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Résumé
Pour des missions spatiales de longue durée, les plantes supérieures doivent faire partie des 
systèmes  de  support-vie.  Le  projet  Micro-Ecological  Life  Support  System  Alternative 
(MELiSSA, alternative de système de support-vie  micro-écologique)  de l’Agence Spatiale 
Européenne est basé sur un système clos de support vie qui inclut, autour d’un compartiment 
consommateur,  des  compartiments  microbiens  et  des  plantes  supérieures.  Les  plantes 
consomment les déchets pouvant être recyclés (les eaux usées et du CO2) et produisent de la 
nourriture fraîche, de l’eau potable et de l’oxygène pour l’équipage. Un des points clé pour ce 
type d’étude est le maintien d’un système qui assure le recyclage de tous les éléments C, H, 
O,  N,  S,  P,  …  C’est  pourquoi  la  base  de  l’étude  repose  sur  une  modélisation  des 
stœchiométries  de  conversion  qui  doit  traduire  les  échanges  de  matière  et  d’énergie  en 
fonction des limitations physiques qui sont les paramètres de contrôle du système. L’étape 
préliminaire  a été  d’établir  un modèle métabolique  de feuille  (un sous-modèle  du modèle 
biochimique),  comprenant  le  métabolisme  central  et  utilisant  les  techniques  métaboliques 
d’analyse des modes élémentaires (EFMA) et d’analyse des flux métaboliques (MFA) associé 
à  une  vision  intégrée  de  l’énergétique  du  métabolisme  central.  En  l’absence  de  données 
expérimentales  suffisantes,  le modèle  métabolique  de feuille  a été construit  à  partir  de la 
composition  de  la  biomasse  référencée  par  le  Département  Americain  de  l'Agriculture 
(USDA) et validé avec les données expérimentales de laitues (Lactuca sativa) cultivées dans 
l’installation de recherche des systèmes à environnement contrôlé (CESRF) de l’Université de 
Guelph (Canada). Pour la première approche, le modèle est satisfaisant et prometteur; il peut 
prédire la production de biomasse une fois connecté aux facteurs physiques de la croissance 
de plante (lumière, disponibilité en CO2 et en eau,…) au cours du temps et à la composition 
de la biomasse. Cependant, nos résultats souffrent d’un manque de données pour vérifier les 
modèles métaboliques; ainsi, différents types de mesures pour des prédictions plus précises 
sont proposés. Le futur modèle doit être en mesure de contrôler la croissance de la plante pour 
la survie des humains, connaissant les flux provenant des autres compartiments de la boucle 
MELiSSA. Par ailleurs, l’approche décrite ici peut être utilisée de manière plus générale pour 
tous  types  d’études  et  modélisations  du  métabolisme,  en  particulier  pour  étudier  le 
fonctionnement simultané et/ou consécutif des métabolismes photosynthétique et respiratoire.

Mots-clés :  Analyse  des  flux  élémentaires,  analyse  des  flux  métaboliques,  croissance  des 
plantes  supérieures,  modélisation,  modèle  métabolique  des  plantes  supérieures,  modèle 
stœchiométrique.

i



ii



Abstract
For  long term space  missions,  higher  plants  are  necessary to  be  included in  life  support 

systems.  The  Micro  Ecological  Life  Support  System  Alternative  (MELiSSA)  project  of 

European Space Agency (ESA) is based on a closed life support system where microbial and

higher plant compartments support the consumer’s compartment. Plants consume the possible 

recycling wastes (waste water and CO2) and provide fresh food, potable water and oxygen to 

the crew. One of the key points for this kind of study is to maintain a system which recycles 

all the elements C, H, O, N, S, P, etc. That is why, the study is based on the modelling of 

conversion  stoichiometries;  they  are  the  results  of  the  control  parameters  of  the  system 

(physical  limitations  of  mass  and  energy  exchanges).  As  a  preliminary  step,  we  have 

established leaf metabolic  model  (a sub model  of the plant  biochemical  model)  involving 

central  carbon  metabolism  using  metabolic  techniques,  elementary  flux  mode  analysis 

(EFMA) and metabolic flux analysis  (MFA). It is associated to an integrated approach of 

energetics  and central  metabolism.  Due to data  limitations,  the  leaf  metabolic  model  was

constructed taking the biomass composition of lettuce (Lactuca sativa) from United States 

Department of Agriculture (USDA) and validated with the experimental data where lettuce 

grown  in  controlled  Environment  Systems  Research  Facility  (CESRF)  of  University  of 

Guelph (Canada). For the first approach, the model is satisfying and promising; it can predict 

the biomass production connecting the physical plant growth factors (light, CO2 and water 

availability,  etc.)  along with time course growth and biomass  composition.  However,  our 

results show the lack of sufficient data; hence, various kinds of measurements required for 

more accurate model predictions are proposed. The future model must be able to control and 

manage the plant growth for human survival knowing the fluxes from other compartments of 

MELiSSA loop. Further,  the approach described here can be used more generically in all

kinds  of  metabolic  studies  and  modeling,  especially  for  studying  simultaneous  and/or 

consecutive photosynthetic and respiratory metabolisms.

Key words:  Elementary Flux mode analysis;  higher  plant  growth;  higher  plant  metabolic 

model, metabolic flux analysis; modelling; stoichiometric model.
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Atoms, molecules and metabolites

10-formylTHF 10-Formyltetrahydrofolate

1-3BPGA 1,3- bisphospho-D-glycerate

1-3BPGA4- Reduced form of 1,3- bisphospho-D-glycerate

2 Oxo 2-oxoglutarate or 2-ketoglutarate

2-oxobut 2-oxobutanoate

2-oxoiso 2-oxoisovalerate

2PGA 2-phospho-D-glycerate

3PGA - 3-phospho-D-glycerate

4-hydroPhe 4-hydroxyphenylpyruvate

5p-ribosyl-1-pp 5-phospho-alpha-d-ribosyl 1-pyrophosphate 

ac Acetate

AcCoA- Reduced form of acetyl-CoA

AcCoA Acetyl-CoA

ADP Adenosine diphosphate

ADP3- Reduced form of adenosine-diphosphate

Ala Alanine

AMP Adenosine monophosphate

AMP2- Reduced form of adenosine-monophosphate

Arg Arginine 

Asn Asparagine 

Asp Aspartate

Asp-semialdehyde Aspartate-semialdehyde

ATP Adenosine-triphosphate

ATP3- Reduced form of adenosine-triphosphate

C Carbon 

Ca2+ Calcium ion (oxidised)

CH2=THF Methyltetrahydrofolate

CH3THF 5-formyl-tetrahydrofolate

Cis Aconitate3- Reduced form of cis aconitate

Cisaconitate Cis aconitate
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Cit Citrulline

Citrate3- Reduced form of citrate

Cl- Chloride ion

CO2 Carbon dioxide

CoA Coenzyme A

Cys Cystine

DHAP Dihydroxyacetone phosphate

DHAP2- Reduced form of dihydroxyacetone phosphate

DNA Deoxyribonucleic acid

E4P D-erythrose-4-phosphate

E4P2- Reduced form of D-erythrose-4-phosphate

F6P D-fructose-6-phosphate

F6P2- Reduced form of D-fructose-6-phosphate

FAD Flavine adenine dinucleotide (oxidised form)

FADH2 Flavine adenine dinucleotide (reduced form)

FBP D-fructose-1,6-bisphosphate

FBP4- Reduced form of D-fructose-1,6-bisphosphate

Fe2+ Iron ion 

fum Fumarate

Fumarate2- Reduced form of fumarate

G1P D-glucose 1-phosphate

G1P2- Reduced D-glucose 1-phosphate

G3P Glyceraldehyde-3-phosphate

G3P2- Reduced glyceraldehyde-3-phosphate

G6P D-glucose 6-phosphate

G6P 2- Reduced D-glucose 6-phosphate

GDP3- Reduced form of guanosine diphosphate

Gln Glutamine

Glu Glutamate

Glu semi Glutamate-γ-semialdehyde

Gly Glycine

glycerol3P Glycerol 3-phosphate

GTP4- Reduced form of guanosine triphosphate

H Hydrogen
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H+ Proton ion

H2O Water

H2S Hydrogen sulphide

Hexose 6-P Hexose 6-phosphate

His Histidine

HN
+ Proton in N-phase

HNO3 Nitrate 

HP
+ Proton in P-phase

icit Isocitrate

Iso Isoleucine

Isocitrate2- Reduced isocitrate

K+ Potassium ion

Leu Leucine

Lys Lysine

Mal Co A MalonylcoA

Malate L-malate

Malate2- Reduced L-malate

MethenylTHF 5,10-methenyltetrahydrofolate

Mg2+ Magnesium ion

N Nitrogen

NAD+ Nicotinamide adenine dinucleotide

NADH, H+ or NADH Nicotinamide adenine dinucleotide (reduced form)

NADP+ Nicotinamide adenine dinucleotide phosphate

NADPH, H+  or NADPH
Nicotinamide adenine dinucleotide phosphate 

(reduced form)

NADPH, HN
+ 

Nicotinamide adenine dinucleotide phosphate 

(reduced form) at N-phase

NADPH, HP
+ 

Nicotinamide adenine dinucleotide phosphate 

(reduced form) at P-phase
NH3 Ammonia

O Oxygen

O2 Dioxygen (molecular oxygen)

OAA Oxaloacetate

Orn Ornithine

Oxaloacetate2- Reduced oxaloacetate
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P Phosphorus

PEP Phosphoenol pyruvate

PEP3- Reduced phosphoenol pyruvate

PGA3- Reduced 3-phospho-D-glycerate

Phenyl Ala Phenylalanine

Pi  Inorganic phosphate

Pi2- Reduced inorganic phosphate

PPi Pyrophosphate

PPP Pentose phosphate pathway

PQ Plastoquinone

PQH2 Plastoquinol

Pr & Pfr Forms of phytochrome

Pro Proline

Pyr Pyruvate

Pyr 5 1-pyrroline-5-carboxylate

pyruvate- Reduced pyruvate

R5P Alpha-D-ribose 5-phosphate

R5P2- Reduced alpha-D-ribose 5-phosphate

RBP Ribose 1,5-bisphosphate

RNA Ribonucleic acid

Ru5P D-ribulose 5-phosphate

Ru5P2- Reduced D-ribulose 5-phosphate

RuBisCO Ribulose Bisphosphate Carboxylase-Oxygenase

RuBP D-ribulose 1,5-bisphosphate

RuBP4- Reduced D-ribulose 1,5-bisphosphate

S Sulphur

S7P Sedoheptulose 7-phosphate

S7P2- Reduced sedoheptulose 7-phosphate

S-ade-methionine S-Adenosyl-L-methionine

S-ad-homocysteine S-Adenosyl-L-homocysteine

SBP Seduheptulose-1,7-bisphosphate

SBP4- Reduced seduheptulose-1,7-bisphosphate

Ser Serine

Suc Succinate
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Suc CoA Succinyl-CoA

Suc homoserine Succinyl homoserine

Succinyl-CoA- Reduced succinyl-CoA

THF Tetrahydrofolate

Thr Threonine 

Triose 3-P Triose 3-phosphate

Trp Tryptophan

Tyr Tyrosine

UDP Uridine-diphosphate

UDP-glucose 
Uridine 5'-(trihydrogen diphosphate) 

alpha-D-gucopyranosyl ester
UMP Uridine-monophosphate

UQ Ubiquinone

UQ.- Ubiquinone semi radical

UQH2 Ubiquinol

UQN
.- Ubiquinone semi radical at N-phase

UQP
.- Ubiquinone semi radical at P-phase

Val Valine

Xu5P D-xylulose 5-phosphate

Xu5P2- Reduced D-xylulose 5-phosphate
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Scientific parameters, variables and 
notations

* Physiological conditions
A Stoichiometric matrix of ‘m’ metabolites and ‘n’ reactions 
aa Amino acid
c Velocity of light (2.998 × 108 m/s)
CuA Copper site near mitochondrial P-phase
CuB Copper site near mitochondrial N-phase
Cyt Cytochrome
Cyt b6f Cytochrome b6f
Cyt bH Cytochrome bH

Cyt bL Cytochrome bL

Cyt bH
- Reduced cytochrome bH

Cyt bL
- Reduced cytochrome bL

Cyt c1 Cytochrome c1

Cyt Fe3+ Oxidised cytochrome 
Cyt Fe2+ Reduced cytochrome
e Elementary mode
e- Electron
E Exchangeables
Em,7 Mid point potential at pH 7 (mV)
Em,4 Mid point potential at pH 4 (mV)
Em,7.5 Mid point potential at pH 7.5 (mV)
Em,6.5 Mid point potential at pH 6.5 (mV)
EN Electrical potential at N-phase (mV)
EP Electrical potential at P-phase (mV)
E Total luminous energy available for one quanta of photon (kJ/mol)

E∆ Total energy of any system (kJ/mol)
F Faraday’s constant (kJ/mol)
Fd Ferredoxin
Fdox Oxidised ferredoxin (Fd(Fe3+))
Fdred Reduced ferredoxin (Fd(Fe2+))

G∆ Gibbs free energy (kJ/mol)
7,mG∆ Free energy at pH 7 (kJ/mol)

4,mG∆ Free energy at pH 4 (kJ/mol)

5.7,mG∆ Free energy at pH 7.5 (kJ/mol)

5.6,mG∆ Free energy at pH 6.5 (kJ/mol)

physioG∆ Free energy at physiological condition
h Planck’s constant (6.626 ×10-34 J/s)
hν Photon of light 
hν680 Photon of light at 680 nm 
hν700 Photon of light at 700 nm
J Unknown vector of the reaction rates or fluxes
Km Kinetic parameter of Michaelis-Menton constant
m Metabolites of a system
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n Reactions of a system
n Number of electrons participated in a reaction
N Number of amino acids
NE Nonexchangeables or intermediate metabolites
N-phase Negative phase
ne Number of protons consumed
∆pH pH gradient between the membranes
P680 Reduced pheophytin
P680

+ Oxidised pheophytin
P680

* Excited photosystem, PS II due to the photon absorption at 680 nm
P700

* Excited photosystem, PS I due to the photon absorption at 700 nm
P700 Reduced photosystem, PS I
P700

+ Oxidised photosystem, PS I
PC Plastocyanine
PC (Cu2+) Oxidised plastocyanin
PC (Cu+) Reduced plastocyanin
P/2e- Ratio of the production rates of ATP and reduction power of two electrons for

photosynthesis (ATP/NADPH, H+)
pHN pH at N-phase
pHP pH at P-phase
P/O Ratio of ATP production rate and consumption of the reduction power of two 

electrons for respiration (production of 1 mole of water from ½ mole O2)
P-phase Positive phase

III, PS Photosystem I and II
Q Net heat supplied to the system
QA & QB site Sites located at chloroplast and mitochondrial membranes
QN Ubiquinol binding site near N-phase
QP Ubiquinol binding site near P-phase
R Ideal gas constant (8.31451 J/mol K) 
R Vector of rates of exchange

ER Vector of rates of exchange for exchangeables
NER Vector of rates of exchange for nonexchangeables

rH Ratio of oxidised and reduced forms of cytochrome bH

rL Ratio of oxidised and reduced forms of cytochrome bL

T Temperature (K)
Vmax Kinetic parameter of Michaelis-Menton equation
W  Work done by the system

Greek Letters

α Stoichiometric coefficients for lipid formation
β Stoichiometric coefficients for lipid formation
γ Stoichiometric coefficients for lipid formation
δ Stoichiometric coefficients for lipid formation
λ Wavelength of light (nm)

−.
~

NUQµ Electrochemical potential of semi ubiquinone radical at N-phase
−.

~
PUQµ Electrochemical potential of semi ubiquinone radical at P-phase

∆Ψ Membrane chemical potential (mV)
ηmax Coefficient of photosynthesis
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Foreword
The project of higher plant growth modelling for life support systems has been developed 

jointly for two aspects: the global model design with a specific accent on mass and energy 

transfers, and the simulation of the biomass production at the level of metabolism and plant

growth  stoichiometry.  These  studies  are  presented  in  the  thesis  manuscripts  of  Pauline 

Hézard, “Higher plant growth modelling for life support systems: global model design and 

simulation of mass and energy transfers at the plant level” and Swathy Sasidharan L, “Higher 

plant growth modelling for life support systems: Leaf metabolic model for lettuce involving 

energy conversion and central carbon metabolism”. These two documents have a common 

foreword, defining the main aspects and requirements of the project.

Life support systems requirements
Space  exploration  includes  long-term manned  missions  as  well  as  planetary  explorations, 

which require life support systems (LSS) designed with a high degree of closure and food 

regeneration  capability.  Micro-Ecological  Life  Support  System  Alternative  (MELiSSA) 

project of European Space Agency (ESA) is designed in this objective providing a planetary

base for continuous life support system of a small crew (from 2 to 6), recycling 100% of air,  

water and producing at least 40% of food.

This system consists of six separated compartments growing micro- and macro-organisms in 

order to fulfil all the different recycling steps. One of these is used for growing plants: they 

are in the last steps of recycling, permitting oxygen, water and food regeneration from carbon 

dioxide, mineralised water and light. The final aim is to be able to control whole recycling 

loop  in  order  to  fulfil  human  needs.  In  this  objective,  efficient  and  robust  models  are 

necessary for each compartment; they are required to control the environment (temperature, 

pH,  light  intensity,  etc.)  to  obtain  the  required  behaviour  for  the  organism.  Then,  the 

compartment could provide the required amount of output in terms of gas, liquid and solid

(food) to the rest of the loop. The system of control is highly constrained by two specificities:  

multiple  levels  and  multiple  time  scales.  In  terms  of  levels,  four  different  layers  can  be 

described (Dussap et al., 2005): level 0 is the closest to the process; it contains the process 

measurements  and  basic  controllers  for  maintaining  the  adequate  set  point  for  an 

environmental parameter. For example, temperature or pH regulations rely on heater-cooler 

start  and  stop  or  acid-base  pumps,  with  a  simple  proportional-integral-derivative  (PID) 
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controller. Level 1 contains the system model itself, which corresponds to the present work. It 

states  the  correct  value  for  each  environmental  parameter  based  on  the  system  history, 

prediction  determination  and  overall  loop  requirements.  Level  2  is  not  specific  for  one 

compartment, but regulates all the set points in an optimisation objective in order to respond 

to level 3 requirements. Level 3 is the interface with the crew, who can define future events 

(like crew member arrival or departure) and accurate environmental tuning. This level defines 

the optimised response of the loop in order to fulfil these requirements.  In terms of control  

dynamics, they are highly different depending on the different states of the matter: gas control

has to be effective within few minutes, liquid control is at an hourly step, and food control is 

in the day scale. Moreover, depending on each compartment, the biological response kinetics 

to environmental adjustment is different and these various time scales have to be accounted in 

the models. For the output control, quality and security aspects have to be included: quality in 

terms of chemical and microbiological content to be provided to the consumers (human crew 

for the overall system, but also each compartment); and security for the backup systems that 

should  be  included at  each  key point,  for  each  step of  the  closed  loop process.  Another 

important issue is that the life support system functions with uncontrolled inputs, for example, 

CO2 production rate from the crew cannot be predicted accurately. Additionally, these inputs 

may be discontinuous (crew waste production) for a system that is designed for a continuous

functioning; this means that all the system is constrained by the mass balance of the overall 

loop, for all the chemical elements. In a mass- and volume-limited environment in space, the 

buffer sizes have to be small for each of the consumable (oxygen, water, food, etc.), which 

means that the life support system must have a short response-time and a highly adaptable 

behaviour.

Higher plant compartment requirements
Concerning  the  higher  plant  compartment,  the  growth  environment  is  designed  as  fully 

controlled, except for the supply of CO2 and waste issued from the human habitat. The input 

flow rate corresponds to the flow rate of minerals (CO2, N-NO3 and N-NH4) coming from the 

previous  compartments  in  charge  of  waste  degradation.  Light  intensity  and  photoperiod, 

temperature, humidity, pH of the nutrient solution and electro conductivity are adjusted. The

higher plants’ growth model should be designed for organising the cultures, and if possible, 

managing environment  in order  to control  plant  behaviour.  The main requirements  are  of 

three ranges. First, for a closed loop, it is necessary to follow mass balance principle at each 
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step. Then, the model for higher plant compartment should take into account mass balance: 

metabolism has to be considered, even if a simplified way with few, global stoichiometric 

equations. Secondly, this model is only a part of MELiSSA loop control system: it has to be 

able to communicate information with the models of the other compartments. As it is also a 

long-term implementation system, it should be built in a structured form in order to be easy to 

modify, just changing specific functions or adding new parts, if necessary. Finally, the system 

will be settled in extraterrestrial places: the environmental conditions may not be similar to 

Earth’s conditions, especially in terms of gravity and radiations. Therefore, the model has to

be based upon known mechanisms and validated equations.  This mechanistic  approach of 

modelling could be based upon the understanding of rate-limiting processes for plant growth: 

the different mechanisms that happen in the organism have a maximum rate depending on few 

parameters.  For example,  maximum light interception depends on leaf properties (surface, 

absorption coefficient, etc.) and incident light intensity. These parameters have to be included 

in the model in order to obtain an accurate value of light energy available for plant growth. If 

all the maximum rates are calculated (such as water, CO2, nutrient availability), it is possible 

to  know  which  rate  limits  plant  growth.  Following  all  these  objectives,  an  extensive 

bibliographic research was made for finding existing models of plant growth. They can be 

separated  in  three  categories  as  described  below:  global  models,  models  of  physical

mechanisms and models of biochemical mechanisms.

Existing plant growth models

Global models
Global models can be separated in two main types: process-based models  and functional-

structural models.

Process-based models consider the environment as the main driving variable for plant growth. 

The calculation of soil and atmosphere variations depending on climatic conditions and plant 

interactions permit  the calculation of biomass growth and development,  in a more or less 

detailed view. Process-based models take into account some of the growth mechanisms like 

light interception or water and nutrient absorption. However, plant shape is usually simplified

as root and shoot, and/or edible and inedible. These models have the aim of modelling plant 

growth  in  an  explanatory  way  linking  environment  characteristics  to  plant  growth  and 

development; however the developmental steps are included in an empirical way (Bouman et  
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al., 1996; Boote et al., 1998; Gabrielle et al., 1998; Brisson et al., 2008; Priesack and Gayler, 

2009).

Functional-structural plant models are based upon plant architecture. They consider the plant 

shape (structure) in a detailed way;  the internal  plant mechanisms are often included in a 

simplified, sometimes empirical way (Fournier and Andrieu, 1998, 1999; Yan  et al., 2004; 

Allen et al., 2005; Evers et al., 2005; Cournède et al., 2006; Bertheloot et al., 2008).

Of the existing global models of plant growth, all include an original approach of specific 

mechanisms: process-based models are usually well-structured for all of the mechanisms, and

the limiting rates are calculated for predicting water or nutrient stress and eventually pests. 

Even if they often contain empirical  simplifications for some processes, the approach and 

results are mainly based on extensive experimental knowledge from agriculture results. Also, 

soil and atmosphere dynamics can be included in an accurate mechanistic way, and the aim of 

guiding agricultural practices corresponds to the objective of the life support system control. 

Finally, functional-structural plant models include an accurate approach of morphology (even 

if  the  laws  of  architectural  growth  are  not  really  mechanistic),  and  an  explanatory  or 

mechanistic  approach  for  some  of  the  mechanisms.  Some  of  them  calculate  the  exact 

repartition of light and its absorption in the leaves; others take into account a mass-balance 

approach for biomass repartition in the different organs, etc. That is why, even if none of them

can be adapted directly to MELiSSA modelling approach, they can all give interesting ideas 

for  building  a  new model.  Consequently,  it  is  necessary  to  take  into  account  models  of 

specific mechanisms in order to select suitable ones.

Physical models
The models of plant physical mechanisms for a general plant are studied separately and the 

influences of specific parameters or conditions are tested in detail. The main mechanisms are 

light interception, gas exchange, sap conduction and root uptake. Most of them have been 

built on mechanistic or explanatory laws.

Light  interception is  generally represented using Beer-Lambert  law, at  the global  or local

scale, eventually including the reflection and refraction indices, differentiation between leaves 

receiving  direct  or  diffuse  light,  the  leaf  properties  such as  leaf  angle,  height  or  density 

(repartition in space), etc. (Govaerts, 1996; Asner and Wessman, 1997; Chelle and Andrieu, 

1998; Wang and Leuning, 1998).
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Another mechanism is the gas exchange; it happens through the stomata, small dynamic holes 

in plant cuticles;  it  depends on stomatal aperture, wind speed in external atmosphere,  leaf 

shape, CO2 concentration difference between atmosphere and leaf. Stomatal aperture is an 

important active mechanism based upon osmotic regulations which are controlled by sensing 

the parameters like light intensity, internal CO2 concentration, atmosphere humidity or water 

availability at the root level. Gas exchange depends, also on the atmosphere dynamics around 

the  leaves,  leaf  shape  and  canopy  architecture.  Many  different  types  of  models  exist, 

depending if  they consider atmosphere dynamics  (Boulard  et al.,  2002),  stomatal  aperture

(Aalto  et  al.,  1999;  Dewar,  2002;  Kaiser,  2009),  CO2 diffusion  (Leuning,  1995),  water 

transpiration (Monteith, 1981) or several of these mechanisms (Tuzet  et al., 2003; Xu and 

Baldocchi, 2003; Zavala, 2004).

The matter exchange between leaf and root happens via sap conduction vessels, which are 

separated into two different types depending on the sap composition, origin and role: phloem 

sap contains water and organic solutes produced by photosynthesis in the leaves and provide 

the organic substrates as building blocks for biomass production in the non-photosynthetic 

organs:  buds,  roots,  fruits  or  grains  and storage  organs.  For  the  movement  of  water  and 

mineral nutrients from the roots, xylem vessels are made of dead lignified cells allowing a 

rapid  upstream  flow.  Sap  flow  rate  depends  on  vessel  radius,  length,  sap  viscosity  and

production (source) and demand (sink) powers, which are expressed as water potential. Only 

one mechanistic model of phloem exists, based on the pressure difference between production 

and consumption sites (Christy and Ferrier,  1973; Henton  et al.,  2002). Usually,  only the 

source and sink powers of the organs and a resistance-to-transfer factor are taken into account 

in order to model directly biomass repartition in global models (Yan et al., 2004; Allen et al., 

2005).  For  xylem,  in  many  cases,  the  transport  is  not  considered  limiting  compared  to 

evaporation  mechanism  of  transpiration,  however  some  models  consider  this  resistance 

(Tyree, 1997; Da Silva et al., 2011).

Last  important  mechanism  is  the  root  absorption.  It  depends  on  root  architecture  and 

morphology, nutrient and water availability, active uptake mechanisms, root permeability and

pumping power (water potential difference). Several models exist with different parameters 

and structures (Fiscus and Kramer, 1975; Hopmans and Bristow, 2002; Roose, 2000).

All these mechanisms are extensively studied and most of the models have been established 

for more than 30 years; however, some parts remain uncertain. The mechanisms which would 

require  some  more  attention  for  including  accurate  and  robust  mechanistic  laws  are  the 
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stomatal processes, the sap flow (especially for phloem sap calculation, as it is difficult to 

measure it experimentally and it is rarely included in the models) and the root absorption. In 

any case, all the existing laws should be evaluated in order to verify the applicability in the 

case of controlled but extraterrestrial conditions.

Biochemical models
The biochemical mechanisms exist at two levels: (i) at the cell scale, metabolism, genome 

transcription-translation  regulations,  cell  multiplication-differentiation,  osmotic  regulations,

etc. (ii) at the plant or organ scale, hormonal signalling, environmental sensing and active 

transports. However, the latter  are poorly described in terms of mathematical formulation, 

except for metabolism: the role of each hormone, the existence of the sensing systems and the 

signalling  cascade,  the  cell  multiplication  and  differentiation  regulations,  especially 

concerning transcription and translation regulations are not totally understood or known. The 

large variety of cultivars has given the opportunity to include the genetic variability into some 

process-based models in order to predict the response of each cultivar to the environment. 

However,  the mechanisms of resistance to a specific  pest  or environmental  stress are  not 

known in detail and the inclusion of cultivar genetic specificities is purely empirical (Bertin et  

al., 2010). On the contrary,  several modelling tools are available for metabolism; some of

them follow mass-balance  principle  using stoichiometric  equations.  They provide the link 

between matter and energy exchange laws of the physical mechanisms and biomass growth 

and  composition.  For  other  biochemical  mechanisms,  they  could  be  included  in  an 

explanatory way for the known mechanisms,  for example,  as global laws of development 

regulation and environmental sensing.

Design of a new model
With the knowledge of existing plant growth models and MELiSSA requirements, a global 

plant  growth model  is  designed based on the physical  and biochemical  mechanisms.  This 

corresponds to the structure of a process-based model. However, it should include a detailed 

description of plant architecture for a functional-structural model. Last requirement is to add a 

correct  mass-balance  approach  with  metabolic  stoichiometries.  The  designed  model  is

schemed in the next page: ‘Part a’ represents the plant mechanisms for the flows of matter and 

energy, which have to be modelled. ‘Part b’ is the description of the designed model with the 

details of the flows of information, separated as matter, energy and architecture information.
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Figure: Comparison of plant and aimed model structures describing the flows
of matter, energy and information.
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The  blue  boxes  represent  the  plant  behaviour  depending  on  growth:  development  and 

architecture  mechanisms,  which  cannot  be  described  with  simple  mechanistic  laws.  The 

yellow boxes contain physical  mechanisms submodels,  and the red boxes are  specific  for 

biochemical mechanisms submodels. These submodels are developed concomitantly in order 

to  achieve  the  entire  plant  growth  model;  the  work  associated  has  been  split  into  two 

complementary projects. These two research objectives have been realised in permanent close 

cooperation:  architectural  and physical  (blue  and  yellow)  submodels  are  described  in  the 

thesis of Pauline Hézard while we discuss the biochemical submodels (red). 

Therefore, this document mainly concerns the biochemical model for higher plants growth. Of 

course, this work and manuscript has been elaborated in constant co-operation with Pauline 

Hezard’s Ph D thesis that brings integrated views of higher plants growth model in connection 

with metabolic models.
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Introduction
The plant growth modelling is  definitely a major task for the success of long term space 

exploration, because plants keep humans and other organisms alive. Without plants on long-

duration  missions,  humans  cannot  survive  safely.  Plants  consume  the  possible  recycling

wastes like waste water and atmosphere and provide fresh food, potable water and oxygen to 

breathe, in addition to the green and lively atmosphere. In terms of recycling functions, apart 

their intrinsic objective to produce edible biomass, higher plants have major capacities for 

recycling  carbon  (CO2 assimilation  by  photosynthesis),  producing  oxygen  (by 

photosynthesis), recycling water, nitrogen and other elements. Therefore, in conncetion with 

other compartments devoted to specific unit operations such as waste degradation, separation, 

fractionation, etc., higher plants compartment holds a central role for life support systems for 

recycling major elements. This is quite similar at another scale for terrestrial biosphere, the 

sustainability of which being listed to the photosynthetic activity of vegetation.

This thesis explores the routes to obtain the biochemical model of plant growth. The study is

specifically  applicable  for  plants  that  are  growing  in  controlled  environments.  The 

development of biochemical model is mandatory in the designed higher plant growth model 

of Micro Ecological Life Support system Alternative (MELiSSA) loop of European Space 

Agency. Adopting a reductionist’s point of view, our main concern is the modelling of plant 

metabolism linking the physical parameters such as CO2, water, light in terms of inputs, and 

biomass and O2 as outputs. The modelling requirements such as mass and energy balances, 

either at steady state or at pseudo steady state inside the loop are considered; then, the model 

stands for accounting elemental balances with the surroundings in terms of the flow of inputs 

and outputs. This concept gives a valid approximation for the modelling of plant growth in the 

controlled and predetermined environmental chamber.

Understanding  the  plant  characteristics,  the  difficulty  lies  in  the  factors  controlling  plant 

growth: the biochemistry, metabolism and the associated properties and mechanisms differ in 

different cells,  tissues and organs. Though almost  all  plants have the same central  carbon 

metabolic  pathways,  the  reactions  occur  at  different  rates.  These  are  influenced  by 

environmental  conditions  which  are  simulated  by the physical  models.  Therefore,  for  the 

biochemical model validation,  it  is necessary to verify the experimental data (input/output 

flux rate and material balances) of plants grown under a predetermined/known environmental 

system. 
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Further, the degrees of freedom and complexities may increase, if we consider the whole plant 

metabolic network as such (as thousands of reactions are involved) to obtain the biochemical 

model; also, there are interactions within the cell organelles, between cell to cell and organ to 

organ. Hence, the first approach we plan is to divide the biochemical model of plant into 

different  organ levels:  a  minimum of  three  biochemical  sub  models  (leaf,  root  and  stem 

models) as a generic aspect. The metabolic models for leaves and roots are obtained knowing 

the  related  plant  metabolic  networks:  leaf  model  considers  mainly  photosynthesis  and 

respiration, root model accounts for respiration and transport mechanisms, while stem model

takes flux transport by xylem and phloem. The plant composition at organ level is necessary 

to connect root and leaf sub models in order to achieve the entire plant growth biochemical 

model.

Chapter 1 presents a trial of hierarchy. As a preliminary step, we developed a stoichiometric 

biochemical  model  for  leaves  taking  all  major  pathways  like  photosynthesis,  respiration, 

energy  for  maintenance  and  growth  occurring  in  different  cell  organelles.  This  can  be 

specifically  applied  for  lettuce  (Lactuca sativa)  grown in controlled  environments,  as  the 

experimental data for the same is already available. The stoichiometric equations involving 

experimental  data  (e.g.  biomass  formation  equation)  represent  the  total  impact  of  various 

constraints  for  plant  growth  predicted  by  the  physical  submodel  such  as  light  energy

availability, environmental stress, temperature, humidity, nutrient/water availability, CO2/O2 

gas level, etc. 

From the  literature  and  previous  developments  explained  in  chapter  1,  several  metabolic 

modelling methods applicable for plant metabolism are studied; two methods found simpler to 

establish the leaf biochemical model are presented in chapter 2. The method we used is by 

metabolic flux analysis (MFA) and elementary flux mode (EFM) analysis; EFM stands for the 

topological analysis of the network, while MFA calculated the flux distribution for the same. 

Both techniques allow the leaf metabolic network studies under steady state and mass balance 

approach. 

Taking the advantage of these, we study the central carbon metabolism (involving detailed

mechanisms of light energy conversion in chloroplast and subsequent energy metabolism in 

mitochondria  including  thermodynamic  consistencies),  which  can  be  used  for  general 

photosynthetic plant cell; this study is presented in chapter 3. It uses mathematical techniques 

that have been originally conceived for the study of microbial growth. This revealed in vivo 
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results without going into the experimental details and provided meaningful functional and 

structural properties of metabolic networks. 

Finally in chapter 4, we coupled the EFM results of central carbon metabolism to the rest of 

the lettuce leaf cell metabolic network, assuming the initially formed metabolites transform 

into  simple  molecules  such  as  sugars,  amino  acids,  etc.  and  are  moved  by  transport 

mechanisms, connecting the metabolism from one cell compartment to another. This process 

takes place within the cell, from cell to cell so that it connects all metabolisms, forming a 

large network of one leaf, which is integrated into the whole leaf canopy corresponding to the

leaf model. The model is validated using the experimental data of lettuce grown in controlled 

Environment Systems Research Facility (CESRF) of University of Guelph, where the biomass 

composition used in the model was taken from another source, United States Department of 

Agriculture (USDA, Int. ref. 5). 

Our  first  attempt,  leaf  biochemical  model  enabled  us  to  couple  and  validate  the  plant 

biochemical perturbations and energy exchange with respect to physical limitations (e.g. light 

availability),  thus  providing,  the  link  between  matter  and  energy  exchange  laws  of  the 

physical mechanisms in addition to the biomass growth and composition exploration.

The main issues addressed in this thesis are, 

a) The  importance  of  fine  understanding  of  the  energy  conversion  processes

including photosynthetic activity and respiration.

b) The  reconciliation  of  a  global  stoichiometry  from  the  sum  of  elementary 

biochemical  conversions  at  the  metabolic  level  highly  connected  to  energy 

conversion processes.

c) The  proof  that,  it  is  relevant  to  use  the  same  techniques  for  metabolism 

investigations for microbial species and higher plants.

d) The  lack  of  sufficient  experimental  data  of  lettuce  plants  grown in  controlled 

environments including water, carbon and oxygen balances.

e) The need for a precise validation, when the whole biochemical model is coupled 

with  the  other  models  as  designed  in  the  general  plant  growth  model  for

MELiSSA. 

f) In the case of lettuce leaves, as they stand for  75% of the edible biomass at the 

time of harvest, the validation is obtained with the available data considering only 

the leaf model including data reconciliation. 
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At the end of the thesis, the types  of data required in order to have precise and accurate 

validation of model in future are proposed.
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Chapter 1 Biochemical
approaches to study and
model plant metabolism 
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1.1Introduction
Plant  biochemical  process modelling is  associated with the plant  metabolic  pathways:  the 

reactions,  their  interactions  and  responses  to  the  plant  and  the  surroundings.  Certainly, 

metabolic modelling reveals the plant biochemistry and this must be associated with the plants 

growing in controlled environmental chambers of MELiSSA higher plant compartment. The 

supply of metabolic energy responsible for plant growth is photosynthesis  and respiration. 

Photosynthesis takes place mainly in leaf cells, while the roots are devoted for respiration, 

storage of carbohydrates, transportation of minerals and food, etc. Apparently, mineral uptake 

metabolism and food transportation occurs via stems and roots. This leads to a model with

different metabolic behaviours from cellular level to plant organ level. In addition to this, the 

model contains energy and matter exchanges between several plant parts in order to control 

the growth and maintenance. Therefore, the metabolic model combines the details of all main 

metabolic pathways including cell growth, dissolved component transport and mass balances 

of different parts of the plant. This makes necessary to know the biochemistry of various plant 

parts and growth phases. In this aspect, the existing models based on plant biochemistry and 

metabolisms  are  described.  Stoichiometric  metabolic  models  were  found  interesting;  but, 

some  limitations  were  observed.  Understanding  the  advantages  and  disadvantages  of  the 

methods  used to  develop the  existing  stoichiometric  models,  the  ways  to  accomplish  our 

aimed goal containing sub models are proposed. The designed plant metabolical model is only

one of the efficient sub models in the general model design of the whole plant growth model. 

