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Résumé

En 1975, Francis et Wonham [1] introduit le principe du modèle interne que c’était une

percée dans l’étude des systèmes LTI compte tenu des perturbations (servo-systèmes),

ce qui donne des conditions nécessaires et suffisantes sur le contrôleur pour assurer

la stabilité asymptotique lorsque les signaux de référence et les perturbations sont

générées par un de dimension finie exosystème. Le principe du modèle interne de

systèmes LTI suggère qu’une copie de la exosystème doit être inclus dans le contrôleur.

Par exemple, pour éliminer l’erreur en régime permanent pour les signaux de référence

ou de perturbation étape, nous avons besoin d’intégrateurs dans la boucle. Cependant,

dans le contexte de ports hamiltoniens (pH) des systèmes où sont considérées les

perturbations appariés(matched), qui peuvent être considérés comme des effets du

bruit de mesure, entrée inconnue et d’autres phénomènes ”oubliées” par les hypothèses

du modèle est limitée.

Dans [39] est exploitée action intégrale(IA) sur la sortie passive à résoudre ce

problème ainsi que sa robuste régulation. La méthodologie donne comme résultat une

boucle fermée étendu, préservant la form pH , de sorte que la robuste régulation et le

rejet de perturbations appariés est satisfaite. La faiblesse cruciale (talon d’Achille) de

cette méthode apparâıt lorsque le signal de régulariser n’est pas la sortie passive et les

perturbations ne sont pas appariés (unmatched) à l’entrée. Des exemples simples sont

des systèmes mécaniques et de moteurs électriques, où les vitesses sont sorties passives

et des courants, respectivement, mais la sortie de l’intérêt est souvent de position. Ce

à dire que IA de [39] est insuffisante pour résoudre ce problème.

Dans [2] a été proposé une première discussion sur l’action intégrale et une redéfinition

de la structure de pH afin d’offrir robustesse en présence de l’incertitude des paramètres.

Toutefois, la première bosser où le pH se prolonge par IA sur la non-sortie passive vien-

nent de [3]. Dans leur procédé, une transformation canonique généralisée est utilisé qui

permet l’extension de l’état avec les intégrales des sorties d’intérêt et, en même temps,

l’obtention d’un hamiltonien défini positif. Cette approche nécessite de résoudre un

ensemble d’équations aux dérivées partielles (PDEs).

Plus récemment, dans [32] une technique ingénieuse sur la régulation des non-passifs

sorties via action intégrale a été donnée, cette méthode nous permet en préservant la

structure du pH et, par conséquent, la stabilité de boucle fermée. En outre, cette

approche est doter de propriété de robustesse au présences des perturbations pas ap-

pariés.

Le grand apport de [32], c’est que le pH boucle fermée et la fonction d’énergie est

conçu par changement de coordonnées, telles que la comparaison avec [3], la nécessité

ix



x RÉSUMÉ

de résoudre les PDEs est évitée. La formulation est illustrée par des simulations sur

une PMSP(Permanent Magnet Synchronous Motors), où se considèrent les couples

inconnus charge constante.

Basé sur [32] , une formulation au rejet de la déviation constant état stable à des

systèmes mécaniques est présenté dans [49] . Cependant, le problème se limite au cas

linéaire. Clairement, nous pouvons voir que s’il existe initialement une linéarisation

par retour d’etats, alors le problème est descendu aux systèmes LTI. Si la question

à traiter est le rejet de perturbations appariés alors un commande PI classique fera

l’affaire.

Motivé par l’approche dans [32] et les nouveaux développements au sujet du change-

ment de coordonnées [48] , [63] , dans le présent travail, nous proposons une conception

constructive de commande intégrale robustes per à la régulation sur sorties non pas-

sives aux une large classe de systèmes physiques, aussi le rejet des perturbations non

appariés est maintenu. De plus les conditions nécessaires et suffisantes pour la solv-

abilité du problème, en termes de certaines propriétés rang et la contrôlabilité du

système linéarisé, sont fournis.

Lorsque le cas à considérer est non-linéaire des systèmes mécaniques, nous montrent

deux méthodes de rejet de perturbations constantes (appariées) et pour variant dans

le temps perturbations , des propriétés fortes sur l’IISS et ISS sont fournis.

Sur l’autre main, pendant une longue période une recherche incessante a été réalisé

sur les commandes de suivi dans les systèmes mécaniques avec seulement position

connue. Tout vient du fait que les systèmes mécaniques sont généralement équipés de

capteurs de mesure de position seulement, ce qui a impliqué une recherche constante

pour trouver de commandes robustes indépendantes de la vitesse.

Beaucoup semi-globales résultats au problème de retour de position suivi global

ont dominé le scénario. Régimes intrinsèquement semi-globale s’appuyer sur haute -

injection de gain à élargir le domaine d’attraction ou de la connaissance du modèle

exact est exigé comme dans [27] et [28].

Parlant d’une solution globalement asymptotiquement stable, nous pouvons voir

[54] et [58], où d’abord un, la solution est limitée a un degré de liberté, et une seconde,

souffre malheureusement d’inconvénients graves, le plus important correspondait au

fait que le requiert un changement de coordonnées en utilisant les fonctions de satu-

ration où son inversibilité ne peut pas être garanti globalement [40].

De la discussion ci-dessus, dans ce travail, nous proposons un commande globalement

exponentiellement suivi sans mesure de vitesse. Ceci est possible combinant un im-

mersion et invariance (I&I) observateur exponentiellement stable récemment publié

et une conception appropriée de un retour d’état passivité commande avec l’aide de

emph changement de coordonnées.

Ce travail de thèse est composé de quatre chapitres:

Le premier chapitre présente certains matériauxmilieux, des concepts et des résultats.

Nous commençons avec les notions de stabilité quand on considère les signaux d’entrée.

Cadre de modélisation à port-Hamiltonien du système est présentée, montrant l’équivalence

intrinsèque entre les équations d’Euler-Lagrange et du cadre hamiltonien. Après

une brève introduction où les idées principales de l’immersion et de l’invariance sont
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illustrés, le principe de conception d’observateurs pour les systèmes non linéaires

générales par I &I est donnée.

Dans les trois premières sections du chapitre 2, nous rappelons quelques résultats

sur la robustesse aux perturbations appariées et de la régulation sur la sortie passive.

Les dernières sections décrit les conditions assorties à des perturbations via commande

intégrale , aussi la preuve au assure la régulation de la non-sortie passive est donnée.

Sous certaines hypothèses techniques sur les systèmes mécaniques, nous montrons

le rejet de perturbations appariés et non appariés pour matrices d’inertie constante

dans le chapitre 3.

En outre, plus forte propriété d’entrée à l’état de stabilité, cette fois par rapport

aux perturbations appariées et non appariées, est assurée. Finalement, il est démontré

que le commande peut être simplifiée, y compris un changement partiel de coordonnées

sur les momenta si on considère les perturbations appariées uniquement .

Pour totalement actionnés systèmes mécaniques, il est montré dans le chapitre 4

que le suivi des références continues sans une information de vitesse peut être obtenue

en combinant à observateur exponentiellement stable et une conception appropriée

de une commande retour d’état à base de passivité, qui assigne à la boucle fermée à

structure port-hamiltonien via changement de coordonnées tel qu’il est utilisé dans le

chapitre 3.

Préliminaires

Nous commençons par quelques définitions basiques sur la stabilité des systèmes non

linéaires d’entrée, où l’objet est d’exprimer les états d’information restent bornées pour

l’entrée bornée. Port hamiltonien représentation des systèmes physiques est décrit,

changement de coordonnées pour les systèmes mécaniques sont également résumés.

Ceci est important car elle se trouve sur sur la plupart des résultats présentés.

Finalement une brève introduction sur l’immersion et l’invariance (I&I) est illustré

comme clé de la stabilisation et de la conception d’observateur dans les systèmes de

systèmes non linéaires.

Notions de stabilité avec entrée externe

Dans la conception des commandes, l’un des principaux problèmes est d’étudier la

sensibilité en boucle fermée à des perturbations, comme des erreurs de mesure, et

qui sont délimitées, finalement petite ou convergentes. Dans cette section présente

quelques définitions et théorèmes dans l’étude de cette question. Nous renvoyons le

lecteur à des informations détaillées à [36],[44],[47].

Nous commençons la discussion aussi simple que possible, de sorte que nous con-

sidérons au cours de cette section que nous avons affaire à des systèmes avec des entrées

de la forme:

ẋ = f(x, d) (1)

avec l’état x ∈ Rn, entrée étant inconnu et essentiellement délimitée. Le map

f : Rn×Rm est supposée être localement lipschitzienne avec f(0, 0) = 0. Les fonctions
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de comparaison à une définition formelle de la stabilité des systèmes présentant des

perturbations sont utiles [47], tels que:

Definition 1. Une classe K∞ est une fonction α : R≥0 → R≥0 est continue, stricte-

ment croissante, non borné et vérifie α(0) = 0.

Definition 2. Une classe KL est une fonction beta β : R≥0×R≥0 → R≥0 tel queβ(·, t)
∈ K∞ pour chaque t et β(r, t) strictement décroissante que t→ ∞.

Stabilité entrée-état (ISS)

Le système (1) est dit ISS si et seulement si il existe un fonction β(KL) et un fonction

γ (K∞), de sorte que

|x(t)| ≤ β(|x0|, t) + γ(||d||∞)

est satisfaite pour tout t ≥ 0

La définition de ISS exige que, pour grand t , l’etat doit être délimitée par une

fonction γ(||u||∞) l’correspondent à des entrées (parce que β(|x0|, t) → 0 ainsi t→ 0).

En outre, le terme β(|x0|, 0) peuvent finir par prédominer pour t petit, ce qui permet de

quantifier l’ampleur du comportement transitoire (dépassement) comme une fonction

de la taille de l’état initial x0. (voir pour plus de détails [47] section 2.9)

Une fonction du Lyapunov ISS pour (1.1) est par définition une fonction stockage

lisse définie positive V : Rn → R qui est, V (0) = 0 et V (x) > 0 pour x 6= 0, et

appropriée, qui est, V (x) → ∞ comme |x| → ∞. Pour V il existe des fonctions γ,

α ∈ K∞ de sorte que:

V̇ ≤ −α(|x|) + γ(|d|) ∀ x, d (2)

Finalement, nous pouvons conclure que un système est ISS si il ya toujours un

bon ISS fonction du Lyapunov satisfaisant l’estimation (2) [47].

Intégrale Stabilité entrée-état (ISS)

Le système (1.1) est dit être IISS prévus qu’il existe deux fonctions α et γ qui sont

K∞ et une fonction β à savoir KL de telle sorte que l’estimation

α(|x(t)|) ≤ β(|x0|, t) +
∫ t

0

γ(|d(s)|)

est satisfaite le long de toutes les solutions.

De plus un système est IISS si et seulement si il existe une fonction β ∈ KL et

γ1, γ2 ∈ K∞ telle que

|x(t)| ≤ β(|x0|, t) + γ1

(

∫ t

0

γ(|d(s)|)
)

pour tout t ≥ 0, x0 ∈ R et d Aussi, nous pouvons noter que si le système (1.1) est

IISS, il est alors 0-GAS, qui est le système avec zero d’entrée.
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ẋ = f(x, 0)

est Globalement Asymptotiquement Stable (GAS)

Dans le théorème 1 de papier élémentaire [44], il a été établi que l’existence d’un

fonction de Lyapunov IISS lisse est nécessaire ainsi que suffisant pour le système (1)

être IISS. Ceci est valable si:

(1) Il ya une certaine sortie qui rend le système dissipatif lisser et faiblement détectable

zéro.

(2) Le système est 0-GAS et sortie-zéro dissipatif lisser.

Il est à noter que nous avons résumé le théorème, pour plus de détails et des preuves

voir la proposition II.5 et la section III des exemples.

Le cadre port - hamiltonien

Fondamentalement, la représentation hamiltonien se pose de la mécanique analytique

et commence à partir du principe de moindre action, et procède, en passant par les

équations d’Euler-Lagrange et Legendre, la transformation vers les équations hamil-

toniennes du mouvement [6]. Nous savons que, normalement, l’analyse des systèmes

physiques a été réalisée dans le cadre Lagrangien et hamiltonien, le point de vue du

réseau est en vigueur dans la modélisation et la simulation de (complexe) des systèmes

d’ingénierie physiques.

Cependant, le cadre de porto-hamiltoniens (pH) des systèmes combinant les deux

formulations, en associant à la structure d’interconnexion du modèle de réseau d’une

structure géométrique donnée par une structure de Dirac (en général). Avec cette brève

description, on peut dire que la dynamique hamiltonienne est définie par rapport à

cette structure de Dirac et l’hamiltonien donné par l’énergie totale emmagasinée.

D’ailleurs les systèmes port-hamiltoniens sont des systèmes dynamiques ouverts,

qui agissent l’un sur l’autre avec leur environnement par des ports tels qu’une grande

classe des systèmes (non linéaires) comprenant les systèmes mécaniques passifs, les

systèmes électriques, les systèmes électromécaniques, systèmes mécaniques avec les

contraintes nonholonomic et des systèmes thermiques peuvent être décrits par le cadre

hamiltonien.

Pour plus de détails au sujet de l’histoire du pH nous avons invité à lire [6], [7].

Comme mentionné la forme Port-hamiltonienne est déterminée par l’intermédiaire

d’Euler-Lagrange, tel que des équations du mouvement d’Euler-Lagrange bien connues

d

dt
∇q̇L(q, q̇)−∇qL(q, q̇) = u (3)

alors si le lagrangien L=K-V est

emph qui régulier c’est-à -dire l’hessien est différent de zéro, en définissant les nouvelles

variables

p = ∇q̇L (4)



xiv RÉSUMÉ

qui s’appellent les impulsions généralisés, il est possible d’employer un changement

des coordonnées1 de (q, q̇) à (q,p). Ensuite, une fonctions scalaire est définie, dite

l’Hamiltonien,

H(q,p) = p>q̇ − L(q, q̇) (5)

qui représente l’énergie totale du système. Cette procédure est appelée habituelle-

ment la transformation de Legendre. Par consèquent, les equations du mouvement

d’Euler-Lagrange deviennent maintenant les équations d’Hamilton :

q̇ = ∇pH

ṗ = −∇qH +G(q)u (6)

Nous observons que l’application de la transformation de Legendre remplace le système

de n équations du second ordre par un ensemble de 2n équations de premier ordre avec

une structure simple et symétrique. Dans les systèmes mécaniques standards ou sim-

ples, l’énergie potentielle est habituellement une fonction des positions généralisées

V (q) tandis que l’énergie cinétique est une fonction quadratique des vitesses (impul-

sions), décrit comme K = 1
2p

>M(q)p, tels que le plein rendement hamiltonien de

fonction rendements à être H = V +K.

AvecG(q) comme la matrice de force d’entrée etG(q)u décrivant les forces généralisées

résultants de la commande u ∈ Rm. Dans le cas où m = n nous parlons de systèmes

mécaniques complètement actionnés et dans le cas où m ≤ n des système mécaniques

sous–actionné. La représentation dans l’espace d’état (6) avec états (q, p) est habituelle-

ment appelé l’espace de phase. Une généralisation additionnelle de (6) aux systèmes

hamiltoniens avec entrées et sorties, est donée par

ẋ =
[

F(x)−R(x)
]

∇xH(x) +G(x)u

y = G
>∇xH(x) (7)

avec la sortie y ∈ Rm, J = −J> et R = R> ≥ 0. Le système (7) est appelé système

hamiltonien commandé par ports (PCH) avec une matrice de structure J, matrice de

dissipation R et l’hamiltonien H .

Immersion et Invariance

Récemment surgi une nouvelle méthodologie pour concevoir les commandes adaptatifs

pour les systèmes non linéaires (incertains), appelés Inmersion et l’invariance (I&I).

La méthode repose sur les notions systèmes des Inmersión et invariante variété, qui

sont des outils classiques de la théorie du régulateur non linéaire et géométrique du

contrôle non linéaire [51].

1La dynamique d’Euler-Lagrange possède la propriété remarquable d’invariance par rapport à des

changements quelconques de coordonnées [8]
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Plus précisément, l’approche de I&I consiste donc à trouver une variété qui peut

être rendue invariante et attractive, avec la dynamique interne une copie de la dy-

namique en boucle–fermée désirée, et à concevoir une loi de commande qui oriente

l’état du système suffisamment proche de cette variété.

Une illustration graphique de l’approche de I&I est montrée dans la figure 1. Nous

avons cela π(·) maps une trajectoire sur le space ξ à une trajectoire sur l’espace x,

qui est limité à le variété M qui contenant l’origen. D’ailleurs, toutes les trajectoires

commençant extérieur du M convergent à l’origine.

Stabilisation

Le résultat central par la stabilisation de I&I, à savoir un ensemble de conditions

suffisantes pour la construction de commande return d’etats globalement asympto-

tiquement stabilisants, commande affine, et sont données dans le théorème suivant.

Theorem 1. Considérer le système

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

m (8)

avec un point d’équilibre x∗ ∈ Rn à stabiliser. Supposez que là existent les lisses

mappage α : Rp → Rp, π : Rp → Rn, φ : Rn → Rn−p, c : Rp → Rm et v : Rn×(n−p) →
Rm, avec p < n, de telle sorte que la suivante est vérifiée.

• (A1) le système cible

ξ̇ = α(ξ), ξ ∈ R
p (9)

• (A2) Pour tous ξ

f(π(ξ)) + g(π(ξ))c(π(ξ)) = ∇ξ(π(ξ))α(ξ) (10)

• (A3) L’ensemble identité

{x ∈ R
n|φ(x) = 0} = {x ∈ R

n|x = π(ξ), ξ ∈ R
p} (11)

• (A4) Toutes les trajectoires du système

ż = ∇xφ(f(x) + g(x)v(x, z)), (12)

ẋ = f(x) + g(x)v(x, z) (13)

sont bornées et (1.12) a un équilibre globalement asymptotiquement uniformément sta-

ble à z = 0.

Alors x∗ est un équilibre globalement asymptotiquement stable du système en boucle

fermée

ẋ = f(x) + g(x)v(x, φ(x)) (14)
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La preuve de ce théorème apparâıt dans la section 2,1 de [51]

Contrairement à la commande optimale où l’objectif est d’optimiser un coût scalaire

de performance, l’approche I&I ne requiert aucune opération de minimisation. En

outre, en raison de son approche en deux temps (immersion et invariance), celle-

ci est conceptuellement différente des méthodologies qui reposent sur l’utilisation de

fonctions de Lyapunov. Des similitudes existent avec la commande par modes glissants

à ceci près que la convergence ne se fait pas en temps fini mais est asymptotique, de plus

les lois de commande obtenues ne reposent a priori sur aucun phénomène discontinu,

caractéristique de la commande par modes glissants.

