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Agrégation irréversible par patchs de particules
colloïdales. Un étude par simulation numérique

Résumé :

La grande variabilité inhérente aux structures auto-assemblées est souvent due à la
nature très anisotrope des interactions entre les particules qui les constituent. Cette
anisotropie peut dans certains cas être représentée par un nombre limité de patchs
à la surface de particules sphériques.

Cette thèse présente une nouvelle technique de simulation numérique pour étu-
dier l’agrégation irréversible par patchs de particules colloïdales. Elle constitue une
variation de la « dynamique d’amas browniens ». Elle prend en compte l’existence
de ces patchs, mais aussi le mouvement brownien de rotation des particules. Pour
représenter les patchs, nous utilisons le modèle de Kern-Frenkel avec des patchs
univalents diamétralement opposés. Ils sont le moteur de l’agrégation irréversible
entre les particules. La taille de ces patchs peut varier et une interaction isotrope
de type puits-carré peut éventuellement être ajoutée pour prendre en compte la
qualité thermodynamique du solvant.

Pour valider le modèle, le nouvel algorithme a été testé sur des chaînes isolées
de polymères. Nous retrouvons bien les comportements statiques et dynamiques
attendus pour des chaînes isolées en bon solvant. Cela a permis d’explorer plus fi-
nement la structure des chaines et de calculer les diverses longueurs de persistance
définies dans la littérature. Nous avons ainsi pu donner une description phénomé-
nologique de la transition entre le comportement idéal et celui auto-évitant d’une
chaîne semi-flexible en bon solvant. Cependant cet algorithme n’est pas assez ro-
buste pour aborder l’étude dynamique des longues chaînes.

Le phénomène d’agrégation étudié peut être assimilé à une polymérisation par
étape. En fonction de la qualité du solvant et de la taille des patchs, différentes
structures complexes peuvent être obtenues avec des évolutions temporelles com-
plexes. Nous nous sommes attachés à comprendre la cinétique de ces processus dans
le cadre d’une approche de type Smoluchowski (étude des collisions entre les parti-
cules). Pour ce faire, nous nous sommes focalisés sur l’étude de la simple réaction
de formation des dimères en conditions diluées. Même aux très fortes dilutions,
nous montrons que les collisions corrélées jouent un rôle central dans la cinétique
de la réaction pour des particules anisotropes. L’approche de Smoluchowski n’est
donc plus satisfaisante dans ce cas. Nous proposons quelques nouvelles pistes pour
comprendre l’influence de cette anisotropie de surface sur la cinétique d’agrégation
des particules.





Irreversible aggregation of patchy colloidal particles.
A computer simulation study

Abstract:

The versatility of self assembling structures is mostly due to the presence of aniso-
tropic or patchy interactions. This thesis presents a new simulation method to
study irreversible patchy aggregation of colloidal particles. The simulation method
is a variation of the Brownian Cluster Dynamics method taking into account aniso-
tropic interactions (patches) and rotational motions. The basic particle is a modified
Kern-Frenkel model with two oppositely located univalent patches, through which
irreversible aggregation takes place. The size of the patch may vary and an isotropic
interaction may be superimposed around the particle to mimic the solvent quality.

To confirm the validity of this method, the new algorithm was tested on single
polymer chains, the simplest object that can be built using this model. Various pre-
dicted static and dynamic properties of the polymer chains were perfectly recovered
with this method and a deeper insight about the static properties of a self avoiding
chain has been made. A detailed study of the different persistence length defini-
tions in the literature was carried out and we were able to give a phenomenological
description for the cross over from the ideal behavior to the swollen one. However,
we were limited by the chain length and its local flexibility regarding dynamics.

In the case of aggregation studies, which correspond to step growth polymer-
ization reactions with various solvent qualities, different aggregate structures were
obtained. The kinetic studies of these reactions lead to a detailed analysis of the
simple dimerization reaction. Even in the limit of extremely dilute solutions, we
found that correlated collisions play an important role on the rate of the reaction
and the Smoluchowski approach fails. We propose some new directions for a better
understanding of anisotropy effects on kinetics.
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List of symbols

α0 Probability of forming an isotropic bond

α1 Probability of forming a patchy bond
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χ Relative surface coverage by all patches
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Ci Number density of clusters having an aggregation number i

Ct Number density of clusters at time t

d Diameter of the particle



ii

df Fractal dimension

DT
i Translational diffusion coefficient of a cluster with aggregation number i

DR
i Rotational diffusion coefficient of a cluster with aggregation number i

kB Boltzmann constant

Kp Rate constant for patchy bond formation for correlated couples

Ku Rate constant for uncorrelation reaction

Ki,j Rate constant for aggregation of clusters of aggregation numbers i and j

L Length of a polymer chain

l1 Persistence length of a polymer chain

Lbox Edge length of the simulation box

lb Average bond length

lK Kuhn length

m Number of monomers in a polymer chain

mn Number average aggregation number

mw Weight average aggregation number

n Simulation time

nw Fraction of couples in interaction range

p Extent of reaction

P0 Isotropic bond probability

P1 Patchy bond probability

Rg Radius of gyration

Rcol,i Capture radius of a cluster with aggregation number i

sR Rotational Brownian step length

sT Translational Brownian step length

T Absolute temperature

t Time

t0 Time required for a free monomer to diffuse a distance of d2



iii

tl
c Average time spent in interaction range l = 0 for ideal and l = 1 for real

cases

u0 Isotropic well depth

u1 Patchy well depth

Vb The interaction volume
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Chapter 1

Introduction

The significance of soft matter comes from the fact that a major part of the living
being is made of living soft matter, mainly colloidal systems. The study of colloidal
systems are covered by many active research areas of science because their wide
range of occurrence and properties. A colloid is a microscopic dispersion of one
substance in another one. The colloidal system can be solid, liquid or gaseous.
The dispersed phase (or internal phase) generally consists of particles of size in
the range nm to µm and the particles in dispersion medium (or continuous phase)
have typically atomistic size range. Some typical examples of colloidal systems
are blood, milk, gels, mist, smoke, stained glass, etc. Due to the size difference,
the structural relaxation times also differ and for the dispersed phase, the typical
relaxation time comes in the order of seconds. Since the size scales in the colloidal
systems are in the range of the wavelength of light, light scattering techniques are
widely used to study their structure and dynamics. Even though colloidal systems
are very complex in nature, they could be described using simple effective potentials
and we can integrate out the fast relaxation of the dispersion medium and other
additives, which are comparatively small to the dispersed particles [1]. The result
of this approximation directly enables the colloidal particles to be considered as
‘superatoms’, alternatives for atomistic and molecular systems. Such superatoms,
having their own characteristic size and time scales could be used to study the
various phenomena such as caging effect, disordered states, metastable fluids, etc.

The main feature we can see in colloidal systems is the large surface area of
the dispersed phase. Hence, dispersed particles are largely affected by the surface
chemistry in the colloid. Manipulation of the surface chemistry is thus very critical
in fine tuning the inter particle interaction defining the system. This could be
achieved using several methods like the use of additives, grafting polymer chains
on to the particle surface, etc. The vast freedom of tunability of colloidal particles
could be extended to directional interactions as present in atomistic systems, apart
from the spherical isotropic interactions. These particles with highly directional or
strongly anisotropic interactions or patches are called as patchy particles [2]. The
fact that non spherical particles are intrinsically anisotropic does not make them
patchy since all those interacting particles are similar. The presence of anisotropic
interactions act as the driving force for the self assembly of colloidal particles.
Patches are very important tools for engineering the self assembly to obtain a target
structure. In practice, using various methods like physical and chemical depositions,
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lithography, etc., large amounts of mono disperse patchy particles were obtained.
A recent article [3] gives an overall comparison of various methods, the yield, and
the prospective use of various kinds of well engineered patchy particles. The self
assembly of particles or the bottom up approach is quite useful in the experimental
field to overcome the size and processing limitation and offers a better control for
obtaining less defective final structures.

Using the vast degree of tunability of these colloidal superatoms with the ideas
from supra-molecular chemistry opens doors to a better understanding of aggrega-
tion, self assembly and their interplay in the molecular level. The vast tunability
could be directly connected to the ‘intrinsically patchy’ protein systems, where phe-
nomena are commonly explained using the lock and key mechanism. Glotzer and
Solomon [4] put forward an effort to classify the tunability by considering the key
parameters describing the anisotropy of the basic building block - ‘patch dimensions’
(see Figure 1.1). Using this concept, the complexity of the anisotropic nature could
be resolved to basic patch dimensions for facility. In this approach, the complex-
ity of a patchy particle model increases with the increase in orthogonal anisotropy
dimensions. The authors propose that use of unique anisotropic dimensions could
lead to commonality in different systems which differ by shape or by dimension
of the particle, but still may differ by the phase behavior. Also, a detailed study
may lead to some commonalities in different systems, but it is quite out of question
when seen through the practical point of view. In this strategy, reverse engineering
a complex structure to find the building block seems more relevant and designing
rules could be made out.

Theoretical studies of colloidal systems with specific interactions started in the
1980s to study strongly associating fluids, long before the patchy particles were
experimentally synthesized in comparatively large and mono disperse scale. These
primitive systems were mainly focused around hard-core systems with specific at-
tractive sites and with these models, it was possible to compare the features of
the liquid and solid(crystalline) state [5]. It is also a key point on the introduc-
tion of a new model that it is tested against these simpler system before extending
to more realistic situations. Using event-driven molecular dynamics for a classical
hard-core model [6], the authors were able to investigate deeper in to the dynam-
ics of molecular diffusion [7] and further understand the interplay between packing
driven arrest and bond-driven arrest in network forming fluids [8]. Recent theoret-
ical studies go in two directions - one using spherical particles (hard or soft) with
various kinds of surface decorations for patchiness, which varies in shape and size
[9, 10, 11, 12, 13, 7, 14, 15] and other with anisotropic particles with patchy inter-
actions [16, 17, 18, 19, 20, 21]. Since there are still areas to be explored in colloidal
patchy particle science, there is still room for many simple systems.

Whatever be the model, the final structure of aggregates always depends on
the nature of the system. See figure 1.2 for a comparison of different structures ob-
tained from the present study. In general, for irreversible interactions, we get fractal
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Figure 1.1: Some of the different anisotropy dimensions and their homologs used to
describe the patchiness by Glotzer and Solomon [4].

structures, for reversible ones we get dense clusters and in the case of a mixture of
reversible and irreversible interaction (two opposite patches, which are irreversible),
the structures vary from single chain-like to bundles of chains to network-like struc-
tures. For patchy particle systems, the analysis of the final structure also present
difficulties, because of its complex nature.

Protein aggregation is a phenomenon where a protein loses its native confor-
mation leading to aggregation. Protein aggregation is important area of research
because many of the human disorders like Alzheimers, Parkinsons disease etc. are
induced by protein aggregation. The three main kinds of the observed aggregates
are: fibrils, amorphous aggregates and soluble oligomers [22]. Protein aggregation
is a complex phenomena and various mechanisms have been proposed. It has been
proposed that proteins could be modeled using patchy particles. In the present con-
text, comparing with the figure 1.2, we see that many aggregate structures observed
in the protein aggregation could be achieved using patchy particles.

In this thesis, we introduce a spherical patchy particle model inspired from Kern
and Frenkel [9] and Giacometti [15], and use a modified version of Brownian Cluster
Dynamics simulation [23] to study the irreversible aggregation through patches.
The areas we would like to explore from the point of view of short range attractive
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Figure 1.2: Some of the different aggregate structures obtained using our model.

potential are:

1. Irreversible aggregation through patches

2. The kinetics of the patchy aggregation

3. Possibility of extension of the system to model polymeric protein binding and
aggregation

Outline of the thesis

In Chapter 2, a brief literature survey is presented in which the basic theories and
the developments related to this work are discussed.

In Chapter 3, we introduce our patchy model and simulation technique.

In Chapter 4, to verify the validity of our model, we explore static and dynamic
properties of single polymer chains - the simplest structure obtained from our model.

In Chapter 5, we present our efforts to understand the patchy aggregation reac-
tion, by studying the simple case of dimerization.

Chapter 6 concludes the thesis and present future directions to be explored.



Chapter 2

Self assembly of particles
through short range potentials

Colloidal particles under the influence of attractive forces form aggregates, which
grow with time. The basic parameters used to explain the aggregation process
and its kinetics include the interaction parameters such as strength, direction and
range, and concentration of the particles. By varying these parameters, different
regions in the phase diagram of the system could be studied. Figure 2.1 shows the
representative phase diagram for hard sphere colloidal systems. In the case of long
range interactions, there exists a triple point where all the three phases coexist. For
the short range interactions, the gas and crystal phases coexist and we also find a
metastable liquid-liquid phase separation [24]. Various works can be found in the
literature devoted to study of aggregation process and aggregate characterization
such as [25], [26] etc.

Figure 2.1: Schematic phase diagrams of (a) hard spheres, (b) hard spheres with
long range interactions and (c) hard spheres with short range interactions. In the
figures, C represents crystal, F fluid, G gas and L liquid respectively, and φf and
φm represent the freezing and melting transitions respectively. Image taken from
[24].

The microscopic state of a colloidal system could be explained using a Hamil-
tonian in terms of the position and momenta of the constituent particles. The
kinetic energy of the system can be calculated from the momenta, but a well be-
haved potential energy term is needed to construct and evaluate an equation of
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motion, which evolves in time and provides with the properties of the system. This
potential energy term plays a role on the form of equilibrium distribution function
of the particles in the system. The importance of the distribution function and its
moments is its measurability from scattering experiments. For the simplest case
of hard sphere systems, the important features of the potential are the hard core
repulsion when hard spheres come too close and the short range attraction. It is
these abrupt changes in the potential that results in the short range order in a given
phase. For colloidal particles, the interaction range is small compared to the size
of the particle and hence the number of interacting particles becomes limited. This
makes the system easier to study. In this thesis, we will focus on the aggregation
of hard sphere particles interacting through short range potentials.

2.1 Short range isotropic interaction

Spontaneous formation of ordered structures from randomly distributed entities
such as atoms, molecules, colloidal particles etc., termed as self assembly is one
of the basic areas of current research. The term isotropic means that the interac-
tion potential is spherically symmetric around the basic entity under consideration,
which is usually spherical for facility. For an aggregation process, there are two cases
based on the nature of the interaction - whether it is reversible or irreversible. For
reversible case, the system always tends to attain a maximum stable state (thermal
equilibrium) through restructuration. This minimizes the free energy and hence
they are termed thermodynamically driven systems. For the irreversible case, the
aggregate structures formed are not equilibrated at any time. Since there is lim-
ited possibility of reorganization after the aggregation, the system is termed as
kinetically driven.

2.1.1 Reversible aggregation

This case occurs when the thermal energy is of the order of the intensity of the
potential, leading to fragmentation or bond breaking of already formed clusters.
Reversibility plays an important role on the structure of the aggregates since the
particles rearrange to attain a minimal free energy configuration.

In simulation, the usually employed pair potentials include square well, Lennard
Jones, Baxter and Yukawa models. Figure 2.2 describes square well potential for
hard spheres. The particle diameter is d and the well width (ε0) is expressed in
terms of the diameter of the particle. The potential energy of this system is given
as

u(rij) =















∞ , rij < d

u0 , d ≤ rij ≤ d · (1 + ε0)

0 , rij > d · (1 + ε0)

(2.1)

where, rij is the distance between the interacting particles i and j and u0 < 0 is
the potential energy in the well. For a simple closed system having a N0 particles
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in a volume V at a temperature T acting through pairwise additive potential, the
equation of state can be written as a power series in terms of the number density
C0 = N0/V as

P

C0 · kB · T
= 1 +

∞
∑

i=2

B∗
i (T ) · Ci−1

0 = 1 +
∞
∑

i=2

Bi(T ) · φi−1 (2.2)

φ = C0 · v0 is the volume fraction of the particles, v0 is the volume of one particle
and kB the Boltzmann constant. The temperature dependent parameters B∗

i (T )

are the so called the virial coefficients and Bi(T ) = B∗
i (T )/vi−1

0 , the dimensionless
reduced virial coefficients.

���
���
�

�
�

�
�

�ε
0

 

�

Figure 2.2: Potential energy diagram for a square well system.

Different systems can have different shapes for the potential energy curves but
their phase diagrams have some similarities. Van der Waals pointed out the simi-
larity in thermodynamic properties of simple gases, when expressed in terms of the
reduced variables compared to their critical point. Later, Noro and Frenkel [27]
extended this law of corresponding states as: short range attractive potentials (up
to ε0 = 0.1) are characterized by the same thermodynamic properties if compared
at the same reduced density and second virial coefficient (B2). The thermodynamic
state does not depend on the shape of the potential energy curve. This means that
a combination of different u0 and ε0 can give the same thermodynamic equilibrium
state, when B2 is kept constant. This concept helps the close comparison of the
different works in the literature. Babu et al. [28] reported that this law holds up
to ε0 = 0.1 in the case of square well fluids.

The B∗
2 parameter is given as

B∗
2(T ) = −2 · π ·

∞
∫

0

r2 ·
[

exp

(−u(r)

kB · T
− 1

)]

· dr (2.3)
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For a spherical hard core square well system, B2 is the sum of the excluded volume
repulsion and the square well attraction.

B2 = Brep − Batt (2.4)

The repulsive part has been calculated to be Brep=4 and Batt can be expressed in
terms of ε0 and a function of the interaction potential u0[29].

Batt = 4 ·
[

exp

( −u0

kB · T

)

− 1

]

· [(1 + ε0)3 − 1] (2.5)

The equilibrium states of a reversibly aggregating system depends on the volume
fraction (φ) , interaction energy and the interaction range. We take the particular
case of hard spheres interacting through an isotropic square well potential. See
figure 2.3 for the state diagram, the shape of which could be directly compared to
that in figure 2.1(c).

Figure 2.3: State diagram of hard sphere square well system with ε0=0.1 and
varying well depths. Batt is the attractive part of B2. The circles represent liquid-
crystal phase transition, diamonds indicate the percolation point and the broken
lines represent the metastable liquid-liquid phase separation. Image adapted from
[30]

Reversible aggregation leads to formation of transient clusters or a phase sep-
arated system or a percolating network depending on Batt and φ. Four different
regions can be identified in the phase diagram on the basis of coexistence lines and
the percolation line, below which spanning clusters are formed. At low concentra-
tion, for weak attraction finite clusters are formed (region I) and strong attraction
leads to phase separation (region III). As the concentration increases, the small
clusters formed start to grow and interpenetrate leading to percolation (region II)
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where the percolating clusters are transient. Stronger attraction leads to temporary
gels, which ages and finally phase separates (region IV).

In the absence of any attractive potential, the hard core repulsion causes the
system to crystallize at higher volume fraction due to the increased configurational
entropy (see figure 2.1 a). At low potentials, the liquid state is stabilized by the weak
interactions and the coexistence gap is narrowed. As the interaction strengthens,
the lower volume fractions get unstabilized and a transition to denser crystalline
phase occurs at higher volume fractions. For a broad range of volume fractions from
0.05 to 0.4, the coexistence curve is situated around Batt=7. Crystallization occurs
in two ways - nucleation and growth type and spinodal decomposition type[24]. At
higher Batt liquid droplets are formed, which undergoes restructuration to form a
crystalline seed, which then grows in time. In the region between the coexistence
curve and the liquid-liquid curve, it is difficult to observe crystallization in a rea-
sonable time unless some seeding is done. The liquid-liquid curve is metastable in
the case of short range interaction and hence the system always crystallizes. For
strong attraction and higher φ, a percolating network may form. As time passes,
particles get detached from the dangling ends and get added to the network thick-
ening the strands and finally the gel is destroyed resulting in phase separation. In
the beginning this process is very similar to spinodal decomposition. In both cases,
finally, a single crystal should form. In practice, it takes quite a long time in the
case of strong interactions and hence is not generally observed.

There are many ways to slow down or prevent crystallization in the coexistence
region. One method is to make the bonds rigid [31], which tremendously slows
down the reorganization inside clusters. Another method is to introduce polydis-
persity in the system [32, 33]. Depending on the type and amount of polydispersity
introduced, crystallization could be slowed down or completely suppressed [34].
Suppressing crystallization makes it possible to observe another region liquid-liquid
curve in the phase diagram, where liquids of different densities coexist.

If neither liquid-liquid phase separation nor crystallization occurs at higher con-
centrate, we get virtually dynamically arrested homogeneous systems containing
disordered liquid phase. Colloidal glass comes under this region [35]. One way to
achieve this is to restrict the number of sticky contacts between particles [35]. This
could be done using two methods: by limiting the valency, where the number of
sticky contacts per particle is limited irrespective of the position of the participat-
ing particles (if more particles are in the interaction range, only a fixed number
of randomly selected contacts are considered sticky and the rest is excluded from
the internal energy calculation); or by using directional interactions, also termed as
patches (see section 2.2). This makes the coexistence line shift towards the lower
concentration and frees up a homogeneous region with strong interaction and high
φ. It is in this region where studies have been going on for attractive glass [36].
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2.1.2 Irreversible aggregation

The kinetic approach for irreversible aggregation was introduced by von Smolu-
chowski [37, 38]. The reaction mechanism of irreversible aggregation could be sim-
ply represented as an addition reaction between clusters Ai and Aj of aggregation
numbers i and j respectively. The mechanism could be simply written as

Ai + Aj
Ki,j−−→ Ai+j (2.6)

where, Ki,j is the rate of the aggregation for clusters made of i and j particles
respectively. Here, there are two limiting conditions based the probability that two
particles stick together on collision (α0). When α0=1, every collision leads to bond
formation and when α0 ≪ 1, a large number of collisions are required before a
bond is formed. When α0 = 1, the reaction is controlled only by the diffusion of
particles and hence is termed as diffusion limited cluster aggregation (DLCA) and
when α0 ≪ 1, it is known as reaction limited cluster aggregation (RLCA).

Following the chemical equation 2.6, the temporal evolution of a distribution of
cluster sizes could be calculated [37, 39, 40]. The total change in the clusters with
m = i + j particles can be written as

dCm

dt
=

1

2
·
∑

i+j=m

Ki,j · Ci · Cj − Cm ·
∞
∑

i=1

Km,i · Ci (2.7)

where Ci is the number density of clusters made up of i individual particles. The
second term in this equation stands for the loss of the m-mer due to further aggre-
gation with any i-mer.

In the DLCA case, the analytical derivation of Ki,j was carried out by von
Smoluchowski [37, 38] for very low concentrations. Here, the distance between
particles/clusters is much bigger than their size and they show free Brownian motion
between collisions. The dilute condition limits the reaction to binary collisions. All
these conditions together constitute the flocculation regime. Under flocculation
conditions and assuming that clusters should be within a certain radius of influence
called collision radius (Rcol,i) to interact, we have

Ki,j = 2 · π · (Rcol,i + Rcol,j) · (DT
i + DT

j ) (2.8)

where, DT
i is the translational diffusion coefficient for a cluster with aggregation

number i. Here, the sum term with collision radius is used to calculate the average
collision radius of different interacting particles. The sum term with diffusion coef-
ficients accounts for the relative motion of interacting clusters. In the case of a hard
sphere square well potential, Rcol,1 = d ·(1+ε0). DT

i is related to the hydrodynamic
radius Rhi

by the Stokes-Einstein equation

DT
i =

kB · T

6 · π · η · Rhi

(2.9)
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where, η is the viscosity of the solvent medium. Assuming that Rhi
∼ Rcoli , which

is reasonable, we have

DT
i · Rcol,i = DT

1 · Rcol,1 , i = 1, 2, 3... (2.10)

We make another assumption that Rcol,i = Rcol,j , (all interacting species have
identical dimensions) which is not very realistic. This gives

Ki,j = K1,1 = 8 · π · DT
1 · Rcol,1 (2.11)

Using this relation, equation 2.6 can be solved analytically to get number density
of m-mer at any time t for an initial particle density C0 as [40]

Cm = C0 ·

(

K1,1

2
· C0 · t

)m−1

(

1 +
K1,1

2
· C0 · t

)m+1 (2.12)

From this equation, the kth moment of distribution could be calculated as

Mk ≡
∞
∑

m=1

mk · Cm (2.13)

From here, the number average aggregation number(mn = M1

M0
) and the weight

average aggregation number (mw = M2

M1
) could be obtained.

mw ≈1 + K(1, 1) · C0 · t (2.14)

mn ≈1 +
K(1, 1)

2
· C0 · t (2.15)

The polydispersity index is given as PDI = mw/mn. In the flocculation regime,
after an initial aggregation period, PDI becomes stable and PDI = 2. A detailed
study on the binary reaction will be presented in chapter 5.

However, with these set of equations it is not possible to explain successfully the
RLCA process. So, new kernels were introduced, which take care the probability
of bond formation or in other words, the correlated collision leading to a bond
formation [41].

Irreversible aggregation leads to formation of self similar structures. The radius
of gyration of cluster Rg is related to the aggregation number m through the fractal
dimension df by the following equation [25, 26].

m ∝ Rdf
g (2.16)

For the flocculation regime in DLCA, df has been found to be around 1.8 and
for RLCA this value comes around 2.1 [26]. This means that RLCA clusters are
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denser than DLCA ones. This is directly understood, since particles can explore
the interior of the cluster in RLCA, leading to densification of the cluster. In the
case of DLCA, a variation with “slippery bonds” has been proposed, where bound
particles can move freely within the interaction range without breaking the bonds
[42, 43]. Aggregates formed in this way are denser than aggregates formed by the
classical “rigid bond” type, where particles link on contact and do not rearrange
after. Even though both of these models ends up having similar fractal dimension,
the local structures and hence the prefactors in equation 2.16 differ. The average
coordination number varies, which is 2 for the rigid DLCA and is found to vary for
the slippery DLCA depending on φ (this depends also on the interaction range for
the slippery case) [31]. Also, we can see a slowing down of the aggregation process
due to the restructuration in the case of smaller φ. Restructuration continues until
a maximum number of bonds are formed without breaking any existing bonds.
Restructuration time varies depending on the cluster size. For dilute cases, clusters
undergo complete restructuration before their next collision, leading to a slowing
down of the kinetics. For high volume fraction cases, the kinetics is enhanced due
to the flexibility [42].

2.2 Directional interactions

Searching for key forces behind the versatility of materials in nature leads to di-
rectional interactions. Directional interactions result in the organization of basic
building blocks in to more sophisticated ordered arrangements, which is termed
as self assembly. Self assembly is of great importance in biological sciences and
various studies are still in progress to understand the process through biomimetic
approaches [44]. Also, the self assembly of viruses has been of great interest [45].
These studies of selective binding and assembly are quite helpful in the process of
drug discovery and in medicine. The classical self assembly examples are formation
of micelles, aggregation of block co-polymers in solution, etc., which are guided
by different interactions present in the system. Now, supra-molecular chemists are
trying to come up with exotic molecular structures with specific interaction sites
as the building blocks to get a desired self assembled structure for new advanced
functional materials.

The process of self assembly is not restricted to molecular level. When appro-
priate conditions are met, systems with various sizes ranging to nano and micro
scales are shown to follow self assembly [46]. This opens up a better insight in to
the process, since this can be easily studied using microscopic techniques available
now, whereas monitoring the molecular level is still under development. Another
possibility is versatility in shape that could be produced using novel methods, which
is difficult to achieve using synthetic atomistic methods. So is the case for tuneabil-
ity of the interactions and the interaction sites on the basic building block. As the
size becomes large compared to molecular scale, the choice of selection of the mate-
rial, interactions and its parameters also increases, simplifying bonding restrictions
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at the molecular scale. For atomic scales, the interactions are usually medium to
long ranged (at their length scale) and the highly symmetric low energy structures
(global minima) are formed in abundance. For colloids, short range interactions
come in to play and the yield of an expected structure becomes entropy limited and
hence the amount of highly symmetric compact structures formed becomes lesser
[47, 48]. At microscopic colloidal level, the motion of the particles is described
as Brownian (see equation 2.9). Even though studying colloidal aggregation helps
understanding the mechanism, it is limited by the fact that the larger the size,
higher is the time the particle takes to diffuse and hence increased defect in result-
ing structures. Also, introduction of patches results in a change of the aggregation
kinetics from the well studied isotropic case. Hence in the case of targeted assembly,
the expected structure should be thermodynamically stable and at the same time
kinetically accessible [49].

