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Thèse de Doctorat
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Abstract

The present thesis is devoted to the study of path probability of random motion on

the basis of an extension of Hamiltonian/Lagrangian mechanics to stochastic dynamics.

The path probability is first investigated by numerical simulation for Gaussian stochas-

tic motion of non dissipative systems. This ideal dynamical model implies that, apart

from the Gaussian random forces, the system is only subject to conservative forces.

This model can be applied to underdamped real random motion in the presence of

friction force when the dissipated energy is negligible with respect to the variation of

the potential energy. We find that the path probability decreases exponentially with

increasing action, i.e., P (A) ∼ e−γA, where γ is a constant characterizing the sensitivity

of the action dependence of the path probability, the action is given by A =
∫ T

0
Ldt, a

time integral of the Lagrangian L = K−V over a fixed time period T , K is the kinetic

energy and V is the potential energy. This result is a confirmation of the existence

of a classical analogue of the Feynman factor eiA/~ for the path integral formalism of

quantum mechanics of Hamiltonian systems.

The above result is then extended to real random motion with dissipation. For

this purpose, the least action principle has to be generalized to damped motion of

mechanical systems with a unique well defined Lagrangian function which must have

the usual simple connection to Hamiltonian. This has been done with the help of

the following Lagrangian L = K − V − Ed, where Ed is the dissipated energy. By

variational calculus and numerical simulation, we proved that the action A =
∫ T

0
Ldt

is stationary for the optimal paths determined by Newtonian equation. More precisely,

the stationarity is a minimum for underdamped motion, a maximum for overdamped

motion and an inflexion for the intermediate case. On this basis, we studied the path

probability of Gaussian stochastic motion of dissipative systems. It is found that the

path probability still depends exponentially on Lagrangian action for the underdamped

motion, but depnends exponentially on kinetic action A =
∫ T

0
Kdt for the overdamped

motion.
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Résumé

La présente thèse est consacrée à l’étude de la probabilité du chemin d’un mouvement

aléatoire sur la base d’une extension de la mécanique Hamiltonienne/Lagrangienne à

la dynamique stochastique. La probabilité d’un chemin est d’abord étudiée par simu-

lation numérique dans le cas du mouvement stochastique Gaussien des systèmes non

dissipatifs. Ce modèle dynamique idéal implique que, outre les forces aléatoires Gaussi-

ennes, le système est seulement soumis à des forces conservatrices. Ce modèle peut être

appliqué à un mouvement aléatoire réel de régime pseudo-périodique en présence d’une

force de frottement lorsque l’énergie dissipée est négligeable par rapport à la variation

de l’énergie potentielle. Nous constatons que la probabilité de chemin décrôıt expo-

nentiellement lorsque le son action augmente, c’est à dire, P (A) ∼ e−γA, où γ est une

constante caractérisant la sensibilité de la dépendance de l’action à la probabilité de

chemin, l’action est calculée par la formule A =
∫ T

0
Ldt, intégrale temporelle du La-

grangien. L = K − V sur une période de temps fixe T , K est l’énergie cinétique et V

est l’énergie potentielle. Ce résultat est une confirmation de l’existence d’un analogue

classique du facteur de Feynman eiA/~ pour le formalisme intégral de chemin de la

mécanique quantique des systèmes Hamiltoniens.

Le résultat ci-dessus est ensuite étendu au mouvement aléatoire réel avec dissipa-

tion. A cet effet, le principe de moindre action doit être généralisé au mouvement

amorti de systèmes mécaniques ayant une fonction unique de Lagrange bien définie qui

doit avoir la simple connexion habituelle au Hamiltonien. Cela a été fait avec l’aide

du Lagrangien suivant L = K − V − Ed, où Ed est l’énergie dissipée. Par le calcul

variationnel et la simulation numérique, nous avons prouvé que l’action A =
∫ T

0
Ldt

est stationnaire pour les chemins optimaux déterminés par l’équation newtonienne.

Plus précisément, la stationnarité est un minimum pour les mouvements de régime

pseudo-périodique, un maximum pour les mouvements d’amortissement apériodique et

une inflexion dans le cas intermédiaire. Sur cette base, nous avons étudié la probabilité

du chemin du mouvement stochastique Gaussien des systèmes dissipatifs. On constate

que la probabilité du chemin dépend toujours de façon exponentielle de l’action La-

grangien pour les mouvements de régime pseudo-périodique, mais dépend toujours de

façon exponentielle de l’action cinétique A =
∫ T

0
Kdt pour régime apériodique.
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Chapter 1

Introduction

1.1 Background

In physics, classical mechanics [1]-[6] is one of the two major sub-fields of mechanics,

which is concerned with the set of physical laws describing the motion of bodies under

the action of a system of forces. It is the most familiar of the theories of physics.

The concepts it covers, such as mass, acceleration, and force, are commonly used and

known. The initial stage in the development of classical mechanics is often referred

to as Newtonian mechanics, and is associated with the physical concepts employed by

and the mathematical methods invented by Newton himself, in parallel with Leibniz,

and others. Later, more abstract and general methods were developed, leading to

reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian

mechanics [7]. These advances were largely made in the 18th and 19th centuries, and

they extend substantially beyond Newton’s work, particularly through their use of

analytical mechanics [8, 9, 10, 11]. Ultimately, the mathematics developed for these

were central to the creation of quantum mechanics [12, 13, 14].

Classical mechanics is capable of generating either completely regular motion, com-

pletely chaostic motion, or an arbitrarily complicated mixture of the two [15]. A path

(trajectory) of regular motion of classical mechanics system always has probability one

once it is determined by the equation of motion and the boundary condition, while a

random motion may have many possible paths under the same condition, as can be

easily verified with any stochastic process including Brownian motion [16]-[24]. The

path of stochastic dynamics in mechanics has much richer physics content than that
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of the regular or deterministic motion. For a given process between two given configu-

ration points with given durations, each of those potential paths has some probability

to be taken by the motion. The path probability is a very important quantity for the

understanding and the characterization of random dynamics because it contains all the

information about the physics: the characteristics of the stochasticity, the degree of

randomness, the dynamical uncertainty, the equations of motion and so forth. Some

theoretical works have been devoted to the study of this probability, such as the Wiener

path measure [16], large deviation theory [26, 25], path probability method [27] and

most probable path [28, 29].

When talking about the path probability of mechanical random motion, one nat-

urally think of the Feynman factor eiA/~ of the path integral formulation of quantum

mechanics [12]. Although this factor is not the path probability, it characterizes the

likelihood for a Hamiltonian system to take given configuration path from one state to

another in quantum motion. A question we may answer here about the classical path

probability is whether it is possible to relate it to the action in a homologous manner

to the Feynman factor. This question, among some others relative to the polemics

on the kinship between mechanics and thermodynamics [30]-[35], has led to a possible

extension of Hamiltonian and Lagrangian mechanics to a stochastic formalism [36, 37].

This theoretical frame [36, 37] was suggested to study the path probability in relation

with the action of Hamiltonian system (non dissipation). The basis of the theory is

an extended least action principle [1, 9, 10, 11] containing a path information [38, 39]

depending on the path probability. For a special case of path information given by the

Shannon formula [40], it was predicted that the probability that a path is taken was

exponentially proportional to the action defined by A =
∫ tb
ta
Ldt along that path, where

L = K − V is the Lagrangian , K is the kinetic energy, V is the potential one, ta is

the time moment when the system is at the initial point a and tb is the time moment

when the system is at the final point b. To our knowledge, less experimental work or

numerical experiment has been made to measure the path probability. This is certainly

related to, among many reasons, the difficulty of experimental observation of a large

number of stochastic motions. This large number is necessary to determine correctly

the path probability.

For Hamiltonian systems, any real trajectory between two given configuration points

must satisfy the least action principle given by a vanishing first variation due to tiny

deformation of the trajectory, i.e., δA = δ
∫ T

0
Ldt =

∫ T

0
δLdt = 0 (suppose ta = 0 and

2



tb = T from now on). One of the important results of this variational calculus is the

Euler-Lagrange equation given by d
dt

(

∂L
∂ẋ

)

− ∂L
∂x

= 0 (on the coordinate x), where ẋ is

the velocity. In many cases when Hamiltonian H and Lagrangian L do not depend on

time explicitly, a Hamiltonian system is energy conservative. For damped motion with

friction force fd, the above equation becomes d
dt

(

∂L
∂ẋ

)

− ∂L
∂x

= fd which is equivalent

to write
∫ T

0
(δL + fdδx)dt = 0 [41]. Despite this vanishing equality, it is impossible to

calculate and optimize an action integral with the above single Lagrangian function

satisfying the Euler-Lagrange equation. This difficulty leads to the disappearance of

least action principle in dissipative systems.

There has been a longstanding effort to formulate least action principle for noncon-

servative or dissipative system [42, 43, 44]. As far as we know, the first proposition

was made by Rayleigh [45] who introduced a dissipative function, D = 1
2
mζẋ2, to

write d
dt

(

∂L
∂ẋ

)

+ ∂D
∂ẋ

− ∂L
∂x

= 0, where ζ = γ/m, γ is the viscous drag coefficient in the

Stokes’ law ~fd = −mζ~̇x and m the mass of the damped body. Although the equation

of motion is kept in a similar form as Lagrangian equation, the least action principle is

not recovered since there is no single Lagrangian for defining an action which satisfies

δA = 0. Other major propositions include the Bateman approach [46] to introduce

complementary variables and equations, the definition of dissipative Lagrangian by

multiplying the non dissipative one with an exponential factor exp(ζt) [47] where t is

the time, the fractional derivative formulation [48], the pseudo-Hamiltonian mechanics

[49] where a parameter was introduced to characterize the degree of dissipation, the

formalism that incorporates dissipative forces into quantum mechanics [50, 51] and

the variational formulation for the maximum energy dissipation principle in chemical

thermodynamics [52]-[55]. The reader is referred to the reviews in Refs. [42]-[55] about

the details of these propositions.

In general, the Lagrangian in these solutions is not unique and has no energy

connection like L = K − V (see for instance the quasi-Lagrangian L = eζt(K − V )

and the corresponding quasi-Hamiltonian H = e−ζtK + eζtV for damped harmonic

oscillator [47]). The use of this action approach to stochastic motion with friction

needs an extension of the least action principle or the variational action approach of

Hamiltonian/Langrangian mechanics to dissipative system including friction, that is,

to find an action which has direct energy connection and whose variational calculus

gives rise to Newtonian equation of motion in such a way that the unique trajectory still

has the least or stationary action. The extension of least action principle to classical
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dissipative motion is one of our effort in progress [56].

1.2 Research purpose

Based on the theoretical extension of Hamiltonian/Lagrangian mechanics to a stochas-

tic formalism [36, 37] which predicts that path probability depending exponentially

on action is possible for stochastic dynamics of classical mechanics systems without

dissipation, we made numerical experiments to see whether or not the path probabil-

ity, or its density, estimated with the help of the Wiener measure, has something to

do with the action of classical mechanics. This work concerns only non dissipative or

quasi-Hamiltonian system, meaning that, apart from the random forces and energy

fluctuation, the systems contain only conservative forces without energy dissipation.

The average energy of the system can or can not change during the entire period of

the motion. In other cases where the dissipation is associated with fluctuation, we

consider only weakly damped motion during which the energy dissipated is negligible

compared to the variation of potential energy, i.e., the conservative force is much larger

than friction force.

Since the least action principle was formulated only for Hamiltonian system (no

dissipation), a question we may ask whether the path probability still depends expo-

nentially on action for dissipative system? In order to answer this question, we estab-

lished a least action principle of dissipative system that recovers the energy connection

and the uniqueness of a single Lagrangian function, its relation with a conservative

Hamiltonian, as well as the three formulations of analytical mechanics, i.e., the Hamil-

tonian, Lagrangian and the Hamilton-Jacobi equations. This work based on the model

of a conservative system composed of the moving body and its environment coupled

by friction. It was shown that this system with “internal dissipation” satisfies both

Lagrangian and Hamiltonian mechanics, leading to correct equation of damped motion

in a general way.

However a mathematical uncertainties persists about the pertinence of the varia-

tional calculus and the nature (maxima, minima and inflection) of the possible station-

arity of action. By variational calculus and numerical simulation, we calculated the

actions along the optimal path and many variational paths created with tiny random

deformations in the vicinity of the optimal one. By the comparison of these actions, we
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proved that the action is stationary for the optimal paths determined by Newtonian

equation. More precisely, the stationarity is a minimum for the underdamped motion,

a maximum for the overdamped motion and an inflexion for the intermediate case. On

this basis, we studied the path probability of Gaussian stochastic motion of dissipative

systems.

These above mentioned works are the ingredients of the present thesis, of which an

overview is presented hereafter.

1.3 Overview of the thesis

The present thesis is devoted to the study of path probability of random motion on

the basis of an extension of Hamiltonian/Lagrangian mechanics to stochastic dynam-

ics. The main results are the following. The path probability of stochastic motion of

dissipative systems depends exponentially on Lagrangian action for the underdamped

motion, but plays exponentially with kinetic action for the overdamped motion, i.e.,

P (A) ∼ e−γA, where γ is a constant characterizing the sensitivity of the action de-

pendence of the path probability, the Lagrangian action is given by AL =
∫ T

0
Ldt a

time integral of the Lagrangian L = K − V − Ed over a fixed time period T , K is

the kinetic energy and V is the potential energy, Ed is the dissipated energy and the

kinetic action is given by AK =
∫ T

0
Kdt. For the underdamped motion, the dissipative

energy is negligible, the most probable path is the least Lagrangian action path; for

the overdamped motion, the dissipative energy is strong, the most probable path is the

maximum Lagrangian action path.

Each chapter will contain a detailed description of its own. The general structure

and content of the document is as follows.

In the second chapter, we briefly provide an introduction of the fundamental princi-

ples including least action principle and virtual work principle. These principles led to

the development of the Lagrangian and Hamiltonian formulations of classical mechan-

ics. In the following, we consider a system where the randomness comes from either

the intrinsic noise of the dynamics or from the external perturbation or the random

uncontrollable perturbations. These is no external dissipative forces (such as friction

force) in the system. We give a derivation from virtual work principle for random dy-

namics to stochastic action principle, which was postulated as a hypothesis. After that,
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we introduce a Shannon information as a path information. If the path entropy takes

the Shannon form, the stochastic action principle yields an exponential probability

distribution of action. Finally, three schemas of a random dynamics are illustrated in

phase space. This chapter is the theoretical extension of Hamiltonian and Lagrangian

mechanics to a stochastic formalism in non dissipative systems.

In the third chapter, the path probability of stochastic motion of non dissipative or

quasi-Hamiltonian systems is first investigated by numerical experiment. The simula-

tion model generates ideal one-dimensional motion of particles subject only to conser-

vative forces in addition to Gaussian distributed random displacements. In the presence

of dissipative forces, application of this ideal model requires that the dissipated energy

is small with respect to the variation of the conservative forces. The sample paths are

sufficiently smooth space-time tubes with suitable width allowing correct evaluation of

position, velocity, energy and action of each tube. It is found that the path probability

decays exponentially with increasing action of the sample paths. i.e., P (A) ∼ e−γA,

where γ is a constant characterizing the sensitivity of the action dependence of the

path probability, the action is given by A =
∫ T

0
Ldt, a time integral of the Lagrangian

L = K − V over a fixed time period T , K is the kinetic energy and V is the potential

energy. The decay rate increases with decreasing Gaussian randomness. This result is

a confirmation of the existence of a classical analogue of the Feynman factor eiA/~ for

the path integral formalism of quantum mechanics of Hamiltonian systems.

In the forth chapter, the least action principle has to be generalized to damped

motion of mechanical systems with a unique well defined Lagrangian function which

must have the usual simple connection to Hamiltonian. We consider a whole isolated

conservative system containing a damped body and its environment, coupled to each

other by friction. The Lagrangian is L = K − V − Ed with an effective conservative

Hamiltonian H = K + V + Ed where K is kinetic energy of the damped body, V

its potential energy and Ed is the negative work of the friction force. We formulated

a possible answer to a longstanding question of classical mechanics about the least

action principle for damped motion, in keeping all the four conventional formulations of

mechanics, i.e., Newtonian, Lagrangian, Hamiltonian and Hamilton-Jacobi equations.

This least action principle can also be derived from the virtual work principle. It

is shown that, within this formulation, the least action principle can be equivalent

to a least dissipation principle for the case of Stokes damping or, more generally, for
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overdamped motion with more kinds of damping. By variational calculus and numerical

simulation, we proved that the action A =
∫ T

0
Ldt is stationary for the optimal paths

determined by Newtonian equation. The model of the simulation is a small ball subject

to constant force combined with Stokes’ drag force. It turns out that the extrema of

action do exist and shift from a minimum to a maximum as the motion duration and the

damping coefficient increase, i.e., with increasing dissipative energy. From this point

of view, similar transition of extrema of action can be expected for other friction and

conservative forces. We have made same simulations as above with constant friction

fd = mζ and the quadratic friction fd = mζẋ2, as well as harmonic oscillator damped

by Stokes’ drag.