Figure 1: Représentation graphique de l’approche par immersion et invariance.

Les méthodes de commande basées sur des fonctions Lyapunov sont duales de

celles présentées ci-dessus. En effet, il s’agit de déterminer une fonction V définie

positive telle que V̇ = α(V ) le long des trajectoires du système, ait un point d’équilibre

(globalement) asymptotiquement stable à zéro. A noter que la fonction V : Rn → I,

où I est un intervalle de l’axe réel, peut être considérée comme une submersion et la

dynamique cible, puisque la dynamique de la fonction de Lyapunov est de dimension

un, voir Figure 2. Une procédure similaire à l’I&I a été proposée dans [11], avec la

différence fondamentale que l’application correspondante s’agit d’une transformation

de coordonnées et pas une immersion.

Conception d’observateurs

Le problème de la reconstruction des vitesses des systèmes mécaniques, d’un grand

intérêt pratique, a été intensivement étudié dans la littérature. Depuis la publication

du premier résultat fondateur [12] dans 1990, de nombreuses solutions ont été pro-

posées. Une approche efficace mais restrictive consiste à rendre linéaire la dynamique

du système par rapport aux vitesses non mesurées via des changements de coordonnées

partiels. Le problème de la construction d’observateurs et de lois de commande devient
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Figure 2: Interprétation par submersion des techniques basées sur l’approche de Lya-

punov.

alors aisé [25, 14, 15, 16, 17].

Un observateur, qui exploite la structure Riemannienne du système, est présenté

dans [18], [19], [20] tandis qu’une solution pour une classe de systèmes ayant deux

degrés de liberté est exposée dans [21]. Pour une liste détaillée de références, le lecteur

pourra se reporter aux ouvrages suivants [51, 22, 40].

La première utilisation des variétés invariantes et attractives pour la construction

d’observateurs est initialement remonte aux travaux de Luenberger sur les systèmes

linéaires, puis elle fut étendu récemment aux systèmes non linéaires [11], [23], [24].

Dans [11], un observateur est défini comme un système linéaire asymptotiquement

stable, qui reçoit en entrée les mesures disponibles dont on définit une sortie à l’aide

d’une application non linéaire. L’estimé de l’état est ensuite obtenu par inversion de

cette application. Sous des conditions de non résonance, il peut être prouvé, à l’aide

du théorème auxiliaire de Lyapunov, que le système étendu composé du système et de

l’observateur possède une variété invariante et attractive (localement), qui garantit une

erreur d’estimation nulle sur celle-ci. Une version globale de ces résultats est proposée

dans [23].

Dans tous les travaux mentionnés ci-dessus l’observateur possède une dynamique

linéaire. L’existence (locale ou globale) et l’invariance de la variété sont assurées sous

des conditions de non résonance ou des hypothèses de complétude. L’attractivité est

assurée par la stabilité de la dynamique de l’observateur.

Le problème de la conception d’observateurs via la perspective I&I, en opposition

aux travaux précédents, considère que la variété est paramétrisée. La dynamique de

l’observateur est choisie de telle sorte que cette variété soit invariante. Ainsi, par

rapport au problème de stabilisation, la dynamique cible n’est pas donnée a priori

mais est induite par l’observateur à construire. Le point clé revient à résoudre un
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ensemble d’équations différentielles partielles (EDPs) qui assurent l’attractivité de la

variété. Dans l’article récent [25], un observateur d’ordre plein pour une classe des

systèmes non linéaires qui obvie aux restrictions dérivant de la solubilité des EDPs

en employant une extension dynamique se composant d’un filtre de sortie et d’un

paramètre dynamique de graduation.

Nous rappelons la définition d’un observateur d’après [11]. Soit le système non

linéaire décrit par les équations différentielles ordinaires suivantes :

ẏ = f1(η, y)

η̇ = f2(η, y),
(15)

où η ∈ Rn est la partie de l’état nonmesurée et y ∈ Rk est la partie mesurée.

Définition 1. Le système dynamique :

ξ̇ = α(ξ, y), (16)

avec ξ ∈ Rs, s ≥ n, est appelé observateur I&I du système (15), s’il existe des appli-

cations β : Rs × Rk → Rs et φ : Rn × Rk → Rs inversibles (à gauche par rapport à

leur premier argument) et telles que la variété :

M = {(η, y, ξ) ∈ R
n × R

k × R
s : β(ξ, y) = φ(η, y)} (17)

vérifie les propriétés suivantes :

(i) toute trajectoire du système étendu (15,16) initialisée sur la variété M reste sur

celle-ci pour tout temps futur, i.e., M est positivement invariante par rapport au

système étendu.

(ii) toute trajectoire du système étendu (15,16) initialisée dans un voisinage de M
converge asymptotiquement vers M, i.e., M est attractive par rapport au système

étendu.

Cette définition implique qu’un estimé asymptotique de l’état η est donné par :

η̂ = φL(β(ξ, y), y), (18)

où φL est l’inverse à gauche de φ. Ainsi, l’erreur d’estimation η̂ − η est nulle sur M.



Introduction

In 1975, Francis and Wonham [1] introduced the internal model principle than was a

breakthrough in the study of LTI systems considering disturbances (servo systems ),

giving necessary and sufficient conditions on the controller to assure asymptotic sta-

bility when the reference and disturbance signals are generated by a finite-dimensional

exosystem. The internal model principle for LTI systems suggests that a copy of the

exosystem must be included in the controller. For example, to eliminate the steady-

state error for step reference or disturbance signals, we need integrators in the loop.

However in the context of port Hamiltonian(pH) systems when are considered

matched disturbances that can be viewed as effects of measurement noise, unknown

input and other phenomena ”forgotten” by the model assumptions is limited.

In [39] is exploited integral action(IA) on the passive output to solved this issue

plus its robust regulation. The methodology give as result an extended closed loop

preserving the pH structure such that robust regulation and the rejection of matched

disturbances is hold.

The crucial weakness ( achilles heel) for this method appears when the signal to be

regulated is not the passive output and the disturbances are not matched (unmatched)

with the input. Simple examples are mechanical systems and electrical motors, where

the passive outputs are velocities and currents, respectively, but the output of interest

is often position. This imply that IA from[39] is inadequate to solve this issue.

In [2] was proposed a first discussion about integral action and redefinition of the

pH structure in order to provide robustness in the presence of parameter uncertainty.

However the first work where pH is extended via IA on non-passive output come of

[3]. In their method, a generalized canonical transformation is used which allows

extending the state with the integrals of the outputs of interest and, simultaneously,

obtaining a positive definite Hamiltonian. This approach requires solving a set of

Partial Differential Equation’s(PDEs).

More recently in [32] an ingenious technique about regulation of non-passive out-

puts via integral action was given. This method allow us preserving pH structure

and,thus, closed loop stability. Furthermore this approach is endow with robustness

property at presences of unmatched disturbances. The great contribution of [32] is

that, the closed loop pH and energy function is designed via change of coordinates,

such that comparing with [3], the need to solve PDEs is avoided. The formulation

is illustrated via simulations on an PMSM where is consider the unknown piecewise

constant load torques.

Based on [32] a formulation to rejection of constant steady state deviation at me-

xix
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chanical systems is presented in [49]. However the problem is limited to linear case.

Clearly we can see that if there exist initially a feedback linearization, then the prob-

lem is come down to LTI systems. If the issue to deal is the rejection of matched

disturbances then a classical PI controller will do the job.

Motivated by the approach in [32] and the further developments about change of

coordinates [48],[63], in the present work we propose a constructive design of robust

ICs to regulation on non-passive outputs to a large class of physical systems ,also rejec-

tion on unmatched disturbances (constant) is held. Moreover necessary and sufficient

conditions for the solvability of the problem, in terms of some rank and controllability

properties of the linearized system, are provided.

When the case to consider is non-linear mechanical systems, we show two method-

ology to rejection of constant matched disturbances and for time-varying disturbances,

strong properties about IISS and ISS are provided.

On other hand, during a long time an incessant research has been realized about

tracking controllers on mechanical systems with uniquely known position. Everything

come from the fact that mechanical systems are generally equipped with only position

measurement encoders, this has implied a constant search to find robust controllers

independent of velocity.

Many semi-global results to the aforementioned position feedback global tracking

problem have dominated the scenario. Semiglobal schemes intrinsically rely on high–

gain injection to enlarge the domain of attraction or exact model knowledge is required

as in [27] and [28]. Talking of globally asymptotically stable solution, we can see [54]

and [58], where to first one, the solution is limited a one-degree of freedom, and second

one, unfortunately suffers from serious drawbacks, once the most significant corre-

sponded to fact that the controller requires a change of coordinates using saturation

functions where its invertibility cannot be globally guaranteed [40].

From the above discussion, in this work we propose an globally exponentially track-

ing controller without velocity measurement. This is possible combining a recently

reported exponentially stable immersion and invariance observer and a suitably de-

signed state-feedback passivity-based controller via change of coordinates.

This thesis work is composed of four chapters:

The first chapter presents some backgrounds materials, concepts and results. We

start with notions of stability when are considers input signals. Modeling frame-

work to port-Hamiltonian system is presented, showing intrinsic equivalency between

the Euler-Lagrange equations and Hamiltonian framework. After a brief introduction

where the main ideas of immersion and invariance are illustrated, then the design

principle of observers for general nonlinear systems by I&I is given.

In the first three sections of Chapter 2 we recall some results on the robustness to

matched disturbances and regulation on passive output . The last sections describes

the conditions to matched disturbances via integral controlled, also the proof to ensures

regulation of non-passive output is given.

Under some technical assumptions on mechanical systems , we show the rejection of

matched and unmatched disturbances to constant inertia matrix in Chapter 3. More-

over, stronger property of input-to-state stability, this time with respect to matched
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and unmatched disturbances, is ensured. Finally, it is shown that the controller can be

simplified, respect to matched disturbances including a partial change of coordinates

on momenta.

For fully actuated mechanical systems, it is shown in Chapter 4 that the track-

ing of a continuous references without velocity information can be achieved by com-

bining a exponentially stable immersion and invariance observer and a suitably de-

signed state-feedback passivity-based controller, which assigns to the closed-loop a

port-Hamiltonian structure via change of coordinates as used in Chapter 3.
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Chapter 1

Preliminaries

In this chapter theoretical background and concepts useful are presented.

We begin with some basics definitions on Stability of Nonlinear Input Systems,

where the object is to express the fact states remain bounded for bounded input. Port

Hamiltonian representation of physical systems is described, change of coordinates to

mechanical systems also is summarized. This is important on since it lies on the most

of the results presented.

Finally a brief introduction about Immersion and Invariance (I&I) is illustrated

as key to stabilization and observer design in nonlinear systems systems.

1.1 Notions of stability with respect to input

In control design, one of the main problems to study is the closed-loop sensitivity

to disturbances, as measurement errors, and that are bounded, eventually small or

convergent. In this section presents some definitions and theorems in the study of this

issue. We refer the reader to extensive information to [36],[44],[47].

We begin the discussion as simple as possible, such that we consider during this

section that we are dealing with systems with inputs of the form:

ẋ = f(x, d) (1.1)

with state x ∈ Rn, input being unknown and essentially bounded d : [0,∞) → Rm.

The map f : Rn × Rm is assumed to be locally Lipschitz with f(0, 0) = 0.

Comparison functions to one formal definition of stability of systems with distur-

bances are useful [47], such as:

Definition 3. A class K∞ is a function α : R≥0 → R≥0 which is continuous, strictly

increasing, unbounded and satisfies α(0) = 0.

Definition 4. A class KL is a function β : R≥0 ×R≥0 → R≥0 such that β(·, t) ∈ K∞

for each t and β(r, t) strictly decreasing as t→ ∞.

1
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1.1.1 Input to State Stability(ISS)

The system (1.1) is said ISS if and only if there exist a KL function β, and a K∞

function γ so that

|x(t)| ≤ β(|x0|, t) + γ(||d||∞)

holds for all t ≥ 0

The definition of ISS requires that, for t large, the state must be bounded by

some function γ(||u||∞) the correspond to inputs (because β(|x0|, t) → 0 as t → 0).

Furthermore the β(|x0|, 0) term may dominate for small t, and this serves to quantify

the magnitude of the transient (overshoot) behavior as a function of the size of the

initial state x0. (see for more details [47] section 2.9 )

An ISS-Lyapunov function for (1.1) is by definition a smooth storage function

positive definite V : Rn → R, that is, V (0) = 0 and V (x) > 0 for x 6= 0, and proper,

that is, V (x) → ∞ as |x| → ∞. For V there exist functions γ, α ∈ K∞ so that

V̇ ≤ −α(|x|) + γ(|d|) ∀ x, d (1.2)

Finally we can to conclude that a system is ISS if there is always a smooth ISS-

Lyapunov function satisfying the estimate (1.2) [47].

1.1.2 Integral Input to State Stability(IISS)

The system (1.1) is said to be IISS provided that there exist two K∞ functions α and

γ, and a KL function β, such that the estimate

α(|x(t)|) ≤ β(|x0|, t) +
∫ t

0

γ(|d(s)|)

holds along all solutions.

Moreover a system is IISS if and only if there exist function β ∈ KL and γ1, γ2
∈ K∞ such that

|x(t)| ≤ β(|x0|, t) + γ1

(

∫ t

0

γ(|d(s)|)
)

for all t ≥ 0, x0 ∈ R and d

Also we can note that if system (1.1) is IISS, then it is 0-GAS, that is, the 0-input

system

ẋ = f(x, 0)

is globally asymptotically stable (GAS).

In theorem 1 from elemental paper [44], it was established that the existence of a

smooth IISS–Lyapunov function is necessary as well as sufficient for the system (1.1)

to be IISS. This is hold if:

(1) There is some output that makes the system smoothly dissipative and weakly

zero-detectable.
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(2) The system is 0-GAS and zero–output smoothly dissipative.

It is noteworthy that we have summarized the theorem, for more details and proofs

see proposition II.5 and section III to examples.

1.2 The port–Hamiltonian framework

Basically the Hamiltonian representation arises of analytical mechanics and starts from

the principle of least action, and proceeds, via the Euler-Lagrange equations and the

Legendre transform, towards the Hamiltonian equations of motion [6]. We know that

normally analysis of physical systems has been performed within the Lagrangian and

Hamiltonian framework, the network point of view is prevailing in modeling and sim-

ulation of (complex) physical engineering systems[40],[41]. However the framework of

port-Hamiltonian(pH) systems combines both formulations, by associating with the

interconnection structure of the network model a geometric structure given by a Dirac

structure(generally). With this brief description we can say that the Hamiltonian dy-

namics is defined with respect to this Dirac structure and the Hamiltonian given by

the total stored energy. Moreover the port-Hamiltonian systems are open dynami-

cal systems, which interact with their environment through ports such that a large

class of (nonlinear) systems including passive mechanical systems, electrical systems,

electromechanical systems, mechanical systems with nonholonomic constraints and

thermal systems can be described by hamiltonian framework. For more details about

the history of pH we invited to read [6], [7].

As mentioned the Port-Hamiltonian form is determinate via Euler-Lagrange, such

that from well known Euler-Lagrange equations of motion

d

dt
∇q̇L(q, q̇)−∇qL(q, q̇) = u (1.3)

then whether the Lagrangian L=K-V is regular that is its Hessian is different from

zero, by defining the new variables

p = ∇q̇L (1.4)

that are called the generalized momenta, we can apply a change of coordinates1 from

(q, q̇) to (q,p). Then, we define a new scalar function, referred as the Hamiltonian

H(q,p) = p>q̇ − L(q, q̇) (1.5)

that represents the total energy of the system. This procedure is commonly called

the Legendre transformation. Now, the Euler-Lagrange equations of motion become

Hamilton’ s equations

q̇ = ∇pH

ṗ = −∇qH +G(q)u (1.6)

1Euler-Lagrange dynamics have the property of invariance with respect to arbitrary transforma-

tions of the coordinates[8]
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Hence, we see that the application of Legendre’s transformation replaces the system

of n second-order differential equations with a set of 2n first-order differential equations

with a simple and symmetric structure. In standard or simple mechanical systems,

the potential energy is usually a function of the generalized positions V (q) while the

kinetic energy is a quadratic function of the velocities (momenta) described as K =
1
2p

>M(q)p, such that the full Hamiltonian function yields to be H = V +K.

With G(q) as the input force matrix and G(q)u denoting the generalized forces

resulting from the control inputs u ∈ Rm. In the case where m = n we speak of fully

actuated mechanical systems while when m ≤ n of underactuated mechanical systems.

The state-space representation (1.6) with states (q, p) is usually called a phase space.

A further generalization of (1.6) to Hamiltonian systems with (collocated) inputs and

outputs, is given in the form

ẋ =
[

F(x)−R(x)
]

∇xH(x) +G(x)u

y = G
>∇xH(x) (1.7)

with the output y ∈ Rm, J = −J> and R = R> ≥ 0. The system (1.7) is called

a Port–Controlled Hamiltonian (PCH) system with structure matrix J, dissipation

matrix R and Hamiltonian H.

1.3 Immersion and Invariance

Recently arose a novel methodology to design adaptive controllers for (uncertain)

nonlinear systems called Inmersion and Invariance (I&I). The method relies upon the

notions of systems inmersion and manifold invariance, which are classical tools from

nonlinear regulator theory and geometric nonlinear control [51].

More precisely, the I&I approach relies on finding a manifold in state-space that

can be rendered invariant and attractive, with internal dynamics a copy of the desired

closed-loop dynamics, and on designing a control law that steers the state of the system

sufficiently close to this manifold. A graphical illustration of the I&I approach is

showed in Fig. 1.1. We have that π(·) maps a trajectory on the ξ-space to a trajectory

on the x-space, which is restricted to the manifold M containing the origen. Moreover,

all trajectories starting outside M converge to the origin.

1.3.1 Stabilization

The basic result for I&I stabilization, namely a set of sufficient conditions for the

construction of globally asymptotically stabilising, static, state feedback control laws

for general, control affine, nonlinear system, and are described in the next theorem.

