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M. LONGÈRE Patrice Professeur, ISAE, Toulouse
Examinateur: M. RACINEUX Guillaume Professeur, École Centrale de Nantes
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Résumé :
Une Bande de Cisaillement Adiabatique (BCA) est une bande étroite associée à de grandes déformations

et de hautes températures dans les matériaux ductiles. Il est bien établi que les BCAs impliquent souvent
une dépendance au maillage dans la simulation numérique du phénomène localisé. Pour contourner cette
difficulté, des modèles de discontinuités ont été proposés et largement appliqués en ingénierie. Cepen-
dant, des conditions cruciales doivent être vérifiées afin de développer ces modèles, telles que des descrip-
tions précises des profils physiques, des relations de comportement dans des approches multi-physiques
et surtout une capacité de prédiction de la largeur de bande. Sans discrétisation du domaine physique,
on propose un nouveau modèle de la structure de BCA basé sur une approche énergétique variationnelle,
incluant l’élasticité, l’écrouissage, la conduction de chaleur et la condition limite thermique. Les lois de
comportement sont transformées en un problème d’optimisation mathématique par rapport à un ensemble
de scalaires. A l’aide d’expressions canoniques de profils de déplacement et de température, la largeur de
bande et la température centrale sont calculées en tant que des variables internes du potentiel incrémental
total en régime stationnaire et transitoire. Comme application de notre modélisation variationnelle 1D
à la localisation de cisaillement, on étend et propose une modélisation variationnelle à deux échelles
en introduisant un “élément de localisation de la déformation”. Contrairement aux travaux existant, des
déformations plastiques et des températures non homogènes sont prises en compte par les expressions ana-
lytiques canoniques, et l’évolution de la largeur de bande est calculée comme un problème d’optimisation
d’une fonctionnelle énergétique. Une dérivation variationnelle valide sa faisabilité théorique. De même,
une implémentation d’élément fini est également dérivée et donne une bonne fondation pour une future
mise en oeuvre.

Mots clés: Approche énergétique variationnelle, Couplage thermo-mécanique, Thermo-visco-plasticité,
Bandes de cisaillement adiabatique

Abstract :
An Adiabatic Shear Band (ASB) is a relatively narrow band presenting large deformation and high

temperature, occuring in various ductile materials. It is well established that ASBs can cause mesh depen-
dence in the numerical simulation of this localization phenomenon. In this respect, several discontinuous
models have been proposed and widely applied for overcoming this difficulty. Yet some crucial conditions
are substantially required to build and improve these models, such as the accurate description of physical
profiles, additional constitutive relations in multi-physical approaches and the prevision of bandwidth evo-
lution. Without a mesh to discretize the physical domain, we propose a new energy-based variational model
for adiabatic shear banding structure, including elasticity, work hardening, heat conduction and thermal
boundary condition. Balance and constitutive equations are transformed into a mathematical optimization
problem with respect to a limited set of scalars. Consequently by means of canonical expressions of dis-
placement and temperature profiles, the bandwidth and central temperature can be accurately tracked as
internal variables of the total incremental potential in steady and transient state. As an application of our
1D variational modelling for shear localization, we extend it and propose a variational two-scale model
resorting to a strain localization element. Compared to existing work, the advantage of our approach is that
an inhomogeneous plastic deformation and temperature distribution in the localized region are introduced
by canonical analytical expressions. Moreover bandwidth evolution can be accurately calculated by the
optimization of an incremental potential. The variational derivation theoretically validates the feasibility of
our two-scale modelling. Furthermore finite element implementation is derived and gives a good base for
future implementation.

Keywords: Variational method, Thermo-mechanical coupling, Thermo-visco-plasticity, Adiabatic shear
bands

Discipline : Sciences de l’Ingénieur
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Directeur de thèse: STAINIER Laurent
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Abstract

An Adiabatic Shear Band (ASB) is a relatively narrow band presenting large deformation
and high temperature, occuring in various ductile materials. It is well established that
ASBs can cause mesh dependence in the numerical simulation of this localization phe-
nomenon. In this respect, several discontinuous models have been proposed and widely
applied for overcoming this difficulty. Yet some crucial conditions are substantially re-
quired to build and improve these models, such as the accurate description of physical
profiles, additional constitutive relations in multi-physical approaches and the prevision
of bandwidth evolution.

Without a mesh to discretize the physical domain, we propose a new energy-based
variational model for adiabatic shear banding structure, including elasticity, work harden-
ing, heat conduction and thermal boundary condition. Balance and constitutive equations
are transformed into a mathematical optimization problem with respect to a limited set of
scalars. Consequently by means of canonical expressions of displacement and tempera-
ture profiles, the bandwidth and central temperature can be accurately tracked as internal
variables of the total incremental potential in steady and transient state.

Based on this thermo-mechanical coupled variational framework, we can verify the
generality of the proposed analytical approach with respect to constitutive models, as
illustrated through various thermal softening laws. The corresponding influence of ma-
terial parameters is also analysed in the study. We can show that the onset of ASBs is
easier for small strain rate sensibility exponent, high thermal softening coefficient and
high-speed loading. In addition, we numerically validated that thermal conduction is a
noticeable parameter in the final term of ASBs formation, influencing the size of band-
width. Considering that it is difficult to keep an isothermal boundary condition of the layer
undergoing high strain rate, the additional heat exchange on the boundary is included in
the variational models. Moreover, a formula for exchange coefficient is numerically fitted
and conveniently applied in the calculation of the transient state, which ensures the inde-
pendence of bandwidth on structure size. Accounting for work hardening and elasticity,
we propose a new thermo-elasto-viscoplastic model of shear localization for the widely
used Johnson-Cook law in engineering. A new loading/unloading condition, stemming as
a Kuhn-Tucker relation, is introduced for this variational model. The stress evolution and
the influence of cyclic loading on the formation of ASB are analysed, presenting a good
correspondence with simulations by finite element method.

As an application of our 1D variational modelling for shear localization, we extend it
and propose a variational two-scale model resorting to a strain localization element. Com-
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iv Abstract

pared to existing work, the advantage of our approach is that an inhomogeneous plastic
deformation and temperature distribution in the localized region are introduced by canon-
ical analytical expressions. Moreover bandwidth evolution can be accurately calculated
by the optimization of an incremental potential. The variational derivation theoretically
validates the feasibility of our two-scale modelling. Furthermore finite element imple-
mentation is derived and gives a good base for future implementation.

Keywords: Variational method, Thermo-mechanical coupling, Thermo-visco-plasticity,
Adiabatic shear bands
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Résumé

Une Bande de Cisaillement Adiabatique (BCA) est une bande étroite associée à de grandes
déformations et de hautes températures dans les matériaux ductiles. Il est bien établi que
les BCAs impliquent souvent une dépendance au maillage dans la simulation numérique
du phénomène localisé. Pour contourner cette difficulté, des modèles de discontinuités
ont été proposés et largement appliqués en ingénierie. Cependant, des conditions cru-
ciales doivent être vérifiées afin de développer ces modèles, telles que des descriptions
précises des profils physiques, des relations de comportement dans des approches multi-
physiques et surtout une capacité de prédiction de la largeur de bande.

Sans discrétisation du domaine physique, on propose un nouveau modèle de la struc-
ture de BCA basé sur une approche énergétique variationnelle, incluant l’élasticité, l’écroui-
ssage, la conduction de chaleur et la condition limite thermique. Les lois de comporte-
ment sont transformées en un problème d’optimisation mathématique par rapport à un
ensemble de scalaires. A l’aide d’expressions canoniques de profils de déplacement et de
température, la largeur de bande et la température centrale sont calculées en tant que des
variables internes du potentiel incrémental total en régime stationnaire et transitoire.

Basée sur le cadre variationnel en thermomécanique couplée, la généralité des for-
mulations analytiques proposées par rapport aux modèles constitutives est vérifiée sur
différentes lois d’adoucissement thermique. Les influences correspondantes des paramètres
du matériau sont analysées dans cette étude. On observe qu’il est facile de provoquer
l’apparition de BCAs dans les matériaux ayant un petit exposant de sensibilité à la vitesse
de déformation, un coefficient élevé d’adoucissement thermique et une vitesse de charge-
ment élevée. En outre, on valide numériquement que la conduction thermique est un
paramètre remarquable dans la dernière phase de la formation de BCA, qui influence
la largeur de bande. En considérant qu’une bande soumise à de grandes vitesses de
déformation garde difficilement une condition isotherme aux frontières, l’échange de
chaleur supplémentaire est ensuite incluse dans la modélisation variationnelle. On pro-
pose une formule du coefficient d’échange, qui joue un effet important en régime transi-
toire par une méthode d’ajustement polynomial, garantissant l’indépendance de la largeur
de bande par rapport à la taille de la structure. En incluant l’écrouissage et l’élasticité
dans le modèle de Johnson-Cook, un nouveau modèle thermique élasto-viscoplastique de
BCA est proposé pour analyser les évolutions de contrainte sous un chargement cyclique,
aussi bien que l’influence de chargement en BCA. Les résultats correspondent bien aux
simulations par la méthode des éléments finis.

Comme application de notre modélisation variationnelle 1D à la localisation de ci-
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vi Résumé

saillement, on étend et propose une modélisation variationnelle à deux échelles en in-
troduisant un “élément de localisation de la déformation”. Contrairement aux travaux
existant, des déformations plastiques et des températures non homogènes sont prises en
compte par les expressions analytiques canoniques, et l’évolution de la largeur de bande
est calculée comme un problème d’optimisation d’une fonctionnelle énergétique. Une
dérivation variationnelle valide sa faisabilité théorique. De même, une implémentation
d’élément fini est également dérivée et donne une bonne fondation pour une future mise
en oeuvre.

Mots clés: Approche énergétique variationnelle, Couplage thermo-mécanique, Thermo-
visco-plasticité, Bandes de cisaillement adiabatique
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Chapter 1

Introduction

Abstract :

In thermo-visco-plastic materials, adiabatic shear localization occurs
easily when they are subjected to intense impact loading. Since Tresca
first observed this phenomenon during the forging of a platinum bar, it
has attracted a considerable attention from researchers as a precursor

to cracks. This chapter will give a detailed description of adiabatic
shear bands, and illustrate its study status from the experimental,

theoretical analysis and numerical simulation points of view in the last
several decades, pointing out the advantages of our approach to this

thermo-mechanical coupled problem.

Résumé :

Les bandes de cisaillement adiabatique (BCA) apparaissent souvent
dans les matériaux thermo-visco-plastique soumises aux chargements
impacts intenses. Leur formation suscite un grand intérêt en vue des
applications en dynamique des matériaux depuis elle est observée
pendant le forgeage d’une barre de platine. Ce chapitre présente

brièvement une description des BCAs, et illustre leur cadre d’étude
pendant des dernières décennies compte tenu des développements des
expériences, des analyses théoriques et des simulations numériques,

puis indique des avantages de notre approche pour modéliser le
problème de BCA.
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1.1 Adiabatic shear bands 3

1.1 Adiabatic shear bands
Adiabatic shear instability is an ordinary phenomenon in ductile materials undergoing
high strain rate loading. Under strong impacts, a lot of heat and intense strain accom-
panying inelastic deformation form in localized zones in a short time, which we call
adiabatic shear bands. Since first observed and correctly interpreted by Tresca in the
19th century, shear bands have drawn a great attention in the research community on its
initiation, propagation and formation. In general, adiabatic shear band is the result of
thermo-mechanical instability appearing at large deformation and high temperature in the
narrow regions, usually a few tens of micrometers width. Thus the existence of jump
distance makes it seem as a singular surface due to its thin thickness between two sides
of the band. Yet from the experiment photos in microscopic state it still represents a good
continuity in the materials, the traction can transform from one side to the other side in
that region. FIG.1.1 is the shear band observed in the bulk material under the optical
microscope [Odeshi et al., 2006].

Figure 1.1: Adiabatic shear band in the bulk material ([Odeshi et al., 2006])

The localized band frequently occurs in a wide range of metals, alloys, fractured and
granular ceramics, polymers and ductile single crystals during high shearing rate pro-
cess. This failure mechanism has been observed in ballistic penetration, metal forming,
explosive-metal interaction and shock loading. Similarly, if we neglect thermal softening
in civil engineering, the localized regions presenting in rocks and concrete can be seen as
isothermal shear bands. Physically, the formation of adiabatic shear bands is an interactive
process: an increase in strain rate in a weaker zone causes a local increase in temperature
which in turn, causes a further increase in strain rate [Molinari and Clifton, 1987] for a
thermal softening material. The high temperature (several hundreds degrees) and enor-
mous deformation are the main characters of adiabatic shear bands. The reason why we
call it adiabatic is that the formation of band is so short that the heat exited from the band
is negligible compared with the concentrated part in the band. However, it is a misnomer

Energy-based variational modelling of adiabatic shear band structure



4 Chapter 1. Introduction

about this phenomenon. Many experiments confirm that the thermal conduction has an
important effect in the final stage of its formation. Once the instability and localization
set in, the gradient of temperature on the boundary will influence the bandwidth and the
central temperature, thus the material is no longer adiabatic. This is also why we should
consider the conduction in numerical simulation.

Although the profiles of localized band are continuous in fully microscopic physics
of material, large inhomogeneous distributions of temperature and strain rate cause the
damage of material properties in localization region. Furthermore, voids and micro-cracks
appear gradually in the evolution of adiabatic shear bands, and accelerate catastrophic
failure. FIG.1.2 is the micro-structure in the localized shear zone of Ti-6Al-TV alloy
obtained by [Bai et al., 1994]. Thus many researchers regard this domain as a precursor
to the rupture of the material. Normally it should be deleterious to the performance of
material in the mind of most researchers, yet recently Magness [Magness et al., 1994]
proposed that adiabatic shear failure contrarily enhance the performance of U3/4Ti as
a penetrator material [Wright, 2002]. Better understanding of shear bands’ formation,
propagation and behavior is also of interest in the development of metal forming and
optimum design.

Figure 1.2: Voids and mico-cracks (Ti-6Al-4V alloy [Bai et al., 1994]) in adiabatic shear
band

1.2 State-of-the-art

For this coupled thermo-mechanical problem characterized by large deformation local-
ized in tens of micrometres and high temperature close to melting point, experiments or
numerical simulation present many challenges. Here we give a short overview of the
research of adiabatic shear bands in last several decades.

Energy-based variational modelling of adiabatic shear band structure



1.2 State-of-the-art 5

1.2.1 Experiments
In general, the experimental structures for the investigation of adiabatic shear bands
mainly concentrate in the following types: Split Hopkinson Bar in one-dimensional test,
Kalthoff’s experiment, collapse of thick-walled cylinder and thick-walled torsion experi-
ments.

1.2.1.1 Split Hopkinson Bar

Split Hopkinson Bar is the most widely used device to test the form of stress-strain dia-
gram at high-strain rate loading, and we call it one dimensional experiment owing to its
loading at one direction. Roughly speaking, it is divided into three variations according
to the loading states: tension, compression and torsion. The specimen must be short and
ductile enough that it can come into equilibrium state when the high impacting forces are
acted on the two bars during the early part of loading pulse. Usually the dynamic force
is uniformly subjected to the materials, thus once the shear localization happens, all the
bands will propagate at the same time.

The formation of adiabatic shear bands (ASBs) in hat-shaped specimen operated by
split Hopkinson pressure bar is mostly referenced in the area of shear localization. Since
firstly introduced by Meyer and Manwaring [Meyer and Manwaring, 1986], this tech-
nique has been widely and successfully applied in the analysis of different material prop-
erties under the occurrence of shear localization at high strain rate loading. For instance,
Longère [Longère et al., 2005] presented the formation of ASBs in hard structural steel
to validate their thermal elastic-viscoplastic constitutive model with viscous deteriora-
tion. The influences of geometry sizes on stress rate in Ti-6Al-4V are also investigated
at quasi-static and dynamic impacting by Peirs [Peirs et al., 2008], and it is found that
the width of the shear region and the radius of the corners play an important role in
their constitutive relations. Besides these, the dynamic effect of adiabatic shearing on
its propagation and fracture behaviour is studied for AISI 4340 steel at high compressive
strain-rate [Odeshi et al., 2005]. They point out that the bands are inherently very hard
and brittle, and exhibit a tendency to brittle fracture, causing fast propagation speed. Crit-
ical condition is also a hotspot in experimental view. Li [Li et al., 2003] obtained that the
critical strain rate for failure was ε̇c = 2000s−1 in titanium alloy-Ti17 though impacting
cylindrical and conical frustum specimens.

Dynamic torsion experiment concerning hat-shaped specimen also contributes a lot in
the examination of ASB [Bai et al., 1994, Ranc et al., 2008]. FIG.1.3 is the formation pro-
cess of ASB and the corresponding stress-strain curve of Ti-6Al-4V [Liao and Duffy, 1998]
tested by dynamic torsional experiment. In the first stage, material experiences an homo-
geneous elastic and plastic deformation, and arrives at the maximum shear stress with
further hardening. Subsequently, strain softening plays a gradually important effect (in
the second stage), and then influences the magnitudes of stress, which dropped suddenly
due to thermal softening (in the third stage). Meanwhile the variation of temperature also
passes three stages: from unapparent increase to gradually slow changes, finally arriving
at a large and fast increase. In general, ASBs form prior to or at the start of sudden drop
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in stress.

Figure 1.3: Stress-strain curves at High-speed photographs of the grid pattern(Ti-6Al-4V
alloy in [Liao and Duffy, 1998])

The other three experimental structures: Kalthoff’s experiment, collapse of thick-
walled cylinder and thick-walled torsion experiments, customarily capture the features
of two-dimensional growth and propagation of one or several adiabatic shear bands.

1.2.1.2 Kalthoff’s experiment

Kalthoff’s experiment is a structure to examine the initiation and propagation of ASBs
in a target plate with one or two pre-notch undergoing a high impacting velocity. Three
special kinds of behaviours may appear in the process: stable-brittle-ductile, brittle and
ductile. The failure modes depend on impacting speed and material types. Guduru
[Guduru et al., 2001] studied the evolution of dynamic ASBs in pre-fatigued single edge
notched specimen for C300 maraging steel. The shearing band has an initial width about
100µm, and later localized temperature starts to diffuse in that region, then displays ’hot
spots’ distribution in front of crack tip along the length of a well-developed shear band.
These experimental results are contrary to the widely used theoretical models assuming
that temperature fields have a laminate structure within ASBs.
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Ballistic impact is a mostly well-known example to examine and investigate the for-
mation and micro-structural property of ASBs. For Ti-6Al-4V targets, Li [Li et al., 2010]
found that two types of ASB existed in the impacted process: deformed bands and trans-
formed bands (white-etching bands are also classified in transformed bands). Martinez
[Martinez et al., 2007] studied the plug formation in the targets at velocities from 633
m/s to 1027 m/s. The characteristically white-band thickness bands varied from 5 µm-40
µm with the incidence of ASBs increasing with impact velocity, but decreased with the
loading time.

1.2.1.3 Thick-walled compression and torsion experiments

Compression-torsion Kolsky bar was developed by Chichili and Ramesh in 1999 to ad-
dress the ASBs in materials. Notched thick-walled cylinders subjected to dynamic com-
pression and torsion were examined to investigate the occurrence of dynamic shearing
localization in α-titanium [Chichili et al., 2004]. They observed the phenomenon of pla-
nar dislocation motion, twinning or sub-grains near to the band tip.

Recently a lot of contributions were devoted to the investigation of multiple shear
bands in view of satisfying industrial need. Nesterenko developed thick-walled cylinder
specimen [Nesterenko et al., 1998] to investigate their spacing in Ti-6Al-4V, titanium,
copper and FCC materials, and a typical feature of self organisation is observed in the
evolution of bands. Xue [Xue et al., 2003, Xue et al., 2004] obtained that the spacing of
shear bands in stainless steel was expressed as:

L =
∑i Li,i−1

ni

R f 0

R f

where R f 0 is the radius of specimen at the initiation of the shear band, and R f is the final
radius at any larger effective strain. Li,i−1 is defined as the spacing between ith and i−1th
shear bands.

As we said in the first part, material damage originates from the localization zone.
Due to high temperature and large deformation produced in a short time, the occurrence of
micro-cracks, voids is unavoidable, necessarily causing a reduction of material mechan-
ical ability. It is important to emphasize that the constitutive behaviour within a shear
band is influenced by micro-structural details. So recently some legitimate constitutive
relations about shear band are also introduced in microscopic scale ([Hong et al., 2010]).
Consequently, for the sake of predicting accurately the occurrence of ASBs, many engi-
neers try to look into the formation of ASBs in microscopic structure.

Xue [Xue et al., 2002] indicated that shear bands are favoured initiation sites for fail-
ure for Ti-6Al-4V alloy, occurring by void nucleation, growth, and coalescence inside the
thermally softening regions. Furthermore, the work in [Xue et al., 2008] investigated the
micro grains effects in 304 stainless steels through electron backscatter diffraction tech-
nology (EBSD), showing that shear-induced deformation structure was sensitive to initial
micro-structure and local orientation of ASBs. Moreover in micro-structure mechanisms,
Murr [Murr et al., 2009] pointed out that the ASB evolution in micro-structural stage is
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accompanied by the evolution of the dark deformation bands, and the cracks nucleating
and propagating within the ASBs were observed to increase from 8% to 87% of the ASB
length with increasing impact velocity.

Meyers et al [Meyers et al., 2001, Meyers et al., 2003] used hat-shaped specimen and
thick-walled cylinder to investigate the micro-structural evolution in stainless steel. Using
compression test performed by UCSD’s recovery Hopkinson bar, Nemat-Nasser investi-
gated the dependence of flow stress on strain rates (from quasi-static to dynamic cases)
and initial temperature (77-1000 K) in three different types of micro-structure of Titanium
alloys [Nemat-Nasser et al., 2001]. The results show that only the initial micro-structural
features affect the threshold stress and the athermal part of flow stress, and the initial tem-
perature has more influences on the flow stress than that of strain rate. Moreover based on
their work [Nemat-Nasser and Li, 1998], a physical constitutive model was also applied
to predict the performance of material, which gave a good development to the numerical
simulation of adiabatic shear band in titanium alloys.

In fact, many experiments illustrate that the existence of adiabatic shear band has a
large influence to material entire property. However, due to its tiny bandwidth and in-
homogeneous high temperature distribution, experiment is not sufficient to capture the
characters of adiabatic shear band, such as the investigation and measure of temperature
in the band. Thus the research in the views of theory and numerical algorithm gets con-
siderable interests to mechanics and materials communities.

1.2.2 Theoretical analysis
For coupled thermo-mechanical problems, the main equations governing adiabatic shear
banding structure are simply described as follows:

ρ0v̇−σ,y = 0

ρ0Cθ̇− kθ,yy = βDint

i.e. conservation law of momentum and balance of energy. Here ρ0 is material density, C
and k are thermal capacity and thermal conductivity. v and θ are velocity and temperature,
and σ is stress. The right hand side of second equation presents the intrinsic dissipation
Dint , denoted as Dint = σ ˙̄εp. Taylor-Quinney coefficient β exhibits the ratio of plastic
work transformed to heat. Normally it is treated as a constant, chosen between 80% and
100%. Since the shear band localization is so narrow compared with the other dimensions,
one-dimensional theoretical analysis of ASBs is considered as a canonical problem that
captures much of the observed phenomena. Actually its existence often shows how the
physical and geometric parameters are organized.

In the process of ASB formation, the competition between thermal softening and ma-
terial hardening determines the different term of the development of shear strain localiza-
tion. In the first stage, material hardening presents a dominant effect in this part, therefore
equivalent stress increases slowly. With the time increased, the speed of the tempera-
ture increasing is eventually rapid, and thermal softening enhances and passes away the
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hardening part, the material enters into instability. Then the uniqueness of mechanical
response is lost. Correspondingly stress decreases slowly, the form of shear band is grad-
ually clear. Yet when a critical strain reaches, the stress suddenly has a large descend.
Heat conduction cannot be ignored in the final term, determining the stable size of shear
region. Afterwards stress decreases again slowly or arrives at steady state for some ma-
terials without hardening work, then one or multiple fully shear bands form. Generally
speaking, all the theoretical analysis turn around the three stages: critical conditions, pro-
files of deformation and temperature and instability analysis.

1.2.2.1 Critical condition

The critical conditions of the transformation from stability to instability attract lots of in-
terests in mathematical and mechanical points of view. As Molinari described, there are
two fundamental questions regarding the stability analysis [Molinari and Clifton, 1987]:
the conditions of shear localization occurrence and the nominal critical shear when the
catastrophic process occurs. In general, linear perturbation method and bifurcation anal-
ysis are two widely used methods to predict these phenomenons. For the adiabatic and
quasi-static problem, the work in [Clifton and Molinari, 1983] gave the onset and evolu-
tion of ASB with respect to different constitutive laws, especially including the work hard-
ening factor. Moreover, they [Molinari and Clifton, 1987] obtain the critical strain γc at
which the localization becomes catastrophic for two boundary conditions (constant stress
value and constant velocity value). Wright [Wright, 2002] also gave an approximated ex-
pression to scale the defect for the timing of localization. In addition, using perturbation
method, Batra [Batra and Wei, 2007] considered the damage factor and analysed critical
strains for a heat-conducting, strain-rate hardening, and thermal softening initiation and
propagation.

1.2.2.2 Band profiles

In the final term of ASB evolution, one or several fully formed shear bands appear clearly.
Wright [Wright, 2002] noticed that the strain rate became essentially independent of time
at this stage, and although the temperature and stress continue to evolve, the changes are
very slow. FIG.1.4 gives out the profile of temperature measured across an adiabatic shear
band at a late stage of deformation, the shape of temperature is alike ’cusp’. Therefore a
part of work concentrates on pursuing a theoretical distribution of deformation and tem-
perature in shear localization. In the modelling of describing a fully formed shear band,
Leroy [Leroy and Molinari, 1992] proposed the following mixed boundary conditions to
illustrate a more comprehensive ASB:

[θ,y +
1
α
(θ−θ0)]|d = 0

[(v− v0)−φ(τ− τ̄)]|d = 0

A mixed boundary condition of temperature is described in the first formula, α is a film
parameter to decide whether the problem is in adiabatic term (α = ∞) or in isothermal
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Figure 1.4: Temperature profile measured across an ASB at a late stage of deformation
[Marchand and Duffy, 1988])

term (α = 0), and the corresponding convection rate on the boundary. The second bound-
ary condition regards to the loading type: when φ = 0, it defines a Dirichlet problem;
similarly a Neumann problem is described when φ = ∞. For an isothermal problem,
Bodin [Bodin, 1996] analysed that the influence of φ in the mixed condition limits on
the stability of steady state. There was always a solution in the steady state for thermo-
mechanical equations when loading as velocity form. Yet for the loading in the term
of force, it exists a critical shear stress τ∗ to decide the occurrence of stable state. Ac-
cording to [Leroy and Molinari, 1992], the shear band in a torsional Kolsky bar does not
tend towards the stable steady state. Moreover, they derived the profiles of velocity and
temperature on exponential law as follows:

v =
m
β

Z
kτ

tanh(
Z
2

y)

θ = θb +
m
β

log[sech2(
Zy
2
)]

where Z is a parameter calculated by the thermal and mechanical boundary conditions.
We understand that the bandwidth is denoted as 2

Z . θb is the temperature in central band.
Obviously, these formulas are similar to the canonical aspects proposed later by Wright
[Wright and Ravichandran, 1997]. Shear band was analysed as a surface of discontinuity,
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and they use the characteristic length scale δ as:

δ = (
2mk
sλa

)
1
2
c [1+O(mc)] (1.1)

to illustrate the canonical explicit formulas of velocity and temperature for arbitrary flow
laws, only if the material parameters satisfy some certain conditions. As an extension of
this work, Wright also verified the feasibility of canonical formulas on the widely used
constitutive relations: power law, Johnson-Cook model, Zerilli and Armstrong law, MTS
model and Bodner and Partom law. Yet work hardening was neglected or considered as a
constant in all the mechanical models.

1.2.2.3 Band width

Although shear band appears as a discontinuity surface at macroscopic scale due to its
tiny length, lots of researchers try to find its actual width for the sake of approximating the
mesh size in the numerical simulations. Beyond the predictions in the experimental struc-
tures, some theoretical results are also obtained. So far there is not an exact scale defini-
tion of band width, and many papers merely use it to measure the distance of velocity jump
and temperature rapid variation (1.1). Additionally, Wright [Wright and Ockendon, 1992]
defined the band width δ as

δ = (
1−m

2m
−∂σ0/∂θ

k
bm)−1/(1−m)v

− 1+m
1−m

0

for a material with linear softening but no hardening. Here σ0 = k0(1−αθ), m,k,b are
the material parameters, v0 is the imposed velocity. They pointed out that band width was
the distance from the center of the band at which the strain rate is less than the maximum
value by a factor (e0.9/(1−m)), and it is inversely proportional to v0, but independent to
structure size.

In microscopic measurement, Dinzart [Dinzart and Molinari, 1998] described that there
were two characteristic length scales in a localization area as in FIG.1.5. Besides the shear
band width presenting the large strain rate and high velocity, a length of heat affected zone
(HAZ) (FIG.1.5) surrounds the band. Due to temperature increase in that region, lower
strains and local annealing make the HAZ less hardened. Considering the existence of
HAZ, the band width is obtained as:

w = 2xr ∼= 6
√

2m
k0θ0

v0aτ0

where xr is defined by the strain rate as following:{
γ̇(x)
γ̇(0) = (1− a−ζ

2 x2)−1/m, for 0 < x < xi
γ̇(x)
γ̇(0) = p0(x− x− r)2, for xi < x < xr

In addition, it is 3
√

2 times to the size of the result that Wright derived, and they
validated that their approximation was better closer to the experimental solution.
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Figure 1.5: Schematic view of thin-walled tube ([Dinzart and Molinari, 1998])

Some engineers also define bandwidths according to the mechanical profiles. Batra
[Batra and Ko, 1992] chose the length when the stress had dropped to 85% of its peak
values as band width, and analysed its evolution in twelve materials obeying on Johnson-
Cook model ([Batra and Kim, 1992]).

Dynamic shear localization in one dimension is also a hot spot in theoretical analysis.
Most of work is based on the negligence of inertia and work hardening in constitutive rela-
tions to simplify the localized problem, even some neglect thermal conduction for treating
the temperature as an internal variable in calculation. As illustrated in experimental anal-
ysis, adiabatic state merely occurs in the first stage: the stress has a small perturbation,
and the corresponding strain rate can be considered as linear form. Yet afterwords thermal
conduction factor will be dominant to the distribution of velocity, temperature and stress.

