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Abstract 

The first RF-MEMS devices were presented about 30 years ago and widely developed during 

early 90’s. Owing to their superior performance in terms of RF performance, power 

consumption and cost in comparison with existent technologies (CMOS, PIN…), RF-MEMS 

was a very promising technology. Reliability issues started to become a serious burden in the 

early 2000’s and actual roadblock toward commercialization. From the beginning very deep 

studies have been done in order to understand the different physics of failure occurring during 

device lifetime. The main reliability problems were found out to be dielectric charging, 

contact degradation and fatigue and stress control in the movable membranes. 

The reliability solutions proposed in this work are related with the design and the process 

steps modification (Design for Reliability). The processes have been classified using its TRL 

(Technology Readiness Level) which is indentified by means of a deep study of each process. 

Roughly, three different regions have been identified: low TRL (from 1 to 3), medium TRL 

(from 4 to 6) and high TRL (from 7 to 9). The relationships between adaptability, process 

flexibility, complexity, failure mechanisms and on-wafer dispersion have been established 

determining the suitable Design for Reliability strategy to follow.  

In particular, for LAAS-CNRS process (low TRL) the addition of a metal layer over the 

movable part is proposed in order to reduce the DOWN capacitance dispersion and to increase 

its stiffness of the cantilever. For resistive switches the proposed solution is the optimization 

of an annealing step in order to reduce the deflection due to initial stress which prevents the 

dimples to contact the transmission line. Both solutions were adopted because the in-wafer 

and wafer to wafer dispersion was too big. 

For medium TRL environment (CEA-Leti) the monitoring of the contact resistance was 

studied under different RF power through the contact. Preliminary results were shown that 

infer that the lower the number of actuations needed for a stable contact (NAC), the higher the 

RF power through the contact (PRF). These results were perturbed by the carbon 

contamination of the contact due to the non-hermetic package. No design for reliability can be 

applied without the total comprehension of the failure mechanism. 

For IHP process (high TRL), the fabrication process dispersion origin was identified. The 

critical parameter to track is the UP and DOWN state capacitance responsible of the RF 

performance deviation in the initial state. The long-term reliability tests have demonstrated 

that the failure mechanism is mechanical fatigue. However, by defining a reliability criteria in 

pristine devices (VPOUT>36 and VPIN - VPOUT≤1) to screen the wafer, the device can afford up 

to 67h of continuous DC stress in harsh environments (22° and 45% humidity). The 

methodology proposed in this thesis in order to screen the wafer is by measuring the distance 
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between membrane and electrode or line without actuating the switch. This technique is non-

intrusive and can be implemented in mass-production by defining cells over the wafer 

(already done by IHP) and testing one device of each cell. 

For all three environments more complex RF-MEMS based circuits have been designed and 

characterized. Different routing circuits with capacitive and resistive switches are shown and 

a novel absorptive switch is designed using the advantages of a co-integrated MEMS-CMOS 

process (IHP). These results demonstrate the importance of the adaptability of the process.   

The common tool used in all the process to study the RF performance versus time is the 

lumped-element based equivalent circuit. The models are based on measurements over the 

wafer in order to track the fabrication process dispersion and to identify the component of the 

model which affects more to the RF performance (sensitivity analysis). With this method, it 

has been possible to compute the effect of the roughness of contact dielectric in capacitive 

MEMS (LAAS-CNRS devices), the contact resistance of resistive switches (CEA-Leti) and 

the UP/DOWN capacitance dispersion in standard CMOS-MEMS process (IHP). Moreover, 

in IHP technology the pull-in/out voltage has been identified as the relevant parameter in 

order to ensure reliability under industrial specifications. 
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Introduction  1 

 

Introduction 

The first RF-MEMS devices were presented about 30 years ago [1] and widely developed 

during early 90’s. Owing to their superior performance in terms of RF, power consumption 

and cost in comparison with existent technologies (CMOS, PIN…), RF-MEMS was a very 

promising technology. Reliability issues started to become a serious burden in the early 

2000’s [2] and an actual roadblock toward commercialization. From the beginning very deep 

studies have been done in order to understand the different physics of failure occurring during 

device lifetime. The main reliability problems were found out to be dielectric charging, 

contact degradation and plastic/elastic deformation in the movable membranes. 

The results of the deep investigation in failure mechanisms of RF-MEMS have resulted in the 

development of materials tolerant to dielectric charging or contact degradation. Despite all 

these efforts, RF-MEMS are still struggling to reach the mass-market since these failure 

mechanisms can only be minimized and not avoided even in optimized materials. At this 

moment, the research community is facing the problem from another perspective: if you 

cannot solve the problem, remove its cause. This approach takes into account the failure 

mechanisms and its effects at the very beginning of the device conception. This approach is 

denoted as "Design for Reliability".  

This thesis is intended to deal with reliability of RF-MEMS devices (switches, in particular) 

from a designer point of view using different fabrication process approaches. This means that 

the focus will be on how to eliminate or alleviate at the design stage the effects of the most 

relevant failure mechanisms, rather than focusing on the underlying physics of failure. The 

knowledge of this latter is on the contrary of crucial important in order to find out the most 

effective design for reliability solution. 

In order to evaluate how the design for reliability applies to different manufacturing process, a 

well established metrics called Technology Readiness Level (TRL) [3] has been used to sort 

out the three R&D processes taken hereby in consideration. This raking was originally done 

by NASA and then widely adopted by other companies and institutions such as ESA, for 

finally being adopted also from the consumer electronics at large scale. It assesses the 

maturity of the technology prior to incorporating it into a system or subsystem. There are 9 

different levels: 

1. Basic principles observed and reported 

2. Technology concept and/or application formulated 

3. Analytical & experimental critical function and/or characteristic proof-of-concept 

4. Component and/or breadboard validation in laboratory environment 

5. Component and/or breadboard validation in relevant environment 
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6. System/subsystem model or prototype demonstration in a relevant environment 

(ground or space) 

7. System prototype demonstration in a space environment 

8. Actual system completed and "Flight qualified" through test and demonstration 

(ground or space) 

9. Actual system "Flight proven" through successful mission operations 

An analysis of the different R&D approaches will be presented by highlighting the differences 

between the different levels in the TRL classification (Figure 1). This thesis intends to show 

how reliability can be faced by taking into account fabrication processes with different TRL 

starting from a low TRL (LAAS-CNRS) passing through a medium TRL (CEA-Leti) and 

finishing with a high TRL (IHP)
1
. 

 

The main contributions of this thesis are: 

- In terms of adaptability of RF-MEMS based circuits: 

o Design and characterization of SP4T and phase shifters using LAAS-CNRS 

capacitive and resistive cantilevers.  

o Design and characterization of SPDT and design of routing matrices from DC 

to 50GHz with CEA-Leti devices. 

o Design of SPDT and 2-bit phase shifters at 50GHz: based on a BiCMOS-

MEMS co-integrated process (IHP) 

o Design of a novel configuration for absorptive switches at 50GHz: based on a 

BiCMOS-MEMS co-integrated process (IHP) 

- In terms of Design for Reliability: 

o Development of 3
rd

 metal layer for LAAS-CNRS capacitive switches 

o Study of the RF performance evolution of CEA-Leti Ru-Ru contacts 

o Development of equivalent circuit models for: 

 Process dispersion characterization (LAAS-CNRS, CEA-Leti and IHP) 

                                                 
1
 This ranking is uniquely based upon the opinion and experience of the author and does not represent the view 

of the associated organizations (CNRS - TAS). 

Low TRL 

environment 

Medium TRL 

environment 

High TRL 

environment 

Figure 1: Description of the studied fabrication process in the TRL classification [3] 
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 Failure analysis (LAAS-CNRS,CEA-Leti and IHP) 

 Process monitoring in real time (IHP) 

 Synthesis of new components (Series switch IHP) 

o Development of the Design for Reliability strategy depending on the TRL 

environment for the three fabrication processes 

The thesis is divided in five chapters. The first one is an overview of the most relevant 

reliability challenges encountered in RF-MEMS devices, and how they can be counteracted 

already at the design phase. Specifically, the techniques are focused on how to solve the 

dielectric charging phenomena, the contact degradation and the thermal effects from a design 

point of view. In addition the concept of Design for Reliability and the reliability 

characterization tools used through the manuscript are described. 

From chapter two to four an exhaustive description of the different studied process at different 

TRL environment is done. Each chapter describes the fabrication process and the devices 

fabricated and characterized extracting an equivalent circuit which is used a posteriori for 

failure mechanisms description and study. Once the failure mechanism is detected, different 

techniques, depending on the TRL environment are proposed in order to minimize its effect. 

Moreover, different routing circuits are designed, fabricated and characterized in order to 

demonstrate the adaptability of each fabrication process. 

Finally, in the last chapter the comparison between the different TRL environments is done 

based on the studied process. The comparison is done using five critical aspects of the 

process:  

- Adaptability: this concerns the possibility of integrating different configurations 

(series/shunt) and topology (resistive/capacitive) in the same run,  

- Process flexibility: the possibility to introduce new materials in the original process 

and/or modifying the process steps. 

- Process simplicity: measured by the number of masks used for the fabrication 

(packaging not included) 

- Process Repeatability: this defines the variation of the RF and mechanical 

performance of the devices over the entire wafer and from wafer to wafer. The 

tolerances refer to the variation on the physical dimensions (size and roughness of 

materials) of the structures. 

- Device robustness: failure mechanisms with their associated RPN  

These results define the strategy to follow when facing reliability from the designer point of 

view (Design for Reliability). The comparison is extended to nowadays existing 

manufacturing process of different TRL.  
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Chapter 1                                                     

Design for Reliability in RF-MEMS 

In this chapter an overview of the most relevant reliability challenges encountered in RF-

MEMS devices, and how they can be counteracted already at the design phase are presented. 

Literature has shown hundreds of publications about RF-MEMS components demonstrating 

very good performance based on original smart ideas and pointing out the reliability 

shortcomings hampering their commercial exploitation. This chapter is not intended to list 

them all nor to deepen the underlying physics of failure, but rather to focus on the most 

relevant example of design tricks and stratagems introduced to date. In order to match 

application specifications on reliability, in some case, this can be done only at the cost of 

reduced RF performance. With this aim in mind, after a small introduction about basic 

concepts of reliability study, two different approaches are pointed out by addressing the 

Design for Reliability from a component and a circuit point of view. 

In the first approach, some examples of RF-MEMS devices which address the main reliability 

issues are described. In the second one, the first commercial circuit that nowadays exists is 

presented as an example of how RF-MEMS can be placed in real circuits. 

1.1 Introduction: Reliability issues in RF-MEMS 

1.1.1 What does Reliability mean? 

The word “Reliability” comes from Latin “religare” which means hold firmly. This idea of 

robustness is commonly used in the scientific community when speaking about reliability in 

devices. Strictly speaking, the exact definition of the word is the probability of a system or 

component to perform its required functions under stated conditions for a specified period of 

time. This definition involves three important topics which RF-MEMS designers should be 

aware of and will be depicted below: probability, required functions and conditions during a 

period of time [4]. 

Probability: failure mechanisms study 

The probability quantifies the confidence of the devices. In other words, it shows how many 

times the component or circuit will accomplish the expected performance. Consequently, this 

needs the definition of the “expected performance” and the reason of its not-accomplishment. 

While the first will be defined by the end-user (maximum losses, power handling …), the 

second needs a deeper study basically on the physics of the device. 
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The failure mechanisms (process which leads to failure) that have more importance in RF-

MEMS are charging of dielectric, creep, plastic and elastic deformation, structural short, 

capillary forces, fusing, fracture, dielectric breakdown, corrosion, wear, equivalent DC 

voltage, Lorenz forces, whisker formation, fatigue, electromigration and Van der Waals 

forces. All these mechanisms are caused mainly by the device thermal budget (during 

manufacturing and in working stage) and the device working environment (humidity, 

contamination…) [5]. 

One of the methods used for determining the potential failures that might occur in RF-MEMS 

and its effect on all other parts of the system is the FMEA (Failure Mode and Effect 

Analysis). This analysis is able to determine if the failure is related to design, technology, 

environmental or operational issues and in which moment of the lifecycle it may occur [6]. 

For each identified potential failure mode on the FMEA, a RPN (Risk Priority Number) is 

assigned multiplying three factors: 

1. Severity (S): From 1 to 10 depending on the affectation of the product 

performance (1: not noticeable; 10: extreme failure) 

2. Occurrence (O): From 1 to 10, it quantifies how often the effect is predicted to 

be observed (1:unlikely; 10:unevitable) 

3. Detection (D): From 1 to 10, it measures the capability of detecting default chips 

before sending to customer (1: detectable; 10: not-detectable) 

Very often, reliability study is stopped in this stage (physical understanding of failure modes). 

However, as it will be seen in section 1.1.2, this is only the first step and should be followed 

by long term tests which allow the end user to infer how the performance will evolve versus 

time. For this reason, this section 1.1.1 is not intended to be exhaustive on this regard but 

rather to present some tools for lifetime characterization. 

Required functions: environment towards the application 

RF-MEMS technology has demonstrated to be a very good candidate for high frequency 

applications. It is mainly due to their inherently low losses, low power consumption and high 

linearity and isolation with respect to competitive technologies (PIN, MESFET, HEMT...). 

One of the niche markets which RF-MEMS technology aims to is redundancy, routing and 

phase shifting circuits for space applications [5]. The space-specific operating conditions are 

radiation, vacuum, thermal shock and vibrations [7]. 

In terms of radiation, the mechanical properties of silicon and metals are mostly unchanged. 

The main failure mode at high radiation is the accumulation of charge in dielectric layers 

which is critical for electrostatically actuated devices since an actuation at 0V can be 

achieved. Some experiments has shown devices working under doses between 150 and 

300kRad, but others have only reached 10kRad [8]. A radiation tolerant device can be 

obtained avoiding charge trapping in dielectric layers by means of geometry changes in the 

electrodes and charge dissipation layers (Fig.1-1). 

 
Fig.1-1: Cross section of the solution for avoiding charge trapping proposed in [8] 

Oxide selectively 

etched so that the 

mirror is fully 

electrically shielded 

from trapped charge 
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In space, devices operate in extremely high vacuum which can be a problem if the package is 

not hermetic and if the device generates few mW of heat
2
. For this reason, the development of 

a hermetic package (5000ppm of water vapour initially and leak rate of 10
-8

 atm*cm
3
/sec) is a 

must in any space application for RF-MEMS. Moreover, it not only avoids outgassing, mass 

loss and surface contamination, but also allows to test the device in earth at space conditions. 

The typical temperature range that the device could suffer is from -80C to 100C per day 

despite depending on the orbit. Thermal shocks can lead to failure of the die bond, cracking of 

the chip and delamination of the layers. The solution to this problem is either to use a process 

whose materials have the same CTE (Coefficient of Thermal Expansion) or to implement 

sandwich structures which compensate the different CTE of the used materials. 

Finally, the vibrations level during launch and separation can reach values from 5Hz to 100Hz 

and from 3 to 20G. MEMS’s mass is typically over few micrograms, so shocks of 1000G 

produces mN range forces (F=m*a). Creating a symmetrically suspended geometry, avoiding 

stress concentration (no sharp corners) and minimizing strain, mm-scale suspended devices 

can survive repeated shocks (Fig.1-2) [9]. 

 

Period of time: long term behaviour of RF-MEMS 

The lifecycle of a device and its failure rate is related by the bathtub curve (Fig.1-3) which 

divides lifetime in three regions: infant mortality, useful life and wear out. When testing 

reliability in devices, it should be clear in which region of the bathtub curve the device is in 

order to determine the failure mechanism. 

 

The infant mortality region is strongly related with the yield of the fabrication process 

because it separates “the bad” and “the good” chips regarding the initial mechanical and RF 

                                                 

2
Normally dissipation values are around few W except for thermally actuated MEMS 

Infant mortality 

Useful life 

Wear out 

F
ai

lu
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Defects on the devices 

Fig.1-3: Bathtub curve with the different regions associated to the lifetime of the device 

Fig.1-2: Sandia National Labs device that demonstrate 40000G shock 
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performance. In order to consider that this region is passed, a burn-in test is done till the 

initial performance reach stable value (the criteria of stable value is a defined percentage of 

variation depending on the application). 

In the useful life region, the device reaches its normal behaviour. In fact, the reliability of the 

device should be tested in this region since any defect due to the fabrication process is 

expected and only device characteristics (mechanical and electrical) play important role. 

Within this region random defect can appear and the End of Life (EOL) is defined by the 

beginning of the degradation of the device. 

Finally, in the wear out region the materials start to degrade and the definition of the 

accelerating factors to reach the end-of-life is required. In this period it is also very important 

to define which parameters of the design are more sensitive to variations of the material 

properties (sensitivity study). 

In order to know which class of failure (infant mortality, random or wear out) is present, the 

slope () of the Weibull plot is used as indicator [10]. In a typical Weibull probability plot 

two axes are defined (Fig.1-4): 

- Age (X) (operating time, starts and stops, cycles, time at high stress…): it is in 

logarithmic scale and usually the appropriate parameter is suggested by the specific 

physics of failure mode. The best choice is the one that makes the data fit to a straight 

line 

- Cumulative Density Function
3
 (CFD) (Y): the portion of units that will fail up to age t 

in percent.  

 

Regarding the slope, if <1, it indicates infant mortality while if >1 it means wear out 

failure. When =1, it is considered random failure independent of age (useful life) [10]. The 

ideal process should have a very high slope (near vertical line) which would mean that the 

lifetime can be predicted exactly and the dispersion of the process is very low. On the other 

hand, processes with low  (near horizontal line) show failure at any time during lifetime 

which makes the failure unpredictable (very high dispersion). 

 

 

                                                 

3
 )()( xXPxCDF  : Probability that the random variable X takes on a value less than or equal to x. 

Fig.1-4: Example of Weibull plot for a device suffering from dispersion (black) and near ideal device (red) 

with the corresponding Weibull curve. 
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1.1.2 What does Design for Reliability (DfR) mean? 

Design for Reliability is a process which includes tools and practices in order to describe how 

to drive reliability challenges and increase lifetime in products. This improvement does not 

necessary imply better performance but rather a compromise between reliability and desired 

or acceptable performance. In Fig.1-5 a typical design process flow is described showing the 

two types of reliability depending on the stage of the design flow. 

 

In Table 1-1, an overview of the main failure mechanisms in RF-MEMS is shown with 

existing solutions proposed either through the process optimization (Reliability due to 

Manufacture) or through the design taking into account the failure causes (Reliability during 

working state). They will be discussed more in details in section 1.2 

Failure 

mechanism 
Failure cause 

FMEA parameters
4
 

Possible solution 
S O D RPN 

Long-term plastic 

deformation 

Thermal induced 

charges in material 

properties 
7 7 3 147 Push-pull switches 

Temperature (T) 

induced Elastic 

deformation 

Environment T 

Different CTE 

Power RF signal 

induced T 

Non uniform T 

7 7 5 245 

-Use of  same CTE 

materials or sandwiched
5
 

movable parts 

-Temperature control 

systems 

Equivalent DC 

voltage 

High RF power 

(spontaneous 

collapsing or stiction 

of the mobile part) 

7 4 6 168 
Optimized heat-sink 

design of metallic bridges 

Dielectric 

charging and 

dielectric 

breakdown 

Electric field charge 

Radiation 

Air-gap breakdown 

Electron emission 

8 10 2 160 

-Complex actuation 

waveforms 

-Low-voltage designs 

-Special dielectric 

materials 

Dielectric-less or 

proximity
6
 switches 

                                                 
4
 Extracted from Enabling Deployment of RF MEMS Technology in Space Applications (ENDORFINS) ESA 

Project 
5
 Sandwiched membranes stack different CTE materials producing a compensated stress structure 

First design 

Fabrication 

process 

tolerances 

Sensibility 

study 
Specs1? 

Failure 

Analysis 

Reliability due to Manufacture 

(before fabrication) 

Fig.1-5: Typical design process flow of a device. Specs1 refers to RF performance and Specs2 to lifetime 

performance 

Reliability during working state 

(after fabrication) 

Specs2? 

Final 

design 

✓ 
✓ ✗ 

✗ 
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Failure 

mechanism 
Failure cause 

FMEA parameters Possible solution 

S O D RPN  

Micro welding 

Soft metals in 

contact 

High current through 

contact (asperities) 

ESD 

9 7 4 252 
Increased restoring force 

Hard contact materials 

Structural Short 

(electrical and 

non-electrical 

connections) 

Contamination 

particles remaining  

from sacrificial 

layers 

Wear particles 

Fracture 

Lorenz Force 

Shocks 

9 5 4 180 

Holes in movable parts for 

total release of sacrificial 

layer 

Capillary Forces Presence of humidity 10 4 4 160 Hermetic package 

Fracture 
Fatigue 

Brittle materials and 

shock 

10 4 2 80 
Thick movable parts 

Push-pull structures 

Corrosion 
Presence of water or 

fluid materials 

Corrosive gases 

7 5 2 70 Hard contact materials 

Fusing 
High RF power 

ESD 
10 4 2 80 ESD protection 

Wear, Friction 

and fretting 

corrosion 

Sliding rough 

surfaces in contact 8 4 6 192 Hard contact materials 

Creep 

High metal stress 

and high temperature 

Creep sensitive 

metal 

6 5 4 120 

Creep-resistance materials 

in movable parts 

Control stress in movable 

parts 

Fatigue 
Large local stress 

Large thermal cycles 
8 3 5 120 Round shaped membranes 

Van der Waals 

Forces (Stiction) 

Large very smooth 

and flat surfaces in 

close contact 
10 1 4 40 Double electrode 

Electromigration High current density 

in metals 
8 2 4 64 Hard contact materials 

Table 1-1: Summary of possible solutions to main reliability issues in RF-MEMS [10] 

 

                                                                                                                                                         
6
 Proximity switches are capacitive devices that avoid the contact between metal and dielectric in actuated state 

by changing the air-gap capacitance. 
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Reliability due to Manufacture (before fabrication) 

This subdivision of the DfR is focused on the characterisation of the tolerance of fabrication 

process and on the sensibility study of the parameters involved in the design. In RF-MEMS, 

two main sources of dispersions are relied to the fabrication process: geometrical (shape and 

size of the elements) and thickness of the layers (uniformity on the deposition over the wafer). 

This means that a very accurate control of each step of the fabrication process is needed and it 

would allow designers to predict possible deviations in the RF performance and carry out the 

sensitivity analysis. 

The first step is to quantify through a probability distribution function a mean and standard 

deviation value of the dimensions of the elements and the mechanical properties (stress, 

mechanical resonance frequency, stiffness...) in the movable parts. The first one is strictly 

relied to the deposition conditions which define the resolution of the different patterns which 

means that they will not vary during the following steps. On the other hand, the mechanical 

properties on the membrane will depend not only from the deposition technique but also from 

the following process steps such as etching, liberation of the sacrificial layer and packaging. 

In particular the thermal budget to which the device undergoes during the deposition and the 

following steps is paramount to assess the ultimate mechanical properties of movable parts. 

When referring to standard commercial fabrication process (high TRL), CMOS for instance, 

the existing deviations in the dimensions are negligible in terms of RF performance (for 

example +/-30nm in a 0.25μm BiCMOS process). However, research processes (low TRL) 

have higher values of dispersion ( +/-5μm in LAAS-CNRS process) due to not automated 

and less precise process steps. In [13] it is shown how this dispersion can affect tuneable filter 

bandwidth and working frequency while doing a yield analysis of the process. In [14], it is 

demonstrated that the variation of these parameters can affect also the mechanical properties 

of the suspended structures which will directly impact the actuation voltage thus the C(V) 

response. In any case, the modelling of these fabrication process uncertainties is the key issue 

in order to adapt the design to reach the desired performance [15]. 

Once the fabrication process tolerances are studied and modelled, the sensitivity study is done 

in order to see which deviation will have higher impact factor to the RF performance. This 

study allows to isolate the specific process steps which need to be improved in order to meet 

the expected electrical specification [16]. For this study it is very important to know not only 

the deviation over the wafer, but also the wafer to wafer dispersion and, nowadays, this is 

only possible in standard processes (less or not at all in research ones). 