Theorem 2. Consider the system

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

m (1.8)

with an equilibrium point x∗ ∈ Rn to be stabilized. Assume that there exist smooth

mappings α : Rp → Rp, π : Rp → Rn, φ : Rn → Rn−p, c : Rp → Rm and v :

Rn×(n−p) → Rm, with p < n, such that the following holds.
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• (A1) the target system

ξ̇ = α(ξ), ξ ∈ R
p (1.9)

• (A2) For all ξ

f(π(ξ)) + g(π(ξ))c(π(ξ)) = ∇ξ(π(ξ))α(ξ) (1.10)

• (A3) The set identity

{x ∈ R
n|φ(x) = 0} = {x ∈ R

n|x = π(ξ), ξ ∈ R
p} (1.11)

• (A4) All trajectories of the system

ż = ∇xφ(f(x) + g(x)v(x, z)), (1.12)

ẋ = f(x) + g(x)v(x, z) (1.13)

are bounded and (1.12) has a uniformly globally asymptotically stable equilibrium at

z = 0.

Then x∗ is a globally asymptotically stable equilibrium of the closed-loop system

ẋ = f(x) + g(x)v(x, φ(x)) (1.14)

The proof of this theorem appears in section 2.1 of [51]

I&I should be contrasted with the optimal control approach where the objective is

captured by a scalar performance index to optimize. In addition, because of its two-

step approach, it is conceptually different from existing (robust) stabilization method-

ologies that rely on the use of control Lyapunov functions. However, it resembles

the procedure used in sliding-mode control [10], where a given manifold–the sliding

surface–is rendered attractive by a discontinuous control law. The key difference is

that, while in sliding-mode control the manifold must be reached by the trajectories,

in the proposed approach the manifold need not be reached.

Lyapunov-based design methods are somewhat dual to the approach (informally)

described above. As a matter of fact, in Lyapunov design one seeks a function V (x),

which is positive-definite (and proper, if global stability is sought after) and such that

the system V̇ = α(V ), for some function α(·), has a (globally) asymptotically stable

equilibrium at zero. Note that the function V : x → I, where I is an interval of the

real axis, is a submersion and the “target dynamics”, namely the dynamics of the

Lyapunov function, are one-dimensional, see Figure 1.2. A procedure similar to I&I is

proposed in [11], with the fundamental difference that corresponding mapping is not

an immersion but a change of coordinates.

1.3.2 Observer design

The problem of velocity reconstruction of mechanical systems is of great practical in-

terest and has been extensively studied in the literature. Since the publication of the

first result in the fundamental paper [12] in 1990, many interesting partial solutions

have been reported. Of particular attention has been the case in which the mechanical
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Figure 1.1: Graphical representation of the immersion and invariance approach.

Figure 1.2: Submersion interpretation of Lyapunov based techniques.

system can be rendered linear in the unmeasured velocities via partial changes of coor-

dinates since it simplifies considerably the observation as well as the control problem,

see [25, 14, 15, 16, 17]. An intrinsic observer, exploiting the Riemannian structure of

the system, has been reported in [18], [19], [20] while a solution for a class of two-

degrees-of-freedom systems was reported in [21]. For an exhaustive list of references,

the interested reader is referred to the recent books [51, 22, 40].

The use of invariant and attractive manifolds in observer design first appears in the

work of Luenberger for linear systems while recently, it has been generalized to general
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nonlinear systems [11], [23], [24]. In [11], an observer is defined as a linear asymptoti-

cally stable system, driven by the available measurements and with a nonlinear output

map, and the state estimate is obtained by inversion of such an output map. Under

non-resonance conditions, by application of Lyapunov’s auxiliary theorem, it is proved

that the extended plant-observer system has a (locally) well defined invariant and at-

tractive manifold, with the property that the estimation error is zero on the manifold.

A global version of the results was reported in [23]. In all the aforementioned works

the observer has linear dynamics, the (local or global) existence and invariance of the

manifold is ensured by non-resonance conditions or completeness assumptions, and

the attractivity is implied by the stability of the observer dynamics. In the recent

paper [25], a full order I&I observer for a class of nonlinear systems has been proposed

that obviates the restrictions deriving from the solvability of the PDEs by the use of

a dynamic extension consisting of an output filter and a dynamic scaling parameter.

In the spirit of [11] we now give the definition of an I&I observer. To this end,

consider the general nonlinear system described as

ẏ = f1(η, y)

η̇ = f2(η, y),
(1.15)

where η ∈ Rn is the unmeasured part of the state and y ∈ Rk is the measured one.

Definition 5. The dynamical system

ξ̇ = α(ξ, y), (1.16)

with ξ ∈ Rs, s ≥ n, is called an I&I observer of the system (1.15), if there exist

mappings β : Rs ×Rk → Rs and φ : Rn ×Rk → Rs that are left-invertible with respect

to their first argument and such that the manifold

M = {(η, y, ξ) ∈ R
n × R

k × R
s : β(ξ, y) = φ(η, y)} (1.17)

has the following properties.

(i) All trajectories of the extended system (1.15,1.16) that start on the manifold M
remain there for all future times, i.e., M is positively invariant.

(ii) All trajectories of the extended system (1.15,1.16) that start in a neighborhood

of M asymptotically converge to M, i.e., M is attractive.

This definition implies that an asymptotically converging estimate of the state η is

given by

η̂ = φL(β(ξ, y), y), (1.18)

where φL denotes a left inverse of φ. Thus, the estimation error η̂ − η is zero on the

manifold M.



8 CHAPTER 1. PRELIMINARIES



Chapter 2

Robust integral control of

port Hamiltonian (pH)

systems

Regulation of passive outputs of nonlinear systems can be easily achieved with an

integral control (IC). In many applications, however, the signal of interest is not a pas-

sive output and ensuring its regulation remains an open problem. Also, IC of passive

systems rejects constant input disturbances, but no similar property can be ensured if

the disturbance is not matched. In this chapter we address the aforementioned prob-

lems and propose a procedure to design robust ICs for port–Hamiltonian models, that

characterize the behavior of a large class of physical systems. Necessary and sufficient

conditions for the solvability of the problem, in terms of some rank and controllability

properties of the linearized system, are provided. For a class of fully actuated mechan-

ical systems, a globally asymptotically stabilizing solution is given. Simulations of the

classical pendulum system illustrate the good performance of the scheme.

2.1 Introduction

One of the central features of passivity–based control (PBC), where the first step

is passivation of the system [42], is that the passive output can be easily regulated

using integral control (IC)—with arbitrary positive gains. The regulation is, moreover,

robust with respect to constant input disturbances. In many applications, however,

the signal to be regulated is not a passive output and the disturbances are not matched

with the input. Classical examples are mechanical systems and electrical motors, where

the passive outputs are velocities and currents, respectively, but the output of interest

is often position.

In this chapter we propose a procedure to design ICs to regulate non–passive out-

puts, which are robust to unmatched disturbances. We restrict our attention to port–

Hamiltonian (pH) models that, as is widely known, characterize the behavior of a large

class of physical systems [37, 7]. Another motivation to consider pH systems is that the

9
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popular interconnection and damping assignment PBC design technique [38, 39]—and

the closely related canonical transformation PBC [33]—endow an arbitrary nonlinear

system with a pH structure. The aim of the additional IC is then to ensure that output

regulation is robust vis–à–vis external disturbances.

The controller design is formulated as a feedback equivalence problem, where a

dynamic feedback controller and a change of coordinates such that the transformed

closed–loop system takes a desired pH form are sought. To avoid the need to solve

partial differential equations, the interconnection and damping matrices of the target

system, as well as its energy function, are kept equal to the ones of the original system,

and only add to it an integral action in the non–passive output. This construction is

largely inspired by the one proposed in [32], but here we explicitly take into account the

presence of the disturbances, which significantly complicates the task. An additional

contribution is that necessary and sufficient conditions for feedback equivalence, in

terms of some rank and controllability properties of the linearized system, are given.

The method is applied to linear and mechanical systems for which robust globally

asymptotically stabilizing solutions are obtained, under some reasonable assumptions.

2.2 Perturbed port–Hamiltonian systems and prob-

lem formulation

2.2.1 Class of systems and control objectives

The perturbed pH systems considered in the chapter are of the form

ẋ = F (x)∇H(x) + g(x)u + d

y = g>(x)∇H(x) (2.1)

where x ∈ Rn, u ∈ Rm, g : Rn → Rn×m is the full rank input matrix, d ∈ Rn is a

constant disturbance, H : Rn → R is the energy function and

F (x) + F>(x) ≤ 0.

As is well–known [37, 7], unperturbed pH systems define cyclo–passive operators u 7→
y, with storage function H(x). This property is strengthened to passivity if H(x) is

bounded from below.

We are interested in the scenario where the energy–shaping and damping injection

stages of PBC, for the unperturbed system, have been accomplished. That is, it is

assumed that an output feedback proportional term has already been added1 and,

consequently,

∇H>(x)[F (x) + F>(x))]∇H(x) ≤ −α|g>(x)∇H(x)|2, (2.2)

for some α > 0, where | · | is the Euclidean norm. Furthermore, it is assumed that

a suitable energy function H(x) has been assigned. The choice of this function is

1This control action is also known in the literature as LgV control [40, 7].
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a delicate point that, as explained below, depends on whether the disturbances are

matched or unmatched.

The control objectives are now, to preserve stability of a desired equilibrium and

to drive a given output towards zero, in spite of the presence of disturbances. It will

be shown below that, for matched disturbances, i.e., those that enter in the image of

g(x), and the passive output y, an IC around y achieves the objectives. In this chapter

we are interested in the cases where the disturbance is not matched and the signal to

be regulated is not the passive output—but is also zero at the equilibrium.

2.2.2 Notational simplifications

In writing the chapter we have decided to sacrifice generality for clarity of presen-

tation. Consequently, two assumptions that, without modifying the essence of our

contribution, considerably simplify the notation are made. First, since we consider

the case where disturbances enter in the n−m non–actuated coordinates, the internal

model principle indicates that it is necessary to add (n −m) integrators. To ensure

solvability of the problem it is reasonable to assume that the number of control actions

is sufficiently large. This leads to the following assumption

m ≥ n−m. (2.3)

If less integrators are added this restriction can be relaxed—without modifying the

essence of the calculations—but then the notation gets very cumbersome.

The second simplification that we introduce concerns the matrix g(x). Dragging

this matrix through the calculations significantly complicates the notation, therefore

it will be assumed in the sequel that, after redefinition of the inputs and the states,

the input matrix takes the form

g(x) =

[

Im
0

]

, (2.4)

where Im is the m×m identity matrix.

For notational convenience, we partition the state and disturbance vectors as

x = col(x1, x2), d = col(d1, d2),

where d1, x1 ∈ Rm and d2, x2 ∈ Rn−m. Similarly, the matrix F (x) is block partitioned

as

F (x) =

[

F11(x) F12(x)

F21(x) F22(x)

]

,

with F11(x) ∈ Rm×m and F22(x) ∈ R(n−m)×(n−m). With this notation the passive

output is

y = ∇1H(x).

For future reference we also define a second output to be regulated as the (n −m)–

dimensional vector

r = ∇2H(x). (2.5)
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2.2.3 Some remarks about equilibria

In the absence of disturbances the desired assignable equilibrium x? ∈ Rn is an isolated

minimizer of H(x), that is,

x? = argminH(x),

ensuring that H(x) is positive definite. In view of (2.2), when u = 0 and d = 0, we

have that

Ḣ ≤ −α|y|2 ≤ 0,

and x? is a stable equilibrium of the unperturbed open–loop system with Lyapunov

function H(x). Furthermore, invoking standard LaSalle arguments it is possible to

prove that limt→∞ y(t) = 0 and, if y is a detectable output, that x? is asymptotically

stable. See, for instance, [40, 7].

To simplify the presentation, in the sequel we identify the set of minimizers ofH(x)

with

M := {x ∈ R
n |∇H(x) = 0, ∇2H(x) > 0}. (2.6)

Since the second order (Hessian positivity) condition is sufficient, but not necessary,

for x? to be a minimizer of H(x), the set M is a subset of the minimizer set, hence

the consideration is taken with a slight loss of generality.

In the perturbed case, the set of assignable equilibria of (2.1), (2.4) is given by

E := {x ∈ R
n | F21(x)∇1H(x) + F22(x)∇2H(x) = −d2}. (2.7)

It is clear that, if the disturbances are matched, i.e., d2 = 0,

M ⊆ E .

That is, all energy minimizers are assignable equilibria and it is desirable to preserve

in closed–loop the open–loop equilibria. On the other hand, in the face of unmatched

disturbances, that is, when d2 6= 0,

M∩ E = ∅. (2.8)

In other words, it is not possible to assign as equilibrium a minimizer of the energy

function. As will become clear below, this situation complicates the task of rejection

of unmatched disturbances.

Remark 1. A problem with the equilibria, similar to the one described above, appears

when the desired value for the output to be regulated is different from zero, which is

discussed in point 3 of Subsection 4.3.2.

2.3 Robust IC of the passive output

In this section the output regulation and disturbance rejection properties of IC of the

passive output of a pH system are revisited. Although both properties are widely

referred in the literature, to highlight the differences with our main result, a detailed

analysis and some comments and extensions are given below.
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2.3.1 Robustness to matched disturbances

Proposition 1. Consider the perturbed pH system

ẋ = F (x)∇H(x) +

[

Im
0

]

(u + d1)

y = ∇1H(x) (2.9)

with an equilibrium x? ∈ M, and d1 ∈ Rm a constant disturbance, in closed–loop with

the IC

η̇ = Kiy

u = −η, (2.10)

where Ki ∈ Rm×m is an arbitrary symmetric positive definite matrix.

(i) (Stability of the equilibrium) The equilibrium (x?, d1) is stable.

(ii) (Output regulation) There exists a (closed) ball, centered in (x?, d1) such that

for all initial states (x(0), η(0)) ∈ Rn × Rm inside the ball the trajectories are

bounded and

lim
t→∞

y(t) = 0.

(iii) (Asymptotic stability) If, moreover, y is a detectable output for the closed–loop

system (2.9), (2.10), the equilibrium is asymptotically stable.

The properties (i)–(iii) are global if H(x) is globally positive definite and radially un-

bounded.

Proof. Define the Lyapunov function candidate

W (x, η) := H(x) +
1

2
(η − d1)

>K−1
i (η − d1). (2.11)

The closed–loop system (2.9), (2.10) may be written in the pH form

[

ẋ

η̇

]

=





F (x)

[ −Ki

0

]

[

Ki 0
]

0



∇W (x, η). (2.12)

Clearly, in view of (2.2) and (2.4),

Ẇ ≤ −α|y|2. (2.13)

The proof is completed invoking standard Lyapunov and LaSalle arguments [36, 7].

��� ���

Remark 2. It is clear from (2.9) that, to ensure x? ∈ M remains an equilibrium of

the closed–loop system, the desired value for u, and consequently for −η, is −d1. This
aspect is also reflected in (2.11). The fact that in IC the disturbances fix the equilib-

rium value of their state, will also be exploited in the case of unmatched disturbances,

allowing us to concentrate our attention on the x components of the equilibrium set.
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2.3.2 Discussion and extensions

1. Proposition 1 is a global result that holds for arbitrary positive values of the damp-

ing injection and integral gains. The fact that PBC yields high–performance, easily

tunable, simple designs (like PI control) explains its wide–spread popularity in appli-

cations.

2. Proposition 1 applies verbatim for a general input matrix g(x). In this case, the

closed–loop is the pH system

[

ẋ

η̇

]

=





F (x)

[ −g(x)Ki

0

]

[

Kig
>(x) 0

]

0



∇W (x, η).

On the other hand, the presence of g(x) in the subsequent material considerably com-

plicates the notation. Hence, our assumption (2.4).

3. Looking at the linearization of the closed–loop system (2.9), (2.10), it is possible to

show that, if x? ∈ M and the (2, 2) block of the matrix F (x), evaluated at x? is full

rank, x? is an exponentially stable equilibrium. Moreover, the rank condition holds if

and only if the triple
(

F ?,

[ −Ki

0

]

,
[

Ki 0
]

)

has no transmission zeros at the origin. This assumption is standard for integral con-

trol of nonlinear systems. See, e.g., Section 12.3 of [36].

4. If the desired value for the output y is different from zero, say yd ∈ Rm, it is

common in practice to use a PI controller

ϑ̇ = ∇1H(x)− yd

u = −Kp[∇1H(x)− yd]−Kiϑ,

where the proportional term, with Kp ≥ 0, replaces the previous damping injection.

Local stability of this scheme can be established looking at its linearization. It is not

clear to the authors under which conditions is it possible to establish a global result—

like the one obtained in Proposition 1. A particular case when this is so is when the

matrix F (x) is constant. Then, following the analysis of [35], it is possible to show

that the shifted Hamiltonian qualifies as a global Lyapunov function.

5. Another difficulty that arises when yd 6= 0 is that a necessary condition to achieve

output regulation is the existence of x? ∈ Rn verifying

x? ∈ E ∩ {x ∈ R
n | ∇1H(x) = yd}.

That is, an assignable equilibrium such that the output function, evaluated at this

equilibrium, takes the desired value. If yd 6= 0, it is clear that x? /∈ M. This,

unfortunately, makes the expression of the linearized system rather complicated and

it does not seem to be possible to easily complete the analysis with an assumption like

the rank condition of point 3 above.
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2.4 A feedback equivalence problem

As shown in the proof of Proposition 1 the key property to prove that IC of the

passive output rejects matched disturbances is the preservation of the pH structure,

moreover, with a separable energy function, see (2.11) and (2.12).2 A key contribution

of the chapter is the proof that, under some conditions, it is possible to retain these

properties in the unmatched disturbance case. More precisely, it is proposed to add a

new dynamic extension and a change of coordinates, without modifying the functional

relations in the matrix F (x) nor the energy function H(x).3 Preserving the energy

function avoids the need to solve a partial differential equation, while keeping the same

interconnection and damping matrix, simplifies the nonlinear algebraic equations. This

motivates the following definition of feedback equivalence.