Some theories in Fluid mechanics are also applied to analyse the character of ASBs,
such as boundary layer: a layer of fluid produced by the effect of viscosity. Normally
outside of the layer, the velocity keeps constant, yet the velocity has a large change in
the layer. This property makes lots of researchers regard the ASBs phenomenon as an
application of boundary layer theory. For a particular material which constitutive rela-
tion is similar to exponential law, Dilellio [Dilellio and Olmstead, 1997] considered the
zone of velocity jump as a boundary layer having non-zero thickness. They derived the
expressions of transient velocity, stress gradient and temperature, as well the evolution of
thermal boundary layer obtained as a measure of shear band thickness. Moreover elastic-
ity is included in the model. The bandwidth is as following:

∆(t) = mδ(t) = { λa
2m

s(0, t)γ̇[s(0, t),θ(0, t)]}−1/2

where δ(t) is a transient boundary layer thickness, λ, a, m are the material parameters; and
s(0, t),γ̇(0, t),θ(0, t) are the stress, plastic strain rate and temperature on the central part
of slab. Furthermore, they extended this method to the thermo-viscoplastic materials sat-
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isfying a typical Johnson-Cook model([Dilellio and Olmstead, 2003]), yet no hardening
coefficient was considered.

Considering the existence of two length scales in the profiles of temperature and veloc-
ity through numerical results, Glimm [Glimm et al., 1996] considered the ASBs structure
on the quasi-static core of shear band surrounded by thermal layer. Hence the solutions of
thermo-mechanical fields are separated as two parts: one is similar to the results of Leroy
[Leroy and Molinari, 1992] for quasi-static fields, the other is merely controlled by heat
equation because of constant stress, velocity and zero plastic strain rate. The half-width
of ASB was defined from the temperature profiles:

δ = (
2km

a(θc)σcv,y(yc)
)1/2

where a(θc) = −g′(θc)/g(θc). g(θ) is thermal softening part in constitutive relation,
and the subscript c means choosing the values at the center. The result is similar to the
characteristic length in [Wright and Ravichandran, 1997].

As a hot topic in the present research of ASB, it would be well if we simply talk about
shear band spacing when referring to shear band width. It is a length scale for multiple
shear banding, such as in thin-tube wall and cylinder collapse. Usually, linear perturbation
analysis is a popular method to characterize the shear band spacing, when the stress has a
slight decline in the second stage. Wright ([Wright, 1995, Wright and Ockendon, 1996]),
Molinari([Molinari, 1997]), Zhou([Zhou et al., 2006]) and Batra([Chen and Batra, 1999,
Batra and Wei, 2006, Batra and Chen, 1999]) proposed different formulas for certain flow
relations, thereby giving a good prediction for the experiments and numerical simulations.
In [Batra and Wei, 2006], they referred that the shear band width was controlled by heat
diffusion and shear band spacing by momentum diffusion, and an approximate relation
between bandwidths and spacing was deduced in their work.

In theoretical analysis, a two-dimensional work is always a large challenge for me-
chanical engineers, so these works are rare and cherished. The first two-dimensional
analysis was studied by Wright [Wright, 2002]. They studied a steady shear band in the
near-tip fields of antiplane motion, here power rate hardening is considered. The speed
of an ASB propagation was estimated for a perfectly plastic materials [Wright, 2003],
which depends on the material state ahead of the tip of fully localized band. Gioia
[Gioia and Ortiz, 1996] applied the boundary layer theory to investigate a shear localiza-
tion structure in a plate with a crack, which is impacted at a high velocity by a flat-ended,
rigid projectile. Accounting for the inertia effect, work hardening and convection, and
applying the stability criterion, they regarded the occurrence of shear band as an outcome
of material incapability of supporting steady boundary layers. The profiles of velocity,
temperature and plastic strain energy were studied in steady and transient state, as well as
the propagation speed of ASB. In addition, correspondent to experimental results, shear
band tip speed keeps at a constant when impacted on steady velocity. Using variational
method, Mercier [Mercier, 1997] analysed this stationary velocity of 2D ASB propaga-
tion in the layer subjected to a simple shearing velocity, moreover the transition length
can also be solved though two nonlinear equations.
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For shear localization problems, the thermo-viscoplastic material represents compli-
cated constitutive relations with thermal softening and the large displacement jump in
tens of micrometers of bandwidth. Furthermore, as an important part to determine the
steady size of bandwidths, thermal conduction brings lots of difficulties in theoretical
analysis. Although good approximations are observed to describe the characteristics of
ASB in the foregoing work, most of the results need to be resourced to the simplifications
of material modelling, such as lost of work hardening, elasticity or conduction. So far
one dimensional ASB is always a popular subject compared to that on 2D/3D in theo-
retical analysis. Meanwhile it is far less studied and uncompleted in the propagation of
ASB, especially since engineers discovered that the temperature distribution represents
hot spot phenomenon. So kinds of questions in ASB analysis urge the researchers to pro-
ceed from insufficient 1D ASB to 2D or 3D simulation. Naturally for the sake of building
the generality of constitutive models, numerical simulation is an efficient way that many
researchers preferred adopting to achieve the reliability and accuracy of ASB analysis.

1.2.3 Numerical implication

Shear localization is a common phenomenon in engineering since it is discovered by
Tresca. As a precursor to the fracture of materials, its research attracts a lot of interests
and some popular numerical methods are all applied to simulate this localized problem,
but also encounters some difficulties.

1.2.3.1 Finite element method

Since Finite Element Method (FEM) is developed by Olgierd Zienkiewicz in 1947 for
solving the simple elastic problem, it has been a strongly numerical technique for finding
an approximation of partial differential equations. It may well experience a relatively
mature development and wide application in the last several decades. Therefore naturally
engineers earlier applied it to solve the shear localization problem in thermo-mechanical
coupling.

As we all known, large strains accumulate inside a shear band with the equivalent
plastic strain increasing, simultaneously the temperature fields are rapidly increasing, in-
volving that the central band practically arrives at the melting point, and then the corre-
sponding damage and failure are following. So different types of mechanical phenomena
happening in tens of micrometers give a large challenge to the simulation of surrounding
material behaviour in shear localization. Apparently due to these striking features, strong
mesh-alignment sensitivity of elements is coming in standard FEM. For the accurate im-
plication of FEM, we should set fine mesh or refine the mesh ([Batra and Ko, 1992]) step
by step in the localization. Physically, the mesh size is set as the same order of min-
imum band thickness. Moreover, the mesh direction in localized zone should follow
with the band interfaces to avoid mesh distortion. Briefly reviewed, the initiation, for-
mation of ASB [Wilson and Batra, 1998], and their propagation [Zhang, 1994], finally
the transitions from ASB to fracture [Teng et al., 2007] are also simulated by standard
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finite element method. Batra [Wilson and Batra, 1998] studied the dynamic plane strain,
axisymmetric deformations of a tungsten heavy alloy block subjected to a plane strain
compression, pointing out that the plastic strain distribution in these narrow regions of in-
tense localization is non uniform. Peirs analysed the influences of the geometry structure
to shear localization profiles in hat-shaped specimen by ALE adaptive meshing technique,
which avoids the mesh alignment [Peirs et al., 2010]. However, the tiny shear band width
needs the enormous number of elements to capture the characters of ASB, thus it makes
the computational time unacceptable, especially for 3D ASB.

In general, a shear localization phenomenon is concentrated in tens of micrometers
which caused a discontinuity in macro-scale view, yet the other part is relatively homo-
geneous. Many engineers try to embed the discontinuous element in the standard FEM
to solve this localized problem. For the rate-independent materials obeying on small
displacement theory, Ortiz [Ortiz et al., 1987] proposed this method at the earliest to en-
hance the performance of isoparametric elements for localized failure problem, resolving
the limitation of designed mesh. Afterwards accounting for large-scale plasticity, Ortiz
[Ortiz and Pandolfi, 1999] developed a finite-deformation cohesive element in 3D to sepa-
rate the crack fronts part in 1999. Beyond their work, Belyschko [Belytschko et al., 1988]
enriched the strain fields by discontinuous element for shear bands, and considered the
bandwidth as a material parameter to avoid mesh dependence. Through a critical band-
width as a condition to introduce a bifurcation, Oliver [Oliver et al., 1999] developed a
strong discontinuity approach to analyse the initiation and propagation of strain local-
ization part. In addition, when the bandwidth tends to zero, it turns to recover a strong
discontinuity.

Yet all the forwarding work are referred to mechanical problem without thermal part.
Needleman [Needleman and Tvergaard, 1992] applied the embedding enriched elements
to the J2 plastic localization in metals with weak discontinuities. Regarding ASB as an
anisotropic mechanical degradation process, Longère [Longère et al., 2005] introduced
regular and singular state variables at the representative volume element to present ASB,
here considering average localized fields, i.e. uniform temperature and strain, and per-
formed the initiation and propagation of ASB in 3D hat shaped specimen. This multi-
scale model has a weak mesh dependency, yet thermal conduction is neglected. Recently
based on thermo-mechanical variational potentials and considering finite kinematics with
thermal conduction, Yang [Yang et al., 2005] resourced to cohesive element and devel-
oped it to emulate the discontinuous strain/temperature fields. Here band width works
as an optimization parameter in the models. This technique easily gets rid of the default
of mesh alignment and distortion in standard FEM, but strain profiles are thought as ho-
mogeneous in the discontinuous element. How to accurately illustrate the characters of
localization is still a considerable work.

1.2.3.2 Meshless method

A priori, strain localization element should be set to match the ASB orientation. So
for some mechanisms such as cylinder with multiple shear bands, this technique will be
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helpless without the aid of experiments. Comparatively, meshless method is a suitable
method in the independence of shear band path.

Since Li [Li and Liu, 2000] firstly applied mesh-free Galerkin method in strain local-
ization phenomena in 2000, a series of studies on bifurcation [Li et al., 2000, Li et al., 2001]
and adiabatic shear band [Li et al., 2002], even their dynamic propagation property in
micro-structure, are presented with the advantage of relieving mesh alignment sensi-
tivity. A criteria for dynamic ASB propagation is proposed in Kirchhoff experiment
[Medyanik et al., 2007], and they also described the distribution of temperature present-
ing the hot spot phenomenon through this meshless method. On the other hand, recently
based on Smoothed Particle Hydrodynamics method, which has the same predecessor
as Meshfree method, Batra proposed the modified smoothed particle method to analyse
the localization problem in axisymmetric Taylor impact test ([Batra and Zhang, 2008]).
The corresponding validation by FEM are presented in [Batra and Zhang, 2004]. Yet
these models on the basis of meshless method are unable to escape the firstly approxi-
mation of shear band width. We should set inhomogeneous density of nodes for the ac-
curacy resolution. For bypassing this problem, Rabczuk [Rabczuk and Samaniego, 2008,
Rabczuk et al., 2007] embedded strong discontinuity in shear band model combined with
meshless method, yet thermal conduction is neglected.

1.2.3.3 Extended finite element method

Extended finite element method is a developed FEM by enriching the discontinuous
spaces [Moës et al., 1999]. It is initially proposed to solve the crack propagation problem,
and the enrichments of solution spaces effectively alleviate the difficulties of simulating
discontinuous surfaces by standard FEM. Naturally, its challenging feature that does not
need to remesh the structure makes this method widely applied to the discontinuity and
localization problems, such as adiabatic shear band.

Evidently, an important factor in XFEM is to introduce an appropriate enrichment for
localization zone, by coincidence which is well treated in theoretical analysis. Some sim-
plified form are correspondingly applied in a limited number of references. Using the tem-
perature distribution derived by Wright, Areias and Belytschko used a Heaviside function
to enrich the displacement and temperature profiles in localization, which formulas are all
considered linear in enrichment [Areias and Belytschko, 2006, Areias and Belytschko, 2007].
For tracking the evolution of shear localization, linear perturbation analysis was analysed
as a condition to embed enrichment. As expected, it obtained a good mesh-independent
effect in several examples of shear band formation. In addition, they pointed out that the
bandwidth can be obtained through the minimum incremental work criterion, as described
in [Grady, 1994].

Besides the default of mesh dependence, the numerical simulation of thermo-mechanical
localization problem also encountered other difficulties such as model quality, damage or
interactions between multiple bands. To some extent, it is always complicated to find a
good constitutive model [Khan et al., 2004, Love and Batra, 2006] to present the initia-
tion, propagation and stability of the discontinuous spaces. Some engineers try to use two
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models to describe this process: one for the first and second stage as the foregoing stated
and the other for the stress dropping suddenly. Moreover, the criteria for ASB initiation
and propagation is still an open noteworthy question. In the most of the numerical ap-
proaches, it is necessary to know an approximate domain of shear band width to avoid the
expensive calculation. So predicting the localized length in thermo-viscoplastic materials
is prerequisite to proceed the dynamic evolution of shear localization, and consequently
benefits to the improvement of the material manufacturing, such as metals, alloys and
polymers.

Arrived here, we restated that the development of adiabatic shear band in the last
decades from the experiment, theoretical analysis and numerical simulation points of
view. Every aspect has its character in the research of ASB, yet also has its hardly re-
solved points needed to be looked out. Here by means of the results in three domains and
adopting every relatively advantage, we will use an optimized method, with the character
parameters of ASB, to describe the profiles of the band and simulate the formation of
ASB. This optimization has a strong mathematical background: energy-based variational
method.

1.3 Energy-based variational method

Variational method is a popular approximated method to find the optimization values of
a function in quantum mechanics. It is widely applied in physics, statics, control theory
as well as economics. In simple terms of mechanical view, this method used the calculus
of variations to adjust the variational parameters with regard to displacement, stress or
temperature, thus observed the minimum or maximum of energy well correspondent to
thermo-mechanical conservation laws. In addition, variational principle is a connected
bridge of the equality between lowest potential and continuum mechanical balances.

In general, variational principle is an optimization approach to describe the state and
dynamical boundary value problem. Normally the quantity to be optimized does not
employ the governing equations, yet it can reflect and yield the physical processes. Its
feature is to provide the governing equations as some stationary conditions, which is
effective to carry out a common mathematical approach. In addition, error estimation
and coordinate transformation are relatively more simple to the problem described by
these principles. Virtual power principle is widely known around in mechanics as the
cornerstone of the development in numerical methods. In short, it is originated from the
basic equations of equilibrium with mechanical boundary conditions. Hamilton principle
is a statement that variational method can determine the dynamics of the physical system
by an unique function, which contains all the informations of problem.

Although choosing the same deformational energy as an optimized formula, theo-
reticians proposed different variational principles to express the multi-physical boundary
value problem. Hu-Washizu-Fraeijs principle is the most general canonical principle of
elasticity expressing the optimized quantity through three fields: displacement, strain and
stress. All the boundary conditions can be included in the scalar function φ(u,ε,σ), gen-
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erally the boundary value problem can be written as follows:

inf
u,ε,σ

φ(u,ε,σ)

u represents displacement, ε and σ are separately strain and stress. Through the calculus
of variations, the observed Euler-Lagrange equations are equivalent to conservation laws.
In one case, if imagining that the comparability condition is satisfied beforehand and
applying Legendre transformation in Hu-Washizu-Fraeijs principle, Hellinger-Reissner
principle was proposed by expressing the problem as an optimization with regarding to
two fields: displacement and stress. In a general way, the corresponding constitutive rela-
tion and equilibrium equations are obtained at the stationary point of the quantity. Intro-
ducing Lagrangian multipliers, HE [He, 1997] proved the equivalence between Hellinger-
Reissner and Hu-Washizu principles in elasticity. Generally, it is the effective basis for
developing the mixed and hybrid finite element, which has a better approximation about
stress than other numerical methods. In similar case, if we suppose that the compati-
bility conditions and equilibrium equations are known, minimum complementary energy
principle is merely built as an optimization regarding to the stress.

Here we prefer to assign the minimum potential energy principle to build the vari-
ational modelling. Taking an elastic mechanical problem with finite deformation as an
example, we define ϕ as configuration and W as energy density. So the deformation en-
ergy can be written as [Stainier, 2006]:

U(ϕ) =
∫

B0

W (O0ϕ
TO0ϕ)dV

and the energy from external forces are defined:

W (ϕ) =
∫

B0

ρ0b̄ ·ϕdV +
∫

∂σB0

t̄ ·ϕdA

where ρ0 is mass density, b̄ is body force and t̄ as imposed force. Supposing the compa-
rability condition and constitutive relations are satisfied, the boundary value problem via
variational principle is described as

inf
ϕadm

(U(ϕ)−W (ϕ))

Its stationary point with respect to ϕ is correspondent to the conservation of momentum
in elasticity.

As many reference stated, the variational form of equations is very convenient for
the numerical simulations, and the uniqueness and existence of the solutions in the prob-
lem are easily analysed in mathematical view. By means of this energy-based variational
method, we emphasize that a physical problem is transformed to a mathematical opti-
mization, and then a series of optimization algorithms can be applied in the analysis of
physical fields. However, how can we determine the existence of potential and its varia-
tional formulation to be optimized, meanwhile reflecting well the physical signification?

In the physical system, every boundary value problem obeys on the following list of
conservation laws [Belytschko et al., 2000]:
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• Conservation of mass

d
dt

∫
V

ρdv =
∮

S
ρ(un−v ·n)ds

where ρ is mass density, un−v ·n is the relative normal speed between the surface
and the material, 0 for material volume and un = 0 for control volume.

• Conservation of linear momentum

d
dt

∫
V

ρvdv =
∮

S
ρv(un−v ·n)ds+

∮
S

tds+
∫

V
ρbdv

where t is the density of surface tractions, and b is the density of body forces.

• Conservation of angular momentum

d
dt

∫
V

x×ρvdv =
∮

S
x×ρv(un−v ·n)ds+

∮
S

x× tds+
∫

V
x×ρbdv

• Conservation of energy (first law of thermodynamics)

d
dt

∫
V

ρ(e+
1
2

v2)dv=
∮

S
ρ(e+

1
2

v2)(un−v ·n)ds+
∮

S
(v ·t−q)ds+

∫
V

ρ(v ·b+r)dv

where e is the internal energy per unit mass; q is heat flux leaving the volume; r is
an energy source per unit mass; n is normal direction.

• Clausius-Duhem Inequality (second law of thermodynamics)

d
dt

∫
V

ρηdv = ρη(un−v ·n)ds+
∮

S
−q ·n

T
ds+

∫
V

ρr
T

dv

where T is the absolute temperature, and η is the internal entropy density per unit
mass.

Furthermore, a boundary value problem is described as the above governing equa-
tions including material constitutive relations and compatibility conditions. According
to variational method and multiplying a small constraint but arbitrary variation ι ∈ V =
ι ∈ R3|ι = 0 on BC (Boundary Conditions) in the equations, we can obtain the weak form
of the problem. For instance, for the mechanical problem:

DivP+ρ0B = 0 where P ·N = τ on L

where τ is the traction on the boundary L. The weak form is defined as:

Find ϕ ∈ P such that G(ϕ, ι) = 0 for all ι ∈ V

where
G(ϕ, ι) =

∫
V
(P : GRADι−ρ0B · ι)dV −

∫
L

τ · ιdL
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where ϕ ∈ P = ϕ ∈ R3|ϕ = ϕd on BC. If the physical fields and ι are C1, the weak form
is equivalent to the strong form.

In view of the weak form, Marsden [Marsden and Hughes, 1983] pointed out that if
and only if

D1G(ϕ, ι) ·ξ = D1G(ϕ,ξ) · ι for all ϕ ∈ P and ι,ξ ∈ V

there is a potential E making DE(ϕ) · ι = G(ϕ, ι), and its corresponding form is

E(ϕ) =
∫ 1

0
G(tϕ,ϕ)dt

thereby a formulation embodying equilibrium equations, material behaviors and boundary
conditions are built in the variational framework. Apparently, the weak form of conserva-
tion laws is a basis to build the variational pseudo-potential, yet simultaneously we should
guaranty its symmetry.

In 1999, Ortiz and Stainier [Ortiz and Stainier, 1999] obtained a variational formula-
tion for general viscoplastic solids with respect to different dissipative relations in finite
deformation regime. They developed a constitutive update modelling as an optimiza-
tion to a scalar function with a set of internal variables, including Hemholtz free energy,
conjugate inelastic potential and viscous part. The according constitutive updates can be
defined as a minimum of incremental pseudo-potential about deformation over the time
step. We can say that this work represents a new and active research area, the appli-
cations of this variational structure to general dissipative materials are continuously de-
veloped [Stainier et al., 2002]. For instance, constitutive viscoelastic formulations are as
following provided to embody the nonlinear viscous behaviour based on this theoretical
framework[Fancello et al., 2006, Stainier et al., 2005].

Recently considering temperature effect, a variational formulation of coupled thermo-
mechanical boundary-value problems was proposed by Yang et al [Yang et al., 2006]. In
their work, they skilfully introduced the equilibrium temperature in the formula, mak-
ing the weak form symmetry. In addition, the characteristic of this formulation is al-
lowing to describe the thermal and mechanical balance equations, including irreversible
and dissipative behaviors, as an optimization of energy-based variational form. Indeed,
beyond unifying a wide range of constitutive models in a common framework, the vari-
ational formulation also presents the interesting mathematical properties, like symmetry
of its bilinear form, which is an important feature comparing with the alternative cou-
pled thermo-mechanical formulations. Applying this variational formulation, Stainier
[Stainier and Ortiz, 2010] successfully presented an experimental validation of three thermo-
viscoplastic materials: aluminium alloy, α-Titanium and Tantalum. These theoretical con-
clusions will be used to build our variational modelling for adiabatic shear bands structure.

1.4 Thesis outline
Based on the strongly coupled thermo-mechanical variational formulation proposed by
Yang, we aim at building an energy-based modelling of adiabatic shear band structure,
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and accurately analysing the physical profiles of the layer subjected to a simple shearing
velocity. Sufficiently combined with the foregoing theoretical work, we introduce the
discontinuities of velocity and temperature to describe the profiles of shear localization.
Meanwhile considering the mixed heat exchange boundary condition, we improve the ma-
terial modelling and propose a mathematical structure with thermal boundary conditions
to approximate the transfer coefficient, which of a numerical formula is fitted with respect
to structure size. In addition, not only this modelling works on the various thermal soft-
ening and rate-dependency laws widely used in the engineering, but also besides work
hardening and heat conduction, elasticity is skilfully considered as the optimization of
pseudo-potential with the unknown characteristic parameters. Some examples will show
the feasibility of the modelling. Based on this variational framework for shear localiza-
tion problems, we propose a variational two-scale modelling, and give its finite element
implementation.

In CHAP.2, we present an energy-based variational modelling of a fully formed shear
band in steady state, and verify our optimized modelling by analytical solution and finite
element method. Variational framework is simply introduced in the first part, which gives
a basis to build our variational modelling in the second part. Then as an application of
our modelling in steady state, we introduce the maximum temperature as an optimized
parameter in variational framework grounded on the analytical formulas for exponential
law, thereby avoiding the dependence of the modelling on material parameters. Here
two examples (power law and Johnson-Cook model) will verify this good aspect of our
modelling. As a final part, a new variational modelling with thermal boundary conditions
is proposed and analysed to alleviate the dependence on structure size.

The corresponding variational modelling in transient state is introduced in CHAP.3.
In the first part, an incremental update of variational modelling is demonstrated for gen-
eral dissipative solids. Briefly, we also introduce the update framework of finite element
method based on variational method, as a comparing tool for the problem subjected to
a simple shearing force. Starting from simplicity, the variational formulations in expo-
nential softening law, power law and Johnson-Cook law (with hardening coefficient) are
gradually derived for thermo-viscoplastic materials, verifying the feasibility of our mod-
elling on various constitutive relations. In the results analysis, the evolutions of band
width and maximum temperature in exponential law are presented and validated by FEM.
Furthermore, taking a widely applied model in engineering: Johnson-Cook law, we build
our variational modelling including elasticity, work hardening and heat conduction, which
lays the groundwork for the extension of the modelling from 1D ASB to 2D ASB.

The principle work in CHAP.4 is to propose a variational two-scale method for shear
localization problem. As we know, the difficulty of numerical simulation in adiabatic
shear band mainly exists in three domains: mesh dependence, model quality and interac-
tion between multiple bands. We neglect the influence of micro-structure, such as micro-
crack, void and material damage. The modelling we proposed is concentrated on solving
the mesh dependence problem. Firstly based on the variational finite element method, we
use an example of a pre-notched bar undergoing a constant velocity, to point out the mesh-
dependence problem for standard FEM in shear localization simulation. Then inserting a
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strong discontinuous element in standard FEM, we propose a variational two-scale model
for ASB structure in 2D or 3D through interface elements. Meanwhile the framework
of finite element discretization is derived. Although no numerical implementation is pre-
sented, we can verify the feasibility of two-scale modelling in theory.
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Variational modelling in steady state

Abstract :

We propose an energy-based variational modelling of adiabatic shear
band in thermo-viscoplastic materials. The classical one-dimensional

slab sustaining a stationary simple shear mode of deformation is
analyzed by a Rayleigh-Ritz method, where the discontinuities of

velocity and temperature can be parametrized by measures of shear
band width and central temperature. Indeed, this formulation works
for various material constitutive models, which will be illustrated by
two popular constitutive models (power law and Johnson-Cook law)

and verified by variational Finite Element Method.

Résumé :

Une modélisation de la bande de cisaillement adiabatique basée sur
une approche énergétique variationnelle est proposée. Une couche
classique ayant une propriété thermo-viscoplastique soumise à une

sollicitation de cisaillement simple est analysée par la méthode
Rayleigh-Ritz. La formulation des profils de vitesse et de température,

paramétrées par des mesures de la largeur de bande et de la
température centrale, fonctionne pour des lois de comportement
diverses. En utilisant la méthode des éléments finis, on valide cet

aspect par la loi de puissance et la loi de Johnson-Cook.
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For thermo-mechanical localization problem, adiabatic shear bands (ASBs) can arrive
at a steady state in the final stage if the materials without hardening subject to a con-
stant velocity. When the fluctuations of the profiles of velocity and temperature are quite
small and tend to zero, we call that the physics is in steady case. At this state, adiabatic
shear bands are fully formed accompanying the large deformation and high temperature
at macroscopic scale.

In present chapter, we aim at building an energy-based variational modelling for this
fully formed shear band to analyse the shear localization in one dimension. The study
is organized as follows: the variational approach for the thermo-mechanical problem is
firstly restated. We validate the theory by considering classical problems such as Cou-
ette flow, thermal conduction in a layer and non-Newtonian thermal-Couette flow. In
section 4, the fully formed adiabatic shear band is considered and the formulation in
[Leroy and Molinari, 1992] is adopted. The thermo-viscoplastic modelling not only in-
herits the advantage of the thermo-mechanical coupled variational approach, but also pre-
dicts the shear band width and central temperature in an adiabatic shear band based on a
continuum theory. Exact results of [Leroy and Molinari, 1992] are retrieved. Meanwhile,
effects of material parameters (thermal softening, strain-rate sensibility on these two fea-
tures) are analysed by this variational method. As an extension, different constitutive
laws, power law and Johnson-Cook law, are adopted to evaluate the characters of ASB.
Since theoretical analysis is difficult to give an accurate solution for general constitutive
behaviors, a variational-based FEM numerically predicts the evolutions of velocity and
temperature, and up to the steady state. It is shown that the results obtained by variational
models are in good agreement with FEM. Based on this variational modelling, we intro-
duce heat exchange on the boundary to consistent the bandwidth with different specimen
sizes. A corresponding curve fitting of transfer coefficient is analysed with respect to
structure size.

2.1 General framework

2.1.1 Variational formulation in thermo-mechanical coupling

Thermo-mechanical coupling is a common phenomenon in solid mechanics, and their ef-
fects are of importance in the structure manufacturing. For general dissipative materials,
the coupling between mechanics and thermotics easily provokes some localization zones
associated with large deformation and high temperature, e.g.the formation of ASBs. Their
occurrences are a precursor to material macroscopic fracture. Here we will describe this
phenomenon as a strong-coupled boundary value problem. Within the world of metallurgy
and materials science, it does not seem unreasonable to apply standard continuum me-
chanics [Wright, 2002] for adiabatic shear band. Thus the five conservation laws should
be obeyed in ASB structure: conservation of mass, conservation of linear momentum,
conservation of angular momentum, conservation of energy and the Clausius-Duhem in-
equality. The corresponding finite constitutive equations for thermo-mechanical coupling
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can be given ([Yang et al., 2006]) as follows:

DivP+ρ0B = ρ0V̇

FPT = PFT

Ė = P · Ḟ+ρ0Q−DivH

γ̇≡ ρ0η̇− ρ0Q
T

+Div
H
T

= 0

where ρ0 is mass density per unit undeformed volume; B is body force density per unit
mass; Q and H are the specified heat source per unit mass and the outward heat flux. T is
the absolute temperature, and η is the specific entropy, defined as follows:

ρ0η =−∂W
∂T

here Helmholtz free energy W is assumed to be existed. According to the definition of W
and using Legendre-Frenchel transform, the internal energy density E is defined as:

E = sup
T
[ρ0ηT +W ]

which has the property:

T =
∂E

∂(ρ0η)

For general standard dissipative and irreversible materials, the coupling terms between
mechanics and thermotics originate from the softening of plastic stress in the constitu-
tive relations and the dissipation including viscoelasticity and viscoplasticity parts. We
consider the general pseudo-potential dissipation4, defined as:

4= ψ
∗(Ż;Z,T )+φ

∗(Ḟ;F,T )−χ(H;T )

there ψ∗, φ∗ and χ are the kinetic potential, viscous potential (Kelvin-Voigt viscoelas-
ticity) and conduction potential. Z represents the internal variables, for instance, cumu-
lated plastic strain for thermal viscoplastic material. F is the deformation gradient and
F = Gradϕ. We choose P as the first Piola-Kirchhoff stress conjugate to F, defined as:

P =
∂W
∂F

+
∂φ∗

∂Ḟ

The alternate representations of constitutive relations can similarly be obtained with the
use of the conjugate pairs of stress-strain tensors (Cauchy stress-Cauchy-green strain,
second Piola-Kirchhoff stress -Green-Lagrange finite strain...). We suppose the force
conjugate to the cumulated plastic deformation as Y :

Y =−∂W
∂Z

=
∂ψ∗

∂Ż
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where ψ∗ is a dual pseudo-potential obtained from a Legendre-Fenchel transform of ki-
netic potential ψ, defined as:

ψ
∗ = sup

Y
{Y Ż−ψ} and Ż =

∂ψ

∂Y

Convexity of ψ verifies the following properties of ψ∗:

ψ
∗ ≥ 0; ψ

∗ convex; ψ
∗(0) = 0

which will be the sufficient conditions for verifying the second law of thermodynamics.
Therefore for thermo-visco-plasticity material, the first law of thermodynamics can

also be written as:

ρ0CṪ = T
∂2W
∂T ∂F

: Ḟ+T
∂2W

∂T ∂Z
: Ż+D int +ρ0Q−DivH

where C is heat capacity, defined as the ratio of heat energy transferred to the increase of
temperature:

ρ0C =−T
∂2W
∂T 2

which depends on the state variables in physical system and temperature, yet we always
choose it as a constant in the numerical calculation. The intrinsic dissipation D int is stated
as Y Ż. In finite plastic strains, Stainier [Stainier and Ortiz, 2010] provided an accuracy
formulation of the Taylor-Quinney parameter to calculate the ratio of intrinsic dissipation
converted to total plastic power in the variational framework. In constrast, engineers
regard it as a priori definition.

