Orbitales localisées pour les interactions intermoléculaires

Edrisse Chermak

LCT, UMR 7616, UPMC

30 Octobre 2012

Motivations pour les interactions intermoléculaires

Chimie supramoléculaire :

- Interactions non covalentes
- On quantifie ces interactions par l'énergie d'interaction ΔE

Chen, Q-Y & al., Tet. Lett. , 46, 165 (2005)

- Prédire / Interpréter en chimie supramoléculaire
 - \rightarrow évaluer de manière précise ΔE
- Challenge pour des grands systèmes

Énergie d'interaction ΔE : définition

Supermoléculaire

 $\blacktriangleright \Delta E = E_{AB} - E_A - E_B$

- E_A & E_B : monomères isolés
- Corrigé de l'erreur de superposition de base (BSSE) par contrepoids (CP)
- Référence : Coupled Cluster (CCSD(T))

Perturbative

- $\Delta E = E_{electrostat.} + E_{ind.} + E_{disp.} + E_{ech-rep.}$
- Théorie des pertrbations à symétrie adaptée (SAPT)¹

Interaction	Peut se voir comme une interaction	Signe
Electrostatique	multipôle permanent- multipôle permanent	+/-
Induction	multipôle permanent- multipôle induit	-
Dispersion	multipôle induit- multipôle induit	-
Echange-Répulsion	répulsion à courte distance	+

Le coût du CCSD(T) est $\approx \mathit{N^7}$, SAPT peut être plus cher selon l'ordre de perturbation

1. B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 1887–1930 (1994)

Orbitales localisées et interactions intermoléculaires

Interaction	Electrostatique	Dispersion
Méthodes Alternatives	Density-fitting ² Développement multipolaire	DFT-D Fonctionnelles M06 Séparation de portée hybride
	Orbitales localisées occupées	Orbitales localisées occupées et virtuelles
	ightarrow Représentation intuitive d'une densité de charges	\rightarrow Sélection d'excitations

2. J.P. Piquemal, G.A. Cisneros, P. Reinhardt, N. Gresh, and T.A. Darden, JCP 124, 104101 (2006)

Orbitales localisées

Orbitales canoniques :

- Diagonalisent la matrice de Fock
- Sont complètement délocalisées

Orbitales localisées :

- Sont obtenues par des transformations unitaires sur des orbitales canoniques
- Ne changent pas la densité
- Forme non unique (plusieurs critères : Boys, Pipek-Mezey,..)

2 types de localisation :

- A partir d'orbitales SCF canoniques (a posteriori)
- Au cours de la procédure SCF (a priori)

Critère de Boys : 1 groupe de mélange de 6 orbitales

A 🕨

Plan

Electrostatique : Orbitales localisées occupées

- Définition du modèle multipolaire
- Convergence vers l'interaction multipolaire primitive
- Influence de l'arbitrarité de localisation

2 Dispersion : Orbitales localisées occupées et virtuelles

- DFT à séparation de portée hybride (RSH) et RPA
- Construction d'orbitales par IC de monoexcitation
- Sélection par seuil
- Approximation de dispersion

Interaction électrostatique ab initio

$$E_{\text{\acute{e}lectrostatique}}^{abinitio} = \iint \frac{\rho^{A}(\vec{r}_{A})\rho^{B}(\vec{r}_{B})}{|\vec{r}_{A} - \vec{r}_{B}|} d^{3}r_{A}d^{3}r_{B}$$

coût proportionnel à $\frac{1}{4}(N_A N_B)^2$

 \rightarrow Long pour les grands systèmes

Définition d'un multipôle et développement multipolaire ³

Multipôle d'ordre *I* , avec $-I \leq m \leq I$ composantes, $R_{l,m}(\vec{r})$ les harmoniques sphériques

r

$$Q_{l,m} = \int R_{l,m}(\vec{r})\rho(\vec{r})d^3r$$

Développement multipolaire

$$E^{mtp}_{\text{\acute{e}lectrostatique}} = \sum_{l,m} \sum_{l',m'} \mathbf{Q}^{\mathcal{A}}_{l,m} \mathcal{T}^{\mathcal{A}\mathcal{B}}_{l,l',m,m'} \mathbf{Q}^{\mathcal{B}}_{l',m'}$$