Definition 6. The perturbed system

ẋ = F (x)∇H(x) +

[

Im
0

]

u+

[

0

d2

]

(2.14)

is said to be feedback equivalent to a matched disturbance integral controlled system—

for short, MDICS equivalent—if there exists two mappings

û, ψ : Rm × R
n−m × R

n−m → R
m,

with

rank {∇1ψ(x1, x2, ζ)} = m, (2.15)

such that the system in closed–loop with the “integral” control

ζ̇ = Ki[∇2H(ψ(x1, x2, ζ), x2)]

u = û(x1, x2, ζ), (2.16)

expressed in the coordinates,

z1 = ψ(x1, x2, ζ)

z2 = x2

z3 = ζ, (2.17)

takes the pH–form

ż =









F (z1, z2)

[

0

−Ki

]

[

0 Ki

]

0









∇U(z), (2.18)

where

U(z) := H(z1, z2) +
1

2
(z3 − d2)

>K−1
i (z3 − d2). (2.19)

It is said to be robustly MDICS equivalent if the mappings ψ(x1, x2, ζ) and û(x1, x2, ζ)

can be computed without knowledge of d2.
4

2This property is a consequence of the well–known fact that power–preserving interconnections of

pH systems—through power–port variables—preserve the pH structure with energy the sum of the

energies of the pH systems. See [37] for a detailed study of this property.
3See Remark 4 for a clarification of this point.
4See Remark 6 for a clarification of this point.
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MDICS equivalence guarantees that the transformed closed–loop system takes the

desired form (2.18). (Compare with (2.12).) The rank condition (2.15) ensures that

(2.17) is a diffeomorphism that maps the set of equilibria of the (x, ζ)–system into the

equilibria of the z–system. This is, of course, necessary to be able to infer stability of

one system from stability of the other one. Robust MDICS equivalence guarantees that

the control law (2.16) can be implemented without the knowledge of the disturbance

d2.

At this point we make the important observation that choosing the desired value

for z3 to be equal to d2 is necessary to be able to solve the robust MDICS equivalence

problem. Indeed, since in the change of coordinates (2.17) we fixed z2 = x2, and these

are unactuated coordinates, it is necessary that d2, which appears in ẋ2, appears also

in ż2. This fact will become evident in the next section, when we give the solution to

the MDICS equivalence problem. Remark that, since z3 = ζ, the equilibrium value for

ζ is also d2.

As explained in Subsection 2.2.3 the equilibrium sets of (2.14), (2.16) and (2.18)

are not just different, but they are actually disjoint, see (2.8). Indeed, while the (x

components of the) former are in the set

Ecl := E ∩ {x ∈ R
n | [∇2H ](ψ(x1, x2, d2), x2) = 0}, (2.20)

the (z1, z2) components of the latter are in M. In spite of that, the fact that (2.17) is

a diffeomorphism ensures that the implication

[(x1, x2) ∈ Ecl ⇒ (ψ(x1, x2, d2), x2) ∈ M] , (2.21)

is true, which will be essential for future developments.

Remark 3. The proposed control (2.16) is, in general, not an integral action because

of the possible dependence of ψ(x1, x2, ζ) with respect to ζ. We have decided to keep

the name because in the z coordinates it is, indeed, an integral action of the form

ż3 = Ki∇2H(z1, z2). (2.22)

Remark 4. It is important to underscore that in the feedback equivalence problem

considered here the matrix F (z1, z2) and energy function H(z1, z2) are just the evalu-

ations of the original functions of the x system in the z coordinates, without applying

the (inverse) change of coordinates.5 That is, H(x1, x2) 6= H(z1, z2)◦ψ(χ), but simply

H(z1, z2) = H(x1, x2)|x1=z1,x2=z2 . This, rather arbitrary, choice is done to be able to

translate MDICS equivalence into an algebraic problem.

2.5 Conditions for MDICS equivalence

In this section we present two propositions that identify conditions for MDICS equiva-

lence. The first one is global and identifies the matching conditions that the mapping

ψ(x1, x2, ζ) has to satisfy. The second one gives a necessary and a sufficient condition

5To avoid cluttering the notation the same symbols, H(·) and F (·), have been used for both

functions.
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for existence of a local result in terms of controllability and a rank condition of the

linearized systems, respectively. To simplify the notation we introduce the 2n − m

state vector

χ := col(x1, x2, ζ).

2.5.1 Global MDICS equivalence

Proposition 2. The perturbed pH system (2.14) satisfying condition (2.3) is MDICS

equivalent if the mapping ψ(χ) verifies (2.15) and the following algebraic equation:

(DyM) (Dynamics matching)

ζ = −F21(x)∇1H(x) − F22(x)∇2H(x)+

+ F21(ψ(χ), x2)[∇1H(ψ(χ), x2)]+

+ F22(ψ(χ), x2)[∇2H(ψ(χ), x2)].

(2.23)

Moreover, the control signal û(χ) is independent of d2 if ψ(χ) verifies

(DiM) (Disturbance matching)

∇2ψ(χ)d2 = 0. (2.24)

Proof. We will prove that, under the condition (2.23), there exists û(χ) such that

the closed–loop system (2.14), (2.16) takes, in the z–coordinates, the pH form (2.18).

Furthermore, if (2.24) holds, the mapping û(χ) is independent of d2. For, computing

ψ̇ and setting it equal to ż1, as defined in (2.18), yields

ψ̇ = ∇ψ(χ)χ̇
= ∇1ψ(χ)[F11(x)∇1H(x) + F12(x)∇2H(x) + û(χ)] +

+∇2ψ(χ)[F21(x)∇1H(x) + F22(x)∇2H(x) + d2]

+∇3ψ(χ)[∇2H(ψ(χ), x2)]

≡ ż1 = [F11(z)∇1H(z) + F12(z)∇2H(z)]|z1=ψ(χ),z2=x2

(2.25)

Since ∇1ψ(χ) is full rank, this equation has a unique solution that defines the mapping

û(χ). Notice that the disturbance enters through the term ∇2ψ(χ)d2, which cancels if

ψ(χ) satisfies (2.24).

Proceeding now with ẋ2, and setting it equal to ż2, leads to

ẋ2 = F21(x)∇1H(x) + F22(x)∇2H(x) + d2 ≡ ż2 =

= [F21(z)∇1H(z) + F22(z)∇2H(z)− (z3 − d2)]|z1=ψ(χ),z2=x2,z3=ζ ,

which is the matching equation (2.23). It is important to note that the disturbance d2,

that enters through ẋ2, is canceled with the term ż2, which also contains this signal.

Finally, the third coordinate ż3 is equal to ζ̇ by construction. ��� ���
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2.5.2 Local MDICS equivalence

To streamline the presentation of the next result define the linearization of the pH

system (2.14) at the points x? ∈ Ecl and x̄ ∈ M as

A := ∇(F (x)∇H(x))|x=x? , E := (F (x)∇2H(x))|x=x̄. (2.26)

These n× n matrices are block partitioned as

A =

[

A11 A12

A21 A22

]

,

with A11 ∈ Rm×m and A22 ∈ R(n−m)×(n−m), with a similar partition for E. Notice

that, since ∇H(x̄) = 0, the linearization at a point in the minimizer set takes a simpler

form.

Proposition 3. Consider the perturbed pH system (2.14) satisfying condition (2.3)

and two points: x? ∈ Ecl and x̄ ∈ M.

(S1) A necessary condition for MDICS equivalence is that the linearizations of the pH

system at the points x? and x̄ are controllable. That is, the pairs

(

A,

[

Im
0

])

,

(

E,

[

Im
0

])

are controllable pairs.

(S2) A sufficient condition for MDICS equivalence is that the (2, 1) blocks of the

matrices A and E defined in (2.26) are full rank. That is,

rank {A21} = rank {E21} = n−m. (2.27)

Moreover, the system is robustly MDICS equivalent if

A22 = E22 (2.28)

A21x
?
1 = −d2. (2.29)

Proof. Since we are interested in local solutions we will solve the MDICS equivalence

problem for the linearization of the systems (2.14), (2.16) and (2.18)—around their

corresponding equilibrium points. In particular, we are interested in their unactuated

dynamics, x2 and z2, for which we get6

ẋ2 = A21(x1 − x?1) +A22(x2 − x?2),

and

ż2 = E21(z1 − x̄1) + E22(z2 − x̄2)− z3 + d2.

The linearization of the the mapping ψ(χ) at (x?, d2) yields

ψ(χ) = ψ? + T1(x1 − x?1) + T2(x2 − x?2) + T3(ζ − d2), (2.30)

6With an obvious abuse of notation the same symbols for the original equations and their lin-

earizations are used.
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where the constant matrices

Ti := ∇iψ
?, i = 1, 2, 3,

have been defined. Setting ẋ2 equal to ż2—evaluated at (2.17)—yields the dynamics

matching equation

A21(x1 − x?1) +A22(x2 − x?2) ≡
E21[T1(x1 − x?1) + T2(x2 − x?2) + T3(ζ − d2)] +

+E22(x2 − x?2)− ζ + d2,

where the identities x?2 = x̄2 and ψ? = x̄1, that stem from (2.21), are used. Equation

(2.31) has a solution if and only if the matrices Ti satisfy

A21 = E21T1, A22 = E21T2 + E22, E21T3 = In−m. (2.31)

Remark that, in view of (2.3), the matrices A21 and E21 are not tall, being either

square or fat.

We now proceed to prove (S2). Assume rank {A21} = rank {E21} = n−m. Then,

E21E
>
21 is invertible and, defining the pseudo-inverse,

E†
21 := E>

21(E21E
>
21)

−1,

propose

T1 = E†
21A21, T2 = E†

21(A22 − E22), T3 = E†
21 (2.32)

as solutions of (2.31). Notice that T1 is the product of full–rank matrices, hence is

full–rank, and the condition (2.15) is satisfied.

To prove (S1) assume a solution of (2.31) exists. Then,

rank {E21T3} = rank {In−m} = n−m.

Since rank {AB} ≤ min{rank {A}, rank {B}}, the identity above implies that rank {E21} =

n − m. Now, from Popov–Belevitch–Hautus test we have that the linearized system

(E, g) is controllable if and only if, for all v ∈ Cn−m, the following implication is true

(

v>E21 = 0, E>
22v = λv, λ ∈ C ⇒ v = 0

)

. (2.33)

The rank condition ensures then that the system (E, g) is controllable. It only remains

to prove that (A, g) is also controllable. Towards this end, note that A21 = E21T1. The

rank condition on T1, (2.15), imposes that A21 is full–rank that, once again, implies

controllability of (A, g).

The claim of robust MDICS equivalence follows noting that, on one hand, (2.28)

and (2.31) imply T2 = 0, hence ensuring (2.24). On the other hand, replacing (2.29)

and (2.32) in (2.30), yields the resulting mapping

ψ(χ) = x̄1 + E†
21(A21x1 + ζ), (2.34)

which is, obviously, independent of d2. ��� ���
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Unfortunately, there is a gap between the necessary and the sufficient conditions

of Proposition 3. Indeed, controllability of the linearized systems is necessary, but not

sufficient, for MDICS equivalence. The gap stems from the fact that, without further

qualifications on E22, the implication (2.33) does not ensure that rank {E21} = n−m.

On the other hand, it is obvious that (2.27) implies controllability.

Proposition 3 establishes that, if (2.27), (2.28) and (2.29) hold, the system is lo-

cally robustly MDICS equivalent—in a neighborhood of (x?1, x
?
2, d2)—with the linear

mapping (2.34). Of course, there might be other, possibly nonlinear, admissible map-

pings valid in a large region of the state space. It is shown in Section 3.8, that this is

the case for linear systems and nonlinear mechanical systems.

Remark 5. Condition (2.28) imposes restrictions on the dependence of F (x) and

H(x) with respect to the unactuated coordinate x2. Condition (2.29), on the other

hand, is related with the form of the assignable equilibrium set E . Recalling that the

matrices A and E are linearizations of the same vector field at two different points,

it is clear that both sets Ecl and M play a role in these assumptions. Interestingly,

even though these assumptions are now technical, they are satisfied in the examples

of Section 3.8, as well as in the motor example of [32].

Remark 6. In Definition 6 the feedback equivalence was said to be robust—for obvious

reasons—if the mappings ψ(χ) and û(χ) can be computed without knowledge of the

disturbance d2. As seen from the proof of Proposition 2, û(χ) may, indeed, depend on

d2. However, from the dynamics matching equation (2.23) that defines ψ(χ), it is not

clear why would it depend on d2. The reason is that, as shown in Proposition 3, when

looking for a local solution around the equilibria, these depend on d2. See (2.30) and

(2.31).

2.6 Robust integral control of a non–passive output

In this section the main result of the chapter is presented. Namely, the design of an

IC, which is robust vis–à–vis unmatched disturbances. More precisely, the controller

preserves stability of the equilibrium and ensures regulation (to zero) of the signal

(2.5) that, being of relative degree larger than one, is not a passive output.

Proposition 4. Consider the perturbed pH system (2.14) satisfying condition (2.3).

Assume there exist two points, x? ∈ Ecl and x̄ ∈ M, that is, an assignable equilibrium

and a minimizer of the energy H(x), such that (2.27)–(2.29) hold, with A and E

defined in (2.26). Under these conditions, there exist two mappings

û, ψ : Rm × R
n−m × R

n−m → R
m,

such that the “integral” control (2.16) ensures the following properties.

(i) (Stability of the equilibrium) The equilibrium (x?1, x
?
2, d2) is stable.

(ii) (Regulation of the passive output) There exists a (closed) ball, centered at the

equilibrium, such that for all initial states (x(0), ζ(0)) ∈ Rn × Rn−m inside the
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ball the trajectories are bounded and

lim
t→∞

y(t) = 0.

(iii) (Asymptotic stability) If, moreover, y is a detectable output for the closed–loop

system (2.14), (2.16), the equilibrium is asymptotically stable.

(iv) (Regulation of the non–passive output) Under the condition of (iii), there ex-

ists a (closed) ball, centered at the equilibrium, such that for all initial states

(x(0), ζ(0)) ∈ Rn × Rn−m inside the ball the trajectories are bounded and the

output (2.5) satisfies

lim
t→∞

r(t) = 0.

The properties (i)–(iv) hold globally if the function H(x) is globally positive definite

and proper (with respect to x̄) and the mapping ψ(x1, x2, ζ) satisfies (globally) the

conditions (2.23) and (2.24) of Proposition 15.

Proof. The proof is an immediate corollary of Proposition 2 and Proposition 3. Indeed,

under the conditions of the proposition, the perturbed pH system (2.14) is robustly

MDICS equivalent to (2.18). That is, (2.17) is a diffeomorphism that transform the

closed–loop system into (2.18). Now, since x̄ ∈ M, U(z) is a positive definite function

with respect to (x̄, d2). Computing the derivative of U(z) along the trajectories of

(2.18), and using (2.2), yields

U̇ ≤ −α|y|2.
The proof of (i)–(iii) is completed, as the proof of Proposition 1, invoking standard

Lyapunov and LaSalle arguments. Claim (iv) follows from asymptotic stability of the

equilibrium and the fact that ∇2H(x̄) = 0. ��� ���

2.7 Examples

In this section we prove that the proposed IC ensures global asymptotic stability for

linear systems and nonlinear mechanical systems.

2.7.1 Linear systems

Proposition 5. Consider the linear perturbed pH system (2.14) satisfying condition

(2.3), with F constant verifying

x>(F + F>)x ≤ −α|x|2, α > 0,

for all x ∈ Rn, and with7

H(x) =
1

2
|x|2.

Assume

rank {F21} = n−m.

7The choices of decoupled energy function and zero equilibrium are done for simplicity and without

loss of generality.
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The IC

ζ̇ = Kix2

u = −F †
21Kix2 + F11F

†
21ζ,

ensures the equilibrium (−F †
21d2, 0, d2), is globally asymptotically stable with Lyapunov

function

V (x, ζ) :=
1

2

(

|x1 + F †
21ζ|2 + |x2|2

)

+

+
1

2
(ζ − d2)

>K−1
i (ζ − d2).

Proof. In this case

E = Ecl = {x ∈ R
n | F21x1 = −d2, x2 = 0}

M = {x = 0},

and F = A = E. Hence, the conditions for robust MDICS equivalence of Proposition

3 are satisfied. The mapping (2.34) takes the form

ψ(χ) = x1 + F †
21ζ.

The proof is completed computing the expression of u from (2.25), which yields the

expression above. ��� ���

2.7.2 Mechanical systems

Proposition 6. Consider an m–degrees of freedom, fully–actuated, fully–damped, per-

turbed mechanical system represented in pH form (2.14), with state

x = col(p, q),

where q,p ∈ Rm are the generalized positions and momenta respectively, and

F =

[ −Kp −Im
Im 0

]

.

The energy function is given by

H(x) =
1

2
x>1 M

−1x1 + P (x2),

with M ∈ Rm×m the positive definite, constant inertia matrix, and P (x2) the potential

energy function. Assume

x̄2 = argminP (x2)

and it is isolated and global.

The IC

ζ̇ = Ki∇P (x2)
u = −Kpζ −MKi∇P (x2),
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ensures the equilibrium (−Md2, x̄2, d2) is globally asymptotically stable with Lyapunov

function

V (x, ζ) :=
1

2
(x1 +Mζ)>M−1(x1 +Mζ) + P (x2) +

+
1

2
(ζ − d2)

>K−1
i (ζ − d2).

Proof. A global solution to the dynamics matching equation (2.23) is given by

ψ(χ) = x1 +Mζ,

which clearly satisfies (2.24). Hence, the conditions for global asymptotic stability of

Proposition 11 are satisfied. The proof is completed computing the expression of u

above from (2.25). ��� ���

The disturbance considered in the example represents a bias term in the measure-

ment of velocity that propagates into the system through the damping injection. This

fact is clear writing the dynamics of the open–loop system in Euler–Lagrange form

Mq̈ +Kp(q̇ − d2) +∇P (q) = u.

It is interesting to note that, after differentiation, the closed–loop system is given by

M
...
q +Kpq̈ + (Im +MKi)∇2P (q)q̇ +KpKi∇P (q) = 0.

Hence, the stabilization mechanism is akin to the introduction of nonlinear gyroscopic

forces plus a suitable waiting of the potential energy term.

The result can be extended—under some assumptions—to the case of nonconstant

inertia matrix. Indeed, it is easy to verify that the mapping

ψ(χ) = x1 +M(x2)ζ,

is a global solution of the dynamics matching equation (2.23). However, additional

constraints on M(x2) and–or d2 are needed to satisfy the disturbance matching equa-

tion (2.24). Namely, that the i–th component of the disturbance vector is zero ifM(x2)

depends on the i–th element of x2, that is,

e>i d2
∂M(x2)

∂x2i
= 0

where x2i := e>i x2, with ei ∈ Rn−m the i–th vector of the Euclidean basis.