As a consequence, the second law of thermodynamics can be simplified as:

1
T

Y Ż− 1
T 2 H ·∇T = 0

Clearly if the material is thermo-elastic material, Biot conduction (H = −λ∇T ) can di-
rectly satisfy this inequality. λ is thermal conductivity. Yet for the thermo-viscoplastic
materials, the satisfaction of the law needs that the kinetic potential ψ∗ is convex, which
is rightly an intrinsic character of ψ∗ in our variational framework.

Based on the aforegoing described thermodynamic framework, we summarize the
energy-based variational formulation of the coupled thermo-mechanical boundary-value
problem proposed by Yang[Yang et al., 2006]. The potential for general standard dissipa-
tive materials is stated as follows:

Φ
[
ϕ̇,T, η̇, Ż

]
=

∫
B

[
Ė−ρ0T η̇+∆(

T
Θ

Ḟ ,
T
Θ

Ż,− 1
T

GradT )
]

dV

−
∫

B
ρ0B · ϕ̇dV −

∫
∂T B

T̄ · ϕ̇dS

+
∫

B
ρ0Q log

T
T0

dV −
∫

∂ηB
H log

T
T0

dS (2.1)
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where T̄ is the applied tractions over the traction boundary ∂TB. H is the outward heat
flux over the Neumann boundary condition ∂ηB. In the exploration of EQ.2.1, the authors
introduce two temperatures Θ and T , which are respectively an equilibrium temperature
and an external temperature, to satisfy the symmetric of variational formalism. Conse-
quently contrary to traditional works, the Euler-Lagrange equations of Φ is symmetry. Θ

follows as a scaling variable and we can obtain it by

Θ =
∂E

∂(ρ0η)

where T = Θ at local thermaldynamics state.
This variational formulation works for general dissipative materials including finite

elastic and plastic deformation, non-Newtonian viscosity, rate-sensitivity, arbitrary flow
and hardening rules, as well as heat conduction. In addition, the thermal and mechanical
balance equations, the constitutive relations, as long as the equilibrium between the exter-
nal temperature and the internal temperature can be followed as Euler-Lagrange equations
of the following variational formulation:

inf
ϕ̇,Ż,η̇

sup
T

Φ
(
ϕ̇,T, η̇, Ż

)
(2.2)

The equilibrium derivation are well described in [Yang et al., 2006].
Energy-based variational method is an optimization strategy using a single function

to describe all the intrinsic characters for the coupled thermo-mechanical boundary value
problem. We do not need to define the stress-strain relation, as well as temperature-
entropy relation separately, which can directly follow from the optimization with regard
to internal variables and temperature. For example, a nonlinear equation about Z can be
obtained to calculate equivalent plastic strain from the variational method:

DŻ
[
Φ
(
ϕ̇,T, η̇, Ż

)]
(δŻ) = 0

We might as well say that it is a mathematical transformation of well-known return-
mapping method, and more convenient in the application of mathematical algorithm.

The thermo-mechanical coupling for general dissipative materials can thus be de-
scribed as an optimization problem, and many mathematical algorithms, such as trust-
region method, Levenberg-Marquardt algorithm, are suitable to seek a minimum or max-
imum value with respect to physical fields. In contrast to conventional coupled thermo-
mechanical problem formulation, this variational approach intrinsically yields a symmet-
ric stiffness matrix when adopting finite element methods based on this variational frame-
work. Indubitably, these characteristics allow the application of a broad range of mathe-
matical algorithms, contributing to numerical efficiency in matrix storage and nonlinear
programming. Furthermore, this variational formulation seamlessly works for general
standard materials. Consequently in view of these advantages, , Eq.2.1 allows to the de-
sign of robust and efficient algorithms, such as Rayleigh-Ritz method we will adopt within
this chapter.
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It should be noted that as an extension of this variational framework, it is suitable to
do an error estimation and mesh adaptation, and the optimal mesh size distribution for
finite element method can be given by variational method [Radovitzky and Ortiz, 1999].

2.1.2 Rayleigh-Ritz method
Rayleigh-Ritz method is widely used in mechanical engineering to find an approximation
of the solution in partial differential equations with the second or higher orders. Simply, it
supposes that the solution u can be approximated by a combination of certain independent
functions φi:

u =
N

∑
i=1

ciφi

where ci are the unknown parameters to be determined. clearly, when N → ∞, u→ u0,
u0 is the real solution. Normally the choice of φi depends on the similar form of the real
solution and the boundary conditions [Russak, 2002]. With a substitution of u in the vari-
ational functional, the quantity to be optimized (marked as I(c1,c2, ...,cN)) is rewritten as
a function with a series of unknown parameters ci. The stationary point of I(c1,c2, ...,cN)
is obtained if the variation δI = 0. Thereby the problem is changed as finding N variables
in N nonlinear equations:

∂I
∂ci

= 0

The difficulty of Rayleigh-Ritz method is to try and choose a set of φi which can reflect
well the character of solution. So mostly engineering take eigenfunctions as the shape
functions.

As a foundation of this work, the Rayleigh-Ritz method will be adopted based on the
aforegoing variational formulation. Some applications of this method will be presented by
the analysis of Couette flow, thermal layer, thermal-Couette flow and the final adiabatic
shear band problem. Considering the formulation in the case of steady state, i.e. the
stress, the elastic deformation and the entropy are constant, such that:

Ė = 0; η̇ = 0

and ϕ̇, Ż, T constant in time, or

ϕ̈= 0, Z̈ = 0, Ṫ = 0

These conditions imply the absence of work hardening for visco-plasticity models. In
the following, we restrict our attention to the problem at steady state. So an Eulerian
description of the potential of total power density is adopted as:

Φ =
∫

B
∆

(
T
Θ

GradV,
T
Θ

Ż,−∇T
T

)
dV (2.3)

Body force and heat source are neglected.
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2.2 Couette flow and thermal layer
As a first validation, we consider an isothermal Couette flow where two infinite plates,
one of which subjected to a shearing velocity V0 relatively to the other, are separated by
a distance L. The viscous fluid located between the plates is considered Newtonian and
incompressible, so that Navier-Stokes equation can be written as follows:

∂2V
∂y2 = 0

and using the boundary conditions

V (0) = 0; V (L) =V0;

the analytical velocity can be written:

V (y) =
V0

L
y

Under steady state and without thermal conduction, the potential Φ in (2.3) reduces, for
the Couette flow, to:

Φ =
∫

B
φ
∗dS with φ

∗ =
1
2

µ(
∂V
∂y

)2 (2.4)

where µ represents the fluid viscosity. We adopt the following polynomial form to de-
scribe velocity fields:

V (y) =
N

∑
i=0

ci yi (2.5)

which is simplified through the boundary conditions as:

V (y) =

(
V0

L
−

N

∑
i=2

ci Li−1

)
y+

N

∑
i=2

ci yi (2.6)

where ci (i = 2, . . . ,N) is an unknown parameter to be defined. Adopting the velocity field
(2.6), the variational modelling of Couette flow becomes:

inf
ci

Φ(V ) (2.7)

So defining the velocity of Couette flow reduces to an optimization problem with re-
spect to coefficients ci. These coefficients can be calculated by the corresponding Euler-
lagrange equation of (2.7), yielding ci = 0(i = 2, . . . ,N). The analytical solution is re-
trieved.

Next, the variational formulation is validated by a simple conduction problem. Con-
sider a 1D layer with fixed temperature boundary conditions:

T (0) = T0; T (L) = T1;
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The corresponding total power density is:

Φ =
∫

B
−χdS with χ =

1
2

Θλ(
∇T
T

)2 (2.8)

Where λ is thermal conductivity. Θ is the equilibrium temperature introduced to satisfy
the symmetry property of variational formulation. Note that Θ = T in steady state. Hence
the variational model of the thermal layer is written as

sup
T

Φ

Similar to the forgoing Couette flow problem, we adopt the following trial temperature
field satisfying the boundary conditions:

T (y) = T0 +(
T1−T0

L
−aL)y+ay2

Using Galerkin method, we recover the analytical solution:

T (y) = T0 +
T1−T0

L
y y ∈ [0,L]

2.3 Thermal Couette flow
Merging the above two examples, the Couette flow with thermal effect is next considered.
In FIG.2.1, we consider two plates at constant temperature T0 and T1. The bottom plate is
fixed while the top plate is moving at constant velocity V0.

Figure 2.1: 1D thermal Couette flow problem

2.3.1 Analytical solutions
In general, for viscous non-Newtonian incompressible fluid, we define the constitutive
model as follows:

τ = µγ̇0(
γ̇

γ̇0
)m

Energy-based variational modelling of adiabatic shear band structure



32 Chapter 2. Variational modelling in steady state

where m is the strain rate sensibility exponent, γ and τ are separately shear strain and
shear stress. Hence the conservation of mass, the conservation of linear momentum and
the conservation of energy simplify to as follows:

divV = 0

divτ = 0; P = const;

−λ
∂2T
∂y2 = τγ̇

where P represents the pressure, constant in our problem. The analytical velocity and
temperature are obtained as:

V (y) =
V0

L
y

T (y) =−1
2

µ
λγ̇

m−1
0

(
V0

L
)m+1y2 +(

T1−T0

L
+

1
2

µ
λγ̇

m−1
0

(
V0

L
)m+1L)y+T0

2.3.2 Variational formulations
Considering the thermal Couette flow in steady state, the total power density in EQ.2.3
has two contributions: the viscous potential and the conduction potential, defined as:

Φ(V,T ) =
∫

B
(

1
m+1

µ
γ̇

m−1
0

(
T
Θ

∂V
∂y

)m+1− 1
2

Θλ(
∇T
T

)2)dy (2.9)

For the facilitation of calculation, the following dimensionless formulas are adopted:

V =
V
V0

; y =
y
L

; T =
T

Tre f
; Θ =

Θ

Tre f
; Tre f =

µL2

λγ̇
m−1
0

(
V0

L
)m+1

The density power (2.9) is then reduced to

Φ(V ,T ) =
∫ 1

0
(

1
m+1

(
T
Θ

∂V
∂y

)m+1− 1
2

Θ(
∇T
T

)2)dy

In the same way, by recourse to the boundary conditions, the velocity and temperature
can be rewritten as

V (y) = (1−a)y+a y2

T (y) = T 0 +(T 1−T 0− c)y+ c y2

where a, c are the unknown parameters in dimensionless form. So the variational mod-
elling of thermal Couette flow is defined as:

inf
a

sup
c

Φ(V ,T ) (2.10)

Consequently, the thermal Couette problem turns to a mathematical optimization: a
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Table 2.1: Comparisons with the parameters a and c (a = aV0
L2 ; c = cTre f

L2 )

variational modelling analytical solutions
a (1/ms) −2.84×10−13 0
c (K/m2) −517.16 −517.16

saddle point for ā and c̄. Taking variations with respect to ā and c̄, we can obtain the
corresponding mechanical and thermal balance equations. Using the following material
parameters:

µ = 0.157 Pa · s; λ = 0.6 Wm−1K−1; m = 0.5; γ̇0 = 1 s−1

L = 0.2 m; V0 = 50 m/s; T0 = 273 K; T1 = 300 K;

TAB.2.1 presents the comparisons of a and c between analytical solutions and variational
modelling, validating the feasibility of this variational modelling. FIG.2.2 presents pro-
files of velocity and temperature: the velocity has a linear form with a slope V0

L , while the
temperature in the fluid between the plates are gradually increasing with a parabolic form
from the cooler plate to the upper plate. But if we choose V0 smaller, the distribution of
temperature is more linear.
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Figure 2.2: Profiles of velocity and temperature in the thermal Couette flow
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2.4 Fully formed adiabatic shear band
Adiabatic shear band is a complex thermo-mechanical phenomenon with thermal soften-
ing. It occurs easily in thermal viscoplastic materials subject to high strain rate. Generally
its initiation and propagation are a precursor to material failure. Here we simplify the
shear localization model as a 1D problem illustrated in FIG.2.3: a slab of thickness 2H
subject to a simple shearing velocity V0, and isothermal conditions at y = ±H are con-
sidered. The material is representative of steel having a thermo-viscoplastic behaviour as
described in [Leroy and Molinari, 1992]. The constitutive relation is written as:

τ = τ0exp(−β(
T
T0
−1))(

γ̇

γ̇0
)m (2.11)

τ0 and γ̇0 are the referenced stress and strain rate. T0 is a reference temperature, here
chosen equal to the imposed temperature at y =±H. β scales the thermal softening. m is
the strain rate sensitivity. The following hypothesis are required in this study:

Figure 2.3: 1D shear band problem [Leroy and Molinari, 1992]

• It is an idealized, well established shear band;

• The velocity does not depend on X direction, i.e. ~V = V(y)~ex

• Body force and external heat supply are neglected.

• Material obeys a J2 von Mises law.

• It is asymptotic regime in time direction: no hardening is considered.

We consider the case when stress arrives at steady state. Consequently, the Cauchy stress
is uniform in y direction, and its form is as follows: 0 σxy 0

σxy 0 0
0 0 0
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The relation between shear strain rate and equivalent strain rate is derived as:

V,y =
√

3˙̄εP

Considering the shear band problem in steady state, the elastic deformation and the en-
tropy arrived at a steady state. Supposing the velocity and the temperature are imposed
on the boundary of the shear slab, the formulation EQ.2.3 is reduced to:

Φ(V,T ) =
∫ H

−H
ψ
∗(

T
Θ

V,y)−χ(−
T,y
T
)dy (2.12)

where the dissipated pseudo-potential ψ∗ is defined as follows:

ψ
∗(

T
Θ

V,y) =
1

m+1
τ0

(γ̇0)m exp
[
−β

((
Θ

T0

)
−1
)](

V,y
T
Θ

)m+1

m ∈ [0,1] (2.13)

and χ is thermal conduction conformed to Fourier law, described in (2.8). Yet we neglect
the viscoelastic potential in φ∗. In the same manner, the problem in FIG.2.3 is written as
an optimization of (2.12) as follows:

inf
V

sup
T

Φ(V,T ) (2.14)

Taking variation with respect to velocity, we can obtain the mechanical equilibrium equa-
tion, while the heat equation is obtained from the stationary condition on T (see Appendix
A). In addition, thermal equilibrium requires that Θ = T . Leroy and Molinari have shown
that an exact solution exists for the problem in FIG. 2.3 when the material flow law is
given by (2.11) [Leroy and Molinari, 1992]. Here we adopt the material parameters in
TAB. 2.2.

Introducing the non-dimensional variables as follows:

y =
y
H

; T =
T
T0

; t =
t
tC

with tC =
ρ0CH2

λ

V =
V

H/tC
; τ =

τ

τR
with τR = τ0(γ̇0tC)−m

the total pseudo-potential (2.13) reduces to:

Φ(V ,T ) = τR
H
tC

∫ 1

−1
(

1
m+1

exp
(
−β(Θ−1)

)
(

T
Θ

V ,y)
m+1− 1

2
κΘ(

T ,y

T
)2)dy (2.15)

where κ = T0ρ0C
τR

.
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Table 2.2: Material property for HY-100 steel

T0 (K) 300 ρ (kg/m3) 7800
C (J/kgK) 500 λ (W/mK) 54

T0 300 τ0 (MPa) 500
γ̇0 (s−1) 1000 m 0.012

β 0.33 k 0.40

2.4.1 Analytical solutions
Molinari and Wright gave the similar theoretical expressions of the profiles of velocity and
temperature in the band. In addition, Wright recurs to the constitutive models widely used
in the engineering to point out the generality of these formulations. Here we review this
analytical work and analyse the influences of material parameters to shear bandwidths.

Using the above non-dimensional variables, the equilibrium equations are written as:

∂τ

∂y
= 0

−∂2T
∂y2 = κ̃τ

∂V
∂y

where κ̃ = 1
κ

. Leroy and Molinari [Leroy and Molinari, 1992] obtained the analytical
solutions at a steady state for exponential softening law. The temperature in the layer can
then be written as follows:

T = Tb +
m
β

log[sech2(
Zy
2
)]

and the velocity is :

V =
m
β

Z
κ̃τ

tanh(
Z
2

y)

Where Z is an unknown parameter reflecting well the length of localization zone, thus We
might as well define the bandwidth h is equal to 2

Z , as a measure parameter to estimate the
profiles of velocity and temperature in the layer. Combined with the boundary condition,
it can be obtained implicitly through the following nonlinear equation:

Z−

√
2βκ̃

m
(

mZ
βκ̃V0

tanh(
Z
2
))(1+

1
m ) cosh(

Z
2
) = 0

FIG.2.4 shows the influences of imposed velocity V0, strain rate sensibility exponent m,
thermal softening coefficient β and the inverse of heat conduction parameter κ̃ (all in
non-dimensional values) on bandwidth h. We can see that except that the bandwidth is
increasing when m increases, yet it is decreasing as the other three parameters increase.
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Figure 2.4: Influences of m, V0, β and κ̃ on bandwidth

2.4.2 Variational modelling with Rayleigh-Ritz method
We recall the boundary conditions for the simple shear problem in FIG.2.3:

V |±H =V0; T |±H = T0

Here accounting for the analytical forms of physical profiles in variational formulation
EQ.2.1, we will build our energy-based variational modelling of fully formed shear band
from two views: the total power density with shear band width to be optimized and the
one with shear band width and central temperature to be optimized.

2.4.2.1 Shear band width and penalty method

For a fully formed adiabatic shear band, the width, denoted as h, is a certain and unique
value. If we just consider the original formulas for velocity and temperature, the pseudo-
potential is written as the form of h. Yet the stationary point of ψ with respect to h does
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not mean that it simultaneously chooses the optimization values of the pseudo-potential on
the corresponding velocity and temperature. We assume that there are two shear widths:
kinematic width hV and thermal width hT to measure the profiles of velocity and tempera-
ture. Here the analytical solutions obtained by Leroy and Molinari are applied and written
as follows:

V (y) =V0
tanh(y/hV )

tanh(H/hV )
, T (y) = T0−

2m
β

T0 ln
cosh(y/hT )

cosh(H/hT )
(2.16)

Two length-like parameters (hV and hT ) have been introduced. Owing to symmetry, the
actual widths are twice these values. In the following, hV and hT will nevertheless be
referred to as shear band widths.

A penalty method is introduced to fulfil the condition hV = hT . The energy-based
variational modelling is changed to a constrained optimization problem as follows:

Stat
hV ,hT

[
Φ+

1
2

A(hV −hT )
2
]

(2.17)

where A is a penalty coefficient, an ideally infinite constant. Thus the shear localization
problem is changed to an optimization form of the pseudo-potential, and shear band width
is the corresponding stationary point. Then many mathematical optimized methods can
be applied to search these unknown parameters associated with the steady velocity and
temperature.

We choose the following algorithm to solve EQ.2.17. In effect, the variation of Φ with
respect to hV is as follows:

∂Φ

∂hV
= τR

H
tC

∫ 1

−1
τ

∂2V
∂y∂hV

dy (2.18)

Because the conservation of linear momentum is

divτ = 0

the stress tensor is constant in y direction, and then

∂Φ

∂hV
= τR

H
tC

τ
∂2V
∂hV
|1−1 = 0 (2.19)

We obtain that the resolution of profiles of velocity and temperature are changed to
a nonlinear equation because of hV = hT . Yet some convergence problem exists when
we use this form of optimization. FIG.2.5 presents the profiles of ∂φ

∂hT
with h̄T (h̄T = hT

H )
increased. Apparently, when h̄T is close to 1, the derivation limited to 0. Due to the
character of function tanh: homogeneous when hV > 2.5, there will be more than one
solution in our variational modelling. Yet it merely exists an unique physical solution in
0 < h̄ < 1 for a fully formed ASB. As a consequence, Newton-Raphson method does not
seem to work well for this nonlinear problem, initial value will have a large influence on
the algorithm. Here we choose the bisection method to calculate the bandwidth, which
naturally limit the solution in the section [0,1].
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Figure 2.5: Derivation of φ with respect to hT with hV = hT

2.4.2.2 Shear band width and central temperature

Although the penalty method can enforce the constraint condition, the choice of penalty
coefficient is difficult to decide. Too lenient or too severe values will influence the con-
vergence of feasible solution. Here combined with the boundary condition, we rewrite the
analytical profiles of velocity and temperature as follows:

V (y) =V0
tanh(y/h)
tanh(H/h)

, T (y) = Tmax− (Tmax−T0)
ln(cosh(y/h))
ln(cosh(H/h))

(2.20)

where h is shear band width, Tmax is central temperature. After the substitution of (2.20) in
(2.15), the pseudo-potential has two characteristic parameters h and Tmax; Besides (2.18),
its optimization of total power density with respect to Tmax is equal to the heat equation.
The variational model (2.14) is equal to :

Stat
h,Tmax

Φ(h,Tmax)

Moreover, the introduction of new parameter Tmax avoids the dependence on material
properties and gives us a more general description of velocity and temperature in the
slab. FIG.2.6 illustrates the profile diagram of Φ(h,Tmax) when H = 1.25 mm and V0 =
0.01108 m/s. Our energy-based variational modelling simplifies the thermo-mechanical
coupled problem as an optimization problem associated with the band properties, which
brings a saddle point to describe an adiabatic shear band. This gives us a good advantage
in the application of mathematical optimization to the simulation of shear localization
problem. In the next part, we will show the comparisons of this modelling based on the
two foregoing methods.
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Figure 2.6: Modelling of adiabatic shear band by energy-based variational approach

2.4.3 Results and analysis

In our calculation, in view of the strong non-linearity of Euler-Lagrange equations of
(2.14), we choose an improved version of Newton-Raphson method, the trust-region
method, to calculate the stationary problem and obtain the shear band width h and central
temperature Tmax. TAB.2.3 shows the non-dimensional solutions hV , hT and Tmax from the
two methods of variational modelling in different material properties, which are in good
agreement with the analytical solutions [Leroy and Molinari, 1992]. FIG.2.7 presents the
profiles of velocity and temperature (H = 1.25 mm,V0 = 0.1 m/s) in the steady state of the
slab, the material parameters are chosen in TAB.2.2. Here the segment of the localization
is [−0.0448 mm, 0.0448 mm], the central temperature is 893.3K when shear band arrives
to the stability.

Table 2.3: Shear band width (dimensionless) and central temperature (β = 0.38;V0 =
0.1108 m/s)

Variational model Analytical solutions
h̄V [h̄ Tmax] [h̄ Tmax]

m = 0.12;κ = 1/0.24 0.3126
[
0.3126 775.0

] [
0.3126 775.0

]
m = 0.012;κ = 1/0.40 0.0310

[
0.0311 896.6

] [
0.0311 896.6

]
m = 0.06;κ = 1/0.32 0.1535

[
0.1535 851.3

] [
0.1535 851.3

]
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Figure 2.7: Profiles of velocity and temperature in steady state

FIG.2.8 illustrates the influence of the imposed velocity V0 on h and Tmax. With the
velocity increased, the shear band width h decreases and the central temperature in the
band increases. From this figure, we can see that the increasing speed of the shear band
width diminishes when V0 > 0.1108 m/s. Obviously in a thermal softening material, a
higher strain rate causes a smaller band width, and also brings more dissipation and heat
generation in the band. In addition, the time of the formation of the shear band is so
short that the heat cannot go out of the layer by conduction, leading to a higher central
temperature. The influences of thermal conductivity λ on h and Tmax are also analysed in
FIG.2.9: the shear band width increases almost linearly with λ, while the central temper-
ature decreases in a non linear way. This conclusion also validates that adiabatic shear
band is a misnomer, as described in CHAP.1. Heat conduction plays an important role
in the final process of ASB formation, determining on the steady localization length and
central temperature.

Moreover, we discovered that the average stress can be obtained from the following
derivation:

∂Φ

∂V0
=

∫ H

−H

∂Φ

∂ ˙̄εP
∂ ˙̄εP

∂V0
dy

=
∫ H

−H

√
3τ

1√
3

∂Ṽ (y)
∂y

dy

= τ(Ṽ (H)−Ṽ (−H))

= 2τ (2.21)

The above relation holds exactly for the analytical solution (constant shear stress). For ap-
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Figure 2.8: Influences of the imposed velocity V0 on the shear band width and the central
temperature

Figure 2.9: Influences of thermal conductivity λ on the shear band width and the central
temperature in the steady state

proximate solutions, we can define the half of derivation of pseudo-potential with respect
to the imposed velocity V0 as average stress. FIG.2.10 shows the comparison of every
point stress calculated by our modelling and the average stress. Theoretically, the stress
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calculated should be equal to each other. For V0 = 1 m/s,H = 1.25 mm, the maximum
error is the order of 1×10−6.

Figure 2.10: Comparison of average stress and stress

2.4.4 Extension to various constitutive relations
For arbitrary flow laws where the strain rate can be expressed as the form of stress and
temperature in [Wright and Ravichandran, 1997], Wright introduced two auxiliary func-
tions, which are the characteristics of the materials, to define strain rate sensibility expo-
nent m and thermal softening coefficient β, and obtained the canonical aspects of adiabatic
shear band. Here in this section, although the formations of (2.20) originates from the
work for exponential softening law in [Leroy and Molinari, 1992], we apply the boundary
conditions to eliminate the dependence of analytical formulations on material parameters,
such as m and β, and then transform the solutions of thermo-mechanical field quantities
as an optimization problem with respect to two variables (shear band width and central
temperature). This character will bring a good advantage in the application of variational
modelling to different constitutive models. We will use two popular models in mechanical
engineering to validate the feasibility of material modelling on various constitutive laws.

2.4.4.1 Power law

For simplicity, we choose a flow law ([Clifton and Molinari, 1983]) defined as

σ = K(
T
T0
)ν(

ε̇

ε̇0
)m
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which K, ν are material parameters. Neglecting the elastic property of material and as-
suming that the material obeys on von Mises law, we can get

ε̇p =
1√
3

V,y

where ε̇p is cumulated plastic strain. So the dissipation potential ψ∗ is obtained:

ψ
∗(

T
Θ

V,y) =
1

m+1
K
ε̇m

0
(

Θ

T0
)ν

(
1√
3

V,y
T
Θ

)m+1

m ∈ [0,1]

Using this expression, and applying canonical formulations of velocity and temperature
(2.20), we can get the Euler-Lagrange equations with respect to two variables h and Tmax.
Supposing that the problem is quasi-static and adiabatic, Molinari [Clifton and Molinari, 1983]
described the criteria of temperature localization with respect to this simple flow law.
They pointed out that adiabatic shear band will occur when

ν+m < 0

Combined with the properties of CRS 1018, we choose the material parameters as follow-
ing:

ν =−0.38;m = 0.012;T0 = 300 K; ε̇0 = 577.35 s−1;

K = 866 Mpa,λ = 54 W/mK

As a validation tool, FEM based on the variational formulation is applied to analyse the
evolution of velocity and temperature in the shear slab [Stainier and Ortiz, 2010, Stainier, 2011a].
In contrast with the traditional methods for solving thermo-mechanical problems, our tan-
gent matrix of FEM is symmetric taking advantage of the symmetry of bilinear form of
total power density. Likewise, hardening effect is neglected in FEM model, yet we con-
sider the elastic effect in the numerical simulation. However, a fine mesh is needed in
localization zone to avoid the drawback of mesh dependence.

FIG.2.11 shows the evolution of the temporary profiles of velocity and temperature
when V0 = 0.1108m/s and H = 1.25mm. With the time increased, the form of velocity
changes from linear to nonlinear, and step by step arrives at the steady form, which is
consistent with the analytical solutions in steady state obtained by variational modelling.
Similarly, the temperature forms are gradually convergent to its form in steady state. As
a note, shear band width h is just a characteristic length factor of shear localization. The
choice of h stems from the property of tangent hyperbolic function. In FEM, we use the
following formulation to define the transient evolution of band width:

V (h)'V0 tanh(1)

which originates from the analytical form of velocity. Applying this formula, FIG.2.12
shows the corresponding evolution of shear band width. As FIG.2.11 describes, the shear
band width decreases with time increased, and drops rapidly before 0.02s, and then step by
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Figure 2.11: Evolutions of the velocity and the temperature in the layer obtained by FEM
(V0 = 0.1108m/s and H = 1.25mm)
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Figure 2.12: Time evolution of shear band width obtained by FEM (V0 = 0.1108m/s and
H = 1.25mm)

step it arrives at a convergent solution when t > 0.06s. On the other part, the shear band
width and central temperature in steady state are calculated by our variational modelling.
FIG.2.13 gives the comparisons of the profiles of velocity and temperature in steady state
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Figure 2.13: Profiles of velocity and temperature in steady state (V0 = 0.1108m/s and
H = 1.25mm)

Table 2.4: Comparisons of shear band width h and central temperature Tmax with FEM

variational modelling FEM
h (mm) 0.0991 0.0997
Tmax(K) 1052.8 1052.1

with FEM in half of domain. Clearly, there is a good coherence with FEM. Meanwhile, we
give TAB.2.4 the comparisons of shear band width and central temperature between FEM
and variational method when V0 = 0.1108m/s and H = 1.25mm. The error approximation
is controlled in 0.6% for the shear band width. Consequently, this example proposes the
efficiency of our approach.