Reliability during working state (after fabrication) 

This step of the design flow is pretended to point out and predict which will be the evolution 

of the RF performance over time. The aim of this step is to determine the extreme conditions 

tolerated by the device and for how long before failure it occurs. The definition of the 

accelerating factors is a key issue to develop the endurance tests and the optimal operational 

conditions as far as the same failure can be reproduced as it occurs in normal working 

conditions. In Table 1-2 the failure mechanisms and their accelerating factors are depicted.  

When using acceleration data to predict lifetimes with acceleration models, one must assume 

that the shape of the curve is the same in the accelerated condition as in the typical working 

conditions. Lifetime prediction requires: 

- Knowledge of environmental (operating and non-operating), lifetime of end product, 

and manufacturing use conditions such as subsequent processing steps (packaging, 

printed circuit boards). 
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- End product packaging and application. 

- Customer’s acceptable failure rate over the lifetime of the product. 

- Stress conditions necessary to identify failure mechanisms. 

- Acceleration testing and models for lifetime prediction. 

- Statistical manipulation of failure distributions in reliability testing. 

Failure mechanism Accelerating factor 

Fatigue 

Number and frequency of actuation cycles 

Maximum applied strain 

Humidity 

Creep 
Temperature 

Applied strain 

Van der Waals forces (stiction) Humidity, shock and vibration 

Structural short and electromigration 
Electric field 

Temperature and humidity 

Dielectric charging 
Electric field and radiation 

Temperature and humidity 

Corrosion 
Humidity and temperature 

Voltage 

Fracture 
Resonant frequency 

Vacuum 

Table 1-2: Failure mechanisms of RF-MEMS and their accelerating factors 

Once the lifetime is characterized and the evolution through the time is known (failure signs 

and burn-in period mainly), the next step would be to build a BIST (Built-In Self-Test). This 

technique is able to track the performance of the device detecting correcting, under given 

limits, for undesired deviation or behaviours. For this reason is essential to identify which 

parameters of the design are the most suitable indicators in order to monitor the device 

performance. On the other hand, the implementation of BIST in MEMS process increases the 

complexity of the needed process thus the cost.  

The aim of this solution is to add more reconfigurability to MEMS-based systems since it is 

possible to decide when the wear out period starts and to switch to a redundant circuit. The 

implementation of a BIST needs additional intelligence and hence electronic. Normally, it is a 

switching node based on analog multiplexers and it has already been implemented in 

accelerometers [17] and optical switches [18]. BIST for RF and microwave applications 

(LNA, PLL and EVM [19]) have already been developed showing an improvement of the 

circuit efficiency. 

Literature has shown very few examples of BIST in RF-MEMS. There are two main reasons: 

from one side the co-integration of MEMS with other technologies in a stable fabrication 

process is still under development. And, from the other side, no standard of reliability has 

been established for MEMS devices and circuits that determines the range of the acceptable 

performance. Without these limits the BIST module is very dependent on the application and 

the control system should be adapted each time. 



CHAPTER 1: Design for Reliability in RF-MEMS   13 

 

One of these few examples is proposed in [20] where CMOS circuit is used to control the 

charging and discharging of capacitive MEMS (developed under the HERMiT program from 

the US Air Force [21]). The solution is based on sensing the CMEMS and using two switches 

(S1 and S2) to charge and discharge the device depending on the comparison with the 

reference value CREF (optimal value of CMEMS capacitance) as seen in Fig. 1-6. The challenge 

of this development is to be able to measure the CMEMS capacitance easily be means of the 

correspondence between CMEMS(VMEMS) and VMEMS(CMEMS) [20]. Also in Fig. 1-6 it is shown 

how the VMEMS is tuned to reach the targeted capacitance. Continuous stress (1h) has been 

applied demonstrating the capability of the circuit to adapt the CMEMS capacitance enhancing 

its lifetime. 

 

1.2 Component Reliability 

This section is a study of how the techniques explained in previous section (1.1.2) are applied 

to RF-MEMS. Here, reliability is seen from a component point of view which means that the 

most advanced knowledge about each failure mechanism is taken into account at the design in 

order to increase the device’s lifetime. Normally, when addressing DfR issues by introducing 

new materials in a previously established fabrication process, each step may need to be 

adapted and re-optimized. For this reason, in order to explore solutions for reliability 

processes developed on research platforms (foundries) are more flexible and adaptable to 

Fig. 1-6: Image of the MEMS+BIST (top-left) and block diagram of intelligent CMOS control circuit (top-

right) proposed in [20]. The measured VMEMS (bottom-left) over time to control the desired CMEMS to the target 

CTARGET and the evolution of VMEMS during 1h of constant stress for a stable capacitance (CPAD is a capacitance 

for sensing the CMEMS capacitance). 
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implement new ideas and validate them before to justify the transfer on a much costly 

industrial production line.  

The three most relevant failure mechanisms of RF-MEMS switches are dielectric charging, 

contact degradation and temperature induced elastic deformation. While contact degradation 

is only seen in resistive switches, dielectric charging and temperature induced elastic 

deformation can be found in both resistive and capacitive devices. In both section 1.2.2 and 

1.2.1 they will be studied with the different fabrication process approach (different TRL). 

1.2.1 Research solutions 

Research fabrication platforms (low TRL) have very high flexibility in terms of process 

design. They allow proposing some ideas to solve these failure modes even though at a price 

of limited repeatability of the results (i.e. good for proof of concept). 

Dielectric charging 

Dielectric charging is observed when the two metallic layers that contact the dielectric are at 

different potential voltage. This can occur either in the contact region (capacitive switches) or 

in the actuation electrode due to the isolation layer which avoids the contact between 

membrane and electrode. There are two main techniques to avoid dielectric charging: avoid 

the above mentioned contact or control the charges on the dielectric. The first announced 

solution is more efficient and it does not depend on the material’s properties, which would 

imply a deep study. 

However, some work has been done in order to determine which isolating materials have the 

lowest discharging constants and how the charges can be compensated during useful life. In 

[22]-[23], for example, ultra-nano-crystalline diamond (UNCD) has been demonstrated to 

achieve a discharging constant 6 times smaller than others due to its nanostructure. In the 

same direction in [24], typical dielectric materials in RF-MEMS based process such as Silicon 

Nitride have been doped with Carbon Nano Tubes (CNT) decreasing the voltage drift from 

9V/min (without CNT) to 0.03V/min with 46 CNT/10μm
2
. 

Despite not being a true DfR solution (rather a control of reliability), another method for 

reduce the induced charge in dielectrics is through a bipolar actuation waveform. Despite 

being demonstrated that the charge injection and removal are not identical for positive and 

negative voltages it has been proved that it increases lifetime. In addition, this solution does 

not account for the possibility of ionizing radiation from environment that is of great interest 

in satellite and high-amplitude communication systems. The “dual-pulse” waveform used in 

PIN diodes can also be employed. It consists in a first step at a higher actuation voltage in 

order to provide enough electrostatic force to actuate the switch followed by lower voltage 

since the membrane needs less force to be maintained in down state (Fig. 1-7). The main 

challenge of this type of solution is to know how the capacitance will evolve as it is proposed 

in [25]. 
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Fig. 1-7: “Dual-pulse”actuation voltage waveform for lower dielectric charging 
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The solution of avoiding contact needs the development of stoppers and the perfect control of 

the deformation of the membrane during the actuation. In [26] it is seen that using a thin 

dielectric layer on the RF line as stopper, a zipper tunable capacitor is developed. The 

actuation pads are not isolated using a dielectric in order to avoid charging in DOWN state 

(Fig. 1-8b). 

There are three main advantages of this design which demonstrate how the design can be 

conceived taking into account the reliability and the RF performance at the same time (DfR): 

1) High tunability: the actuation electrodes are distributed along the beam, and the beam 

makes an intimate contact with the RF electrodes. 

2) No dielectric charging: the dielectric layer on top of the RF electrodes serves as a 

stopper, and due to the short distance between the RF electrodes, the beam does not 

collapse on the actuation electrodes as the voltage is increased. This means that the 

dielectric layer is not required on the actuation electrodes thereby minimizing any 

charging. 

3) A self-aligned process and a single metal definition are used which results in a simple 

fabrication process. 

The evolution of the solution proposed in [26] is the removal of all the dielectric layers of the 

design and integrate the stoppers in the membrane. This is the solution proposed in [27] where 

a dielectric-less capacitive cantilever is presented (Fig. 1-9). The pull-in voltage shift is 

monitored concluding that, even if the charging is present (following dielectric relaxation law 

[29]) in the device, the choice of the optimal actuation waveform can yield a drift of 20V in 

24 years.  

 

Fig. 1-9: Dielectric-less cantilever (left) and measured pull-in voltage shift versus time for bipolar applied bias 

(right) with duty cycles of 95.4% (green curve), 47.7% (red curve), 23.4% (blue curve) [27]. 

Fig. 1-8: Cross section (left) and photo of the tunable capacitor proposed in [26] 
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The disadvantage of this solution is that the UP and DOWN state capacitance should be 

completely controlled, through the stress of the membrane, which it is not trivial. Moreover, 

due to the initial stress on the membrane, the implementation of stoppers on the movable part 

is very difficult as it is demonstrated in [28] where the same contact-less principle has been 

developed. 

Contact degradation 

The most important parameter that should be taken into account for resistive switches is the 

contact force. At this point two factors are involved: the mechanics of the membrane 

(stiffness and actuation voltage) and the hardness of the contact material. The stiffer 

membrane, the higher actuation voltage and the higher contact force, but, due to limitations in 

terms of actuation voltage availability (less than 100V in space applications) the size of the 

actuation pads should be enlarged. Moreover, the harder material, the higher reliability, but, 

higher actuation voltage are needed. Taking into account these two inputs a compromise 

should be done in terms of contact force and actuation voltage. 

Before going in detail with the physics of the contact material, another approach is possible. 

In [30] a mechanical approach for solving the degradation problem is proposed. In this case, 

three choices are taken in terms of design for reliability: 

- To reduce switch failure: the restoring force should be increased to overcome stiction.  

- To assure that the switch can function in a low-voltage environment (60V): reduce the 

residual stress gradient in the cantilever, increase beam area, reduce gap height, reduce 

beam stiffness. 

- To increase restoring force: increase beam thickness, shorten beam length, or increase 

beam area. 

Taking into account the above considerations, a robust beam design is presented by 

optimizing the parameters w, d and l (Fig. 1-10). A part from that, a sandwiched membrane is 

proposed since its materials have very different CTE which leads to high values of residual 

stress. It is determined that the favorable structure is a short, wide structure with a large 

electrode area. Compared to similar bi-layer designs, sandwich designs can reduce actuation 

voltage while remaining the same restoring force. 

 

Regarding the contact material, typically gold (Au) has been traditionally used. The advantage 

is that from the fabrication process point of view; it is very easy to integrate (resistant to 

surface oxidation and sulfide layers), and, from the performance point of view; it has very low 

Fig. 1-10: Optimized design proposed in [30] with the mechanical approach 
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contact resistance (losses). However, it is a soft material compared with others: 

copper/tungsten/gold stack (Cu/W/Au), rhodium (Re), tungsten (W), molybdenum (Mo), 

palladium (Pd), silver/tungsten/rhodium (Ag/W/Re), palladium multilayer structures (Ag/Pd, 

Au/Ag/Pd, Au/Pd), and Ag/W/CdO. For example, some gold alloys (Au-Pt, Au-Pd and Au-

Ag) have been studied in [31]. The considerations on choosing the candidates regarding a 

consistent and repeatable fabrication process are: 

- Avoid two-phase alloy regions 

- Avoid intermetallic compounds 

- Assure high actuation voltages 

- Allow for the testing of unpackaged devices.  

In Fig. 1-11 it is seen that with an Au-Pt alloy as a contact material the lifetime is increased. 

However, the contact resistance is increased and the contact resistance decrease for the Au 

contact (fail to open) and increase for the Au-Pt one (fail to close).  

 

Another recently used material is ruthenium for his hardness in front of gold which enlarges 

lifetime (Fig. 1-12). In [32] it is used as a covering material in a stack of Cr/Ru/Au/Ru 

demonstrating that higher voltages than in Au contacts are needed for similar contact 

resistance. Specifically for Ru, the contact surfaces have to match to each other during the 

first switching cycles until the contact resistance is stabilized. At low contact forces (actuation 

voltage of less than 60 V for Au/Ru–Ru/Au contacts and less than 40 V for Au–Au contacts), 

the resistance of the first cycles is very unstable (Fig. 1-12 left). 

 

Fig. 1-12: Contact resistance stabilization of Ruthenium contacts (left) and comparison of lifetime between 

gold and ruthenium contacts (right) extracted from [32] 

Fig. 1-11: Contact dimples (left) and contact resistance evolution (right) of the proposed alloys in [31] 
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The Au/Ru–Ru/Au contacts require an actuation voltage of 80 V to result in a stable contact 

resistance of 730mΩ, whereas an actuation voltage of 40 V is sufficient for a contact 

resistance of less than 700mΩ for Au–Au contacts. This indicates that Au/Ru–Ru/Au contacts 

require a force that is at least four times larger than for Au–Au contacts. The contact 

resistance of the novel ruthenium contacts is much lower as compared with that of pure-

ruthenium contacts in the literature [33]. 

Thermal effects 

RF-MEMS devices are submitted to huge variations of operational temperature not only 

during lifetime, but also during the manufacturing of the devices. This thermal budget needs 

to be carefully considered since it will impact and determine the operational range and device 

lifetime. 

The parameter that will be directly affected is the pull-in/out voltage since at high 

temperature, the membrane crumples leading to collapse. In order to prevent this, higher 

tensile residual stress is needed but at a cost of higher actuation voltage. This compromise is 

typically solved by identifying membrane geometries and composition that decrease the 

sensitivity to temperature of the switch. 

Regarding temperature tolerant geometries, it has been demonstrated that membranes 

suspended all over its perimeter (diaphragm) are stiffer. However, the possible residual stress 

in the film could lead to increase actuation voltage. In [32] it is solved by using a corrugated 

diaphragm that increases the fabrication-induced stress tolerance and decreases the actuation 

voltage. Another solution to avoid all over suspended membranes is [34] where the thermal 

compensation is done by placing the symmetrical anchors at the centre of each face of the 

membrane (Fig. 1-13). The two anchor points located at opposite sides of the frame, cancel 

each other’s torque. This solution has been used also in [35] for cantilever RF-MEMS 

devices. 

 

The composition of the membrane plays also a very important role in the temperature 

compensation. The main source of induced-stress is the mismatching of the CTE (Coefficient 

of Thermal expansion) of the materials involved in the fabrication process. The design cannot 

avoid this but; the development of sandwiched membranes is the mostly used solution [36].  

1.2.2 Industrial solutions 

In this section a deep study of the nowadays commercially available (high TRL) RF-MEMS 

in terms of Design for Reliability is presented. The devices under study are MEMtronics and 

RadantMEMS.  

Fig. 1-13: Photograph of the temperature-compensated membrane proposed in [34] with the symmetric 

anchors (left) and the same principle applied to a cantilever from [35] (right) 
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MEMtronics 

MEMtronics was formed in 2001 by Chuck Goldsmith to develop and commercialize 

packaged MEMS (Fig. 1-14) technology for use in microwave and millimeter-wave 

applications. Nowadays the company, instead of selling single RF-MEMS devices, is able to 

integrate the switches into a MMIC process for more complex circuits. The targeted 

frequency band goes from DC to 50GHz. The switch is designed in order to avoid dielectric 

charging, to be mechanically robust and to include on wafer packaging. The chosen design 

decisions will be described below. 

 

In order to avoid charging phenomena, they have patented what they call “proximity 

switches” (Fig. 1-15) [37]. The principle of proximity switches is to separate the mechanical 

support structure from that of the electrical coupling mechanism. This allows the switch to 

operate with little or no dielectric charging, the dominant mechanism that limits the lifetime 

of MEMS capacitive switches.  Dielectric supports made of silicon nitride or silicon dioxide 

keep the upper electrode supported a short distance above the lower electrode. The electrical 

coupling of RF energy from the upper plate to the lower plate is accomplished through the air 

gap between the two plates. 

 

 

The proximity switch has several distinct advantages compared to other designs of capacitive 

RF MEMS switch: 

- No charging of the air occurs between the plates. The only charging that may occur is 

through the mechanical (dielectric) supports maintaining the spacing between the two 

plates which represents a very small proportion of the total switch area. 

- Increase the environmental robustness of the switch: maintaining an air gap between 

the plates reduces the sensitivity of switch performance to particle contamination. 

- Suitable for space applications: the impact of radiation on the switch would normally 

be a reliability issue in this environment as it has been explained above (section 1.1.1). 

In order to investigate the potential improvements in switch mechanical robustness 

molybdenum was chosen to replace aluminum as the membrane material in MEMS capacitive 

Fig. 1-15: Schematic of MEMtronics proximity switches 

Fig. 1-14: Image of the MEMtronics RF-MEMS switch 
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shunt switches. Molybdenum provides a reasonable balance between thermal expansion 

coefficient and electrical and thermal resistivity. Moreover, for temperature compensation, a 

corrugated out of plane profile is optimized to control the stress relaxation of the membranes 

as demonstrated in [38] (Fig. 1-16). This solution maintains also suitable actuation voltages.  

 

These switches have the potential for operating for above 100 billion cycles and handling hot 

switching at multi-watt power levels.  At microwave and millimeter-wave frequencies, the 

reduced capacitance ratio of these switches (Con/Coff ~20-40) is still sufficient for 

constructing high-performance phase shifters and tunable filters. 

Finally, a wafer-level packaging utilizing wafer processing techniques is developed [39] (Fig. 

1-17). The packaging possesses a low dielectric constant, requires only moderate temperature 

(200°C – 275°C), and tolerates non-planarity and roughness. This means that: 

- No seal ring 

- Extremely small volume cavity 

- No requirement for a package lid 

- No requirement for hermetic thru wafer vias 

- No double-wafer alignment required 

- Requires only standard MEMS processing 

- Substantial increase in the number of devices per wafer 

- Packaged devices are thinner/lighter than any existing packaging technique 

- Extremely low insertion loss 

- No added parasitics 

- RF circuit design transparent.  

 

Even if the reliability challenges are solved, the process deviations need to be counteracted. In 

Fig. 1-18 it is shown that despite an improvement of the lifetime has been done from 2006 to 

Fig. 1-17: Schematic cross section of the developed package in [39] 

Fig. 1-16: Pull-in voltage for three different corrugated membranes as a function of the temperatures presented 

in [38] 
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2007, there is a wide variation from switch to switch regarding lifetime (low ). This big 

variation in lifetime is due to infant mortality (<1) and could be controlled by means of an 

adaptative control circuit based on a CMOS process [20]. This concludes that the possibility 

of co-integration MEMS-CMOS is a big opportunity for RF-MEMS commercial possibilities. 

 

Radant MEMS 

Radant MEMS was founded by Jean-Claude Sureau and it is providing devices since 1999. 

This company commercializes not only single switches (SPST) but also SPnT working in 

wide band from DC to 40GHz. The Radant MEMS device (Fig. 1-19) has a rated lifetime of 

100 billion cycles that has been independently validated by the US Department of Defense 

Laboratories. The targeted applications are telecommunications, automation, PC peripherals 

and automated test equipments. In this case, the contact material, the mechanically optimized 

cantilever and the hermetic packaging are the most relevant characteristics that will be 

explained below. 

 

The contact material is a thin layer of a proprietary refractory metal (Pt family) deposited on 

the underside of the beam and on the drain, giving better stiction-free lifetime than the more 

common gold contacts. Switches typically have 4 to 8 contacts in parallel to yield a total on-

resistance, including interconnects, of less than 1 Ω when actuating at 100V. In [41] it has 

been demonstrated that using and array of micro-contacts instead of a single contact the hot-

Fig. 1-19: Image of the RadantMEMS switch 

Fig. 1-18: Weibull curve of MEMtronics switch for different evolutions of the device extracted from [40] 
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switching reliability increases. Moreover, using a very high actuation voltage, the contact 

stability is assured since the contact force is very high. 

Regarding the stress compensation, in this case, as it is a cantilever, only the initial residual 

stress affects the device through an initial deflection [42]. In Radant switch, the solution 

adopted is to increase the thickness of the gold cantilever (7-9μm) which gives a very stiff 

device (k>100N/m). In Fig. 1-20 (from [30]) it can be see how the shape of the cantilever can 

be modified in order to achieve maximum stiffness. However, this flatness and the small gap 

(0.6-1μm) implies that the working frequency range will not be higher that 20-30GHz due to 

the low isolation.  

 

The switches are packaged with bulk wafer caps (Fig. 1-21) which are robust, hermetic and at 

wafer level. However, they need a large on-chip area for the sealing ring. Specifically, it is a 

top silicon wafer and a glass-to-glass seal at 450°C which is compatible with the tolerance to 

temperature of the device.  

 

Extensive lifetime testing has been conducted by Radant as well as independently laboratories 

under the auspices of a Defense Advanced Research Projects Agency (DARPA) program. The 

first version of the RadantMEMS device (Benchmark 3) was tested at 20 dBm, with power 

applied only during switch closure or open to avoid hot breaks and makes (i.e., cold-

switched), was performed at X-band on a batch of 32 switches. This led to a 50 percent 

passing rate to 100 billion cycles and a median cycle to failure of 280 billion cycles, as shown 

in Fig. 1-22. The improvements to the switch depicted above to improve contact reliability as 

well as process refinements to reduce contact contamination were done (Benchmark 4b) and 

they were tested at 20 dBm (cold-switched) at X-band on a batch of 64 switches. This led to 

Fig. 1-21: Image of the RadantMEMS packaged switch 

Fig. 1-20: Effect of the beam geometry in the actuation voltage by increasing the area (Ax2) or increasing the 

thickness (tx1.6) [30] 
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an 88 percent passing rate to 100 billion cycles and a median cycle to failure of 10 trillion 

cycles with the longest recorded lifetimes exceeding 1.5 trillion switch cycles before the test 

was halted after 30 continuous months. The improvements implemented for Benchmark 4 led 

to an order of magnitude increase in the median cycle to failure [11]. 

 

1.3 Circuit Reliability 

Reliability in MEMS devices can be taken also into account regarding the circuit from a 

higher hierarchical level (circuit level and not device level). In this case, the application 

reliability constraints will be met by carrying out a robust circuit design and hence playing on 

its several different components and not only the RF-MEMS device one. In the case where it 

is assumed that the RF-MEMS device suffers from dielectric charging, contact degradation, 

etc. the design of the circuit will be done assuming the deviations introduced by these failure 

mechanisms and not trying to avoid them. Given that, these deviations are accurately 

estimated in advance. This is what it is called “circuit reliability”. 

In this section two examples will be shown. The first one is an SPDT developed by 

Microsystem Technology Laboratory at KTH Royal Institute of Technology using resistive 

switches. The second one is the first commercial application of RF-MEMS variable capacitor 

from Wispry. They have been chosen again to compare the research laboratory results with 

respect to a mass-production device in terms of feasibility and repeatability. 

Laterally actuated cantilever for a SPDT switch 

Joachim Oberhammer is the team leader of the Microsystem Technology Laboratory (MST) 

which is a part of the KTH School of Eletrical engineering. The group fabricates its silicon 

structures and devices at the KTH microelectronics laboratory. They are focused on 

developing innovative micromachined MEMS-tuneable components for RF and microwave 

applications. The trend is towards higher frequencies (E-bands, W-band, and beyond 

100GHz), reconfigurable circuits, system integration with conventional millimeter-wave 

technology, and new applications. 

The design presented in [43] has been fabricated implementing in plane moving MEMS in 

SOI device layers using bulk micromachining. The advantage of this technique is that enables 

lateral actuation which will be the key issue of the circuit. As it has been explained above, the 

degradation of the contact will determine the evolution of the performance since it is a 

resistive switch. For this reason, the contact stability should be assured and, at the same time, 

Fig. 1-22: Weibull curve for Radant MEMS [11]. Benchmark 4b is the evolution of benchmark 3 
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as it is a research fabrication process, the fabrication steps should be as simple as possible in 

order to minimize technological dispersions. 