The general frame work and the structure of the possible metabolic sub models is presented in 

this chapter.

1.2Biochemistry of metabolism
Though a wide diversity of plants exist in earth, the list of simple elements of which plants 

constructed  are  carbon,  oxygen,  hydrogen,  magnesium,  nitrogen,  phosphorous,  etc.  The 

fundamental atomic components of plants are the same as for all life, only the details of the 

way in which they are assembled differ. Organisms show marked similarity in their major 

pathways  of  metabolism.  For  example,  glycolysis  and  mitochondrial  respiration,  the 

metabolic pathway by which energy released from glucose and captured in the form of ATP, 

is  common to almost  every cell.  All  organisms,  even those that  can synthesise their  own
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glucose,  are  capable  of  glucose  degradation  and  ATP  synthesis  via  glycolysis.  Other 

prominent pathways are also virtually ubiquitous among organisms.

Figure 1.1: Metabolic map as a set of dots and lines. The heavy dots and lines trace the 
central energy-releasing pathways known as glycolysis and the citric acid cycle. (Adapted 
from KEGG) each intermediate = black dot, each enzyme = a line. The numbers of dots in 
the figure have one or two or more lines (enzymes) associated with them. A dot connected 
to just a single line must be either a nutrient/storage form/end product, or an excretory 
product of metabolism. Also, since many pathways tend to proceed in only one direction 
(that is, they are essentially irreversible under physiological conditions), a dot connected to 
just two lines is probably an intermediate in only one pathway and has only one fate in 
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metabolism. If three lines are connected to a dot, that intermediate has at least two possible 
metabolic fates; four lines, three fates; and so on. 

Literally, metabolism studies started over a hundred years ago. According to Kepes, the first 

metabolism studied was about the conversion of glucose to ethanol (Kepes, 2007). This study 

was continued discovering many pathways for the synthesis of specific substances. However, 

the biochemical metabolic process in the cells can be represented by metabolic maps (as in 

Figure 1.1) which portray all  of the principal reactions of the intermediary metabolism of 

carbohydrates,  lipids,  amino acids,  nucleotides and their  derivatives.  These maps are very 

complex at  first  glance  and seem to be virtually  impossible  to  learn easily.  Despite  their 

appearance, these maps become easy to follow once the major metabolic routes are known 

and their functions are understood. The underlying order of metabolism and the important 

interrelationships between the various pathways then appear as simple patterns against the

seemingly complicated background (Garrett and Grisham, 2000).

1.3Structural analysis of plant metabolism 
Metabolism serves two fundamentally different purposes: the generation of energy to drive 

vital  functions  and  the  synthesis  of  biological  molecules.  To  achieve  these,  metabolism 

consists  largely  of  two  contrasting  processes-  catabolism  and  anabolism.  These  occur 

simultaneously in the cell. Catabolic pathways are characteristically energy-yielding, whereas 

anabolic  pathways  are energy-requiring.  Catabolism involves  the oxidative  degradation  of 

complex nutrient molecules like carbohydrates (sugars, starch and cellulose), lipids, proteins, 

etc.  originally  obtained  from  environment  via  photosynthesis.  The  breakdown  of  the 

molecules by catabolism leads to the formation of simpler molecules such as carbon dioxide 

and water. Therefore, respiration can be considered as catabolic reaction. Photosynthesis can

be taken as an anabolic biochemical pathway, since light energy is used to synthesize sugar 

molecules from atmospheric carbon dioxide and water. So, light reactions in the photosystems 

can be considered as both catabolic and anabolic, as it breaks down water and builds up the 

chemical energy molecules, NADPH, H+ and ATP; this will be studied in detail in chapter 3.

Anabolic  reactions  are  usually  endergonic,  i.e.  energy  requiring  metabolism.  Catabolic 

reactions are exergonic. Often, the chemical energy released is captured in the form of ATP. 

Catabolism is oxidative for the most part; a part of the chemical energy may be conserved as 

energy-rich electrons transferred to the coenzymes NAD+ and NADP+. These two reduced 

coenzymes  have  very  different  metabolic  roles:  NAD+ reduction  is  a  part  of  catabolism; 
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NADPH,  H+ oxidation  is  an  important  aspect  of  anabolism.  The  energy  released  upon 

oxidation of NADH, H+ is coupled to the phosphorylation of ADP in aerobic cells, and so 

NADH, H+ oxidation back to NAD+ serves to generate more ATP. In contrast, NADPH, H+ is 

the source of the reducing power needed to drive reductive biosynthetic  reactions.  A few 

molecules of substrate  whose catabolism yield more ATP than required,  allow the cell  to 

harvest an endless supply of energy which is necessary for the cell maintenance and growth 

(Garrett and Grisham, 2000). All these factors are well balanced and maintained throughout 

the cell and plant’s life.

Figure 1.2: An outline of plant metabolism

The conflicting demands of catabolism and anabolism are managed by cells in two ways.

First, the cell maintains tight and separate regulation of both catabolism and anabolism, so 

that metabolic needs are served in an immediate and orderly pattern as in the Figure 1.2. 

Second,  competing  metabolic  pathways  are  often  localized  within  different  cellular 

compartments.  The  metabolic  pathways  are  isolated  in  distinct  compartments  based  on 

opposing activities,  e.g.  separate organelles and sub organelles.  This avoids the metabolic 

complexities. For example, the enzymes responsible for catabolism of fatty acids and the fatty 

acid  oxidation  pathway  are  localized  within  the  mitochondria.  In  contrast,  fatty  acid 

biosynthesis takes place in the cytosol.
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Plant  metabolism  involves  various  types  of  metabolism  specified  for  different  functions 

(growth, regulation, maintenance, mechanical support, food storage, etc.). Concerning  plant 

morphology,  each  plant  organ is  specially  designed for  typical  metabolism.  For  example, 

metabolisms  like  photosynthesis  happen  only  in  green  leaves,  while  respiration  occurs 

throughout  the plant.  Numerous  metabolic  reactions  can be seen accompanied  by this;  in 

order to balance and regulate the whole mechanism, some reactions take place very fast in 

some plant parts. For example, respiration rate at roots of growing plants is usually very high. 

In some cases, this may be influenced by the environmental stress. The respiration process at

roots provides sufficient energy to uptake water and nutrients actively that is necessary for the 

plant  growth.  Inside  the  plant,  the  transport  process  occurs  via  special  types  of  vascular 

tissues, as cell to cell transport is not so much effective; even though, the energy molecules 

ATP and NADH, H+ are transported via cell translocators. The associated plant metabolism is 

very complex considering all  mechanisms throughout the plant.  For easiness of metabolic 

studies, plant metabolism can be studied separately for different plant portions or organs. This 

avoids the complexities caused by the transport phenomena of different plant portions, when 

we consider the whole plant metabolism.

1.3.1 Organ level: plant parts
Generally, all types of plants are composed of three major organ groups: leaves, stems and

roots. All are comprised of tissues working together for a common goal function; each plant 

part has specific functions to support and maintain the plant life.  In turn, tissues are made up 

of  a  number  of  cells,  which  constitutes  of  different  elements  and  atoms  on  the  most 

fundamental level. Plant tissues are characterized and classified according to their structure 

and function. As each part of the plant is different, each has different function and the main 

aim altogether is the growth and development. In leaves, mainly photosynthesis, transpiration, 

respiration, gas exchange processes, etc. take place, while in stem that contains phloem and 

xylem, the function is different; it transports whatever the plant needs (for the photosynthesis 

and food storage) from root; these are also linked with the availability of elements in the plant 

culture. In the case of root, it actively transports water and nutrients from where it holds and

gives to the transporting tissue (xylem and phloem).

In  addition  to  this,  during  the  life,  plant  goes  through  different  stages  like  germination, 

flowering,  maturation  etc.  In  each  stage,  the  plant  metabolism  is  influenced  by  growth 

hormone production, environmental responses and the whole plant physiology. The reaction 
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rates  are  also  different  in  each  stage  of  growth.  In  this  aspect,  it  is  necessary  to  have 

biochemical knowledge about what is exactly happening in plant parts at different growth 

stages.  The following sections  give an overall  idea about  the biochemical  mechanisms in 

organ level.

1.3.1.1 Leaf

In most plants, leaves are the sites where transpiration takes place; at the same time, they are 

highly efficient  solar energy converters.  They capture light energy using chloroplasts,  and

through the process of photosynthesis they trap energy in the form of sugar molecules using 

carbon dioxide and water from the environmental surroundings. In addition, leaves are able to 

twist on their petioles, stalks, in order to maximize sun exposure and photosynthetic activity. 

All the energy required by living organisms is ultimately depending upon photosynthesis. 

Figure 1.3: Stomatal conductance (Taiz and Zeiger, 1998)

The produced sugars are transported through leaf veins, skeleton like pattern that appear in the 

leaves. These are actually vascular bundles, made up of xylem and phloem vessels. In dicots, 

these veins run in all directions (e.g. tree leaves). In monocots, the veins are parallel (e.g. 

grass). In addition, monocots do not have mesophyll differentiated into two layers. Instead, 

some have large thin-walled special type of buliform cells surrounding the main vein. The

thin-walled cells are sensitive to water conditions and will collapse in dry conditions which 

cause the leaf blade to fold or roll reducing transpiration.  Up to a great extent, leaves are 

responsible for the water movement in the plant; it is transported throughout the plant since 

transpiration pull is one of the reasons for the uptake of water by roots. 
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A thin layer  of epidermal cells  covers leaf surface which permit  light to the interior;  this 

protects cells from physical damage. The upper epidermis is generally uninterrupted, but the 

lower  epidermis  is  perforated  by  numerous  tiny  pores  called  stomata.  The  stomata  are 

numerous;  they  support  gas  exchange  between  the  interior  part  of  the  leaf  and  the 

environment. Each stoma is regulated by a pair of kidney-shaped guard cells with thick and 

less elastic inner wall, creating bending when turgid (Kwak  et al., 2008; Schroeder  et al., 

2001) (Figure 1.3). The photosynthetic products in the guard cells provide the energy for the 

functioning of the cells. The walls of the guard cells are thickened, only at the side adjacent to

the pore. The cells expand or contract with respect to the changes in the amount of water in 

the cells,  availability of light and the concentration of carbon dioxide.  There is a need of 

energy, as the water is moved into and out of the guard cells. When guard cells are full of 

water, the stoma pore opens and when the water is evacuated, the pore closes. Thus, guard 

cells  perceive and process environmental  and endogenous stimuli  such as light,  humidity, 

CO2,  temperature,  drought  and  plant  hormones  to  trigger  cellular  responses  resulting  in 

stomatal opening or closure. These signal transduction pathways determine for example how 

quickly a plant will lose water during a drought period (Kwak et al., 2008; Schroeder et al., 

2001). The rate of transpiration is directly related to the stomatal behaviour. Transpiration 

happens when stomata are opened, and usually in sunny days the stomata close, as the water

release would be too high. If the internal moisture drops below a certain level, in order to 

reduce drying inside the leaf, the stomata will close. Stomata accounts for only 1 percent of a 

leaf's surface and transpiration uses about 90 percent of the water that enters to the plant roots. 

The other 10 percent is used in chemical reactions and in plant tissues (De Reffye et al., 2008; 

Jarvis and McNaughton, 1986; Aalto  et al., 1999). The amount and the rate of water loss 

depend on several factors such as high temperature, dry or low relative humidity and windy 

weather. In short, these are complex plant organs upon which life depends.

However,  as  per  the  leaf  biochemistry,  the  leaf  level  modelling  must  account  the  major 

metabolic  activities:  photosynthesis,  respiration,  fatty  acid,  amino  acid  metabolism,  light 

absorption, transpiration, gas exchange processes, etc. The last three terms are considered as

physical process, and are treated separately in the thesis of Pauline Hezard (2012). This thesis 

mainly concerns the first four items. Later, this will be coupled with the physical processes.
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1.3.1.2 Stem

Stem supports the plant, and in some plants, it serves as food storage. It allows the movement  

of water  and minerals  from roots to leaves  and, food from leaves  to different  plant  parts 

including the storage space. For the plant modelling, here we consider only herbaceous stems 

(soft and green stems) of plants containing transporting vessels called xylem and phloem. 

Through xylem, water and minerals travel up to the leaves; phloem carries sugar molecule 

that is made in the leaves.

Xylem is an important tissue as it is the ‘plumbing part’ of a plant.  These are bundles of pipes 

running along the main axis of stems and roots. Xylem sap mainly consists of water, inorganic 

ions, organic chemicals and other dissolved substances. 

Figure 1.4: Material transport through xylem and phloem vessels [Int. ref.2]

Two phenomena cause xylem sap to flow: 

1. Transpirational pull  : due to the transpiration process, surface tension arises causing an 

equivalent ‘negative pressure’ or tension in the xylem. This pulls water from the roots

and thereby roots uptake water from the culture. Although surprising, this is likely an 

effect on water chemical potential inside the xylem vessel. 

2. Root pressure  : if the water potential (i.e. the potential energy of water relative to pure 

free  water)  of  the  root  cells  is  more  negative  than  the  culture,  due  to  high 

concentrations of solute, water move by osmosis into the root. This causes a positive 

pressure that forces sap up the xylem towards the leaves. Root pressure is highest in 

the  morning  before  the  stomata  opening  and  it  allows  beginning  the  transpiration 

process.
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Phloem is the living tissue which  carries  organic nutrients  and dissolved food substances 

(photosynthates) particularly sucrose, to all parts of the plant as per the requirements. This 

conduction system is composed of sieve-tube member and companion cells without secondary 

walls.  Furthermore,  xylem-phloem vessels  together  give mechanical  strength to the plant. 

Xylem allows unidirectional flow, while phloem vessels allow bidirectional flow (Figure 1.4).

After the growth period, when the meristematic cells (cells in the growth zones) are dormant, 

the leaves act like sources, where storage organs act like sinks. The movement of phloem sap 

is due to the high concentration of organic substance inside cells of the phloem at a source,

leaf; it creates a diffusion gradient that draws water into the cells. Movement occurs by bulk 

flow; phloem sap moves from sugar sources to sugar sinks by means of turgor pressure. In 

this  way,  the  metabolism with  respect  to  the  stem is  mainly  depending  on the  transport 

processes affected by the pressure developed. 

It is reported that plants with green coloured stem carry out photosynthesis using CO2 from 

vascular systems (Hibberd and Quick, 2002); but, this may be relatively very small amount 

compared  to  leaves.  Using  the  produced  sugar  molecules,  respiration  happens  and  it  is 

probably utilised as per the energy demands, e.g. transport purposes (Pilarski, 1994). Stem 

respiration is increased by high temperature, but, limited by light availability and surface area.

Understanding  the  percentage  of  stem  photosynthesis  and  with  respect  to  all  the  above

descriptions,  the  stem  modelling  of  C3  plant  (e.g.  lettuce,  tomato)  can  be  done.  Thus, 

photosynthetic  respiration  processes  are  necessary  in  addition  to  the  active  and  passive 

transport processes. The transport processes mainly fall into the physical process modelling, 

while  respiration  and  the  carbon  source  transport  in  the  xylem  and  phloem  vessels  are 

biochemical process modelling which should be coupled to the stem metabolic model.

1.3.1.3 Root

The involvement of the root in the transformation of absorbed mineral nutrients in specific 

biosyntheses is unquestionable. The two major functions of roots are: (1) the absorption of 

water and inorganic nutrients and (2) anchoring the plant body to the ground. The plant roots

develop very fast; the respiration rate goes faster, especially at the root tips (up to some stages 

of growth). Without the knowledge of the metabolic basis of growth processes, we cannot 

understand the peculiarities of the formation of those metabolic systems and elements of cell 

structures which determine the functional differentiation of the root as an organ of uptake, 

transport and synthesis.
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The  growing  root  tip  represents  a  linear 

sequence of cell differentiation from the apical 

meristem over  the  zone of  elongation  to  the 

zone of cell maturation (Figure 1.5). 

Structurally, plant root constitutes of: 

a) Root  cap:  covers  the  root  tip  and 

protects  tissue  from  damage.  The 

root  cap  is  having  a  life  span  of

about  one  week;  it  serves  in 

determining root growth direction. 

Whether  the cap sloughs off  or is 

cut  off,  the  root  will  grow  in 

random  directions  as  opposed  to 

downward until  a new root cap is 

formed.

Figure 1.5: Root structure [Int. ref.1]

b) Zone of cell division (apical meristem): situated in the centre of the root tip. Cell 

division occurs at this portion and gives rise to the primary body of the plant. This 

produces xylem and phloem

c) Zone of elongation: cells become several times bigger than their original length. 

The cells in the zone of elongation stretch and lengthen as small vacuoles within 

the cytoplasm coalesce and fill with water (Int. ref.1). One or two large vacuoles 

occupy almost all of the cell volume in fully elongated cells. Cellular expansion in 

this zone is responsible for pushing the root cap and apical tip forward through the 

culture.

d) Zone of maturation (differentiation): cells differentiate into various distinctive cell

types.  At  the  zone  of  differentiation,  root  hairs  form which  absorb  water  and 

minerals  and adhere  tightly  to  hold  the  entire  plant.  They greatly  increase  the 

absorptive surface of roots during the growth period when large amounts of water 

and nutrients are needed. An individual root hair lives for only a day or two, but 

new ones form constantly nearer the tip as old one dies in the upper part of the 

zone (Int. ref.1).

Based on the metabolic  utilization of photosynthates translocated by the phloem from the 

shoot to the root, during elongation and maturation, new cells formed in the root tip along 
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with the functional  modification  and other  physiological  functions.  The transport  form of 

assimilate is sucrose, representing the main carbon and energy source in root metabolism. The 

phloem transportation depends on various factors including the sucrose concentration level 

and acid invertase activity (Kolek and Kozinka, 1992).  The level of carbohydrates in the 

meristem and at the onset of cell elongation is low, due to the use in the synthesis of structural 

polymers  (mainly polysaccharides,  nucleic  acids,  nucleoproteins,  glycoproteins)  associated 

with the formation and completion of the cell wall, cytoplasm and cell organelles and their 

decomposition  in  respiration  (for  energy,  reducing  agents  and  carbon  skeletons  for

biosyntheses) and for ion uptake and transport (Kolek and Kozinka, 1992). These cells have 

high demand for the ions corporated into organic structures, including enzymes, along with 

monosaccharides and organic acids. These are very important in producing turgor potential 

needed for cell extension. Cell wall composition changes in the course of root growth.

In  the  root  elongation  and  root  hair  zones,  the  activities  of  all  enzymes  increase.  This 

phenomenon differs from plants to plants. In meristem of these roots, enzymes of glycolysis 

prevail and in the root elongation zone, activities of enzymes of the pentose cycle increases 

(Kolek  and  Kozinka,  1992).  All  these  studies  project  the  importance  of  the  metabolic 

pathways that should be considered for root metabolic model of a particular plant species, 

which  may  be  extremely  different  for  another  species.  In  addition  to  this,  the  metabolic

pathways are influenced by environmental factors.

1.3.1.4 Storage organ/fruit

All  fruits  come  exclusively  from flowering  plants.  The  sugars  produced  at  leaves  travel 

through the stem; finally, they are stored as starch or proteins. A storage organ is any part of 

the plant in which excess of energy or water is stored (generally, in the form of carbohydrates) 

in order to be used for future growth (Jenks and Bebeli, 2011). Storage organs often grow 

underground, where they are better protected from attack by herbivores. A fruit is a mature, or 

ripened,  ovary  that  usually  contains  seeds.  In  contrast,  a  vegetable  can  consist  of  leaves 

(lettuce,  cabbage),  leaf petioles  (celery),  specialized leaves (onions),  stems (white  potato),

stems and roots (beets), flowers and their peduncles (broccoli), flower buds (globe artichokes) 

and or other parts of the plant. 

Green fruits can synthesize organic acids as products of photosynthesis. Most organic acids 

within the fruit are derived from other parts of the plant (Ulrich, 1970). Fruit development and 

growth  are  dependent  on  photosynthetic  CO2 fixation  in  leaves  and  the  translocation  of 

17



sugars,  amino  acids  and  organic  acids  to  the  fruit  cells.  During  the  early  phase  of 

development, most fruits can be regarded as sinks because of their high metabolic activity and 

rapid cell division.  In the later phase of development (at the time of cell expansion, seed 

development and maturation), most fruits accumulate high levels of carbohydrates in the form 

of  starch  and are  thus  more  typical  storage  sinks  (Jenks  and  Bebeli,  2011).  During  fruit 

maturation and ripening,  significant  changes in the carbohydrate  composition lead to fruit 

softening  and  sweetening.  The  stored  carbohydrate  breakdowns  into  sugars  like  glucose, 

fructose and sucrose which are essential for fruit quality. However, the relative concentrations

of  individual  sugars  vary  greatly  between  species  and  cultivars,  as  well  as  the  stage  of 

maturation and ripening.

The rate of metabolic breakdown (i.e. respiration) varies in different plant fruits. The storage 

lives of which have high respiration rates (broccoli, lettuce, peas, spinach and sweet corn) are 

short in comparison to that of which have low respiration rates (apples, limes, onions and 

potatoes). Respiration is affected by a wide range of environmental factors that include light, 

chemical stress (e.g. fumigants), radiation stress, water stress, growth regulators and pathogen 

attack.  That is the reason why, the storage room temperature is maintained in a particular 

temperature range. The respiration includes glycolysis, TCA cycle and electron transfer chain 

in the cell membranes. The energy produced as a result of this, is released as heat.

1.3.2 Growth/developmental phases
Growing cells  are  metabolically  active.  In  growing  young  leaves,  the  leaf  metabolism is 

complex.  Growth  occurs  over  the  entire  leaf  area;  but  cell  division,  expansion  and 

differentiation occur pre-eminently in different zones. This is reflected in leaf metabolism and 

photosynthetic activity. Even in fully developed source leaves, the topography of metabolism 

is not uniform.  In order to understand the whole plant  metabolism we need to know both 

synthesis  and degradation of all carbon sources throughout the life span of the  plant.  The 

different growth stages are the following.

1.3.2.1 Germination

Germination is the process in which a seed or spore emerges from a period of dormancy. Seed 

germination depends on both internal and external conditions. The external factors include 

temperature,  water, oxygen and sometimes light or darkness. Different plant seeds require 

different values of distinctive variables for successful germination.  Mature seeds are often 
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extremely dry and need to uptake significant amounts of water relative to the dry weight of 

the seed, before cellular metabolism and growth can resume. Most seeds need enough water 

to moisten (imbibition) and this leads to the swelling and breaking of the seed coat. Most 

plants  store  food  in  seeds  such  as  starch,  proteins  or  oils.  This  food  reserve  provides 

nourishment to the growing embryo. Most seeds are not affected by light or darkness. The 

breakdown of seed storage substance by respiration is necessary to release the energy. It starts 

only during early development of the seedling (Mohr and Schopfer, 1995). The adult seed 

contains mitochondria which function respiratory mechanism based on reserved sugars during

imbibition. During the transition to the growth phase, metabolic activity of the embryo can be 

measured (since there may have an increase of respiration, the ATP level increases (Mohr and 

Schopfer, 1995)). 

Figure 1.6:  Germination mechanism in lettuce seeds (Int. ref. 5)

In lettuce seeds (which is a dicot), the activating chemical is a pigment called phytochrome.

This chemical exists in two different forms: Pr and Pfr. Pfr is the form of phytochrome that 

photoactivates the genes for amylase in lettuce; Pr is inactive. The lettuce seed germination 

depends on how much of each of these two forms of phytochrome is present in each cell. 

Typical lettuce seed batches germinate at 30-60%, if placed in darkness because at least this 

percentage of seeds is enough to stimulate the germination. If the lettuce seeds are exposed to 

red light (660 nm), the red light causes all the Pr to change into Pfr. Then, 85-95% of the 

seeds can sprout, because they all have an abundance of Pfr inside. On the other hand, if 

lettuce seeds are kept in far-red (730 nm) light, the far-red light causes all the Pfr to change 

into Pr; then, all the seeds have essentially no Pfr and so very few (0-5%) sprout (Int. ref. 5).
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1.3.2.2 Vegetative growth

Vegetative growth is the second stage in the life of a plant after germination. During this  

stage, a plant will be photosynthesising as much as possible to grow as large as it can before 

the onset of the flowering (generative) phase. In essence, it is the period of growth between 

germination and the beginning of sexual maturity characterised by flowering.

Blue light stimulates chlorophyll  production more than any other colour encouraging thick 

leaves, strong stems and compact vegetative growth. Chlorophyll absorbs blue and red light

and transmits the energy to a pigment-based electron transport chain. The energy is ultimately 

used to produce high-energy chemical  bonds that can be used for a range of biochemical 

transformations including fixation of carbon dioxide into sugars.

1.3.2.3 Flowering

Flowers are modified leaves possessed only by the group known as angiosperms. For the 

formation of flowers, the relation between the internal physico-chemical conditions must be 

different from those in which vegetative growth occurs. The transition to flowering must take 

place at a time that is favourable for fertilization and the formation of seeds, hence ensuring 

maximal reproductive success. To meet these needs, a plant must be able to interpret changes

in levels of plant hormones, seasonable temperature and photoperiod. 

Flower, particularly at the earlier stages, usually performs very intense respiratory activity and 

often  possesses  a  higher  rate  of  oxidation  (Ketsa,  2001).  In  some  flowers,  the  rate  of 

respiration decreases from relatively early stages onward; but in some cases, it  undergoes 

increase or remains almost constant up to the time of opening. The factors like temperature, 

water,  nutritive  salts,  etc.  influence  the occurrence  of  flowering.  In  the  beginning of  20th 

century, Klebs found that flowering occurs in red light with limited absorption of water and 

salts (Klebs, 1906).  Red light is very important in plant reproduction. Phytochrome pigments 

absorb the red and far red portions of the light spectrum and regulate seed germination, root 

development, tuber and bulb formation, dormancy, flowering and fruit production. Therefore,

red light is essential for stimulation of flowering and fruiting. 

1.3.2.4 Seed maturation and senescence

Seed maturation is an important phase of seed development during which embryo growth 

ceases, storage products accumulate, the protective tegument differentiates and tolerance to 

desiccation  develops  leading  to  seed  dormancy  (the  state  of  plant  seeds  which  prevents 
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germination).  During  senescence,  proteins,  antioxidants  and  other  nutritional  compounds 

degrade which finally limits the crop yield and biomass production. 

Further, the plant hormones such as gibberellins, auxin, abscisic acid cytokinins and ethylene 

have great importance as they influence the growth. By knowing all these mechanisms, the 

rate  and timing of development  is  determined based on different  factors like species,  day 

length (photoperiod) and temperature. 

In short, the development is the process of a plant changing from one growth stage to another. 

The  right  combination  of  different  parts  and growth  phases  of  plant  lead  to  growth and

development; in this way, the model corresponding to each plant part and growth phase can 

satisfy  the  modelling  targets.  Metabolic  processes  of  senescence  are  important  to  be 

accounted  in  growth  modelling  as  recycling  processes  are  necessarily  performed  in  the 

MELiSSA loop.

1.4Metabolic interactions in plant level
Though plants have different organs and cells performing different functions, the entire plant 

metabolism is interrelated and forms a metabolic network. This operates together to achieve 

the particular goal - growth and development. The fundamental property of this network is the 

selective  partitioning  of  organic  metabolites  among  different  organs,  tissues,  cells  and 

organelles.  In the peripheral level,  the entire metabolic interactions take place through the 

plant organs – leaf to stem, stem to root, etc.; it is regulated by the transport of carbon source

metabolites and energy molecules (Pessarakli, 2005). In addition to this, interactions between 

plants and environment also exist which may disturb the metabolic interactions within the 

plant. Organs of the same plant may be subject to contrasting environmental conditions, and 

this may result in differential responses, which may have consequences on the growth and 

morphology of the entire plant.

1.4.1 Metabolic interactions between organs, tissues and 
cells

Apparently, each organ is specifically made to perform definite functions. Undoubtedly, there 

is  a  high  correlation  exist  within  the  organs,  and  in  between.  Various  mechanisms 

accommodate  the  directional  transport  of  metabolites  through  the  organs  by  xylem  and

phloem. They are essential for long distance transport, from leaf to stem and then stem to root. 
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Plants assimilate inorganic carbon and nitrogen into organic compounds required for plant 

growth;  a  very  large  variety  of  metabolites  are  produced,  and the  anabolic  and catabolic 

pathways that they feed into are complex and interconnected. Metabolism has been divided 

into discrete  pathways  which are frequently partitioned between cells  or even tissues and 

organs.  The soluble sugars circulate  as a consequence of source – sink activities  of plant 

organs. The exportation rate of carbon source like sucrose or glyceraldehydes-3-phosphate 

(G3P) from the source and the photosynthetic fixation may be considered as the inputs. Then, 

the outputs are the carbon fluxes within the plant, carbon allocation to different organs and

functions, and the proportion of carbon allocated to growth, respiration and the storage. Many 

tightly regulated metabolic steps control the movement of photosynthetically fixed carbon to 

the  phloem  transport  system.  Source  site  is  controlled  by  the  rates  of  photosynthetic 

incorporation  of  CO2.  The flow of  carbon in  the  form of  soluble  sugars  of  cytoplasm is 

regulated by complex biochemical  interactions which altogether  direct  the export  of fixed 

carbon out of the chloroplast. Carbon that is not released from the chloroplast retain as starch. 

This will not be available for phloem transport (Pessarakli,  2005). Measurements of these 

transports require labeled carbon distribution experiments.

 In addition to the transport vessels, plant organs are connected through transporters which 

carry metabolites with respect to the associated metabolic requirements. A metabolite can be

synthesised by performing many types of possible pathways; metabolites are not synthesised 

in  isolation,  rather,  large  sets  of  metabolites  must  often  be  synthesised  simultaneously. 

Transporters participate in basic mechanism by partitioning these metabolites within and in 

between the organs. For example, G3P is mostly transported within the organs. The amount of 

G3P transportation should be fixed and regulated in order to attain the plant growth. 

Furthermore, photosynthesis in leaves needs sufficient amount of water; this originally comes 

from roots, by water uptake using transporting vessels in stem; then, xylem vessels within the 

stem, connects the veins of the leaves. In this way, intracellular and long distance transport 

processes potentially affect the availability of substrates or products present in the plant organ 

and nutrient availability of the culture,  where it  grows (Da Silva  et al.,  2011).  They also

represent  the critical  sites  at  which metabolism and growth can  be  regulated.  Hence,  the 

transport  processes  in  plants,  particularly,  the  location  and  the  kinetic  properties  of 

transporters are essential components of metabolic networks, since they frequently influence 

metabolic fluxes as well as partitioning of nutrients between growth and storage. 
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Another interesting fact comes from the supporting tissues of an organ: for example, the leaf 

tissue consists of multiple cell types, such as epidermis, vascular bundles and photosynthetic 

mesophyll  tissue.  Mesophyll  tissue  is  multi  layered  and  differentiated  into  spongy  and 

palisade  parenchyma  cells.  Photosynthesis  occurs  only  in  specified  cells  containing 

chloroplast. The rest of the tissue support the action of photosynthesis, and help the produced 

carbon source transportation and allocation to other plant parts. In this way, every organ is 

composed of tissues of different characteristics which altogether directly or indirectly assist 

the main functions.

1.4.2 Metabolic interactions in cell compartments 
Just  like  the  metabolic  interactions  in  plant  organ  levels,  cells  possess  some  types  of 

interactions to one another which make high degree of compartmentation within the cell. Due 

to this, the whole plant metabolic network seems to be complex. In contrast to other non-plant 

eukaryotic cells, plant cells are highly complex, with the chloroplast being the most prominent 

one.   In  such a  system,  the  uncertainties  about  which  metabolites  are  transported  across 

organellar  membranes,  the  lack  of  knowledge  about  kinetic  constants,  biochemistry  of 

metabolites and metabolite transporters and subcellular metabolite concentration levels may 

interfere with the metabolic studies. This is the reason why we will study separately each and 

all possible plant mechanism influencing the metabolism (as described in the above sections)

including the physical, metabolical and environmental factors.

In some cases, the cell requires massive flux of metabolic intermediates across cellular and 

organellar  membranes.  Since  most  small  molecules  in  plant  cells  are  not  permeable, 

metabolite  transporters  are  required  to  catalyze  the  transport  of  metabolites  across  the 

membranes.  An example  for  such type  of  transporter  is  glucose transporter;  as  the  name 

suggests, it  facilitates the transport  of glucose over plasma membrane.  In vascular  plants, 

long-distance transport is critical for the allocation of organic carbon and nitrogen compounds 

from their sites of synthesis to developing or reproductive plant organs that rely on import of 

the  organic  compounds  for  growth and development.  Metabolite  transporters  play critical 

roles in connecting parallel and interdependent biosynthetic and catabolic pathways and thus

represent the integrating elements in these metabolic networks (Atwell  et al., 1999). These 

transporters act as gate keepers determining which substances may enter or leave, how fast 

they may move and whether their entry involves an exchange of metabolites or an input of 

energy.  Different  forms  of  the  transporters  are  found in  different  types  of  plants  and  in 
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different  tissues  within  the  plants  (Atwell  et  al.,  1999).  Chloroplast  transporters  are 

collectively called phosphate translocators; e.g. phosphoenolpyruvate/phosphate translocator, 

xylulose-5-phosphate/phosphate  translocator,  glucose-6-phosphate/phosphate  translocator, 

etc.

Looking into the details  of cellular structural level (Figure 1.7), each cell  is composed of 

differentiated  regions-  endoplasmic  reticulum,  golgi  complex,  various  membrane bounded 

vesicles  such  as  lysosomes,  plastids,  nucleus,  vacuoles,  mitochondria,  microbodies  and 

cytosol  itself.  Cytosol  provides  an easy route for  the movement  of  ions,  small  molecules

(sugars and amino acids) and even for macromolecules (RNA and proteins) between the cells. 

Hence, the cell to cell communication happens (Robards, 1975). 

Table  1.1:  Compartmentation  of  cell  metabolic  functions  (Based  on  spinach  leaves 
(Winter et al., 1994))

 The compartmentation  of  metabolic  pathways  provides  additional  options  for  regulation. 

Each compartment is dedicated to specialized metabolic functions; the enzymes appropriate to 

these specialised functions are confined together within the organelle (Held H.W. and Held F., 

2005).  Therefore,  by  knowing  the  compartmental  function,  it  is  possible  to  control  a 

metabolic  pathway  by  controlling  only  the  responsible  enzyme  of  the  limiting  reaction. 

Luckily, most of the important mechanisms are known and the rest lies on the route. In many

Cellular compartment % of the 
total 

volume

Main functions

Plastids (chloroplast) 16 Photosynthesis, starch and lipid synthesis, fatty acid 
synthesis from acetyl co A

Mitochondria 0.5 Energy production by cell respiration
Cytosol 3 Sucrose synthesis, glucose degradation
vacuole 79 Protein degradation, maintenance of cell turgor, 

store, water, waste products
Nucleus 0.3 Reaction site for replication and for processes in

which toxic transcription intermediates are formed
Peroxisome Fatty acid oxidation, pentose phosphate pathway, 

glyoxylate, photorespiration
Ribosome Protein synthesis

Golgi bodies Processing and sorting of proteins destined for 
export from the cells or transport into the vacuole

Endoplasmic
reticulum

Storage of Ca2+ ions, participation in the export of
proteins from the cell and in the transport of 

proteins into the vacuole.
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instances,  the  enzymes  of  a  metabolic  sequence  occur  together  within  the  organellar 

membrane.  Thus,  the  flow of  metabolic  intermediates  in  the  cell  is  spatially  as  well  as 

chemically segregated. For example, the enzymes of glycolysis are found in the cytosol, but 

pyruvate, the product of glycolysis, is fed into the mitochondria, which contain the citric acid 

cycle enzymes, which oxidize pyruvate to CO2. But at the same time, the intermediate acetyl 

Co  A  is  synthesised  in  both  cytosol  as  well  as  mitochondria  as  per  the  requirements 

(Liedvogel, 1986). 

Figure 1.7: Compartmentation of metabolic processes in a leaf cell.  For each subcellular 
compartment,  some  of  the  major  metabolic  processes  are  shown.  Many  processes  occur 
exclusively in a single compartment but may obtain their substrates from, and export their 
products to, other compartments. Abbreviation: OAA = oxaloacetic acid, PEP = phosphoenol 
pyruvate, Glu = glutamine, Asp = Aspartate, AcCoA = Acetyl CoA, CO2 = Carbon dioxide, 
O2 = Oxygen,  Triose 3-P = Triose 3-phophate,  Hexose 6-P = Hexose-6-phophate,  PPP = 
pentose  phosphate  pathway,  RPP = reductive  pentose  phosphate  pathway.  (This  image is 
inspired from Morgan and Rhodes, 2002).

The  compartmentation  permits  simultaneous  operation  of  pathways  within  the  same  cell 

avoiding futile cycles. The synthesis and degradation of biopolymers occur simultaneously in 

the same cell and are segregated in different compartments. For example, the oxidation of 

fatty  acids  occurs  in  the  glyoxysomes,  while  synthesis  takes  place  in  the  plastids.  It  is 

important to differentiate the location of these metabolic processes in this way, as the enzyme 

catalyze  for  these  metabolism  are  different  and  therefore,  cannot  exist  in  the  same 

compartment as well  (Emes,  1991). The analysis  of metabolic  networks at a system level 
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depends upon the integration of data obtained from more than one level of molecular entity 

(DNA, RNA, proteins, metabolites, organelles, organs, cell types, etc.). 

Several organelles participate in a major metabolic event and transport of specific metabolites 

between  compartments  must  occur;  the  enzyme  sequences  in  spherosomes,  glyoxysomes, 

mitochondria and cytosol participate in succession in the conversion of stored fat to sucrose. 