3. Stone A. J.; The Theory of Intermolecular Forces, 1996 Conversion and Conversion Conv

Interaction multipolaire primitive : définition

 χ : Fonction gaussienne primitive (s,p, ou d) centrée sur un atome

- L'interaction des multipôles primitifs E_{OMM} est l'interaction de réference
- Beaucoup de multipôles primitifs → représentation multipolaire réduite en orbitales localisée

< 6 b

Représentation multipolaire en orbitales localisées⁴

Orbitales localisées par la méthode de Boys :

- Chaque orbitale localisée possède :
 - ► Une charge (q = -2)
 - Des multipôles d'ordre supérieur (Q,O,H,...)

positionnés sur son barycentre

- L' interaction multipolaire en orbitales localiseés peut :
 - Converger vers l'interaction des multipôles primitifs E_{OMM}, ou diverger
 - Changer selon l'arbitrarité de localisation de Boys

4. R. Lavery, C. Etchebest, & A. Pullman, CPL, 85,3,(1982), 266-270

Ensemble de dimères test⁵

5. P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, PCCP 8, 1985–1993 (2006)

Edrisse Chermak (LCT, UMR 7616, UPMC)

э

Dimères étudiés

Multipôles extraits d'orbitales RHF/Voisin (8s5p3d/4s2p)

æ

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Résultats : Interaction de multipôles en orbitales localisées sur NH₂CHO-NH₂CHO

Interaction électrostatique : ab initio (Noir) et des multipôles primitifs (rouge)

 Divergence de l'interaction des multipôles en orbitales localisées à la distance d'equilibre

Troncature de l'interaction aux octupôles ou héxadécapôles

Résultats : Interaction de multipôles en orbitales localisées sur dimères dispersifs et mixtes

Résultats : Interaction de multipôles en orbitales localisées sur dimères à liaison hydrogène

Arbitrarité de localisation de Boys liée au choix des groupes

rond noir = barycentre d'une orbitale moléculaire

4 14 14 14 14

A >

Arbitrarité liée au choix des groupes

Benzène : 24 orbitales occupées 2 groupes de mélange indépendants

1^{er}: 6 orbitales de coeur
 2^{ème}: 18 orbitales de valence

- 1^{er} : 6 orbitales de coeur
- $2^{\text{ème}}$: 12 orbitales (σ_{CH} , σ_{CC})
- 3^{ème} : 3 orbitales π_{CC}

Résultats : Arbitrarité liée au choix des groupes

- Interaction en 3 groupes plus proche de l'interaction multipolaire primitive
- Même tendance à l'ordre héxadecapolaire pour les deux distributions

Arbitrarité intrinsèque à un groupe de localisation de Boys : orbitales π du benzène

- 1^{er}: 6 orbitales de coeur
- $2^{\text{ème}}$: 12 orbitales (σ_{CH} et σ_{CC})
- 3^{eme} : 3 orbitales π_{CC}

Résultats : Arbitrarité intrinsèque à un groupe de localisation de Boys : orbitales π du benzène

Peu de différence si interaction tronquée aux octupôles

Conclusion : partie électrostatique

- Interaction de multipôles en orbitales localisées par la méthode de Boys et développement multipolaire
- Représentation intuitive de la densité de charges
- Divergence de l'interaction des multipôles en orbitales localisées à la distance d'équilibre
- Interaction de multipôles en orbitales localisées tronquée aux octupôles/héxadécapôles
 - Evaluation raisonnable de l'interaction multipolaire primitive
 - Influence négligeable de l'arbitrarité de la localisation de Boys

(B)

Orbitales localisées et interactions intermoléculaires

Interaction	Electrostatique	Dispersion
Méthodes		DFT-D ⁶ , ⁷
Alternatives		Fonctionelles M06 ⁸
		Séparation de
		portée hybride ⁹
		Orbitales localisées occupées et virtuelles
		ightarrow Sélection d'excitations