The presented SPDT (Fig. 1-23) is based on a mechanically bi-stable SPST embedded in a 

coplanar waveguide. The end of each cantilever is a hook which is locked allowing the 

maintenance in actuated state without applying voltage (Fig. 1-23). The mechanical 

robustness of the laterally actuated switch cantilevers has been verified, at a switching 

frequency of 3 kHz with a measurement signal of 1.5 μA, up to 150 million hot-switching 

cycles, after which the tests were discontinued without observing stiction. The tests were 

carried out with unpackaged devices and in uncontrolled atmosphere. 

 

The advantages of this design are: 

- Mechanical multistability: the mechanical stability of every state is achieved by a 

mechanism with two perpendicularly arranged cantilevers with interlocking hooks. 

The actuation sequence has four mechanically stable states 

- Active opening capability: the transition from the on-state to the off-state is done by 

actively separating the contacts by electrostatic actuation. The contact force is created 

passively by the deflected interlocked hooks, and the opening force (2mN) is created 

actively by applying the actuation voltage for disconnecting the cantilevers. 

- Very low intrusive RF design: the switch actuation mechanism is completely placed 

inside the signal line of the coplanar waveguide transmission line 

- Single photolithography step fabrication: together with the 3-D transmission lines 

using bulk micromachining deep reactive ion etching, comprising very simple 

fabrication by a minimum number of standard fabrication steps. 

- Monocrystalline silicon: used as structural material for all moving parts, providing 

best possible mechanical reliability 

- Temperature compensation: the symmetrical Au-Si-Au metallization of the silicon 

cantilevers eliminates susceptibility to changes in the operation temperature 

- All-metal switch actuators with stoppers for avoiding short-circuit between the switch 

elements, providing robust actuation and stable actuation voltages (no charging on the 

electrodes) 

- 3-D micromachined coplanar waveguide: providing low dielectric substrate losses and 

low ohmic losses. 

Comparing with commercial SPDT (Table 1-3) the RF performance is similar to 

RadantMEMS and better than OMRON. Specifically, IL and RL better that 1.2dB and 15dB 

respectively are achieved from DC to 25GHz. Isolation is better than 10dB in the entire band. 

From reliability point of view, RadantMEMS has better performance considering hot-

switching.  

Fig. 1-23: SPDT (left) and detail of the hook (right) presented in [43] 
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This solution is a prototype that demonstrates how the research fabrication process can face 

up the RF-MEMS reliability problems. However, the facts that it is not packaged and that the 

repeatability cannot be assured remain the weak point of this device for a future 

commercialization. 

 

  
RMSW220HP 

RadantMEMS 

2SMES-01 

OMRON 

[43] 

MST (KTH) 

Working band  DC-40GHz DC-12GHz DC-25GHz 

RL 
@8GHz 25dB 10dB 25dB 

@20GHz 18dB  20dB 

IL 
@8GHz 0.36dB 1dB 0.6dB 

@20GHz 0.5dB  1dB 

Isolation 
@8GHz 32dB 30dB 25dB 

@20GHz 17dB  15dB 

Millions of cycles  1000 100 >150 

Table 1-3: Comparison of RF performance between commercial and [43] 

Tuneable matching network in mobile phones 

WiSpry was founded by Jeff Hilbert in 2002 and it is placed in Irvine (USA). They design and 

sell RF semiconductor components for the wireless market. The key to WiSpry’s technology 

is the integration of patented RF-MEMS devices with industry standard RF-CMOS process 

flows, thereby enabling convergence of digital, analog, and RF functionality on a single chip. 

After years of development, RF-MEMS have reached the market through a tuneable matching 

network based on Wispry’s devices. It is the first known use of such a part in a volume-

shipping product (Samsung smartphone). The interest of this development came out when 

users start to report problems with signal reception with the iPhone 4 after they held the 

device in certain ways. The input impedance of the antenna changed depending on the 

position and the distance with the ear. Apple answered their customers giving them a cover 

for the phone.  

The tunable impedance match (TIM WS2017) device consists of a network of inductors 

combined with WiSpry’s CMOS-integrated, digitally tunable and low‐loss MEMS capacitors 

[44]. The WiSpry single‐chip design integrates logic circuits/serial interface for control, 

on‐board high‐voltage charge pump and high-voltage MEMS drivers, together with fully 

encapsulated digital MEMS capacitors on a single chip Fig. 1-24.  
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The WS2017 can be quickly re-configured to compensate for antenna source impedance 

changes due to frequency band and different external load to cover hand, head and body 

effects. Using a serial control interface, the WS2017’s high-Q circuits transform mismatched 

and varying antenna impedances from being poorly matched to well-matched. The result is an 

improved RF performance and greater energy efficiency. The antenna impedance match is 

digitally controlled by the programmable capacitive elements (0.125pF steps) implemented in 

WiSpry’s CMOS-RF MEMS structure. The WS2017 features an integrated high voltage 

charge pump for electrostatic actuation and bi-directional SPI serial control bus.  The charge 

pump, serial bus and driver circuits are all fully integrated on the same CMOS die as the 

MEMS capacitor elements. 

The digital control of the MEMS capacitor, as it was presented in section 1.1.2 (Reliability 

during working state), is possible thanks to the co-integration CMOS-MEMS (Fig. 1-25). This 

is the main advantage of this design. It is known how the capacitance value will evolve and 

the digital control can compensate these deviations as was proposed in [20]. Moreover, the 

use of symmetric serpentine arms reduces the stiffness of the membrane and increases the 

temperature tolerance of the device (Fig. 1-25). The membrane is also made of a stress 

compensated tri-layer patented stack to increase reliability. 

In [45] it was shown that long term cycling tests have demonstrated up to 1.9∙10
9
cycles 

(unipolar 35V square wave 50% duty cycle). Hold down tests showed no evidence of failure 

after three days. The devices were hermetically packaged giving the wafers a soak of moisture 

at 121°C, 2 atm of pressure and 100% of relative humidity. 

 

Fig. 1-25: Wispry MEMS based variable capacitor (right) with the serpentine arms for stress compensation 

and reduced stiffness. Cross-section of the used process for the co-integration (left) 

Fig. 1-24: Schematic of the TIM developed by Wispry 
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1.4 Conclusions 

This chapter has presented an overview of the different reliability issues and the most relevant 

approaches to deal with them. The attention has been driven on three main failure 

mechanisms such as dielectric charging, contact degradation and thermal induced phenomena 

and on how the design can be performed to alleviate their effects and to improve the lifetime. 

A special emphasis has been given to the role of fabrication processes performed on research 

platforms or industrial production lines with respect to yield and repeatability. 

Dielectric charging is an unavoidable effect that can only be controlled decreasing the effect 

of the electric field between the electrode and the membrane. For this reason some techniques 

are developed to avoid the contact (stoppers and proximity switches) and new materials with 

very short discharging constant (UNCD). Despite these solutions there is also the charging on 

the substrate which means that a perfect knowledge of the charging/discharging of the 

different parts is a must in electrostatically actuated RF-MEMS devices. This study can allow 

the design of control circuits to compensate the possible deviations. 

Contact degradation problem is normally solved through the choice of a material that achieves 

a good compromise between hardness and contact resistance. Materials like Ruthenium, 

Platinum and Gold-alloys are the most common ones not only for meeting this trade-off but 

also for its easy integration in standard fabrication processes. In all these cases, a hermetic 

packaging that avoids the contamination of the contacts is needed. As an alternative, the 

interlocked hook solution demonstrated by [43] is an example of avoiding it by assuring 

permanent contact without degradation since any force is applied after actuation for 

maintaining the state. 

The simplest way to make RF-MEMS tolerant to temperature variation is by geometrical 

modifications of the membranes. The introduction of corrugated membrane or opposite-side 

anchors allows the stress compensation which leads to higher thermal tolerance. This 

technique is simpler than the sandwiched membranes which also achieves this goal. This 

thermal budget needs to be carefully considered since it will impact and determine the 

operational range and the device lifetime. 
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Chapter 2                                                          

RF-MEMS in low TRL environment     

2.1 Introduction 

This chapter describes the different fabrication process developed at LAAS-CNRS for 

resistive and capacitive RF-MEMS devices. The facilities of this laboratory allow a very high 

flexibility with a large variety of device topologies and circuit configurations. On the other 

hand this freedom is paid at the cost of lower process stability and yield. The development of 

the fabrication process has been the result of several research activities carried out at LAAS in 

the last 15 years in the field of advance wireless communication systems for defense and 

aerospace divides in three main axes: device level, circuit level and reliability. 

The development of the fabrication process was started by K. Grenier [46] and optimized by 

C. Villeneuve in Silicon substrates [47] and S. Aouba and P.F. Calmon in Fused Silica 

substrates. Using this technology, some first devices where designed and optimized for power 

applications [48] and frequency scalable devices from 20 to 95GHz [49]. More complex 

circuits such as phase shifters [50] and filters [51] were proposed and, finally above IC 

integration process was studied [52]. 

Regarding the characterization of dielectric charging, the study of the charging phenomena in 

AlN, the electrostatic discharge breakdown and the radiation effect was done in [53]. 

Moreover, in [54] a new technique based on KPFM (Kelvin probe Force Microscopy) was 

developed to investigate the charging phenomena. Finally a SiN doped with CNT was 

developed in order to increase the lifetime of capacitive switches [50]. This deep knowledge 

of the dielectric charging was used to develop a characterization platform used nowadays by 

Thales Alenia Space [55]. 

In terms of characterization of resistive contacts, a deep study of different types of contact 

material (Au-Au, Ru-Au and Ru-Ru) was done in [56] using nanoindentation techniques. The 

modeling of this contact, still under study nowadays, was also presented in [57]. 

This thesis has gone one step forward with respect to the previous work by studying the 

effects of the fabrication process on the RF performance. This approach was initiated already 

back in 2010 with the paper on scalable shunt capacitive switch [49] completed later with the 

series configuration in order to have the complete library available out from the same process. 

This chapter is organized in two parts: the capacitive and the resistive switches. In both cases, 

the process steps and the devices are explained showing the strengths and limitations of each 

solution. Finally, the application of these devices is reported in the development of some basic 
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circuit module such as phase shifter and routing networks to demonstrate the level of 

complexity which can be attained.  

2.2 Capacitive in LAAS-CNRS fabrication process 

2.2.1 Technology and switch description 

The used switch is a capacitive series cantilever beam as it is presented in Fig. 2-1. The 

switch is fabricated in a bi-layer substrate (BCB-Si) on a CPW of 2μm of thickness using 

300nm Si3N4 (r=7.5) as a dielectric. It is important to note that the fabrication process 

allows integrating the monolithic front-end layer with the phase shifter based on this switch 

and described in 2.2.3 (Above-IC process). 

   

The fabrication process flow of RF-MEMS capacitance microswitches has 7 steps [58]: 

1) Each process begins with a cleaning step to remove the chemical oxide. 

2) On the clean silicon substrate, a 20-m -thick benzocyclobutene (BCB) layer is 

deposited. 

3) Coplanar waveguide (CPW) fabrication: a Ti/Au bi-layer is evaporated serving as 

seed layer for a 2.5- m-thick electroplating gold layer grown in a photoresist mould 

created previously. The seed layer is then chemical etched between lines. 

4) A 100-nm-thick Ti layer is evaporated on the Au CPW and a 250-nm-thick Si N 

layer is deposited by plasma-enhanced chemical vapor deposition (PECVD). These 

layers are patterned using photolithography, reactive ion etching (RIE), and wet 

etching. 

5) Two steps of planarization: a 2.5-m -thick photoresist layer is spin coated, pre-

baked, and after photolithography, hard baked. The same steps are used for gap 

filling and the sacrificial layer [47]. 

6) Over this sacrificial layer, a 100-nm-thick Au layer is evaporated and 1.9- m-thick 

Au is electroplated. This bi-layer, which forms the bridge over the CPW, is 

patterned with photolithography and chemical etching. 

7) The final step consists of releasing the switches. The sacrificial layer is removed 

using successive chemical baths. Finally, the MEMS is dried by supercritical point 

drier. 

Both coplanar accesses are 20/100/20m (G/W/G) in order to achieve 50Ohms. Moreover, an 

inductive section is inserted in order to improve the input matching of the switch in down 

state. The dielectric surface is 20x80m which is designed to achieve 40GHz as working 

frequency taking into account surface roughness and dielectric thickness deviation. The total 

surface area of the switch is 800x600m. 

OUT IN 

▄ BCB 20m      ▄ CPW Gold 2m 

▄ Si3N4 300nm  ▄Bridge Gold 2.5m 

Fig. 2-1: SEM image (left) and cross section (right) of the capacitive switch 
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Electromechanical simulations were run in CoventorWare in order to infer the pull-in voltage 

and the result was 45V. The switch is driven applying 40% more voltage than simulated 

(65V) between the transmission line and the bridge resulting in a measured Con/Coff ratio of 

approximately 17 (100fF/6fF) in the initial state. 

The device was cycled during 14000 cycles at bipolar actuation at 65V under nitrogen (1 atm) 

at 297K. It has been seen (Fig. 2-2) that after the second actuation the device do not recover 

the initial position and the UP state capacitance is 30fF instead of 6fF. This effect is due to the 

dielectric charging phenomena (displacement of C(V) curve) and also to the low stiffness of 

the cantilever that will be solved in next section 2.2.2 with the anchor reinforcements. 

 

In Fig. 2-3 the measured S-Parameters of the switch and its dispersion over the wafer are 

presented. The aim of these results is to give an idea about the differences in terms of RF 

performance depending on the location on the wafer. It is shown that input matching which is 

20±2.4dB at 40GHz while insertion losses are 0.17±0.02dB when the switch is actuated at 

55V. In the OFF state position, isolation reaches 12±3dB at 40GHz. The larger deviation in 

correspondence of 60GHz can be attributed not to the DUT but to the systematic 

measurement error (mixer switching frequency). 
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Fig. 2-3: RF performance of 10 devices and its deviation over the wafer 
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2.2.2 Impact of fabrication process 

Contact capacitance deviation 

The direct consequence of the dispersion of the DOWN state capacitance (CDOWN) of 

capacitive switches is the deviation of the resonance frequency f0:  

  
DOWNLC

f
2

1
0 

 

Eq. 2-1

 

Since in first approximation the inductance value L depends on the shape of the cantilever, its 

value is fixed for both states [58]. This deviation from the theoretic value is due to the 

roughness of the dielectric and the deflection of the cantilever caused by the stress of the bi-

metallic layer [47]. 

In Fig. 2-4 the comparison between the simulated model (considering perfect contact and flat 

cantilever) and the measurements of the device presented in section 2.2.1 is shown. Applying 

Eq. 2-1 to the ratio between the measured and simulated working frequency (
simf0  and 

measf0 ) 

and the parallel plate formula of the capacitance, it is demonstrated that the contact surface is 

2.6 times smaller than expected (Eq. 2-2).  
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where 
sim
DOWNA  and 

meas
DOWNA

 

are the contact area in simulation and measurements respectively and 

sim
DOWNC

 

and 
meas
DOWNC  are the DOWN capacitance in simulation and measurements respectively. 

The parameter which causes this variation is mainly the roughness of the contact dielectric 

which is estimated (from previous developments in the same platform) to be responsible of 

the 50% variation of the area. Despite being a very large dispersion, this fabrication parameter 

can be controlled and estimated. This means that the designer can use the data for improving 

the simulation model [47]. Noteworthy is that 11% of variation is due to the deflection of the 

cantilever, caused by the stress on the cantilever which will be studied in the following 

section.  

Fig. 2-4: Comparison of the RL of the switch between the model and measurements 
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Improving the contact capacitance (3
rd

 metal layer development) 

The bi-layer cantilever presented in Fig. 2-1 is formed with the same material (Gold) but 

subjected to different initial stresses due to its different thicknesses and deposition techniques. 

The out of plane deflection at the end of the cantilever (δmax) is defined by [60]. 

 

221

3
21

21
max

)(

3
L

Ett

tt 







 Eq. 2-3

 

where ti is the thickness of each layer, σi is the uni-axial initial stress, L the total length and E 

the Young’s Modulus of the beam (Fig. 2-5). The initial stress and Young’s Modulus where 

measured in [60]. The deflection along the beam is a quadratic equation (Fig. 2-5) whose 

linear term is related with the anchor rotation (θ) and mean stress (σm). The quadratic term is 

due to the gradient stress (17MPa/m in this bi-layer beam). 

 

It is well known that thermal treatment can relax stresses in metallic beams. In LAAS-CNRS 

fabrication process, this step is done using a low temperature annealing before the realising 

[58]. The mean stress of electroplated gold is constant with temperature but, for evaporated 

gold it is not the case. The mean stress can pass from compressive to tensile (negative to 

positive) finding a zero-stress point at a determinate temperature. This is the method used to 

eliminate the quadratic term of the deflection equation. 

After the optimized annealing, the capacitance variation seen in previous section is only 

affected by the anchor rotation. This is solved by using reinforcements in the anchor and 

adding some metallic structures on the point of maximum deflection (δmax) of the cantilever. 

The reinforcements on the anchors will not only reduce the anchor rotation but also increase 

the stiffness of the beam thus decrease the mechanical fatigue. On the other hand, the metallic 

structures will also reduce the deflection in Y-axe making the down state capacitance higher 

(flatten cantilever in the contact region). 

Due to fabrication process restrictions, the metallic structures are only possible in wide 

cantilevers. Moreover, it is assumed that the wider the beam the higher deflection in Y-axe 

and, for the proposed cantilever design of section 2.2.1, the Y-axe deflection is very low. In 

Fig. 2-6 the different studied anchor reinforcements and metallic structures are shown. 
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Fig. 2-5: Cross section (top) and deflection (bottom) of the bi-layer cantilever 
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In Table 2-1 the maximum deflection of the membrane in X-axe for each of the proposed 

reinforcements is depicted. For these wide membranes, the anchor reinforcements do not 

improve the deflection while the reinforcements at the edge do. The optimal structure at the 

edge is one single bloc of the same width (W=200m) and the half of the length of the 

cantilever (0.5*L). This gives a distance of 3.5m between cantilever and dielectric, only 

1m higher than a flat membrane. 

For W=100m and W=70m an anchor reinforcement of wa=120m gives the maximum 

planarity of the cantilever. In the case of W=100m the improvement is of 3m while in 

W=70m it is 1.6m (Table 2-1). 

W 
Size of the anchor reinforcement (wa) 

90m 100m 120m 

200um 6.1 6 6 

100um 10 7.4 7.1 

70um 7.8 6.3 6.2 

Number of 

structures at the 

edge (W=200m) 

Size of the reinforcements at the edge of the cantilever (wd) 

0.25*L 0.4*L 0.5*L 

1 7.4 6.8 5.3 

3 10.2 7.1 7.1 

5 6.3 6.6 6.3 

Table 2-1: Maximum deflection of the cantilever (m) for all the proposed reinforcement structures 

wa 
wd 

L 

W 

Fig. 2-6: Anchor reinforcements (wa=90,100 and 120um) and types of metallic structures (wd=0.25*L, 0.4*L 

and 0.5*L) for W=200, 100 and 70um and L=500um. 
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The profilometer measurements have shown no deflection in Y-axe in all the proposed 

structures. The different annealing techniques explained above have compensated this 

deflection. 

2.2.3 Applications in routing circuits 

SP4T and phase shifters with capacitive switches 

This section presents a narrow band (from 35 to 55GHz) SP4T. The targeted application for 

this key component is antenna beam-forming, reconfigurable routing circuits and phase 

shifting in space applications at Q-Band (40GHz). Using 4 capacitive switches like the ones 

presented in section 2.2.1 a SP4T is proposed. A microscope image of this design is shown in 

Fig. 2-7. The following relevant issues have been taken into account in the design: 

1. The 1 to 4 junction shape: round corners and airbridges are implemented for optimal 

input matching and lack of radiation respectively.  

2. The distance between the junction and the switch: the distance is minimized in order 

to avoid that open-ended stubs (not actuated switches) could affect the input matching. 

3. The outputs OUT 2 and OUT 3: since the size of the circuit does not allow the use of 

two single RF-probes one next to the other, two of them are designed such to be 

measured by means of a differential RF-probe with 100m pitch. 

 The device is characterized using 3 Single (GSG) (IN, OUT 1 and OUT 4) and 1 differential 

(GSGSG) (OUT 2 and 3) RF probes at 65GHz. As the device is symmetric, only two paths 

are measured: the central and the lateral. In order to do this, the non-actuated paths are ended 

with 50Ohms loads. A small scheme of the set-up used for a lateral path can be seen in Figure 

4.  

 

Measurement is performed from DC to 67GHz. Two different Thru-Reflect-Line calibrations 

have been done depending on the measured path. The switches are actuated with a DC supply 

through the RF-probes using T-polarization blocks in the VNA’s outputs. The activation is 

done by providing 65V at the output of the SP4T and connecting the input with the ground. 

In Fig. 2-8, measured and simulated S-Parameters of the lateral (IN to OUT 1) and central (IN 

to OUT2) are plotted. In terms of input matching 11±1.3dB at 40GHz is achieved. This 

limitation originates from the design but it can be addressed for future applications using 

impedance matching structures. On the other hand, very good performance is seen in insertion 

loss at the same frequency (0.6±0.13dB).  

Joined lines for 

differential RF-probes 

Optimized Junction 

IN 

OUT 1 

OUT 2 OUT 3 

OUT 4 
DC source 

60V 

50Ohms 

50Ohms 

50Ohms 

Differential RF 

probes 

IN 

OUT 1 

OUT 3 OUT 2 

OUT 4 

VNA 

SP4T 

Fig. 2-7: Microscope picture (left) and set-up (right) of the SP4T 
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The presented SP4T is suitable for phase shifting applications. The first step is to define the 

different phase shift that should be implemented and this will depend on the application. In 

Fig. 2-9, a general block diagram of the structure of the switch is shown. 

  

This configuration allows improving the input matching of the phase shifter with respect to 

the one in the SP4T by means of the characteristic impedance of the delay lines. On the other 

hand, insertion loss of are at least doubled since two SP4T are used in series.    

Depending on the resolution of the phase desired, the length of every line is computed. This 

resolution will define the number of 2-bit phase shifter that will be needed to cover the whole 

phase range (from 0 to 360°). For example, for a resolution of 5.625°, three cascaded 2-bit 

phase shifters are needed (0/90/180/270, 0/22.5/45/67.5 and 0/5.625/11.25/17) which will 

compose a 6-bit phase shifter. These three blocks will imply the need of six series SP4T so 

the losses will rapidly increase. Using the SP4T presented above, some simulations in ADS 

taking into account the measured parameters are performed in order to demonstrate the 

applicability of the switching node. The lengths of the lines are computed using Eq. 2-4. 

  625.53..0
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l 
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 Eq. 2-4 

In order to achieve better return losses in all the paths, the delay lines are optimized in terms 

of characteristic impedance. The central lines (0 and 5.625°) are designed at 40Ohms and the 

lateral ones (11.25° and 17°) have 25Ohms of characteristic impedance. In the presented 

simulations in Fig. 2-10, the line loss (conductor and substrate by means of ADS/Momentum 

simulator) is also taken into account. It can be seen that insertion loss is better than 1dB and 

input matching is better than 25dB in the different paths. These low losses comparing with the 
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Fig. 2-9: General Schema of a 2-bit phase shifter using switched-lines 

Fig. 2-8: RF performance of the SP4T in both cases: lateral (IN to OUT1) and central (IN to OUT2) 
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SP4T are due to the better input matching reached by means of optimization of the delay line 

characteristic impedance optimization. 

 

Taking into account the deviation of the S-parameters in the SP4T presented above, a worst-

case analysis can be done. This study tries to demonstrate that in the worst case scenario, the 

performance of the phase shifter remains acceptable. In Table 2-2 the results of the simulation 

for different number of cascaded 2-bit phase shifter (1, 2 or 3) are shown including the worst 

case scenario for each design. 

 
Mean 

Worst case Best case 

IL Shift path IL Shift path 

B
it

s 

2 0.56dB 0.8dB i+n 0.32dB i+2n 

4 1.12dB 1.6dB 2(i+n) 0.64dB 2(i+2n) 

6 1.22dB 2.3dB 3(i+n) 0.96dB 3(i+2n) 

Table 2-2: Simulated insertion losses for different number of cascaded 2-bit phase shifter 

2.3 Resistive switches in LAAS-CNRS fabrication process 

2.3.1 Technology and switch description 

The proposed switch is a wide band (DC-65GHz) series resistive cantilever switch on a Fused 

Silica substrate (r=3.8 and t=500m) as shown in Fig. 2-11. The CPW is 13/80/13m 

(G/W/G) achieving 50Ohms of characteristic impedance. The use of Si3N4 over the CPW line 

allows both resistive and capacitive switches in the same wafer. However, this section is 

focused on resistive contact switches. 