This  type  of information  defines which metabolites  must  move from one compartment  to 

another, e.g. succinate from glyoxysomes to mitochondria. This also provides the availability 

of energy in the form of reducing equivalents (Mettler and Beevers, 1980). 

Further, the function of cell organelles in different regions is different, for example, the golgi 

in cells engaged in cell wall synthesis or secretion (Mollenhauer and Morre, 2009) and the 

plastids in storage and breakdown of starch (Preiss, 1988). Neverthless, mitochondrial and 

chloroplast  transporters  are  leading  the  way (Heldt  and Flugge,  1987).  It  is  important  to 

understand  the  acquisition  of  nutrients  and  the  maintenance  of  internal  environmental 

properties (like pH, temperature). Changes in other regulating factors are achieved by close 

regulation of metabolic mechanisms of organelles and transport between cell compartments. 

This mostly involves the control of fluxes at compartmental level though the membranes. The 

organelles which are not participating in major metabolic pathways support their  essential 

roles  in the synthesis  and maintenance  of enzymes  which require  considerable amount  of

energy. The hydrolysis of protein in the vacuole provides energy along with amino acids. The 

regulation and energy balance in cellular and plant levels are necessary to be considered for 

plant growth modelling.

1.5Energy metabolism and its utilization for 
plant growth and regulation 

Energy metabolism is central to all cellular functions. Photosynthesis transduces solar energy 

into useful metabolic forms such as ATP; the mitochondrial  oxidative respiration provides 

energy by exploiting the supply of assimilates  of photosynthesis.  A continuous supply of 

energy  is  required  for  all  synthetic  and  maintenance  processes  and  is  dependent  on  the 

regulation of ions, substrates and exclusion of mineral elements (heavy metals). Heavy metals 

act as toxic elements; they can perturb the electron flow and thereby the synthesis levels of 

ATP, NADPH/H+ and NADH/H+. Metabolism is largely regulated by the provision of ATP as

a substrate and by the amounts of ATP, ADP, AMP and Pi which serve as control molecules 

in many reactions.  Hence,  energy metabolism is  related to the supply of phosphorous (P) 
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availability (Porter and Lawlor, 1991). Actually, it is a major determinant factor of growth 

and efficient uptake mechanisms. The concentration of inorganic P in the cytosol is close to 

10 mol m-3 and the molar ratio of ATP: ADP: AMP is held at approximately 10:3:1 by the 

enzyme adenylate kinase (Porter and Lawlor, 1991). When ATP is consumed by processes in 

the cytosol and organelles, and if P is bound into metabolites, the inorganic phosphate (Pi) 

content  falls;  a  flux of Pi  from the vacuole  maintains  the concentration  and provides  the 

available energy.

Another fact is the availability of nitrogen, N. The synthesis of proteins requires amino acids

demanding a large supply of energy and nitrogen. The supply of N depends on the amount of 

nitrate and ammonium ions from the environment and on the rate that they are metabolised to 

amino acids. If N supply is not limiting, protein constitutes a major regulator of whole plant 

growth. More generally, metabolites can only be synthesized if carbon, nitrogen, phosphorous 

and sulphur, and the basic building blocks generated from them in central metabolism are 

available. This implies that regulatory networks control metabolic activities to the availability 

of these basic resources.

Nevertheless for plants, the initial energy comes from the sunlight; plants convert light energy 

into redox energy,  to  change its  redox potential  from being moderately electropositive  to 

highly  electronegative.  The  electrons  released  from this  component  serve  to  generate  an

electrochemical gradient, flowing through either a cyclic pathway back to reduce the original 

component, or a non-cyclic pathway to reduce additional electron acceptors. This allows a 

fine adaptation to the energy requirements of the cell, since NADPH, H+ reduction equivalents 

or  ATP  energy  can  be  supplied  in  variable  ratios.  The  ratio  of  the  rate  of 

photophosphorylation over the rate of production in reduced cofactors is named as the P/2e– 

ratio. A part of the produced energy, ATP and NADPH, H+ is used for Calvin cycle reactions 

for the carbon assimilation. Other metabolic processes of great importance in cells are linked 

to the provision of energy for synthetic metabolism and for maintenance processes such as 

transport and ionic regulation. Since last few decades, studies have been carried out linking 

bioenergy and metabolism; some of the interesting studies/models which could be used for

revealing plant biochemical processesy are quoted in the following sections. 
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1.6Existing models for plant biochemical
process

The  plant  biochemical  process  models  consist  of  the  studies  concerning  biochemical 

metabolism and energy necessary to build the biomass and for transport processes within the 

plant. To a great extent, the properties such as cellular interactions and molecular cell biology 

are  affected  by the  physical  properties  (e.g.  phytochemistry  and environmental  reactions) 

which altogether results into the plant morphology. Therefore, it is necessary to find an apt 

biochemical plant model from the existing plant models or to develop or properly reconstruct 

as per the requirements.

Since 1960s, several attempts have been done to study and to establish mathematical models

for cellular and metabolic systems; the first model developed was for plant central metabolism 

containing  the  reactions  of  glucose  phosphorylation  and the  bioenergetics  including  ATP 

utilisation (Goodwin, 1963).  This  was later  extended by modifying some of the reactions 

(Garfinkel and Hess, 1964). The main limitation of this model was the lack of computational 

memory power  and the availability  of  sufficient  experimental  data  required to  define  the 

model accuracy (Garfinkel and Hess, 1964).  Later, due to the developments in technologies, 

theories,  tools  and  concepts,  there  were  significant  progress  to  overcome  some  of  these 

limitations. A number of theoretical tools and concepts have emerged, notably for the analysis 

of controlling the flux distributions of metabolites and metabolic concentrations in a particular 

metabolic  pathway  called  Metabolic  Control  Analysis  (MCA)  (Kacser  and  Burns,  1973;

Heinrich and Rapoport, 1974). Afterwards, numerous modelling studies of plant, especially 

photosynthetic,  metabolism have been carriedout  (Laisk  et al.,  1989; Pettersson and Ryde 

Pettersson, 1988). Then another obstacle in modelling plant systems came at 1990’s, because 

of  the limitation  in  the availability  of  reliable  data  pertaining  to  the activity  of enzymes, 

metabolites and reactions. However, rapid advances in molecular biology techniques and the 

emergence of a number of theoretical concepts in metabolic modelling and engineering aided 

in reducing this limitation to some extent (Stephanopoulos et al., 1998). 

From a  metabolical  perspective,  mathematical  modelling  provides  insights  to  the  general 

principles governing cellular function. The models of cellular metabolism and function are 

generally known as metabolic models; they have an important role for phenotypic analysis. It

can be used for the design of optimal metabolic network structures as it originates from the 

metabolic  network.  Metabolic  models  can  be classified  into  two main  categories-  kinetic 

models and stoichiometric models. If a metabolic model of a pathway of known structure is 
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constructed using measured kinetics of individual enzymes and/or the data recovered from 

literature, the developed model can be said as a kinetic model. The kinetic data together with 

data on the effects of co-factors, pH and ions are used to parameterise the model. Kinetic 

models incorporate kinetics whereas stoichiometric models rely exclusively on time invariant 

properties of metabolic networks (Rice, 2009). This is a straightforward type of modelling just 

like translating biochemistry shown in Figure 1.7 into mathematics. 

It  is less complicated to build stoichiometric models,  compared to kinetic  models.  This is 

because, the development of latter is restricted by the lack of knowledge of the kinetics of

cellular  processes  such  as  oxidative  phosphorylation  or  electron  transport  in  the  cell 

mitochondria,  without which is impossible  to establish a metabolic model.  When building 

kinetic models, in addition to the estimation of usual large number of kinetic parameters, it is 

crucial  to  take  into  account  the  validity  of  transferring  reaction  mechanisms  of  enzymes 

observed in vitro to in vivo conditions (Gombert et al., 2000; Wiechert, 2002). Kinetic models 

can be applied to simulate the dynamics of metabolic systems, while stoichiometric models 

are needed to be in pseudo steady state metabolic behaviour. 

1.6.1 Kinetic models
Kinetic  modelling  method  requires  detailed  knowledge  of  enzyme  kinetics  (Gombert  and 

Nielsen,  2000).  Each  reaction  in  the  model  is  defined  in  terms  of  its  stoichiometry  and

enzymatic rate equation; also, the user must specify values for the various kinetic parameter 

(like Michaelis-Menton constant Km, Vmax, etc.) and individual metabolite concentrations or 

reaction rates (Poolman  et al,  2004). For decades, starting with the work of Chance (who 

published the first numerical simulation of a biochemical system), kinetic models have been 

the most frequently used mathematical approach to metabolism. He could solve the equations 

for  the  behaviour  of  a  simple  enzymatic  system using  a  mechanical  differential  analyser 

(Chance, 1943). 

Kinetic  models  are  generally  applied  to  small  segments  of  metabolism  to  explain  the 

behaviour of metabolic subsystems in response to perturbations. For example, Laisk’s model 

(1973) explained the interaction of photosynthesis and photorespiration; it was soon followed

by many other models like Thornley (1974), Milstein and Bremermann (1979) and Kaitala et  

al (1982). The Thornley model (1974) was based on a novel approach in which a very simple  

mathematical model was formulated to represent the most important features of the dynamics 

of photosynthesis.  Kaitala  used the approach of Thornley to construct  a  kinetic  model  of 

29



photosynthesis describing the effect of radiant energy and CO2 concentration to control the 

CO2 assimilation in leaves, where Milstein and Bremermann studied the kinetic parameters of 

the Calvin photosynthesis cycle. 

Besides, the first known, efficient, mechanistic and integrated metabolic model was proposed 

by Farquhar et al (1980). He biochemically modelled the photosynthetic CO2 assimilation in 

the  leaves  of  C3  plants.  The  Farquhar  biochemical  growth  model  could  calculate 

photosynthesis as a function of demand and supply of CO2. The advantage of this model was 

that,  they regulated photosynthesis not only by radiation and transpiration,  but also by air

humidity, leaf temperature, CO2 availability and leaf nitrogen content; the plants experience 

radiation saturation at high levels of radiation. Therefore, though it had some limitations in 

some  factors,  this  became  the  fundamental  portion  for  most  of  the  morphological  and 

architectural  (e.g.  Greenlab  model)  models.  The  balance  of  mechanistic  details  with 

mathematical simplicity contributes to the broad use of the Farquhar, Von Caemmerer and 

Berry photosynthetic rate model; the model was later coupled with the stomatal conductance 

model proposed by Lens et al (Lens et al., 2010; Farquhar et al., 2001). 

Various examples of efficient kinetic models for plants may be seen while going through the 

literature (Table 1.2). Kinetic modelling has been applied to investigate penicillin biosynthetic 

pathway in Penicillium chrysogenum (De Noronha et al., 1996; Nielsen and Jorgensen, 1996;

Theilgaard and Nielsen, 1999). The model was used for calculating the fluxes through this 

pathway (enzyme kinetics for 10 reactions were included), as well as the concentrations of the 

involved metabolites, which were in agreement with experimental results. In 1997, Pettersson 

extended his earlier model of Calvin cycle metabolism by adding the oxygenase activity of 

ribulose  1,5-bisphosphate  carboxylase/oxygenase  (Pettersson,  1997;  Pettersson  and  Ryde-

Pettersson, 1988). Their model helped to understand the dependence of photosynthetic rate on 

CO2 and O2 concentrations and on the gradients of inorganic phosphate and triose phosphates 

across the chloroplast envelop, whereas Poolman et al have been studied the regulation of the 

Calvin cycle using a recently developed kinetic model with the help of an evolution-strategy 

algorithm (Poolman et al. 2000). 

Eventually, it has been observed that the existing kinetic models stand for particular process, 

not  for  the  entire  plant  metabolism.  For  example,  Calvin  Cycle,  TCA  cycle,  glycolysis 

pentose phosphate pathway and photosynthesis are specified for C3 plants (Affourtit  et al., 

2001; Krab, 1995, Poolman et al., 2000; Thomas et al., 1997). In an earlier model of sucrose 
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accumulation in developing sugar cane (Rohwer and Botha, 2001), each reaction step was 

modelled with accurate kinetics by using detailed experimental and literature data.

It has been noticed that efficient kinetic models use mass balance principle. For example, the 

model  developed  by  Zhu  et  al.  (2007)  have  been  used  the  enzyme  and  metabolite 

concentration variations followed by the reaction rate calculation. Inspiring Farquhar model, 

Zhu and co-workers also constructed a large compartmental model of leaf carbon metabolism 

comprising more than 40 reactions and transporters (Zhu et al., 2008). The model was capable 

of simulating the effect of evolutionary adaptation to higher CO2 concentrations. They found a

substantial increase in photosynthesis,  suggesting that the typical partitioning in C3 leaves 

might be suboptimal for maximising the light-saturated rate of photosynthesis.

One  of  the  latest  established  kinetic  models  simulates  the  aspartate  derived  amino  acid 

pathway in Arabidopsis thaliana (Curien et al., 2009). This model is based on in vitro kinetic 

measurements and successfully reproduces  in vivo data like metabolite concentrations and 

fluxes. 

Kinetic  modelling  is  undoubtedly  a  powerful  proven  technique  to  quantify  the  metabolic 

fluxes  in  compartmentalised  dynamic  metabolic  systems  and  to  address  metabolic  flux 

responses  to  environmental  and  genetic  perturbations.  But,  it  has  some  limitations;  the 

construction of kinetic models relies on the precise knowledge of the functional form of all

involved enzymatic rate equations and their associated parameter values. Furthermore, even if 

both are available from the literature, the parameter values usually depend on many factors 

such as tissue type or experimental and physiological conditions. Most enzymes – kinetic rate 

laws have been determined  in vitro. Often, there is only little guidance available whether a 

particular rate function is still appropriate in vivo to overcome the difficulties and propose a 

bridge between structural modelling (which is based on the stoichiometry alone) (Famili et  

al.,  2003; Bailey,  2001),  and explicit  kinetic  models  of cellular  metabolism.  However,  as 

kinetic data was found difficult to be measured in vivo and stoichiometric modelling does not 

need this type of data, they were developed extremely fast since 1990s (Gombert and Nielsen, 

2000; Stephanopoulos and Vallino, 1991).
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Kinetic model Reference
Glycolysis in plant tubers Thomas et al., 1997
Mitochondrial respiration Affourtit et al., 2001; Krab, 1995

C3 plants Farquhar et al., 1980, 2001; Fridlyand, 1998; 
Fridlyand et al., 1998;Fridlyand and Scheibe, 
1999, 2000; Gross et al., 1991; Pearcy et al.,
1997; Pettersson and Ryde-Pettersson, 1988;

Pettersson, 1997; Poolman et al., 2000; 
von Caemmerer, 2000

C4 plants Chen et al., 1994; Collatz et al., 1992; 
Ghannoum et al., 1998; He and Edwards, 

1996; von Caemmerer, 2000
C3–C4 intermediate plants von Caemmerer, 2000

CAM plants Blasius et al., 1997, 1999; Neff et al., 1998; 
Nungesser et al., 1984

Isoprene emissions Zimmer et al., 2000
Xanthophyll cycle, Carotenoid metabolism Latowski et al., 2000; Sielewiesiuk and 

Gruszecki, 1991
PHA copolymer in transgenic plants Daae et al., 1999

[14C] Choline metabolism in transgenic tobacco McNeil et al., 2000 ; Nuccio et al., 2000
Choloroplast superoxide dismutase–ascorbate–

glutathione pathway, redox regulation
Polle, 2001

Methionine and threonine biosynthesis 
pathways

Curien et al., 2003

Table  1.2: Kinetic models focusing plant metabolism  Part of this table is adapted from 
Morgan and Rhodes, 2002

1.6.2 Structural models
As mentioned, structural models are based on the stoichiometry of the metabolic network. The 

modelling concept using structural approach is also known as stoichiometric modelling. These 

models  account  steady  state  approach  for  the  intracellular  components  at  the  expense  of 

abandoning any kinetic information (Kuepfer, 2010). The overall model structure is generally 

linear and represents an underdetermined system of algebraic equations in which intracellular 

fluxes are the unknown variables. Usually, stoichiometric models of metabolism reveal the

fundamental inventory of the cell for maintenance and fuelling. Metabolic models stands for 

cellular metabolism at genome scale; they provide in turn a unique possibility to correlate 

genetic predisposition with clinical observations making them a valuable tool for model based 

analysis  of genotype - phenotype correlations (Kuepfer, 2010). In the case of biochemical 

modelling of plants, stoichiometric mass balanced models are thus the centre of attraction as 

they account steady state mass balance principle for the whole plant metabolism. In addition, 
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it is relatively convenient with respect to the kinetic approach. For the stoichiometric plant 

model,  the  metabolic  mass  balanced  equations  revealing  the  entire  plant  metabolism are 

required. This is available in several data base (Table 1.3).

Unfortunately,  some of the mechanisms of intracellular reactions are complex and still not 

very well understood (Bailey, 1998; Palsson, 2000) and this is why stoichiometric modelling 

lies  on  the  basis  of  assumption  of  the  pseudo  steady  state  for  internal  metabolites 

(Stephanopoulos  et al., 1998). This assumption is supported by the observation which says, 

intracellular dynamics are much faster than extracellular dynamics. 

Name Links
BRENDA http://www.brenda-enzymes.info

KEGG http://www.genome.ad.jp/kegg/pathway.html
PlantCyc http://www.plantcyc.org/
MetaCyc http://www.metacyc.org/
AraCyc http://www.arabidopsis.org/biocyc/index.jsp

Table 1.3: Name and links of familiar metabolic data base

Since  1986,  several  metabolic  modelling  techniques  are  developed  to  stoichiometrically 

model various kinds of metabolism; first it was successfully done by Holms for the growth 

model  of  E.coli (Holms,  1986).  Stephanopoulos  and  Vallino  introduced  the  concept  of 

network rigidity to  explain  the stoichiometric  model  of Corynebacterium metabolism:  the 

yield values of lysine amino acid were found high, compared to the experimental conditions 

(Stephanopoulos and Vallino, 1991). Nowadays,  based on mass balance stoichiometry and

pseudo  steady  state  approach,  several  methodologies  exist  to  study  and  understand 

metabolism  of  living  organism  knowing  few  experimental  data;  based  on  this  domain, 

recently  few  stoichiometric  models  developed  for  small  metabolic  networks  (e.g.  Calvin 

cycle,  TCA  cycle,  etc.)  which  will  be  specifically  explained  in  chapter  2.  Of  special 

importance in this  context is,  constraint  based or flux based modelling approaches. These 

focus on the quantification of metabolic fluxes, which are accepted as the final representation 

of a certain physiological state of the cell resulting from different levels of cellular regulation 

(Stephanopoulos, 1999; Nielsen, 2003). These make use of stoichiometric models and rely on 

the principle of mass conservation and steady state. 
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1.7Limitations of existing models 
Although several models exist for specific plant processes (Table 1.2), they were not found 

suitable in their original form, for plant biochemical model fulfilling the requirements in the 

general plant growth model design. This was due to the following reasons.

1. Recent attempts to construct ’genome-scale’ kinetic models of cellular metabolism 

(Slepchenko, 2003; Ishii et al., 2004; Yugi and Tomita, 2004; Jamshidi and Palsson, 

2008)  explicit  that  kinetic  modelling  is  currently  often  limited  to  smaller  (sub) 

systems or individual pathways. The difficulty to obtain reliable estimates of kinetic 

parameters is one of the main hindrances to construct kinetic models in whole plant

scale. 

2. Existing  dynamic  models  were  not  found  satisfactory  for  MELiSSA  plants. 

Moreover, MELiSSA requires a stoichiometric model of plant growth which can 

predict output fluxes providing input fluxes and vice versa. 

3. Similar  to  small  scale  kinetic  metabolic  models,  the  developed  stoichiometric 

models  are  also  stand  for  small  metabolic  network,  not  for  the  entire  plant 

metabolism and the modelling methods used are different from one another. In some 

cases,  topology is  not analysed  well,  while  in  other  cases,  flux distributions  are 

absent or determined by unprofitable methods (experimentally by isotopic labelling 

method) agreeing the period of time/conditions, in which they have used. In the case

of MELiSSA plant,  it  may be impossible to have such type of isotopic labelling 

experiments during the entire plant growth.

Furthermore,  the  general  model  design is  really  in  need of  a  stoichiometric  model  under 

steady state which will be perfectly suitable for the plant growth model design followed by 

MELiSSA loop. Among the developed models, none was fit at this context. 

1.8Our modelling approach 
According to  the  requirements  of  MELiSSA loop,  plant  growth modelling  stands  for  the 

modelling  and achieving  the  knowledge of  the factors  that  control  and manage the plant 

growth.  In  other  words,  the  crop  composition,  yield  prediction  and  the  responses  to  its 

environment  in  the  closed  loop  must  be  related  to  the  regenerative  life  support  system 

performances.  Furthermore,  within  a  desirable  regenerative  system,  the  amount  and  the

composition of the non-edible parts which come under waste cannot be neglected as recycling 
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must  be  necessarily  performed  with  maximum  efficiency.  Hence,  the  development  of  a 

feasible,  robust,  stoichiometric  model  is  very important  which fit  for the MELiSSA plant 

compartment requirements as well as general plant growth model design. As far as we know, 

not even single model is established which couple plant metabolic perturbations and energy 

exchange with respect to physical limitations (e.g. light or water availability); the model of 

our concept links matter and energy exchange laws of the physical mechanisms in addition to 

the biomass growth and composition exploration.

Plant metabolism includes not only the biochemical processes, but also light absorption and

the subsequent  processes (i.e.  excitation of electron in cell  level,  electron transfer,  energy 

transduction, regulation of gas exchange between leaf and atmosphere, etc.). Therefore, the 

stoichiometric  plant  metabolic  model  should  account  all  these  mechanisms  involving  the 

complex bioenergetics (photosynthesis and respiration), uptake of substrates (CO2, nutrients 

and water), and all other secondary metabolisms in terms of mass balanced equations. 

From  literature,  though  there  is  not  a  complete  stoichimetric  metabolic  model  exists 

representing the whole plant  metabolism,  metabolic  models  for small  networks have seen 

achieved  by understanding the  associated  metabolism;  these  lighten  the  ways  to  obtain  a 

realistic stoichiometric whole plant model of our target. 

Furthermore, each plant species has specificity in their developmental stages. Some plants

have biomass near root system (e.g. potato), while some has at shoot system (e.g. tomato). 

Though almost all plants have the same central carbon metabolic pathways, the reactions and 

transports occur in different rates, varies from tissues to tissues, organs to organs influenced 

by several  environmental  factors/conditions  (light,  water  and nutrient  availability,  the gas 

levels,  the  stress  caused  by  toxic  elements,  etc.).  Therefore,  for  the  metabolical  model 

validation, it is necessary to use the experimental data (plant composition, plant inputs) of 

plants grown under a predetermined/known environmental system and verify with the same 

(plant  inputs/outputs).  With  respect  to  the  plant  characteristics,  metabolisms  vary  which 

control the growth and survival; hence, the metabolic network for each species will be (at 

least) slightly different from what can be seen in another. However, taking into account the

usual  phenomena,  the general  metabolic  model  structure  for  plants  can be conventionally 

proposed in which some metabolic pathways shall be replaced/added or removed, while some 

equations  remain  the  same:  e.g.  the  central  carbon  metabolism remains  the  same  for  all 

models; at the same time, some of the reactions need to be replaced or removed. This general 

stoichiometric  mass  balanced  plant  model  assumes  pseudo  steady  state  and  can  predict 
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biomass  quantity,  rate  and composition  with respect  to  the  process  variables  such as  the 

amount or rate of uptake of CO2 or release of O2 in the plant chamber for a specific period of 

time in a controlled predetermined environmental condition. 

As  described  in  the  previous  sessions,  every  plant  has  at  least  three  organs  (which  are 

fluctuating periodically due to various growth phases) - leaves, stem and roots having three 

main functions: leaves for light absorption and photosynthesis; stem for transport process and 

to hold the plant; roots to absorb water and nutrients for plant growth and to hold the entire 

plant  firmly  vertical  to  the  surface.  Consequently,  the  general  plant  metabolical  model

revealing  biochemical  processes  should  include  a  minimum  of  three  separate  metabolic 

models which would be coupled in future on the basis of carbon source flux and percentage of 

metabolite composition (Figure 1.8). 

Figure 1.8: General Metabolic model structure for plant metabolic model

1.8.1 Leaf sub model 
Leaf sub model  takes in to account all  the main metabolic processes happening in leaves 

starting from cellular level which reflect the metabolic and genome level summary. Leaves 

contain  specific  types  of  cells  containing  chlorophylls  for  performing  photosynthesis. 

Respiration process also occurs within the same cell using a particular amount of metabolites 

(formed as a result of photosynthesis) and derives energy for entire plant maintenance and 

growth.  Thus,  in  the  case  of  leaves,  photosynthesis  and  respiration  are  the  inevitable 

metabolisms. Furthermore, the metabolic reactions involving macromolecule synthesis such 

as protein, lipid, fatty acid and carbohydrate (starch), etc. take place in leaf cell level; hence, 

the sub model obviously accounts those metabolisms in addition. 

Usually,  low rates of sucrose synthesis  potentially result  in high rates of starch synthesis.

Several mechanisms coordinate and control the rate of sucrose synthesis in the cytosol, the 

rate  of  CO2 assimilation  in  chloroplast,  and hence  the rate  of  triose  phosphate  (G3P and 
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DHAP) transport within the cell. The triose phosphate transporter in the chloroplast envelope 

which exchanges triose phosphate for inorganic phosphate release during sucrose synthesis, 

plays a central role in these mechanisms. Feedback mechanisms coordinate the rate of sucrose 

synthesis with the demand for sucrose in the non-photosynthetic parts of the plant to which it 

is exported. The control and regulation of all these mechanisms will be studied only in the 

final model of the MELiSSA plant after considering all other limiting factors. Nevertheless, 

photorespiration  is  not considered for the leaf  metabolic  model,  as it  is  assumed that the 

CO2/O2 concentrations, light, temperature, etc. in the plant chamber are perfectly controlled.

1.8.2 Stem sub model 
Stem transports  materials  ‘to and fro’ from the root  and shoot using the transport  tissues 

called xylem and phloem. These are very useful for the material supply throughout the plant. 

For these reasons,  stem model  constitutes  metabolic  mechanisms for component  transport 

such as glucose, glyceraldehyde-3-phosphate (G3P), sucrose, amino acids like glutamine, etc. 

representing  the  main  carbon,  nitrogen  and  energy  source  in  plant  metabolism.  Studies 

showed that the amino compound exchanges as well as metabolic interconversions occur in 

between xylem and phloem (Stoermer et al., 1997; Atkin et al., 1980). 

The  stem model  interconnects  leaf  and  root  metabolic  models.  Hence,  the  knowledge  of 

carbon source transport, loading - unloading, flux and composition of the material transport in

each plant organ level is necessary. In order to obtain compound specific nitrogen exchange 

rates  between  xylem  and  phloem  systems  combined  with  information  on  metabolic 

interconversion of amino compounds, metabolic flux analysis technique (will be explained in 

chapter 2) with steady state labelling approaches (13C and  15N labelled amino acids) on the 

whole plant level are necessary (Ulrich et al., 2012).

1.8.3 Root sub model 
Roots carry nutrients and water from the soil/hydroponics system of the plant culture. The 

nutrient absorption by plant roots is regulated relative to the plant demand. To absorb water 

and nutrients,  roots  need large  amount  of  energy.  This  energy is  mainly  supplied  by the 

respiration process. Hence, the rate of respiration in roots is very high compared to any other

organ of the plant. Also, depending on plant species and/or the growth stage N assimilation 

might occur in roots or source leaves followed by the transport of amino acids.
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Further, respiration limits the growth: it is reported that between one-quarter and two-thirds of 

all the photosynthates produced per day are respired (Poorter  et al., 1990). A major part of 

this respiration occurs in the roots where carbohydrates are translocated; this is connected 

with the growth, maintenance and absorption of ions (Waisel  et al., 2002). The fraction of 

carbohydrate  translocation  tends  to  change  with  the  plant  age/developmental  stages.  The 

percentage  increases  with  decreasing  growth  rate  of  the  plants  (Poorter  et  al.,  1990). 

Similarly, so many factors affect plant growth and root metabolic model as well. However, 

the general plant root metabolic model accounts respiration and related uptake metabolisms.

Usually,  root  respiration  metabolism involves  the  catabolism of  macromolecules  (protein, 

lipid,  fatty  acid  and carbohydrate).  In  this  way,  root  models  will  be  different  for  potato, 

tomato and lettuce plants; moreover, it may depend on the concentration of O2 of the nutrient 

solution and the quantity of physical exchange with gas phase. In cucumber plants grown in 

O2 deficient  nutrient  solution,  it  has  been  found  that  O2 in  the  aerial  environment  is 

transported through leaves for root respiration (Yoshida and Guchi, 1994). Nevertheless, it is 

assumed that MELiSSA plants are cultured in a perfect controlled atmosphere along with 

most suitable nutrient solution. 

The proper coupling of the above discussed models constitutes the general metabolic model 

which reveals the bicochemical plant significance. Obviously, most of the metabolisms are

connected to the physical plant processes. For example, photosynthesis is influenced by gas 

concentration,  pressure,  humidity,  etc.  Similarly,  the  uptake  metabolism is  related  to  the 

transpiration and gas movements with the environment which are separately studied with the 

physical process modelling and will be implemented in future.

Although  the  ways  to  achieve  the  biochemical  plant  growth  model  are  described,  as  a 

preliminary step, we aimed to develop leaf metabolic model. For that, we have taken many 

concepts involving metabolism studies that already carried out by several people (Schwender 

et  al.,  2003;  Provost  et  al.,  2006;  thesis  of  Balakrishnan  Achuthanunni  Chokkathukalam, 

2010; thesis of Guillaume Cogne, 2003) along with the compartmentalised metabolic pathway 

studies of a photosynthetic plant cell (Morgan and Rhodes, 2002). Many more models and

studies for specific plant processes exist which are outside the scope of this thesis. However, 

it was necessary to establish a stoichiometric metabolic model for the entire plant correlating 

available modelling methodologies (which will be described in chapter 2) and general plant 

growth model design (as mentioned in foreword). The stoichiometric metabolic models which 

are  successfully  applied  for  microorganisms  were  found interesting,  as  it  was  possible  to 
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modify it into plant cell level and subsequent integration could satisfy our preliminary model 

concepts. 

1.9Conclusion 
Mathematical models in the plant and crop sciences provide means of integrating different 

aspects of the plant system, in particular the interaction between plant metabolic processes 

and environmental factors. An accurate metabolic model will be systematic and well ordered, 

describing the current knowledge of plant biochemical processes. The aimed model focuses 

the  response  of  canopy  photosynthesis  -  respiration  processes  including  adaptation  to 

predetermined  environmental  conditions.  Adaptation  is  obligatory  while  considering

controlled ecological life support systems, since plant metabolical characteristics are affected 

by past as well as present environmental conditions of the entire loop; especially, the level of 

photosynthetic enzymes in a plant is generally greater for plants grown in high irradiance 

levels than for similar plants grown in low irradiance. Upto an extent, such an adaptation can 

be accomplished through a stoichiometric plant growth model, as it can directly link to the 

light  and  CO2 availability.  However,  by  controlling  all  environmental  factors,  the  plants 

growing in controlled chambers are assumed to have a smooth plant growth. Nevertheless as 

it is concerned with the human life security, the final model validation is necessary using the 

experimental data of plants grown in such controlled environmental conditions in addition to 

the  space  constraints  (e.g.  microgravity  and radiation),  and if  necessary,  models  of  plant

processes can be added,  removed or connected to get a growth model  of our target.  The 

obtained model can be applied to 'normal'  growing conditions, although the principles are 

applied  to  closed  bio-regenerative  systems;  but,  of  course,  this  also  may  need  some 

modifications.
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1.10 Main outcomes of Chapter 1
- To achieve a biochemical  model  of plant growth, the entire  plant metabolism 

must be studied: organ, growth/developmental phase, matter transports (organ, 

tissue, cell and cellular organelles), interconnections, etc.

- For plant growth modelling purpose, the energy metabolism and its utilization are 

important.

- The existing metabolism models use either kinetic or stoichiometric steady state 

approach; models were found for a specific metabolism or under some particular

conditions.

- There were no stoichiometric models available for entire plant and this must be 

developed. 
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Chapter 2 Methodologies for 
modelling cell metabolism 
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2.1Introduction
Plant biology lies within a range of principles and mechanisms. Each process happens in its 

own rhythmic way controlled by hormonal/gene regulations. For plant modelling, there are 

connections between several sciences – mathematics, chemistry, physics and biology. Biology 

generates complex problems while the others provide ways to understand and solve it. A large 

number of biological phenomena and processes can be translated into an abstract concept of a 

complex network making biological problem which can be mathematically solved. Most of 

these  networks  have  been determined  through biochemical  experiments  over  the  last  few 

decades and can be found in various kinds of biochemistry text books. At the same time,

various techniques are developed for the representation and analysis of biochemical networks 

establishing mathematical models. Such models suggest new enquiries that can be tested on 

real biological system. 

In order to achieve a model revealing plant biochemical processes, it is necessary to introduce 

the key concepts of mathematical metabolic modelling: material balances in the living system, 

the mathematical representation of metabolism into metabolic stoichiometric matrices and the 

network analysis using steady-state assumption. Two methods are found interesting for the 

plant metabolic modelling purpose. Both are based on the stoichiometric metabolic network 

analysis. The same methods have already been successfully used for the in silico studies and 

modelling of microorganism grown in specified cultures.  The efficient  and relatively easy

metabolic modelling techniques that can be used for modelling cell metabolism are described 

in this chapter.

2.2Biochemical and mathematical basis of
metabolic modelling

The biochemical basis of metabolic modelling lies on the understanding of the metabolism. 

The catalysts of cellular metabolism are the proteins known as enzymes. Each enzyme has a 

relatively high specificity in terms of metabolites on which it acts and usually it catalyses only 

a single reaction. This is regulated by the instructions of a set of genes. In addition to this, the 

enzyme  activity  depends  on  the  concentration  of  metabolites,  which  may  susceptible  to 

change with respect to different types of constraints (e.g. environmental constraints like light, 

water, nutrient availability).
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A metabolic model refers a selected list of reactions and associated properties assumed to be 

present  in the  system under  investigation,  along  with  the  description  of  the  environment 

within which the system is assumed to reside. Therefore, plant metabolic model accounts all 

major  pathways  such  as  photosynthesis,  respiration,  energy  for  maintenance,  growth, 

transport processes not only by xylem- phloem vessels, but also within the cells.  In order to 

attain  a  metabolic  model,  all  these  pathways  must  join  up,  since  plants  make  all  their 

constituents from a small set of precursors such as carbon dioxide (CO2), water, light, micro 

nutrients, etc. In those cases, the relative material flows known as ‘metabolic flux’ from small

cell  compartments  to  another  (e.g.  from chloroplast  to  cytoplasm)  connect  the  metabolic 

pathways. This process takes place within the cell, from cell to cell and from organ to organ 

so that it connects all metabolisms forming a large network which could integrate into the 

plant level (Cassimeris et al., 2011). Following Figure 2.1, mathematical model of any kind of 

metabolism can be easily constructed (Wiechert and Takors, 2004).

Figure 2.9: Mathematical way to construct metabolic model (Wiechert and Takors, 2004)

Concentration  of  research  on  individual  components  of  the  system,  rather  than  on  its 

integration may result in the lack of information on many of the important mechanisms which

link the component parts and this contributes to the inability of detailed knowledge based 

models. Hence, for the modelling of plant metabolism, it is quite necessary to know the entire 

metabolism related to plants.  For better  understanding of plant  metabolism,  the metabolic 

compartmental  studies in different levels (leaf,  stem, roots, etc.)  may help.  The metabolic 

equations can be written expressing the impact of the environmental constraints mainly linked 
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to physical constraints, e.g. light, water, etc. But, to validate the model to be developed, it 

would be necessary to have experimental values for plants that grown in controlled/known 

environment. This means, in the absence of stress, plants grow naturally taking the advantage 

of  environmental  and  nutritional  factors/conditions.  Furthermore,  the  factors  such  as 

metabolism, metabolic flow and relative growth rate with respect to the environmental stress 

or constraints reflect plant morphology and development. 

Regarding  the  metabolic  networks  which  involve  sequence  type  reactions  (which  is  very 

common), the first produced metabolite will be consumed by another reaction as substrate;

then,  it  is  known  as  primary  metabolite;  if  primary  metabolite  is  consumed  by  another 

reaction  as  a  substrate,  it  is  called  secondary  metabolite  and  so  on.  Though  secondary 

metabolite  is not directly involved in the process, it  has an important  ecological  function. 

Examples include hormones, vitamins and pigments. Being the intermediates of biochemical 

reactions,  metabolites  connect  many different  pathways  that  operate  in  a  living  cell.  The 

metabolite level, which could be determined by the activity of the enzymes that are involved 

in the synthesis and conversion of that metabolite represents the integrative information of the 

cellular function; hence it defines the phenotype of a cell or tissue in response to genetic or 

environmental changes. Due to the coupling of many different reactions within the metabolic 

network,  even  small  perturbations  in  the  level  of  biological  enzymes  may  result  in  a

significant change in the levels of many metabolites. 

The  metabolome  forms  the  complete  set  of  metabolites  used  or  formed  by  the  cell  in 

association with the metabolism. Consequently, it comprises the intracellular metabolites as 

well as the metabolites excreted into the growth medium (e.g. hormones and other signalling 

molecules found within a biological sample). The series of metabolic reactions of metabolism 

are called metabolic pathways. There are a number of biological metabolic pathways that are 

quite common for many living organisms. For example, respiration and pentose phosphate 

pathway are very common in all organisms, which serve as energy conversion pathway. Other 

important  metabolisms  are  fatty  acid,  glycogen  and amino  acid  metabolisms.  In an  early 

study,  it  was  found that  the  large  scale  structure of  the  core  metabolic  network from 43

organisms is identical, being dominated by the same highly connected substrates (Jeong et al., 

2000).