Remark 7. Note that

Ecl = {x ∈ R
n | x1 = −Md2, ∇P (x2) = 0}

M = {x ∈ R
n | x1 = 0,∇P (x2) = 0},

thus, as expected, ψ(χ) verifies the implication (2.21).
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2.7.3 Simulation of the classical pendulum system

Simulations for the simple pendulum system of length l and mass m were carried out

to illustrate the performance of the proposed IC. The equilibrium to be stabilized is

the upward position, hence the gravity force is compensated with a linear spring of

stiffness K > mgl, as proposed in [43]. This yields the (shaped) energy function

H(x) =
1

2ml2
x21 +mgl(1− cos(x2)) +

K

2
x22

Damping injection is also added with a gain Kp. Since the velocity measurement is

perturbed by a constant disturbance d2, the system takes the form (2.14). The IC

(2.35) becomes

ζ̇ = Ki[mgl sin(x2) +Kx2]

u = −Kpζ −ml2Ki[mgl sin(x2) +Kx2]

The simulations were done with the values m = 0.57, l = 0.5, d2 = 0.13 and K = 5,

yielding the equilibrium of the closed–loop system (−0.0185, 0, 0.13). Figure 3.1 shows

the transient behavior of the closed–loop system with initial condition (0, 0.3, 0), Kp =

3.4 and different values of Ki. The three–dimensional plot of Fig. 2.2 depicts the state

trajectories for initial conditions of x on a disk in the plane ξ(0) = 0.
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Figure 2.1: Trajectories of the state variables and control signal for different values of

Ki.

2.8 Conclusions

Motivated by the developments of [32] a new IC that ensures regulation (to zero) of the

passive output, as well as the non–passive output ∇2H(x), of the pH system (2.14)—

in spite of the presence of disturbances in the non–actuated coordinates—has been
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Figure 2.2: Trajectories in state space for initial conditions of x1, x2 on a disk in the

plane ξ(0) = 0.

proposed. Because of its simplicity and widespread popularity, we have concentrated

here on basic IC solutions. An alternative approach to reject the unmatched distur-

bance is to use the well–known output regulation techniques as done, for instance, in

[29, 31, 34], which clearly lead to more complicated state–feedback designs. See also

[30].

Robustness with respect to input disturbances of the proposed IC is unclear and

is currently been investigated. If the system is fully damped, it can be shown that it

is input–to–state stable and, consequently, for a constant input it has a steady state

[47]. However, it would be interesting to analyze the effect of adding to the new IC a

standard integral action in the passive output, as done in the simulation example of

[32].

Finally, as pointed out in Remark 5, we have a poor understanding of the meaning

of conditions (2.28) and (2.29) that, at this point, are just technically motivated.
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Chapter 3

Unmatched and matched

disturbances: mechanical

systems

The problem of robustness improvement, vis à vis external disturbances, of energy

shaping controllers for mechanical systems is addressed in this chapter. First, it is

shown that, if the inertia matrix is constant, constant disturbances (both, matched

and unmatched) can be rejected simply adding a suitable integral action—interestingly,

not at the passive output. For systems with non–constant inertia matrix, additional

damping and gyroscopic forces terms must be added to reject matched disturbances

and, moreover, enforce the property of integral input–to–state stability with respect to

matched disturbances. The stronger property of input–to–state stability, this time with

respect to matched and unmatched disturbances, is ensured with further addition of

nonlinear damping. Finally, it is shown that including a partial change of coordinates,

the controller can be significantly simplified, preserving input–to–state stability with

respect to matched disturbances.

3.1 Introduction

Passivity–based controllers (PBC), which achieve stabilization shaping the energy

function of the system, are widely popular for mechanical systems. It is well–known

that PBC is robust with respect to parametric uncertainty and passive unmodelled dy-

namics (like friction), in the sense that stability—with respect to a shifted equilibrium—

is preserved. However, very little is known about their robustness in the face of external

disturbances, due to measurement or system noise.

In this chapter is to address this practically important issue for fully actuated fully

damped mechanical systems whose energy function has an isolated minimum at the de-

sired equilibrium, but are subject to external, matched and unmatched, disturbances.

As witnessed by the ubiquity of PI controllers, one of the most popular and natural

approaches to robustify a controller design is to add an integral action on the signal

27
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to be regulated. If this signal turns out to be a passive output, stability is preserved

in spite of the addition of the integral action.

We shown that applying this procedure to mechanical systems, where the passive

output is velocities, generates, even in the absence of disturbances, a set of equilibria

and an invariant foliation in the extended state space, rendering asymptotic stability

(practically) impossible.

Surprisingly enough, if the inertia matrix is constant the robustification problem

has a very simple solution. Indeed, it is shown that adding a PI controller around the

potential energy forces ensures the rejection of matched and unmatched constant dis-

turbances using the methodology presented in chapter 2 . To quantify the robustness

for time–varying disturbance we adopt the, by now standard, formalism of input–to–

state stability (ISS), and the weaker property of integral ISS (IISS). More precisely,

several controllers, with increasing complexity, that ensure these properties are pro-

posed for mechanical systems. Finally, it is shown that including the partial change

of coordinates proposed in [48], we obtain very simple controller that ensures ISS with

respect to matched disturbances.

3.2 Problem formulation

Throughout the chapter we consider n-degrees of freedom, fully-actuated mechanical

system described in port–Hamiltonian (pH) form by

[

q̇

ṗ

]

=

[

0 In
−In −kp

]

∇H(q,p) +

[

0

In

]

u+

[

d1
d2

]

(3.1)

with Hamiltonian function

H(q,p) =
1

2
p>M−1(q)p+ V (q). (3.2)

q,p ∈ Rn are generalized positions and momenta, respectively, and are assumed mea-

surable, u ∈ Rn is the control input, d1 and d2 ∈ Rn are the matched and unmatched

disturbances—possibly time–varying, but bounded and unmeasurable. The mass ma-

trix M(q) =M>(q) > 0, and satisfies

m1In ≤M−1(q) ≤ m2In (3.3)

Kp = K>
p > 0 is the dissipation matrix and In is the n×n identity matrix. We assume

that the Hamiltonian (A.2) has a minimum at the desired equilibrium (q?, 0), that is,

q? = argmin V (q),

and it is isolated. Note that (q?, 0) is an asymptotically stable equilibrium of the

mechanical system when d1 = 0 and d2 = 0—the stability is almost global if V (q) is

proper and has a unique minimum [7].

The control objective is to design a dynamic state feedback controller such that

the closed–loop system ensures some stability properties in spite of the presence of the

disturbances (d1, d2). In particular, we are interested in the following.
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P1 Preserving asymptotic stability for constant, matched and–or unmatched, dis-

turbances.

P2 Ensuring IISS and ISS, with respect to, matched and–or unmatched, distur-

bances.

To satisfy these objectives, besides a suitable integral action, additional gyroscopic

and damping forces are added to the system. Instrumental for our developments is

the introduction of coordinate changes, similar to the one used in [32] and chapter 2,

that preserve the pH structure of the system with the same Hamiltonian function.

To motivate our developments consider first the standard addition of an integral

action on the passive output, e.g., the velocities q̇ =M−1(q)p. Thus, define

u = −η
η̇ = KiM

−1(q)p

with Ki = K>
i > 0. If d1 is a non–zero constant the system admits no constant

equilibrium, and if d1 = 0 and d2 is constant there is an equilibrium set given by

E =
{

(q,p, η) |p = 0, ∇V (q) + η = d2

}

.

Moreover, it is easy to see that, with or without disturbances, the foliation

Mκ =
{

(q,p, η) |Kiq − η = κ, κ ∈ R

}

,

is invariant with respect to the flow of the closed–loop system. Consequently, conver-

gence to the desired equilibrium (q?, 0, d2) is attained only for a zero measure set of

initial conditions. See Fig. 3.1 for a pictorial description of the state space.

Figure 3.1: Graph of the state space showing two sheets of the invariant foliation Mκ,

the equilibrium set E and a trajectory x(t) := ((q(t),p(t), η(t)).

Remark 8. When M is constant the dynamics of the system (3.1) in Euler–Lagrange

form takes the form

Mq̈ +∇V (q) +Kp(q̇ − d1) +Kpq̇ = u+ d2.
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Hence, the disturbance d2 represents either a constant force acting on the system or

an input measurement noise, while d1 is noise in the measurement of velocity that is

propagated to the system by the injection of the damping Kp. For non–constant inertia

matrix a term ∇q(q̇
>M(q))d1, whose physical interpretation is less clear, appears in

the dynamics.

3.3 Constant inertia matrix

In this section the particular case of constant inertia matrix is considered. For this

case, the problem of rejection of constant disturbances has a surprisingly simple so-

lution: adding a PI control around the potential energy forces. However, to enforce

the important property of ISS, damping must be added to all the coordinates, which

is achieved incorporating suitable gyroscopic forces.

3.3.1 Rejection of constant disturbances

Proposition 7. Consider the system (3.1) with constant inertia matrix M and con-

stant disturbances (d1, d2) in closed–loop with the PI control

u = −Kpz3 −MKi∇V
ż3 = Ki∇V, (3.4)

with Ki = K>
i > 0.

(i) The closed–loop dynamics expressed in the coordinates,

z1 = q

z2 = p+M(z3 −K−1
p d2) (3.5)

takes the pH form

ż =





0 In −Ki

−In −Kp 0

Ki 0 0



∇Hz(z), (3.6)

with energy function

Hz(z) := H(z) +
1

2
(z3 − z∗3)

>K−1
i (z3 − z∗3), (3.7)

where z∗3 := d1 +K−1
p d2.

(ii) The desired equilibrium point z? := (q?, 0, z∗3), is asymptotically stable. The sta-

bility is almost global if V (z1) is proper and has a unique minimum.

Proof.
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(i) First, we take the time derivative of the first equation in (3.5), and we replace

q̇ and ż1 by the corresponding state equations of the open- and closed–loop

dynamics. This yields

q̇= ż1

=M−1z2 − (z3 − d1 − k−1
p d2)

≡M−1p+ d1, (3.8)

which is satisfied if and only if z2 is as in the second row of (3.5).

Second, we take the time derivative of z2 in (3.5), replace ṗ, ż2 and ż3 by the

corresponding state equations of the open- and closed–loop systems. From the

resulting equation, we compute the control law (3.4)—that is independent of

disturbances—and yields pH closed–loop dynamics (3.6). Finally, the last row

of the closed–loop is given by the integral action of the non–passive output.

(ii) We consider the Hamiltonian (3.7) as a candidate Lyapunov function for (3.6).

Its derivative along the trajectories of the system is

Ḣz = −zT2 M−1KpM
−1z2 ≤ 0,

which proves that the origin is stable. Moreover, the trajectories will converge to

largest invariant set contained in S = {z |z2 = 0}. From (3.6), we can conclude

that the largest invariant set in S is z∗ = (q∗, 0, z∗3), then, the equilibrium point

z∗ is asymptotically stable. Using the change of coordinate (3.5), we conclude

that the desired equilibrium in original coordinates (q∗,−Md1, d1 + K−1
p d2) is

asymptotically stable.

���

Remark 9. From (3.6) it is clear that, besides the addition of the integral action,

the Poisson structure of the open–loop system (3.1) is preserved in closed–loop, in the

new coordinates. Moreover, the Hamiltonian function (3.7) exactly coincides with the

energy of the system (3.6). These are the two key steps first introduced for general

pH systems in the chapter 2.

3.3.2 ISS for time–varying disturbances

Proposition 8. Consider the system (3.1) with constant mass matrix M and time–

varying disturbances d(t) := col(d1(t), d2(t)), in closed–loop with the control law

u = −
(

k1∇2VM−1 +K3R3

)

p−K4∇V −K5z3

ż3 = K6∇V +R3p, (3.9)

where

K4 := k1KpM
−1 + k1K3R3 +K3M

−1

K5 :=
(

KpM
−1 +MR3

)

K3

K6 := M−1 + k1R3,
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k1> 0, K3 = K>
3 > 0 and R3 = R>

3 > 0.

(i) The closed–loop dynamics expressed in the coordinates

z1 = q

z2 = p+ k1∇V (q) +K3z3, (3.10)

takes the perturbed pH form

ż =





−k1M−1 In −M−1

−In −Kp −MR3

M−1 R3M −R3



∇H̄z +





In 0

k1∇2V (z1) In
0 0



 d(t) (3.11)

with

H̄z(z) = H(z) +
1

2
z>3 K3z3. (3.12)

(ii) If V (z1) satisfies

0 < rvIn ≤ ∇2V (z1) ≤ rwIn,

then (3.11) is ISS with respect to the time varying input disturbances (d1(t), d2(t))

with ISS Lyapunov function H̄z(z).

(iii) If d1 = 0 and d2 is constant, then the desired equilibrium

z? := (q∗, 0,K−1
3 (KpM

−1 +MR3)
−1d2)

is asymptotically stable.

Proof.

(i) The procedure to prove that the closed–loop dynamics can be written as the

pH (3.11) is the same as in Proposition 7. That is, differentiate the first row of

(3.10) with respect to time, and replace the derivative of the state by the state

equations to obtain the second row of (3.10). Then, differentiate the later change

of coordinate respect to time, replace the derivative of the states by the state

equations and solve for u to find the control law.

(ii) We choose (3.12) as an ISS-Lyapunov function. We compute the derivative of

H̄z along the solutions of (3.11), which yields

˙̄Hz ≤ −k1‖∇z1Hz‖2M−1 − ‖∇z2Hz‖2Kp
− ‖∇z3Hz‖2R3

+

+[∇z2Hz]
T
[

k1∇2
z1
V (z1)d1

]

+ [∇z2Hz ]
Td2 + [∇z1Hz ]

Td1

≤ 1

2k1m1
|d1|2 +

1

λmin(Kp)
|d2|2 +

k21r
2
w

λmin(Kp)
|d1|2 −

−k1m1

2
|∇V (z1)|2 −

λmin(Kp)

2
|M−1z2|2 − λmin(R3)|K3z3|2

≤ −α(|z|) + β(|d|), (3.13)

with α, β ∈ K∞. From (3.13) and the fact that the Hamiltonian function H̄z(z)

is positive definite and radially unbounded we conclude that the closed–loop is

ISS.
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(iii) As proposed in [45], we use

H0(z) = H̄z(z)− z>∇H̄z(z
∗)−

[

H̄(z∗)− z∗>∇H̄z(z
∗)
]

,

which has a minimum at z∗, as Lyapunov candidate function for the perturbed

system. The time derivative of H0 along the trajectories of the system (3.11)

yields

Ḣ0=−‖∇H̄z(z)−∇H̄z(z
∗)‖2Q,

where

Q := block diag{k1M−1,Kp, R3} > 0,

which proves asymptotic stability of z∗.

���

Remark 10. The assumption d1 = 0 in (iii) of Proposition 8 is needed to ensure that

the equilibrium of the system is the desired equilibrium. Indeed, when this assumption

holds, the momentum vector p is zero at steady state. This fact, together with the

dynamics of the controller (3.9) at steady state, ensures that the position vector at

equilibrium satisfies ∇V (q) = 0, which happens at the desired position q∗. If d1 6= 0,

the disturbance shifts the steady state from the desired equilibrium.

Remark 11. Comparing the closed–loop dynamics (3.6) and (3.11) we observe that,

to enforce the ISS property, it was necessary to add damping in the (1, 1) and (3, 3)

terms of the damping matrix of (3.11). This is achieved with the terms, added to the

basic PI control (3.4), in (3.9).

Remark 12. The changes of coordinates used in Propositions 7 and 8 are different.

The one in Proposition 7 incorporates the disturbances into the closed–loop pH system,

and proves stability when disturbances are constant. The objective of the change of

coordinates in Proposition 8 is to inject damping in all coordinates and ensure ISS

with respect to time-varying disturbances.

Remark 13. As is well–known [47], ISS endows the mapping d 7→ z with the impor-

tant properties of bounded–input bounded–states and converging–input converging–

states. Since ISS is invariant under change of coordinates, also the mapping d 7→
(q,p, z3) enjoys these properties.

3.4 Non–constant inertia matrix

The derivation of the controller for non–constant inertia matrix M follows the same

procedure used above. However, the expressions of the control laws become more

complicated because of the need to differentiate M .

Throughout the section the following well–known identity is used

∇q

[

p>M−1(q)p
]

=

n
∑

i=1

eip
T∇qiM(q)−1p = −∇q

[

q̇>M(q)q̇
]
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3.4.1 IISS for time–varying matched disturbances

Proposition 9. Consider the system (3.1) with constant matched disturbance d2 and

no unmatched disturbance, e.g., d1 = 0, in closed loop with the control law

u = −k1KpM
−1∇V − k1∇2VM−1p− z3 + v(q,p)

ż3 = KiM
−1

[

p+ k1∇V
]

, (3.14)

where

v(q,p) :=
k1
2

n
∑

i=1

eip
>M−1∇qiMM−1∇V −

(

MJ12M
−1 + J>

12

)

∇V −

− 1

k1
J>
12MJ12M

−1
[

p+ k1∇V
]

(3.15)

with

J12(q,p) := −k1
2
M−1

n
∑

i=1

ei

[

p+ k1∇V
]>

M−1∇qiM,

k1> 0, Ki = K>
i > 0, K3 = K>

3 > 0 and ei ∈ Rn the i–th vector of the Euclidean

basis.

(i) The closed–loop dynamics expressed in the coordinates

z1 = q

z2 = p+ k1∇V (q), (3.16)

takes the pH form ż = F (z)∇Uz, with

Uz(z) := H(z) +
1

2
(z3 − d2)

>K−1
i (z3 − d2), (3.17)

and

F (z) :=





−k1M−1(z1) In + J12(z) 0

−In − J>
12(z) −Kp −K>

i

0 Ki 0





(ii) The desired equilibrium z? := (q?, 0, d2) is asymptotically stable. The stability is

almost global if V (z1) is proper and has a unique minimum.

(iii) If the disturbance d2 is time–varying, the closed–loop system, which can be alter-

natively written as

ż = F (z)∇Ūz + col(0, d2(t), 0)

with

Ūz(z) := H(z) +
1

2
z>3 K

−1
i z3. (3.18)

is IISS with respect to the input d2(t) with IISS Lyapunov function Ūz(z).

Proof.



3.4. NON–CONSTANT INERTIA MATRIX 35

(i) The proof follows the procedure in Proposition 7, using the time derivative of the

change of coordinates (3.29). Note that the interconnection and damping matrix

F (z) of the closed–loop pH system was suitably chosen such that the control law

does not depend on the unknown disturbance.