In the fifth chapter, based on the extension of least action principle to random

motion, we make the numerical experiments of stochastic motion of dissipative sys-

tems in order to calculate the path probability and to investigate its dependence the

conventional mechanical quantities. The model of the simulation is small silica (SiO2)

particles subject to conservative forces, friction force and Gaussian noise. It is found

that the path probability still depends exponentially on Lagrangian action for the un-

derdamped motion, but plays exponentially with kinetic action A =
∫ T

0
Kdt for the

overdamped motion. The difference from the non dissipative motion is that, for the

underdamped motion, the most probable path is the least Lagrangian action path; for

the overdamped motion, the most probable path is the maximum Lagrangian action

path.

Finally, we sum up the conclusions of this work and give some perspectives in the

last chapter.
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Chapter 2

Stochastic action principle and path

probability distribution

2.1 Stochastic action principle

2.1.1 Principle of least action

In physics, the principle of least action [1, 9, 10, 11] or, more accurately, the principle

of stationary action is a variational principle that, when applied to the action of a

mechanical system, can be used to obtain the equations of motion for that system.

The principle led to the development of the Lagrangian and Hamiltonian formulations

of classical mechanics.

2.1.1.1 Statements of action principles

In classical mechanics, there are two major versions of the action [57]-[70], due to

Hamilton and Maupertuis, and two corresponding action principles. Hamilton action

A and Maupertuis action Am have the same dimensions, i.e. energy×time, or angular

momentum, these differ from each other (they are related by a Legendre transformation

[9]). The Hamilton’s action principle is nowadays the most used. The Hamilton action

A is defined as an integral along an actual or virtual (trial) space-time trajectory q(t)

connecting two specified space-time events, initial event a ≡ (qa, ta = 0) and final event
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b ≡ (qb, tb = T ),

A =

∫ T

0

L(q, q̇)dt, (2.1)

where L(q, q̇) is the Lagrangian, and q̇ = dq/dt. For most of what follows we will

assume the simplest case where L = K − V , where K and V are the kinetic and po-

tential energies, respectively. In general, q stands for the complete set of independent

generalized coordinates, q1, q2, · · · , qn, where n is the number of degrees of freedom.

Hamilton’s principle states that among all conceivable trajectories q(t) that could con-

nect the given end points qa and qb in the given time T , the true trajectories are those

that make A stationary. Hamilton’s least action principle states:

(δA)T = 0, (2.2)

where the constraint of fixed time T is written explicitly, and the constraint of fixed

end-positions qa and qb is left implicit. It is clear from Eq. (2.1) that A is a functional

of the trial trajectory q(t), and in Eq. (2.2) δA denotes the first-order variation in A

corresponding to the small variation δq(t) in the trial trajectory. The Hamilton’s least

action principle means that, given the stated constraints, the variation of the action

δA vanishes for any small trajectory variation δq(t) around a true trajectory.

The second major version of the action is Maupertuis action Am ,

Am =

∫ qb

qa

pdq =

∫ T

0

2Kdt, (2.3)

where the first (time-independent) form is the general definition, with p = ∂L/∂q̇

the canonical momentum, and pdq stands for p1dq1 + p2dq2 + · · · + pfdqf in general.

The second (time-dependent) form for Am in Eq. (2.3) is valid for normal systems in

which the kinetic energy K is quadratic in the velocity components q̇1, q̇2, · · · , q̇f . The
Maupertuis’ least action principle states that for true trajectories Am is stationary on

trial trajectories with fixed end positions qa and qb and fixed energy H:

(δAm)H = 0, (2.4)

Note that H is fixed but T is not in Eq. (2.4), the reverse of the conditions in Eq.

(2.2).

2.1.1.2 Euler-Lagrange equation

As noted above, the requirement that the action integral be stationary under small

perturbations of the evolution is equivalent to a set of differential equations (called the
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Euler-Lagrange equations) that may be determined using the calculus of variations. We

illustrate this derivation here using only one coordinate, x; the extension to multiple

coordinates is straightforward [2, 8].

Adopting Hamilton’s least action principle, we assume that the Lagrangian L (the

integrand of the action integral) depends only on the coordinate x(t) and its time

derivative dx(t)/dt, and may also depend explicitly on time. In that case, the action

integral can be written

A =

∫ T

0

L(x, ẋ, t)dt, (2.5)

where the initial and final times (0 and T ) and the final and initial positions are specified

in advance as x0 = x(0) and xT = x(T ). Let xtrue(t) represent the true evolution

that we seek, and let xper(t) be a slightly perturbed version of it, albeit with the same

endpoints, xper(0) = x0 and xper(T ) = xT . The difference between these two evolutions,

which we will call ǫ(t), is infinitesimally small at all times ǫ(t) = xper(t)− xtrue(t). At

the endpoints, the difference vanishes, i.e., ǫ(0) = ǫ(T ) = 0.

Expanded to first order, the difference between the actions integrals for the two

evolutions is

δA =

∫ T

0

[L(xper + ǫper, ẋper + ǫ̇per, t)− L(xture, ẋture, t)]dt

=

∫ T

0

(

ǫ
∂L

∂x
+ ǫ̇

∂L

∂ẋ

)

dt,

(2.6)

Integration by parts of the last term, together with the boundary conditions ǫ(0) =

ǫ(T ) = 0, yields the equation

δA =

∫ T

0

[

∂L

∂x
− d

dt

(

∂L

∂ẋ

)]

ǫdt (2.7)

The requirement A that be stationary implies that the first-order change must be zero

for any possible perturbation ǫ(t) about the true evolution (Principle of least action)

δA = 0 (2.8)

This can be true only if
d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= 0 (2.9)

is just the Euler-Lagrange equation. The quantity ∂L
∂ẋ

is called the conjugate momentum

for the coordinate x. An important consequence of the Euler-Lagrange equations is
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that if L does not explicitly contain coordinate x, i.e., if ∂L
∂x

= 0, then ∂L
∂ẋ

is constant

in time. In such cases, the coordinate x is called a cyclic coordinate, and its conjugate

momentum is conserved.

2.1.2 Principle of virtual work

Virtual work arises in the application of the principle of least action to the study

of forces and movement of a mechanical system. Historically, virtual work and the

associated calculus of variations were formulated to analyze systems of rigid bodies [9],

but they have also been developed for the study of the mechanics of deformable bodies

[71, 72].

2.1.2.1 Basic definitions

If a force acts on a particle as it moves from point a to point b, then, for each possible

trajectory that the particle may take, it is possible to compute the total work done

by the force along the path. The principle of virtual work, which is the form of the

principle of least action applied to these systems, states that the path actually followed

by the particle is the one for which the difference between the work along this path

and other nearby paths is zero. The formal procedure for computing the difference of

functions evaluated on nearby paths is a generalization of the derivative known from

differential calculus, and is termed the calculus of variations.

Let the function r(t) define the path followed by a point. A nearby path can then be

defined by adding the function δr(t) to the original path, so that the new path is given

by r(t)+ δr(t). The function δr(t) is called the variation of the original path, and each

of the components of δr = (δx, δy, δz) is called a virtual displacement. This can be

generalized to an arbitrary mechanical system defined by the generalized coordinates

qi, i = 1, · · · , n. In which case, the variation of the trajectory qi(t) is defined by the

virtual displacements δqi, i = 1, · · · , n.

Virtual work can now be described as the work done by the applied forces and the

inertial forces of a mechanical system as it moves through a set of virtual displacements.

Consider a particle that moves along a trajectory r(t) from a point a to a point b, while
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a force F is applied to it, then the work done by the force is given by the integral

W =

∫

r(T )=b

r(0)=a

F · dr =
∫ T

0

F · vdt, (2.10)

where dr is the differential element along the curve that is the trajectory of the particle,

and v is its velocity. It is important to notice that the value of the work W depends

on the trajectory r(t).

Now consider the work done by the same force on the same particle again moving

from point a to point b, but this time moving along the nearby trajectory that differs

from r(t) by the variation δr(t) = ǫh(t), where ǫ is a scaling constant that can be made

as small as desired and h(t) is an arbitrary function that satisfies h(0) = h(T ) = 0,

W =

∫ b

a

F · d(r+ ǫh) =

∫ T

0

F · (v+ ǫḣ)dt, (2.11)

The variation of the work δW associated with this nearby path, known as the virtual

work, can be computed to be

δW =W −W =

∫ T

0

F · ǫḣdt, (2.12)

Now assume that r(t) and h(t) depend on the generalized coordinates qi, i = 1, · · · , n,
then the derivative of the variation δr(t) = ǫh(t) is given by

d

dt
δr = ǫḣ = ǫ

(

∂h

∂q1
q̇1 + · · ·+ ∂h

∂qn
q̇n

)

, (2.13)

then we have

δW =

∫ T

0

(

F · ∂h
∂q1

ǫq̇1 + · · ·+ F · ∂h
∂qn

ǫq̇n

)

dt

=

∫ T

0

F · ∂h
∂q1

ǫq̇1dt+ · · ·+
∫ T

0

F · ∂h
∂qn

ǫq̇ndt.

(2.14)

The requirement that the virtual work be zero for an arbitrary variation δr(t) = ǫh(t)

is equivalent to the set of requirements

Fi = F · ∂h
∂qi

= 0 i = 1, · · · , n (2.15)

The terms Fi are called the generalized forces associated with the virtual displacement

δr.
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2.1.2.2 Static equilibrium

Static equilibrium is the condition in which the applied forces and constraint forces

on a mechanical system balance such that the system does not move. The principle

of virtual work states that the virtual work of the applied forces is zero for all virtual

movements of the system from static equilibrium, that is, δW = 0 for any variation δr

[45]. This is equivalent to the requirement that the generalized forces for any virtual

displacement are zero, that is Fi = 0.

Let the forces on the system be Fj, j = 1, · · · , N and let the virtual displacement

of each point of application of these forces be δrj, j = 1, · · · , N , then the virtual work

generated by a virtual displacement of these forces from the equilibrium position is

given by

δW =
N
∑

j=1

Fj · δrj, (2.16)

Now assume that each δrj depends on the generalized coordinates qi, i = 1, · · · , n, then

δrj =
∂rj
∂q1

δq1 + · · ·+ ∂rj
∂qn

δqn, (2.17)

and

δW =

(

N
∑

j=1

Fj ·
∂rj
∂q1

)

δq1 + · · ·+
(

N
∑

j=1

Fj ·
∂rj
∂qn

)

δqn. (2.18)

The n terms

Fi =
N
∑

j=1

Fj ·
∂rj
∂qi

, i = 1, · · · , n (2.19)

are the generalized forces acting on the system. Kane [73] shows that these generalized

forces can also be formulated in terms of the ratio of time derivatives. In order for the

virtual work to be zero for an arbitrary virtual displacement, each of the generalized

forces must be zero, that is

δW = 0 ⇒ Fi = 0, i = 1, · · · , n. (2.20)

This principle for static equilibrium problem was extended to “dynamical equilib-

rium” by d’Alembert [74] who added the inertial force −mjaj on each point of the

system in motion

δW =
N
∑

i=1

(Fj −miaj) · δrj, (2.21)
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where mj is the mass of the point j and aj its acceleration. From this principle,

we can not only derive Newtonian equation of dynamics, but also other fundamental

principles such as least action principle. The deterministic character and the uniqueness

of trajectory of the dynamics dictated by these two principles can be illustrated in both

configuration and phase spaces as shown in Fig. 2.1 which tells us that a motion from

a point a in configuration space must arrive at point b when the duration of motion

T = tb − ta is given. Equivalently in phase space, once the initial point (condition)

a is given, the path is then determined, meaning that the unique destination after

T = tb − ta is b.

x t 

x 

a 

b 

1D configuration space-time 

P

a b 

2D phase space 

I II 

ta tb 

Pb 

Pa 

Fig. 2.1: Illustration of a least action path of regular motion of Hamiltonian system between

two points a and b in configuration space (I) and in phase space (II). The virtual

work on each point of this path is zero according to Eq. (2.21). The duration of

motion T = tb− ta for the path in configuration space is given, while for the phase

space path the duration of motion is not specified since it is hinted in the initial

or final conditions (positions and velocities). The meaning of this is that a motion

from a given phase point a must have a single destination b.

2.1.3 Stochastic action principle

2.1.3.1 Random motion

The above mentioned principles hold whenever the motion is regular. In other words,

we can refer to any motion which can be described analytically and explicitly by New-

tonian laws as regular motion.

On the contrary, we define an irregular or random motion as a dynamics which
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Fig. 2.2: An illustration of the non uniqueness of trajectory of random dynamics. Notice

that the three path examples between a and b in configuration space may have

different end points in phase space even if they have the same initial state.

violates the above paradigms. One of the most remarkable characteristics of random

motions is the non uniqueness of paths between two given points in configuration space

as well as in phase space. This behavior implies the occurrence of multiple paths to

different destinations from a given phase point, which is illustrated in Fig. 2.2.

The cause of the randomness is without any doubt the noises or random forces in

and around the observed system. Here we do not run into the study of the origin of the

noises. We only look into the effects, i.e., the multiplicity of paths mentioned above

for a motion during a time period, or the multiplicity of states for a given moment of

time of the motion.

Since in the present approach the effect of noises is represented by the multiplicity

of paths and states, the quantities such as the Hamiltonian H, the Lagrangian L, the

action A and the virtual work δW will be calculated without considering the random

forces which are actually impossible to be introduced into the calculation of these

quantities due to their random nature. In this approach, it is obvious that among all

the paths between two points, there must be a thin bundle of paths around the geodesic

determined by δA = 0 or δW = 0. Other paths must have δA 6= 0 and δW 6= 0.

In what follows, we introduce the extension of the above fundamental principles to

random dynamics by considering a very common case: the descent of a body from an

inclined smooth but irregular long surface. The friction can be neglected although the

surface is somewhat rugged [75].
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2.1.3.2 Stochastic least action principle

The least action principle [10, 11] was formulated for regular dynamics of mechanical

system. One naturally asks the question about its fate when the system is subject to

noise making the dynamics irregular. In order to answer this question, a stochastic

action principle (SAP)

δA = 0 (2.22)

has been developed in [36, 37] where δA is a variation of the Lagrange action A and the

average is carried out over all possible paths between two given points in configuration

space. Eq. (2.22) was postulated as a hypothesis in the previous work [36]. Here we

give a derivation from the virtual work principle for random dynamics [76, 77].

We consider a statistical ensemble of mechanical systems out of equilibrium and its

trajectories in configuration space. Each system is composed of N particles moving

in the 3N dimensional space starting from a point a. If the motion was regular, all

the systems in the ensemble would follow a single 3N -dimensional trajectory from a

to a given point b according to the least action principle. In random dynamics, every

system can take different paths from a to b as discussed in previous.

Now let us look at the random dynamics of a single system following a trajectory,

say, k, from a to b. At a given time T , the total force on a particle i in the system

is denoted by Fi and the acceleration by ai with an inertial force −miai where mi is

its mass. The virtual work at this moment on a virtual displacement δrik of all the

particle on the trajectory k reads

δWk =
N
∑

i=1

(Fi −miai)k · δrik. (2.23)

and the average virtual work can be shown as

δW =
w

∑

k=1

pkδWk = 0 (2.24)

where we considered discrete paths denoted by k = 1, 2 . . . w (if the variation of path

is continuous, the sum over k must be replaced by path integral between a and b [12]),

and pk is the probability that the path k is taken. Eq. (2.24) is used as the new virtual

work principle for random dynamics. It can be stipulated as: The statistical mean of

the total virtual work done by all the forces acting on a system (equilibrium or not) in
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random motion must be zero, where the means is taken over all the possible positions

or states of the system at a given moment of time [75].

Now let us establish the relationship between virtual work and action variation (for

one dimensional case, x is the position in the configuration space). For a given path k,

the action variation is given by

δAk =
N
∑

i=1

∫ b

a

δLikdt

=
N
∑

i=1

∫ b

a

(

∂L

∂xi
δxi +

∂L

∂ẋi
δẋi

)

k

dt

=
N
∑

i=1

∫ b

a

(

−∂Hi

∂xi
− Ṗxi

)

k

δxikdt

=

∫ b

a

N
∑

i=1

(Fxi
−mẍi)kδxikdt =

∫ b

a

δWkdt

(2.25)

where we used, for the particle i with HamiltonianHi and Lagrangian Li, Fxi
= −∂Hi

∂xi
=

∂Li

∂xi
, mẍi = Ṗxi

= ∂
∂t
(∂Li

∂ẋi
) and

∫ b

a
∂
∂t
(δxi

∂L
∂ẋi

)dt = (δxi
∂L
∂ẋi

)
∣

∣

b

a
because of the zero variation

at a and b.

