number of reduction steps.

We define the following abbreviations:

• ΛM is the set of weighted terms Λ×M

• VM is the set of weighted values V×M

• ΣM is the set of weighted stores Σ×M

• ΠM is the set of weighted stacks Π×MM

The observable induces a notion of orthogonality which, in contrast with usual
realizability models, is parametrized by a set of weighted stores.

Definition 8.2.11 (Orthogonality). Suppose S ⊆ ΣM. The orthogonality re-
lation ⊥S ⊆ ΛM ×ΠM is defined as:

(M,p) ⊥S (π, e) ⇐⇒ ∀(S, s) ∈ S, (〈M,π, S〉, f(p+ s)) ∈‚
This orthogonality relation lifts to sets of weighted terms and weighted stacks:

• if X ⊆ ΛM, X⊥S = {(E, f) ∈ ΠM | ∀(M,p) ∈ X, (M,p) ⊥S (E, f)}

• if X ⊆ ΠM, X⊥S = {(M,p) ∈ ΛM | ∀(E, f) ∈ X, (M,p) ⊥S (E, f)}

The operation (·)⊥S satisfies the usual orthogonality properties.

Lemma 8.2.12. Suppose X,Y ⊆ ΛM or X,Y ⊆ ΠM:

1. X ⊆ Y implies Y ⊥S ⊆ X⊥S

2. X ⊆ X⊥S⊥S

3. X⊥S⊥S⊥S = X⊥S

Remark 8.2.13. If X ⊆ ΛM, then X⊥S⊥S captures all the programs that
‘behave’ the same as those of X.

The following definition will be useful to over approximate the weight of a term.

Definition 8.2.14 (≤-closure). If X ⊆ ΛM we define its ≤-closure

X≤ = {(M,p) | ∃q ≤ p, (M, q) ∈ X}

Remark 8.2.15. Notice that for any S, we have X≤ ⊆ X⊥S⊥S . To see this, let
(M,p) ∈ X≤ and (E, f) ∈ X⊥S . Then there exists q ≤ p such that (M, q) ∈ X.
Thus for any (S, s) ∈ S we have (M,E, S, f(q + s)) ∈ ‚. By ≤-saturation we
have (M,E, S, f(p+ s)) ∈‚. We conclude that (M,p) ∈ X⊥S⊥S .
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We now define a set of S-reducibility candidates that will be used to show the
termination in polynomial time of programs.

Definition 8.2.16 (S-reducibility candidates). The set of S-reducibility candi-
dates, denoted by CRS , is the set of X ⊆ ΛM such that:

• X = X⊥S⊥S

• (�, x 7→ x) ∈ X⊥S

Remark 8.2.17. If (M,p) ∈ X, X ∈ CRS and (∅,0) ∈ S, then 〈M, �, ∅〉
terminates in at most ‖p‖ steps. In fact our notion of reducibility candidate
extends the usual notion in the non-quantitative case.

8.2.3 Interpretation

We are now going to give an interpretation of the types of λ!§Reg
LAT by using the

orthogonality machinery previously defined. In the end we will be able to prove
that each type interpretation is a reducibility candidate.

The interpretation is divided into three parts defined by mutual induction, first
on a depth level δ and then on the size of a type A:

• the interpretation R `δ ⊆ ΣM of a region context R;

• the pre-interpretation R `δ A ⊆ VM of a type A;

• the interpretation R `δ AS ⊆ ΛM of a type A with respect to a set S ⊆
ΣM.

Here is roughly how it works: we interpret a region context as a set of weighted
stores which only contains ‘safe’ values. These values are said to be safe because
they belong to the pre-interpretation of the type of the region in which they are
contained. The pre-interpretation of a type is a set of weighted values. In order
to get not only values but all the wanted realizers, the interpretation of a type
is defined as the bi-orthogonal of its pre-interpretation, where the orthogonality
relation is parametrized by a set S.

Suppose R is the region context

R = r1 : (δ1, §A1), . . . , rn : (δn, §An)

where types Ai are guarded by a modality §.
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Interpretation of region contexts

The interpretation of a region context is defined as follows:

R `=δ =

(S,
∑
δi=δ

∑
1≤j≤ki

§qij)


dom(S) = {ri | δi = δ}
∧ ∀ri ∈ dom(S), S(ri) = {§V i1 , §V i2 , . . . , §V iki}
∧ ∀j ∈ [1, ki], (V

i
j , q

i
j) ∈ R `δi+1 Ai


R `δ = {(S1 ] S2, s1 + §s2) | (S1, s1) ∈ R `=δ ∧ (S2, s2) ∈ R `δ+1}

The intuition is that R `=δ only contains store assignments at level δ. Then,
we assign to the region ri a certain number (written ki) of values §V ij such that

(V ij , q
i
j) belongs to the pre-interpretation R `δi+1 Ai. The pre-interpretation

will be defined such that (§V ij , §qij) ∈ R `δi §Ai. Note that if for all ri ∈ dom(R)

we have δi < δ, then R `δ = ∅.

Pre-interpretation of types

We define the pre-interpretation as:

R `δ Unit = {(?,1)}≤
R `δ RegrA = {(r,1)}≤

R `δ A( B = {(λx.M, p) | ∀(V, v) ∈ R `δ A,∀S, R `δ v S, (M [V/x], p+ v) ∈ R `δ BS}≤
R `δ §A = {(§V, §v) | (V, v) ∈ R `δ+1 A}≤

R `δ !A = {(!V, !v) | (V, v) ∈ R `δ+1 A}≤

Note that the pre-interpretation of a type is closed by ≤. This will ease the
proof of adequacy (Theorem 8.2.23).

Interpretation of types

The interpretation of a type with respect to a set S is just defined as the bi-
orthogonal of the pre-interpretation:

R `δ AS = R `δ A⊥S⊥S

By taking the closure by bi-orthogonal of the pre-interpretation, we capture all
the terms (not only values) that realize a given type.

Remark 8.2.18. The presence of regions make the interpretation potentially
circular and yet it is well defined. Indeed, the Definition 8.1.5 of well-typing
entails the following: to define R `δ A, we need R `δ to be already defined.
But, in R each type is guarded by a modality §. This implies that to define
R `δ we only need to know each R `δ+1 Ai.
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The important property of the interpretation is that every interpretation of a
type A with respect to a set S ⊆ ΣM is a S-reducibility candidate; this will be
used to prove termination in polynomial time.

Proposition 8.2.19. For any depth δ, we have R `δ AS ∈ CRS . In particular
this is true for S = R `δ.

Proof. By properties of orthogonality (Lemma 8.2.12) we have

R `δ AS = R `δ A⊥S⊥S = R `δ A⊥S⊥S⊥S⊥S

It remains to show

(�, x 7→ x) ∈ (R `δ AS)⊥S

Take (M,p) ∈ R `δ A and (S, s) ∈ S. Since R `δ A ⊆ VM, M must be a value
and therefore

〈M, �, S,0〉 ∈‚
which by ≤-saturation means

〈M, �, S, p+ s〉 ∈‚
and we can conclude

(�, x 7→ x) ∈ R `δ A⊥S = (R `δ AS)⊥S

8.2.4 From adequacy to polynomial time

In this section, we prove a theorem of quantitative adequacy which states that
every pair (M,p) of a well-typed program M and a weight p ∈ M belongs to
the interpretation of its type. The weight p can be inferred automatically by
induction on M and by looking at the shape of p we conclude that M terminates
in polynomial time.