(ii) Considering (3.17) as a candidate Lyapunov function and taking its derivative

along the system’s trajectories, it follows

U̇z = −‖M−1z2‖2Kp
− k1‖∇z1H‖2M−1 ≤ 0, (3.19)

which proves that the equilibrium is stable. Asymptotic stability is concluded

applying LaSalle’s Invariance Principle [36].

(iii) Using Ūz(z) as IISS Lyapunov function and computing its time derivative yields

˙̄Uz = −‖M−1z2‖2Kp
− k1‖∇z1H‖2M−1 + z>2 M

−Td2

≤ 1

kp
|d2|2 −

kp
2
|M−1z2|2,

where kp := λmin{Kp}. The latter inequality proves that the system is smoothly

dissipative. Now, from the fact that

(

d2(t) ≡ 0, M−1z2(t) ≡ 0 ⇒ z(t) → 0
)

,

we have that the system is weakly zero–state detectable form the outputM−1z2.

This two properties imply IISS [44].

���

Remark 14. Comparing Propositions 8 and 9, we observe that if the damping term

R3 is removed, only the weaker property of IISS with respect to matched disturbances,

can be established.

3.4.2 ISS for time–varying matched and unmatched distur-

bances

It is well–known that IISS is not enough to ensure the important property of bounded–

input-bounded–states. This motivates us to redesign the controller to endow the

system with the stronger property of ISS, as indicated in Remark 13 which implies

bounded–input-bounded–states .

Proposition 10. Consider the system (3.1) under the action of unmatched and matched



36CHAPTER 3. UNMATCHED ANDMATCHEDDISTURBANCES: MECHANICAL SYSTEMS

disturbances d1(t) and d2(t), in closed–loop with the control law

u = −k1KpM
−1∇V − k1∇2VM−1p−K3

[[

M−1 + k1R3

]

∇V +R3p
]

−
[1

2

n
∑

i=1

eip
>∇qiM

−1 +KpM
−1 + J>

23

]

K3z3 −

− 1

k1

[

In + J>
12

]

MJ12M
−1K3z3 + v(q,p)

ż3 =
[

M−1 + k1R3

]

∇V +R3p (3.20)

where v(q,p) is given in (3.15) with

J23 :=− 1

k1
J12 +R3M

J12 :=−k1
2
M−1

n
∑

i=1

ei

[

p+ k1∇V +K3z3

]>

M−1∇qiM

(i) The closed–loop dynamics expressed in the coordinates (3.10) takes the perturbed

pH form

ż =





−k1M−1 In + J12 −M−1

−J>
12 − In −Kp −J>

23

M−> J23 −R3



∇H̄z +





In 0

k1∇2V (z1) In
0 0





[

d1(t)

d2(t)

]

(3.21)

with H̄z(z) given in (3.12).

(ii) The closed–loop system is ISS with respect to the input disturbances (d1(t), d2(t)),

provided that the Hessian of the potential energy satisfies condition (ii) in Propo-

sition 8.

(iii) The unperturbed system (3.21) has an asymptotically stable equilibrium at the

desired state z? = (q∗, 0, 0).

Proof.

(i) The pH closed–loop (3.21) in z coordinates results differentiating (3.10) with

respect to time and the control law (3.20).

(ii) We propose (3.12) as candidate ISS Lyapunov function and we compute its time

derivative along the solutions of (3.21) as follows

˙̄Hz = −k1‖∇z1Hz‖2M−1 − ‖∇z2Hz‖2Kp
− ‖∇z3Hz‖2R3

+

+[∇z2Hz ]
T
[

k1∇2
z1
V (z1)d1

]

+ [∇z2Hz]
Td2 + [∇z1Hz]

Td1 (3.22)

≤ −λ1
2
|∇z1Hz|2 − λ2|∇z2Hz|2 − λ3|∇z2Hz |2 +

+
1

2λ1
|d1|2 +

1

2λ2
|d2|2 +

λ2v
2λ2

|d1|2 (3.23)

≤ −λz|∇zHz|2 + λd1 |d1|2 +
1

2λ2
|d2|2 (3.24)
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Inequality (3.37) and the fact that the function H̄z(z) is positive definite and

radially unbounded, guarantees that for any bounded disturbances d1(t) and

d2(t), the state z(t) will be bounded and the dynamic system (3.21) is ISS.

The parameters λ in (3.23) and (3.37) are λ1 = k1m1, λ2 = 1
2λmin(Kp), λ3 =

λmin(R3), λv = k1rw, λd1 = 1
2λ1

+
λ2

v

2λ2

and λz = min{λ1

2 , λ2, λ3}.

(ii) Taking d1(t) ≡ 0, d2(t) ≡ 0 in (3.22) asymptotic stability of the equilibrium z∗

is proved, where it is considered (3.12) as Lyapunov function .

���

Remark 15. The difficulty introduced by the non–constant inertia matrix is clearly

revealed comparing the interconnection matrices (3.11) and (3.21), which differ on

the appearance of complex, state–dependent, expressions on the (1, 2) and (2, 3) sub–

blocks.

3.5 A simplified controller for matched disturbances

As discussed in Remark 15 the controllers for non–constant inertia matrix are highly

complex. To overcome this practical shortcoming we follow [48] and propose to change

the generalized momentum coordinates to “remove” the inertia matrix from the energy

function(see proof at Appendix A1).1 Unfortunately, this modification achieves the

desired objective only if there are no unmatched disturbances, i.e. if d1 = 0, an

assumption that is made throughout the remaining of the chapter. Also, for simplicity,

we remove the damping injection term from (3.1) and add it in the new control law.

Fact 1. Consider the system (3.1) without damping (Kp = 0) and no unmatched

disturbances (d1 = 0). Let T ∈ Rn → Rn×n be the square root of the matrix M−1(q).

That is,

M−1(q) = T 2(q).

The change of coordinates

(q, p) = (q, T (q)p).

transforms the dynamics into

[

q̇

ṗ

]

=

[

0 T (q)

−T (q) S(q, p)

]

∇W +

[

0

In

]

w +

[

0

Td2

]

, (3.25)

with w := T (q)u the new control signal, new Hamiltonian function

W (q, p) =
1

2
|p|2 + V (q), (3.26)

1The motivation for this change of coordinates in [48] was speed observer design.
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and the gyroscopic forces matrix2

S(q, p) := ∇(Tp)T − T∇>(Tp)|p=T−1p,

=

n
∑

i=1

[

[

∇qi(T )T
−1p

]

(Tei)
> − (Tei)

[

∇qi(T )T
−1p

]>
]

, (3.27)

with ei ∈ Rn the i–th basis vector of Rn

Remark 16. From the definition of a square root of a positive definite matrix (The-

orem 1 in Section 5.4 of [46]), it is clear that T (q) is symmetric and satisfies

0 < rt1In ≤ T (q) ≤ rt2In,

consequently, T (q) is positive definite and T (q)d2(t) is bounded.

3.5.1 IISS and GAS for matched disturbances

Proposition 11. Consider the system (3.25) in closed loop with the control law

w = −(∇2V T +R2)p− (R2 − S)∇V − Tz3

ż3 = KiT
(

p+∇V
)

, (3.28)

with Ki = K>
i > 0 and R2 = R>

2 > 0

(i) The closed–loop dynamics expressed in the coordinates

z1 = q

z2 = p+∇V (q), (3.29)

takes the perturbed pH form

ż = F (z)∇W(z) +





0

T (z)d2
0



 ,

where

W(z) := W (z1, z2) +
1

2
z>3 K

−1
i z3, (3.30)

with

W (z1, z2) :=
1

2
|z2|2 + V (z1)

and

F (z) :=





−T T 0

−T S −R2 −TKi

0 KiT 0





2Clearly, S(q, p) = −S>(q, p).
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(ii) The closed loop system is IISS, with respect to the disturbance d2(t), with IISS

Lyapunov function W(z).

(iii) If d2 constant, the desired equilibrium z? := (q?, 0, d2) is asymptotically stable.

Proof.

(i) The proof follows the procedure in Proposition 7, computing the time derivative

of the change of coordinates (3.29). Note that, as done before, the interconnec-

tion and damping matrix F (z) of the closed–loop pH system was suitably chosen

such that the control law does not depend on the unknown disturbance.

(ii) Using W(z) as IISS Lyapunov function and computing its time derivative yields

Ẇ = −‖z2‖2R2
− ‖∇V (z)‖2T + z>2 Td2

≤ −rt2 |∇V (z)|2 − r2
2
|z2|2 + λt|d2|2, (3.31)

where r2 := λmin{R2} and λt := λmin{ rt2r2 }. The latter inequality proves that

the system is smoothly dissipative. Now, from the fact that

(d2(t) ≡ 0, z2(t) ≡ 0 ⇒ z(t) → 0) ,

we have that the system is weakly zero–state detectable form the output z2. This

two properties imply IISS.

(iii) If d2 is constant the closed–loop system can be alternatively written as

ż = F (z)∇Wz

with

Wz(z) =W (z1, z2) +
1

2
(z3 − d2)

>K−1
i (z3 − d2). (3.32)

Considering (3.32) as a candidate Lyapunov function and taking its derivative

along the system’s trajectories, it follows

Ẇz = −‖z2‖2R2
− rt2 |∇V (z)|2 ≤ 0, (3.33)

which proves stability of the equilibrium. Asymptotic stability is concluded

applying LaSalle’s Invariance Principle [36].

���

3.5.2 ISS for time–varying matched disturbances

Proposition 12. Consider the system (3.25) in closed–loop with the control law

v = −(∇2V T +R2 +R3)p− (R2 +R3 − S)z3 − (T +R2 +R3 − S)∇V
ż3 = (T +R3)∇V +R3p. (3.34)
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(i) The closed–loop dynamics expressed in the coordinates

z1 = q

z2 = p+∇V (q) + z3 (3.35)

takes the perturbed pH form

ż =





−T T −T
−T S −R2 −R3

T R3 −R3



∇U +





0

Td2(t)

0





with

U(z) :=
1

2
|z2|2 + V (z1) +

1

2
|z3|2 (3.36)

(ii) The closed–loop system (3.36) is ISS with respect to the disturbance d2(t).

(iii) The unperturbed system has an asymptotically stable equilibrium at the desired

state z? = (q∗, 0, 0)

(iv) Let

R2 = Tc2, R3 = Tc3 + S(q,p),

with c2, c3 two positive scalars. Assume there exist t2 ≥ 0 such that

lim
t→t2

d2(t) = d̄2,

with d̄2 constant. Then, all trajectories converge to z? := (q?, 0, α), where

α := (c2 + c3)
−1
d̄2

Proof.

(i) The pH closed–loop system (3.36) is obtained via direct computations.

(ii) Taking U(z) as candidate ISS Lyapunov function and computing its time deriva-

tive along the solutions of (3.36) yields

U̇ = −‖∇V ‖2T − ‖z2‖2R2
− ‖z3‖2R3

+ z>2 Td2

≤ −rt2 |∇V |2 − r2|z2|2 − r3|z3|2 +
rt2
2r2

|d2|2

≤ −λz|∇U |2 + λd|d2|2 (3.37)

where

r2 := λmin(R2), r3 := λmin(R3), λd := { rt2
2r2

}, λz := min{r2
2
,
r3
2
, rt2}.

Inequality (3.37) and the fact that the function U(z) is positive definite and

radially unbounded, guarantees that for any bounded disturbances d2(t), the

state z(t) will be bounded and the dynamic system (3.36) is ISS.
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(iii) Taking d2(t) ≡ 0 in (3.37) and invoking uniqueness of the minimum of V yields

the proof.

(iv) Finally, with d2(t) = d̄2, and the given selection of R2, R3, we can do a new

change of coordinates to the closed–loop system (3.36):

z̄1 = z1

z̄2 = z2 − α

z̄3 = z3, (3.38)

that yields

˙̄z =





−T T −T
−T −Tc2 + S −Tc3 − S

T Tc3 − S −Tc3 + S



∇U

with the function

U(z̄) := 1

2
|z̄2|2 + V (z̄1) +

1

2
|z̄3 − α|2 (3.39)

Taking (3.39) as Lyapunov function yields

U̇ = −‖∇z̄1V ‖2T − ‖z̄2‖2c2T − ‖z̄3 − α‖2c3T , (3.40)

from which the claim follows immediately.

Furthermore if the potential energy is defined as V (q) = 1
2 (q − q∗)K(q − q∗),

exponential convergence of the equilibrium point is proved. This follow from

U̇ = −‖z̄1 − q∗‖2KTK − ‖z̄2‖2c2T − ‖z̄3 − α‖2c3T , (3.41)

and with basics bounds we can written as

U̇ = −δU(z̄), (3.42)

with

δ := 2min{λmin(KTK)

λmax(K)
, c2λmin(T ), c3λmin(T )} > 0.

���

Remark 17. To underscore the controller simplification gained using the change of

coordinates, compare the control law (3.14), (3.15) of Proposition 9 with (3.28) (plus

w = Tu) of Proposition 11, and note that both controllers enjoy the same robustness

properties. It is evident that the achieved simplification can hardly be overestimated.
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3.6 Case study: prismatic robot

In this section, we use the two DoF prismatic robot3 example of [44] to illustrate in sim-

ulations our results. Similarly to [44], the initial condition vector is [q10 , q20 , p10 , p20 , z310 , z320 ] =

[0, 0.1, 0.1, 0.1, 0.1, 0.2] and the desired equilibrium is the origin. The bounded dis-

turbance vector is taken as d2 = α tanh(q̇), with α = 3, 10. The parameters of the

model are the same as in [44], and are repeated here for ease of reference. The mass

matrix is

M =

[

m1q
2
2 +

m2L
2

3 0

0 m1

]

wherem1 and L is the mass and length of the arm, andm2 is the mass of the hand. The

states q = [q1 q2]
> and p = [p1 p2]

> are the generalised position and momenta respec-

tively. The subscript 1 and 2 indicates variables of the arm and the hand respectively.

The system has no potential energy and no dissipation.

We present simulations with two controllers—denoted IISS and ISS Controllers in

the sequel (3.14) and (3.20) corresponding to Propositions 3 and 4, respectively. The

motivation for the names stems from the fact that the first controller ensures only IISS,

while the second one strengthens this to ISS. As will be illustrated below, although

both controllers yield bounded trajectories, the transient behavior of the ISS controller

is far superior. As is well–known, and also indicated in Subsection 4.2, IISS does not

ensure bounded–input–bounded–state behavior—for all inputs—but in this particular

case they turn out to be bounded. It should be remarked that in [44] it is claimed

that the trajectories are unbounded. The problem is that, to observe this fact, the

simulation has to run in a longer horizon than the one used in [44].

The expression for the IISS controller is

u = −(k1KpM
−1 + In)Kdq̃ − (k1 + 1)KdM

−1p− z3 +

+

[

3k1kd2q2 q̃2
3mq2

2
+ML2 (p1 + k1kd1q̃1)− k1mq

2
2(p1 + k1kd1q̃1)

3

9k1kd1q2 q̃1
(3mq2

2
+ML2)2

[(1 +m)p1 + k1kd1mq̃1]

]

ż3 = KiM
−1

[

p+ k1Kdq̃
]

, (3.43)

with q̃ = q − q∗. The expression for the ISS controller is

u =−(k1KpM
−1 + In)Kdq̃ − (k1 + 1)KdM

−1p− (KpM
−1 +MR3)K3z3 −

−
[

− 27k1mq
2

2
(p1+k1kd1q̃1+k31z31)

2

(3mq2
2
+ML2)3

3q2(p1+k1kd1q̃1+k31z31)
(3mq2

2
+ML2)

9mq2(k1kd1 q̃1+k31z31)
(3mq2

2
+ML2)2

0

]

K3z3 +

+

[

3k1kd2q2 q̃2
3mq2

2
+ML2 (p1 + k1kd1q̃1 + k31z31)− k1mq

2
2(p1 + k1kd1q̃1 + k31z31)

3

9k1kd1q2 q̃1
(3mq2

2
+ML2)2

[(1 +m)p1 + k1kd1mq̃1 + k31z31]

]

ż3 =R3p+
[

M−1 + k1R3

]

Kdq̃ (3.44)

3Notice that this robot does not satisfy condition (A.3)
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The values of the model and controllers parameters are as follows: m1 = 1, ML2 = 3,

Kp = diag(2, 1), Kd = diag(kd1, kd2) = diag(2, 1), R3 = diag(4, 4), Ki = K3 =

diag(k31, k32) = diag(3, 3) and k1 = 2.

Figs. 3.2–3.6 show the behavior of the system for the smaller disturbance, that

is α = 3, while the case of α = 10 is depicted in Figs. 3.7–3.11. In all cases, the

superior performance of the ISS controller is evident. It is interesting to note that the

improved performance is not achieved injecting larger gains in the loop. Actually, as

shown in Figs. 3.5 and 3.10, which show the control signals, the control action of the

IISS controller is far more demanding than that of the ISS controller.

The bounded disturbances acting on the system are shown in Figs 3.6 and 3.11.

As expected, the performance is deteriorated for bigger disturbances. However, the

ISS controller still shows acceptable transients. On the other hand, the behavior of

the IISS controller might not be practically acceptable—as the demanded forces might

exceed the actuator limits.
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Figure 3.4: States of the controller for α = 3.
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Figure 3.6: Disturbances d2 = 3 tanh(q̇).
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Figure 3.7: Angle of the arm q1 and position of the hand q2 for α = 10.
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Figure 3.8: Momenta of the arm p1 and the hand p2 for α = 10.
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Figure 3.9: States of the controller for α = 10.

3.7 Experiments

In this section we shown an experimental set-up to exponential convergence controllers

at robots manipulators considering matched disturbances as the section 3.5.2 (change

of coordinates). An extra contribution in this section is the simplicity of the controller

structure, that is coming from the modified S(q, p) presented in Appendix A.2 on the

no-dependent of the complex ∇qT (q) term.
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Figure 3.10: Control torque on the arm u1 and force on the hand u2 for α = 10
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Figure 3.11: Disturbances d2 = 10 tanh(q̇).

3.7.1 Set-up

The robotic system used for our experimental study is a TX-60 Stäubli robot arm (see

Fig. 3.12a). In this study, we only considered motion of the robot’s second and third

joints, that is, a planar manipulator as the one conceptually depicted in Fig. 3.12b.

To command the motion of the robot, the control system counts with the Low-Level

Interface [60] that allows to explicitly set the torque on each of the joints. In order to

provide a deterministic real-time behavior to the controller (a key feature to guarantee

a constant sample time), a RT-Linux PC [61] processes all the feedback signals and

computes the dynamic control law. The desired torque command is then transmitted

via TCP/IP to the robot’s low-level controller (see Fig. 3.13 for a conceptual repre-

sentation of the control architecture). All the algorithms reported in this section were

implemented at a real-time servo loop of 4 milli-seconds.