The average action variation being δA =
∑w

k=1 pkδAk =
∫ b

a
δWdt, the virtual work

principle Eq. (2.24) yields Eq. (2.22), i.e., δA = 0. This SAP implies an varentropy

variational approach. To see this, we calculate

δA = δ
w

∑

k=1

pkAk −
w

∑

k=1

δpkAk = δAab − δQab (2.26)

where Aab =
∑w

k=1 pkAk is the ensemble mean of action Ak between a and b, and δQab

can be written as

δQab = δAab − δA =
w

∑

k=1

Akδpk. (2.27)

which is a varentropy measuring the uncertainty in the choice of trajectories by the

system. We can introduce a path entropy Sab such that

δQab =
δSab

γ
. (2.28)

Then Eqs. (2.22), (2.26) and (2.28) yield

δ(Sab − γAab) = 0. (2.29)
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If the normalization condition is added as a constraint of variational calculus, Eq.

(2.29) becomes

δ(Sab − γ
w

∑

k=1

pkAk + α
w

∑

k=1

pk) = 0. (2.30)

This is a maximum path entropy with two Lagrange multipliers α and γ , an approach

originally proposed in the Ref. [36].

Position x

Momentum 

b

1

2 k

P1
P2 …

Pk

…

w

Pw

a

A

B

Fig. 2.3: Illustration of the 3 schemas of a random dynamics in phase space. A is the initial

volume at time ta and a is any point in A. B is the final volume at time tb and b

is any point in A. The directed schema means the system, leaving from a certain

a, must arrive at a fixed b in B. The panoramic schema means the system, leaving

from certain a, arrives at any arbitrary point b in B. The initial condition schema

adds the uncertainty in the initial condition, meaning that the system, arriving at

certain point b in B, can come from any arbitrary point a in A.
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2.2 A path probability distribution

According to Shannon [40], the information can be measured by the formula S =

−
∑

i pi ln pi where pi is certain probability attributed to the situation i. We usually

ask
∑

i pi = 1 with a summation over all the possible situations. For the ensemble of

w possible paths, a Shannon information can be defined as follows [36, 78]:

Sab = −
w

∑

k=1

pk ln pk. (2.31)

Sab is a path information and should be interpreted as the missing information necessary

for predicting which path a system of the ensemble takes from a to b.

2.2.1 Directed schema

If the path entropy takes the Shannon form, the SAP or Eq. (2.29) yields an exponential

probability distribution of action

pk(a, b) =
1

Zab

e−γAk(a,b). (2.32)

where Zab =
∑w

k=1 e
−γAk(a,b), meaning that this distribution describes a motion directed

from a fixed point a to a fixed point b (see Fig. 2.3). The path entropy can be calculated

by

Sab = lnZab + γAab. (2.33)

where Aab =
∑w

k=1 pk(a, b)Ak = − ∂
∂γ

lnZab is the average action between these two

fixed points.

2.2.2 Panoramic schema

The above description is not complete for the dynamics since a real motion from an

initial point a does not necessarily arrive at b. The system moves around and can reach

any point in the final volume, say, B. Hence a complete description of the dynamics

requires unfixed point b in B. The probability pk(a,B) for the system to go from a

fixed point a to a unfixed b through a certain path k (depending on a and b) is given

by

pk(a,B) =
1

Za

e−γAk(a,b). (2.34)
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where Za =
∑

b,k e
−γAk(a,b) =

∑

b Zab, Hence the path entropy for this case is given by

SaB = lnZa + γAa. (2.35)

where Aa =
∑

b

∑

k pk(a,B)Ak(a, b) = − ∂
∂γ

lnZa is the average action over all the

paths between a fixed point a to all the points in the final volume B. We have the

following relationship Aa =
∑

b

∑

k pk(a,B)Ak(a, b) =
∑

b
Zab

Za
Aab =

∑

b
exp(lnZab)

Za
Aab =

∑

b
exp(Sab−γAab)

Za
Aab. The function p(a,B) = exp(Sab−γAab) is the probability from the

point a to an arbitrary point b in the final volume B no matter what path the process

may take.

2.2.3 Initial condition schema

In order to include the contribution of the initial conditions to the dynamic uncertainty,

we extend still the path probability to the schema in which a is also relaxed in the initial

volume A. The transition probability from A to B through a certain path k is

pk(A,B) =
1

Z
e−γAk(a,b). (2.36)

where Z =
∑

a,b,k e
−γAk(a,b) =

∑

a Za. The total path entropy between A and B reads

SAB = lnZ + γA. (2.37)

Here Aa =
∑

a

∑

b

∑

k pk(A,B)Ak(a, b) = − ∂
∂γ

lnZ is the average action of the process

from A to B.

The total transition probability p(A,B) between an arbitrary point a in A to an

arbitrary point b in B through whatever paths is given by

p(A,B) =
1

Z
exp(Sab − γAab). (2.38)

Using a Legendre transformation Fab = Aab − Sab/γ = 1
γ
lnZab which can be called

free action mimicking the free energy of thermodynamics, we can write p(A,B) =
1
Z
exp(−γFab).

This section provides a series of path probability distributions in exponential of

action describing the likelihood of each path to be chosen by the motion. It is clear

that if the constant γ is positive, the most probable path will be least action path. This

implies that if the randomness of motion is vanishing, all the paths will collapse onto the
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bundle of least action ones, which is accordance with the least action principle of regular

motion. A more mathematical discussion can be found in Ref. [36, 37]. This formalism

is to some extent a classical version of the idea of M. Gell-Mann [79, 80] to characterize,

in superstring theory, the likelihoods of different solutions of the fundamental equation

by quantized and Euclidean action.
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Chapter 3

The path probability of stochastic

motion of non dissipative systems

3.1 Introduction

The path (trajectory) of stochastic dynamics in mechanics has much richer physics con-

tent than that of the regular or deterministic motion. A path of regular motion always

has probability one once it is determined by the equation of motion and the boundary

condition, while a random motion may have many possible paths under the same con-

dition, as can be easily verified with any stochastic process [16]. For a given process

between two given states (or configuration points with given durations), each of those

potential paths has some chance (probability) to be taken by the motion. The path

probability is a very important quantity for the understanding and the characterization

of random dynamics because it contains all the information about the physics: the char-

acteristics of the stochasticity, the degree of randomness, the dynamical uncertainty,

the equations of motion and so forth. Consideration of paths has long been regarded as

a powerful approach to non equilibrium thermodynamics [81]-[90]. A key question in

this approach is what are the random variables which determine the probability. The

Onsager-Machlup type action [23, 24], is one of the answers for Gaussian irreversible

process close to equilibrium where the path probability is an exponentially decreasing

function of the action calculated along thermodynamic paths in general. This action

has been extended to Cartesian space in Ref. [90]. The large deviation theory [25, 26]

suggests a rate function to characterize an exponential path probability. There are
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other suggestions by the consideration of the energy along the paths [91, 92]. For a

Markovian process with Gaussian noises, the Wiener path measure [93, 94] provides a

good description of the path likelihood with the product of Gaussian distributions of

the random variables.

The reflexions behind this work are the following: suppose a mechanical random

motion is trackable, i.e., the mechanical quantities of the motion under consideration

such as position, velocity, mechanical energy and so on can be calculated with certain

precision along the paths, is it possible to use the usual mechanical quantities to charac-

terize the path probability of that motion? Possible answers are given in Refs. [91, 92].

The author of Ref. [91] suggests that the path probability decreases exponentially with

increasing average energy along the paths [91]. This theory risks a conflict with the

regular mechanical motion in the limit of vanishing randomness because the surviving

path would be the path of least average energy, while it is actually the path of least

action. The proposition of Ref. [92] is a path probability decreasing exponentially

with the sum of the successive energy differences, which risks the similar conflicts with

regular mechanics mentioned above.

In view of the imperative that the Newtonian path of regular motion should be

recovered for vanishing randomness, we have thought about the possibility to relate the

path probability to action, the only key quantity for determining paths of Hamiltonian

systems in classical mechanics. Precisely, we want to know whether, in what case and

under what conditions there can be a probability function analogous to the Feynman

factor eiA/~ of quantum mechanics [12], i.e., a path probability decreasing exponentially

with increasing action. As well known, the Feynman factor is not a probability, but

here, in the presence of the quantum randomness, the action indeed characterizes

the way the system evolves along the configuration paths from one quantum state

to another [95]. At the same time, the systems remains Hamiltonian in spite of the

quantum mechanical randomness. The classical mechanical paths will be recovered

when the quantum randomness is vanishing with respect to the magnitude of the action

(Planck constant ~ tends to zero). Since action is well defined only for Hamiltonian

(often energy conservative) systems [9, 43], in this work we will focus on nondissipative

systems. The strongly damped motions will not be considered. From the previous

results [81]-[92], it is evident that the paths of those random damped motions do not

simply depend on the usual action, in general.
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Hence the basic model of this work is an ideal mechanical motion, a random motion

without dissipation. It can be described by the Langevin equation

m
d2x

dt2
= −dV (x)

dx
−mζ

dx

dt
+R (3.1)

with the zero friction limit (friction coefficient ζ → 0), where x is the position, t

is the time, V (x) is the potential energy and R is the Gaussian distributed random

force. The Hamiltonian of these systems still makes sense in a statistical way. An

approximate counterpart of this ideal model among real motions is the weakly damped

random motion with negligible energy dissipation compared to the variation of potential

energy, i.e., the conservative force is much larger than the friction force. In other words,

the system is (statistically) governed by the conservative forces. These motions are

frequently observed in Nature. We can imagine, e.g., a falling motion of a particle which

is sufficiently heavy to fall in a medium with acceleration approximately determined

by the conservative force at least during a limited time period, but not too heavy

in order to undergo observable randomness due to the collision from the molecules

around it or to other sources of randomness. In this case, Eq. (3.1) can still offer

a good description. Other counterparts include the frequently used ideal models of

thermodynamic processes, such as the free expansion of isolated ideal gas and the heat

conduction within a perfectly isolated system which conserves energy in spite of the

thermal fluctuation.

In what follows, we address only the motion prescribed by Eq. (3.1) in the zero fric-

tion limit. For this motion, a stochastic Hamiltonian/Lagrangian mechanics has been

formulated in Ref. [36, 37] where the path probability is an exponentially decreasing

function of action when the path entropy (a measure of the dynamic randomness or

uncertainty of path probability) is given by the Shannon formula. The present work is

a numerical simulation of this motion to verify this theoretical prediction. The method

can be summarized as follows. We track the motion of a large number of particles

subject to a conservative force and a Gaussian random force. The number of particles

from one given position to another through some sample paths is counted. When the

total number of particles are sufficiently large, the probability (or its density) of a given

path is calculated by dividing the number of particles counted along this path by the

total number of particles arriving at the end point through all the sample paths. The

correlation of this probability distribution with two mechanical quantities, the action

and the time integral of Hamiltonian calculated along the sample paths, is analyzed.
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In what follows, we first give a detailed description of the simulation, followed by the

analysis of the results and the conclusion.

3.2 Technical details of numerical computation

The numerical model of the random motion can be outlined as follows. A particle is

subject to a conservative force and a Gaussian noise (random displacements χ, see Eq.

(3.3) below) and moves along the axis x from an initial point a (position x0) to a final

point b (xn) over a given period of time ndt where n is the total number of discrete

steps and dt = ti− ti−1 the time increments of a step i which is the same for every step

and i=1,2,...n. Many different paths are possible, each one being a sequence of random

positions {x0, x1, x2 · · · xn−1, xn}, where xi is the position at time ti and generated from

a discrete time solution of Eq. (3.1) :

xi = xi−1 + χi + f(ti)− f(ti−1), (3.2)

which is a superposition of a Gaussian random displacement χi and a regular motion

yi = f(ti), the solution of the Newtonian equation m d2x
dt2

= −dV (x)
dx

corresponding to

the least action path (a justification of this superposition is given below).

For each simulation, we select about 100 sample paths randomly created around

the least action path y = f(t). The magnitude of the Gaussian random displacements

is controlled to ensure that all the sample paths are sufficiently smooth but sufficiently

different from each other to give distinct values of action and energy integral. Each

sample path is in fact a smooth tube of width δ whose axial line is a sequence of positions

{z0, z1, z2 · · · zn−1, zn}. δ is sufficiently large in order to include a considerable number of

trajectories in each tube for the calculation of reliable path probability, but sufficiently

small in order that the positions zi and the instantaneous velocities vi determined along

an axial line be representative of all the trajectories in a tube. If δ is too small, there

will be few particles going through each tube, making the calculated probability too

uncertain. If it is too large, zi and vi, as well as the energy and action of the axial line

will not be enough representative of all the trajectories in the tube. The δ used in this

work is chosen to be 1/2 of the standard deviation σ of the Gaussian distribution of

random displacements. The left panels of Figs. 3.1-3.5 illustrate the axial lines of the

sample paths.
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For each sample path, the instantaneous velocity at the step i is calculated by

vi =
zi−zi−1

ti−ti−1

along the axial line. This velocity can be approximately considered as the

average velocity of all the trajectories passing through the tube, i.e., the trajectories

satisfying zi− δ/2 ≤ xi ≤ zi+ δ/2 for every step i. The kinetic energy is given by Ki =
1
2
mv2i , the action by AL =

∑10
i=1[

1
2
mv2i−V (xi)]·dt, called Lagrangian action from now on

in order to compare with the time integral of Hamiltonian AH =
∑10

i=1[
1
2
mv2i +V (xi)]·dt

referred to as Hamiltonian action. The magnitude of the random displacements and

the conservative forces are chosen such that the kinetic and potential energy are of the

same order of magnitude. This allows to clearly distinguish the two actions along a

same path.

The probability that the path k is taken is determined by Pk = Nk/N where N is

the total number of particles moving from a to b through all the sample paths and Nk

the number of particles moving along a given sample path k from a to b. Then these

probabilities will be plotted versus AL and AH as shown in the Figs. 3.1-3.5. Pk can

also be regarded as the probability for a particle to pass through a tube k when it is

driven by Gaussian process.

In order to simulate a Gaussian process close to a realistic situation, we chose a

spherical particle of 1-µm-diameter and of mass m = 1.39 × 10−15 kg. Its random

displacement at the step i is produced with the Gaussian distribution

p(χi, ti − ti−1) =
1√
2πσ

e−
χ2
i

2σ2 , (3.3)

where χi is the Gaussian displacement at the step i, σ =
√

2D(ti − ti−1) =
√
2Ddt the

standard deviation, D = kBT
6πrη

the diffusion constant, kB the Boltzmann constant, T

the absolute temperature, and r = 0.5 µm the radius of the particle. For the viscosity

η, we choose the value 8.5 × 10−4 Pas of water at room temperature1. In this case,

D ≈ 4.3 × 10−13 m2/s and σ ≈ 3 × 10−9 m with dt = 10−5 s. The relaxation time

is close to 10−7 s. With this reference, the simulations were made with different time

increments dt ranging from 10−7 to 10−3 s. Due to the limited computation time, we

have chosen n = 10.

We would like to emphasize that the simulation result should be independent of the

choice of the particle size, mass, and water viscosity etc. For instance, if a larger body

1Note that this viscosity is chosen to create a realistic noise felt by the particle as if it was in water.

But this viscosity and the concomitant friction do not enter into the equation of motion Eq. (3.2).
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is chosen, the magnitude (σ) of the random displacements and the time duration of

each step, will be proportionally increased in order that the paths between two given

points are sufficiently different from each other.

In what follows, we will describe the results of the numerical experiments performed

with 5 potential energies: free particles with V (x) = 0, constant force with V (x) =

mgx, harmonic force with V (x) = 1
2
kx2 and two other higher order potentials V (x) =

1
3
Cx3 and V (x) = 1

4
Cx4 (C > 0) to check the generality of the results. These two

last potentials yield nonlinear Newtonian equation of motion and may invalidate the

superposition property in Eq. (3.2). Nevertheless we kept them in this work since

linear equation is sufficient but not necessary for superposition. The reader will find

that the results are similar to those from linear equations and that the superposition

seems to work well. We think that this may be attributed to two favorable elements :

1) most of the random displacements per step are small (Gaussian) compared to the

regular displacement; 2) the symmetrical nature of these random displacements may

statistically cancel the nonlinear deviation from superposition property.