First we need to fix an ordering relation on stores.

Definition 8.2.20 (Store ordering). Let S ⊆ ΣM and

R = r1 : (δ1, A1), . . . , rn : (δn, An)

We write R `δ v S when the following holds:

• if (S, s) ∈ S then there is a decomposition (S, s) = (S1 ] S2, s1 + s2)
such that (S1, s1) ∈ R `δ and dom(S2) = {ri | δi < δ}. Moreover, if
(S3, s3) ∈ R `δ then (S3 ] S2, s3 + s2) ∈ S.
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Remark 8.2.21. This store ordering will make the type interpretation enjoy
properties similar to the one called extension/restriction by Amadio [Ama09].
It gives a way to characterize the values of a store that do not impact on
the reduction below a certain depth level. More concretely, if (S, s) ∈ S such
that R `δ v S, then there is a decomposition (S, s) = (S1 ] S2, §s1 + s2)
such that (S1, s1) ∈ R `δ+1 and dom(S2) = {ri | δi < δ + 1}. Therefore
R `δ+1 v {(S1 ]S2, s1)}. In other words, this means that the store S2 does not
impact on reductions happening below the depth level δ+ 1 since the weight s2

does not need to be considered.

Notations We shall introduce some notations for readability.

• We use the notations V , p and y to denote respectively a list of values
[V1, . . . , Vn], a list [p1, . . . , pn] of elements of M and a list of variables
[y1, . . . , yn]. If M is a term, we denote the term M [V1/y1, . . . , Vn/yn] by
M [V /y]. We denote the list [†p1, . . . , †pn] by †p and we define

∑
p to be

the sum
∑

1≤i≤n pi.

• Suppose Γ = x1 : (u1, A1), . . . , xn : (un, An). Then the notation (V , p) δ

Γ stands for (uiVi, pi) ∈ R `δ uiAi where 1 ≤ i ≤ n. Note that if ui = λ

we consider that λVi = Vi and λAi = Ai.

Example 8.2.22. If we have

(V , p) δ x1 : (λ,A1), x2 : (§, A2), x3 : (!, A3)

then V = [V1, V2, V3] and p = [p1, §p2, !p3] such that (V1, p1) ∈ R `δ A1, (§V2, §p2) ∈
R `δ §A2 and (!V3, !p3) ∈ R `δ !A3.

We now state the central theorem.

Theorem 8.2.23 (Quantitative adequacy).
Let M be a term of depth d such that R; Γ `δ M : C. By taking the light monoid
Ml, (V , p) δ Γ and any S such that R `δ v S, we have:

• if M is a value then (M [V /x], w(M) +
∑
p) ∈ R `δ C,

• otherwise (M [V /x], w(M) +
∑
p) ∈ R `δ CS ,

such that the weight w(M) ∈ Ml can be automatically computed by following
the rules of Figure 8.7.

The proof goes by induction on the typing derivation of M . We first need to
prove a particularly interesting lemma that will be used for the case of the rule
prom§.

Lemma 8.2.24 (Promotion). Suppose that for any S such that R `δ+1 v S,
(M,m) ∈ R `δ+1 AS holds. Then for any S such that R `δ v S, we have
(§M, §m+ 4) ∈ R `δ §AS .
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var
`δ x : 0

reg
`δ r : 1

unit
`δ ? : 1

contr
x : !, y : ! `δ M : w(M)

z : ! `δ M [z/x, z/y] : w(M) + 1
weak

`δ M : w(M)

x : u `δ M : w(M)

lam
`δ M : w(M)

`δ λx.M : w(M)
app

`δ M1 : w(M1) `δ M2 : w(M2)

`δ M1M2 : w(M1) + w(M2) + 3

prom§
`δ+1 M : w(M)

`δ §M : §w(M) + 4
elim§

`δ V : w(V ) `δ M : w(M)

`δ let §x = V in M : w(M) + w(V ) + 1

prom!

`δ+1 M : w(M)

`δ !M : F (w(M))
elim!

`δ V : w(V ) `δ M : w(M)

`δ let !x = V in M : w(M) + w(V ) + 1

get
`δ get(r) : 1

set
`δ+1 V : w(V )

`δ set(r, §V ) : §w(V ) + 2

Figure 8.7: Inferred weights from the adequacy of λ!§Reg
LAT

The proof of this lemma makes use of many of the notions we have introduced:

• It requires monoidalness and distributivity of § :M→M to deal with the
store, but this is not true for ! : M → M (see Definition 8.2.5). Conse-
quently, it explains why types of regions must be guarded by a paragraph
and not a bang.

• It involves the store ordering to identify the parts of the store that do not
interact below a certain depth level (see Remark 8.2.21).

Proof of Lemma 8.2.24. Take S such that R `δ v S, (E, e) ∈ R `δ §A⊥S and

(S′, s′) ∈ S. There is a decomposition (S′, s′) = (S1 ] S2, §s1 + s2) such that
(S1, s1) ∈ R `δ+1 and dom(S2) = {ri | δi < δ + 1}. We want to show

(〈§M,E, S′〉, e(§m+ 4 + §s1 + s2)) ∈‚
By −→-saturation, ≤-saturation and monoidalness of § :M→M it suffices to
show

(〈M, § · E,S′〉, e(§(m+ s1) + s2 + 3)) ∈‚
We set S ′ = {(S′, s1)}. Clearly R `δ+1 v S ′ and (S′, s1) ∈ S ′, therefore it is
sufficient to prove

(§ · E, λx.e(§x+ 3 + s2)) ∈ (R `δ+1 AS′)
⊥S′ = R `δ+1 A

⊥S′
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So let (V, v) ∈ R `δ+1 A. Hence (§V, §v) ∈ R `δ §A and we know that (S′, §s1 +

s2) ∈ S. Since (E, e) ∈ R `δ §A⊥S , we have

(〈§V,E, S′〉, e(§v + §s1 + s2)) ∈‚
So by −→-saturation

(〈V, § · E,S′〉, e(§v + 1 + §s1 + s2)) ∈‚
Hence, by distributivity of § :M→M, we obtain

(〈V, § · E,S′〉, e(§(v + s1) + 2 + 1 + s2)) ∈‚

We can finally go through the proof of quantitative adequacy.

Proof of Theorem 8.2.23. By induction on the typing of M . We highlight four
interesting cases. The complete proof can be found in Appendix A.

(set) We have

r : (δ, §C) ∈ R R; Γ `δ+1 V : C

R; Γ `δ set(r, §V ) : Unit

Without loss of generality we assume V is closed and Γ = ∅. Let S such

that R `δ v S, (E, e) ∈ R `δ Unit
⊥S

and (S, s) ∈ S. We want to prove

(〈set(r, §V ), E, S〉, e(§w(V ) + 2 + s)) ∈‚

Since 〈set(r, §V ), E, S〉 −→ 〈?,E, S]r ⇐ §V 〉, by −→-saturation if suffices
to show

(〈?,E, S ] r ⇐ §V 〉, e(1 + s+ §w(V )) ∈‚
which amounts to prove (S ] r ⇐ §V, s + §w(V )) ∈ S. There must be a
decomposition (S, s) = (S1 ] S2, s1 ] s2) such that (S1, s1) ∈ R `δ and
dom(S2) = {ri | δi < δ}. By induction we have (V,w(V )) ∈ R `δ+1 C and

therefore (S1 ] r ⇐ §V, s1 + §w(V )) ∈ R `δ. This allows us to conclude
(S ] r ⇐ §V, s+ §w(V )) ∈ S.