However in a metabolic pathway, the reactions are organized to serve a coordinated function 

within  the  cell.  The  main  metabolic  pathways  such  as  photosynthesis,  respiration  and 

associated metabolic processes play major roles in the plant’s carbon budget (Lambers et al., 
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2008).  The  biomass  produced  by  leaves  is  specifically  partitioned  in  roots  and  shoots 

accounting all plant activities. In short, the fluxes through biochemical reactions connect the 

entire metabolism, which can be specified as a function of the amount of enzymes catalyzing 

the reactions and the concentration of the metabolites. This differs from the rate of a reaction 

or velocity and depends on the metabolite level. The concentrations of metabolites themselves 

are functions of the metabolic fluxes and vice versa. Thus, there is an important feedback 

regulation imposed on the system (Nielsen, 2003; Schwender, 2009). Moreover, enzymes are 

regulated by reactants and products of many reactions. Thus, the metabolic flux is appeared to

be the final  outcome of genetic,  enzymatic  and metabolic  reaction  and hence stands as a 

valuable representation of cell physiology.

2.2.1 Theories behind metabolism 

2.2.1.1 Material balance

Every biochemical system maintains material and energy balance in order to keep the growth 

and survival. The balance is in accordance with the law of mass and energy conservation. 
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Figure 2.10 : A biochemical system

Consider an open system (as shown in Figure 2.2) separated from its surroundings by an 

imaginary  boundary;  some  substrates  are  consuming,  reactions  take  place  and 

macromolecules are forming inside the cell through different stages. Then, according to mass-

balance  theory,  the  material  entering  into  a  system  must,  either  leave  the  system  or 

accumulate within the system, with or without having reaction. 
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Then,  the  simplest  expression  for  the  total  mass  balance  for  the  system  is  given  by 

(Himmelblau, 1967),

Input – Output + Reaction = Accumulation

Here, the substrates injected to the system are inputs, and products formed outside are outputs. 

The accumulation can either be positive or negative, depending on the relative magnitudes of 

input and output. It should be zero for a continuously operated reactor (e.g. continuous culture 

at steady state). As many biological systems achieve steady states at some stages of growth, 

the accumulation term will be considered as zero. Considering plants as a bio-system, the

substrates  consumed  are  carbon dioxide,  water,  nutrients,  light  energy,  etc.  and the  main 

products are biomass, transpired water and oxygen gas. Therefore, according to mass balance 

theory for plant system, 

Substrates (consumed) →   Biomass (produced) + (water + gases) (produced)

While using equations for biomass transaction, in most cases we consider C, H, O and N, 

since other elements (S and P) participate only in small fractions and contribute only a very 

small quantity to the biomass. These types of mass balanced equations are also termed as 

stoichiometric equations. For reactions that occur inside a physical system, such as a cell or 

all reactions (whether they are enzyme catalysed reactions or cells grown in nutrient solution 

producing product) occurring inside a reactor, stoichiometric equations can be written and the

metabolic feasibility can be analysed.  When dealing with a physical system, the materials 

flow in and out of the system. Hence, the material  balance involves the flow of materials 

(inputs and outputs) and the reactions in the system. Anyhow facilitating this, most biological 

reactions occur in aqueous solution. 

2.2.1.2 Energy balance

The energy balance in a biological system is 

maintained  in  the  form  of  several  energy 

molecules  (ATP4-,  ADP3-,  Pi2-,  NADP+ 

NADPH/H+,  NAD+ and  NADH/H+).  For  a

non-flow  system  separated  from  the 

surroundings  by  a  boundary,  the  increase  in 

the  total  energy  ‘ E∆ ’  of  the  system  is, 

WQE −=∆

Jnet = 0Jnet = 0Jnet = 0

Figure 2.11: Energy balance
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where ‘Q’ is the net heat supplied to the system and ‘W’ is the work done by the system 

(Katoh and Yoshida, 2009). Considering again plants, the light energy is the only source of 

energy for the whole plant metabolism (work). Plants absorb this energy directly from the 

environment using special pigments called chlorophylls. The light energy is then converted 

into chemical energy, in the form of energy molecules in order to maintain all the metabolic 

process and energy needed process like uptake of nutrients, water by root. The extra energy is 

released in the form of heat; this process is also balanced by many other mechanisms like 

transpiration,  regulation of water,  temperature balance,  etc.  within the plant.  For example,

when the temperature rises in response to sunlight, most components of the energy balance 

that contribute to cooling increase in magnitude until energy gain and loss are in balance. At 

this  stage,  leaves reach an equilibrium temperature and the sum of all  components  of the 

energy  balance  will  be  zero  (Figure  2.3)  (Lambers  et  al.,  2008).  Any  change  in  the 

components of energy balance alters leaf temperature, which is important for gas exchange 

and photosynthesis.

2.2.2 Metabolic networks in steady state 
One of the characteristic features of living organisms is their ability to maintain a relatively 

constant composition during their growth. Organisms keep the internal state constant by the 

flow (flux)  of  matter  and energy through cell  metabolic  pathways.  Biologically,  it  is  not

always  necessary  to  reach  the  steady  state  for  successive  enzymatic  reactions.  But,  the 

consequence  of  not  attaining  steady  state  by  one  or  more  intermediate  metabolites  may 

continue  to  accumulate  in  increasing  or  decreasing  amounts  which  could  lead  to  severe 

problems (osmotic problems or exhaustion of intermediate) for the survival of the organism 

(Cassimeris  et  al.,  2011).  All  reactions  in  a  living system are interrelated  and hence,  the 

system as a whole can be considered to be in a steady state condition.

Despite, every single reaction takes place at a particular rate. To understand the rate of several 

chemical reactions constituting the metabolic pathway, pseudo steady state approach can be 

assumed (Schwender, 2009). This means, the rate of each reaction is equaled (steady). There 

will be a net conversion of the starting reactant into the final product. The concentration of

each of the intermediates between the initial substrate and final product remains steady; the 

reaction rates linking them are constant; only the concentrations of first and last molecules 

change with time; these are excreted or imported inside the cell. Thus, a single rate applies to 

all of the reactions, when the system is in steady state and the rate of a metabolic pathway is  
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equal to the rate of conversion of initial reactants into final products (Cassimeris et al., 2011). 

In this event, higher plants’ metabolic pathways are readily modelled using pseudo steady 

state and mass balance approach. It must be kept in mind that the hypothesis remains valid for 

a time interval:  not too short for averaging time course fluctuations,  and not too long for 

accounting long time evolution of metabolism. The time interval may be 15 min - 1 day in 

higher plant compartment.

2.2.3 Thermodynamics of metabolic pathways
Principally, living organisms are considered as open systems that can exchange matter as well

as energy with the surroundings (as in Figure 2.2). Biochemical thermodynamics is concerned 

with the use of energy from the source so that the necessary reactions become favourable, and 

thus may occur. Living systems have evolved to couple unfavourable and favourable reactions 

to make the overall process a thermodynamically favourable one. The primary examples for 

such  phenomenon  are  metabolic  pathways.  The  reactions  that  are  thermodynamically 

favourable may not occur rapidly enough to be compatible with the demands of the organism. 

These reactions are made faster by biological enzymes. For example, the respiration process 

needs  much  amount  of  energy  where  as  the  reverse  reaction,  photosynthesis  is 

thermodynamically unfavourable. But the reaction occurs in the presence of sunlight. Here, 

sunlight provides energy to the plants to overcome the energy barrier that is necessary for

thermodynamic favourability. 

At steady state,  the reactions are at equilibrium ( 0=∆ G ); the reactions with  0<∆ G  are 

thermodynamically favourable (exergonic), while those with 0>∆ G  are thermodynamically

unfavourable  (endergonic).  In  a  metabolic  pathway,  one  of  the  nonequilibrium  reactions 

frequently  becomes  the  rate  determining  step  of  that  pathway  and  the  associated  kinetic 

regulation controls the system (Cassimeris et al., 2011). 

2.3Mathematical representation of plant 
physiology 

Plant  physiology  is  represented  by  a  series  of  metabolic  pathways  that  control  the  plant 

growth and maintenance.  The internal  and external  factors which control and regulate the 

growth may be written in the form of mass balanced metabolic equations. These equations of 

each major and minor pathway of plant metabolism form a metabolic network corresponding 
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to the plant physiology.  In silico representation of plant physiology is necessary to study the 

system for the modelling purpose.  For that reason, we need to convert/represent the plant 

metabolic network into a mathematical one. This is possible by the matrix construction of 

mass  balanced  (stoichiometric)  metabolic  equations.  Stoichiometry  rests  upon  the  law  of 

conservation of mass because of the conservation of each element of the reaction.

Any system of biological complexities can be converted into the form of matrices. The matrix 

representations  based  on  stoichiometric  metabolic  equations  are  known as  stoichiometric 

matrices.  This allows to perform various types  of linear algebraic  studies on the  in silico

metabolic networks.

2.3.1 Equations into matrix
If  a  reaction  network  has  ‘n’  reactions  and ‘m’  molecular  species  participating,  then  the 

stoichiometry matrix will have ‘n’ columns and ‘m’ rows. For example, consider the system 

of reactions shown below:

S1 → S2

5S3 + S2 → 4S3 + 2S2

S3 → S4

S4 → S5

This system comprises four reactions and five different molecular species (S1, S2, S3, S4 and

S5). Thus, the matrix has four columns and five rows. The stoichiometry matrix, A for this 

system can be written as:























−
−−

−

=Α

1000
1100

0110
0011
0001

2.3.2 Representation of metabolic network under steady 
state

The  key  concepts  for  mathematical  modelling  are  stoichiometric  matrix  and  steady-state 

assumption. To explain these terms in a metabolic network, consider a hypothetical system of 

reactions having pseudo-steady state for the intermediates B, D and NADH as in Figure 2.4. 
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A → B; at flux J1 

B → C + NADH; at flux J2

B → D; at flux J3

D → E; at flux J4 &

D + 2 NADH → F; at flux J5
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J2 NADH
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J2 NADH

C
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Figure 2.12: Hypothetical system at 
steady state

From this network, we can write the system of equations at steady state as, 

J1 - J2 - J3 = 0

J3 – J4 – J5 = 0

J2 – 2 J5 = 0

Solving for J2, J3 and J4 in terms of J1 and J5:

J2 = 2 J5

J3 = J1 – 2 J5

J4 = J1 – 3 J5

Thus, using steady-state approach, all  fluxes could be calculated from only two measured 

values; i.e.  J1 and J5, which are corresponding to the exchangeables fluxes (initial and final

fluxes). 

2.3.3 Constraints in cell and network level 
Usually, in a biological system, the number of metabolites (m) is more than that of the number 

of  reactions  (n).  This  makes  the  stoichiometric  metabolic  network to  an underdetermined 

system (i.e. m>n), the analysis on which finds many solutions (‘infinite solutions’ in terms of 

mathematics). Hence, it is difficult to distribute the fluxes in the metabolic flux map and to 

model  the metabolism.  The use of  constraints  in  metabolic  network analysing  techniques 

helps  to  find  a  solution  in  such  cases  (Schwender,  2009).  Cellular  functions  also  suffer 

different  types  of  constraints  which  are  inviolable  and  provide  hard  constraints  on  cell 

functions. Mainly, constraints can be classified into four different categories as below.
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2.3.3.1 Physicochemical constraints 

Many kinds of physicochemical constraints  are found in a cell  (mass and energy balance, 

osmotic pressure, electro neutrality, etc.); all are balanced by regulating redox potentials and 

osmotic pressure. Furthermore, as living systems attains steady state, in order to avoid the 

accumulation, the cell constraints such as osmosis and osmotic pressure are well maintained 

(Strange, 2004). Similarly, steady state and mass balance approaches are used while analysing 

metabolic networks.

Further, the diffusion rates of macromolecules inside a cell are limited by mass transport, as 

the  cells  are  thickly  packed.  Moreover,  reactions  can  proceed  only  in  the  direction  of  a 

negative  free  energy  change.  Regarding  this  context,  the  thermodynamics  of  metabolic 

pathways are accounted by powerful metabolic techniques.

2.3.3.2 Topological/spatial constraints 

These are the constraints that affect the topology. Usually, cell is highly crowded and leads to 

topological  constraints  that  affect  cell  structure  functions.  For  example,  bacterial  DNA is 

about  1000  times  longer  than  the  length  of  a  cell.  Hence,  the  tight  packing  and  the 

accessibility  of  the  DNA  constrain  the  physical  arrangement  of  DNA  in  the  cell  level.

Incorporating these constraints is a significant challenge. To connect topological constraints 

in terms of network analysis, the distribution of the number of connections per node within 

the  network,  called  connectivity  of  a  node  is  calculated  (Jeong  et  al.,  2000).  Biological 

network of interactions, including gene expression networks of organisms have many nodes 

with few connections and a few nodes with many connections (Luscombe et al., 2004; Van 

Noort et al., 2004; Junker and Schreiber, 2008).

2.3.3.3 Environmental constraints

Environmental constraints are the constraints originally coming from the environment. These 

are important to determine phenotypic properties and fitness. Environmental constraints on

cells are time and condition dependent. In the case of plants, these constraints include gas 

levels in the atmosphere such as CO2/O2, humidity, temperature, pressure, light availability to 

the canopy, light intensity, nutrient availability, pH, hydroponics solution temperature which 

helps  the  root  uptake  process,  etc.  The  performance  of  a  plant  varies  under  different 

environmental  conditions.  Environmental  constraint  data  from  plant  culture  can  only  be 

compared, if the experimental conditions are identically managed. 
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2.3.3.4 Regulatory constraints

Regulatory constraints are the constraints that regulate the metabolism and growth of a living 

cell.  These  are  self  imposed  constraints  and  involve  in  concentrations,  fluxes  or  kinetic 

constants. On the basis of environmental conditions, regulatory constraints allow the cell to 

eliminate suboptimal phenotypic states and to confine itself to behaviours of increased fitness 

(Price et al., 2004). Regulatory constraints are implemented by cell in various ways, including 

the  amount  of  gene  products  which  make  transcriptional,  translational  and  enzymatic

regulation (Price et al., 2004).

Mathematically, the stoichiometry of the reactions limits the space into a subspace which is a 

hyperplane. If the reactions are defined so that they are all positive, the plane is converted into 

a cone. If additionally the constraints in terms of upper bounds and maximum capacities are 

defined for the fluxes, a closed convex cone solution space will be obtained as in Figure 2.5. 

All possible metabolic states of an organism, the feasible flux distributions, lie in that solution 

space. Thus, it is the space of phenotypes which an organism can express. To further shrink 

the solution space, additional constraints must be set up from extracellular metabolome for 

condition-specific solution spaces, reaction thermodynamics (Price  et al., 2004; Price  et al., 

2006) and experimental transcription data. The whole feasible solution space can be studied

algebraically or statistically by sampling the space (Price et al., 2004; Palsson, 2000).

 Network reconstruction
Genomics, physiology and biochemistry

Energy and biomass constituents

Application of constraints

J1

J2

J3

Allowable
solution space

Network reconstruction
Genomics, physiology and biochemistry

Energy and biomass constituents

Application of constraints

J1

J2

J3

J1

J2

J3

J1

J2

J3

Allowable
solution space

Figure 2.13: Mathematical representation of plant metabolic network The application of 
constraints  reduces  the  allowable  solution  space  which  makes  easier  the  plant  modelling 
(Adapted from Price et al., 2004)
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Randomized Monte Carlo sampling of the feasible solution space gives unbiased information 

on the shape and properties of the space where the true metabolic state lies (Price et al., 2004; 

Schellenberger and Palsson, 2009). The null space containing all the possible flux distribution 

can  be  studied  algebraically  (Palsson,  2000).  Investigation  on  the  feasible  solution  space 

yields properties of the true metabolic state: the types of possible solutions, the parts of the 

metabolic  network  participated  in  the  possible  metabolic  states,  the  factors  limiting 

production  of  specific  extracellular  compounds,  etc.  Therefore,  it  is  necessary  to  use 

constraints  in  the  modelling  level,  similar  to  the  cellular  level.  Fortunately,  the  powerful

methodologies  and  techniques  of  metabolic  network  analysis  use  the  above  described 

(Paragraph 2.3.3) valuable constraints.

2.4Methodologies for metabolic network 
analysis

2.4.1  General trends and techniques for system pathway 
analysis

The interesting fact for a biological network is that, it is arranged in such a way that linear  

algebra  can  be  applied  to  study  the  system behaviour;  i.e.,  the  metabolic  behaviour  and 

thereby physiological behaviour can be studied and connected to the physical activities. The 

network often reflects crucial system properties, such as robustness, redundancy, constraints 

or other functional interdependencies between network elements.

Stoichiometric
modeling

Oriented to 
system analysis

Seeking for particular 
flux solutions

Linear algebra
(null space)

Convex analysis

Metabolic flux analysis

Flux balance analysis

Flux spectrum approach

Estmation of 
current flux state

Predict flux states

Metabolic control analysis

Elementary flux mode analysis

Extreme pathway analysis

Figure 2.14: Applications and methodologies in the stoichiometric modelling framework 
There are two main categories – i) to study the properties of the whole space of possible flux 
distributions ii) determination of particular flux solutions of the allowed space. The scheme is 
adapted from Llaneras and Pico, 2008; Gombert and Nielsen, 2000.
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Several quantitative analytical methods have been developed for the analysis  of metabolic 

networks.  Two  basic  approaches  are  kinetic  approach  and  structural  approach.  Kinetic 

approach,  the  approach used for  kinetic  modelling,  is  based  on the  fundamental  reaction 

engineering principles. But, as we said in the previous chapter, this requires detailed kinetic 

information.  On the  other  hand,  structural  approach is  based  on the  stoichiometry  of  the 

metabolic  network,  in  which  we  are  interested.  Structural  modelling  or  stoichiometric 

modelling focuses on the network topology of the system; it has no relation to the efforts of

those producing impressive 3D models of the physical structure. However, the analysis uses 

matrix  algebra to deduce the constraints  implicit  in metabolic  networks. This matrix is of 

chief  importance  because  it  represents  the  translation  of  biological  knowledge  in 

mathematical terms. Once the fundamental stoichiometric matrix has been determined, mass 

balances involving the rest of the intracellular metabolites can be mathematically represented.

In  order  to  build  a  comprehensive  mathematical  model  of  the  living  organism/cell,  it  is 

required to know all principal components of the system in addition to the interactions that 

enable metabolite flow (as described in chapter 1). Since last 10-12 years, several modelling 

methodologies  are  developed  based on this  information.  The  outline  of  the  stochiometric 

modelling  is  shown  in  Figure  2.6.  Each  methodology  has  a  particular  purpose;  either

analysing the metabolic pathways of the network or seeking particular flux solutions. Each 

method employs different mathematical frameworks and is based on different assumptions 

among others. A rational classification of these methodologies can be done based on their 

division  between,  those  focused  on  the  properties  of  the  entire  space  of  possible  flux 

distributions (and thereby elucidating systemic or emergent properties of the organism under 

investigation), and those for determining particular flux solutions (Figure 2.6) (Gombert and 

Nielsen, 2000). 

The most frequently used classical stoichiometric modelling methods are Elementary Flux 

Mode Analysis (EFMA) (Schuster and Hilgetag, 1994; Schuster  et al., 2000) and Extreme 

Pathway Analysis (EPA) (Schuster et al., 1999, 2000; Schwender, 2009) which characterise

all possible flux distributions satisfying the mass balance constraints (Edwards  et al., 2002; 

Klamt  et  al.,  2002;  Papin  et  al.,  2004);  additionally,  Metabolic  Flux  Analysis  (MFA) 

(Stephanopoulose et al., 1998) and Flux balance analysis (FBA) (Varma and Palsson, 1994; 

Bonarius  et  al.,  1997;  Schiling  et  al.,  1999)  allow  the  determination  of  particular  flux 

solutions. 
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In summary, system analysis provides huge, unstructured molecular interaction network into 

well-defined  modules  describing  the  major  information  flows,  which  can  be  used  for 

predictive dynamic modelling.  These modules describe individual biological processes and 

signalling  cascades  with enough accuracy so that  they can be combined into a predictive 

computational  model  for the entire  system which predicts  the outputs  with respect  to  the 

response of the input variables. The history of pathway analysis begins since 1964 (Milner, 

1964; Happel and Sellers, 1982). For the time being, various methods are known for network 

pathway analysis, based on linear algebra and convex analysis.

2.4.2  Pathway analysis based on convex algebra
This approach is based on the analysis of the null space of a stoichiometric matrix, which 

contains  all  cell  steady  states  (flux  distributions).  One  can  gain  an  insight  into  pathway 

structures within a metabolic network by calculating biochemically meaningful basis vectors 

for the null space (Schilling et al., 1999). But, it has some limitations: it could not account for 

irreversibility constraints, and the linear bases were not an invariant property, because, they 

were not unique. Although, null space has been used in the context of plant metabolism by 

metabolic control analysis (MCA) technique (Reder, 1988; Heinrich and Schuster, 1996), as it 

uses kinetics-based tool (Poolman  et al.,  2000; Fridlyand and Scheibe,  2000; Daae  et al., 

1999), further details are not provided.

Convex analysis enables the analysis of linear systems of inequalities, thus making it possible 

to  consider  the  irreversibility  of  fluxes  (Schilling  et  al.,  1999).  Two similar  approaches, 

elementary flux modes (EFMs) and extreme pathways (EP) analysis, use convex analysis to 

generate unique convex sets of vectors that characterise all the steady state flux distributions 

of  a  metabolic  network  (Papin  et  al.,  2003,  2004).  Both  are  used  to  elucidate  systemic 

properties.  While analysing the cell metabolic network of the organism under investigation, 

EFM and EP emerge from the entire network as a whole revealing the cell capabilities like 

pathway length, network redundancy or enzyme subsets. 

2.4.3  Elementary flux mode analysis – Theory and 
Principle

Each  elementary  flux  mode  fulfils  three  conditions:  steady  state,  feasibility  and  non 

decomposability:
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• Steady State: the elementary mode has to be in the null space of A, which means that 

A.e  =  0,  where  A  is  the  stoichiometric  matrix  of  order  ‘m’  metabolites  and  ‘n’ 

reactions. 

• Feasibility:  the  elementary  mode,  ‘e’  has  to  be  thermodynamically  feasible. 

Irreversible reactions have to operate in the correct direction. 

• Non decomposability: the elementary modes have to be the minimal functional units in 

a  network  and  each  elementary  mode  is  unique  and  cannot  be  decomposed  in  to

smaller elementary flux modes.

Thus, an elementary mode is defined as a minimal set of reactions (at steady state) with all 

irreversible  reactions  proceeding  in  the  appropriate  direction.  The  set  of  EFM  has  the 

following properties:

a) There is a unique set to EFMs for a given network, i.e. this set is an invariant 

systemic property.

b) Each EFM is genetically non-decomposable.  That is,  it  consists  of a minimum 

number of reactions that need to exist as a functional unit; if any of the reactions of 

the EFM is removed, it cannot operate as a functional unit.

c) EFM is  the  set  of  all  routes  through  a  metabolic  network  consistent  with  the

previous property.

Quantification  of  elementary  flux  modes  is  possible,  if  accumulation  rates  of  external 

metabolites are represented as the fluxes of the elementary modes (Gayen and Venkatesh, 

2006; Gayen et al., 2007). 

For any complex biochemical reaction systems, the elementary flux modes are detected. It 

uses  stoichiometric  mass  balanced  equations  and  reaction  directionalities.  The  matrix  on 

which EFMA performs is represented mathematically as, 

RJA =

where ‘A’ is the matrix of stoichiometric coefficients of the metabolites, J the unknown vector 

of fluxes and ‘R’ vector represents the accumulation rates of the external metabolites. It has 

the dimension of (m × n),  where ‘m’  is  the number of metabolites  in rows and ‘n’  is  the 

number of reactions in columns. Therefore, each column in the matrix represents a reaction 

(Figure  2.7).  ‘J’  is  a  vector  of  the  ‘n’  reaction  rates.  The  ‘n’  metabolic  fluxes  and  ‘m’ 

conversion rates characterise a physiological state.
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Figure 2.15: In silico representation of metabolic network

Due to  pseudo  steady  state  approach,  the  elements  of  vector  ‘R’  (the  rate  of  exchange) 

corresponding to the intermediate metabolites ( NER ) must be necessarily equal to zero. The 

non-zero elements of R ( ER ) are the net rates of formation of substrates, metabolic products 

and biomass components. 

2.4.3.1 Flux cone formation 

The  set  of  all  pairs  satisfying  the  conditions, 

0J ≥  and 0=NER  at  steady  state  forms  a 

polyhedral cone (Figure 2.8), where  NER  is the 

rate  of  exchange  of  internal  metabolite 

(intermediate or non exchangeables) (Urbanczik 

and  Wagner,  2005).  Since  some  biological 

reactions  are  irreversible,  the  space  of 

possible  flows  through  the  network  is 

constrained, and in mathematical terms, it 

corresponds  to  a  high-dimensional 

polyhedral cone, which is often called the 

flux cone. 
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2.4.3.2 Computation of elementary modes

The elementary modes are given by the generating vectors of the flux cone, and thus, can be 

computed based on an algorithm for detecting the generating vectors of convex polyhedral 

cones  (Nozicka  et  al.,  1974).  In  1981,  Clarke  proposed one algorithm.  But,  this  had the 

drawback that the running time increases rapidly with the number of reactions (Clarke, 1981). 

However  in  1993,  Schuster  R.  and Schuster  S.  have solved this  problem.  The algorithm 

presented by them was faster than the method proposed by Clarke (Schuster R. and Schuster

S, 1993). In addition, Schuster has given more mathematical description as well as references 

to related methods (Schuster and Hilgetag, 1994; Schuster et al., 1996). 

The metabolic reactions, defined in terms of reversibility/irreversibility,  and metabolites as 

exchangeables and nonexchangeables are converted into the matrix form. Transposing this 

matrix and augmenting it with the identity matrix gives a matrix called the initial tableau. 

From this, further tableaux are consecutively computed by pair-wise linear combination of 

rows  so  that  the  columns  of  the  transposed  stoichiometry  matrix  become  null  vectors 

successively.  This  procedure  ensures  the  fulfilment  of  steady-state  condition  for  each 

metabolite.

Before computing the elementary modes, it is convenient (but not necessary) to reduce the

matrix by lumping the reactions that necessarily operate together. Lumping reactions in any 

one of the sequences gives a reduced system (Schuster et al., 2000). While calculating EFMs, 

generally  linear  combinations  of  two  rows  belonging  to  the  same  type  of  directionality 

(reversible or irreversible) go into the part of the respective type in the next tableau, while 

linear combinations of rows corresponding to different types go into the "irreversible" part as 

they include at least one irreversible reaction. The "irreversible" reaction can enter a linear 

combination only with a positive coefficient in such a way that all modes use the irreversible 

reactions in the appropriate direction. Then, as mentioned earlier, calculations for initial table 

and consecutive tables should be carried out; rows are combined so as to ensure the column 

of the transpose matrix should be zero. The rows of respective elements which are already

zero are copied straight into the next tableau. In the course of the algorithm, calculation of 

duplicate modes, non-elementary modes, and flux modes violating the sign condition for the 

irreversible reactions is avoided by checking three conditions (Schuster et al., 2000): 

1. First,  a  pair  of  rows  is  combined,  only  if  it  fulfils  the  condition 

)]()()([ )1()()( +⊄∩ j
l

j
k

j
i mSmSmS  for  all  row indices  ‘l’ belonging to  the respective 
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part (reversible or irreversible) of the new tableau as it has been compiled until that 

stage.  The  term  )( j
im stands  for  the  ith row  in  the  submatrix  of  tableau  )( jT  and

)( )( j
imS is the set of positions of zeroes in this row. This set harbours information about

which enzymes are not used in the respective mode.

2. The second condition says that "irreversible” rows can only be added rather

than subtracted.

3. Third condition rose to avoid the non elementarity upon constructing a new 

tableau. If any pair of rows pass the first condition and are combined and added to the 

tableau, all the rows )1( +j
lm  previously added to the new tableau are checked to ensure

that: 

)()()( )()1( j
k

j
i

j
l mSmSmS ∩⊄+

     

2.4.3.3 Futile cycles and EFM

At cell level as well as in metabolic network level, futile cycles can be seen. The analysis of 

cyclic modes helps to understand the physiological relevance of futile cycles in metabolism.

One can calculate the energy cost attributable to substrate cycling. The principle of detailed 

balancing cannot be applied to cycles, if exchangeables (inputs and outputs) are hidden in 

reaction cycles (Walz and Caplan, 1988). Therefore, the cyclic effect could be avoided by 

fixing  the  relation  between  the  cyclic  reactions  understanding  the  significance  of  the 

metabolic pathway. Thus, the system sustains. In the biological system, this fixation takes 

place by many types of constraints like environmental, physicochemical constraints, etc.

2.4.4 Extreme pathway analysis – Theory and Principle
While EFMs enumerate  all  distinct  routes from substrates to products within a metabolic 

network, extreme pathway analysis (EPA) focuses on enumerating the unique and minimal 

set of convex basis needed to describe all the possible steady state flux distributions. The EP

set  defines the edges of the convex cone.  It  is  a subset  of the set  of EMs. It  potentially 

represents all possible flux distributions being a basis set of vectors. Furthermore, as EPs 

form a convex base, they satisfy an additional property of systemic independence. The set of 

EP is  said to be systemically independent,  if  no EP can be written as a  non-trivial  non-
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negative  linear  combination  of  any other  EP.  The difference  between this  definition  and 

linear independence is that the coefficient of the linear combination must be positive.

Analysed system References
Analysis of photosynthate metabolism in the

chloroplast
Poolman et al., 2003

Measurements of mass balance, Rubisco enzyme
activity, stable isotope labelling and analysis of

elementary flux modes

Schwender et al., 2004 a

Identification of pathways Papin et al., 2003; Poolman et al., 2003; 
Schuster, 2000; Schuster, 1999

Detection of reactions correlations (enzyme 
subsets)

Schuster et al., 2002

Detection of infeasible circles Gagneur and Klamt, 2004
Detection of minimal cut sets, Translation of flux 

distributions into EM/EP patterns
Klamt and Gilles, 2004

Particular solution methods Schwartz. and Kanchisa, 2006
α-spectrum Wiback et al., 2003; Llaneras, 2007

Determination of minimal medium requirements, 
Detection of network dead ends

Schilling et al., 2002; Schilling and 
Palsson, 2000

Analysis of pathway redundancy and robustness Papin et al., 2002 a, b
Incorporation of information about regulation Covert et al., 2001

Support in metabolic engineering, Assignment of 
function to orphan genes,  Identification of

pathways with optimal and suboptimal yields, 
Evaluation of effect of addition/deletion of genes

Papin et al., 2003

Suggest changes in flux distributions to increase 
product yield

Van Dien et al., 2006

Table 2.4 : Applications of elementary flux modes and extreme pathways analysis in
plants and microbial metabolism Adapted from Llaneras and Pico, 2008.

The algorithm for the calculation of EPs and EFMs differ in terms of treatment of reversible 

reactions, although both analysis accounts for irreversibility of some of the reactions. EPA 

decouples all internal reversible reactions into two separate reactions for the forward and

reverse  directions,  and  subsequently  calculates  the  pathways.  Since  EPs  are  a  subset  of 

EFMs, considering EPs instead of EFMs reduces not only the number of routes, but also, the 

required computational  power.  However,  the result  in terms of EPs does not produce the 

complete  set  of  genetically  independent  routes  within  the  metabolic  network  under 

consideration.

2.4.5 Techniques for flux distribution assessment 
The measurements of intracellular fluxes are difficult and often damage the system. Several 

methodologies  of  stoichiometric  modelling  framework  use  experimental  measurements  to 
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estimate  in  vivo fluxes  and to  develop models  capable of predicting  unique feasible  flux 

distribution  under  certain  conditions.  For  example,  the  effect  of  measured  uptake  and 

secretion fluxes on the space of possible flux distributions has been investigated (Wiback et  

al., 2004). In order to determine the complete current flux distribution, usually, the space of 

possible flux distributions is coupled with experimental measurements of fluxes, commonly 

the extracellular  ones.  Such methodologies  uniquely determine  the exact  flux distribution 

(Stephanopoulos  et  al.,  1998).  Metabolic  flux  analysis  (MFA)  is  one  of  the  popular 

techniques  among them.  Therefore,  this  technique  has been extensively applied  in  recent

years, and found particularly successful in the fields of microbial production and animal cell 

culture. 

After the introduction of metabolic flux analysis, variants of classical metabolic flux analysis 

called 13C Metabolic flux analysis (13C MFA) and flux spectrum approach (FSA) have been 

established (Llaneras and Pico, 2007, 2008; Wiechert, 2002). Both methods provide reliable 

and richer estimation of unmeasured fluxes when the system is determined. In the case of 

FSA, it is due to the inclusion of reversibility constraints and the consideration of the intrinsic 

uncertainty of experimental measurements; it is useful to estimate unmeasured fluxes, even if, 

there  is  a  lack  of  measurable  species  (Llaneras  and Pico,  2008).  Nevertheless,  13C MFA 

always  requires  information  regarding  13C labelling  experimental  data.  The flux  ratios  at

branch points in the network reflect the 13C labelling pattern of the metabolites, thus provide 

additional constraints to the stoichiometric equations which finally compensate the lack of 

measurements therein (Wiechert, 2001). 

Modelling method References
Isotope labelling
based MFA

Fernie et al., 2001 ; McNeil et al., 2000; De Graaf et al., 1999

Classical MFA Calik P et al., 1999; Yang et al.,, 1999; Shi  et al., 1999; Hua et al., 
1999; Follstad et al., 1999

FBA Price et al., 2004; Edwards and Palsson, 1999, 2000 a; Schilling and 
Palsson, 2000; Reed et al., 2003; Feist et al., 2007; Schilling et al., 
2002.

Table  2.5 :  Isotope labelling based MFA, MFA and FBA methods  applied in bacterial 
and plant metabolism. Adapted from Rios- Estepa and Lange, 2007; Gombert and Nielsen, 
2000; Raman and Chandra, 2009.

Further,  a  number  of  organisms  are  metabolically  modelled  using  flux  balance  analysis 

(FBA) methodology (Schilling et al., 2002, Edwards and Palsson, 1999, 2000 a; Feist et al., 

2006; Edwards et al., 2001); it involves computing a basis of the underlying polyhedral cone. 
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It  can  be  carried  out  assuming  that  cell  behaviour  is  optimal  with  respect  to  a  (known) 

objective,  and  the  optimal  flux  distribution  is  calculated  using  an  optimization  routine 

(Kauffman  et al., 2003; Price  et al., 2003). Table 2.2 contains a few recent models studied 

using the above said metabolic techniques. Many more examples exist; a full review of which 

is outside the scope of this thesis. 

2.4.6 Metabolic Flux Analysis (MFA) – Theory and 
principle

MFA is aimed at estimating the extent (flux) of each reaction in the biological network using

mass  balance  and  pseudo  steady  state  assumptions.  A  flux  balance  is  written  for  each 

metabolite  within  a  metabolic  system  yielding  mass  balance  equations  that  interconnect 

various metabolites. The basic principle, stoichiometry stands same for MFA as well as EFM 

analyses.  To  perform  MFA  calculations,  the  metabolic  network  is  represented  into  a 

mathematical one. Similar to EFM analysis, the system of equations can be represented in 

matrix form as, 

RJA =

where ‘A’ is the matrix of the stoichiometric coefficients of all the reactions involved in the 

metabolism. As said before, it  has the dimension of (m × n),  where ‘m’ is the number of 

metabolites in rows and ‘n’ is the number of reactions in columns. Therefore, each column in 

the matrix represents a reaction. ‘J’ is a vector of the ‘n’ reaction rates, which is unknown. 

The ‘n’  metabolic  fluxes and ‘m’ conversion rates characterise  a physiological  state.  The 

matrix representation is the same as we discussed for EFMA (Figure 2.7); i.e. the metabolic 

matrix for EFMA and MFA can be constructed in a similar way and if we want to perform 

both  analyses  on  the  same  metabolic  network,  it  can  be  done  without  changing  any

formats/parameters.

Moreover, the elements of vector ‘R’ (the rate of exchange) corresponding to the intermediate 

metabolites (non exchangeables, NE) is partially known as pseudo steady state is assumed. 

The non-zero elements of R are the net rates of formation of substrates, metabolic products 

and biomass components. 

Since biomass is treated as a product, the rate of biomass can be expressed as time rate of 

change in the concentration of biomass formation,

dt
dCR s

biomass
biomas

=
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For all extracellular metabolites at steady states,

dt
dCE=ER ; 0R NE =

Therefore, vector ‘R’ is determined by measuring only the production rate of extracellular 

metabolite; then, the system is completely determined and can be solved. To perform MFA, 

experimental data are necessary in addition. Constraints in terms of directions of reactions 

and mass balance are also imposed on the metabolic network. Generally, the more knowledge 

that  can be incorporated into the flux determination algorithm, the more reliable  the flux

estimates will be. 

Taking the metabolic network in the paragraph 2.3.2 as an example, the stoichiometric matrix 

can be created. 
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The reaction stoichiometries are defined by the stoichiometric matrix, A which contains all 

coefficients of reactions. The reaction rate vector, J can be calculated as RAJ -1= . The rate of 

exchange values corresponding to B, D, NADH (intermediates) are zeros; RA and RF (which 

corresponds to J1 and J5) should be measured, while RC and RE (exchangeables) can be find 

out from steady state approximations. Such type of manual computation is surely a major task 

for a large network with lots of equations; but, easy to calculate using a suitable mathematical 

program like MATLAB. After the calculation, we will get the fluxes in terms of the measured 

rates.  This  is  the  systematic  way of  analysing  fluxes  in  a  particular  metabolic  network.

Anyhow, before doing calculations, some of the below conditions must be satisfied.

2.4.6.1 Non-singularities (matrix of full rank)
If ‘A matrix’ is non-singular, a solution exists for the system. In that case, the rank of matrix  

A (the  number  of  independent  equations)  is  equal  to  the  number  of  unknown fluxes,  J. 