3.3 View path probability à la Wiener

Eq. (3.2) implies that the Gaussian distributed displacement is initialized at each step

and the Gaussian bell of each step is centered on the position of the previous step. The

probability of a given sample path k of width δ is just [16]

Pk =
n
∏

i=1

∫ zi+δ/2

zi−δ/2

p(χi)dxi =
1√
2πσ

n
∏

i=1

∫ zi+δ/2

zi−δ/2

e−
χ2
i

2σ2 dxi. (3.4)

Substituting Eq. (3.2) for χi, one obtains

Pk =
1√
2πσ

n
∏

i=1

∫ zi+δ/2

zi−δ/2

exp{− [xi − xi−1 − f(ti) + f(ti−1)]
2

2σ2
}dxi. (3.5)

From this expression, it is not obvious to show the dependence of Pk on action without

making approximation in the limit dt → 0. We have calculated the path probability

from Wiener measure in the special case where V (x) is linear (see Appendix A for

details). Exponential distribution of action is derived only for constant force. The

calculation could not be solved for more complicated potentials. This is one of the

motivations for doing numerical experiment to see what happens in reality.
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3.4 Path probability distribution by numerical sim-

ulation

In each numerical experiment, we launch 109 particles from the initial point a. Several

thousands N arrive, passing by all the sample paths, at the destination point b in the

interval zb − δ/2 ≤ xb ≤ zb + δ/2. The output of the simulation is N and Nk for every

sample path whose actions have been already calculated. Once the path probability is

determined by Pk = Nk/N , its correlation with the Lagrangian or Hamiltonian action

of the sample paths can be found by drawing the probability values against the two

actions. With 109 particles launched at point a, the calculated probability values are

quite reliable, in the sense that more particles and longer computation time do not

produce remarkable improvement of the probability distribution of action. The results

presented below for each potential were obtained with dt = 10−5 s.

3.4.1 Free particles

Free particles have zero potential energy and constant f(t). So these is no difference

between the Lagrangian and Hamiltonian actions. As expected from Eq. (3.5), the

right panel of Fig. 3.1 shows a path probability of the form

Pk(A) =
1

Z
e−γAk , (3.6)

where Ak is either the Lagrangian or Hamiltonian action of the path k. The slope is

γ ≈ 6.7 × 1026 J−1s−1. The normalization function Z can be analytically determined

by the path integral technique [12]

n−1
∏

i=1

∫ ∞

−∞

dxi
δ
Pk(A) = 1 (3.7)

with fixed xa and xb, or numerically by the value of lnP (A = 0) which can be found

with the distribution curves in the figures.

3.4.2 Particles under constant force

To distinguish the dependences of the path probability on Lagrangian and Hamiltonian

actions, it is necessary to random motion under conservative forces. The first force we
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Fig. 3.1: The result for free particles. The left panel shows the axial lines of the sample

paths between the given points a and b. The right panel shows the path probability

distribution against the Lagrangian and Hamiltonian actions which are equal here

as V (x) = 0 for free particles. The straight line is a best fit of the points with a

slope of about γ ≈ 6.7× 1026 J−1s−1.
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Fig. 3.2: The result for particles under constant force with potential V (x) = mgx. The

left panel shows the axial lines of sample paths. The right panel shows the path

probability distribution against the Lagrangian (circles) and Hamiltonian (stars)

actions. The straight line is a best fit of the points. It implies an exponential

dependence on the Lagrangian action with negative slope γ ≈ 6.4× 1026 J−1s−1

in Eq. (3.6). There seems no correlation between the path probability and the

Hamiltonian action.
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Fig. 3.3: The result for particles subject to a harmonic force with V (x) = 1
2kx

2. The left

panel shows the axial lines of sample paths. The right panel shows the path prob-

ability distribution against Lagrangian (circles) and Hamiltonian (stars) actions.

The straight line is a best fit of the points whose negative slope γ ≈ 7 × 1026

J−1s−1 in Eq.(3.6).

studied is the constant force obtained from the potential V (x) = mgx. The regular

motion is described by f(t) = − 1
2
gt2, where the parameter g = 10m/s2. The results

are shown in the right panel of Fig. 3.2. Eq. (3.6) still holds with γ ≈ 6.4 × 1026

J−1s−1. There is no correlation between path probability and Hamiltonian action.

3.4.3 Particles under harmonic force

The potential of the harmonic force is V (x) = 1
2
kx2 giving a regular motion f(t) =

A sin(ωt), where A = 1.5× 10−8 m and ω =
√

k/m = 4.7× 104 s−1. The right panel of

Fig. 3.3 shows the path probability distribution against actions. As for constant force,

the path probability distribution decreases exponentially with increasing Lagrangian

action with a slope of the straight line γ ≈ 7 × 1026 J−1s−1. No correlation with the

Hamiltonian action is found.

3.4.4 Particles in cubic potential

To our opinion, the above results with 3 potentials are sufficiently convincing for the

claim that the path probability decreases exponentially with increasing the Lagrangian

action instead of the Hamiltonian one. But by curiosity, we also tried two other higher

order potentials. The first one is V (x) = 1
3
Cx3 giving a regular motion f(t) = − 6m

C(t0+t)2

(t0 = 3 × 10−5, C = 200). The path probability distributions against the two actions
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Fig. 3.4: The result for particles in a cubic potential V (x) = 1
3Cx3. The left panel shows

that the axial lines of sample paths. The right panel shows the path probability

distribution against Lagrangian (circles) and Hamiltonian (stars) actions. The

straight line is a best fit of the points whose slope gives γ ≈ 4.5 × 1026 J−1s−1

for Eq. (3.6).

are shown in Fig. 3.4. Eq. (3.6) holds for the Lagrangian action with the coefficient

γ ≈ 4.5× 1026 J−1s−1.

3.4.5 Particles in quartic potential

For the one-dimensional quatric oscillator [58, 59, 60], the potential has the form

V (x) = 1
4
Cx4, with an approximate motion equation f(t) ≈ A sin(ωt). Unlike the

harmonic potential, the frequency ω depends on the amplitude A, giving ω = 2π
T

≈
( 3C
4m

)1/2A = 2 × 104 s−1 [58], where T is the complete cycle period (in the simulation,

we have chosen A = 1 × 10−8 m). The path probability distributions against the two

actions are shown in Fig. 3.5. The distribution Eq. (3.6) with the Lagrangian action

is still confirmed with γ ≈ 7.8× 1026 J−1s−1.

3.5 Correlation between path probability and ac-

tion

The path probability distributions depicted in Figs. 3.1-3.5 qualitatively confirm an

exponential dependence on the Lagrangian action. To our opinion, the reliability of the

result are rather remarkable taking into account the mediocre condition of simulation

due to the limited computation time which restricts the number of steps of the motion
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Fig. 3.5: The result for particles subject to a quartic potential. The left panel shows the

axial lines of different sample paths. The right panel shows the path probability

distribution against Lagrangian (circles) and Hamiltonian (stars) actions. The

straight line is a best fit of the points whose slope gives γ ≈ 7.8 × 1026 J−1s−1

for Eq. (3.6).

and the minimum thickness of the sample paths. Larger number of steps would make

the paths smoother and the calculation of velocity and action more reliable. Smaller

thickness of the sample paths would reduce the uncertainty of the probability calcula-

tion for given action evaluated along the axial line of a sample path. But larger number

of steps and smaller thickness of sample paths will reduce enormously the number of

particles arriving at the end point and hence amplifies the uncertainty of the proba-

bility calculation. The choice of these two parameters must be optimized according to

the computer power.

The quality of the computation of the probability distribution can be quantitatively

estimated by using the correlation function c(A) between A (AL or AH)) and − lnP (A).

This function is given by

c(A) =

∑n
i=1(Ai− < Ai >)[− lnP (Ai)+ < lnP (Ai) >]

√

[
∑n

i=1(Ai− < Ai >)2][
∑n

i=1(− lnP (Ai)+ < lnP (Ai) >)2]
, (3.8)

where < Ai > and < lnP (Ai) > are the means of action A and − lnP (A) respectively.

|c(A)| ≈ 1 would indicate that A and − lnP (A) are linearly correlated. The results

obtained from the numerical experiments are shown in Table 3.1.

The values of c(AL) close to unity confirms a linear correlation between − lnP (A)

and AL. It should be noticed that c(AH) and c(AL) are equal for free particles due

to zero potential energy, and that c(AL) for different potentials are close to that for
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Table 3.1: Values of the correlation function c(A) between the path probability − lnP (A)

and the Lagrangian action AL in comparison with the Hamiltonian one AH for the

5 considered potentials V (x). The values of c(AL) close to unity confirms a linear

correlation between − lnP (A) and AL. The values of c(AH) are calculated for

comparison. c(AH) is equal to c(AL) for free particles due to zero (or constant)

potential energy. The fact that the addition of potentials does not significantly

change c(AL) but considerably changes c(AH) with respect to the free particle

values is another element advocating for the universal AL dependence of the path

probability.

V (x) c(AL) c(AH)

0 0.9865 0.9865

mgx 0.9686 0.4206

1
2
kx2 0.9473 0.3504

1
3
Cx3 0.9162 0.2302

1
4
Cx4 0.9397 0.5635

free particles while c(AH) for different potentials are quite different. This fact (the

addition of different potentials does not significantly change c(AL) but considerably

changes c(AH) with respect to the free particle result) is another proof of the AL

dependence of the path probability.

It has been also noticed that c(A) is independent from the time scale dt (from 10−7

to 10−3 s).

3.6 Sensitivity of path probability to action

The decay rate of path probability with increasing action or its sensitivity to action

is characterized by γ. The numerical experiments being performed with different time

interval dt of each step, we noticed that γ is independent from the time increment

dt. Logically, it should depend on the randomness of the Gaussian noise. For free

particle, it is easy to show that γ = 1
2mD

[36, 37, 96] which is not necessarily true

with other potentials. Analysis of the probability distributions reveals that the ratio

γ/(1/D) ≈ 3.2 × 1014 kg−1 for free particles, γ/(1/D) ≈ 3.1 × 1014 kg−1 for particles
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Fig. 3.6: 1/D dependence of the decay rate γ of path probability with action. The increase

of γ with increasing 1/D implies that the stochastic motion is more dispersed

around the least action path with more diffusivity. The slope or the ratio γ/(1/D)

is about 3.1× 1014 kg−1.

subject to constant force, and γ/(1/D) ≈ 1.7×1014 kg−1 with harmonic force. Fig. 3.6

shows the 1/D dependence of γ for constant force as example. It was noticed that the

ratio γ/(1/D) of free particles is smaller than the theoretical value 1/2m = 3.6× 1014

kg−1. This implies that, for given Gaussian noise, the numerically determined path

probability decays less rapidly with increasing action than theoretical prediction. Two

origins of this deviation are possible: the probability and the actions are either over-

estimated by simulation for the paths far from the least action one, or under estimated

for the paths close to the least action one. We think that the former origin is more

probable. Further investigation is in progress to clarify this point.

As expected, γ increases with increasing 1/D, i.e., the stochastic motion is more

widely dispersed around the least action path with increasing diffusivity. This property

can also be seen with the uncertainty relation of action given by the standard deviation

σA ≥ 1√
2γ

[96]. For instance, when γ = 3× 1027 (Js)−1, σA ≥ 2.4× 10−28 Js. Finally,

it is worth noticing the linear dependence of γ on 1/D, at least in the range studied

here. From theoretical point of view, γ should tends to infinity for vanishing D.

35



3.7 Conclusions

To summarize, by numerical simulation of Gaussian stochastic motion of non dissipative

or weakly dissipative systems, we have shown the evidence of a classical homologue of

the Feynman factor of quantum propagator. In spite of the uncertainty due to the

limited computation time, the computation of the mechanical quantities and the path

probability is rigorous and reliable. We hope that this result can be improved by

more precise computation. Confirmation by experiment with weakly damped motion

can also be expected. To our opinion, this result reveals a striking similarity between

classical stochastic motion and quantum motion, and provides a new angle to view the

classical random motion which can then benefit fully from the approach of path integral

developed for quantum mechanics. An example of this tool borrowing is shown in Ref.

[96] for the discussion of possible classical uncertainty relations. This probabilistic

view of mechanical motion can possibly open a way to review some aspects of the

relationship between mechanics and thermodynamics.

Unlike the Feynman factor eiA/~ which is just a mathematical object, e−γA is a real

function characterizing the path probability. This exponential form and the positivity

of γ imply that the most probable path is just the least action path of classical me-

chanics, and that when the noise diminishes, more and more paths will shrink into the

bundle of least action paths. In the limit case of vanishing noise, all paths will collapse

on the least action path, the motion recovers the Newtonian dynamics.

The present result does not mean that the probability for single trajectory necessar-

ily exists. Each path we considered is a tube of thickness δ and is sufficiently smooth

and thin for the instantaneous position and velocity determined along its axial line to

be representative for all the trajectories in it. The probability of such a path should

tends to zero when δ → 0. However, the density of path probability should have a

sense and can be defined by ρk = limδ→0
Pk

δn
for any finite n, the number of steps of a

discrete random process.

Again, we would like to stress that the result of present work does not apply to

the usual Brownian like motions studied with Langevin, Fokker-Planck, Kolmogorov

equations [97]-[101] which include important dissipation due to friction. But it does not

deny them neither. This work is not at odds with these well established approaches.

This is a different angle to address stochastic dynamics. It is our hope that it will

be applied to real stochastic dissipative motion. This application needs, first of all, a
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fundamental extension of the least action principle to dissipative regular motion within

classical mechanics. It is unimaginable that the action, being no more a characteristic

variable of the paths of regular motion, can come into play when the same motion is

perturbed by noise. This extension is another long story, and has been the objective

of unremitting efforts of physicists till now [9, 43, 56, 102].

37



38



Chapter 4

Extended least action principle to

dissipative mechanical systems

4.1 Introduction

The least action principle (LAP) is one of the most valuable heritages from the classical

mechanics [10, 11, 103]. The fact that the formulation of the whole classical physics

as well as of the quantum theory in its path integral formalism [12] could be based

on or related to this single mathematical rule gives to LAP a fundamental priority

to all other visibly different principles, empirical laws and differential equations in

different branches of physics. This priority of LAP has nourished two major hopes

or ambitions of physicists. The first one is the (rather controversial) effort to deepen

the understanding of nature through this principle and to search for the fundamental

meaning of its exceptional universality in physics [9, 103, 104, 105]. The second one is

to extend it to more domains such as thermodynamics and statistical mechanics (with

the pioneer effort of Boltzmann, Helmholtz and Hertz [30]), stochastic dynamics (e.g.,

large deviation theory [26] and stochastic mechanics [106, 107, 108]), and dissipative

mechanical systems [43, 42, 44]. This chapter is following this last effort to formulate

LAP for dissipative or nonconservative mechanical systems.

LAP was originally formulated only for Hamiltonian system [10], i.e., the sum

H = K + V of kinetic energy K and potential energy V of the considered system

satisfies the Hamiltonian equations. For Hamiltonian systems, any real trajectory

between two given configuration points must satisfy the LAP given by a vanishing first
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variation δA due to tiny deformation of the trajectory [9, 10]

δA = δ

∫ T

0

Ldt =

∫ T

0

δLdt = 0 (4.1)

where the action A =
∫ T

0
Ldt is a time integral of the Lagrangian L = K − V on the

trajectory from a point a to a point b over a fixed time period T (suppose ta = 0 and

tb = T from now on). One of the important results of this variational calculus is the

Euler-Lagrange equation given by [9] (for one freedom x)

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= 0 (4.2)

where ẋ is the velocity. In many cases when H and L do not depend on time explicitly,

a Hamiltonian system is energy conservative. For damped motion with friction force

fd, the above equation becomes d
dt

(

∂L
∂ẋ

)

− ∂L
∂x

= fd which is equivalent to write
∫ T

0
(δL+

fdδx)dt = 0 [41]. Despite this vanishing equality, it is impossible to calculate and

optimize an action integral like A above with a single (Lagrangian) function satisfying

Eq. (4.2). This difficulty leads to the disappearance of LAP in dissipative systems.

There has been a longstanding effort to formulate LAP for nonconservative or dis-

sipative system [42]. As far as we know, the first proposition was made by Rayleigh

[45] who introduced a dissipative function, D = 1
2
mζẋ2, to write d

dt

(

∂L
∂ẋ

)

+ ∂D
∂ẋ

− ∂L
∂x

= 0,

where ζ = γ/m, γ is the viscous drag coefficient in the Stokes’ law ~fd = −mζ~̇x and m

the mass of the damped body. Although the equation of motion is kept in a similar

form as Lagrangian equation, LAP is not recovered since there is no single Lagrangian

for defining an action which satisfies Eq. (4.1). Other major propositions include

the Bateman approach [46] to introduce complementary variables and equations, the

definition of dissipative Lagrangian by multiplying the non dissipative one with an ex-

ponential factor exp(ζt) [47] where t is the time, the fractional derivative formulation

[48], and the pseudo-Hamiltonian mechanics [49] where a parameter was introduced

to characterize the degree of dissipation. The reader is referred to the reviews in

[42, 43, 48, 49, 57] about the details of these propositions. In general, the Lagrangian

in these solutions is not unique and has no energy connection like L = K−V (see for in-

stance the quasi-Lagrangian L = eζt(K−V ) and the corresponding quasi-Hamiltonian

H = e−ζtK + eζtV for damped harmonic oscillator [47]). Hence no variational or

optimal calculus was possible in general form [42, 43, 57].
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A common character of these works is that the damped body is the only object taken

into account in the calculations as if it was isolated. However, a dissipative system is

always coupled to an environment and loses energy into the latter, an integral part of

the motion. As far as this lost energy is not considered, the quasi-Lagrangian function

of the damped body inevitably loses energy connection and generic optimal characters

[42, 43] as mentioned above.