(get) We have
r : (δ, §A) ∈ R
R;`δ get(r) : §A

Let S be such that R `δ v S, (E, e) ∈ R `δ §A⊥S and (S, s) ∈ S. There

must be a decomposition (S, s) = (S1 ] S2, s1 ] s2) such that (S1, s1) ∈
R `δ and dom(S2) = {ri | δi < δ}. Therefore the value which is read
must belong to S1. By definition of the interpretation, any decomposition
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(S1, s1) = (S′]r ⇐ §V, s′+§pV ) is such that (V, pV ) ∈ R `δ+1 A. Clearly

this entails (§V, §pV ) ∈ R `δ §A and (S′ ] S2, s
′ + s2) ∈ S, and therefore

(〈§V,E, S′ ] S2〉, e(§pV + s′ + s2)) ∈‚
Hence by−→-saturation (〈get(r), E, S〉, e(1+s)) and we conclude (get(r),1) ∈
R `δ §AS .

(prom!) We have
R;x : (λ,A) `δ+1 V : B

R;x : (!, A) `δ !V : !B

Let (V ′, p) ∈ R `δ+1 A. By induction we have (V [V ′/x], w(V ) + p) ∈
R `δ+1 B and therefore ((!V )[V ′/x], !(w(V ) + p)) ∈ R `δ !B. By functo-
riality of ! :M→M, !(w(V ) + p) ≤ F (w(V )) + !p and thus by ≤-closure,
((!V )[V ′/x], F (w(M)) + !p) ∈ R `δ !B. And this is what we want since

(!V ′, !p) ∈ R `δ !A.

Notice that if the rule prom! had more than one variable in the context, we
would need the monoidalness property (!(p+q) ≤ !p+!q) which is not true.
Also, if it were not restricted to values, we would need the distributivity
property (!p+ !q ≤ !(p+ q)) to prove a lemma similar to Lemma 8.2.24 for
the bang modality.

(prom§) We have

R; Γλ,∆λ `δ+1 M : C

R; Γ§,∆! `δ §M : §C
Assume the variables associated to the context Γ and ∆ are respectively
noted x and y. Suppose (V , p) δ+1 Γλ and (W, q) δ+1 ∆λ. By induction
hypothesis, for any S such that R `δ+1 v S we have

(M [V /x,W/y], w(M) +
∑

p+
∑

q) ∈ R `δ+1 CS

Take S ′ such that R `δ v S ′. By Lemma 8.2.24,

(§(M [V /x,W/y]), §(w(M) +
∑

p+
∑

q) + 4) ∈ R `δ §CS′

By weak dereliction and monoidalness of § :M→M, we have

§(w(M) +
∑

p+
∑

q) ≤ §w(M) +
∑
§p+

∑
!q

Therefore by ≤-saturation we conclude

(§(M [V /x,W/y]), §w(M) +
∑
§p+

∑
!q + 4) ∈ R `δ §CS′

which is what we want since (V , §p) δ Γ§ and (W, !q) δ ∆!. The case
where M is a value is similar to the case of the rule prom!, except that
we use the properties weak dereliction and monoidalness of § : M →M
instead of functoriality of ! :M→M.
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As a corollary of the adequacy theorem, we obtain the announced theorem of
termination in polynomial time.

Theorem 8.2.25 (Termination in polynomial time). There exists a family of
polynomials {Pd}d∈N such that for any well-typed term M of depth d, M termi-
nates in time bounded by Pd(s(M)).

Proof. Assume R;− `δ M : A. By quantitative adequacy (Theorem 8.2.23) we
have (M,w(M)) ∈ R `δ AS for any S such that R `δ v S. Since (∅,0) ∈ S
and (�, x 7→ x) ∈ R `δ A⊥S by Proposition 8.2.19, we can say that 〈M, �, ∅〉
terminates in at most ‖w(M)‖ steps. Moreover, the size of the final program
must be lower or equal to ‖w(M)‖.

It remains to analyze the shape of ‖w(M)‖. It is easy to see that only the
rules prom§ and prom! increase the degree of the polynomial bounding the third
component of w(M). Therefore ‖w(M)‖ is a function bounded by a polynomial
whose degree depends on the depth of M and which is given the size of M as
input.

8.3 Discussion

Affinity The advantage of the realizability interpretation over the combina-
torial method is that it can handle affine terms in an easy way. Recall that

the type system λ
!§‖
LLT is strictly linear so that the shallow-first transformation

of reduction sequences can be easily proved (see Section 7.2). The realizability
proof does not rely on such a transformation and so it is not necessary to have
a strict linearity condition. In fact, the weakening rule weak (which allows to
derive affine terms) is shown adequate to the interpretation by the fact that the
interpretation of a term is a ≤-closure (see Definition 8.2.14), which allows to
over-approximate the weight of a realizer with the weights of discarded values.

Guarded region types The condition of well-typing (Definition 8.1.5) is
quite strict: it requires that every region type is guarded by a modality ‘§’ so
that the interpretation is well-defined (see Remark 8.2.18). In fact, it means that
every stored value must be of the shape §V . This entails a loss of expressivity

with respect to the light linear type system λ
!§‖
LLT on the two following points:

• This prevents to implement the consume-and-rewrite mechanism (see Sec-
tion 3.3.4) to simulate the operational semantics of references. Indeed, to
be consumed and rewritten, a value must be duplicable, that is of the

shape !V . The system λ
!§‖
LLT can simulate references (see Section 7.6.2)

since region types do not need to be guarded by any modality.

• The system λ
!§‖
LLT captures some kind of side effects that are circular but

do not break termination in bounded time, as long they operate on linear
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values (i.e. of shape different than †V ). We remarked (see Section 5.5.31)
that this is a gain of expressivity with respect to the stratification of
regions by effects. On the other hand, the system λ!§Reg

LAT does not allow
such circular side effects because the store cannot contain linear values,
they must be of the shape §V .

Guarded recursive types It is well-known that recursive types can be added
to a light type system without breaking the time bounds [LB06]. Indeed, we
have seen in the second part of this thesis that complexity soundness only relies
on a so-called ‘depth system’. The realizability framework that we propose can
handle guarded recursive types. Informally, a guarded recursive type µt.A is
such that every free occurrence of t in A is in the scope of a modality. For
example, the type µt.Unit ( !t is guarded while Unit ( !(µt.t( Unit) is not.
We then define

R `δ µt.A = R `δ A[µt.A/t]

Since the guarding modalities make the depth level of the interpretation increase,
it suffices to fix a maximum level δmax so that the interpretation is well-defined.
The depth δmax should corresponds to the depth of a program.

We preferred not to include recursive types in the interpretation to keep it
relatively simple. Recursive types could be used to type e.g. Scott numer-
als [Wad80], a linear encoding of natural numbers, though the gain of expres-
sivity is quite small because we cannot associate any iterator to them.