In practice, there are two ways to study the association of patchy particles.
Experimentally, patchy particles are fabricated using the various methods available
and their aggregation behavior in solution is studied. Figure 2.4 shows some of the
various physical and chemical methods available for fabrication of patchy particles
of which template assisted methods are used mainly for creating one patch and
offers a better yield [3]. Each method has its own advantages in terms of easiness
of preparation and scalability, while the separation and the transfer to the media of
interest cause some issues. Another main issue is in terms of the size and accurate
positioning of the patch. Another method is simulation and modeling studies. In
both of these methods, the basic principle for creation of the particle is decorating
the surface of a colloidal particle so that a difference in the interaction is achieved
in some regions of the surface. In the modeling approach, besides the directional
interaction due to the shape of the basic particle, patchiness could be introduced
in the following methods

I Building small clusters of particles to constitute the basic shape and assigning
different interaction potentials to some of the chosen spheres at specific loca-
tions on the surface of the particle. Being able to make different basic shapes
as the advantage, the increased number of the particles in the system causes
computational slowing down. This method has been used in [2].

II Positioning small spherical square well patchy regions on the surface of the
basic particle. The size, number and position of the patch could be varied. This
method is quite popular and was also used to model small chemical entities like
water and also to study the formation of colloidal gels. [50, 51, 52, 53]

III The sticky patchy sphere with a conical square well potential on the surface of
the sphere, with the cones originating from the center of the particle. Here the
patch number, size, potential type and range could be varied.[54, 55, 9]

IV Considering the continuous potential in nature, patch directors are specified
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Figure 2.4: Different routes to fabricate patchy particles. a) Templating - a1)
Schematic of emulsion technique and epifluorescent microscope image of single
patch particles obtained from the emulsion technique and a2) Schematic of elec-
troless deposition technique and SEM image of 2.4mm polystyrene particles with
silver coating. b) Colloidal assembly - colloidal clusters with n=2-5 prepared from
emulsion of a mixture of silica particles with 800 and 12nm diameters. c) Par-
ticle lithography - schematic of particle lithography technique and resulting 1mm
amine-functionalized silica particle with a single patch obtained after sequential
coating with 10nm polystyrene particles and 84nm sulfate polystyrene spheres. d)
Glancing-angle deposition - d1) Schematic of sequential vapor deposition process
performed on same hemisphere and SEM image of resulting polystyrene patchy
particle with overlapping patches; and d2) Schematic of combined PDMS stamping
and sequential GLAD technique and SEM images of two-pole polystyrene patchy
particles with 25 and 11 percent patches. e) Nanosphere lithography - schematic
of nanosphere lithography technique and resulting 520nm silica particles with gold
patches in the second layer of the colloidal crystal (scale bar: 0.5mm). f) Capillary
fluid flow - schematic of capillary fluid flow technique and confocal laser scanning
microscopy image of triphasic particles obtained (scale bar: 8 mm). Image and
caption taken from [3].
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for the basic particle and the potential is modified such that it changes with
the alignment of the patch directors.[56]

This could be pictorially represented, as in figure 2.5. It is shown that positioning
patches at appropriate positions and at appropriate conditions leads to predictable
assemblies like rods, sheets, polyhedra etc. [2]. Fine tuning of the interaction could
be achieved by varying the selectivity of the interaction, which is quite essential
in the case of protein modeling. Selectivity results in structures, which may seem
identical from a macroscopic point of view, but may differ in their internal struc-
ture, symmetry and energy. This can be easily represented for the case of a two
patch particle, see figure 2.6. For different kinds of interaction, the overall external
appearance is the same for dimers and tetramers, but in terms of symmetry they
are different and also the internal energy may differ.
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Figure 2.5: Methods used to model spherical patchy particles. Basic colloidal
spheres are colored red and the attractive patches are represented in purple. (a)
Clusters of spheres with some spheres at specific positions acting as patches. (b)
Spheres decorated with spherical square well patchy sites. (c) Spheres with a conical
patchy interaction volume, where the cone originates at the center of the particle.
(d) Alignment dependent patches, where the interaction potential varies with re-
spect to the patch directions, indicated by the purple vectors. Image taken from
[57].

2.2.1 Reversible aggregation

While modeling aggregation, for simplicity, it was always taken care: 1. not make
any double bonds between particles, 2. avoid multiple bonding through patches
and 3. avoid cyclization.

This has direct outcomes in thermodynamical calculation of the system proper-
ties. Under these limits, Wertheim [59, 60, 61] used perturbation theory to obtain
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Figure 2.6: Effect of selectivity: Top image shows how the selectivity of the patchy
interaction changes the resulting structure and symmetry and bottom image shows
various bonding possibilities for a one patch and two patch systems. Images taken
from [58] and [12] respectively.

the free energy of the system using the bonding probability, which is seen as the
ratio of the number of bonds present in the system to the total number of bonds
that is possible [11]. Using this theory for a two oppositely placed patch system,
the number density of a chain having m monomers was calculated to be

Cm = C0 · X2 · (1 − X)m−1 (2.17)

where C0 is the initial particle number density and X is the fraction of sites that
are not bonded, which could be calculated as X = 1/(1 + 2 · C0 · X · ∆). Here
∆ is a term having dimensions equivalent to the B∗

att (the attractive part of B∗
2 ,

which has a dimension of volume) and accounts to all possibilities of a single
patch-patch interaction. Under low φ conditions, it could be approximated as
∆ = Vb · [exp(−u1/(kb · T )) − 1], where Vb is the interaction volume and u1 is the
intensity of the patchy interaction. The bond probability is simply given as 1 − X.
Using this method, we have the simple relation mn = 1/X. Combining Wertheim
approach with Flory-Stockmayer theory, a generalized model for patchy particles
to find the cluster size distribution and the extent of reaction has been carried out
by Tavares et al. [62].

The bond probability at the liquid-gas critical point is shown to have more im-
portance as it could be used for extending the law of corresponding states to patchy
systems under Wertheim conditions [63]. For the Kern-Frenkel model without any
valence limitations, Batt is given by [9]

Batt = χ2 · [(1 + ε1)3 − 1] · [exp(−u1/(kB · T )) − 1] (2.18)
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where, χ is the fractional surface coverage of the patch. Here Batt is influenced by
the surface coverage of the patch and the interaction range in opposing ways to have
a constant Batt. Hence, it becomes difficult to scale the critical points only on the
basis of Batt. The authors argue that the bonding pattern plays an important role,
which is statistically identical for each patchy class at corresponding conditions.
They conclude that for a system with given number of monovalent patches, it is the
bond probability and not the Batt that is constant at critical conditions [63].

Figure 2.7: Effect of valency in a two patch Kern-Frenkel system at low temper-
atures: Maximum valency is tuned by changing the coverage of the patch. (a)
Maximum valency=1. Polydisperse chains are formed. (b) Valency=2. Planar
structures are formed. (c) Valency=3 and (d) valency=4 give stacked planes with
different particle arrangements. Image taken from [15].

For patchy systems, the density of the aggregate depends on the number of
patches, the size of the patch and the valency [15, 64]. With decreasing number
of patches, the liquid-gas critical point shifts towards lower φ and higher Batt,
similar to the behavior observed for the restricted valency model in the case of
isotropic interaction [35]. Thus with smaller number of patches and coverage, it
becomes possible to reach liquid states, where the density becomes vanishingly
small. These are termed as empty liquids, and recently it has been shown to exist
by experimental methods [51, 21]. So is the case for the patch coverage in the case
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of Kern-Frenkel models - the critical points shifts towards slightly lower density
and temperature. Systems with tetrahedrally placed patches were studied for their
similarity to produce diamond like crystals and the interaction range was found to
be not a limiting factor for the nucleation of a crystal [19]. For higher coverage of
patch, it was found that liquid phase is stabilized by higher valence [15]. For the two
patch case, by setting a maximum valency per patches and by varying the coverage,
it was shown to aggregate (see figure 2.7) from interconnected planes (maximum
valency 4 and 3 ) to simple planes interacting though excluded volume interactions
(valency 2) to polydisperse chains (valency 1). Apart from coverage, the relative
placement of patches were found to have lesser effects than the number of patches,
but the effect is still visible on the critical values [65]. These structural differences
in the assemblies could be clearly seen in the phase diagram. See figure 2.8 for
an example phase diagram of Kern-Frenkel type particles with four tetrahedrally
placed monovalent patches.
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Figure 2.8: Phase diagram of spherical particles with tetrahedrally placed mono-
valent patches in as a function of number density C0 and temperature T in terms
of kB · T for a relative interaction range ε1 = 0.24. The blue circle is the critical
point, the gas-liquid coexistence line is shown with dashed lines. DC represents
diamond cubic, FCC : face centered cubic, FCC-d : disordered FCC and BCC :
body centered cubic. Image taken from [19].

2.2.2 Irreversible aggregation

Irreversible aggregation can be simply seen as polymerization reactions, where the
number of patches corresponds to the functionality of the monomer. Since the
aggregation is not one by one addition of monomers, step growth polymerization
theory is applicable. The theory of linear step growth polymerization is mainly
based on the works of Carothers [66, 67] and Flory [68]. Their theory was based
on the principle of equal reactivity ie. the reactivity of the end groups does not



2.2. Directional interactions 19

depend on the chain length. Also, they did not differentiate between the kinetically
controlled and thermodynamically controlled polymerization reactions and loop for-
mation was neglected [69]. The formation of loops/cycles has been studied later by
many groups experimentally and by simulation [69, 70, 71, 72].

For simplicity, we will discuss only the linear polymerization, which corresponds
to aggregation of a monovalent patchy particle having two patches. Here the term
monovalent is used to denote the valency of the patch and the total bonds that could
be formed by a particle (functionality) is the product of the valency of the patch
and the number of patches. The easiest way to visualize the mechanism of a step-
growth polymerization is a group of people reaching out to hold their hands to form
a human chain, where the two hands of each person stands for the functionality.
There is also the possibility to have more than two functionalities, which lead to
branched polymers. In step growth polymerization, chains build up slowly and there
is only one reaction mechanism behind the polymerization. The chemical reaction
for step growth polymerization is similar to the cluster aggregation process and the
general scheme of step growth homo polymerization for a bifunctional system could
be written as

XAX + XAX−(XAX)n−XAX −−→ XAX−(XAX)n+1−XAX (2.19)

where X is the functional group. In the case of polymerization, the number of
unreacted functional groups in a chain remains the same at all times. This is based
on the assumption that a functionality reacts only once and no loops are formed in
the course of the reaction.

Under these conditions, the extent of the reaction or the fractional conversion
at any given time is given by

p =

∑

(m − 1) · Cm

C0
= 1 − Ct

C0
(2.20)

where Cm is the number density of polymer chains made of m monomers, C0 the
initial number density of chains and Ct is the number density of chains at the given
time t.

To calculate the distribution of chain lengths, the conditions of equi-reactivity is
imposed, meaning all the functionality are equally reactive, irrespective of the size
of the chain to which it belongs to. The chain length distribution can be calculated
as follows:

1. A chain of length m has (m − 1) fully reacted monomers and two unreacted
chain ends, which is equivalent to a single unreacted monomer.

2. The probability that a randomly selected monomer is fully reacted is p. In
the chain, the probability of finding (m−1) reacted monomers is then p(m−1).
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Figure 2.9: Schematic representation of polymer chains with different lengths start-
ing from a bifunctional monomer, m=1. For each m, there is m − 1 bonds and one
unreacted functionality at each chain end. According to equireactivity principle, all
the unreacted chain ends are equally reactive.

3. The probability of finding an unreacted species is given by (1 − p). Note that
there is no term associated with m, meaning that all the chains are equally
reactive.

Combining these, we get the probability of finding an m-mer as

fm = p(m−1) · (1 − p) (2.21)

and the number density of m-mers in the system at a given time can be calculated
as

Cm = Ct · p(m−1) · (1 − p) (2.22)

which in turn by substitution of Ct = C0 · (1 − p) from equation 2.20 gives

Cm = C0 · p(m−1) · (1 − p)2 (2.23)

We have already seen the expression for number average aggregation number, which
could be recovered as

mn =

∞
∑

m=1
m · Cm

∞
∑

m=1
Cm

=

∑∞
m=1 m · C0 · p(m−1)(1 − p)2

Ct
=

1

1 − p
(2.24)

using the relation
∞
∑

m=1
m · pm−1 = 1/(1 − p)2. Similarly, using the relation

∞
∑

m=1
m2 · p(m−1) = (1 + p)/(1 − p)3, the second moment, the weight average aggre-
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gation number can be calculated to be

mw =

∞
∑

m=1
m2 · Cm

∞
∑

m=1
m · Cm

=

∞
∑

i=1
m2 · p(m−1)

∞
∑

i=1
m · p(m−1)

=
(1 + p)

(1 − p)
(2.25)

The polydispersity index, PDI, is given by

PDI =
mw

mn
= 1 + p (2.26)

and we see that initially when p = 0, PDI = 1 and as the polymerization proceeds,
the value slowly increases to the maximum possible value of 2.

The kinetics for the polymerization reaction can be derived considering that no
catalyst is participating in the reaction or the catalyst is external. It means that
the concentration of catalyst is constant at all times. Assuming equi-reactivity of
the Ct species, the rate of polymerization can be written as

− dCt

dt
= kp · N2

c (2.27)

where kp is the rate constant. Rearranging followed by integration and substituting
the initial condition that at t=0, Ct=C0 gives

C0

Ct
− 1 = kp · N0 · t (2.28)

Recalling the equation 2.20 we get

1

1 − p
= mn = 1 + kp · C0 · t (2.29)

This solution could be directly compared with the solution for Smoluchowski’s
equation and it could be showed that the kinetic solution is equivalent to the prob-
abilistic approach [73] while there are no diffusion effects.

2.2.2.1 Diffusion effects

The principle of equal reactivity is based on the idea that only the reactive chain end
needs to diffuse and collide with other reactive sites and does not require the motion
of the entire chain [68]. It is also estimated that in the case of typical polymerization,
only one in the 1013 leads to the reaction [68]. This is valid for the fully flexible
polymers where to some extends the diffusion of chain ends can be compared to
that of freely moving monomers. In cases where the chains are far apart (in case
of very dilute systems) and for highly entangled systems (concentrated systems),
this approach starts to fail. In the first case, the chain ends become isolated by the
distance and in the second case by the caging of unreactive polymeric parts. Also,
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as the reaction proceeds the number of chain ends becomes lower and hence the
system experiences a limitation due to diffusion.

For rigid rod-like polymers, the segmental diffusion theory becomes invalid,
hence the effects will be more pronounced. The diffusion effects in step-growth
polymerization has been studied both experimentally and theoretically [74, 75, 76,
77, 78, 79, 80] because of the commercial importance of such polymers due to
their high mechanical properties. Kline et al. [81] studied the enzyme catalyzed
esterification reaction under solvent free conditions and noted that the PDI is
initially increasing to reach maximum value and then decreases. This behavior was
attributed to the diffusion limitations, which limit the formation of longer chains.
A similar evolution was noted by Guzman et al. [80] and the subsequent increase in
the PDI was explained as due to the concentration effects, which outweigh diffusion
limitations. This occurs when the chain length distribution becomes narrow and
the concentration of the average length becomes maximized.

Using Smoluchowski approach, the effective rate constant of the system can be
seen as the sum of a diffusional part and an intrinsic bond probability part, which
could be expressed as [80]

1

kp
=

1

kint
+

1

Ki,j
(2.30)

where kint is the intrinsic term and Ki,j is the diffusivity term. As in the Smolu-
chowski approach for cluster aggregation, the diffusional part is composed of a
diffusivity term and a trapping radius of the reacting chains (see equation 2.8). For
an ideal polymer chain of length m, the trapping radius is equal to the radius of
gyration and for an ideal chain Rcol,i ∝ √

m [82]. The diffusivity varies with the
chain length and depends on the system conditions whether the chains are entangled
or not. For dilute conditions (Rouse dynamics), it is calculated that DT

m ∝ 1/m

and for concentrated conditions (entangled system), the chains move by reptation
and DT

m ∝ 1/m2 [82]. In the absence of diffusion limitations, PDI increases lin-
early with conversion as seen before. In the case of diffusion limitations, PDI goes
through a maximum and reaches a final value somewhere around 1.27 to 1.3. For
higher rigidity of the chain and branching, PDI is expected to go below 1.27 [80].

2.2.2.2 Cyclization

Cyclization is the main side reaction of step-growth polymerization. Stepto et al.
[83, 72, 84] and Gordon et al. [85] studied the effect of cyclization and concluded that
it can compete with chain growth irrespective of the conversion and concentration.
Mathematical analysis of irreversible systems were carried out by Ercolani et al.
[86]. For single chains and for polymerizing systems, various simulations [70, 71, 87]
and analytical studies [88] can be found in the literature. Generally, as the dilution
increases, the more the chances to form cyclic structures. This can be explained -
when the chains become far apart, chain ends explores the volume around chains
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which they belong to until they react to form a loop [69]. The size of the cycles
depends on the flexibility and the concentration and cyclization always compete
with chain growth and theoretically, the 100% conversion should give cycles.

The main consequence of cyclization is seen in the chain length distribution.
Here the classical equations becomes no longer valid and the competition between
cyclization and chain growth varies with concentration. In this scenario, the modi-
fied conversion (p′) for the chain growth can be written as

p′ = 1 − 1 − p

1 − wc
(2.31)

where, wc is the total weight fraction of the cycles. The ratio of cyclization to linear
polymerization can be expressed as [89]

cyclization
linear polymerization

=
kc · Ct

kp · C2
t

=
kc

kp · ct
(2.32)

where kc is the rate constant for cyclization. Here kp does not change under the
equal reactivity assumptions, but kc decreases with increasing chain length.

2.3 Combined isotropic and directional interactions

Conceptual modeling of globular proteins using patchy particles was introduced by
Sear [90]. He used hard sphere systems with repulsive cores and a fixed number
of patches so that the pair potential becomes the sum of the repulsive part and
the attractive patchy part. Addition of a weak isotropic attraction with the patchy
system results in more resemblance to actual protein systems [91, 56] and poly-
merization reactions. See figure 2.10 for representative potential energy curves of a
patchy square well system. Here, the isotropic attraction makes appear the liquid-
liquid coexistence curve for the two patch case and helps form bundles of chains.
These two interactions could be independently varied to observe the various parts
of the complex phase diagram, where different crystalline phases are observed. A
Kern-Frenkel type system was shown to have a crossover from the isotropic fluid to
patchy fluid as the patchy potential increases under single bond per patch conditions
[92]. For this model, the expression for Batt could be written as [92]

Batt = 4 · [(1 + ε0)3 − 1]·
[

χ2 ·
(

exp

(

− u0

kB · T
− u1

kB · T

)

− 1

)

+ (1 − χ2) ·
(

exp

(

− u0

kB · T

)

− 1

)

−
(

(1 + ε0)3 − (1 + ε1)3
)

·
(

exp

(

− u0

kB · T

)

− 1

)]

(2.33)

where, ε1 is the relative well width and u1 is the well depth in the patchy region
when no isotropic interaction is present. This expression accounts for all the possible
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configuration of the particles. Note that the potential in the patchy region is the
sum of isotropic and anisotropic contributions. When the behavior changes to more
patchy, the general assumptions for phase separation becomes no longer valid and
the critical parameters becomes a function of the number of patches, their coverage
and potential [65, 92] and hence no law of corresponding states has been found for
these kinds of systems.

Figure 2.10: Potential of a square well Kern-Frenkel pair. The dashed blue curve
represents the isotropic interaction with a relative well width ε0. The yellow curve
represents the patchy interaction with a relative well width ε1. The thin red curve
is the sum of both interactions.

For the irreversible aggregation through patches, no explicit studies have been
found in the literature. Here, the effect of isotropic interaction could be interpreted
as the influence of solvent quality on irreversible step growth polymerization. In
this thesis, we will focus on the aggregation of a square well two patch system with
a secondary isotropic interaction with both interactions having the same interaction
range.



Chapter 3

Model and simulation details

Computer simulations are used as alternative methods to solve problems, where an-
alytical approach becomes difficult. At present, computer simulations have become
a well established tool, which brings together the study of microscopic and macro-
scopic systems. This quick growth and interest in numerical simulations are because
of its ability to study complex systems and better insight to the details, otherwise
difficult by analytical or experimental methods. Various computational simulation
methods exist, each with its own advantages and drawbacks. In this section, we
will talk about major approaches used to study cluster aggregation and discuss in
detail our method. More general details about different simulation methods could
be found in books like [93, 94, 95, 96].

Cluster aggregation could be studied in two ways, depending on the nature
of interaction in the system. When the interaction range is short, we can have
well defined transient clusters made up of strongly interacting particles. For long
range interactions, the presence of numerous possible interactions make it difficult
to define a cluster and it becomes easier to study the concentration fluctuations of
particles (also called particle point of view). Both of these approaches are equivalent
and it is the observer, who decides whether to call two strongly interacting particles
performing correlated motion as a single transient cluster. In the cluster point of
view, particles move together as a transient cluster. In the particle point of view,
they move individually, but in a highly correlated manner. Theoretical studies
mainly use the particle point of view. Statistical mechanics is one of such methods,
which gives good results and predicts the relation with thermodynamic quantities.
Even though these studies give the properties of a system at a given state, we do
not get any information on the path or trajectory followed to reach there. At this
point, simulation studies can provide better insight.

Molecular Dynamics (MD) is one of the techniques using the particle concept,
which solves equations of motion to get the trajectory. MD assumes the system to
be ergodic i.e. time average is equal to ensemble average. The time scale in MD
can be directly compared with experiments. But, the presence of a large number of
solvent molecules in the system makes it difficult to reach the equilibrium conditions
for strongly interacting systems (phase separating systems).

To mimic the particle’s Brownian motion resulting from collision with solvent
molecules, a random fluctuating force and a friction term were introduced, leading
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to Brownian Dynamics (BD). If hydrodynamic interactions are considered with BD,
the method is called Dissipative Particle Dynamics (DPD). BD method is generally
used to study systems reaching equilibrium very quickly. The absence of solvent
molecules permit simulations to reach longer times. BD is generally used to explain
diffusion limited process with negligible inertial effect.

For stronger interactions, the time needed for thermal equilibrium becomes out
of the accessible range for MD approaches. In this case, Monte Carlo (MC) simula-
tions can be used. MC methods with Metropolis algorithm could be used to study
binary phase transitions. Here a system of configurations are generated with some
probability distributions and the parameter of interest is obtained from statistical
estimates. Systems are allowed to jump from one state to another with Boltzmann
weights. This technique naturally converges towards thermal equilibrium. Since
time is calculated in MC steps, we do not obtain the dynamics nor kinetics.

In all these methods discussed above, we notice that they become limited in a
way that we only have either the thermodynamic equilibrium state at large times
(without obtaining dynamics) or the dynamics for short times. A compromise
between these limitations becomes possible by using our home developed simulation
method named Brownian Cluster Dynamics.

3.1 Brownian cluster Dynamics

Brownian cluster dynamics (BCD) is a simulation technique, developed in Polymers
Colloids and Interfaces laboratoty in the University of Le Mans. BCD is inspired
from the work of Meakin [97] and Kolb [98]. It does not try to solve the equations
of motion and is entirely based on a probabilistic approach. BCD is based on
the transient cluster point of view and could give information on the kinetics and
dynamics over a longer time scale. Initially, it was used on lattice [99, 100], but
now modified to be used on off-lattice conditions [101, 102, 103]. The off-lattice
BCD algorithm uses hard spheres (with diamter d) with an isotropic SW potential
around them with a relative well width ε0. The simulation usually starts with a
given configuration of the particles (usually randomly distributed) and allowed to
form aggregates. The time scale is defined as the time required for a particle to
travel a distance of its own square diameter. The basic algorithm can be written as
below

1. Initialize the positions of N0 particles in a cubic box of edge L.

2. Form random clusters of particles in range using a probability value P0 and
perform required measurements for initial simulation time, n = 0. Consider
we have Nc clusters formed in this step.

3. Perform small random displacements to the particles/clusters maintaining
cluster integrity. Here we have three choices as given by [23]
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(a) BCD1 - Select N0 times randomly a monomer and move it in a random
direction by a distance sT. sT should be small enough to recover the
Brownian behavior. This gives Rouse clusters, which are flexible.

(b) BCD2 - Randomly select Nc times a cluster and move the entire cluster
in a random direction retaining the bond integrity. The movement is
done over a distance of sT/

√
R, where R is the diameter of the cluster.

This gives rigid Zimm clusters.

(c) BCD3 - This is a combination of BCD1 and BCD2. First, BCD1 is
carried out, which moves the center of mass of the cluster. Then BCD2
is carried out in the same direction as for the change of center of mass.
This gives flexible Zimm clusters.

Note that in all of these movement steps, if an overlapping configuration
occurs after the movement, the motion step is rejected and the last positions
are retained.

4. Random cluster construction using a probability β0 for breaking the existing
bonds and α0 for forming non existing bonds, such that P0 = α0/(α0 + β0)

5. Measure the quantities of interest and increment the simulation time by one
(n = n + 1)

6. Return to step 3

The displacement step in BCD could be closely compared as an off-lattice ver-
sion of the Bond Fluctuation Model (BFM) [104]. The off-lattice setting helps to
effectively model the excluded volume interactions. Using this method, it was pos-
sible to obtain similar dynamics as that of the BD and similar predictions of phase
diagram and static properties to that of the MC methods [23, 28, 30]. Choosing
the values of α0 and β0 determines the reversible nature of the bond and it has
been successfully able to simulate Diffusion Limited Cluster Aggregation (DLCA)
[31]. Using BCD, we get information about the kinetics o aggregation as well as the
structure of aggregates. BCD can handle up to 106 particles during several hours
of physical time for micrometric colloidal particles in water at 20 ◦C. It must be
noted that using BCD, we can study out of equilibrium systems. One of the draw-
backs is that in BCD, we do not account for the hydrodynamic interactions. More
technical details about this method will be provided later, where we will introduce
modifications to this method.

3.1.1 Relation with thermodynamics

In the case of reversible bonds, this approach with bond breaking and forming
probabilities prevent the direct calculation of the total energy of the system by just
finding the distribution of particles. Two spheres in the interaction range can be
either linked (with a probability P0) or not (with probability 1 − P0). These two
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Figure 3.1: The energy profile of the transition between two states.

states can be considered to be of different energy. From this point of view, we
can see α0 and β0 as the energy barriers to change from one state to another
or in other words the activation energy for the bond formation. Consider the
reaction of forming a link (see figure 3.1) with Ea being the activation energy for
the forward reaction and Enl and El being the energy of the non linked and linked
state respectively. For the link to be formed, Ea should be overcome, from which
we can write

α0 = exp

(−(Ea − Enl)

kB · T

)

(3.1)

β0 = exp

(−(Ea − El)

kB · T

)

(3.2)

Consider a frozen system where only the bonds fluctuate between the particles
in the range. If there are Nrange contacts, out of which Nl are linked and Nnl are
non linked, we have at simulation time n

Nrange(n) = Nnl(n) + Nl(n) (3.3)

When Nrange ≫ 1, we can write

Nl(n) =α0 · Nnl · (n − 1) + (1 − β0) · Nl · (n − 1) (3.4)

Nnl(n) =β0 · Nl · (n − 1) + (1 − α0) · Nnl · (n − 1) (3.5)

We call P0 the probability of having a link between two particles in contact. P0 is
simply given by the ratio Nl/Nrange. When the system is equilibrated and if α0 and
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β0 are neither both zero or one (0 < α0 + β0 < 2), we obtain

P0 =
α0

α0 + β0
=

1

1 + β0/α0
(3.6)

Comparing with equations 3.1 and 3.2, we get

P0 =
1

1 + exp

(

∆E

kB · T

) (3.7)

where ∆E = El − Enl.

In the framework of this probabilistic approach, Nrange · u0 can be seen as a
reduction of the free energy when Nrange contacts are made. The internal energy
term is given by Nrange · P0 · ∆E. Also, we have a set of Nl randomly distributed
links over the Nrange contacts, which contributes to an increase in entropy. Using
Boltzmann relation for the entropy (S), we have

∆S = kB · ln

(

Nrange!

Nl! · (Nrange − Nl)!

)

(3.8)

∼ kB · Nrange ·
[

P0 · ln

(

1 − P0

P0

)

− ln(1 − P0)

]

(3.9)

Using these relations, we have the total free energy as the sum of the enthalpic and
entropic contributions, leading to:

Nrange · u0 = P0 · Nrange · ∆E − T · ∆S (3.10)

Substituting for S with 3.9 and using the relation 3.7, we get a simple relation for
P0 in terms of u0 as

P0 = 1 − exp

(

u0

kB · T

)

(3.11)

Thus, by tuning P0 we get the corresponding u0.