The aim of this chapter is to establish a LAP of dissipative system that recovers the

energy connection and the uniqueness of a single Lagrangian function, its relation with

a conservative Hamiltonian (Legendre transform), as well as the four formulations of

analytical mechanics, i.e., the Newtonian equation of motion, the Lagrangian equations,

the Hamiltonian equations and the Hamilton-Jacobi equation. However, as is shown

below, the nonlocal character of the dissipative energy makes the Hamiltonian and

Lagrangian non local in space and time. The variational calculus is thus more subtle

than with instantaneous and local Lagrangian. Non local Lagrangian possibly gives

to to the derived equation of motion non local character. A consequence of the non

locality of the Lagrangian is that, by the consideration of different physical constraints,

different variational calculus are possible. The problem is that some seemingly correct

calculus does not lead to the correct equation of motion. This means that either this

calculus is correct but the action is bad, or the action is good but the calculus has

problem. Another open question concerning the dissipative LAP is about the nature

(maximum, minimum or inflection) of the possible stationarity of action. If the action

of the optimal path is a minimum when there is no friction, does this minimum survive

with energy dissipation? If not, when is the optimal action a maximum and when

an inflection (saddle) point? In what follows, we will present the different variational

calculus and numerical simulations of damped motion. The purpose of this simulation

is to calculate the actions along the optimal path and many variational paths created

with tiny random deformations in the vicinity of the optimal one. By the comparison

of these actions, we will have an idea about the existence of the stationarity δA = 0

for the optimal paths and its nature, in order to answer, at least partially, the above

questions.
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4.2 Least action principle for dissipative systems

4.2.1 The conservative Hamiltonian

The idea is to consider the damped moving body and its environment, coupled to

each other by dissipative force, as a whole conservative system to which LAP can be

a priori applied. The total Hamiltonian includes the instantaneous kinetic energy and

the potential energy of the body, as well as the mechanical energy that is lost from

the beginning of the motion and transformed into heat or other forms of kinetic and

potential energy (noises, vibration etc) in the environment. Concretely, we construct

a total system composed of a one dimensional large moving body (system 1) along the

axis x and its environment (system 2) which includes all the parts coupled to system 1

by friction and receiving the dissipated mechanical energy. The total Hamiltonian can

be given by H = K + V + Hi + He where K = 1
2
mẋ2 is the kinetic energy, V is the

potential of a conservative force acting only on system 1, Hi is the interaction energy

between system 1 and system 2, He = H0 +Ed is the total energy of the environment,

H0 is its energy at the initial moment of the motion hence a constant independent of

the motion, and Ed is the negative work of the friction force ~fd = −fd~k from xa = x(0)

to a position x(t) along a given path s = s(t) (0 ≤ t ≤ T ) where fd is the magnitude

of ~fd and ~k is a unitary vector indicating the direction of the motion at a point x(t).

For simplicity, suppose that the energy of interaction Hi does not change in the course

of the motion and system 2 does not move as a whole, hence the macroscopic moving

paths of the whole system are just the paths of system 1. This allows to calculate the

action of the whole system along the paths s = x(t) of system 1 moving between two

configuration points xa and xb during the time period T . The amount of energy Ed

dissipated from system 1 to system 2 is given by:

Ed[x(0, t)] =−
∫ x(t)

xa

~fd · d~s(τ) =
∫ x(t)

0

fd~k · ds(τ)~k

=

∫ x(t)

0

fdds(τ) =

∫ t

0

fd(τ)ẋ(τ)dτ

(4.3)

where τ is any time moment between ta = 0 and t, d~s = d~x = ~̇xdτ is a small dis-

placement along s. Ed[x(0, t)] means that the dissipated energy depends on both the

past trajectory xa = x(0) to the present instantaneous position x(t). The magnitude

of friction force fd can be any function of time, position and velocity.
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On the other hand, during the motion, the energy of system 2 at time t can be

written as He = H0 +Ed where H0 is its energy (a constant) at ta and can be dropped

from the variational calculus of the action. Finally we will consider only the following

effective Hamiltonian for the motion: H = K + V + Ed. This effective Hamiltonian

is formally nonlocal due to the space-time non locality of the integral of Ed in Eq.

(4.3). Ed is dissipated part of He, its non-locality comes from its expression on the

coordinates x of the damped body. But He is actually a local function of the motion

and can be expressed by the instantaneous energy of the N constituent particles of the

environment at the moment t, i.e., He =
∑N

i=1(ki + vi) where ki and vi is respectively

the instantaneous kinetic and potential energy of the particle i.

Anyway, this non-locality of the Hamiltonian can have some influence on the vari-

ational calculus. It will be shown later that this influence can be avoided by the

consideration of the principle of locality or of the energy conservation. The instanta-

neous increment of Ed is compensated by the simultaneous equal decrement of K +V ,

assuring a constant H in time and space for the isolated whole system.

Before proceeding with Lagrangian function and LAP, we stress that the impact

of the thermal fluctuation in system 2 on system 1 should be neglected in order to

have a smooth and deterministic motion of the latter. This is not difficult for a body

which is much larger than the constituents of system 2 and has much larger energy

variation during the motion than the energy fluctuation of the thermal motion in

system 2. The reason for this approximation is that LAP for stochastic motion is

still an unsolved problem to date. LAP in its conventional form is not compatible with

random dynamics. It is also for this reason that, in this work aiming at extending LAP,

expressing Ed in terms of the coordinates and velocities of the microscopic constituents

of system 2 will not help because of their random motion related to heat, an inevitable

effect of friction. Fortunately, no matter how the particles in system 2 move and

whatever is their state of randomness, their unique relevant effect on the motion of

system 1 is the friction. Thanks to the conservation law of energy, the dissipated

energy Ed, i.e., the increment of the sum of the kinetic and potential energies of all the

particles in system 2 expressed in terms of their coordinates and velocities, whatever

is the form, can be mapped onto the coordinates of the system 1 through the work of

the friction forces.
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4.2.2 A dissipative Lagrangian function

The first difficulty for writing the Lagrangian is the impossibility to separate Ed into

kinetic and potential parts relative to the coordinate x of interest.The second difficulty

can be explained as follows. Suppose the simple case where Ed is only kinetic energy

(heat in an ideal gas for example), we are inclined to write L = K − V +Ed according

to the convention. Unfortunately, it is straightforward to show that this will lead to

an incorrect equation of motion when this L is introduced into Eq. (4.2).

In what follows, we consider the fact that Ed, after the integration in Eq. (4.3) over

a certain trajectory from x(0) to the instantaneous position x(t) which is changing

in time, implying that the integral of Eq. (4.3) is an indefinite one. According to

the second fundamental theorem of calculus [109], the friction force at time t can be

calculated from Ed by fd = ∂Ed

∂x
in a similar way as the conservative force is derived

from a potential. Obviously Ed is not a potential since it depends not only on x(t),

but also on the past trajectory along which the integral Eq. (4.3) has been carried

out (in practice, a trajectory s = s(t) can be introduced in the calculation of Ed by

writing ds = ṡ(τ)dτ). Moreover, it is impossible, contrary to potential energy, to

recover Ed (an increasing function of time) as mechanical energy of system 1 just by

moving the latter backwards. However, Ed has an common character with potential

energy: its instantaneous increase yields the resistance force through the instantaneous

displacement of the body; in other words, the infinitesimal increase dEd at time t is

equal to the negative work done by the friction force over an instantaneous displacement

dx(t), i.e., dEd = −~fd · d~x = fddx (for more than one dimension, this means dEd =

−~fd · d~r or ~fd = −∇~r(t)Ed). We think that the above arguments are sufficient, from

the energetic point of view, for considering Ed as a pseudo-potential and writing L =

K − V −Ed as an effective Lagrangian. The effective action of the whole system on a

given path between a and b is then given by

A =

∫ T

0

(K − V − Ed)dt. (4.4)

Due to the space-time non locality of Ed, both H and L defined above are non lo-

cal. This makes it possible to use different variational calculus from different physics

points of view. In what follows, we will present briefly these variational techniques and

the concomitant equations of motion for the sake of reflection about the technique of

variation.
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4.3 Variational formulation

4.3.1 The “global” variational calculus

Fig. 4.1 illustrates a variation operation over the entire optimal path (thick line) from

the point a to the end point b. Let δ(t) be the variation on the position at time t, with

δ(a) = δ(b) = 0. In the conventional previous calculus, thanks to the time locality of

the Lagrangian, the variation of action A was only produced by the position variation

δx(t) in the Lagrangian, i.e., δA =
∫ T

0
[L(x + δx(t), ẋ + δẋ(t), t) − L(x, ẋ, t)]dt. The

effect of the variation over the whole path on the action is naturally taken into account

through the time integral of the action. Now with the action of Eq. (4.4), the question

arises about the variation at the moment τ before the moment t. The following calculus

takes into account the variation δx(τ).

δA =

∫ T

0

δ(K − V − Ed)dt. (4.5)

The part
∫ T

0
δ(K−V )dt is

∫ T

0

[

d
dt

(

∂(K−V )
∂ẋ

)

− ∂(K−V )
∂x

]

δx(t)dt, while the part
∫ T

0
δEddt,

with Ed =
∫ t

0
f(τ)dτ and f = fd(τ)ẋ(τ) turns out to be (see Appendix B for details)

∫ T

0

[

∂f

∂ẋ
+ (T − t)

(

∂f

∂x
− d

dt
(
∂f

∂ẋ
)

)]

δx(t)dt.

Finally, the LAP δA = 0 gives

∂(K − V )

∂x
− d

dt

(

∂(K − V )

∂ẋ

)

− ∂f

∂ẋ
− (T − t)

(

∂f

∂ẋ
− d

dt
(
∂f

∂ẋ
)

)

= 0. (4.6)

This equation is not the expected one (see Eq. 4.8 below) unless fd = ∂f
∂ẋ

+ (T −
t)
(

∂f
∂ẋ

− d
dt
(∂f
∂ẋ
)
)

.

4.3.2 The “forward” variational calculus

It should be noticed that this extra term comes from the consideration of the variation

of x at time τ before the moment t. Mathematically, this consideration is equivalent to

considering the effect of the dissipative energy on the posterior motion, But physically,

it is equivalent to considering the effect of the dissipative energy of the anterior motion

on the present motion and violates the principle of locality of classical mechanics.

The energy dissipated has been already absorbed irreversibly into the surroundings
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Fig. 4.1: Illustration of an exaggerated variation operation over the entire optimal path (thick

line) from the point a to the end point b.

and should not affect the mechanical motion of the body any more if the thermal

fluctuation of the environment is neglected as mentioned above. Hence we propose the

following forward variational calculus which means that the variation δx(τ) will not be

considered. This does not mean that the part of the path before t is not deformed. The

variation of the path is the same as shown in Fig. 4.1, the deformation of the whole

path is taken into account through the time integral over t. The usual variational

calculus [9, 10]

δA =

∫ T

0

δLdt =

∫ T

0

[

∂L

∂x(t)
δx(t) +

∂L

∂ẋ(t)
δẋ(t)

]

dt, (4.7)

which becomes δA =
∫ T

0
[ ∂L
∂x(t)

− d
dt
( ∂L
∂ẋ(t)

)]δx(t)dt after the time integral by part of δẋ.

Considering the condition δx(ta) = δx(tb) = 0, the vanishing first variation δA = 0

yields the Euler-Lagrangian equation Eq. (4.2) and the Newtonian equation of damped

motion [56]:

mẍ = −∂V
∂x

− fd, (4.8)

where we used the expression fd =
∂Ed

∂x
.

In the above calculus, we considered the principle of locality of classical mechanics
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in order to avoid the influence of earlier states on the present motion. This help from

another principle to the variational calculus is in fact not necessary if we consider the

differential version of LAP. The argument is the following. If A is a minimum over the

entire optimal trajectory between a and b, the same must be true over any segment

of the trajectory, i.e., the time integral of L over a segment ∆x must be a minimum

whatever its length is. If not, we can always play with this segment to make A smaller

than its minimal value along the optimal path. Now if ∆A is the action over this small

segment around the time moment t′, from Eq. (4.4), we have

∆A =

∫ t′+∆t

t′

[

1

2
mẋ2 − V −mζ

∫ x(t)

0

ẋ(τ)dx(τ)

]

dt. (4.9)

The variation of the first two terms in the integrand is the same as in Eq. (4.7). The

variation of the third term, i.e., of Ed, is

δEd = mζ

∫ x(t)+δx(t)

0

ẋ(τ)dx(τ)−mζ

∫ x(t)

0

ẋ(τ)dx(τ) =
∂Ed

∂x(t)
δx(t).

Put this back into the variation of ∆A, we get

δ∆A =

∫ t′+∆t

t′

d

dt

[

∂L

∂ẋ(t)
δx(t)

]

dt+

∫ t′+∆t

t′

[

∂L

∂x(t)
− d

dt

(

∂L

∂ẋ(t)

)]

δx(t)dt

=

[

∂L(t′ +∆t)

∂ẋ(t′ +∆t)
δx(t′ +∆t)− ∂L(t′)

∂ẋ(t′)
δx(t′)

]

+

∫ t′+∆t

t′

d

dt

[

∂L

∂x(t)
− d

dt

(

∂L

∂ẋ(t)

)]

δx(t)dt

(4.10)

Since the variational path must join the optimal path before and after the small ∆x(t),

hence δx(t′ + ∆t) = δx(t′) = 0. The Euler-Lagrangian equation Eq. (4.2) will be a

necessary consequence of the vanishing first variation δ∆A = 0. This confirms the

LAP by the variation of whole path aided by the principle of locality.

4.3.3 Derivation from virtual work principle

The above LAP can also be derived from other fundamental principles as has been

done in analytical mechanics by using virtual work principle of d’Alembert [10, 74].

This latter principle is valid in the presence of friction force. For 1-dimensional moving

body, it reads:

δW = (f − fd −mẍ)δx. (4.11)
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where f = −∂V
∂x

is the conservative force. This expression implies that system 2 has

been involved in the motion since Ed =
∫ x(t)

0
fddx(τ) is a part of its energy. Using

ẍδx = d
dt
(ẋδx)− ẋδẋ = d

dt
(ẋδx)− ∂(K/m)

ẋ
δẋ, then integrating Eq. (4.11) over time from

ta = 0 to tb = T , we get

∫ T

0

[

∂K

∂ẋ
δẋ− ∂(V + Ed)

∂x

]

dt =

∫ T

0

(

∂L

∂ẋ
δẋ+

∂L

∂x
δx

)

dt =

∫ T

0

δLdt = δA = 0

(4.12)

where we used δx(ta) = δx(tb) = 0, L = K − V − Ed and A =
∫ T

0
Ldt.

Within this formalism, it is easy to verify that the Legendre transformation H =

pẋ−L is still valid, where p is the momentum of system 1. With the usual method [9]

using Euler-Lagrange equation Eq. (4.2), the Hamiltonian equations can be derived:

ṗ = −∂H
∂x

, ẋ =
∂H

∂p
. (4.13)

The Hamilton-Jacobi equation also holds. To see this, we relax T in the integral

Eq.(4.4) or consider the integral as indefinite, and compute L = dA
dt
. Thanks to Eq.

(4.2) and the above Legendre transformation, we can get p = ∂A
∂x

and the Hamilton-

Jacobi equation:
∂A

∂x
+H = 0. (4.14)

or ∂A
∂x

= − 1
2m

(∂A
∂x
)2 − V −Ed to show the dissipative character of this equation for the

whole system (damped body + environment).

4.3.4 Application of Maupertuis’ principle

It is worth mentioning that, if the conservation of the total HamiltonianH is considered

as a constraint of variation, the mathematical trouble of whole variation with the non

locality of the expression of Ed can be easily avoided. The constraint of constant H for

the total isolated system is reasonable because any conceivable motion (even virtual)

should not violate this universal law. With this in mind, the non locality of Lagrangian

disappears if we consider the Legendre transformation L = pẋ − H since L varies in

the same way as pẋ if H is constant. Hence the optimization of L is equivalent to that

of the function pẋ. This remind us of the Maupertuis’ LAP with the action defined

by Am =
∫ xb

xa
mẋdx [11]. It is well known [57] that the Maupertuis’ LAP δAm = 0

is equivalent to the Hamilton’s LAP δA = 0 stipulating with the conditions of fixed
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points a and b as well as fixed time T instead of fixed total energy H. The calculus is

δAm = δ

∫ xb

xa

Pdx =

∫ xb

xa

(δPdx+ Pδdx). (4.15)

Considering dx = ẋdt in the two terms, the first term becomes δ( P 2

2m
)dt. Then making

integration by part of δẋ in the second term, considering δx(a) = δx(b) = 0, this term

becomes −mẍδxdt. The total energy conservation δH = 0 means δ( P 2

2m
) = −∂V

∂x
δx −

∂Ed

∂x
δx. Finally, we have

δAm =

∫ T

0

[

−∂V
∂x

− ∂Ed

∂x
−mẍ

]

δxdt, (4.16)

which implies that the Maupertuis’ principle δAm = 0 necessarily and sufficiently leads

to the Euler-Lagrange equation Eq. (4.2) and to Eq. (4.8) as well.