Nakano’s modality and step-indexing Realizability in the presence of re-
cursive structures (regions, recursive types) is usually difficult. Our realizability
model is well-defined because the depth levels permit to reflect the stratification
of light logics into the interpretation. We draw some connections with related
works. Perhaps the closest work is about the modality ‘.’ of Nakano [Nak00].
In this framework, the index k represents the number of nested ‘.’ modalities.
Each type variable of a recursive type or each type of a reference has to be
guarded by a modality. Then the interpretation is well-defined by taking that
the interpretation of the type .A at level k is equal to the interpretation of the
type A at level k − 1. This work has been connected to step-indexed models
which were proposed by Appel and McAllester [AM01] to interpret recursive
types and reference types. Informally, the idea is to index the interpretation
of a type by a natural number k and to consider terms that are ‘safe’ up to k
reduction steps. It is then possible to define an interpretation by induction on
the index k.

1This section deals with the elementary case but it can be safely transposed to the poly-
nomial case.
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A state-passing translation Our realizability model is indexed by depth
levels. We notice that this ‘depth-indexing’ technique can be used to give an
alternative proof of termination in polynomial time of λ!§Reg

LAT , by means of a
typed translation from the imperative λ-calculus to a pure λ-calculus in state-
passing style.

Due to circularity issues, it is usually difficult to provide a translation into
state-passing style that preserves typing. Only recently, F. Pottier gave a typed
state-passing translation [Pot11] from System F equipped with references to an
extension of System Fω that makes use of Nakano’s later modality. In this work,
termination and divergence are preserved by translation.

We should also mention the work of P. Tranquilli [Tra10] which provides a typed
translation from an imperative λ-calculus to a pure λ-calculus. In particular, he
shows that the stratification of regions by means of types and effects corresponds
to avoiding the use of recursive types in the target language. Consequently, he
is able to provide an alternative proof of termination of the stratified imperative
λ-calculus.

Let us present briefly our idea of depth-indexed translation, by sketching the
translation at the type level. Roughly, we want to give a translation from
λ!§Reg

LAT to its functional subset λ!§
LAT (with tensor product), so that the translated

programs simulate the original ones. Since we know that the reduction in λ!§
LAT

is polynomial, it must also be the case in λ!§Reg
LAT . We first define a state monad

TS(A) = S ( A⊗ S

The translation is indexed by depth levels. Take the guarded region context

R = r1 : (δ1, §A1), . . . , rn : (δn, §An)

where δi ≥ δ. We translate it as follows:

R `δ =
⊗

ri∈dom(R)
∧ δi≤δ

§(δi+1−δ)R `δi+1 Ai

The type translation is as follows:

R `δ Unit = Unit
R `δ RegrA = Unit

R `δ A( B = R `δ A( TR`δ(R `δ B)
R `δ !A = !R `δ+1 A
R `δ §A = §R `δ+1 A

Remark 8.3.1. The translation is well-defined for reasons that are similar to
the realizability interpretation (see Remark 8.2.18). To define R `δ A, we need
R `δ to be already defined. But, in R each type is guarded by a modality §.
This implies that to define R `δ, we only need to know each R `δi+1 Ai.
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The state-passing translation has the same limitations as the realizability inter-
pretation regarding guarded region contexts (see the second paragraph of the
section). Moreover, the translation on terms, which is omitted here for the sake
of conciseness, illustrates why region types must be guarded by a paragraph
(and not a bang), again as in the realizability interpretation.

As future work, we would like to see if we can combine the concurrency monad
with the state monad so as to recover the expressivity offered by the combina-
torial methods presented in the second part of this thesis.



Chapter 9

Conclusion

In this thesis, we have presented an extension of the framework of Light Logics
to higher-order concurrent programs. As a result, we have obtained new static
criteria to bound the time complexity of programs. The criteria have been
developed gradually: first, we examined the issue of the termination of programs
(finite time); then, we considered termination of programs in elementary time;
last, we considered termination of programs in polynomial time. In addition,
we have introduced type systems that can be combined with the complexity
criteria so that well-typed programs are guaranteed to terminate in bounded
time and to return values. The expressivity of these static criteria has been
evaluated by observing that they capture concurrent programs that can iterate
functions producing side effects over inductive data structures (see Section 5.5.2
and Section 7.6.2).

These results have required to make various logical concept interact with the
world of higher-order concurrent imperative programs:

• We have shown how to combine an affine-intuitionistic type system based
on Linear Logic with an effect system that accounts for the way programs
act on regions of the store. This allowed us to develop a discipline of region
usage to ensure the confluence of programs, and to show that it can be
combined with the stratification of regions ensuring the termination of
programs.

• We have shown that the central notion of depth as defined in ELL and
LLL can be adapted to control the duplication power of side effects and
that it scales to multi-threaded programs. This allowed us to design depth
systems ensuring the termination of programs in elementary time and
polynomial time.

• We have provided an extension of quantitative realizability to higher-order
imperative programs, building on the technique of bi-orthogonality and
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introducing a so-called ‘depth-indexed’ interpretation. (joint work with
Alöıs Brunel)

Future work

We have shown that Light Logics can deal with call-by-value and several high-
level programming features such as imperative references, communication chan-
nels and thread generation. We identify two lines of research to get closer to a
full-fledged ML language:

• The ability to define algorithms by means of recursive functions and
pattern-matching on inductive data types would clearly improves on the
programming based on Church-like iterators. Baillot et al. already en-
dowed a higher-order functional language with such features [BGM10],
but this seems to complicate very much the proof of complexity sound-
ness, and it is not clear that the method could work for call-by-value.

• The programming languages that we propose require the programmer to
write code with explicit bang constructors and destructors. In order to
ease the programming, such modal information could be hidden at the
level of types, as in e.g. DLAL [BT09b]. Then, the main work consists in
providing an automatic type inference procedure. In this spirit, Atassi et
al. [ABT07] propose a way to determine if a term typable in System F is
typable in DLAL, and to ouput a typing judgment if it is so.

Discussion

Overall, the contribution in terms of programming flexibility seems quite mod-
est. Even though we can extend languages with new high-level features, the
programming experiments of this thesis show that Light Logics are very con-
straining to the programmer. This does not seem so much related to the com-
plexity bounds that must be guaranteed but rather to the stratified nature of

programs. Indeed, whether we program with λ
!‖
EAT that corresponds to the very

large complexity class of elementary time or with λ
!§‖
LLT that corresponds to the

more feasible class of polynomial time, the constraints are mainly due to depth
level criteria.

These mixed results about the programming expressivity of Light Logics ques-
tion the applicability of the ICC approach to the static determination of resource
usages of programs: is it reasonable to design a programming language from ICC
criteria? On the one hand, the checking of ICC criteria can generally be com-
puted efficiently; but on the other hand, the set of valid programs is most of the
time not acceptable. The alternative seems to be to have a full-fledged program-
ming language and then to rely on an automatic or mechanized (proof assisted)
static analysis of the resource usages. The advantage of this approach is the
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absence of programming constraints, but as pointed out in the introduction of
this thesis, the big work then consists in providing an efficient and precise anal-
ysis. Recently though, Jost et al. proposed [JHLH10] an automatic amortized
analysis of the resource usage of higher-order functional which can be efficiently
computed. The obtained bounds have been compared to actual measurements
and seem quite precise. Yet, it remains to explore the scalability of the method
to imperative and concurrent features.