- 7. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, JCP132, 154104 (2010)
- 8. Y. Zhao and D.G. Truhlar, Acc. of Chem. Res. 41, 157-167 (2008)
- 9. J. Toulouse, W. Zhu, J.G. Ángyán, and A. Savin, PRA-82, 032502 (2010) 🚊 🔊 🔍

^{6.} S.N. Steinmann & C. Corminboeuf, JCTC 6, 1990-2001 (2010)

Séparation de portée Hybride (RSH)-RPA

Expression de l'énergie dans l'approche de Kohn-Sham :

$$E = \min_{\Phi} \left\{ \langle \Phi | T_{s} + V_{ne} | \Phi \rangle + E_{Hxc}[\rho_{\Phi}] \right\}$$

Expression de l'énergie dans l'approche de Range Separated Hybrid : ¹⁰

$$E^{RSH} = min_{\Phi} \left\{ \langle \Phi | T_{s} + V_{ne} | \Phi
angle
ight\} + E_{H} + E_{x,HF}^{LR} + E_{xc,DFT}^{SR}$$

Corrélation de longue portée : Approximation des phases aléatoires (RPA)

$$E^{RSH-RPA} = E^{RSH} + \underbrace{E^{LR}_{c,RPA}}_{E_{lrRPA}}$$

10. J. Toulouse, F. Colonna, A. Savin, PRA 70 (2004) 062505

Séparation de portée de la corrélation

SR(DFT) μ=0.5 (LR) LR(HF+postHF) 2.5 μ=0.5 (SR) Fonction erreur (r)/(r) 1/x (SR+LR) 2 1.5 2 boh 1 0.5 0 0 2 3 1 4 r (bohr)

E. Goll, H. J. Werner, H. Stoll, *PCCP*, 7(23) (2005) 3917 - (B) - (E) -

Approximation des phases aléatoires ¹²

Méthode perturbationelle post-HF qui implique des excitations d'orbitales $i, j(occ) \rightarrow a, b(virt)$ selon les matrices

$$\begin{aligned} (A_{\lambda})_{ia,jb} = & (F_{ab}^{RSH} \delta_{ij} - F_{ij}^{RSH} \delta_{ab}) + 2\lambda (ia|jb)^{LR} - \lambda (ij|ab)^{LR} \\ (B_{\lambda})_{ia,jb} = & 2\lambda (ia|jb)^{LR} - \lambda (ib|ja)^{LR} \end{aligned}$$

Expression de l'énergie de corrélation RSH-RPA

$$E_{lr RPAx-l}(\mu) = \int_{0}^{1} d\lambda rac{1}{2} \sum_{iajb} (ia|jb)^{LR} (P^{LR}_{c,\lambda})_{iajb}$$

- $(P_{c,\lambda}^{LR})_{iajb}$ est une fonction des matrices A et B
- Expression de l'interaction RSH-RPA

$$\Delta E_{ extsf{RSH}- extsf{RPA}} = \Delta E_{ extsf{RSH}} + \Delta E_{ extsf{IrRPA}}$$

12. Toulouse, J.; Zhu, W.; Savin, A.; Jansen, G.; Ángyán, J. G., 135, JCP (2011)

Les 4 dimères étudiés

2

 $\Delta E_{RSH} + \Delta E_{IrRPA}(\mu = 0.5bohr^{-1})$:

🗌 Zhu, W., Toulouse, J., Savin, A. & Ángyán, J. G., JCP, 132, 244108 (2010). 🍙 🔊 🔍

Réduction du coût du RSH-RPA en interactions intermoléculaires

RSH-RPA donne d'excellentes énergies d'interaction, mais le RPA coûte N⁶

- Deux approches pour réduire le coût :
 - Résolution de l'identité (RIRPA)¹⁴
 - Sélection des excitations les plus importantes¹⁵
 - Nécessite de trouver des méthodes pour sélectionner efficacement les excitations
 - * Définir et implémenter une procédure RSH-RPA locale

14. Eshuis, H.; Bates, J. E.; Furche, F., TCA, (2012), 131.

15. Chermak, E.; Mussard, B.; Ángyán, J. G.; Reinhardt, P., Chem. Phys.

Lett., 550, 162-169 (2012)

Edrisse Chermak (LCT, UMR 7616, UPMC)

Comment sélectionner les excitations dans un cadre intermoléculaire?