4.3.5 The variational calculus with local Lagrangian

If the conservation of the total Hamiltonian H = K+V +Hi+He or H = K+V +He

(with constant Hi) is considered, it is then possible to express He by the instantaneous

energy of the N constituent particles of the environment at the moment t, i.e., He =
∑N

i=1(ki + vi) where ki and vi is respectively the kinetic and potential energy of the

particle i. The Lagrangian can be written as L′ = K−V +Ke−Ve where Ke =
∑N

i=1 ki

and Ve =
∑N

i=1 vi, or L
′ = K − V + 2Ke −He. The action is given by A =

∫ T

0
Ldt. Its

variation due to δx(t) is

δA =

∫ b

a

[δ(K − V ) + 2δKe − δHe] dt. (4.17)

δKe should vanish because Ke is not explicit function of x and ẋ. He should also be

independent from ẋ. It is however x dependent if we keep of the energy conservation

δH = 0 as a constraint of the variation, implying that δHe = −δ(K + V ) = δEd =
∂Ed

∂x
δx. Put this into Eq. (4.17), Newtonian equation Eq. (4.8) will follows.

It should be notice that the Lagrangian L′ is equivalent to L defined previously if

we consider the fact that Ke is not affected by the variation δx(t) and that the affected

part of He is just Ed, leading to effective Hamiltonian H = K+V +Ed and Lagrangian

L = K − V − Ed, as is explained before.

Summarizing the above application of variational calculus, the first global varia-

tional calculus seems inevitable from mathematical point of view although it is sus-

pected of taking into account the same variation twice. This may be the origin of the
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incorrect equation of motion. On the other hand, the second “forward” variation leads

to correct equation but the argument of the irreversible motion for the rejection of

δx(τ) may be accused of artificial choice. Regarding the Maupertuis’ version of LAP

and the calculus with the local Lagrangian, the conservation of energy is needed to

restrain the variation of the optimal paths, while in Hamiltonian/Lagrangian mechan-

ics, the Hamilton version of LAP (with fixed duration of motion) does not have this

constraint. From purely operational point of view, to fix the duration of motion is

much easier than to fix the energy when numerically simulating the motion and the

variational calculus.

Before this uncertainty, we decided to make numerical calculation and comparison of

actions along the optimal path given by Newtonian equation and many other deformed

paths around the optimal one. Since the deformation is created arbitrarily without

constraint on the Hamiltonian, the dissipative action defined with L = K − V −Ed is

used. The aim is to see whether or not it is likely for this action to have extrema and

what would be the nature (maximum, minimum or inflection). The techniques and the

results will be presented below.

4.4 The optimal path and action with constant force

and Stokes’ drag

The first case we consider is a small particle of mass m = 1.39 × 10−6 kg subject to

a constant force f = mg where g = 10 ms−2. The friction is given by the Stokes’

drag, i.e., fd = mζẋ. The optimal path corresponding to δA = 0 or given by Eq.

(4.8) is x(t) = g
ζ2
(1 − e−ζt) − g

ζ
t for x(0) = 0 and ẋ(0) = 0. The optimal action

Aop =
∫ T

0
(m
2
ẋ2 −mgx−mζ

∫ t

0
ẋ2dτ)dt can be calculated analytically and given by

Aop =
mg2

ζ2
(− 1

2ζ
e−2ζT +

2

ζ
e−ζT − 3

2ζ
+ T ) (4.18)

whose ζ and T dependence are shown in Figs. 4.2 and 4.3, respectively. When ζ and

T are sufficiently small, so that the dissipative part of the action Ad =
∫ T

0
Eddt =

mζ
∫ T

0

∫ t

0
ẋ2dτdt can be negligible, Aop ≈

∫ T

0
(m
2
ẋ2 −mgx)dt = 1

3
mg2T 3 = A0(ζ = 0)

where A0 denotes the usual action defined by A0 =
∫ T

0
(m
2
ẋ2 −mgx)dt or

A0 =
mg2

ζ2
(− 1

4ζ
e−2ζT +

1

4ζ
− 1

2
T +

1

2
ζT 2). (4.19)
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For ζ = 0, A0 =
1
3
mg2T 3. Notice that Aop = A0 − Ad. Ad is given by

Ad =
mg2

ζ2
(
1

4ζ
e−2ζT − 2

ζ
e−ζT +

7

4ζ
− 3

2
T +

1

2
ζT 2) (4.20)

which becomes Ad ≈ 1
12
mg2ζT 4 for small ζ and tends to zero for ζ → 0. For

large ζ (104 s−1 for example as the particle is in glycerin at ambient conditions)

and moderate T (larger than, say, 1 s), the actions become A0 ≈ mg2

ζ2
(−1

2
T + 1

2
ζT 2),

Ad ≈ mg2

ζ2
(−3

2
T + 1

2
ζT 2) and Aop ≈ mg2

ζ2
T , which all decrease with increasing ζ and

increase with increasing duration of motion T . In order to see the ζ and T dependence

of Aop, A0 and Ad, these actions are calculated numerically for discrete motion along

the optimal path. The particle moves from the initial point to the final point during

the time interval T = nsδt = 1 s where ns = 1000 is the number of steps and δt = 10−3

s is the time increment of each step. The results are shown in Figs. 4.2 and 4.3. The

sharp drop in Aop and A0 is due to the increase of Ad (before its maximum) around

ζ = 1 s−1 and to the decrease of the velocity ẋ(t) = g
ζ
(e−ζt − 1) with increasing ζ for

given t. The drop point ζc can be roughly estimated by ζcT = 1, as expected from the

exponential factors in Eqs. (4.18-4.20). The reader will find later that this point is

also a critical point in the change of nature of the extrema of action.

4.5 Transition of extrema of action

At this stage, it is not yet clear whether the vanishing first variation δA = 0 yields

a minimum, maximum or an saddle point action Aop. We know that when Aop ≈ A0

or Ad → 0, the optimal action Aop is a least one in this case of linear potential. The

question is whether this minimum holds for any ζ and T and how eventually it changes

with these parameters. We propose in this work to investigate this matter by comparing

the actions calculated along a large number of paths created by arbitrary variation of

the optimal one. In our calculation algorithm, the arbitrary variation of position is

made at each step of the motion by using a Gaussian distributed random displacements

superposed on the optimal path x(t) according to x′i = x′i−1+χi+x(ti)−x(ti−1) where

χi is the Gaussian random displacement at the step i and i = 1, 2...ns. A deformed path

is then a sequence of variation of positions {x′0, x′1, x′2 · · · , x′ns
}. The magnitude of the

deformation of position at each step can be characterized by the standard deviation

σ of the Gaussian distribution. Vanishing deformation of the optimal path can be

obtained with vanishing σ. Examples of these deformed paths can be seen in Fig. 4.4.
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Fig. 4.2: ζ dependence of the actions for the optimal path with T = 1 s (for ns = 1000

steps with 10−3 s each step). Aop = A0 − Ad is the optimal action (solid line),

A0 is the usual action (dashed line), Ad is the dissipative part of the action (dot

dashed line). The drop point ζc can be roughly estimated by ζcT = 1. The inset

is a zoom of the zone around ζc in double logarithm plot.
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Fig. 4.3: T dependence of the actions for the optimal path with ζ = 1 s−1, where Aop =

A0 −Ad is the optimal action (circles), A0 is the usual action (squares), Ad is the

dissipative part of the action (stars).
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These paths are sufficiently smooth and their number of steps ns is sufficiently large

in order to calculate reliable velocity, energy, action and dissipative energy etc. The

actions are calculated with different damping coefficient and duration of motion to see

the evolution of the stationarity of action with these parameters.
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Fig. 4.4: Samples of the different paths x′(t) created randomly around the optimal path x(t)

(thick line) given by the solution of Eq. (4.19) for a small particle moving between

two fixed points in linear potential (constant force) and a medium of small viscous

damping coefficient ζ = 0.1 s−1 of Stokes’ drag. The duration of motion is T = 1

s with ns = 1000 steps and δt = 10−3 s each step.

A comparison of the actions calculated along about 100 paths is shown in Fig. 4.5

(a), (b) and (c) for three values of the drag constant ζ = 0.1, ζ = 1 and ζ = 10,

respectively. The duration of motion is ns = 1000 steps with δt = 10−3 s each step

(T = 1 s). In (a), the optimal path (dot) has the smallest action Aop with respect to

other paths (circles). In (b) Aop is neither the smallest nor the largest action. In (c)

Aop becomes the largest action. The first observation is that, when ζ increases, there

is an obvious transition of the stationary δA = 0 from a minimum regime (a) to a

maximum regime (c) in passing by a saddle point regime (b).

We characterize these three regimes by the quantity ∆A = Ā−Aop

|Ā|+|Aop|
where Ā is the

average action over all the paths. This quantity is positive when Aop is a minimum,

negative when Aop is a maximum, and close to zero when Aop has a saddle point. Fig.
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Fig. 4.5: Illustration of the transition of extrema by comparison of the action of the optimal

path (dots) with the actions of other paths (circles) created by random deformation

of the optimal one with ns = 1000 steps and δt = 10−3 s each step (T = 1 s).

(a) For ζ = 0.1 s−1, Aop is in the bundle of smallest actions. (b) for ζ = 1

s−1, Aop is in the middle rank.(c) for ζ = 10 s−1, Aop is in the bundle of largest

actions. All calculations were made with an amplitude of variation σ = 0.1 mm

for a total displacement of about 5 m during T . (d) ζ dependence of the quantity

∆A =
Ā−Aop

|Ā|+|Aop|
where Ā is the average action over all the paths. ∆A can be

used to characterize the evolution of extrema of A in three regimes: the minimum

regime (∆A > 0), the maximum regime (∆A < 0) and the saddle point regime

around ∆A = 0 corresponding to a critical ζc = 1. The steep increases at the two

extremities of the ranking are due to the insufficient number of paths around the

smallest and largest actions.

4.5 (d) shows the ζ dependence of ∆A which can be characterized with the critical

point ζc determined by Ā = Aop. The T -dependence of ζc is depicted in Fig. 4.6.

It can be approximated by ζcT = 1. Hence Aop corresponding to δA = 0 is in the

minimum (maximum) regime for ζ much smaller (larger) than ζc, and in the saddle

point regime for ζ ≈ ζc = 1.

For given ζ, the evolution of extrema δA = 0 is a function of the duration of motion

T . The critical point Tc for ∆A = 0 can be approximately determined with ζTc = 1,

as shown in Fig. 4.7 which reveals that the three regimes of the evolution of extrema

can be characterized by ζT << 1 (minimum regime), ζT >> 1 (maximum regime),
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Fig. 4.6: T dependence of the critical value ζc which decreases with increasing T . It can be

approximated by ζcT = 1.

and ζT ≈ 1 (saddle point regime).

Further study for different ζ and σ revealed that this evolution of extrema begins

by the lose of the least action whenever ζ is different from zero. This means that, for

arbitrarily small ζ, we could always find a σ sufficiently small to create paths having

smaller actions than Aop of the optimal path. For example, Fig. 4.5 (a) was created

with ζ = 0.1 s−1 and σ = 0.1 mm. If we use σ = 1 nm, other circles below the dot

will appear. In other words, the least action δA0 = 0 is definitely lost whenever Ad

is nonzero with nonzero variation δAd 6= 0. Hence from mathematical point of view,

δA = δA0−δAd = 0 can be only a saddle point. However, very small σ produces so small

deformations of the optimal path and the deformed paths are all so close to the optimal

one that they can be considered as a part of the bundle of optimal paths. Therefore,

from practical point of view, for very small ζ or negligible dissipation, δA ≈ δA0 = 0 is

a minimum. We can say that, the bundle of paths determined by δA = 0 or equivalently

by Newtonian equation, are the set of paths having smallest actions (A in plural) among

all other possible paths, much more numerous, with arbitrary deformations.

Similar discussion can be made for the maximum regime illustrated in Fig. 4.5 (c).

For arbitrarily large ζ (1010 s−1 for instance), we could always find sufficiently small σ

(10−10 m for instance) to create paths having larger action than Aop (circles above the
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Fig. 4.7: T dependence of the quantity ∆A for ζ = 1 s−1. A study shown that the critical

point Tc of the evolution can be approximated by Tc = 1/ζ.

dot). But these paths are so close to the optimal one and their number is so less than

all the other arbitrarily deformed paths (all the circles below the dot), that they can

be considered as the set (bundle) of paths having the largest actions. In this sense, we

can say that δA = 0 is a maximum for large ζ or overdamped motion.

4.6 Other forces

From the above results, it is clear that the transition of extrema of action from minimum

to maximum is caused by the increasing dissipative energy Ed or its time integral Ad.

In principle, whenever Ad is no more negligible with respect to A0, the minimum action

is lost, and when Ad approaches A0, the maximum action occurs as can be seen from

Fig. 4.2, Fig. 4.3 and Fig. 4.5. From this point of view, similar transition of extrema

of action can be expected for other friction and conservative forces. We have made

same simulations as above with constant friction fd = mζ and the quadratic friction

fd = mζẋ2, as well as harmonic oscillator damped by Stokes’ drag. All these cases

have similar evolution of extrema from minimum to maximum in three regimes. The

maximum regime is shown for the three cases in Fig. 4.8.
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Fig. 4.8: Illustration of the maximum regime by comparison of the action of the optimal path

(dots) with the actions of other paths (circles) created by random deformation of

optimal one. The number of steps is ns = 1000 with δt = 10−3 s each step (T = 1

s). (a) for constant conservative force damped by constant friction fd = mζ, where

ζ = 9.99999 ms−2 is close to g = 10 ms−2 and σ = 0.1 nm, (b) for constant

conservative force damped by the quadratic drag fd = mζẋ2, where ζ = 1 m−1

and σ = 0.1 mm, and (c) for harmonic oscillator damped by Stokes’ drag, where

ζ = 1.1 s−1 and σ = 0.1 mm.

4.7 Concluding remarks

By numerical calculation of action Aop along the optimal path given by Newtonian

equation Eq. (4.8) and a large number of paths arbitrarily deformed around the optimal

one, we studied the nature of the stationarity of action for dissipative systems, where

A is the time integral of the Lagrangian L = K − V − Ed and −Ed is the work of the

friction force. Three frictions have been considered: the constant friction independent

of position and velocity, the Stokes’ drag, and the quadratic friction.

The result is that the extrema of Aop in the underdamped and overdamped cases

are confirmed by the calculation results without ambiguity. δA = 0 does exist in these

case. More precisely, when the dissipative energy is negligible (underdamping), Aop

is a least action in the strict sense as can be inferred from the case of zero friction.

When the dissipative energy is strong (overdamping), Aop is a largest action. In the

intermediate case, the stationarity of Aop undergoes evolution from minimum regime

to maximum regime in passing by a saddle point regime as the motion duration T and

the drag coefficient ζ increase. For example, in the case of Stokes’ drag, the vanishing

first variation δA = 0 is a minimum, saddle point or maximum for ζT << 1, ζT ≈ 1 or

ζT >> 1, respectively. This evolution of dynamics can also be seen in the form of the

optimal path x(t) = g
ζ2
(1−e−ζt)− g

ζ
t which becomes gradually, during the saddle point

regime, a straight line x(t) = − g
ζ
t with the constant velocity − g

ζ
. For example, when
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Fig. 4.9: Optimal paths for three values of ζ and T = 1 s with constant conservative force.

For ζ = 0.1 s−1 or ζT << 1, the path seems identical to the path of zero friction.

The paths begin to be different from the zero friction one for ζT ≈ 1 and become

straight line for ζ = 10 s−1 or ζT >> 1.

T = 1 s, the optimal path is close to the path of zero friction for ζT << 1, begins to

be less curved for ζT ≈ 1 and becomes a straight line for ζT = 10 s−1, as shown in

Fig. 4.9 for Stokes’ drag.

We would like to mention a hint of this maximum optimal action to the optimization

of energy dissipation. In general, LAP and the variational principles of energy dissipa-

tion are two independent families of axioms, each being valid for its own systems. Many

variational principles of dissipation have been formulated in relation with thermody-

namic phenomena and entropy production [43, 110, 111]. There are even assumptions

combining LAP and a dissipation principle which hold simultaneously for a dissipative

fluid system [112]. However, in view of the relation A = A0 − Ad, the maximum of

A implies the minimum of Ad along the optimal path. Let us make a variation of the

optimal path by a tiny but very intensive zigzag motion close to the optimal path. In

the expression A =
∫ T

0
(K − V −Ed)dt almost does not change because the variational

path is very close to the optimal one, but the integral AK =
∫ T

0
Kdt and Ad =

∫ T

0
Eddt

will increase enormously due to the larger variational velocity caused by the violent

zigzag motion. Hence the maximum action implies A over the variational path must
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be smaller than Aop. In other words, Ad must increase, and more quickly than AK .