In the goal of proof assisted analysis, Gaboardi and Dal Lago recently pro-
posed [LG11a] a system of linear dependent types which brings estimations on
the time complexity of higher-order functional programs. In fact, this type sys-
tem is quite ambitious in that it is relatively complete: every program which
terminates in k steps can be given a typing judgment from which the number
k can be recovered. Of course, the type checking problem of this system has
to be undecidable, but interestingly, Dal Lago and Petit [LP12] show that this
problem can be reduced to the much tractable one of checking the validity of
first-order inequalities. The method seems promising in bringing interactive
tools to studying the complexity of programs. However, the complexity of the
type system itself appears to be a big obstacle to the integration of imperative
and concurrent features. One solution is perhaps to make use of the quantitative
realizability framework presented in Chapter 8 and which seems quite adapt-
able to various programming features. In fact, Brunel and Gaboardi already
built [BG12] a quantitative realizability model of a system of linear dependent
types, which may be a good source of inspiration.

Every work cited above focuses on complexity bounds which are related to high-
level operational semantics. As far as computer security is concerned, it is crucial
to compute as precise bounds as possible. Therefore, one question that should
not be neglected is the following: does compilation to low-level code preserve the
complexity of programs? Amadio and Regis-Gianas recently proposed [ARG11]
a labelling method to certify cost annotations of higher-order functional pro-
grams with respect to target assembly code. Yet, the method would need to be
extended to higher-order concurrent programs. An alternative solution could be
to study a type-preserving translation from a high-level language to an assembly
language, so that we can derive a complexity-preserving compilation chain. The
work on typed assembly language [MWCG99] may be a good starting point.

The study of a type-preserving translation in the above spirit could perhaps
reveal interesting connections between Light Logics and low-level languages.
This raises the more general question of whether Light Logics have a broader
application than functional programming.
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[BG12] Alöıs Brunel and Marco Gaboardi. Quantitative reducibility can-
didates for dlpcf. Third International Workshop on Developments
in Implicit Complexity, Tallinn, Estonia, 2012. 177

[BGM10] Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime
functional language from light linear logic. In ESOP, volume 6012
of Lecture Notes in Computer Science, pages 104–124. Springer,
2010. 21, 176

[BM04] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: A lan-
guage for polynomial time computation. In Igor Walukiewicz,
editor, FoSSaCS, volume 2987 of Lecture Notes in Computer Sci-
ence, pages 27–41. Springer, 2004. 20
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Appendix A

Proofs

Chapter 4

Proof of Lemma 4.4.5.

1. By induction on y. The case for y = 0 is clear. For the inductive case, we
notice:

(y + 1) + 1 ≤ 2y + 2y = 2y+1 ≤ xy+1 .

2. By induction on y. The case y = 0 is clear. For the inductive case, we
notice:

x · (y + 1) ≤ x · (xy) (by 1)
= x(y+1)

3. By induction on z. The case z = 0 is clear. For the inductive case, we
notice:

(x · y)z+1 = (x · y)z(x · y)
≤ xy·z(x · y) (by inductive hypothesis)
≤ xy·z(xy) (by 2)
= xy·(z+1)

4. From z ≥ 1 we derive y ≤ yz. Then:

xz · y ≤ xz · yz
= (x · y)z

≤ xy·z (by 3)

5. By the binomial law, we have xk = ((x− y) + y)k = (x− y)k + yk + p with
p ≥ 0. Thus (x− y)k = xk − yk − p which implies (x− y)k ≤ xk − yk.
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Proof of Theorem 4.4.7. Suppose µα(M) = (x0, . . . , xα) so that xi corresponds
to the occurrences at depth (α − i) for 0 ≤ i ≤ α. Also assume the reduction
is at depth (α − i). By looking at equations (4.7) and (4.8) in the proof of
Proposition 4.4.2 we see that the components i+1, . . . , α of µα(M) and µα(M ′)
coincide. Hence, let k = 2tα(xi+1,...,xα). By definition of the tower function,
k ≥ 1.

We proceed by case analysis on the reduction rules.

• M ≡ let !x = !M2 in M1 −→ P ′ ≡M1[M2/x]
By Inequality (4.8) we know

tα(µα(M ′)) ≤ tα(x0 · xi−1, . . . , xi−1 · xi−1, xi − 2, xi+1, . . . , xα)
= tα(x0 · xi−1, . . . , xi−1 · xi−1, xi − 2)k

By iterating Lemma 4.4.4 we derive:

tα(x0 · xi−1, x1 · xi−1, . . . , xi−1 · xi−1, xi − 2)
≤ tα(x0, x1 · x2

i−1, . . . , xi−1 · xi−1, xi − 2)
≤ . . .
≤ tα(x0, x1, . . . , x

i
i−1, xi − 2)

Renaming xi−1 with x and xi with y, we are left to show

(αxi)2(α·(y−2))k

< (αx)2(α·y)k

Since i ≤ α the first quantity is bounded by

(αx)α·2
(α·(y−2))k

We notice

α · 2(α·(y−2))k

= α · 2(α·y−α·2)k

≤ α · 2(α·y)k−(α·2)k (by Lemma 4.4.5-5)

So we are left to show

α2(α·y)k−(α·2)k) ≤ 2(α·y)k

Dividing by 2(α·y)k and recalling that k ≥ 1, it remains to check

α · 2−(α·2)k ≤ α · 2−(α·2) < 1

which is obviously true for α ≥ 1.
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• M ≡ (λx.M1)M2 −→M ′ ≡M1[M2/x]
By Equation (4.7), we have

tα(µα(M ′)) ≤ tα(x0, . . . , xi−1, xi − 2, xi+1, . . . , xα)

and one can check that this quantity is strictly less than

tα(µα(M)) = tα(x0, . . . , xi−1, xi, xi+1, . . . , xα)

Chapter 5

Proof of Theorem 5.5.3

Elementary functions are characterized as the smallest class of functions con-
taining zero, successor, projection, subtraction and which is closed by composi-
tion and bounded summation/product. We will need the arithmetic functions
defined in Figure A.1. We will abbreviate λ!xM for λx.let !x = x in M .

In the following, we show that the required functions can be represented in the
sense of Definition 5.5.2 by adapting the proofs from Danos and Joinet [DJ03].

Successor, addition and multiplication

We check that succ represents the successor function s:

s : N 7→ N
s(x) = x+ 1

Proposition A.0.2. succ  s.

Proof. Take ∅ `δ M : Nat and M  n. We have ∅ `δ succ : Nat( Nat. We can
show that succM −→∗ s(n), hence succM  s(n). Thus succ  s.

We check that add represents the addition function a:

a : N2 7→ N
a(x, y) = x+ y

Proposition A.0.3. add  a.

