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Abstract

In this thesis we have covered three themes related to wireless sensor networks.

The first one concerns the detection of measurement errors in sensor readings in

a wireless sensor network. In order to identify a faulty node we have used soft

computing techniques. A fuzzy inference system and a recurrent fuzzy inference

system are used to model a node as far as its sensor measurement is concerned.

The sensor measurement of a node is approximated by a function whose arguments

are the real measurements of the neighboring sensors. The return of the function

is the estimated value of the sensor measurement. The difference between the

approximated value from the model and the actual measurement of the sensor is

used as an indication for whether or not to declare a node as faulty.

Then we focus on the localization aspect of all the nodes in the network. Once

the intermediate distances between the connected nodes have been calculated, the

task remained to be accomplished is to find the position of all the nodes by using

as minimum number of anchors as possible. Thus, we have proposed a localization

method that uses exactly three anchor/beacon nodes. The motivation for the pro-

posed localization scheme stemmed from the fact that a plane and hence all points

on it are completely described by defining/knowing exactly three points. But how to

integrate this idea in relation to localization in wireless sensor network is discussed

in the second part, where we are able to attain the estimated position of all sensors

by using only three anchors.

Finally we have focussed our attention on the power loss in a node signal due to

voltage droop in the battery of the node. Since our proposed localization algorithm

uses the strength in the signal from different nodes, paying attention to the received

signal strength is crucial. When the battery of a node looses voltage, there is a

decrease in the signal strength from that node. This decrease of strength can be

interpreted as an increase in the distance between the respective nodes. In fact this

is a misinterpretation of the RSS from localization point of view. Thus in the first

part we propose a method to compensate for the apparent loss in signal power due
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to voltage decrease and not due to increase in distance.
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Chapter 1

General Introduction

I
n certain wireless sensor nodes localization strategies the intermediate distance

between the nodes is obtained from the received signal strength (RSS). An error

in RSS results in an incorrect estimation of distance between two nodes. As a

consequence the approximated position of a node is far from the real position of

the node. The obscurity in RSS due to voltage droop in the transmitter battery has

not been addressed in the existing literature. So the problem is to overcome the

inaccurate distance measurement resulting from erroneous RSS caused by energy

loss in the transmitter battery.

Knowing the intermediate distance between the connected nodes is one of the

initial steps in localization of nodes in a wireless sensor network. Reference points

with known geographical coordinates are mandatory for the position estimation of

the nodes. It means that the information of intermediate distances between the nodes

is not sufficient for finding coordinates of the nodes. There is a need of landmarks

with known locations such that the nodes will relatively localize themselves in

relation to these known positions in addition to the intermediate distances amongst

them and these landmarks. If some of the nodes are used as landmarks, then these

nodes are termed as anchor nodes or simply anchors. If a node is not an anchor it is

termed as tracked node.

A trivial solution to position estimation of a node is to know the distances between
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the node and three anchors. It implies that the node has a connection to three anchors.

With this approach the number of anchors exceeds the number of tracked nodes. If

an anchor is equipped with a local/global positioning system, then increasing the

number of anchors will increase the cost of the network. If an anchor node’s position

is preconfigured, then it implies a highly controlled topology of the network which

is not applicable to a situation in which a WSN is randomly deployed. Thus in any

case we need to decrease the number of anchor nodes. So the problem is to evolve a

localization strategy that uses minimum possible number of anchors.

Once the nodes are deployed and their positions are calculated. The readings

from the sensors are meaningful. That is we not only know a change in the physical

quantity being measured but also the location where that change is detected. A

question that arises is the reliance on the sensor measurement of a particular node.

How can we be sure of the accuracy in sensor reading from a node? There is a

possibility that a node has developed a faulty sensor. So the problem is to devise a

strategy for the detection of faulty sensors in a wireless sensor network.

In this thesis we have addressed the above mentioned three issues. The literature

survey shows that some of the research works were targeted to fulfill the inaccuracy

in RSS due to attenuation in the signal. But no work was found that addressed the

problem of inaccurate distance due to voltage droop in the battery of signal sending

node.

Similarly the problem of localization has been carried out in multiple research

works. In one of them the localization strategy is to divide the deployment area of

the WSN in a regular grid and place an anchor at each vertex of the grid. Hence

there is a need for more number of anchors. Then there are further techniques that

have reduced the number of required anchors. These strategies require the anchors

to be placed at the boundary of the network. Still the number of anchors is not the

minimum.

The problem of fault detection has also been studied in various research works.

Some of them have used a comparison of a sensor measurement with the neigh-
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boring sensor measurements. If the sensor reading is similar to a certain number

of neighboring sensor measurements then the particular sensor is declared as fault

free. In one of the research work a recurrent neural network was used to have an

approximation of a sensor measurement of a node. If the approximated value is

quite different from the real sensor measurement, the node is declared to have a

faulty sensor. A fault detection scheme using TSK fuzzy logic system has not been

carried out.

Thus the contribution of the present thesis is three fold. We have proposed a

method to overcome eventual localization errors arising from the decreasing energy

in the batteries of the WSN nodes. We have developed a localization algorithm that

uses exactly three nodes. Theoretically, this is the minimum number of reference

points for localization in a plane. Finally we have presented a fault detection strat-

egy that utilizes recurrent TSK fuzzy inference system. In this method, a sensor

measurement of a node is approximated by a function whose arguments are the

neighboring sensor measurements and the previous approximated value. If the dif-

ference between the approximated value and the real measurement is greater than

the tolerated bound the sensor of that node is declared as faulty.

1.1 Wireless Sensor Networks

Recent technological advances have enabled the development of low-cost, low-

power, and multifunctional sensor devices. These nodes are autonomous devices

with integrated sensing, processing, and communication capabilities. A sensor is

an electronic device that is capable of detecting environmental conditions such as

temperature, sound, chemicals, or the presence of certain objects. Sensors are gen-

erally equipped with data processing and communication capabilities. The sensing

circuitry measures parameters from the environment surrounding the sensor and

transforms them into electric signals. Processing such signals reveals some prop-

erties of objects located and/or events happening in the vicinity of the sensor. The



Figure 1.1: MICAz sensor mote hardware (Image courtesy of Crossbow Tech-
nology [xbow, 2004d])

sensor sends such sensed data, usually via a radio transmitter, to a command cen-

ter, either directly or through a data-collection station (a base station or a sink).

To conserve the power, reports to the sink are normally sent via other sensors in

a multihop fashion. Retransmitting sensors and the base station can perform fu-

sion of the sensed data in order to filter out erroneous data and anomalies, and

to draw conclusions from the reported data over a period of time. For example,

in a reconnaissance-oriented network, sensor data indicates detection of a target,

while fusion of multiple sensor reports can be used for tracking and identifying the

detected target.

A wireless sensor network consists of a possibly large number of wireless devices

able to take environmental measurements. Typical examples include temperature,

light, sound, and humidity. These sensor readings are transmitted over a wireless

channel to a running application that makes decisions based on these sensor read-

ings. Many applications have been proposed for wireless sensor networks, and many

of these applications have specific requirements that offer additional challenges to

the application designer.

Figure 1.1 shows the latest-generation MICAz [xbow, 2004a, xbow, 2004c] sen-

sor node. MICAz motes are equipped with an Atmel128L processor capable of

maximum throughput of 8 millions of instructions per second when operating at 8
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MHz. It also features an IEEE 802.15.4/Zigbee compliant RF transceiver, operating

in the 2.4-2.4835-GHz globally compatible industrial scientific medical band, a di-

rect spread-spectrum radio resistant to RF interference, and a 250-kbps data transfer

rate. The MICAz runs on TinyOS [Hill et al., 2000] (v1.17 or later) and is compat-

ible with existing sensor boards that are easily mounted onto the mote. A partial

list of specifications given by the manufacturers of the MICAz mote is presented in

table 1.1. Several advantages exist for instrumenting an area with a wireless sensor

network [Agre and Clare, 2000]:

• Due to the dense deployment of a greater number of nodes, a higher level of

fault tolerance is achievable in wireless sensor networks.

• Coverage of a large area is possible through the union of coverage of several

small sensors.

• Coverage of a particular area and terrain can be shaped as needed to overcome

any potential barriers or holes in the area under observation.

• It is possible to incrementally extend coverage of the observed area and density

by deploying additional sensor nodes within the region of interest.

• An improvement in sensing quality is achieved by combining multiple, inde-

pendent sensor readings. Local collaboration between nearby sensor nodes

achieves a higher level of confidence in observed phenomena.

• Since nodes are deployed in close proximity to the sensed event, this over-

comes any ambient environmental factors that might otherwise interfere with

observation of the desired phenomenon.

1.2 Applications

Several applications have been envisioned for wireless sensor networks [Akyildiz

et al., 2002b]. These range in scope from military applications to environment
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Table 1.1: MICAz mote specification [xbow, 2004c]

Processor Atmel ATMega128L @ 8 MHz

Program flash memory 128 kilobytes

Measurement serial flash 512 kilobytes

Configuration electrically

4 kilobyteserasable programmable read-

only memory (EEPROM)

Serial communications UART

Analog to digital converter 10 bit ADC

Other interfaces Digital I/O, 12C, SPI

Processor current draw
8 mA in active mode

< 1 µA in sleep mode

Frequency band 2400MHz to 2483,5MHz

Transmit (TX) data rate 250kbps

RF power -24dBm to 0dBm

Receive sensitivity -90dBm (min), -94dBm (typ)

Adjacent channel rejection 47 dB, +5-MHz channel spacing

38 dB, -5-MHz channel spacing

Outdoor range 75m to 100m

Indoor range 20m to 30m

Radio current draw

19.7 mA in receive mode

11 mA (TX -10dBm)

14 mA (TX -5dBm)

17.4 mA (TX 0dBm)

20 µA in idle mode
(voltage regulator on)

1 µA in sleep mode
(voltage regulator off)

Battery 2 AA batteries

User interface red, green, and yellow LED

Size
2.25×1.25×0.25 in

(w/o battery pack)

Weight 0.7 oz (w/o batteries)

Expansion connector 51 pin
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monitoring to biomedical applications.

1.2.1 Military applications

Wireless sensor networks can form a critical part of military command, control,

communications, computing, intelligence, surveillance, reconnaissance, and target-

ing systems. Examples of military applications include monitoring of friendly and

enemy forces; equipment and ammunition monitoring; targeting; and nuclear, bio-

logical, and chemical attack detection.

By equipping or embedding equipment and personnel with sensors, their condi-

tion can be monitored more closely. Vehicle-, weapon-, and troop-status information

can be gathered and relayed back to a command center to determine the best course

of action. Information from military units in separate regions can also be aggregated

to give a global snapshot of all military assets.

By deploying wireless sensor networks in critical areas, enemy troop and vehicle

movements can be tracked in detail. Sensor nodes can be programmed to send

notifications whenever movement through a particular region is detected. Unlike

other surveillance techniques, wireless sensor networks can be programmed to be

completely passive until a particular phenomenon is detected. Detailed and timely

intelligence about enemy movements can then be relayed, in a proactive manner, to

a remote base station.

In fact, some routing protocols have been specifically designed with military

applications in mind [Ye et al., 2002]. Consider the case where a troop of soldiers

needs to move through a battlefield. If the area is populated by a wireless sensor

network, the soldiers can request the location of enemy tanks, vehicles, and personnel

detected by the sensor network (figure 1.2). The sensor nodes that detect the presence

of a tank can collaborate to determine its position and direction, and disseminate

this information throughout the network. The soldiers can use this information to

strategically position themselves to minimize any possible casualties.

In chemical and biological warfare, close proximity to ground zero is needed for
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Figure 1.2: Enemy target localization and monitoring

timely and accurate detection of the agents involved. Sensor networks deployed in

friendly regions can be used as early-warning systems to raise an alert whenever

the presence of toxic substances is detected. Deployment in an area attacked by

chemical or biological weapons can provide detailed analysis, such as concentration

levels of the agents involved, without the risk of human exposure.

1.2.2 Environmental applications

By embedding a wireless sensor network within a natural environment, collection of

long-term data on a previously unattainable scale and resolution becomes possible.

Applications are able to obtain localized, detailed measurements that are otherwise

more difficult to collect. As a result, several environmental applications have been

proposed for wireless sensor networks [Agre and Clare, 2000,Akyildiz et al., 2002b].

Some of these include habitat monitoring, animal tracking, forest-fire detection,

precision farming, and disaster relief applications.

Consider a scenario where a fire starts in a forest. A wireless sensor network

deployed in the forest could immediately notify authorities before it begins to spread

uncontrollably (figure 1.3). Accurate location information [Niculescu and Nath,

2001] about the fire can be quickly deduced. Consequently, this timely detection

gives fire-fighters an unprecedented advantage, since they can arrive at the scene

before the fire spreads uncontrollably.
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Figure 1.3: Forest-fire monitoring application

Precision farming [Sudduth, 1999] is another application area that can benefit

from wireless sensor network technology. Precision farming requires analysis of

spatial data to determine crop response to varying properties such as soil type [Locke

et al., 2000]. The ability to embed sensor nodes in a field at strategic locations could

give farmers detailed soil analysis to help maximize crop yield or possibly alert

them when soil and crop conditions attain a predefined threshold. Since wireless

sensor networks are designed to run unattended, active physical monitoring is not

required.

Disaster relief efforts such as the ALERT flood-detection system [Bonnet et al.,

2000] make use of remote field sensors to relay information to a central computer

system in real time. Typically, an ALERT installation comprises several types of

sensors, such as rainfall sensors, water-level sensors, and other weather sensors.

Data from each set of sensors are gathered and relayed to a central base station.

1.2.3 Health Applications

Potential health applications abound for wireless sensor networks. Conceivably,

hospital patients could be equipped with wireless sensor nodes that monitor the

patients’ vital signs and track their location. Patients could move about more freely

while still being under constant supervision. In case of an accident – say, the patient

trips and falls – the sensor could alert hospital workers as to the patients’ location
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and conditions. A doctor in close proximity, also equipped with a wireless sensor,

could be automatically dispatched to respond to the emergency.

Glucose-level monitoring is a potential application suitable for wireless sensor

networks [Schwiebert et al., 2001]. Individuals with diabetes require constant mon-

itoring of blood sugar levels to lead healthy, productive lives. Embedding a glucose

meter within a patient with diabetes could allow the patient to monitor trends in

blood-sugar levels and also alert the patient whenever a sharp change in blood-sugar

levels is detected. Information could be relayed from the monitor to a wristwatch

display. It would then be possible to take corrective measures to normalize blood-

sugar levels in a timely manner before they get to critical levels. This is of particular

importance when the individual is asleep and may not be aware that their blood-

sugar levels are abnormal.

1.2.4 PODS Project

Rare and endangered species of plants are threatened because they grow in limited

locations. Evidently, these locations have special properties that sustain and support

their growth. The PODS project [Biagioni, 2001, Biagioni and Bridges, 2002, PODS,

2000], located at Hawaii volcanoes National Park, consists of wireless sensor network

deployed to perform long-term studies of these rare and endangered species of plants

and their environment.

In Hawaii, the weather gradients are very sharp. In fact, regions of the island

exist where rain forests and deserts are located less than 10 miles apart. Thus,

it is not surprising that endangered species of plants are restricted to very small

areas. Unfortunately, weather stations located throughout the island provide insuf-

ficient information for the areas where these endangered plants exist. Consequently,

deploying a very dense wireless sensor network in the area of interest allows fine-

grained temperature, humidity, rainfall, wind, and solar radiation information to be

obtained by researchers.

These are just a few applications of wireless sensor networks. There are many
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other applications in which wireless sensor networks are deployed and each one is

designed according to the requirement of the application.

1.3 WSN Services

Most large-scale wireless sensor network applications share common characteris-

tics. Services such as time synchronization, location discovery, data aggregation,

data storage, topology management, and message routing are employed by these

applications.

1.3.1 Time Synchronization

Time synchronization is an essential service in wireless sensor networks [Sivrikaya

and Yener, 2004]. In order to properly coordinate their operations to achieve complex

sensing tasks, sensor nodes must be synchronized. A globally synchronized clock

allows sensor nodes to correctly time-stamp detected events. The proper chronology,

duration, and time span between these events can then be determined. Incorrect

time stamps, due to factors such as hardware clock drift, can cause the reported

events relayed back to the base station to be assembled in incorrect chronological

order.

Time synchronization is crucial for efficient maintenance of low-duty power

cycles. Sensor nodes can conserve battery life by powering down. When properly

synchronized, nodes are able to turn themselves on simultaneously. When powered

up, sensor nodes can relay messages to the base station and subsequently power

down again to conserve energy. Unsynchronized nodes result in increased delays

while they wait for neighboring nodes to turn their radios on, and in the worst

case, messages transmitted can be lost altogether. Various aspects in relation to

time synchronization are discussed in [Elson et al., 2002,Sichitiu and Veerarittiphan,

2003, Mills, 1991, Mattern, 1989, Lamport, 1978, J. van Greunen and Rabaey, 2003,

Ganeriwal et al., 2003, Fidge, 1988a, Fidge, 1988b, Elson and Estrin, 2001, Dai and
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Han, 2004, Chandy and Lamport, 1985].