Mathematically saying, MFA is applicable only for a fully determined system (Schwender, 
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2009). But, this condition is not always possible, especially for a biological system. Due to 

the  reaction  dependence,  singularities  arise  in  the  A  matrix;  for  example,  consider  the 

simplified network depicted in Figure 2.9. 

In  this  case,  Reactions  1  and  2  are 

indistinguishable  from  the  extracellular 

measurements  of  A  and  D,  and  the 

resulting  ‘A’  matrix  would  be  singular.

Singularities  can  only  be  eliminated  by 

changing  the  metabolic  network  or  by 

adding some information; hence, reactions 

in  the  network  that  produce  such 

singularities  must  be  either  lumped 

together or removed.

 

A C DB

Reaction 1

Reaction 2

A C DB

Reaction 1

Reaction 2

Figure 2.16 : A simplified network 

Degree of freedom = No. of reactions - No. 
of internal metabolites

The number of degrees of freedom of the stoichiometric  matrix  A determines  how many

fluxes must be known to solve the metabolic fluxes in the network. The reaction rates can be 

easily calculated, if a system has zero degrees of freedom (Follstad et al., 1999). But, this is 

not the usual case as described in paragraph 2.3.3.

2.4.6.2 Futile cycles

The stoichiometric equations are selected in a way that reduces the number of futile cycles 

and parallel  metabolites  in  the  reaction  network (Cogne  et  al.,  2003).  Otherwise,  during 

matrix calculation, linear combinations of reactions will be equal to zero. Moreover, mass 

and energy balances should be maintained; the necessary reactions for energy producing as 

well as consuming should be supplied as additional constraints (Varma and Palsson, 1994).

For large metabolic networks with lots of reactions, MFA becomes difficult as the number of 

futile cycles increases correspondingly in terms of energy (Wiechert, 2001). Additionally, the 

energetic  costs  contribute  to  a  major  part  of  oxygen  and  hydrogen  (via  NADH/H+, 

NADPH/H+,  ATP)  balance;  but,  they  are  difficult  to  account  for.  But,  even  then,  the 

application  of  constraints  aims  at  solving  this  difficulty  and  allows  the  metabolic  flux 

calculation.
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2.4.6.3 Importance of understanding metabolism 

To  apply  MFA for  the  entire  plant  metabolism,  we  must  understand  possible  metabolic 

reactions and pathways which are very fundamental. This helps to separate the reactants as 

exchangeables  and intermediates  knowing the compartmental  metabolic  informations.  For 

example, glucose is an exchangeable in Calvin cycle reactions; but, if glucose accumulates in 

the  form of  biomass  (e.g.  carbohydrate  or  macromolecules),  which  is  necessary  for  cell 

growth, it  should be specified as nonexchangeable in the system network. Such kinds of

information  are  available  from  extensive  literature  surveys  and  several  online  databases 

including substrates, products and stoichiometries of each metabolic reaction, directions of 

reactions,  energetics,  etc.  All  important  reactions  should be included in the system under 

study; avoiding any one of the important reactions may lead wrong result.

2.4.6.4 Importance of constraints

Application  of  constraints  reduces  the  number  of  degrees  of  freedom  of  the  system. 

Therefore,  in  addition  to  the  elemental  balances,  known  metabolic  pathways  with 

directionality (reversible and irreversible) of reactions are implemented to the network; the 

system is  also influenced by the metabolites  (exchangeables  and nonexchangeables).  The

steady state assumption and lumping of the reactions help to reduce the complexity of the 

system.  For  a  series  of  reactions  in  which  there  is  no  consumption  or  production  or 

accumulation (means, if the products are using as the substrates for consecutive reactions and 

there is not at all accumulation), all the rates will be the same and the need for the rate of the 

reaction to be calculated will reduce. This altogether makes the possibility to calculate fluxes 

from relatively few measured fluxes. The intracellular fluxes, which are difficult to measure 

in vivo can thus be calculated.

2.4.7 Limitations and significance of current metabolic 
methods

All metabolic methods developed up to present have found both advantages and limitations,

although they were successfully used for various metabolic models. The kinetic modelling 

method, metabolic control analysis (MCA) which was established in earlier periods has clear 

limits in its scope of applicability (Rice, 2009). Mathematically, the control coefficients of 

MCA are simply logarithmic sensitivity coefficients at a particular steady state. MCA does 

not  account  the  stability  of  steady  state  and  time  scales,  in  which  the  system  reacts  to 
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perturbations.  Moreover, the applicability of MCA as a guide to metabolic engineering is 

often hampered by the fact that regulation on the transcriptional and posttranscriptional level 

is not considered (Rice, 2009); it is also challenged by the theories proposed by Savageau 

(Savageau et al., 1987; Savageau, 1992). 

Coming to the flux distribution solution techniques, FBA takes the risk to select solutions that 

might  be optimal  with respect  to  an objective  function,  as  it  is  analysed  on the basis  of 

maximizing or minimizing a function (Rice, 2009). 

Similarly, flux spectrum approach has also some limitations, though it brings some attentive

advantages over classical MFA. There are combinations of fluxes within the flux-spectrum in 

which each individual flux cannot be varied independently. Actually, flux-spectrum itself is 

an  overestimation  (Llaneras  and  Pico,  2007).  Unfortunately,  this  overestimation  is 

unavoidable, if one wants to have an independent estimation for each flux. It is guaranteed 

that all the feasible solutions are captured by the flux-spectrum intervals; in fact, this is the 

advantage and at the same time, the limitation.

Meantime,  it  has  been observed that  classical  MFA is  successively applied  for  relatively 

‘small’ networks; usually, this is the trend. For large networks, the available measurements 

would  be  insufficient  creating  network  under-determinacy.  Using  the  irreversibility 

constraints and isotope labelling experimental data (when available), a great extent of MFA

limitations would be overcame. But, plant metabolic systems are sufficiently complex that 

they often demand use of multiple isotopes to achieve obvious flux determinations. Thus, 13C 

labelling  is  often  combined  with  14C labelling  to  provide  flux constraints  that  cannot  be 

deduced by  13C labelling  alone (Fernie  et  al.,  2001).  However,  such types  of necessarily 

required fluxes for plant metabolic network are not available which we can be used. The high 

degree  of  compartmentation  of  plant  metabolism,  the  existence  of  duplicate  pathways  in 

different  organelles,  the  occurrence  of  heterogeneous  cell  populations  within  a  tissue  or 

organ, the difficulty in achieving metabolic  and isotopic steady state due to large, slowly 

turning-over polymer pools, represent the major challenges in applying isotopic labelling to 

plant systems (Roscher  et al., 2000). Hence,  13C MFA stays far away from our modelling

concepts. Considering again the primarily discussed techniques, MFA captures the attraction 

where it uses thermodynamic constraints. Further, MFA is found successful in the case of 

microorganisms and cell cultures (Schilling et al., 2000; Schuster et al., 1999; Wittmann and 

de Graaf, 2005; Follstad et al., 1999; Schwender et al., 2004 b). Currently, there is a trend in 
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applying MFA for different plant cells and for studying specific metabolism (Williams et al., 

2008; Beurton et al., 2011); but none is accounting the entire plant metabolic network.

Several applications of MFA are reported in addition to the quantification of pathway fluxes:

- MFA  identifies  the  pathways  that  can  reproduce  the  macroscopic  fluxes  of 

extracellular  metabolites  and  can  eliminate  alternative  pathways  which  are  not 

possible  by  virtue  of  their  inability  to  satisfy  the  material  balances.  The 

transhydrogenase  activity  of  C.  glutamicum  is  identified  in  this  way 

(Stephanopoulos and Vallino, 1991).

- In cellular pathways, MFA is useful in determining nodal rigidity. It determines the 

interconnections between metabolites called nodes (Junker and Schreiber, 2008). 

- It is possible to calculate the non measured extracellular fluxes. If measurements of 

these fluxes are available, the extent of their agreement with model predictions can 

be verified for model validation (Stephanopoulos et al., 1998). 

- Helps in the calculation of maximum theoretical yields which provide a benchmark 

for real processes and can also identify alternative pathways with attractive features 

for a given application (Stephanopoulos et al., 1998)

Thus, metabolic flux analysis is found to be a powerful metabolic technique. As mentioned 

before,  MFA  predicts  metabolic  outputs  along  with  biomass  composition,  if  the

experimentally  determined  inputs  are  provided,  which  is  required  as  a  part  of  predictive 

MELiSSA plant model. 

2.4.8 Comparing EFM, EP and MFA - Significance and 
relative differences 

The concepts of elementary flux modes (EFMs) and extreme pathways (EPs) have proved to 

be valuable tools for assessing the properties and functions of biochemical systems (Papin et  

al., 2002a, 2002b, 2004; Schwartz and Kanehisa, 2006; Junker and Schreiber, 2008). In fact, 

both concepts  are  closely related  to  one another.  EFMs and EPs were introduced by the 

groups of Schuster and Palsson (Schuster et al., 1999, 2000; Schilling et al., 1999; Pfeiffer et  

al., 1999). The set of extreme pathways are systematically independent and are the subsets of

the  sets  of  EFMs.  The similarities  and differences  are  discussed  in  detail  by Klamt  and 

Stelling (2002).
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Elementary flux modes Extreme pathways

There is a unique set of elementary modes for 
a given metabolic network.

There is a unique set of extreme pathways for 
a given metabolic network.

Each  elementary  mode  consists  of  the
minimum number of reactions that it needs to 
exist as a functional unit. If any reaction in an 
elementary  mode  were  removed,  the  whole
elementary could not operate as a functional 
unit.

Each  extreme  pathway  consists  of  the 
minimum number of reactions that it needs to 
exist as a functional unit.

The  elementary  modes  are  the  set  of  all 
routes  through  a  metabolic  network
consistent with property 2.

The  extreme  pathways  are  the  systemically 
independent subset of elementary modes; that 
is,  no extreme pathways can be represented 
as a  nonnegative  linear  combination  of any 
other extreme pathway.

Table 2.6 : Comparison between elementary flux modes and extreme pathways (Klamt 
and Stelling, 2002)

An elementary flux mode is a minimal set of enzymatic irreversible reactions knowing the 

appropriate  direction  that  could operate  at  steady state,  while,  systematically  independent 

subset of the elementary modes constitutes an extreme pathway. The common objective of 

elementary mode and extreme pathway analysis is to extract functionally independent units of

a whole metabolic network and there is no need of genomic or kinetic details. The reactions 

which are not connected to the metabolic network are identified by employing EFMs and EPs 

(Junker and Schreiber, 2008). 

Comparing  with  EP  analysis,  EFM  analysis  is  the  most  promising,  as  it  offers  several 

advantages. 

- EP analysis may neglect important routes connecting extracellular metabolites; but, 

EFM is capable of accounting all possible routes (Klamt and Stelling, 2002).

- Another advantage is that the connecting routes between different extracellular can be 

traced out and the maximum theoretical yield can readily be computed. 

- It is used to predict optimal growth and optimal phenotypic space of a specific target

metabolite (Gayen and Venkatesh, 2006). 

- It is used to analyse biochemical networks in mixed substrates and has biomedical 

applications (Edwards et al., 2001; Gayen and Venkatesh, 2006). 
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- The use of  elementary modes  in  the  development  of  unstructured,  kinetic  models 

compatible with the underlying metabolic network provides new applications (Provost 

and Bastin, 2004; Gao, 2007; Provost, 2006).

- Despite being these proposals, EFMA along with alpha spectrum analysis and FBA 

showed one of the  promising  methods  for modelling (Wiback  et  al.,  2004).  Also, 

studies connecting MFA and EFMA are also reported recently (Beurton et al., 2011)

Because  of  these  advantages  of  EFM  analysis  over  EP  analysis,  we  have  chosen  EFM 

analysis as a stoichiometric technique to perform pathway analysis in the metabolic network

of plant metabolism. The theory and principles of EFM analysis are studied in detail. 

Metabolic flux analysis quantifies the metabolic capabilities of a cellular system. Elementary 

flux mode analysis systematically enumerates all independent minimal pathways through a 

network, each unique elementary mode, which are stoichiometrically and thermodynamically 

feasible.  All  possible  steady  state  flux  distributions  through  the  metabolic  network  are 

nonnegative linear combinations of the set of elementary modes (Gagneur and Klamt, 2004). 

Both  MFA  and  EFM  are  different  techniques  involving  different  manners  of  matrix 

calculations and conditions with different objectives, although they use mass balances and 

steady states. Therefore, the software that should be used for the computational analysis is 

also different within MATLAB. 

As the number of reactions increases, the number of elementary modes normally increases. 

This  means,  a  large number  of  elementary modes  will  be involving in  a  larger  network. 

Usually, it is found that the number of EFMs obtained will be greater than that of the number 

of reactions used; it also depends on the exchangeables and non exchangeables involved. In 

the case of MFA analysis, it is preferable to reduce the network size by lumping reactions. 

Cyclic reactions differentiate both the methods. MFA will be affected by the influence of 

cyclic reactions (futile cycles); some reactions will get nullify because of the futile cycles. 

But EFM analysis can retain the effect of futile cycles. The differences and similarities of 

these two techniques can be summarised as follows:

2.4.8.1 Similarities

- Both the methods can be used to analyse the metabolic network of any biological 

complexities. 

- Both use steady state and mass balance stoichiometry principles.

70



- The metabolic in silico construction principles and the separation of metabolites into 

exchangeables and non exchangeables for the studies are very similar and necessary.

- Both run under physico chemical, regulatory, environmental constraints, etc.

- Both methods do not need any details on genetics and kinetics. 

- Hence, the same metabolic system can be used for both of the analyses.

2.4.8.2 Differences

- Obviously, matrix calculation is different for MFA and EFMA.

- Futile cycles are taken into account in the calculation of elementary flux modes. In 

fact, futile cycles may increase the number of elementary modes of the system. While 

metabolic flux analysis calculation is blocked by the influence of futile cycles (also 

known as cyclic reactions). But, this can be solved in another way.

- There is no need of experimental data for the calculation of the number of elementary 

modes of the system. But, for the calculation of intracellular fluxes using metabolic 

flux analysis, the experimental data (of at least, one value in terms of exchangeable 

rate) is essential.

2.4.9 Available Software tools 
The available software tools handle the matrix computations. A number of excellent tools are

available  for  analysing  metabolic  networks  and to  establish models  (Table  2.4).  GEPASI 

developed  by  Mendes  is  specifically  designed  for  the  analysis  of  biochemical  systems 

(Mendes, 1997). This software package calculates the control coefficients and elasticities of 

biochemical systems, and includes various optimisation algorithms (Mendes and Kell, 1998). 

Two other software tools with comparable scope are SCAMP (Sauro, 1993) and DBSolve 

(Goryanin  et  al.,  1999).  The software  tools  Empath  (Woods,  Oxford),  JARNAC (Sauro, 

2000),  ScrumPy  (Poolman,  2006),  FluxAnalyzer/CellNetAnalyzer  (Klamt  et  al.,  2002), 

PySCeS (Olivier  et al., 2005), YANA (Schwarz et al., 2005) and METATOOL (Pfeiffer  et  

al., 1999) calculate elementary modes. If flexibility is important, it is better to use algebraic 

software such as Maple, Mathcad, Mathematica or MATLAB (Giersch, 2000). 
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Software tools Available links
GEPASI http://www.ncgr.org/software/gepasi/index.html
SCAMP http://www.brookes.ac.uk/bms/research/molcell/fell/mca~rg/sware.html#

SCAMP
YANA http://yana.bioapps.biozentrum.uni-wuerzburg.de/
DBSolve http://websites.ntl.com/-igor.goryanin
Empath ftp://bmshuxley.brookes.ac.uk/pub/mca/software/ibmpc/empath/
JARNAC http://www.fssc.demon.co.uk  
ScrumPy http:// mudshark.brookes.ac.uk/ScrumPy
FluxAnalyzer/
CellNetAnalyzer

http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer
http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer

PySCeS http://pysces.sourceforge.net
METATOOL ftp://bmshuxley.brookes.ac.uk/pub/mca/sof~are/ibmpc/metatool/
Maple http://www.maplesoft.com
Mathcad http://www.mathcad.com
Mathematica http://www.mathematica.com
MATLAB http://www.mathworks.com

Table 2.7 Software tools and links for metabolic network analysis

Although  several  software  tools  are  available,  the  elementary  mode  calculation  will  be 

performed via available  software called METATOOL; the new version,  METATOOL 5.1 

based on several aspects in the recent developments allows cyclic modes (von Kamp and 

Schuster, 2006; Klamt et al., 2005; Pfeiffer et al., 1999; Schuster et al., 2000; Urbanczik and 

Wagner, 2005) and therefore, the calculations will be performed via the same principles. In

addition to the elementary modes,  it  can compute other structural properties of metabolic 

networks,  such  as  enzyme  subsets,  conservation  relations,  etc.  (Pfeiffer  et  al.,  1999). 

Therefore,  this  could  be  used  for  different  purposes  including  in  silico metabolic 

reconstruction  and there by metabolic  modelling  of  any kind of organism (Covert  et  al., 

2001). 

2.5In Silico reconstruction and analysis of 
plant metabolic network

As we mentioned before, in silico reconstruction and analysis of plant metabolic network are 

associated with mass balanced stoichiometric metabolic pathways of plant metabolism. Some 

of  the  stoichiometric  reactions  are  available  in  several  databases  (e.g.  KEGG,  BioCyc, 

PlantCyc, MetaCyc, etc). In addition to the known metabolic pathways, missing reactions are 

necessary to connect several pathways to one another. In that cases, several literatures as well

as thermodynamic feasibility should be verified before taking it into account. Similar to the 
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biological systems that suffers many constraints, the constructed in silico metabolic network 

also  suffers  constraints  in  the  form  of  mass  balances,  reaction  directions 

(reversibility/irreversibility), etc., while it is analyzed using any of the metabolic techniques 

discussed in the above sessions. 

Then, from the above discussed metabolic techniques, plant modelling can be achieved by 

two ways.  Both methods are based on stoichiometric mass balanced metabolic techniques 

accounted  by the stoichiometric  matrix,  which underline the importance  of understanding 

metabolism.  One  method  uses  elementary  flux  mode  analysis  and  flux  balance  analysis

followed by alpha spectrum analysis;  while,  the other  is  based on elementary flux mode 

analysis and metabolic flux analysis approach. For both methods, it is necessary to construct 

metabolic matrices as a preliminary step. While constructing the metabolic matrix, two types 

of metabolites- exchangeables (E) and non exchangeables (NE) are defined. If the formation 

of  the  metabolite  is  balanced  by  its  consumption  (using  steady-state  assumption)  in  the 

studied system, it is considered as a nonexchangeable, and if the metabolite is the source or 

sink (nutrient or product including waste), it is defined as an exchangeable. The definitions of 

external  and internal  metabolites  (E and NE) depend on the main targets and the system 

nature. If we consider the entire plant metabolism, some of the energy must be considered as 

output, as heat will be producing as output. The in silico representation of metabolic network

allows studying and modelling the plant system using the following methods.

2.5.1 Method 1: EFM
In this method, the constructed network is analysed using elementary flux mode analysis, flux 

balance  analysis  and  then  by  alpha  spectrum analysis.  These  analyses  altogether  on  the 

complete network will provide a set of maximum yield giving equations. This set of relevant 

metabolic  equations  reveal  the  exact  metabolic  behaviour  of  the living  organism without 

going in to the details of any kinetic or genetic information, Figure 2.10 (Gagneur and Klamt, 

2004). In this way, it is possible to build the metabolic model and to estimate and predict the 

outputs with respect to the input values knowing few experimental values. 

Once we construct the metabolic network, it is possible to compute the number of elementary

modes. As it uses constraints, it can also give the range of possible values representing whole 

solution region. Each steady state flux distribution can be expressed as a linear combination 

of  elementary modes  (Chen  et  al.,  2009).  The edges  of  a high-dimensional  convex cone 

formed in the flux space contain all the attainable steady state solutions or flux distributions 
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of the metabolic network under study. Elementary modes can be interpreted geometrically as 

extreme rays from a pointed convex cone corresponding to the network with split reversible 

reactions, as described in EFM theory. 

In  general,  there  is  not  a  unique  set  of  solution  that  produce  a  given  steady  state  flux 

distribution, but rather a range of possible values; this is due to the underdeterminacy of the 

system.  For a  given steady state  flux distribution  and a set  of elementary modes of flux 

vectors,  α-spectrum  approach  determines  the  range  of  possible  solutions  of  a  particular 

elementary mode (Wiback et al., 2004). This can be determined using linear optimization to

maximize and minimize the weightings of a particular EFM pathway in the reconstruction. 

Here comes the concept of flux balance analysis (FBA). 

Figure  2.17 :  Pathway length distribution of the  E. coli modes on glucose.  Maximum 
pathway length is the maximum no. of reactions involved in elementary mode (Gagneur and 
klamt, 2004) 

Αlpha spectrum specifies a range of possible weights (possibilities) for each EFM pathway, 

reflecting to some extent the possibility that an elementary flux mode pathway is utilized in a 

particular flux distribution. Thus, α-spectrum quantifies the involvement of EFM pathways in 

a particular flux distribution and defines which pathways can, and cannot be included in the

reconstruction of a given steady state flux distribution, and to what extent they individually 

contribute  to  the  reconstruction.  According  to  Wiback  et  al,  the  usage  of  transcriptional 

regulatory constraints can considerably shrink the alpha-spectrum (Wiback et al., 2003). The 

alpha-spectrum  is  computed  and  successfully  interpreted  for  human  red  blood  cell 
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metabolism under various physiological and non-optimal conditions (Wiback  et al., 2003, 

2004). The detailed approach to obtain alpha spectrum is well described by Llaneras and Pico 

(2007). 

The main  limitation  and advantage  of  this  method  is  that,  the  computed  alpha  spectrum 

contains all elementary mode activity patterns corresponding to a flux distribution compatible 

with the available knowledge. The alpha spectrum provides a simple representation of the 

whole solution region, but not an exact one: it provides an overestimation which cannot be 

elucidated without additional  assumptions.  Hence,  when the studied metabolic  network is

enlarged (more reactions), the number of elementary flux modes dramatically increase. This 

means, there is an increment of the pathway redundancy, and therefore, it might be difficult 

to determine the internal state of a cell because there can be multiple ways to produce the 

same behaviour (Papin et al., 2003). When the number of elementary modes is greater than 

the number of reactions, the degrees of freedom will increase. Hence, even if a complete flux 

distribution for a particular phenotype is known, the alpha spectrum computed from it may be 

wide  (it  may contain  many possible  internal  states).  Even though that  situation  makes  it 

difficult to interpret the obtained alpha spectrum, it must be noticed that redundancy is an 

inherent property of large metabolic networks. 

Not very long ago, a new approach of computing alpha spectrum has been introduced, which

is called interval approach; it can be used when fluxes are uncertain and flux distributions are 

partially known. The same has been illustrated using a real example; taking the value for the 

cultivation of CHO cells calculated before by Provost and Bastin (Llaneras and Pico, 2007; 

Provost and Bastin, 2004). At the same time, Prevost and Bastin have used a method similar  

to the following.

2.5.2 Method 2: MFA
To obtain the metabolic  model  through MFA, it  is  necessary to collect  all  the metabolic 

reactions same as method 1, and construct the metabolic network in the form of matrices. The 

system is analyzed using a computational program called, ‘Brume’ developed in Axe GePEB, 

where the principles and conditions are already stored (Dussap, 2005). Both EFM and MFA

calculations are performed via Brume which uses the version, METATOOL 5.1.

The  convex  analysis  method,  elementary  flux  mode  analysis  predicts  possible 

pathways/routes  producing  particular  biomass  precursors  or  ultimately  the  biomass 

production  pathway  of  plant  metabolic  network,  while  MFA  calculates  the  intracellular 
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metabolic fluxes. MFA is one of the most important tools in metabolic engineering and a key 

measure of metabolic phenotype. As indicated before, it makes use of experimental data to 

study flux distribution in the system. Recently, complete (genome-scale) metabolic network 

models have been established for Arabidopsis (Arabidopsis thaliana) and flux distributions 

have been predicted using constraints-based modelling and optimization algorithms such as 

linear programming (Williams et al., 2008; Poolman et al., 2009; Masakapalli  et al., 2010). 

While checking the compatibility of the predicted flux distributions with those occurring in  

vivo, it has been noticed that for the majority of the reactions, the genome scale model flux

predictions were a close match for those estimated by MFA (Williams  et al.,  2008). The 

model was successful even in the case of Arabidopsis cells grown under stress conditions. 

MFA showed that  the  increase  in  temperature  and hyperosmotic  stress  can alter  the  cell 

growth,  as  it  affects  the  intracellular  flux  distribution.  Regarding  the  plant  system,  the 

challenge is apart from constraints, lots of complexities lie within the system. Even though, 

EFM and MFA techniques can be applied exploiting available stoichiometric plant metabolic 

equations  and network  constraints  knowing that,  the  physicochemical,  environmental  and 

regulatory cell constraints reflect on the metabolic equation of biomass formation.

The general limitations of modelling by metabolic flux analysis are the following.

• Large reaction network needs to be simplified: 

A system with 10 or 15 metabolic equations is considered as a small system, since it displays

only a small metabolic network. As the number of equations increases in a system, the system 

may have to face lots of complexities; also, it has to face underdetermined case leading many 

degrees of freedom. So, for the systems like plant metabolic networks, it is preferred to have 

much simplified system. However, the large metabolic network can be reduced by lumping 

equations as discussed previously and up a great extent, constraints solve the difficulties.

• Regulation of futile cycles:

 As mentioned before, the energy related equations in large metabolic networks form a cycle, 

which nullifies the metabolic effect. For example, if the futile cycle is associated with energy

production ATP, as a result  of futile cycle  (since the linear  combination of the reactions 

associated with futile cycle will be equal to zero), ATP production will be cancelled. As the 

system  cannot  proceed  without  energy,  this  will  stop  the  overall  system  activities  and 

intracellular  flux  calculation  cannot  be  accomplished.  Therefore,  during  MFA studies,  if 

futile cycles are detected, one must fix any of the reaction participating in the futile cycles to 
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a particular  value so that  it  suppresses the nullifying effect  of ATP production.  But,  this 

fixation must be done based on the metabolic pathway knowledge.

• Input/output measurements: 

Sometimes,  it  may be difficult  to measure the accurate rates of exchangeables like water, 

oxygen, carbon dioxide, ammonia, especially in the case of plants. It depends on the type of 

culture  and the  facilities  one  use  for  the  measurements.  Further,  biomass  composition  is 

required for the model validation, if biomass is considered as an exchangeable.

The typical difficulty to perform classical MFA is the lack of available measurements; 

it may be insufficient to estimate the intracellular fluxes, particularly in large-scale networks

of plants,  because there may be different  flux distributions  compatible  with the available 

measurements.  To face  the  lack  of  measurements,  the  only solution  is  to  perform MFA 

together  with  constraints,  which  is capable of  estimating  metabolic  fluxes,  based  on the 

model and the available measurements. Thus, a flexible, reliable and usable metabolic model 

for MELiSSA plant can be achieved.

Briefly  saying,  the  main  advantage  is  that  the  algorithm  does  not  require  information 

concerning intracellular control mechanisms or kinetic rate constants for reactions occurring 

in the living organism. The overall network is simply a metabolic balance governed by the 

biochemistry of particular metabolism. By comparison, the concept of EFM is a useful tool in 

determining  maximal  and  submaximal  yields  of  biotransformations  and  in  functional

genomics. It is also helpful in MFA for determining the calculability of fluxes (Klamt et al., 

2002). The physiological, medical and biotechnological relevance of determining elementary 

modes in biochemical networks has been explained by many authors (Schuster and Hilgetag, 

1994; Liao et al., 1996; Nuno et al., 1997; Schuster et al., 1996, 2000; Dandekar et al., 1999; 

Sauro and Ingalls, 2004). In this regard, the internal fluxes adopted by higher plants could be 

traced out using EFM analysis. Moreover, using this, one could identify key metabolic routes 

that  are  contributing  to  the  metabolism and how it  could  be  modified  by  environmental 

factors. This application makes it an attractive tool for in silico analysis.

2.6Conclusion
The significant  advances  in metabolic  studies and modelling by metabolic  techniques are 

witnessed in last few years. Up to a great extent, cellular complexities can be exposed by

understanding the complex networks and by using the existing metabolic modelling methods 

which run under stoichiometric  mass  balanced steady state  approaches.  As stoichiometric 

77



modelling avoids the difficulties that may arise in the development of kinetic models, it is 

always  a  preferable  one.  The  knowledge  of  the  metabolism is  fulfilled  by  applying  the 

suitable and relatively easier existing stoichiometric methodologies on the metabolic network 

under study. For metabolism modelling, the methods, elementary flux modes and metabolic 

flux analysis are found relatively simple and easier methods. This can provide characteristic 

thermodynamically  feasible  pathways  and intracellular  flux distributions  which cannot  be 

detected  in vivo. Although, there are some other techniques like isotopic labelling exist to 

measure the intracellular rates, they are difficult to use in the case of plants. Despite of all

existing metabolic techniques, two methods were summarised which could be used for the 

modelling of plant metabolism; within that, method 2 found relatively simpler which may 

exploit the possible available data and establish a model of our concept. The main advantage 

of this method is that, it  does not require much experimental data compared to any other 

existing methods.

2.7Main outcomes of Chapter 2
- To  achieve  a  biochemical  model  for  plant  leaves,  the  entire  metabolic  network 

constituting plant leaves is studied: the mass and energy balances, the maintenance 

and regulation, etc.   

- The  relation  between  steady  state  and  thermodynamics  and  effects  on  mass  and 

energy balanced stoichiometric reactions in the metabolic network are important.

- Mathematically, a metabolic network of any complexity can be represented in matrix 

form and studied using the existing methods; but it is always preferred to have small 

networks.

- The  effects  of  different  constraints  in  cell  level  are  studied;  the  utilisation  of 

constraints on metabolic techniques is required to know.

- Existing  techniques  to  analyse  metabolic  networks  (EFM,  EP,  MFA,  etc.),  their 

significances, differences, possibilities, limitations, etc. are discussed and compared. 

- Methods for analysing plant metabolism are chosen; the theories, principles and the 

preliminary requirements to perform the analysis are described.

- The limitations and significance of current metabolic methods are mentioned; for the

modelling,  the method using mass balance and steady state approaches along with 

constraints could give valuable results. 
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Chapter 3 Modelling higher
plants energy conversion and

central carbon metabolism
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3.1Introduction 

3.1.1 Two levels for modelling higher plants metabolism 
In order to model plant metabolism, the generic basis of metabolism and regulatory networks 

for  plant  growth  and  development  must  be  addressed.   The  control  and  regulation  of 

photoassimilation metabolism is central in this aspect. Primarily, simple sugars are produced 

in photosynthetically active tissues which contain the specially designed cell organelles for 

photosynthesis  - chloroplasts. Within the cell chloroplast,  a part of the assimilated carbon 

accumulates  as  starch  and  the  rest  is  transported  through  specific  types  of  tissues  for 

respiration and other biosynthetic processes including sucrose synthesis  in cell  cytoplasm.

Similar to cell-cell communication, organ-organ communication also exists in the plant. The 

sugar molecules  (e.g. sucrose) are transported via phloem from source organs (leaves)  to 

support growth of sink tissues such as young leaves, roots, fruits or tubers which themselves 

are unable to produce assimilates. During development, sink to source ratios change which 

implies that assimilate production must be adjusted to the changing needs of distant tissues. 

In this basis, a thorough understanding of the stoichiometry and the thermodynamics as well 

as regulatory networks linking the entire plant metabolic pathways is required including the 

factors  controlling  the  synthesis  and  degradation  of  carbohydrates  and  their  partitioning 

within and in between the plant organs.

In this chapter, the current understandings of the energy conversion processes and central

pathways  of  carbohydrate  metabolism  in  plants  are  summarised.  The  stoichiometric 

modelling techniques are applied to model central carbon assimilation pathways of general 

plants’  metabolism.  With  the  current  knowledge,  metabolic  modelling  revealing  plant 

biochemical process is possible with mass balance, energy balances considering steady state 

approaches. As plant metabolism happens in several compartments from the peripheral level 

to the micro level, the metabolism is separated for leaves, roots, stems and fruits or storage 

organs.  The movement of the components  between each organ must  be further modelled 

knowing diffusion and transport processes. 

It is clear that the light energy capture and its chemical conversion play a central  role in 

higher plants metabolism. This is directly related to O2 release and CO2 capture that are the

basic  processes  to  consider  when  closed  systems  are  considered.  For  this  reason,  the 

metabolic pathways involved in energy conversion in leaves are studied using the techniques 

81



presented  in  the  previous  chapter.  To analyze  the  network  topology and  thermodynamic 

feasibility, Elementary Flux Mode analysis (EFM) and Metabolic Flux Analysis (MFA) are 

used.  Importantly,  the  description  that  we  develop  includes  energetics  and  energy 

transduction processes in organelles (chloroplasts and mitochondria). This is linked to central 

metabolism pathways. The global aim we pursue is to integrate the stoichiometric and energy 

constraints generally well documented in classical textbooks at elementary level, in a global 

vision of plant metabolism with the sake of determining the flexibility and the adaptability of 

the energy metabolism. This fully mechanistic approach constitutes a lumped vision of what

we call the “energy model” of higher plant metabolism.

In a second step, presented in Chapter 4, this so-called “energy model” is coupled to biomass 

composition,  nitrogen  accumulation  in  an  integrated  vision  of  entire  plant  metabolism, 

connecting  the  previous  “energy model”  to  anabolism,  i.e.  building  block synthesis  (e.g. 

amino acids, carboxylic acids, lipids and carbohydrates monomers) and further, the synthesis 

of  macromolecules  (e.g.  proteins,  nucleic  acids,  etc.).  This  aims  to  achieve  the  whole 

biochemical modelling of higher plant growth and maturation. This includes leaf model, root 

model and stem model. These two levels are modelled and coupled together to establish the 

complete metabolic model. 

Therefore,  the  first  level  mainly  concerns  photosynthesis  and  respiration.  Photosynthesis

includes light reactions (water photolysis  which produces energy for carbon fixation)  and 

carbon fixing reactions. Calvin cycle uses atmospheric CO2 and water for the production of 

sugar;  respiration  utilises  the  energy  that  is  stored  as  sugars  through  the  photosynthetic 

processes. Photosynthesis,  respiration  and related  pathways  produce the necessary energy 

(ATP  and  NAD(P)H)  for  the  entire  plant  processes.  This  level  accounts  for  the  main 

exchanges (in terms of mass) between the plant and environment (water flow, gas inputs and 

outputs). 

The second level metabolism includes global reactions that produce and accumulate biomass 

from  the  basic  constituents.  In  this  level,  accumulation  of  biomass  leads  to  assess  the 

nutriental  properties  of  plant  depending on the plant  development  and the  environmental

conditions.  The  experimental  rates  of  inputs,  outputs  and  accumulation  are  used  and 

correlated using the same techniques (EFM and MFA). In a first approach, this second level 

will be simplified and will not consider all the secondary metabolites contributing to small 

percentages  (e.g.  vitamins).  A  fixed  biomass  composition  is  implemented.  The 
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implementation will  be based on the experimental  data of biomass composition of plants 

grown in controlled environment. 

3.1.2 The higher plant “energy model”: modelling central 
carbon metabolism

As we aimed to analyse C3 plant central carbon metabolism, which is found very common in 

plant species, the final model can be applied to leafy vegetables like lettuce, spinach, etc. The 

metabolic pathways in leaves are almost known and central carbon metabolic pathways build 

the basis of leaf metabolism. This accounts for the main part of the “energy model” of higher

plants. 

In  cellular  levels,  the  biomass  formation  requires  the  interaction  of  three  cellular 

compartments:   chloroplast,  cytosol and mitochondria.  The metabolic pathways associated 

are called central carbon metabolic pathways; these are not only involved the conversion of 

the carbon source into building blocks that is needed for macromolecular biosynthesis, but 

also  in  the  constant  supply  of  Gibbs  free  energy  via  ATP  and  redox  equivalents 

(NADPH,H+/NADH,H+). For the growth and maintenance process of plants, the function of 

central carbon metabolism is finely tuned to exactly meet the needs for building blocks and 

Gibbs free energy in conjunction with cell growth rate. Therefore, the metabolic fluxes and 

the rates of metabolic reactions through the central carbon metabolism are tightly regulated

(Nielsen, 2003). Thermodynamic organization has implications for modelling the energetic 

efficiency of metabolic transformations.  It also affects which experimental and theoretical 

strategies are taken to study metabolic regulation (Feist  et al., 2007). For the same reason, 

when considering a metabolic reaction, it is required to analyse thermodynamical possibility 

of the reaction. It is possible to estimate the change in free energy in vivo from the standard 

free energy, even if the final exact calculation would require quantitative measurements, local 

concentrations and activities of metabolites. This determines the thermodynamic feasibility 

and the direction (reversibility or irreversibility) of a reaction.

Thermodynamical  reversibility of the reactions  at  cellular  level influences  and directs  the 

transport of metabolites in organelles; this is a fundamental aspect; the energy metabolism is

tightly linked to membrane transports and chemiosmotic coupling. This adds a further degree 

of complexity in the thermodynamic description that we intend to develop for obtaining a 

robust  understanding of  energy transduction  processes.  This  compartmentalisation  of  cell 

metabolism of course concerns chloroplast and mitochondria. 
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The metabolic processes concerned in photosynthesis are divided into two: light reactions – 

the reactions responsible for light energy into chemical energy - and Calvin cycle reactions 

responsible for carbon fixation using atmospheric CO2. Similarly, respiration is also separated 

into three: mitochondrial electron transport and oxidative phosphorylation (which produces 

ATP  by  oxidising  the  reduced  coenzymes  NADH,  H+ and  FADH2),  Krebs  cycle  and 

glycolysis (which convert the energy from stored sugars). 