2.4.4.2 Johnson-Cook model

When considering high strain rate loading, the Johnson-Cook (JC) model is considered
as the most simple and widely used model to represent material flow strength behaviour
about the strain rate, large equivalent strain and temperature. It is defined as following:

σy( ˙̄εP
, ε̄P,T ) = (A+B(ε̄P)n)(1+ c log(

˙̄εP

ε̇0
))(1−T ∗q)

The five parameters A, B, c, n and q are constant and obtained from experiments. ε̇0 is
the reference effective strain rate determined from quasi-static test. T ∗ defines thermal
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softening effect in function of melting temperature Tm and reference temperature T0.

T ∗ =


0 i f T < T0
T −T0

Tm−T0
i f T0 < T < Tm

1 i f T > Tm

(2.22)

For testing the independence of our modelling in steady state, we neglect the hardening
part in JC model, choosing B = 0 in the example. Considering the existence of a ratio β

of conversion of deformation energy into heat, the total variational modelling in steady
state can be restated as:

Φ =
∫ H

−H
Ad(1−T ∗(Θ)q)

T
Θ

˙̄εP
+A(1−T ∗(Θ)q)cε̇0

(
T
Θ

˙̄εP

ε̇0
log(

T
Θ

˙̄εP

ε̇0
)− T

Θ

˙̄εP

ε̇0
+1)−χ(−

T,y
T
,Θ)dy

where Ad ≤ A. The choice of Ad effects on the ratio of plastic energy transformed to heat
β. If Ad = A, the classical Taylor-Quinney coefficient is equal to unity.

Firstly variational FEM is used to simulate the formation of ASB with the material
parameters as TAB.2.5 described. We do not consider the hardening effect in steady state.

Table 2.5: Material properties for Ti-6Al-4V (in steady state)

Material property (Ti-6Al-4V) in steady state
A (MPa) 792 Ad (MPa) 792

q 1.03 λ (W/mK) 54
c 0.014 ε̇0 (s−1) 1

T0 (K) 300 Tm (K) 1793
C0 (J/K) 477 ρ (kg/m3) 7830

ν 0.3 E (Gpa) 217.5

FIG.2.14 is the stress evolution of the band when H = 1.25mm;V0 = 0.1m/s. The
shear stress corresponds to the stress prevailing at the boundary (y = ±H). At first the
slab behaves elasticity. When plasticity develops, the stress level initially has a slight
decrease because of the small effect of thermal softening. At some stage, the thermal
softening occupies the process and induces the strain localization, and the stress drops
rapidly. The steady state develops when t > 0.1s. Meanwhile shear band width decreases
with the time and gradually evolves towards a constant. TAB.2.6 is the results of steady
shear band width and central temperature compared with the above variational model,
which has a good agreement with FEM.
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Figure 2.14: Evolutions of shear stress (JC model) by FEM (V0 = 0.1m/s and H =
1.25mm)

Table 2.6: Comparisons of shear band width h and central temperature Tmax with FEM
(JC Model)

Variational modelling FEM
h (mm) 0.042121 0.0426819
Tmax(K) 952.8 938.7

2.4.5 Thermal boundary condition

Slab width size H is a known parameter in the aforegoing energy-based variational mod-
elling. Numerical analysis illustrates that ASB band width h and central temperature Tmax
increase when H is increased (FIG.2.15), isothermal boundary conditions T = T0 and
constant velocity V =V0 are presented at y = H.

If we separately look at the mechanical part of our ASB problem, the profile of veloc-
ity for a slab with H1 (H1 > hr) should be predicted the same as the one obtained with Hr
in FIG.2.16(a), where the r subscript is used to denote a reference solution. Unfortunately,
profiles of temperature obtained with different slab widths present a large difference, ow-
ing to isothermal boundary conditions (FIG.2.16(b)). Because of the strongly localized
temperature, these isothermal boundary conditions are physically not very realistic, even
under high strain-rate loading. In this section, we thus proceed to include heat exchange,
with the objective of avoiding the direct dependency of results on slab width H. Our ap-
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Figure 2.15: Influences of different slab widths on bandwidths and central temperatures
(without heat exchange on y =±H)

(a) (b)

Figure 2.16: Profiles of velocity (a) and temperature (b) in a layer

proach is similar to the mixed boundary condition proposed by [Leroy and Molinari, 1992]:

∂T
∂y

+
1
α
(T −T0) = 0 on y =±H
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where α is a known film parameter. The boundary is isothermal when α = 0 and adiabatic
when α =+∞.

Denoting Text the boundary temperature (now different from the outer temperature T0),
the trial temperature profile is written as:

T (y) = Tmax− (Tmax−Text)
log(cosh(y/h))
log(cosh(H/h)

The trial velocity field remains unchanged. We also introduce the following heat exchange
dissipation potential:

Wtr =
1
2

c
θ1

(Text−T0)
2 when y =±H

where θ1 = Text in steady state, and c is an exchange coefficient satisfying:

c =+∞ when Hr = 1.25 mm

i.e the conditions is isothermal: T = T0. The total potential can be written as:

Φt(h,Tmax,Text ,c) = Φ−2Wtr

where Φ is described in (2.1), here we take exponential law as an example. The variational
modelling for adiabatic shear band problem with heat exchange is then described by the
following optimization problem:

Stat
Text ,h,Tmax

Φt(h,Tmax,Text ,c) (2.23)

Stationarity equation with respect to Text amounts to imposing a mixed boundary condi-
tion:

−λ
∂T
∂y

= c(Text−T0)

consequently the relationship between exchange coefficient c and film parameter α pro-
posed by Leroy [Leroy and Molinari, 1992] is derived as

λ

α
= c

and we will retrieve isothermal boundary conditions (Text = T0) when c =+∞.
Contrarily to conventional work, we will treat the exchange coefficient c as an un-

known parameter, which will be determined by an optimization condition of total pseudo
potential, as well to additionally consistent the bandwidth with respect to different slab
width H (and a given loading velocity V0). We will consider as reference solution of the
profiles obtained from Hr = 1.25 mm and V0 = 0.1 m/s, with isothermal boundary con-
ditions (c = +∞). These profiles are characterized by h = hr and Tmax = Tmax,r. Yet it
seems that it does not work due to the problem having three optimized conditions for 4

Energy-based variational modelling of adiabatic shear band structure



2.4 Fully formed adiabatic shear band 51

parameters: bandwidth h, maximum temperature Tmax, external temperature Text and ex-
change coefficient c. As the aforementioned objectives through the introduction of c, one
aspect is to ameliorate our modelling with introducing heat exchange, and other aspect is
to satisfy the consistency of bandwidth with respect to different slab width. Consequently
we then look at solutions obtained for hr ≤ H ≤ Hr, with mixed boundary conditions,
seeking for a value of exchange coefficient c yielding a matching temperature profile for
−H ≤ y ≤ H, as illustrated in FIG.2.17. This constraint corresponds to the following
condition:

Text = Tmax,r(V0)− (Tmax,r(V0)−T0)
log(cosh(H/hr))

log(cosh(Hr/hr))

Figure 2.17: Profiles of temperature on different slab widths

Under the above constraint, shear band width and central temperature remain remark-
ably constant over a wide range of domain width, as shown in FIG.2.18. Unavoidably,
there are some small fluctuations about bandwidths when H comes closer to the reference
bandwidths, yet less than 0.05.

FIG.2.19 presents the corresponding evolution of exchange coefficient c with slab
width H. It seems that a linear relation exists between log(Hr−H) and log(c). Con-
sequently, we would like to find a fitted formula to summarize the relationships among
slab width, loading and exchange coefficient. Here referring to the profiles of exchange
coefficient with H, a polynomial method is applied to find its curve fitting, which can be
illustrated as follows for the reference slab width Hr = 1.25 mm:

log(c) = a(V0)log(Hr−H)+b(V0) (2.24)
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Figure 2.18: Shear band width, central temperature and central stress for different slab
widths(V0 = 0.1m/s)

Figure 2.19: Exchange coefficient for different slab widths

Normally, a(V0) and b(V0) are the fitted parameters associated with the loading velocity.
Yet numerical implementations obtained that they are basically constant with the imposed
velocity V0, and:

a(V0) =−1; b(V0) = 3.9889
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Note that the slab width should be limited to hr(V0)≤ H ≤ Hr.
As a consequence, a variational model considering heat exchange in ASB formation is

built through a constraint optimization method, and exchange coefficient c is observed as
an internal optimized parameter. Here the corresponding c can be directly calculated from
the formula (2.24) if slab width is known, and we will use it in the incremental variational
modelling.

Nusselt number is a dimensionless number of heat transfer parameter, which can be
calculated as follows:

Nu =
cH
λ

=
H
α

It is a ratio of convection to conduction on the boundary, and a larger Nu reflects more
active convection. FIG.2.20 is the evolution of Nusselt number changing with slab width
H. When H augments, Nusselt number is increasing, especially for the case that H is near
to Hr where exchange coefficient is infinite.

Figure 2.20: Nusselt number when Hr = 1.25mm

2.5 Conclusions
For general thermo-viscoplastic materials, an energy-based variational modelling was
proposed and successfully applied to the simulation of adiabatic shear band in a slab
subject to a constant simple shear. In accordance with the analytical lines: mechanical
problem, thermo-mechanical problem in non-Newtonian fluid and thermo-viscoplastic
problem with thermal softening, we derived and validated the variational modellings of
Couette flow, thermal layer, thermal Couette flow and adiabatic shear band. In common,
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we analysed the thermo-mechanical field profiles by means of an optimization with one
or two types of parameters, largely simplifying the calculations. Moreover on one part,
the shear band width and central temperature are obtained and in good agreement with
[Leroy and Molinari, 1992]. These characteristics of ASB also lay a good foundation for
estimating an approximate mesh size if we apply Finite Element Method to simulate ASB
problem; on the other part, applying this modelling, we also discussed the influences of
material parameters and the loading condition on shear band width and temperature. The
evolution of profiles of velocity and temperature in shear slab are presented by means of
FEM, as well as the development process of shear band width: it decreases with time
increased, and step by step converges to the analytical solution obtained by variational
modelling. Thus it validates that our modelling works for various material constitutive
models.

As a final part, thermal boundary condition is considered to have a consistent band-
width with respect to slab width. We added two unknown parameters: exchange coef-
ficient c and temperature Text in the optimized pseudo-potential, and then a numerical
formula for c is fitted by means of variational modelling, yet it depends on the reference
structure.

The simple 1D example proves the feasibility and efficiency of the variational mod-
elling in steady state. It gives us a good preparation for analysing the evolution of band-
width, central temperature in the layer and stress by a Rayleigh-Ritz method. Obviously
if we consider the update form of this variational formulation, this work can be extended
to the transient state, as shown in next chapter. In addition, how to apply this modelling
in multiple dimensions will give us a large challenge for future work.
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Variational modelling in transient state

Abstract :

An incremental variational modelling of adiabatic shear band
structure in transient state is developed for general constitutive

models, including elasticity, work hardening, heat conduction and
thermal boundary condition. The evolutions of bandwidth, maximum

temperature and stress are analysed under monotonic and cyclic shear
loading, and are in good agreement with the results obtained by Finite

Element Method.

Résumé :

Une modélisation variationnelle incrémentale des bandes de
cisaillement adiabatique en régime transitoire est dévelopée pour les
modèles générals constitutives, incluant l’élasticité, l’écrouissage, la
conduction thermique et la condition thermique aux frontières. Les

évolutions de la largeur de bande, de la température centrale et de la
contrainte sont analysées subissant la chargement monotone et

cyclique, et en accord avec les résultats de la méthode des éléments
finis.
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Adiabatic shear band is the result of a thermo-mechanical instability leading to large
deformation and high temperature in a narrow band, normally a few tens of micrometers
[Wright, 2002]. In general, the development of ASB proceeds in three steps:

• stage I: the deformation in shear is homogeneous, and strain hardening of material
overcomes the thermal softening effect.

• stage II: after the maximum of stress, a diffuse instability develops due to the promi-
nence of the thermal softening, the deformation begins to be slightly heterogeneous.

• stage III: strong instability develops and the deformation localizes in a narrow band.
Fracture may occur in this stage. Under certain circumstances, when the hardening
is saturated and the heat production caused by plastic is removed by heat conduc-
tion, a steady state may develop in the final stage.

In the present chapter, we will illustrate these three stages of ASB formation by means of
an energy-based variational modelling.

For the same thermo-mechanical problem described as CHAP.2: a slab subject to a
simple shearing velocity, we will extend the variational framework from steady state to
transient state, thus describing the evolution of thermo-mechanical profiles by an energy-
based variational method. The outline of this work is described as follows:

From simple to complex, we first consider the variational modelling in thermo-viscoplastic
material, yet neglecting elastic and hardening property, which is equivalent to the forma-
tion of ASB directly entering into second stage. Since no analytical solution exists in
transient domain, finite element method based on variational framework is introduced
and applied as a comparative tool. The evolutions of bandwidth, maximum temperature
and equivalent shear stress are analysed and validated by FEM. Furthermore, an expected
result is obtained that the bandwidth decreases with the time and converges to a constant
value in steady state. In similar manner, we also proposed the variational modellings for
power law and Johnson-Cook law with hardening factor, which achieves a good agree-
ment with FEM simulation.

Based on the analysis of exchange coefficient in CHAP.2, a variational modelling in-
cluding thermal boundary condition is proposed afterwords for thermo-viscoplastic mate-
rial to have a consistent bandwidth with respect to different slab widths. The temperature
on the boundary increases with the time, evolving towards a constant value in steady
state, which also embodies that thermal conduction in the process of adiabatic shear band
structure becomes more and more important.

Considering the accuracy and development of our variational modelling, introducing
elastic effect calls for no delay in the energy-based variational method. Taking the widely
used Johnson-Cook model as a constitutive relation, we separate the imposed displace-
ment as two parts: elastic displacement and plastic displacement, and propose a varia-
tional formulation of adiabatic shear banding structure including elasticity, hardening and
conduction. Some simple examples are presented in this part to validate our modelling,
and a good correspondence is obtained compared with FEM.
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3.1 Variational updates
The variational framework proposed by Yang et al.[Yang et al., 2006] also includes a
time-discretized incremental variational problem, and it can be applied to the 1D shear
band problem, yielding an incremental optimization problem.

3.1.1 Variational framework
In particular, considering a time increment [tn, tn+1], and assuming that

[
Fn,Tn,F

p
n
]

is
known, we proceed to obtain the variational update at time tn+1. Tn presents absolute
temperature at time tn, and F is the gradient of deformation:

F =
∂x
∂X

where x is the current configuration vector, and X is the original Lagrangian vector. We
consider the conventional multiplicative decomposition of deformation gradient:

F = FeFp

where Fe and Fp are respectively elastic and plastic parts. The spatial velocity gradient
can be written as

L = Ḟ ·F−1 = Ḟe(Fe)−1 +FeḞp(Fp)−1(Fe)−1

In another view, we can decompose L into its symmetric and anti-symmetric parts:

L =
1
2
(L+LT )+

1
2
(L−LT ) = D+W

We suppose that the thermal-viscoplastic material obeys on J2 von Mises law, Fp then
satisfies the following rule:

ḞpFp−1
= ε̇pM (3.1)

which
εp = ε̄

pM

where ε̄p is the cumulated plastic deformation, and M is the direction of cumulated plastic
strain tensor, satisfying the following conditions:

tr(M) = 0

M ·M =
3
2

MT = M

(3.2)

So the gradient of plastic deformation Fp
n+1 is written as:

Fp
n+1 = exp[(εp

n+1− ε
p
n)M]Fp

n (3.3)
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Following the work in [Yang et al., 2006], the total pseudo-potential for the thermo-mechanical
coupled problem is then:

Φn =
∫ H

−H

[
Wn−∆tχ

(
1

Tn+1

∂Tn+1

∂y

)]
dy (3.4)

where Wn is the optimized potential with respect to ε
p
n+1 and M:

Wn (Fn+1,Tn+1;Fn,Tn,Fp
n ,ε

p
n) = inf

ε
p
n+1,M

[W
(
Fn+1,Tn+1,F

p
n+1,ε

p
n+1
)

−W (Fn,Tn,Fp
n ,ε

p
n)+ρ0ηn (Tn+1−Tn)

+
∫ tn+1

tn
Ψ
∗
(

Tn+1

Tn

∆ε
p

∆t
;ε

p,T (t)
)

dt] (3.5)

It should be emphasized that the equilibrium temperature Θ at t = tn+1 is replaced by Tn
in the incremental variational formulation. Consistency of this scheme can be validated
when ∆t→ 0. ρ0 is mass density per unit undeformed volume, and W

(
Fn+1,Tn+1,F

p
n+1,ε

p
n+1
)

is the free energy, written as:

W
(
Fn+1,Tn+1,F

p
n+1,ε

p
n+1
)

= W e(Fn+1,F
p
n+1,Tn+1)+W th(Tn+1)

+W p(Fn+1,F
p
n+1,Tn+1,ε

p
n+1)

where W e, W p and W th are the elastic energy, the stored plastic energy and the heat storage
capacity of the material [Stainier and Ortiz, 2010]. Normally we choose elastic energy as:

W e(Ce) = µ ‖ dev[εe] ‖2 + f (J) (3.6)

where εe = 1
2 log(Ce). Ce is the elastic right Cauchy-Green tensor, equal to FeT Fe, and

J = det[F] =
√

det[Ce]. The heat storage capacity is as follows:

W th(Tn+1) = ρ0C0Tn+1(1− log(
Tn+1

T0
)) (3.7)

where C0 is heat capacity, T0 is the reference temperature. The form of W p depends on the
flow rule, and an uniform formulation for the stored plastic energy [Stainier and Ortiz, 2010]
is used in our variational modelling of FEM:

W p(ε̄p,T ) =
n

n+1
σ0(T )

b
(1+bε̄

p)(
1
n+1)+ σ̂0(T )[ε̄p +

1
d

exp(−dε̄
p)] (3.8)

σ0(T ) and σ̂0(T ) are the linear softening functions with respect to temperature. The
parameters in the formulas (n, b, d and linear softening factors) can be obtained by sim-
ple tensile/compressible experimental tests. In addition, the notations Ψ∗ and χ are the
same as previously described in CHAP.2: the dissipation pseudo-potential and the Fourier
pseudo-potential. The entropy ηn is defined by :

ρ0ηn =−
∂W
∂Tn

(Fn,Tn,Fp
n ,ε

p
n)
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and ∆ε
p = ε

p
n+1− ε

p
n .

According to the optimization condition about ε
p, we can update the internal variable

ε̄p through the convex dissipation pseudo-potential:

∂W (Fn+1,Tn+1,F
p
n+1,ε

p
n+1)

∂ε
p
n+1

+
∂Ψ̃∗

∂ε̇
p
n+1

+4t
∂Ψ̃∗

∂ε
p
n+1

= 0 (3.9)

where Ψ̃∗ =
∫ tn+1

tn Ψ∗
(

Tn+1

Tn

∆ε
p

∆t
;ε

p,T (t)
)

dt.

In the incremental variational potential, W appears as a thermo-elastic pseudo-potential.
The first Piola-Kirchhoff stress can be written as:

∂Wn

∂Fn+1
= Pn+1

and the heat equation in adiabatic form is given by taking the variation about T :

∂Wn

∂Tn+1
=−ρ0∆η+

∆t
Tn+1

Dint = 0

where Dint is the internal dissipation.
In continuum mechanics, there are several types of strain measures to present material

movement, such as right Cauchy-Green strain C, defined as C = FT F, and D is strain
rate tensor; Green-Lagrange strain tensor E, defined as E = 1

2(C− I); logarithmic strain
EN , defined as E = 1

2 log(C). If we choose these different strains to describe the terms in
energy Wn, we can also obtain the relative stress forms: Cauchy stress σ, second Piola-
Kirchhoff stress S by Wn according to:∫

V
σ : DdV =

∫
V

S : ĖdV =
∫

V0

P : ḞdV0 (3.10)

In general, the deformation gradient F is written as:

Fn+1 = I+
∂un+1

∂x
For the shear band problem on 1D, F can be reduced to:

Fn+1 =

 1 ∂un+1
∂y 0

0 1 0
0 0 1


As a consequence, the shear band problem in the variational framework is written as:

inf
un+1

max
Tn+1

Φn (un+1,Tn+1;un,Tn,Fp
n ,ε

p
n) (3.11)

When the time step tends towards 0, Euler-Lagrange equations of (3.11) are consistent
with continuous mechanical and thermal equilibrium equations.
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3.1.2 Finite element method
Coupled thermo-mechanical problem is always an issue of great contention because of
its widespread occurrence and application in mechanical engineering. For the coupling
between the conservation of linear momentum and the first law of thermodynamics, seek-
ing for a crafty coupling algorithm has a large influence on the efficiency and accuracy of
numerical simulation. In general, there are two types existing in this domain:

• strongly coupled problem: recalled as monolithic scheme. all the profiles, i.e dis-
placement and temperature are included in a nonlinear structure. Consequently the
same time-stepping is used in mechanical and thermal evolution, and the coupled
terms involve the system non-symmetry. The strong point of monolithic scheme is
its stability, i.e. the solution is unconditionally stable in the fully implicit algorithm.
Yet because of large composition including displacement and temperature, once we
use some numerical discretized approaches such as FEM, meshfree method, the
calculation of system is enormous to process a good accuracy. Moreover, the dif-
ferent time step for the displacement and temperature may be better for numerical
modelling, especially for the localization problem.

• weakly coupled problem: recalled as staggered scheme. The resolution of me-
chanical problem and thermal problem proceed interactively. When solving the
mechanical equation, we regard it as isothermal, and inversely if solving thermal
equation, mechanical part is constant. Necessarily for the weakly coupled problem,
the stability of its time discretization should be limited to some conditions. A num-
ber of papers proposed some stability techniques to reduce the expense of uncon-
ditional stability [Armero and Simo, 1992, Armero and Simo, 1993, Simo, 1991].
The drawbacks of monolithic scheme are the strong points of staggered scheme.
For the different physics, we can arrange different time step and different node
density according to the need of computational accuracy.

Practically, some engineers neglect thermal conduction effect in heat equation for dy-
namic high strain rate loading, then treat the problem as adiabatic, so the temperature
can be calculated as an internal parameter in the calculation. Yet for our shear localiza-
tion problem, thermal conduction plays an important role in the final term of the forma-
tion of adiabatic shear band, which influences the steady shear band width and central
temperature. Unfortunately this nonlinear term makes the numerical implication more
complicated. Here our FEM modelling is built on the strongly coupled problem.

Non-symmetric system causes a lot of inconvenience in the numerical method, yet ex-
cept for our FEM based on energy-based variational modelling. Thanks to the symmetry
of the bilinear form of variational pseudo-potential, the tangent matrix of the FEM is also
symmetrical, which is different from the traditional thermo-mechanical problem, and this
character brings some algorithmic advantages. In the FEM model, elastic potential, stored
plastic potential and stored thermal potential are chosen as (3.6), (3.8) and (3.7).

For the dissipation pseudo-potential Ψ∗, Stainier [Stainier and Ortiz, 2010] proposed
a general form of time discretization which is composed of rate-independent part and
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rate-dependent part:

Ψ
∗(ε̇

p
,εp,T ) = σy(ε̄

p,T )ε̇
p
+

m
m+1

σv(T )ε̇0(
˙̄εp

ε̇0
)(

1
m+1) (3.12)

where the critical stress σy is

σy(ε̄
p,T ) = σ1(T )(1+b′ε̄p)

1
n′ + σ̂1(T )[1− exp(−d′ε̄p)]

The terms σ1(T ), σ̂1(T ) and σv(T ) have a similar linear thermal softening effect, de-
scribed as :

σ1(T ) = σ1(T0)[1−ω1(T −T0)]

Using the experimental results, we can proceed the identifications of constitutive param-
eters in these formulas to have a good correspondence of strain-stress curves. The con-
stitutive relations of Aluminium, Titanium and Tantalum are validated by this variational
modelling.

The time discretization of dissipation pseudo-potential is very important in FEM, in-
appropriate discrete terms will cause that the incremental Euler-Lagrange equation is not
consistent with the heat equation. For instance, if we simply take a generalized mid-
point rule for a fully implicit approach, the consistency can not be obtained. Thereby
[Stainier, 2011a] proposed a consistent approximation for its time-discretization as fol-
lows:
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)
The parameters have α ∈ [0,1] and θ ∈ [0,1], normally we choose it equal to 0.5, a mid-
point rule for the time integration.

Based on the incremental variational potential (3.4), it is easy to derive the incremen-
tal equations by standard finite element method. The displacement and temperature are
relatively described as a linear form of shape functions. Here for the simulation of shear
localization, we should firstly give an approximation of the localization length in order
to have a good accuracy in localized zone. Yet it causes a large expense in computation,
even if for 1D shear band problem.

For illustrating the evolution of shear band width and comparing it with our variational
modelling by Rayleigh-Ritz method, we choose two parameters to measure the shear lo-
calization: the kinematic width hV obtained from the velocity distribution and the thermal
width hT obtained from the temperature distribution at every time step. Referring to the
analytical formulation, they are approximated as follows:

hVn+1 such that Vn+1(hVn+1)'V0 tanh(1)

hTn+1 such that T (hT )' Tmax− (Tmax−T0)
log(cosh(1))

H
hT
− log2
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We should say that two formulas are merely an approximation according to the profiles of
velocity and temperature, since no heat affected zone is considered in the thermal width.

As the problem in CHAP.2 described, we consider a shear slab subject to a simple
shearing velocity for general thermo-viscoplastic materials, and a constant velocity V0 is
imposed on y = ±H. Yet body force is neglected in the modelling. We will present our
modelling in two parts from simple to complex: the modelling without elasticity and the
modelling considering it.

3.2 Thermo-visco-plastic variational modelling
According to the definition of entropy, we can write η as:

ρ0η(Tn+1) = ρ0C0 log(
Tn+1

T0
)

We recall the total incremental pseudo-potential described as follows:

Φn( ˙̄εp
n+1, ε̄

p
n+1,Tn+1) =

∫ H

−H
[W p(ε̄

p
n+1,Tn+1)−W p(ε̄p

n ,Tn)+W th(Tn+1)−W th(Tn)

+ρ0η(Tn)(Tn+1−Tn)+∆tΨ∗(
Tn+1

Tn
˙̄εp

n+1, ε̄
p
n ,Tn)

−∆t
1
2

λTn(
∂Tn+1

∂y
1

Tn+1
)2]dy (3.13)

In addition, we write the equivalent plastic strain as follows:

˙̄εp
n+1 =

1√
3

∂Vn+1

∂y

Using a substitution of ˙̄εp
n+1 in pseudo-potential (3.13), the variational update for the

adiabatic shear band is:
inf

Vn+1
sup
Tn+1

Φn(Vn+1,Tn+1,Vn,Tn) (3.14)

For simplicity, we might as well firstly suppose that the temperature is isothermal on the
boundary:

T = T0 on y =±H

3.2.1 Variational modelling for exponential softening law
3.2.1.1 Variational formulation

We derived the incremental dissipation potential for an exponential softening law as fol-
lows:

Ψ
∗( ˙̄εp

n+1, ε̄
p
n ,Tn) =

1
m+1

τ

γ̇m
0

exp(−β(
Tn

T0
−1))(

∂Vn+1

∂y
)m+1
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where m and β are respectively the strain rate sensitivity exponent and the thermal soft-
ening coefficient. Obviously it is convex with respect to velocity. Neglecting the heat
affected zone, and supposing that the distributions of velocity and temperature satisfy the
canonical expressions at each time step, we choose two paths to describe their profiles at
t = tn+1:

• kinematic width hVn+1 and dynamic width hTn+1 as unknown parameters:

V (y) =V0
tanh(y/hVn+1)

tanh(H/hVn+1)
, T (y) = T0−

2m
β

T0 ln
cosh(y/hTn+1)

cosh(H/hTn+1)
(3.15)

In addition, at every time step, there is an additional condition for two parameters:

hVn+1 = hTn+1

Because its canonical expressions originate from [Leroy and Molinari, 1992], and
material parameters are included in the formulas, this method is just used in expo-
nential softening law. So the problem (3.14) is changed to seek the stationary point
of total potential:

Stat
hVn+1 ,hTn+1

Φn(hVn+1,hTn+1) with hVn+1 = hTn+1 (3.16)

As CHAP.2 described: ∂Φ

∂hVn+1
= 0, the optimizations of Φ with respect to two pa-

rameters are consequently transformed to a nonlinear equation:

∂Φn

∂hTn+1

|hVn+1=hTn+1
= 0

Here, we list this method to give the readers a different idea in the transformation of
variational modelling from steady state to transient state. Yet this model is restricted
to the exponential softening law because of the formulation of temperature profile,
merely working without hardening coefficient. The later examples show that the
modelling in constitutive relations with hardening has different bandwidth hV and
hT even if when it arrives at a relatively steady state. So we mostly choose the next
method for the adiabatic shear banding simulations. But some results are also given
in the numerical validation to show its feasibility for exponential law.

• In order to extend our modelling to different constitutive laws, we adopt a similar
approach as in CHAP.2 through the introduction of another parameter Tmax:

Vn+1(y) =V0
tanh(y/hVn+1)

tanh(H/hVn+1)
, (3.17a)

Tn+1(y) = Tmaxn+1−
(
Tmaxn+1−T0

) ln(cosh(y/hTn+1))

ln(cosh(H/hTn+1))
(3.17b)
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Here we do not impose the consistency of kinematic width and thermal width at
each time step which is constrast to the aforegoing modelling. The incremental
variational modelling is written as:

Stat
hVn+1 ,hTn+1 ,Tmaxn+1

Φn(hVn+1,hTn+1 ,Tmaxn+1) (3.18)

Physically there is no shear band happening in the early stage, so we give a con-
straint condition for this modelling according to the character of function tanh(x):

if h̄V > 2.5 h̄v = 2.5 and h̄V = h̄T (3.19)

Where h̄ = h
H . Consequently nonlinear equations are built by the stationary condi-

tions of total pseudo-potential. Compared with the first method, it is more compli-
cated, yet more general in the terms of constitutive relations owing to the indepen-
dence of temperature formula on m and β.

It is important to note that: in contrast to previous approaches, the shear band width
figures among the unknowns, and will be determined by numerical optimization. It is an
important feature, since this width at every time step is controlled by the combined effect
of internal dissipation and conduction, and we will use an example to illustrate that it can
evolve as the shear band evolves towards its stationary structure.

In general, there is no shear localization for the profile of velocity at initial time if we
choose small time step. Consequently initial condition is described as follows:

h0 = H

3.2.1.2 Numerical validation

Although we work on the simplified problem in 1D thermal viscoplastic material, the
complicated constitutive relations and the coupled thermo-mechanical terms make the
theoretical analysis of adiabatic shear band out of the way. Therefore FEM is applied to
validate our energy-based variational modelling.