3.2 The patchy particle model

Our model is inspired from the Kern-Frenkel [9] model, where we use two diamet-
rically opposite square well patches, like in [15]. The base system in our model is
a hard sphere with a square-well (SW) potential around it. The diameter of the
hard sphere, d, is the unit of length in our system. The isotropic square well po-
tential u0 is experienced in the relative range ε0. The patch is characterized by a
"spin"/"patch" vector, v centered inside the sphere. As both patch are in opposite
directions, only one patch vector is used. Each patch can be seen as the intersec-
tion of a cone with the vertex centered on the sphere center and its axis along the
direction of v. The semi-amplitude of the cone, ω measured in radians determines
the area covered by the patch. This cone angle can vary as 0 ≤ ω ≤ π. In the
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patchy region defined by this cone, we impose another square well potential u1 with
a relative well width ε1. The interaction through the patchy region is possible only
when two interacting particles are in the range defined by ε1 and the line joining
the centers of the two spheres passes through the patchy regions of both spheres.
Thus the pair potential of two such interacting particles i and j could be written
as a sum of the isotropic hard sphere square well potential uisotropic and another
square well potential upatchy with an angular dependence.

uij = uisotropic(rij) + upatchy(rij , γi, γj) (3.12)

where rij is the distance between particles i and j; and γi and γj are angles defined
in figure 3.2. The isotropic square well potential is defined as

uisotropic(rij) =















∞ rij < d

u0 d ≤ rij ≤ d · (1 + ε0)

0 rij > d · (1 + ε0)

(3.13)

and the orientation dependent patchy interaction can be represented mathemati-
cally as

upatchy(rij , γi, γj) =































































∞ rij < d

u1 d ≤ rij ≤ d · (1 + ε1) and















γi < ω

and

γj < ω

0 rij > d · (1 + ε1) or















γi > ω

or

γj > ω

(3.14)

Using this potential, we can separate out and study the radial and orientational
parts unambiguously. See Figure 3.2 for a schematic representation of the model
and the parameters involved.

In our case the patch is monovalent, meaning that only one patch could be
interacting with another patch at a given time. The fraction of the surface area
covered by the two patches could be expressed as χ = (1−cos ω) and the total patchy
interaction volume is calculated to be Vb = π/6 · (1 − cos ω) · ((1 + ε1)3 − 1) · d3 (see
appendix A for more details). Also, we mainly use ε0 = ε1 = 0.1.

We have two different potentials in our system and both of them are variable
from reversible to irreversible. We have the same relations with thermodynamics,
as explained in section 3.1.1 with P0 and P1 related to u0 and u1. Here, we just
need to sum the contribution from patchy and isotropic bonds to calculate the full
internal energy.
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Figure 3.2: Schematic representation of our patchy model and parameters defining
the interactions. The isotropic interaction range is not shown for clarity. The
yellow colored region represents the patchy region and the red curves and the angle
ω define the interaction volume for a patch. The figure on the right shows two
spheres linked through patches. The vector connecting the centers of the spheres
i and j is represented by rij . This bond vector passes through the patchy region
defined by the positive direction of patch for both spheres. The angles γi and γj

are the smallest angles possible between rij and both spin axes.

3.3 BCD improvements : PBCD

We use a modified version of Brownian Cluster Dynamics (BCD) [23]. Our modi-
fications to BCD include fine tuning of the algorithm to suit the patchiness in our
model and hence we call it as Patchy BCD referred as PBCD. For the model, we
need to express the bonding through patches and since the interaction is aniso-
tropic, we need to introduce rotational motion of particles in our simulations. To
account for the patchy bonding, two new bonding probabilities α1 and β1 are in-
troduced for bond forming and bond breaking respectively. When bonded through
patches, the random translational displacement is allowed only inside the patchy
interaction volume and the random rotational motion should also keep the patchy
bond integrity.

Rotational motion is modeled as a random walk of the tip of v on a virtual
sphere with a radius v, with elementary step size sR. To reduce the number of
calculations, we generate a quasi-regular spherical mesh and save the coordinates
of each vertex, which are indexed with their nearest neighbors identified. This
spherical grid is obtained from regular icosahedron inscribed in the sphere with
radius v. This icosahedron is having 12 vertices, 20 faces and 30 edges with an
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edge length a. Using a given q, a non zero positive integer, we construct the grid
as follows. We divide each edge by q and transform each triangular face to q2

new triangular faces, each with an edge length of a/q. The obtained vertices are
projected to the surface of the sphere. This gives q − 1 new vertices per edge and
(q−1)·(q−2)/2 vertices per face. Thus the total number of directions or the vertices
obtained is given as Ndir = 10q2 + 2. See figure 3.3 for a visualization of a mesh
with q = 4, giving Ndir = 162. For sufficiently large q, the density distribution of
the vertices could be taken as isotropic. Each vertex has five (the initial 12 vertices
of icosahedron) or six neighboring vertices and knows what are the indices of those
vertices and their coordinates. Refer programming details 3.5 for technical details
regarding the representation of these vertices. The average distance between two
neighboring vertices is called sR, which is our small rotational displacement length
on the surface of the virtual sphere. The value of sR should be sufficiently small
(sR ≪ ω · v) to recover good statistics of a random walk inside the cone. While
the initial generation of the system, spin vectors point to one of these vertices.
When a spin of a monomer is entitled to a rotational motion, v jumps to one of
its neighboring site. We call the rotational displacement vector sR. Also for the
translational motion, we choose randomly, one of these directions and do a small
translational displacement sT to the center of of mass of the selected sphere in that
direction. The value of sT should be sufficiently small (sT ≪ d · ε0). We call this
translational displacement vector sT. The meaning of ‘sufficiently small’ will be
discussed later.

Figure 3.3: Schematic of the mesh with q = 4, giving Ndir = 162. The pink vertices
are the vertices of the inital icosahedron.

The algorithm for the simulation could be explained as follows and the technical
details are given in section 3.5
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1. Initialization: As in BCD, we start the simulation from a system of N0 ran-
domly distributed hard spheres with randomly oriented spins in a cubic box
of size Lbox, with periodic boundary conditions. This gives a volume fraction
of the occupied space as φ = N0 · π/6 · d3/L3

box. The starting time of the
simulation is n = 0.

2. Cluster construction: At n = 0, we scan the entire system and find particles
that are in interaction range. We form bonds among these particles with a
bonding probability P0. P0 is obtained from the bond forming probability α0

and a breaking probability β0 such that P = α0/(α0 +β0) . At the same time,
if the patchy bond condition is satisfied, we form bonds with a probability
P1 = α1/(α1 +β1). Collection of m such bound particles is termed as a cluster
with size m, where an unbound particle is considered as a cluster of size 1.
At any time, we consider that Nc such clusters exist.

3. Measurements for initial time: We do measurements such as the number of
clusters, the number of particles in the bonding range, the number of particles
that are bonded (isotropic bond and patchy bonds) etc. for n = 0.

4. Motion procedure: We randomly select 2 ·N0 times a particle and try to move
it either by an elementary translation or rotation with equal probability for
each. The motion steps should be sufficiently small such that the motion is
Brownian. The motion is accepted only if bonding condition of the particle
is retained after the motion is carried out and there is no overlap between
particles.

5. Cluster construction: Here we rebuild the clusters. First we scan for the
distance between particles and determine particles in the bonding range. If
particles in question are already bonded, we break the bond with a probability
β0 and if not, we form bonds using a probability α0. The same procedure
applies to patches, with probabilities α1 and β1.

6. Measurements and time increment: We do the measurements such as the
number of clusters, the number of particles in the bonding range, particles
that are bonded (isotropic bond and patchy bonds) etc. The simulation time
is incremented by 1 and the next simulation step is started from step 4.

The outline of this modified algorithm is given in figure 3.4. The technical
details of the simulation are given in section 3.5

We have seen while the description of the simulation method that as q becomes
larger, the average step size sR should decrease. If we compare sR/|v| as a function
of q (see figure 3.5), we see that sR ∝ 1

q .
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Figure 3.4: The algorithm of the modified BCD
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Figure 3.5: Evolution of sR/v as a function of q. The dashed line has a slope -1.

3.4 Basic units of length and time and their relations

Recalling the units defined so far, d is the diameter of the sphere, which is the unit
of length in the system; m the aggregation number; n the number of simulation
steps; sT the small translational displacement vector and sR the small rotational
displacement vector for the tip of the spin on a virtual sphere of radius v. Using t

as the physical time, we can deduce the relation between the basic units

From the Einstein’s relations, for a freely diffusing particle (m = 1), we have
the translational (DT

1 ) and rotational (DR
1 ) diffusion coefficients.

DT
1 =

kB · T

3 · π · η · d
(3.15)

DR
1 =

kB · T

π · η · d3
(3.16)

where η the solvent viscosity.

The average mean square displacement (MSD) of the particle is given by
〈

R2(t)
〉

= 6 · DT
1 · t = n · s2

T (3.17)

The average orientation decorrelation of the spin vector v is given by

〈v(t) · v(0)〉 = v2 · exp
(

−2 · DR
1 · t

)

(3.18)

1/DR
1 can be seen as the relaxation time of the time correlation function of the

orientation. Using the concept of the random walk on the surface of the virtual
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sphere, the MSD of the tip is given by
〈

(v(t) − v(0))2
〉

= 2 · v2 ·
(

1 − exp
(

−2 · DR
1 · t

))

(3.19)

At short times (DR
1 · t ≪ 1 and for sR ≪ v), we consider the tip of v to be doing a

two dimensional random walk without feeling the curvature of the spherical surface,
leading to

〈

(v(t) − v(0))2
〉

= 4 · v2 · DR
1 · t = n · s2

R (3.20)

Now, introducing t0, the time needed for a free sphere to diffuse a distance d2,
equation 3.17 gives the relation between the physical time t and the simulation
time n.

〈

R2(t)
〉

d2
=

t

t0
= n ·

(

sT

d

)2

(3.21)

Also, the definition of the time scale gives the relation

DT
1 =

d2

6 · t0
(3.22)

and comparing equations 3.15 and 3.16 gives

DR
1 =

1

2 · t0
(3.23)

Substituting this value in relation 3.19 we get

〈

(v(t) − v(0))2
〉

= 2 · v2 ·
(

1 − exp

(

− t

t0

))

(3.24)

Taking v = d and combining equations 3.15, 3.16, 3.17 and 3.20 we get the
relationship between the small Brownian step sizes as

2 ·
(

sT

d

)2

=

(

sR

d

)2

(3.25)

From equation 3.21, we see that the simulation time needed to reach a given physical
time is inversely proportional to the square of the Brownian step size. This again
puts forward the question for the choice of the step length. Since we have added
constraints of angles in this model, a bigger step size may not be a good choice
because it may lead to a lot of rejection of motion to spheres linked through patches
and will be discussed later in chapter 4.

3.5 Technical details of simulation

In this section, we will explain the technical details of the PBCD program. All the
programs in this work were written in C language and compiled using the GNU
compiler on a 64 bit Linux operating system. In our programs, we extensively
use C structures and pointers. We use different C structures to store information
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regarding clusters and monomers in the system. We also represent the space using
another C structure. The construction of these structures will be roughly described
in the following. More details could be had from [102] and [103]. All these structures
are interlinked using pointers in such a way that if we choose a random monomer,
we know its position in the space and also have its surrounding. In the same way,
if we select a point in space, we know what is in its neighborhood. This means, we
have a double representation of our system. Since memory is not a limiting factor
nowadays, this method allows us to save some precious computational time.

3.5.1 Representation of space

For the simulation, we initialize a cubic box of size Lbox (with a given Lbox =

Lbox/d an integer), which is divided in to (Lbox)3 small cells. We construct an
indexed array of these cells, where each cell can contain a maximum of 8 pointers,
which point to monomers if their center of mass is present in the cell or else to a
null pointer. We use 8 pointers because a unit cell may contain a maximum of 8
monomer centers if they are ordered in a face centered cubic manner, the maximum
packing condition for hard spheres. In the program, it looks like:

1 struct cell

2 {

3 struct mono *ptm [8];

4 };

By identifying monomers to be belonging to the cell array makes it easier to find
its neighbors, especially for short range interactions. Here, in order to find the
neighbors we just need to scan the adjacent cells about the one where a monomer
belongs instead of scanning for all the monomers in the system. For step sizes and
interaction ranges smaller than the diameter of the particle, scanning within 2 adja-
cent cells in all the directions is sufficient. For easier programming of this scanning
process, we keep our simulation box in a larger box of size LL = Lbox + 2 ∗ GAP ,
where GAP is kept 2 as noted above. The bigger box is also divided in to cells as
before. This is represented in figure 3.6 for a two dimensional box, where the light
blue box is the original box. The cells are not shown for clarity. With this trick,
whatever is is the position of the monomer in the small box, its neighborhood is
always defined and the same routine can be used whether it is close to an edge/face
of the box or not.

When a monomer with coordinates (x0,y0,z0) is present in a cell in the original
box, the first empty pointer in the cell is set to point towards the monomer. This is
done each time the monomer position is updated. The index of the corresponding
cell in the original box, a, could easily calculated

1 x=( unsigned long int)floor (( double ) x0);

2 y=( unsigned long int)floor (( double ) y0);

3 z=( unsigned long int)floor (( double ) z0);
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Figure 3.6: Schematic diagram of representation of space and periodic boundary
creation using our method.

4 a=x+y*Lbox+z*Lbox*Lbox;

This could be easily converted into the index for the bigger box in 3D using a
defined calculated function

1 # define trans(a) (GAP *((1+ LL+LL*LL) +2*((( a)/Lbox)+((a)/(

Lbox*Lbox))*LL))+(a))

Please note that divisions are integer divisions. Once we find the index of the cell
in the bigger box, we link both cell indices. We calculate the index of the cells in
the original box, which should come in the region of GAP in the case of full peri-
odic boundary conditions. Once we find the corresponding index for that position
in the bigger box, we link their indices. This gives a thin slice around the box,
which virtually creates periodic boundary condition by linking the corresponding
cell indices. If we do the same kind of calculations in 2D, we get the results as in
the image 3.6. Here the cells near to the edges of the original box are replicated in
the light orange region of the bigger box in such a way that it corresponds periodic
boundary condition.

We also initialize the spherical mesh, where the structure of a direction/vertex is

1 struct direction

2 {

3 double xd ,yd ,zd; // direction

4 char n; // number of neighbors

5 struct direction * neighbor [6]; // pointer to neighbors

6 };
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Each vertex has an x, y and z component of direction and the number of neighbors
around it. It also has a pointer towards the neighboring vertex.

3.5.2 Representation of a cluster

A cluster is represented using a chained list of monomers. The C structure for a
cluster is set to be

1 struct cluster

2 {

3 double Xmin ,Xmax ,Ymin ,Ymax ,Zmin ,Zmax ,Dl;

4 unsigned long int mass;

5 struct mono *pt_first ,* pt_last ;

6 };

A cluster knows its extent in all the three directions given as (∆X=Xmax-Xmin

etc.), where Xmax and Xmin represent the biggest and smallest value of the x coor-
dinate in the cluster respectively, etc. and Dl gives the maximum value obtained
from the three directions. These are calculated after each cluster construction step
since the cluster structure is susceptible to change. From the header of the cluster
(pt_first), the entire cluster could be reconstructed using the pointer pt_next in
the monomer structure successively till pt_last is reached (when pt_next be-
comes NULL). We also keep track of the mass of the cluster or its aggregation
number (mass).

We define three different cluster lists to differentiate the different kinds of inter-
actions involved. The first kind are “regular clusters" (for which, the cluster integrity
has to be kept during the motion procedure). They are made of monomers bound
through patches and/or isotropic interaction. “P1 clusters” are made of particles in
correct bonding conditions, but not necessarily linked. The third kind “PP cluster”
are made of monomers linked only through patches.

3.5.3 Representation of a monomer

The C structure for the monomer contains all the information regarding the posi-
tion, the spin orientation, the cluster it belongs to, neighbors in interacting range,
neighbors to which it is bonded (patchy and isotropic bonds). The structure is
given as

1 struct mono

2 {

3 double x,y,z,dx ,dy ,dz ,dxP1 ,dyP1 ,dzP1 ,dxPP ,dyPP ,dzPP;

4 float x0 ,y0 ,z0 ,xreal ,yreal ,zreal;

5 char cellposition ,Nneighb ,Nconnect ,Npneighb , Npconnect

;

6 struct direction *spin ,* spin0;

7 struct mono *pt_next ,* pt_nextP1 ,* pt_nextPP ;
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Figure 3.7: Schematic representation of cluster merging.
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8 struct mono * ptlinks [40];

9 struct mono * ptlinks1 [2];

10 struct cluster *pt_father ,* pt_fatherP1 ,* pt_fatherPP ;

11 };

The monomer knows its initial position (x0,y0,z0), the current position in the
box (x,y,z) and the current position in the space (xreal,yeral,zreal) when no
PBC is applied. Its squared displacement at a given time can be calculated as
(xreal-x0)2+(yreal-y0)2+(zreal-z0)2 . It also knows the initial and current
direction of the spin vector through the pointers (spin0 and spin1). The struc-
ture also contains the index of the cell array to which it belongs (cellposition)
and the number of monomers to which it is connected through isotropic interaction
(Nconnect) and patchy interaction (Npconnect). Similarly, we have the number of
non connected neighbors,(Nneighb). Each monomer has its own neighbor list point-
ing to all the connected monomers (ptlinks[40]) for isotropic interaction. Sim-
ilarly we have ptlinks1[2] to identify the two patchy links, where ptlinks1[0]

points to the monomer connected through the positive direction of the patch vector
and ptlinks1[1] points to the monomer connected through negative direction of
the patch. Note that we do not make any difference with any kind of patchy bond-
ing (no selectivity) and this method is just to identify the bound monomers. The
structure also has the pointers to the clusters which it belongs to. Each monomer
knows the different cluster, which it belongs to (pt_father, pt_fatherP1,...

for the regular clusters, P1 clusters,... etc.) and the next monomer in the corre-
sponding cluster (pt_next,...). Also, the distance to the header monomer in the
corresponding cluster is known (dx,dy,dz,...).

3.5.4 Cluster construction

For this step, we sweep trough the original box in ascending order of the cell index.
For each cell having a monomer and for each monomer in the cell, we scan the
neighboring cells (cells within a difference of GAP and by using the index of the
bigger box) that are already visited and check for the presence of monomers. Clus-
ters are constructed in a backward manner so that possible bonds are only tested
once. If a monomer is found within the interaction range:

1. If it is already linked (isotropically) with the monomer in question, we try
to break the link using a probability β0. This is done by selecting a random
number between 0 and 1. If the selected random number is less than β0, we
break the link by setting the corresponding pointers to NULL. The same is
done if we choose the patch to be reversible, but with probability β1.

2. If there is no link between the pair of monomers in question, we select a
random number as before. If the random number is less than α0, we create
the link by setting the corresponding pointers in the cluster and monomer
structures. Here, we can see a problem regarding the patchy bonds, which
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are valency limited. When the patches are large enough that more than one
monomer is within the bonding constraints, the first monomer found by the
cell sweeping technique will be bound with probability α1. Since this may
cause a bias, we restrict the patch size such that only one particle can link
through a patch.

This updating of cluster pointers on merging or on fragmentation is schematically
shown in figure 3.7. Since we are merging two clusters, the cluster with the lower
aggregation number is always selected to be emptied and appended with the bigger
cluster. In the figure, since cluster 1 is bigger, we retain it and set cluster 2 to zero
pointer and is thus unused. While merging the pt_next of monomer 3 is pointed
to pt_father of the cluster 2 and the whole cluster structure of cluster 2 is updated
and the distance to the new header is recalculated. At the same time, the pt_last
of the cluster 1 is updated to be monomer 2.

Using this representation technique of interlinked structures and cell sweeping
method, we can avoid many unnecessary time consuming calculations.

3.5.5 Input parameters

In this section, we specify the input parameters for our system

1. Initial configuration: For the initial configuration, we use a cubic box of edge
Lbox containing N0 monomers. The positions of the monomers are randomly
distributed and is given in a binary file in a specified format, from which the
program can read it, given Lbox and N0.

2. After reading the positions, the spin has to be set. So, we provide the co-
ordinates of Ndir vertices of the spherical mesh in another binary file in a
specified format. This file also contains information about the neighboring
vertices and sT and sR, which is set by the number of vertices present in the
mesh. The step size is controlled by providing different files with different
number of vertices.

3. Interaction parameters ε0, ε1, ω, α0, α1, β0 and β1 are chosen accordingly.
We recall that we use ε0 = ε1 = 0.1 and the probability values should be
in between or equal to 0 and 1. ω can take values from 0 < ω ≤ π. For
the irreverible aggregation through patches, we use α1 = 1 and β1 = 0.
This allows us to further simplify the cluster construction part because once
bound, we no longer need to check neighboring monomers for patchy bonding
conditions.

4. Seed for the random number generator.

We have also included a provision to restart a previous run from a given position
of time, if provided the simulation time and snapshot of the system at that point
(see below for explanation about snapshot).
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3.5.6 Output

Consider a simulation starting from zero time. For the first 100 simulation steps, we
store the results for each step. After, we start averaging the data over a logarithmic
interval and print it in the middle of the interval (in log scale). In the output, we
print all the measured parameters as a function of the physical time of the system.
The averages of quantities of interest are printed out separately for properly bound
clusters (bound through isotropic or anisotropic interactions) and also for unbound
clusters, which are under bonding conditions. This gives us the description of all
possible clusters within the system. For clusters, measured quantities include the
total number of clusters, the average aggregation number (number average, weight
average and z average), the average radius of gyration, whether the system has
percolated or not and the fraction of monomers included in percolating clusters.
For patchy clusters, the fraction of monomers in the loops is also collected. For
each cluster type, we save the average distribution of the aggregation number. For
each monomer, we collect the squared displacement from its initial position.

We also store snapshots of the system at regular intervals in a binary file. This
contains all details of the system such as positions, spin orientation, complete cluster
structure etc., such that it could be used as a starting point or to continue the
simulation with the same cluster integrity. This is usually helpful in the case of
unexpected interruptions of the program execution. This file is also used to visualize
the system, where we read the monomer positions and transform them to be used
with external visualization tools. Visualization tools used include a home-built
program and “POV-Ray”.





Chapter 4

Modeling single polymer chains

Staudinger’s macromolecular hypothesis that polymers are large molecules made
up of covalently linked elementary units marks the starting point of the modern
polymer science [105]. After him, the works of Flory, de Gennes, Doi, etc. laid the
foundation of the basic theories in polymer physics. In this study, polymer is a focus
because it is the simplest structure that could be made out from our basic building
block with two patches. Also, since polymer science is a well studied area with a
vast history of literature in theoretical predictions, simulations and experiments, it
becomes a standard model for us to test our approach. All the detailed derivation
of equations in this chapter could be found in standard polymer science text books
such as [82, 68, 106, 107, 108].

For a polymer chain containing m linked monomers, the mean square end-to-end
distance 〈R2

e〉 scales as
〈R2

e〉 ∝ m2ν , m ≫ 1 (4.1)

where ν is the Flory exponent. Using the concept of fractality, we have 〈R2
e〉 ∝ m2/df

which in turn gives ν = 1/df showing polymer is a fractal object, where df is
the fractal dimension. Ideal polymer chain, where there are no excluded volume
interactions is simply represented by a random walk and is an analytically well
studied polymer model. For an ideal chain, the Flory exponent ν = 0.5 (df =

2). For a real polymer chain, the solvent quality plays a role on the value of ν

and there are three different cases: in a theta solvent, attractive and repulsive
parts of the monomer-monomer interaction cancels out (second virial coefficient
becomes zero, Batt = 4) leading to ideal behavior with ν = 0.5 (df = 2). In a bad
solvent, when the monomer-monomer interaction is increased, the chain collapses
leading to phase separation, giving ν = 0.33 (df = 3). In athermal solvent or
also called as a very good solvent, the interaction between monomers and solvent
molecules is high compared to monomer-monomer interaction and pure hard core
repulsion determines the configuration of the chain. This could be modeled as a
self avoiding walk and in this case ν = 0.588 (df = 1.7). These scalings are valid
only when the contour length L is much greater than a characteristic length called
persistence length, lp which depends on the local flexibility of the chain and is the
characteristic distance to be traveled along the backbone of a chain so that the bond
vectors decorrelate significantly. Also, according to de Gennes [109], the scaling
depends on relative length scales. The local flexibility of a polymer is attributed to
the molecular structure and the composition of the monomeric units, whereas the
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segmental flexibility arises from rotational conformation of bonds in the backbone
and its restrictions. A chain is considered as rigid rod like, if L ≪ lp and flexible if
L ≫ lp. Many definitions exist for the persistence length in literature. In the case
of ideal chains, these values turn out to be equivalent. But for real chains, some of
the proposed quantities are found to diverge with m [110, 111]. In this chapter, we
will explore some of the basic relations in polymer physics using our model.

4.1 Simulation details

In this section, we recall some of the relevant variables that were already defined in
chapter 3 and give specific details on the polymer system. A polymer chain contains
m monomers indexed from i = 1 to m irreversibly linked through patches (α1 = 1,
β1 = 0) or u1/(kB · T ) = −∞ and we set Batt = 0 (u0/(kB · T ) = 0) such that there
is no isotropic interaction within monomers in a chain. The interaction well width
of a patch is fixed to be ε1 = 0.1 and the patch angle ω, which determines the
flexibility of the chain is chosen to our needs. The bond vector ri, (1 ≤ i ≤ m − 1)
connects two consecutive monomers i and i + 1. The distance between connected
monomers can vary freely between d and d(1 + ε1). All monomers in the chain,
except two at chain ends are having two oppositely located patches. The first and
the terminal monomer have only one patch. The chains are generated in space
in an unbiased manner by random walk within the bonding parameters (center
of mass of connected neighbors within distance d and d(1 + ε1) and bond vector
passing through at least patch for each connected monomer). Excluded volume
effects are taken into account for real chains. The unbiased method results in a
huge generation time for real chains. This is due to the large amount of rejections
coming from overlapping configurations. More details on the time taken for the
generation will be given later.

For generation of a polymer chain, we begin with a monomer placed at origin
with a randomly oriented patch vector. In the next step, we select a bond direction
that lies inside the patch cone of this first monomer and place the next monomer
randomly within the interaction volume and select randomly a spin vector for the
second monomer such that the bond vector lies inside the patch. The patch vector
vi is set to point towards the next connected monomer in the chain. The dis-
tance to the center of mass of the next connected monomer is distributed assuming
the uniform distribution within the volume of interaction (geometrically, the conic
spherical shell) and the spin is distributed such that the tip of the spin vector is
uniformly distributed on the surface covered by the patch. See appendix A for the
distribution functions and procedure for selecting the position and spin of the con-
nected monomer. This process is continued till the target length is achieved. While
the chain is growing, if it is found that the position of a monomer is inaccessible
due to excluded volume effects (for real chains), the chain is abandoned and the
process started again from the beginning.

We use two different methods for assigning the spin vector. For the dynamic
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property measurements, chains are generated using the coordinate mesh and spin
vectors can only possess one of the predefined directions. For the static property
measurements we avoid the coordinate mesh and the spin vector is allowed to occupy
any coordinate within the cone. The mesh method becomes prone to finite size
effects for very small values of ω and we become limited by the number of coordinate
sets that lie inside the patch. This makes preferential selection of orientation of the
spin vector and influences the static properties. See appendix A for a description of
the method of selecting the position of the next connected monomer and the spin
direction without the grid. Due to these reasons, the study of dynamics was limited
to ω ≥ 0.2 rad. A large number of chains (105 for static property studies and 104

for dynamics studies) were taken into account to get better statistical averages for
the measurements. All calculations were done on a single CPU for static property
measurements and it should be noted that different programs has been used for
the polymer property studies. Since all chains are transparent to each other (since
we study individual chains) and we use good solvent conditions (Batt = 0), the
cluster construction step is no longer needed and we also avoid the use of periodic
boundary conditions to save calculation time. As an example, for the most stiff and
longest ideal chain we have generated: m = 30000, ω = 0.1 with 105 chains, it took
around 15 days in a 3.4GHz processor. By setting the chains to be transparent
to each other (single chain model), we can simulate a given system many times
with different starting configurations and average the output for better results.
This lead us to use parallel processing to obtain faster results for the dynamics, by
simultaneously running different number of chains on different number of processors
and averaging them. For example, in the case of m = 10, ω = 0.2 we used around
8300 chains in total for the study. Using a sT/d = 0.0035, we were able to reach
t/t0 = 2000 by distributing the simulation in to 64 cores of a parallel computing
system equipped with 1.5GHz processors within 50 hours.