 

Fused Silica 

Fig. 2-11: Layout (left) and cross section (right) of the series resistive switch 

▄ Bridge Gold 3m 

▄ Dimple Gold 1.5m 

▄ Si3N4 250nm 

▄ CPW Ti/Gold 3m 

▄ SiO2 0.6m 

▄ Poly-Si (bias) 600nm 

 

Fig. 2-10: Results of the simulation of a 2-bit phase shifter with a resolution of 5.625deg. The curves with 

lower losses (green and purple) correspond to the shorter delay lines. 
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The fabrication process flow of the cantilever based RF-MEMS switches has 10 steps using 9 

masks. The steps in bold are done only for resistive switches in such a way than capacitive 

and resistive switches can be implemented in the same wafer or circuit: 

1) Wafer cleaning of the 4 inches wafer (100 orientation and double side polished) 

2) Deposition and etch of Polysilicon for electrodes, actuations pads and contact pads in 

both sides of the wafer (the layer is completely removed on the back side). The 

resistivity of the Polysilicon is 4.5mcm and the stress is -300MPa. 

3) Deposition of SiO2 (PECVD) over the entire wafer for electrode and lines isolation. 

Etching is done only in the DC-pad contact 

4) CPW circuit (Ti/Gold deposition and seed layer etching): 

a. Evaporated seed layer : Ti / Au  

i. Ti : thickness : 0.05 µm, stress : 150 MPa  

ii. Au : thickness : 0.2 µm, stress : 100 MPa, resistivity : 2.5 µ.cm, 

roughness: 2 nm 

b. Electroplated gold on photoresist mould: thickness: 2.5 µm , stress: 10 MPa, 

resistivity: 3 µ.cm, roughness: 6nm 

c. Evaporated seed layer : Ti: thickness: 0.05 µm, stress : 150 MPa  

d. Etching of metallic layers in CPW gap 

5) Dielectric openings 

a. PECVD SiNx (T = 200°C): thickness : 0.250 µm , permittivity : 6.5 

b. Etching by RIE 

c. Ti etching (bridge anchor on gold) 

d. Contact area (only for resistive switches) 

6) Stand alone MIM capacitor (if needed for the circuit design) 

a. Metallic layer by lift off  

i. Ti: thickness: 0.05 µm, stress: 150 MPa  

ii. Au: thickness: 0.2 µm, stress: 100 MPa, resistivity: 2.5 µ.cm, 

roughness: 2 nm 

7) Sacrificial layer patterning 

a. Planarization of CPW lines under bridge /cantilever. Resist thickness: 2.5 µm 

b. Sacrificial layer deposition. Resist thickness: 2.6 µm  

c. Full resist exposure for bridge anchor 

d. When required partial resist exposure defining dimple area (only for 

resistive switches) 

e. Development of the sacrificial layer for  the anchorage opening and the bump 

recess realization 

8) Cantilever deposition and patterning 

a. Evaporated gold: thickness: 0.05µm, Stress  -30 MPa (-70 to 0 MPa)  

b. Electroplated gold: thickness : 1 to 3 µm, Stress : 5 to 10 MPa  

c. Etching in KI/I2 bath 

9) Dicing 

10) Release of structures (resistive dissolution) and CO2 drying (48h) 

In Fig. 2-12 the RF performance of the device is shown. Return Losses and Isolation better 

than 15dB from DC to 65GHz are achieved. Insertion losses are better that 1.4dB in the entire 

band. In this case very few devices (2 over 12) are working under expected performance due 

to a mechanical problem which will be studied in next section 2.3.2. 
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Equivalent circuit for mechanical behaviour description 

The two important parameters in resistive switches are the UP state capacitance (CUP) and the 

contact capacitance (RON). The proposed method to extract them is the lumped-elements 

based equivalent circuit which consists of a transmission line (50Ohms) in series with either a 

capacitance (UP state) or a resistor (DOWN state) Fig. 2-13. Literature [58] proposes also to 

model the cantilever using an inductor. In this case, as the width and shape of the cantilever is 

the same as the transmission line, this step is omitted. 

 

The model of the line is extracted from the measurements of a line without cantilever. This 

method allows separating the substrate and conductor losses from the switch losses. The 

parameters of the line Z0 and eff are tuned using its theoretical value
7
. In Fig. 2-14 the 

comparison between the line model and the measurements is presented showing very good 

agreement
8
.  

                                                 

7
 Theoretical eff for CPW lines is computed as 

2

1
 r

eff


 where r=3.8. Characteristic impedance (Z0) 

depends on G/W/G dimensions (13/50/13 in this case) and the theoretical value is computed using LineCalc 

(ADS). 
8
 Losses for f>20GHz are positive due to a calibration problem. However, the positive deviation is very small 

and it is ignored. 

Contact 

model 
IN OUT 

RON 
CUP 

Fig. 2-13: Schematic view and electrical equivalent circuit model of the series resistive switch 
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Adding the contact model proposed in Fig. 2-13, the RF performance of the model fits very 

well with measurements Fig. 2-15. In the case of the UP state the deviation of isolation 

between measured devices is also shown which is not the case in DOWN state since very few 

devices were working properly (mechanical problem that will be described in 2.3.2). CUP is 

4.751fF while RON is 3.76. 

 

2.3.2 Impact of fabrication process 

Stress gradient effect on resistive contacts 

As it was described in section 2.2.2, the bi-layer cantilever suffers from a high gradient stress 

which leads to an initial deformation which increases the gap. In this case the maximum 

initial deformation
9
 is 5.25m (Fig. 2-16) which is approximately the double of the 

theoretical
10

 gap (1.1m). 

                                                 
9
 The measured value is 9.76um which includes the thickness of the cantilever (3um) and the size of the dimple 

(1.5um). 5.25um=9.76um-3um-1.5um 
10

 The theoretical gap is the difference between the sacrificial layer (2.6um) and the dimple size (1.5um) 
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The advantage of this deformation is the increase of isolation in UP state. On the other hand, 

the pull-in voltage increases approximately of 35% from the theoretical value: 
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 Eq. 2-5

 

where 0g is the gap between the middle of the cantilever and the electrode, k is the spring 

constant and W and w are the size of the electrode. 

The increase of the pull-in voltage is not the only effect of the stressed cantilevers. The other 

inconvenient is the contact stability of the dimple. This has been verified in the default 

fabricated devices by inspection of the S12 parameter for different actuation voltages (Fig. 

2-17). From 0 to 50V no variation is observed in S12, but, a sudden decrease of isolation 

occurs at 50V followed by a constant value until 65V. For actuation voltages above 75V the 

improvement of the S12 parameter is only of about 0.75dB. Due to restrictions in the set-up 

the actuation voltage cannot be higher than 90V. 

 

The mechanical default presented by these switches has a specific signature on the S-

parameters. In Fig. 2-18 the transmission parameter (S12) is plotted for the three different 

regions seen above (0 to 50V, 50 to 75V and above 75V). The correct performance in DOWN 

state of the switch seen in Fig. 2-15 (resistive behaviour) is not observed at any actuation 

Fig. 2-17: S12 at 60GHz for different actuation voltages. The error bars show the dispersion between devices 
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voltage. On the contrary a capacitive behaviour is observed which means that the dimple does 

not contact the line. 

 

Looking in detail what happens when the cantilever is actuated (Fig. 2-19), it was found out 

that it does not contact the transmission line before the electrode creating a capacitance. The 

end of the cantilever is so stressed that cannot be gone down.  

 

This behaviour is confirmed by the equivalent circuit model presented in previous section 

2.3.2 resumed in Table 2-3. The CUP capacitance of the model is varied to match the mean S12 

parameter at each actuation voltage (Mean CUP).The deviation (CUP) is computed matching 

the model CUP with the mean plus deviation of the measures S12 parameter at each actuation 

voltage.  

Vact Mean CUP (fF) CUP (fF) 

0V 4.75 1 

50V 23.86 3.27 

55V 24.9 3.27 

60V 24.9 3.27 

65V 24.9 3.27 

75V 31.8 4 

80V 32.3 3.8 

90V 32.5 2.8 

Table 2-3: Capacitance value and deviation extracted from the equivalent circuit 

Fig. 2-19: Schema of the contact between the line and the cantilever in the actuated state. The red arrow show 

where the electrostatic force is applied 
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The problem presented by this switch is due to the force on the dimple which is not enough 

for assuring a good contact. From 50 to 65V a high dispersion on the extracted capacitance 

and turns out to confirm an unstable contact. This incertitude is reduced when the actuation 

voltage goes beyond 75V. 

Assuring contact stability in resistive switches 

Since the electrostatic force is applied in the middle of the cantilever, the increase of the 

actuation voltage is not the suitable choice to improve the contact stability. This leads to a 

higher distance between the line and the dimple because the line works as stopper. There are 

two possible solutions: modify the bias circuit or improve the planarity of the cantilever 

through the process. 

The modification of the bias circuit has the advantage of being very easy to integrate into the 

design. The fabrication process allows adding actuation pads under the line so a second 

electrode can be placed after the dimple applying an extra force to the end of the cantilever 

(Fig. 2-20). Previous developments done in LAAS in R3MEMS project have used similar 

solutions for capacitive contact [61]. 

On the other hand, there are two main inconvenient: this solution is very dependent on the 

cantilever shape (which is not stable over the wafer, see high dispersion in previous section) 

and the dielectric charging occurs in the extra electrode due to the dielectric that isolates the 

bias from the line (difference of potential between line and electrode). As the approach of this 

fabrication process is the high degree of freedom on the design and dielectric charging can 

occur, this solution is not considered. 

 

The study option of improving planarity by thermal treatment is the simplest solution. The 

method of doing it is adding and additional step in the fabrication process before releasing the 

structures. This step is based on the annealing at a precise temperature and time duration [47]. 

Temperature and time parameters depend on the length of the structure and can be 

independently chosen according with the structure type since this operation can be done on 

diced portion of the wafer before realising.  

2.3.3 Applications in routing switches 

Very few SPnT have been reported in fused silica substrate. One example is [61] where a 

SP4T used in a 2-bit phase shifter is proposed. In the case of a SPDT, as mentioned in the 

introduction, it is used in [63] for a reconfigurable antenna. 

The switch presented in section 2.3.1 is applied in two different routing circuits shown in Fig. 

2-21. The left one is a SPDT whose outputs are in east (E) and west (W) direction. On the 

other hand, for the SP4T, a special north output (N1 and N2) should be designed for 

measurement purposes in order to use a differential RF probe (already mentioned in section 

2.2.3). 

Dielectric 

charging 

phenomena 

Fig. 2-20: Schema of the solution proposed with an extra electrode 
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In Fig. 2-22, the simulated performance of the SPDT and SP4T are presented. In the case of 

the SPDT, input matching and isolation better than 15dB is achieved from DC to 80GHz 

while losses are over 0.8dB. On the other hand, in the case of SP4T, it is seen similar 

performance in the different paths. RL better than 15dB and isolation under 20dB is achieved 

from DC to 60GHz. Insertion losses are better than 1dB in both paths. 

 

Comparing the simulations of previous work ([61] and [63] in Table 2-4), it is seen that in the 

case of the SPDT a larger band is proposed with similar performances in the same range of 

frequency except on the isolation where [61] uses 2 switches. On the other hand, regarding 

the SP4T, the expected results are in similar level than [63].  

 BW RLmin ILmax Isolationmin 

[61] SPDT 18-25GHz 15dB 0.3dB 31.2dB 

This work 

SPDT* 
DC-80GHz 17dB 0.4dB 27dB 

[63] SP4T DC-65GHz 18dB 1dB 20dB 

This work 

SP4T 
DC-60GHz 15dB 1dB 20dB 

*RF performance considered in 18-25GHz 

Table 2-4: Comparison of RF performance between this work and state of the art in fused silica based circuits 

Using the SP4T presented before, a phase shifter with 22.5° step at 60GHz is designed using 

switched lines. In future, if the whole range of phases (0-360°) wanted to be covered, the 

presented phase shifter would be combined with a 4-bit phase shifter with a step of 90°. In 

Fig. 2-23, a general block diagram of the structure of the phase shifter is shown. This 

RL 

Isolation 

Fig. 2-22: Simulated S-Parameters of SPDT (left: RL(cross), Isolation (line)) and SP4T (right: Lateral path 

(triangle) and central path (line)). 
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Fig. 2-21: Layout of the SPDT (left) and SP4T (right) 
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configuration allows improving the input matching of the SP4T, but, on the other hand, 

insertion loss of the switching node plays a critical role. 

 

A small detail is that in the case of the north outputs (N1 and N2) of the SP4T, they have been 

modified in order to avoid coupling between them. Moreover, the characteristic impedance of 

the lines is optimized in order to improve input matching at central frequency. The layout of 

the phase shifter is shown in Fig. 2-24. 

The advantage of using a wide band SP4T is that varying the working frequency, the phase 

shifting will vary maintaining similar RF performance. Fixing the length of the line ln, the 

phase shifting will depend of the frequency. 

 nc
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44
 where n=0..3 Eq. 2-6 

In Fig. 2-25 the RF performances of the phase shifter are plotted. In all cases RL better than 

15dB and IL better than 2dB are achieved from DC to 60GHz. The losses are due mainly to 

the losses introduced in each SP4T. 

 
Fig. 2-25: Input matching and S12 of the phase shifter 
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Finally in Fig. 2-26 the phase of each line is plotted. Imagining an application at 60GHz, the 

phase shifting between lines according to Eq. 2-6, is 22.5°. The results of the simulation show 

a maximum error of phase of 1.8° at 60GHz for a step of 22.5°. Moreover, for an application 

at 30GHz, a step of 11.25° is fixed and the phase error is 2°. In fact from 30 to 60GHz this 

phase shifter can be used since the phase is linear and good RF performances are achieved. 

 

2.4 Conclusions 

The presented fabrication process (LAAS-CNRS) has demonstrated to be a good platform for 

the development of RF-MEMS based circuits. It has been shown that this process is able to 

solve its problems of dispersion by means of adding new steps and materials to the basic 

process: development of a 3
rd

 metal layer for improvement of contact capacitance and 

optimization of the process for flat cantilevers have been demonstrated. Another advantage is 

that the same platform develops different types of switches (capacitive and resistive). The 

main drawback of this approach is the low reproducibility of the results. The solution applied 

in one RUN may not be the adequate in the following one if a change in the design is done. 

On the other hand, the adaptability in terms of configuration and topology mentioned above 

has allowed building complex circuits. The examples are the routing structures based on 

series switches disposed in such a way (very close to the junction) that the losses and isolation 

measured is in the state of the art on SPnT and phase shifting circuits. 
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Chapter 3                                                          

RF-MEMS in medium TRL environment 

3.1 Introduction 

This chapter describes the CEA-Leti fabrication process of a resistive series switch. The 

approach implemented in this case is based on the single component optimization to be 

developed according to a pick and place approach
11

 [64]. The process steps and material 

selection has been fine tuned on the specific device choice. Although this approach restrain 

considerably the design flexibility (since very limited variation on the basic design are 

allowed), it allows tackling more effectively the reliability issues. 

The development of RF-MEMS in CEA-Leti started with capacitive switches [65] [66], but 

due to dielectric charging problems, poor RF performance in low frequencies and the 

necessity of focalizing efforts to only one type of switch, the project was stopped. At the same 

time, a shunt resistive switch with three contact dimples on a SiN membrane and two side 

electrodes was proposed and investigated over DC-100GHz frequency range in [67]. The 

main problem of this switch was the difficulty to establish the simultaneous contact of the 

three dimples. For this reason, the original design was modified to become a series switch 

with only two gold contacts presented in [68]. 

The last evolution of the CEA-Leti switch is the use of Ruthenium as a contact material and 

the elimination of the dielectric of the electrodes to reduce the charging at the actuator [69]. 

This thesis has used this novel device to implement routing circuits and to study the evolution 

of the RF performance versus time defining the failure mechanism and the possible solutions. 

The chapter is organized starting with the description of the device and our proposed model 

for contact resistance computation. Afterward the evolution of the contact resistance is shown 

according to the contact size and current flowing through it. Finally a SPDT is designed, 

modeled and characterized for being used in more complex routing circuits for redundancy 

applications (under ESA project REDS [70]-[72]) .  

 

 

 

    

                                                 
11

 By means of a wire bonding or flip chip bonding on a hosting circuit 
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3.2 Resistive contact switches (CEA-Leti) 

3.2.1 Technology and switch description 

The solution proposed by CEA-Leti is a dielectric-less ohmic switch based on a nitride 

membrane and electrostatic actuation (Fig. 3-1). The movable part is made of a bridge type 

nitride membrane suspended over a coplanar wave-guide (CPW), with a central ruthenium 

(Ru) contact and a pair of electrodes on both sides. When the membrane is in up state, the 

signal in the RF line is interrupted and the isolation is high. When a biasing voltage is applied 

between the upper electrodes located under the membrane and the CPW ground plane, the 

membrane is pulled down. The metallic contact fills the discontinuity on the RF line and the 

signal is transmitted. 

 

The process flow developed requires 11 mask levels on CEA 200mm MEMS dedicated 

fabrication and starts with the realization of the SiO2 cavities and the stoppers. Then, the 

metal for the RF and command lines and the silicon sacrificial layer are deposited 

respectively. Over the planarised sacrificial layer the TiN (Titanium Nitrate) electrodes are 

deposited and the vias for connecting the electrodes and the DC lines are opened. By etching 

small bumps on the sacrificial layer contact area, the Ru/Au contact dimples are created. 

Before releasing, the SiN (Silicon Nitrate) membrane and the top electrode, that symmetries 

the bridge for better flatness, are realized. The most relevant characteristics of each part are: 

 CAVITY: cavities and mechanical stops are realized by thermal oxidation and 

selective etching of the oxide layer in order to obtain fine accuracy of height and so 

control functional gaps when the bridge is up and when the bridge is down. The whole 

RF and command lines are inside cavities and not only the part under the membrane. 

 METAL: RF lines are realized with gold (Au) metal. Ruthenium (Ru) is deposited on 

gold below the membrane in order to avoid hillocks growing on gold. Ru is also 

deposited at contact level to ensure better reliability of the ohmic contact because it is 

less sensitive to stiction than pure gold contact. The price to pay for a switch with a 

reliable Ru contact is the need of a carbon-free hermetic packaging because Ru is 

highly sensitive to carbon contamination. 

 SACRIFICIAL LAYER: A silicon sacrificial layer was used instead of an organic 

sacrificial layer to avoid carbon contamination of the contact and obtain flat 

membrane profile before release thanks to planarization process. PECVD deposition 

conditions and planarization parameters of the silicon layer were studied through 

technological bricks. 

 ELECTRODES: TiN electrodes are deposited directly on silicon sacrificial layer prior 

SiN membrane deposition. After release of the membrane there is thus no dielectric 
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between stationary and mobile electrodes except SiO2 stops that prevent electric 

contact between electrodes when the bridge is down. This “dielectric-less” actuation 

area solve charging problems that cause shift of pull-in voltages and failure of 

switches. 

 CONTACTS: Mobile contacts in the membrane are based on Ru/Au/Ti metallization. 

Ru is the contact material to achieve Ru on Ru contact with the RF line. 

 MEMBRANE: Membrane is realized with a tensile SiN that allows the membrane to 

remain tense and flat after release. A TiN metallization with the same pattern than 

mobile electrode is realized on top of SiN membrane in order to have a symmetric 

stacking. Release of the membrane is done by etching the sacrificial silicon using 

XeF2 (dry-etching). 

Three other mask levels are used to realize a packaging WLP (Wafer Level Packaging) by 

polymer bonding of a silicon cap. This packaging ensures waterproof mechanical protection 

of the switch and preserve dry nitrogen (N2) atmosphere within the switch cavity. The 

inconvenient of this packaging solution is the carbon contamination of the contact seen in Fig. 

3-2. A carbon-free thin-film hermetic packaging is currently under development to guaranty 

contact reliability during numerous mechanical cycles. 

 

The RF performance from DC to 65GHz of this design is plotted in Fig. 3-3. Input matching 

and isolation better than -25dB and -15dB respectively is observed while losses are better than 

-0.4dB over the entire band. 

 

 

Fig. 3-3: RF performance of the CEA-Leti switch in ON (DOWN) and OFF (UP) state 
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Equivalent circuit description for contact resistance computation 

The most popular technique to measure the contact resistance is the 4-points measurements. 

The main drawback is the difficulty to separate the different sources of losses (mainly 

conductor and substrate
12

 losses). In order to carefully estimate the contact resistance, the 

extraction of an equivalent circuit based on RF measurements data has been carried out over 

the entire frequency band. The advantage of this equivalent circuit is that it can be easily used 

for constructing more complex circuits as it will be seen in section 0.  

Transmission Line Modelling 

With the proposed technique, in order to eliminate the conductor and substrate losses from the 

measurements, firstly, some tests structures consisting in CPW are measured and 

characterized (Fig. 3-4). Using the model of these test structures, the membrane’s effect is 

added afterwards. 

 

The model of the RF line is divided in 3 different parts: The access lines (TLIN), the tapper 

including the packaging effect (TLS) and the switch zone (TLSWITCH). Each part has its own 

characteristic impedance (Zo), length (L) and effective epsilon (eff) as reported in Table 3-1. 

Noteworthy is that eff of TLPACK is higher due to the material used for the packaging which is 

deposited over the line changing the propagation constants of the CPW.  

 Zo L eff 

TLIN 44.5 180 6.7 

TLS 53.2 65 11 

TLSWITCH 53 98 6.7 

Table 3-1: Characteristic impedance, length and epsilon effective of the model 

Five identical test structures have been measured by extracting the mean and standard 

deviation of the input matching and insertion losses. These measurements (Fig. 3-5) show that 

the dominant loss mechanism is the skin effect in the conductors. Its effect is added to the 

model by means of an attenuation proportional to 
f

1
. Results reported in Fig. 3-5, 

demonstrate an excellent fitting of the model with the average mean value from 

measurements. 

                                                 
12

 In 4-points measurements this source of losses is very low 

TLIN TLIN TLS TLS TLSWITCH 

Fig. 3-4: Layout (top) and equivalent circuit (bottom) of the test structures 
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MEMS modelling 

Using the line model proposed above, the contact zone is simulated with a series resistance in 

DOWN state (ON) and a series capacitance in UP state (OFF). The resistance (RON) comes 

from the Ru-Ru contact and the capacitance (CUP) is derived from the parallel plate formula 

between the line and the contact considering a gap of 0.5um. In Fig. 3-6 the comparison 

between measurements and the model is plotted showing very good agreement with 

RON=1.5 and CUP=5fF. 
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3.2.2 Impact of fabrication process and reliability tests 

There are two key parameters that define the reliability of contact-based devices: the dielectric 

charging on the actuator and the contact resistance over lifetime. In the first case, due to the 

dielectric-less solution explained in the previous section, the charging is avoided. For this 

reason in this section only the contact reliability problem is considered. First a study of the 

optimal actuation voltage is done in order to ensure enough contact for repeatable 

performance versus time. Second, the study of the performance during lifetime is described 

showing some preliminary results. Finally the failure analysis is depicted using the RF 

performance analysis. 

Actuation voltage for optimal RF performance 

Using the equivalent circuit presented above, the contact resistance of the switch is computed. 

The advantage of this method with respect to the four-point measurements is that the losses 

due to the substrate and the lines are removed. In Fig. 3-7 the contact resistance is evaluated 

under different actuation stress. Two different operational regions are indentified with respect 

to the dispersion of the contact resistance. The same regions were observed in [73] for an 

AuNi-Au contact. This effect is due to the hardness of the contact material (Ni in [73] and 

ruthenium in our case) which needs higher contact forces comparing with gold contacts in 

order to achieve the same contact resistance [74]: 

- Contact region (30V<Vact<45V): a resistive behavior is observed but the contact 

resistance dispersion (12-20Ohms) is very high between identical devices in the same 

wafer.  