FIG.3.1 shows the results of the profiles of velocity and temperature in the layer (H =
1.25mm,V0 = 0.01108m/s,T0 = 300K). As the time increases, the profiles of velocity
change from a linear form to a nonlinear form, and step by step concentrate on the central
zone, arriving at a steady state when the time reaches 0.1 s. The stationary shear band
width is 0.247 mm, and Tmax = 395K. Two shear band widths are chosen to measure
the shear localization: the kinematic width hV and the thermal width hT . It should be
noted that two formulas are merely an approximation of kinematic and thermal widths
and do not represent a physical bandwidth, since no heat affected zone is considered in
the thermal width. Yet the approximated formula of hV can reflect well the length of shear
localization in velocity.

We also analyse the evolution of the shear band when the imposed velocity is V0 =
1m/s (FIG.3.2). The average shearing strain rate at V0 = 1m/s is 800s−1, and the one close
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Figure 3.1: Evolution of the profiles of velocity and temperature by FEM (V0 =
0.01108m/s)

to the loading edge is 0, but the higher shearing strain rate is on the center of the band,
as 64845s−1 at steady state. Consequently lots of higher strain are just concentrated into
a shear localization domain, which of length here is h = 0.01542mm for the slab width
H = 1.25mm. Moreover, compared with V0 = 0.01108m/s, the time for reaching a steady
state is shorter, the shear band width is smaller, and central temperature is higher (Tmax =
2053.4K), which is in agreement with the analytical solution. In addition, we can observe
a heat affected zone in the process of the shear band formation because of the locally lower
strain and local annealing due to the temperature increase [Dinzart and Molinari, 1998].
Yet this transient effect is less obvious in the case of V0 = 0.01108m/s.

Figure 3.2: Evolution of the profiles of velocity and temperature by FEM (V0 = 1m/s)

FIG.3.3 presents the convergence of kinematic width and thermal width when H =
1.25mm,V0 = 0.01108m/s,T0 = 300K. With the time increased, the two widths decrease
gradually and tend towards the same stationary value, which are consistent with the an-
alytical solutions. Although FEM shows a relative precise solution, the expense of com-
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Figure 3.3: Convergence of the shear band width (V0 = 0.01108m/s)

putational time in standard FEM is enormous. Taking the calculation of V0 = 1m/s as
an example, firstly we should do an examination of the bandwidth, the large variation
of displacement in sharply tiny width demands the refined mesh in localized zone, and
the complicated constitutive relations lead to a slow speed of convergence in this thermo-
mechanical problem.

It seems that the drawbacks in standard FEM have little influences on our variational
modelling. We use a Rayleigh-Ritz method to avoid mesh dependence, and the profiles
of velocity and temperature are controlled by kinematic width hV and thermal width hT ,
which are the stationary points of the total pseudo potential. Therefore the problem of
ASB is changed to two or three nonlinear equations, which smartly decrease the calcu-
lation. Yet because we adopt the uniform form of temperature profiles, heat affect zone
is neglected in the evolution of temperature. For the second method in our modelling,
the problem is changed to a constrained optimization, we resource to some mathematical
methods, such as internal penalization and external penalization to solve it.

FIG.3.4 shows the evolution of velocity profiles and temperature profiles compared
with the analytical stationary solutions when H = 1.25mm,V0 = 0.01108m/s,T0 = 300K.
Here the time step is chosen as4t = 10−3s. Results obtained by Rayleigh-Ritz approach
are consistent with those obtained by FEM. With the time increased, the profiles of veloc-
ity and temperature are well convergent to the steady one.

In addition, returning to FIG.3.3, we can get the comparison of the convergence of
shear band width, which in Rayleigh-Ritz method accords well with one by FEM. The
evolutions of bandwidths are in agreement with the results by FEM. Furthermore, compu-
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tation time is reduced compared to that of FEM. Therefore Rayleigh-Ritz method presents
a higher efficiency without mesh.

Figure 3.4: Evolution of the profiles of velocity and temperature by Rayleigh-Ritz
method (V0 = 0.01108m/s)

FIG.3.5 also presents the evolutions of bandwidths at V0 = 1m/s. The formation of
adiabatic shear band largely depends on the imposed velocity. The time for arriving its
steady state is decreasing with V0 increased: the ASB at V0 = 0.01108m/s arrives at steady
state when t = 0.07s, yet the one at V0 = 1m/s is steady when t = 0.02s. The steady
bandwidth decreases when the imposed velocity increases. Physically, when the dynamic
velocity is higher, heat conduction effect is more clear, as it has not enough time to get out
of the band, thus the zone is more localized, the bandwidth is shorter. The phenomenon of
heat affected zone appears more clearly in the case of high velocity, so the approximated
error is larger than the one at low velocity. Yet the kinematic width calculated by our
modelling is in good agreement with FEM, and the modelling with three variables (hV ,hT
and Tmax) represents the evolution of bandwidth better than the one with two variables (hV
and hT ) at high velocity.

We also give the evolution of maximum temperature in transient state (FIG.3.6). Be-
fore ASB forms, the increase of temperature is almost linear. With the time increased,
the increasing speed of temperature is gradually slow, and finally arrives at a steady state.
Substantially the form of evolution of central temperature is identical to tanh(x). This
result shows that the central temperature calculated by FEM in the process of ASB for-
mation is a little higher than one by Rayleigh-Ritz method. For thermal visco-plastic
material, if there is no hardening factor such as exponential softening law, the material
enters into material instability more quickly. FIG.3.7 and FIG.3.8 show the stress evo-
lution respectively at V0 = 0.01108m/s and V0 = 1m/s. The formation of shear band is
regarded as the process of a sharp stress collapse in a short time. Normally because of
high loading rate, the time in elasticity is so short that we almost can not see its influ-
ences in the figures of stress evolution by FEM. However, in the form of log coordinate,
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Figure 3.5: Convergence of the bandwidths by Rayleigh-Ritz method (V0 = 1m/s)

(a) (b)

Figure 3.6: Evolution of the maximum temperature at V0 = 0.01108m/s (a) and V0 =
1m/s (b)

FEM simulation well reports that the material goes through elastic deformation, plasticity,
small instability and dropping abruptly. In our variational modelling, the trend of curve,
the maximum stress in evolution and the stress arriving at steady state are also in good
agreement with FEM, especially the ones at low loading rate (FIG.3.7). In addition, at
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Figure 3.7: Evolution of stress in exponential softening law at V0 = 0.01108m/s

high strain rate, the stress evolution calculated by two variables is less precise than one by
three variables. Using two scalars to reflect the profile of temperature can compensate the
effect brought by the negligence of heat affected zone. In view of the conservation of lin-
ear momentum in quasi-static case, the distribution of stress is theoretically homogeneous
in the band, yet there is some approximation error in numerical simulation. Consequently
we choose the central point as a compared point in stress curves (also for FEM).

We also studied the influence of time step on the stress evolution in Rayleigh-Ritz
method (FIG.3.9). The choice of initial time step brings some inaccuracy because of the
constrained optimization and the negligence of elasticity in the ASB formation. Similar
to the other numerical methods, the choice of time step is very important to the numerical
implementation of ASB, because their initiation and propagation always happen in a short
time at high strain rate. If we choose it too large, the process of stress evolution is not
precisely simulated. Contrastively if the time step is too small, the expense of calculation
is unaffordable. In the beginning, we give a wrong approximation of stress state under
the circumstance of neglecting elasticity and hardening. Pre-estimation of material state
is necessary in our present variational modelling.

3.2.2 Influence of material parameters

As we all know, shear localization always occurs at high strain rates in the dissipative
mechanisms. The constitutive behaviours are complicated and often not well character-
ized. For the sake of computational simplicity, some simplified constitutive relations are
applied in the code. For example, some material parameters are neglected, or we consid-
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Figure 3.8: Evolution of stress in exponential softening law at V0 = 1m/s

Figure 3.9: Influence of time step on stress evolution in exponential softening law at
V0 = 0.5m/s

ered that the material has a constant flow stress, even some references eliminate thermal
softening coefficient β. So studying the influence of material parameters in constitutive
relations is interesting to build a simplified material model for the formation of ASB.

In this part, based on this optimized model, we will gradually analyse the effects of
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material parameters, such as strain rate sensitivity m, heat conductivity λ and loading
magnitudes, to the characters of ASB formation.

3.2.2.1 Strain rate sensibility m

Strain rate sensibility exponent is an important factor to reflect the resistance to prevent
necking during a deformation of a plastic material. It depends on loading rate. Usually
we use the following formula to test it:

m =
∂ lnσ

∂ ln ε̇

Here fixing the other parameters in constitutive law, we amplify or reduce m to study its
influence on the characters of ASB.

FIG.3.10 shows evolutions of stress with different m at V0 = 0.5m/s, H = 1.25mm.
We choose three values m = 0.012,m = 0.05 and m = 0.1 to compare the process of
localization formation. The value of strain rate sensibility has a large influence on yield
stress. If m is larger, the initial yield stress is smaller, and the smooth instability sustains
longer, then the strong sharply stress collapse happens later, the variations of stress from
initial state to final steady state is smaller. Therefore the localization phenomenon is less
clear than that of smaller m. For instance, when m = 0.1, the character of ASB in steady
state is h= 0.30795mm, yet h= 0.039662mm when m= 0.012. Since we consider an ideal
thermal visco-plastic material, no damage is considered. We found that the formation time
of ASB and central temperature is little influenced by different m. The material almost
arrives at steady state at the same time as seen in FIG.3.10.

3.2.2.2 Thermal conductivity λ

Thermal conduction is always a hot point in the research of ASB. Some researchers ne-
glect this part in numerical simulation, and then calculate adiabatic temperature as an
internal parameter. This largely simplifies the calculation and improves the convergence
for thermal-mechanical coupling. As we repeatedly emphasized in CHAP.2, the engineers
pointed out that thermal conduction played an important role in the final term of ASB,
the bandwidth also depends on this part. Here we will use our variational modelling to
validate this conclusion.

FIG.3.11 presents the evolutions of stress with different thermal conduction coef-
ficient λ (V0 = 0.5m/s,H = 1.25mm). Three values are chosen (λ = 54 Wm−1K−1,
25 Wm−1K−1, 10 Wm−1K−1) in the figure. In the initial state of stress evolution, the
differences of three curves are so little that it is hard to distinguish which one. The stress
evolutions in different thermal conductivity are mostly identical in first term. Yet as time
increases, the effect of λ gradually presents clear, which can be visualized at the end of
quick stress collapse. The material arrives at steady state more quickly if thermal conduc-
tivity coefficient is larger, and the steady stress is larger. In addition, the localization is
more serious as λ decreases, bandwidth is smaller and central temperature is higher. For

Energy-based variational modelling of adiabatic shear band structure



3.2 Thermo-visco-plastic variational modelling 73

Figure 3.10: Influence of m on stress evolution in exponential softening law at V0 =
0.5m/s

example, h= 0.022298mm, Tmax = 2654K when λ= 10 Wm−1K−1, yet h= 0.039662mm,
Tmax = 1648K when λ = 54 Wm−1K−1. We do not consider the melting point of steel, the
value is not physical but enough to illustrate the influence of thermal conduction.

Figure 3.11: Influence of λ on stress evolution in exponential softening law at V0 =
0.5m/s
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3.2.2.3 Thermal softening coefficient β

As we known, the occurrence of ASB is the result of competition between strain hard-
ening and thermal softening. As the effect of softening overcomes the hardening and
gradually plays a more important role, ASB initiates and sharpens. Thermal softening
coefficient is an index to reflect the resistance of material to temperature. Some refer-
ences [Tzavaras and Gurtin, 1987, Zhu and Batra, 1991, Yadav et al., 2001] analysed the
influence of this parameter on the shear band development in metals subjected to high
shear, tensile or compression strain rate. Experimental results showed that there is more
possibility to occur instability phenomenon when the thermal softening value is larger.
Here we study this effect using our variational modelling.

FIG.3.12 presents the evolutions of stress with different thermal softening coefficients
β (V0 = 0.5m/s,H = 1.25mm). According to three curves obtained by β = 0.33, β = 0.2
and β = 0.1, the magnitudes of thermal softening coefficient do not have a large influence
on the initial maximum flow stress, they almost keep the same value, verifying that the
effect softening is slight in the first state. Yet the material enters into strong instability at
later time. If β is larger, shear localization initiates earlier, the degree of stress collapse
is more serious and the duration of instability propagation are different. Therefore we
deduce that the larger thermal softening coefficient causes the occurrence of ASB more
easily, and the bandwidth is shorter at steady state. For instance, h = 0.06965mm when
β = 0.1, and h = 0.039662mm when β = 0.33. This conclusion is in good agreement with
experimental observations.

Figure 3.12: Influence of β on stress evolution in exponential softening law at V0 =
0.5m/s
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3.2.2.4 Imposed velocity V0

Shear localization easily occurs at high strain rate. Obviously, because of the high loading
rate, there is not enough time for heat to get out of the band by thermal conduction, and
high temperature is localized in tiny width. Yet rightly due to this condition, numerical
simulation of this phenomenon is complicated because strong instability causes a conver-
gent difficulty in mesh modelling and nonlinear algorithm. Here based on our validated
modelling without mesh, we use an example to study the influence of dynamic loading in
the formation of ASB.

FIG.3.13 presents the stress evolution with different imposed velocities V0 on the
boundary y = ±H. For the structure size H = 1.25mm, three velocities are considered
to illustrate its influence on stress evolution. The strong instability is easier to occur at
higher strain rate loading, and in the initial state the material arrives at the stress larger
than that of smaller shear rate. When the stresses at V0 = 1m/s and the one at V0 = 0.5m/s
arrive at steady state, the large stress collapse at V0 = 0.01108m/s still does not happen.
In addition, the degree of instability is more serious at higher strain rate. Therefore the
localization phenomenon occurs easily and appears easily at high imposed velocity, be-
cause large deformation concentrates on a tiny bandwidth. That is also the reason why
the adiabatic shear band seems as a discontinuous surface in macroscopic scale.

Finally we might as well illustrate that high strain rate loading is not necessary to
shear localization happening, slow strain rate loading sometimes can also cause ASB.
Moreover it is not a sufficient condition for ASB neither. For some thermal visco-plastic
materials subjected to high shear rate loading, fracture may play a dominant role before
strong instability occurs due to the complicated microscopic property, or it breaks down
before ASB arrives at steady state.

In summary, according to the analysis of the influence of material parameters, such as
strain rate sensibility exponent m, heat conductivity λ, thermal softening coefficient β and
loading velocity V0, we can find that ASB forms easily for thermal visco-plastic materials
having small m and large β subjected to high strain rate loading. Furthermore the thermal
conductivity mainly takes effect at the end of ASB formation.

3.2.3 Extension to various constitutive model
In similar manner to that in steady state, we apply the boundary conditions and introduce
the maximum temperature to eliminate the dependence of canonical profiles on material
parameters. Thus here we will use the well-known power law to illustrate and validate the
feasibility of this thermo-viscoplastic constitutive model.

Neglecting hardening parameter in power law, W p = 0, we derive that the dissipative
pseudo-potential is as follows:

Ψ
∗( ˙̄εp, ε̄p,T ) =

1
m+1

τ0

γ̇m
0
(

T
T0
)−ν(

∂V
∂y

)m+1 (3.20)

where ν is thermal softening coefficient, and thermal conduction obeys on Fourier’s law.
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Figure 3.13: Influence of V0 on stress evolution in exponential softening law

After substituting (3.20) into total incremental potential (3.13), and using the canon-
ical formulations of velocity and temperature, the problem of ASB in transient state is
written as an optimization problem about three parameters hV , hT and Tmax at every time
step. By means of similar algorithm to that in exponential softening law, we get the kine-
matic width, thermal width and central temperature to describe the profiles of velocity
and temperature, and then calculate the corresponding stress evolution.

FIG.3.14 and FIG.3.15 show that the stress evolution respectively at V0 = 0.01108m/s
and V0 = 0.5m/s. Small instability, large decrease of stress and gradually arriving at
steady state are well described in the curves. The stress evolutions have a good corre-
spondence with the ones by FEM, especially for lower strain rate (FIG.3.14). Undergoing
higher strain rate, the smaller time step can better represent the formation of ASB. We
can also discover that the localization happens more seriously if the imposed velocity is
higher, the stress variations express more clearly. Moreover, the formulations of veloc-
ity and temperature have achieved satisfactory results in power law, similar to the results
in FIG.3.4. We do not list this comparison, which actually agree well with FEM. Conse-
quently, our energy-based variational modelling also works well on power law, meanwhile
we validate the canonical aspects of formulations of velocity and temperature through
variational method.

3.2.4 Variational modelling with hardening

In view of the comparisons with FEM, our variational method is feasible in exponen-
tial softening law and power law, and it can represent well the evolution of bandwidth,
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Figure 3.14: Evolution of stress in power law at V0 = 0.01108m/s

Figure 3.15: Evolution of stress in power law at V0 = 0.5m/s

maximum temperature and stress in the process of ASB formation. Yet previous work
was restricted to an ideal thermo-visco-plastic behaviour, where hardening factor was ne-
glected in constitutive relations, thus the first stage of ASB naturally did not exist in the
stress evolution. Here we extend the modelling to the widely used Johnson-Cook model
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and propose a variational modelling of adiabatic shear band for thermo-visco-plasticity at
high-strain rate. Yet elasticity is temporarily neglected in this part.

3.2.4.1 Variational formulation

The main difference with the aforegoing modellings will be the presence of a stored plastic
energy W p in total incremental pseudo-potential. In view of the effective yield stress
expressed in Johnson-Cook model, we derive W p as follows:

W p = (Asε
p +

Bs

n+1
(εp)n+1)(1−θ

∗q) (3.21)

and the dissipation pseudo-potential is restated as:

Ψ
∗
(

ε̇
p;ε

p;Tn

)
= (1−θ

∗q)([Ad +Bd(ε
p)n]ε̇

p
+

[A+B(εp)n]Cε̇0(ε̇
∗ ln(ε̇∗)− ε̇

∗+1)) (3.22)

Where ε̇∗ = ε̇
p

ε̇0
. The corresponding material parameters are illustrated in steady state.

These expressions result in an effective yield limit with A = As +Ad,B = Bs +Bd , which
is identical to that of JC model. Yet the ratio of the intrinsic rate of the total plastic to
heat power will depend on the decomposition of yield stress into stored and dissipated
potential. The dimensionless function θ∗ is the form as EQ.2.22.

If we choose the same profiles as the ones restated in (3.17), the equivalent plastic
strain in W p can be expressed as:

ε
p
n+1 = ε

p
n +4t ˙̄εp

n+1

Thus a problem appears: if we also use the canonical velocity profiles in Rayleigh-Ritz
method, a recursion will be introduced in the algorithm, which will bring the enormous
calculation. Therefore according to ˙̄εp

= 1√
3

∂v
∂y , we proceed a similar approach to describe

the characters of ASB, yet instead using a profile of displacement as follows:

Un+1(y) =U0n+1

tanh(y/hVn+1)

tanh(H/hVn+1)
(3.23)

and U0n+1 =U0n +4tV0, which represents a displacement loading imposed on the bound-
ary y =±H at t = tn+1.

For thermal visco-plastic materials, our variational update of ASB formation is then
described as follows:

inf
Un+1

sup
Tn+1

Φn(Un+1,Tn+1)

m
Stat

hVn+1 ,hTn+1 ,Tmaxn+1

Φn(hVn+1,hTn+1,Tmaxn+1) (3.24)

The similar initial condition and constraints for the case without the occurrence of local-
ization are necessary in the calculation.
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3.2.4.2 Validation and parameter analysis

In our validation, we choose the widely used titanium alloy Ti-6Al-4V to do the simula-
tion, the material parameters are described in TAB.3.1 ([Bouchnak, 2010]). As As and Bs
chosen in the table, we consider that the Taylor-Quiney parameter is equal to 1, all the in-
trinsic plastic energy transformed to heat, so Ad = A, Bd = B. We imposed the isothermal
conditions on the boundary y = ±H, always Tb = 300K. Owing to the introduction of

Table 3.1: Material properties for Ti-6Al-4V (in transient state)

material property (Ti-6Al-4V)
A (MPa) 983 B (MPa) 348
As (MPa) 0 Bs (MPa) 0

n 0.32 q 0.69
c 0.024 ε̇0 0.1

T0 (K) 293 Tm (K) 1943
C0 580 ρ0 (kg/m3) 4428

Figure 3.16: Evolution of stress in JC model without elasticity in the layer H = 1.25mm

the hardening parameter, the stress state in Johnson-Cook model is different from those in
exponential softening law and power law, which can arrive at a steady state. Yet the speed
of stress decreasing is slower after the strong stress collapses. FIG.3.16 shows the com-
parison of the stress evolution with FEM in the band H = 1.25mm at V0 = 0.03m/s and
V0 = 0.1m/s. With the time increased, material firstly goes through the hardening domi-
nant part, stress continuously increases and arrives at a maximum. Gradually the effect of
thermal softening is more controlled, stress begins decreasing slowly, and suddenly it has
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a large descend, material is in strong instability and ASB forms. Finally the bandwidth ar-
rives at relative steady state. The results of Rayleigh-Ritz method accord well with those
of FEM. The maximum stress, the trend of stress and the time of ASB forming are in
good correspondence with FEM. In other terms, the formation of ASB depends strongly
on imposed velocity, the evolution of stress at higher V0 arrives at a relatively steady state
more quickly. Furthermore the localization is more serious, and the bandwidth is smaller,
central temperature is higher than ones at slower imposed velocity.

If the layer width H is smaller, we found that our variational modelling works better.
FIG.3.17 is the comparison of stress evolutions in H = 0.325mm at the same imposed
velocity. The whole process of formation of ASB is in good agreement with FEM.

Figure 3.17: Evolution of stress in
JC model without elasticity with H =

0.325mm

Figure 3.18: Comparison of stress evolu-
tion in JC model without elasticity in dif-

ferent layer widths (V0 = 0.03m/s)

If we consider that the layer is isothermal on y =±H, same velocity will introduce the
different localization character in different layer width, not only in the variations of stress
collapse as FIG.3.18 described, but also in the bandwidth and central temperature evolu-
tion. The localization level is more serious with longer H, and it arrives at relatively stable
stage later. Normally, it is difficult to keep isothermal boundary condition for the layer
subjected to a high strain rate loading. Some heat exchange will create on y =±H, which
is also why we introduce the variational modelling with thermal boundary conditions in
transient state (next part). Yet here we can find that the profiles of displacement and tem-
perature also have a good approximation for the variational modelling with hardening in
transient state.

We also analyse the evolutions of bandwidth and central temperature about V0 =
0.03m/s,H = 0.325mm (FIG.3.19 and FIG.3.20). We introduce two bandwidths: kine-
matic bandwidth hV and thermal bandwidth hT to describe the profiles of displacement
and temperature, and there is another parameter Tmax to control its evolution for tempera-
ture. We should repeat that shear band width in our variational modelling, such as hV or
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Figure 3.19: Evolution of bandwidth (h)
in JC model without elasticity in H =

0.325mm

Figure 3.20: Evolution of central temper-
ature (Tmax) in JC model without elasticity

in H = 0.325mm

hT , is a parameter to measure the physical field. Yet if we understand hV from its profile
and the character of tanh(x), it is a length of the domain having large displacement gradi-
ent, so comparatively it is more reliable to measure a physical localization. As FIG.3.17
described, the stress evolution at V0 = 0.03m/s arrives at a relatively steady state approx-
imately at t = 0.025s. The evolution of kinematic length has a good agreement with that
by FEM, especially ahead of t = 0.03s. Afterwords it fluctuates at the shear band width,
but for hT it is a strong instability after the bandwidth arrives at steady state. Correspond-
ingly, we have a good approximation of central temperature before steady state, which
continuously increases. Yet it is irregular as thermal width begins fluctuating owing to
the effect of hardening part. These results illustrate that our variational modelling with
hardening factor is feasible in predicting bandwidth, temperature and stress in transient
state.

By means of this variational modelling, the influence of hardening factor on stress
evolution is analysed for a layer subject to a shearing velocity. Two values n= 0.1 and n=
0.32 are introduced to do the comparison (FIG.3.21). Smaller hardening factor induces
higher effect of hardening and larger maximum stress, yet it lasts shorter. Furthermore,
smaller bandwidth and higher central temperature happened in n = 0.1 compared with
that of n = 0.32, the localization is more serious. We might as well say that the smaller
strain hardening coefficient causes ASB more easily.

3.2.5 Variational modelling with thermal boundary condition

Similar to the description in CHAP.2, high loading makes the boundary hard to keep
isothermal condition. This is also why the foregoing analysis in transient state can not
have the same bandwidth with different layer width. At steady state, we proposed a fitted
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Figure 3.21: Influence of hardening factor on stress evolution in JC model without elas-
ticity (V0 = 0.03m/s,H = 1.25mm)

formula for exchange coefficient on the boundary. In this section, we will apply this
result to discuss the evolution of thermal boundary in transient state based on variational
modelling.

3.2.5.1 Variational modelling

Supposing Textn as the boundary temperature at t = tn, the incremental transformed poten-
tial is described as follows:

Wtrn+1 =
1
2

c
Textn

(Textn+1−T0)
2 when y =±H (3.25)

where c is exchange coefficient, which will be calculated as the formula in CHAP.2.
Therefore we also choose Hr = 1.25mm as a reference width: when H = Hr, c = ∞ and
the thermal boundary condition is isothermal.

The canonical profiles of temperature depend on Textn+1 besides the other parameters
hTn+1,Tmaxn+1 , written as:

Tn+1(y) = Tmaxn+1−
(
Tmaxn+1−Textn+1

) ln(cosh(y/hTn+1))

ln(cosh(H/hTn+1))
(3.26)

As a consequence, the variational update of the ASB is restated as an optimization
problem with respect to four parameters:

Stat
Textn+1 ,hVn+1 ,hTn+1 ,Tmaxn+1

[Φtn+1(Textn+1,hVn+1,hTn+1 ,Tmaxn+1)−2Wtrn+1] (3.27)
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Note that the calculation of Textn+1 in incremental modelling is different from the one in
stationary modelling. It will be obtained from the optimizations of total pseudo-potential
with respect to four parameters instead of directly solving it through the profile of tem-
perature with reference width. This variational modelling with heat exchange is intended
to obtain a consistent bandwidth with different slab widths, and then better illustrate the
ASB physical environment. Four nonlinear equations will be derived to describe the con-
stitutive equations.

3.2.5.2 Validation and parameter analysis

If we donot consider exchange potential in the variational modelling, the bandwidth and
stress evolutions are presented in FIG.3.22 and FIG.3.23. The kinematic width and ther-
mal width converge to different values with different slab widths, and the stresses at steady
state are different. In addition, it seems that the localization is more serious with longer
slab width, as the example in FIG.3.18 . Simply we choose exponential softening law to

Figure 3.22: Evolution of bandwidth (h)
in power model with different H (no ex-

change on y±H and V0 = 0.5m/s)

Figure 3.23: Evolution of stress in power
model with different H(no exchange on y±

H and V0 = 0.5m/s)

validate the modelling with thermal boundary condition.
By means of the variational modelling (3.27), we analyse the ASB problem imposed

on V0 = 0.1m/s,H = 0.625mm. The profiles of velocity and temperature evolve as shown
in FIG.3.24. The velocity distribution goes from linear term to nonlinear term, and arrives
at steady state. It seems that their forms are similar to the ones in the modelling without
heat exchange. Yet for temperature profiles, at first the material is in adiabatic state, the
temperature distribution is isothermal in the slab at the first term, and then the central
temperature is gradually higher than the other part because of localized deformation in
the central part. When the time increases, it converges to the steady profile which is in
good agreement with the solution calculated by the variational modelling at steady state.
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FIG.3.25 shows the corresponding evolution of Tmax and Text at V0 = 0.1m/s. This also
accords well with the conclusions in the analysis of influence of thermal conductivity: it
plays a weak role in the first and second terms of ASB formation, and is gradually clear
in the final term.

Figure 3.24: Evolution of the profiles of velocity and temperature by Rayleigh-Ritz
method in exponential softening law (V0 = 0.1m/s)

Figure 3.25: Evolution of central temperature and external temperature by Rayleigh-Ritz
method in exponential softening law (V0 = 0.1m/s)

Thanks to the introduction of heat exchange on the boundary, a variational mod-
elling is built to obtain a bandwidth independent to slab width, which we can validate
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in FIG.3.26. The bandwidth converges to the same value with H = 1.25mm and H =
0.625mm. Yet the convergent speed varies with H, it seems that the smaller H arrives at
steady state more quickly than that of longer length, which makes a different stress evo-
lution with different slab widths (FIG.3.27). The falling gradient with H = 0.625mm is
larger than that with H = 1.25mm, the stress arrives at the same value with H = 1.25mm
and H = 0.625mm (because of identical bandwidth and maximum temperature).