1.3.2 Location Discovery

Location discovery involves sensor nodes deriving their positional information,

expressed as global coordinates or within an application-defined local coordinate

system. The importance of location discovery is widely recognized [Savvides

et al., 2002, Savvides et al., 2001, Niculescu and Nath, 2003a, Niculescu and Nath,

2003c, Niculescu and Nath, 2001, Meguerdichian et al., 2001]. It serves as a funda-

mental basis for additional wireless sensor network services where location aware-

ness is required, such as message routing. Furthermore, in applications such as fire

detection, it is generally not sufficient to determine if a fire is present, but more

importantly, where. A brief review of location discovery solutions is discussed in

chapter 2.

1.3.3 Data Aggregation

Data aggregation and query dissemination are important issues in wireless sensor

networks [Heidemann et al., 2001]. Sensor nodes are typically energy constrained.

Therefore, it is desirable to minimize the number of messages relayed, because radio

transmissions can quickly consume battery power. A naive approach to reporting

sensed phenomenon is one where all (raw) sensor reading are relayed to a base station

for off-line analysis and processing. However, since sensor nodes within the same

vicinity often detect the same, common phenomenon, it is likely some redundancy in

sensor readings will occur [Krishnamachari et al., 2002]. Local collaboration allows

nearby sensor nodes to filter and process sensor reading before transmitting them

to a base station. Consequently, this process can reduce the number of messages

relayed to the base station.
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1.3.4 Data Storage

Data storage presents a unique challenge to developers. Event information collected

by individual nodes must be stored at some location, either in situ or externally. In

some cases, where an off-line storage area is not available, data must be stored within

the wireless sensor network. Ratnasamy et al. [Ratnasamy et al., 2002, Ratnasamy

et al., 2003] describe three data-storage paradigms employable in wireless sensor

networks:

External Storage In this model, when a node detects an event, the corresponding

data are relayed to some external storage located outside the network, such

as a base station. The advantage of this approach is that queries posed to the

network incur no energy expenditure since all data are already stored off-line.

Local Storage In this model, when a node detects an event, event information is

stored locally at the node. The advantage of this approach is that no initial

communication costs are incurred. Queries posed to the wireless sensor net-

work are flooded to all nodes. The nodes with the desired information relay

their data back to the base station for further processing.

Data-Centric storage In this model, event information is routed to a predefined

location, specified by a geographic hash function (GHT), within the wireless

sensor network. Queries are directed to the node that contains the relevant

information, which relays the reply to the base station for further processing.

1.3.5 Topology Management and Message Routing

Wireless sensor networks can possibly contain hundreds or thousands of nodes.

Routing protocols must be designed to achieve an acceptable degree of fault toler-

ance in the presence of sensor node failures, while minimizing energy consumption.

Furthermore, since channel bandwidth is limited, routing protocols should be de-

signed to allow for local collaboration to reduce bandwidth requirements.
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Observations made in [Tilak et al., 2002] show that, although intuitively it ap-

pears a denser deployment of sensor nodes renders a more effective wireless sensor

network, if the topology is not carefully managed, this can lead to a greater number

of collisions and potentially congest the network. As a result, there is an increased

amount of latency when reporting results and a reduction in the overall energy effi-

ciency of the network. Furthermore, as the number of reported data measurements

increases, the accuracy requirements of the application may be surpassed. This

increase in the reporting rate by the deployed sensor nodes can actually harm the

wireless sensor network performance, rather than prove beneficial.

Message-routing algorithms in ad hoc networks can be separated into two broad

categories: greedy algorithms and flooding algorithms [Bose et al., 2001]. Greedy

algorithms apply a greedy path-finding heuristic that may not guarantee a message

reaches its intended receiver. One example of greedy routing, proposed by Finn in

1987, is forwarding to a neighbor that is closest to the destination. Additional steps

are required to ensure the message is received by its intended recipient. Flooding

algorithms employ a controlled packet duplication mechanism to ensure every node

receives at least one copy of the message. For these algorithms to terminate, nodes in

the sensor network must remember which messages have been previously received.

1.4 Sensor Operating Systems

TinyOS is an open-source operating system designed for wireless embedded sensor

networks [Hill et al., 2000, Tin, 2004a]. It features a component-based architecture

that enables implementation of sensor network applications. TinyOS features a com-

ponent library that includes network protocols, distributed services, sensor drivers,

and data-acquisition tools. TinyOS features an event-driven execution model and

enables fine-grained power management. It has been ported to several platforms

with support for various sensor boards.

Currently, over 500 research groups and companies use TinyOS and the sensor
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Table 1.2: TinyOS Research Projects

Project Description

Calamari [Calamari, 2004] Localization solutions for sensor networks
CotsBots [CotsBots, 2004] Inexpensive and modular mobile robots built using off-

the-shelf components to investigate distributed
sensing and cooperation algorithms in large (> 50)
robot networks

Firebug [FireBug, 2004] Berkeley civil engineering project for the design and
construction of a wildfire instrumentation system using
networked sensors

TinyGALS [TinyGALS, 2004] Globally asynchronous and locally synchronous model
for programming event-driven embedded systems

galsC [GalsC, ] Language and compiler designed for use with the
TinyGALS programming model

Mate [Mate, 2004] Application-specific virtual machines for TinyOS
networks

PicoRadio [PicoRadio, 2004] Development of mesoscale low-cost transceivers for
ubiquitous wireless data acquisition that minimizes
power/energy dissipation

TinyDB [TinyDB, ] Query processing system for extracting information
from a network of TinyOS sensors

motes developed by Crossbow [xbow, 2004b]. A partial list of research projects [Tin,

2004b] currently under way is presented in table 1.2.

1.5 Thesis Outline

After the brief introduction to wireless sensor networks, we shall now give an outline

of our work in this thesis. Our work is divided in three parts. In the first part, we

deal with the decrease in the strength of a signal from a node due to loss of battery

power of the node. Each node in a wireless sensor network is capable of receiving

and transmitting signals. So the transceiver of a node is using the battery energy

for sending and receiving the signals. As time passes, the battery energy keeps

on decreasing. So there is lesser and lesser energy available to the transmitter of

the node to send signals. As a consequence, the strength of the signal too keeps

decreasing.
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Moreover as the distance between the transmitter and receiver increases, the

power in the signal at the receiving end decreases. Thus a decrease in the received

signal strength (RSS) from a particular node could have two explanations: It could

either be due to the increase in distance between the transmitting node and the

receiver node; or it could be due to the loss of battery at the transmitting node. In

the applications where the distance is obtained by analyzing the RSS, the change

in RSS due to energy drooping of the battery can cause erroneous results. For

example the localization algorithm, (like many other localization techniques) that

we have proposed, uses an RSS-distance model to calculate the distance between

the concerned nodes.

Hence the change (decrease) in the RSS due to the change (decrease) in the battery

voltage of the sending node would lead to misinterpretation in terms of increase

in the distance between the nodes. Eventually it would result in an erroneous

estimation about the node position. Thus in the first part of the thesis, we tackle the

problem of avoiding the misinterpretation of increase in distance originating from

the voltage droop in the transmitting node battery.

In the second part of the thesis, we have proposed a localization algorithm that

uses minimum possible reference points to find the position of all the nodes in the

wireless sensor network. As a reference point we are using anchor nodes. An

anchor node is a node that is aware of its local/global geographical coordinates. We

have demonstrated that three anchors is a necessary and sufficient condition for

finding all the nodes in a wireless sensor network where the nodes form a point set

triangulation. Many research works have been conducted in order to minimize the

number of reference points and many of them require these reference points to be

at the boundary of the network. In our proposed localization technique, we have

no such condition. Any three randomly chosen nodes in the network can serve as

anchors, irrespective of their location in the network. We have developed a heuristic

technique to find out the initial layout of the nodes just by using the information of

connectivity amongst them, that is, we find the topology of the network by using



1.5. THESIS OUTLINE 17

only the distance matrix. Then by knowing the coordinates of any three nodes,

we can estimate the coordinates of the rest of the nodes. The key point is to find

the symmetry, orientation and position of the topology that is in accordance to the

known coordinates of the three anchors.

The third part of the thesis deals with the detection of the faulty sensors in a

wireless sensor network. After the deployment of a wireless sensor network, there

is always a possibility that some of the nodes would develop a malfunctioning

sensor. In order to rely on the sensor reading of a node, it is very important to have

the information about its current health status, since it is very likely that the sensor is

not giving accurate readings at all times. Thus we have developed a fault detection

scheme to identify malfunctioning sensors. We achieve this goal by using a soft

computing technique, that is, we model each sensor by fuzzy logic system. The

sensor measurement of a node is approximated by the fuzzy logic system, whose

input is the real sensor measurements of the neighboring nodes. If the difference

between the approximated value and the real measurement of a node is greater than

the accepted tolerance, the node is declared as faulty. We have also developed a

recurrent model whose input also include the previously approximated values.

The thesis is organized as follows: In chapter 2 we discuss the general techniques

used for the localization in wireless sensor networks. In chapter 5 we present the

voltage drooping problem in relation to distance estimation amongst the nodes.

Chapter 4 deals with the detailed description of the proposed localization algo-

rithm. Chapter 3 is dedicated to the discussion of fault detection in wireless sensor

networks. Finally chapter 6 presents the conclusion of our work and the perspective

for future research.
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Chapter 2

Location Estimation Methods

T
his chapter reviews three methods that can be used in an IEEE 802.15.4 network

to determine the location of an object. The first one uses received signal

strength (RSS) as a simple way of estimating the distance between nodes. The

second approach takes advantage of the signal angle of arrival, if known, at two

or more nodes to estimate location of the node that transmitted the signal. The

last method measures the time difference of signal arrival at multiple nodes with

known locations to estimate the location of the node of interest. Among these three

methods, the RSS-based location estimation has received the most attention because

of its minimum hardware requirements and the simplicity of its implementation.

2.1 Introduction

One of the applications of short-range wireless networking is determining the ap-

proximate physical location of objects at any given time. The real-time knowledge of

the location of personnel, assets, and portable instruments can increase management

efficiency. Location estimation refers to the process of obtaining location information

on a node with respect to a set of known reference positions. The location estimation

is also referred to as positioning, locationing , and geolocationing. The knowledge of

the location of the nodes presents the opportunity of providing location-dependent

19
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services. For example, a visitor in a museum can carry an audio/video device that

provides relevant information to the visitor, depending on his or her location in

the museum. The location of a node can also be used as part of the authentication

process. In this way, the authenticity of a packet is determined not only by the infor-

mation embedded in the packet but also by the location of the node that transmitted

the packet.

Here we focus on the location-estimation methods that use short-range radio

frequency (RF) signals. However, it is possible to use other types of signals such

as ultrasound or infrared instead of an RF signal in a location-estimation algorithm;

but RF-based positioning systems are also found to be more suitable for large-scale

deployments.

The location-estimation systems developed using short-range wireless network-

ing are sometimes referred to as local positioning systems (LPSs) to differentiate them

from global positioning systems (GPSs). A GPS-enabled device determines its location

by calculating its distance from three or more GPS satellites orbiting the Earth. Each

GPS satellite continuously transmits a message containing the satellite location and

the exact time. This message travels approximately with the speed of the light to

reach the GPS receiver. The GPS receiver compares the exact time the message was

received with the time the message was transmitted by the satellite to calculate the

distance traveled. Knowing the distance to at least three satellites and the satellites

positions, the receiver calculates its own position. The LPS, in contrast, does not use

information provided by GPS satellites or any other long-range transmitter. An LPS

uses the RF signals transmitted by local nodes with known positions or the mobile

node itself to calculate the location of the mobile node relative to the known locations

of other local nodes.

The choice of location-estimation algorithm depends on the application scenario.

The location-estimation methods are compared based on their performance and

complexity. The location accuracy, which is the distance between the actual location

and the estimated location, is the most intuitive performance metric.
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The location estimation usually involves two groups of nodes. The first group

consists of nodes with known locations. These nodes, sometimes referred to as anchor

nodes, are used as references for the location estimation. The location of the anchor

nodes can be determined by the installer, or the anchor nodes may be equipped with

GPS to determine their own locations.

The second group is the nodes with unknown locations, referred to as tracked

nodes. The purpose of the location estimation is to determine the location of the

tracked nodes with the help of the anchor nodes.

The basic idea of local positioning can be summarized as follows. A tracked node

with unknown location emits a signal, which is received by the neighboring anchor

nodes. The anchor nodes measure the received signal strength (RSS), the time of arrival

(ToA), or the angle of arrival (AoA) of the received signal. These measured values

are used as inputs to an algorithm that determines the approximate location of the

tracked node. The algorithms normally use only one of these three inputs.

There are two types of processing approaches for position estimation of the

nodes. These are central and distributed processing approaches. In central processing

approach, a single node, referred to as the central location processing node, is dedicated

to executing the location-estimation algorithm. All other nodes in the network only

gather the location-related information such as RSS and send it to the central location

processing node. The central location processing node calculates the estimated

location of all the tracked nodes and communicates the calculated location back to

each tracked node if requested. In distributed processing approach the task of the

location-estimation is distributed among almost all the nodes in the network. In this

way, there is no centralized location processing node and each node determines its

own location by communicating only with nearby anchors nodes and potentially

other tracked nodes.
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2.2 RSS-Based Locationing Algorithms

The received signal strength (energy) can be measured for each received packet.

The measured signal energy is quantized to form the received signal strength indicator

(RSSI). The RSSI and the time at which the packet was received (timestamp) are

available to MAC, network, and application layers for various types of analysis.

The simplest method to determine the location of a tracked node is to request that

the tracked node transmit a signal. Then the location of the reference node that

reports the highest RSSI is considered the estimated location of the tracked node.

The advantage of this method is that it can be implemented easily on low-cost,

battery-powered nodes with small memory size and low processing capabilities.

However, the location-estimation accuracy of this method can be inadequate for

many applications. The only way to improve the accuracy of this method is to

increase the number of anchor nodes, which is not a desired approach in low-cost

applications. The following section presents another simple RSSI-based locationing

method.

2.2.1 RSSI-Based Location Estimation Using Trilateration

Figure 2.1 shows a location-estimation scenario where there are three anchor nodes

(1,2, and 3)and the fourth node is the tracked node. The goal is to determine the

estimated two-dimensional location of the tracked node. Two-dimensional (2D)

means only X and Y coordinates of the node position will be estimated. But the

same concept can be extended to three-dimensional (3D) space as well. The location

estimation begins with the tracked node transmitting a signal with a predefined

output power. Assuming that all nodes have omnidirectional antennas, each one

of the anchor node can estimate the distance ri for 1 ≤ i ≤ 3 between itself and the

tracked node using the RSS-distance model [Seidel and Rappaport, 1992].

PR = PT − 10n log( f ) − 10n log(r) + 30n − 32.44(dBm)
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Figure 2.1: Location estimation using trilateration

where PT is the transmitted power (in dBm) by the tracked node, PR is the RSS at the

anchor node location, f is the transmitted signal frequency in MHz, n is the path-loss

exponent, and r is the distance in meters.

Anchor 1, for example, can estimate the distance (r1) between its location and

the location of the tracked node using RSS. From the single measurement done by

anchor 1, the only conclusion that can be made is that the tracked node is located on

the perimeter of a circle with radius r1 and center at anchor 1. Using the Euclidean

distance, we can write:

(X1 − X)2
+ (Y1 − Y)2

= (r1)2

or

(X1 − X)2
+ (Y1 − Y)2

− (r1)2
= 0

where (X1,Y1) and (X,Y) are coordinates for anchor 1 and the tracked node, respec-

tively. Similar equations can be derived for anchor 2 coordinates (X2,Y2) and anchor

3 coordinates (X3,Y3). Therefore, to find the location of the tracked node we need to

find (X,Y) that satisfies (2.1).































(X1 −X)2
+ (Y1 − Y)2

(X2 −X)2
+ (Y2 − Y)2

(X3 −X)2
+ (Y3 − Y)2































−































(r1)2

(r2)2

(r3)2































=































0

0

0































(2.1)

This method of determining the relative location of nodes using the geometry of

intersection of three circles is referred to as trilateration.
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This simple RSSI-based location estimation can also be used when there are more

than three anchors involved. In this way the signal transmitted by the tracked node

will be received by several nodes instead of only three nodes. The number of rows

in (2.1) is proportional to the number of anchors participating in location estimation.