In this system of polymer chains, the bond length can fluctuate from d to d(1 +

ε1) and the average bond length is defined as 〈lb〉 =
√

〈r2
i 〉. The average contour

length L is then L = (m − 1) · 〈lb〉. The angle between a patch and a bond (γ) can
fluctuate within the range 0 to ω and its average cosine is 〈cos γ〉. The bond angle δ

fluctuates from 0 to 2ω and its average cosine is 〈cos δ〉. See figure 4.1 for a graphical
representation of the parameters. G is the center of mass of the chain. Re is the end
to end vector and R2

g is the squared radius of gyration defined as the average squared
distance of a monomer to G. 〈R2(t)〉 is the mean square displacement (MSD) of G.
The relaxation of chain orientation is followed by monitoring the evolution of end
to end vector decorrelation:

C(t) = 〈Re(t) · Re(0)〉/〈R2
e〉 (4.2)

The angular brackets denote thermodynamic averages over all configurations and
evolutions of the chain.

From simulation results, the average bond length 〈lb〉 is found to be independent
of m, ω and excluded volume effects, down to the third digit. In any case, the
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Figure 4.1: Schematic representation of a part of a polymer chain using the patchy
square well spheres model to identify chain parameters. δ is the angle between two
consecutive bonds ri and ri+1 and γ is the angle between a bond vector and a spin
vector.
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Figure 4.2: Variation of (1 − 〈cos γ〉) as a function of (1 − cos ω). Circles indicate
ideal chains and stars indicate self avoiding chains. Dashed line is the theoretical
expression 1

2(1 − cos ω) (see appendix A).
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Figure 4.3: Variation of (1 − 〈cos δ〉) as a function of (1 − cos ω). Circles indicate
random chains and stars indicate self avoiding chains. Dashed line is the function
y = x.

average value 〈lb〉/d = 1.052 is obtained. This value is expected, since we uniformly
distribute the position of connected monomers within the interaction volume. From

the calculations in appendix A, we have lb/d =
√

(1+ε1)3+1
2 which is independent

of the patch size. Also from appendix A we have the relation between ω and γ as
(1 − 〈cos γ〉) = 1

2 · (1 − cos ω). Figure 4.2 shows that this relation is independent of
the nature of the chain - whether it is ideal chain or self avoiding chain and is valid
for all values of m and ω. The data from self avoiding chain show that averages are
not significantly modified by excluded volume interactions and that distribution of
the position of connected neighbor is still uniform in the interaction volume. In all
figures, error bars are omitted if they are smaller than the size of the symbol.

The average bond angle δ depends on the value of ω, which determines the
patch cone and hence the local flexibility of the polymer chain. Figure 4.3 shows
the variation of (1 − 〈cos δ〉) as a function of (1 − cos ω). We see that

〈cos δ〉 ≈ cos ω as ω → 0

which is independent of excluded volume effects. The behavior starts to deviate for
bigger ω and the extent of deviation depends on excluded volume effects. Also, no
effect of m was seen in the case of δ. Thus we have an average bond length 〈lb〉
which is independent of m and ω, and an average bond angle δ which is independent
of m and could be easily tuned by varying ω. Considering these average values, we
see that the freely rotating chain model [68] may be a good candidate for a close
comparison.
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4.2 Static properties of single ideal chains

There are many theoretical polymer models in the literature. Freely jointed chain
(FJC), freely rotating chain (FRC), Worm Like Chain (WLC) etc. are some of
the well studied theoretical polymer models. In this section, we study the existing
models in literature and try to compare our results in order to find the equivalent
model.

The end to end distance (|Re|) is a characteristic length of a polymer chain. It
could be obtained by summing all bond vectors. For an ideal chain, the average
end to end distance turns out to be zero and hence the mean square end to end
distance is considered, which is given as

〈R2
e〉 =

m−1
∑

i

m−1
∑

j

〈ri · rj〉

= (m − 1) · l2b + 2 ·
∑

i<j

〈ri · rj〉

= (m − 1) · l2b + 2 · l2b ·
m−1
∑

j=2

j−1
∑

i=1

〈cos θ(s)〉

(4.3)

where θ(s) is the angle between segments i and j and s = j − i where s can vary
between 0 ≤ s ≤ m − 2. Similarly, the mean squared radius of gyration or the
average squared distance from a monomer to the center of mass of the chain could
be calculated using Lagranges theorem [68], which gives

〈R2
g〉 =

1

m2
·

m
∑

j=2

j−1
∑

i=1

〈r2
ij〉 (4.4)

where rij is the vector connecting monomer i to j and angular brackets denote the
average over a large number of chains.

Freely Jointed Chain

For an ideal FJC, the bond length is fixed and no angle restrictions are made on the
positioning of the connected monomers. This implies that the correlation between
different bond vectors turns out to be zero in average. Hence we have 〈cos θ(s)〉 = 0

for all i 6= j and this leads to vanishing of the second term in equation 4.3 and
hence

〈R2
e〉 = (m − 1) · l2b = L · lb (4.5)

Calculating the radius of gyration using equation 4.4 and using same kind of relation
above to calculate the distance between any monomer i and j in the chain 〈r2

ij〉 =

(j − i) · l2b, we have

〈R2
g〉 =

1

m2
·

∑

1≤i<j≤m

(j − i) · l2b (4.6)
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on simplification, we get

〈R2
g〉 =

1

6
· (m − 1) · l2b , m ≫ 1 (4.7)

Comparing above set of equations, we can show that 〈R2
e〉 = 6〈R2

g〉 in the limit of
m ≫ 1 indicating that 〈R2

e〉 and 〈R2
g〉 are proportional.

Freely Rotating Chain

FRC is a well studied ideal chain model, where each bond makes a fixed angle
δ to its neighboring connected segments and has a constant bond length. These
segments are entitled to free rotation and can occupy all torsion angles. Depending
on the value of δ, the extent of spatial coverage by a chain can be modified. All
calculations on this model are made such that 0 < δ < π/2. For the FRC case, the
memory effect coming from the restriction to place the next connected monomer
induces a correlation between the orientation of bond vectors. This results in a non
zero value for the second term in the equation 4.3. The fixed bond angle δ causes a
part of the orientation of bond vector to be propagated along the chain backbone.
By taking successive projections of one bond on to another one, we can show that

〈cos θ(s)〉 = (cos δ)s (4.8)

Using this relation, we have

〈R2
e〉 = l2b ·

m−1
∑

i

m−1
∑

j

(cos δ)|j−i| (4.9)

Further expansion followed by simplification gives

〈R2
e〉

(m − 1) · l2b
=

1 + cos δ

1 − cos δ
− 2 · cos δ

m − 1
· 1 − (cos δ)m−1

(1 − cos δ)2
(4.10)

Here we can have two asymptotic behaviors: when m ≫ 1 keeping δ constant, the
above equation reduces to

〈R2
e〉

(m − 1) · l2b
=

1 + cos δ

1 − cos δ
(4.11)

and when δ → 0 keeping m constant, the relation becomes

〈R2
e〉

(m − 1) · l2b
= m − 1 (4.12)

Using the same method as in FJC, from Flory [106], we have the average square
radius of gyration as

6 · 〈R2
g〉

(m − 1) · l2b
=

(m + 1) · (1 + cos δ)

m · (1 − cos δ)
− 6 · cos δ

m · (1 − cos δ)2

+
12 · (cos δ)2

m2 · (1 − cos δ)3
− 12 · (cos δ)3 · (1 − (cos δ)m−1)

(m − 1) · m2 · (1 − cos δ)4

(4.13)
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For the m ≫ 1 condition at constant δ, this simplifies to

6 · 〈R2
g〉

(m − 1) · l2b
=

1 + cos δ

1 − cos δ
(4.14)

and for δ → 0 at constant m, we recover the radius of gyration of a thin beaded rod

6 · 〈R2
g〉

(m − 1) · l2b
=

m + 1

2
(4.15)

From the above set of equations, we have again 〈R2
e〉 = 6 · 〈R2

g〉 for very long chains
when π/2 > δ > 0.

Persistence length

For the ideal semi flexible FRC model, a characteristic length termed as Kuhn length
could be defined on comparison with FJC model. Kuhn length (lK) is defined as
the segment length of an equivalent FJC with the same 〈R2

e〉 and L. For a very
long chain, we have

lK =
〈R2

e〉
L

(4.16)

The complete expression for an ideal FRC could be obtained by multiplying the
RHS of equation 4.10 by lb. For very long chains, this expression reduces to

lK ≈ lb · 1 + cos δ

1 − cos δ
, m >> 1 (4.17)

This concept gives lK = lb for a FJC.

For a freely rotating chain, another approach could be used to define the per-
sistence length. We have seen that there is a correlation between bond segments
present along the backbone of the chain. From equation 4.8, we see that the cor-
relation decreases rapidly with the segment index, which is approximated to be an
exponential decay. From the decorrelation behavior of the bond vector orienta-
tion along the chain, we can define a characteristic relaxation length at which the
correlation decays. This gives from 4.8

〈cos θ(s)〉 = (cos δ)s = exp

(

−s · lb
l1

)

(4.18)

where, l1 is the persistence length. This equation can be rearranged to obtain

l1 =
−lb

ln(cos δ)
(4.19)

Using relations cos δ ∼= 1 − δ2/2 and ln(1 − x) ∼= −x for small δ and x, we make the
approximation ln(cos δ) ∼= − δ2

2 , which gives

l1
lb

≈ 2

δ2
, δ → 0 (4.20)
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Similarly, using the same relations in equation 4.16, and comparing with the equa-
tion above, we have

l1 ≈ lK
2

, m ≫ 1 and δ → 0 (4.21)

Worm Like Chain

There exists a special case of freely jointed chain, called the Worm Like Chain
(WLC) or the Kratky-Porod model, under the condition l1/lb ≫ 1. This means
that discrete details of the chain become invisible and it appears to be made of a
single continuous curve. In the WLC limit, basic relations we have seen so far could
be rewritten using the relative size of the chain X = L/l1:

〈R2
e〉

2 · l21
= X − 1 + exp(−X) (4.22)

which gives

〈R2
e〉 = L2 , X ≪ 1 (4.23)

〈R2
e〉 = 2 · L · l1 , X ≫ 1 (4.24)

Similarly,
〈R2

g〉
2 · l21

=
X

6
− 1

2
+

1

X
− 1

X2
· (1 − exp(−X)) (4.25)

which gives

〈R2
g〉 =

L2

12
, X ≪ 1 (4.26)

〈R2
g〉 =

L · l1
3

, X ≫ 1 (4.27)

We see that 〈R2
e〉 and 〈R2

g〉 depend only on the relative quantity X. When X ≪ 1,
the chain behaves as rod-like, when X ≫ 1 the chain is considered as a flexible chain
and in between the chain is considered to be in the semiflexible regime. Similarly,
the ratio 〈R2

e〉/(6 · 〈R2
g〉), could be also expressed in terms of the relative chain

length X. Comparing above set of equations we see that 〈R2
e〉/(6 · 〈R2

g〉) varies
from, 2 for X ≪ 1 to 1 for X ≫ 1.

The definition of l1 gives X = −(m − 1) · ln(cos δ). This means that cos δ

determines the lowest accessible value of X, since m = 3 is the shortest chain
possible to have a bond angle δ.

What is the patchy model equivalent to?

Figure 4.4 shows 〈R2
e〉/(6 · 〈R2

g〉) obtained for ideal chains from our simulations for
various m and ω, along with theoretical predictions from FRC model (equations
4.10 and 4.13). This plot was made using 〈cos δ〉 obtained from the simulation
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instead of cos δ of FRC. We see that theoretical curves superimpose perfectly with
our results for all ω and m under the FRC framework, indicating that our model is
equivalent to the FRC model.

In figure 4.5 we plot the variation of l1/lb obtained for ideal chains as a function
of ω. In the same plot, we see that for small ω, the function 2/ω2 gives a very good
rapid approximation on l1/lb. (See equation 4.20 and figure 4.3).

Other definition for persistence length

Recently, Hsu et al. [112, 111] proposed another definition for persistence length.
It does not assume any specific form for the bond correlation function and is given
by

l2 = lb ·
m−2
∑

s=0

〈cos θ(s)〉 (4.28)

This expression calculates the area under bond correlation curve. For FJC, we have
l2 = lb. For the FRC model, this expression becomes

l2 = lb · 1 − (cos δ)m−1

1 − cos δ
(4.29)

and in the WLC limit,
l2
l1

= 1 − exp(−X) (4.30)

In figure 4.6, we plot l2/l1 = − ln〈cos δ〉 ·∑m−2
s=0 〈cos θ(s)〉 as a function of X for

various ω and m along with the FRC predictions. Again, theoretical predictions
are recovered using 〈cos δ〉 in the FRC framework. As X increases, l2/l1 gives a
finite value independent of L for L ≫ l1. We see that l2/l1 is dependent on the
local flexibility and is slightly higher than l1. As ω becomes smaller the difference
between l2 and l1 diminishes and in the WLC limit, they become similar.

Another commonly used persistence length is lp(k), with 1 ≤ k ≤ m − 1 [110].
It measures the local persistence length for any bond k along the chain

lp(k) =
〈rk · Re〉

lb
(4.31)

For FJC, lp(k) = lb. For FRC, we have

lp(k) =
1

lb
·

m−1
∑

i=1

〈rk · ri〉 = lb ·
m−1
∑

i=1

(cos δ)|k−i| (4.32)

On further simplification, we obtain

lp(k) = lb · 1 + cos δ − (cos δ)k − (cos δ)m−k

1 − cos δ
(4.33)
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Figure 4.6: Evolution of l2/l1 as a function of X for various ω for ideal chains. The
solid curves are obtained using the equations 4.29 and 4.19 for each ω plotted.

lp(k) is a bell shaped function, which is reduced near chain ends (at k = 1 and
k = m − 1), and reaches a flat plateau lpmax, independent of k in the middle of the
chain (k ∼ m/2) when the chain is long enough. From equation 4.33, for m ≫ 1 we
have

lp(1) = lp · (m − 1) ≈ lb · 1

1 − cos δ
(4.34)

and

lpmax ≈ lb · 1 + cos δ

1 − cos δ
= lK (see equation 4.17) (4.35)

Yamakawa [108] used lp(1) as a measure of persistence length.

From equation 4.34, we see that lp(1) ≈ lK/2 as δ → 0 (see equation 4.20).
Comparing above equations, we see for any ω < π/2, the value of lp(k) is bounded
and lies in between lK/2 and lK. Thus it becomes natural to study the reduced
quantity lp(k)/lK. Using a reduced segment index x = k/(m − 1), we have

lp(k)

lK
=

lp(k) · L

〈R2
e〉 =

1 + cos δ − exp(−x · X) − exp((1 − m
m−1) · X)

1 + cos δ −
2 · cos δ · (1 − exp(−X))

(m − 1) · (1 − cos δ)

(4.36)

and in the WLC limit, we get

lp(x)

lK
=

X

2

[2 − exp(−x · X) − exp (−(1 − x) · X)]

[X − 1 + exp(−X)]
(4.37)
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Figure 4.7: Comparison of equations 4.36 (colored curves) and 4.37 (solid black
curve named WLC) for various m and ω as indicated in the figure and for (a)
X = 0.01, (b) X = 1, and (c) X = 100. Note that Y axis scale is different for each
plot.

In figure4.7, we compare equations 4.36 and 4.37 for different X. We see that
for a given X, curves for different ω superimpose on each other and on the WLC
curve. This suggests that the behavior of lp(k) is independent of the nature of the
chain, whether it is discrete or continuous, if the chain is sufficiently long. Figure
4.8 shows the reduced lp(k) curves obtained from our simulations for different ω at
a constant X and the theoretical prediction from equation 4.37. As expected, all
curves superimpose on each other. ω plays no role except that it determines the
lowest accessible value of X.

Now, to see the effect of X, we plot lp(x)/lK from equation 4.37 for various
X values in figure 4.9.We find that the shape of the curve is very dependent on
X. For small values, the curve is almost flat in the entire region since for a rigid
rod lp(x)/lK ≃ 1. As X is increased the curve starts to show a convex shape with
reduced ends (see equation 4.34, which gives lp(1)/lK ≃ 0.5). The convexity reaches
a maximum for a specific X and then starts to flatten again, while the values for
the chain ends remain close to 0.5. Substituting x = 0.5 in equation 4.37 gives the
maximum value of lpmax/lK around X = 4.42 (see figure 4.10).
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Figure 4.8: Normalized lp(x) for ideal chain with various local flexibility as in-
dicated in the figure, with m corresponding to X ≈ 60. The solid curve is from
equation 4.37.

�

��� ��� ��� ��� ��� ���

� ,
��
��
�
� /

��$

���

��(

���

��.

���

���

���

��#�����

��#��

��#��

��#�����

��#���

��#���

��#����

Figure 4.9: lp(k)/lK as a function of the normalized segment index x for chains of
different values of X as indicated in the figure given by the equation 4.37.
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Figure 4.10: Variation of lpmax/lK as a function of X.

To conclude, we see that in the ideal case, our model is an equivalent of the FRC
model and theoretical predictions could be recovered using 〈cos δ〉 instead of a fixed
bond angle and 〈lb〉 instead of a fixed bond length. In the WLC limit (L ≫ l1 ≫ lb),
we obtain mutual relations between various persistence lengths

l1 = l2 = lp(1) =
lK
2

=
lpmax

2
≃ 2〈lb〉

ω2
(4.38)

4.3 Deviation from ideality

For a real polymer chain in a good solvent, excluded volume interactions result in
a swelling effect. It is seen as a self avoiding walk, which increases 〈R2

e〉 and its
dependency on m giving the scaling 〈R2

e〉 ∼ m2ν , with ν = 0.588. From equation4.3,
we have

〈R2
e〉 = l2b ·

m−1
∑

i

m−1
∑

j

〈cos θ(s)〉 (4.39)

This implies that the stronger dependency on m is coming from increased bond
correlation. This is due to the excluded volume effects, which restrict the chain
conformations. The extended bond correlations along the chain will be discussed
later. For small chain lengths (L ≪ lp), the chain behaves as an ideal chain due to
little excluded volume effects. As the chain length increases, excluded volume in-
teractions build up, creating a chain expansion leading to the crossover to a swollen
chain.

Noting that excluded volume effects lead to more open chains, we try to see the
consequence on l1 for various local flexibilities. In figure 4.11 we can see that values
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Figure 4.11: Behavior of l1/〈lb〉 as a function of ω for ideal and self avoiding chains.
The dashed line is the WLC condition 2/ω2.

calculated from the obtained 〈cos δ〉 lie exactly on the theoretical curve, independent
of excluded volume effects for smaller ω. For larger ω, values of l1 diminishes after
ω > π/2 for ideal chains and reaches a constant value in for real chains. Also, we
recall that we observe no dependence on m.

4.3.1 Influence on the bond correlation function

As said above, the direct consequence of the swelling is the long range bond corre-
lations along the chain. For a flexible real polymer chain in good solvent, the bond
correlation function must decrease as a power law of the segment index s when
s∗ ≪ s ≪ m [110, 113, 111] as

〈cos θ(s)〉 ∝ s2ν−2 (4.40)

where, s∗ depends on the persistence length. Similar results with an exponent of
−3/2 have been found for chains in dense melts [114].

The direct consequence of this relation is the divergence of l2 with m and this
will be discussed in section 4.3.2.

We have seen that for ideal chains the bond correlation along the chain backbone
follows an exponential decay (see equation 4.18). In general, a real chain does
not feel excluded volume effects unless L > l1 and hence we obtain similar initial
behavior (exponential decay) for short semi flexible ideal and real chains. For chains
with very small l1, the initial exponential decay becomes hardly visible and the bond
correlation function directly tends to follow the power law behavior. See figure 4.12
for the behavior of bond correlation function for real and ideal chains for various
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Figure 4.12: The decorrelation of bond vector as a function of the segment index
for different ω. The dashed black line has a slope s2ν−2.

l1 using our patchy model. Curves for ω = 0.2 of the real and ideal case in the
figure 4.12 show the independency of excluded volume effects on the initial decay
behavior. According to Hsu et al. [111], the power law behavior is seen in the range
m/10 ≪ s ≪ m/2 for fully flexible real chains.

For a bending rigidity driven polymer chain model [115], it was reported that a
clear crossover from an exponential decay to the power law behavior could be seen.
In that article, a cubic lattice was used and a bending probability at a lattice site,
qb = exp(−u/(kB · T )) was set, where u is an energy term. At each growth step,
the bending probability is tested with a random number. The chain grows straight
until the random number is less than qb. Each time the bending probability is
overcome, the chain makes a ±90◦ turn and the growth is continued. This gives the
length of the straight segment as l1. For a highly flexible self avoiding chain, qb = 1

meaning that at each step of chain growth, a turn is made. As qb is decreased,
l1 gets increased. Since no side chains are involved in this model, it is possible to
reach large values of l1/lb.

After the persistence length has been overcome, the real chain begins to feel
the presence of its neighbors and the decay becomes slower, following a power law.
By a careful examination of the bond correlation function for semi flexible chains
we can see that after a certain s, the function seems to follow another exponential
decay due to the finite extent of the chain, which is not clearly seen in many cases
due to the high fluctuations. This is shown in figure 4.13. So, to study the different
behaviors and their limits, we try to fit the curve using an equation of the form

〈cos θ(s)〉 = A · exp

(

− s

s1

)

+ (1 − A) ·
(

1 +
s

s1

)2ν−2

· exp

(

− s

s2

)

(4.41)
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Here, the A parameter stands for the effect of local flexibility, which determines
the extent of decorrelation of the first bond. The s1 parameter is a measure of
the persistence length, after which the power law appears. The s2 parameter is to
determine the length at which the power law again changes to an exponential decay
due to the finite extent of the chain. Trial fits were made for different chains of
various m and ω and it was seen that s1 ≈ l1/lb as expected (see figure 4.14) and
is independent of m for a given l1. Later l1/lb was used instead of s1 to reduce the
number of fitting parameters and improve the accuracy of the procedure.
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Figure 4.13: The decorrelation of the bond vector as a function of the bond distance
for ω = 0.4 and m = 8000. The solid green line is obtained by fitting this curve
with the equation 4.41.The fit parameters are shown in the figure. Blue dashed line
has a slope 2ν − 2.

The parameter A depends on ω and becomes independent of m for very large m

(see figure 4.15). For very small ω, there is only very small amount of decorrelation
in initial steps of s. Hence A is very close to 1. As l1 decreases, the correlation
of the bond direction is lost very fast resulting in lower values of A. The second
term in the equation provides information about the length scale when the power
law behavior begins to show up. If we take asymptotic values of A obtained for
very large m and plot the prefactor of the power law in the second term of the
equation,((1−A) ·s2ν−2

1 with ν = 0.588) we see that this is a constant, independent
of ω. This means that the prefactor of the power law behavior is the same for all
local flexibilities (see figure 4.12). The factor s2 showed a linear dependence on m

in general, even though the values are highly spread in a log-log plot. From the
plot 4.16, we see that s2 is close to m/5.

Integrating the area under the bond correlation curve and comparing with the
ideal chain case gives the excess in the bond correlation due to excluded volume
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Figure 4.15: The fitting parameter A from the equation 4.41 as a function of m for
various ω as indicated in the figure (left) and (1 − A) · (l1/lb)0.824 as a function of
m (right).
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Figure 4.16: Effect of m and ω on s2. The solid line has a slope 1.
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Figure 4.17: Rescaled bond correlation functions for real chains for various local
flexibilities as indicated in the figure, compared with an exponential decay (ideal
behavior). The normalized axes give the area under the curve for the ideal chain
as 1. The plateau like part for different flexibility indicates the excess in bond
correlation due to self avoiding nature of the chain.
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interactions. See figure 4.17. Here we plot the rescaled bond correlation function of
the longest chains we were able to obtain using our model. In the X axis, we have the
segment index rescaled using l1/lb since all chains follow the exponential decay up to
their respective l1/lb. In the Y axis, we have rescaled the bond correlation function
such that the area under the curve for an ideal chain is unity. Any deviation from
the ideal behavior shows the excess part of bond correlation function. The figure
shows that as the chain becomes locally rigid, it follows the ideal chain behavior up
to a higher s when compared with more locally flexible ones, where the deviation
occurs very early.

4.3.2 Divergence in some persistence length definitions

We have already seen that l1 is independent of m. The increased Flory exponent for
real chains causes lK to diverge with m, giving lK ∝ m2ν−1 for large m. Equation
4.40 indicates that l2 also should diverge with m. This is the result of the excess in
bond correlation function which increases the sum of 〈cos θ(s)〉 resulting in l2 to get
easily deviated at shorter chain lengths for more locally flexible chains. In figure
4.18, its ratio to the ideal chain case is plotted. Here we see that more rigid chains
follow the ideal behavior even for a chain length much above the persistence length.
For example ω = 0.15, the ideal behavior is continued up to about 2 decades after
the persistence length, before starting to show any deviation.
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Figure 4.18: Variation of l2 real/l2 ideal as a function of X for various values of ω as
indicated in the figure. The dashed line has a slope of 2ν-2.

Due to the divergence of some persistence lengths, Hsu et al. [116, 111, 115]
proposed another method to calculate the persistence length for real chains, given
as

l3 =
〈R2

e〉
2 · lb · (m − 1)2ν

(4.42)

It is designed to be a non diverging quantity. In the case of ideal FRC, l3 turns out
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to be lK/2.

Figure 4.19 summarizes the scaling laws we have seen so far. Here, the behavior
of curves could be explained as

1. When the chain is short, it shows a rod-like behavior (〈R2
e〉 ∝ m2) which gives

the initial rise in the curve for l3 till the respective l1 has been reached.

2. After the rod-like regime, it follows an ideal behavior (〈R2
e〉 ∝ m) and hence

the decrease in l3.

3. For very long chains and chains with short l1, l3 reaches a constant value,
depending on the local flexibility.
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Figure 4.19: l3/d plotted against chain length (L/d) for various flexibilities as
indicated in the figure for a real chain. The solid lines have expected slopes for the
rod-like and flexible ideal regime. Dashed lines are guides to the eye showing the
expected plateau behavior.

We see that there is an intermediate regime, where sufficiently long locally rigid
chains behave like ideal chains. We have similar results as in literature (see figure
4.20, obtained using the bending rigidity model on a cubic lattice, as explained in
page 61) but with our chain generation method, we are not able to reach longer
enough chains for lower ω and hence the final plateau behavior is not clearly visible.
Also from this plot, we can see that the plateau behavior is observed after the ideal
chain like behavior. This indicates the possibility of presence of another length scale
bigger than l1, where the semi flexible chains change from ideal to swollen.

Recently, Hsu et al. [111] have studied the structure of bottle brush polymers
using on lattice Monte Carlo methods. Bottle brush polymers are composed of a
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Figure 4.20: l3/d plotted against chain length (m) for various bending probabilities
(qb) as indicated in the figure for a self avoiding walk on a cubic lattice. Image
adapted from [115].

Figure 4.21: Bottle-brush polymers with backbone containing 131 monomers and
with side chain lengths (a) N=6, (b) N = 12, (c) N = 24, and (d) N = 48, with a
grafting density 1 per monomer. Image taken from [116]. Note how the thickness
increases with increasing persistence length. See text for details.
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Figure 4.22: l3/d for bottle-brush polymers plotted as a function of chain length
for various grafted chain length (N). Image adapted from [111].

backbone, on to which a dense grafting of side chains is made. The backbone is
very flexible and the rigidity of the chain is controlled by the length and grafting
density of side chains (see figure 4.21). Changing the rigidity of the backbone also
changes the diameter of the chain. Within the range of tested N , fig 4.22 shows
(on a lin-lin plot) that l3 does not follow the same behavior as observed in figures
4.19 and 4.20. As N increases, the chain does not show a range of m (in backbone
units) where an ideal-like behavior is recovered (this will also the case for Lp(k),
and will be discussed later). We compile data from [115] and [111] regarding l3 and
Rc (diameter of the chain) for a graft density 1 per backbone unit in table 4.1

Length of side chains, N l3 Rc l3/Rc

6 6.43 11.62 0.55
12 10.30 17.76 0.58
18 14.15 22.94 0.62
24 17.55 27.48 0.64

Table 4.1: l3 and Rc extracted from [115] and [111] for bottle brush polymers as a
function of side chain length.

We see that as N increases both l3 and Rc increase about the same factor (see
the ratio l3/Rc). This means the aspect ratio of the chain is conserved all along
the process (see figure 4.21). On the contrary, in the WLC limit (where the ideal
behavior of a real chain is observed on a certain range of m) this aspect ratio tends
to be infinite and chains look thinner. Hence, from a rod-like behavior bottle brush
polymers moves over to an excluded volume mediated behavior. In our case the
monomer size is fixed, or the diameter of the chain remains constant. Hence, with
the increase of persistence length, the ratio l3/lb diverges, giving a WLC behavior
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Figure 4.23: Normalized lp(x) for real chains with various X as shown in figure at
a constant local flexibility ω = 0.4.

for large l3.