Figure 3.26: Evolution of bandwidth (h)
in exponential softening model with dif-

ferent H(V0 = 0.1m/s)

Figure 3.27: Evolution of stress in ex-
ponential softening model with different

H(V0 = 0.1m/s)

3.3 Thermo-elasto-visco-plastic variational modelling

In the foregoing work, we proposed and validated the feasibility of variational modelling
including hardening or thermal boundary condition. ASB problem is changed to an opti-
mization problem with respect to several parameters in this framework. One advantage of
this algorithm is that it reduces the large calculation quantity brought by numerical meth-
ods (FEM, meshfree...), the other is that the bandwidth and central temperature can be
obtained through the modelling, giving a basic prediction for some discontinuous mod-
ellings. Yet in the analysis, our modelling depends strongly on the time step: if it is too
small, the material which should be elastic state is calculated as in hardening part due to
the negligence of elasticity. Moreover this simplified factor limits the application of our
modelling, such that some unloading case can not be simulated using the described mod-
elling, preventing the development of modelling from 1D to 2D or 3D. For example, the
application of our variational modelling, such as using our canonical aspects as a discon-
tinuous element or embedding it in standard FEM, can not move a step with a modelling
without elasticity. Thus it is mandatory to build a variational modelling with elasticity.
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3.3.1 Variational modelling
Similarly considering a layer subjected to a simple shearing velocity V0, we suppose the
loading displacement can be written as:

U0 =Ue
0 +U p

0

Ue
0 is an elastic part, and U p

0 is a plastic part. The strain rate is given by:

ε̇ =

 0 ε̇e 0
ε̇e 0 0
0 0 0

+
 0 ε̇p 0

ε̇p 0 0
0 0 0


where εe is the elastic strain, considered as uniform in the layer:

ε
e =

1
2

Ue
0

H
and εp is the plastic strain. As we know for J2 von Mises law, the relation between
equivalent plastic strain ε̄p and shearing plastic strain γp is:

˙̄εp
=

√
2
3

ε̇p · ε̇p =
1√
3

γ̇
p

Equivalent plastic strain is continuously increasing no matter the material is loading or
unloading. So we introduce another parameter equivalent displacement Ū p

0 as:

U̇ p
0 = α ˙̄U

p
0 with ˙̄U

p
0 ≥ 0 (3.28)

where α is a scalar, choosing 1 or -1. We postpone to discuss the determination of its
sign before the proposition of elastic-plastic condition in the following. We describe the
profile of shear plastic strain using (3.23) :

γ
p
n+1(y) = Ū p

0n+1

1− tanh2(y/hVn+1)

hVn+1tanh(H/hVn+1)
(3.29)

and the profile of temperature is chosen the same as the foregoing form with two param-
eters (hTn+1 and Tmaxn+1). Different from the incremental variational pseudo-potential, the
elastic potential W e should be included in total variational formulation:

W e =
1
2

λtr(εe) · tr(εe)+µ‖dev(εe)‖2 = µ
1
2
(
Ue

0
H

)2

We recall that the total pseudo-potential is written as:

Φn(ε
e
n+1, ˙̄εp

n+1, ε̄
p
n+1,Tn+1) =

∫ H

−H
[W e(εe

n+1)−W e(εe
n)+W p(ε̄

p
n+1,Tn+1)−W p(ε̄p

n ,Tn)

+W th(Tn+1)−W th(Tn)+∆tΨ∗(
Tn+1

Tn
˙̄εp

n+1, ε̄
p
n ,Tn)

+ρ0η(Tn)(Tn+1−Tn)−∆t
1
2

λTn(
∂Tn+1

∂y
1

Tn+1
)2]dy (3.30)
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In our variational modelling with elasticity, we use the formulas of W p and Ψ∗ described
in Johnson-Cook law. Additionally, the incremental form of U0 is described using the
explicit formula:

U0n+1 =U0n +V0 ·4t (3.31)

and the equivalent plastic strain is similarly described:

ε̄
p
n+1 = ε̄

p
n +4t ˙̄εp

n+1 (3.32)

Using the equilibrium equation that stress is homogeneous in the layer, the derivation
of Φn with respect to Ū p

0n+1
is:

f ≡ ∂Φn

∂Ū p
0n+1

= −
∂W e

n+1

∂Ue
0n+1

α ·2H +
∫ H

−H

∂W p
n+1

∂Ū p
0n+1

+4t
∂Ψ∗n+1

∂Ū p
0n+1

dy

= −
∂W e

n+1

∂Ue
0n+1

α ·2H +
∫ H

−H
(
∂W p

n+1

∂ε̄
p
n+1

+
∂Ψ∗n+1

∂ ˙̄εp
n+1

) ·
∂ε̄

p
n+1

∂Ū p
0n+1

dy

∼= −
∂W e

n+1

∂Ue
0n+1

α ·2H +2[τyn+1] (3.33)

Moreover ∂W e
n+1

∂Ue
0n+1

= µ
Ue

0n+1
H2 , so (3.33) can be physically described as:

∂Φn

∂Ū p
0n+1

=−2ατe +2[τyn+1]

Consequently, the traditional elastic-plastic condition can be transformed as an optimiza-
tion of our variational modelling:

inf
α,Ū p

0n+1

Φ(hVn+1 ,hTn+1,Tmaxn+1,Ū
p
0n+1

) (3.34)

Considering the convexity of Φn with respect to Ū p
0n+1

, we obtain the sign of α:

α = sign(Ue,trial
0n+1

) with Ue,trial
0n+1

=U0n+1−U p
0n

(3.35)

and the elastic loading-unloading condition accounting for the optimization condition
(3.34) follows as:

f trial ≡ ∂Φ

∂Ū p
0n+1

(Ū p
0n
,hvn,hT n,Tmaxn)> 0 (3.36)

when (3.36) is satisfied, the material is in elasticity. Actually we can give the geometrical
interpretation of this condition in the view of mathematical optimization, as FIG.3.28 de-
scribed: accounting for the constraint condition Ū p

0n+1
≥ Ū p

0n
, firstly we determine whether

the solution of f = 0 exists through the gradient of total potential with respect to Ū p
0n+1

. If
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Figure 3.28: Optimization of total potential with respect to cumulated plastic loading

it is positive, the minimum is Ū p
0n+1

= Ū p
0n

because of the convexity of potential, otherwise
there must be a Ū p

0n+1
> 0 making f = 0. As a result, a condition stemmed as Kuhn-Tucker

relation is proposed for our variational modelling:

Ū p
0n+1
≥ 0; f ≤ 0; Ū p

0n+1
f = 0 (3.37)

Two cases in elasticity for thermo-mechanical problem are considered: elastic under load-
ing and unloading. For simplicity, we distinguish them through Ū p

0n+1
:

• If Ū p
0n+1

= 0, elastic loading;

• otherwise: unloading state (thermal problem).

The variation modelling for 1D simple shear band is stated as follows:

• if f trial = ∂Φn
∂Ū p

0n+1
(Ū p

0n
,hVn,hTn,Tmaxn)> 0, the ASB problem is described as:

Ū p
0n+1

= Ū p
0n

; and

{
if Ū p

0n+1
= 0; hVn+1 = hVn; hTn+1 = hTn; Tmaxn+1 = Tmaxn;
else StathTn+1 ,Tmaxn+1

Φn+1(Ū
p
0n
,hVn ,hTn+1,Tmaxn+1)

(3.38)

• if ∂Φn
∂Ū p

0n+1
(hVn,hTn,Tmaxn)6 0, the ASB problem is described as:

Stat
Ū p

0n+1
,hVn+1 ,hTn+1 ,Tmaxn+1

Φn+1(Ū
p
0n+1

,hVn+1,hTn+1,Tmaxn+1) (3.39)
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For the second case, we tried to resolve the above modelling and found that it had a
slow convergence to the stationary point, especially for the first state having no shear band
initiation. Therefore we adopt the distributed strategy to simplify the problem, described
in ALG.1. Here C is a constant, smaller than 1. The choice of C decides on the accuracy

Algorithm 1 Algorithm in plastic state for 1D variational modelling at each step tn→ tn+1

infŪ p
0n+1,1

Φn(Ū
p
0n+1,1

,hVn,hTn,Tmaxn);

StathVn+1 ,hTn+1 ,Tmaxn+1
Φn+1(Ū

p
0n+1,1

,hVn+1,hTn+1 ,Tmaxn+1);
i = 1; d0 = Ū p

0n+1,1
−Ū p

0n
; d = d0;

while |d|>Cd0 do
hVn = hVn+1; hTn = hTn+1; Tmaxn = Tmaxn+1;
infŪ p

0n+1,i+1
Φn(Ū

p
0n+1,i+1

,hVn ,hTn,Tmaxn);

StathVn+1 ,hTn+1 ,Tmaxn+1
Φn+1(Ū

p
0n+1,i+1

,hVn+1,hTn+1,Tmaxn+1);
d = Ū p

0n+1,i+1
−Ū p

0n+1,i
;

Ū p
0n+1,i

= Ū p
0n+1,i+1

;
i = i+1;

end while

and the efficiency of algorithm, normally we choose C = 0.1 because of the small time
step, and in the following subject we will show its influence on the algorithm and exhibit
that the choice is reasonable.

3.3.2 Numerical validation
A same problem of Titanium alloy (Ti-6Al-4V) is repeatedly analysed in the ongoing
work, yet elasticity is considered using the variational modelling. Besides the material
property parameters already given in TAB.3.1, we use the following elastic property:
Young’s modulus E = 1.14×1011Pa and Poisson ratio ν = 0.3, so:

µ =
1
2

E
1+ν

= 5.4231×1010 Pa

FIG.3.29 shows the stress evolution at V0 = 0.03m/s and V0 = 0.1m/s. Besides the com-
parison with FEM, we also compared the results with the modelling without elasticity at
V0 = 0.03m/s. Firstly, the variational modelling with elasticity reflects a more complete
process of the stress evolution in the band, when we choose time step as 10−4s, the ma-
terial should be in elastic state according to FEM result, yet for the modelling without
elasticity, it shows its drawback that the beginning is in plasticity, although the rest part
shows a correspondence with FEM. So comparatively, the result of our thermo-elasto-
viscoplastical modelling accords well with FEM: material goes though elasticity, and en-
ters into hardening part, stress increases slowly and gradually arrives at a maximum value.
Then thermal softening part plays a determinant role in the band, stress begins decreasing
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slowly, yet suddenly has a large drop, the shear band is forming and the bandwidth is
in steady state relatively. In addition, thanks to the introduction of elasticity, variational
modelling has a better agreement compared with the modelling without elasticity in par-
ticular the stress in the second stage. These results validate that our proposed modelling
is feasible to measure material state.

Figure 3.29: Comparison of stress evolution with FEM in JC law (V0 = 0.03m/s and
V0 = 0.1m/s)

We also analyse the evolution of equivalent plastic displacement Ū p
0 at different im-

posed velocities V0 = 0.03m/s and V0 = 0.1m/s (FIG.3.30). Under monotonic loading,
Ū p

0 should be equal to U p
0 , which is the distributed part of the total imposed displacement

at each time. In elastic state, all the loading displacement is used for elastic deformation,
Ū p

0 = 0; After the material gradually arrives at the turning point, the distribution of total
displacement into equivalent plastic displacement has a quick increase, and finally it oc-
cupies all the imposed displacement. The moments, when material enters into plasticity
and plastic displacement becomes completely dominant, appear earlier in higher loading
rate.

Based on this validated modelling, we will do some researches on ASB behaviour
under cyclic loading. The loading condition is chosen as follows:

U0n+1 =U0n +4tV0 when 0 < t < 0.1s; (3.40)

except:

U0n+1 =U0n−4tV0 when


0.01s < t ≤ 0.02s;
0.03s < t ≤ 0.04s;
0.07s < t ≤ 0.08s;

(3.41)

FIG.3.31 shows the stress-plastic displacement (U p
0 ) curves at cyclic shear loading

rate (V0 = 0.03m/s and V0 = 0.1m/s). The evolution of yield limit depends on the
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Figure 3.30: Evolution of equivalent plastic displacement in JC law (V0 = 0.03m/s and
V0 = 0.1m/s)

charging in the plastic regime, and an appropriate unloading can strengthen the value of
yield limit (FIG.3.32). For titanium alloy(Ti-6Al-4V), material already enters into second
(V0 = 0.03m/s) or third term (V0 = 0.1m/s) when the first unloading happens. In addi-
tion, under same loading condition, hardening part and thermal softening at V0 = 0.1m/s
happened earlier than that at V0 = 0.03m/s, so higher strain rate creates ASB more easily,
as described in the analysis of hardening coefficient.

If we set the unloading condition happening in the first stage, flow stress is strength-
ened after material goes through unloading part. FIG.3.33 is a stress evolution under the
unloading condition (3.40):

U0n+1 =U0n−4tV0 when 2×10−3s < t ≤ 8×10−3s

material stays in hardening part in 2×10−3s < t ≤ 8×10−3s, so we can see that its flow
stress is larger at t = 8× 10−3s than t = 2× 10−3s, yet then thermal softening effect is
gradually clear that the stress begins decreasing.

Reviewing the results under simple uniform shearing form, we analysed the influ-
ence of charging condition on shear bandwidth and central temperature (FIG.3.34 and
FIG.3.35). Cyclic loading can relieve the effect of shear localization in certain time in
view of the comparisons. When material is subjected to unloading, central temperature in
the zone is decreasing, so h has a little rebound. Yet because we unloaded the structure
at 0.01 s, the material stress enters into hardening or softening part in inverse direction.
At the same time, the characters of ASB are weaker under cyclic loading than ones under
monotonic loading. We can see clearly that maximum temperature is smaller than normal
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Figure 3.31: Stress-plastic displacement(U p
0 ) relation under cyclic loading and simple

shear loading in JC law (V0 = 0.03m/s and V0 = 0.1m/s)

Figure 3.32: Comparison of stress evolution under cyclic loading in JC law (V0 =
0.03m/s)

loading in FIG.3.35. Yet controlling the unloading time is more important to improve the
material property.

In our algorithm, there is a parameter C to control the error approximation about Ū p
0 ,
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Figure 3.33: Stress-charged displacement(U0) relation under cyclic loading in JC law
(V0 = 0.03m/s)

Figure 3.34: Evolution of bandwidth un-
der cyclic loading ((3.40) and (3.41)) in JC

law (V0 = 0.03m/s)

Figure 3.35: Evolution of central tem-
perature under cyclic loading ((3.40) and

(3.41)) in JC law (V0 = 0.03m/s)

its choice reflects the efficiency and accuracy of our variational modelling. We analyse
the influence of C on the stress evolution at V0 = 0.03m/s in FIG.3.36. Because of small
time step, the change of equivalent strain is very small between two circumstances, so
C = 0.1 and C = 0.01 have no large influence on the stress evolution. Although C = 0.1,
the threshold d may be 10−4. Consequently C = 0.1 is enough to resolve our variational
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modelling, yet the choice also depends on time step.

Figure 3.36: Influence of C on stress evolution under cyclic loading (3.40 and 3.41) in
JC law (V0 = 0.03m/s)

3.3.3 Average stress analysis
In the critical condition of plastic stage, we derived the following average stress according
to the uniformity of stress in equilibrium equation:

[τy] =
1
2

∫ H

−H

[
∂W p

n+1

∂Ū p
0n+1

+4t
∂Ψ∗n+1

∂Ū p
0n+1

]
dy

Yet when we calculate the stress using numerical methods, there is some error approxima-
tion in simulation. In CHAP.2, we already discussed the approximation between average
stress and point stress calculated by flow law in steady state, and got that error can be
controlled in 1× 10−6. Here referred to the determination of material state and the fu-
ture application in higher dimension, we will consider the error approximation of average
stress in transient state.

As we know in the foregoing work, adiabatic shear band forms and arrives at relative
steady state before t = 0.09s for V0 = 0.03m/s, yet for V0 = 0.1m/s, the time is before
0.03 s. FIG.3.37 shows the evolution of stress error under cyclic loading. The formula of
relative error presenting in the figure is as follows:

e∗ = max(1−
τy(y)
[τy]

)
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Figure 3.37: Error approximation of average stress under cyclic loading (3.40 and 3.41)
in JC law

In the first and the second stage of ASB, we can control the error less than 0.005, but
with the time increased, the stress in the band has a sudden dropping, and material enters
into strong instability. The error in this stage has an increase with higher speed. We con-
sider that one part of the reason is from the threshold for calculating Ū p

0 , the other part is
the numerical calculation: when we calculated in the program, tanh(x) and cosh(x) are
simplified to calculate if x > 60, and numerical integration is also a source of error ap-
proximation to keep high efficiency of our algorithm. Moreover there is some error from
calculating the optimization point using constrained optimized method, such as Trust-
region method. Despite these disadvantages exist, the error can be controlled in 0.4% for
V0 = 0.03m/s and 6% for V0 = 0.1m/s after that the stress passes through the strong col-
lapse. In addition, we want to say that in our current study, material damage has not been
yet considered in our modelling. But it will be a good aspect if including it in our future
study for the perfect performance of total ASB forming and stability. We discovered that
the larger error of average stress used to appear in the last part of third stage, and damage
maybe occur at the same time. So it maybe bring a better stress approximation if we add
damage coefficient.

The error approximation from average stress analysis influences the determination of
elastic and plastic state, but this problem just exists several time steps because of error
estimation. When the time step is very small, the turning point from loading to unloading
maybe have a judgement error in the comparison between the trial stress and stress at last
step. Only one time step happens in all the calculation we have met. However, the stress
error is also very small because of tiny time step, so this influence can be neglected in the
simulation of ASB forming process.
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3.4 Conclusions
Based on the variational modelling in steady state proposed in CHAP.2, we aim at work-
ing on the variational updating modelling for illustrating the three stages in the formation
of adiabatic shear band. In this chapter, four modellings of thermo-mechanical shear
localization problem are gradually proposed to simulate the evolution of profiles of dis-
placement or velocity and temperature in the localization zone:

• Thermo viscoplastic modelling

• Thermo viscoplastic modelling with hardening

• Thermo viscoplastic modelling with thermal boundary condition

• Thermo elasto-viscoplastic modelling

In the variational framework, Finite Element Method having symmetric tangent stiffness
matrix is applied to validate our modellings, and shows its feasibility. Meanwhile it men-
tions that the canonical formulas of displacement and temperature work well for the pre-
diction of ASB characters. As we all know, exponential softening law, power law and
Johnson-Cook law are widely used in thermo-viscoplastic materials. Here as an appli-
cation, three variational modellings in these constitutive models are derived and used
to implement the formation of ASB simulation in different materials, then it reflects that
canonical profiles work on various material models. In addition, we analysed the influence
of material parameters for understanding well the ASB formation: strain rate sensibility
exponent m, thermal softening coefficient β, thermal conductivity λ and imposed velocity
V0. Shear localization forms more easily for thermal-viscoplastic materials with smaller
m and β under higher strain rate loading.

Similar to the idea of CHAP.2, we also introduce exchange potential in the modelling
to keep the conformity of bandwidth. The evolution of temperature on the boundary
increases with the time, but its increasing speed is gradually decreasing. From the tem-
perature profile in the first stage and the comparison between Tmax and Text , we got that
the conduction part plays an insignificant effect before the late part of ASB stability,
which is in good agreement with experiments. As the analysis in the influence of thermal
conductivity, thermal conduction is an important factor if we want to better get material
bandwidth and temperature distribution at the end of third stage.

For the widely used constitutive model Johnson-Cook, hardening part and elastic part
are included for decreasing the difficulty of time step choice and wide application in the
variational modelling. We adopt the division of loading displacement as elastic part and
plastic part, and then introduce another optimized parameter into variational potential to
track the initiation and evolution of plasticity. Finally this thermo-elastic-visco-plastic
modelling is validated by FEM. By means of this modelling, some examples under cyclic
loading are simulated to explore the influence of ASB evolution brought by the loading
condition. We found that an appropriate unloading condition can relieve the degree of
localization. The characters of ASB ( bandwidth h and central temperature Tmax ) are
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less serious at steady state if material goes through unloading condition. Yet the error
approximation of the average stress from numerical calculation may cause the turning
point of loading and unloading to be misjudged, it can be avoided if time step is not
chosen too tiny.

Arrived here, we have built a complete thermo-elasto-viscoplastic variational mod-
elling for this thermo-mechanical problem in 1D, including elasticity, hardening, thermal
softening, thermal conduction and thermal boundary condition. Yet 1D analysis is lim-
ited and imperfect in the numerical simulation of ASB formation, for instance, hot pot
phenomenon in temperature distribution. So how to extend this complete 1D variational
modelling to the one in 2D or 3D? This question will be given a response in next chapter.
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Chapter 4

Variational two-scale modelling in
2D/3D

Abstract :

By means of the discontinuous interface element, a new variational
two-scale model is proposed for adiabatic shear bands structure in
2D/3D in order to avoid mesh dependence. The advantage of our

approach is that an inhomogeneous plastic deformation and
temperature distribution in the localized region are inferred from

canonical analytical expressions. The corresponding finite element
implementation is also derived when we embed our 1D variational

pseudo-potential of shear localization into standard FEM.

Résumé :

Un nouveau modèle variationnel à deux-échelles de la bande de
cisaillement adiabatique en 2D/3D est proposé en utilisant des

éléments d’interface discontinus de sorte à éviter la dépendance aux
maillages. Contrairement aux travaux existant, des déformations

plastiques et des températures non homogènes sont inférées par les
expressions analytiques canoniques. On dérive l’implémentation de la

méthode des éléments finis (MEF) quand le pseudo-potentiel
variationnel de la localisation est inséré dans la MEF standard.
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The numerical analysis of adiabatic shear bands in 2D/3D is always a challenging
subject due to the presence of large deformation and high temperature localized in tens of
micrometers. At macroscopic scale, its specific characters make it seem as a discontinu-
ous surface, yet it is not true if investigated at microscopic scale. Thus mesh dependence
and alignment is a common problem for the popular FEM. Even for numerical meshless
methods, the choice of node density is unavoidable.

In general, one solution to this difficulty is to refine the mesh in the localization region.
The localized mesh size should be set similar to that of bandwidth, yet naturally enormous
meshes make the calculation unaffordable and low efficiency. The other, popular and
strongly advised in the mechanical engineering, is to build a discontinuous modelling in
ASB domain based on the standard FEM. Considering that the homogeneous deformation
exists in the most of structure, we set the interface elements in the predicted line where lo-
calization zone occurs, or embed the discontinuous enrichments into the shape functions
of FEM, avoiding the necessity of setting the same scale of mesh size, and presenting a
relatively accurate localization phenomenon occurring at a fine scale. Moreover, mesh
alignment can also be prevented by enhancing the performance of isoparametric elements
involving strain localization. However, a difficulty in all the solutions is that it is nec-
essary to find a constitutive relation for traction-displacement jump and heat production
(entropy) in discontinuity. Meanwhile how to describe the profiles in discontinuity and
build the connection between continuous part and discontinuity is a considerable question.

By means of the proposed variational modelling including elasticity, hardening, con-
duction and thermal boundary condition in CHAP.3, we will extend it to 2D/3D and build
our variational two-scale modelling for ASBs structure. The study is organized as follows:
firstly, we give an example of ASB implemented by standard FEM to understand well the
initiation and propagation of ASBs, and then points out the importance and the neces-
sity of discontinuous models (section 1). Secondly, three modellings: interface element,
embedding discontinuous model and XFEM ([Ortiz and Pandolfi, 1999, Oliver, 1996b,
Areias and Belytschko, 2007]), are discussed here aimed at solving the mesh dependence
problem of standard FEM. We also give the common difficulties among them, which can
be solved easily with our variational modelling. As an example, interface element is ap-
plied in standard FEM to build a variational two-scale modelling (section 2), and the total
pseudo-potential in variational formulation is derived having two parts: discontinuous el-
ements merely on surface and standard elements on the other part. Thus for 2D or 3D
localization problem, we successfully transfer it as a 1D problem and a line or surface
fields of standard element. Considering the implementation of the modelling by FEM,
we simply give the formulations of internal force and entropy in this two-scale modelling
(section 3). Meanwhile the tangent components are also derived for Newton-Raphson
iteration.
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4.1 Mesh dependence in standard FEM
A simple pre-notched bar (FIG.4.1) is considered to analyse the orientation and propaga-
tion of ASBs, which is also mentioned in [Areias and Belytschko, 2007]. We impose a
shearing velocity on top of structure, but fix the displacement in normal direction. More-
over another constraint condition is applied on the bottom side: it is all fixed. Material
properties are also described as follows:

E = 210 GPa; ν = 0.3; σ0 = 800×106 Pa;

Tmelt = 493 K; ρ0 = 7850 Kg/m3; c = 460 JKg−1K−1; k = 30 NK−1s−1

for simplicity we consider the linear thermal softening of flow stress. The corresponding
yield stress is written as:

y = σ0(1−
θ

200
)(1+ ˙̄ε0.05

)

where θ = T − Tr, Tr is reference temperature. Here we analyse the bar subjected to a

Figure 4.1: Pre-notched bar [Areias and Belytschko, 2007]

high velocity ˙̄uy = 1m/s in quasi-static state.
For understanding the thermal conduction effect in the orientation of ASB, we sep-

arate adiabatic case and conduction case in the simulation. The loading velocity is so
high that easily causing the small bandwidth in the plate. Therefore standard FEM will
demand fine mesh to track the physical properties in the localization region. Yet building
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an appropriate mesh model needs a good prediction of bandwidth, otherwise mesh depen-
dence will happen if setting the large mesh size in the localized zone. We illustrate this
point through four different mesh models: 622 elements, 1877 elements, 4105 elements
and 7184 elements. In addition, considering that localization zone normally occur in front
of notched domain, we set different mesh sizes to analyse its influence. Here 1 element,
3 element, 5 element and 7 element are arranged in front of pre-notched bar in x for the
corresponding four mesh models.

In adiabatic case, FIG.4.2 shows the distributions of displacement profiles in front of
the pre-notched zone under different mesh sizes. ASB completely exists in the bar for
four mesh models. Obviously, the material states depend strongly on the mesh sizes. The
larger grid is, the later shear localization forms, and the wider the bandwidth occurs. For
four mesh models, they arrive at the relatively steady states separately at t = 0.0006s,
t = 0.0003s, t = 0.0002s and t = 0.000127s. Note that the steady state is defined that the
stress has small fluctuations with the time evolved.

Accordingly, FIG.4.3 gives the steady states of temperature profiles for the pre-notched
bar subjected to a high shearing velocity. With the grid size decreases, the band is less
clear, we almost can not see its existence for the finest mesh. So we predict that the
bandwidth evolves towards 0 if mesh is more refined at adiabatic case. There is not a
steady value for the bandwidth, which is converse to experimental result. Consequently,
the model at adiabatic case is insufficient in the analysis of ASB problem.

FIG.4.4 shows the evolution of reaction force in six different mesh sizes. Besides the
four mesh models used in the foregoing analysis, we add two new mesh models (1004 ele-
ments and 1068 elements), which merely refine the front of pre-notch (separately arranged
by 2 elements and 4 elements in x direction) in the simulation. The localized refinement
can also improve the precision of the simulation, we found that the model with 1068 ele-
ments has a good agreement with the model with 7184 elements. The model with smaller
mesh sizes in front of pre-notch enters the instability state earlier, and the corresponding
yield force is smaller. Its collapse occurs more precipitously, so material arrives at steady
state faster and its value is consequently smaller.

Mesh dependence is presented clearly in adiabatic case, not just on the critical force,
but also on the bandwidth. The model with smaller mesh size can produce a strong dis-
continuous phenomenon more easily. This urges us to make an inquiry in introducing
thermal conduction and explore whether it brings a good effect into mesh dependence or
not.

FIG.4.5 and FIG.4.6 show the distribution of the temperature profiles (θ)and the equiv-
alent plastic strain profiles under different mesh sizes at a relatively steady state. In view
of the above analysis in adiabatic case, we choose three mesh models: 622 elements, 1877
elements and 1068 elements (merely localized refinement). The reference temperatures
are separately chosen as Tr = 30K, Tr = 15K and Tr = 30K. Apparently compared with
the ones in adiabatic case, the conduction factor can alleviate effectively the mesh de-
pendence in shear localization. Although the time for arriving at steady state is different
(t = 0.0006s, t = 0.0003s and t = 0.0002s), the bandwidth seems having a little influence.
The second one and third one almost keep consistency with the bandwidths for 1877 ele-
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Figure 4.2: Displacement profiles under different mesh sizes at relatively steady state
(adiabatic case)
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Figure 4.3: Temperature profiles under different mesh sizes at relative steady state (adia-
batic case)
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Figure 4.4: Evolution of reaction force for different mesh sizes in adiabatic case

ments and 1064 elements. The evolutions of reaction force in the modelling with thermal
conduction are also analysed under different mesh sizes in FIG.4.7. Firstly, the critical
force, as well as the steady force, keeps more consistency for different mesh models than
that in adiabatic case, except for the first one having 622 element. The collapses of stress
in 1877 elements and 1064 elements seem having a good correspondence. Yet as the
models with the same mesh size in width (in front of pre-notch), they have some little
differences in the speed of force dropping. Therefore for standard FEM, good simulation
of ASB problem does not only need an appropriate mesh size in localization zone, but
also the consideration of thermal conduction is necessary, which plays a critical role in
the final term of force evolution.

From the thermo-mechanical analysis of pre-notched bar subjected to a shearing ve-
locity, ASB phenomenon is a discontinuous phenomenon in macroscopic sight. It seems
that there is a breaking band between two sides of notch, and large deformation and high
temperature mainly occur in localization zone, yet the other part almost goes through a
homogeneous profiles. Standard FEM can give us an approximate result with respect to its
orientation, propagation, but it is unacceptable in the costing if we set the mesh size which
can reflect well the localization property. Moreover, it might cause a certain ill-posedness.
So some engineers recourse to reconstruct the mesh model in localization zone to decrease
the time cost, which has reached a high state of maturity [Jirasek and Belytschko, 2002].
Yet the expense of mesh refinement is an unavoidable drawback, meanwhile it also brings
a lot of challenges in mesh creation for dynamic fraction or interacting cracks.
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Figure 4.5: Temperature profiles under different mesh sizes at relatively steady state
(modelling with thermal conduction)

Figure 4.6: Equivalent plastic strain profiles under different mesh sizes at relatively
steady state (modelling with thermal conduction)
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Figure 4.7: Evolution of reaction force for different mesh sizes (modelling with thermal
conduction)

4.2 Variational two-scale method

In this study, we briefly revised the development of discontinuous modellings for adia-
batic shear bands structure, and then proposed our variational two-scale model through
interface elements.

4.2.1 Discontinuous approaches

Discontinuities are always of considerable interest in nonlinear solid mechanics, such
as shear bands, multi-physical interactions. Engineers have developed some discontin-
uous methods to remove the unsuitable features: mesh alignment and mesh dependence
in standard FEM. Some enrichments of approximated shape functions are introduced to
capture the discontinuity profiles. For these discontinuous modellings, Jirasek classifies it
into two categories [Jirasek and Belytschko, 2002]: explicit models of discontinuities and
implicit models. The first one employs the discontinuous field by moving the mesh co-
inciding with discontinuity or by describing special enrichment techniques. Yet implicit
model arranges the coefficient to introduce a representation of discontinuity, for instance
done by smeared crack models. Here we will simply illustrate the discontinuous methods:
interface element, embedded discontinuous models and extended finite element method,
and point out the application of our 1D variational models for ASBs.
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4.2.1.1 Interface element

Interface element was firstly proposed by Ortiz and co-workers [Ortiz and Camacho, 1996]
to solve computational crack and fracture propagation in 2D, and then extended in 3D
fracture mechanics as a cohesive element model [Ortiz and Pandolfi, 1999]. Recently,
by means of this discontinuous method, Yang [Yang et al., 2005] applied the variational
modelling with the interface element to the simulation of ASB formation. The main idea
of this modelling is the coupling between cohesive surface deformation and decohesion.