- Closed region (Vact>45V): The contact resistance is stable and with low dispersion 

(0.4Ohms) between identical devices in the same wafer. 

Fig. 3-7 shows that in order to enhance the contact force, so to obtain better RF performance, 

the device has to be driven at least at 50V. At 45V the mean contact resistance reaches the 

same value as at 50V but the dispersion is higher (1 in front of 0.6 at 50V).The chosen 

Fig. 3-6: Comparison between modelled and measured S-Parameters of the switch in UP (Isolation) and 

DOWN (RL and S12) states 
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actuation voltage is 40% higher than VPI (30V) and safely below the break-down voltage
13

 

(VBD>100V). 

 

When the actuation voltage increases, the contact resistance converges toward smaller values 

until it attains the asymptotic value of circa 1.5 Ohm. The relationship is plotted in Fig. 3-7 

with a dashed line. In previous work [74] the same relationship was found between the 

contact force and the contact resistance for Ru-Ru contacts (Fig. 3-8). The absolute contact 

resistance values cannot be compared because in our case no DC current is imposed through 

the contact. 

 

                                                 
13

 The break down voltage is supposed over 100V because no failure in the device was observed when increasing 

the actuation voltage. It has not been specifically computed. 

Fig. 3-8: Relationship demonstrated in [74] between contact force and contact resistance 
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In order to see the effect of the number of stoppers in the actuation voltage, thus in the 

insertion losses, a variation in their number is proposed. In terms of mechanic behaviour, this 

is the unique variation that the fabrication process allows, since the membrane design 

(thermal compensation and planarity) has already been optimized by CEA-Leti previous 

developments. 

 

The number of stoppers is varied from 5 to 9 as seen in Fig. 3-9. The direct impact of this 

change is the actuation voltage since the actuation area decreases by a 9% which means that 

the contact force on the dimples decreases increasing the insertion losses. This is 

demonstrated in Fig. 3-10 where the insertion losses are measured at three different actuation 

voltages (40, 50 and 60V). In the case of 5 stoppers, the insertion losses are stabilized at 50V 

as it is seen in section 3.2.1 but, using 9 stoppers 60V are needed for an optimum contact. 
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Lifetime study 

Protocol  

The switches are tested in an open environment (22° and 40% humidity) using a VNA 

(Anritsu MS4647A) for RF characterisation (DC-65GHz), a function generator (Tektronix 

AFG320) plus an amplifier (Falco Systems) for increasing the dynamic range of the DC 

biasing. Two bias tee connected to the ground are used in order to protect the VNA and also 

to ensure that there is no DC voltage through the contact. The ground of the DC-probes and 

the chuck is also connected to the same ground. The acquisition of the S-parameters and the 

biasing of the switches are synchronized and automated using a LabView program through a 

GPIB connection (Fig. 3-11).  

 

The test protocol is presented in Fig. 3-12. The switch is actuated at 50V using a unipolar 

square signal of 0.02Hz and duty cycle of 50%. The actuation voltage was computed in 

previous section for optimal RF performance while the actuation time (Tac=25s) and the time 

between actuation (Ts=55s) are chosen large enough to ensure a stable contact, and to 

decouple the effects between consecutive actuations respectively. This procedure is repeated 

for three different RF power (-30dBm, -10dBm and 0dBm) for a fixed number of actuations 

(Nac=1000). The S-parameters in the entire band (DC-65GHz) are acquired one second before 

the end of the actuation window. 

 
Fig. 3-12: Test protocol for the tested switches. In red the moment of the acquisition of the S-parameters 
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Fig. 3-11: Schematic of the used set-up 
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Two different calibrations of the VNA are done in the following order: 

1) Power calibration: Using a power meter connected to the VNA, the desired RF power 

(PRF) is set in the entire band. This ensures the same RF power throughout all the 

frequencies (which is not normally the case if no specific calibration is done) and it 

means that the RF current (IRF) through the contact is fixed. Eq. 3-1 shows the 

relationship between PRF and IRF supposing a perfect matching in the device (better 

than 25dB in the entire band) which means that all the induced power to the DUT goes 

to the contact and is not reflected. In Table 3-2 the chosen RF power with the 

correspondent RF current is computed. 

  50
2

2

1
0

0

2
0 Zwhere

Z

P
IIZP RF

RFRFRF

 Eq. 3-1 

PRF IRF 

-30dBm 200A 

-10dBm 2mA 

0dBm 6.3mA 

Table 3-2: Chosen RF power levels with the correspondent current computed with Eq. 3-1 

2) RF Calibration: It is done using the “Line” element of the Thru-Reflect-Line 

calibration kit and only in one direction (from P1 to P2) in order to calibrate the single 

S21 parameter (used for the tests). 

As the duration of the tests is very long (aprox. 15h for 1000cycles) it should be taken into 

account the degradation of the quality of the calibration. For normal S-parameters 

measurements it is recommended to redo the calibration every 5-6h, but, in the case of long 

term tests, this calibration cannot be updated. 

 

In order to have an idea of the deviation of the RF calibration, the line of the Thru-Reflect-

Line calibration kit is measured continuously during 15h at the same ambient conditions. In 

Fig. 3-13 the insertion losses of the “Line” is plotted versus time for different frequencies 

showing that higher frequencies (40-65GHz) achieve higher dispersion (max. 0.1dB) as was 

expected. Note that the jitter around the average value (max. 0.05dB) is likely due to external 

ambient interferences that may have slightly affected the measurement over 15h. In order to 

Fig. 3-13: S12 of the Line of the calibration kit versus time 
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remove the effect of the deviation of the calibration (ILC) in the switch measurements (ILS), 

all the switch measurements presented (ILD) will be de-embedded according to: 

 
CSD ILILIL   Eq. 3-2 

Since the setup is automated the RF carrier cannot be disrupted while doing the tests, another 

limitation of the set-up is the impossibility of doing cold-switching (no current through the 

contact while the device is actuated). The only way of doing that is by lifting off the RF 

probes, which however, turns out to affect the contact repeatability hence introducing further 

incertitude in the measurements. For this reason, the lowest possible RF power (-30dBm) is 

used to validate the cold-switching mode. 

First of all the pristine switch under study undergoes a cold-switching (lifting-off the RF 

probes) during 30 consecutive actuations. Afterwards the same device is hot-switched (RF 

probes in permanent contact) during 30 actuations more. From results depicted in Fig. 3-14, it 

can be seen that the same degradation trend in the insertion losses is observed. The linear 

fitting curve extracted show very similar slope (mc and mh) in both switching conditions. This 

means that at -30dBm there is no significant difference between hot and cold switching for 

the considered device. Therefore the switch will be considered as cold switched even if the 

test is in the hot switching operating mode. 

 

CEA-Leti has provided 24 switches (5 of a contact diameter of 10m and 19 of 2m) in order 

to check the evolution of the losses versus time. Due to the small quantity of available 

devices, the efforts were concentrated on the variation of the RF current as a possible 

accelerating factor for contact stabilization. The results presented in the following section are 

preliminary and should be confirmed with a larger amount of devices. 

Previous work in contact reliability, such as [74], assumes that the DC current on the contact 

could have influence on the contact degradation. Others think that is the voltage applied on 

the contact that is playing the degradation role [75]. In this work no DC current or voltage is 

applied in order to get rid of these assumptions. In fact, in commercial devices, such as 

Radant ones, it is advised to their users to avoid any DC current through the contact. 
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Contact resistance versus time 

The first studied type of switch has a contact size of 10m and it presents very high losses. 

This could be caused by the burn-in
14

 and storage at 80ºC during one week done beforehand 

at CEA-Leti which could induce carbon contamination in the device.  

In Fig. 3-15 the insertion losses of three identical switches after every actuation are shown. 

Each switch is tested at a different RF power: -30,-10 and 0dBm. It seems that the number of 

actuations needed to achieve stable contact depends from the RF power applied through the 

contact. The higher the RF power, the lower the number of actuations needed for stable 

contact. However, there are two incoherencies that should be taken into account and that limit 

the extraction of concrete conclusions: 

1) An unexpected result for the switch at -30dBm: it is supposed to present higher losses 

than the other two. In fact, for lower RF power, hence lower current, higher level of 

contact resistance, hence a higher losses, is expected.  

2) Different stabilization mechanisms observed: while in -30 and 0dBm a clear straight 

line with different slopes is observed, in -10dBm a deterioration followed by an 

improvement of the contact resistance is seen as was observed in [76].  

 

The second type of switch (2m of contact) was never tested before. For this reason the initial 

losses observed are approximately 0.5dB. In Fig. 3-16 (top) the results of the tests carried out 

at three identical switches at different RF power is plotted. In this case only at -30 and -

10dBm of PRF the repeatability of the contact is assured. In the case of 0dBm, none of the 

tested switches has achieved repeatable contact (Fig. 3-16 bottom). These results seem to 

prove that at 0dBm a contact degradation mechanism is activated. 

Noteworthy that the first actuation of all the switches in Fig. 3-16 achieves the same S12 value 

(not seen in 10m contact) which shows that the fabrication process is stable and the contact 

behavior could be modeled. Another proof of the stable fabrication process is that in -10 and -

30dBm the insertion losses stabilizes at the same value (-5.4dB). 

                                                 

14
 10.000 cycles at bipolar actuation of 34V (4V - 100A applied on the contact) 
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The tests presented in this section have demonstrated the reliability challenge that CEA-Leti 

should afford. The observed results are attributed to the carbon contamination of the contact 

due to the non-hermetic package. This effect has already been detected in the previous version 

of the switch based on Au-Au contact [75]. In order to know if a hermetic package would 

solve this problem, a preliminary test in a controlled environment simulating the hermetic 

package should be done. 

Failure mechanisms 

In this section the contact failure is studied by using the S-parameters in the entire band. The 

lumped-elements based equivalent circuit of the switch is used in order to understand the 

physical mechanism occurring on the contact dimple. Noteworthy is that the same 

degradation mechanism is observed when the switch is continuously in the DOWN state than 

when it is cycled. 

In literature [76] it was shown that the failure mark of Ru-Ru contacts is the sudden increase 

of the contact resistance (fail to close), in contrast with gold contacts (fail to open). In this 

section the results of the switches that have not supported the tests due to contact failure are 

presented. As was expected all the switches of both types (2 and 10m contact) have 

presented the same failure mechanism: fail to close. 

Fig. 3-16: S12 (at 30GHz) after each actuation: at three different RF power (top) and at 0dBm for three identical 

devices (bottom).  
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In Fig. 3-17 one of the failed switches of type 10m is presented. The insertion losses are 

plotted at different frequencies (Fig. 3-17 left) in order to demonstrate that the trend of the 

degradation is the same before failure (Nac<400) while after degradation the insertion losses 

change a lot with frequency. Regarding Fig. 3-17 right, it is seen that at Nac=450 the switch 

response is capacitive while a flat response (resistive behavior) was expected. 

 

The failure mode observed could yield two different conclusions: either there is a very high 

resistance (fail to close) or there is a mechanical failure. In order to discard the mechanical 

failure, the actuation voltage is increased up to 60V and it is observed that the switch recovers 

the resistive behavior. However, the contact resistance is approximately 120. 

The equivalent circuit model presented in previous section 3.2.1 is used to validate the RF 

behavior (Fig. 3-18). For Nac under 400, the contact zone is modeled with a resistor and above 

400 it is mostly a capacitor whose values are resumed in the table of Fig. 3-18.  

 

The difference between the OFF state and the Nac=450 show the possible formation of a 

dielectric film covering the entire contact dimple creating a capacitor between the dimple and 

the line when the switch is actuated. On the other hand, the high values of contact resistance 

for Nac<400 is due to the beginning of the contamination phenomena where the created 
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Fig. 3-17:  Left: S12 versus number of actuations for different frequencies. Right: S12 in the entire band for 

different number of actuations 
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dielectric contamination is still ongoing and it is only located in some parts and a metal-metal 

contact. 

Conclusions on lifetime study 

For optimal RF performance the actuation voltage should be at least 50V which ensures the 

contact repeatability. The chosen actuation voltage is 40% higher than VPI (30V) and safely 

below the break-down voltage. In addition, when the number of stoppers is increased, the 

actuation voltage should also be increased to 60V. Both results demonstrate that the 

enhancement of the contact force should be done through the actuation voltage. 

The minimum number of actuations for stable contact seems to depend on the RF power (i.e. 

current) through the contact. By increasing the current the minimum number of actuation 

before stabilization is decreasing. This phenomenon could be explained by attributing to the 

current a healing role (cleaning). For sake of clearness and efficiency, tests should be done on 

hermetic packaged devices (no carbon contamination) or wafer level controlled environmental 

conditions. 

The typical failure mechanism of Ru-Ru contacts (fail to close) is observed after several 

actuations at all the RF power level of the tests. The mechanical failure has been discarded by 

increasing the actuation voltage which makes the switch operational again. This last result 

infers the presence of contamination (also seen in the microscope in Fig. 3-2) in the contact 

which is eliminated by applying higher force in the contact. The presented equivalent circuit 

is able to describe the capacitive behavior in failed switches, confirming the hypothetical 

presence of contamination in the contact.  All the results found in this section demonstrate the 

necessity of a hermetic package in order to control the operation environment of the device.  

3.3 Applications in routing circuits: mPnT for space applications 

3.3.1 DC-50GHz SPDT design, performance and contact study 

The switch presented in section 3.2.1 is used for the development of a wide band single-pole 

double-through (SPDT) redundancy switch (Fig. 3-19). The design is based on one input 

(Port-1) and two 90-degree outputs (Port-2 and Port-3). The distance between the switch and 

the T-junction is optimized in order to achieve maximum isolation in Ku-Band. In Table 3-3 

the target specifications are shown.  
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Fig. 3-19: Layout (left) and photo (right) of the measured device 
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Parameter Specification 

Band  Ku-Band (11.7-14.5GHz) 

Bandwidth  Whole Band 

Input match (50Ohms)  -15dB max 

Output match (50Ohms)  -15dB max 

Insertion Losses (unpack)  0.5dB max 

Isolation between channels  50dB min 

Maximum input power  10dBm 

Table 3-3: Desired specifications of the SPDT 

Measurements are done with a 4-port PNA (Agilent N5247A) from 65MHz to 65GHz and a 

DC-supply for the actuation of the switches. These measurements are done on 10 different 

devices in order to show the dispersion over the same wafer. Moreover, 10 different reference 

structures (i.e. without contact zone, see Fig. 3-20) have been characterized in order to extract 

the reference behavior obtained in absence of the contact zone of the membrane. These types 

of structures are used to separate the contact resistance of the switch from the losses due to 

substrate coupling, conductor losses and coupling between the membrane and RF ground. 

 

In Fig. 3-21 the RF behavior of the SPDT is shown. Input and output matching are better than 

-20dB while insertion losses are below -0.9dB in the entire band (DC-50GHz). In the same 

band, isolation between the two outputs and between input and output is better than 25dB. 

The most promising information that these results show, it is not only the excellent RF 

performance in comparison with the state of the art but also the fabrication process stability 

on 8 inches wafers. In fact, the deviation between 24 devices in the same wafer (indicated by 

the error bars in Fig. 3-21) is very small and translates in 0.05dB for the IL and 0.6dB for the 

isolation. The larger dispersions observed on the RL below -30dB are due to the dynamic 

range limits of the PNA.  

In Fig. 3-21 the model is compared with the measurements showing very good agreement 

with RON=1.2±0.4 (same range of contact resistance observed in Fig. 3-7 at 50V) and 

CUP=1.3±0.3fF (up-state capacitance) which gives a cut-off frequency of 102THz [76]. The 

model parameters of the SPDT are described in next section. 

Ideal down state 

(mínimum IL) 

Ideal up state 

(máximum isolation) 

Fig. 3-20: Layout of the reference SPDT structures 
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SPDT modelling  

A lumped elements equivalent circuit is extracted from the RF measurements using the same 

technique as in section 3.2.1. Again, reference structures (Fig. 3-20) are used to separate the 

effect of the packaging (TLS), the line and the substrate losses (TLIN, TLOUT and TLm) from 

those coming from the switch (contact resistance RON). The model of the lines is compared in 

Fig. 3-23 with the measurements of the reference structures.  

 

TLm 

TLIN 

TLOUT 

TLS 

Lines parameters 

 Z0 Length eff 

TLOUT 50 56.7um 6.7 

TLIN 50 56.7 6.7 

TLS 58.6 65um 11.45 

TLm 67.5 105.4um 6.7 

Switch parameters 

CUP 1.3±0.3fF 

RON 1.2±0.4 

 

Fig. 3-22: SPDT model parameters  

Fig. 3-21: Measured RF performance of the SPDT and the reference SPDT compared with the developed 

model 

0 10 20 30 40 50 60 70
-50

-45

-40

-35

-30

-25

-20

-15

-10

 S22

 Reference S22

 Model S22

R
L

 (
d

B
)

Frequency (GHz)

 S11

 Reference S11

 Model S11

0 10 20 30 40 50 60 70

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

IL
 (

d
B

)

Frequency (GHz)

 S12

 Reference S12

 Model S12

0 10 20 30 40 50 60 70

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

Is
o

la
ti

o
n

 (
d

B
)

Frequency (GHz)

 S13

 Reference S13

 S23

 Reference S23

 Model S13 and S23

S
1
2
(d

B
) 



CHAPTER 3: RF-MEMS in medium TRL environment  68 

 

 

3.3.2 Other routing circuits: DPDT and T-switches 

The fabricated SPDT is used in the design of a DPDT (Double-Pole Double-Throw) circuit 

and T-switch (Fig. 3-24). The difference between both routing circuits is that in the case of 

the T-switch all connections between the other three ports are possible while in the DPDT 

each port can only be connected to two of the ports.  

For the DPDT, four SPDTs, as the ones presented above, are connected by means of 90° 

bends. The distance between SPDTs has been optimized in terms of input matching 

conditions. Due to the intrinsic high isolation of the SPDTs, the desired overall isolation 

(50dB) is achieved for the DPDT. The design of the 90° bend is based on a mitered design. 

The dimensions of the CPW are 30/50/30 and the chamfered part is cut 13.75um (see Fig. 

3-24) over the airbridge in order to satisfy the model proposed in [78].  

For the T-switch, a third path should be added to the SPDT. The design of the path is 

optimized taking into account the whole design of the routing node. The cross-over for the T-

switch is done using the same metal as the contact region of the switch. This means that there 

is a distance of 0.5um between the crossed lines which decreases the isolation in STATE 3 

(see Fig. 3-24).  

Fig. 3-23: Comparison between the measurements of the reference structures and the developed model for the 

line of the SPDT (without the contact zone) 
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The results of the simulation of the DPDT are plotted in Fig. 3-26. An input matching better 

than 20dB is achieved in all the ports while the insertion loss remains below 1dB from DC to 

14.5GHz. The isolation goes beyond 50dB until 17GHz in adjacent ports and until 20GHz in 

opposite ports. 

 

In Fig. 3-26, the S-parameters of STATE 1 (or 2) and 3 are presented. In STATE 1 (or 2) the 

results are very similar to the ones presented in the DPDT since the structure is very similar 

(RL<20dB, IL>1.5dB and Isolation>50dB from DC to 20GHz). On the other hand, in STATE 

3 the performances are a little worse in terms of input matching, which is still better than 

15dB, and insertion losses which are below 1.7dB over the entire band. In terms of isolation, a 

maximum of 35dB is achieved at 20GHz. This is the best result than could be obtained by a 

CPW cross-over using a single metal layer and airbridges. 

Fig. 3-25: Simulated RF performance of DPDT in state 1 and 2 
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Fig. 3-24: Layout and schema of the states of the DPDT (left) and T-switch (right). Each color define the 

actuated switches at specific the state 
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In Table 3-4 the comparison between the simulation results and the state of the art of routing 

switches is presented. This table shows the promising RF performance of the designed 

circuits. The fact that the model of the SPDT matches very well with the measurements of 

Fig. 3-21 suggests that the DPDT will likely do so. 

DPDT (Double-Pole Double-Throw) 

 
This work 

(DC to 

20GHz) 

M. Daneshmand et R.R. 

Mansour (DC to 15GHz) 

[79] 

S. Di Nardo et al. (DC to 

40GHz) [80]  

Sim Meas Sim Meas 

RLmin (dB) -20 -30 -20 -30 -20 

ILmax (dB) 1.2 0.2 1 0.1 to 0.8 1 to 3 

ISOmin (dB) -50 -70 -40 -40 -40 

T-switch 

 This work 

(DC to 20GHz) 

Y. Chan et al. 

(DC to 40GHz)[81] 

State 1 and 

2 
State 3 

State 1 and 2 State 3 

Sim Meas Sim Meas 

RLmin (dB) -20 -15 -30 -20 -30 -20 

ILmax (dB) 1.5 1.8 0.2 1 0.2 1 

ISOmin (dB) -50 -38 -70 -40 -45 -30 

Table 3-4: Comparison of RF performance between this work (simulated) and state of the art (simulated and 

measured) 

Fig. 3-26: Simulated RF performance of T-switch in state 1 and 2 (top) and 3 (bottom) 
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These circuits have not been fabricated yet since the manufacturer has decided to further 

stabilize his fabrication process. There are two potential main difficulties: 

- The different orientation of the switches: the deposition of the membrane and contact 

materials would have to be controlled in both directions 

- The different size of the structures in the same run: when structures (SPST, SPDT, 

etc.) of different sizes are included in the same wafer, it becomes very difficult control 

the velocity of the CPM (Chemical-Mechanical Planarisation) step of the sacrificial 

layer (silicon). This velocity can change in function of the local surface. 

3.4 Conclusions 

The CEA-Leti fabrication process has developed a very advanced solution in order to 

eliminate the dielectric charging problem in its electrodes. However, the long term tests have 

demonstrated that the degradation of the contact due to the non-hermetic packaging makes 

this RF performance not predictable. Despite that, it has been seen that the effect of the 

current through the contact should be carefully taken into account since it strongly impacts the 

lifetime and the burn-in time. The higher the current, the lower the number of actuations 

needed to reach a stable contact resistance, but, at the same time a shorter lifetime. The 

lumped-elements based equivalent circuit is able to describe the failure mode (creation of 

dielectric films on the contact) and characterize it at each lifetime time.  

The implementation of a hermetic package is a must. This would allow having a large number 

of contamination free devices on which carry out a systematic investigation of burn-in and 

lifetime. Noteworthy is that the development of this hermetic package could modify steps of 

the fabrication process that have already been optimized and the design could be modified 

again.  

This fabrication process approach has demonstrated to be suitable to design SPDT circuits 

with excellent RF performance with respect to the state of the art, from DC to 50GHz. 

However, more complex structures like mPnT or T-switches present further challenge for this 

technology since problems of stabilization and uniformity may appear. For this reason the 

manufacturing of the routing matrices proposed in this section have been postponed to future 

fabrications. 
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Chapter 4                                                          

RF-MEMS in high TRL environment      

4.1 Introduction 

This chapter describes the IHP’s embedded RF-MEMS on a standard BiCMOS process. The 

component approach seen in Chapter 3 is also used in this case but with the advantage of 

being integrated in more complex structures without any wire bonding. In fact, the niche 

market that this approach is aiming is for working frequencies over 50GHz where the losses 

in interconnections between systems play a very important role. In IHP approach no 

modification is allowed in the movable membrane since it was already optimized in previous 

research activity and it is out of the scope of the present work. Due to the five metal layers of 

the BiCMOS process, the design flexibility is possible and can be used for design tuning and 

reconfigurability. 

The first RF-MEMS development in IHP was shown in [82] in 2009 where the membrane 

shape was optimized. As the mechanical reliability and repeatability of the process was also 

previously addressed, the efforts here were focused to increase the scalability and 

reconfigurability of the device in more complex circuits [83]. In future, the aim of IHP is to 

provide a RF-MEMS device library as extensive and robust as possible. 

In this chapter a very accurate equivalent circuit model based on actual manufactured device 

has been built. Moreover, the fabrication process dispersion over the wafer has been also 

taken into account allowing the designer to predict possible deviations in RF performance. 

The model allows also to track and to identify any problem during fabrication steps and 

layout error. In terms of reliability, this work presents the failure mechanisms observed and 

how the chips can be selected for an optimal behavior under industrial requirements (Thales 

Alenia Space). The proposed equivalent circuit is also capable to identify the observed failure 

mechanisms. 