Increasing the number of anchors may improve the location-estimation accuracy in

some applications. It is also possible to engage only the nearby nodes in location

estimation. The RSSI value of the packet received by each anchor node indicates the

distance between the nodes. If an anchor node receives a packet from the tracked

node as part of the location-estimation process, the anchor node only participates in

the location estimation if the RSSI of the received packet is above a certain limit. By

modifying the RSSI limit, one can increase or decrease the number of anchors nodes

participating in the location estimation.

2.2.2 Location Estimation Based on Location Fingerprinting

Location estimation based on location fingerprinting is implemented in two phases.

The first phase requires a site survey (offline training) to generate a database of

measured RSSI values of the signals from the anchor nodes at certain locations. In

the second phase (the real-time phase), each tracked node is capable of determining

its own location by comparing the real-time measured RSSI of the signals received

from the anchor nodes with the corresponding RSSI information available in its

database [Seidel and Rappaport, 1992]. The basic concept of this method is shown

in figure 2.2. The anchor nodes are numbered from 1 to 9. These anchors have

overlapping coverage and form a grid. The physical distances between the nodes are

not necessarily equal. During the first (training) phase, a receiver is placed at each

predetermined location L1 to L6, and the RSSI of the received signal from anchors

1 to 9 are measured and stored in an array. For example, at location L1, the array

containing the received signal strength is the following:

ssL1
=
[

ssL1,1 ssL1,2 · · · ssL1,9

]
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Figure 2.2: Location estimation based on fingerprinting

where ssL1,i is the strength of the signal received from the anchor node i at location

L1. The database containing the signal strength information associated with all

locations L1 to L6 is referred to as the radio map. In practice, the signal strength at

known locations are measured multiple times, and the signal strength array contains

the statistical average of the strength of the signals received from the anchors. The

array of signal strength values at each location is known as the fingerprint (or RF

signature) of that location.

After completion of the training phase, a tracked node as shown in figure 2.2

can determine its own location by going into receive mode and receiving the signals

transmitted from each anchor node. The strength of each signal is calculated and

stored in an array associated with the tracked-node current location:

sscurrent =
[

sscurrent,1 sscurrent,2 · · · sscurrent,9

]

where sscurrent,i is the strength of the signal received from the anchor node i at the cur-

rent location of the tracked node. The Euclidean distance can be used to determine

the distance (difference) between the current signal strength array measured during

the real-time phase and the signal strength array associated with each known loca-
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tion. For example, the Euclidean distance between the ssL1
and sscurrent is calculated

from

d
(

sscurrent, ssL1

)

=

√

√

9
∑

i=1

(

sscurrent − ssL1,i

)

where d
(

sscurrent, ssL1

)

is the distance between these arrays. This distance is not a

physical distance and is only an indication of the similarity of ssL1
and sscurrent signal

strength arrays.

The simplest method for determining the location of the tracked node in the real-

time phase is the single nearest-neighbor technique. In this method the tracked node

calculates the Euclidean distance between the real-time measured signal strength

array sscurrent and the signal strength array assiciated with the locations L1 to L6. The

location of the tracked node is simply estimated to be equal to one of these six known

locations, where ssL j
has minimum distance to the sscurrent, i.e.,

estimated position = L j s.t. d(sscurrent, ssL j
) = min

1≤k≤6
{d
(

sscurrent, ssLk

)

}

The advantage of the single nearest neighbor method is its simplicity, but it does

not take advantage of the available ss arrays associated with the rest of the known

locations to improve the location-estimation accuracy.

The k-nearest neighbor (KNN) method, shown in figure 2.3, can be used instead

of the single nearest neighbor to improve the location-estimation accuracy. In this

method, the tracked node identifies k known locations for which their ss array has

the lowest distance to sscurrent. In the KNN technique, the estimated location of the

tracked node is the average of these k known locations:

XE =
1

k

k
∑

i=1

Xi

YE =
1

k

k
∑

i=1

Yi

where (XE,YE) is the estimated location of the tracked node and X1,Y1 to Xk,Yk are
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Figure 2.3: Effect of increasing k in KNN

the coordinates of the k-nearest neighbors.

For example, assuming that the location L1 in figure 2.3 has the ss array with the

smallest distance to sscurrent, and L2 and L3 have the next two closest arrays:

d
(

sscurrent, ssL1

)

< d
(

sscurrent, ssL2

)

< d
(

sscurrent, ssL3

)

(2.2)

then in the nearest-neighbor method, L1 will be the estimated location of the tracked

node. In k-nearest neighbors with k = 3, the estimated location of the tracked node

is E3 in figure 2.3, which is closer to the actual location of the tracked node compared

to the estimate provided by the nearest-neighbor method.

Increasing the value of k will not necessarily improve the location-estimation

accuracy. For example, in figure 2.3 the estimated location when k is equal to 3

results in better estimation than k = 5. The reason is that by increasing the value of

k, the further-away nodes are taken into account and may increase the estimation

error.

The weighted k nearest-neighbor method can further improve the location-estimation

accuracy of the KNN technique. In the KNN approach, all selected k neighbors (re-

gardless of the distances of their associated ss arrays from the sscurrent array) are

treated equally in determining the estimated location. Ignoring the differences be-

tween these neighbors can be a source of error because the tracked node may be

closer to some neighbors than others and this information will be lost in simple av-

eraging of the location of all k-nearest neighbors. In the weighted k nearest neighbor
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method, the distance of ss array associated with each k nearest neighbor from the

sscurrent is taken into account in estimating the location of the tracked node. That

is the fingerprint with less distance to sscurrent is assigned more weight than to the

fingerprint with more distance. That is if wi denotes the weight assigned to the

fingerprint with location Li, then from (2.2) we have:

w1 > w2 > w3.

Hence the estimated position of the tracked node is given by

XE =
1

D

k
∑

i=1

Xiwi

YE =
1

D

k
∑

i=1

Yiwi

where

D =

k
∑

i=1

wi

The basic concept of location estimation using fingerprinting can be seen as

providing a database of known information to a system and expecting the system

to learn how to relate the RSS information to a specific physical location. Therefore,

the algorithms developed for other disciplines such as machine learning, neural

networks, and pattern recognition can be used for fingerprinting-based location

estimation as well.

2.2.3 Cooperative Location Estimation

In cooperative location estimation, not only are the distances from the tracked node

to the anchor nodes measured but also the relative distances of the tracked nodes to

each other are used as part of location estimation. Figure 2.4 highlights the difference

between the basic trilateration method and cooperative technique. In trilateration

method the location of the tracked node A is determined using range estimation
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Figure 2.4: Cooperative location estimation

between the node A and the anchor nodes 1 to 4. The other tracked nodes with

unknown locations do not participate in determining the location of the tracked node

A. Every time a node needs to determine its own location using trilateration, only

the tracked node itself and the nearby anchor nodes will participate in localization.

In the cooperative method the location of several tracked nodes can be deter-

mined concurrently using an iterative method. First, the RSSI measurements at the

anchor nodes provide an estimate for the location of the tracked nodes participating

in cooperative localization. Then each tracked node determines its approximate

distance to the neighboring tracked nodes using the RSSI. The approximate distance

between the tracked nodes is the additional information available in the cooperative

method, which helps refine the location-estimation accuracy beyond the achievable

accuracy in a basic trilateration method.

In a trilateration method, increasing the number of anchor nodes in a given

area results in an improvement in location accuracy. But increasing the number

of tracked nodes does not have any positive effect on accuracy of the trilateration

technique. In the cooperative method, on the other hand, increasing either the

number of anchor nodes or the number of tracked nodes can result in improvement

in location-estimation accuracy.
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2.2.4 Ad Hoc Positioning System

Niculescu and Nath [Niculescu and Nath, 2001] propose their ad hoc positioning

system (APS), whereby nodes determine their location in reference to landmarks that

are location aware. Landmarks can be other sensor nodes, base stations, or beacons

that have positional information. Unlike GPS, where direct line of sight is required

with a series of satellites in order to triangulate a location, landmark information is

propagated through the wireless sensor network in a multihop fashion.

When an arbitrary node in the wireless sensor network has distance estimates

to three or more landmarks, it computes its own position in the plane. The node

utilizes the centroid of the landmarks as its location estimate. Nodes in direct

communication with a landmark infer their distance from it based on the received

signal strength of the landmark.

Through message propagation, nodes two hops away from a landmark estimate

their distance based on the distance estimates of nodes located next to the land-

mark. The propagation schemes proposed by the authors eventually flood the entire

network until all nodes are able to determine their coordinates.

2.3 Angle-of-Arrival Based Algorithms

At the expense of additional complexity and cost, it is possible to modify a node

to become capable of determining the received signal angle of arrival (AoA). Figure

2.5 describes the basic concept of location estimation based on AoA. The anchor

nodes transmit signals using omnidirectional antennas. The tracked node receives

the signals from the nearby anchor nodes and can measure the received signal AoA.

If the tracked node knows its own orientation, only two anchor nodes are required

to determine the location of the tracked node. A node knows its orientation if it is

aware of the North direction or a direction commonly known by the anchor nodes

and the tracked node. Figure 2.5 shows a scenario in which the tracked node is

unaware of its own orientation and therefore must receive the signal from at least
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Figure 2.5: Location estimation using AoA

three anchors to be able to determine its own location. Although the tracked node

does not know its orientation, it can calculate the angle between nodes 1, 4, and 2:

∠142 = 2π − (θ1 − θ2)

If the tracked node knows the AoA for only nodes 1 and 2, the location of the tracked

node can be anywhere on an arc connecting nodes 1 and 2. By measuring the AoA

of the signal received from anchor 3 as well, the tracked node can calculate the angle

between nodes 2, 4, and 3:

∠243 = θ3 − θ2

Since the locations of the anchors are known, node 4 (the tracked node) can determine

the arcs corresponding to its angle with nodes 1, 2, and 3. The intercept of the two

arcs, shown in figure 2.5, is the location of node 4.

2.4 Time-Based Algorithms

The time-based and RSSI-based locationing algorithms have a common goal: deter-

mining the distance between the nodes based on the properties of the received signal.

In the RSSI-based method, the received signal strength and the path-loss properties

of the environment are used to estimate the distance. In time-based locationing
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algorithms, the estimated propagation sped of the signal and the time it takes for

the signal to travel from the transmitter to the receiver are used to determine the the

distance between the nodes. GPS is an example of time-based locationing.

A time-based location estimation can be based on either the received signal time

of arrival (ToA) or the time difference of arrival (TDoA). The ToA, shown in figure

2.6 required synchronization between the receiver and transmitter. The ToA is the

Anchor node

Tracked node

Synchronized

d1 = c × t1

(Transmitter)

1

Figure 2.6: Estimating the distance using ToA

absolute value of the signal time of flight from the transmitter to the receiver. The

distance from the tracked node to the anchor node (d1) can be derived from the ToA

(t1) and the propagation speed (e.g., c = speed of light). The TDoA requires only

synchronization of the receivers. The anchor nodes receive the signal transmitted

by the tracked node, and the difference between the signal arrival times at these two

anchor nodes can be used to calculate the ∆d, which is the difference between the

distance of d1 and d2. The TDoA requires participation of at least three anchor nodes

to locate the position of the tracked node.

For the nodes shown in figure 2.7, we can formulate (2.3), where (X1,Y1), (X2,Y2),

Anchor node

Anchor node

Tracked node

d1 = c × t1

d2 = c × t2

Possible location of

the tracked node

Synchronized

∆d = d1 − d2 = c × (t1 − t2)

1

2

Figure 2.7: Determining the ∆d based on TDoA

and XE,YE are the coordinates of anchor node 1, anchor node 2 and the estimated
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location of the tracked node, respectively.

d2
1
= (X1 − XE)2 + (Y1 − YE)2

d2
2
= (X2 − XE)2 + (Y2 − YE)2

∆d =
√

(X1 − XE)2 + (Y1 − YE)2 −
√

(X2 − XE)2 + (Y2 − YE)2































(2.3)

If only two anchor nodes participate in TDoA locationing, the only conclusion that

can be made from (2.3) is that the tracked node is located on a hyperbolic curve,

shown as a dashed line in figure 2.7. When a third anchor node is added, the

estimated location of the tracked node will be intersection of the corresponding

hyperbolic curves.

2.4.1 APS Using AoA

In [Niculescu and Nath, 2003a], Niculescu and Nath present two algorithms, DV-

Bearing and DV-Radial, that allow sensor nodes to get a bearing and a radial in

relation to a landmark using AoA to derive position information. The term “bearing”

refers to an angle measurement with respect to another object. A “radial” refers to

a reverse bearing which is simply the angle at which an object is seen from another

location. The term “heading” refers to the sensor node’s bearing with respect to true

north and represents its absolute orientation.

AoA sensing requires sensor nodes to be equipped with an antenna array or

several ultrasound receivers. This equipment is currently available in small pack-

age formats for wireless sensor network nodes such as the one developed for the

Cricket Compass Project [Priyantha et al., 2001,Priyantha et al., 2000]. The theory of

operation is based on TDoA and phase difference of arrival. If a node sends an RF

signal and an ultrasound signal at about the same time, the receiving node can infer

the distance between the sender and itself by measuring the time difference between

the arrival of the RF signal and the ultrasound signal. To derive the angle of arrival

of the signal, the receiving sensor node uses two ultrasound receivers placed at a
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known distance from each other.

2.5 Conclusion

In this chapter we have given a brief overview of the basic localization methods that

have been used in location based services in wireless sensor networks. Almost all

the nodes in a wireless sensor network are capable of measuring RSS, therefore it is

more economical approach for estimating inter-node distances than the approaches

using angle of arrival or time based algorithms. We have also seen that in all the

localization techniques there is a need for multiple number of anchor nodes except

for some cooperative localization methods where the number of anchor nodes is

minimum. Still number of anchors is not the minimum. In chapter 4 we shall show

that the process of localization can be completed by using only three anchors.



Chapter 3

Detection of Measurement Errors

T
he goal of this chapter is to present a fault detection strategy for wireless sensor

networks. Our scheme is based on modeling a sensor node by Takagi-Sugeno-

Kang (TSK) fuzzy inference system (FIS), where a sensor measurement of a node is

approximated by a function of the sensor measurements of the neighboring nodes.

We have also modeled the nodes by recurrent TSK-FIS (RFIS), where the sensor mea-

surement of a node is approximated as function of real measurements of the neigh-

boring nodes and the previously approximated value of the node itself. Temporary

errors in sensor measurements and/or communication are overcome by redundancy

of data gathering. A node can develop a faulty sensor because the sensor chip is

attached to the WSN mote. The sensor chip is exposed to the environment, thus

wear and tear can arise, possibly resulting in an inaccurate measurement. A node

with a faulty sensor is not completely discarded because it is useful for relaying the

information amongst the other nodes. Each node has its own fuzzy model that is

trained with input of neighboring sensors’ measurements and an output of its actual

measurement. A sensor is declared faulty if the difference between the outcome of

the fuzzy model and the actual sensor measurement is greater than the prescribed

amount depending on the physical quantity being measured. Simulations are per-

formed using the fuzzy logic toolbox of Matlab R©. We also give a comparison of

obtained results to those from a feed-forward artificial neural network, recurrent
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neural network and the median [Ding et al., 2005] of measured values of the neigh-

boring nodes.

3.1 Introduction

Wireless sensor networks are emerging as computing platforms for monitoring var-

ious environments including remote geographical regions, office buildings and in-

dustrial plants [Akyildiz et al., 2002d]. They consist of the following: a set of nodes

that can communicate with each other; sensors that measure a desired physical quan-

tity; and the system base station for data collection, processing, and connection to the

wide area network. Modern wireless sensor nodes have microprocessors for local

data processing, networking, and control purposes . WSNs have enabled numerous

advanced monitoring and control applications in environmental, biomedical, and

numerous other applications.

One of the motivations for WSN modeling stems from the need for intelligent fault

detection in complex distributed sensory systems. Because sensor networks often

operate in potentially hostile and harsh environments, most of the applications are

mission critical. The sensors are often used to compute control actions [Di et al., 2000,

Katsura et al., 2003, Lysheyski, 2002], where sensors faults can cause catastrophic

events. For instance, the National Aeronautics and Space Administration was forced

to abort the launch of the space shuttle Discovery due to a failure in one of the sensors

in the sensor network of the shuttle’s external tank (the failure was discovered

through human inspection) [Moustapha and Selmic, 2008].

Sensors and actuators boarded on a WSN node are more prone to faults as com-

pared to traditional integrated semiconductor chips. Feedback about the functional-

ity status of nodes is mandatory for multisensor systems so that they could eventually

recover and heal from possible faults. Components such as sensors and actuators

have significantly higher fault rates than the traditional integrated semiconductor

circuits-based systems. Multisensor systems need feedback information about the
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health status of their nodes in order to recover and heal from eventual faults. This

would enhance the reliability on the system. Due to malfunctions or noise the sen-

sor reading are more or less uncertain in the sense that no sensor will render an

accurate reading at all times. Because low-cost sensor nodes are often deployed in

an uncontrolled or even harsh environment, they are vulnerable to have faults. It is

thus desirable to detect, locate the faulty sensor nodes, and exclude them from the

network during normal operation unless they can be used as communication node.