This is a minimum energy dissipation over the optimal path of overdamped motion.

Therefore, the path given by the “least action principle” (a maximum now) is just

the path of least dissipation. To our knowledge, this was the first relation established

between a basic principle of Hamiltonian/Lagrangian mechanics and the optimization

of energy dissipation.

Few attention has been paid to extremum principles of dissipation in mechanical

motion. An example of this is the path of least dissipation which, rather by intuition,

states that a mechanical system should follow the path of least energy dissipation in

the case of damped motion. But in view of the present LAP, this principle is not

that evident. From the vanishing variation δ
∫ T

0
(K − V −Ed)dt = 0 it is obvious that

δAd 6= 0. Hence in general there is no extremum or stationary of Ad on the path of

least action if we do not change the conditions of the vanishing variation δA = 0, i.e.,

fixed time duration T and fixed initial and final points a and b. These conditions can

be of course modified for different variational problems. It is instructive to see the

case of Maupertuis’ action. It is easy to verify that, in the case of Stokes friction, the

Maupertuis’ action can be written as Am = 1
ζ

∫ xb

xa
mζẋdx =

Eb
d

ζ
, where Eb

d =
∫ xb

xa
ζẋdx

is the negative work of the friction force over the entire trajectory from a to b. Hence

Maupertuis’ principle implies δEb
d = 0. In other words, the path of least action is just

the path of least resistance in the case of Stokes friction.

In summary, we formulated a possible answer to a longstanding question of classical

mechanics about the least action principle for damped motion, in keeping all the four

conventional formulations of mechanics, i.e., Newtonian, Lagrangian, Hamiltonian and

Hamilton-Jacobi equations. This work based on the model of a conservative system

composed of the moving body and its environment coupled by friction. It was shown

that this system with “internal dissipation” satisfies both Lagrangian and Hamiltonian

mechanics, leading to correct equation of damped motion in a general way. It was also

shown that, within this formulation, the Maupertuis’ principle is equivalent to a least

dissipation principle in the case of Stokes damping. A more general least dissipation

principle is also discussed for the overdamped motion. We hope that these results are

helpful for further study of the relations between the variational principles of energy

dissipation and the fundamental principles of Lagrangian and Hamiltonian mechanics

(see the efforts for stochastic dissipative systems in, for example [115, 116, 117]). It

is also hoped that the present result is useful for the study of quantum dissipation in
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view of the role of action in the quantum wave propagator ψ = eiA/~ [12] and the close

relationship between the Schrodinger equation and the Hamilton-Jacobi equation [1].
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Chapter 5

The path probability of stochastic

motion of dissipative systems

5.1 Introduction

The numerical experiments [118] showed that, for the stochastic motion of non dissipa-

tive systems or weakly dissipative systems, the path probability decreases exponentially

with increasing action (Lagrangian one) of the paths, and that the most probable path

is just the least action path of Hamiltonian/Lagrangian mechanics. This is a reason-

able result of the model since, with diminishing noise, more and more paths shrink

onto the bundle of least action paths. In the limiting case of vanishing noise, all

paths will collapse on the least action path and the motion will recover the Hamilto-

nian/Lagrangian dynamics. But this result does not apply to Brownian motion [16]

studied with Langevin, Fokker-Planck, Kolmogorov equations [97]-[101] which include

important dissipation due to friction. The present work is to study the path prob-

ability for stochastic motion of dissipative systems. We considered a whole isolated

conservative system containing a damped moving body and its environment, coupled

to each other by friction. The Lagrangian is L = K−V −Ed [56, 119] with an effective

conservative Hamiltonian H = K+V +Ed where K is the kinetic energy of the damped

body, V its potential energy and Ed is the negative work of the friction force ~fd from

point a to a position x(t) along a given path s = s(t) (0 ≤ t ≤ T ) where T is a fixed

time period. The friction is given by the Stokes’ drag, i.e., ~fd = −mζ~̇x, where ζ = γ/m,

γ is the viscous drag coefficient. The three associated actions of the whole system on
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a given path between point a and point b is then given by AL =
∫ T

0
(K − V − Ed)dt

(called Lagrangian action), the time integral of Hamiltonian AH =
∫ T

0
(K + V +Ed)dt

(called Hamiltonian action) and the time integral of kinetic energy AK =
∫ T

0
Kdt

(called kinetic action).

To our knowledge, less experimental work or numerical experiment has been made

to measure the path probability. This is certainly related to, among many reasons, the

difficulty of experimental observation of a large number of stochastic motions. This

large number is necessary to determine correctly the path probability. The purpose of

the chapter is to overcome this difficulty by making numerical experiments of stochastic

motion with dissipation in order to measure the path probability and to study its

dependence on the conventional mechanics quantities such as position, velocity, energy

and action. It is worth mentioning the instantaneous velocity has been experimentally

measured with sufficiently small measuring time scale [120, 121, 122]. The measured

result should be more and more precise with smaller and smaller scale. This is certainly

an experimental argument for the use of velocity in the Langevin equation [123] and

the Ornstein-Uhlenbeck model [124, 125].

5.2 Numerical simulation

We use a large number (∼ 109) of silica (SiO2) particles of mass m = 1.39 × 10−15

kg undertaking one-dimensional stochastic motion in conservative force field. The

spherical particles with 1-µm-diameter, moving in air or liquid water under the noise,

move from the initial point a to the destination point b in the interval zb − δ/2 ≤
xb ≤ zb + δ/2 (see below), over a given n steps, through different paths. A path is a

sequence of random positions {xa, x1, x2 · · · xn−1, xb}, where xi is the position at time

ti with xa=x0 and xb=xn. We chose n=10 (due to the limited computation time) with

equal time increments dt = ti − ti−1.

The random motion can be described by the Langevin equation

m
d2x

dt2
= −dV (x)

dx
−mζ

dx

dt
+R, (5.1)

where x is the position, t is the time, V (x) is the potential energy and R is the Gaussian

distributed random force. The Gaussian noise or random displacement at ti is given
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by the following

p(χi, ti − ti−1) =
1√
2πσ

e−
χ2
i

2σ2 , (5.2)

where χi is the Gaussian displacement at the step i, σ =
√

2D(ti − ti−1) =
√
2Ddt the

standard deviation, D = kBT
6πrη

the diffusion constant, kB the Boltzmann constant, T the

absolute temperature, r = 0.5 µm the radius of the particle and η = 8.5 × 10−4 Pas

(for T = 293 K) the viscosity of water. For example, when T = 293 K and dt = 10−5

s, one obtain D ≈ 4.3×10−13 m2/s and σ ≈ 3×10−9 m, with a relaxation time close to

10−7 s. With this reference, the simulations were made with different time increments

dt ranging from 10−7 to 10−3 s.

The motion of the particle is generated by the following equation combining two

parts by superposition: a random Gaussian displacement from Eq. (5.2) and a part

described by the solution yi = f(ti)−f(ti−1) of the Newtonian equation of damped mo-

tion mẍ = −∂V
∂x

−mζẋ [56] for conservative and friction forces. The total displacement

of each step is then given by

xi = xi−1 + σχi + f(ti)− f(ti−1). (5.3)

It is obvious that, in the case of vanishing noise, the motion of effective Hamilto-

nian/Lagrangian mechanics is recovered [56]. The damping effect related to ζ is con-

sidered in the Newtonian equation of damped motion.

The left panels of Figs. 5.1-5.4 illustrate some sample paths generated by Eq. (5.3)

for friction force and two kinds of conservative forces. The samples are around the least

action path with sufficiently different actions from the least one. In the simulation,

each sample path is in fact a bundle or a tube of a small thickness δ whose axial line is

a sequence of positions {z0, z1, z2 · · · zn−1, zn}. The larger δ is, the more particles will

go through each path from a to b. The δ used in this work is chosen to be 1/2 of the

standard deviation σ of the distribution of random displacements.

For each sample path, the instantaneous velocity at time step i is calculated by vi =
zi−zi−1

ti−ti−1

along the axial line of its tube. This velocity can be approximately considered as

the average velocity of all the trajectories passing through the tube of the sample path,

i.e., the trajectories satisfying zi − δ/2 ≤ xi ≤ zi + δ/2 for every step i. The kinetic

energy is given by Ki =
1
2
mv2i , the dissipative energy is Ed = mζ

∫ x(t)

0
ẋi(τ)dxi(τ), the

actions are AK =
∑10

i=1
1
2
mv2i dt, AL =

∑10
i=1[

1
2
mv2i − V (xi)−mζcumsum(xivi)] · dt, and

AH =
∑10

i=1[
1
2
mv2i + V (xi) +mζcumsum(xivi)] · dt, where “cumsum” is the cumulative
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sum from i=1 to i = f ≤ 10 in the matlab program.

The numerical experiment consists in observing the total number of particles N

moving from point a to point b through all the sample paths and the number of

particles Nk moving along a given sample path k from a to b. The probability that the

path k is taken is determined by Pk = Nk/N (with large N ). Simulations are performed

with two potential energies: constant force with potential V (x) = mgx and harmonic

force with potential V (x) = 1
2
kx2. The results presented below for each potential were

obtained with dt = 10−5 s.

5.3 Path probability distributions

5.3.1 Particles with constant force and Stokes’ drag

We considered the particles subject to Stokes’ drag force and the constant force with

potential V (x) = mgx. The Newtonian equation of damped motion is given by [56]:

mẍ = mg −mζẋ, (5.4)

where g = 10 ms−2. The solution is

x(t) =
g

ζ2
(1− e−ζt)− g

ζ
t. (5.5)

For a small ζ or the underdamped motion, the dissipative energy is negligible, the

result of the right panel of Fig. 5.1 shows a path probability of the form

Pk(A) =
1

Z
e−γAk , (5.6)

where Ak is the Lagrangian action of the path k, the slope is γ ≈ 6.3 × 1026 J−1s−1

and the normalization function Z can be analytically determined by the path integral

technique [12]
n−1
∏

i=1

∫ ∞

−∞

dxi
δ
Pk(A) = 1 (5.7)

with fixed xa and xb, or numerically by the value of lnP (A = 0) which can be found

with the distribution curves in the figures. It recovers the result of particles subject to

constant force in non dissipative systems.

For a large ζ or the overdamped motion, the dissipative energy is strong, the middle

panel of Fig. 5.2 shows the Newtonian path has the most probable and the maximum
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Fig. 5.1: The result of numerical simulation of the underdamped motion with 109 particles

subject to the friction force fd = mζẋ where ζ = 1 s−1 and the constant force with

potential V (x) = mgx. The left panel shows the axial lines of sample paths. The

right panel shows the path probability distribution against the Lagrangian (circles)

and Hamiltonian (stars) actions. The straight line is a best fit of the points. It

implies an exponential dependence on the Lagrangian action with negative slope

γ ≈ 6.3× 1026 J−1s−1 in Eq. (5.6). There seems no correlation between the path

probability and the Hamiltonian action.
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Fig. 5.2: The result of numerical simulation of the overdamped motion with 109 particles

subject to the friction force fd = mζẋ where ζ = 107 s−1 and the constant force

with potential V (x) = mgx. The left panel shows the different sampled paths

between the given points a and b. The middle panel shows the path probability

distribution against the Lagrangian (circles) , Hamiltonian (stars) and Kinetic (pen-

tagrams) actions. The right panel is a zoom of the middle panel in kinetic action.

The right panel shows the path probability distribution against the kinetic (penta-

grams) action. It implies the path probability plays an exponential dependence on

the kinetic action with γ ≈ 2.8× 1031 J−1s−1.
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Lagrangian action, i.e., the most probable path is the maximum action path. The right

panel of Fig. 5.2 shows the path probability distribution increases exponentially with

increasing kinetic action with a slope γ ≈ 2.7 × 1031 J−1s−1. It is novel to find that

the path probability does not play exponentially with Lagrangian action again for the

overdamped motion.

5.3.2 Particles with harmonic force and Stokes’ drag

We considered particles subject to Stokes’ drag force and the harmonic force with

potential V (x) = 1
2
kx2, where k is the spring constant. The Newtonian equation of

damped motion is given by [56]:

mẍ = −kx−mζẋ, (5.8)

Thus, the solution to the damped harmonic oscillator equation is written

x(t) = Ae−
ζ

2
t sin(ω1t), (5.9)

whereA = 1.5×10−8 m is the amplitude, ω1 =
√

ω2
0 − ζ2/4 is the angular frequency and

ω0 =
√

k/m = 4.7 × 104 s−1 is the underdamped oscillation frequency. Incidentally,

if the damping is sufficiently large that ζ ≥ 2ω0, which we shall assume is not the

case, then the system does not oscillate at all, and any motion simply decays away

exponentially in time.

As for the constant force, the path probability distribution decreases exponentially

with increasing Lagrangian action with a negative slope γ ≈ 6.8 × 1026 J−1s−1 of

the straight line for the underdamped motion in the right panel of Fig. 5.3. From

the middle and right panels of Fig. 5.4, the most probable path is the maximum

Lagrangian action path and the path probability distribution decreases exponentially

with increasing kinetic action with a slope γ ≈ 3.1× 1029 J−1s−1.

5.4 Discussion

From the above figures, the exponential dependence of the path probability on the

Lagrangian action is obvious. This correlation can be characterized by a correlation

function between A (AL or AH)) and − lnP (A) given by

c(A) =

∑n
i=1(Ai− < Ai >)[− lnP (Ai)+ < lnP (Ai) >]

√

[
∑n

i=1(Ai− < Ai >)2][
∑n

i=1(− lnP (Ai)+ < lnP (Ai) >)2]
, (5.10)
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Fig. 5.3: The result of numerical simulation of the underdamped motion with 109 particles

subject to the friction force fd = mζẋ where ζ = 1 s−1 is close to 2ω0 and

harmonic force with potential V (x) = 1
2kx

2. The left panel shows the different

sampled paths between the given points a and b. The right panel shows the

path probability distribution against Lagrangian (circles) and Hamiltonian (stars)

actions. The straight line is a best fit of the points whose slope gives γ ≈ 6.8×1026

J−1s−1 in Eq. (5.6). There is no correlation between the path probability and the

Hamiltonian action.
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Fig. 5.4: The result of numerical simulation of the overdamped motion with 109 particles

subject to the friction force fd = mζẋ where ζ = 9.39×104 s−1 and harmonic force

with V (x) = 1
2kx

2 . The left panel shows the different sampled paths between

the given points a and b. The middle panel shows the path probability distribution

against the Lagrangian (circles) , Hamiltonian (stars) and Kinetic (pentagrams)

actions. The right panel is a zoom of the middle panel in kinetic action. The

right panel shows the path probability distribution against the kinetic (pentagrams)

action. It implies the path probability plays an exponential dependence on the

kinetic action with γ ≈ 3.1× 1029 J−1s−1.
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Table 5.1: Values of the correlation function c(A) between the logarithm of the path proba-

bility − lnP (A) and actions (the Lagrangian action AL, the Hamiltonian action

AH , the kinetic action AK) for the two potentials V (x) and two kinds of motion

used in the numerical experiments. For the underdamped motion, − lnP (A) and

AL are linear correlation; For the overdamped motion, − lnP (A) and AK are

linear correlation.

V (x) c(AL) c(AH) c(AK)

mgx(underdamped) 0.9734 0.4945

mgx(overdamped) -0.8495 0.8499 0.9906

1
2
kx2(underdamped) 0.9114 0.3298

1
2
kx2(overdamped) -0.831 0.8593 0.9781

where < Ai > and < lnP (Ai) > are the means of action A and − lnP (A) respectively.

|c(A,− lnP (A))| ≈ 1 would indicate that A and − lnP (A) would indicate that A and

− lnP (A) are linearly correlated. The results obtained from the numerical experiments

are shown in Table 5.1.

It can be concluded from the Table 5.1 that − lnP (A) has a linear correlation with

the Lagrangian action for the underdamped motion, but a linear correlation with the

kinetic action for the overdamped motion. It should be indicated that all the numerical

simulations have been done with different time scale of each step. No dependence of

c(A) on time scale was observed.

5.5 Conclusions

Based on the extension of least action principle to random motion, we studied the

path probability of Gaussian stochastic motion of dissipative systems. The model of

the simulation is small silica particles subject to conservative forces, friction force and

Gaussian noise. It is found that the path probability still depends exponentially on

Lagrangian action for the underdamped motion, but plays exponentially with kinetic

action for the overdamped motion. The difference from the non dissipative motion is

that, for the underdamped motion, the most probable path is the least Lagrangian

action path; for the overdamped motion, the most probable path is the maximum La-
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grangian action path. This is a reasonable results of the model. For the underdamped

motion, the dissipative energy is negligible, with diminishing noise, more and more

paths shrink onto the bundle of least action paths. In the limiting case of vanishing

noise, all paths will collapse on the least action path and the motion will recover the

Hamiltonian/Lagrangian dynamics. For the overdamped motion, the dissipative en-

ergy is strong, the path given by the “least action principle” (the maximum) is just

the path of least dissipation.