This chapter begins with the description of the switch and the associated process. Secondly 

the developed equivalent circuit is shown and validated with a frequency scalable switch. 

Afterwards the deviations that directly impact the switch are studied and modeled not only in 

initial time but also versus time with the reliability tests. Finally, the model is used to develop 

a new series switch that is used for routing, phase shifting applications and a novel absorptive 

switch. 
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4.2 Co-integration MEMS-BiCMOS process (IHP) 

4.2.1 Technology and switch description 

The capacitive RF-MEMS switch is built between Metal2 (M2) and Metal3 (M3) of IHP’s 

0.25μm SiGe:C BiCMOS process named SG25H1 (Fig. 4-1). High-voltage electrodes are 

formed using Metal1 (M1), while Metal2 (M2) is used as RF signal line. The movable 

membrane was realized using the Metal3 (M3) layer which is an AlCu layer stacked by TiN 

layers on top and bottom. The thin TiN layer, which is part of the BiCMOS MIM capacitor 

zoomed in Fig. 4-1, forms the contact region of the switch.  

 

In DOWN state, the bottom TiN layer of M3 touches the TiN layer on top of the MIM 

dielectric. Due to the high contact resistance between the conductive TiN layers (~4-5 KΩ), 

the down-state capacitance is dominated by the air capacitance between bottom TiN of M3 

and the TiN on top of Si3N4. This air gap capacitance is determined by the stress gradient of 

M3 which has been already optimized. The MIM capacitor between M2 and the thin TiN 

layer on top of the Si3N4 layer is only used to achieve DC isolation between M2 and M3 [82]. 

When the switch is in UP state (OFF) the RF signal passes along the line while in DOWN 

state (ON) the signal line is connected to the ground providing high isolation between input 

and output. 

Concerning the actuation voltage, 45V represents the optimal value with respect to the RF 
performance. This value is obtained by increasing the actuation voltage from pull-in (25V) to 
a value that ensures a stable contact of the membrane in down position and hence a stable 
value of isolation at the working frequency.  

For capacitive switches, the working frequency is determined by
DOWNLC

f
2

1
0   . As the air 

gap capacitance in down state can be perfectly controlled, it is desirable to always use the 

same dimensions of membrane (i.e the same CDOWN) and change L for tuning in frequency. 

The inductance L is determined not only by the membrane shape, but also by 4 inductors 

Fig. 4-1: Switch (left) and cross section (right) of the BiCMOS fabrication process 
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added to the beam at the anchors location. The inconvenient of this solution is that, for low 

working frequency (under 60GHz), the bandwidth of the switch decreases. In Fig. 4-2 it is 

shown 6 switches (V1 to V6) working at different frequencies (85, 75, 65, 48, 42 GHz 

respectively) which have the same membrane and only change the inductance connected to 

the anchors. 

In Fig. 4-3 the RF measurements of the different versions of the switch (V2 to V6) are shown. 

These switches present in DOWN state a double resonance: one due to the inductors added at 

the anchors (main resonance) and another (electrode resonance) due to the capacitance 

between the membrane and the electrodes, and the inductance of the bias lines. This second 

resonance does not change with the design because the bias network is always the same.  
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Fig. 4-3: Measured RF performance of the different versions of the switch 
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When comparing the RF performance of the different switches (Table 4-1) it is seen that, as 

expected, the higher the resonance frequency, the larger is the bandwidth
15

. The bandwidth is 

also increased by the effect of the second resonance in the switches above 70GHz (V2 and 

V3). 

 

 

Equivalent circuit description 

A scalable lumped-elements model is proposed for the different switches working at different 

frequencies presented above. The difference between the switches lies only in the inductance 

added at the anchors of the switch. In the proposed model, only this inductance is modified in 

order to tune the desired working frequency. The importance of the proposed model is that all 

the lumped-elements are associated to a constitutive part (shape and size) of the device, which 

provides a complete and detailed electrical description. This allows to trace back and to detect 

possible manufacturing flaw or deviation due to technological dispersion. In addition, it 

provides information about the quality of the fabricated devices since which can be directly 

correlated with the performance of the device. 

In Fig. 4-4 a cross section of the switch is shown identifying the different lumped elements of 

the model. Regarding the down state position, it is important to note that the down state 

capacitance is known with accuracy since the value of the MIM capacitor (stack of 

Al(M2)/Si3N4/TiN) under the contact is always the same and the stress on the membrane is 

controlled in order to achieve always the same deformation. Due to the shape of the 

deformation (Fig. 4-4 right), the membrane contacts the top electrode of the MIM capacitor 

only at the corners of the contact zone (modeled by a high resistance Rcontact) creating an air 

gap (CMEMS) [82]. Therefore, one of the most critical issues of capacitive switches, the 

repeatability of the down capacitance, is counteracted by using this technique. 

 

Since the membrane (M3) and the RF signal (M2) are at the same electrical potential, it 

avoids any dielectric charging phenomena at the contact zone. Moreover, between the 

                                                 
15

 Bandwidth is computed using +/-20% the maximum isolation 

Parameter 
Version of the switch 

V2 V3 V4 V5 V6 

Freq (GHz) 85 75 65 48 42 

BW (GHz) 20 15 14 7.8 8 

RL 20dB 25dB 30dB 20dB 25dB 

IL 0.6dB 0.4dB 0.6dB 0.4dB 0.7dB 

Isolation 24dB 19dB 17dB 15dB 12dB 

Table 4-1: Measured RF performance of the switches at the working frequency 
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Fig. 4-4: Schematic modeling of the switch at the MEMS cross section for UP (left) and DOWN (right) state: 

membrane M3 (green), line M2 (orange), electrodes M1 (cian), dielectric of the MIM capacitor (red) and top 

electrode of the MIM capacitor (black) 
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electrode and the membrane there is no dielectric. This means that the switch is robust in 

terms of dielectric charging despite suffering from other failures as it will be discussed in 

section 4.2.2. 

Transmission Line Modelling 

The transmission line is a RLCG model combined with a substrate coupling network well-

known in the BiCMOS process modeling. The reason of using this approach is due to its 

simplicity in being used in network simulators (Spice) and the substrate losses already known 

can be easily added. The values of each parameter of the substrate coupling network (Cox2, 

Rsubs and Csubs) are deduced from the process specifications as  
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 Eq. 4-1 

where CM2-subs is the coupling from Metal 2 to substrate per m
2
 (defined by the process),  

Aline is the surface of the line, Csubs is measured and Si is the resistivity of the substrate. In 

Fig. 4-5 the lumped elements based model of the line is superposed to the layout. R, L and C 

are deduced from standard modeling of CPW [84]. 

 

In Fig. 4-6 the comparison between the model and the measurements are plotted showing an 

excellent agreement in amplitude and phase. The other relevant result that this structure gives 

is the possibility of computing the phase of the structure. 

 

Fig. 4-6: Comparison between model (cross) and measurements 
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Inductance modelling (Lanchor) 

As it is explained above, the scalability of the switch is done by varying the Lanchor inductance. 

For this reason its modeling is also a key issue in order to predict the ressonant frequency. 

This has been done by combination of EM simulation (Sonnet) and lumped-elements based 

circuit of inductances [85]. Due to the small size of the inductors, it is very difficult to extract 

very accurate results since the RF probes are very close (cross coupling starts to be 

significant). Moreover, the de-embedding of the RF access lines could be also critical (the 

measured results can be in some range of magnitude than the RF access effect). The EM 

simulation model (Fig. 4-7) takes into account the conductor (mainly skin effect) losses and 

substrate effect. 

 

The parameters associated to the substrate (Coxi,j, Rsubsi,j, Csi,j) are extracted following the 

formulas proposed in [85] while the other parameters (Cp, L, Rm, Rf and Lf) are fitted with the 

EM simulation. In Fig. 4-8 the comparison between the EM simulation and the lumped-

elements model of the inductance is compared showing excellent agreement with Leff and Q 

using Y-parameters of each model (EM and lumped elements) where 

 
 
 11

11

112

1

Z

Z
Q

fY
Leff







 Eq. 4-2 

 
Fig. 4-8: Comparison between EM model and lumped elements model (triangle) 
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This method is used for the 6 different types of switch (V2 to V6) and the parameters are 

depicted in Table 4-2. These same values will be added to the MEMS model by adjusting Cp 

and Coxi,j, which can be affected by the etching step hence change the coupling through the 

substrate. 

 
Cp (fF) L (pH) Rm () Rf () Lf (pH) 

V2 1.2 40 0.7 3 23 

V3 2.2 59.5 2.2 3 19.4 

V4 0.3 91.5 5.4 8.1 70 

V5 1.4 197 5 8.1 70 

V6 0.3 255.8 5.8 8.1 70 

Table 4-2: Parameters of the elements for the different inductors 

MEMS modelling 

In Fig. 4-9 the schematic of the switch is presented. This equivalent circuit is based on two 

parallel resonant circuits. The main resonance which determines the working frequency is due 

to the down state capacitance and the inductors in the arms of the switch (
DOWN

MEMSC and Lanchor). 

The secondary resonance is associated to the capacitance between the membrane and the 

electrodes, and the inductance of the bias lines (
DOWN

MMC 31 and Lelectrode). In both cases, an 

additional series resistor is added in order to compute the losses of the inductors (Ranchor and 

Relectrode). 

 

In terms of UP/DOWN capacitance (CMEMS), this value is extracted from C(V) measurements 

(CM   
up

=20fF and CMEMS
down

=128fF), while the MIM capacitor (CMIM) has a value of 2.5pF. The 

most challenging part to model is the secondary resonance which occurs due to the coupling 

between the movable membrane (M3) and the high-voltage electrode (M1). This CM1-M3 

cannot be measured accurately as it was done with CMEMS. For this reason, a parallel plate’s 

formula is used for the UP state capacitance and then tuned to match the measurements (Eq. 

4-3). The UP/DOWN ratio of CM1-M3 is also theoretically extracted using the distance between 

the different metal layers in each state (d
M1-M3

up
 and dM1-M3

down
 in Eq. 4-4). Finally, Lelectrode is 

Fig. 4-9: Lumped-elements based model of the switch with the substrate coupling network (red) and the model 

of the transmission line (black). ZMEMS is the contact zone model in UP and DOWN state 
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computed using the inductance of the bias line (LM1). Depending on the length of the line the 

obtained range of values for LM1 goes from 1.1pH/m to 1.3pH/m. Noteworthy is that there 

are two electrodes whose bias lines have different lengths (li), so the value Lelectrode is the 

equivalent inductance between the two bias lines (LM1
1  and LM1

2 ) (Eq. 4-5). 

 up
M3M1

contact0up
M3M1

d

Aε
C



   Eq. 4-3 
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 Eq. 4-4 
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M12

M1
1
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2
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1
M1

electrode 


  Eq. 4-5 

In Fig. 4-10 the measured RF performance of all the presented switches (V2 to V6) is 

compared with the model adapted with its corresponding Lanchor value. The measurement 

results were taken over an 8-inch wafer for more than 50 samples, therefore also shows the 

dispersion of the RF performance over the wafer. These results show very good agreement 

between model and measurements within the entire frequency band (30-110GHz). The values 

considered for a perfect fitting are resumed in Table 4-3 and they also agree with the expected 

ones. 

 

Fig. 4-10: Measured RF performance (colored) and model (black): V2 (red), V3 (blue), V4 (pink), V5 (cyan) 

and V6 (purple) 
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Variable parameters for different versions of the switch 

Version Frequency Lanchor
16

 Ranchor 

V2 85GHz 75.7 pH 1.8 

V3 75GHz 96 pH 2.9 

V4 65GHz 135 pH 3.63 

V5 48GHz 255 pH 7.1 

V6 42GHz 287 pH 7.1 

Constant parameters for all the switches 

 UP state DOWN state 

CMEMS 20fF 130fF 

CM1-M3 12.76fF 22.16fF 

Lelectrode 130pH 

Lbeam 11.1pH 

Table 4-3: Values of the parameters of the analyzed switches 

4.2.2 Impact of fabrication process and reliability tests 

The fact that the RF-MEMS device is based on a standard BiCMOS process has a dual 

opposite consequence: On one hand, the dispersions due to the size of the elements and the 

roughness of the layers are completely known and controlled which makes the variations 

negligible. On the other, the design of the switch is limited by the constraints of the process. 

In this specific case there are two limitations: 1) The TiN-TiN contact between the top 

electrode of the MIM capacitor and the membrane, 2) The higher losses due to the low 

resistivity substrate. By keeping into account these limitations, the design of the switch has 

been optimized in order to avoid dielectric charging on the contact zone by using deported 

electrodes.  

Process tolerance characterization 

Even if the switches are identical, the RF performance varies over the wafer. In the case of the 

BiCMOS process used in this section, the geometrical dispersion is negligible as far as RF 

performance is concerned.  

However, due to nm-range thickness variations and the non-uniform deposition of the metals, 

the stress gradient of the suspended membrane varies over the wafer changing the distance 

between metals (aprox. 4%) which yields significant variation (5-6%) on the MEMS 

capacitance (CMEMS) in both states. The same stress variation also affects directly the 

membrane to high voltage electrode capacitance (CM1-M3) which turns out to be responsible of 

the device bandwidth. It is therefore apparent that the understanding of these two 

capacitances, and their variation, enables the direct monitoring of the device RF behaviour. In 

Fig. 4-11 a histogram of the measured losses and isolation at 85GHz (V2) is plotted showing 

the RF performance deviation over the wafer for this BiCMOS process. 

                                                 
16

 This value correspond to the effective inductance parameter (Leff) of the equivalent circuit model 
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In order to verify the dependency between RF deviation and CMEMS variation, LF 

measurements (1MHz) using Agilent 4294A Precision impedance analyzer of the UP and 

DOWN state capacitance (CMEMS) are done. The same devices removing the parasite 

capacitances of substrate and CMIM by means of de-embedding structures (transmission lines 

without membrane) are used. These measurements show a Gaussian distribution from the 

mean value in both states (Fig. 4-12). 

Noteworthy is that the relation between, CM1-M3 and the RF performance can only be 

established by using the equivalent circuit since this capacitance cannot be measured 

experimentally. In order to be measured it would need extra test structures in order to de-

embed the coupling effects with other metal layers. These extra structures do not allow the 

real time monitoring. For this reason, CM1-M3 is extracted from the model by exploiting the 

parallel plate capacitance formula to get a rough first estimation followed by more exact 

identification by curve fitting of the isolation around the secondary resonance. 

 

 

Fig. 4-11 and Fig. 4-12 demonstrate than the tracking of the CMEMS capacitance during the 

fabrication process is a key issue since it has a direct impact on the RF performance. A small 

Fig. 4-12 Histogram of CMEMS measurements for UP (red) and DOWN (black) state with the Gaussian 

distribution function 
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Fig. 4-11: Histogram of isolation (black) and insertion losses (red) measurements at 85GHz 
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deviation of 4.8% from the mean value (130fF) in this capacitance implies 10% of change in 

the isolation which is a criterion that the designer should take into account during the design 

phase in order to compensate this possible variation (Design for Reliability). This relationship 

is also useful to screen over the entire wafer to define the yield of the process and to locate the 

best yield area on the wafer. 

By applying the computed deviations to the lumped-elements circuit model shown above, the 

effect of the fabrication deviation can be reproduced in the entire band. A Monte Carlo 

analysis of the model with 50 trials is done with the parameters in Table 4-4 and compared 

with the measurements of the 50 devices showing very good agreement (Fig. 4-13).  

 

 UP DOWN 

 Mean  Mean  

CMEMS 21fF 
1.2fF 

131fF 
6.3fF 

CM1-M3 12fF 19fF 

Table 4-4: Parameters used for the MonteCarlo analysis 

 

 

From the LF measurements to RF performance 

The model introduced earlier is here used to show the effects of the technology dispersion, 

which translates into a deviation of the CMEMS, and hence on the RF performance. In Fig. 4-14 

the isolation and insertion losses at three different frequencies, are computed for different 

values of CMEMS (range taken within typical process dispersion). 

  

Fig. 4-14 Relation between CMEMS in DOWN state and isolation (left) and S12 (right) predicted by the model at 

three different frequencies: 70GHz (cross), 85GHz (triangle) and 100GHz (circle) 
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The presented approach offers a twofold advantage: 1) From the RF designer point of view, 

this model allows to account for the deviations of the technological parameters of simple 

switches as well as more complex circuits (Design for Reliability). 2) From the process 

developer point of view, it allows real time correlation between the overall design 

performance and the actual technological implementation. These advantages reside in the 

capability to get full RF performance from real-time capacitance LF measurement hence 

avoiding cost-intensive and time consuming RF test procedures. 

Lifetime of the switch 

Once the initial performance is checked regarding the fabrication process deviations, the next 

step is to study how they are going to evolve with time. There are two key issues that are 

studied in these tests: 

- How different degradation signs occur in capacitive MEMS and how they impact the 

RF performance. In case of unavoidable failure this allows to check whether the 

device still respects the given application performance. 

- Which one of the observable parameters is relevant with respect to the failure 

detection at wafer level. 

The 8-inch wafer is divided in cells within which the switches are replicated (Fig. 4-15). The 

size of the cell has been previously established and studied by IHP. One quarter of wafer is 

used for the presented results since horizontal and vertical symmetry is supposed in 

manufacturing. The availability of this huge amount of devices allows the monitoring of the 

process dispersion regarding the reliability of the device thus the yield under desired 

specifications (Thales Alenia Space in this case). 

 

Test protocol 

Test protocol developed by S. Mellé [86] and currently used by Thales Alenia Space for 

industrial requirements as was shown in [87]. The tests conditions are depicted in Fig. 4-16 

for both types of tests. Actuation voltage is fixed to 40V for continuous and cycling stress 

while for |S12(V)| measurement, the voltage is extended until 60V (limit to avoid contact 

between membrane and electrodes which leads to stiction). The RF behaviour of the switch, 

from 25 to 65GHz, is also measured at the beginning and at the end of each test. 

5 6 7 

13 

14 

15 

16 

8-inch wafer 

Fig. 4-15: Cells of the quarter wafer used for the reliability tests. X and Y are used in order to identify the 

device position 

X 

Y 
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Regarding the application, two main tests are considered: constant DC stress and cycling. The 

first one consists on actuating continuously during an established time checking its RF 

performance periodically. The DC stress test simulates the worst case regarding the dielectric 

charging. The second test is used to see if the contact resistance between the membrane and 

the MIM capacitor has an influence on RF performance. 

The setup is the same than the one used in contact repeatability study in Chapter 3 but, in this 

case, the |S12(V,t)| parameter is used to track the switch evolution instead of S12(t). The values 

of VPIN and VPOUT have been measured by means of S12(V) measurements and not using the 

2/3*g0 criteria since, as it will be seen later, the DOWN state position is reached below the 

mechanical VPIN computed with the 2/3*g0 criteria. 

I have done these tests in Thales Alenia Space facilities in Toulouse using their own MEMS 

test protocol for MEMS qualification for space applications defined in Mellé’s PhD 

dissertation [55]. The tests have been carried out in an open-environment at 23°C and 45% of 

humidity in order to consider a harsh environment. Since all devices are based on the identical 

MEMS actuation principle and design (as mentioned above only the inductance at the anchors 

change between designs) the electromechanical test will be identical for all of them. Due to 

constraints in terms of frequency range for the measurement setup, only the switches working 

at 30, 40 and 50GHz were selected. The tests specified in Table 4-5 were assigned randomly. 

60V 

-60V 

40V 

S12(V) 

acquisition 

S12(V) 

acquisition 

t 
DC constant stress 

S12(V) 

acquisition 
S12(V) 

acquisition 

Cycling  

Fig. 4-16: Test protocol for DC constant stress (top) and cycling (bottom) between two measurements. 

Total constant stress: T 

Time between acquisitions: 10min and 1h 

Total number of unipolar cycles: 10
6 

(f=200Hz) 

Time between acquisitions: 10min  
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Switch
17

 Test 
Failure criteria 

ΔVpull-in ΔILmax (dB)
18

 

X5_Y13_50G DC stress 1h 10% 1dB 

X5_Y14_30G DC stress 1h 10% 1dB 

X5_Y14_50G DC stress 1h 10% 1dB 

X5_Y15_50G DC stress 1h 10% 1dB 

X5_Y16_50G DC stress 14h 20% 2dB 

X5_Y16_30G DC stress >24h 20% 2dB 

X5_Y13_40G Cycling 10% 1dB 

X5_Y14_40G Cycling 10% 1dB 

X5_Y15_40G Cycling 10% 1dB 

X5_Y16_40G Cycling 10% 1dB 

Table 4-5: Test done at each switch with the considered failure criteria 

Results of DC stress test 

In Table 4-6 the results of the DC stress tests are shown. Regarding the 1h tests, there are two 

devices (X5_Y13_50G and X5_Y14_30G) that collapsed during the test and the others did 

not reach the expected specifications. A mean deviation of the pull-in and pull-out of 14.5% 

and 22% respectively is achieved in 1h stress devices. However, the insertion losses remain 

very stable (0.015dB of mean deviation). When increasing the duration of the test, for 

example to 14h or 67h
19

, it is seen that the pull-in voltage do not vary with respect to the 1h 

test. On the other hand, the losses increase a little bit more (1dB in mean). 

Switch 
T(h) Pull-in (V) Pull-out (V) IL (dB) 

 Initial Final Δ Initial Final Δ Initial Final Δ 

X5_Y13_50G 1 30 0 100% 26 0 100% 1.1 6.5 5.4 

X5_Y14_30G 1 34 29 14.7% 20 6 70% 0.86 1.26 0.4 

X5_Y14_50G 1 33 27 18.1% 29 20 31% 0.99 1 0.01 

X5_Y15_50G 1 37 33 10.8% 33 29 12% 0.99 0.97 0.02 

X5_Y16_50G 14 37 32 13.5% 32 22 31% 0.79 1.22 0.43 

X5_Y16_30G 67 37 34 8.1% 34 28 18% 0.8 2.6 1.8 

Table 4-6: Variation of pull-in, pull-out and IL during the DC stress test 

Comparing the RF performance of the switch X5_Y15_50G before and after the test in both 

states (Fig. 4-17 right) shows a clear correlation with the deviation on the pull-in/out voltage 

observed in Table 4-6. Since the design has been conceived to avoid charging in the contact 

area, the main reason of this variation is attributed to the mechanical relaxation of the 

membrane. These deviations imply: 

                                                 
17

 Xn_Ym_XXG stands for position (n,m) over the wafer (Fig. 4-15) and XX the working frequency in GHz  
18

 Losses are computed at central frequency which is specified in the switch nomenclature by XX GHz 
19

 These values correspond to one night and one weekend of continuous test. They are not under any standard 

protocol 
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1) The decrease of the UP state capacitance which changes the characteristic impedance 

of the line increasing the losses. 

2) The increase of the DOWN state capacitance which leads to a decrease of the 

resonance frequency. 

The pull-in/out drift is seen in |S12(V)| (Fig. 4-17 left) where the pull-in voltage decreases due 

the lowering of the membrane yielded by the mechanical relaxation, on top of the electrodes. 

Using the equivalent circuit described in section 4.2.1, it has been possible to observe that a 

variation about 10% and 9% in the DOWN and UP capacitance respectively is achieved 

during the first hour of test. 

 

In order to see if this variation is only a transient effect, longer tests (14h and 67h) are carried 

out. The results in Table 4-6 show variations in the pull-in voltage in the same range (12 and 

8% respectively) with respect to 1h tests. In Fig. 4-18 the |S12(V)| before and after stress 

shows also that the losses increase because the membrane do not recover the initial position 

due to the relaxation. 

 

In Fig. 4-19 the S-parameters before and after the test are also compared. In the case of 

X5_Y16_50G there is a very small variation while in X5_Y16_30G a small resonance 

Fig. 4-18: S12(V) for constant DC stress of 14h (X5_Y16_50G) (left) and 67h (X5_Y16_30G) (right) 
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Fig. 4-17: S12(V) at 50GHz (left), isolation and IL (right) of the switch X5_Y15_50G before and after the DC 

stress during 1h at 40V 
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appears at 30GHz which increase the losses only in this frequency (already seen in Fig. 4-18 

right). The same behaviour at the same frequency was observed in X5_Y14_30G and in 

X5_Y14_50G but in this second case it is not affecting the RF performance in the working 

frequency.  