In summary, the so-called “energy model” for higher plants is composed of the following five 

blocks: 

• Light reactions

• Calvin cycle

• Mitochondrial electron transport

• Krebs cycle

• Glycolysis

Each block has a  complementary role  providing the energy for  overall  plant  growth and 

maintenance. Consequently,  for establishing the “energy model”, we study each metabolic 

network separately and specifically for higher  plants.  As these biochemical  processes are 

connected to one another using the redox energy intermediates, we coupled the subsystems

corresponding  to  photosynthesis  and  respiration  separately  in  two ways:  firstly,  with  the 

entire  metabolic  equations  corresponding  to  the  systems  and  secondly,  with  the 

stoichiometric  EFM  equations  (will  be  discussed  later)  resulted  from  corresponding 

subsystems.  The intention is to analyse the flexibility or in other words, their  number of 

degrees of freedom for each system separately. 

3.2Light reactions

3.2.1 General overview of chloroplast function
The light energy absorption and conversion (light reactions) take place in the cell chloroplast 

of  leaves;  they  are  green  in  colour  as  they  contain  chlorophyll  pigments.  At  first  steps, 

electrons are energised by light of definite wavelengths for the transport of protons enabling 

the formation of ATP and reduced compound NADPH, H+; this is the basic phenomena. But

we must go in more details for achieving a complete description of light energy metabolism.

Structurally,  chloroplasts  are surrounded by two lipid-bilayer  membranes: inner and outer 

membranes; and between the two, there is a space called intermembrane space. Similar to the 
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cell cytosol, chloroplast contains a liquid medium called stroma; it also contains ribosomes, 

small circular DNA, starch, lipids, etc.  However, most of its proteins are encoded by cell 

nucleus with the protein products transported to the chloroplast. 

Within the chloroplast stroma, the suborganelles called thylakoids are present; it consists of a 

thylaloid  membrane surrounding thylakoid  lumen.  Chloroplast  thylakoids  frequently form 

stacks  of  disks  known  as  grana  (granam  in  singular),  these  are  linked  together  by  the 

connectors, lamella (Figure 3.1). 

In the thylakoid grana,  there are two reaction  centres  situated:  Photosystem I (PS I)  and

Photosystem II (PS II); they selectively absorb photons of wavelength 700 nm and 680 nm 

respectively. They use light energy as initiators for the electron transport which generates a 

proton gradient  across  the thylakoid  membrane  and ultimately  produce energy molecules 

ATP and NADPH, H+. To occur this, special type of photosynthetic pigments and proteins 

are situated in the thylakoids other than photosystems: cytochrome b6f (Cyt b6f), ferredoxin-

NADP+ reductase (FAD) and chloroplast ATP synthase are the main protein complexes. In 

addition  to  this,  the  plastoquinone-plastoquinol  pool  and  plastocyanin  present  in  the 

thylakoids have also important roles to conduct the electron transport. 

Since the concentration of protons in the stroma is less than that of the lumen, stroma could 

be  considered  as  negative  phase  or  N-phase,  while  lumen  is  positive  phase  or  P-phase.

Subsequently,  protons at P-phase and N-phase are taken as HP
+  and HN

+. In the following 

discussions, we consider that stroma is at pH = 7.5 and lumen is at pH = 4. Furthermore, the 

electrical  potentials  of  lumen  and  stroma  are  assumed  to  be  almost  equal  and  will  be 

discussed in the subsequent analysis.

In the following paragraphs, we have analysed the complexes involved in light reactions.

3.2.2 Photosystem II 
When light excites the chlorophyll,  it fiercely releases electrons from water and passes to 

plastoquinone producing oxygen and plastoquinol.  The reported mechanism is as follows. 

The manganese complex (OEC of Figure 3.2) helps the oxidation reaction of water on the 

thylakoid  lumen of the membrane (Feyziyev,  2010).  Four quanta of light  are  required to

abstract four electrons from two molecules of water; as a result, four protons are released into 

the thylakoid lumen. The excited electrons have two possibilities to release/pass the energy: 

either it can return into their ground state releasing heat or it may be accepted by pheophytin 

(chlorophyll without central Mg2+ ion) leaving one positive charge at P680. 
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Figure 3.18: Structure of  chloroplast 1. outer membrane 2. intermembrane space 3. inner 
membrane (1 + 2 + 3: envelope) 4. stroma (aqueous fluid) 5. thylakoid lumen (inside of 
thylakoid) 6. thylakoid membrane 7. granum (stack of thylakoids) 8. thylakoid (lamella) 9. 
starch 10. ribosome 11. plastidial DNA 12. plastoglobule (lipids)
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The mechanism involves  the oxidation  of P680 into P+
680 by one quanta that  generate  one 

electron per quantum inside the membrane (Nobel, 2009). The P+
680/P680 couple has a very 

high  redox  potential  of  1300  mV (Rappaport  et  al.,  2002).  Gibb’s  free  energy,  ∆G  is 

calculated for this reaction, taking ‘n’ number of electrons used in the reduction reaction (‘n’ 

consumed, i.e. reduction), ‘F’ Faraday’s constant which is equal to 96.484 kJ/mol and, Em,7 

the change in midpoint potentials in Volt, V. 

P+
680 + e-    →   P680 Em,7 = 1 300 mV (1)

∆Gm,7 = - n F Em,7 = - 1 × 96.484 × 1.3 = -125.4 kJ/mol (2)

It  appears  that  in  this  case,  ∆Gm,7 is  independent  of  pH,  which  renders  the  subscript  7 

facultative. 

The energy, E available for one quanta of photon at 680 nm is given by:

E = hν = λ
hc ,

where ‘h’ is Planck’s constant, ‘c’ the velocity of light and ‘λ’the wavelength of light. This 

leads to:

hν680 = 

€ 

6.6262×10−34 J.s / photon.2.9978×108 m / s.6.022×1023 photon/ mol
680×10−9 m.103

= 175.9 kJ/mol (3)

This means that one quanta of light energy at 680 nm wavelength represents 175.9 kJ/mol of 

energy. Taking into account the energy of photon, reaction (1) proceeds in the oxidation way 

(production of electrons), 

hν680 :  P680 → P+
680 + e-    (4)

∆Gm,7 for this reaction is calculated:

∆Gm,7   =  - 175.9 - (-1 × 96.484 × 1.3)  = - 50.5 kJ/mol

Obviously this ∆Gm,7 is strongly negative. This indicates that reaction (4) is irreversible. This 

is the maximum available energy for the production of P+
680 in the chloroplast at pH = 7. P680

+ 

is an incredibly strong oxidant, which extracts electrons from water molecules tightly bound

at the manganese centre. 

In the subsequent steps, the free energy for P+
680/P680 couple extracts  electrons; the 

redox  centre  being  even  more  electropositive  than  P+
680,  it  is  capable  of  reacting 
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spontaneously with water. In order to analyse this process, we must consider the redox couple 

of water oxidation:

½ O2 + 2 e- + 2 H+ → H2O                           Em,7 = 800 mV, PO2  = 0.21 atm (5)

∆Gm,7  = - 2 × 96.484 × 0.8 = -154.4 kJ/mol 

This is the free energy for equation (5) at pH 7 at an O2 partial pressure of 0.21 atm, i.e. at the 

value  in  air  (Wheeler  et  al.,  2008).  Considering  water  oxidation  happens  in  lumen 

compartment  at  pH = 4 (i.e.  at  P-phase),  the reaction free energy as a function of pH is 

calculated. Taking the standard pH 7, the free energy at a particular pH is given by:

∆Gm,pH = ∆Gm,7 ± ne RT ln 10 (7 - pH)

∆Gm,pH = - n F Em,pH

where ‘R’ is the ideal gas constant (8.31451 J/mol K), ‘T’ is the standard temperature in 

Kelvin scale, ‘ne’ is the number of protons consumed (negative sign) or produced (positive 

sign) during the reaction and ‘n’ the number of electrons for the reduction. For the previous 

reaction (5) this leads to:

∆Gm,4 = - 154.4  -  2 × 8.31451 ×10-3 × 298.15 × ln 10(7-4) =  -188.6 kJ/mol; 

Em,4 =  978 mV

½ O2 + 2 e- + 2 HP
+ → H2O                           Em,7 = 978 mV, PO2  = 0.21 atm (6)

Therefore, equation (6) accounts for the first half oxidoreductive couple with Em,4 = 978 mV

(∆Gm,4 = -188.6 kJ/mol) at PO2  = 0.21 atm. The second half reaction is described as follows.

The water-splitting component contains four manganese atoms. Subsequently, four sequential 

events are required to abstract four electrons from two molecules of water to yield O2 (Renger 

and Wydrzynski, 1991). Finally, four protons (HP
+) are released into the lumen (P-phase) due 

to the electron transfer. Hence, from one molecule of water, two protons will be produced 

consuming two quanta of photons at 680 nm. The total oxido-reductive scheme is given as 

follows:

P+
680 + e-    →   P680               Em,4 = 1 300 mV

½ O2 + 2 e- + 2 Hp
+ → H2O                           Em,4 = 978 mV

As the first equation is more electropositive, it works in the reduction way while the second

one works in oxidation. The stoichiometric ratios are determined by eliminating the number 

of electrons. The resulting equation is:
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2 P+
680 + H2O → 2 P680 + 2 HP

+ + ½ O2  (7)

The value of free energy variation is:

∆Gm,7  = - 2 × 96.484 × (1.3 - 0.8) = - 96.5 kJ/mol 

∆Gm,4 = -2 ×125.4  - (-188.6)   =  - 62.2 kJ/mol

When totalising with light quanta uptake (equation 4), we eliminate P+
680/P680 couple and then 

we obtain: 

2 hν680: H2O → 2 HP
+ + ½ O2 + 2e-  (8)

∆Gm, 4 = - 2 × 50.5 - 62.2 = -163.2 kJ/mol

Therefore, the split of H2O uses two quanta of light; equation (8) means that water reduction

releases ½ O2, two protons in lumen (HP
+) and two electrons in the thylakoid membrane at a 

very low potential (- 163.2 / 2 F = - 850 mV). The two electrons follow the well-known Z-

scheme as represented in Figure 3.3.

According to Figure 3.3, the electrons flow through a direct pathway via different steps inside 

the membrane. On excitation, either by the absorption of a photon or exciton transfer, P680* 

rapidly transfers an electron to a nearby pheophytin a (Em,7 = - 610 mV). The electron is then 

transferred to a tightly bound plastoquinone (PQ) at the QA site (Em,7  = -150 mV) on the 

stroma side (N-phase) of the membrane. The electron is then transferred to an exchangeable 

plastoquinone located at the QB site (near P- phase) (Em,7 = 100 mV, Nobel, 2009). QA and QB 

sites are similar to QP and QN sites of mitochondria which will be discussed later in paragraph

3.4.3.

The arrival of a second electron to the QB site with the uptake of two protons from the stroma 

produces plastoquinol, PQH2. These different steps are characterised by the following oxido-

reductive steps:

PQ + 2 e- + 2 H+→ PQH2  Em,7 = 0 mV, ∆Gm,7 = 0

When this reaction involves protons from the stroma side of the membrane (pH = 7.5), we 

obtain:

∆Gm,7.5 = ∆Gm,7 - 2 RT ln 10 (7 - 7.5)

= 0 - 2 × 8.31451 × 10-3 × 298.15 × ln 10-0.5 = 5.7 kJ/mol

Em,7.5 = - ∆Gm,4 / nF = 5.7/(2 × 96.484) = - 30 mV

Previous equation is therefore:

PQ + 2 e- + 2 HN
+→ PQH2          Em,7.5 = -30 mV,  ∆Gm,7.5 = 5.7 kJ/mol (9)
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Figure  3.20:  Z-scheme  of  photosynthesis  Photosynthetic  electron  flow  from  H2O  to 
NADP+.  The relative  redox potentials  show that  P680 and P700 are  highly oxidising.  Their
excited  forms  (P680*  and  P700*)  of  the  reaction  centre  pigments are  highly  reducing  and 
located in the upper part of the diagram. Electrons are transferred from water, through YZ to 
reduce P680 •+. Further, P700 •+ is reduced by electrons from PSII, transferred via plastoquinol, 
through Cyt b6f complex and plastocyanin (PC). (Picture is adapted from Feyziyev, 2010).

No.
Of
Eqn

Metabolic steps: ∆Gm,7 

(kJ/mol)
∆Gphysio 

(kJ/mol)
Em,7

(mV)
Em,4

(mV)
Em,7.5

(mV)

1 P680
+ 

 +  e-   →  P680 -125.4 -125.4 1 300 1 300
3 hν680 175.9 175.9
4 hν680 :  P680 → P+

680 + e-  -50.5 -50.5
5 ½ O2 + 2 e- + 2 HP

+ → H2O -154.4 -188.6 800 978
7 2 P+

680 + H2O → 2 P680 + 2 HP
+ 

+ ½ O2  
-96.5 -62.2

8 2 hν680: H2O → 2 HP
+ + ½ O2 + 

2e-  
-163.2

9 PQ + 2 e- + 2 HN
+→ PQH2 0 5.7 0 - 30

10
Global: 
2 hν680: H2O + 2 HN

+  + PQ → 
PQH2 + ½ O2 + 2 HP

+

-157.5

Table 3.8: Metabolic steps involved in photosystem II and plastoquinol pool of 
chloroplast thylakoids at physiological conditions pHN = 7.5 and pHP = 4
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At least  four electrons must  be transferred to two molecules of plastoquinone in order to 

oxidise H2O to molecular oxygen, O2. Note that, here we used only two electrons. For every 

two electrons harvested from H2O, one molecule of PQH2 is formed extracting two protons 

from the stroma. 

The two protons formed during the oxidation of water are released into the thylakoid lumen.

Adding (8) and (9) we obtain,

2 hν680: H2O + 2 HN
+ + PQ → PQH2 + ½ O2 + 2 HP

+ (10)

Free energy change is therefore possible at P-phase (pHP = 4, pHN = 7.5),

∆Gphysio = -163.2 + 5.7 = -157.5 kJ/mol 

As the water oxidation happens at P-phase, the energy contributed by photosystem II at actual 

condition  is  -157.5  kJ/mol.  The  energy  is  sufficiently  high  so  that  the  reaction  occurs 

positively irreversible. For the oxidation of one water molecule, two protons from N-phase 

are translocated to the P-phase. Table 3.1 depicts all the necessary metabolic steps involved 

and  the  available  free  energy  at  different  pH  levels  related  to  the  photosystem  II  of 

chloroplast thylakoids. 

At this step, we can summarise that PS II has splitted water molecule; it has translocated the 

proton, H+ from N to P-phase and produced plastoquinol from plastoquinone. The next step 

concerns the recycling of plastoquinol.

3.2.3 Cytochrome b6f and plastocyanin
The  cytochrome  b6f complex  transfers  electrons  between  two  mobile  redox  carriers, 

plastoquinol (PQH2) and a copper protein of the thylakoid lumen,  plastocyanin (PC) while 

pumping two protons from the stroma into the thylakoid lumen. This complex is responsible 

for cyclic and non cyclic electron transfer through electron transport chain. 

Continuing the reaction sequence, equation (9) is repeated;

PQ + 2 e- + 2 H+→ PQH2   Em,7 = 0 mV; ∆Gm,7 = 0  

There  is  a  series  of  reactions  associated  with  cytochrome  b6f  complex  called  Q-cycle 

analogous to mitochondrial  Complex III,  which will  be described later. However,  the net 

result is the uptake of two protons from the stroma side of the thylakoid membrane releasing 

four protons into the lumen. This is like adding two oxido-reductive couples of the same

reaction, one occurring at N- phase (stroma equation 9) and one occurring at P-phase (lumen 

following equation 11):
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On stroma side, we have:

PQ + 2 e- + 2 HN
+→ PQH2 Em,7.5 = -30 mV,  ∆Gm,7.5 = 5.7 kJ/mol       (9) 

On lumen side, we have:

∆Gm,4 = ∆Gm,7 - 2 RT ln 10 (7 - 4)

= 0 - 2 × 8.31451 × 10-3 × 298.15 × ln 103 = - 34.2 kJ/mol

Em,4 = - ∆Gm,4 / n F = 34.2/(2 × 96.484) = 177 mV

So that:

PQ + 2 e- + 2 HP
+→ PQH2 Em,4 = 177 mV, ∆Gm,4 = - 34.2 kJ/mol (11)

In fact, the previous reaction is not sufficiently electropositive to react with plastocyanin (see 

eqn. 13, Em,7 = 370 mV). The cytochrome b6f complex increases the potential by facilitating 

the transfer of two protons from N-phase to P-phase so that we have:

2 HP
+ → 2 HN

+ 

∆Gphysio = 2 R T ln 10 (7 - 7.5 – 7 + 4) = - 2 R T (7.5 - 4) ln 10 = - 40.0 kJ/mol

By adding with equation 11, we obtain the following couple:

PQ + 2 e- + 4 HP
+ → PQH2 + 2 HN

+ (12)

∆Gphysio  = - 34.2 + 2 RT ln 10 (4 –7.5) = - 74.2 kJ/mol ;  Em,∆ pH = 384 mV

The redox potential of plastocyanin is higher than the normal half reaction of Cu2+/Cu+ (Em,7 = 

158 mV (Anderson et al., 1987)). The midpoint potential of plastocyanin is:

2 Pc (Cu2+) + 2 e- → 2 Pc (Cu+) Em,7 = 370 mV ,  ∆Gm,7 = - 71.4 kJ/mol (13)

Combining the couples (12) and (13), in the way (12) - (13), we obtain:

PQH2 + 2 Pc (Cu2+) + 2 HN
+ → PQ + 2 Pc (Cu+) + 4 HP

+                               (14)

∆Gphysio = - 74.2 - (- 71.4) = - 2.8 kJ/mol

This  process  releases  four  protons  to  P-phase 

taking two protons from N-phase contributing to 

the  electrochemical  gradient  (Figure  3.4).  It 

must  be  noticed  that  this  reaction  proceeds  at 

conditions  close  to  equilibrium  conditions. 

Conversely,  the  pH  difference  between  lumen

and stroma can be calculated at equilibrium, i.e. 

when ∆G ~ 0.

 

 

Cu2+ Cu+

P

N

PQH2

Cu2+ Cu+

P

N

PQH2

Figure 3.21 : Proton movement at 
Complex II
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So,

-71.4 = -34.2 - 2 RT ln 10 ∆ pH

∆ pH = (71.4 -34.2)/ 2 RT ln 10 = 3.25

It may be concluded that Q-cycle constituted of PQ and PQH2 controls and maintains the H+ 

balance near equilibrium. A similar mechanism will be explained in paragraph 3.4.3.

As the reaction proceeds at near equilibrium conditions, the reaction must be considered as 

reversible. Furthermore, it does not contribute energy for the electron transport. These values 

are summarised in Table 3.2.

Eqn Metabolic steps involved: ∆Gm,7 

(kJ/mol)
∆Gm,7.5 

(kJ/mol)
∆Gm,4 

(kJ/mol)
Em,4 

(mV)
Em,7 

(mV)
9 PQ + 2 e- + 2 HN

+→ PQH2   0 5.7 0
11 PQ + 2 e- + 2 HP

+→ PQH2   - 34.2 177
12 PQ + 2 e- + 4 HP

+→ PQH2  + 
2 HN

+ 
-74.2* 384*

13 2 Pc  (Cu2+) +  2  e- → 2 Pc 
(Cu+)

-71.4 370

14 Global: 
PQH2  + 2 Pc (Cu2+) + 2 HN

+

→ PQ + 2 Pc (Cu+) + 4 HP
+

-2.8*

Table 3.9: Metabolic steps involved in plastoquinol and plastocyanin of chloroplast 
thylakoids. Values with * stands for physiological conditions pHN = 7.5; pHP = 4.

3.2.4 Photosystem I
Photosystem I  is  composed  of  a  modified  ‘chlorophyll  a’  that  absorbs  light  at  a

wavelength  of  700  nm  and  transfers  electrons  to  the  next  complex,  ferredoxin  NADP 

reductase. The concentration of P700 is small, only 0.25% of the total amount of chlorophyll in 

plants  (Garrett  and  Grisham,  2000).  The  core  of  PS  I  contains  about  40  molecules  of 

chlorophyll a, several molecules of beta carotene, lipids, calcium, chlorine, four manganese, 

one iron, two molecules of plastoquinone, two molecules of pheophytin and a colorless form 

of chlorophyll a.  

Absorbing one  quantum of  light,  P700 (Em,7 =  450 mV)  is  transformed  into  the  strongest 

biological reducing agent known, P700
+. 

hν700: P700 → P700
+ + e- (15)

Free energy available for one quanta of photon at 700 nm (Berg  et al., 2002) is calculated 

same as we have done for photosystem II.

hν700 = 170.9 kJ/mol
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P700
+ is highly unstable and rapidly absorbs an electron. It could be said that at P-phase of the 

membrane, it appears to be a direct electron transfer from plastocyanin in order to recover 

P700. 

P700
+ + e- → P700 Em,7 = 450 mV , ∆Gm,7  = - 43.4 kJ/mol (16)

Taking the energy of photon, the energy for the first step in photosystem I is calculated: 

∆Gm,7   = - 170.9 + 43.4  = - 127.5 kJ/mol

I.e. the available energy for the formation of P700
+ by hν700 is -127.5 kJ/mol:

hν700:  P700 → P700
+ +  e- Em,7 = 1 320 mV, ∆Gm,7  = - 127.5 kJ/mol  (15)

The reduction of plastocyanin is then considered for reducing P700
+ (eqn. 16), 

Pc (Cu2+) + e- → Pc (Cu+) Em,7 = 370 mV , ∆Gm,7  = - 35.7 kJ/mol (17)

The reduced plastocyanin,  Pc (Cu+) diffuses through the lumen and  P700
+ readily gains an 

electron coming from plastocyanin at lumen (P-phase) and reforms P700.

Eqns. (16) + (17),

P700
+ + Pc (Cu+) → Pc (Cu2+) + P700 ∆Gm,7  = - 7.7 kJ/mol (18)

Combining eqns. (15) and (18):

hν700:  Pc (Cu+) → Pc (Cu2+) +  e- ∆Gm,7  = - 7.7 + -127.5 = - 135.2 kJ/mol

The electron liberated by the oxidation of P700 arrives on a chlorophyll  molecule. Then, it 

passes to a phylloquinone (vitamin K1) and ultimately reaches a Fe-S centre, which serves as

the electron donor to reduce the iron-sulphur ferredoxin in the stroma (N-phase). 

Fdox + e- → Fd red Em,7 = - 450 mV;  ∆Gm,7  =  43.4 kJ/mol (19)

Eqns. (19) + (17),

Pc (Cu+) + Fdox → Fd red + Pc (Cu2+)   ∆Gm,7  = - 79.1 kJ/mol (20)

Finally when the eqn. resulted from (15) and (18) combines with (19), 

hν700: Pc (Cu+) + Fd ox → Pc (Cu2+) + Fd red (21)

∆Gm,7 = -135.2 + 43.4 = - 91.9 kJ/mol

Therefore, plastoquinone in PS I is reduced by ferredoxin. Ferredoxin is then re-oxidized via

Q-cycle. One proposal is that there exists a ferredoxin plastoquinone-reductase or an NADP 

dehydrogenase (Joliot P. and Joliot A., 2002). It is found that the classical Q-cycle reaction 

mechanisms  must  be  altered  in  the  b6f  complex  and  it  has  been  proposed  that  a  cyclic 

photophosphorylation follows (Cramer et al., 2005, 2006).
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Combining eqns. (11) and (19): 

PQ + 2 e- + 2 HP
+→ PQH2 Em,4 = 177 mV;    ∆Gm,4 = - 34.2 kJ/mol (11)

Fdox + e- → Fd red Em,7 = - 450 mV;  ∆Gm,7  =  43.4 kJ/mol (19)

So that:

2 Fd red + PQ + 2 HP
+ → 2 Fd ox + PQH2  ∆Gm,4 = - 121.0 kJ/mol (22)

This energy can be considered as the exact energy available for the Eqn. (22). This metabolic 

step  is  highly  important  in  cyclic  photophosphorylation.  The  summary  of  the  metabolic 

reactions and energy are listed in Table 3.3.

Eqn Metabolic equations ∆Gm,7

(kJ/mol)
∆Gm,4 

(kJ/mol)
Em,4 

(mV)
Em,7 

(mV)
hν700 - 170.9

15 hν700: P700 → P700
+ +  e- - 127.5 1 320

16 P700
+ + e-→ P700 - 43.4 450

17 Pc (Cu2+) + e- → Pc (Cu+) - 35.7 370
18 P700

+ + Pc (Cu+) → Pc (Cu2+) + P700 - 7.7
19 Fdox + e- → Fd red 43.4 -450
20 Pc (Cu+) + Fdox → Fd red + Pc (Cu2+) - 79.1 820
21 Global: 

hν700: Pc (Cu+) + Fd ox → Pc (Cu2+) + Fd 
red

- 91.9*

22 Global: 
2 Fd red + PQ + 2 HP

+ → 2 Fd ox + PQH2

- 86.8 -121* 627

Table 3.10 : Metabolic steps involved in photosystem I and plastocyanin of chloroplast 
thylakoids. Values with * stands for physiological conditions pHN = 7.5; pHP = 4.

3.2.5 Ferredoxin NADP reductase
Ferredoxin serves as a strong reductant; NADP+ can accept two electrons in the form of a

hydride. The mechanism proposed considers that this complex contains a tightly bound FAD 

which accepts the electrons one at a time from ferredoxin (Garrett and Grisham, 2000). The 

FADH2 then  transfers  a  hydride  to  NADP+ to  form NADPH,  HN
+.   The  mechanism  is 

described as follows:

FAD + Fdred + HN
+ → FADH. + Fdox

FADH. + Fdred + HN
+ → Fdox + FADH2

FADH2 + NADP  +  → FAD + NADPH, H  N
+            

2 Fdred + 2 HN
++ NADP+→ 2 Fdox + NADPH, HN

+                           
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The reaction takes place at the N-phase of the thylakoid membrane. The uptake of a proton 

by NADP+ further contributes to the pH gradient across the thylakoid membrane. In terms of 

oxido-reductive mechanism, this can be written as follows:

2 HN
+ + 2 e- + NADP+ → NADPH, HN

+    E m,7 = - 320 mV; ∆Gm,7 = 61.7 kJ/mol (23)

Fdox + e- → Fd red                                        Em,7 = - 450 mV;  ∆Gm,7  =  43.4 kJ/mol (19)

Eqns. (23) - 2 × (19),

2 Fd red + 2 HN
++ NADP+→ 2 Fdox + NADPH, HN

+     (24)

∆Gm,7  = - 2 × 43.4 + 61.7= - 25.1 kJ/mol

∆Gm,7.5 = - 25.1 - 2 RT ln 10 (7 – 7.5) = - 19.4 kJ/mol

This energy is relatively small with the previously discussed complex. However, the reaction 

occurs in forward direction contributing to electrochemical gradient and ATP production. The 

important metabolic steps involved with this complex are given in the Table 3.4.

Eqn Metabolic equations ∆Gm,7

(kJ/mol)
∆Gm,7.5

(kJ/mol)
E m,7

.(kJ/mol)
E m,7.5

(kJ/mol)
19 Fdox + e- → Fd red 43.4 - 450
23 2 HN

++ 2e- +  NADP+→  NADPH, HN
+  61.7 - 320

24 Global: 
2 Fd  red + 2 HN

+  + NADP+→ 2 Fdox + 
NADPH, HN

+
-25.1 -19.4* 100*

Table 3.11:  Metabolic steps involved in ferredoxin NADP reductase of chloroplast
thylakoids. Values with * stands for physiological conditions pHN = 7.5; pHP = 4

3.2.6 ATP synthase
The light-induced electron transport starts from PS II, and ends at CF1CFO ATP synthase, the 

enzyme for chloroplast ATP production. ATP synthase is located accessing a source of Pi2- 

and ADP3-. The proton motive force generated across the thylakoid membrane is used for the 

proton  flow through the  proton channel  causing  the  rotation  of  ATP synthase  and  ATP 

production. 

12 protons are taken through the proton channel for the complete rotation of ATP synthase 

followed by the release of 3-4 ATP, which means 3-4 protons per ATP is  in need (Van 

Walraven et al., 1996; Yoshida et al., 2001). The mechanism is schemed in Figure 3.5.
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ATP  synthesis  from  ADP  is  energetically  uphill  without  the  driving  force  of  electron 

potential  gradient  across  the  thylakoid  membrane.  The  free  energy  available  for  ATP 

formation is known at standard conditions;

HN
+ + ADP3- + Pi 

2- → ATP4- + H2O ∆Gm,7 = 32.5 kJ/mol; [Mg2+] = 10-3 (25)

As ATP is produced at the N- phase, 

∆Gm,7.5 =   32.5 - RT ln 10 (7 – 7.5) = 35.4 kJ/mol

The free energy change for a pH gradient  of 3.5 units  for  the proton movement  (proton 

motive force of 200 mV) across the thylakoid membrane corresponds to -20 kJ/mol (Int.

ref.4; Berg et al., 2002).

HP
+ → HN

+       ∆Gphysio = RT ln 10 (4 - 7.5) = - 20 kJ/mol 

The light induced pH gradient is about 3.5 pH units. The transmembrane electrical potential 

(∆Ψ)  is  not  a  significant  factor  in  the  proton motive  force  of  chloroplasts;  because,  the 

thylakoid membrane is permeable to chloride (Cl-) and magnesium (Mg2+) ions. Because of

this permeability, the thylakoid lumen remains electrically neutral while the pH gradient is 

generated. The proton motive force across the thylakoid membrane is 200 mV, which drives 

ATP synthesis, nearly all of it is contributed by the pH gradient rather than the membrane 

potential. Considering that 3 protons are involved in both N and P- phases, the available free 

energy for the ATP production (26), 

3 H+
P + HN

+ + ADP3- + Pi 
2- → 3 HN

+ + ATP4- + H2O                            (26)

∆G,physio = - 3 × 20 + 35. 4 = - 24.5 kJ/mol

Hence, it is concluded that without the proton movement across the thylakoid membrane ATP 

production  is  thermodynamically  impossible.  ∆Gm,7.5 is  negative,  only when three  protons 

from both N and P-phases are utilized (Table 3.5). The pH gradient between N and P-phases

control and maintains the ATP release.

3.2.7 Equations for light reactions
From  the  studied  photosynthetic  complexes  of  light  reactions,  the  six  stoichiometric 

equations  10,  14,  21,  22,  24  and  26  (Table  3.6)  summaries  the  steps  of  light  energy 

conversion to chemical energy; this forms a small metabolic network of 16 metabolites. The 

metabolites  are  separated  as  exchangeables  (outputs  and  inputs)  and  nonexchangeables 

(intermediates) according to the system-boundary concept (Figure 3.6). 
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CF1 unit

CFO unit

ADP3- + H+ + Pi2-
ATP4- + H2O

N-phase

P-phase Lumen pH = 4

Inner membrane

Stroma pH = 7.5

3 HP
+

3 HN
+

N

CF1 unit

CFO unit

ADP3- + H+ + Pi2-
ATP4- + H2O

N-phase

P-phase Lumen pH = 4

Inner membrane

Stroma pH = 7.5

3 HP
+

3 HN
+

N

Figure  3.22: ATP synthesis in chloroplasts  The CF1-part sticks into stroma, where dark 
reactions  of  photosynthesis  (Calvin  cycle)  take  place.  The  CFO subunit  spans  the 
photosynthetic  membrane  and  forms  a  proton  channel  through  the  membrane.  CF1 is 
composed  of  several  different  protein  subunits.  The  top  portion  of  the  CF1 subunit  is 
composed of three ab-dimers that contain the catalytic sites for ATP synthesis.

Eqn Metabolic equations ∆G m,7

(kJ/mol)
∆Gphysio

(kJ/mol)
25 HN

+ + ADP3- + Pi 
2- → ATP4- + H2O 32.5 35.4

26 Global: 
3 H+

P + HN
+ + ADP3- + Pi2- → 3 HN

+ + ATP4- + 
H2O                            

- 24.5*

Table  3.12: Metabolic steps involved in chloroplast ATP synthase  Values with * stands 
for physiological conditions pHN = 7.5; pHP = 4

PQ, PQH2 , Pc(Cu2+), Pc(Cu+), Fdox ,Fdred,

HP
+P- phase

N- phase

NE =

O2

O2
E =

H2O

HP
+

HN
+ ,ATP4-, ADP3-, Pi2-, NADP+ , NADPH,HN

+,H2O,hν 680 ,hν 700 ,

hν 700hν 680

pH = 4

pH =7.5

PQ, PQH2 , Pc(Cu2+), Pc(Cu+), Fdox ,Fdred,PQ, PQH2 , Pc(Cu2+), Pc(Cu+), Fdox ,Fdred,

HP
+P- phase

N- phase

NE =

O2

O2

O2

O2
E =

H2O

HP
+

HN
+ ,ATP4-, ADP3-, Pi2-, NADP+ , NADPH,HN

+,H2O,hν 680 ,hν 700 , HN
+ ,ATP4-, ADP3-, Pi2-, NADP+ , NADPH,HN

+,H2O,hν 680 ,hν 700 ,

hν 700hν 680

pH = 4

pH =7.5

Figure  3.23: Separation of metabolites into non exchangeables and exchangeables for 
light reactions 
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In order to examine the topology of the two photosystems, the P-phase is supposed to be a 

closed one, while N-phase is an open system; N-phase contains a sequence of metabolisms 

(e.g. Calvin cycle, starch metabolism, lamellar protein synthesis etc (Garrett and Grisham, 

2000).  However,  the  energy  molecules  that  are  necessary  to  carry  out  those  reactions 

produced  directly  into  the  N-phase  so  that  the  reactions  can  run  at  once  the  energy  is 

available. The membrane which separate P and N-phases is assumed as an unchanged one; 

the oxygen molecule (O2) formed at P-phase is diffused into the outside (exterior)  of the 

system; the light energy of wave lengths 700 nm and 680 nm, photon ‘hν’ (hν700 and hν680), 

water (H2O) and carbon dioxide (CO2) are considered as inputs where the energy molecules

like ATP4- and NADPH HN
+ are the outputs; ADP3-, Pi2- and NADP+ are associated with the 

energy outputs.  Hence, they are also considered together with the exchangeable group. 

The molecules such as PQ, PQH2, Pc (Cu2+), Pc (Cu+), Fdox, Fdred, HP
+, etc. are act as the 

intermediates for the production of outputs. The proton produced at N-phase, HN
+ must be 

taken as output as it is related to the reduced molecule (NADPH, HN
+) and the formation of 

ATP. However, HP
+ is taken as an intermediate. During the ATP formation, three HP

+ are used 

to rotate the ATP synthase at P-phase (as input) and three HN
+ are produced at N-phase (as 

output)  as  in  the  Figure  3.5.  Hence,  we have  9  exchangeables  and  7  nonexchangeables. 

Furthermore,  exchangeables  can  be  one  of  the  three  types:  (1)  the  one  producing  and 

consuming within the system which also appear as a part of output or input indicated as ‘E=’;

(2) output ‘E+’; (3) input ‘E-’. In this case, water being consumed and produced, it is an 

exchangeable, ‘E=’. 

The metabolic equations for light reactions are listed and the stoichiometric matrix has been 

constructed as in Table 3.7. In the matrix representation, the reversible reactions are indicated 

with the number, ‘0’ where irreversible reactions are ‘1’.
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React
ions

Eqn Protein complex
involved

Metabolic equations ∆G m,7

(kJ/mol)
∆G m,7.5

(kJ/mol)
∆G m,4

(kJ/mol)
R1 10 Photosystem II 2 hν680:  H2O + 2 HN

++ 
PQ → PQH2  + ½ O2 + 
2 HP

+

- 157.5*

R2 14 Cytochrome b6f 
plastocyanin
non cyclic

PQH2 + 2 Pc (Cu2+) + 2 
HN

+ ↔ PQ + 2 Pc (Cu+) 
+ 4 HP

+

- 2.8 - 2.8*

R3 21 Photosystem I 1 hν700: Pc (Cu+) + Fdox 

→ Pc (Cu2+) + Fdred

- 91.9*

R4 22 Cytochrome b6f 
Plastocyanin
cyclic

PQ + 2 Fdred  + 2 HP
+ → 

PQH2 + 2 Fdox 

- 86.8 - 121*

R5 24 Ferredoxin 
NADP 
reductase

2  Fd  red +  2  HN
+  + 

NADP+→  2  Fdox + 
NADPH,HN

+    

- 25.1 -19.4*

R6 26 ATP synthase 3 HP
+ + HN

+ + ADP3- + 
Pi 

2- → 3 HN
+ + ATP4- + 

H2O

- 24.5*

Table 3.13: Equations for light reactions. Values with * stands for physiological conditions 
pHN = 7.5; pHP = 4

Directions 1 0 1 1 1 1
Reactions R1 R2 R3 R4 R5 R6
PQ NE -1 1 0 -1 0 0
PQH2 NE 1 -1 0 1 0 0

Pc (Cu2+) NE 0 -2 1 0 0 0

Pc (Cu+) NE 0 2 -1 0 0 0
Fdox NE 0 0 -1 2 2 0

Fdred NE 0 0 1 -2 -2 0

HP
+ NE 2 4 0 -2 0 -3

HN
+ E= -2 -2 0 0 -2 2

Pi2- E- 0 0 0 0 0 -1

ADP3- E- 0 0 0 0 0 -1

ATP4- E+ 0 0 0 0 0 1

NADP+ E- 0 0 0 0 -1 0

NADPH, HN
+ E+ 0 0 0 0 1 0

H2O E= -1 0 0 0 0 1

O2 E+ 0.5 0 0 0 0 0

hν 6 8 0 E- -2 0 0 0 0 0

hν 700 E- 0 0 -1 0 0 0

Table  3.14: Metabolic  matrix for light reactions  Exchangeables  (E):  hν700,  hν680,  O2,  H2O, 
NADP+, NADPH,HN

+, ATP4-, ADP3-, Pi2-, HN
+; Non exchangeables, (NE): HP

+,  Fdred, Fdox, Pc (Cu+), 
Pc (Cu2+), PQH2, PQ. Abbreviations : hν700 and hν680 = photons at 700 nm and 680 nm respectively; O2 

= oxygen; H2O =  water;  NADPH,HN
+ = nicotinamide adenine dinucleotide phosphate ; NADP+ =

reduced nicotinamide  adenine  dinucleotide  phosphate;  ATP4- =   adenosine  triphosphate;  ADP3-  = 
adenosine  diphosphate,  energy molecule;  Pi2- =  inorganic  phosphate;  HN+ and HP

+ = protonated 
hydrogen at  N and P phases;  Fdred = reduced ferredoxin;  Fdox = oxidised ferredoxin;  Pc (Cu+) =
reduced plastocyanin; Pc (Cu2+)= reduced plastocyanin; PQH2 = plastoquinol; PQ =plastoquinone
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3.3Calvin cycle
The carbon assimilation reactions in plants (and other autotrophs) synthesise carbohydrates 

from atmospheric CO2 by reducing at the expense of ATP and NADPH, H+. This process 

takes  place  within  the  chloroplast  stroma. Calvin  cycle  reactions  (also  known  as  dark 

reactions) are possible even in the absence of light.  However,  the regulation mechanisms 

have been described leading to inactivation of Calvin cycle enzymes in the absence of light. 