We now study the behavior of lp(k). Knowing
∑

k lp(k) = 〈R2
e〉, the local per-

sistence length lp(k) for k far from both ends (lpmax) should behave as lp(k)/lb ∝
m2ν−1 and it stays finite for the chain ends [110, 112, 111]. So, we have again
another critical quantity that diverge with m

lK ∝ lpmax ∝ l2 ∝ m2ν−1 (4.43)

For ideal chains, we have seen that the shape of the normalized lp(k) curve
depends only on X with lpmax reaching a maximum value around X ≈ 0.4. A real
chain with a given flexibility shows similar behavior on X (see figure 4.23). If we
try to see the effect of ω on a given X, we find that the shape and lpmax of curves
are highly dependent on the local flexibility. See figure 4.24. From the figure, we see
that even for moderate value of X (X ≈ 60), more curved shapes can be observed
for highly locally flexible chains. Thus it becomes possible that a given curve may
be obtained from many combinations of X and ω, indicating a complex behavior
for normalized lp(k).

For a fully flexible three dimensional bead spring chain with excluded volume
interaction, using renormalization group and ε1-expansion, Schäfer and Elsner [110]
proposed an expression for lp(x), where x = k/(m − 1) as

lp(x) · L

〈R2
e〉 =

lp(x)

lK
≈ Γ(4ν)

Γ2(2ν)
· (x · (1 − x))2ν−1 (4.44)
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Figure 4.24: Normalized lp(x) for real chains with various local flexibility as
indicated in the figure for a constant X ≈ 60.

In figure 4.24, we see that the X ≈ 60, ω = 1.0 case correctly fits with this equation.
This equation was also found to provide a very good approximation for all cases of
self avoiding bottle brush model on a cubic lattice [116] which is contradictory to
our case. This could be understood, because the backbone of the bottle brush is
always highly locally flexible and tuning side chains does not significantly change
the effective l1/lb. Thus for all cases, we get the same behavior for lp(k) which
follow Schäfer’s predictions for fully flexible chains.

We use the equation suggested by Schäfer and Elsner with the exponent as a
free parameter and try to fit curves obtained from our real chains. The rearranged
equation used for the fit is given by

lp(x)

lK
=

Γ(2α + 2)

Γ2(α + 1)
· (x · (1 − x))α (4.45)

where α = 2ν − 1 for fully flexible chains. When x = 0.5, we get

lpmax

lK
=

Γ(2α + 2)

Γ2(α + 1)
·
(

1

4

)α

(4.46)

In these equations, we know that the term x · (1 − x) is already a convex function,
which means that α characterizes the shape and lpmax. When α → 0, the reduced
lp(k) curve should be flat and as α increases, the curve becomes bell shaped. We
fit only the middle portion of the curve obtained for lp(k)/lk from x = 0.25 to 0.75
as described by [111]. This is done because the diminished chain ends affect the
fitting procedure and give a lower α.
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Figure 4.25: Variation of α as a function of X for various ω as shown in the figure
for real chain case. The solid curve is obtained by fitting the ideal WLC theoretical
lp(k) curves from equation 4.37.

We first tried to fit theoretical curves obtained for ideal FRC (equation 4.37)
for various X and verify if the fitting procedure gives a maximum value of α around
the same value of X which gives maximum lpmax. Figure 4.25 shows the result of
such fitting procedure. In the figure, the solid curve is the fit obtained for the ideal
WLC condition (equation 4.37). The α value first increase from near zero, reaches a
maximum around X = 4.42 and then decrease back to zero for larger X, which is in
accord with the lpmax measurements (see figure 4.26). To check the reliability of the
fit, we injected these α values obtained for various X in equation 4.46 to recreate
the lpmax/lK curve (see figure 4.26). We see that the lpmax/lK obtained from this
method is very close to the one given by the theoretical prediction (equation 4.37
at x = 0.5), indicating the accuracy of the fitting procedure.

In the case of real chains, ideal chain behavior is observed for smaller X. As X

becomes larger, the curve starts to deviate from the ideal behavior and the deviation
is seen to be highly dependent on the local flexibility ω. We see that chains with
lower local flexibility follow the ideal behavior over longer chain lengths after which
α slowly starts to deviate. For chains which have an intermediate local flexibility,
we see that the deviation starts early and the decreasing behavior is continued till
a minima is reached, after which it appears to increase. Again using the prediction
from Schäfer and Elsner, with ν = 0.588, we should obtain α = 0.176 for very long
excluded volume dominated chains. From our data, we see α to be increasing again,
but it is not clear whether it will reach this expected behavior as data for longer
chains are not easily obtained in reasonable time. The effect of flexibility on the
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Figure 4.26: Variation of lpmax/lK as a function of X. The solid curve is the
theoretical expression for FRC (equation 4.37 at x = 0.5). The red filled stars come
from equation 4.46 using previous α values obtained from fitting theoretical curve
4.37.

normalized lp(k) curves (figure 4.24) may be due to the fact that we are not in the
long chain limit, where all chains should show similar lp(k) curves. This is observed
as the increase in lp(k) for higher ω, which lies closer to the expression by Schäfer.

Recalling the figure 4.18, we see that the case of ω = 1.0 is following a swollen
behavior for longer chains. In the case of lp(k), the α value obtained is slightly
less for the same chain, indicating that it is close to a swollen chain. This could be
due to chains being not long enough. Moreover, shorter chains have low number of
points on middle region of the lp(k) curve to be fitted and hence the fitting becomes
prone to errors, which reflects in the value of α.

We have already seen that the diverging behavior of l2 takes place at a chain
length longer than l1 and is dependent on ω. Similar behavior is also seen in the
case of l3, where it becomes independent of L. The lp(k) analysis also indicates
that X may not be the correct scaling for a real chain to account for the excluded
volume effects. We conclude the existence of a characteristic crossover length for
the real chain other than l1 after which it starts to show the swollen behavior as
predicted by Flory.

4.3.3 The thermal blob

To visualize the swelling effect clearly, we use the ratio of the mean square end to
end distance of the real chain to that of an ideal chain (figure 4.27). When the real
and ideal chains behave as rod like or ideally, we have the ratio equals 1. As the
chain length increases, the swelling effects starts to show up and for long chains,
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Figure 4.27: Ratio of the end to end distance of a real chain to that of an ideal
chain as a function of X for various ω as indicated in the figure. The guiding line
has a slope of 2ν − 1 = 0.176.

the ratio diverges as a function of the chain length, as predicted by Flory. Figure
4.27 clearly shows that l1 is not a good scaling parameter since chains with different
local flexibility deviate from the ideal behavior at different X.

Thus for a real polymer chain in a good solvent, another length scale is necessary
to describe its conformation as the chain length is increased. We have seen that
persistence length is not a relevant quantity to express the crossover from an ideal
chain behavior to a swollen one, where excluded volume interactions starts to be
of importance. The crossover is particularly noticeable in WLC limit, where the
persistence length is much bigger than the size of the monomer. This could be
understood as follows: Consider we are building a polymer chain with excluded
volume interactions by progressive addition of monomers to one end of the chain.
The probability of placing the ith monomer is very dependent on i and on the local
flexibility ω. When ω is very small, the direction of the chain growth remains rather
the same as in the beginning. When the persistence length is reached, the chain
direction is significantly decorrelated (of the order of 1/e = 0.37) and as l0.8 ≫ lb,
the monomer density around the growing end is still small and the chain is not
greatly influenced by excluded volume interactions. Thus it becomes possible to
obtain an ideal flexible regime. This is not the case if ω is large. Since the chain
direction gets decorrelated vary fast, we rapidly start to find existing monomers in
the neighborhood, reducing the space available to place the next one. Thus the
excluded volume interactions become very important even at shorter length scales
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(of the order of a few monomers). This is schematically shown in figure 4.28.

Figure 4.28: Schematic representation of the growth of a real chain. At left is a
chain with higher persistence length than the one on the right. Both chains are
almost at the same X. The black circles indicate the monomers placed so far and
the blue filled circle is the monomer at the growing end. The red and green area
together form the interaction volume. The green area shows the part accessible for
placing the monomer and the red area shows the part inaccessible due to excluded
volume interactions. Note the length of the chains and the amount of excluded
volume interactions.

The effect of l1 on excluded volume can be easily seen in the time taken to
generate the self avoiding chains. As l1 decreases, the probability of rejection be-
comes higher because of the increased monomer density around the growing end
leading to large number of overlapping structures. It has been already reported that
the probability of generating a self avoiding chain decreases exponentially with the
chain length m as P ∼ exp(−m/m∗) [117], where m∗ is a constant, which depends
on the model used and 1/m∗ is termed as attrition constant [117]. We have not
carried out any detailed study in this direction, but as an example: for self avoiding
chains, the time taken to generate 105 chains of m = 500, ω = 0.2 took about 15
minutes, while with ω = 1.0 for the same chain length it took around 5 days for the
generation due to tremendous amount of rejection.

To estimate the relation between this new length scale and the persistence
length, we consider the real polymer chain (made of N monomers) as made of
blobs called thermal blobs, inside which the chain is considered as ideal. Each blob
is having a characteristic size ξT and is freely jointed to the next one in a self
avoiding manner. See figure 4.29 for a schematic representation. For length scales
smaller than ξT, the chain behaves as an ideal chain as soon as the persistence
length b is reached. Considering the monomer to have a characteristic size a, a
blob contains NT monomers and the size of the chain is termed 〈RF〉, we have the
following relationships

〈RF〉 ∝
(

N

NT

)3/5

· ξT (4.47)
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Figure 4.29: Schematic representation of the thermal blob concept with ξT the
characteristic size of the blob and RF the characteristic size of the swollen chain.

and
ξT ∝ (a · b · NT)1/2 (4.48)

By taking a simplified expression of the chain free energy and minimizing it
[118, 107, 119], Flory found that the characteristic size of the chain scale as

〈RF〉 ∝ N3/5 · b1/5 · a4/5 (4.49)

Defining lT as the thermal contour length, we obtain

lT = a · NT ∝ b3

a2
(4.50)

Comparing with our model we have b ≃ l1 and a ≃ lb, giving

lT ∝ l31
l2b

(4.51)

From the thermodynamic point of view, thermal blob is a concept where each
blob corresponds to a chain length at which the monomer-monomer interaction
energy is of the order of the thermal energy kB · T . On smaller length scales,
interactions within the chain is small and hence chains follow unperturbed statistics.
For chains longer than lT, the monomer-monomer interaction energy is larger than
kB · T and polymer conformation becomes controlled by interactions.

This concept of thermal blobs gives a more comprehensive detail on different
length scales. For L ≪ l1, the chain is considered as rigid rod like; for l1 ≪ L ≪ lT,
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Figure 4.30: The ratio of squared end to end distance of real chain to that of an
ideal chain as a function of L/d for various local flexibilities as indicated in the
figure. The dashed line has a slope 2ν − 1.
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Figure 4.31: Same data as in figure 4.30 but as a function of the rescaled parameter
L/lT. The dashed guiding line has a slope of 0.176 and the red curve is from
equation 4.53 with a = 0.25.
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it behaves as an ideal chain and when L ≫ lT, it becomes a swollen chain. This
crossover could only be distinguished when l1 is large enough.

For L ≫ lT, using the thermal blob concept, and identifying b with l1, we can
write

〈R2
e〉 ∼

(

L

lT

)2ν

· lT · l1 (4.52)

Figure 4.30 shows the ratio of the mean square end to end distance of a real
chain to that of an ideal chain plotted as a function of L. We see that we are not able
to reach the long chain limit for many ω. But, a deviation from the ideal behavior
is visible for every ω under study. Due to insufficient data, we cannot use a direct
shifting method on the asymptotic behavior to obtain the shift factor lT (see figure
4.30). Hence we use another method as follows: We arbitrarily define lT(ω = 1.0)

as the intersection of the swollen behavior and the ideal behavior for ω = 1.0. Then
the next lower ω curves is shifted in L such that it superimposes on to ω = 1.0

curve for the largest values. This process is continued in the decreasing order of ω

such that curves superimpose on previously shifted ones for largest L values and
the shift factor is noted. These relative shift factors when multiplied by the defined
lT(ω = 1.0) gives the lT for the corresponding ω. This shifting process is based
on the assumption that a valid universal behavior exists in the WLC limit. This
assumption gives the ratio of the end to end distances to be a universal function of
L/lT giving a value of 1 for L/lT ≪ 1 and giving the Flory’s scaling behavior when
L/lT ≫ 1. The final shifted plot clearly shows that it is possible to create a master
curve (figure 4.31). However, for larger ω, curves does not superimpose exactly. A
rough analytical description of this kind of crossover could be achieved using the
following phenomenological equation

〈R2
e-real〉

〈R2
e-ideal〉

= [1 + a · (L/lT)0.5 + (L/lT)]2ν−1 (4.53)

where the parameter a controls the smoothness of the crossover. If we plot the shift
parameter lT as a function of l1 (figure 4.32), we see that we are able to recover
the relation 4.51, confirming the presence of a crossover and in accord with the
predictions.

We recall that in the case of bottle brush polymers, the intermediate ideal
behavior is not visible. This is because the effective l1/lb could not be varied and
hence the model never reaches a condition close to WLC. Thus, we will see a direct
crossover from ideal regime to swollen regime [115].
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Figure 4.32: Logarithm of the shift factor lT/d plotted against logarithm of l1/d.
The dashed line has a slope of 3.

4.4 Dynamic properties of a single polymer chain

In this section, we present theoretical behaviors in the beginning. After, the data
treatment method will be explained, followed by the limitations we have faced and
finally, results from our study.

4.4.1 Theory

Rouse model is the first molecular model developed to study the dynamics of an
ideal polymer chain in dilute regime. The model assumes m beads connected using
springs of root mean square length lb with each bead having a friction coefficient ζ.
It is assumed that there is neither hydrodynamic interactions nor excluded volume
interactions. From Einstein’s relation, we know that the translational diffusion
coefficient is inversely proportional to the friction coefficient. For an ideal polymer
chain, the total friction felt is the sum of the friction felt by individual monomers.
This gives

DT
m =

kB · T

m · ζ
=

DT
1

m
(4.54)

A polymer chain diffuses a distance comparable to its size during a characteristic
time called Rouse time τR given by

τR ∝ R2
e

DT
m

(4.55)

At times smaller than the Rouse time, chain shows viscoelastic vibration modes
and at longer time and the motion becomes simply diffusive. Using Flory’s scaling
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law for ideal chain, this relation becomes

τR ∝ t0 · m2 (4.56)

where, t0 is the time taken by a free monomer to diffuse a distance of its square
diameter (d2). For polymer chains with excluded volume interactions (like our
model), it is approximated that the relaxation behavior is homeomorphic to that
of the Rouse model [120]. This relation holds as far as the time scale considered is
larger than the relaxation time of a single bond. From equation 4.55 we get

τR ∝ t0 · m1+2ν (4.57)

The rotational motion of a polymer chain is characterized using the time cor-
relation of the end to end vector. For a rigid beaded rod, only a single relaxation
mode exists and the rotational diffusion coefficient is given as [82]

DR
m =

4 · kB · T

π · η · L3
(4.58)

This implies that rotational relaxation time is proportional to m3 (since in this
case L = m · l〈b〉). This relaxation is similar to the orientational decorrelation of
spin vectors, as explained in section 3.4 and could be expressed as an exponential
decay with a single relation time. As the chain becomes flexible, more vibration
modes appear and the relaxation becomes complex. Panja and Barkema [121] have
proposed an analytical expression for the mode amplitude correlation function for
long fully flexible real chains in a good solvent, leading to

C(t) =
1

∑

p

1

p1+2ν

·
∑

p

1

p1+2ν
· exp

(

−t · p1+2ν

τmax

)

(4.59)

where, p = 1, 3, 5, · · · , with
τmax ∝ m(1+2ν) (4.60)

and for ideal cases when ν = 0.5, this equation reduces to the classical Rouse
equation. This function is the sum of many terms but the coefficient of terms
decreases rapidly with p. For t ≫ τmax, this complex function C(t) could be ap-
proximately seen to be decreasing exponentially with a single longest relaxation
time τmax called rotational relaxation time. We can define a rotational diffusion
coefficient DR

m ∝ 1/τmax. The validity of this assumption could be seen in figure
4.33, where we compare the theoretical equation above with a single exponential.
Terms up to p = 13 were used in the sum for making the plot, after which they
appear to be negligible. To differentiate the closeness of the data points, the ratio
between the two curves is plotted. This curve shows that soon after τmax, the ratio
C(t)/ exp(−t/τmax) becomes a constant. This means that

C(t) ∝ exp(−t/τmax) , t ≫ τmax (4.61)

It can be noted that the rotational relaxation time is having the same scaling as
that of the time required for the chain to move its own size (τmax ∼ τR).
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Figure 4.33: (left) End to end relaxation function from the theoretical equation
given by Panja et al. [121] (red) and a single exponential (black) and (right) the
ratio between the two curves. Note the behavior of the ratio at t/τmax > 1.
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Figure 4.34: The behavior of MSD of the center of mass of a chain and that of
an average monomer for a chain of m = 20, ω = 1.0 and sT ≈ 0.0132. The blue
dashed line has a slope 1 and gives the MSD of a free monomer. The value τmax is
the longest rotational relaxation time obtained by fitting the decorrelation of the
end-to-end vector using REPES algorithm [122] (see text).
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4.4.2 Data processing

To study the dynamical behavior of a single real polymer chain, simulations were
carried out for various m, ω and sT. During simulation, the reduced MSD of
an average monomer in the chain and that of the center of mass of a chain are
monitored as a function of the reduced time t/t0. The behavior of the MSD is
shown in figure 4.34. The MSD of center of mass follows a linear behavior from
very short time, while an average monomer moves freely until the constraints are
felt (the cone angle ω and ε1) and later merges with the behavior of the center of
mass. Note that the merging occurs when MSD is equivalent to the squared size
of the chain, giving τR. Knowing MSD, the translational diffusion coefficient of a
chain of size m, DT

m/DT
1 could be easily calculated by dividing MSD by t/t0. Refer

image 4.35 for the variation of apparent diffusion coefficient with time. The average
value of DT

m/DT
1 over time is taken as the translational diffusion coefficient of the

specific system under consideration. Also, note the position of τR obtained from
figure 4.34. In this figure, we do not recover the short time behavior of an average
monomer. This is due to the usage of large sT. The short time behavior will be
clearly seen as sT → 0, where this simulation method becomes ideal. The effect of
sT will be discussed in the next section.

From the time relaxation of the normalized end-to-end vector C(t), the distri-
bution of the relaxation time was extracted by fitting the curve using the REPES
algorithm [122]. In this method, C(t) is considered to be a sum of several relaxations
and could be represented as

C(t) =

∫

A(τ) · exp(−t/τ)dτ (4.62)

In this algorithm, a regularized inverse Laplace transform of C(t) is carried out,
which is mathematically ill-conditioned [123] and very sensitive to noise data [124].
The relaxation time distribution is obtained as a discrete set of points on a logarith-
mic time scale. An example is shown in figure 4.36. The different peaks correspond
to different relaxation times for different modes of relaxation. From the distribution,
the longest relaxation time is taken to be τmax/t0.

To obtain reasonable values for the longest relaxation as a single exponential,
we need to let the system evolve for very long time. Around 7 times τmax/t0 leads
to C(t) of the order of 10−3. This appears to be a good precision for the REPES
processing to obtain τmax/t0 within acceptable error range.

4.4.3 Finite size effects and limitations

For a Brownian system, the step size should be very small compared to the con-
straints of the system under study, to obtain good dynamics. We cannot use a
very large step size as this will result in an increased number of motion rejections.
However, using a very small value of step size will cause the simulation to be slowed
down (see equation 3.21). So, some compromise has to be made with the sT to
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Figure 4.35: The behavior of the apparent diffusion coefficient of the center of mass
of a chain and that of a monomer for a chain of m = 20, ω = 1.0 and sT ≈ 0.0132.
τR is taken from figure 4.34. The value τmax is the longest rotational relaxation
time obtained by fitting the time correlation of end-to-end vector using REPES
algorithm [122] (see text).
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Figure 4.36: Example of a end to end vector relaxation function C(t) superim-
posed with the corresponding relaxation time distribution A(τ) obtained by REPES
algorithm. For this example, m = 20, ω = 1.0 and sR ≈ 0.0186.
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get good results in a reasonable amount of time. Figure 4.37 shows an example of
the calculated translational and rotational diffusion coefficients as a function of the
step size. We find that with the increase in sT, we underestimate the values of both
diffusion coefficients. We see from the figure (in log scale) that sT → 0 condition
exists and gives a finite value for diffusion coefficients. So, we linearly extrapolate
the diffusion coefficients to sT → 0. This method only works for the polymer chains,
where m is always fixed. In the case of aggregating systems, this method becomes
impossible due to the large amount of time required for running one simulation. We
know from previous works in the group that for irreversibly aggregating spheres,
the step size should be at least 3 times smaller than the average surface to surface
distance to the first neighbor d · (∆ − 1) of interacting particles [125]. d · ∆ is the
average distance to the first neighbor in a random distribution of hard spheres at a
given volume fraction, which is the starting point in the aggregation studies. In our
case, we have the constraints φ, ε1 and ω. We select a step size such that it gives
a maximum error within 10% of the asymptotic values of diffusion coefficients. We
find that this choice requires

sT/d < ε1/5, sR/d < ω/10 and sT/d < (∆ − 1)/3 (4.63)

and ensures a Brownian behavior within the interaction volume and in between
collisions.

For the polymer chains, a set of simulations were carried out for different val-
ues of sT and the extrapolated quantities at sT → 0 are taken as the calculated
properties of the system. Combining the various limitations - step size, the range
of relaxation time to be covered in the simulation and the size of the chain - we
were able to study only up to m = 20 for the rotational dynamics.
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4.4.4 Results

First we study the behavior of average chain dimension with time. In figure 4.38,
we plot 〈R2

e〉 as a function of t/t0. From the figure, we see that there is no apparent
change in values, meaning that in average, the chains are at equilibrium from the
beginning. As we see in 4.35, we do not have to wait for large time to get DT

m/DT
1 ,

we can calculate diffusion coefficient for chains up to m = 80.

�
�

���$ ���� ���� ���� ���� ��� ��� ��� ��� ���

	
�
��



��

��

��

��

��

�$

��

�(

ω�#����
ω�#����
ω�#����
ω�#����

Figure 4.38: The evolution of 〈R2
e〉 as a function of time for m = 5 and various ω

as indicated in the figure. The black straight lines indicate corresponding values
obtained from static property measurements at t/t0 = 0.

We study the effect of ω and chain length on the diffusion coefficient of G in
figure 4.39. We find that for any given m, the value of DT

m/DT
1 is independent of

ω. This means that

the motion of G is insensitive to the local flexibility of the chain .

This is expected, since equation 4.54 does not show any dependency on local flex-
ibility. This ω independent value of DT

m/DT
1 is taken and plotted as a function

of m in figure 4.40. We recover the theoretical prediction from 4.54 implying cor-
rect translational dynamics of the model when no hydrodynamic interactions are
considered.

Figure 4.41 shows the effects of ω on τmax. We have seen previously in figure
4.37 that the obtained τmax are having a large error margin, but on log scale these
error bars become small compared to the symbol size and hence is not shown in the
plots. We see that for a given chain length, the rotational relaxation time highly
depends on the local flexibility. For a given mass, as the ω →0, τmax increases very
rapidly. For higher ω, the relaxation time lowers, indicating that the chain relaxes
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Figure 4.39: Asymptotic values for DT
m as sT →0 plotted against ω for various m

as indicated in the figure.

Figure 4.40: The asymptotic behavior of DT
m/DT

1 plotted against m. Dashed line
is the function 1/m.
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Figure 4.41: Asymptotic values of τmax plotted as a function of ω for various chain
lengths as indicated in the figure.

faster due to its increased flexibility.

Comparing 4.58 with Einstein’s relation as explained in section 3.4, DR
1 = kB·T

π·η·d3 ,

we get DR
m/DR

1 ∝ 1/m3 for a rigid beaded rod. This implies a constant value for
(τmax/t0)/m3. For flexible chains, since τmax/t0 scales as m2ν+1 (see section 4.4.1),
we get

(τmax/t0)/m3 ∝ m2ν−2 (4.64)

Thus, if we plot (τmax/t0)/m3 as a function of L, we should get a plateau till the
length reaches the persistence length, after which it follows the scaling behavior.
This implies that these curves could be rescaled using X = L/l1, which determines
the rod-like limit. These rescaled curves are plotted in figure 4.42. We see that
the curve for locally rigid chain shows the initial plateau like behavior. Also, the
deviation from rod like behavior is seen for more locally flexible curves. As the
chain grows longer, according to the thermal blob concept, there are two possible
behaviors:

1. Chains with very high local flexibility directly tends to follow the swollen
chain behavior, giving a slope 2ν − 2, with ν = 0.588.

2. Chains with very low flexibility tends to follow the ideal chain behavior ini-
tially, giving a slope of −1. After the thermal blob contour length is reached,
it deviates to the swollen behavior as in the previous case.

In our results, we cannot distinguish the two behaviors since the chains are too
short, but we see that all the results are within both limits.
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Figure 4.42: Variation of (τmax/t0)/m3 as a function of X for various local flexibility
as indicated in the figure. Dashed lines show the expected theoretical slopes in the
real (red) and ideal (blue) cases.

4.5 General conclusions

In this chapter, we used patchy particle system combined with a modified version of
the Brownian cluster Dynamics algorithm to study static and dynamic properties
of a single polymer chain. Using this method, we were able to recover theoreti-
cal predictions within statistical errors and we see that this model gives a more
realistic description of polymer chains. The results of static property study could
be summarized in the figure 4.43. For both real and ideal semi flexible chains,
there exists a persistence length l1 below which they show a rigid-rod behavior with
〈R2

e〉 ∝ m2. For length greater than l1 the behavior changes and for ideal chain,
we have 〈R2

e〉 ∝ m. This crossing over from rod like behavior to flexible behavior
occurs at Kuhn length lK. A real chain with length scale below lT acts like an ideal
chain. As soon as the length is increased beyond lT, excluded volume effects show
up and the chain starts to behave like a real chain with 〈R2

e〉 ∝ m2ν . Dynamical
properties of single polymer chains were also investigated in detail. We were able to
recover expected results in the case of translational and rotational dynamics con-
firming the validity of our model and method. At t ≫ τmax the rotational relaxation
follows an exponential decay with a single relaxation time. At short time scales,
the lower fast modes of vibration come in to interest, which defines the initial decay
behavior. C(t) is a bound function, which varies from a single exponential decay for
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rigid rods to the behavior suggested by Panja et al. for fully flexible chains. Figure
4.44 shows the rescaled curves for chains with different flexibility and we see that
all of them are perfectly within the bounds. In the initial part, they are different
as expected, but converge to the exponential decay for large time. From the study
of effect of step size, we were able to extract optimum input values for sT to be
used further (for polymerization), so that correct dynamics is recovered within 10%

error.



Chapter 5

Kinetics of patchy aggregation

5.1 Intoduction: Smoluchowski aggregation

In solution, colloidal particles undergo Brownian motion and can form irreversible
bonds on collision. In the limit of very dilute solutions, von Smoluchowski [38]
calculated the rate of binary collisions that lead to the formation of dimers in
terms of the flux of particles about an immobile particle/point (see figure 5.1).
The immobile point is set to be at the origin and the particle density around it
is isotropic. The dilute regime ensures independence between collisions, absence
of ternary collisions and guarantees Brownian behavior between collisions. In the
original derivation, particles move freely in the medium until they reach a certain
capture radius Rcol,i around the immobile particle/point. At the capture radius, we
consider that a dimer is formed and is immediately removed from the system. The
idea is to find the number of particles that reach the capture radius in a given time.
The isotropic nature of this model reduces it to a one dimensional problem which
depends only on the distance of the moving particle from the origin r and time t.
The other essential parameters and results from von Smoluchowski are as follows:

At time t = 0, particles are uniformly distributed in space and the number
density is denoted as C0. C1(r, t) is the number density of particles at a distance
r from the origin at time t. DT

1 is the translational diffusion coefficient of a free
particle in the medium. Using spherical coordinates and isotropic nature, Fick’s
equation of diffusion (Fick’s second law) can be written as

∂(r · C1(r, t))

∂t
= DT

1 · ∂2(r · C1(r, t))

∂r2
(5.1)

It satisfies the following boundary conditions

C1(r, t) = C0 when t = 0, r > Rcol,1 (5.2)

C1(r, t) = 0 when t > 0, r = Rcol,1 (5.3)

The solution under these boundary conditions is given as

C1(r, t) = C0 ·















1 − Rcol,1

r
+

2 · Rcol,1

r · √
π

·

1

2
·

r−Rcol,1√
DT

1
·t

∫

0

exp(−x2) · dx















(5.4)



92 Chapter 5. Kinetics of patchy aggregation

Figure 5.1: Schematic of Smoluchowski’s model. The central red particle is immo-
bile and the green particle just reached the capture radius Rcol,1, denoted by the
red circle to form a dimer. Blue particles are mobile and show Brownian motion.