Proof. For i = 1, 2 take ∅ `δ Mi : Nat and Mi  ni. We have ∅ `δ add : Nat(
Nat ( Nat. We can show that add M1M2 −→∗ a(n1, n2), hence add M1M2 
a(n1, n2). Thus A  a.
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Nat = ∀t.!(t( t)( !(t( t) (type of numerals)

zero : Nat (zero)
zero = λf.!(λx.x)

succ : Nat( Nat (successor)
succ = λn.λf.let !f = f in

let !y = n!f in!(λx.f(yx))

n : Nat (numerals)
n = λf.let !f = f in !(λx.f(· · · (fx) · · · ))

add : Nat( (Nat( Nat) (addition)
add = λn.λm.λf.let !f = f in

let !y = n!f in
let !y′ = m!f in !(λx.y(y′x))

mult : Nat( (Nat( Nat) (multiplication)
mult = λn.λm.λf.let !f = f in

n(m!f)

int it : Nat( ∀t.!(t( t)( !t( !t (iteration)
int it = λn.λg.λx.let !y = ng in

let !y′ = x in !(yy′)

gen it : ∀t.∀t′.!(t( t)( (!(t( t)( t′)( Nat( t′

gen it = λs.λe.λn.e(nts)

Figure A.1: Representation of arithmetic functions

We check that mult represents the multiplication function m:

m : N2 7→ N
m(x, y) = x ∗ y

Proposition A.0.4. mult  m.

Proof. For i = 1, 2 take ∅ `δ Mi : Nat and Mi  ni. We have ∅ `δ mult :
Nat ( Nat ( Nat. We can show that mult M1M2 −→∗ m(n1, n2), hence
multM1M2  m(n1, n2). Thus mult  m.
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Iteration schemes

We check that int it represents the following iteration function it:

it : (N 7→ N) 7→ N 7→ N 7→ N
it(f, n, x) = fn(x)

Proposition A.0.5. int it  it.

Proof. We have ∅ `δ int it : Nat ( ∀t.!(t( t)( !t( !t. Given ∅ `δ M : Nat
with M  n, ∅ `δ F : Nat ( Nat with F  f and ∅ `δ X : Nat with X  x,
we observe that int it M(!F )(!X) −→∗ FnX. Since F  f and X  x, we get
FnX −→∗ it(f, n, x). Hence int it  it.

The function it is an instance of the more general iteration scheme git:

git : (N 7→ N) 7→ ((N 7→ N) 7→ N) 7→ N 7→ N
git(step, exit, n) = exit(λx.stepn(x))

Indeed, we have:

git(f, λf.fx, n) = (λf.fx)(λx.fn(x)) = it(f, n, x)

Proposition A.0.6. gen it  git.

Proof. Take ∅ `δ M : Nat with M  n, ∅ `δ E : ((Nat ( Nat) ( Nat) (
Nat with E  exit, ∅ `δ S : Nat ( Nat with S  step. Then we have
gen itSEM −→∗ E(λx.Snx). Since S  step and E  exit we have E(λx.Snx) −→∗
exit(λx.stepn(x). Hence gen it  git.

Coercion

Let S = λnN .S′. For 0 ≥ i, we define S′i inductively:

S′0 = S′

S′i = let !n = n in !S′i−1

Let Si = λn.S′i. We can derive ∅ `δ Si : !iNat( !iNat. For i ≥ 0, we define Ci
inductively:

C0 = λx.x
Ci+1 = λn.int it(!Si)(!

i+10)n
∅ `δ Ci : Nat( !iNat

Lemma A.0.7 (integer representation is preserved by coercion). Let ∅ `δ M :
Nat and M  n. We can derive ∅ `δ CiM : !iNat. Moreover CiM  n.

Proof. By induction on i.
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Lemma A.0.8 (function representation is preserved by coercion). Let

∅ `δ F : !i1Nat1 ( . . .( !ikNatk ( !pNat

and ∅ `δ Mj : Nat with Mj  nj for 1 ≤ j ≤ k such that F (!i1M1 . . . (!
ikMk)) −→∗

f(n1, . . . , nk). Then we can find a term C(F ) = λ~xNat.F ((Ci1x1) . . . (Cikxk))
such that

∅ `δ C(F ) : Nat( Nat( . . .( Nat( !pNat

and C(F )  f .

Predecessor and subtraction

We first want to represent predecessor :

p : N 7→ N
p(0) = 0
p(x) = x− 1

We define the following terms:

ST = !(λz.〈snd z, f(snd z)〉)
f : (δ + 1, t( t) `δ ST : !(t× t( t× t)

EX = λg.let !g = g in !(λx.fst g〈x, x〉)
∅ `δ EX : !(t× t( t× t)( !(t( t)

P = λn.λf.let !f = f in gen it ST EX n
∅ `δ P : Nat( Nat

Proposition A.0.9 (predecessor is representable). P  p.

Proof. Take ∅ `δ M : Nat and M  n. We can show that (PM)− −→∗ p(n),
hence PM  p(n). Thus P  p.

Now we want to represent (positive) subtraction s:

s : N2 7→ N

s(x, y) =

{
x− y if x ≥ y
0 if y ≥ x

Take

SUB = λm.let !m = m in λn.int it !P !m n : !Nat( Nat( !Nat
∅ `δ SUB : !Nat( Nat( !Nat

Proposition A.0.10 (subtraction is representable). C(SUB)  s.

Proof. For i = 1, 2 take ∅ `δ Mi : Nat and Mi  ni. We can show that
(SUB(!M1)M2)− −→∗ s(n1, n2). Hence by Lemma A.0.8, C(SUB)  s.
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Composition

Let g be a m-ary function and G be a term such that ∅ `δ G : Nat1 ( . . .(
Natm ( !pNat (where p ≥ 0) and G  g. For 1 ≤ i ≤ m, let fi be a k-ary
function and Fi a term such that ∅ `δ Fi : Nat1 ( . . . ( Natk!qiNat (where
qi ≥ 0) and Fi  fi. We want to represent the composition function h such
that:

h : Nk 7→ N
h(x1, . . . , xk) = g(f1(x1, . . . , xk), . . . , fm(x1, . . . , xk))

For i ≥ 0 and a term T , we define T i inductively as:

T 0 = T

T i = λ~x!iNat.let !~x = ~x in !(T i−1~x)

Let q = max(qi). We can derive

∅ `δ Gq+1 : !q+1Nat1 ( . . .( !q+1Natm( !p+q+1Nat

We can also derive

∅ `δ F q−qii : !q−qiNat1 ( . . .( !q−qiNatk ( !qNat

Then, applying coercion we get

∅ `δ C(F q−qii ) : Nat1 ( . . .Natk ( !qNat

and we derive

x1 : (δ + 1,Nat), . . . , xk : (δ + 1,Nat) `δ !(C(F q−qii )x1 . . . xk) : !q+1Nat

Let F ′i ≡ !(C(F q−qii )x1 . . . xk). By application we get

x1 : (δ + 1,Nat), . . . , xk : (δ + 1,Nat) `δ Gq+1F ′1 . . . F
′
m : !p+q+1Nat

We derive

∅ `δ λ~x.let !~x = ~x in Gq+1F ′1 . . . F
′
m : !Nat1 ( . . .( !Natm( !p+q+1Nat

Applying coercion we get

∅ `δ C(λ~x!Nat.let !~x = ~x in Gq+1F ′1 . . . F
′
m) : Nat1 ( . . .( Natm( !p+q+1Nat

Take
H = C(λ~x!Nat.let !~x = ~x in Gq+1F ′1 . . . F

′
m)

Proposition A.0.11 (composition is representable). H  h.