Consequently we need to design a WSN that is capable of fault detection [Moustapha

and Selmic, 2008,Zhirabok and Preobragenskaya, 1993,Pouliezos and Stavrakankis,

1994]. Efficiency in converting data to features while consistently accommodat-

ing the uncertainty inherent in the measurements form a key issue for diagnosing

and dealing with sensor faults [Zhirabok and Preobragenskaya, 1993,Pouliezos and

Stavrakankis, 1994].

The ancient method for fault tolerance is to equip a node with multiple sensors

but doing so would not only increase the cost of a node and hence that of the network

but would also lead in more complexity and power consumption. So recent works

are centered around analytical redundancy [Leushen et al., 2002, S.C.Lee, 1994] in

which the sensor measurements are processed analytically, and the mathematical

models are compared with the physical measurements. Therefore, instead of using

additional hardware we use analytical fault detection, and model each node of a

WSN through Takagi-Sugeno-Kang (TSK) fuzzy inference system (FIS).

3.2 Related works

Fault detection and fault tolerance in wireless sensor networks have been investi-

gated in many research works. In [Jaikaeo et al., 2001] diagnosis for sensor networks

has been carried out with additional attention to the congestion avoidance at the

central node. In [Koushanfar et al., 2003] Koushanfar et al. have proposed an online

detection technique for faulty sensors, where nonparametric statistical methods are
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used to identify the sensors that have the highest probability to be faulty. In [Chessa

and Santi, 2001] the problem of fault identification in ad-hoc networks is addressed.

The diagnostic model lies upon the comparison-based one-to-many communica-

tion paradigm. In [Ruiz et al., 2004] Ruiz et al. have developed a management

architecture for detection of faults in event-driven WSNs. In [Ding et al., 2005] the

identification of faulty sensors in reach of events is discussed. The proposed generic

algorithms are localized and thus scalable for large networks, however those are

limited due to uneven distribution of nodes . In [Moustapha and Selmic, 2008] a

node is identified as faulty depending upon the comparison of the output from a

modified recurrent neural network to real measurement. In [Krishnamachari and

Iyengar, 2004] a solution to the fault-feature disambiguation problem in sensor net-

works is proposed in the form of Bayesian fault-recognition algorithms exploiting

the notion that measurement errors due to faulty equipment are likely to be uncor-

related, while environmental conditions are spatially correlated. In [Luo et al., 2006]

the fault correction problem for distributed event detection in a WSN is studied.

This distributed fault-tolerant detection scheme achieves optimal results when the

neighborhood size is chosen based on the given detection error bound such that

better balance between detection accuracy and energy usage is obtained.

In [Chen et al., 2006] the authors have presented a localized fault detection

algorithm to identify the faulty sensors. It uses local comparisons with a modified

majority voting, where each sensor node makes a decision based on comparisons

between its own sensing data and neighbors’ data, while considering the confidence

level of its neighbors. The scheme, however, is a little complex in the sense that

information exchange between neighboring nodes has to occur twice to reach a local

decision based on a threshold. In addition, it does not allow transient faults in sensor

reading and internode communication, which could occur for most normal sensor

nodes [Lee and Choi, 2008a]. Transient faults in sensing and communication have

been investigated in [Lee and Choi, 2008b], where a simple distributed algorithm

has been proposed to tolerate transient faults in the fault detection process. Some
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other fault management schemes can be found in the survey written by Yu et al. [Yu

et al., 2007].

The rest of the chapter is organized as follows: Section 3.3 presents the system

model and the assumptions made. In section 3.4 we discuss how we are treating

the problem of fault detection. Sections 3.5 and 3.6 respectively represent the fuzzy

inference modeling and the neural network modeling for the sensor fault detection.

In section 3.7 we discuss the implementation of the proposed approach. In section 3.8

we present and discuss the simulation results, and finally in section 3.9 we conclude

this chapter.

3.3 WSN modeling

The WSN under consideration accommodates n number of localized stationary ho-

mogeneous nodes with unique identity number and same transmission range, which

communicate via a packet radio network. The proposed algorithm assumes: all

nodes are fault free during deployment and during the training of the fuzzy infer-

ence system. For each node an FIS is created. The communication algorithm ensures

that: each sensor knows the identity of its neighbor, MAC protocol solves contention

problem over logical link, the link level protocol provides one hop broadcast.

3.3.1 Communication model

The communication graph of a WSN is represented as a graph G(V,E), where V

represents the set of sensor nodes in the network and E represents the set of edges

connecting sensor nodes. The Cartesian coordinates of the node Ai are represented

by (Ai,1,Ai,2). Two nodes Ai and A j are said to have an edge in the graph if the

distance

d
(

i, j
)

=

√

(

Ai,1 − A j,1

)2
+
(

Ai,2 − A j,2

)2
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between them is less than r (transmission range). That is,

d
(

i, j
)

≤ r⇔
(

Ai,A j

)

∈ E.

For convenience we assume that G is undirected, which means that if
(

Ai,A j

)

∈ E

then
(

A j,Ai

)

∈ E. The communication graph can be a test graph in our fault detection

if two nodes with an edge connecting them are compared. If some of the edges are

not involved in the fault detection or ignored based on the previous test results, a

test graph in our fault detection can be a subgraph of the communication graph. For

simplicity, we assume that communication graph and test graph are the same. For

the graph G(V,E) and Ai ∈ V, the set of the neighbors of Ai, N(Ai) is defined to be

N(Ai) :=
{

A j ∈ V : (Ai,A j) ∈ E
}

For two connected nodes
(

Ai,A j

)

∈ E we define a set

Di, j := N(A j) − (N(Ai) ∪ {Ai})

3.3.2 Fault model

The value measured by node Ai at kth instant of time, tk, is denoted by xk
i
. If the time

instant is not explicitly required the sensor measurement shall simply be denoted

by xi. Nodes with permanent faulty sensors are to be identified but are not excluded

from the network because they are useful in relaying data packets amongst the

nodes. Nodes with transient errors in sensor reading are termed as fault-free.

For a homogeneous physical quantity the difference, between the measured value

at a fault-free sensor with the measured values of its fault-free neighbors, is bounded.

So, if Ai and A j are neighbors then in case of possessing fault-free sensors the

following condition is satisfied:

|xi − x j| ≤ δ
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Figure 3.1: Neighbors of node Ai

where δ may vary depending on the application. If temperature is the physical

quantity being measured, for example, then a sensor node and its neighbors are

expected to have similar temperatures. Hence δ is exptected to be a small number.

If the local binary decision at each node, instead of the sensed data, is transmitted to

its neighbors, δ is set to 0.

3.4 Fault detection

Two nodes Ai and A j are compared only if (Ai,A j) ∈ E. Thus at time instant tk if two

such nodes have fully functional sensors then:

∣

∣

∣

∣

xk
i − xk

j

∣

∣

∣

∣

≤ δk
i, j (3.1)

Suppose Ai has m neighbors i.e., |N(Ai)| = m. As shown in figure3.1, let these

neighbors be denoted by

N(Ai) =
{

Ai1 ,Ai2 , ...,Aim

}

.

So for this particular node we have

∣

∣

∣

∣
xk

i − xk
i j

∣

∣

∣

∣
≤ δk

i,i j
, for 1 ≤ j ≤ m.
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Figure 3.2: An example of a fuzzy logic system

Equivalently we can write it as

xk
i = xk

i j
+ ǫk

i,i j
, for 1 ≤ j ≤ m

where ǫk
i,i j

is the difference between the ith sensor measurement and that of its jth

neighbor at the instant tk. Whence we get

mxk
i =

m
∑

j=1

(

xk
i j
+ ǫk

i,i j

)

or

xk
i =

1

m

m
∑

j=1

(

xk
i j
+ ǫk

i,i j

)

(3.2)

Equation (3.2) represents a relation between the real sensor measurement of the node

Ai and the sensor measurements of all of its neighbors. Which means the sensor

measurement of Ai can be approximated by an m-variable function f of neighboring

sensor measurements. That is

xk
i ≈ f

(

xk
i1
, xk

i2
, ..., xk

im

)

Hence for this node we create a TSK FIS which is trained with inputs as the sensor

measurements of N(Ai) nodes and output as the real sensor measurement of the

node Ai.
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3.5 TSK fuzzy treatment

The fuzzy logic system (FLS) [Takagi and Sugeno, 1985, Sugeno and Kang, 1986] is

an inference system which mimics the human thinking and its basic configuration

consists of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and a

defuzzifier, as shown in figure 3.2. A fuzzy rule is written as the following statement:

Rl : IF x1 is Bl
1 and x2 is Bl

2 and · · · xn is Bl
n THEN y is yl

where Rl(l = 1, 2, ...,M) denotes the lth implication, x j( j = 1, 2, ..., n) are input variables

of the FLS, yl is a singleton, Bl
j
is the fuzzy membership function which can represent

the uncertainty in the reasoning. When we use the product inference, center-average

and singleton fuzzifier, the output of the fuzzy system for an input x = (x1, x2, ..., xn)T

can be expressed as

y =

∑n
i=1 αiy

i

∑n
i=1 αi

where αi implies the overall truth value of the premise of the ith implication, and is

computed as

αi =

M
∏

l=1

Ai
l(xi)

We are also using a recurrent FIS in which the added input is the previously approx-

imated value, as shown in figure 3.3.

3.6 Neural network treatment

The sensor measurement of a node is also approximated as a function of neighboring

nodes by using MLP neural network as shown in figure 3.4. The input vector to

input layer, α = [α1 , α2 , α3 , α4 , α5] has components [xk
1
, xk

2
, xk

7
, xk

11
, xk

12
], which are

the sensed values at the neighbors of node A6, as would be discussed latter in this

chapter. The 5 × 6 matrix U = [βi, j] represents the input-to-hidden layer weights.

The activation function of each of the hidden layer neuron is denoted by σi for
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Figure 3.3: Recurrent fuzzy controller for fault detection in a sensor
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Figure 3.4: Three layered neural network for node A6 with five input variables
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i = 1, 2, ..., 6. Each of the σi is the logsigmoid function. These activation functions

are represented by a vector σT = (σ1 , σ2 , · · · , σ6). The vector wT = (w1,w2, ...,w6)

represents the hidden-to-output layer weights. The activation function of the output

layer is denoted by η and is the linear identity function. The single scalar output xNN

is the sensor measurement approximated by the neural network:

xNN ≈ η
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In matrix form which is written as:

xNN (α) = η
{

wT
σ

(

UT
α

)}

3.7 Implementation of the proposed fault detection ap-

proach

Suppose we want to measure the health status of the node Ai. So for this node we

train an initial FKS FIS with input xFIS = (xi1 , xi2 , ..., xim)T and output yFIS = xi. The

type of membership function is gaussian. The number of membership functions

for each component of input vector depends upon the range of temperature being

measured. For a larger range the number of membership functions is greater than

the number of membership function for a shorter range. If number of membership

functions is kept constant and the temperature range is increased then the size of

fuzzy set will increase but the number of rules will remain the same. And hence

inference will loose fine tuning. Here we are using five membership functions for

each neighboring sensed value xi j
for j = 1, 2, ...,m. So the fuzzy rules for node Ai

are given by

Rl : IF xk
i1

is Fl
1 andxk

i2
is Fl

2 · · · and xk
im

is Fl
m THEN yl

FIS = xk
i

for l = 1, 2, ...,M, where M is the total number of rules (in present case M = 5m).

The plot of membership functions of the variable xi3 (where i = 6) obtained through

fuzzy tool box of Matlab R© is shown in figure 3.18. After training FIS we apply it

through simulation on a WSN scenario. So at an instant tk the output of a fuzzy

controller is yFIS = yk
i

as shown in figure 3.6. Then we compare this output value

with the actual sensed measurement at node Ai and if

∣

∣

∣yk
i − xk

i

∣

∣

∣ ≥ TOLERENCE (3.3)
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Figure 3.5: Plot of membership functions for the variable xi3 , where i = 6

holds true then the sensor of the node Ai is identified as faulty. Note the difference

between (3.1) and (3.3). The condition (3.1) states that the difference between the

measurements of two neighboring fully functional senors is bounded. While in

(3.3) the absolute value difference between the actual measurement and the FIS

approximation is compared with the tolerance permitted by the WSN. Now we talk

about the members of N(Ai) that can participate in finding health status of the node

Ai.

A node Ai j
∈ N(Ai) shall participate in the fault identification of the node Ai if the

condition (3.5) is satisfied, in which the node Ai j
shall tally its own status with that

of the elements of Di,i j
. So there is a possibility that one or more elements of N(Ai)

shall not be involved in Ai’s fault identification. If |N(Ai)| = m and l of these nodes

are not participating then there are












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

m

l

















≡
m!

l!(m − l)!

combinations for the participating neighboring nodes with l varying from 1 to m− 1.

The total number of possible combinations is

m−1
∑

l=1

















m

l

















= 2m − 2
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Figure 3.6: Approximated value for A6 by the fuzzy controller

where each combination corresponds to an FIS. Now we describe the condition (3.5).

For the node Ai j
, we have

Di,i j
= N(Ai j

) − (N(Ai) ∪ {Ai})

Let |Di,i j
| = ζ and these nodes be denoted by u1, u2, ..., uζ. The sensor measure-

ment of the node Ai j
is compared with the sensor measurements of the nodes

u1, u2, ..., uζ. To tackle the transient faults we shall have this comparison for mul-

tiple times(t1, t2, ..., tk). Let us denote x
q

i j
by T(Ai j

, tq) where q = 1, 2, ..., k. So on the

same pattern we shall have sensor measurements of these ζ nodes as T(uγ, tq) for

γ = 1, 2, ..., ζ and q = 1, 2, ..., k. Let us define a function

g(x
q

i j
,T(uγ, tq)) =



















1 if Ai j
and uγ satisfy conditon (3.1)

0 otherwise
(3.4)

So the results from function (3.4) are stored in an ζ × k matrix H = [hγ,q] where

hγ,q = g(x
q

i j
,T(uγ, tq))
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A label Ci j ,uγ is attached to Ai j
with

Ci j,uγ =



















1 if
∑k

q=1 hγ,q ≥ (k − µ)

0 otherwise

where µ depends upon the number of instances the data is gathered. Now, if

ζ
∑

γ=1

Ci j ,uγ ≥ λ (3.5)

Where λ is selected as a threshold for this condition, on whose fulfilment the node

Ai j
participates in the fuzzy fault identification of the node Ai.

3.8 Simulation results

We have simulated a sensor network with 15 sensor nodes as shown in figure 3.7 and

one sensor per node. Each node has at least three one hop neighbors. The quantity

being measured is the temperature. The temperature of all nodes is gathered for a

period of 80 hours equally divided into 100 instances. For the simulation purpose

the temperature T at a point (x, y) and at time t is given by

T(x, y, t) =
√

x2 + y2 + L cos(φ + 2π f t) + sin(
5

2
t) + 60

where L = 25, f = 0.025 and φ = π. The reason for choosing this particular

heuristic function is that with this expression the temperature varies from 34.15◦C

to 88.88◦C. The temperature changes smoothly and there are no sudden jumps or

discontinuities. The differences in the data output are small enough to guarantee

and justify the theoretical approach described in section 3.4. Each sensor is modeled

using an FIS as described in previous sections. An FIS has inputs consisting of

the sensor measurements of the neighboring nodes. Each input variable to FIS has

five membership functions of type gaussian. An FIS is generated by using the grid
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Figure 3.7: A WSN scenario with 15 nodes

partition and is trained by using hybrid method. We have used Matlab R© as a

simulation software. Here we consider and discuss the status of the node A6 with

N(A6) = {A1 , A2 , A7 , A11 , A12} (3.6)

The initial FIS is trained with input of sensor measurements of all the five neigh-

boring (in order) nodes. The kth sample input vector to FIS has the components:

xk
1

xk
2

xk
7

xk
11

xk
12

where k is varied from 1 to 100, that is, the FIS is trained with the temperature

values of neighborhood nodes for the entire period of 80 hours. Similarly the neural

network is also trained from these data spanned over eighty hours.

Figure 3.8 shows a comparison of the actual measurement of node A6 with the

FIS model, NN model, and the median of the real sensor measurements from N(A6).