 Avoir des excitations classées permet de les sélectionner plus facilement :

- Pour classer les excitations, il faut localiser les orbitales sur chaque monomère ¹⁶
- L'énergie RPA est invariante par localisation d'orbitales¹⁷

17. Bouman T. D., Voigt B. & Hansen A. E., JACS, 101, 550 (1979) = + < = + =

^{16.} P. Reinhardt, CPL, 370(34) (2003) 338

Pourquoi il est nécessaire de localiser a priori pour sélectionner les excitations

• Evaluation de différences d'énergies sélectionnées

Nécessite des orbitales similaires dans les monomères et dimères

 Localisation des orbitales des dimères a priori par IC de monoexcitations

Construction d'orbitales par IC de monoexcitation¹⁸

• Déterminant Φ_0 : orbitales non SCF φ_i occ., φ_a virt.

$$\Psi=\Phi_0+\sum_{ia}c^a_i\;\Phi^a_i$$

- Résoudre l'équation d'IC \rightarrow obtenir les c_i^a
- Construire les orbitales SCF (φ'_i, φ'_a) :

$$arphi_{i}^{\prime} = arphi_{i} + \sum_{a} c_{i}^{a} arphi_{a}$$
 $arphi_{a}^{\prime} = arphi_{a} - \sum_{i} c_{i}^{a} arphi_{i}$

 $< \varphi_{a}|\varphi_{i}> = < \varphi'_{a}|\varphi'_{i}> = 0 \qquad \forall \qquad i(occ), a(virt)$

Processus itératif jusqu'à convergence de l'énergie SCF

Comparaison de deux manières de construire des orbitales SCF pour un dimère

Départ : orbitales RHF d'un dimère d'eau (orbitale HOMO-1)

E=-152.126514846 H $\bar{F}_{ia} = 0.13 \times 10^{-4} \text{ H}$

Dernière itération par :

Diagonalisation de F E= -152.126671777 H $\bar{F}_{ia} = 0.59 \times 10^{-8}$ H

IC de monoexcitation E=-152.126671777 H $\bar{F}_{ia} = 0.45 \times 10^{-8}$ H

Similarité des orbitales construites par IC de monoexcitation

Moyenne des recouvrement *S* des orbitales des monomères avec les orbitales du dimère :

Orbitales / Dimère	eau	méthane	formamide	benzène
S̄ (occupées)	>0.999	>0.999	>0.999	>0.999
S (virtuelles)	$0.96{\pm}0.06$	$0.97{\pm}0.05$	$0.96{\pm}0.07$	$0.99{\pm}0.03$

Orbitales localisées \rightarrow sélection d'excitations

Sélection par seuil : procédure

Sélection par seuil τ

Mesurer l'importance de chaque couple de monoexcitations

$$\frac{\left((ia|ia)^{LR}\right)^2}{2(\epsilon_a - \epsilon_i)} > \tau$$

- Contribution i = j & a = b de l'énergie MP2
- ϵ : Energie des orbitales moléculaires
- (*ia*|*ia*) : Intégrales biélectroniques en base des orbitales moléculaires

$$\Delta E_{lrRPA}(\tau) = E_{lrRPA}^{AB}(\tau) - E_{lrRPA}^{A}(\tau) - E_{lrRPA}^{B}(\tau)$$

а

Résultats : $\Delta E_{RSH} + \underline{\Delta E_{IrRPA}(\tau)}(\mu = 0.5bohr^{-1})$ à la distance d'équilibre

Proportion d'excitations retenues par le seuil

 $\tau = [10^{-5}, 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}, 10^{-10}, 0] \text{ H}$