The assimilation of CO2 occurs in three stages: carboxylation,  reduction and regeneration. 

The  first  stage  involves  the  incorporation  of  CO2 and  water  into  five-carbon  acceptor: 

ribulose 1, 5-biphosphate (RuBP4-) that is catalyzed by the enzyme ribulose 1, 5-biphosphate

carboxylase or rubisco.  Rubisco is one of the most crucial  enzymes  in the production of 

biomass from CO2; it accounts almost 50% of the soluble proteins of the chloroplast. In the 

reduction  phase,  3-phosphoglycerate  (PGA3-)  is  converted  to  glyceraldehyde  3-phosphate 

(G3P2-). The regeneration phase contains a series of reactions that regenerate RuBP4- from 

G3P2-. 

Such experimentally determined metabolic reactions and metabolites of plant Calvin cycle 

are adapted from MetaCyc Encyclopedia of Metabolic Pathways (Table 3.8). In reality, only 

thirteen steps are involved in the Calvin cycle (R1 to R13). Anyhow, the steps R14 and R15 

are necessary in order to produce one molecule of glucose, as glucose is necessarily produced 

in the chloroplast.  Table 3.8 provides the standard free energies for reactions at  standard

conditions (∆Gm,7)  and for physiological conditions (∆Gphysio). 

The equation for calculating free energy,

substrates
productsRTGG mphysio ln7, +∆=∆  

Though 7,mG∆  is positive for a reaction, the cellular concentration of substrates and products 

are maintained in such a way that the actual free energy, ∆Gphysio becomes negative (e.g. R2 of 

Table 3.8).  Cells often drive a thermodynamically unfavourable reaction (where  7,mG∆  is

positive) in the forward direction by coupling it to a highly exergonic reaction through a 

common intermediate. The metabolic matrix representing the Calvin cycle is given in Table 

3.9.
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Reaction Metabolic equations ∆Gm,7

 (kJ/mol)
∆Gphysio 

(kJ/mol)
R1 CO2+ RuBP4- + H2O    →    2  (PGA)3- + 2 HN

+  - 35.1 - 41
R2 PGA3- + ATP4-↔ 1,3BPGA4-+ ADP3-  18 -6.7
R3 1,3BPGA4- + NADPH,HN

+ ↔ G3P2- + NADP+ + Pi2-  -6.3 0
R4 G3P2-  ↔  DHAP2-  -7.5 -0.8
R5 DHAP2-  + G3P2-  ↔  FBP4-  -23.4 -0.8
R6 FBP4-+ H2O→ F6P2-+ Pi2-  -14.2 -27.2
R7 F6P2-+ G3P2-  ↔ E4P2- + Xu5P2-  6.3 -3.8
R8 Ru5P2- ↔ Xu5P2-  0.8 -0.4
R9 S7P2- + G3P2- ↔  Xu5P2-+ R5P2-   0.4 -5.9
R10 DHAP2-+ E4P2- ↔  SBP4- -21.8 -1.7
R11 SBP4- + H2O → S7P2-+ Pi2-  -14.2 -29.7
R12 R5P2- ↔ Ru5P2-  2.1 -0.4
R13 Ru5P2- + ATP 4- →  RuBP4- + ADP3- + HN

+  -21.8 -15.9
R14 F6P2- ↔  G6P2- 1.7 -2.9
R15 G6P2- +  H2O →  Glucose + Pi2-  -13.8 Negative 

Table  3.15: Calvin cycle reactions  Free energy values for metabolic  reactions are taken 
from Bassham and Buchanan, 1982. 

The  metabolites  are  separated  into  exchangeables  and  non  exchangeables;  the  input 

metabolites for the Calvin cycle system are CO2 and H2O with only one output glucose; in 

addition to this, energy molecules are also considered as exchangeables and the rest of the 

metabolites  fall  in  the  category  of  non exchangeables.  As  the  proton at  N-phase,  HN
+ is

always associated with the NADPH, HN
+ and ATP4-, we need to treat it as an exchangeable 

just as we did in the previous system. 
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Directions 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1
Reactions R 1 R2 R3 R4 R 5 R6 R7 R8 R9 R 10 R11 R12 R13 R14 R15

FBP4- NE 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0

F6P2- NE 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0

E4P2- NE 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0

1-3BPGA4- NE 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

SBP4- NE 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0

S7P2- NE 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0

RuBP4- NE -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

R5P2- NE 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0

Ru5P2- NE 0 0 0 0 0 0 0 -1 0 0 0 1 -1 0 0

G6P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

G3P2- NE 0 0 1 -1 -1 0 -1 0 -1 0 0 0 0 0 0

DHAP2- NE 0 0 0 1 -1 0 0 0 0 -1 0 0 0 0 0

PGA3-
NE 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

Xu5P2- NE 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

Pi2- E+ 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1

ADP3- E+ 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

ATP4- E- 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0

HN
+  E+ 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

CO2 E- -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H2O E- -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -1

Glucose E+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

NADP+ E+ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

NADPH, HN
+ E- 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.16: Metabolic matrix for Calvin cycle reactions Exchangeables (E): H2O; CO2; Glucose; 
HN

+; NADP+; NADPH,HN
+; ADP3-; Pi2-; ATP4-;  Non exchangeables, (NE): PGA3-; RuBP4-;  Ru5P2-; R5P2-; 1,3-

BPGA4-; G3P2-; DHAP2-; FBP4-; F6P2-; E4P2-;  Xu5P2-; G6P2-; S7P2- and SBP4- Abbreviations : ADP3- = adenosine
diphosphate, energy molecule; ATP4- =  adenosine triphosphate; DHAP2- = dihydroxyacetone phosphate; 1, 3-
BPGA4-=  1,  3-  diphosphate  glycerate;  CO2  =  carbon dioxide ;  E4P2- =  erythrose-4-phosphate;  FADH2  = 
reduced flavin adenine dinucleotide;  FBP4- = fructose 1, 6-biphosphate;  F6P2- = fructose -6-biphosphate; 
G1P2-  = glucose -1-phosphate; G6P2- = glucose 6-phosphate; G3P2- =  glyceraldehyde -3-phosphate ; H2O = 
water;  HN

+= protonated hydrogen at N-phase ;  NADPH,HN
+  = nicotinamide adenine dinucleotide phosphate ; 

NADP+ = reduced nicotinamide adenine dinucleotide phosphate; O2 = oxygen; PGA3- = 3-phosphoglycerate; Pi2- 

= inorganic phosphate; RuBP4- = ribulose 1, 5-bisphosphate; R5P2- = ribose-5-phosphate; Ru5P2- = ribulose-
5-phosphate;  SBP4- =  sedoheptulose  1,  7-biphosphate;  S7P2- =  sedoheptulose-7-biphosphate;  Xu5P2- = 
xylulose-5-phosphate
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3.4Electron transport and oxidative 
phosphorylation

The metabolic processes associated with the electron transport and oxidative phosphorylation 

occurs  in  mitochondria;  it  fulfils  the  total  cell  energy  requirements.  Structurally,  

mitochondria  are  double-membraned  organelle  with  an  outer  membrane  and  an  inner 

membrane; between the two is the intermembrane space (Figure 3.7). The outer membrane is 

made  up  of  large  number  of  proteins  called  porins.  The  space  enclosed  by  the  inner 

membrane is called matrix. A large number of proteins named complexes I, II, III, IV and 

ATP synthase are situated in the inner membrane just like the electron transport chain (ETC) 

of  chloroplast.  The  matrix  contains  highly  concentrated  mixture  of  enzymes  (for  the

oxidation of pyruvate, fatty acids and the TCA cycle), ribosomes, mRNA, proteins, etc. The 

mitochondrial membrane also works as a channel for a variety of molecules, (but not all ions) 

to move in and out. 

Figure 3.24: Structure of mitochondrion [Int. ref.3]

The proton concentration is less near to the matrix (N-phase) than that in the intermembrane 

space (P-phase). Principally, it must also be considered that in mitochondrial membrane the 

major  part  of  the  proton  motive  force  is  provided  by  the  electrical  potential  difference 

between the two faces. It will be considered that the potential difference is 150 mV between 

the positive and negative phases. 
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3.4.1 Complex I 
Complex  I  is  known  as  NADH-UQ  oxidoreductase.  This  promotes  the  transfer  of  two 

electrons from NADH to a lipid-soluble carrier called ubiquinone (UQ). The reduced product, 

ubiquinol  (UQH2)  which  resembles  plastoquinol  of  thylakoid  freely  diffuses  within  the 

membrane.  Complex  I  translocates  four  protons  (H+)  across  the  membrane  producing  a 

proton gradient. The electrons get transferred as a part of several oxido-reduction reactions: 

NADH, H+ is oxidized to NAD+; then the electron passes through flavin, FMN reducing it to

FMNH2 and reach ubiquinone (UQ) via Fe-S clusters, reducing it to ubiquinol (UQH2) in the 

matrix phase (Figure 3.8) (Garrett and Grisham, 2000; Nicholls and Ferguson, 1992). 

There  is  a  major  role  of  UQ/UQH2  as  a  carrier  of  reducing  equivalents  in  the  electron 

transport chain’s I and II complexes towards complex III. The first couple to be considered is 

NADH, H+ oxidation and UQ reduction. 

NAD+ + 2 H+ + 2e- → NADH, H+         Em,7 = - 320 mV; ∆Gm,7 =  61.7 kJ/mol        (27) 

UQ + 2 H+ + 2e- → UQH2                            Em,7 = 60 mV ; ∆Gm,7  = -11.6 kJ/mol            (28)

Eqn. (27) proceeds forward, while eqn. (28) proceeds backward. At standard conditions, the 

redox couple of the above reactions provide a potential difference of 380 mV and ∆Gm,7 of 

-11.6 - 61.7 = - 73.3 kJ/mol. Considering the protons in the intermembrane space as ‘HP
+’(at

P-phase) and matrix phase (N-phase) ‘HN
+’, the reactions at N- phase for complex I can be 

written from eqns. (28) + (27) as follows:

NADH,HN
+ + UQ + 2 HN

+ → NAD+ + UQH2 + 2 HP
+

                                                   (29)

Without considering the proton transport at standard conditions, the energy per electron pair 

transported by complex I is, ∆Gm,7  = - 2 x 96.484 x 0.38 = - 73.3 kJ/mol. 

However, this reaction takes place at N-phase (pH = 7.5) with a transport of two protons to P-

phase (pH = 6.5). 

Furthermore,  considering the electrical  potential  difference: EP - EN = ∆Ψ = 150 mV, the 

electrical potential of 150 mV affects the charges on both N and P-phases. It is considered 

that NAD+, NADH,HN
+ and HN

+ are located at N-phase, so that:

∆Gphysio = ∆Gm, 7 + 2 RT ln 10 (7 - pH
P
) – 3 RT ln 10 (7 - pH

N
) + 2 F EP + F EN - 3 F EN

= ∆Gm, 7 + 2 RT ln 10 [2 (pHN - pHP) + (pHN - 7)] + 2 F (EP - EN)

= -73.3 + RT ln 10 [2 (7.5 – 6.5) + (7.5 - 7)] + 2 F ∆Ψ 
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= -73.3 + 14.3 + 28.9 = - 30.1 kJ/mol

NADH, HN
+ NAD+ + 2 HN

+

2 HP
+

2 e-

N-phase

P-phase

Matrix

Inner 
membrane

Inter membrane space e-

FMN

Fe- SFe- S

2 HN
+

UQUQH2

e-

e-

Fe- S
center

2 HP
+

2 HN
+

e-

e-

pH = 6.5

pH = 7.5

Figure 3.25:  Electron transport pathway via Complex I Proton transport takes place from 
N-phase to P-phase (Adapted from Garrett and Grisham, 2000)

Eqn. Metabolic equations ∆Gm,7

(kJ/mol)
∆Gphysio

(kJ/mol)

27 NAD+ + 2 H+ + 2e- → NADH, H+ 61.7
28 UQ + 2 H+ + 2e- → UQH2 -11.6
29 NADH,HN

+ +  UQ  +  2  HN
+ →  NAD+ + 

UQH2 + 2 HP
+

- 73.3 - 30.1

30 2 HN 
+→ 2 H+

P 40.4
31 Global:

NADH, HN
+ +  UQ  +  4  HN

+ ↔  NAD+ + 
UQH2 + 4 HP

+

10.3

Table 3.17:  Metabolic steps involved in Complex I
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 ∆Gphysio of eqn. (29) represents the free energy change at physiological conditions; it accounts 

the location of charged species and pH differences between the two phases, N and P; at the 

same time, it does not account the concentration differences of other species. 

Further,  it  is  generally  accepted  that  the  NADH, HN
+ oxidation  is  also coupled  with the 

transfer of two additional protons against pH gradient so that the following equation must be 

taken into account:

2 HN 
+→ 2 H+

P (30)

∆Gphysio = 2 RT ln 10 (pHN - pHP) + 2 F ∆Ψ = 11.4 + 28.9 = 40.4 kJ/mol

This results to the global equation (31):

NADH,HN
+ + UQ + 4 HN

+ → NAD+ + UQH2 + 4 HP
+

                                                   (31)

The resulting ∆Gphysio is positive and equal to 40.4 – 30.1 = + 10.3 kJ/mol.

The reaction is possible, only if (NAD+.UQH2) / (NADH, HN
+.UQ) ratio is lower than 1 (ratio 

= 0.0157 for ∆Gphysio= 0) and / or if a fractional number of H+ transferred against electro-

chemical potential is accepted: less than 4 and more than two. In any case, it appears that 

redox potential in matrix N-phase is strictly regulated at this level. Thus, at the end of these 

processes, 2 to 4 protons are translocated from N- phase to P-phase. The metabolic steps 

involved in this complex are shown in Table 3.10.

3.4.2 Complex II
Complex II is the succinate dehydrogenase complex. This is the only one complex directly 

related to the Krebs cycle; it catalyses the oxidation of succinate to fumarate. Consequently, 

the reaction rates associated with the Krebs cycle and complex II are not independent. The 

oxidation of FADH2 takes place; the electrons are transferred to Fe-S centers and then to 

ubiquinone entering into the electron transport chain (Nicholls and Ferguson, 1992). It must 

be noticed that complex II is not connected to proton transfer (Figure 3.9).

The stoichiometric reaction is written as follows:

FAD + 2 HN
+ + 2e- → FADH2          Em,7  = 30 mV; ∆Gm,7  = - 5.8 kJ/mol      (32)

The complex II  transfers two electrons from iron-sulfer (Fe-S) clusters to ubiquinone for 

ubiquinol production. 

UQ + 2 HN
+ + 2e- → UQH2            Em,7  = 60 mV; ∆Gm,7 = - 11.6 kJ/mol (33) 

Coupling equations (33) and (32),

FADH2 + UQ → FAD + UQH2                  ∆Em,7 = 30 mV; ∆Gm,7  = - 5.8 kJ/mol (34)
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Figure  3.26:  Electron  transport  pathway via  Complex  II.  (Adapted  from Garrett  and 
Grisham, 2000)

Eqn. Metabolic equations ∆G m,7

(kJ/mol)
∆Gphysio

(kJ/mol)
Em,7

32 FAD + 2 HN
+ + 2e- → FADH2 - 5.8 30

33 UQ + 2 HN
+ + 2e-→ UQH2 - 11.6 60

34 Global:
FADH2 + UQ → FAD + UQH2

- 5.8 - 5.8

Table 3.18:  Metabolic steps involved in Complex II
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The change in free energy is close to the equilibrium. Hence, it may be considered that the 

reaction is reversible. The energy is not sufficient to drive the transport of protons across the 

inner  mitochondrial  membrane.  Hence,  complex II  does  not  act  as  proton pump.  This  is 

summarised in Table 3.11. Apparently, it operates as a regulation point of FAD/FADH2 ratio.

3.4.3 Complex III
Complexes I and II globally produce UQH2. The following steps concern UQH2 recycling 

through a series of metabolic reactions called ‘Q cycle’. This is almost same as mentioned 

before, when we described chloroplast light reactions; but, ubiquinone and ubiquinol bear the

positions of plastoquinone and plastoquinol.

Globally, the oxidation of ubiquinol takes places at P-phase:

UQH2 → UQ + 2 HP
+ + 2 e-

   

At N-phase, the reduction of ubiquinone occurs:                 

UQ + 2 HN
+ + 2 e- → UQH2                                                                                              

According to the chemiosmotic  theory,  the free energy released during the mitochondrial 

electron  transport  is  used in  the active  translocation  of  protons  from N-phase to  P-phase 

across  the  inner  membrane.  The  mechanism  is  described  in  the  following  parapgraphs 

(Nicholls and Ferguson, 1992; Garrett and Grisham, 2000; Nobel, 2009).

Complex III contains two types of cytochromes (heme prosthetic group), named  b and  c1.

These carry electrons by the reduction and oxidation of an iron atom within the heme group. 

The iron atoms alternate the oxidation states between a reduced ferrous (+2) state and an 

oxidized ferric (+3) state during electron transport. Because of these processes, cytochrome 

b-c1 complex (cytochrome  c co-enzyme Q reductase) accepts electrons from ubiquinol and 

passes them on to cytochrome c through Q-cycle (Figures 3.10.1 and 3.10.2).

First part of the Q-cycle (at P-phase)

First Step at P-Phase

The function of cytochrome reductase is to catalyse the transfer of electrons from ubiquinol 

to cytochrome c and concomitantly pump protons across the inner mitochondrial membrane. 

Ubiquinone is always susceptible to be reduced to ubiquinol and vice versa. 
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Figure 3.27.1 First part of Q-cycle of complex III. The electron transfer pathway following 
the oxidation of the first  molecule  of UQH2 at  the Qp site near  the cytosolic  face of the 
membrane (P-phase). (Adapted from Garrett and Grisham, 2000)
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Figure  3.10.2:  Second  part  of  Q-cycle  of  complex  III. Oxidation  of  a  second 

molecule of UQH2 (Adapted from Garrett and Grisham, 2000)
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There are two couples to consider (Figure 3.10.1): Cyto Fe3+/ Cyto Fe2+ and UQ. -/ UQH2, 

where UQ.-  is the semiubiquinone radical.

Cyto Fe3+ + e-→  Cyto Fe2+       Em,7 = 235 mV; ∆Gm,7 = - 22.7 kJ/mol            (35)

UQ. -  + 2 H+ + e- → UQH2
  
                      Em,7 = 280 mV; ∆Gm,7  = - 27.0 kJ/mol            (36)

We write the resulting equation in the direction of Cyto Fe2+ oxidation.

UQ. - + 2 H+ + Cyto Fe2+ → Cyto Fe3+ + UQH2 ∆Gm,7= - 4.3 kJ/mol              (37)

As it takes place at P-phase, the free energy is calculated as follows:

∆Gm, 6.5 = ∆Gm,7  - 2 RT ln 10 (7 - 6.5) = - 4.3 + - 5.7 = - 10.0 kJ/mol

UQ. - + 2 HP
+ + Cyto Fe2+ → Cyto Fe3+ + UQH2 

     ∆Gm,6.5 = - 10.0 kJ/mol             (38)

However, the concentration of semiubiquinone free radical (UQ.-) is very low compared to 

that of ubiquinol, principally due to the instability of UQ.-. 

Considering UQH2/UQ.- = 104, we obtain:

∆Gphysio = ∆Gm,6.5  +  RT ln 104  = 12.8 kJ/mol

Therefore,  the  previous  reaction  (38)  most  probably  occurs  in  the  reverse  sense  (UQH2 

oxidation). 

Cyto Fe3+  + UQH2 → UQ. - + 2 HP
+ + Cyto Fe2+                                                       (39)

More precisely, as soon as UQH2/UQ.- > 56 the reaction proceeds as UQH2 oxidation and this 

is what most probably takes place (Grammel and Ghosh, 2008). 

For example, we can directly calculate ∆G from the standard potentials given in Eqns. (35) 

and (36) considering the concentration ratio (UQH2/UQ.-) = 60 and at pH = pHP = 6.5:

 ∆G = 96.484 (0.28 - 0.235) – RT ln (UQH2/UQ.-) + 2 RT (7 - pHP) ln 10

= 4.3 - RT ln (60) + 2 RT (7 - 6.5) ln 10 = - 0.1 kJ/mol 

In short, the minimum requirement is ∆G < 0 for Eqn. (39) such that UQH2/UQ.-  should be 

more than 60. Furthermore, UQH2 oxidation (Eqn. 39) probably proceeds near equilibrium 

conditions. 

In terms of mechanistic interpretation, from ubiquinol pool, ubiquinol diffuses through the 

bilipid layer to the ‘ubiquinol binding site’ situated near the P-phase, called ‘QP site’. The 

electron transfer occurs in 2 steps: first, electron from ubiquinol is transferred to the Rieske

protein (a Fe-S protein) which transfers the electron to cytochrome c1.
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This  process  releases  two  protons  to  the  P-phase  along  with  the  production  of  semi 

ubiquinone (UQ.-) which is highly unstable. Eqns. (35) + (36) represent the mechanism. The 

resulted Eqn. (39) globalises this first step.

Second Step at P-Phase

The second step involves UQ.- oxidation following the oxido-reductions (Figure 3.10.1):

Cyto bL + e-   →  Cyto bL
- Em,7 = -100 mV; ∆Gm,7  = 9.6 kJ/mol (40)

where Cyto bL is a heme of complex III.

UQ + e-   →  UQ.- Em,7 = -160 mV; ∆Gm,7  = 15.4 kJ/mol (41)

Eqns. (41) + (40) give,

Cyto bL + UQ.- →  Cyto bL
- + UQ  ∆Gm,7  = - 5.8 kJ/mol (42)

Assuming the low concentration of UQ.- (due to the instability), the negative ∆G can only be 

explained considering the products of Eqn. (42), Cyto bL
- and  UQ which remain very shortly 

at QP site. This is described in the next step.

Third Step from P-Phase to N-Phase

The produced ubiquinone diffuses away from the QP binding site.

The bL heme (Em,7 = -100 mV) transfers its electron to the bH heme (Em,7 = 50 mV) near to the 

N-phase. 

Cyto bH + e- → Cyto bH
-  Em,7 = 50 mV; ∆Gm,7  = - 4.8 kJ/mol  (43)

Cyto bL + e-   →  Cyto bL
- Em,7 = -100 mV; ∆Gm,7  = 9.6 kJ/mol (40)

Eqns. (40) + (43) give,

Cyto bH + Cyto bL
-→ Cyto bH

- + Cyto bL   ∆Gm,7  = - 14.5 kJ/mol (44)

The transfer of electrons from bL  heme to bH heme is accompanied by a electrical potential 

change of - 100 mV to 50 mV (Nicholls and Ferguson, 1992). This means that, if we consider 

equal  concentrations  of  hemes,  the  thermodynamic  equilibrium  condition  for  Eqn.  (44) 

obtains; if Cyto bL
- is located at a place of potential + 100 mV and Cyto bH

- at a place of

potential - 50 mV, the membrane potential ∆Ψ will be close to 150 mV. In other words, if we 

consider that cytochrome concentrations are the same, the membrane potential is equal to the 

difference between the redox couples at thermodynamic equilibrium.

Conversely, it can be deduced that the membrane potential is regulated by the ratio of heme 

concentrations by reaction (44) which proceeds near equilibrium.
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Second part of the Q-cycle (at N-phase)

First step at N-Phase

The next step concerns Cyto bH
- oxidation at N-Phase. This involves the following couple:

Cyto bH + e- → Cyto bH
-  Em,7 =  50 mV;    ∆Gm,7  = - 4.8 kJ/mol            (43)

UQ + e-   → UQ.- Em,7 = -160 mV; ∆Gm,7  = 15.4 kJ/mol (41)

Eqns. (41) + (43) give,

UQ.- + Cyto bH → Cyto bH
- + UQ ∆Gm,7  = - 20.3 kJ/mol              (45)

Exactly same as involved in the first part of the Q-cycle, this reaction proceeds in the reverse

direction though a negative ∆Gm,7. More precisely, the equilibrium conditions are obtained, if 

UQ/UQ.- > > 3640, knowing that:

∆G = - 20.3 + RT ln (UQ.- /UQ)  = - 20.3 + 2.48 ln (UQ.-/UQ) 

Therefore, the concentration of ubiquinone must be at least 3600 times greater than that of 

free radical of semiubiquinone for considering that Eqn. (45) proceeds in the reverse direction 

such that,

Cyto bH
- + UQ ↔ UQ.- + Cyto bH ∆G = 0              (46)

Second step at N-Phase

The reduction of ubiquinone takes place at N-phase taking a hydride from N- phase, while the 

reverse reaction (ubiquinol oxidation) takes place at P-phase. The electron is then transferred

to a second molecule of ubiquinone at a binding site near the N-phase, called the QN binding 

site (Nicholls and Ferguson, 1992). 

Following the same equation (39) as previously, this process again generates a free radical of 

semiubiquinone which remains firmly bound to the QN binding site. 

The second part of the Q-cycle begins from QP site; one electron from ubiquinol (bound at 

QP) is transferred to the Rieske protein, which transfers it to cytochrome c1. This process 

releases two protons to the N-phase (Figure 3.10.2). 

UQ.- + 2 H + + e- → UQH2            Em,7 = 280 mV ; ∆Gm,7  = - 27.0 kJ/mol            (36)   

The second electron is then transferred to the bL heme to generate  a second molecule of 

reoxidized ubiquinone. 

Cyto bH + e- → Cyto bH
-  Em,7 =  50 mV;  ∆Gm,7  = - 4.8 kJ/mol              (43)
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As the reaction occurs near N-Phase, H+ is to be considered as H+
N so that we obtain:

UQ. -  + 2 HN
+ + Cyto bH

- → Cyto bH + UQH2
         ∆Gm,7  = - 22.2 kJ/mol              (47)

Then, ∆Gm,7.5 is calculated as follows:

∆Gm,7.5  = ∆Gm,7  + RT ln (UQH2/UQ.-) - 2 RT ln 10 (7 – 7.5)

= - 16.5 + RT ln (UQH2/UQ.-) 

In fact, this last reaction occurs at near equilibrium conditions considering UQH2 is much 

more stable than UQ. -. More specifically, when ∆Gm,7.5   = 0, we have (UQH2/UQ.-) = 770. 

This means, in order to occur a thermodynamically feasible reaction (of negative ∆G), the

concentration of UQH2/UQ.- at pH 7.5 must be lower than 770. 

Global functioning of Q-cycle 

Globally, the Q cycle is summarised in Table 3.12. The first steps at P-phase occur two times 

and the neutral species UQ and UQH2 belongs to the same UQ pool; eventually, the following 

equation is obtained:

2 Cyto Fe3+ + UQH2
 + 2 HN

+ → UQ + 4 HP
+ + 2 Cyto Fe2+   (48)

The free energy at pH 7, ∆Gm,7  is calculated as follows:

∆Gm,7 = 2 ( 4.3 – 5.8 – 14.7) + 20.3 – 22.3 = - 34.4 kJ/mol

When accounting pH difference between two phases:

∆G = - 34.4 + 4 RT (7 - 6.5) ln 10 – 2 RT (7 – 7.5) ln 10 = - 17.3 kJ/mol

When accounting electric potential difference:

∆G = - 17.3 + 4 F EP + 2 x 2 F EP - 2 F EN - 2 x 3 F EP = - 17.3 + 2 F (EP - EN)

                  = - 17.3 + 2 F ∆Ψ = + 11.6 kJ/mol

∆Gphysio is near equilibrium condition while accounting UQH2/UQ ratio that must be at least 

equal  to 110 for ensuring ∆Gphysio = 0.  It  is  also possible  to describe in more details  the 

inequalities of Table 3.12. For that, it is necessary to distinguish semiubiquinone free radical 

at P-phase and at N-phase. Considering Table 3.12, we have the following inequalities:
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When using the last equation rH  = rL and considering that the electrochemical potentials of 

semiubiquinone on both phases are equal, we obtain:

  

€ 

˜  µ 
U Q N

.−  =  −F  E N + R T l n (U Q N
.− ) + c o n s t .

˜  µ U Q P
.−  =  −F  E P + R T l n (U Q P

.− ) + c o n s t .

so that:

  

€ 

˜  µ U Q N
.−  =  ˜  µ U Q P

.−  

l n (
U Q P

.−

U Q N
.− ) =

F ( E P − E N )
R T

=
F ∆ψ

R T
= 5 . 8 4

This means that: 
  

€ 

U Q P
.−

U Q N
.−  =  343 

Then, solving the above system of inequalities leads to:

  

€ 

1 0 .6 r H < U Q
U Q P

.- <  10 r L

 56  <  
U Q H 2

U Q P
.- <  

2 . 2 4
r H

r H  <  0 . 0 4          r L >  1 .0 6  r H               

We find that the equality between rH and rL hypothesis is quite satisfactory and furthermore, 

the value of rH is around 0.04. Reducing again the above system leads to:

  

€ 

 
U Q H 2

U Q
 >  130         

This is quite consistent with the condition we have derived from the global equation in Table 

3.12. In summary, it is very interesting to prove that Q-cycle is a sum of electrochemical 

equations  that  function  at  near  equilibrium  conditions,  the  global  sum  being  itself  near 

equilibrium. This also explains how the membrane potential, ∆ψ is controlled at a value near 

150 mV with the ratios of Cytochromes bL and bH. This justifies a multilinear approach for 

considering the reaction rates. However, we do not exploit this approach for examining the 

kinetic behaviour of higher plant growth.
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Eqn.
Metabolic equations

∆Gm,7

and
∆G physio

(kJ/mol)

Conditions for 
near equilibrium 

conditions : 
∆Gphysio = 0

Number of 
occurrences 
in Q-cycle

39 Cyto Fe3+ + UQH2
  

                → UQ. - + 2 HP
+ + Cyto Fe2+

+ 4.3
0

UQH2/UQ.- > 56
P-Phase: pH=6.5

2

42 Cyto bL + UQ.- →  Cyto bL
- + UQ - 5.8

0
UQ/UQ.- < 10 rL

P-Phase
2

44 Cyto  bH +  Cyto  bL
-→ Cyto  bH

- +
Cyto bL

- 14.5
0

∆ψ ≈ 150 mV
rL = rH

2

46 Cyto bH
- + UQ → UQ.- + Cyto bH

+ 20.3
0

UQ/UQ.- > 3640 
rH

N-Phase

1

47
UQ. -  + 2 HN

+ + Cyto bH
-

          → Cyto bH + UQH2

- 22.2

0

rH UQH2/UQ.-

<770
N-Phase: 
pH=7.5

1

48
Global:
2 Cyto Fe3+ + UQH2

  + 2 HN
+ 

          → UQ + 4 HP
+ + 2 Cyto Fe2+

- 34.4
0

UQH2/UQ >110

Table  3.19:   Elementary  mechanisms  of  Q  cycle  of  Complex  III:  Values  for  near 
equilibrium conditions are given for ∆G=0. rL is the ratio of Cyto bL/ Cyto bL

-. rH is the ratio 
of Cyto bH/ Cyto bH

-

0.5 O2 H2O  + 2 HN
+

N-phase

P-phase

Matrix

Inner 
membrane

Inter membrane space
Fe

Cyt C

CuA

CuB

Cyt a

Cyt a3

e-

e-

Fe

FeUQ/UQH2
pool

2 HN
+

2 HP
+

pH = 6.5

pH = 7.5

Figure 3.28: Mechanism for the reduction of oxygen at Complex IV Protons required for 
the reduction processes are taken from matrix side or P-phase.
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3.4.4 Complex IV
Complex IV is known as cytochrome c oxidase, the protein located on the P-phase. It accepts 

electrons  from cytochrome  c  given  by complex  III  passes  them to  oxygen  (Garrett  and 

Grisham, 2000). The first step is again the reduction of heme:

Cyto Fe3+ + e-→ Cyto Fe2+       Em,7 = 235 mV; ∆Gm,7 = - 22.7 kJ/mol            (35)

Four electrons are funnelled into O2 to completely reduce it to H2O and continuously pump 

protons from N-phase to the cytosolic side of the inner mitochondrial membrane, the P-phase. 

Cytochrome c oxidase contains two heme centers (cytochrome a and cytochrome a3) and two

copper proteins in which the copper sites are CuA (near to P-phase) and CuB (near to N-

phase). Cytochrome c transfers its electron to CuA (Figure 3.11). The oxidized cytochrome c 

dissociates. CuA then transfers the electron to cytochrome a. A second cytochrome c binds 

and transfers its electron to CuA which is subsequently transferred to ‘cytochrome a’ which in 

turn is  transferred to  cytochrome a3.  The binuclear  metal  center  has two electrons  bound 

allowing the binding of O2 to binuclear center.  The next step involves the uptake of two 

protons and the transfer of yet another electron through the same pathway which leads to 

cleavage of the O--O bond and the generation of a Fe4+ metal center. Then, the electron is 

transferred to form a hydroxide at the heme center which becomes protonated and dissociates 

as  H2O  (Nicholls  and  Ferguson,  1992).  We  can  summarise  the  metabolic  processes  of

complex IV as follows,

½ O2 + 2 HN
+ + 2e- → H2O    Em,7 = 800 mV;    PO2 = 0.21atm    ∆Gm,7 = -154.4 kJ/mol      (5)

This process takes place at pH=7.5, so that

∆Gm,7.5 = ∆Gm,7  - 2 RT ln 10(7 - 7.5) 

= -154.4 - 2 RT ln 10-0.5 = - 148.7 kJ/mol

The two electrons released help to pump two more protons from N-phase to P-phase.

2 HN
+

 → 2 HP
+

 ∆G1 = 11.4 kJ/mol                                                                  (49)

Even if ∆G is positive, when associating with Eqn. (47), it appears to be a feasible reaction:  

½ O2 + 4 HN
+

 + 2e- → H2O + 2 HP
+

 ∆G = -137.3 kJ/mol    (50)

For the complex IV, the overall reaction can be written by adding (50) and (35),

½ O2 + 4 HN
+

 + 2 cyto Fe2+ → 2 cyto Fe3+ + H2O + 2 HP
+

 (51)

 ∆Gphysio = - 137.3 + 22.7 – 4 F EN – 4 F EP + 2 × 3 F EP + 2 F EP

= - 114.6 + 4 F (EP - EN) = -114.6 + 4 × 96.484 × 0. 15 = - 56.7 kJ/mol
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Eqn. Metabolic equations ∆G m,7

(kJ/mol)
∆G m,7.5

(kJ/mol)
∆Gphysio

(kJ/mol)
Em,7

(mV)

Em,7.5

(mV)

35 Cyto Fe3+ + e-→  Cyto Fe2+       
 

- 22.7 235

5 ½ O2 + 2 HN
+ + 2e- → H2O -154.4 -148.7 800 770

50 ½ O2 + 4 HN
+

 + 2e- → H2O + 2 HP
+ -108.3

51 Global:
½ O2 + 4 HN

+
 + 2 cyto Fe2+ 

        → 2 cyto Fe3+ + H2O + 2 HP
+

- 56.7

Table 3.20:  Metabolic steps involved in Complex IV

F1 unit

FO unit

ADP3- + H+ + Pi2-
ATP4- + H2O

N-phase

P-phase

Matrix

Inner membrane

Inter membrane space

3 HP
+

pH = 7.5

pH = 6.5

3 HN
+

F1 unit

0
F0 unitF1 unit

FO unit

ADP3- + H+ + Pi2-
ATP4- + H2O

N-phase

P-phase

Matrix

Inner membrane

Inter membrane space

3 HP
+

pH = 7.5

pH = 6.5

3 HN
+

F1 unit

0
F0 unit

Figure 3.29: ATP synthesis in mitochondrion Flow of protons through ATP synathse turns 
the rotor and ATP released along with water. (Garrett and Grisham, 2000)

Eqn. Metabolic equations ∆G m,7

(kJ/mol)
∆G m,7.5

(kJ/mol)
∆Gphy

(kJ/mol)
25 HN

+ + ADP3- + Pi 
2- → ATP4- + H2O 32.5 35.4

52 HN
+ → HP

+ - 34.5
53 Global: 

3 H+
P + HN

+ + ADP3- + Pi 
2-  → 3 HN

+ + 
ATP4- + H2O                            

- 68.1

Table 3.21: Metabolic steps in mitochondrial ATP synthase
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3.4.5 Mitochondrial ATP synthesis
Electron  flow  and  ATP  synthesis  are  tightly  coupled  in  the  sense  that,  in  normal 

mitochondria, neither occurs without the other. ATP synthesis takes place with the help of the 

enzyme called ATP synthase (or complex V) similar to that of chloroplast. It consists of two 

main complexes (F0 unit and F1 unit) as well as multiple protein sub units. The F1 unit is 

towards the matrix phase (N-phase), while F0 unit is towards P-phase, within the membrane 

(Figure 3.12).  F0 unit contains  the proton channel  of  the complex.  The developed proton 

gradient across the membrane helps to move protons through F0  and as a result of this, the

moving unit in the ATP synthase rotate in clockwise direction which finally release ATP4-. 