The advantage of FIS model over the median method is that it always takes into

account the individual measurement from each of the neighbor nodes. An individual

erroneous sensor measurement extends its error to the combined input when we take

the median. The estimation for the sensed measurement of A6 by FIS outperforms

the approximated values both from NN and median models. Since the temperature
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Figure 3.8: Real sensor measurement of node A6 and its models using TSK FIS,
NN, and median
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Figure 3.9: A magnified portion from the figure 3.8

data in figure 3.8 is condensed and the approximated values from different models

are not clearly distinguishable so a portion has been zoomed in and is shown in

figure 3.9.

The absolute value of the difference between the approximations by different

models and the real measurement is shown in figure 3.10. Since the FIS model

closely approximates the real value and the difference between the two is very small

therefore, we are using a logarithmic scale on the temperature measurement axis.

In order to detect a fault in the sensor of node A6 we introduced an increasing
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Figure 3.11: Sensor measurement and FIS values for the entire period of 80 hours

deviation, as a function of time, in its temperature measurement:

ǫ(t) =
[

sin
t

4
+

t − 10

5

]

H(t − 10)
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Figure 3.12: Difference between the actual and FIS estimated values

where t is in hours and H : R→ {0, 1} is the unit step function:

H(x) =



















1 , x ≥ 0

0 , x < 0

Then we plotted the gradually deviating real measurement of node A6 and the

approximated measurements by the FIS for the entire period of 80 hours. The results

are shown in figure 3.11. The temperature measurement for the first 10 hours behaves

normally but after that there arise a gradually increasing difference between the real

value at A6 and the value estimated by the FIS. The absolute value of the difference

between the two measurements is shown in figure 3.12. Once again the difference

between the two measurements for the first 18 hours is so small that it is better

to scale the temperature measurement axis logarithmically. From t = 20 onwards

the real measurement starts differing from the FIS estimated value by more than

1◦C. Also from the figure 3.12 one can decide when to identify the node as faulty

depending upon the tolerance allowed by the application.

3.8.1 Transient fault tolerance

Now we discuss the fault tolerance of the proposed approach. By fault tolerance we

mean an intermittent perturbation in the sensor measurement of a node that shall be
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ignored by our scheme. The results for the estimated value for node A6 are discussed

here to elucidate the fault tolerance aspect in the presented method. On its turn every

member of N(A6), as mentioned in (3.6), is made to show an irregular behavior. The

transient error and hence the disturbed sensor reading, x̃k
j
, of neighboring nodes at

an instance tk is as follows:

x̃k
j = xk

j + EB sin
(

tk

4

)

(3.7)

for j = 1, 2, 7, 11, 12, where EB is the bound on the introduced perturbation. The

number of neighboring nodes with transient fault is varied from 1 to m, for the

present example m = 5. Then these perturbed values are used as an input to FIS

and obtained output value is compared with the real observed value of the sensor

measurement, xk
6

in this case. The results for different values for EB are shown in

tables 3.1 and 3.2, and in figures 3.13 and 3.14. From table 3.1 we can infer that even if

50% of the neighbors are manifesting a disturbed behavior than usual, the difference

between the real sensed measurement and the FIS estimated value is acceptably

small.

Table 3.1: Transient fault with absolute value less than 1

Nodes with Min. diff. Max. diff. Average diff.

transient faults (◦C) (◦C) (◦C)

0 6.8143×10−5 0.070821 0.014657
1 0.00054166 0.323710 0.125320
2 0.00472610 0.578390 0.249150
3 0.00956560 0.774180 0.374370
4 0.00914440 0.911180 0.501320
5 0.00872320 1.013200 0.630710

As shown in figure 3.15 the measurement of node A1 is perturbed and the rest

of the N(A6) sensor measurements show the usual behavior. Still the difference

between the sensor measurement of node A6 and its estimated value is very less as

is shown in figure 3.16 which is a magnified portion of figure 3.15.
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Figure 3.13: Transient faults in neighboring nodes with absolute value less than
1

3.8.2 Recurrent FIS Treatment

We have also conducted our approach with recurrent fuzzy inference system (RFIS).

Also we have done a comparison with recurrent neural network (RNN) and median

of the neighboring node sensor measurements. The RFIS is demonstrated in figure

3.3. And the RNN is demonstrated in figure 3.17. The RFIS is trained with input

xk = (xk
i1
, xk

i2
, ..., xk

im
, yk−1

i
)T and output yk

i
= xk

i
. we use three membership functions for

each neighboring sensed value xi j
for j = 1, 2, ...,m. So the fuzzy rules for node Ai
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Figure 3.14: Transient faults in neighboring nodes with absolute value less than
2

are given by

Rl : IF xk
i1

is Fl
1
· · · and xk

im
is Fl

m and yk−1
FIS

is Fl
m+1

THEN yl
FIS
= xk

i

for l = 1, 2, ...,M, where M is the total number of rules (in present case M = 3m+1). The

plot of membership functions of the variable xi3 (where i = 6) obtained through fuzzy

tool box of Matlab R© is shown in figure 3.18. Since, for the sake of example we have
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Table 3.2: Transient fault with absolute value less than 2

Nodes with Min. diff. Max. diff. Average diff.

transient faults (◦C) (◦C) (◦C)

1 0.0040496 0.90014 0.24740
2 0.0091450 1.53390 0.48816
3 0.0083028 1.91960 0.73420
4 0.0074602 2.06490 0.98838
5 0.0066175 2.01350 1.25680
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Figure 3.15: Sensor measurements of neighbors and estimated value of the node
itself
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Figure 3.16: A zoomed in portion of figure 3.15

chosen node A6, therefore, the kth input to RFIS sample vector has the components:

xk
1

xk
2 xk

7 xk
11

xk
12

yk−1
6
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Figure 3.18: Plot of membership functions for the variable xi3 , where i = 6

Figure 3.19 shows a comparison of the real measurement of node A6 with the RFIS

model, RNN model, and the median of the real sensor measurements from N(A6).

Since the temperature data in figure 3.19 is condensed and the approximated values

from different models are not clearly distinguishable so a portion has been zoomed-

in and is shown in figure 3.20. The absolute value of the difference between

approximations by different models and the real measurement is shown in figure

3.21. Figure 3.22 shows the RFIS approximated values and the real sensor measure-

ment of node A6 with increasing deviation introduced. For the recurrent technique,

the results for different values for EB, in (3.7), are shown in tables 3.3 and 3.4. From

the tables we can see that RFIS is performing better than FIS. Once again, like earlier,

from the figure 3.22 we can decide when to declare the node as faulty depending on
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Figure 3.19: Real sensor measurement of node v6 and its models using recurrent
TSK FIS, RNN, and median method
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Figure 3.20: A portion magnified from the figure 3.19
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the desired difference between the real and RFIS approximated value.
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Figure 3.22: Sensor measurement and the RFIS values for the entire period of 80
hours

Table 3.3: Transient fault with absolute value less than 1

Nodes with Min. diff. Max. diff. Average diff.

transient faults (◦C) (◦C) (◦C)

0 3.996×10−7 3.473×10−4 6.522×10−5

1 0.00049349 0.25241218 0.13505085
2 0.00090606 0.47156798 0.26456387
3 0.00130369 0.66836709 0.39195162
4 0.00168033 0.83957573 0.51623019
5 0.00204862 0.99968624 0.63941108

Table 3.4: Transient fault with absolute value less than 2

Nodes with Min. diff. Max. diff. Average diff.

transient faults (◦C) (◦C) (◦C)

1 0.00094208 0.56351787 0.26891727
2 0.00176691 1.02979571 0.52720860
3 0.00256196 1.42193454 0.78187899
4 0.00331539 1.73497709 1.03106361
5 0.00405246 1.99931670 1.27880158

3.9 Conclusion

This chapter describes a distributed, sensor fault identification scheme for a wireless

sensor network. Each node of the sensor network is modeled by a fuzzy inference

system which approximates the measurement of that node as a function of the real

measurements of the neighboring nodes. The difference between the actual value

detected at a node and the estimated value given by its corresponding FIS model
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is used to decide whether or not to declare the node as faulty. Since the scheme is

distributed and that the computations are performed at the base station the suggested

method is less energy consuming. Simulation results show the efficiency of proposed

scheme and that the fuzzy inference model outperforms the results given by artificial

neural network and that of median of the one-hop neighbor measurements. Once

we know the id of a faulty node, it is indispensable to find its geographic location.

In the next chapter we discuss our proposed localization scheme.



Chapter 4

Localization

I
n this chapter we shall show that three randomly chosen nodes as anchors in

a wireless sensor network are sufficient to localize all of the nodes, where the

nodes are in point set triangulation. The claim is supported in the form of a theorem.

We start the process of localization from the information of connectivity between the

nodes and the distance matrix. From the distance matrix we find the topology of the

network through a heuristic approach. Finally we introduce three nodes as anchors

and from the real exact positions of anchors we localize all the sensors. We conducted

our proposed localization algorithm in different WSN scenarios by performing sim-

ulations in Matlab R©. The obtained results show a substantial improvement in the

position estimation of sensors.

4.1 Introduction

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous sen-

sors to cooperatively monitor physical or environmental conditions, such as temper-

ature, sound, vibration, pressure, or motion. The development of wireless sensor

networks was motivated by military applications such as battlefield surveillance. It

is now used in areas including industrial process monitoring and control, machine

health monitoring, environment and habitat monitoring, health-care applications,
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home automation, and traffic control etc. In addition to one or more sensing de-

vices, each node in a sensor network is typically equipped with a radio transceiver

or other wireless communications device, a small microcontroller, and an energy

source, usually a battery [Townsend and Arms, 2004]. In [Khan et al., 2010a] we

have dealt with the nodes battery voltages in regard to localization.

In location based services such as battlefield surveillance or wild fire control,

the information sensed by a node is of less importance unless the position of the

source node is known. The process of finding the geographical position of such

a node is called localization. From localization point of view there are two types

of nodes in a WSN: anchor nodes and the tracked nodes. Anchor nodes are the

nodes whose geographical position is known, say for example they are equipped

with global positioning system (GPS) or their position is pre-configured before their

deployment. A tracked node is a node whose position is not known at the time of its

deployment. A sensor node can detect a change in the physical quantity for which

it is meant to be and can transfer this information to other nodes. If a sensor node

does not know its position then the information sent does not contain the location

of the geographical region in which that change took place. Hence localization is

indispensable for location based services [Akyildiz et al., 2002c]. In literature, sensor

nodes are simply referred to as the sensors and the anchor nodes as the anchors. In

this text the term node shall represent either of the two nodes, a tracked node or an

anchor node.

The motivation for the present work stems from answering the question: Whether

or not it is possible to localize (in 2D) all the nodes in a WSN with exactly three

anchors. The answer is yes as well as no. For ‘yes’ certain conditions are required.

From graph theory point of view it is ‘yes’ if we know the pairwise distances between

all nodes. In case, where the pairwise distances between the critical nodes are not

known the answer is ‘no’. Moreover, the answer is also ‘yes’ when the nodes,

along with the edges information, form a point set triangulation; a result proven

in one of the subsequent sections. It means, first of all there is no orphan node
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(whose node-degree = 1) in the network and that the network is not divisible in to

two subnetworks that are connected either by single link or have just one node in

common. The assumptions made in our work are more or less the same as implicitly

and, or explicitly stated in other works, cited in the next section. However, our

approach does require that the neighbors of any node form a cycle. The value of

the node degree of an arbitrary node is at least three, unless it is at the boundary

of the network. In that case it is connected to at least two other nodes. With these

assumptions it is always possible to find the point set triangulation of the entire set

of nodes in the WSN. And hence planar coordinates of any three nodes will render

the coordinates of all the other nodes.

4.2 Related Works

A lot of work has been done for the localization in a WSN when each of the sensor

is in direct contact with some anchor [Wong et al., 2005], [Cassioli, 2009]. Further-

more the localization process has also been studied when the number of anchors is

significantly smaller than that of sensors [Dakkak et al., 2011]. It involves the WSNs

in which most of the senors are interconnected with the other sensors and only a

few are in direct contact with the anchors and usually the anchors are deployed at

the boundary of the WSN [Bischoff et al., 2006, Hamam et al., 2009]. In [Regalia and

Wang, 2010], [Alfakih et al., 1999] the distance-based node localization is discussed

when there is a need for reconstructing the distance matrix.

In [Patil et al., 2005], authors have proposed to localize all the sensors using

three anchors. Although, in our approach too, a WSN requires exactly three anchors

but unlike [Patil et al., 2005] there is no condition of the three anchors being in

transmission range of each other and having at least one sensor in the common

transmission range of all the three anchors. In our approach any three nodes can

serve as anchors irrespective of their position in the WSN. Our work does not require

constraint for any sensor to be in the common transmission range of the anchors.
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The process of localization using multidimensional scaling is proposed in [Shang

et al., 2004], however we use a greedy algorithmic approach for this task. We

shall start the process of localization from the information given by distance ma-

trix. A distance matrix is a symmetric sparse matrix whose (i, j)th component is the

distance between the ith and jth node. The distance matrix is sparse because the

inter-connectivity of the nodes is not too dense to the limit that an arbitrary node

is connected to most of the nodes. Rather a node is connected to only a few of the

nodes and it is out side the transmission range of most of the nodes. Moreover the

distance between two nodes is measured through “RSSI – distance” model where

the distance is obtained from the signal strength information. If a node is outside the

transmission range of another node then the corresponding element in the distance

matrix is zero.

Here is how we are going to tackle the aforementioned localization problem. First

of all we model the process of finding the topology of the sensor nodes with the help

of the distance matrix. Then we accumulate the temporary Cartesian coordinates of

all nodes in a two-column matrix. Then we choose three nodes as anchors and using

their real positions we shall find the estimated positions of all the nodes.

The rest of the chapter is as follows. In section 4.3 we present the formulation of

the problem. In section 4.4 we present our proposed solution to find the estimated

position of all nodes. We demonstrate the proposed approach with the help of a

working example in section 4.5. In section 4.6 we present the simulations performed

in Matlab R© and their results and finally in section 4.7 we conclude this chapter.

4.3 Formulation Of The Problem

4.3.1 System Model

All of the n nodes in the WSN are homogeneous and have same circular transmission

range. Two nodes are termed connected if they are in the transmission range of each

other. Each node knows its own ID and the IDs of its one hop neighbors. This WSN
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is represented as a graph G(V,E), where

V = {A1 ,A2 , . . . ,An}

is the set of nodes and E is the set of ordered pairs of nodes (Ai ,A j) that are connected.

Furthermore, this graph is undirected, i.e., if (Ai ,A j) ∈ E then also (A j ,A j) ∈ E. So

there is a symmetric binary relation (∼) defined over V as

Ai ∼ A j ⇐⇒ (Ai,A j) ∈ E

If a pair (Ai,A j) < E it is denoted by Ai / A j.

Sensor field

Anchor node

Base station

Figure 4.1: A wireless sensor network scenario

4.3.2 Communication Model

Consider a WSN scenario as shown in figure 4.1, where the circled highlighted

motes are the anchor nodes. When the wireless sensor network is deployed, all of

the nodes communicate with their directly connected neighbors. The nodes that are

connected to each other transmit and receive ping signals. The information in the

signals travels by relaying and reaches the sink. The sink is in direct connection with

the base station. Whenever there is a locomotion in any node it transmits signals to
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be reached at the base station. Now at the base station we have the information of

the connected nodes and the strengths in their respective signals. Thus by using the

RSSI and distance model we find the distances between the connected nodes and

hence the distance matrix. The RSS and distance model is given by [Smith, 1998]:

Pr = kd−α

where Pr is the strength of the received signal, k is a constant which takes into account

carrier frequency and transmitted power, d is the distance between the connected

nodes and α is the attenuation exponent. From this expression the distance between

the nodes is obtained as:

d =
(

Pr

k

)− 1
α

The information regarding the distance and received signal strength from the base

station leads us to form the distance matrix for the WSN.

In the absence of anchors or any reference point for that matter it is impossible

to localize the network. However, with the help of the distance matrix alone it is

possible to get the initial layout of the WSN. In other words it is possible to find the

topological structure of the connectivity of the nodes. But if the network contains

some nodes that are only connected to one node then the topology obtained from

the distance matrix is not unique. So a node must be connected to at least three other

nodes and that the neighbors of any node form a cycle. This leads to the unique

topology of the network. Then the final part of the problem is to find the estimated

positions of all the nodes, which is accomplished by introducing three anchors. Now

we prove that three anchors are sufficient to completely localize the nodes in WSN.

Theorem 1. Given the point set triangulation of points V of G(V,E). If we know the position

coordinates of any three points of V, we know the position coordinates of all the points of V.