The implementation of the proposed control algorithms requires knowledge of the

robot’s dynamic model as well as the frictional forces, therefore, parametric identifi-

cation of these physical parameters had to be performed. The analytic expressions of

the kinetic co-energy and gravitational potential of the 2-DOF manipulator are given

as follows [62]:

1
2‖q̇‖2M = 1

2 (m1l
2
c1 +m2l

2
1 + I1)q̇

2
1 +

1
2 (m2l

2
c2 + I2)(q̇1 + q̇2)

2

+m2l1lc2 cos(q2)
(

q̇21 + q̇1q̇2
)

,

Vg(q) = g(m1lc1 +m2l1) sin(q1) + gm2lc2 cos(q1 + q2)

To this end, the dynamic equations of the robot manipulator (expressed in Euler-

Lagrange form) were linearly parameterized with respect to the constant vector of

parameters θ, whose definition and identified numerical values are given as follows

θ =
[

1
2 (m1l

2
c1 +m2l

2
1 + I1) m2l1lc2

1
2 (m2l

2
c2 + I2)

(m1lc1 +m2l1)g m2lc2g D1 D2

]

,

= [ 1.82, 0.29, 0.51, 48.18, 13.21, 16.27, 6.7 ]

Then, for this manipulator, the analytic expression of the mass matrix is

M(q) =

[

θ1 + θ2 cos(q2) θ3 + θ2 cos(q2)

θ3 + θ2 cos(q2) θ3

]

=

[

M11 M12

M12 M22

]

,
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(a) TX60 Stäubli robot.

q2

lc1
l1

q1

l2

lc2

m1, I1m2, I2

g

(b) Planar manipulator.

Figure 3.12: Experimental robotic system.

inverse of the mass matrix given by

M−1 =
1

Det

[

M22 −M12

−M12 M11

]

(3.45)

with Det = M11M22 −M2
12. For this configuration, the square-root matrix takes the

following simple form

T =
1

%

[

M22 +
√
Det −M12

−M12 M11 +
√
Det

]

(3.46)

and % =
√
Det

√

M22 +M11 + 2
√
Det. The joint controller u = T−1v was computed

using the available joint velocity measurements (which correspond to q̇ = M−1p).

Using Appendix A.2, we obtain the following simple control implementation

u = skew(∗)(q̇ + 2c1TK(q − q∗))−
−(c2c1 + c3c1 + 1)K(q − q∗) + (c2 + c3)z3 −
−(c2 + c3)T

−1q̇ − c1T
−1Kq̇, (3.47)

where the numerical integrator is computed as

z3 = −(Tskew(∗)− c3)q̇ − (c1Tskew(∗)− c1I + I)TK(q − q∗),

with skew(∗) as the skew-symmetric matrix

skew(∗) = 1

2

[

e2
[

∇q2Mq̇
]> −

[

∇q2Mq̇
]

e>2

]

.

To test the performance of the system, we defined a desired joint position of q∗ =

q0+[0.3, 0.25]>, where q0 = q(0) represents the starting joint configuration. Fig. 3.14a

and 3.14b show how the joint position 1 and 2 converge to its desired reference. Fig.

3.15a and 3.15b respectively show the applied joint torque u and its integral action

z3. Note in this free-motion experiment, the integrator converges to a value different

from zero. This simply means that the integral action is compensating unknown

measurements or external force.
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Figure 3.13: Conceptual representation of the real-time control architecture.
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Figure 3.14: Response of the joint positions.

To test the robustness of the algorithm, we numerically perturbed the closed-loop

system by adding a constant vector d2 = [2, 2]> to the control input u. For this

numerically-perturbed case, Fig. 3.16a and 3.14b show the convergence of the joint

position to its desired reference. Similarly, Fig. 3.17a and 3.17b respectively show the

applied joint torque u and its integral action z3. Compared to Fig. 3.15b, note that

the integrator’s signal converges to a higher value(shifted). As presented before, this

value corresponds to (c2 + c3)
−1d2

3.8 Conclusions

In this chapter, we have presented a control design that improves the robustness of

energy shaping controllers for mechanical systems with external disturbances. Robust-

ness is achieved with a dynamics state feedback that adds integral actions, as well as

gyroscopic and damping forces. It should be underscore that none controllers carries

out cancelation of nonlinearities, instead they inject the required forces to achieve the

robustification objective. The solution for mechanical systems with constant mass

matrix is simple, whilst the control laws are more involved when the mass matrix

is non-constant. The proposed controllers ensure asymptotic stability for constant,

matched and–or unmatched, disturbances. In the case of time–varying disturbances,

the robustness properties have been quantified establishing IISS and ISS properties.

We show that with the simple incorporation of a change of coordinates the con-
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Figure 3.15: Resulting joint controls.
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Figure 3.16: Response of the joint positions under a constant disturbance d2.
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Figure 3.17: Resulting joint controls for the perturbed system.
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trollers are significantly simplified preserving the same nice robustness properties. Fur-

thermore, convergence to matched disturbances that converge to constant values was

established, a result that is unavailable for the controllers of Section 4.4. Unfortu-

nately, the new developments are limited to the case when there are no unmatched

disturbances. This limitation stems from the fact that, in the presence of unmatched

disturbances, a new term involving Ṫ appears in the disturbance vector of the trans-

formed system (4.2).



Chapter 4

Tracking controller for

mechanical systems

A solution to the problem of global exponential tracking of mechanical systems without

velocity measurements is given in this chapter. The proposed controller is obtained

combining a recently reported exponentially stable immersion and invariance observer

and a suitably designed state–feedback passivity–based controller, which assigns to the

closed–loop a port–Hamiltonian structure with a desired energy function. The result

is applicable to a large class of mechanical systems and, in particular, no assumptions

are made on the presence—and exact knowledge—of friction forces.

4.1 Introduction

A long standing open problem for mechanical systems is the construction of a (smooth)

controller that ensures, without velocity measurements, global tracking of position and

velocity for all desired reference trajectories. A major contribution towards the solution

of this problem is due to [50], where invoking the Immersion and Invariance (I&I)

techniques developed in [51], the first globally exponentially convergent speed observer

is reported. In this chapter we prove that the certainty equivalent combination of (a

slight variation of) this speed observer with a, suitably tailored, static state–feedback

passivity–based controller (PBC) yields a solution to this problem with the following

properties:

P1 The closed–loop is uniformly globally exponentially stable (UGES) that, via total

stability arguments, ensures strong robustness properties.

P2 To achieve asymptotic stability only a lower bound on the inertia matrix is

assumed—if it is also upper-bounded then the stronger exponential stability is

ensured. Hence, the result is applicable to a large class of mechanical systems,

including robots with prismatic joints.

51
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P3 The fragile assumption of existence (and exact knowledge) of friction is conspic-

uous by its absence.

P4 The stabilization mechanism does not rely on the injection of high gain into the

loop. Indeed, although the observer of [50] includes a dynamic scaling factor, it

acts only during the transients and is shown to actually converge to one.

To the best of our knowledge, this is the strongest result available to date for this

important problem. The reader is referred to [52, 40, 59], and references therein, for a

review of the literature.

Many semi-global results to the aforementioned position feedback global tracking

problem have been reported. Semi-global schemes intrinsically rely on high–gain injec-

tion to enlarge the domain of attraction, hence the interest in truly global controllers.

In [58] a globally asymptotically stable solution is claimed to be found that, unfor-

tunately, suffers from serious drawbacks. First, the design critically depends on the

existence, and exact knowledge, of a positive definite friction matrix. As is well–known

this fragile assumption considerably simplifies the controller design, see [55] for an ex-

ample. Second, besides the requirement of an upper–bounded inertia matrix, some

additional (technically motivated) assumptions on the inertia matrix and the poten-

tial energy function, which rule out many mechanical systems of practical interest, are

imposed, e.g., systems with linear springs. Third, and more importantly, as the con-

troller requires a change of coordinates using saturation functions—first introduced in

this context in [54] for the solution of the one–degree–of–freedom case—the invertibil-

ity of these functions cannot be globally guaranteed and, as clearly indicated in page

111 of [40], the claim in [58] is unfounded. Acknowledging (alas, obliquely) the prob-

lem, the same authors reported in [59] a variation of their previous controller that still

suffers from the two first drawbacks indicated above. Notice that the exact knowledge

of the friction coefficient is required in [59]. Indeed, the claim for the adaptive version

of the scheme is unfortunately incorrect, since the argument used to prove the invari-

ance of the estimated domain of attraction S1 is not valid in this case.1 Moreover,

the unusual requirement of having the controller initial conditions equal to zero, see

Remark 2 in [59], puts a serious question mark on the robustness of the scheme—see

also Footnote 2 in Section 4.2.

More recently, a claim of a UGES scheme was reported in [52]. Unfortunately,

it can easily be shown that this controller cannot be implemented without velocity

feedback, see equation (32) in [52].

4.2 Main result

In the chapter we consider n–degrees of freedom, fully-actuated, friction–less, mechan-

ical systems described in port–Hamiltonian (pH) form by

[

q̇

ṗ

]

=

[

0 In
−In 0

]

∇H(q,p) +

[

0

In

]

u (4.1)

1More precisely, the set where the derivative of the Lyapunov function is zero is not compact in

the whole state space, that now contains the parameter errors, see equation (40) in [59].
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with total energy function H : Rn × Rn → R

H(q,p) =
1

2
p>M−1(q)p+ V (q),

where q,p ∈ Rn are the generalized positions and momenta, respectively, u ∈ Rn is the

control input, the inertia matrix M : Rn → Rn×n verifies the (uniform in q) bounds

mmaxIn ≥M(q) =M>(q) ≥ mminIn,

for some constants mmax ≥ mmin > 0, and V : Rn → R is the potential energy

function.

Proposition 13. Consider the mechanical system (4.1). For all twice differentiable,

bounded, reference trajectories (qd(t),pd(t)) ∈ Rn×Rn, there exists a dynamic position–

feedback controller that ensures UGES of the closed–loop system. More precisely, there

exist two (smooth) mappings

F : R
3n+1 × R

n × R≥0 → R
3n+1

H : R
3n+1 × R

n × R≥0 → R
n

such that, for all initial conditions

(q(t0),p(t0), $(t0)) ∈ R
n × R

n × R
3n × R≥0

the system (4.1) in closed–loop with

$̇ = F($, q, t)

u = H($, q, t)

verifies
∣

∣

∣

∣

∣

∣





q(t)− qd(t)

p(t)− pd(t)

$(t)





∣

∣

∣

∣

∣

∣

≤ κ exp−α(t−t0)

∣

∣

∣

∣

∣

∣





q(t0)− qd(t0)

p(t0)− pd(t0)

$(t0)





∣

∣

∣

∣

∣

∣

,

for some constants α, κ > 0 (independent of t0) and all t ≥ t0 ≥ 0.

Moreover, the controller ensures uniform global asymptotic stability (UGAS) even

if the inertia matrix is not bounded from above.

Remark 18. Our choice of a pH representation of the mechanical systems stems from

the fact that the full–state feedback controller (described in the next section) is a PBC

that shapes the energy function and assigns a suitable pH structure to the system.

Remark 19. As indicated in the introduction the proposed controller is a certainty

equivalent version of this PBC where the unknown momenta is replaced by its estimate,

generated with (a slight variation of) the observer of [50]. Hence, (4.2) is (essentially)

the observer dynamics.
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Remark 20. The initial conditions of the last component of the controller state, $, is

restricted to be positive. This coordinate corresponds to the (shifted) dynamic scaling

factor of the I&I observer of [50], that is shown to remain bounded away from zero for

all times. This restriction should be compared with the condition that the controller

state should be initialized at zero imposed to the controller of [59].2

4.3 Full–state feedback PBC

The design of the full–state feedback PBC proceeds in two steps. First, the change

of coordinates in momenta proposed in [48] for observer design is used to assign a

constant inertia matrix in the energy function. Second, the change of coordinates used

in the chapter 3 to add integral actions to mechanical systems is combined with a

suitable state–feedback PBC to assign a pH structure with a desired energy function.3

4.3.1 A suitable pH representation

As shown in the section 3.5, the change of coordinates

(q, p) 7→ (q, T (q)p),

with T : Rn → Rn×n the positive definite, uniquely defined, square root of the inverse

inertia matrix that is

M−1(q) = T 2(q),

transforms (4.1) into

[

q̇

ṗ

]

=

[

0 T (q)

−T (q) S(q, p)

]

∇W +

[

0

In

]

v, (4.2)

with v := T (q)u the new control signal, new Hamiltonian function W : Rn × Rn → R

W (q, p) =
1

2
|p|2 + V (q),

and the gyroscopic forces matrix S : Rn × Rn → Rn×n given by (3.27).

4.3.2 The PBC and its pH error system

Proposition 14. Consider the pH system (4.2). Define the mapping v? : Rn × Rn ×
R≥0 → Rn

v?(q, p, t) = −T (q)
[

K(q − qd(t))−∇V (q)
]

− S(q, p)pd(t) + ṗd(t)−

−R(p− pd(t))− c1KT (q)(p− pd(t))− c1

[

S(q, p)−R
]

K(q − qd(t)).

(4.3)

2Actually, as seen from Theorem 1 of [59], the initial condition can lie on an interval around zero,

but this interval reduces to zero as the number of degrees of freedom increases.
3A similar coordinate transformation has been proposed in [57] to generate a sign-indefinite damp-

ing injection term for stabilization of mechanical systems without the standard detectability assump-

tion.
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where

pd := T−1(q)q̇d, (4.4)

c1 ∈ R>0, and K,R ∈ Rn×n are positive definite gain matrices.

(i) The closed–loop dynamics obtained setting

v = v?(q, p, t)

expressed in the coordinates

w1 = q̃

w2 = c1Kq̃ + p̃, (4.5)

where

q̃ := q − qd, p̃ := p− pd,

takes the pH form

ẇ =

[ −c1T (q) T (q)

−T (q) S(q, p)− R

]

∇Hw (4.6)

with Hamiltonian function Hw : Rn × Rn → R>0

Hw(w) =
1

2
|w2|2 +

1

2
‖w1‖2K (4.7)

(ii) The zero equilibrium point of (4.6) is UGES with Lyapunov function Hw(w).

Consequently, (q̃(t), p̃(t)) → 0 exponentially fast.

(iii) If the inertia matrix is not bounded from above, the zero equilibrium point of

(4.6) is UGAS with Lyapunov function Hw(w).

Proof. Taking the time derivative of the change of coordinates given in (4.5) and using

the control law (4.3) yields the closed–loop (4.6), establishing the claim (i). Now,

taking the time derivative of (4.7), along the system’s trajectories, it follows

Ḣw = −c1‖w1‖2KTK − ‖w2‖2R ≤ −δHw, (4.8)

where

δ := min{2c1
λmin(KTK)

λmax(K)
, 2λmin(R)} > 0. (4.9)

This proves, after some basic bounding, the claim (ii).

The difficulty in establishing UGES when T (q) is not (uniformly) bounded from

below—that would be the case if M(q) is not (uniformly) upper–bounded—is due to

the term ‖w1‖2KTK in Ḣw, which cannot be bounded from below by |w1|2—notice that

δ in (4.9) zero. On the other hand, from the first inequality in (4.8) we can conclude

uniform global Lyapunov stability. The attractivity part of the proof is established

doing some standard signal chasing.

���
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Remark 21. Of course, there are many full–state feedback controllers ensuring ex-

ponential tracking [40]. The interest of the PBC presented above relies on the preser-

vation of the pH structure that is instrumental for the development of the position–

feedback version.

Remark 22. The requirement of upper–bounded inertia matrix, needed for the expo-

nential stability property, stems from the fact that the inverse of its square root, i.e.,

T (q), is the damping in the q̃ coordinates. See the (1, 1)–block of the damping matrix

in (4.6). As discussed in [50] and shown in the next section, this assumption is not

needed for UGES of the observer.

4.4 An exponentially convergent momenta observer

In order to estimate directly the momenta p, in this section we slightly modify the

exponentially convergent speed I&I observer reported in [50]. Also, motivated by the

developments in [56], we consider an alternative Lyapunov function for the stability

analysis and add some degrees of freedom to robustify the observer design. The latter

feature is essential for the proof of our main result. Since the proof closely mimics the

one given in [50].

Proposition 15. Consider the system (4.2), and assume v is such that trajectories

exist for all t ≥ 0. There exist smooth mappings

A : R
3n+1 × R

n × R
n → R

3n+1

B : R
3n+1 × R

n → R
n

such that the interconnection of (4.2) with

Ẋ = A(X, q, v)

p̂ = B(X, q),

where X ∈ R3n+1, p̂ ∈ Rn, ensures

lim
t→∞

eαt[p(t)− p̂(t)] = 0,

for some α > 0, and for all initial conditions

(q(0), p(0),X(0)) ∈ R
n × R

n × R
3n × R≥0.

This implies that (4.10) is an exponentially convergent momenta observer for the me-

chanical system (4.2).

Proof. The basic idea of I&I observers is to find a measurable mapping β : Rn ×Rn ×
Rn → Rn such that the (so–called) off–the–manifold coordinate

z = ξ + β(q, q|, |p)− p, (4.10)
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asymptotically converges to zero, where ξ, q|, |p ∈ Rn are (part of) the observer state.

If this is the case

p̂ := ξ + β(q, q|, |p) (4.11)

is a consistent estimate of p. We, therefore, study the dynamic behavior of z and

compute

ż = ξ̇ +∇qβq̇ +∇q|βq̇|+∇|pβ|̇p− S(q, p)p+ T (q)∇V − v.

We have that the mapping S defined in (3.27) verifies the following properties(see

Appendix A.1 ):

(P.i) S is linear in the second argument, that is

S(q, α1p+ α2p̄) = α1S(q, p) + α2S(q, p̄)

for all q, p, p̄ ∈ Rn, and α1, α2 ∈ R.

(P.ii) There exists a mapping S̄ : Rn × Rn → Rn×n satisfying

S(q, p)p̄ = S̄(q, p̄)p.