Proof. We now have to show that for all Mi and ni where 1 ≤ i ≤ k such that
Mi  ni and ∅ `δ Mi : Nat, we have HM1 . . .Mk  h(n1, . . . , nk). Since Fi  fi,
we have FiM1 . . .Mk  fi(n1, . . . , nk). Moreover G  g, hence

G(F1M1 . . .Mk) . . . (FmM1 . . .Mk)  g(f1(n1, . . . , nk), . . . , fm(n1, . . . , nk))

We can show that HM1 . . .Mk −→∗ G(F1M1 . . .Mk) . . . (FmM1 . . .Mk), hence

HM1 . . .Mk  g(f1(n1, . . . , nk), . . . , fm(n1, . . . , nk))

Thus H  h.
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Bounded sums and products

Let f be a k + 1-ary function f : Nk+1 → N, where

∅ ` F : Nati( Nat1 ( . . .( Natk ( !pNat

with p ≥ 0 and F  f . We want to represent

• bounded sum:
∑

1≤i≤n f(i, x1, . . . , xk)

• bounded product:
∏

1≤i≤n f(i, x1, . . . , xk)

For this we are going to represent h : Nk+1 → N:

h(0, x1, . . . , xk) = f(0, x1, . . . , xk)
h(n+ 1, x1, . . . , xk) = g(f(n+ 1, x1, . . . , xk), h(n, x1, . . . , xk))

where g is a binary function standing for addition or multiplication, thus repre-
sentable. More precisely we have g : N2 → N such that ∅ `δ G : Nat( Nat(
Nat and G  g.

For i ≥ 0 and a term T we define T i inductively:

T 0 = Tx1 . . . xk
T i = let !x1 = x1 in . . . let !xk = xk in !T i−1

We define the following terms:

ST = λz.〈S(fst z), Gp(Fx1 . . . xk(S(fst z)))(snd z)〉
∅;x1 : (δ,Nat), . . . , xk : (δ,Nat) `δ ST : Nat× !pNat( Nat× !pNat

EX = λh.let !h = h in !snd h〈0, Fx1 . . . xk0〉
∅;x1 : (δ + 1,Nat), . . . , xk : (δ + 1,Nat) `δ EX : !(Nat× !pNat( Nat× !pNat)( !p+1Nat

We derive

n : ( Nat), ~x : (δ,Nat) `δ let !~x = ~x in let !n = n in gen it !ST EX n : !p+1Nat

Let R = let !~x = ~x in let !n = n in gen it!ST EXn. By coercion and abstractions
we get

∅ `δ C(λn.λ~x.R) : Nati( Nat1 ( . . .( Natk ( !p+1Nat

Take H = C(λn.λ~x.R).

Proposition A.0.12 (bounded sum/product is representable). H  h.

Proof. Given Mi  i and Mj  nj with 1 ≤ j ≤ k and taking G for addition,
we remark that

HMiM1 . . .Mk −→∗ f(i, n1, . . . , nk) + . . .+ f(1, n1, . . . , nk) + f(0, n1, . . . , nk)

Hence H  h.



193

Chapter 8

Proof of Theorem 8.2.23 (Quantitative adequacy). By induction on the typing
of M .

(var) This case is immediate by substitution.

(reg,unit,int,arith) These cases are trivial, by definition ofR `δ Unit, R `δ RegrA andR `δ Int.

(weak) This case is just an application of ≤-saturation.

(lam) We have
R; Γ, y : (λ,A) `δ N : B

R; Γ `δ λy.N : A( B

We take (V , p) δ Γ and (W, q) ∈ R `δ A. By induction hypothesis we

know that for every S such that R `δ v S we have (N [V /x,W/y], w(N)+∑
p+ q) ∈ R `δ BS . Therefore (λy.N [V /x], w(N) +

∑
p) ∈ R `δ A( B

by definition of the interpretation.

(app) We have
R; Γ `δ M : A( B R; ∆ `δ N : A

R; Γ,∆ `δ MN : B

For simplicity assume the contexts Γ and ∆ are empty (it does not change
the argument). Take S such that R `δ v S. By induction hypothesis we
have

(M,w(M)) ∈ R `δ A( BS
(N,w(N)) ∈ R `δ AS

Take (E, e) ∈ (R `δ BS)
⊥S

and (S, s) ∈ S. We want to show that

(〈MN,E, S〉, e(w(M) + w(N) + 3 + s)) ∈‚
Since 〈MN,E, S〉 −→ 〈M,N ·E,S〉, by −→-saturation it suffices to show

(N · E, x 7→ e(w(N) + 2 + x)) ∈ R `δ A( B
⊥S

. Take (λx.P, p) ∈
R `δ A( B. Now we have to prove

(λx.P,N · E,S, e(w(N) + 2 + p+ s)) ∈‚
But 〈λx.P,N · E,S〉 −→ 〈N,λx.P � E,S〉, so by −→-saturation we only

have to prove (λx.P � E, x 7→ e(x+ p+ 1)) ∈ R `δ A⊥S . Let (VA, vA) ∈
R `δ A. Then by definition (P [VA/x], p+ vA) ∈ R `δ BS and we have

(〈P [VA/x], E, S〉, e(p+ vA + s)) ∈‚
Since 〈VA, λx.P�E,S〉 −→ 〈P [VA/x], E, S〉, we conclude by−→-saturation

that (λx.P � E, x 7→ e(x+ p+ 1)) ∈ R `δ A⊥S .
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(set) We have

r : (δ, §C) ∈ R R; Γ `δ+1 V : C

R; Γ `δ set(r, §V ) : Unit

Without loss of generality we assume V is closed and Γ = ∅. Let S such

that R `δ v S, (E, e) ∈ R `δ Unit
⊥S

and (S, s) ∈ S. We want to prove

(〈set(r, §V ), E, S〉, e(§w(V ) + 2 + s)) ∈‚

Since 〈set(r, §V ), E, S〉 −→ 〈?,E, S]r ⇐ §V 〉, by −→-saturation if suffices
to show

(〈?,E, S ] r ⇐ §V 〉, e(1 + s+ §w(V )) ∈‚
which amouts to prove (S ] r ⇐ §V, s + §w(V )) ∈ S. There must be a
decomposition (S, s) = (S1 ] S2, s1 ] s2) such that (S1, s1) ∈ R `δ and
dom(S2) = {ri | δi < δ}. By induction we have (V,w(V )) ∈ R `δ+1 C and

therefore (S1 ] r ⇐ §V, s1 + §w(V )) ∈ R `δ. This allows us to conclude
(S ] r ⇐ §V, s+ §w(V )) ∈ S.

(get) We have that

r : (δ, §A) ∈ R
R;`δ get(r) : §A

Let S be such that R `δ v S, (E, e) ∈ R `δ §A⊥S and (S, s) ∈ S. There

must be a decomposition (S, s) = (S1 ] S2, s1 ] s2) such that (S1, s1) ∈
R `δ and dom(S2) = {ri | δi < δ}. Therefore the value which is read
must belong to S1. By definition of the interpretation, any decomposition
(S1, s1) = (S′]r ⇐ §V, s′+§pV ) is such that (V, pV ) ∈ R `δ+1 A. Clearly

this entails (§V, §pV ) ∈ R `δ §A and (S′ ] S2, s
′ + s2) ∈ S, and therefore

(〈§V,E, S′ ] S2〉, e(§pV + s′ + s2)) ∈‚
Hence by−→-saturation (〈get(r), E, S〉, e(1+s)) and we conclude (get(r),1) ∈
R `δ §AS .