Proof. Given three lengths a , b , c or (BC ,CA ,AB) then up to position and orientation

in the Cartesian plane, two triangles correspond (figure4.2). Both these triangles

are mirror images of each other. Thus up to position, orientation, and symmetry
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the three lengths correspond to a unique triangle say the one in figure4.2(a). Given

A B

C

(a)

A B

C

(b)

Figure 4.2: Triangle up to position and orientation

two more lengths AD and BD then figure4.2(a) shall render figure4.3(a) and not

figure4.3(b) because it is not a triangulation of the four points. Continuing in the

A B

C

D

(a) Permitted

A B

C

D

(b) Not Permitted

Figure 4.3: Addition of a fourth point

same manner with n points, V = {A1 ,A2 , ... ,An} and corresponding lengths from

the set E = {(Ai ,A j) : Ai ∼ A j}, there is a unique configuration (figure4.4(a)) up to

position, orientation, and symmetry. Given the Cartesian coordinates of only one

A1
A2

A3

A4

A5 A6

A7
A8

An

(a)

A1 A2

A3

A4

A5
A6

A7

A8

An

(b)

Figure 4.4: Configuration of n points in triangulation

node say A1, then the graph figure4.4(a) shall have infinite number or orientations

and flips with the point (A1x ,A1y) as pivot. With Cartesian coordinates of two nodes

say A1 and A2 the graph can have just one flip (figure4.4(b)) around the line segment

(A1 ,A2). But with the Cartesian coordinates of just one more node the graph has
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a unique position, orientation, and symmetry. And hence we know the Cartesian

coordinates of all nodes. �

4.4 Proposed Approach

Let us denote the nodes by A1,A2,A3, · · · ,An. The distance matrix is denoted by

dn×n = [d(i, j)]. If (Ai,A j) < E, then d(i, j) = 0, otherwise, d(i, j) is obtained from the

RSSI-distance model. In the distance matrix d(i, i) = 0 for i = 1, 2, 3, · · · , n. Two nodes

Ai and A j are said to be connected if d(i, j) , 0 and this fact is denoted by Ai ∼ A j.

Two nodes Ak and Al are not connected if and only if d(i, j) = 0 and this fact shall be

denoted by Ak / Al. At any instant the position of the ith node shall be denoted by

Xi =
[

xi yi

]

. The positions of all the nodes are presented by a two column matrix

X =
[

x y
]

n×2

where x and y are the column vectors:

x =

























































x1

x2

x3

...

xn

























































and y =

























































y1

y2

y3

...

yn

























































Now we proceed in two steps. In step one we find the topology of the nodes

irrespective of its symmetry, orientation, and position in the Cartesian plane. We

accomplish this step without knowing the positions of any of the nodes and just

with the help of the distance matrix. Then by treating this topology as a single entity

in step two we find the exact symmetry, orientation and position inR2 with the help

of real positions of any three nodes.
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4.4.1 Finding the Topology

Under the assumption that each node is connected to every other node then there

are nC2 =
n!

2!(n−2)!
=

n(n−1)

2
connection pairs:

A1 ∼ A2 A1 ∼ A3 · · · A1 ∼ An

A2 ∼ A3 · · · A2 ∼ An

...
...
...

An−1 ∼ An

But we have no such assumption. Anyhow the total number of possible connections,

m := nC2, between the nodes shall be denoted by pairs of indices:

µ1 := (1, 2) µ2 := (1, 3) · · · µn−1 := (1, n)

µn := (2, 3) · · · µ2n−3 := (2, n)
...

...
...

µm := (n − 1, n)

That is the pair µ1 := (1 , 2) denotes the possibility that A1 ∼ A2, the pair µ2 := (1 , 3)

denotes that of A1 ∼ A3 and so on. Note that for any pairµ j = (k, l) for j = 1, 2, 3, . . . ,m,

the first element of the pair shall be denoted by µ j(1) = k and the second element by

µ j(2) = l. Let us orderly enumerate the actual connections (and rename them by ρi)

between the nodes as given by the distance matrix and exclude all other possibilities.

For that purpose the pair µ j for j = 1, 2, 3, . . . ,m, shall be tagged false if Aµ j(1) / Aµ j(2),

otherwise the pair is tagged true. We perform the following routine:

1: i = 0

2: for j = 1 to m do

3: if Aµ j(1) ∼ Aµ j(2) then

4: i + +

5: ρi ← µ j

6: end if

7: end for
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8: s← i

So the actually connected pairs are: ρi for 1 ≤ i ≤ s, where s ≤ m. That is Aρi(1) ∼ Aρi(2)

for i = 1, 2, . . . , s.

Before we proceed further we declare a function that shall be used latter. Suppose

at any intermediate instance the coordinates Xi and X j of the pair Ai ∼ A j have been

found out and the coordinates Xk = [xk yk] of a third node Ak are yet to be found

with the condition that Ak ∼ Ai and Ak ∼ A j. So Xk is one of the points of intersection

of the circles:

(x − xi)
2 + (y − yi)

2 = (d(i, k))2

(x − x j)
2 + (y − y j)

2 = (d( j, k))2
(4.1)

The two points of the solution of system (4.1) are P1 and P2 and hence the two

possible positions X(1)

k
, X(2)

k
for Ak are X(1)

k
= P1 and X(2)

k
= P2. Thus we define a

function with three arguments: the coordinates Xi and X j of the pair Ai ∼ A j and the

index k of the node such that Ak ∼ Ai and Ak ∼ A j; and the return of the function

are the two possible values for Xk. This function is denoted by f and is explained in

algorithm 4.1. Note that the distance matrix dn×n =
[

d(i, j)
]

is a global variable which

is available to all the routines and algorithms.

Algorithm 4.1 Possible position for the node connected to two linked nodes

Input: Xi,X j, k

Output: X(1)

k
,X(2)

k

1:

[

P1

P2

]

←

{

(x − xi)
2 + (y − yi)

2 = (d(i, k))2

(x − x j)
2 + (y − y j)

2 = (d( j, k))2

2: return

[

X(1)

k

X(2)

k

]

←

[

P1

P2

]

For an intermediate instance where the coordinates Xρi(1) and Xρi(2) of the nodes

pair represented by ρi i.e., Aρi(1) ∼ Aρi(2) have been found out, we find the the

coordinates of the nodes connected to both of the nodes Aρi(1) and Aρi(2) as follows.

Let us denote by Nρi
the ordered set of indices of the nodes that are common to both

the nodes of the pair ρi. If
∣

∣

∣Nρi

∣

∣

∣ = q then the common nodes of the pair represented
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by ρi are:

ANρi (1) , ANρi (2) , . . . , ANρi (q)

and if their possible positions are denoted by

Z(1 or 2)

1
,Z(1 or 2)

2
, . . . ,Z(1 or 2)

q

we can obtain them by using algorithm 4.1 and performing the following rou-

tine:

1: for j = 1 to q do

2:

















Z(1)

j

Z(2)

j

















← f (Xρ1(1) , Xρ1(2) , Nρi
( j))

3: end for

Since each of Z j has two possible positions Z(1)

j
and Z(2)

j
. Therefore the total number

of possible configurations for Z1, Z2, . . . , Zq are 2q. The superscripts for each

configuration form a q − tuple, where any element of the tuple is either 1 or 2. Let

us denote the tuples by σk for k = 1, 2, 3, . . . , 2q. Thus the possible configurations are:

Zσk(1)

1
, Zσk(2)

2
, · · · ,Z

σk(q)
q where 1 ≤ k ≤ 2q.

Out of these 2q configurations only one or two correspond to the actual positions

of nodes ANρi (1), ANρi (2), . . . , ANρi (q). The case where two configurations correspond

shall be dealt with latter in the current section. In order to filter that particular

configuration we shall measure the distances amongst the temporary node positions

of each configuration and compare it against the respective distances as given by

the distance matrix. For a configuration σk we shall store the pair-wise distances

amongst the q points:
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∥

∥

∥Zσk(1)

1
− Zσk(2)

2

∥

∥

∥ ,
∥

∥

∥Zσk(1)

1
− Zσk(3)

3

∥

∥

∥ , · · · ,
∥

∥

∥Zσk(1)

1
− Z

σk(q)
q

∥

∥

∥

∥

∥

∥Zσk(2)

2
− Zσk(3)

3

∥

∥

∥ , · · · ,
∥

∥

∥Zσk(2)

2
− Z

σk(q)
q

∥

∥

∥

...
...

...
∥

∥

∥

∥
Z
σk(q−1)

q−1
− Z

σk(q)
q

∥

∥

∥

∥

(4.2)

in a row matrix D(k). Also we shall store the respective pair-wise distances from the

distance matrix

d(Nρi
(1),Nρi

(2)) , d(Nρi
(1),Nρi

(3)) , · · · , d(Nρi
(1),Nρi

(q))

d(Nρi
(2),Nρi

(3)) , · · · , d(Nρi
(2),Nρi

(q))
...

...
...

d(Nρi
(q − 1),Nρi

(q))

(4.3)

in a row matrix dd. Note that each of (4.2) and (4.3) has r := qC2 =
q(q−1)

2
el-

ements. That is, there are r pair-wise distances both in D(k) and dd. We de-

note such a pair by ωt where 1 ≤ t ≤ r. We compare the elements of D(k) with

the elements of dd for k = 1 , 2 , . . . , 2q. That is we perform the following itera-

tion:

1: for k = 1 to 2q do

2: ǫk =
∥

∥

∥D(k) − dd
∥

∥

∥

3: end for

The index k0 of min{ǫk : k = 1, 2, . . . , 2q} corresponds to the configuration that is in

accordance with the given distance matrix. Thus out of all 2q possible configurations,

the desired one is:

Z
σk0

(1)

1
, Z

σk0
(2)

2
, · · · ,Z

σk0
(q)

q

Hence the coordinates of the common elements of the pairρi are given by:

1: for j = 1 to q do

2: XNρi ( j) ← Z
σk0

( j)

j

3: end for
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Thus we declare a function g as shown in algorithm 4.2. with input as the index pair

denoted by ρi (such that Xρi(1) and Xρi(2) have been determined); and the output as

the coordinates of the nodes connected to both of Aρi(1) and Aρi(2).

Algorithm 4.2 Tentative coordinates of the nodes connected to both the nodes of a
pair ρi with known Xρi(1) and Xρi(2)

Input: ρi

Output: Coordinates of all nodes connected to Aρi(1) and Aρi(2)

1: Nρi
=
{

l : Al ∼ Aρi(1) and Al ∼ Aρi(2)

}

2: q←
∣

∣

∣Nρi

∣

∣

∣

3: for j = 1 to q do

4:













Z(1)

j

Z(2)

j













← f (Xρi(1) ,Xρi(2) ,Nρi
( j))

5: end for
6: r← qC2

7: for t = 1 to r do
8: dd(t) = d( Nρi

(ωt(1)) , Nρi
(ωt(2)) )

9: end for
10: for k = 1 to 2q do
11: for t = 1 to r do
12: D(k)(t)←

∥

∥

∥

∥
Zσk(wt(1))

wt(1)
− Zσk(wt(2))

wt(2)

∥

∥

∥

∥

13: end for
14: ǫk ←

∥

∥

∥D(k) − dd
∥

∥

∥

15: end for
16: return k0 s.t. ǫk0

:= min{ǫk : k = 1, 2, . . . , 2q}

17: for j = 1 to q do

18: XNρi ( j) ← Z
σk0

( j)

j

19: end for

20: return































XNρi (1)

XNρi (2)

...
XNρi (q)































Now we combine all the functions and routines constructed so far and find the

two column matrix X giving the temporary coordinates of the nodes A1 , A2 , . . . , An.

Note that ρ1(1) = 1, so without any harm and loss of generality we start the process

of localization by putting X1 = [0 0] and Xρ1(2) =
[

d(1, ρ1(2)) 0
]

. That is we place

the first element of the first valid pair at the origin and its second element on the
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positive x−axis. We then mark the indices 1 and ρ1(2) as plotted and this fact is

termed equivalent to ρ1 as marked plotted. The process shall continue till the time

all the indices, from 1 till n, are marked as plotted. Since Xρ1(1) and Xρ1(2) have been

determined so we can apply function g as described by algorithm 4.2 on ρ1. It is here

that we obtain two configurations which correspond to the distance matrix. We can

choose anyone of them because one is the mirror image of the other with the line of

symmetry as the line segment joining Xρ1(1) and Xρ1(2). As we shall be flipping the

topology, if required, so it does not matter which one is chosen at this step. Thus

in algorithm 4.3 we summarize the process of finding initial coordinate matrix Xn×2

whose point plot is equivalent to the topology of the original WSN.

4.4.2 Symmetry, Orientation and Position of the Topology

After having executed algorithm 4.3 the plot from the coordinates of matrix X is a

topological equivalent of the WSN topology. From this point onwards the topology

obtained from X is treated as a single entity. Now we tackle the process of finding

the symmetry, orientation and position of this topology in R2. We flip, rotate and

translate the topology wherever required. For that purpose any arbitrarily chosen

three nodes from A1,A2, . . . ,An can serve as anchors. Let these nodes be Aα, Aβ, and

Aγ and their real positions be denoted by Yα, Yβ, and Yγ respectively. From X the

respective estimated position of these three nodes are Xα, Xβ, and Xγ. First of all

we find whether or not the topology obtained from algorithm 4.3 requires a flip.

Meaning that if we plot the real and estimated positions of these points whether or

not they agree in circular direction. The topology obtained so far needs a flip if they

have different circular direction as shown in figure 4.5. Consider the four vectors:

u1 = Yβ − Yα v1 = Xβ − Xα

u2 = Yγ − Yα v2 = Xγ −Xα
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Algorithm 4.3 Initial estimated coordinates of all of the nodes

Input: Distance matrix d =
[

d(i, j)
]

for 1 ≤ i, j ≤ n
Output: Two column matrix X

1: m← nC2 and i← 0
2: for j = 1 to m do
3: if Aµ j(1) ∼ Aµ j(2) then
4: i + +
5: ρi ← µ j

6: end if
7: end for
8: s← i

9:

[

Xρ1(1)

Xρ1(2)

]

←

[

0 0
d
(

ρ1(1) , ρ1(2)
)

0

]

10: Mark ρ1 as plotted
11: for i = 1 to s do
12: if ρi is marked plotted then

13: q←
∣

∣

∣Nρi

∣

∣

∣

14:































XNρi (1)

XNρi (2)

...
XNρi (q)































← g
(

ρi

)

15: end if
16: Mark Nρi

as plotted
17: end for

18: return X←





























X1

X2
...

Xn




























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Xα Xβ

Xγ

Yα Yβ

Yγ

Figure 4.5: The topology obtained from algorithm 4.3 requires a flip if the circular
orders of the estimated and real positions are different.

and take the cross product of the vectors as:

u = u1 × u2 and v = v1 × v2

If the condition,

sgn(uz) = −sgn(vz)

is satisfied, i.e., the third components of the vectors u and v have opposite signs,

then the estimated topology obtained so far needs a flip. Implying that the obtained

topology is the mirror image of the original topology. We accomplish the flip by

changing the signs of all the elements in first column of X. After this update, we find

the rotation needed in order for X to match the orientation of the original topology.

What is the amount of rotation and what is the pivot around which the topology

shall be rotated, is described as follows: Translate the matrix X by amount [−xα −

yα]. That is the topology X is translated in such a way thatαth node is at the origin. By

treating the combination of the three points Yα, Yβ, and Yγ as a single entity, translate

this system of three points by amount −Yα. Such that the updated coordinates of the

point Yα are [0 0]. Now there are two cases depending upon the collinearity of the

vectors u1 and v1. In the case they are collinear then the topology does not require a

rotation. In the case where these are non-collinear as shown in figure 4.6, then there

is an angle, sayθ between them. We find the value ofθ by using u1 ·v1 = |u1| |v1| cosθ.
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Figure 4.6: The case where the vectors u1 and v1 are non-collinear

Then we rotate the vector v1 by an angle of amount θ in the direction of u1 such

that both the vectors become collinear. Note that the entire topology as a single

entity is rotated with Xα as pivot. This rotation is accomplished (or X is updated) as

follows:

1: for i = 1 to n do

2:

















xi

yi

















←

















cosθ − sinθ

sinθ cosθ

































xi

yi

















3: end for

The point Xα remains invariant under this rotation transformation. After rotation

this topology is in the same orientation as the original topology. Then we translate

the point Xα to the original position of the point Yα. And thus resulting in the

superposition of Xα,Xβ,Xγ over Yα,Yβ,Yγ. Hence the topology has a unique sym-

metry, orientation, and position in R2. Algorithm 4.4 depicts the process of finding

symmetry, orientation and position of the topology.
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Algorithm 4.4 Finding symmetry, orientation and position of the topology in R2

from the initial coordinate matrix X

Input: Estimated coordinate matrix X from algorithm 4.3 and three real positions
Yα, Yβ, and Yγ of nodes Aα, Aβ, and Aγ

Output: Updated two column matrix X giving the final estimated positions of all
the nodes

1: Calculate the vectors:

u1 ← Yβ − Yα v1 ← Xβ − Xα
u2 ← Yγ − Yα v2 ← Xγ −Xα
u ← u1 × u2 v ← v1 × v2

2: if sgn(uz) = −sgn(vz) then

3: X←





























−x1 y1

−x2 y2
...