We would like to stress that the result of present work is a preliminary development

of the exponential of action of path probability in dissipative systems, but not the final

result. It is unimaginable that the Lagrangian action is no more a characteristic variable

of the paths in the overdamped motion. We hope that this result can be improved

by more precise computation. The path probability depends on which actions for

stochastic motion of dissipative systems is still in the process of exploration.
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Chapter 6

Conclusions

In this thesis, we have done the numerical investigation on path probability of stochastic

motion from non dissipative systems to dissipative systems. An extension of least

action principle to dissipative mechanical systems has been described. The extremum

of action undergoes evolution from a minimum to a maximum has been confirmed. We

will here shortly review the essential of our work.

Based on the theoretical extension of Hamiltonian and Lagrangian mechanics to

a stochastic formalism which predicts that path probability depending exponentially

on action is possible in the non dissipative systems, we have made the numerical ex-

periments of stochastic motion to verify its validity. The numerical experiments show

that, for non dissipative systems or weakly dissipative systems undergoing Gaussian

stochastic motion, the path probability decreases exponentially with increasing action

(Lagrangian one) of the paths, and that the most probable path is just the least action

path of Hamiltonian/Lagrangian mechanics. It can be predicted that, for such kind of

ideal motion, the probability of occurrence of a path from a given point to any arbitrar-

ily chosen point, within a given duration of motion, must decrease exponentially with

increasing action. Hence the application of this result does not need the condition of a

motion between two fixed points. The decay rate increases with decreasing Gaussian

randomness. The decay rate increases with decreasing Gaussian randomness. This

result is a confirmation of the existence of a classical analogue of the Feynman factor

eiA/~ for the path integral formalism of quantum mechanics of Hamiltonian systems.

The least action principle has been generalized to dissipative systems with a unique

well defined Lagrangian function L = K − V − Ed, where Ed is the dissipated energy
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by friction force. We formulated for dissipative system a least action principle that can

keep all the main features of the conventional Hamiltonian/Lagrangian mechanics such

as the Hamiltonian, Lagrangian and Hamilton-Jacobi equations, three formulations of

the classical mechanics. This least action principle can also be derived from the virtual

work principle. It was also shown that, within this formulation, the Maupertuis’ prin-

ciple is equivalent to a least dissipation principle in the case of Stokes damping. By

variational calculus and numerical simulation, we made a comparison of the action of

the optimal Newtonian path (Aop) to those of a large number of deformed paths. This

comparison revealed that the least action only persist in the case of weak dissipation,

and is replaced by maximum action in the case of strong dissipation. Hence the extrema

of Aop in the underdamped and overdamped cases seem to have been confirmed by the

simulation results. More precisely, when the dissipative energy is negligible (under-

damping), Aop is in the bundle of the least actions as expected. When the dissipative

energy is strong (overdamping), Aop is in the bundle of the largest actions. On this

basis, we studied the path probability of Gaussian stochastic motion of dissipative sys-

tems. It is found that the path probability still depends exponentially on Lagrangian

action A =
∫ T

0
Ldt for the underdamped motion, but depnends exponentially on ki-

netic action A =
∫ T

0
Kdt for the overdamped motion. The difference from the non

dissipative motion is that, for the underdamped motion, the most probable path is the

least Lagrangian action path; for the overdamped motion, the most probable path is

the maximum Lagrangian action path.

We formulated a possible answer to a longstanding question of classical mechanics

about the least action principle for damped motion. We hope that these results are

helpful for further study of the relations between the variational principles of energy

dissipation and the fundamental principles of Lagrangian and Hamiltonian mechanics.

It is also hoped that the present result is useful for the study of quantum dissipation

in view of the role of action in the quantum wave propagator and the close relationship

between the Schrodinger equation and the Hamilton-Jacobi equation. Unlike the Feyn-

man factor which is just a mathematical object, e−γA is a real function characterizing

the path probability. This probabilistic view of mechanical motion can possibly open a

way to review some aspects of the relationship between mechanics and thermodynam-

ics.

We would like to mention that, this exponential path probability is one of the

possible path probability distributions underlying a stochastic formalism of Hamilto-
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nian/Lagrangian mechanics. It is unimaginable that the Lagrangian action is no more

a characteristic variable of the paths in the overdamped motion. The path probability

depends on which actions for stochastic motion of dissipative systems is still a open

question. It has been an unremitting ambition of physicists to date.
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Appendix A

Calculation of the path probability distribution from the motion equation

xi = xi−1 + χi + f(ti)− f(ti−1),

where f(ti) = −1
2
gt2i , ti = idt, i = 1, 2, · · · , n. The Wiener path measure probability

Pk can be expressed as follows:

Pk =
1√
2πσ

n
∏

i=1

∫ zi+δ/2

zi−δ/2

exp{− [xi − xi−1 − f(ti) + f(ti−1)]
2

2σ2
}dxi

=
1√
2πσ

n
∏

i=1

∫ zi+δ/2

zi−δ/2

exp{−(xi − xi−1)
2

2σ2
+

2(xi − xi−1)[f(ti)− f(ti−1)]

2σ2

− [f(ti)− f(ti−1)]
2

2σ2
}dxi

=
1√
2πσ

∫ zi+δ/2

zi−δ/2

exp{−
n

∑

i=1

(xi − xi−1)
2

2σ2
+

n
∑

i=1

(xi − xi−1)[f(ti)− f(ti−1)]

σ2

−
n

∑

i=1

[f(ti)− f(ti−1)]
2

2σ2
}dxi

.

The last term in the exponent is constant for given starting and final points and

duration of motion. The second term in the exponent can be expressed as follows:

exp{
n

∑

i=1

(xi − xi−1)[f(ti)− f(ti−1)]

σ2
}

= exp{−
n

∑

i=1

(xi − xi−1)(i− 1
2
)gdt2

σ2
}

= exp{−gdt
2

σ2
[

n
∑

i=1

(xi − xi−1)(i−
1

2
)]}

= exp{−gdt
2

σ2
[(x1 − x0) + 2(x2 − x1) + 3(x3 − x2) + · · ·+ n(xn − xn−1)]

− 1

2
[(x1 − x0) + (x2 − x1) + (x3 − x2) + · · ·+ (xn − xn−1)]}

= exp{−gdt
2

σ2
[−x1 − x2 − x3 − · · · − xn + (n+ 1)xn − x0 −

1

2
(xn − x0)]}

= exp{gdt
2

σ2
[

n
∑

i=1

xi − (n+
1

2
)xn +

1

2
x0)]}

= exp[
1

2mD

n
∑

i=1

V (xi)dt] exp{−
gdt

2D
[(n+

1

2
)xn −

1

2
x0)]}

,
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where σ =
√
2Ddt, V (xi) = mgxi, and exp{− gdt

2D
[(n + 1

2
)xn − 1

2
x0)]} is constant since

g, D, n, dt, x0 and xn are all constant. Let γ = 1
2mD

,

Pk =
1√
2πσ

N1

∫ zi+δ/2

zi−δ/2

exp[−1

2
mγ

n
∑

i=1

(xi − xi−1)
2

dt
+ γ

n
∑

i=1

V (xi)dt]dxi

=
1√
2πσ

N1

∫ zi+δ/2

zi−δ/2

exp(−γAk)dxi

≈ 1√
2πσ

N1δ exp(−γAk[z0, z1, z2, · · · , zn])

,

where 1√
2πσ

N1 = 1√
2πσ

exp{− gdt
2D

[(n + 1
2
)xn − 1

2
x0)] −

∑n
i=1

[f(ti)−f(ti−1)]
2

4Ddt
} is a con-

stant which can be determined by the normalization of Pk, and the action is Ak =
∑n

i=1[
1
2
m (xi−xi−1)

2

dt2
− V (xi)]dt.

This can be done inversely from the exponential probability distribution of action

to the Wiener path measure probability if V (xi) is linear or approximately linear when

developed up to the first order (linear term in δxi) on each step δxi = xi − xi−1 which

should be small with respect to the total distance of the motions.
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Appendix B

The dissipative action being defined by A =
∫ T

0
(K − V − Ed)dt with Ed =

∫ t

0
f(τ)dτ

and f = fd(τ)ẋ(τ). The “global” variational calculus, which consists in considering

both the variation δx(t) and the antecedent δx(τ), is given by

δA =

∫ T

0

δ(K − V − Ed)dt,

where the variation of the first part A0 =
∫ T

0
δ(K − V )dt is:

δA0 =

∫ T

0

[

∂(K − V )

∂x(t)
δx(t) +

∂(K − V )

∂ẋ(t)
δẋ(t)

]

dt.

Integrating the second term by parts and using the boundary conditions δx(0) =

δx(T ) = 0, we get

δA0 =
∂(K − V )

∂ẋ(t)
δx(t)

∣

∣

∣

∣

T

0

+

∫ T

0

[

∂(K − V )

∂x(t)
− d

dt

(

∂(K − V )

∂ẋ(t)

)]

δx(t)dt

=

∫ T

0

[

∂(K − V )

∂x(t)
− d

dt

(

∂(K − V )

∂ẋ(t)

)]

δx(t)dt.

The variation of the second part Ad =
∫ T

0
δEddt is:

δAd =

∫ T

0

∫ t

0

[

∂f

∂x(τ)
δx(τ) +

∂f

∂ẋ(τ)
δẋ(τ)

]

dτdt.

Making the same trick of integration by parts, we get

δAd =

∫ T

0

[

∫ t

0

∂f

∂x(τ)
δx(τ)dτ +

∂f

∂ẋ(τ)
δx(τ)

∣

∣

∣

∣

t

0

−
∫ t

0

d

dτ

(

∂f

∂ẋ(τ)

)

δx(τ)dτ

]

dt

=

∫ T

0

∂f

∂ẋ(τ)
δx(τ)

∣

∣

∣

∣

t

0

dt+

∫ T

0

∫ t

0

[

∂f

∂x(τ)
− d

dτ

(

∂f

∂ẋ(τ)

)]

δx(τ)dτdt.

Due to the boundary condition δx(0) = 0 causes the first term is equal to
∫ T

0
∂f

∂ẋ(t)
δx(t)dt.

Making an integration by parts of
∫ t

0

[

∂f
∂x(τ)

− d
dτ

(

∂f
∂ẋ(τ)

)]

δx(τ)dτ with respect to t, δAd

turns out to be

δAd =

∫ T

0

∂f

∂ẋ(t)
δx(t)dt+

{

t

∫ t

0

[

∂f

∂x(τ)
− d

dτ

(

∂f

∂ẋ(τ)

)]

δx(τ)dτ

} ∣

∣

∣

∣

T

0

−
∫ T

0

t
d

dt

{
∫ t

0

[

∂f

∂x(τ)
− d

dτ

(

∂f

∂ẋ(τ)

)]

δx(τ)dτ

}

dt
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=

∫ T

0

∂f

∂ẋ(t)
δx(t)dt+ T

∫ T

0

[

∂f

∂x(τ)
− d

dτ

(

∂f

∂ẋ(τ)

)]

δx(τ)dτ

−
∫ T

0

t

[

∂f

∂x(t)
− d

dt

(

∂f

∂ẋ(t)

)]

δx(t)dt.

Since τ is an arbitrary time variable, we can write:

δAd =

∫ T

0

{

∂f

∂ẋ(t)
+ (T − t)

[

∂f

∂x(t)
− d

dt

(

∂f

∂ẋ(t)

)]}

δx(t)dt.

Finally, δA is:

δA =

∫ T

0

{

∂(K − V )

∂x(t)
− d

dt

(

∂(K − V )

∂ẋ(t)

)

− ∂f

∂ẋ(t)
− (T − t)

[

∂f

∂x(t)
− d

dt

(

∂f

∂ẋ(t)

)]}

δx(t)dt.

According to the least action principle δA = 0, Eq. (4.17) can be obtained:

∂(K − V )

∂x
− d

dt

(

∂(K − V )

∂ẋ

)

− ∂f

∂ẋ
− (T − t)

(

∂f

∂ẋ
− d

dt
(
∂f

∂ẋ
)

)

= 0.
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Toulouse, 2006).

[42] B. D. Vujanovic and S. E. Jones, Variational Methods in Nonconservative Phe-

nomena (Academic Press Inc., New York, 1989).

[43] S. Sieniutycz and H. Farkas, Variational and Extremum Principles in Macroscopic

Systems (Elsevier, New York, 2005).

[44] L. Herrera, L. Nunez, A. Patino and H. Rago, A veriational principle and the

classical and quantum mechanics of the damped harmonic oscillator, Am. J. Phys.

54, 273 (1986).

[45] B. J. Torby, Advanced Dynamics for Engineers (Holt-Saunders International Edi-

tions, New York, 1984).

[46] H. Bateman, On dissipative systems and related variational principles, Phys. Rev.

38, 815 (1931).

[47] M. A. F. Sanjuan, Comments on the Hamiltonian formulation for linear and non-

linear oscillators including dissipation, J. Sound Vib. 185, 734 (1995).

[48] F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E 55, 3581 (1997).

[49] R. J. Duffin, Pseudo-Hamiltonian mechanics, Arch. Rat. Mech. Anal. 9, 309

(1962).

[50] D. Schuch, A new Lagrange-Hamilton formalism for dissipative systems, Int. J.

Quant. Chem. Symp. 24, 767 (1990).

[51] C. E. Smith, Lagrangians and Hamiltonians with friction, J. Phys.: Conf. Ser.

237, 012021 (2010).

[52] A. Moroz, On a variational formulation of the maximum energy dissipation prin-

ciple for non-equilibrium chemical thermodynamics, Chem. Phys. Lett. 457, 448

(2008).

82



[53] A. Moroz, A variational framework for nonlinear chemical thermodynamics em-

ploying the maximum energy dissipation principle, J. Phys. Chem. B 113, 8086

(2009).

[54] A. Moroz, Cooperative and collective effects in light of the maximum energy dis-

sipation principle, Phys. Lett. A 374, 2005 (2010).

[55] A. Moroz and D. I. Wimpenny, On the variational framework employing optimal

control for biochemical thermodynamics, Chem. Phys. 380, 77 (2011).

[56] Q. A. Wang and R. Wang, Is it possible to formulate least action principle for

dissipative systems? arXiv:1201.6309.

[57] C. G. Gray, Principle of least action, Scolarpedia 4, 8291 (2009).

[58] C. G. Gray and E. F. Taylor, When action is not least, Am. J. Phys. 75, 434

(2007).

[59] C. G. Gray, G. Karl, and V. A. Novikov, Progress in classical and quantum vari-

ational principles, Rep. Prog. Phys. 67, 159 (2004).

[60] C. G. Gray, G. Karl, and V. A. Novikov, Direct use of variational principles as an

approximation technique in classical mechanics, Am. J. Phys. 64, 1177 (1996).

[61] E. F. Taylor, A call to action, Am. J. Phys. 71, 423 (2003).

[62] E. F. Taylor and J. Hanc, From conservation of energy to the principle of least

action: A story line, Am. J. Phys. 72, 514 (2004).

[63] D. E. Neuenschwander, E. F. Taylor and S. Tuleja, Action: Forcing energy to

predict motion, The Physics Teacher 44, 146 (2006).

[64] J. Ogborn, J. Hanc and E. F. Taylor, Action on stage: Historical introduction, The

Girep conference 2006, Modeling in Physics and Physics Education, Universiteit

van Amsterdam, 2006.

[65] J. Hanca, S. Tuleja and M. Hancova, Simple derivation of Newtonian mechanics

from the principle of least action, Am. J. Phys. 71, 386 (2003).

[66] T. A. Moore, Getting the most action from the least action: A proposal, Am. J.

Phys. 72, 522 (2004).

83



[67] V. R. I. Kaila and A. Annila, Natural selection for least action, Proc. R. Soc. A.

464, 3055 (2008).

[68] A. Annila, All in action, Entropy 12, 2333 (2010).

[69] M. Koskela and A. Annila, Least-action perihelion precession, Mon. Not. R. As-

tron. Soc. 417, 1742 (2011).

[70] S. Salthe and A. Annila, On intractable tracks, Phys. Essays 25, 232 (2012).

[71] C. L. Dym and I. H. Shames, Solid Mechanics: A Variational Approach (McGraw-

Hill, New York, 1973).

[72] W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quan-

tum Theory, 3rd ed. (General Publishing Co., Canada, 1968).

[73] T. R. Kane and D. A. Levinson, Dynamics: Theory and Applications (McGraw-

Hill, New York, 1985).
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