(contr) We want to justify the contraction rule

R; Γ, z : (!, A), y : (!, A) `δ M : B

R; Γ, y : (!, A) `δ M [z/y] : B

We take (W,p) δ Γ and (!V, !v) ∈ R `δ !A. Let S such that R `δ v S. By

induction hypothesis we have (M [W/x, V/y, V/z], w(M)+
∑
p+!v+!v) ∈

R `δ BS . Since !v+ !v ≤ !v+1 by contraction of ! :M→M we conclude
((M [W/x, z/y])[V/z], w(M) +

∑
p+ !v+1) ∈ R `B RδS. The case where

M is a value is similar.
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(prom!) We have
R;x : (λ,A) `δ+1 V : B

R;x : (!, A) `δ !V : !B

Let (V ′, p) ∈ R `δ+1 A. By induction we have (V [V ′/x], w(V ) + p) ∈
R `δ+1 B and therefore ((!V )[V ′/x], !(w(V ) + p)) ∈ R `δ !B. By functo-
riality of ! :M→M, !(w(V ) + p) ≤ F (w(V )) + !p and thus by ≤-closure,
((!V )[V ′/x], F (w(M)) + !p) ∈ R `δ !B. And this is what we want since

(!V ′, !p) ∈ R `δ !A.

Notice that since we don’t have !(p + q) ≤ !p + !q (the monoidalness
property), we cannot handle more than one variable in the context as in
the prom§.

(prom§) We have

R; Γλ,∆λ `δ+1 M : C

R; Γ§,∆! `δ §M : §C
Assume the variables associated to the context Γ and ∆ are respectively
noted x and y. Suppose (V , p) δ+1 Γλ and (W, q) δ+1 ∆λ. By induction
hypothesis, for any S such that R `δ+1 v S we have

(M [V /x,W/y], w(M) +
∑

p+
∑

q) ∈ R `δ+1 CS

Take S ′ such that R `δ v S ′. By Lemma 8.2.24,

(§(M [V /x,W/y]), §(w(M) +
∑

p+
∑

q) + 4) ∈ R `δ §CS′

By weak dereliction and monoidalness we have

§(w(M) +
∑

p+
∑

q) ≤ §w(M) +
∑
§p+

∑
!q

Therefore by ≤-saturation we conclude

(§(M [V /x,W/y]), §w(M) +
∑
§p+

∑
!q + 4) ∈ R `δ §CS′

which is what we want since (V , §p) δ Γ§ and (W, !q) δ ∆!. The case
where M is a value is similar to the case of the rule prom!, except that
we use the properties weak derelication and monoidalness of § :M→M
instead of functoriality of ! :M→M.

(elim†) This case is similar for † ∈ {!, §}. We have

R; Γ `δ V : †B R; ∆, x : (†, B) `δ M : C

R; Γ,∆ `δ let †x = V in M : C

where the variables associated to the contexts Γ and ∆ are respectively
noted y and z. We take (VΓ, p) δ Γ, (V∆, q) δ ∆. By induction hypoth-
esis we have

(V [VΓ/y], w(V ) +
∑

p) ∈ R `δ †B



196 APPENDIX A. PROOFS

Therefore V [VΓ/y] must be of the shape †V ′. Let S be such that R `δ v S.
By the other induction hypothesis we have

(M [V∆/z, V
′/x], w(M) + w(V ) +

∑
p+

∑
q) ∈ R `δ CS

By −→-saturation (by considering a context), we obtain

(let †x = V [VΓ/y] in M [V∆/z], w(M)+w(V )+
∑

p+
∑

q+1) ∈ R `δ CS





Abstract Controlling the resource consumption of programs is crucial: besides performance rea-
sons, it has many applications in the field of computer security where e.g. mobile or embedded
systems dispose of limited amounts of resources.

In this thesis, we develop static criteria to control the resource consumption of higher-order concur-
rent programs. Our starting point is the framework of Light Logics which has been extensively stud-
ied to control the complexity of higher-order functional programs through the proofs-as-programs
correspondence. The contribution of this thesis is to extend this framework to higher-order con-
current programs. More generally, this thesis fits in the research field of Implicit Computational
Complexity which aims at characterizing complexity classes by logical principles or language re-
strictions.

The criteria that we propose are purely syntactic and are developed gradually to control the compu-
tational time of programs in a finer and finer way: first, we show how to guarantee the termination of
programs (finite time); then, we show how to guarantee the termination of programs in elementary
time and last, we show how to guarantee the termination of programs in polynomial time. We also
introduce type systems so that well-typed programs are guaranteed to terminate in bounded time
and to return values. Finally, we show that the type systems capture some interesting concurrent
programs that iterate functions producing side effects over inductive data structures.

In the last part, we study an alternative semantic method to control the resource consumption of
higher-order imperative programs. The method is based on Dal Lago and Hofmann’s quantitative
realizability framework and allows to obtain various complexity bounds in a uniform way. This last
part is joint work with Alöıs Brunel.

Résumé Contrôler la consommation en ressources des programmes informatiques est d’importance
capitale, non seulement pour des raisons de performance, mais aussi pour des questions de sécurité
quand par exemple certains systèmes mobiles ou embarqués disposent de quantités limitées de
ressources.

Dans cette thèse, nous développons des critères statiques pour contrôler la consommation en
ressources de programmes concurrents d’ordre supérieur. Nous prenons comme point de départ le
cadre des Logiques Light qui a été étudié afin de contrôler la complexité de programmes fonctionnels
d’ordre supérieur au moyen de la correspondance preuves-programmes. La contribution de cette
thèse est d’étendre ce cadre aux programmes concurrents d’ordre supérieur. Plus généralement,
cette thèse s’inscrit dans le domaine de la complexité implicite qui cherche à caractériser des classes
de complexité par des principes logiques ou des restrictions de langage.

Les critères que nous proposons sont purement syntaxiques et sont développés graduellement afin
de contrôler le temps de calcul des programmes de plus en plus finement: dans un premier temps
nous montrons comment garantir la terminaison des programmes (temps fini), puis nous montrons
comment garantir la terminaison des programmes en temps élémentaire, et enfin nous montrons com-
ment garantir la terminaison des programmes en temps polynomial. Nous introduisons également
des systèmes de types tels que les programmes bien typés terminent en temps borné et retournent
des valeurs. Enfin, nous montrons que ces systèmes de types capturent des programmes concurrents
intéressants qui itèrent des fonctions produisant des effets de bord sur des structures de données
inductives.

Dans la dernière partie, nous étudions une méthode sémantique alternative afin de contrôler la
consommation en ressources de programmes impératifs d’ordre supérieur. Cette méthode est basée
sur la réalisabilité quantitative de Dal Lago et Hofmann et permet d’obtenir plusieurs bornes de
complexité de manière uniforme. Cette dernière partie est un travail en collaboration avec Alöıs
Brunel.
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