...
−xn yn





























4: end if

5: X←


























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x1 y1

x2 y2
...
...

xn yn





























+





























−xα −yα
−xα −yα
...

...
−xα −yα





























%Translate X by [−xα − yα]

6: Translate the system of three points Yα, Yβ, and Yγ such that Yα ← [0 0]
7: Solve u1 · v1 = |u1| |v1| cosθ, for θ

8: R←

[

cosθ − sinθ
sinθ cosθ

]

%Rotation matrix

9: for i = 1 to n do
10: XT

i
← RXT

i

11: end for
12: Translate X s.t. Xα is equal to original Yα

13: return X←





























X1

X2
...
Xn


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


















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4.5 Working Example

Consider a 6 × 6 distance matrix:

d =























































0 0.2834 0.9665 0.6934 0.2188 0.9967

0.2834 0 0.8804 0.4181 0.4757 0.9126

0.9665 0.8804 0 0.7864 0.9462 0.0322

0.6934 0.4181 0.7864 0 0.8548 0.8159

0.2188 0.4757 0.9462 0.8548 0 0.9731

0.9967 0.9126 0.0322 0.8159 0.9731 0


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Here all the 15 pairs from ρ1 = (1, 2) till ρ15 = (5, 6) are true. So we localize these six

nodes as follows:

1. X1 = [0 0] and X2 = [0.2834 0]

2. Nρ1
= {3, 4, 5, 6}

3. Since
∣

∣

∣Nρ1

∣

∣

∣ = 4, there are 24 = 16 possible configurations for the placement of

A3, . . .A6.

4. If Z1, . . . ,Z4 are temporary coordinates then the configuration that corresponds
to the distance matrix is:


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
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5. So the initial estimated coordinates for the nodes indexed by Nρ1
are: X3 =

Z1,X4 = Z2,X5 = Z3,X6 = Z4

6. Now all of the six indices are marked as plotted. Therefore by the end of the
execution of algorithm 4.3, the initial coordinate matrix becomes:

X =
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Figure 4.7: Comparison of original and estimated positions with six nodes for
the working example

7. The three nodes with exact positions are A3,A5,A6. Their exact positions are:


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Y5

Y6























=























0.1270 0.9575

0.6324 0.1576

0.0975 0.9706
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8. By calculating the respective vectors (line 1 of algorithm 4.4) we find that a flip

to X is not required.

9. Now translating the whole topology such that X3 is at the origin we get:

X =


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10. The angle of rotation is found out to be, θ = 1.2437 radians.
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11. After rotation the updated coordinate matrix becomes:

X =
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12. Now we translate X as a single entity such that X3 becomes equal to the given
Y3. Thus the estimated positions of the nodes are given by the coordinate
matrix:

X =
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Figure 4.7 shows the comparison of the estimated positions with the real posi-

tions of the six nodes in the above working example.

4.6 Simulation Results

With the discussed approach, various simulations were performed in Matlab R© in

order to test the validity of the proposed algorithm. We created scenarios by placing

nodes in a rectangular region of R2, found their exact positions, and calculated the

distances between them. The nodes with distances less than the transmission range

were termed as connected and accordingly we found the distance matrix. After

that we chose randomly three nodes as the anchor nodes. Then we put this only

information of the distance matrix and the three positions of the anchor nodes into

our algorithm, which gave us the coordinates of every other node. An output of

three simulations is shown in figures 4.8, 4.9 and 4.10. For comparison we have

drawn the real and the estimated positions of the nodes. Our results are better than

the centroid approach of [Bulusu et al., 2000] where the average error is 1.7519 units.
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Figure 4.8: Comparison of original and estimated positions with 28 nodes
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Figure 4.9: Comparison of original and estimated positions with 63 nodes

4.6.1 Computational complexity

Since the presented localization algorithm is centralized, each node has to send

message to the base station. The message consists of the node id, id’s of the connected

neighbors, and the RSS from those neighbors. The information about the neighbors
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Figure 4.10: Comparison of original and estimated positions 200 nodes

of the nodes takes 8 bytes and the information about the RSS from each neighbor

takes 2 bytes. So each node sends a data packet of size 16 bytes. Since there are

n nodes in total so the total traffic cost is 16 × n. So the order of the computation

complexity is O(n).

4.6.2 Time complexity

The time taken by the proposed algorithm for localization of all the nodes is observed

and is shown in figure 4.11. We have also plotted the curve fitting of the observed

data. That curve that fits the observation is an exponential curve

t = aebn

where t and n are respectively the time in seconds and the number of nodes. The

values of the constants are a = 41.72 and b = 0.006143.

4.6.3 Scalability with bounded error in measurements

When a bounded error is introduced in the distances between the interconnected

nodes the results for average errors in position estimation vs number of nodes are

shown in figure 4.12. Note that the bound for the error introduced is 0.1 times the
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Figure 4.11: Time complexity of the proposed algorithm
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Figure 4.12: Average error in position estimation when bounded error is intro-
duced in distance measurements

radius of connectivity. The linear polynomial curve fitting of the observed data is

given by:

error = 6.408 × 10−5n + 0.05658

In figure 4.13 we have shown a result of the position estimation of 160 nodes.

4.7 Conclusion

In this chapter we have proposed a process of finding the estimated positions of

the sensor nodes in a wireless sensor network. After performing the simulations

and the validation of our algorithm in the appropriate scenarios we have seen that
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this is an efficient method of localization that uses the information from the distance

matrix. For the localization purpose, our method requires the position of exactly

three nodes. In other words using the proposed localization algorithm we need

only three anchor nodes. We also conclude that three anchors is the necessary and

sufficient condition for such types of networks in which a node is connected to at

least three other nodes, and that the one-hop neighbors of anode form a ring. After

performing the simulations we have seen that position estimation of the nodes has

sufficiently increased. In the future perspective we aim to improve this algorithm

for all types of wireless sensor networks with less number of constraints about the

connectivity amongst the nodes. As the distance information amongst the connected

nodes is vital for the localization, therefore, it is crucial to pay attention to the sources

that create errors in distance estimations. One such source is the droop of battery

voltage. This aspect is discussed in the next chapter.
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Chapter 5

Signal Strength Loss Compensation

R
eceived Signal Strength Indication (RSSI) plays a vital role in the range-free lo-

calization of sensor nodes in a wireless sensor network and a good amount of

research has been made in this regard. One important factor is the battery voltage

of the nodes (i.e., the MICAz sensors) which is not taken into account in the existing

literature. As battery voltage level performs an indispensable role for the position

estimation of sensor nodes through anchor nodes therefore, in this chapter, we take

into a account this crucial factor and propose an algorithm that overcomes the prob-

lem of decaying battery. We show the results, in terms of more precise localization

of sensor nodes through simulation. This portion of the work is presented in [Khan

et al., 2010b] and extended in [Khan et al., 2011] where we include the use of neural

network to overcome the localization errors generated due to gradual battery voltage

drooping.

5.1 Introduction

Wireless Sensor Networks (WSNs) have become important in the fields of military

defence and environmental sciences. Their applications are also found in home and

ubiquitous environments. A wireless sensor network is a network of distributed

nodes that monitor the physical changes like temperature, pressure, vibrations, and

motion/breaches at the desired locality, to name a few, [Akyildiz et al., 2002a,Akyildiz

et al., 2002e, Bergamo and Mazzini, 2002]. The nodes are fully equipped to measure

these changes. After an observation is made it travels in the form of data packets

from node to node till it reaches its destination. For this purpose the sensors are

also equipped with transceiver antennas. To perform these activities the nodes use

87
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Figure 5.1: MICAz mote for which the idea is proposed. These motes loose their
battery voltage with the passage of time.

energy provided by the attached battery.

One of the many important issues in the WSNs is the localization [Yun et al.,

2009, Kim and Kwon, 2005, He et al., 2003]. There are certain applications of the

WSNs, e.g., environmental monitoring like forest fire observation, and like intrusion,

in which the location of the information source is very important. The received

data is meaningless unless the position of the event occurrence is known. There

are two types of the localization schemes: range-based and range-free, [Yun et al.,

2009, Kim and Kwon, 2005, He et al., 2003]. From localization point of view there

are two types of the nodes in a WSN: anchor nodes and tracked nodes. Anchors are

equipped to know their position/location, either by GPS or by pre-configuration [Bahl

and Padmanabhan, 2000, Hightower et al., 2000, Rappaport et al., 1996]. But for

sensors, neither they are equipped with GPS nor their locations are pre-configured.

In range-based schemes sensors are localized with the known positions of anchors

by measuring the angle of arrival (AoA), time of arrival (ToA), or time difference

of arrival (TDoA) [Niculescu and Nath, 2003b, Cong and Zhuang, 2002]. For this

scheme to be applicable we need to employ certain devices in order to measure one

or all of the three quantities. In range-free schemes sensors are localized with the

help of known positions of anchors but without the use of AoA, ToA, or TDoA. Most

of the time the distance between a sensor and an anchor is calculated using RSSI.

Figure 5.1 shows a MICAz sensor that is used in our experiments. In [Cross-

bow Technology Incorporation, ] it is shown that with the passage of time these

sensors start losing battery voltage.

The drop in the battery voltage of MICAz sensor is measured over a period of

200 hours and is graphically presented in figure 5.2. This drop in battery voltage
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Figure 5.2: Plot of the battery voltage of MICAz sensor against time over the
period of two hundred hours

may lead to an erroneous sensor location.

A range-free geometric approach towards the computation of the sensor nodes

location is given in [Bahl and Padmanabhan, 2000, Yun et al., 2007]; where the

estimated position of a sensor is the centroid of positions of connected anchors. If

r1, r2, r3, · · · , rn are the positions of connected anchors to a particular sensor, then the

estimated position of that sensor is given by (5.1).

rest =
1

n

n
∑

i=1

ri (5.1)

In [Hightower et al., 2000] an improved version of this geometric approach is

given which utilizes the weighted average method. For a particular sensor, a weight,

called edge weight, is assigned to a connected anchor according to its proximity.

Suppose w1,w2,w3, · · · ,wn are the weights assigned to connected anchors in reference

to a sensor then the estimated position of the sensor is given by (5.2).

rest =

∑n
i=1 wiri
∑n

i=1 wi

(5.2)

There are two more techniques given in [Yun et al., 2009] for sensor localization.

Fuzzy logic system (FLS) and genetic algorithm are used in one of them and the

other is carried out by the implementation of neural networks.These techniques

produce better results as compared to those presented in [Bahl and Padmanabhan,

2000] and [Hightower et al., 2000].
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In this chapter, the energy considerations [Anastasi et al., 2009] are also taken

into account while calculating the edge weights of the anchors. The edge weights

calculated from erroneous RSSI are less informative due to drooping battery voltage

leading to misinterpretation about exact sensor location. So we need to introduce a

compensation term that will recoup the edge weight. An algorithm is given to find

that compensation term and to calculate the enhanced location of the sensors.

We also present a solution to this problem through the use of neural networks.

Although a soft computing technique for localization is used by [Yun et al., 2007,Yun

et al., 2009] but they have not considered the voltage decrease in node batteries.

When a neural network is trained with real data, it can learn the pattern between

the input variables and the output variables. In our case the input variables are the

battery voltage, the time elapsed since the node is in working mode and the RSSI

observed. The single output variable is the real distance. Note that the distance

obtained by the RSSI – distance model presented in section 5.3 could be erroneous.

Therefore it is better to deal the relationship between the observed RSSI, voltage,

time elapsed and the real distance through a neural network.

The rest of the chapter is arranged as follows: In section 5.2 we present our idea

and we formulate the problem. In section 5.3 we present our solution and devise

an algorithm for the better performance regarding the localization of the senors. We

analyze and implement our solution by introducing the new parameter of battery

voltage decay in section 5.4. The treatment of the problem by using neural network

is given in section 5.5. Finally section 5.6 gives the conclusion, demonstrating

that adhering systematic attention to the battery voltage decay results in elevated

performance of sensor localization through anchor nodes in a WSN.

5.2 Problem Formulation

In WSN anchor nodes are fully aware of their position in the geographical region

and we need to find the sensor node positions. Sensor positions are calculated

based on the anchor positions. The transmission range of an anchor is assumed

to be spherical which is reduced to a circular region in two dimensional space. By

transmission range we mean an area where a node can detect an other node. A sensor

node assigns edge weights to anchor nodes by measuring strength in their respective

ping signals. Thus we get an initial estimate of sensor position by (5.2). The greater

the RSSI observed from an anchor, the greater the edge weight is assigned by the
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sensor. That is the edge weight assigned has a positive correlation with the RSSI.

The battery voltage level is gradually drooped due to its usage by the signal emitter

of the anchor node. This battery voltage decay results in the reduced power supply

to the emitter. The emitter then sends signals with reduced strength and declined

RSSI. This leads to a misinterpretation about the distance between the sensor and the

anchor. The implication is obvious that the error in distance measure is increased

with decaying battery. In this chapter we are concerned with the calculation of the

edge weight which is invariant to the battery voltage level. Thus we need to find

out the compensation term that is added to the measured edge weight so that the

resulting edge weight is reported as constant by a sensor for a particular anchor

irrespective of the battery voltage.

Suppose the relationship between the edge weight w and the battery voltage V,

for a particular anchor-sensor node pair is presented by (5.3).

w = f (V) (5.3)

If V0 is the maximum voltage, then the maximum edge weight is w0 = f (V0). As

a matter of fact we should have f (V) = w0 for all battery voltage levels V. Thus

with the decay in battery voltage the difference, denoted by χ(V) = | f (V0) − f (V)|,

between the real edge weight and the observed edge weight increases. Thus χ(V)

is the compensation term that we shall add to the observed edge weight to get the

real edge weight. We denote by g(·, ·) a function of two variables; the observed edge

weight wob and the battery voltage V of the anchor node, returning the real edge

weight.

g(wob,V) = wob + χ(V) (5.4)

First of all we try to find out the relationship between the time elapsed t and the

battery voltage V of the MICAz mote. The degree two and degree three polynomial

approximations of battery voltage as a function of time elapsed are respectively

given by (5.5) and (5.6), and are graphically shown in figure 5.3. Table 5.1 shows

the difference between polynomially approximated values and the observed battery

voltage at various time instances measured in hours. The quadratic and cubic

polynomial approximations are providing us with results close to the observed data.

We shall use the degree two approximation as a trade-offbetween better performance
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and increasing computation complexity.

V(t) = a22t2 + a21t + a20 (5.5)

V(t) = a33t3 + a32t2 + a31t + a30 (5.6)

where
a33 = −5.444 × 10−7

a32 = 1.426 × 10−4 a22 = −1.194 × 10−5

a31 = −1.342 × 10−2 a21 = −1.914 × 10−3

a30 = 2.983 a20 = 2.817

An anchor node with low battery voltage will send signal with low RSSI. If this
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Figure 5.3: The degree two and degree three polynomial approximations for the
battery voltage against the time elapsed in hours

fact is avoided then sensor node shall conclude that the anchor node is at a farther

distance than it really is. Now we shall compensate for this misinterpretation by the

sensor node and we start our solution formulation in the next section.

5.3 Presentation of the solution

Consider one dimensional case with one anchor node at the origin and just one

sensor node. By making sure that the battery of the anchor node is fully charged

we calculate the edge weights by placing the sensor node at different positions as is

shown in figure5.4(a).

With the fully charged battery if the measured edge weights are w1 , w2 , w3 , · · · ,
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Table 5.1: Difference between polynomial approximated values and the ob-
served battery voltage

Time Linear Error Quadratic Error Cubic Error

020 0.08141 0.02605 0.03271
023 0.18012 0.06666 0.04315
043 0.27153 0.11262 0.02632
065 0.26208 0.04214 0.03632
090 0.30134 0.00197 0.01660
115 0.34060 0.06101 0.00238
149 0.52600 0.03327 0.04844
162 0.59042 0.03642 0.00682
163 0.59999 0.03221 0.00662
166 0.62870 0.01974 0.00452
170 0.66698 0.00344 0.00189
176 0.71441 0.01028 0.02969
192 1.00754 0.20935 0.00996

Anchor Node Sensor Nodes

w1 w2 w3 w4 w5

(a) Fully charged battery

Anchor Node Sensor Nodes

w′
1

w′
2

w′
3

w′
4

w′
5

(b) Partially charged battery

Figure 5.4: Weights measured by the sensor node at different positions at differ-
ent voltage levels of the battery of the anchor node

then we have the relationship w1 > w2 > w3 > · · · . At a later stage the weights

measured by the sensor node are observed as shown in figure5.4(b). When the battery

voltage level has drooped, once again we have the inequalities w′
1
> w′2 > w′3 > · · · ,

but the signal strength is decreased. Thus we can have a situation in which w′
i
< wi,

(for i = 1, 2, 3, 4, or 5) whereby giving the misinterpretation about the location of

the sensor as we know that the distance is constant. Although the location of the

sensor is same but the edge weight is lower than its preceding case. The sensor shall

conclude that it is farther from the anchor than it really is. This is because the RSSI

is weak and low edge weight is calculated.