Figure 4.8: Interface element [Ortiz and Pandolfi, 1999]

Simply, interface element can be described in FIG.4.8. We suppose that there is a
localization zone in domain B0, and the surface S0 splits the body into two domains B+

0
and B−0 . As localized band occurs, the corresponding nodes on S0 are also separated as
two nodes on S−0 and S+0 . The original normal direction on S0 is defined by N and the
deformed one is defined as n, traction force denoted by t. The property of t is

t = P ·N

P is the first Piola-Kichhroff stress conjugate to deformation gradient F. So for keeping
the modelling consistency on interface, the following condition should be satisfied:

[[P ·N]] = [[t]] = 0 on S±0

the symbol [[·]] means the jumping profiles. Therefore the deformation power can be
obtained by the above condition and equilibrium equation as follows:

PD = ∑

∫
B±0

P · ḞdV0 +
∫

S0

t · [[ϕ̇]]dS0 (4.1)
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where ϕ is the deformation mapping in finite configuration. So clearly the simulation
of localization region concentrates on the discontinuous surface S0 and the decohesion
traction. If we works on 2D ASB problem, surface S0 will be transformed as a line.
Therefore for variational method, the importance of the interface element modelling is to
find an effective free energy φ on S0 satisfying:

t =
∂φ

∂δ

where we denote δ = [[ϕ]], t furnishes the conjugate stress measure. Normally for the
sake of avoiding mesh alignment, we adopt a coordinate transformation to the energy
modelling on sliding and normal displacement (δn and δS). so:

t =
∂φ

∂δn
(δn,δS,q)n+

∂φ

∂δS
(δn,δS,q)

δS

δS

q is internal variable, such as equivalent plastic strain; δS = |δS|. Normally there is another
variable in φn: deformation on surface F ||, Ortiz [Ortiz and Pandolfi, 1999] neglected it
for simplicity. A key benefit of the potential structure of the cohesive law is that it reduces
the identification of cohesive law from t to total potential. Yet we should emphasize that
the choice of φ depends on the constitutive law of traction force t and displacement jump
ϕ under loading conditions. Ortiz and co-workers used a standard J-integral as the critical
energy release rate in φ to analyse crack propagation and cohesive law.

In contrast to use cohesive law, Yang [Yang et al., 2005] applied the same constitutive
relation to describe the behaviour of strain-localization elements, and introduced a band
thickness to build the relation between the displacement jumping and deformation gradi-
ent. In addition, the pseudo potential with this surface deformation is also considered and
derived.

For the shear localization problems in thermo-mechanical coupling, the temperature
of the surrounding volumes should also be included in free energy, and to some extent,
the heat entropy will be a determined factor for the formulation of energy potential. Strain
localization element method is comparatively easier in the analysis of ASB problem, and
it fits well into the finite element analysis, and all the process to add interface element is
actually like a mixed boundary condition. Yet it demands that the cracks and shear bands
develop along the existing interface element edges.

4.2.1.2 Embedded discontinuity model

One reason for mesh dependence in strain localization problem is the large deformation
gradient concentrated in tiny length, and standard finite element mesh can only capture
its property through continuously refining the mesh in localization zone. So if we can
add some discontinuous terms in the approximations of the profiles to reflect well its
characters on every localized grid, normal mesh size can also track the physical aspect of
localization problems.
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Ortiz [Ortiz et al., 1987] redefined the shape functions aiming at reproducing the lo-
calized modes in bifurcation analysis. Termed as weak discontinuities, the high strain
gradients can be expressed in the form of finite band width. Thereby a prediction of band
thickness limits the development of this model. Yet if the strain jumping is so tiny that we
can regard it as zero, we might as well say that material appears a strong discontinuity. The
zero band width in constitutive model makes the embedded discontinuity independent on
the characteristic length, as the works in [Larsson et al., 1996, Hughes and Krishna, 1998,
Oliver et al., 1999, Oliver, 1996a], and the corresponding profiles of deformations will be
adopted the one without the term of band width.

Figure 4.9: Definition of discontinuity part [Oliver, 1996b]

We suppose that there is a localization region on surface S (FIG.4.9) in the sub-domain
Ωh ⊂Ω, and two modellings are divided by the length of localization domain h. When h
is finite, weak discontinuity shows as FIG.4.9 demonstrated. Strong discontinuity occurs
if h→ 0, and the strain rate will be δS([[u̇]]⊗n)S in this case, where δS is a line Dirac’s
delta-function. To satisfy the consistency of modelling, the governing equations for this
boundary value problem should include the traction continuity besides the equilibrium
equations, regarding as external imposed boundary conditions:

σ
+
Ω\S ·n = σ

−
Ω\S ·n = σS ·n x⊆ S

In addition, for representing well the high strain rate in one element, an enrichment re-
gards to displacement jumping should be added in standard FEM approximation, as the
following described([Oliver et al., 1999]):

u̇(x, t) = ˙̄u(x, t)+HS[[u̇]](x, t) (4.2)

where ˙̄u(x, t) is continuous C0 displacement fields, and then kinematic strain rate is de-
rived as([Oliver et al., 1999]):

ε̇(x, t) = OS ˙̄u+HSO
S[[u̇]]+µS

1
h(η)

([[u̇]]⊗n)S (4.3)
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Function HS is a step function: 1 in Ω+, 0 in Ω−. µS is a collocation function placed in
S: if x⊆ S, µS(x) = 1, and otherwise µS(x) = 0. For the case of strong discontinuity, the
last term µS/h(η) limits to δS. For simplifying the numerical simulation, normally we set
a characteristic function in enrichment to distinguish the elements crossed by localization
parts.

Two crucial points [Rabczuk, 2007] are always discussed in the models of strain lo-
calization: the detection of loss of material stability and the constitutive models for the
traction-separation law to capture the localized behaviour. For the first one, engineers
prefer to adopt the mathematical condition of loss of ellipticity to judge the localization
state. Oliver worked on the bifurcation propagation through this method and got the crit-
ical normal direction. Yet how to decide the transition of ASB from weak discontinuity
to strong discontinuity is a considerable question. Based on the above enrichment, he
proposed the variable bandwidth model using the hardening/softening law to control ma-
terial states. For the second one, experimental results are also needed in discontinuous
modelling to define the corresponding traction-separation law.

Embedded discontinuity method does not need to add new freedom degree, so the im-
plementation process is more convenient. However, due to the discontinuous enrichment
on the element boundaries, the nonconforming displacement approximation appears eas-
ily in the simulation. Consequently, extended finite element method is interesting to be
applied, which can intrinsically get a conforming model.

4.2.1.3 Extended finite element method

In strain localization problem, discontinuity can also be introduced through a discontinu-
ous partition of unity, called as extended finite element method (XFEM). Different from
the forgoing models, it adds additional freedoms to control the approximation of parti-
tion of unity besides the discontinuous enrichment. Additionally Level-set method is also
applied in this discontinuous model to represent and track the motion of discontinuity.

Figure 4.10: Shear band in XFEM[Areias and Belytschko, 2006]
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FIG.4.10 shows a shear band width ω in ΩSB2
0 crossed on Ω0 in the initial configu-

ration. Level set functions f (F) and ĝ(X, t) are to decide the shear localization area and
front side. So the band is defined by

{X ∈Ω
SB
0 | | f (X)|< ω(X) and ĝ(X, t)> 0}

and ΩSB2
0 −ΩSB

0 is a neutral domain, at least one layer of elements existed. The displace-
ment for the element containing shear band can be written as:

u(X, t) =
4

∑
k=1

NK(X)uK(t)+ [MmK(X)−MmK(XK)]tαK(t)

where uK is nodal displacement, and t is the spatial unit vector tangent to the shear band.
NK is the shape function for standard FEM, and Mm is the enrichment function for local-
ization element. Similarly, the temperature can be written as

T (X, t) =
4

∑
K=1

NK(X)TK(t)+MT (X)β(t)

MT is the enrichment for temperature. Yet how to capture the localization character using
the enrichment is important. In [Areias and Belytschko, 2006], they choose the mechani-
cal enrichment as tanh( 2

lB
f (X)), lB is the shear band length known as a material parame-

ter. For simulating the dynamic evolution of ASB width, they choose the linear function
(the ratio of signed distance function to bandwidth) as the enrichment of displacement in
[Areias and Belytschko, 2007]. Contrarily to other discontinuous methods, they introduce
the minimum energy principle to identify the bandwidth in the shape enrichment. On the
other hand, a symmetry linear function respecting the central line of ASB is enhanced in
temperature approximation. The stability analysis of ellipticity is a critical condition to
track level set and growth of band localization.

Based on the normal freedoms on standard FEM, XFEM adds new coefficients α and
β on every nodal points to approximate the magnitude of discontinuity in every element.
Therefore the number of resolved quantities is greater than that in normal discontinuous
methods, but a good accuracy by XFEM can be obtained because of the conforming dis-
placement approximation and the introduction of bandwidth calculation. Additionally,
we donot need to set mesh direction along the occurrence of ASB, largely simplifying
the mesh modelling. Consequently the described forgoing problems in localization zone,
such as mesh alignment or dependence are overcome by discontinuous enrichment in
XFEM.

Whichever discontinuous methods we adopts, good and adequate representation of
displacement and temperature fields in ASB region are necessary conditions in all the
localized modellings. In addition, two common additional laws should be intrinsically or
directly illustrated in models:

• Traction-separation flow
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• Heat production (entropy) on ASB zone

In 1D transient state, our variational modelling in CHAP.3 can inherently build these flow
laws through the total pseudo-potential with internal variables h and Tmax. Furthermore,
canonical formulations of displacement and temperature can also be constructed as the
enrichments in the foregoing three discontinuous models. Thus in next part, we will give
the application of 1D variational modelling in interface elements.

4.2.2 Variational two-scale modelling
Material represents the discontinuous phenomenon at macroscopic scale owing to the
shear localization zone with large deformation and high temperature in a tiny scale, ac-
tually it is not at microscopic scale. Here referred to the strain localized finite element
used in [Yang et al., 2006], we will derive our variational two-scale modelling combined
with the work in CHAP.3 in the terms of linearized kinematics and finite configuration.
Yet initially, we suppose that the length on the normal direction of interface element is a
constant, and the localization phenomenon will happen in this certain distance.

4.2.2.1 Linearized kinematics

We suppose the displacement jump [[u]] happened on S−0 and S+0 , which has a certain
distance H in the localized domain (FIG.4.8). In addition, H is so small that can be
negligible compared with mesh sizes in other parts. The middle plane is S, and the normal
direction is n, so the strain can be defined as:

ε = εe + εp

where

εe = ε
||+

[[u]] ·n
H

n⊗n+
1
2
(γe⊗n+n⊗γe)

ε|| is the membrane strain within discontinuity plane. γe is the shearing elastic strain,
which we restate as homogeneous through thickness, such that:

γ̇e =
u̇te

H
t and γe ·n = 0

where ute is unknown parameter depending on the displacement jumping. t is the unit
vector aligned with [[u̇]]t = [[u̇]]− ([[u̇]] ·n)n, and plastic strain is denoted as:

εp =
1
2
(γ p(η)⊗n+n⊗γ p(η)) and γ p(η) ·n = 0

where γ̇ p(η) = γ̇p(η)t. Thereby for keeping the consistency with the global profile, the
following conditions should be satisfied:∫ H

0
n · ε ·ndη = [[u]] ·n
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∫ H

0
(γ̇e + γ̇ p(η))dη = [[u̇]]− ([[u̇]] ·n)n = [[u̇]]t

Simply, we note un = [[u]] ·n and u̇t = [[u̇]] · t.
The total potential of interface element is written as:

Φ(u,T ) =
∫

B±0
φ(u,T )dV +

∫
S

φ(ε||,T, [[u]],Tb)dS (4.4)

Where Tb is the temperature of the surrounding matrix, and the potential in discontinuity
φ is equal to:

φ(ε||,T, [[u]],Tb) =
∫ H

0
φ1(ε

||,un,ut ,γ p(η),Tb,T )dη (4.5)

How to decide the form of φ is the main work in this modelling. Considering a time
increment [tn, tn+1], and supposing [ε

||
n, [[u]]n,Tbn] is known, we adopt the work in CHAP.3

and define the incremental potential as:

φn+1(ε
||
n+1, [[u]]n+1,Tbn+1) = Stat

hVn+1 ,hTn+1 ,Tmaxn+1 ,ū
t p
n+1

φ
∗
n+1 (4.6)

where

φ
∗
n+1 =

∫ H
2

−H
2

W e(εe
n+1,u

t
n+1,ε

||
n+1,u

n
n+1)−W e(εe

n,u
t
n,ε
||
n,un

n)

+W p(ε̄
p
n+1,Tn+1)−W p(ε̄p

n ,Tn)+W th(Tn+1)−W th(Tn)+ρ0ηn(Tn+1−Tn)

+∆tΨ∗(
Tn+1

Tn
˙̄εp

n+1, ε̄
p
n ,Tn)−∆t

1
2

λTn(
∂Tn+1

∂η

1
Tn+1

)2dη

Moreover, it stands for the case that velocity and temperature are inhomogeneous in the
band approximated as the canonical formulations. According to the optimization condi-
tions, the following formulations can be received:

∂φ∗n+1

∂hVn+1

= 0;
∂φ∗n+1

∂hTn+1

= 0;
∂φ∗n+1

∂Tmaxn+1

= 0;
∂φ∗n+1

∂ūt p
n+1

= 0;

Normally we consider the perturbations:

ε
||
n+1→ ε

||
n+1 +δε

||
n+1; [[u]]n+1→ [[u]]n+1 +δ[[u]]n+1;

Tmaxn+1 → Tmaxn+1 +δTmaxn+1; hTn+1 → hTn+1 +δhTn+1 ;

ūt p
n+1→ ūt p

n+1 +δūt p
n+1; Tbn+1 → Tbn+1 +δTbn+1;

hVn+1 → hVn+1 +δhVn+1;
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so the variation of φ∗n is described as

δφ
∗
n+1 =

∂φ∗n+1

∂ε
||
n+1

δε
||
n+1 +

∂φ∗n+1

∂un
n+1

nδ[[u]]n+1 +
∂φ∗n+1

∂ut
n+1

tδ[[u]]n+1 +
∂φ∗n+1

∂Tbn+1

δTbn+1

+
∂φ∗n+1

∂hVn+1

δhVn+1 +
∂φ∗n+1

∂hTn+1

δhTn+1 +
∂φ∗n+1

∂Tmaxn+1

δTmaxn+1 +
∂φ∗n+1

∂ūt p
n+1

δūt p
n+1

Considering the stationary condition about hVn+1 , hTn+1 , Tmaxn+1 and ūt p
n+1, we can write

the variations of φn+1 as:

δφn+1 =
∂φ∗n+1

∂ε
||
n+1

δε
||
n+1 +

∂φ∗n+1

∂un
n+1

nδ[[u]]n+1 +
∂φ∗n+1

∂ut
n+1

tδ[[u]]n+1 +
∂φ∗n+1

∂Tbn+1

δTbn+1

here ∂φn+1
∂Tn+1

= 0. So the modelling of interface element can be built with recourse to the
1D variational modelling in CHAP.3. The potential in localized domain is transformed as
the forms on discontinuous plane and the surrounding element profiles. If the localization
problem is in 2D, S will be just a line.

4.2.2.2 Finite kinematics

We denote N the unit vector normal to the discontinuous plane (oriented from side - to
side +), and n is the one in the deformed configuration. The deformation gradient F is
decomposed as:

F = FeFp

The elastic deformation is assumed to be homogeneous through the shear band thickness,
defined as:

Fe = F||+
[[u]] ·n

H
n⊗N+γe⊗N

where F|| is the deformed gradient in discontinuous plane, and F||N = n. γe is elastic
shear deformation, written as:

γ̇e = γ̇
et̃ = ˙̃γet (4.7)

where t is the unit vector aligned with the tangential velocity jump [[u̇]]t , defined as:

[[u̇]]t = [[u̇]]− ([[u̇]] ·n)n

and
F||T = t̃

T is the unit vector aligned with F||−1[[u̇]]t . γe and γ̃e are all scalars, which depend on
u̇t = (F||

−1
[[u̇]]t) ·T. For the plastic deformation Fp, we assume that it is inhomogeneous

through thickness, and a general formula is defined as follows:

Fp = I+γ p(η)⊗N
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where η ∈ [0,H]. According to the above definition about T, γe and γ p are orthogonal to
N:

γ p(η) ·N = 0; γe ·N = 0;

The velocity is then written as:

Dp = ḞpFp−1
= γ̇ p(η)⊗N

and the equivalent plastic strain in J2 Von Mises law is obtained by :

˙̄εp
=

√
2
3

Dp ·Dp =

√
2
3

γ̇
p

Combined with the decomposition of Fe and Fp, the deformation gradient F can also be
described as:

F = F||F⊥ (4.8)

where

F⊥ = I+
[[u]] ·n

H
N⊗N+ γ

eT⊗N+γ p(η)⊗N

In order to be consistent with the macroscopic velocity jump, the deformation gradient
must have the properties as follows:∫ H

0
(γ̇e + γ̇

p(η))dη = F||
−1
[[u̇]]t ·T

∫ H

0
n ·F ·Ndη = [[u]] ·n

Here we should mention that there is only one temperature field existed for two surfaces
S−0 and S+0 , contrarily a new group of displacement fields for [[u]] are added in our mod-
elling. Hence the consistency of temperature in discontinuity works automatically.

If denoting F||
−1
[[u̇]] ·T as u̇t , [[u]] · n as un, the 1D modelling φ∗(F||,un,ut ,Tb) de-

scribed in (4.5) is also applied in finite kinematics. In similar manner, a new group of
variables [F||n+1, [[u]]n+1,Tbn+1] will be calculated over time increment [tn, tn+1], assuming

[F||n, [[u]]n,Tbn ] known. Similar to the variational derivation described in the linear kine-
matics, we can also prove that the variations of potential in localization can be represented
through the discontinuous plane:

δΦn+1 =
∫

B±0

∂Φn+1

∂Fn+1
δFn+1 +

∂Φn+1

∂Tn+1
δTn+1dv+∫

S

∂φ∗n+1

∂F||n+1

δF||n+1 +
∂φ∗n+1

∂Tbn+1

δTbn+1 +

∂φ∗n+1

∂un
n+1

nδ[[u]]n+1 +
∂φ∗n+1

∂ut
n+1

∂ut
n+1

∂[[u]]n+1
δ[[u]]n+1dS (4.9)
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where the perturbations δFn+1, δTn+1, δF||n+1, δ[[u]]n+1 and δTbn+1 are arbitrary.
Combined with 1D energy-based variational modelling, we applied the strain local-

ized finite element inferred into normal elements to reflect well the localization profiles.
Contrary to the previous work, a normal deformation gradient formula is proposed in-
cluding the inhomogeneous plastic strain. In addition, we also propose the variational
two-scale model in view of linear deformation and finite configuration. The following
feature is presented in our modelling:

∂φ∗

∂ut = τaverage

Therefore the traction-separation law FIG.4.11(a) and the entropy created on discontinu-
ity FIG.4.11(b) can be well demonstrated through our variational model with ordinary
material property.

(a) (b)

Figure 4.11: Traction-separation law (a) and heat production (b) on discontinuity for
exponential softening law

4.3 Finite element implementation

4.3.1 Finite element modelling
Strain localization element fits well into the implementation of FEM. For the elements
crossed by shear band, we pre-set two nodes on the same geometrical node in the reference
configuration (FIG.4.3.1). Thus if the surface element S has n nodes, the total number of
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nodes in strain localization element is 2n (S+ and S−) . Yet the temperature freedom still
keeps one in two surfaces. Overall, it is alike as a mixed boundary condition when dealing
with interface element in FEM.

Figure 4.12: Shear band element[Ortiz and Pandolfi, 1999]

We denote Na(s1,s2) a = 1, ...,n as the standard shape function, where (s1,s2) are
the natural co-ordinates of each of the surface elements in some convenient standard con-
figuration. So the discontinuous element on the two surfaces is defined as:

X =
n

∑
a=1

X̄aNa(s) (4.10)

where
X̄a =

1
2
(X+

a +X−a )

X± is the co-ordinates of the nodes in the undeformed configuration of the element. The
corresponding tangent basis vectors are obtained by:

Gα(s) =
n

∑
a=1

X̄aNa,α(s)

the unit normal to S (from S− to S+) is then:

N =
G1×G2

| G1×G2 |
(4.11)

Similarly, the displacement jump is defined as:

[[u]] =
n

∑
a=1

[[x]]aNa(s) (4.12)

where
[[x]]a = x+a −x−a
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where x±a are the co-ordinates of the nodes in the deformed configuration. The node force
in the interface element can be written as follows:

f±ia =
∂

∂x±ia

∫
S

φn+1(F
||
n+1, [[u]]n+1,Tbn+1)dS

=
∫

S

∂φn+1

∂F||n+1

∂F||n+1

∂x±ia
+

∂φn+1

∂un
n+1

∂un
n+1

∂x±ia
+

∂φn+1

∂ut
n+1

∂ut
n+1

∂x±ia
dS (4.13)

and the corresponding tangent matrix in mechanical part is derived as:

Kia jb =
∂ f±ia
∂x±jb

=
∫

S

∂2φn+1

∂F||n+1
2

∂F||n+1

∂x±jb

∂F||n+1

∂x±ia
+

∂φn+1

∂F||n+1

∂2F||n+1

∂x±ia∂x±jb
+

∂2φn+1

∂un
n+1

2

∂un
n+1

∂x±jb

∂un
n+1

∂x±ia
+

∂φn+1

∂un
n+1

∂2un
n+1

∂x±ia∂x±jb
+

∂2φn+1

∂ut
n+1

2

∂ut
n+1

∂x±jb

∂ut
n+1

∂x±ia
+

∂φn+1

∂ut
n+1

∂2ut
n+1

∂x±ia∂x±jb
dS (4.14)

In the finite element method for thermo-mechanical coupling, we adopt the same shape
function to approximate the temperature profile, defined as:

T =
n

∑
a=1

Na(s)Ta

where Ta a = 1, ...,n is the temperature at node. The nodal entropy in the interface
element is described as:

∂φn+1

∂Ti
=

∂φn+1

∂Tb
Ni (4.15)

and regarding to (4.13), the coupling of thermal mechanics is derived as:

∂ f±ia
∂Tj

=
∂2φn+1

∂ut
n+1∂Tbn+1

∂ut
n+1

∂x±ia
N j (4.16)

Following (4.15), we can derive the second order of φn+1 about temperature:

∂2φn+1

∂Ti∂Tj
=

∂2φn+1

∂Tb
2 NiN j (4.17)

Therefore if we want to determine the specific formulations of node force and tan-
gent matrix for interface elements, two parts of derivations should be known: thermo-

mechanical flux and strain or direction derivations (in Appendix B), such as
∂F||n+1
∂x±ia

,
∂ut

n+1
∂x±ia

.
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4.3.2 Thermo-mechanical flux
In 1D variational potential φ∗n+1, we can also write the elastic potential W e

n+1 as:

W e
n+1 =W e

1n+1
(F||,un

n+1)+W e
2n+1

(ut
n+1, ū

t p
n+1)

According to the definition of deformation gradient, F||n+1 and un
n+1 are the elastic com-

ponents and independent on the internal parameters: hV , hT , Tmax and ūt p. So the fluxes
about these two components are similar to the ones of finite elements in linear elastic
problem, here we do not give its relative formulas of stress and force.

In view of (4.5), we might as well use :

φ(F||,un,ut ,Tb) = φ
∗(h∗V ,h

∗
T ,T

∗
max, ū

t p∗,F||,un,ut ,Tb) (4.18)

which h∗V ,h
∗
T ,T

∗
max, ū

t p∗ are the optimized values making the pseudo-potential in 1D shear-
ing problem have the optimizations with respect to displacement and temperature.

• If the material is in elasticity, the dissipation in total potential will be equal to 0, and
two cases exist according to ūt p

n :

– ūt p
n = 0

In this state, material is in the initial term. The increase of loading only has
influence on mechanical part, and the temperature still keeps the consistency with
the surrounding temperature. So thermo-mechanical flux and their derivations are
written as follows:

∂φn+1

∂ut
n+1

=
∂W e

2n+1

∂ut
n+1

(ut
n+1, ū

t p
n );

∂2φn+1

∂ut
n+1

2 =
∂2W e

2n+1

∂ut
n+1

2 (ut
n+1, ū

t p
n );

∂φn+1

∂Tbn+1

= 0;
∂2φn+1

∂ut
n+1∂Tbn+1

= 0;
∂2φn+1

∂Tbn+1
2 = 0; (4.19)

– ūt p
n 6= 0

Material is under unloading. The total potential will illustrate a simple heat prob-
lem. The dissipation part is zero, mechanical flux and derivation agree with the
ones in the initial term. Because of heat conduction, thermal flux and its derivation
will have some changes:

∂φn+1

∂Tbn+1

=
∂φ∗n+1

∂Tbn+1

(h∗Vn
,h∗Tn+1

,T ∗maxn+1
, ūt p∗

n );

∂2φn+1

∂Tbn+1
2 =

∂2φ∗n+1

∂hTn+1∂Tbn+1

∂hTn+1

∂Tbn+1

+
∂2φ∗n+1

∂Tmaxn+1∂Tbn+1

∂Tmaxn+1

∂Tbn+1

; (4.20)

Two unknown parameters appear in the second order derivation about Tbn+1:
∂hTn+1
∂Tbn+1

,
∂Tmaxn+1
∂Tbn+1

. Here by means of the optimization conditions about hTn+1, Tmaxn+1 , we
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can get:
∂

∂Tbn+1

(
∂φ∗n+1

∂Tmaxn+1

) = 0;
∂

∂Tbn+1

(
∂φ∗n+1

∂hTn+1

) = 0; (4.21)

Therefore a system of linear equations about two variables is built as follows:
∂φ∗n+1

∂hTn+1
2

∂φ∗n+1
∂hTn+1 ∂Tmaxn+1

sym. ∂φ∗n+1

∂Tmaxn+1
2




∂hTn+1
∂Tbn+1

∂Tmaxn+1
∂Tbn+1

=−


∂φ∗n+1

∂hTn+1 ∂Tbn+1

∂φ∗n+1
∂Tmaxn+1∂Tbn+1


The corresponding values

∂hTn+1
∂Tbn+1

and
∂Tmaxn+1
∂Tbn+1

can be obtained by simple equation
solver.

• When the material is in plasticity, the derivation about hV and ūt p will be involved in
thermo-mechanical flux, making the problem more complicated. Yet the formula of
average stress keeps consistency with the case in elasticity:

∂φn+1

∂ut
n+1

=
∂W e

2n+1

∂ut
n+1

(ut
n+1, ū

t p∗
n+1) (4.22)

The second order derivation of ut
n+1 will include the derivation part of ūt p∗

n+1:

∂2φn+1

∂ut
n+1

2 =
∂2W e

2n+1

∂ut
n+1

2 +
∂2φ∗n+1

∂ut
n+1∂ūt p

n+1

∂ūt p
n+1

∂ut
n+1

(4.23)

an unknown value
∂ūt p

n+1
∂ut

n+1
appeared in the calculation of second order of φn+1 about ut

n+1.

Here we will use the optimization condition about ūt p
n+1 to analyse this component.

Obviously, φn+1 has the feature as:

∂

∂ut
n+1

(
∂φ∗n+1(h

∗
V ,h
∗
T ,T

∗
max, ū

t p∗)

∂ūt p
n+1

) = 0

Following it, we can get:

∂ūt p
n+1

∂ut
n+1

=−(
∂2φ∗n+1

∂ūt p2

n+1

)−1 ∂2φ∗n+1

∂ut
n+1∂ūt p

n+1
(4.24)

For example, we choose the elastic potential as follows in our program:

W e
2 =

µ
H
(ut−ut p)2

and ut p is plastic displacement in 1D variational modelling, defined as:

u̇t p = sign(u̇t) ˙̄ut p
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the following derivations can be evaluated:

∂φ

∂ut =
∂W e

2
∂ut =

2µ
H
(ut−ut p∗);

∂2we
2

∂ut2 =
2µ
H

;
∂2φ∗

∂ūt p∂ut =−
2µ
H

sign(u̇t)

so:
∂2φ

∂ut2 =
2µ
H
− (

2µ
H
)2(

∂2φ∗

∂ūt p2 )
−1

As a mention, all the derivations of φ∗ is on the base of the optimization value.

Now we will work on the formulation of thermal flux. Based on the optimization
conditions about the internal parameters, we can easily get that:

∂φn+1

∂Tbn+1

=
∂φ∗n+1

∂Tbn+1

(h∗V ,h
∗
T ,T

∗
max, ū

t p∗)

and the corresponding second order of φ about Tb is

∂2φn+1

∂Tbn+1
2 =

∂2φ∗n+1

∂hVn+1∂Tbn+1

∂hVn+1

∂Tbn+1

+
∂2φ∗n+1

∂hTn+1∂Tbn+1

∂hTn+1

∂Tbn+1

+

∂2φ∗n+1

∂Tmaxn+1∂Tbn+1

∂Tmaxn+1

∂Tbn+1

+
∂2φ∗n+1

∂ūt p
n+1∂Tbn+1

∂ūt p
n+1

∂Tbn+1

+
∂2φ∗n+1

∂Tbn+1
2 (4.25)

Consequently it is necessary to evaluate the derivations of
∂hVn+1
∂Tbn+1

,
∂hTn+1
∂Tbn+1

,
∂Tmaxn+1
∂Tbn+1

,
∂ūt p

n+1
∂Tbn+1

for obtaining the value (4.25). Repeatedly, the optimization conditions about four in-
ternal parameters will be used here to solve this problem. Besides (4.21), the others
optimizations are:

∂

∂Tbn+1

(
∂φ∗n+1

∂hVn+1

) = 0;
∂

∂Tbn+1

(
∂φ∗n+1

∂ūt p
n+1

) = 0; (4.26)

so a system of linear equations with four variables can be obtained by (4.26), described
as follows:

∂φ∗n+1

∂hVn+1
2

∂φ∗n+1
∂hVn+1∂hTn+1

∂φ∗n+1
∂hVn+1∂Tmaxn+1

∂φ∗n+1
∂hVn+1∂ūt p

n+1

∂φ∗n+1

∂hTn+1
2

∂φ∗n+1
∂hTn+1∂Tmaxn+1

∂φ∗n+1
∂hTn+1∂ūt p

n+1

sym.
∂φ∗n+1

∂Tmaxn+1
2

∂φ∗n+1
∂Tmaxn+1∂ūt p

n+1

∂2φ∗n+1

∂ūt p
n+1

2





∂hVn+1
∂Tbn+1

∂hTn+1
∂Tbn+1

∂Tmaxn+1
∂Tbn+1

∂ūt p
n+1

∂Tbn+1


=−



∂φ∗n+1
∂hVn+1∂Tbn+1

∂φ∗n+1
∂hTn+1∂Tbn+1

∂φ∗n+1
∂Tmaxn+1∂Tbn+1

∂φ∗n+1
∂ūt p

n+1∂Tbn+1


We adopt an efficient linear solver (based on LU decomposition) to solve our linear
systems, then the corresponding solutions will be entered into (4.25) to calculate the
second order derivation of φ∗n+1 about Tbn+1 .
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For the thermal mechanical coupling term ∂2φn+1
∂ut

n+1∂Tbn+1
, we can write it as:

∂2φn+1

∂ut
n+1∂Tbn+1

=
∂2W e

2n+1

∂ut
n+1∂ūt p

n+1

∂ūt p
n+1

∂Tbn+1

(4.27)

As an end, we should mention that all the analysis are based on the 1D variational mod-
elling without heat exchange on the boundary, so the influence of length H on surrounding
temperature is neglected for simplifying the analysis. Yet it is similar to the above anal-
ysed method in that case. Based on the above discussion, the optimized parameters will
include another one: T̄bn+1 which is a boundary temperature obtained by total potential.
This case will be similar to the results in [Yang et al., 2005].