Using Fick’s first law of diffusion, we can calculate the rate at which particles arrive
at the surface of the sphere with radius R as

4 · π · DT
1 ·
(

r2 · ∂C1(r, t)

∂r

)

r=Rcol,1

= 4 · π · DT
1 · Rcol,1 · C0 ·



1 +
Rcol,1

√

π · DT
1 · t



 (5.5)

In reality, particles in a colloidal system are in a finite volume and we define
C0 to be the initial concentration of the system with φ the total volume fraction of
particles. C1(t) is the number density of the unreacted particles in the volume at
time t. Moreover, all colloidal particles are equivalent and hence any particle can
react with any other one forming a dimer. The relative diffusion coefficient between
two particles is simply the sum of the individual diffusion coefficients. Under these
conditions, integrating equation 5.5 over time gives the total number of reacted
particles at any time t and we have

1

C1(t)
− 1

C0
= 8 · π · DT

1 · Rcol,1 · t ·


1 +
2 · Rcol,1

√

2 · π · DT
1 · t



 (5.6)

This mutual collision and bonding of two particles could be also considered from a
kinetic point view with rate equation given by

dC1(t)

dt
= −K1,1 · C2

1 (t) (5.7)
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where K1,1 is the rate constant for the monomer-monomer reaction as introduced
before in section 2.1.2. Integrating and applying the boundary condition that
C1(t) = C0 at t = 0 gives

1

C1(t)
− 1

C0
=

t
∫

0

K1,1 · dt (5.8)

Comparing equations 5.6 and 5.8, we get

K1,1 = 8 · π · DT
1 · Rcol,1 ·



1 +
Rcol,1

√

2 · π · DT
1 · t



 (5.9)

K1,1 becomes independent of time as soon as t ≫ R2
col,1/DT

1 .

Bimolecular reaction leading to the formation of dimers in dilute conditions
corresponds to a DLCA process until a trimer is formed. For our patchy BCD
model denoted by PBCD, this corresponds to a step polymerization with ω = π

where each patch covers the entire surface and any collision results in double bond
formation. Since no trimer is possible, simulations could be run for longer times
unlike the DLCA case where larger clusters appear.

In our model, we form irreversible bonds at the square well interaction range,
giving Rcol,1 = d · (1 + ε) where d is the particle diameter and ε the relative well
width of the square well potential. Using our definition of time t0 = d2/(6 · DT

1 ) we
obtain

C0

C1(t)
− 1 = 8 · φ · (1 + ε) · (t/t0) ·

(

1 + (1 + ε) ·
√

12

π
· 1
√

(t/t0)

)

(5.10)

which gives two limiting behaviors

C0 − C1(t)

8 · (1 + ε) · φ · C1(t)
=







t
t0

for t
t0

≫ 12(1+ε)2

π
√

12
π · (1 + ε) ·

√

t0

t for t
t0

≪ 12(1+ε)2

π

(5.11)

Figure 5.2 shows the comparison of our simulation results with the theoretical
Smoluchowski equation (equation 5.10). We see that they are in very good agree-
ment. As expected, curves for DLCA ends after a short time due to the formation of
trimers, whereas the patchy model continues to larger times and shows the expected
behavior all along the simulation.

5.2 Cluster-cluster aggregation

In section 2.1.2, we have already discussed Smoluchowski approach for the irre-
versible cluster-cluster aggregation. Using the constant kernel, which is a very
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Figure 5.2: Comparison of Smoluchowski’s theoretical prediction with results from
DLCA and PBCD (with ω = π) simulations as indicated in the figure.

strong hypothesis, we have the following expression for the weight average aggre-
gation number

mw = 1 + K1,1 · C0 · t (5.12)

Substituting the value of K1,1 from equation 5.9, we get

mw − 1 = 8 · φ · (1 + ε) · (t/t0) ·
(

1 + (1 + ε) ·
√

12

π
· 1
√

(t/t0)

)

(5.13)

giving

mw − 1 = 8 · φ · (1 + ε) · (t/t0) , (t/t0) ≫ 12/π · (1 + ε)2 (5.14)

which is the generally used form of this relation in aggregation studies [101].

We monitor the evolution of mw using the different BCD simulation models
and using PBCD under dilute conditions. For the BCD method, there exist three
different models, depending on the way clusters move (refer section 3.1 and [23] for
details):

1. BCD1 - displacement of a center of mass of the cluster is achieved by small
random displacements of particles constituting the cluster - slippery Rouse

clusters with diffusion coefficient of the center of mass inversely proportional
to the aggregation number of the cluster

2. BCD2 - clusters are rigid and their center of mass moves with a diffusion
coefficient inversely proportional to a characteristic size of the cluster. There
is no local motion of the individual monomers inside the cluster - rigid Zimm

clusters
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Figure 5.3: Comparison of Smoluchowski’s theoretical prediction (thick black
dashed curve) with results from various simulation methods as indicated in the
figure (left).The same data zoomed to show the deviation at large times (right)
φ = 0.005 in all cases.

3. BCD3 - BCD1 followed by BCD2 - slippery Zimm clusters. Note that the
internal structure in this case is different from that of BCD2.

PBCD algorithm is designed to show slippery Rouse dynamics. To observe
clusters larger than dimers, we need to use an ω ≤ π/2. In figure 5.3, we compare
these different models with Smoluchowski’s prediction. We see that expression 5.13
gives a very good description of all systems for short times. BCD2 and BCD3 fol-
lows the theoretical prediction all along, while BCD1 and PBCD shows deviations
at larger time (see figure 5.3 (right)). Initially when there are only monomers,
all these models are equivalent and hence behave similarly. As collisions involv-
ing larger clusters become important, diffusion slows down for BCD1 and PBCD
(Rouse dynamics). But for PBCD, there is more than one reason for the deviation.
Valency restriction prevents bond formation on already reacted patches, leading to
unreactive collisions. Moreover, reactive ends of a chain can form loops. This is
due to dilute conditions which favor intra-chain reactions. For the case ω = π/2,
mainly cyclic trimers are formed. All these reasons slow down PBCD kinetics.

5.3 Influence of valency restriction and surface cover-
age by the patch

In PBCD, the reactivity is restricted to monovalent opposite patches. The relative
surface coverage of patches is termed as χ and is related to the patch cone angle
ω ≤ π/2 as

χ = 1 − cos ω (5.15)

Reducing χ decreases the loop formation, but also increases the amount of unsuc-
cessful collisions. The effect of χ is studied in figure 5.4. As expected, we see the
rate of the reaction lowering with decreasing χ. Also, we see that the cyclization
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decreases with χ and a linear scaling is obtained at large times for lower ω cases.
For any two uncorrelated colliding monomers, the probability to have their reactive
surface aligned is χ2. So, as a first approximation we try to normalize the rate
constant using χ2, which gives

mw − 1 = 8 · φ · χ2 · (1 + ε) · (t/t0) ·
(

1 + (1 + ε) ·
√

12

π
· 1
√

(t/t0)

)

(5.16)

In figure 5.5, we see that χ does not seem to have such a strong influence (power
2) on the rate equation and this correction does not provide a good description of
kinetics.

Figure 5.4: Comparison of Smoluchowski’s theoretical prediction (thick black
dashed curve) with results from PBCD with various χ as indicated in the figure.
φ = 0.001 in all cases. The extent of the reaction (p) and the fraction of monomers
involved in loop (Nloop) at the final point on the curves is also given.

Dimerization reaction through patches

Cluster-cluster aggregation process and polymerization are complex reactions and
the simple expression 5.12 assumes a strong hypothesis on kernels Ki,j . So , we
restrict our study to the effect of χ on the simple case of dimerization. For this, the
PBCD program has been modified to prevent further patchy aggregation of dimers.
A series of simulations were run for various χ values under very dilute conditions
(φ = 0.005 in general). Values of ω are chosen equally spaced on a logarithmic scale
of χ2 and range from χ2 = 1 down to χ2 = 10−4.
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Figure 5.5: Same data as in figure 5.4, but mw − 1 is rescaled using χ2.

Figure 5.6: Comparison of Smoluchowski’s theoretical prediction (thick dashed
black curve, from equation 5.10) with results from PBCD-dimerization with various
χ as indicated in the figure.



98 Chapter 5. Kinetics of patchy aggregation

Figure 5.7: Same data as in figure 5.6, but rescaled using χ2.

Figure 5.6 shows kinetics of dimerization for various χ. We see that at large time,
a Smoluchowski like linear behavior is recovered. As in cluster-cluster aggregation,
we tried to rescale equation 5.10 using χ2, leading to

C0

C1(t)
− 1 = 8 · φ · (1 + ε) · (t/t0) ·

(

1 + (1 + ε) ·
√

12

π
· 1
√

(t/t0)

)

· χ2 (5.17)

From figure 5.7, we see that this rescaling is not valid and the real rate is higher
than χ2 · K1,1 when χ → 0. But at very small time, all curves seem to merge on
the Smoluchowski one. We will discuss about this later. Since χ2 correction is
too strong, we tried to rescale these curves using a different exponent for χ. In
the limit χ → 0 and at large time, using χ1.23±0.02 (see figure 5.8) gives a good
superimposition to form a limiting curve (different from Smoluchowski one). Under
this condition, we define k(χ, t) as

C0

C1(t)
− 1 = K1,1 · C0 · χ1.23 · k(χ, t) · t (5.18)

which turns to be in our framework

C0

C1(t)
−1 = 8 ·φ ·χ1.23 ·k(χ, t) ·(1+ε) ·(t/t0) ·

(

1 + (1 + ε) ·
√

12

π
· 1
√

(t/t0)

)

(5.19)

Evolution of k(χ, t) is shown in figure 5.9. First, we see that k(χ, t) reaches
a constant plateau at large times different from the theoretical one (k(1, ∞) = 1).
Secondly, this k(χ, ∞) becomes independent on χ as χ → 0. This limiting behavior
is seen for χ < 0.2. From figure 5.9, k(χ, ∞) for a given χ was noted and plotted as
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Figure 5.8: Same data as in figure 5.6, but rescaled using χ1.23.

Figure 5.9: Evolution of k(χ, t) as a function of t/t0 for various χ as indicated in
the figure. The thick black dashed horizontal line corresponds to Smoluchowski
behavior. k(χ, ∞) calculated from this data is plotted in figure 5.10. φ = 0.005 in
all cases.
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a function of χ in figure 5.10. It is clearly seen that k(χ, ∞) becomes independent
of χ in the limit χ → 0 and reaches a value close to 3. Also, we see that for χ = 1,
we get k(1, ∞) ≃ 1.1, which is different from the expected value of 1. Reason for
this may be that φ = 0.005 we used being probably not small enough. Theoretical
behavior is only recovered in the limit of infinite dilution. See figure 8 in [101] where
the same is observed. Theoretical behavior with good prefactor is recovered only
for φ smaller than 5 × 10−4.

Figure 5.10: k(χ, ∞) at large time plotted as a function of χ. The solid curve is a
guide to the eye.

This difference in reaction rate is attributed to inefficient collisions due to the
decrease in reactive surface. In the original derivation by Smoluchowski, two uncor-
related colliding particles form a dimer with probability 1 at the interaction radius.
In patchy case, when patches are not aligned, colliding particles form unbound cor-
related couples with a probability (1 − χ2). These couples will contribute later to
the dimer formation by a secondary process mainly involving rotational diffusion.
Moreover, if a weak isotropic interaction keeps monomers close together for a longer
time, the effect of this secondary process will be of greater importance. So, we pro-
pose a detailed study of dimerization process from a dynamic point of view and see
what happens when two particles start close together (r0 = Rcol,1 = d · (1 + ε)).

5.4 Correlated couples

Let us imagine a dilute system of patchy particles with initial number density C0.
Let C1, Cc and C2 denote the number density of unreacted uncorrelated monomers,
unreacted correlated monomers and dimers respectively. In patchy case, dimers
could be formed in two ways: from a direct collision between two uncorrelated
monomers with a probability of success χ2 and from reorientation of the remaining
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Figure 5.11: Schematic representation of the two pathways for dimer formation in
the patchy case. Two uncorrelated patchy monomers have a probability χ2 to form
a dimer, when they come in interaction range. K1,1 is the rate constant given by
Smoluchowski for a bimolecular reaction, Ku is the rate constant that two correlated
particles get uncorrelated again and Kp is the rate constant for reorientation and
bonding of a correlated couple.

(1 − χ2) correlated monomers before they become uncorrelated again. This could
be pictorially represented as in figure 5.11. We can consider correlated couples as
another species and we have the relation

C0 = C1 + 2 · C2 + 2 · Cc (5.20)

From Cc correlated couples, a fraction gets uncorrelated again and another fraction
forms patchy bond (see figure 5.11). So, rate equations for these reactions could be
written as follows.

dC1

dt
= − K1,1 · C2

1 + 2 · Ku · Cxu
c (5.21)

dC2

dt
=

K1,1

2
· χ2 · C2

1 + Kp · Cxp
c (5.22)

dCc

dt
=

K1,1

2
· (1 − χ2) · C2

1 − Kp · Cxp
c − Ku · Cxu

c (5.23)

where, Ku and xu are the rate constant and the order of the uncorrelation reaction
respectively, and Kp and xp are the rate constant and order of the reaction for the
patch formation from correlated couples respectively. Using these set of equations,
we will explain the dimerization process by studying each individual reaction in the
following.

In order to precisely understand the effect of correlation when two patchy
monomers come in the interaction range, we simulated couples of monomers with
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randomly orientated patches, separated by a given distance r0 = d(1+ε) at starting
time t = 0, after which they begin their random walk. We answer the following
questions:

1. For non patchy couples, what is the average time spent in interaction range
when no isotropic interaction is present?

2. What is the effect of an isotropic square well attractive interaction on the
previous average time?

3. For patchy couples, what is the time taken to form the bond when there is
a rotational motion and the translational motion is restricted into the well
(Batt = ∞)? What is the influence of χ on this average time?

4. From the three simplified case above, can we understand the situation where
both rotational and translational motion take place in a finite depth well?
Can we estimate Ku and Kp and orders of the two reactions?

Various C programs has been written to study these individual effects turning on
and off the patchy interactions, the isotropic square well potential and excluded
volume effects.

5.4.1 Non patchy monomers - the ideal case - an analytical ap-
proach

Consider monomer 1 starts at O and stays immobile while monomer 2 starts at A,
at a distance r0 = d·(1+ε) from monomer 1 (see explanatory figure 5.12) and moves
with a translational diffusion coefficient D = 2 · DT

1 = d2/(3 · t0). This is to take
into account the effect of the relative diffusion coefficient when both particles are
moving. R(t) = r0 + r(t) is the position of particle 2 at time t, where r(t) denotes
its relative displacement from the initial position at time t. We are interested in
the probability to find the second monomer within a distance d · (1 + ε) from the
first one at a given time t. This also corresponds to the fraction of monomers in
the interaction range, nw, at time t.

Assuming no excluded volume interactions, the density probability of finding
monomer 2 at position R(t) is given by

f(R(t)) = (4 · π · D · t)−3/2 · exp

(

−r2(t)

4 · D · t

)

(5.24)

and only depends on r2(t). The probability that particle 2 lies in interaction range
could be calculated by integrating the above expression over the volume of a sphere
centered at O and with a radius (d · (1 + ε))

P (R(t) ≤ d · (1 + ε)) =

∫∫∫

v

f(R(t)) · dv (5.25)
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Figure 5.12: Schematic of the problem.

Let us consider the intersection of the sphere centered on O with radius r0 and
the one centered on A with radius a ≤ 2r0 (see figure 5.12 for a two dimensional
representation). Let M be any of the intersection points. We are interested in the
spherical conic surface with an angle λ given by cos λ = AM/AB = a/(2r0) in the
interior of the interaction volume. Introducing a small radius increment da as in
the figure, we can define a piece of spherical conic shell with a volume dv given as
(see also appendix A)

dv = 2 · π · a2 · (1 − cos λ) · da (5.26)

Now, we can integrate over the volume of interest using these spherical shells cen-
tered on A with radius ranging from 0 to 2 · r0 (from A to B). Note that this is
based on the fact that the density probability of particle 2 is equally distributed in
these shell elements. This implies

P (R(t) ≤ r0) =

2·r0
∫

0

2·π·a2·
(

1 − a

2 · r0

)

·(4 · π · D · t)−3/2·exp

(

−a2

4 · D · t

)

·da (5.27)

On rearrangement

P (R(t) ≤ r0) =
1√
π

·
[

γ

(

3

2
,

r2
0

D · t

)

−
√

D · t

r2
0

· γ

(

2,
r2

0

D · t

)]

(5.28)
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where γ(a, x) is the incomplete gamma function defined by

γ(a, x) =

x
∫

0

ta−1 · exp(−t) · dt (5.29)

with the following limiting behaviors

γ(a, x) = Γ(a) , x → ∞ (5.30)

γ(a, x) = xa/a , x → 0 (5.31)

This probability gives the fraction of couples in interaction range at a given time
t. Using our system of units, we get

nw =
1√
π

·


γ

(

3

2
,

A

t/t0

)

−
√

t/t0

A
· γ

(

2,
A

t/t0

)



 (5.32)

where A = 3 · (1 + ε)2.

For t/t0 ≪ A, incomplete gamma functions in equation 5.32 turn to be gamma
functions and using the relation Γ(1/2) =

√
π, we get

nw ≈ 1

2
−
√

t/t0

π · A
, t/t0 ≪ A (5.33)

and for t/t0 ≫ A, using equation 5.31, we get

nw ≈ A3/2

6 · √
π

· (t/t0)−3/2 , t/t0 ≫ A (5.34)

In the beginning of the study, we positioned the second particle at the edge of the
well, d · (1 + ε). From equation 5.33, we get for very small time, nw(t → 0) = 1/2.
This means that only half of the couples are within the interaction range, or in other
words, half of the couples leave the well instantaneously as time tends to zero.

Figure 5.13 shows equation 5.32 with the above two limiting behaviors for com-
parison. We see that the integral over time for nw remains finite. It has been
shown that the average time spent in the well is a finite quantity and is an intrinsic
property of Brownian motion which is transient in the volume R

3 (see page 77 of
[126]). This integral gives the average time that a couple stays in the interaction
range, before it gets uncorrelated. We call this time the average correlation time tl

c,
where l denotes the excluded volume conditions: l = 0 for the ideal case and l = 1

denotes the real case. Changing variable y = A/(t/t0) and integrating by parts,
equation 5.32 gives

tl=0
c /t0 =

∞
∫

0

nw · d(t/t0) = (1 + ε)2 (5.35)
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Figure 5.13: Equation 5.32 plotted against time for ε = 0.1 (circles). Also, the short
time behavior (equation 5.33, in blue) and large time behavior (equation 5.34, in
red) are shown. The vertical dashed line is drawn at t/t0 = A.

The derivative of nw with respect to time gives the net flux of couples leaving the
interaction range at a given time. From equation 5.32, we get

−dnw

d(t/t0)
=

1

2
· 1
√

π · A · (t/t0)
· γ

(

2,
A

t/t0

)

(5.36)

For t/t0 ≪ A, we get

−dnw

d(t/t0)
=

1

2
· 1√

π · A
· (t/t0)−1/2 , t/t0 ≪ A (5.37)

and for t/t0 ≫ A, we obtain

−dnw

d(t/t0)
=

1

4
· A3/2

√
π

· (t/t0)−5/2 , t/t0 ≫ A (5.38)

Figure 5.14 shows the analytical expression 5.36 with the two limiting power law
behaviors at small and large times.

Comparing 5.38 with equation 5.34, we see that at large time t/t0 ≫ A, the flux
could be written as a function of nw

−dnw

d(t/t0)
= B · n5/3

w , B =
3

√

243 · π

2 · A3
, t/t0 ≫ A (5.39)

This means that uncorrelation of an ideal correlated couple follows a kinetics of the
order 5/3 (see figure 5.15). B also gives us an idea about Ku (see figure 5.11).
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Figure 5.14: Equation 5.36 plotted against time for ε = 0.1. Also, short time and
large time behaviors are shown as indicated in the figure. The vertical dashed line
is drawn at t/t0 = A.

Figure 5.15: The flux of couples leaving the well plotted against nw for ε = 0.1

(black curve). The red dashed line is the expression 5.39. The blue dashed line
corresponds to the maximum value nw((t/t0) = 0) = 0.5.
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5.4.2 Non patchy monomers - the case with excluded volume ef-
fects - a simulation study

For the excluded volume case, we don’t have any analytical expressions to work
with. So, simulations were carried out with same details as described in the previous
case, but taking into account excluded volume interactions. Motion steps leading
to overlapping configurations were rejected. For the simulation, at least 105 couples
were considered to compute nw. Also, different values of Batt were tested by refusing
a couple to leave the well with probability P (see 2.5 which connects Batt and
P ). The Brownian step size (sT) is also chosen as an input parameter and nw was
monitored as a function of time in the output, along with other quantities of interest
like the average number of exits from the well, the average time spent in the well
between two exits, the maximum distance traveled between an exit and subsequent
entrance, the mean square displacement etc.

5.4.2.1 Influence of sT

We know that using sT as small as possible gives unbiased results. But, as said
before, this is highly CPU time consuming. Figure 5.16 shows results obtained using
various sT at Batt = 0. We see that as sT increases, the correct behavior is recovered
only at larger times, when it superimposes with the one with a smaller sT. This
means that using small sT for small times and large sT for larger times, the unbiased
behavior could be obtained for very large times, given enough superimposition with
a lower sT one. Using this method, we can reconstruct the complete curve within
a reasonable CPU time.

Figure 5.16: (Left) Influence of sT on nw for the real case (with excluded volume),
ε = 0.1 and Batt = 0. The ideal case is also plotted for comparison (black dashed
curve). (Right) The same data in the plot on the left, but in a log-log plot. The
gray vertical dashed line in the figure denotes the average time needed for a couple
to collide for the first time, starting at a distance d · (1 + ε).
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As we are mainly interested in the average time spent in the well, we plot
nw ·(t/t0) on a logarithmic scale of time - area below the curve being tl

c/t0 (see figure
5.17). This gives us an idea of the time to be reached to compute more accurate
value for the correlation time. The reconstructed curve is then interpolated in a
logarithmic time scale to get equally spaced points and is numerically integrated to
obtain tl

c/t0. In figure 5.18, we plot area under the curve nw · (t/t0) as a function of
t/t0. As expected, the value converges to a constant plateau at large times. We take
this plateau value as the average correlation time (tl

c/t0) or the average time spent
in the potential well. For the real case, the obtained t1

c/t0 is lesser than the ideal
case (see figures 5.16 and 5.18 for a comparison). For Batt = 0 and ε = 0.1, figure
5.18 gives t1

c/t0 ≈ 0.30 for the real case, while for the ideal case we get t0
c/t0 = 1.21.

This is simply because of the reduction of the interaction volume for the real case
due to excluded volume interactions, which favor particles to leave the well sooner.
We can also notice by comparison with the ideal case, that the real one gives a
similar power-law behavior for nw at large time with the same exponent −3/2 (see
figure 5.19 (left)). Also, plotting the evolution of −dnw/d(t/t0) as a function of nw

or t/t0, we obtain a similar kinetic behavior at large times with the same exponent
5/3 but a higher rate constant compared to the ideal one (figure 5.19 (right)). This
means that excluded volume effects play no role on the kinetic class of uncorrelation.
We also note that ε affects the rate constant of the reaction, yet the exponent of the
power law behavior at large time remains the same. At short times, both ideal and
real cases have same behaviors until the average time to the first hardcore collision
is reached (ε2/2). This time is shown as gray dashed line in figures 5.16 and colored
arrows in 5.19.

Figure 5.17: (Left) Influence of sT on nw · (t/t0) for the real case with excluded
volume, ε = 0.1. (Right) The reconstructed curve (black curve) is made using good
regimes of data from the plot on the left side. Circles represent interpolated values.
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Figure 5.18: Area under the curve for reconstructed data in figure 5.17 plotted as a
function of t/t0 for the real case with excluded volume, ε = 0.1 (black curve). The
plateau value at the long time is taken as the average correlation time. The ideal
case is given in red color for comparison.

Figure 5.19: Evolution of −dnw/d(t/t0) as a function of time (left) and of nw (right)
for Batt = 0 and various ε as indicated in figure. The ideal case for ε = 0.1 (red
curve) is also given for comparison. The vertical arrows correspond to the average
time at which excluded volume is felt for the first time (ε2/2).
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5.4.2.2 Effect of Batt

Using the above method to construct the curves, we study in detail, the effects of
Batt on tl

c/t0 for ε = 0.1. As in BCD, the effect of Batt is modeled by using a
probability term P . This means that when particles are entitled to leave the well,
a fraction P remains in the well. We recall the relation between Batt and P

Batt =
4 · P

(1 − P )
·
[

(1 + ε)3 − 1
]

(5.40)

Figure 5.20 shows the effect of Batt on nw. As in the ideal case with Batt = 0,
all curves start with almost a flat plateau like region at very small time. For
Batt = 0, both ideal and real case behave similarly at very small time, but real
cases starts to show deviation later. However, we see that all curves have a similar
power law at large time, proportional to (t/t0)−3/2. This means neither excluded
volume nor Batt change the kinetic class of the process. So, the order of the reaction
(uncorrelation from correlated state) remains the same and only the absolute value
of Ku is influenced.

Figure 5.20: Evolution of nw as a function of t/t0 for ε = 0.1 and various Batt as
indicated in the figure. The ideal behavior (Batt = 0 ) from equation 5.32 is also
given for a comparison.

The initial plateau behavior at small time depends on Batt (see figure 5.21) and
could be explained as follows. In our simulation, couples start at inner edge of the
interaction range (in fact, at a distance (d · (1 + ε) − 10−6). This is to have a well
defined initial condition that does not depend on the floating point precision of the
computer when the squared distances are calculated with a precision of 10−12. Let
Nin(n) denote the number of couples within the interaction range at motion step
n and similarly Nout(n) the number of the couples outside. The total number of
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couples is N0 = Nin(n) + Nout(n) at any n. In the limit of small sT (bigger than
d · 10−6, but smaller than the radius of curvature of the surface) and small n, we
can consider that particles are very close to the border. Then, in a motion step n,
the following things could happen

1. Half of particles outside the border are entitled to come in

2. Half of particles inside the border are entitled to leave the well

3. Of the above particles entitled to leave, the probability that they overcome
the barrier is given by (1 − P ). So, depending on P , some particles remain in
the well.

We could write the flux of particles entering the boundary as Nout(n)/2 and the
flux of particles leaving the boundary as (1−P ) ·Nin(n)/2. A quasi stationary state
is obtained when both flux are equal, leading to

1

2
· Nout(n) =

1

2
· (1 − P ) · Nin(n) (5.41)

which gives
Nin(n)

N0
=

1

2 − P
= nw(t → 0) (5.42)

This means that the initial behavior of nw is a function of P or in other words
Batt. Even when we start with all couples at the edge, some of them instantaneously
leave the well and we never get all the monomers to be in the range, except for P = 1.
Figure 5.21 shows values calculated for different P along with the nw curves. We
see that the above equation gives a perfect description of the initial limit.

To compute the average time spent in the well, we plot the data of figure 5.21
using our previous method to get figure 5.22. From this plot, we integrate area
under the curve and find average correlation time. The obtained tl

c/t0 is plotted as
a function of Batt in figure 5.23 for different ε and real/ideal case. We see that the
average correlation time increases linearly with Batt, and it depends on excluded
volume effects and the value of ε. We write these dependencies as tl

c(ε, P ). (Since
Batt is a function of both P and ε, we explicitly separate the two variables). Linear
dependence of the correlation time could be mathematically represented as

tl
c

t0
= al(ε) + bl(ε) · Batt (5.43)

where al(ε) and bl(ε) are only function of ε and l (l=0 ideal, l=1 real). We try to
find the correct expression for them in the following.

Interestingly, we observe that for any ε, the average correlation time obtained
for the ideal case with Batt = 0 is very close to that of the real case with Batt = 4,
even though the exact shape of curves are different (see for example figures 5.21 and



112 Chapter 5. Kinetics of patchy aggregation

Figure 5.21: Same data as in figure 5.20 but plotted on a lin-log scale. The dashed
lines correspond to the respective values of nw at t/t0 → 0 from the equation 5.42.
Note the behavior of Batt = 4 for the real and Batt = 0 for the ideal case.