Now let us find the relationship between the battery voltage level and observed
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edge weight for a fixed distance between sensor-anchor pair. In an experiment the

RSSI at different sensor-anchor distances was measured and the results are shown in

figure 5.5. The cubic polynomial approximation from the observed data for distance
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Figure 5.5: RSSI measured against distance for MICAz sensor

d in centimeters as a function of RSSI measured in dBm is given by (5.7).

d = a3RSSI3 + a2RSSI2 + a1RSSI + a0 (5.7)

where
a3 = −0.007791 a1 = −47.98

a2 = −1.058 a0 = −701.6

The relation of RSSI in dBm to the power P in mW is shown in (5.8).

RSSI = 10 log10(P) (5.8)

Edge weight is calculated from the RSSI which is the measure of the power of the

signal. By the well known Watt’s law the power, P, is the product of voltage, V, and

current, I, i.e., P = VI and by Ohm’s law we have V = IR. Combining these two laws

we get P = V2/R. If the resistance remains constant, then we see that the power is

directly proportional to the square of the voltage. By letting R = 1Ωwe observe that

with the decrease in the voltage of the battery of MICAz mote, there is decrease in

the power of the sent signal as is shown in table 5.2. Thus for a constant distance

between the sensor-anchor pair the relationship between the power of the signal and

the battery voltage is P = V2. The observed edge weight decreases as the battery

voltage droops. As a mater of fact we need the edge weight to remain constant for
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Table 5.2: Power in the MICAz mote signal at different battery voltages

Voltage Power Voltage Power

(volts) (watts) (volts) (watts)

1.54 2.37 2.51 6.30
2.25 5.06 2.55 6.50
1.85 3.42 2.59 6.71
2.15 4.62 2.60 6.76
2.05 4.20 2.60 6.76
2.29 5.24 2.62 6.86
2.43 5.90 2.66 7.08
2.47 6.10 2.80 7.84
2.49 6.20 2.94 8.64
2.50 6.25 3.00 9.00

a fixed sensor-anchor pair distance.

As shown in figure 5.5, at the distance of 10 cm, the RSSI of the signal is -41dBm

and the voltage is 3 volts. For this voltage the power in the signal using P = 10(RSSI/10)

is 7.94 × 10−5mW. For V = 3 we have P = 7.94 × 10−5 and we know that for V = 0,

P = 0. As P is proportional to the square of V, it means that 9 corresponds to

7.94 × 10−5. Thus power of the sent signal as a function of battery voltage is given

by (5.9) where α = 8.82 × 10−6. Figure 5.6 shows the plot of power in the signal in

relation to the battery voltage.

P(V) = αV2 (5.9)
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Figure 5.6: The plot of power in signal as a function of battery voltage

As edge weight w is a function of RSSI, let us assume that it is an identity function:
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w = RSSI

(5.8) =⇒ w = 10 log10(P)

(5.9) =⇒ w = 10 log10(αV2)

∴ =⇒ w = f (V) = 10 log10(αV2).

Hence the maximum edge weight is w0 = −41 and the compensation term is given

by (5.10).

χ(V) =
∣

∣

∣w0 − 10 log10(αV2)
∣

∣

∣ (5.10)

The graph of the compensation term at different voltage levels is shown in figure 5.7.

The proposed technique is mentioned in algorithm 5.1 that computes the improved

estimated position of the sensor nodes by compensating the edge weight loss due to

battery voltage decay.
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Figure 5.7: Edge weight compensation at different battery voltages. It increases
with the decrease in voltage.
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Algorithm 5.1 Calculation of compensated edge weight and enhanced estimated
position of sensor node

Input: RSSI = Ri j , Battery Voltage = V
Output: Estimated position = rest

1: for i = 1 to k do
2: for j = 1 to n do
3: Require Ri j for ith sensor and jth anchor
4: w j ←− h(Ri j)
5: Require V

6: χ(V j)←−
∣

∣

∣

∣
w0

j
− 10 log10(α(V j)

2)
∣

∣

∣

∣

7: return w j := w j + χ(V j)
8: end for

9: return riest :=
∑k

j=1 r jw j
∑k

j=1 w j

10: end for

5.4 Simulation Results

Various simulations were performed using Matlab R© in order to validate the pro-

posed algorithm 5.1. At any instant the compensation term for the observed edge

weight is found as shown in (5.10). With the help of this compensation term the

corrected edge weight is obtained as shown in line 7 of algorithm 5.1. Lastly with

the help of the corrected edge weight the correct distance is calculated. In figure 5.7

we have the graph of the edge weight compensation term plotted against decreasing

battery voltage. We see that with the decrease in battery voltage the magnitude of the

weight to be compensated is increased. If wob represents the observed edge weight at

any instant then the corrected edge weight w is given by putting for corresponding

values in (5.4) as shown in (5.11).

w = g(wob,V) = wob +
∣

∣

∣w0 − 10 log10(αV2)
∣

∣

∣ (5.11)

Figure 5.8 shows that there is a remarkable decrease in the observed edge weight

with the decrease in battery voltage. When the compensation term is found out and

the corrected edge weight is computed we see that the corrected weight remains

constant for a particular distance irrespective of the battery voltage. The difference

between the observed distance and the corrected distance with the increase in time

is shown in figure 5.9. Finally the comparison of the three positions is shown in the
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Figure 5.8: Plot of observed and corrected edge weights against the battery volt-
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figure 5.10. Here we see that with the help of the compensation term added to the

observed weight the localization of the concerned sensor node is improved.
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Figure 5.9: Difference between the observed and corrected positions

5.5 Treatment through Neural Network

Neural networks imitate human brain to perform intelligent tasks [Hagan et al., 1996,

Bishop, 1996]. A neural network is made to learn and approximate the complicated

relationships between input and output variables, and acquire knowledge about

these relationships directly from the training data. A schematic diagram of the used

neural network is shown in figure 5.11. We have used a multilayer perceptron neural



5.5. TREATMENT THROUGH NEURAL NETWORK 99

 

 

Corrected
Actual
Observed

D
is

ta
n

ce
(c

m
)

Time (hours)

0 50 100 150 200 250
15

20

25

30

35

40

45

Figure 5.10: The corrected distance improves the localization of the sensor nodes
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Figure 5.11: Three layered neural network with three input variables and one
output variable

network with three layers: an input, a hidden and an output layer. The hidden layer

has three neurons and the activation function of each of the neuron is the logsigmoid

function. The components, in order, of the input vector xT = (x1 , x2 , x3) respectively

are RSSI, voltage and the time elapsed. The square matrix of order three V =
[

vi, j

]

represents the input-to-hidden layer weights. The activation functions of each of

the hidden layer neuron are denoted by σi for i = 1, 2, or 3. Each of the σi is the

logsigmoid function. These three activation functions are represented by a vector

σ
T = (σ1 , σ2 , σ3). The vector uT = (u1 , u2 , u3) represent the hidden-to-output layer

weights. The activation function of the output layer is denoted by µ and is the linear
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identity function. The single scalar output d is the real distance between the nodes:

d ≈ µ
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In matrix form which is written as:

FNN (x) = µ
{

uT
σ

(

VTx
)}

One of the neural network simulation result is shown in figure 5.12. Here we

have obtained the estimated positions of the sensors with the help of distances

obtained as an output of the neural network. These estimated positions are quite

better than the positions obtained only from the observed RSSI. As shown in the
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Average error with observed RSSI = 0.13034
Average error with output distances from NN = 0.023191

Figure 5.12: Black dots are the anchors and the grey diamonds are the real po-
sitions, circles are the positions estimated from the observed RSSI
and the black asterisks are the corrected positions

figure there are four anchors at the vertices of a square of length 1.4r where r is the

radius of transmission. Four senors are placed at different zones of connectivity. The

network is already trained for the three variables. With the passage of time the error
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in the RSSI measure starts increasing. The observed RSSI is used to estimate the

positions of the sensors. The average error in this case is 0.13 units. Now by using

the distances obtained as the output variable of the neural network we get a better

estimated position of the sensor nodes. The average error in the corrected estimated

positions becomes 0.02 units. Hence the battery voltage consideration yields in a

more reliable localization in wireless sensor networks.

5.6 Conclusion

In this chapter we have seen that the weight assigned to an anchor node due to

observed RSSI when measured without paying attention to the battery level of

that anchor node may lead to a misinterpretation about the distance between the

respective anchor and sensor nodes. We have proposed a compensation term in the

calculation of the edge weight that improves the accuracy of the distance between

the concerned anchor and sensor nodes. With this added value of adherence to the

battery voltage level of the anchor nodes, the localization of the sensor nodes in a

WSN is improved. The battery voltage, the emitted power, and the received power

are noticed. With the help of the proposed algorithm, before the estimation of the

distance, the compensation term, if needed, is added to the observed weight of the

anchor node. Hence the uncertainty in the positions of the sensor nodes in a WSN,

due to the proposed algorithm is reduced. The use of neural network techniques

drastically reduces the computation complexity of the otherwise erroneous position

estimation of the sensor nodes. The neural network also demonstrates the fact that

battery voltage consideration gives an enhanced position estimation of the nodes as

is shown in a simulation result. Thus the localization in wireless sensor network

is improved when the time elapsed and the voltage droop are taken into account.

The future works also include to tackle with the situation in which the loss in signal

strength is not due to the battery voltage drooping.
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Chapter 6

Conclusion and Future Perspectives

6.1 Conclusion

I
n this thesis three themes related to wireless sensor networks (WSNs) are covered.

The first part of the thesis focuses on the detection of faults in a WSN. There is

always a possibility that a sensor of a node is not giving accurate measurements all

of the time. Therefore, it is necessary to find if a node has developed a faulty sensor.

With the precise information about the sensor health, one can determine the extent

of reliability on its sensor measurement. To equip a node with multiple sensors is

not an economical solution. Thus the sensor measurements of a node are modeled

with the help of the fuzzy inference system (FIS). For each node, both recurrent

and non-recurrent systems are used to model its sensor measurement. An FIS for

a particular node is trained with input variables as the actual sensor measurements

of the neighbor nodes and with output variable as the real sensor measurements

of that node. The difference between the FIS approximated value and the actual

measurement of the sensor is used as an indication for whether or not to declare a

node as faulty.

In the second part of the thesis a position estimation method for localization of

nodes in a WSN is proposed. Once the intermediate distances between the connected

nodes have been calculated, the task remained to be accomplished is to find the

geographical position of all the nodes. In order to do so, the nodes require some

reference points or landmarks with known positions to calculate their own location

in relation to these landmarks. If some nodes with known positions are used as

landmarks, such nodes are called anchor nodes or simply as anchors. In the proposed

localization algorithm anchor nodes are used as landmark points. Many attempts
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have been proposed that address the problem of reducing the number of anchors

for localization in a WSN. Some of these are cooperative approaches in which the

relative placements of adjacent nodes are also taken into account in addition to the

known positions of the anchors. Usually the anchors are placed at the boundary of

the WSN. The localization method proposed here does not require any constraint on

the placement of the anchors; rather any three randomly chosen nodes can serve as

anchors.

There are two steps involved in the position estimation of all the nodes by using

the proposed localization method. The first step is to find a relative topology of the

WSN nodes. The second step is to find the symmetry, orientation, and position of the

topology in the plane. A heuristic approach is used to find the relative topology with

the help of distance matrix. The purpose of the distance matrix is to indicate whether

or not a pair of nodes has a connection between them and in case of connectivity

it gives the estimated distance between the nodes. By using the information of

connectivity between the nodes and their respective distances the topology of the

nodes is calculated. This method is heuristic because it uses the point solution

from the intersection of two circles instead of conventional triangulation method,

where a system of three quadratic equations in two variables is used whereby the

computational complexity of the position estimation method is increased.

When two connected nodes have another node in common, then by using the

information of distances between these interconnected nodes, two possible positions

are calculated for the third node. The presence or absence of a connection between

the third node and a fourth node helps in finding the accurate possibility out of the

two. This process is iterated till all the nodes have been relatively placed.

Once the relative topology has been calculated, we need to find the exact sym-

metry, orientation, and position of this topology in the plane. It is at this moment the

knowledge of three nodes positions comes into action. From the relative topology

we know the temporary coordinates of the nodes. By having a comparison of certain

characteristics between the temporary coordinates and the exact coordinates; first

the symmetry of relative topology is obtained that would correspond to the original

topology. In other words it tells whether or not the relative topology is a mirror

image of the original topology. Then some geometrical operators are used to correct

the topology position and orientation. Thus, all the nodes in the WSN are localized

using exactly three anchors.

In itself the process was challenging to find the planar layout of the nodes by
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using only the connectivity information amongst them. The assumptions made in

the proposed algorithm are more or less the same as explicitly or implicitly stated in

other research works. That is there are no orphan nodes (a node whose node degree

= 1), the network is not divisible into two subnetworks such that both of them have

either one node or one link in common. And that each node has at least a node

degree of 3. In case of densely deployed network, the number of steps to find the

topology of the network are reduced by ignoring the redundancy in connectivity.

Hence providing an efficient algorithm as far as localization is concerned. The strong

point is that our algorithm uses the distance matrix and exactly three anchors.

The last part concerns the power loss in a node signal due to voltage droop in the

battery of the node. There are multiple localization methods that use the received

signal strength (RSS) to calculate the distance between the connected nodes. There is

a negative correlation between the RSS and the emitter-receiver distance. If a WSN

node in receiving mode measures a low value RSS from a transmitting node, an

obvious interpretation is the increase of separation between the two nodes. Thus,

an error in RSS measurement shall manifest itself in the form of incorrect calculation

of distance between the concerned nodes. Therefore, for such localization methods

knowing sources that create error in RSS are very important.

One such source is the decrease in the battery voltage of the emitter node. With

decaying battery the transmitter of an emitter node will receive less energy and

hence will send signals with less power. Therefore, at the receiving node, the power

in the signal is even less. Thus a decrease in RSS could have two explanations. It

could either be due to the increase in distance between the transmitting node and

the receiver node; or it could be due to the loss of battery voltage at the transmitting

node. Hence the change (decrease) in the RSS due to the change (decrease) in the

battery voltage of the sending node would lead to misinterpretation in terms of

increase in the distance between the nodes. Consequently, paying attention to the

battery voltage of the emitter node is very crucial for the RSS based localization

methods.

In the last part of the thesis a method is proposed to compensate for the apparent

increase in the calculated distance between the related nodes due to decrease in the

voltage of the signal sending node battery. This objective is achieved by studying the

relation between the decrease in battery voltage and the time elapsed since the node

is in working mode. Then the relation between the RSS and the distance between the

connected nodes with fully charged batteries is calculated. Afterwards the RSS is
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measured by varying the battery voltage of the emitter node and keeping the receiver

node at a constant distance. Finally, a function is proposed whose arguments are the

apparently observed RSS and the current voltage of the emitter node battery. The

return of the function is the corrected RSS that corresponds to the actual distance

amongst the connected nodes. Hence increasing the efficiency of the RSS based

localization methods in WSNs.

6.2 Perspectives

In the following we list the possible works that emerge from the work done in the

present thesis:

1. In the proposed localization algorithm there is a strict constraint on the con-

nectivity between the nodes. A natural extension of the work is to relax the

conditions on the connectivity between the nodes.

2. We shall modify the localization algorithm so that it is applicable to a rapidly

changing topology. In the present form, a rapidly changing topology shall

ignite a rapid change of messages between the nodes and the base station,

which could create a congestion in the network and eventually a loss in the

information being transferred.

3. There are multiple number of scenarios in wireless sensor networks for which

the presented localization scheme can be extended. For example, one such

scenario is a WSN where the nodes do not form a convex set.

4. We shall look for the refinement of RSS-distance models. There are multiple

attenuation sources that result to inaccuracy in the measurement of RSS. A

future work is to tackle such error creating sources.

5. Although at present the computational complexity of the localization algorithm

is O(n), where n is the total number of nodes. We shall be working on to reduce

even further the computation complexity. It means that we shall evolve the

positioning strategy to reduce the number of exchange of messages amongst

the nodes.

6. Making a distributed version of the present scheme would be very interesting

to work in the future.
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7. Equally interesting would be the extension of the scheme in 3D.

8. In future we are also interested in fault detection strategies that can also handle

non-homogenous physical quantities.
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