 

 

The fact of find the same undesired resonance frequency infers that it can come from the 

rupture of a part of the membrane creating a short circuit with the electrodes not allowing the 

Fig. 4-20: Comparison of IL before (black) and after (red) stress with the model (triangle) of a failed device 

(X5_Y14_50G) after 1h DC constant stress 
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Fig. 4-19: Comparison of S-parameters of the different devices DC stressed: a)X5_Y16_50G b)X5_Y16_30G 
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a total recovery of the membrane in the initial position. This hypothesis is validated by the 

equivalent circuit model by means of increasing 
UP
MEMSC  to 60fF and 

UP
MMC 31  

to 100fF (both 

values are found by fitting of measurements) as seen in Fig. 4-20. In the case of DOWN state, 

the model is not able to track the after stress performance because of the difficulty to model 

the contact between metals and to infer the broken parts.  

Finally, comparing the losses versus time (Fig. 4-21) it can be seen that the degradation 

tendency (0.2dB/h) is very similar during the first hour in all the devices except for 

X5_Y14_30G that has presented the undesired resonance. For the 14h test, the losses increase 

of 0.1dB the first hour and at 0.02dB/h until the end of the test. Both results demonstrate a 

very good stability and repeatability inside the same cells.  

 

Cycling test results 

Only one of the tested devices at 10
6
 cycles have been successful in terms of pull-in and pull-

out voltage and insertion losses deviation (Table 4-7).  The mean deviation of the tested 

devices is 13%, 18.3% and 0.28dB respectively. They are comparable to the results obtained 

in DC stress despite being actuated for less total time (40min). This result infers that the 

degradation of the TiN-TiN contact between the membrane and the MIM capacitor do not 

play an important role in the reliability of the device. 

Switch 
Pull-in (V) Pull-out (V) IL (dB) 

Initial Final Dev. Initial Final Dev. Initial Final Dev. 

X5_Y13_40G 31 27 14.8% 15 0 100% 2.3 2.4 0.1 

X5_Y14_40G 32 29 10% 26 22 18% 0.73 0.95 0.22 

X5_Y15_40G 32 29 10% 32 28 12% 0.64 0.97 0.33 

X5_Y16_40G 38 36 5% 37 35 5% 0.71 0.99 0.28 

Table 4-7: Pull-in, pull-out and IL deviation during the cycling test (10
6
 cycles) 

In Fig. 4-22 the |S12(V)| characteristic and the RF performance of X5_Y16_40G is plotted 

showing the evolution of the losses and pull-in/out voltage. In Fig. 4-23 the S-parameters 

before and after the tests of the failed devices are compared. In X5_Y14_40G and 

X5_Y15_40G the same undesired resonance than in DC stress is observed. In the low 

frequency range (between 25 and 30GHz) the degradation of the UP state is higher than in the 

upper frequencies as was observed in the continuous DC stress tests. This means that the same 

0 5 10 15 20 25 30 35 40 45 66 68
-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

S
1

2
 o

ff
 (

d
B

)

T (h)

 X5_Y16_50G

 X5_Y16_30G

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

S
1

2
 o

ff
 (

d
B

)

T(min)

 X5_Y15_50G

 X5_Y14_30G

 X5_Y16_50G

X5_Y16_50G

 X5_Y16_30G

Fig. 4-21: S12 in UP state (OFF) versus time for the different DC stressed switches 
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failure mechanism (fatigue) is detected and that the contact resistance between the membrane 

and the MIM capacitor (Rcontact) do not affect the RF performance. 

 

 

 

The degradation of the S12 in UP and DOWN state (OFF and ON) versus time is plotted in 

Fig. 4-24. While X5_Y15_40G and X5_Y14_40G suffer a constant degradation 

(0.4dB/10
6
cycles), X5_Y16_40G reaches a constant value at 400.000 cycles (1dB of IL and 

12dB of isolation) which indicates the beginning of the normal operation region (burn-in). 

Noteworthy is that before stabilization, X5_Y16_40G follow the same degradation trend than 

the failed devices (X5_Y15_40G and X5_Y14_40G). 
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Fig. 4-23: Comparison of RF performance before and after the stress of the tested devices (10
6
 cycles): 

X5_Y15_40G (right) and X5_Y14_40G (left) 
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Relevant parameters for reliability assessment 

Only few switches among those which have been tested and presented above have 

successfully passed the reliability tests. This does not mean that the switch is not reliable but 

that a screening of the wafer based on the observed failure signatures should be made so to 

select the good ones. Some of the tested devices did not present the optimal initial behavior 

which lately leads to failure (infant mortality). In this part, the selection criteria for optimal 

mechanical and RF performance are studied in order to guarantee the successful testing. 

The two selected parameters are pull-in/out voltage (electro-mechanical) and losses (RF). 

Doing a screening over a quarter of a wafer the best and worse switches regarding these two 

parameters are selected for each working frequency (Table 4-8). The chosen switches are DC 

stressed during 1h. 

Family Worst IL Best IL 

Xm_Yn_50G  X6_Y13 (1dB)  X6_Y15 (0.8dB)  

Xm_Yn_40G  X7_Y15 (1.1dB)  X7_Y14 (0.75dB)  

Xm_Yn_30G  X6_Y13 (0.78dB)  X7_Y15 (0.6dB)  

Family Lowest pull-out Ideal 

Xm_Yn_40G  X7_Y13 (21V)  X6_Y16 (38V)  

Xm_Yn_50G  X7_Y13 (28V)  X6_Y16 (37V)  

Xm_Yn_30G  X6_Y14 (31V)  X6_Y15 (36V)  

Table 4-8: Selected devices for optimal mechanical and RF performance 

The results regarding the loss criteria are shown in Table 4-9. Only the switches with best 

losses (X7_Y15_30G and X7_Y15_40G) succeeded the test except of X6_Y15_50G. This 

exception indicates that also other parameters should be checked since the level of losses is 

not enough to determine the reliability of the switch. Moreover, for a mass-production 

manufacturing, the measurement of S-parameters is very slow and difficult. Therefore finding 

Fig. 4-24: S12 in ON (left) and OFF (right) position versus time (10
6
 cycles) 
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other parameter easy to be measured (time and equipment) is paramount in MEMS device 

production (it enables in-line test and/or test in very harsh environment). 

Switch T(h) 
Pull-in (V) Pull-out (V) IL (dB) 

Initial Final Dev. Initial Final Dev. Initial Final Dev. 

X6_Y13_30G 1 35 27 30% 29 15 93% 0.78 0.78 0 

X7_Y15_30G 
1 39 37 5% 38 35 8.5% 0.6 0.6 0 

16 39 33 18% 38 32 18% 0.6 0.8 0.2 

X7_Y14_40G 1 38 37 3% 37 35 6% 0.75 0.75 0 

X7_Y15_40G 1 38 37 3% 37 35 6% 1.1 1.2 0.1 

X6_Y13_50G 0.3 28 22 27% 22 16 37% 1 1 0 

X6_Y15_50G 
1 37 35 6% 36 32 12% 0.85 0.78 0.07 

16 37 32 15% 36 26 38% 0.85 0.93 0.1 

Table 4-9: Results of the tests done to the selected devices under the losses criteria 

Using the pull-out criteria, the results (Table 4-10) show that when selecting the highest pull-

out voltage the switches succeed the tests (X6_Y16_40G). All the switches with pull-out 

voltages lower than 37V have not passed the tests. The same relationship is seen with the 

devices studied in Table 4-9. Regarding also the pull-in voltage, it is seen that, in addition, the 

difference between the pull-in and pull-out voltage should be very low (maximum 1V). 

Switch T(h) 
Pull-in (V) Pull-out (V) IL (dB) 

Initial Final Dev. Initial Final Dev. Initial Final Dev. 

X7_Y13_40G  1 33 24 37% 21 18 16% 0.8 5.7 4.9 

X6_Y16_40G  

X7_Y13_50G  

1 38 37 3% 37 36 3% 0.62 0.93 0.31 

1 32 25 28% 28 15 86% 1.1 1.1 0 

X6_Y16_50G  1 36 34 5% 34 29 15% 0.98 1.02 0.04 

X6_Y14_30G  
1 35 28 25% 31 25 24% 0.97 1.16 0.19 

16 35 30 16% 31 24 30% 0.97 1.5 0.53 

X6_Y15_30G 1 35 33 6% 36 30 17% 0.83 0.87 0.04 

Table 4-10: Results of the tests done to the selected devices under the pull-in/out criteria 

Regarding the RF performance only a slight variation was detected (Fig. 4-25). The observed 

increase of the losses is due to fatigue in the membrane which yields a decreasing of the 

distance between the RF line and the membrane changes and hence an increase of the UP 

state capacitance (8% as seen before). This will be proved by means of the profilometer 

measurements later on this chapter. 
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In Fig. 4-26 the losses and versus time of the same switches are plotted. This plot 

demonstrates that after 5 minutes of constant actuation the RF performance is stabilized. 

 

Grouping the results of Table 4-9 and Table 4-10, the plot in Fig. 4-27 resumes the results. 

This plot shows the deviation of the VPOUT voltage after 1h of stress for several identical 

switches with different initial VPOUT. The size of the disk shows the difference between pull-

in and pull-out voltage. Applying the industrial requirements (10% of deviation in VPOUT) it is 

concluded that the criteria to be used to identify the reliable switches is: VPOUT>36 and VPIN - 

VPOUT≤1.  
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Fig. 4-25: Isolation and insertion losses before and after the test: X7_Y15_40G (top left) X7_Y15_30G (top 
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The displacement of the membrane (g) is related with the applied tension (V) as it is shown in 

Eq. 4-4 where k is the stiffness, the gap without actuation between actuator and membrane is 

g0 and S is the size of the actuator. Plotting the g(V) curve of the succeeded devices (Fig. 

4-28) using (Eq. 4-6), it is proved that they are placed in the linear region (below mechanical 

pull-in) so the VPIN and VPOUT are very similar. The distance between membrane and line is 

smaller than 2/3 times the distance between the membrane and the electrode (g0) which is 

considered the mechanical pull-in. 

 )(
2

0
2

0

ggg
S

k
V 


 Eq. 4-6 

 

For this reason profilometer (FOGALE Nanotech) measurements have been done after stress 

measuring the distance between line and membrane (M2-M3) and between electrode and 

membrane (M1-M3) without any actuation voltage. In Table 4-11 the results show that the 

distance between M1 and M3 trends to decrease making the distance between line and 

Fig. 4-28: g(V) of a succeeded device with the actuation point when applying 45V and the mechanical pull-in  
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membrane (M2-M3) bigger after stress. This is due to the force applied mainly on the lateral 

parts of the membrane (electrodes) where more stress is accumulated (Fig. 4-29). 

 
These measurements provide a tool for the manufacturer in order to select the optimal 

switches over the wafer (Fig. 4-30). If the distance M2-M3 is around 2.8m and the distance 

between M1-M3 is approximately 4.7m, the device is stiff enough to succeed the tests. 

These distances correspond to the pull-in/out voltages computed above (37V). This can be 

implemented by a Technology Characterization Vehicle (TCV) inserted in each cell with a 

single MEMS device in order to check if the optimal distances between metals in the movable 

part are respected. It can also be implemented in the final device before packaging. 

Switch 
M2-M3 M1-M3 

Reference After stress Reference After stress 

X6_Y13_30G  
2.260.06 

2.3 
5.180.09 

4.9 

X6_Y13_50G  1.5 5 

X6_Y14_30G  2.30.35 2.5 5.260.13 5.1 

X6_Y15_30G  
2.660.12 

2.8 
5.030.14 

4.8 

X6_Y15_50G  2.6 5 

X6_Y16_40G  
2.570.04 

2.7 
5.070.09 

4.9 

X6_Y16_50G  2.6 4.9 

X7_Y13_40G  
2.330.05 

2.36 
5.50.7 

5 

X7_Y13_50G  2.4 4.9 

X7_Y14_40G  2.560.05 2.7 4.80.01 4.8 

X7_Y15_30G  
2.580.06 

2.87 
4.750.2 

4.47 

X7_Y15_40G  2.8 4.5 

Table 4-11: Distance (m) between M2 and M3 and between M1 and M3 after the tests for the selected 

devices. In bold the devices that succeeded the reliability tests. The reference is the mean value and standard 

deviation of the distances for each cell 

d(M1-M3) d(M2-M3) 

Fig. 4-29: Schema (magnified) of the shape bending: cross section of the membrane before (black) and after 

(red) stress. The green arrows show where the electrostatic forces are applied 
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Noteworthy is that the devices that succeeded the tests are located in the same region of the 

wafer. The area highlighted in Fig. 4-31 shows the region where the devices with optimal 

performances are located. If the reliability tests are done in this region, more success is 

expected (planned to be done in future). 

 

With the results of this section, the Weibull curve (introduced in page 8) is shown in Fig. 4-32 

for the devices selected randomly (called random) and under specified criteria (called 

selected). There are 2 considerations to take into account: 

- The number of tested devices: 8 devices (random) and 12 (selected). This low number 

of devices makes the conclusions preliminary and needed to be confirmed in future 

work. 

- The measurement protocol was stopped after the desired time (1h): the devices that 

passed this period have never been stressed to their end-of-life. 
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Fig. 4-31: Distribution of the devices that succeeded the tested over the quarter wafer. 
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The results presented in Fig. 4-32 indicate infant mortality despite selecting or not the devices 

(β<1). The dispersion of lifetime from switch to switch is very high. However, it has been 

seen that when the devices are selected properly (VPOUT>36 and VPIN - VPOUT≤1) all the 

devices succeed the tests and this infant mortality can be eliminated. In future work, the 

devices under the specified selection criteria should be stressed until the end-of-life to proof 

the preliminary result shown in this thesis. 

Conclusions of reliability tests 

The failure mechanism detected is fatigue observed by stiction of the membrane and/or 

decrease of the distance between the membrane and the RF line (also seen between electrodes 

and membrane). The dielectric charging in the contact zone is avoided because the line and 

the membrane are at the same potential (0V). 

It has been seen that the most relevant degradation occurs during the first hour of tests. One 

device has been tested during 67h in continuous DC stress showing the same deviation in 

pull-in voltage than for the 1h tests. However, the losses have increased 1.8dB (though still in 

the specifications!) during the last 20h of test. Another switch has been tested during 14h 

achieving similar deviations of VPIN and VPOUT without reaching the limit difference of 2dB 

of losses. From a RF designer point of view, it is translated to a deviation of circa 9% in the 

UP/DOWN capacitance that should be added to the fabrication process deviation extracted 

from the RLC model.  

Another important result that has been shown is the possibility to predict which devices are 

reliable over the entire wafer, by means of a profilomenter measurement. This is possible 

because pull-in/out voltage has been identified as an indicator of failure and it is related to the 

distance between membrane and line and electrodes. Keeping these distances in known 

acceptance value range (2.6m and 4.7m respectively for a pull-in/out voltage of circa 37V) 

guarantees the reliability of the switch. Worth of note is that tests have been performed in 

controlled room conditions (22°C 45%RH) which are far from typical working conditions of 

packaged device, but are close to fabrication environment conditions where these preliminary 

test should be carried out (before packaging device screening). 

The low deviation of the profilometer measurements inside the same cell implies that the 

screening of the devices affected by infant mortality can be performed over the wafer. The use 

of replicas of the same cell, whose size and position was optimized beforehand in IHP; over 
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Fig. 4-32: Weibull plot of the tested devices with the regression curve. 
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the wafer allow the introduction of Technology Characterization Vehicle (TCV) where a 

single MEMS device can be added to check if the optimal distances between metals in the 

movable part are respected or directly checked in final devices before packaging. 

A preliminary Weibull curve has been presented computed with a small number of switches. 

The dispersion of lifetime from switch to switch is very high. However, it has been seen that 

when the devices are selected properly (VPOUT>36 and VPIN - VPOUT≤1) all the devices 

succeed the tests and this infant mortality can be eliminated. In future work, the devices under 

the specified selection criteria should be stressed until the end-of-life to proof the preliminary 

result shown in this thesis. 

4.3 Applications of co-integrated CMOS-MEMS devices 

4.3.1 Synthesis of a new series switch for routing applications 

It has already been seen in the previous section that when the designer changes the working 

frequency (increasing or decreasing the inductance of the anchors), the proposed model can 

easily describe it. This section demonstrates that the model can be used to carry out the design 

of a new component based on the same technology and MEMS constitutive part. The 

equivalent circuit tool is useful not only for RF characterization (failure analysis and 

fabrication process tolerances) but also to synthesize new layout components (FIG) 

 

The series switch is conceived by modifying the metal layer interconnection layout of the V4 

switch (48GHz). The membrane is disconnected from the ground in order to connect it to the 

output Fig. 4-34.  

 

The main advantage of this new design is that the movable part is not modified from the one 

studied in section 4.2.2. This means that not only the reliability tests done are also valid in this 

switch, but also that the fabrication dispersion can be taken into account using the same 

model.  

The model of the series switch is presented in Fig. 4-35. In comparison with the shunt model, 

only a new transmission line is added in order to model the connection of the inductances to 

the anchors. In order to alleviate this effect and improve the isolation, a shunt inductor is 

added. Keeping the parameters of the model with the same value as the shunt RF-MEMS 

switch in previous section only 2 elements are included according to the layout: 1) The 

Metal3 (membrane) Metal2 

(RF-GND) 

Metal1 (bias) 

Metal3 (membrane) Metal2 

(RF-GND) 

Metal1 (bias) 

Metal5 (Line) 

Fig. 4-34: Cross section of the shunt (left) and series (right) switch used for the experiment. 
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Fig. 4-33: Equivalent circuit role in high TRL environment fabrication process 
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transmission line that connects the membrane with the output (TL1), 2) The inductor (Lshunt) 

that resonates with CUP and yields better isolation at the desired frequency (40GHz).  

 

The RF performance of the first trial of series switch is shown in Fig. 4-36. Comparing the 
model with the fabrication process dispersion and the RF measurement of the series switch 
very good agreement is found. Although the RF performance is not optimized yet, (RL<15dB, 
IL<2.5dB and isolation>15dB), the model fits very well the measurements and demonstrates 

excellent accuracy and versatility. The high losses (2.5dB at 40GHz) observed in the 
measurements are due to the resonant circuit composed by CM1-M3 and Lelectrode. This 
resonance can be easily controlled by increasing the length of the bias line or by adding a 
resistor to the bias line. The expected performance of both options is plotted in Fig. 4-36.  

 

 

Fig. 4-36: Comparison of RF performance between measurements of 50 devices (red) and model (grey) and 

expected RF performance of the optimized series switch using the proposed methods: high resistance bias line 

(triangle) and higher inductance bias lines (cross)   
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The optimization of the series switch is presented in Fig. 4-37. The option that has been 
chosen is the increase of the length of the bias lines since it only requires a BEOL run. In 
contrast, in order to add the resistors on the bias line, a FULL run (including the active part of 
the BiCMOS process) are needed which means higher manufacturing time and cost. The 
series switch present 1.7dB of IL and 13dB of isolation at the working frequency (45GHz) 
and the model fits very well with the measurements in the whole band. Again, this agreement 
proofs the versatility of the model allowing the design of new components just modifying the 
equivalent circuit and translating the changes in the layout. This is possible because each 
constitutive part is based on the physical dimensions of the membrane. 

 

The development of this new component in IHP library allows the design of SPDT based 
phase shifters (Fig. 4-38). 

 

4.3.2 Absorptive switches 

An absorptive switch is a switch that whatever his state is, it is always matched. This means 

that there is no reflection of the signal when it is in isolation state so, the VSWR is 1 in all 

states. This matching can be done by using resistive components, by using passive circuits 

(couplers) or by using micro fluidics. As the standard 0.25μm BiCMOS process of IHP 

includes resistors and the line losses for microstrip lines are 6dB/cm at 60GHz (high losses if 

Fig. 4-38: Microscope image of the designed circuits based on the series switch 
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Fig. 4-37: Comparison of RF performance between measurements (red) and model (black) 
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long transmission lines are needed), in this section an absorptive switch using resistors is 

designed for optimal RF performance. 

The potential applications of these switches are in switching matrix telecommunication. One 

example is shown in [86] where a Butler matrix is used after an absorptive SP4T for beam-

forming applications. The aim of having an absorptive SP4T is that the Butler matrix needs to 

have all the ports matched in order to achieve the phase shift that will change the direction of 

the beam in the antenna. 

Literature shows very few examples of absorptive switch using RF-MEMS [88]-[90]. The 

main reasons of these few publications are the complexity on the fabrication process 

(sometimes resistors are required in the design and its integration in the MEMS fabrication 

process is not easy) and the repeatability of the switches is not assured.  

Comparing with other technologies (CMOS, PIN, …) where some commercial solutions 

exists, it is seen that the problem is solved by switching between a resistor and a line as it was 

proposed in [92]. The advantage of using RF-MEMS arises from lower losses and higher 

frequency range.  

Three main different topologies are possible for designing absorptive switches (Fig. 4-39) 

using resistors. After doing a sensitivity study, the most critical parameter of all the designs is 

Ro while the switch parameter (CMEMS) remains at the second place. In terms of losses, the pi-

network and the SPDT based absorptive switch achieve higher insertion losses due to the long 

lines used (/4 at 50GHz  740m). This was confirmed for the Pi-network in [92]where 

losses are approximately 3dB at 50GHz. For this reason, the T-network is optimized using the 

developed series switch. 

 

The optimization of the T-network is based on the minimum number of switches, the 

minimum power consumption and the insensitivity to resistor tolerances. The result is a 

combination of a T-network (with resistors Ro) with /4 lines whose characteristic impedance 

is ZL (Fig. 4-40) 

IN OUT 

Ro Ro 
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IN OUT 

Ro Ro 

Fig. 4-39: Different topologies using resistors for absorptive switches 
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In both states input matching is required. Noteworthy is that in isolation state no switch is 

actuated which implies no power consumption while the circuit is perfectly matched. The two 

states are defined as: 

1) Isolation state: all switches are in UP state (OFF)  

2) Transmission state: all switches are DOWN state (ON).  

In Fig. 4-41 the simulated RF performance of the novel absorptive switch is plotted. The 

simulation has considered the studied fabrication process dispersion of RF-MEMS devices 

(section 4.2.2), the line losses and also the tolerances of the resistors defined by the standard 

CMOS process (10%). Input matching better than 10dB and isolation better than 25dB is 

achieved while losses are above 2dB. Comparing with the Pi-network developed in [92], the 

whole RF performance is improved. 

 

4.4 Conclusions 

The co-integration of RF-MEMS devices in commercial CMOS process improves the 

stabilization and controls the fabrication process dispersion. The presented lumped-elements 

based equivalent circuit is an excellent tool for tracking process deviations and quantification 

of the yield quality on and between wafers. It is able to identify if the capacitance are 

acceptable values for a given RF performance. Moreover, for the development of new 

structures (synthesis), such as series switch, the equivalent circuit has demonstrated also its 

efficiency showing very good agreement between measurements and model. 

Fig. 4-41: Simulated RF performance in isolation state (red) and transmission state (blue) 
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Fig. 4-40: Schema of the designed absorptive switch 
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The IHP fabrication process uses the component approach to develop reliable RF-MEMS 

switches. This approach does not allow any change in the membrane design since every 

process step was previously optimized. By monitoring few specific parameters, it is possible 

to track reliability shortcoming ahead of final device preparation (e.g. packaging) hence 

meeting industrial production requirements. The selection criterion is the pull-in/out voltage 

which should be higher than 37V and the difference between pull-in and pull-out voltage 

lower than 1V.  

This thesis has proposed the method (profilometer measurements) to identify the stiffer 

(higher pull-in/out voltage) switches over the wafer. The low deviation of the profilometer 

measurements inside the same cell implies that the screening of the devices affected by infant 

mortality can be performed over the wafer. The use of replicas of the same cell, whose size 

and position was optimized beforehand in IHP over the wafer; allow the introduction of 

Technology Characterization Vehicle (TCV) where a single MEMS device can be added to 

check if the optimal distances between metals in the movable part are respected. 

A preliminary Weibull curve has been presented computed with a small number of switches. 