5.22 where ε = 0.1). This means that for Batt = 4 the average time spent in the
well for real case is the same as if both monomers were transparent to each other in
the absence of any interactions, leading to an apparent increase of the interaction
volume. The condition Batt = 4 corresponds to the case B2 = 0 (second virial
parameter is zero). It is equivalent to theta solvent condition for polymers. Our
observation is the dynamical transcription of the theta condition where real chains
behave as ideal ones from a static point of view. From 5.35, with Batt = 0 for an
ideal case, we have

t1
c(ε, Batt = 4)

t0
=

t0
c(ε, Batt = 0)

t0
= (1 + ε)2 (5.44)

To verify this relation, we plot (t1
c(ε, Batt = 4)/t0)/(1 + ε)2 as a function of ε in

figure 5.24. We see that it holds nicely.

In order to understand the linear behavior and dependency on P , l and ε, we
study in detail discrete events like the number of exits from the interaction range,
the number of steps spent in the well between two exits etc. For all of these discrete
events, we have to study effects from ε, sT, P and l.

We study the number of exits from the well that a couple makes in average
(Nexit) as a function of time for various sT in figure 5.25. First, we notice that Nexit

is highly dependent on the Brownian step length. Secondly, we see that for a given
sT, the value of Nexit converges to a plateau at very large time. This behavior is
expected, as we have seen that at infinite time, no couples remain in interaction
range. Before leaving the range for ever, they make in average a finite number of
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Figure 5.22: Effect of Batt on t/t0 · nw for various Batt as indicated in the figure,
ε = 0.1.

Figure 5.23: Variation of tl
c/t0 as a function of Batt for various ε as indicated in the

figure. Dashed lines are linear fits which regression coefficients R2 ≥ 0.999. The
open symbols represent the real case and the closed symbols represent the ideal
case. Gray dashed lines mark the value Batt = 4 and corresponding correlation
times for ε = 0.5 ideal and real.
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Figure 5.24: (t1
c(ε, Batt = 4)/t0)/(1 + ε)2 plotted as a function of ε.

exits and the average time between two exits can also be defined. Knowing this, we
plot the plateau value of Nexit at large times as a function of d/sT for various values
of ε, P and l in figure 5.26. We see a perfect linear behavior when sT is sufficiently
small. We also find Nexit to be only a function of ε since all data points for different
combinations of P and l superimpose for a given ε. Whatever P is, the average
number of exits at long time remains the same for a given ε. This means that the
probability (1 − P ) to exit from the well and do the next step does not influence
geometrical properties of the walk close to the border. Independency on excluded
volume effects also point out that Nexit is an intrinsic property of the system, which
does not depend on the geometrical restrictions, which are far from the border. The
deviation at larger step size is due to finite size effects (as step size approaches the
size of well, excluded volume interactions distort the geometrical path of the walk
close to the border as well). Nexit can be expressed as

Nexit = k1(ε) · d/sT (5.45)

where the function k1 depends only on ε. We find k1(ε) to be remarkably close to
(1 + ε). To verify, we plot Nexit · sT/((1 + ε) · d) in figure 5.27. We see that for small
values of sT, compared to ε, we have

k1(ε) ≃ (1 + ε) (5.46)

irrespective of excluded volume effects and P . We do not have any theroretical
considerations to explain this simple result.

The other quantity of interest is the average time spent in the well between two
consecutive exits (Nresid/Ntrial). Here Nresid is the average number of steps spent
in the well and Ntrial is the average number of trials realized for exit. From the
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Figure 5.25: Nexit plotted as a function of time for various sT/d as shown in figure.
ε = 0.10, l = 1 (with excluded volume) and P = 0.0000.
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Figure 5.27: Nexit · sT/(d · (1 + ε)) plotted as a function of d/sT for various ε, P

and excluded volume conditions. The horizontal dashed line indicates the expected
behavior.

definition of physical time in our system (see equation 3.17), we get

tl
c

t0
= Nresid · (sT/d)2 (5.47)

Nresid and Nexit remain finite and we also have

Nexit = (1 − P ) · Ntrial (5.48)

This means that the ratio Nresid/Ntrial, the average number of steps spent in the
well between an entrance and an exit, stays finite at large times.

As before, we study the effect of sT on Nresid/Ntrial in figure 5.28. We see that
Nresid/Ntrial plotted as a function of t/t0 converges faster than Nexit and is also very
dependent on sT. In figure 5.29, we plot the plateau values obtained as a function
of d/sT. We observe a linear dependence, and for a given ε, we find no influence
of P . But in this case we see that excluded volume effects play a role. To describe
the behavior, we use the following

Nresid

Ntrial

= kl
2(ε) · d

sT

(5.49)

where kl
2(ε) is independent on P .

Using the relations 5.45, 5.48 and 5.49 in equation 5.47 gives

tl
c(ε, P )

t0
=

k1(ε) · kl
2(ε)

(1 − P )
(5.50)
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Figure 5.28: Nresid/Ntrial plotted as a function of time for various sT. ε = 0.10,
l = 1 and P = 0.0000.

 !"  # !  $ # ! !!!!

%
&

 !'

 !  #(!) *($(#(!)!!!!

 (#(!) *($(#(!)+"!"(

 (#(!) *($(#(!)!!!!*(,-.%&

 (#(!) *($(#(!)/ 0/*(,-.%&

N
1.
2,
-
3
N
41
,%

 ! 

 !5 

 !!

d3s
6

 !!  !  !'  !"
 !5 

Figure 5.29: Plateau value of Nresid/Ntrial plotted as a function of d/sT for ε = 0.10

and various combinations of l and P as shown in the figure. The dashed lines are
from equation 5.49 using expression for kl

2(ε) from equation 5.52 or 5.54 assuming
k1(ε) = (1 + ε).
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We note that the sT/d dependency is canceled. Comparing with 5.43 and 5.40 gives

al(ε) =k1(ε) · kl
2(ε)

bl(ε) =
al(ε)

4 · [(1 + ε)3 − 1]

(5.51)

Using the relation 5.44 in equation 5.50 and using P = (1 + ε)−3 at Batt = 4, we
get

a1(ε) = k1(ε) · k1
2(ε) =

(1 + ε)3 − 1

(1 + ε)
(5.52)

which gives

b1(ε) =
1

4 · (1 + ε)
(5.53)

In a similar manner, for P = 0 and ideal condition, equations 5.50 and 5.35 gives

a0(ε) = k1(ε) · k0
2(ε) = (1 + ε)2 (5.54)

which gives

b0(ε) =
(1 + ε)2

4[(1 + ε)3 − 1]
(5.55)

We note that these equations assume no knowledge about k1(ε).

Substituting the values of a1(ε),... etc. in equation 5.43, we get

t1
c(ε, P )

t0
=

[(1 + ε)3 − 1]

(1 + ε)
· 1

(1 − P )
(5.56)

and
t0
c(ε, P )

t0
=

(1 + ε)2

1 − P
(5.57)

In terms of Batt, these expressions become

t1
c(ε, Batt)

t0
=

Batt + 4 · [(1 + ε)3 − 1]

4 · (1 + ε)
(5.58)

and
t0
c(ε, Batt)

t0
= (1 + ε)2 ·

(

1 +
Batt

4 · [(1 + ε)3 − 1]

)

(5.59)

Using these expressions, we are able to explain the linear behavior of different tl
c

curves as a function of Batt (see figure 5.30). Experimental data is perfectly adjusted
with expressions 5.58 and 5.59 , proving the consistency of our approach. Note that
for ε = 0, we get the limiting behavior for the real case

t1
c(0, Batt)

t0
=

Batt

4
(5.60)
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Figure 5.30: The same data in figure 5.23. Open symbols stand for the real case
and filled symbols indicate ideal case. Solid lines come from the expressions 5.58
and 5.59 with corresponding values for ε and the solid green line is the limiting
condition ε = 0 for the real case. The dashed lines correspond to Batt = 4 for the
real and ideal case of ε = 0.5.

Figure 5.31: −dnw/d(t/t0) plotted as a function of time (left) and nw (right) for
ε = 0.1 and for different Batt as indicated in the figure.
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This means, even in the limit of a contact potential (Baxter model [127]), a non
zero correlation time can be defined for a given Batt > 0. It is insensitive to the
exact shape of the potential (see the Noro and Frenkel law of corresponding states
[27]). This is shown in figure 5.30.

Coming back to uncorrelation kinetics, we have seen that for Batt = 0, both
ideal and real cases follow at large time, the relation

− dnw

d(t/t0)
∝ n5/3

w (5.61)

From figure 5.31, we see that this behavior is affected by P , but the kinetic order
remains the same. For convenience of an analytical treatment, we assume that this
power law behavior is valid at any time and gives the same average correlation time
to define a rate constant kl

u,

− dnw

d(t/t0)
= kl

u · n5/3
w (5.62)

Integrating equation 5.62 for initial conditions (nw(0) = 1/(2 − P )) we obtain

nw =

[

2

3
· kl

u · (t/t0) + (2 − P )2/3
]−3/2

(5.63)

which gives for the correlation time tl
c/t0

tl
c

t0
=

∞
∫

0

nw · d(t/t0) =

∞
∫

0

[

2

3
· kl

u · (t/t0) + (2 − P )2/3
]−3/2

· d(t/t0) (5.64)

Substituting u = 2/3 · kl
u · (t/t0) + (2 − P )2/3 and du = 2/3 · kl

u · d(t/t0), we get

tl
c

t0
=

3

kl
u

· (2 − P )−1/3 (5.65)

Identifying with equation 5.50, we get

kl
u =

3 · (1 − P ) · (2 − P )−1/3

k1(ε) · kl
2(ε)

(5.66)

To check the consistency of the obtained expression, we compare in figure 5.32
equations 5.63 and 5.32 for the ideal case at P = 0 and ε = 0.1. We see that curves
behave not very differently and give by definition the same value for the average
correlation time.
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Figure 5.32: Evolution of nw as a function of time (left) and evolution of (t/t0) · nw

as a function of time (right) obtained from equation 5.63 for the ideal case with
P = 0 and ε = 0.1 (in black) and equation 5.32 (in red).

What is a correlated couple?

For a couple starting at a distance d·(1+ε), the uncorrelation process can be viewed
as a kinetic reaction with order 5/3 and normalized rate constant kl

u dependent on
ε, P and l. But we have seen that couples in the well are entitled to many exits
and returns before they leave the well for ever. Nevertheless, we can define a finite
average time spent in the well and give an expression for the evolution of the fraction
of couples in the well.

In figure 5.33 (left), we plot the mean square displacement of monomers 〈r2(t)〉/d2

as a function of time for P = 0, ε = 0.1 and for various sT. We see some very mi-
nor defects in the beginning and later, it recovers the expected linear behavior
(〈r2(t)〉/d2) = 2 · (t/t0) in this case). This means that after some time, monomers
act as free monomers and this supports our previous finding that at long times, all
the monomers tend to uncorrelate and move apart. Now, if we plot the apparent
diffusion coefficient (〈r2(t)〉/d2)/(t/t0) as a function of time (figure 5.33 (right)), we
clearly see a distortion at small time. This happens close to the average time when
two monomers starting at a distance d · (1 + ε) feel the hard core repulsion of the
other. The average time required for the first contact is ε2/2. After, it recovers the
linear behavior giving the expected diffusion coefficient 2 · DT

1 . Now, the question
arises, whether it is possible to describe a characteristic length, above which we can
consider a couple to be uncorrelated.

To study this, we record the distribution of the farthest distance traveled by
a monomer between an exit and subsequent entrance, termed as rmax. We also
monitor the maximum of rmax, denoted by rmax_ max. This is updated each time
a monomer returns to the well after traveling a distance longer than the previous
rmax_max. In figure 5.34 we plot, r2

max_max as a function of time. We clearly
see that rmax_max diverges and has a behavior similar to that of the mean square
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Figure 5.33: MSD of the monomer (left) and relative diffusion coefficient of the
couple (right) as a function of time for various Brownian step lengths. The arrow
points to the defect (see text). The vertical dashed line corresponds to the average
time required for the first contact.

Figure 5.34: r2
max_max/d plotted as a function of time for various Brownian step

lengths. The gray line is 2t/t0.
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Figure 5.35: Distribution of the maximum distance traveled by a couple between
an entrance and an exit for various Brownian step lengths as in figure. The gray
line indicates the function 5.67.

displacement (this is certainly an intrinsic property of a Brownian motion in R
3)

and hence no characteristic distance could be defined beyond which a couple will
never return into the well. We know, rmax will be dependent on the step size sT

and in figure 5.35 we plot the distribution of rmax on a log scale of rmax, normalized
by sT. All distributions superimpose for various sT and can be correctly fitted with

rmax · f(rmax) =
rmax

sT

(

1 +
rmax

sT

)−2

(5.67)

This means that the probability density that a particle has traveled a maximum
distance rmax before returning to the well is

f(rmax) =
1

sT

(

1 +
rmax

sT

)−2

(5.68)

The diverging first moment indicates that no characteristic maximum distance trav-
eled can be defined for a couple that comes back to the well.

From above observations, we see that it is not possible to define any specific
correlation range, after which particles cannot come back. Hence we have no other
alternatives other than arbitrarily identifying correlated couples to be the ones lying
in the well. This gives for our kinetic model (figure 5.36), nw ≡ Cc/C0. But this
is a very strong simplification, considering multiple exits and returns they make.
Moreover, this hypothesis implies that a fraction of couples which start in range
endures an "instant" uncorrelation to respect nw(t → 0) = 1/(2 − P ).

Under these assumptions, we can relate kl
u to Ku as follows. Equation 5.62,
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Figure 5.36: Schematic of uncorrelation reaction.

gives

− d(2 · Cc/C0)

d(t/t0)
= kl

u ·
(

2 · Cc

C0

)5/3

(5.69)

On rearrangement gives

− dCc

dt
=

22/3 · kl
u

t0 · C
2/3
0

· C5/3
c (5.70)

Comparing with kinetic equations introduced before (figure 5.11), we can identify
Ku as

Ku =
22/3 · kl

u

t0 · C
2/3
0

(5.71)

Due to the instantaneous uncorrelation described above, kinetic equations 5.21
and 5.22 need to be modified accordingly. This will be discussed in section 5.5.

5.4.3 Patchy couple - patch locking time for Batt = ∞

At infinite Batt, we study the time taken to form the patchy link for the real case
(see figure 5.37). We start from the same initial condition as in the previous case
but with randomly oriented patches and we also allow rotational motion of the
particles along with the translational motion. As Batt = ∞, all couples react since
they do not leave the well. In the course of the simulation, we monitor the number
of bonded couples and the time of bonding. Thus, we can have the distribution of
patchy bonding time tp/t0. See figure 5.38 for an example. When χ becomes small,
it takes in average more time to complete the reaction, shifting the distribution
towards larger times. In figure 5.39, we plot the average patch locking time as a
function of χ2. As expected, 〈tp〉/t0 increases with decreasing χ, but we were not
able to find any expression which fits the curve. It seems to approach a power
law where 〈tp〉 is inversely proportional to χ and we have no particular evidence
to claim it. In literature there are results for rotating colloids with a single patch
[128], which follow a similar trend but differing in the absolute value of the rate
constant. A study regarding the effect of number, position and coverage of patches
on the average patch time will be an interesting study, but out of scope for the
present work.
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Figure 5.37: Schematic of reaction for section 5.4.3.

Figure 5.38: Distribution of tp/t0 for various χ as indicated in the figure for Batt =

∞. The area below each curve is 1.

We tried to rescale the distribution curves using 〈tp〉/t0 as in figure 5.40. We
see that it is χ dependent and as χ → 0, it seems to reach a limiting behavior, of
the form y = x · exp(−x).

We also monitor the fraction of patchy bonds formed as a function of time
(Np(t)), as plotted in figure 5.41. We see that with increasing χ, the initial fraction
of bonds, denoted by Np(0) increases. We already know that the probability that
two monomers have their patch aligned is equal to χ2 and we recover this behavior.
However, we are not interested in this and look for the time evolution of unbound
fraction of couples. So, we use (Np(t) − Np(0))/(N0 − Np(0)) instead of Np(t) and
rescale this plot in time using 〈tp〉 as in figure 5.42, so that the function varies from
0 to 1. We see that this plot also depends on χ and as χ → 0, we have a limiting
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Figure 5.39: 〈tp〉/t0 plotted as a function of χ2. The dashed line has a slope 1/2.
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Figure 5.40: Distribution of patchy bonding time rescaled using 〈tp〉/t0. The red
curve is the equation of the form x · exp(−x).
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Figure 5.41: Fraction of patchy bonds formed as a function of time for various χ as
indicated in the figure. The dashed lines represent the corresponding χ2.

behavior, which could be explained using an exponential growth

np =
Np(t) − Np(0)

N0 − Np(0)
= 1 − exp

(

− t

〈tp〉

)

(5.72)

Differentiating with respect to time, we get

dnp

d(t/t0)
=

t0

〈tp〉 ·
(

exp − t

〈tp〉

)

(5.73)

On comparison with previous equation, we get

dnp

d(t/t0)
=

t0

〈tp〉 · (1 − np) (5.74)

Here, we can unambiguously write the fraction of unreacted couples in the well
as correlated couples. As P = 1 none of them can leave the well at any time. This
gives Cc + C2 = C0/2. At t = 0, no dimers are formed and we have Cc(0) = C0/2.
Using the definition of np, we have

np =
2 · C2

C0
= 1 − 2 · Cc

C0
(5.75)

Comparing with equation 5.72, we get

2 · Cc

C0
= exp

(

− t

〈tp〉

)

(5.76)
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Differentiating with respect to time, we get

dCc

dt
=

1

〈tp〉 · Cc , χ → 0, Batt = ∞ (5.77)

This means that patchy bond formation reaction of a correlated couple is a first
order reaction with rate constant Kp = 1/〈tp〉 as χ → 0.
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Figure 5.42: Fraction of patchy bonds formed, but modified for links formed at zero
time for various χ2 ranging from 1 to 10−4. The red curve is coming from equation
5.72.

5.4.4 Patchy couple - patch locking kinetics for Batt < ∞

In this section, we deal with a finite Batt (see figure 5.43). This time, couples
can escape the well. Some of the escaped particles may return and form patchy
bonds later or continue this process of exit and return and some eventually escape
definitely and never form a bond. This means that the reaction never reaches total
completion.

This can be clearly seen in figure 5.44, where we plot the effect of Batt and χ on
np. These figures could be compared with figure 5.42 for Batt = ∞. We see that for
a given Batt < ∞ (consider Batt = 0 in figure 5.44), the plateau value for np never
reaches 1 but a lower value which depends on χ. We also see that with increasing
Batt, the plateau gets higher for a given χ. These behaviors are expected but we
are interested in predicting the plateau values from our previous study.

Comparing the case with Batt = ∞, we have seen that for χ → 0, the reaction is
first order and np is described by an exponential growth to a plateau value of 1 with
a single relaxation time 〈tp〉. As Batt becomes finite, we know there also exist an
average time spent in the well tc. To a first approximation, we assume that patchy
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Figure 5.43: Schematic of reaction for section 5.4.4.

Figure 5.44: Evolution of np as a function of time at Batt = 0 (left) and Batt = 4

(right) for various χ as indicated in figure and with ε = 0.1.
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Figure 5.45: Evolution of np(∞) as a function of χ2 for various Batt as indicated in
the figure. Solid curves come from the equation 5.78 using values of tc and 〈tp〉 for
corresponding χ and Batt obtained from figures 5.30 and 5.39.

bond formation at a finite Batt is also a first order reaction that depends only on
the time spent in the well. So we can write the extent of the reaction at large time,
np(∞) to be

np(∞) = 1 − exp

(

− tc

〈tp〉

)

, χ → 0 (5.78)

To check the validity of this expression, we plot in figure 5.45 plateau values of np

as a function χ2 for various Batt and values calculated using equation 5.78. For lower
Batt and lower χ, higher conversion is obtained. This could be explained as follows:
we know that the reaction takes place inside the well in a process mainly involving
rotational motion. When couples leave the well, they still perform rotational motion
and continue relaxing their orientations. When they come back, they require in
average lesser time to find the complementary patch leading to faster kinetics and
higher conversion. As Batt becomes higher, couples seldom leave the well and hence
a close value with the expected behavior is recovered. However, we see that for
large χ, this expression does not give any good results as reaction has no more first
order kinetics.

In figure 5.46, we plot the variation of np(∞) as a function of (tc/〈tp〉) for
various Batt compared to the predicted expression 5.78. We see that this expression
is valid only when Batt is large and for very low values of (tc/〈tp〉) (meaning, for
very small patches, since tc does not depend on patch size). When couples stay
closer for longer time due to whatever reason (steric, high concentration, secondary
interaction etc.) the reaction should follow the expected first order behavior.
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Figure 5.46: Evolution of np(∞) as a function of (tc/〈tp〉) in lin-log (left) and log-log
(right) scales. The red curve shows 1 − exp(−tc/〈tp〉).

Kinetic approach

Considering the reaction scheme in figure 5.43 and using the same notations as
before, we can write

C1 + 2 · C2 + 2 · Cc = C0 (5.79)

The rate equations are

dC2

dt
= Kp · Cc (5.80)

dC1

dt
= 2 · Ku · C5/3

c (5.81)

dCc

dt
= −Kp · Cc − Ku · C5/3

c (5.82)

Also, we have the initial condition: as t = 0, 2 · Cc/C0 = 1/(2 − P ) and hence
C1/C0 = (1 − P )/(2 − P ). Changing to our reduced variables, and recalling

Kp = kp/t0 = 1/〈tp〉 and Ku = 22/3 · C
−2/3
0 · t−1

0 · kl
u, we can write

d(C2/C0)

d(t/t0)
= kp · Cc

C 0
(5.83)

d(C1/C0)

d(t/t0)
= k1

u ·
(

2 · Cc

C0

)5/3

(5.84)

d(2 · Cc/C0)

d(t/t0)
= −kp · 2 · Cc

C0
− k1

u ·
(

2 · Cc

C0

)5/3

(5.85)

Integrating the equation 5.85 gives the amount of unreacted couples in the well
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at any time t,

2 · Cc

C0
=













kp

k1
u

exp

(

2

3
· kp ·

t

t0

)(

1 +
kp

ku

· (2 − P )2/3

)

− 1













3/2

(5.86)

When 1 ≪ (t/t0), the exponential term dominates and the expected power law
behavior is not recovered (see 5.63). When 2/3kp · (t/t0) ≪ 1 we can write the
exponential function as a series up to the second term, giving

2 · Cc

C0
∼













kp

k1
u

(

1 +
2

3
· kp ·

t

t0

)(

1 +
kp

k1
u

· (2 − P )2/3

)

− 1













3/2

(5.87)

This equation shows a power law behavior under the condition kp/ku · (2P )2/3 ≪
2/3kp · (t/t0), giving

2 · Cc

C0
≃
[

2

3
· k1

u · t

t0

]3/2

(5.88)

So, the power law behavior is only seen in between 3/2 · (2 − P )2/3 · /k1
u ≪ t/t0 and

t/t0 ≪ 3/2/kp. When no patch is present, kp = 0, and equation 5.86 reduces to the
expected equation 5.63.

To visualize this, we plot in figure 5.47 equations 5.86 and 5.63 for various kp

(various χ) and for a given P . We see that the power law behavior is only recovered
in a specified range explained by the conditions to obtain equation 5.88. Results
from simulation are presented in figure 5.48. We clearly see the power law behavior
is preserved all along the time (for large time), whatever P and χ are, even for large
χ (large kp). As χ becomes smaller, the non patchy behavior 5.63 is approached.
The exponential cut off in the kinetic model significantly underestimates the number
of couples in the well and thus the average time spent in the well.

From equation 5.83, we see the fraction of patches formed is simply proportional
to the integral of equation 5.86

2 · C2

C0
=

t/t0
∫

0

kp ·













kp

ku

exp

(

2

3
· kp · x

)

·
(

1 +
kp

ku

· (2 − P )2/3

)

− 1













3/2

dx (5.89)

with initial conditions: at t/t0 = 0, 2 · C2/C0 = 0. Rearranging it takes the form

2 · C2

C0
=

k
5/2
p

k
3/2
u

·
t/t0
∫

0

(B · exp(A · x) − 1)−3/2 · dx (5.90)
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Figure 5.47: Comparison of evolution of 2 ·Cc/C0 for a non patchy system (equation
5.63) and the predicted behavior for patchy system (equation 5.86) for P = 0,
ε = 0.1 real case and various kp (10−1, 10−2 and 10−3). The bounding values to
observe the power law behavior are shown by the black solid curve with kp = 0.001.

Figure 5.48: Evolution of 2Cc/C0 for ε = 0.1 and P = 0 (left) and P = 0.7513 (right)
for various χ. The black dashed curve is the behavior for non patchy systems under
same conditions.
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Figure 5.49: Evolution of 2 · C2/C0 as a function of time for ε = 0.1 χ2 = 0.0001

and P = 0 (ku = 7.9130 and kp = 0.0210). The red curve shows the prediction
from the kinetic approaches equation 5.91.

where x = t/t0, A = 2/3kp and B = kp/ku · (2 − P )2/3 + 1 and the solution is given
by

2 · C2

C0
= 3 ·

(

kp

ku

)3/2

·




1
√

(B − 1)
+ arctan(

√
B − 1) − 1

√

B · exp(A · t
t0

) − 1

− arctan

(
√

B · exp

(

A · t

t0

)

)]

(5.91)

The amount of dimers formed at the plateau is

2 · C2

C0
(∞) = 3 ·

(

kp

ku

)3/2

·
[

1√
B − 1

+ arctan

(

1√
B − 1

)

− π

2

]

(5.92)

In figure 5.49, we compare the evolution of 2 · C2/C0 as a function of time
for a small χ = 0.01 and P = 0, along with the prediction from equation 5.91.
Even in the most favorable case where χ is very small, the kinetic approach always
underestimates the amount of couples in the well at large time and hence gives a
lower amount for the number of patches formed.

To conclude, our kinetic model does not take into account the fact that the
fraction of couples that is instantaneously decorrelated (1/(2 − P )) can return in
to the well later and may get bonded. This leads to a wrong large time behavior
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for the amount of correlated couples. However, this approach gives correct results
in both extreme cases when P = 1, with small χ or when χ = 0 for all P .

5.5 Complete dimerization reaction

In the case of the complete dimerization reaction, we start with a very dilute so-
lution of particles and allow the dimer formation under no ternary collision. We
proposed the mechanism for dimerization in figure 5.11 and wrote corresponding
rate equations. But in the light of our previous results, we see that equations 5.21
and 5.22 are not correctly weighted. When two monomers come at the edge of the
interaction radius, a fraction of them gets instantaneously uncorrelated (goes out
of the well) and only a fraction 1/(2 − P ) of them remains correlated (stays in the
well). This means that in case of an uncorrelated collision, a fraction of χ2 couples
directly forms dimers, a fraction (1 − χ2)/(2 − P ) becomes correlated couples and a
fraction (χ2 · (1−P )+1)/(2−P ) remains as uncorrelated monomers. Also, we have
found that for very low patch size, patchy bond formation is a first order reaction
and the uncorrelation reaction has an order 5/3. So, we have to correct equations
5.21 to 5.23 by these factors and replace xp = 1 and xu = 5/3. The new set of
kinetic equations becomes

dC1

dt
= − (χ2 · (1 − P ) + 1)

(2 − P )
· K1,1 · C2

1 + 2 · Ku · C5/3
c (5.93)

dC2

dt
=

χ2

2
· K1,1 · C2

1 + Kp · Cc (5.94)

dCc

dt
=

(1 − χ2)

2 · (2 − P )
· K1,1 · C2

1 − Kp · Cc − Ku · C5/3
c (5.95)

Changing to our dimensionless units and using the value of K1,1 from equation 5.9,
we get

d(C1/C0)

d(t/t0)
= − (χ2 · (1 − P ) + 1)

(2 − P )
· 8 · φ · (1 + ε) ·
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(5.96)
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d(Cc/C0)
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=
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(5.98)

We see that these set of equations are complex and not easily solvable. So, we
use the fourth order Runge-Kutta method to get the solution numerically. In the
dimerization simulations, we do not monitor the amount of monomers that belong to
unreacted couples in range (correlated couples). We keep track only of the fraction
of monomers C1 and fraction of dimers C2. This makes C2 the only well defined
measurable quantity, as C1 contains both uncorrelated and correlated monomers.