By means of Appendix B, every term in (4.13) and (4.14) is derived and can be sub-
stituted to calculate the nodal force and tangent matrix. It seems that every term is very
complicated according to the above derivation, but we can discover that many common
terms exist in the formulations. So if we can get certain parts, the tangent matrix is just
a simple calculation operation. Furthermore, the corresponding integration can be im-
plemented by numerical method, such as Gauss method. Although we have not given
the numerical example in this section, the verification in theory demonstrates that this
variational modelling is feasible with strain localized element.

4.4 Conclusions
In the thermo-mechanical localized problem, mesh dependence is a common phenomenon
and always limits the application of numerical methods as a fatal default, such as the ac-
curacy of solution, the convergence of numerical methods. In this study, firstly a simple
pre-notched bar subjected to a shearing velocity is analysed by standard FEM. In term of
adiabatic case, we found that the bandwidth tends to zero with the central mesh refined
gradually. The stress evolution is largely influenced by mesh size, and the maximum
stress is smaller if the grid in front of pre-notch is finer. Contrastively, this problem with
thermal conduction presents less dependence compared to the one in adiabatic case. We
can find that there is a steady state for stress evolution with the mesh size decreased. Sub-
sequently, the bandwidth keeps consistency when the mesh size arrives to some extent.
Yet the dense mesh creation or enormous calculation in localization zone make the stan-
dard FEM unacceptable in the simulation of ASBs structure. It needs the development of
discontinuous modellings.

Then briefly, we revised three widely used methods (interface element, embedded
discontinuous method and XFEM) in the application of shear localization problem. Al-
though they bring a lot of advantages in the discontinuous modellings, there is a large
challenge to find a good description of shear localization profiles and the relative consti-
tutive components in traction-seoeration and entropy relation.

Consequently based on the energy-based variational modelling for thermo-elasto-
viscoplastic materials proposed in CHAP.3, we successfully extend it in strain localized
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element and propose a variational two-scale model for adiabatic shear bands. The rea-
son that we call it two-scale modelling is that at macroscopic scale it is represented by
displacement jump, yet the characters at microscopic scale are resourced to our 1D vari-
ational modelling. Compared with other discontinuous methods, the modelling has the
following advantages:

• New form of deformation gradient in localization. We consider that plastic strain is
inhomogeneous in the normal direction to discontinuous surface.

• Inhomogeneous temperature distribution. According to the analytical solution, “cusp”
profile of temperature is applied in variational modelling.

• Intrinsically representing traction-separation and entropy relations. Adopting incre-
mental energy potential, all the continuous relations, including flow theory, traction-
separation law do not need to be defined separately, but instead can be directly
obtained by the derivations of total potential.

• Shear band width calculation. We define two bandwidths in our microscopic mod-
elling: kinematic width and thermal width, and they can be easily determined as
two internal parameters of incremental potential.

• Symmetry tangent matrix in FEM.

Unfortunately we have not finished a numerical example to verify our two-scale mod-
elling, but it does not influence our proposition of modelling. Completely theoretical
analysis and finite element implementation are successfully derived, giving a good prepa-
ration for future implementation.
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Chapter 5

Conclusions and perspectives

A new energy-based variational model of adiabatic shear banding structure for thermo-
elasto-viscoplastic materials has been proposed and successfully tested, accounting for
elasticity, work hardening and thermal conduction. In view of the widely used Johnson-
Cook model, a list of parameters, such as kinematic bandwidth, thermal bandwidth and
equivalent displacement loading, are introduced as the internal variables to track the dy-
namic evolutions of deformation and temperature in the localization region. Meanwhile
as a validation of canonical aspects of modelling, the corresponding thermo-viscoplastic
models for exponential law and power rate law are developed in steady and transient
state. Heat exchange coefficient is considered to complete the 1D modelling as well, and
its formula fitted in steady state is applied in transient state to optimize the surrounding
temperature.

To present well the application of our modelling in the adiabatic shear banding struc-
ture in 2D or 3D, we resource to a discontinuous technology: interface element, and
propose a variational two-scale model based on this 1D total variational potential. Not
only the theoretical derivation is given to describe its function in the two-scale model, but
also every term of nodal force, entropy and tangent matrix is precisely derived in CHAP.4.

5.1 Conclusions
As the foregoing work described, the main problems of adiabatic shear bands are mesh
dependence and model quality, which exactly this study aims at solving. According to
the proposed thermo-elasto-viscoplastic models, we applied and analysed the evolutions
of bandwidth, temperature and stress in the layer subjected to a simple shearing velocity.
Moreover, a variational two-scale model is proposed to extend the present 1D modelling
into the simulations of ASB structure in 2D/3D. In short, a series of conclusions and
advantages are received in this thesis as follows:

• A thermo-mechanical variational framework based on Rayleigh-Ritz method is a
main aspect of our energy-based variational modelling. Mesh discretization is non-
existent in this structure. The profiles of velocity and temperature can be simply
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described as the two functions with several unknown scalars, such as central tem-
perature, bandwidth. In steady state, heat exchange coefficient can also be obtained
by means of the optimization of total potential with respect to the temperature on the
boundary. In transient state, the transformation condition from elasticity to plastic-
ity regards to another new optimized parameter: equivalent displacement loading.
Thus our variational modelling makes the complicated shear localization problem
concentrated on a simple mathematical optimization problem, which greatly sim-
plifies the simulation.

• These new proposed variational models (thermo-viscoplastic model and thermo-
elasto-viscoplastic model) are verified by analytical solutions or finite element method.
Initially, we built the steady variational modellings for Couette flow, thermal flow
and thermal Couette flow, and validated their feasibility in steady state. Then for
adiabatic shear bands, we proposed a series of the corresponding variational mod-
els with regarding to different flow laws (exponential softening law, power rate law
and Johnson-Cook law) in steady and transient states. Standard FEM verified that
the nonlinear profiles of velocity and temperature presented well the characters of
shear localization, agreeing with the FEM analysis.

• A formula for the exchange coefficient was proposed using the polynomial curve
fitting method. We also analysed the influence of heat exchange on the surrounding
temperature at high strain rate loading. Material is basically isothermal at the be-
ginning, and the surrounding temperature is comparable to the central temperature.
But the effect of thermal conduction is gradually evident with the time increased,
and high temperature concentrates on the center of the layer at last. Appreciating to
the introduction of thermal boundary condition, we can obtain that the bandwidth
in steady state is independent on the layer width.

• The combination between the boundary conditions and the analytical formulations
can efficiently avoid the dependence of the formulation of the temperature profile
on material parameters. We verified the canonical aspect of our modelling through
its applications on three flow laws (exponential softening law, power rate law and
Johnson-Cook law).

• Material instability analysis are not needed in our modelling. We use the constraint
optimization to control the shear band initiation and propagation.

• The evolutions of the ASBs characteristics were analysed in this study. Two kinds
of bandwidths are introduced to track the profiles of velocity and temperature, yet
kinematic bandwidth is more persuasive in physics and mathematics. With the time
increased, shear band length has a large decrease initially, then quickly arrives at
steady state. On contrast, the maximum temperature is gradually increasing and
evolves towards the analytical solution (exponential softening law and power rate
law). However, the speed of its increase is decreasing because of the thermal con-
duction. Subsequently, stress evolution obtained by our modelling in Johnson-Cook
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law can well present the initiation and the propagation of adiabatic shear band. We
can confirm that the occurrence of shear localization is the result of stress instabil-
ity. In thermo-elasto-viscoplastic model, the evolution of equivalent displacement
loading show that the plastic distribution of imposed loading increases with the
time, and almost occupies the whole imposed displacement in the final term.

• The average stress can be approximated by the derivation of total potential with re-
spect to the charging displacement. We also found that the numerical error approx-
imation of this part is achievable to simulate the adiabatic shear structure. Exactly
by means of this discovery, we proposed our thermal elasto-viscoplastic variational
model, and gives a good foundation to its extension in 2D/3D.

• We analysed the influences of material parameters (thermal softening coefficient,
thermal conductivity, strain rate sensibility and imposed velocity) on stress evolu-
tion. On the one hand, if velocity is higher, the strain rate sensibility m is smaller but
thermal softening coefficient is higher, the shear localization region is more local-
ized. On the other hand, we verify that the thermal conduction can not be neglected
in the final term, which will influence the bandwidth at steady state.

• As an application of our 1D variational modelling, a new variational two-scale
model is proposed by means of an interface element. Contrarily to other discon-
tinuous methods, this model considers inhomogeneous plastic strain and temper-
ature distribution in shear localization part. In addition, the relations of traction-
separation and entropy on discontinuity are intrinsically derived in the total incre-
mental energy potential. Moreover, finite element implementation is precisely de-
rived to validate the convenience of two-scale modelling. Normally this model has
a good effect on avoiding mesh dependence, yet the drawback is that the shear band
path must be pre-known, otherwise the computation will be enormous.

5.2 Discussion and future work
The work in this thesis is concentrated in the variational modelling for adiabatic shear
bands in quasi-static state. Here we do not need to consider the inertia effect because of
the small length of layer. Although inertia factor has little influence on our strain localiza-
tion model (because the element size in the localization region will be normally smaller
than 10−3m), it is better to consider the dynamical variational modelling in the analysis of
the external localization region. In present, Stainier [Stainier, 2011b] has already derived
the dynamical form and applied it in FEM simulation, here all the results calculated by
FEM have neglected the dynamical part.

The aspect of variational method is to transform the conservation laws of physical
problems into a mathematical optimization problem. Consequently as the foregoing work
described, the resolution of the profiles of shear localization is transformed into some non-
linear equations with several optimized scalars. When we use Rayleigh-Ritz method to
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avoid mesh discretization, subsequently the nonlinear parts, like tanh, cosh are also added
into the modelling. As well as thermal conduction part, these terms strongly influence the
convergence of nonlinear equations, especially in the initial term (constraint optimiza-
tion). So our modelling works well if the solver of nonlinear equations is efficient. This
is also the reason why we apply trust-region method to substitute the ordinary Newton-
Raphson method in the study. Hence how to find the balance between the accuracy of
profiles and convenient solver is a worthy considerable question.

In addition, our variational modelling can well simulate the initiation and propagation
of shear bands structure. Yet this process is complicated in the implementation, and it
will bring some difficulties in the application of 1D modelling. Although the analytical
formulations present their completeness in the simulation of ASBs formation (from linear
form to nonlinear form), it might as well do some attempt to compare the one adding
the linear perturbation analysis and the present modelling in the calculation aspect, and
choose the better one for our simulation.

Generally speaking, high temperature near to the melting point and large deformation
gradient are the common characters in the final term of ASBs. Naturally, damage will
be an inevitable phenomenon in this term. Yet we neglect its influence in this study.
Perspectively, it will have a good aspect to built an energy-based variational modelling
with damage factor.

For the application of our 1D variational modelling, we built a discontinuous model
resorting to the strain localized element, and the corresponding finite element implemen-
tation is derived but has not been verified in program. Here in the future work of adiabatic
shear bands structure in 2D or 3D, the first thing is to validate the new variational two-
scale models through some simple examples, such as the pre-notched bar described in
CHAP.4, hat-shaped specimen. However, this model depends on the prediction of shear
band path, so it will be powerless once meeting the ASBs in the popular experiment:
thick-walled cylinder. Extended finite element method will be a good direction to solve
the unknown path problem. Some work has been done in the reference if the enrichment
of the profiles of displacement and temperature are largely simplified. We can apply our
verified analytical formulations as the enrichments to present the approximation of phys-
ical profiles, and the corresponding bandwidth evolution is tracked through our proposed
total incremental update potential. A good accuracy of the results simulated by the XFEM
based on our 1D variational model will be expected in perspective.
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Un nouveau modèle de la structure de BCA dans les matériaux thermo-élasto-viscoplastiques
a été proposé et validé par une approche énergétique variationnelle en prenant en compte
l’élasticité, l’écrouissage et la conduction de chaleur. Compte tenu de la loi Johnson-
Cook, une liste de paramètres, tels que la largeur de bande cinématique, la largeur de
bande thermique et le chargement en déplacement équivalent, sont présentés comme
des variables internes pour suivre les évolutions de déformation et de température dans
la zone localisée. Afin de valider les aspects canoniques du modèle, les lois thermo-
viscoplastiques correspondantes (loi exponentielle et loi de puissance) sont développées
en régime stationnaire et transitoire. Le coefficient de transfert de chaleur est ainsi con-
sidéré pour compléter la modélisation 1D, et sa formule est établie en régime stationnaire.
Nous l’appliquons pour optimiser les températures aux frontières en régime transitoire.

Dans le but d’appliquer un modèle variationnel en 2D/3D, nous recourons à une
méthode discontinue: les éléments d’interface, et proposons un modèle variationnel à
deux échelles basé sur le potentiel 1D incrémental. La dérivation théorique est non seule-
ment donnée pour décrire sa fonction dans le modèle à deux échelles, mais chaque terme
de la force nodale, de l’entropie et de la matrice tangente est également dérivé précisément
au CHAP.4.

Conclusions
Les problèmes principaux des Bandes de Cisaillement Adiabatique comme décrit ci-
dessus, sont la dépendance au maillage et la qualité du modèle soit exactement ce que cette
étude vise à résoudre. En utilisant le modèle thermo-élasto-viscoplastique, nous avons
analysé les évolutions des largeurs de bandes, la température au cœur et la contrainte dans
la couche soumise à une vitesse de cisaillement simple. De plus, un modèle variation-
nel à deux échelles est proposé pour faire évoluer les applications de notre modèle de la
structure de BCA de 1D à 2D/3D. En bref, une série des conclusions et des avantages sont
reçues dans cette étude:

• Un cadre thermo-mécanique variationnel basé sur la méthode de Rayleigh-Ritz est
un aspect essentiel de notre modélisation énergétique variationnelle. La discrétisation
maillage est inexistante dans cette structure. Les profils de vitesse et de température
peuvent êtres simplement décrits comme les deux fonctions avec plusieurs scalaires
inconnus, tels que la température centrale et la largeur de bande. Le coefficient de
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transfert de chaleur est aussi obtenu en régime stationnaire par l’optimisation de
potentiel total par rapport à la température aux frontières. De plus, la transfor-
mation de l’état élastique à l’état plastique est contrôlée par un nouveau paramètre
d’optimisation: le chargement en déplacement équivalent. Ainsi, notre modélisation
variationnelle rend le problème de localisation complexe concentrée sur un problème
d’optimisation mathématique simple, ce qui simplifie grandement la simulation
numérique.

• Ces nouveaux modèles variationnels (modèle thermo-viscoplastique et modèle thermo-
élasto-viscoplastique) sont vérifiés par des solutions analytiques ou la méthode des
éléments finis. Au départ, nous avons construit les modélisations variationnelles
en régime stationnaire pour l’écoulement de Couette, l’écoulement thermique et
l’écoulement de Couette thermique, et avons validé leur faisabilité. De plus, nous
avons proposé une série de modèles variationnels concernent les lois d’écoulement
différents (loi adoucissement exponentielle, loi de puissance et loi Johnson-Cook)
en régime stationnaire et transitoire. La MEF standard vérifie que les profils non-
linéaire de vitesse et de température présentent bien les caractères de localisation
de cisaillement.

• Une formule du coefficient de transfert a été obtenu par la méthode polynomiale.
Nous avons également analysé l’influence de l’échange de chaleur à la température
ambiante dans la couche soumise à une vitesse de déformation élevée. Le matériau
est essentiellement isotherme au début, et la température aux bords est comparable à
la température centrale. Cependant l’effet de la conduction thermique apparait pro-
gressivement quand le temps augmente, et enfin la température élevée se concentre
sur le centre de la couche. Grâce à l’introduction d’une condition limite thermique,
on peut obtenir que la largeur de bande en régime stationnaire est indépendante de
la largeur de la couche.

• La combinaison entre les conditions aux limites et les formulations analytiques peu-
vent efficacement éviter la dépendance de la formulation du profil de température
aux paramètres matériaux. Par conséquent, l’aspect canonique de notre modélisation
a été vérifié à travers des applications des lois d’écoulement différents (loi adoucisse-
ment exponentielle, loi de puissance et loi Johnson-Cook).

• L’analyse de l’instabilité matérielle n’est pas nécessaires dans notre modélisation.
Nous utilisons l’optimisation sous contrainte pour contrôler l’initiation et la propa-
gation des BCAs.

• Les évolutions des caractéristiques de BCAs ont été analysées dans cette étude.
La largeur de bande d’un point de vue cinématique est plus facile à appréhender
que celle d’un point de vue physiques ou mathématiques. Elle a une forte diminu-
tion d’abord, puis évolue lentement, et enfin arrive au cas stationnaire (simple-
ment pour la loi exponentielle et la loi de puissance). Au contraire, la température
centrale élève progressivement et évolue vers la solution analytique. Cependant,
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l’augmentation de température diminue en raison de la conduction thermique. Par la
suite, l’évolution de la contrainte obtenue par notre modélisation de Johnson-Cook
représente bien l’initiation et la propagation des BCAs. Les résultats illustrent que
l’apparition de localisation de cisaillement est le fruit de l’instabilité de contrainte.
De plus, l’évolution du chargement déplacement équivalent montre que la contri-
bution plastique augmente avec le temps, et presque occupe tout le déplacement
imposé dans la dernière étape.

• La contrainte moyenne est approchée par la dérivation de potentiel par rapport au
chargement en déplacement. Nous avons trouvé que l’erreur numérique de cette
partie est réalisable pour simuler la structure de cisaillement adiabatique. A par-
tir de cette conclusion, un modèle thermo-élasto-viscoplastique variationnel a été
proposé, ce qui donne une bonne base pour son extension en 2D/3D.

• Les influences des paramètres matériaux (le coefficient d’adoucissement thermique,
la conductivité thermique, la sensibilité de vitesse de déformation et la vitesse
imposée) à l’évolution de contrainte sont analysées par le modèle variationnelle.
D’une part, si la vitesse est plus élevée, la sensibilité de vitesse de déformation m
est plus petite mais le coefficient d’adoucissement thermique λ est plus élevé et la
zone de localisation de cisaillement est plus localisée. D’autre part, on vérifie que
la conduction thermique est un facteur important dans les analyses de BCA, ce qui
va influencer la largeur de bande en régime stationnaire.

• Comme application de notre modélisation variationnelle en 1D, un nouveau modèle
variationnel à deux échelles est proposé au moyen des éléments d’interface. Con-
trairement à d’autres méthodes discontinues, il considère la déformation plastique
et la distribution de température inhomogène dans la zone localisée. En outre, les
lois de traction-séparation et de l’entropie de discontinuité sont intrinsèquement
dérivées par le potentiel incrémental. La mise en oeuvre des éléments finis représente
précisément la commodité du modèle à deux-échelles. Normalement ce modèle est
un bon moyen pour évider la dépendance de maillage, mais l’inconvénient est que
le chemin des BCAs doit être pré-connu, sinon le calcul sera énorme.

Discussion et travaux futurs
Le travail dans cette étude se concentre sur la modélisation variationnelle pour des BCAs
dans l’état quasi-statique. Nous n’avons pas besoin d’examiner l’effet d’inertie en rai-
son de la faible largeur de la couche. Même si le facteur d’inertie a peu d’influence à
notre modèle de localisation ( car la taille de l’élément dans la région de localisation
est inférieur à 10−3 m), c’est préférable d’envisager la modélisation dynamique variation-
nelle. Actuellement, Stainier [Stainier, 2011b] a déjà tiré la formulation variationnelle dy-
namique et l’a appliqué dans la simulation des élément finis. Cependant tous les résultats
calculés par la méthode des éléments finis ont négligé l’inertie.
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L’avantage de la méthode variationnelle est de transformer les lois de conservation des
problèmes physiques comme un problème d’optimisation mathématique. Par conséquence,
la résolution des profils de BCA s’est présentée par des équations non-linéaires avec
plusieurs scalaires optimisées comme décrit ci-dessus. En utilisant la méthode de Rayleigh-
Ritz pour éviter la discrétisation de maillage, les parties nonlinéaires, comme tanh et cosh,
sont ainsi introduites dans la modélisation. Ces termes influent fortement la convergence
des algorithmes en plus de la conduction thermique, en particulier dans la période initiale
(optimisation contrainte). Ainsi, si le solveur d’équations non-linéaires est efficace, notre
modèle fonctionne bien. C’est aussi la raison pour laquelle nous appliquons la algorithme
à régions de confiance pour remplacer la méthode Newton-Raphson dans la simulation.
Comment trouver l’équilibre entre la précision des profils et le solveur pratique est une
question considérable.

En outre, la modélisation variationnelle peut ainsi simuler l’initiation et la propa-
gation de la structure des BCAs au moyen de l’optimisation contrainte. Cependant ce
processus est compliqué à la mise en oeuvre, et il apportera des difficultés dans les appli-
cations de notre modélisation en 1D. Bien que les formulations analytiques représentent
leur intégralité (de la forme linéaire à la forme non-linéaire), c’est raisonnable de faire
une tentative de comparer le modèle ajoutant une perturbation linéaire et la modélisation
présente, et de choisir le meilleur dans la simulation.

D’une manière générale, une température élevée proche du point de fusion et un grand
gradient de déformation sont des caractères communs dans le terme final de BCA. Na-
turellement, les endommagements seront un phénomène inévitable enfin de la formation
de BCA. Cependant nous négligeons son influence dans cette étude. Il sera intéressant
par la suite de construire une modélisation énergétique variationnelle ayant un facteur
d’endommagement.

Afin d’appliquer notre modélisation variationnelle 1D à 2D/3D, nous avons construit
un modèle discontinu au moyen de l’élément localisé, et la mise en oeuvre des éléments
finis est dérivée, pourtant elle n’a pas été numériquement vérifiée. Dans les travaux fu-
turs, la premier chose à faire est de valider le modèle variationnel à deux échelles à travers
des exemples numériques, par exemple la barre pré-entaillée comme décrit dans CHAP.4,
l’éprouvette de chapeau. Cependant, ce modèle dépend de la prévision du chemin des
BCAs. Il sera ainsi impuissant dans le modèle de l’expérience de cylindre. La méthode
étendue des éléments finis (XFEM) sera une bonne direction pour résoudre le problème de
BCA du chemin inconnu. Des travaux ont été réalisés dans la référence si les enrichisse-
ments des profils de vitesse et de température sont simplifiés. Nous pouvons appliquer
les formulations canoniques qui sont vérifiées dans cette étude à présenter les profils
physiques. De plus l’évolution de la largeur de bande est suivie par l’optimisation de
potentiel total incrémental. En perspective, une bonne précision des résultats numériques
par la XFEM sera atteinte basée sur la modélisation variationnelle en 1D.
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Appendix A

Verification of variational modelling

The total power density potential (2.12) in CHAP.2 is a formulation of the coupled thermo-
mechanical problem for rate-dependency and thermal softening material, here we skilfully
present the conservation of laws as an optimization problem with respect to velocity and
temperature. For completeness, in this appendix we will show this equality through vari-
ational calculation. Taking variation of velocity to (2.12), we obtain:

0 = DV Φ(V,T )(δV ) =
∫ H

−H

1
m+1

τ0

(γ̇0)m exp{−β(
Θ

T0
−1)}(T

Θ
)m+1(m+1)(

∂V
∂y

)m ∂δV
∂y

dy

=

[
τ0

(γ̇0)m exp{−β(
Θ

T0
−1)}(T

Θ
)m+1(

∂V
∂y

)m
δV
]H

−H

−
∫ H

−H

∂

∂y
(

τ0

(γ̇0)m exp{−β(
Θ

T0
−1)}(T

Θ
)m+1(

∂V
∂y

)m)δV dy

= −
∫ H

−H

∂

∂y
(

τ0

(γ̇0)m exp{−β(
Θ

T0
−1)}(T

Θ
)m+1(

∂V
∂y

)m)δV dy

So:

∂

∂y
(

τ0

(γ̇0)m exp{−β(
θ

T0
−1)}(T

Θ
)m+1(

∂V
∂y

)m) = 0 (A.1)

By means of the thermal equilibrium Θ = T and the formula of material flow stress, (A.1)
reduce to :

∂τ

∂y
= 0

The conservation of linear momentum is retrieved.

Energy-based variational modelling of adiabatic shear band structure



136 Appendix A. Verification of variational modelling

Next we do the variation of (2.12) with respect to temperature, with the result:

0 = DT Φ(V,T )(δT ) =
∫ H

−H

τ0

(γ̇0)m exp{−β(
Θ

T0
−1)} T m

Θm+1 (
∂V
∂y

)m+1
δT dy

+
∫ H

−H
λΘ(

∂T
∂y

1
T
)(

∂δT
∂y

1
T
− δT

T 2
∂T
∂y

)dy
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−H
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(γ̇0)m exp{−β(
Θ

T0
−1)} T m

Θm+1 (
∂V
∂y
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δT dy

+
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λΘ(
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1
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δT dy−
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δT
]H

−H

+
∫ H

−H
λΘ

∂

∂y
(
∂T
∂y

1
T 2 )δT dy

According to the isothermal boundary condition and Θ = T , we observe:

τ0

(γ̇0)m exp{−β(
Θ

T0
−1)}(∂V

∂y
)m+1 1

T
+

λ

T 2 (
∂T
∂y

)2 +λΘ
∂

∂y
(
∂T
∂y

1
T 2 ) = 0

So:
τ0

(γ̇0)m exp{−β(
θ

T0
−1)}(∂V

∂y
)m+1 +λ

∂2T
∂y2 = 0

The conservation of energy was then validated through taking the variation of tempera-
ture.
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Appendix B

Additional derivation in interface
element

As shown in the derivation of nodal force and tangent matrix, some strain or displacement
formulas should be known for the sake of obtaining the specific tensor expression. The
work in this part will be concentrated on these derivations. We should emphasize that the
following analysis is based on the variational modelling on 3D. Referred to the definition
of the in-plane deformation, we can write it as:

F|| = gi⊗Gi

where gi denote the tangent basis vectors in the deformed configuration, and g3 = n,
which is unit normal direction. Gi is the contravariant coordinate about Gi and G3 = N.
Then we can derive that:

F||
−1

= Gi⊗gi

similarly, gi is the dual basis, we can write it as:

g1 =
g2×g3

|g1×g2|
; g2 =

g3×g1

|g1×g2|
; g3 = n; (B.1)

According to the discretization of finite element to displacement, we have ([Yang et al., 2005]):

∂F||mk

∂x±ia
=

1
2

δmiNa,αGαk +
1
2

∂nm

∂x̄ia
G3k (B.2)

where
∂nm

∂x̄ia
=

eirs

|g1×g2|
(g2rNa,1−g1rNa,2)(δms−nmns) (B.3)
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where δ is Kronecker delta, and eirs is the alternating symbol. Furthermore the second
order of unit normal vector can be derived as:

∂2nm

∂x̄ jb∂x̄ia
= −

e jhleirs

|g1×g2|2
nl(g2hNb,1−g1hNb,2)(g2rNa,1−g1rNa,2)

(δms−nmns)+
eirs

|g1×g2|
[δmsδr j(Nb,2Na,1−Na,2Nb,1)−

(g2rNa,1−g1rNa,2)(
∂nm

∂x̄ jb
ns +nm

∂ns

∂x̄ jb
)] (B.4)

and the following term should also be known for calculating the tangent stiffness matrix:

∂2F||mL

∂x±ia∂x±jb
=

1
4

∂2F||mL
∂x̄ia∂x̄ jb

=
1
4

∂2nm

∂x̄ jb∂x̄ia
G3k (B.5)

By means of (4.12), we get:

un =
n

∑
a=1

[[xm]]aNa(s)nm (B.6)

and the displacement jump in tangent direction is:

[[u]]t = [[u]]−unn =
n

∑
a=1

([[x]]aNa−n
n

∑
a=1

[[xm]]aNa(s)nm) (B.7)

so

ut = |F||
−1
[[u]]t |=

√
A where A =

n1

∑
k=1

(Gβkgβh[[uh]]
t)2; (B.8)

where n1 is the dimension number, equal to 3. From the above formulas, we can obtain
that:

∂ut

∂x±ia
= A−

1
2

n1

∑
k=1

Gβkgβh[[uh]]
t(

∂gβh

∂x±ia
Gβk[[uh]]
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∂[[uh]]

t
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) (B.9)

where

∂[[uh]]
t

∂x±ia
=±δhiNa− (

n

∑
a=1

[[xm]]aNanm)
∂nh

∂x±ia
−δmi(±Nanmnh +[[xm]]aNa
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∂x±ia
nh) (B.10)

and
∂un

∂x±ia
=±δmiNanm +δmi[[xm]]aNa

∂nm

∂x±ia
(B.11)

Based on the expression in (B.1), the derivations of gi can also be expressed as the index
notations for tensors, yet here we do not describe them in the paper.
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In similar manner, for calculating the tangent stiffness matrix, the second order deriva-
tion of ut should be derived.

∂2ut

∂x±jb∂x±ia
= −1

2
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where
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and the second order of un with respect to x is described as

∂2un

∂x±jb∂x±ia
=±δmiNa

∂nm

∂x±jb
+δmi(±δm jδabNb

∂nm
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