The dispersion of lifetime from switch to switch is very high. However, it has been seen that 

when the devices are selected properly (VPOUT>36 and VPIN - VPOUT≤1) all the devices 

succeed the tests and this infant mortality can be eliminated. In future work, the devices under 

the specified selection criteria should be stressed until the end-of-life to proof the preliminary 

result shown in this thesis. 

The deep study done in this thesis about this switch has allowed the development of routing 

circuits (SPDT) and phase shifters. Moreover, the possibility of co-integration with CMOS 

technology opens other applications such as absorptive switches. Since the process deviations 

are well known and characterized, the design of a BIST (Built In Self Test) circuit should be 

the next step. 
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Chapter 5                                            

Conclusions and perspectives 

5.1 Introduction 

The motivation of this thesis is the investigation of possible solutions for reliability 

improvement by means of the design (Design for Reliability). In previous chapters different 

RF-MEMS devices and circuits have been implemented and characterized. This has allowed 

me to identify the advantages and disadvantages of each approach and how the reliability 

challenges can be solved through the design and process steps. The conclusion is that the most 

suitable method depends on the TRL of the process. 

This concluding chapter has two distinguished parts: a first part where a comparison between 

the studied processes is done and a second part where an extension to other available RF-

MEMS fabrication process is demonstrated. The comparison done in the first part aims to 

justify the relationship between the degrees of freedom offered by the process with the 

reliability problems of the device. With this purpose five different indicators are chosen 

(adaptability, process flexibility, process simplicity, repeatability of the process and device 

robustness). The connection between them will determine the design flow to be adopted for 

the development of reliable switch. Using the same indicators (except for repeatability of the 

process), the studied processes are compared with other existing fabrication process of the 

same TRL level. Finally, the main achievements of this thesis are reported along with 

perspectives and personal considerations. 

5.2 Comparison between studied processes 

In Table 5-1 a qualitative comparison between the studied processes is presented. The aspects 

compared are: 

- Adaptability: this concerns the possibility of integrating different configurations 

(series/shunt) and topology (resistive/capacitive) in the same run,  

- Process flexibility: the possibility to introduce new materials in the original process 

and/or modifying the process steps. 

- Process simplicity: measured by the number of masks used for the fabrication 

(packaging not included) 

- Process repeatability: this defines the variation of the RF and mechanical performance 

of the devices over the entire wafer and from wafer to wafer. The tolerances refer to 

the variation on the physical dimensions (size and roughness of materials) of the 

structures. 
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- Device robustness: failure mechanisms with their associated RPN (see Chapter 1)  

o LAAS-CNRS (Chapter 2): temperature inducted elastic deformation, 

equivalent DC voltage, dielectric charging, micro welding, capillary forces, 

creep, fracture 

o CEA-Leti (Chapter 3): structural short, capillary forces, electromigration 

o IHP (Chapter 4): fatigue and creep 

- Co-integration: the possibility to integrate or assemble he MEMS part along with other 

circuit components. 

  
LAAS-CNRS 

(low TRL) 

CEA-Leti 

(medium TRL) 

IHP 

(high TRL) 

Adaptability 

Configuration Series and Shunt Series 
20

 Series and Shunt 

Topology 
Resistive and 

capacitive 
Resistive Capacitive 

Process 

Flexibility 

Material level High  Low/medium  None 

Process level High Medium Low 

Process Simplicity 
21

 Simple (7) Medium (11) High (21) 

Process 

repeatability 

Wafer to wafer Very low High Very high 

On wafer Medium Very low Very low 

Tolerances High Very low Very low 

Device 

robustness 

Failure 

mechanisms 
6 3 2 

Maximum RPN 252 180 120 

Co-integration MMIC Pick and place 
22

 BiCMOS 

Table 5-1: Comparison between the studied fabrication process 

Table 5-1 shows that low TRL processes enable high degree of freedom in terms of 

adaptability at the price of a high dispersion. The contrary happens for low and medium TRL 

environments where the restrictions in adaptability improve the fabrication process 

dispersion. The advantage in terms of adaptability of BiCMOS-MEMS process resides in the 

interconnection possibilities offered by the availability of different metal layers (five).  

In Fig. 5-1 the different aspects compared above in Table 5-1 have been quantified and 

normalized by using a radar chart. The scales used in each case are: 

- Adaptability (ai): from 0 to 2. 0: one topology one configuration, 1: one topology two 

configurations or vice versa and 2: two topologies and two configurations. It is 

normalized as Eq. 5-1 

                                                 
20

 Previous developments in CEA-Leti demonstrate the possibility of shunt resistive switches [67]. However it 

was abandoned due to contact instability of the three dimples 
21

 In brackets the number of masks used 
22

 The switch can be wire-bonded to other devices fabricated with other technologies 
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a
A   Eq. 5-1 

- Process flexibility (fi): from 0 to 10. 10 means very flexible fabrication process and 0 

means no change is allowed. It is normalized as Eq. 5-2 

 
10

i
i

f
F   Eq. 5-2 

- Process simplicity (si): using the number of masks
23

. It is normalized with respect to 

the maximum number of masks of the studied processes (s1…sn) as shown in Eq. 5-3 
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1
1 n

i
i

ss

s
S   Eq. 5-3 

- Device robustness (di): using the highest RPN (RPNi) of the detected failure 

mechanisms and normalized as indicated in Eq. 5-4. 40 is the minimum RPN that can 

be achieved in RF-MEMS FMEA analysis (see Chapter 1) and 212 is the dynamic 

range of failure mechanisms (from 252 to 40)  

 
212

40
1


 i

i
RPN

D  Eq. 5-4 

- Process repeatability (ri): dispersion in RF measurements over the wafer in percentage 

as indicated in Eq. 5-5 

 (%)100 ii rR   Eq. 5-5 

 

Fig. 5-1: Comparison between the three studied fabrication process in terms of adaptability, process variation, 

complexity, failure mechanisms and on-wafer dispersion 

Fig. 5-1 show that the device robustness and the process repeatability increase when 

increasing the TRL environment. On the contrary, the fabrication processes are more complex 

(decrease of simplicity). The price to pay is the adaptability and the process flexibility which 

                                                 
23

 The most suitable parameter to describe the process complexity is the number of steps, but it is not always 

known. The number of steps is proportional to the number of masks. 
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are both drastically reduced comparing with low TRL environments.  Fig. 5-1 shows also that 

the increase of complexity is not related with the dispersion. This is due to the use of standard 

process (BiCMOS) already stable or fabrication processes which have been optimized for a 

single component.  

Regarding the reliability, the plot demonstrates that RPN (and also the number of failure 

mechanisms detected) tends to decrease when the dispersion of the process decreases. This 

proves that the stability and repeatability of the process is very important to develop reliability 

improvements on the design. Moreover, the compromise between adaptability and fabrication 

process dispersion should be taken into account when assessing Design for Reliability in RF-

MEMS devices. 

In conclusion, any improvement in the design can be assessed only once the process 

dispersion is low and under control. This means that the Design for Reliability 

implementation strategy is different depending on the TRL of the fabrication process.  

Design for Reliability in low TRL environments 

The most flexible fabrication process allows all types and configurations in the same wafer 

which is the big advantage for addressing different applications. On the other hand, the 

dispersion over the wafer and from wafer to wafer is very high. For this reason, in this case 

the most suitable strategy to improve the reliability is to modify and adapt the fabrication 

process steps. 

This last sentence seems to be contradictory but it is not. When addressing reliability through 

the design, the first thing that should be assured is the repeatability of the fabrication process. 

If it is not the case, the modifications in the design could not be efficient enough since from 

one run to another, the parameter targeted by the improvement could change. This was done 

in Chapter 2 where the flexibility of the process allow the introduction of annealing steps and 

3
rd

 metal layer to compensate the deviations due to stress gradient 

In general for high dispersion processes, the design flow for RF-MEMS devices and circuits 

that should be used in this case is shown in Fig. 5-2. Depending on the application and desired 

performance (frequency band, RF performance, lifetime…) the type of switch is chosen 

(resistive and/or capacitive, shunt and/or series). For example, for low frequency wide bands 

(DC to 30GHz), a resistive series switch will be more suitable than a capacitive series one. On 

the other hand, if the working frequency band is over 30GHz, either a capacitive switch is 

used (if bandwidth is small enough) or two series switches are cascaded. When the switch is 

chosen, the fabrication process steps are defined.  

 

Afterwards, the design and/or optimization is conceived (from zero or from previous 

developments) taking into account the reliability challenges of the chosen type of switch and 

Design and 

Optimisation 

Fig. 5-2: Design flow for a low TRL processes 
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regarding the desired specifications. Thanks to the high adaptability of these processes, the Rf 

performance can be optimized through the re-design of the device. Finally, the reliability tests 

will show the necessity of improvements in the switch which will be done by means of 

changing specific process steps as was justified above.  

In conclusion, the compromise between of adaptable solutions for reliability improvement and 

the fabrication process dispersion is the most critical point of low TRL environments. That is 

why the reliability improvements by means of modifying steps of the fabrication process is 

the best option. This means that these developments should always take into account whether 

and at which costs/times the proposed process flow could be transferred on an industrial (i.e. 

high TRL) manufacturing process. 

Design for reliability in high TRL environments 

Fabrication processes with low dispersion are used in high and medium TRL environments at 

a price of lower adaptability. The dispersions happen not only over the entire wafer but also 

from wafer-to-wafer. CEA-Leti for example has dispersions about 5% over the wafer (no 

information has been reported for wafer-to-wafer dispersion) and IHP has 5% over the wafer 

and 10% from wafer-to-wafer (see Chapter 3 and 4 respectively). Noteworthy is that bringing 

this assumption to the limit, the possibility of using professional fabrication process (fabless) 

can be a solution in order to omit the cost of the optimization process steps. 

 

The approach used in this case is the optimization of the switch regarding a fixed fabrication 

process whose deviations have already been controlled. The suitable design flow in this case 

is changed as shown in Fig. 5-3. 

In this case the fabrication process is developed starting from specific market needs (for 

example the BiCMOS for mm-wave application in IHP). The MEMS device is conceived 

upon this process by introducing as minor changes as possible in order to complete the 

existing component library. This enables the monolithic integration (SOC approach) of 

MEMS with other technologies. The first step in the design of the library component is to 

define a mechanically and thermally stable movable part. Afterwards, the general RF 

performance optimization (losses as low as possible, maximum isolation…) will be carried 

out. This defines a library of components that will be used in more complex circuits (dotted 

square in Fig. 5-3). 

Once the component library element has been finalized, it can no longer be modified by the 

designer while conceiving more complex circuits.  Similarly, lifetime improvement can be 
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Fig. 5-3: Design flow for medium/high TRL environments. The steps in the dotted square are done only once 

and provide a design library with the developed components. The designer cannot interact in these steps. 
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implemented at circuit level by introducing a BIST solution which does not implies 

modifications of the MEMS part. At this stage, the desired performance for a specific 

application will be taken into account. Due to the restrictions in RF configurations coming 

from the low adaptability of the switch, the design of more complex circuits is basically based 

on smart and original use of the basic ones available (e.g. use of shunt switch and /4 line to 

realize an SPDT, instead of using only series switches). An example of this was done for the 

design of the SPDT in Chapter 3 where the T-junction was optimized for a maximum 

isolation (35dB in Ku-Band) since the switch reached only 25dB in the same band. 

Even if the fabrication process dispersion is very low, it is very important to see if it has a 

relevant influence on the device performance or reliability. This can be done by means of 

identifying the parameters that can be used as indicators: for example, a very low pull-in 

voltage could mean a lack of stiffness on the device as was observed in Chapter 4. Taking into 

account this, the yield of the process can be improved from an application point of view by 

means of defining a BIST which could compensate the unavoidable deviations of the device 

during lifetime. 

To sum up, the decision to optimize each step of the fabrication process has a direct 

consequence on the reduction of dispersions. The main drawback of this approach is the low 

adaptability. Since the dispersions are controlled, the best way to enhance reliability is 

through the design or by developing external BIST circuits to control the device or circuit 

performance over lifetime, never modify the device design. 

Co-integration with other technologies 

RF-MEMS devices and circuits are supposed to be integrated in more complex systems as 

was described in Chapter 1. This is not the only reason why the co-integration is important; 

another one is the opportunity for reliability improvement by means of BIST circuits. It can 

only have sense to develop a BIST circuits when fabrication process dispersions are known 

and controlled. For this reason, this section only deals with high and medium TRL 

environments. 

BIST circuits have two constitutive parts (Fig. 5-4): a sensing network in charge of track the 

critical parameters and a logic control circuit whose aim is determine the optimal actuation 

conditions during lifetime. 

The sensing network should be able to read at each moment during lifetime the parameter that 

is used as indicator. It can be either an intrinsic parameter of the device (CMEMS, RON, VPI…) 

or a specific circuit designed with this aim. An example of a specific circuit could be a 

RF-MEMS 

circuit 

Sensing 

network 

Logic control 

circuit 

RF IN RF OUT 

DC Bias 

circuit 

BIST 

Fig. 5-4: Block diagram of RF-MEMS based circuit with BIST circuit 
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capacitance under the membrane that is able to track the evolution of the UP and DOWN 

capacitance versus time (solution adopted by MEMtronics [94]). In both types of switches 

(resistive and capacitive), the easiest parameter to track is the capacitance between the 

electrode and the movable part in order to disturb as less as possible the normal running of the 

device.   

 

The component approach used for example by CEA-Leti (medium TRL) directly implies the 

use of flip-chip or wire bonding techniques for co-integration. This is called “pick-and-place” 

solution and can be a very adequate for reflect array antennas as was demonstrate in 

ARASCOM
24

 project. However, in this case, the combination with a BIST circuit is more 

difficult and all the reliability issues should be solved beforehand (Design for Reliability) 

with a robust reliable device. 

It is important to note that all the fabrication process which enables the co-integration with 

BiCMOS processes are in high TRL environment. There are three main advantages of MEMS 

in BiCMOS processes: the possibility of develop a BIST system, the low dispersion of the 

process and the flexibility in configuration of the device. The third advantage remains in the 

possibility of using the different metal levels of the standard BiCMOS process in order to 

change the configuration (as was done in Chapter 4). Another fourth advantage (considered 

when working at frequencies over 80GHz) is that the interconnection losses between systems 

are lower than in flip-chipped/wire-bonded circuits. 

5.3 Evaluation of other existing RF-MEMS fabrication process 

The conclusions extracted from the comparison done in previous section can be extended to 

other existing RF-MEMS fabrication processes. The most critical part is the definition of their 

TRL. This has been relatively easy for the processes of Chapter 2 to 4 but it can be quite 

subjective for the rest. In this section the justification of the TRL selection is done in order to 

check the relationships observed on the radar curve observed in Fig. 5-1. Among the large 

number of available RF-MEMS fabrication processes, only a small but representative number 

has been considered, spanning from research to industrial and commercial ones as explained 

in Table 5-2. 

The TRL associated to the process have been assigned subjectively from information 

available at the moment. Rather than the exact value of the TRL, the classification has been 

done upon the following categories: low (1-TRL to 4-TRL), medium (4-TRL to 7-TRL) and 

high (7-TRL to 9-TRL). Another remark is that companies which use fabless approach 

                                                 
24

 ARASCOM (Agile Reflectarray Antennas for Security & COMmunication) is supported by the European 

Commission, in the frame of the 7th Framework Research Program "FP7" ("ICT / Micro-Nano Systems" theme / 

Grant Agreement n°222620). It has begun on May 15th, 2008-2011 and was headed by Thales Alenia Space. 

Fig. 5-5: Photo of the MEMtronics switch with the sensing pad extracted from [94] 
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(Wispry, MEMtronics, Baolab…), usually found in high TRL environments, are not 

considered in this comparison. The only exception which is considered is DelfMEMS where 

the fabrication process is still proprietary even if they are actually using Tronics facilities 

[95]. 

 Foundry TRL Comments 

L
o
w

 T
R

L
 

KTH 3 

Research institute of Royal Institute of 

Technology 

Microsystem Technology Laboratory at KTH 

Different configurations and possibilities are 

being explored for reliable design of RF-MEMS 

circuits (see Chapter 1) 

M
ed

iu
m

 T
R

L
 

FBK 4-5 

Research institute from University of Perugia 

Spin-off “RF Microtech” 

All configurations in same substrate (Silicon or 

Quartz) 

Prototypes and medium-scale manufacturing 

XLIM 5-6 

Research institute from CNRS and University of 

Limoges 

Capacitive and resistive switches demonstrators
25

 

Spin-off “AirMEMS” 

DelfMEMS 7 

Spin-off from CNRS  

Owns manufacture process and has a partner for 

future mass production (Tronics) 

No product is nowadays available 

H
ig

h
 T

R
L

 

Omron 9 Develops commercial electronic components 

such as SPnT. 

Radant 9 Commercial SPnT from DC to 30/40GHz 

Table 5-2: Chosen process with the given TRL and its justification 

Using the same indicators than in previous section, a radar chart for each group is plotted: low 

TRL (Fig. 5-6), medium TRL (Fig. 5-7) and high TRL (Fig. 5-8). In this case the dispersion 

of the process is unknown and for this reason it is removed from the study. The failure 

mechanisms were determined by the type of switch and the reliability performance available: 

- KTH: Ru-Ru based switches [97]: stiction and structural short (RPN: 180). No 

information provided for [98]  

- FBK [99]-[100]: breakdown, dielectric charging, ESD (RPN: 160) 

- XLIM: AirMEMS device: creep [101] (RPN: 120) 

- DelfMEMS: stiction [102] (RPN: 40) 

- Omron: fatigue and stiction [103] (RPN: 120) 

- Radant: stiction [104] (RPN: 40) 

                                                 
25

 XLIM has participated in MEMO Program (CNES – Centre National d’Etudes Spatiales) which aims at prove 

in-orbit MEMS reliability [96] 
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Fig. 5-6: Radar chart for low TRL environment 

 

Fig. 5-7: Radar chart for medium TRL environment 

 

Fig. 5-8: Radar chart for high TRL environment 
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The curve of each process is very similar when comparing with the same TRL level. For low 

TRL, the processes are flexible and adaptable but at a cost of higher reliability problems. On 

the other hand, the processes are simple (low number of masks and steps needed) which 

means lower development costs
26

. In the case of DelfMEMS, the curve has similar 

characteristics as the high TRL processes due to the fabrication process restrictions imposed 

by the fabless approach. Finally, for high TRL environment, all the parameters are reduced. 

However, in the case of IHP the complexity of the process is very high due to the co-

integration with BiCMOS. In conclusion, the reliability improvement procedure fixed in 

previous section is also valid for fabrication process of the same TRL environment. 

5.4 General conclusions and perspectives 

This thesis has presented how reliability can be enhanced in three different RF-MEMS 

fabrication processes. The development of an equivalent circuit based on the physical 

characteristics (size, dimensions, materials…) of the different devices have been the chosen 

tool for RF performance monitoring versus time. Since each component of the equivalent 

circuit is associated to a particular part of the device, the detection of failure mechanisms has 

been done by monitoring this component and studying its impact on the global performance 

of the device. 

The proposed reliability solutions are based on the re-design of the structure and its 

manufacturing process (Design for Reliability). Depending from the process TRL the design 

for reliability which applies is different. In all cases, the most relevant parameter that should 

be taken into account to afford Design for Reliability is the process dispersion. For low (1 to 

4) TRL processes the optimal strategy remains in the modification of the fabrication process 

steps. In medium and high TRL environments (4 to 9) the reliability enhancement should be 

done through the design (for example adding a BIST circuit) but never modifying the standard 

component. 

In particular, for low TRL process (LAAS-CNRS) the opportunity to modify the process steps 

represents the recommended choice to face reliability. For instance an additional metal layer 

over the movable part is proposed in order to reduce the DOWN capacitance dispersion and to 

increase the stiffness of the cantilever. For resistive switches the proposed solution was the 

optimization of an annealing step in order to reduce the deflection due to initial stress. This 

prevents the dimples to contact the transmission line. Both solutions were adopted because the 

in-wafer and wafer to wafer dispersion was too big (15% and over 50% respectively). 

For medium TRL environment (CEA-Leti) the monitoring of the contact resistance was 

studied under different RF power level through the contact. Preliminary results have shown 

that the higher the RF power through the contact (PRF), the lower the number of actuations 

needed for a stable contact (NAC). These results were very likely affected by the carbon 

contamination of the contact due to the non-hermetic package. In order to confirm the 

relationship between NAC and PRF it was proposed to repeat the same protocol under a 

controlled environment. No design for reliability can be applied without this total 

comprehension of the failure mechanism. 

For high TRL process (IHP), the fabrication process dispersion origin was identified. The 

critical parameter to track is the UP and DOWN state capacitance responsible of the RF 

performance deviation in the initial state. The advantage of using lumped-elements based 

                                                 
26

 The cost of the process is related with the cost of the set mask used and the number of steps. The differences in 

photolithography mask layers, minimum feature size and reticule size determine the price. For example, 

BiCMOS processes use about 20-26 masks which cost $100-180k per unit. 
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circuits in the design of circuits is the based on simple DC or LF measurement resides in the 

dramatic reduction of the testing time. 

For the IHP shunt switch, long-term reliability tests have demonstrated that the failure 

mechanism is the mechanical fatigue and creep. However, a simple device screening 

procedure based on actuation bias monitoring of pristine devices (VPOUT>36 & VPIN-VPOUT≤1) 

has been proposed. A 67h of continuous DC stress in harsh environments (22° and 45% 

humidity) was experimentally observed. This approach is based on the measurements of the 

distance between membrane and electrode or line in rest position (without actuating the 

switch). This technique is non-intrusive and can be implemented in mass-production by 

monitoring specific test vehicle device or using the final devices ahead of packaging. 

The possibilities in terms of adaptability (five metal levels) that the BiCMOS process from 

IHP presents have allowed designing a reliable series switch. The same movable membrane 

previously developed by IHP (shunt switch) was reused as it was, and only the layer 

interconnect was modified and optimized.  This new development has been possible thanks to 

the equivalent circuit model which allowed carrying out the analysis of existing devices so as 

the synthesis of the new ones.  

Five parameters have been defined in order to compare the different TRL environments: 

adaptability, process simplicity, process flexibility, device robustness and process 

repeatability. The processes with similar TRL draw similar correlations between the different 

parameters. For this reason, for processes with equivalent TRL, very similar conclusions can 

be drawn and the analysis done for three considered MEMS processes can be extended to 

other existing fabrication processes. 

The adaptability and flexibility of the process has played a very important role in order to 

obtain optimal RF performance. The best RF behavior for SPnT was obtained with low TRL 

environment because it was allowed to dispose the switches in different orientations than 

from vertical or horizontal as was the case in medium and high TRL processes. On the other 

hand, the repeatability of the process limits the future commercialization of these circuits. 

Another RF-MEMS application that has been developed in this thesis is the absorptive 

switches. It has been developed in the IHP process due to the possibility to integrate resistors. 

The novel configuration has very low power consumption (the switches either all ON or all 

OFF), a minimum number of switches (2) and it is insensitive to the resistor tolerances. This 

circuit is currently under fabrication. 

This thesis has intentionally not focused on the packaging issue. In spite of the fact that 

packaging is instrumental for the correct functioning of the device (An unpackaged RF-

MEMS is not a MEMS). The main reason is that in order to carry out experimental 

observation (e/g. membrane profile), unpackaged devices were often needed. For what 

concerns effect of the environment it must be pointed out that the tests have been done always 

under the same conditions so to guaranty a fair comparison of the experimental results. 

Despite being out of the scope of the thesis, from the designer point of view, the packaging 

should also be considered from the very beginning of the design stage. 

As a very general conclusion, looking at the future of RF-MEMS, two types of research have 

to be done: the study of the underlying failure mechanisms and the development of stable 

fabrication processes typically carried out in low and high TRL environment respectively. 

The close proximity of these two environments is instrumental to accelerate the time to 

market of future innovative RF-MEMS concepts. The solutions adopted for the low TRL 

should always take into account if a higher TRL process could, in the future, implement this 
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solution. From the other side, medium and high TRL processes should always take into 

account the know-how acquired in lower TRL environments. 
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DUT – Device Under Test 

ESA – European Space Agency 

ESD – ElectroStatic Discharge 

EVM – Error Vector Magnitude 
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