• Seuil de $\tau = 10^{-10} H \rightarrow 40\%$ du nombre total d'excitations

Approximation de dispersion : hypothèses

Approximation de dispersion (μ =0.5 bohr⁻¹)

 $\Delta E_{RSH} = +0.898 mH$ $\Delta E_{RSH} + disp = -3.513 mH$ $\Delta E_{RSH} + \Delta E_{IrRPAx-I} = -3.759 mH$

< 17 >

Approximation de dispersion avec présélection

Approximation de dispersion avec présélection(μ =0.5 bohr⁻¹)

< A >

Approximation de dispersion pour différents paramètres de séparation de portée

< A >

Approximation de dispersion à la distance d'équilibre(μ =0.5 bohr⁻¹)

Approximation de dispersion pour différentes distances(μ =0.5 bohr⁻¹) : dimère de méthane

Approximation de dispersion pour différentes distances(μ =0.5 bohr⁻¹) : dimère de méthane

< 6 b

Approximation de dispersion pour différentes distances(μ =0.5 bohr⁻¹) : dimère de méthane

Réduction d'un facteur 30 entre dimère en IrRPA et disp* pour le dimère de méthane

Edrisse Chermak	(LCT, UMR 7616, UPMC)	
-----------------	-----------------------	--

< 6 k

Conclusion : partie dispersion

- Construction d'orbitales par IC de monoexcitation.
- Mise en place d'une procédure de sélection d'excitations pour le calcul d'énergies d'interaction RSH-RPA.
- La sélection par seuil :
 - Evalue correctement l'interaction IrRPA pour un seuil bien choisi.
 - Nécessite d'évaluer la contribution de chaque paire occ. virt.
- L'approximation de dispersion :
 - Evalue correctement l'interaction IrRPA, même avec présélection.
 - Ne requiert pas d'évaluer l'énergie RPA des monomères.
 - Fonctionne également pour les dimères à liaisons hydrogène.

Publication : Chermak, E. ; Mussard, B. ; Ángyán, J. G. ; Reinhardt, P. , Chem. Phys. Lett., 550, 162–169 (2012)

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion générale

Orbitales localisées occupées : Electrostatique

- Développements multipolaires en orbitales localisées occupées par la méthode de Boys.
- Les multipôles en orbitales localisées donnent une évaluation raisonnable de l'interaction multipolaire exacte à l'ordre octupolaire/héxadécapolaire.
- L'arbitrarité de la localisation de Boys à peu d'influence sur l'interaction à l'ordre octupolaire.

Orbitales localisées occupées et virtuelles : Dispersion

- Construction d'orbitales de dimères par IC de monoexcitation.
- Mise en place d'une procédure de sélection d'éxcitations pour le calcul d'énergies d'interaction RSH-RPA.
- La sélection par seuil est satisfaisante pour un seuil donné, et converge lentement vers l'interaction sans sélection.
- L'approximation de dispersion est satisfaisante, même pour les dimères à liaisons hydrogène et avec présélection.

Perspectives : partie électrostatique

- $\bullet~$ Arbitrarité \rightarrow Deux types d'arbitrarité sur d'autres dimères / orientations
- $\bullet~$ Pour l'instant, nécessite des orbitales SCF de tout le système \rightarrow Fragmentation
- Transférabilité d'un fragment à un système complet :
 - Des quadrupôles jusqu'aux héxadécapôles
 - Des positions des barycentres des orbitales
- Multipôles fixes et changements de :
 - Longueurs de liaisons chimiques
 - Conformation

Perspectives : partie dispersion

Energies d'interaction avec l'approximation de dispersion

- Autres variantes de RPA (dRPA-I)
- Autres dimères du S22
- Autres types de dimères (AICI₃-AICI₃,H₂O-HF, N₂-N₂)
- Effets de dispersion à n corps (n>2)
- Influence de l'arbitrarité de localisation sur la sélection
 - Par seuil
 - Par approximation de dispersion

Remerciements

Peter Reinhardt

Janos Ángyán, Bastien Mussard

< 6 b

Edrisse Chermak (LCT, UMR 7616, UPMC)

ъ