Hence, proposing

ξ̇ := −∇q|βq̇|−∇|pβ|̇p+ S(q, ξ + β)(ξ + β)−
−T (q)∇V + v −∇qβT (q)(ξ + β), (4.12)

together with Properties (P.i) and (P.ii) yields

ż = [S(q, p) + S̄(q, ξ + β)−∇qβT ]z. (4.13)

It is clear that if the mapping β solves the partial differential equation (PDE)

∇qβ = [ψIn + S̄(q, ξ + β)]T−1(q),

the z–dynamics reduces to

ż = [S(q, p)− ψIn]z,

which is asymptotically stable provided ψ (that may be state–dependent) is positive.

To avoid the solution of the PDE, which may not even exist, an approximate solution

is proposed. Towards this end, define an ideal expression for ∇qβ as

[ψIn + S̄(q, ξ + β)]T−1(q) =: H(q, ξ + β). (4.14)

and, following [53], define β as4

β(q, q|, |p) := H(q|, |p)q. (4.15)

The above choice yields ∇qβ = H(q|, |p), which may be written as

∇qβ = H(q, ξ + β)− [H(q, ξ + β)−H(q|, |p)]. (4.16)

4This construction avoids the cumbersome calculations proposed in [50], where the mapping β is

defined computing several integrals.
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Now, since the term in brackets in (4.16) is equal to zero if |p = ξ+β and q| = q, there

exist mappings

∆q,∆p : R
n × R

n × R
n → R

n×n

verifying

∆q(q, |p, 0) = 0, ∆p(q, |p, 0) = 0, (4.17)

and such that

H(q, ξ + β)−H(q|, |p) = ∆q(q, q|, eq) + ∆p(q, |p, ep), (4.18)

where

eq := q|− q, ep := |p− (ξ + β). (4.19)

Substituting (4.14), (4.16) and (4.18) in (4.13), yields

ż = [S(q, p)− ψIn]z + (∆q +∆p)T (q)z.

The mappings ∆q, ∆p play the role of disturbances that are dominated with a dynamic

scaling and a proper choice of the observer dynamics. For, define the dynamically

scaled off–the–manifold coordinate

η =
1

r
z, (4.20)

where r is a scaling factor to be defined. The dynamic behavior of η is given by

η̇ = (S − ψI)η + (∆q +∆p)T (q)η −
ṙ

r
η. (4.21)

Mimicking [50] select the dynamics of q|, |p as

q̇| = T (q)(ξ + β)− ψ1eq (4.22)

|̇p = −T (q)∇V + v + S(q, ξ + β)(ξ + β)− ψ2ep

where ψ1, ψ2 are some positive functions of the state defined later. Using (4.22),

together with (4.19), we get

ėq = T (q)ηr − ψ1eq

ėp = (∇qβ)T (q)ηr − ψ2ep. (4.23)

Moreover, select the dynamics of r as

ṙ = −ψ
4
(r − 1) +

r

ψ
(‖∆pT‖2 + ‖∆qT‖2), r(0) ≥ 1, (4.24)

with ‖ · ‖ the matrix induced 2–norm. Notice that the set {r ∈ R : r ≥ 1} is invariant

for the dynamics (4.24).

We show now that the (non–autonomous) error system (4.21), (4.23), (4.24)—with

the shifted coordinate r 7→ (r − 1)—has a UGES equilibrium at zero. For, define the

proper Lyapunov function candidate5

V (η, eq, ep, r) :=
1

2
[|η|2 + |eq|2 + |ep|2 + (r − 1)2]. (4.25)

5The choice of this function as well as the use of additional degrees of freedom in the functions ψi

was suggested in [56].
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Following the calculations done in [50] we obtain

V̇ ≤ −
(

ψ

4 − 1
)

|η|2 −
(

ψ1 − 1
2r

2‖T ‖2
)

|eq|2 −
−
(

ψ2 − 1
2r

2‖∇qβ‖2‖T ‖2
)

|ep|2 + (r − 1)ṙ. (4.26)

Clearly, if we set

ψ = 4(1 + ψ3), ψ1 =
1

2
r2‖T ‖2 + ψ4 (4.27)

and

ψ2 =
1

2
r2‖∇qβ‖2‖T ‖2 + ψ5,

where ψ3, ψ4, ψ5 are positive functions of the state defined below, one gets

V̇ ≤ −ψ3|η|2 − ψ4|eq|2 − ψ5|ep|2 + (r − 1)ṙ.

Let us look now at the last right hand term above

(r − 1)ṙ = −ψ
4
(r − 1)2 + (r − 1)

r

ψ
(‖∆pT‖2 + ‖∆qT‖2).

Now, (4.17) ensures the existence of mappings ∆̄q, ∆̄p : Rn × Rn × Rn → Rn×n such

that

‖∆q(q, |p, eq)‖ ≤ ‖∆̄q(q, |p, eq)‖ |eq|
‖∆p(q, |p, ep)‖ ≤ ‖∆̄p(q, |p, ep)‖ |ep|.

Hence

‖∆pT‖2 + ‖∆qT‖2 ≤ ‖T ‖2|(‖∆̄p‖2|ep|2 + |∆̄q‖2|eq|2).
Finally, setting

ψ3 = κ

ψ4 =
r(r − 1)

4(1 + ψ3)
‖T ‖2‖∆̄q‖2 + κ

ψ5 =
r(r − 1)

4(1 + ψ3)
‖T ‖2‖∆̄p‖2 + κ,

for some positive constant κ, yields

V̇ ≤ −κ[|η|2 + |eq|2 + |ep|2 + (r − 1)2] ≤ −2κV.

This completes the proof of UGES of the equilibrium of the error system.

From (4.10), (4.11) and (4.20), boundedness of r and the exponential convergence

of η we get that z and the estimation error p̂− p also converge to zero exponentially

fast.

The proof is completed selecting the observer state as

X := (ξ, q|, |p, r − 1),

defining A(X, q, v) from (4.12), (4.22) and (4.24) and B(X, q) via (4.11).

���
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4.5 Proof of proposition 13

The certainty equivalent version of the full–state feedback controller (4.3) of Proposi-

tion 13 is obtained replacing p by its estimate p̂ generated with the observer of Section

4.4. Notice that (4.3) contains a term ṗd that, as seen from (4.4), depends on the

unknown q̇. To define the certainty equivalent version of (4.3) we must compute

ṗd =
[

∇q(T
−1q̇d)

]

q̇ + T−1q̈d

=
[

∇q(T
−1q̇d)

]

T>p+ T−1q̈d (4.28)

Using (4.28) we get the implementable controller

v = −T (Kq̃−∇V )− S(q, p̂)pd −R(p̂− pd) +
[

∇q(T
−1q̇d)

]

T p̂

+T−1q̈d − c1KT (q)(p̂− pd)− c1

[

S(q, p̂)−R
]

Kq̃. (4.29)

We invoke now the key property (P.i) of Section 4.4, namely that S(q, p̂) is linear in

p̂. Consequently, since all other p̂–dependent terms in (4.29) are linear, there exists

mappings

Ψ : Rn × R≥0 → R
n, Θ : Rn × R≥0 → R

n×n,

such that (4.29) can be written as

v = Ψ(q, t) + Θ(q, t)p̂.

Moreover, using (4.10) and (4.11) it can be expressed as

v = v?(q, p, t) + Θ(q, t)z.

Replacing the latter in (4.2), and using (4.20), yields the perturbed pH system

ẇ =

[ −c1T (q) T (q)

−T (q) S(q, p)−R

]

∇Hw +

[

0

Θ(q, t)

]

rη, (4.30)

with the Hamiltonian function given by (4.7). The overall non–autonomous system

(e.g., closed–loop plant (4.30) plus observer (4.10)) is 5n + 1–dimensional and has a

state (w1, w2, eq, ep, η, r − 1
)

.

To establish the UGES claim consider the proper Lyapunov function

V(w1, η, eq, ep, r − 1) = Hw(w) + V (η, eq, ep, r − 1),

where the functions Hw and V have been defined in (4.7) and (4.25), respectively.

From the derivations of the previous two sections it is clear that the only troublesome

term is the sign–indefinite cross product w>
2 Θ(q, t)rη, that appears in Ḣw.

To dominate this term, consider the bound

w>
2 Θ(q, t)rη ≤ 1

2
|w2|2 +

r2

2
‖Θ(q, t)‖2|η|2. (4.31)
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From (4.8), (4.26) and (4.27) we see that there is the constant gain R and the free gain

function ψ3, that can be used to dominate the cross–term.6 More precisely, setting

R = (
1

2
+ κ)In

and ψ3 : Rn × R≥0 × R≥0 → R>0

ψ3(q, (r − 1), t) =
r2

2
‖Θ(q, t)‖2 + κ,

yields V̇ ≤ −αV , establishing the UGES claim.

The UGAS claim follows immediately from the derivations above and the argu-

ments invoked in the proof of UGAS of Proposition 14.

4.6 Conclusions

We have given in this chapter a final, definite answer to the question of global expo-

nential tracking of mechanical systems without velocity measurements. The result is

applicable to a large class of mechanical systems, without assumptions on the friction

forces, the inertia matrix or the potential energy function. In particular, the result

does not rely on the existence—and exact knowledge—of pervasive friction, nor on

boundedness of gravity forces. To achieve UGES it is required that the inertia matrix

be bounded from above. For systems that do not satisfy this condition the weaker

UGAS property is proven.

6For simplicity, in Proposition 15 ψ3 is taken as constant.
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Chapter 5

Conclusions and future work

5.1 Concluding remarks

The development of a methodology for a class of nonlinear system in pH form with

unmatched disturbances exhibits two distinguishing features:

• Regulation of the non passive output and rejections of unmatched disturbances

are satisfies adding simple integral action.

• The ingenious methodology formulated via change of coordinates avoid solve

PDEs.

For the nonlinear mechanical systems case:

• The rejection of constant matched disturbances is satisfied.

• To varying time disturbances(matched and unmatched ), the system is endow of

the IISS and ISS properties.

• Exponential performance was showed via experimental set-up to a manipulator

of 2DOF.

• Exponential tracking of position and velocity for all desired reference trajectories

without information in velocity is proved.

5.2 Future directions

Some future directions of research are the following: The simplification of the con-

trollers via change of coordinates presented in the Chapter 3 unfortunately are limited

to the case when there are no unmatched disturbances. This limitation stems from the

fact that, in the presence of unmatched disturbances, a new term involving Ṫ appears

in the disturbance vector of the transformed system (3.25). This discussion give a

open question to deal.
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In force feedback problem, normally appears the phenomena named ”steady-state

deviation” given by the interaction of a force transducer and the environment, such

that a extension of robust controllers can be exploited to solve this problem.

From Chapter 4 arises interesting axes to research.

• An open question is the robustness of the design vis–à–vis unmodeled, viscous

friction in the system. In this case we have

[

q̇

ṗ

]

=

[

0 In
−In −D

]

∇H(q,p) +

[

0

In

]

u,

where D ∈ Rn×n is an unknown, positive semi-definite matrix. Some preliminary

calculations show that it is possible to re-design the proposed scheme ensuring

converge of the error signal to a bounded residual set.

• Another challenging problem is the extension of the result to the case of uncer-

tain parameters. An adaptive version of Proposition 14 is easily obtained with

standard techniques. However, it is far from clear how to implement an adaptive

observer.

• The observer proposed in [50] is applicable for systems with non–holonomic con-

straints. How to formulate the position–feedback tracking problem in that case

is still to be resolved.
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Appendix

A.1 Partial change of coordinates in mechanical sys-

tems

Consider the nonlinear mechanical system

[

q̇

ṗ

]

=

[

0 In
−In 0

]

∇H(q,p) +

[

0

In

]

u (A.1)

with Hamiltonian function

H(q,p) =
1

2
p>M−1(q)p+ V (q). (A.2)

q,p ∈ Rn are generalized positions and momenta, respectively, and are assumed mea-

surable, u ∈ Rn is the control input. The mass matrix M(q) = M>(q) > 0, and

satisfies

m1In ≤M−1(q) ≤ m2In (A.3)

In is the n×n identity matrix. We assume that the Hamiltonian (A.2) has a minimum

at the desired equilibrium (q?, 0), that is,

q? = argminV (q),

and it is isolated.

Lemma 1. The system (A.1) admits a state space representation in the coordinates

(q,p) 7→ (q, p) of the form

[

q̇

ṗ

]

=

[

0 T (q)>

−T (q) S(q, p)

]

∇W (q, p) +

[

0

v

]

(A.4)

with v := T (q)u the new control signal, new Hamiltonian function

W (q, p) =
1

2
|p|2 + V (q), (A.5)
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and the gyroscopic forces matrix as

S(q, p) := ∇>(Tp)T> − T>∇(Tp)|p=T−1p.

=

n
∑

i=1

[

[

∇qi(T )T
−1p

]

(Tei)
> − (Tei)

[

∇qi(T )T
−1p

]>
]

, (A.6)

with ei the i − th basis vector of Rn. Furthermore, S(q, p) verifies the following

properties.

(i) S is skew symmetric, that is, S + S> = 0.

(ii) S is linear in the second argument, that is, S(q, α1p + α2p̄) = α1S(q, p) +

α2S(q, p̄), for all q ∈ Rn, p ∈ Rn, p̄ ∈ Rn and α1, α2 ∈ Rn.

(iii) There exists a mapping S̄ ∈ Rn×Rn such that S(q, p)p̄ = S̄(q, p̄)p, for all q ∈ Rn,

p and p̄ ∈ Rn

Proof. From the change of coordinates (q,p) 7→ (q, p), we define p = Tp and a factor-

ization to the inertia as

M(q)−1 = T (q)>T (q) (A.7)

such that differentiating p̄ yields

ṗ = Ṫp− T∇q

(1

2
p>M−1p

)

− T∇V (q) + Tu (A.8)

Note now that

Ṫp =

n
∑

i=1

(∇qiT )(e
>
i q̇)p =

n
∑

i=1

(∇qiT )p(e
>
i M

−1p)

=

n
∑

i=1

(∇qiT )T
−1p(e>i T )p (A.9)

and that

∇q{
1

2
p>M−1p} = ∇q{

1

2
p>T>Tp} =

n
∑

i=1

{(∇qiT )p}>p

=
n
∑

i=1

ei{(∇qiT )T
−1p}>p (A.10)

Replacing (A.9) and (A.10) in (A.8) yields (A.4) with S(q, p) as in (A.6). Properties

(i) − (iii) follow immediately from skew-symmetry and linearity of S(q, p) in (A.6).

���
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A.2 Avoiding the gradient on T matrix

The change of coordinates presented in the section A.1 mapped as skew-symmetric

matrix the nonlinearity of the system into the interconnection matrix, given by (A.6).

However the gradient at T can be obviated assuming that M(q) is totally know. From

the definition M−1 = T>T , we can to get its gradient in every coordinates i as

∇qiM
−1(q) = ∇qi(T

>)T + T>∇qiT

= 2T>∇qiT

such that

−M−1∇qiM(q)M−1 = 2T>∇qiT

−1

2
T∇qiM(q)T>T = ∇qiT (A.11)

Finally replacing (A.11) in (A.6) we acquire an expression to S(q, p) independent of

∇qiT (q) that yields to be:

S(q, p) =
1

2

n
∑

i=1

[

(Tei)
[

∇qi(M)T>p
]>
T> − T

[

∇qi(M)T>p
]

(Tei)
>
]

(A.12)

This equivalence will be useful to carry out the implementation of the controllers

(experiments) presented in the section 3.8
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[22] G. Besançon (Ed.). Nonlinear Observers and Applications. Lecture Notes

in Control and Information Science, Vol. 363, Springer-Verlag, 2007.

[23] V. Andrieu and L. Praly. On the existence of a Kazantzis-Kravaris Luenberger

observer. SIAM J. Control and Optimization, 47(4), pp. 18146–1850.

[24] V. Andrieu, L. Praly and A. Astolfi. Homogeneous approximation, recursive ob-

server design and output feedback. SIAM J. Control and Optimization, Vol. 47,

pp. 1814-1850

[25] D. Karagiannis and A. Astolfi. Observer design for a class of nonlinear systems

using dynamic scaling with application to adaptive control. Proc. IEEE Conf.

Dec. & Contr., Cancun, Mexico, Dec 9-11, 2008.

[26] A. Astolfi, R. Ortega and A. Venkatraman. A globally exponentially conver-

gent immersion and invariance speed observer for mechanical systems with non-

holonomic constraints. Automatica, 46(1), 2010, pp. 182–189.

[27] H. Berghuis and H. Nijmeijer, A passivity approach to controller-observer design

for robots, IEEE Trans. Robotics Automat., vol. 9, pp. 740-754, Dec. 1993.



BIBLIOGRAPHY 71

[28] S. Nicosia and P. Tomei, Robot control by using only position measurements,IEEE

Trans. Automat. Contr., vol. 35, no. 9, pp. 1058-1061,Sept. 1990.

[29] A. Astolfi, A. Isidori and L. Marconi, A note on disturbance suppression for

hamiltonian systems by state feedback, in: Proc. IFAC Workshop on Lagrangian

and Hamiltonian methods in nonlinear systems, Seville, Spain, April 3–5 2003.
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Canada, pp. 3490–3495, 2012.

[57] I. Sarras, R. Ortega and E. Panteley, Asymptotic stabilization of nonlinear sys-

tems via sign–indefinite damping injection, 51st IEEE Conference on Decision

and Control, (CDC’12), dec. 10–13, 2012, Maui, Hawaii, USA.

[58] F. Zhang, D. M. Dawson, M. S. de Queiroz, and W. E. Dixon, Global adaptive

output feedback tracking control of robot manipulators, IEEE Transactions on

Automatic Control, Vol. 45, No. 6, pp 1203–1208, 2000

[59] E. Zergeroglu, D. M. Dawson, M. S. de Queiroz, and M. Krstic, On global out-

put feedback tracking control of robot manipulators, 39th IEEE Conference on

Decision and Control (CDC’00), Sydney, Australia, pp. 5073–5078, 2000

[60] F. Pertin and J.-M. Bonnet-des-Tuves, Real time robot controller abstraction

layer, Proc. Int. Symposium on Robots, march 2004, Paris, France.

[61] Philippe Gerum, Xenomai - implementing a RTOS emulation framework on

GNU/Linux, White Paper, Xenomai,april 2004.

[62] R.Kelly, S. Davila,A. Loria, Control of Robot Manipulators in Joint Space,

Springer-Verlag, London, UK, 2005.

[63] G.Viola, R.Ortega, R.Banavar, J.A. Acosta adn A.AStolfi, Total energy shaping

control of mechanical systems: Simplifying the matching equations via coordinate

changes, IEEE Transacions on Automatic Control, Vol. 52, No. 6, 2007.



74 BIBLIOGRAPHY

———————————————————-