The Smoluchowski equation 5.10 could be rearranged in terms of C2 as

2 · C2/C0

1 − 2 · C2/C0
= 8 · φ · (1 + ε) · (t/t0) ·

(

1 + (1 + ε) ·
√

12

π
· 1
√

(t/t0)

)

(5.99)

We have seen that this equation does not describe the obtained results when χ <

1 (see figure 5.6). The χ2 correction works only at very short times when the
production of dimers from correlated couples is negligible (see figure 5.7). The
k(χ, ∞) · χ1.23 one gives correct results for large time. Now, we have a numerical
solution to the proposed kinetics and despite of its defects, we compare it with our
results.

In figure 5.50, we compare the evolution of (2 · C2/C0)/(1 − 2 · C2/C0)/(8φ·(1+

ε) · (t/t0)) as a function of time for P = 0 and χ2 = 0.1. In the same plot, the χ2

correction is added at short times together with our kinetic model (solution given
by Runge-Kutta method) and the k(χ, ∞) ·χ1.23 correction at large times. At small
time, the χ2 corrected Smoluchowski behavior and the kinetic curve superimpose
with our results. This is expected since inefficient collisions hardly get time to
produce dimers using the alternative pathway. Also, our kinetic model is designed
to obey the χ2 behavior in the beginning (see equation 5.94). At large time, as
already seen, results are correctly described by the k(χ, ∞) · χ1.23 correction. For
this given χ, the kinetic model seems to give a good qualitative behavior at both
extreme limits. It must be noted that our simulation results are very sensitive at
very small times, as we have only a small number of dimers formed (for example
two or three dimers are formed out of the initial 104 monomers at time of the order
of 10−4).

We see in figure 5.51 for P = 0, as χ is decreasing, the kinetic model leads to
faster reactions than those observed from our simulations. The difference is clearly
seen, if we plot the evolution of the appearance of dimers 2 · C2/C0 (figure 5.52).
We see that the kinetic model is faster, while the corrected Smoluchowski curve
follows the experimental curves. Given the many non realistic assumptions of the
kinetic approach, we do not propose any interpretation for that.
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Figure 5.50: Evolution of 2 · C2/(1−2·C2)/(8·φ·(1+ε)·(t/t0)) as a function of time
for ε = 0.1 and P = 0 for χ2 = 0.1. The red curve is the classical Smoluchowski
behavior for full coverage. Dashed curves are corrected Smoluchowski curves: cor-
rected with χ2 (pink) and k(χ, ∞)·χ1.23 (green). The black curve is from our kinetic
model (using ku = 7.913 and kp = 1.493. φ = 0.005 and L = 100).

Figure 5.51: Evolution of 2 · C2/(1 − 2 · C2)/(8 · φ · (1 + ε) · (t/t0)) as a function
of time for ε = 0.1 and P = 0 for various χ2 as indicated in the figure. The solid
lines are from our kinetic model and dashed curves are k(χ, ∞) · χ1.23 corrected
Smoluchowksi behavior. φ = 0.005, L = 100.
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Figure 5.52: Evolution of 2 · C2/C0 as a function of φ · t/t0 shown on left for the
same set as in figure 5.51. The solid curves are from our kinetic model. The dashed
curves are k(χ, ∞) · χ1.23 corrected Smoluchowksi behavior. On right is the same
data but on a log-log scale.

Figure 5.53: Similar plots as in figure 5.51 but for P = 1 and for ε = 0.1, φ = 0.001,
L = 220 (left). Evolution of 2 ·C2/C0 as a function of t/t0 for the same data (right).
Solid curves corresponds to the kinetic model.
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In figure 5.53, we study the case for P = 1. We see that for small χ, kinetics
could be correctly described by our kinetic model. In this case, the complex behavior
in case of inefficient collision is highly simplified by the confinement of the couple
in the well leading to ku = 0.

5.6 Conclusion

We studied the irreverisble aggregation of anisotropic particles and found that these
reactions have a complex kinetic behavior. To simplify the approach and under-
stand the basic reaction, we focused on patchy dimerization reactions based on the
proposed kinetic model. Experimentally, we find that dimerization reactions give a
linear Smoluchowski type behavior at very large time, which can be described by a
modified kinetic rate equation

2 · C2

C0 − 2 · C2
= C0 · K1,1 · k(χ) · χ1.23 · t (5.100)

We find k(χ) to be a constant in the limit of small χ and large time. It is also
a function of Batt. But we do not have enough data at the moment to present a
complete study.

Figure 5.54: (mw − 1)/(8 · φ · (1 + ε) · (t/t0) · k(χ) · χ1.23) plotted as a function of
t/t0 for complete polymerization reaction with φ = 0.001, Batt = 0 and for various
χ as indicated in the figure. The black dashed line is Smoluchowksi prediction.

In figure 5.54, we plot the k(χ) ·χ1.23 modified rate equations for polymerization
reactions under dilute conditions, where the k(χ) is obtained from dimerization
reactions (see figure 5.10). Comparing with figure 5.4, we see that this correction
also seems to work for polymerization reactions, when no loops are formed. Even
a slight amount of loop for the larger χ shows a noticeable deviation from the
predicted behavior (the case of χ = 0.3162, where Nloop = 0.0004 at the final point
shown in the figure).
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The dynamical behavior and the average time that a couple stays in a given
interaction volume were studied in detail as a function of Batt. We were able to
give a dynamical explanation for the ideal like behavior of real polymer chains
in theta solvent, using the concept of average correlation time. Unfortunately,
results from our proposed kinetic model were unsatisfactory because the model
incorporated many unrealistic assumptions: According to our results, the definition
of a correlated couple is ambiguous and we arbitrarily set couples coming into the
interaction range to be correlated. This implies that a fraction of couples coming
near the edge of the interaction range will uncorrelate instantaneously. Moreover,
the rotational relaxation of the patches outside the well is not accounted for in our
model.



Chapter 6

Conclusion and Perspectives

The present thesis mainly focused on the development of Brownian Cluster Dy-
namics to account for directional interactions. In the new Patchy Brownian Cluster
Dynamics, we used a modified Kern-Frenkel [9] model with two oppositely placed
monovalent patches. A square well potential was applied to the patchy region,
through which irreversible aggregation takes place. The coverage of the patch can
be varied. We also have an additional isotropic square well interaction to model
the solvent quality. For easiness, the well widths of both interactions were chosen
to be 10% of the diameter of the particle.

To verify this new model, the algorithm was tested on single polymer chains, the
simplest object that can be built using our model. To study the static properties,
a large number of polymer chains were built with varying degrees of patch sizes
and chain lengths. We found by studying the ideal chains that our model could
be correctly described by the Freely Rotating Chain model. For the self avoiding
chains, there exist two kinds of chain length crossover: from rod-like to semi-flexible
chain like, and from ideal like to self avoiding behavior. The first one occurs at a
chain length termed persistence length and is also applicable for ideal chains. Both
of these crossovers are highly dependent on the local flexibility of the chain. For the
self avoiding chain, a detailed study was carried out concerning various definitions
of the persistence length given in the literature. Some persistence lengths diverged
with the chain length and some others were independent on chain length. We found
that even after the persistence length is passed, some real chains with very high
persistence lengths were showing ideal like behavior. This observation is also visible
in the case of the bond correlation function, for which a detailed analysis was carried
out.

For the persistence length definition l3 = 〈R2
e〉/(2lb · (m − 1)2ν), we saw that in

the case of more locally rigid chains, there is an intermediate ideal regime before
reaching the excluded volume dominated behavior which cannot be scaled using
the generally used persistence lengths. The same is seen in the case of the local
persistence length lp(k) = 〈rk · Re〉/lb. In the case of bottle brush polymers, we
always get the same value for lp(k). In the literature [115], it is also reported that
even for very high persistence lengths, it is not possible to reach the worm like chain
limit. Bottle brush chains have a fully flexible backbone and the chain flexibility
is tuned using the number and length of side chains. The essential condition for
the WLC behavior is that the aspect ratio ie. the ratio of the persistence length to
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the thickness of the chain should be very high. Analyzing the data for bottle brush
polymers from the literature, we found that with an increase of the persistence
length, the chain thickness also increases in such a way that the aspect ratio does
not vary. Hence the essential condition for WLC condition is never achieved. Also,
we do not see any ideal like behavior for bottle brush chains.

When the persistence length is tuned by another way, without thickening the
chain, as in our model, we see the ideal like regime for more locally rigid chains.
When the aspect ratio is very high (lp ≫ thickness of the chain) the chain can
grow longer without feeling the excluded volume interactions, and an ideal like
behavior can be developed. The transition to the excluded volume dominated be-
havior occurs at the thermal blob length. From our analysis, we were able to give
a phenomenological expression for this crossover.

For studying dynamics, even though we were limited by the chain length, we
recover most of the expected behaviors for the translational and rotational motions.

To resume, with the study of polymer chains, we were able to recover most of
the predicted behaviors for the static and dynamic properties, which prove the va-
lidity of our algorithm: individual translational and rotational motions give correct
collective dynamics. We recall that hydrodynamic interactions are ignored in our
approach.

To understand the kinetics of aggregation reaction through patches, we studied
the basic dimerization reaction under dilute conditions. We observe that the Smolu-
chowski approach fails even at very dilute conditions due to the correlated motion
of the monomers. We proposed a mechanism for the dimerization and studied each
part of the mechanism independently. From our results, we see that, starting from
the edge of an interaction range, a monomer can travel up to whatever distance it
wants and still come back, meaning that there is no characteristic length beyond
which it escapes for ever. Also we note that for a non patchy system, the fraction
of monomers in the range decreases with time and an average time spent in the well
can be rigorously defined. Its dependency on Batt has been perfectly explained.
With an arbitrarily defined interaction radius for defining correlated couples, we
tried to solve the proposed kinetic equations. Unfortunately, in the mechanism,
we did not take in to account the fact that monomers can come back many times
after leaving the interaction range. Hence we always underestimated the amount of
dimers formed.

The analysis of the patchy aggregation indicated that all the kinetic curves can
be shifted to the Smoluchowski behavior for large time using a parameter k(χ)·χ1.23

under very dilute conditions, in order to account for surface coverage. As χ → 0,
k(χ) becomes constant and only depends on Batt. However, we were not able to
give an explanation for the exponent.
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Perspectives

In addition to the topics we have covered in this work, the new model that we
have developed opens up many new directions. We can explore the phase behavior
of the system in comparison with the isotropic phase diagram, characterize the
diverse structures and morphologies that can be built by tuning different parameters
involved in the model, study the competition between linear chains and cycles,
mimic protein polymerizations, etc.

Exploration of the phase behavior

Firstly, we can consider the influence of irreversible patches on the classical phase
diagram (figure 6.1) for reversible isotropic interaction. We compare different sys-
tem morphologies for the patchy and non patchy cases at the same time (See figure
6.1 for snapshots of the system at t/t0 ∼ 1073) at regions marked by red circles
on the phase diagram. We see that the aggregate structures for the patchy case
are entirely different from the isotropic one. For example, we observe well packed
phase of bundles of rods at Batt = 4 for φ = 0.10 and ω = 0.2, which contained
crystalline domains. At the same time, the phase diagram indicates homogeneous
gas phase, also shown in the same figure. Also, we note that a higher ω (Batt = 4

for φ = 0.10 and ω = 0.8174) gives more open structures rather than bundles and
the amount of crystalline phase is less compared to the ω = 0.2 case. For φ = 0.1

at Batt = 12, we are at the coexistence region in the phase diagram, where some
spherical droplet like structures containing crystalline domains are in equilibrium
with the gas phase. For the patchy case with ω = 0.2, we have a dense network
like structure, made of highly anisotropic bundles of chains. We do not see many
free particles here and we also have more crystalline domains. We will present more
images from our model to compare with the isotropic phase diagram in the coming
part.

Characterization of the aggregate morphology

As a function of the patch size, Batt and concentration, we can obtain various
aggregate morphologies. Some examples are given in the following figures. Figure
6.2 shows the extreme case of φ = 0.01, and ω = 0.2 at four different Batt as
indicated in figure. Figure 6.3 shows the case of φ = 0.1 and ω = 0.2 and similarly,
figure 6.4 shows the case for φ = 0.1 and ω = 0.8179 at the same Batt as before for
a comparison. All these snapshots were taken at a time t/t0 ∼ 1073. We see very
diverse and anisotropic structures. For the dilute case with small patch (figure 6.2),
depending on Batt, the structures vary from single chains to bundles of chains, and
at very high Batt = 100, we have many clusters of small chains. In figure 6.3, we see
some interpenetrating rod like structures leading to a network of bundles of chains.
For the more flexible case (figure 6.4), we have highly entangled chains, which at
higher Batt give more open network structures. We see that these structures are
very complex and anisotropic. Hence, we cannot use conventional methods like the
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Figure 6.1: Comparison of the aggregate morphologies obtained from isotropic and
patchy interactions for φ = 0.1 with box size Lbox = 37. On top is the phase
diagram for reversible isotropic interaction with ε0 = 0.10. On bottom, the first
row shows snapshots for Batt = 12 and the bottom row shows the same system at
Batt = 4. For patchy interactions, cases with χ2 = 0.0004 (ω = 0.2) and χ2 = 0.1

(ω = 0.8179) are shown. t/t0 ∼ 1073 for all cases.
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Figure 6.2: Snapshots of simulation at t/t0 = 1073 for φ = 0.01 and ω = 0.2 for
various values of Batt as shown in figure to compare with the phase diagram for
isotropic interaction. The fractional conversion p and the number average aggrega-
tion number, mn, are also shown. Lbox = 81, N0 = 10149. Different colors indicate
different chains.
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calculation of the pair correlation function, g(r), which gives the spherical average
of particle distribution for these aggregates. Other methods should be developed,
like the use of inertial tensor to characterize anisotropy [129].

Figure 6.3: Snapshots of simulation at t/t0 = 1073 for φ = 0.10 and ω = 0.2 for
various values of Batt as shown in figure to compare with the phase diagram for
isotropic interaction. The fractional conversion p and the number average aggrega-
tion number, mn, are also shown. Lbox = 37, N0 = 9674. Different colors indicate
different chains.

An interesting observation from figures 6.3 and 6.4 is that for relatively highly
flexible case (ω = 0.8179 or χ2 = 0.1) under a moderate isotropic interaction
(Batt = 12), we find a thin network of long stretched chains, similar to structures
obtained at low flexibility, but with much higher mn. The presence of the neigh-
boring chains (the excluded volume effect) restricts the configurations and forces
stretched structures. In comparison, at very low concentration and higher flexi-
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Figure 6.4: Snapshots of simulation at t/t0 = 1073 for φ = 0.10 and ω = 0.8179

for various values of Batt as shown in figure to compare with the phase diagram
for isotropic interaction. The top right image shows only the loops present in the
top left image. The fractional conversion p, the fraction monomers involved in loop
Nloop and the number average aggregation number, mn, are also shown. Lbox = 37,
N0 = 9674. Different colors indicate different chains.
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bility, we should obtain collapsed globule like conformation at higher Batt. At a
lower Batt = 4, we see that lower ω case has more aligned structure than the high
ω counterpart. The lower flexibility forces the chains to align themselves while the
flexible case has more freedom to exchange contacts and grow longer (clearly seen
in mn) and has a more disordered structure.

Figure 6.5: Time evolution of number average aggregation number, mn, (left) and
weight average aggregation number, mw, (right) for φ = 0.01, ω = 0.2 and various
Batt as indicated in the figure.

We get some idea for the chain lengths from the time evolution of mn for the
patchy clusters. Figure 6.5 shows the time evolution of the aggregation number for
φ = 0.01 and ω = 0.2 and for various Batt. We see that for lower Batt, the evolution
was slow, but for higher Batt, initially it became faster and then slowed down, while
the low Batt case continues to increase steadily. Comparing this with corresponding
images in 6.2, we can see how the solvent plays a role in the aggregation by changing
the mechanism for aggregation. As Batt increases, it favors the formation of patches
by keeping monomers in range for longer times giving an increased opportunity to
react. When Batt became even higher, it starts to compete with patchy aggregation
due to the high life time of reversible bonds. See figure 6.6 for snapshots of the
time evolution of the droplet structures for the extreme case of very high Batt and
very low ω. Here all chains in a droplet have the same color. Initially, the huge
Batt causes particles to form droplet like structures. Within these droplets, small
chains are rapidly formed. After all free monomers are consumed within a droplet,
it takes longer time for it to diffuse and merge with another one and continue the
polymerization reaction. Hence, the chain growth is slowed down for higher Batt,
leading to smaller aggregation numbers. In terms of reaction rate, this means that
after an initial increase for the polymerization inside a droplet, it should decrease
since there all the monomers are consumed within the droplet. In fact this is what
we observe in figure 6.7, where we plot (mw − 1)/(8 · φ · χ1.23 · (t/t0)) (or k(χ, t))
as a function of time. We see that k(χ) is highly dependent on Batt. More studies
could be carried out in this direction, compared with the results we obtained for
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Figure 6.6: Time evolution of the aggregate structures for φ = 0.01 and Batt = 300

with χ2 = 0.0004 (ω = 0.2). Box size Lbox = 81 and N0 = 10149. Colors indicate
different clusters formed through isotropic interaction.
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the relationship of the rate constant with χ and the influence of Batt. Another
interesting phenomena that can be seen in this case is the presence of dumbbell like
structures. We see that due to the high rigidity, the droplets are anisotropic. When
two droplets merge, a few chains in the merging droplets get interconnected to each
other through the free patches at the tip of the chains. Due to the anisotropy, these
formations look like dumbbells.

Figure 6.7: (mw − 1)/(8φ · χ1.23 · (t/t0)) plotted against (t/t0) for φ = 0.01 and
χ2 = 0.0004 (ω = 0.2) for various Batt as indicated in the figure. Box size Lbox = 81

and N0 = 10149.

Ring-chain competition and diffusion effects

We have seen that under dilute conditions and when the polymer chain is very rigid,
the polymerization reaction will slow down. The same is the case when the system
becomes highly entangled. For more locally flexible chains, the chain ends could
diffuse faster and polymerize further. But for the dilute cases, this often leads to
self exploration and formation of loops. This alters the chain length distribution.
An example is shown in figure 6.8, where we compare the evolution of fractional
conversion in dilute case of φ = 0.01 and two different patch sizes. We see that
the conversion is very slow for the more rigid one, which does not form significant
amount of loops. At the same time, the more flexible one shows faster conversion
with about 27% monomers involved in loops. The snapshots of the respective
systems at the last point shown in the graph also exhibit the different nature of
chains.
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Figure 6.8: Time evolution of fractional conversion for φ = 0.01 and Batt = 0 for two
different ω as indicated in the figure (below). The fraction of monomers involved
in loop at the final point is also shown. Above are the snapshots of the system at
the last point shown in the graph. Lbox = 81 and N0 = 10149 and colors indicate
different chains.
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Modeling protein aggregation

Our model can be extended to mimic protein aggregation and polymerization. We
can represent proteins using small chains of fixed length and rigidity with additional
free irreversible patches (with appropriate size ω) in appropriate places with respect
to the protein structure (see figure 6.9 (left)). Some good targets could be the wheat
gluten proteins [130, 131, 132] or the proteins of the spider silk [133, 134]. See fig-
ure 6.9 for an example of our proposition. In the case of glutenins, the additional
patches will act as free cysteine groups that can form irreversible disulfide bonds,
while reversible isotropic potentials model weak interaction in the central repeti-
tive domain of these proteins [135]. Unfortunately, we do not have yet sufficiently
matching data in the literature to compare with our model. Moreover the ternary
structure of candidate proteins together with the exact three dimensional position
of the free cystein units are still not precisely known. Suitable experimental con-
ditions have also to be found in order to be consistent with a step polymerization
process. Otherwise, the simulation has to be modified to take into account the real
reaction pathway (enzyme, catalyst, etc.).
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Figure 6.9: Our proposition for protein model (left). Computer-generated molecular
model of the 42K low molecular weight glutenin subunit (image adapted from [136])
underlaid on our trial model (right).
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Distribution of bond length and
patch vector

In the algorithm to build chains, we have to distribute each monomer such that it lies
with uniform probability within the interaction volume of the previous monomer.
This means that the bond vector should point to a direction which lies within the
cone angle ω defined by the spin of the previous monomer. The same is true for
the selection of the spin vector for the next connected monomer such that the bond
vector connecting the previous monomer is within its patch cone. Once we have
the direction of the bond vector, we need to choose a magnitude to set the bond
length such that the center of mass of the monomer lies within the range d and
d · (1 + ε), where d is the diameter of the monomer (see figure A.1). Selecting a
random direction in the cone and fixing a position of the center of mass in that
direction in the well width are two independent processes and could be carried out
independently.

A.1 Selecting a random bond length

We assume that the position of the connected monomer is uniformly distributed
within the bond volume. Based on this assumption, we can calculate the distri-
bution function for bond lengths. We have the boundaries to distribute the bond
length as d and d(1 + ε) constrained by the patch cone ω.

The bond volume, or the volume of the spherical cone with the vertex of the
cone at the center of the sphere is given by V = 2·π

3 · (1 − cos ω) · r3, where r the
radius of the sphere. In this case, for defining the conic spherical shell, r varies
from d to d · (1 + ε), giving the total interaction volume

Vb =
2 · π

3
· (1 − cos ω) · [(1 + ε)3 − 1] · d3 (A.1)

Under uniform distribution of the center of mass of the connected monomer in this
volume, we have the equilibrium condition that the average bond length (lb) divides
the bond volume in two spherical conic shells with equal volume. This condition
gives

[d3 · (1 + ε)3 − l3b] = (l3b − d3) (A.2)
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and solving for lb gives

lb = d ·
(

(1 + ε)3 + 1

2

)
1

3

(A.3)

Substituting the value ε = 0.1, we get lb/d ≈ 1.052.

d

d(1+ε)
l

ω

b

Figure A.1: Figure showing the construction of the conic shell in which the position
should be chosen and the equilibrium bond length, dividing the interaction volume
into two equal halves.

A.1.1 Determining the density probability function for the bond
length distribution

Consider a spherical conic shell formed on a sphere of radius (in this case, the bond
length) r with the vertex of the cone at the center of the sphere. The surface area
on the sphere covered by the cone is given by

S = 2 · π · (1 − cos ω) · r2 (A.4)

Any point on this surface is equally probable. Here we are interested in the distri-
bution of the bond lengths or in other words, the probability of selecting a given
surface around the sphere within the range d and d(1 + ε). Let R0 be the proba-
bility density for the surfaces/bond lengths. Let dv be a small interaction volume
determined by the small radius increment dr and the surface of the cone, where
dv = 2π(1 − cos ω) · r2 · dr. We know that

∫ d(1+ε)

d
R0 · dv = 1 (A.5)

Integration gives

R0 =
3

2 · π · (1 − cos ω) · [(1 + ε)3 − 1] · d3
(A.6)
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The probability of choosing a given surface determined by radius r is given by R0.
Then the expectation value of r could be calculated as

E(r) =

∫ d(1+ε)

d
r · R0 · dv =

3

4
· (1 + ε)4 − 1

(1 + ε)3 − 1
· d (A.7)

On substituting ε = 0.1, we get E(r) ≈ 1.052.

A.1.2 Determining the function giving the random bond length

In the C language, we use the uniform pseudo random number generator drand48().
The function drand48() returns a uniformly distributed double-precision number
that is greater than or equal to 0.0 and less than 1.0. Now identifying drand48()

to the partition function of the bond length distribution in the upper boundary
condition, we have

drand48() =

∫ x

d
R0 · dv (A.8)

where, d ≤ x ≤ d · (1 + ε). Integration gives

x = d · [drand48() · [(1 + ε)3 − 1] + 1]
3

2 (A.9)

This gives us a random bond length according to our need.

A.2 Selecting random direction within a cone about Z

axis

We use normalized vectors throughout this section . For easiness, we consider a
virtual sphere with unit radius centered at origin, such that all the normalized
vectors could be represented by a point on the surface of the sphere. According
to the spherical polar coordinate convention a vector makes an angle φ with the
positive direction of the Z axis and its projection on the XY plane makes an angle
θ with the X axis. First we try to obtain a unit vector k within the cone ω about
the Z axis, where 0 ≤ ω ≤ π. See figure A.2 for a schematic of the cone. For a
randomly selected direction to lie in the cone, it needs to satisfy the conditions

θ ∈ (0, 2π]

cos φ ∈ (cos ω, 1)
(A.10)

This means that we need to have a uniform distribution of random directions within
these ranges. As in the section above, using drand48(), we can define two functions
which return uniformly distributed random values within these ranges

r1 = 2 · π · drand48()

cos(r2) = (1 − cos ω) · drand48() + cos ω
(A.11)
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Now, using these distributions in spherical polar coordinates, we have the random
unit vector in the cone

p =







sin r2 · cos r1

sin r2 · sin r1

cos r2






(A.12)

where, r2 = arccos((1 − cos ω) · drand48() + cos ω)

y

x

z

θ

φ

ω v

u

p

Figure A.2: Figure showing the cone ω in which the direction should be chosen and
the axis of rotation u ⊥ v and Z axis.

The surface area of the cone formed on the surface of the virtual sphere about
the Z axis with the edge making an angle ω with it and the vertex placed at the
origin is given by Scone = 2 ·π ·r2 · (1−cos ω), where r is the radius of the sphere. A
uniform distribution of the tip of the selected vector in this area gives an average φ

such that it equally divides the area of the spherical surface in to two. Under this
condition, we have the relation between ω and φ as

(1 − 〈cos φ〉) =
1

2
· (1 − cos ω) (A.13)

or in other words

〈cos φ〉 =
1 + cos ω

2
(A.14)

A.2.1 Rotation about an axis to align the spin

In our case, we need to select a normalized direction vector p within the cone about
the spin vector v (or the bond vector). v is rarely the Z direction. So, we transform
the coordinates using the Rodrigues rotation formula such that Z axis lies on the
spin vector.
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See figure A.2. We have v =







sin φ · cos θ

sin φ · sin θ

cos φ






and the unit vector along Z direction

z =







0

0

1






and we need to find the rotation operator to transform z to v and apply

it to the chosen random direction p.

A vector perpendicular to both these vectors (z and v) could be found by taking

the crossproduct (u = z × v), giving a normalized u =







− sin θ

cos θ

0






. Now, we need

to rotate z about this vector by an angle φ to transform z to v. The Rodrigues
rotation matrix for transforming a vector by an angle φ about a perpendicular
vector u = ux · i + uy · j + uz · k is given by

R =







cos φ 0 0

0 cos φ 0

0 0 cos φ






+ sin φ ·







0 −uz −uy

uz 0 −ux

−uy ux 0







+ (1 − cos φ) ·







u2
x ux · uy ux · uz

ux · uy u2
y uy · uz

ux · uz uy · uz u2
z







(A.15)

Substituting the values of ux, uy and uz from the calculated perpendicular vec-
tor, gives the rotation matrix.

R =







cos φ + (1 − cos φ) · sin2 θ −(1 − cos θ) · sin θ · cos θ sin φ · cos θ

−(1 − cos θ) · sin θ · cos θ cos φ + (1 − cos φ) · cos2 θ sin θ · sin φ

− sin φ · cos θ − sin φ · sin θ cos φ






(A.16)

Applying this operator R to the selected direction p transforms it in to the
correct direction relative to the spin.

A.3 Alternate method to calculate the expectation val-
ues

In this calculate the expectation values using a single distribution. We know that the
bond vector is uniformly distributed within the conic shell. Using same notations
from previous sections, we can write

B0 ·
∫ d·(1+ε)

d
r2 · dr ·

∫ 2·π

0
dθ ·

∫ ω

0
sin φ · dφ = 1 (A.17)

where B0 is the probability density for the bond vector distribution. The solution
gives

B0 =
3

2 · π · (1 − cos ω) · [(1 + ε)3 − 1] · d3
(A.18)
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Now, we can easily calculate the expectation value of bond length

〈l2b〉 = B0 ·
∫ d·(1+ε)

d
r4 · dr ·

∫ 2·π

0
dθ ·

∫ ω

0
sin φ · dφ (A.19)

which gives

〈l2b〉 =
3

5
· (1 + ε)5 − 1

(1 + ε)3 − 1
· d2 (A.20)

Substituting ε = 0.1, the above equation gives 〈l2b〉 = 1.10666.

Similarly, we can calculate 〈cos γ〉

〈cos γ〉 = B0 ·
∫ d·(1+ε)

d
r2 · dr ·

∫ 2·π

0
dθ ·

∫ ω

0
cos φ · sin φ · dφ (A.21)

which gives the same relation we obtained before

〈cos γ〉 =
1 + cos ω

2
(A.22)
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