The isotopic studies showed that  about  equal  amounts  of bound ATP4- and ADP3- are in 

equilibrium at the catalytic site, even in the absence of a proton gradient (Berg et al., 2002). 

Thus, we can conclude the role of proton gradient is to release ATP4- from the synthase, not 

to produce really new ATP molecules.

The formation of one ATP4- apparently requires the movement of four protons through the 

mitochondrial ATP synthase same as in the thylakoidal ATP synthase. ATP4- is produced in 

the  matrix,  the  N-phase;  but,  it  is  usually  needed  in  the  cell  cytosol.  Hence,  the  outer 

mitochondrial membrane is permeable to transport ATP4-, ADP3-, etc. Phosphate, which is 

used for  the  production  of  ATP4-  also  enters  to  the matrix  by H+/Pi2- symporter.  ATP is

transporting as ATP4- while ADP as ADP3-. The stoichiometry takes the form:

HN
+ + ADP3- + Pi 

2- → ATP4- + H2O  ∆Gm,7 = 32.5 kJ/mol (25)

Considering pHN = 7.5, we obtain:

∆Gm,7.5  = 32.5 - RT ln 10(7 – 7.5) = 35.4 kJ/mol

Alongside,  the  proton translocation  creates  a  pH gradient  (∆pH)  of  around 1  unit  and a 

membrane potential, ∆Ψ of 150 mV (Rehling et al., 2003). For ejection of one H+ from the 

matrix, N-phase: 

HP
+ → HN

+             ∆G = - RT ln10 ∆pH
 - F∆Ψ = - 34.5 kJ/mol (52)

So, the resulting equation for phosphorylation is:

3 HP
+ + HN

+ + ADP3- + Pi 
2- → 3 HN

+ + ATP4- + H2O                                               (53)

∆Gphysio   = 3× -34.5 + 35.4 = - 68.1 kJ/mol 

For each transmembrane process, the ∆pH and ∆Ψ components may act either separately or 

together, depending on the enzyme structure and the balance of biological advantage.
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Erreur : source de la référence non trouvée
Name  of  the 
protein 
complex

Eqn. Reaction Metabolic equations ∆Gphysio 

(kJ/mol)

Complex I 31 R1 NADH,HN
+ + UQ + 4 HN

+ → NAD+ + UQH2 

+ 4 HP
+

+ 10.3

Complex II 34 R2 FADH2  + UQ ↔  FAD + UQH2    - 5.8
Complex III 48 R3 UQH2 + 2 cyto Fe3+ + 2 HN

+↔ UQ + 4 HP
+

 + 
2 cyto Fe2+

0

Complex IV 51 R4 ½ O2 + 4 HN
++ 2 cyto Fe2+ → 2 cyto Fe3+ + 

H2O + 2 HP
+

- 56.7

ATP 
synthase

53 R5 3 HP
+ + HN

+ + ADP3- + Pi 
2- → 3 HN

+ + ATP4- 

+ H2O
- 68.1

Table  3.22:  Equations  for  mitochondrial  electron  transport  and  oxidative 
phosphorylation

Figure  3.30: Separation of metabolites into non exchangeables and exchangeables for
mitochondrial electron transport and oxidative phosphorylation

Figure  3.31:  Metabolic  reactions  involved  in  mitochondrial  electron  transport  and 
oxidative phosphorylation for ATP production
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3.4.6 Equations for mitochondrial electron transport and 
oxidative phosphorylation

From the above mitochondrial complexes, the summarised equations (Table 3.15) form the 

backbone  for  oxidative  phosphorylation  metabolic  network.  There  are  5  reactions  in  the 

network originally derived from the complexes situated in the mitochondrial membrane.

The metabolites are separated as 10 exchangeables and 5 nonexchangeables constituting 15 in 

total (Figure 3.13). Similar to light reaction network, P-phase is taken as a closed system; 

while N-phase is an open system, which contains a chain of metabolisms (e.g. TCA cycle,

secondary metabolisms, etc.). The energy molecules (ATP4- and NADH, HN
+) are produced at 

N-phase; by which the sequential reactions (TCA cycle) can be favourably occurring at once 

as per the availability of energy. The membrane that separates P and N-phases is assumed as 

an unchanged one; the input substrates consumed at N-phase are oxygen molecule, ADP3-, 

Pi2-,  NAD+  and FAD; where the energy molecules ATP4-, FADH2, NADH, HN
+ and water 

(H2O) are the outputs. The inputs and outputs together come under the group exchangeables, 

E. The rest of the molecules such as UQ, UQH2, Cyto(Fe2+), Cyto(Fe3+), HP
+, etc. act as the 

intermediates (NE, non exchangeables) for the production of outputs. The proton produced at 

N-phase, HN
+ must be taken as output as it is related to the reduced molecule NADH HN

+, 

while HP
+ is taken as intermediate as because of this movement proton gradient and thereby

ATP formation can be achieved.  Once,  the metabolites are separated into E and NE, the 

stoichiometric matrix can be constructed as shown in Table 3.16. 
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Reactions 1 0 1 1 1
Directions R1 R2 R3 R4 R5
CytoFe2+ NE 0 0 2 -2 0
CytoFe3+ NE 0 0 -2 2 0
UQ NE -1 -1 1 0 0
UQH2 NE 1 1 -1 0 0
HP

+ NE 4 0 4 2 -3
HN

+ E= -4 0 -2 -4 2
Pi2- E- 0 0 0 0 -1
ADP3- E- 0 0 0 0 -1
ATP4- E+ 0 0 0 0 1
FAD E+ 0 1 0 0 0
FADH2 E- 0 -1 0 0 0
NAD+ E+ 1 0 0 0 0
NADH, HN+E- -1 0 0 0 0
H2O E+ 0 0 0 1 1
O2 E- 0 0 0 -0.5 0

Table  3.23:  Metabolic  matrix  for  mitochondrial  electron  transport and  oxidative 
phosphorylation E = ATP4-, ADP3-, Pi2-, NADH,HN

+, NAD+, H2O, O2, FADH2 , FAD; NE =
UQ,  UQH2,  Cyto(Fe2+),  Cyto(Fe3+),  HP

+,  Abbreviations:  O2 =  oxygen;  H2O  =  water; 
NADH,HN

+  =  nicotinamide  adenine  dinucleotide;  NAD+  =  oxidised  nicotinamide  adenine 
dinucleotide;  FAD  =  flavin  adenine dinucleotide  ;  FADH2 = reduced  flavin  adenine 
dinucleotide;  adenine  dinucleotide;  ATP4-  =  adenosine  triphosphate;  ADP3- =  adenosine 
diphosphate;  Pi2- = inorganic phosphate; HN

+ and HP
+  = protonated hydrogen at  N and P

phases;  CytoFe2+ =  reduced  iron  of  heme;  CytoFe2+ =  oxidised  iron  of  heme;  UQH2  = 
Ubiquinol; UQ = Ubiquinone

Reaction Metabolic equations ∆Gm,7

 (kJ/mol)
∆Gphysio 

(kJ/mol)
R1 Oxaloacetate2-+  Acetyl  CoA-  +  H2O  →  Citrate3-+

Coenzyme A + HN
+

 -31.4 Negative 

R2 Citrate3- ↔ cis-Aconitate3- + H2O  6.7 0
R3 cis-Aconitate3- + H2O + HN

+ ↔ D-Isocitrate2-   
R4 D-Isocitrate2-  +  NAD+ +  HN

+ →  NADH,HN
+ +  2-

Ketoglutarate- + CO2

 -20.9 Negative 

R5 2 -Ketoglutarate- + NAD+  + CoenzymeA → Succinyl-
CoA- + NADH,HN

+  + CO2

 -30 Negative 

R6 Succinyl-CoA- + ADP3- + Pi
2-   ↔     Succinate2-  + 

Coenzyme A + ATP4-
 -3.3 0

R7 Fumarate2-  + H2O ↔ Malate2- -3.8 0
R8 Malate2- + NAD+ ↔ Oxaloacetate2- + NADH,HN

+  29.7 0
R9 Succinate2-  + FAD ↔ FADH2 + Fumarate2-  0.4 0

Table 3.24: Equations for Krebs cycle (Garrett and Grisham, 2000; Voet D. and Voet J.G, 
2005)
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3.5Krebs cycle
TCA cycle or Krebs cycle is responsible for the oxidation of respiratory substrates to drive 

ATP synthesis. It starts with the metabolite acetyl CoA, produced from pyruvate. As TCA 

cycle  produces  ATP  from  substrate  (acetyl  CoA),  it  is  also  known  as  substrate  level 

phosphorylation.  The  enzymes  required  to  carry  out  TCA  cycle  are  situated  inside  the 

mitochondrial matrix (Figure 3.15). The metabolic reactions corresponding to TCA cycle are 

known and are taken from the database, MetaCyc (Table 3.17) to explain the network in the 

metabolic matrix given in Table 3.18. Some reactions are specified for plants, while some are 

common  for  all  organisms;  e.g.  R6  and  R9  are  specific  for  plants.  In  plants,  succinate

formation  is  always  accompanied  with ADP3-,  ATP4- and Pi2-,  not  with GDP3-and GTP4-. 

Similarly in eukaryotes  like plants,  succinate  is associated with fumarate  through FADH2 

(Sweetlove  et al., 2010); in some references, ubiquinol and ubiquinone are used instead of 

FAD and FADH2 (MetaCyc). 
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Figure 3.32: Electron transport, oxidative phosphorylation and Krebs cycle reactions
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The  metabolic  system  contains  21  metabolites  and  9  reactions.  The  input  and  output 

metabolites  involved  are  energy  associated  molecules  FAD,  FADH2,  NAD+,  NADH,HN
+, 

ADP3-, HN
+, ATP4- and Pi2-; in addition to these, Acetyl Co A-, Coenzyme A, CO2, H2O, etc. 

are also considered as exchangeables whilst the rest are nonexchangeables. Hence for this 

system, there are 12 exchangeables and 9 nonexchangeables.

 Directions 1 0 0 1 1 0 0 0 0
Reactions R1 R2 R 3 R4 R5 R6 R 7 R8 R9

Oxaloacetate2- N E -1 0 0 0 0 0 0 1 0

Fumarate2- N E 0 0 0 0 0 0 -1 0 1

Citrate3- N E 1 -1 0 0 0 0 0 0 0

CisAconitate3- N E 0 1 -1 0 0 0 0 0 0

D-Isocitrate2-  N E 0 0 1 -1 0 0 0 0 0

2–Ketoglutarate-N E 0 0 0 1 -1 0 0 0 0
Succinyl-CoA- N E 0 0 0 0 1 -1 0 0 0

Succinate2- N E 0 0 0 0 0 1 0 0 -1

Malate2- N E 0 0 0 0 0 0 1 -1 0

NAD+ E- 0 0 0 -1 -1 0 0 -1 0

NADH, HN
+ E+ 0 0 0 1 1 0 0 1 0

FAD E- 0 0 0 0 0 0 0 0 -1

FADH2 E+ 0 0 0 0 0 0 0 0 1

Pi2- E- 0 0 0 0 0 -1 0 0 0

ADP3- E- 0 0 0 0 0 -1 0 0 0

ATP4- E+ 0 0 0 0 0 1 0 0 0

CO2 E+ 0 0 0 1 1 0 0 0 0

H2O E= -1 1 -1 0 0 0 -1 0 0

HN
+ 

E= 0 0 -1 -1 0 0 0 0 0

CoenzymeA E= 1 0 0 0 -1 1 0 0 0
AcetylCoA- E- -1 0 0 0 0 0 0 0 0

-

 Directions 1 0 0 1 1 0 0 0 0
Reactions R1 R2 R 3 R4 R5 R6 R 7 R8 R9

Oxaloacetate2- N E -1 0 0 0 0 0 0 1 0

Fumarate2- N E 0 0 0 0 0 0 -1 0 1

Citrate3- N E 1 -1 0 0 0 0 0 0 0

CisAconitate3- N E 0 1 -1 0 0 0 0 0 0

D-Isocitrate2-  N E 0 0 1 -1 0 0 0 0 0

2–Ketoglutarate-N E 0 0 0 1 -1 0 0 0 0
Succinyl-CoA- N E 0 0 0 0 1 -1 0 0 0

Succinate2- N E 0 0 0 0 0 1 0 0 -1

Malate2- N E 0 0 0 0 0 0 1 -1 0

NAD+ E- 0 0 0 -1 -1 0 0 -1 0

NADH, HN
+ E+ 0 0 0 1 1 0 0 1 0

FAD E- 0 0 0 0 0 0 0 0 -1

FADH2 E+ 0 0 0 0 0 0 0 0 1

Pi2- E- 0 0 0 0 0 -1 0 0 0

ADP3- E- 0 0 0 0 0 -1 0 0 0

ATP4- E+ 0 0 0 0 0 1 0 0 0

CO2 E+ 0 0 0 1 1 0 0 0 0

H2O E= -1 1 -1 0 0 0 -1 0 0

HN
+ 

E= 0 0 -1 -1 0 0 0 0 0

CoenzymeA E= 1 0 0 0 -1 1 0 0 0
AcetylCoA- E- -1 0 0 0 0 0 0 0 0

-

Table 3.25: Metabolic matrix for Krebs cycle E = FAD, FADH2, NAD+, NADH,HN
+, H2O, 

AcetylCoA-, Coenzyme A, HN
+, CO2, ADP3-, ATP4-  and Pi2-; NE = Oxaloacetate2-, Citrate3-, 

cis-Aconitate3-,  D-Isocitrate2-,  2–Ketoglutarate-,  Succinyl-CoA-,  Succinate2-,  Malate2-, 
Fumarate2-  ; Abbreviations: H2O = water; NADH,HN

+ = nicotinamide adenine dinucleotide; 
NAD+ = oxidised nicotinamide adenine dinucleotide; FAD = flavin adenine dinucleotide ; 
FADH2 =  reduced  flavin  adenine  dinucleotide;  adenine  dinucleotide;  ATP4- =  adenosine 
triphosphate;  ADP3- = adenosine  diphosphate;  Pi2- = inorganic  phosphate;  HN

+ and HP
+ = 

protonated hydrogen at N and P phases
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3.6Glycolysis
Glucose  degradation  by  Embden  Meyerhof  Pathway  -  EMP  involves  11  reactions  and 

operates both under aerobic as well as anaerobic conditions. Under aerobic conditions, this 

pathway  functions  in  conjunction  with  the  TCA  cycle  in  which  the  pyruvate  generated 

through the EMP is oxidised to CO2 and water. In plant leaves, as aerobic respiration takes 

place glycolysis combines with TCA and electron transport. But, in roots if oxygen lacks, 

anaerobic respiration performs (then, pyruvate is reduced to lactate or ethanol). 

Energetically  as  a  part  of  substrate  level  phosphorylation,  glycolysis  yields  2  moles  of 

pyruvate per glucose. It also prepares the cell to derivate more energy in the form of ATP

molecules.  The  formed  pyruvate  again  changes  into  acetyl  CoA  which  enters  into  the 

mitochondria for further metabolism. Here, we took the glycolysis metabolic network starting 

from glucose to acetyl CoA. The metabolic matrix for the glycolytic metabolic network is 

given  in  Table  3.20  and  the  equations  are  given  in  Table  3.19.  The  exchangeables  and 

nonexchangeables of this sub system are separated.  As inputs and outputs involve energy 

molecules, glucose, acetyl co A, coenzyme A, CO2 and H2O form exchangeables and the rest 

come under non exchangeables (See Table 3.20). 

125



Reaction Metabolic equations ∆Gm,7

 (kJ/mol)
∆Gphysio 

(kJ/mol)
R1 Glucose + ATP4- →  G6P2- + HN

+ +  ADP3-  -16.7 -27.2
R2 G6P2- ↔ F6P2-  1.67 -1.4
R3 F6P2-  + ATP4- →  FBP4- + HN

+ + ADP3- -14.2 -25.9
R4 FBP4-  ↔ DHAP2- + G3P2-  23.9 -5.9
R5 DHAP2-  →  G3P2-  7.56 Negative
R6 3 PGA3-  ↔  2PGA3-  4.4 -0.6
R7 2 PGA3-  ↔  PEP3- +  H2O 1.8 -2.4
R8 G3P2- + Pi2- + NAD+ →  1-3BPGA4- + NADH, HN

+  6.3
-16.7R9 1-3BPGA4- + ADP3-  → 3PGA3- +  ATP4-  -18.9

R10 PEP3- +  HN
+ +  ADP3- →  pyruvate- +  ATP4-  -31.7 -13.9

R11 pyruvate-   +  CoA  +  NAD+ →  CO2 + AcCoA- +
NADH,HN

+
Negative

Table 3.26: Equations for glycolysis (Voet D. and Voet J.G, 2005)

Directions 1 0 1 0 1 0 0 1 1 1 1
Reactions R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

G6P2- NE 1 -1 0 0 0 0 0 0 0 0 0

F6P2- NE 0 1 -1 0 0 0 0 0 0 0 0

FBP2- NE 0 0 1 -1 0 0 0 0 0 0 0

DHAP2- NE 0 0 0 1 -1 0 0 0 0 0 0

PEP3- NE 0 0 0 0 0 0 1 0 0 -1 0

3PGA3- NE 0 0 0 0 0 -1 0 0 1 0 0

2PGA3- NE 0 0 0 0 0 1 -1 0 0 0 0

G3P2- NE 0 0 0 1 1 0 0 -1 0 0 0

1-3BPGA4- NE 0 0 0 0 0 0 0 1 -1 0 0
pyruvate- NE 0 0 0 0 0 0 0 0 0 1 -1

HN
+ NE 1 0 1 0 0 0 0 0 0 -1 0

ATP4- E= -1 0 -1 0 0 0 0 0 1 1 0

ADP3- E= 1 0 1 0 0 0 0 0 -1 -1 0

NAD+ E- 0 0 0 0 0 0 0 -1 0 0 -1

NADH, HN
+ E+ 0 0 0 0 0 0 0 1 0 0 1

glucose E- -1 0 0 0 0 0 0 0 0 0 0

Pi2- E- 0 0 0 0 0 0 0 -1 0 0 0
H2O E+ 0 0 0 0 0 0 1 0 0 0 0
AcCoA- E+ 0 0 0 0 0 0 0 0 0 0 1
CoA E- 0 0 0 0 0 0 0 0 0 0 -1
CO2 E+ 0 0 0 0 0 0 0 0 0 0 1

Table 3.27: Metabolic matrix for glycolysis E = Coenzyme A ; Glucose ; NAD+ ;  NADH,HN
+ ; 

Pi2- ; ADP3- ; ATP4- ; CO2 ;  AcCoA- ; H2O ; NE = F6P2-; HN
+; G6P2-; FBP4-; DHAP2- ; G3P2- ; 2PGA3- ; 

3PGA3-;   PEP3-;   1-3  BPGA4- ;  pyruvate-;  Abbreviations:  H2O =  water;  CO2  =  carbon dioxide; 
NADH,HN

+ = nicotinamide adenine dinucleotide; NAD+ = oxidised nicotinamide adenine dinucleotide; 
ATP4-  = adenosine triphosphate; ADP3- = adenosine diphosphate; Pi2- = inorganic phosphate; HN

+ = 
protonated  hydrogen  at  N  phase;  PEP3- =  phosphoenol  pyruvate;  DHAP2-  = dihydroxyacetone 
phosphate; 1, 3-BPGA4-= 1, 3- diphosphate glycerate FBP4- = fructose 1, 6-biphosphate; F6P2- =
fructose  -6-biphosphate;  G6P2- =  glucose  6-phosphate;  G3P2- =   glyceraldehyde  -3-phosphate ; 
2PGA3-=  2-phosphoglycerate ;  3PGA3- =  3-phosphoglycerate;  AcCoA-  =  Acetyl  Co  A;  CoA  = 
Coenzyme A
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3.7Elementary Flux Mode Analysis 
The constructed metabolic network is subjected to analyse the topology using elementary flux 

mode analysis. The preliminarily analysis has been done successfully for the matrix network 

system in order to check the reaction stoichiometry, colinearity and cyclic relationship for the 

combination of metabolic reactions; there were no cyclic reactions to nullify the contribution 

of any metabolite. The verification has been carried out thoroughly considering that even a 

single perturbation may oppositely influence the system calculations and analysis. Hence for 

all systems, the preliminary checking has been carried out before performing the calculations, 

as it was unavoidable for having calculations.

3.7.1 Light reactions
As  mentioned  in  chapter  2,  the 

elementary  flux  modes  are 

thermodynamically  feasible  pathways 

involved  in  a  metabolic  network. 

Therefore,  the  EFM  analysis  on  any 

metabolic  system provides the different 

possibilities  of  metabolic  pathways  and 

reactions  hidden  in  the  system.  Figure 

3.16  shows  the  metabolic  inputs  and

outputs involved in the system.
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Figure 3.33 : System with inputs and outputs

When the  light  reaction  metabolic  network  has  been subjected  to  elementary  flux mode 

analysis using METATOOL 5.1, two elementary flux modes are obtained:

EFM 1: 3 hν700 + H+
N + ADP3- + Pi 

2- → ATP4- + H2O

EFM 2: 2 hν680 + 2 hν700 + 2 H+
N + NADP+ + 2 ADP3- + 2 Pi 2- → 

2 ATP4- + H2O + NADPH,H+
N + ½ O2

These are actually the results of two different pathways for the light energy conversion -

cyclic and non cyclic modes of photophosphorylation. The two modes were first discovered 

in  1954 by Arnon and co-workers (Arnon  et  al.,  1954).  The same pathway we observed 

(which is given above), when the light reactions network was analysed for EFM analysis. 
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The reactions involved in EFMs are: 

EFM 1 - R2 R3 R4 R6 (cyclic)

EFM 2 - R1 R2 R3 R5 R6 (noncyclic) 

Thus,  the  resulted  flux  modes  provide  the  mathematical  explanative  forms  of  cyclic  and 

noncyclic  photophosphorylation  metabolic  pathways.  Though  both  are  distinguished  by 

differences in their electron transfer pathways, these are finally coupled to ATP synthesis and 

therefore considered alternative mechanisms of photophosphorylation.

Cyclic photophosphorylation produces only ATP whilst non cyclic produces both ATP and 

NADPH, H+
N. Cyclic phosphorylation follows a cyclic electron flow through the complexes 

situated in the thylakoid membrane.  Absorbing one quanta of energy,  the electron travels 

through PS I, ferredoxin, plastoquinone, cytochrome b6f and plastocyanin and then finally, 

the electron is sent back to photosystem I (Follow the pathway, R2 R3 R4 R6 from Figure 

3.3). 

The transport chain produces a proton-motive force, pumping H+  ions across the membrane 

and produces a concentration gradient that can be used to power ATP synthase. Therefore, 

this results in the ATP production. The first elementary flux mode (EFM 1) involving the 

equations R2 R3 R4 R6 produce ATP as per the equation given below:

3 hν700 + H+
N + ADP3- + Pi 

2- → ATP4- + H2O

The energy for cyclic pathway is calculated ∆G = - 485.9 kJ/mol (using the combination 

responsible for EFM and the free energy values at physiological conditions given in Table 

3.6.). The cyclic electron flow produces only ATP, neither O2 nor NADPH/H+. Three photons 

of wavelength at 700 nm are necessary to produce one ATP.

The second elementary flux mode (EFM 2), R1 R2 R3 R5 R6 corresponds to the noncyclic  

electron flow as given below.

2 hν680 + 2 hν700 + 2 H+
N + NADP+ + 2 ADP3- + 2 Pi 

2- → 

2 ATP4- + H2O + NADPH,H+
N + ½ O2 

For this process, calculated ∆G = -365.2 kJ/mol. 

Total energy due to eight photons of wave length = 2 × (2 ×170.9 + 2 ×175.9) = 1387 kJ/mol

Eight photon of wavelength (four at 680 nm and four at 700 nm) with a total energy of about  

1387  kJ/mol  is  necessary  for  the  formation  of  four  ATP,  two  NADPH,H+
N and  one  O2 

molecule. 
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The change in free energy, ∆G = -365. 2 × 2 - (-1387.2) = 656.8 kJ/mol. 

Thus, the coefficient of photosynthesis ηmax = 656.8/1387 ~ 0.47. 

Almost similar values are reported which says, 8 photons are necessary for the production of 

one molecule of oxygen (Jorgensen and Svirezhev, 2004). EFM 2 shows the same fact; it also 

emphasizes the importance of non cylic photophosphorylation.

Plants are forced to create ATP via cyclic and noncyclic pathways and maintain NADPH, H+
N 

in  the  right  proportion  for  the  light-independent  reactions.  The  maximal  rate  of  cyclic

photophosphorylation is less than 5% of the rate of noncyclic photophosphorylation (Garrett 

and Grisham, 2000). One of the reasons for this may be due to the small concentration of P 700 

(0.25% of the total amount of chlorophyll) in plants. However, the complex cytochrome b6f  

uses the energy of electrons from not only PSII, but also PSI to create more ATP and thereby 

maintains the production of NADPH, H+
N.

Noncyclic photophosphorylation occurs as a result of noncyclic electron flow in the order of 

the photosynthetic pigments situated (metabolic pathway - R1 R2 R3 R5 R6 from Table 3.6 

and Figure 3.3). The two electrons originating in the H2O/O2 couple with a redox potential of 

780 mV are moved to the redox level of -320 mV reducing one mole of NADP+/NADPH, H+
N 

couple.  The movement of electrons  from 780 mV to -320 mV requires considerable free

energy  which  explains  why  the  relative  large  amount  of  energy  supplied  by  the  light 

wavelength of 680 nm (Energy = 175.9 kJ/mol) and 700 nm (Energy = 170.9 kJ/mol) is 

needed. 

The resulted two elementary modes reduce the light reaction metabolic network which can be 

used  for  future  implementations  and  coupling  with  dark  reactions  in  the  plant  model. 

Moreover, this study reflects the importance of EFM studies in metabolic network analysis 

without entering into the details of kinetic factors, genetical experiments and such type of 

complex and tedious studies. This will be more explained while we study the same system 

using metabolic flux analysis (MFA). 

In the case of small sub systems, the number of EFMs helps to understand the number of

degrees of freedom. The number of degrees of freedom provides the necessary and minimum 

number  of  experimental  data  in  order  to  establish  a  black  box  model.  When  metabolic 

information  is  used in  the model,  the degree of freedom reduces.  If  one understands the 

various degrees of freedom that exist for a system, the model flexibility and accuracy can be 
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predicted. The better understanding of the metabolic processes of the system is substantial in 

this aspect.

3.7.2 Calvin cycle 
Similar to the light reaction system, the EFM analysis on Calvin cycle provided a simple and 

feasible elementary flux mode pathway connecting all equations of the system (from R1 to 

R15). 

The obtained EFM is,  

12 NADPH,HN
+ + 12 H2O + 6 CO2 + 18 ATP4-

                                        → 12 NADP+ + 1Glucose + 18 HN
+ + 18 ADP3- + 18 Pi2-

Figure 3.17 shows the inputs and output metabolites involved in the metabolic system.

The energy for the above reaction, ∆G ~ 

-150 kJ/mol. This is calcuated using the 

energy  provided  for  the  metabolic 

reactions participated (Table 3.8). In fact, 

this is the minimal independent pathway, 

more elementary modes can be observed, 

(i) if we add more reactions concerning 

other  metabolic  processes  or  (ii)  if  we

consider  more  exchangeables  as 

nonexchangeables.
Figure 3.34: System with inputs and outputs

In an  earlier  study,  Poolman  et  al.  (2004)  found a number  of  elementary  modes  for  the 

formation  of  starch,  starting  from RuBP4-.  However,  the  flux  mode  we found cannot  be 

subdivided into further modes; but, it can be used for coupling with EFMs of light reactions 

or similar type of metabolic networks requiring photosynthetic energy.  

Nevertheless,  the  obtained  elementary  mode  for  Calvin  cycle  cannot  exist  alone  as  the

metabolites participated are not independent elements;  without reacting with the available 

energy  in  chloroplast  stroma,  it  is  not  capable  of  producing  neither  glucose  nor  triose 

phosphate.
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3.7.3 Electron transport and oxidative phosphorylation
Two elementary modes were determined when the constructed metabolic network has been 

subjected to the elementary flux mode analysis. The different pathways for ATP formation in 

plant cells: one linked with NADH,HN
+ and the other with FADH2.

These  are  the  backbones  of  the 

mitochondrial  energetic  pathways. 

Electron  flow and ATP synthesis  are so

tightly  coupled  in  the  sense  that,  in 

normal  mitochondria,  neither  occurs 

without  the  other.  Two  electrons  are 

transferred  down  the  chain  per  oxygen 

atom reduced;  the  P/O ratio  reflects  the 

ratio  of  ATPs  synthesised  per  pair  of 

electrons consumed. 
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Figure 3.35: Mitochondrial electron 
transport and oxidative phosphorylation 
system with inputs and outputs

It is reported that the P/O ratio is 3 or close to 2.5 for NADH,HN
+ oxidation and 2 or close to 

1.5 for FADH2 oxidation (Rich, 2003; Hinkle et al., 1991). These ratios are largely confirmed 

in plant mitochondria (Smith, 1977). The oxidation pathways discovered by them is given by 

the resulted EFMs.

They are:

EFM 1

3.33 HN
+ + 3.33 ADP3- + 3.33 Pi2- + ½ O2 + NADH,HN

+ → 

NAD+ + 3.33 ATP4- + 4.33 H2O

EFM 2

2 HN
+ + 2 ADP3- + 2 Pi2- + ½ O2 + FADH2 → FAD + 2 ATP4- + 3 H2O

These two EFMs describe the possible and experimentally determined pathways  starting 

from  NADH,HN
+ and  FADH2.  The  first  elementary  flux  mode  is  formed  as  a  result  of 

reactions - R1 R3 R4 R5 (See Figure 3.14); it is produced as a combination of 3 R1 + 3 R3 + 

3 R4 + 10 R5 which gives enormous energy (∆G = -1165.8 kJ/mol). The existence of two 

respiratory  pathways,  both  transporting  electrons  to  oxygen  in  higher  plant  mitochondria 

raises the question how the partitioning of electrons between the two pathways is regulated. It 

is actually regulated by cytochrome and ubiquinone pool (Carbo et al., 1995). Nevertheless, 
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the pumping of electrons across the inner membrane causes a concentration gradient across 

the  membrane.  By diffusion,  the  hydrogen  ions  travel  back into  the  matrix  to  reach  the 

equilibrium condition. This causes the ATP formation. 
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Metabolic 
systems 

Resulting EFMs

Light reactions 1. 3 hν700 + H+
N + ADP3- + Pi 2- → ATP4- + H2O

2. 2 hν700 + 2 hν680 + 2H+
N + NADP+ + 2 ADP3- + 2 Pi 2- → 2 

ATP4- + H2O + NADPH, HN
+  + ½ O2                       

Calvin cycle 1. 12 NADPH, HN
+ + 12 H2O + 6 CO2 + 18  ATP4- →

              18 ADP3- + 18 Pi2- + 12  NADP+ + Glucose + 18 HN
+

Oxidative 
phosphorylation

1. 3.33 H+
N + 3.33 ADP3- + 3.33 Pi 2- + ½ O2 + NADH, H+

N → 
NAD+ + 3.33 ATP4- + 4.33 H2O

2.  2 HN
+ + 2 ADP3- + 2 Pi 2- + ½ O2 + FADH2 →   FAD + 2 

ATP4- + 3 H2O
Krebs cycle 1. 2 HN

++ 2 H2O + ADP3- + Pi 2-  + Acetyl CoA- +  FAD + 3 
NAD+→ 3 NADH, HN

+ +  FADH2 + 2 CO2 +  ATP4- +
Coenzyme A

Glycolysis 1. Glucose + 4 NAD+ + 2 ADP3- + 2 Pi2- + 2 CoA → 2 ATP4- 

+ 2 AcCoA- + 2 H2O + 2 CO2 + 4 NADH, HN
+ 

Table  3.28:  Obtained  elementary  flux  modes  for  subsystems  of  central  carbon 
metabolism
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Figure 3.36: Krebs cycle system with inputs and outputs 
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The  second  elementary  mode  (R2  R3  R4  R5)  using  FADH2 also  produces  ATP.  The 

combination responsible for EFM 2 is R2 + R3 + R4 + 2 R5, ∆G = -230.2 kJ/mol. FADH 2

accounts only 2 ATPs. It reacts with ubiquinone instead of FMN; thus, the proton pumping 

does  not  use  electrons.  Therefore,  FADH2  contributes  less  to  the  proton  gradient  than 

NADH,HN
+; it provides enough power for the production of two ATPs rather than three as 

NADH,HN
+ does.  Obviously,  both  two  respiratory  pathways  are  essential  even  for  the 

maintenance  of  high  photosynthetic  rates  at  saturating  light  (Smith,  1977).  Agreeing  the 

classical studies of oxidative phosphorylation, the two resulted elementary modes reveal the

true metabolic pathways for the ATP formation: NADH,HN
+

 gives 3.33 and FADH2 gives only 

2  ATPs.  In  this  way,  EFM  analysis  reduced  the  network  of  5  stoichiometric  metabolic 

equations into two. 

3.7.4 Krebs cycle 
Similar to the Calvin cycle system, we found only one elementary mode for Krebs cycle.  The 

resulted elementary flux mode is the shortest possible thermodynamically feasible pathway 

for Krebs cycle (Figure 3.19).  The metabolic pathway associated with the following EFM 

involves a series of reactions, from R1 to R9.

2 HN
+ + ADP3- + Pi2- + Acetyl Co A- + 2 H2O + FAD + 3 NAD+ → 

3 NADH,HN
+ + FADH2 + 2 CO2 +  ATP4- + Coenzyme A

The input of acetyl CoA allows the TCA cycle to maintain a cyclic flux in which the levels of 

all intermeadiates of the cycle remain constant. In plants, acetyl CoA is usually derived from 

the products of glycolysis. The pyruvate is either imported directly from the cytosol, or is 

synthesised from cytosolic phosphoenolpyruvate (PEP). The main benefit of TCA cycle is the 

generation  of  more  ATP  and  reducing  equivalents  in  order  to  carry  out  the  metabolic 

functions, oxidative phosphorylation. But, sometimes the whole TCA cycle will not occur, as 

the organisation of TCA cycle in plants is highly dependent on the metabolic and biochemical 

demands of the cell. This will be discussed later (paragraph 3.9.3.2).

3.7.5 Glycolysis
The number of elementary flux mode for glycolysis network is found to be one. The system is

tightly fixed. The resulted EFM equation for glycolysis constituted by 11 reactions is,

Glucose + 4 NAD+ + 2 ADP3- + 2 Pi2- + 2 CoA → 2 ATP4- + 2 H2O + 4 NADH,HN
+ + 

2  AcCoA-  + 2  CO2 
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2 ATP is  produced per glucose as a consequence of glycolysis.  The reducing equivalent, 

NADH,  HN
+  produced  by  glycolysis  cannot  cross  the  mitochondrial  inner  membrane. 

Therefore, glycolysis is one of the factors to control the concentration levels of NADH, HN
+ 

and NADPH,HN
+  in  cell  cytosol.  The simple  and basic  pathway of  glycolysis  has  a  high 

versatility, as most of the metabolic equations have free energy values near to equilibrium.

3.8Metabolic flux analysis 

3.8.1 Light reactions
According to the experimental data reported by Nissen (Nissen et al., 1997), metabolic flux 

analysis is validated in terms of predictability and accuracy with precise measurements of the

specific  consumption rates of the substrates  and the production rates of the products.  For 

metabolic flux analysis, the program detected one degree of freedom; hence, two independent 

flux values were fixed. As we did not measure metabolite’s rate of production/consumption 

for light reactions using radio active techniques or any other methods/experiments, we have 

assumed the production rates of ATP4- and NADPH,H+
N: ATP4- = 300 µ mol s-1, NADPH,H+

N 

= 100 µ mol s-1. The estimated intracellular fluxes are shown in Figure 3.20 (See, R6 = 300 µ 

mol s-1 and R5 = 100 µ mol s-1 Figure 3.20 (a)). All fluxes are positive for reversible as well as 

irreversible reactions, thus not violating thermodynamic or biochemical constraint. The flux 

distribution  reflects  the  existence  of  two  elementary  modes  of  cyclic  and  noncyclic 

photophosphorylation, superimposed on each other. EFM and MFA results are correlated in

such  a  way  that  knowing  the  EFMs  of  a  system,  the  exact  behaviour  in  terms  of 

exchangeables (output/input)  can be interpreted.  Taking the EFMs corresponding to cyclic 

and  noncyclic  photophosphorylation,  the  flux  distribution  shown  in  Figure  3.20  (a)  is 

explained as a sum of 100 EFM 1 + 100 EFM 2 (as NADPH,HN
+ = 100 µ mol s-1 and ATP4- = 

300 µ mol  s-1),  see  Table  3.22.  But,  Figure  3.20  (b)  is  resulted  because  of  100 EFM 2 

(NADPH,HN
+ = 100 µ mol s-1 and ATP4- = 200 µ mol s-1); i.e. EFM 1 is absent in Figure 3.20 

(b) due to the low ATP4- production rate. The rate assumptions provided for the Figures 3.20 

(a) and (b) automatically determine/fix  which EFM should have given more priority.  The 

exchangeable metabolites follow the ratios of metabolites involved in the EFMs or we can say 

that the metabolic flux distribution reflects the involved EFMs.

Further, the photophosphorylation ratio P/2e- (JATP/JNADP = 300/100 = 3) is calculated.  In the 

absence of cyclic reactions, P/2e- will be less than 3. If the ratio of ATP: NADPH, H+
N is not 
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3:1; e.g. if ATP4- is fixed as 200 µ mol s-1 where NADPH, H+
N = 100 µ mol s-1 (Figure 3.6(b)), 

R4 is close to zero, i.e. P/2e- = 2. 

The  existence  of  PSI  cyclic  photophosphorylation  activity  is  a  great  requirement  for  the 

subsequent CO2 fixation in chloroplasts. In order to maintain the necessary balance between 

ATP  and  NADPH,  H+
N for  CO2 fixation  activity,  PSI  cyclic  electron  flow  accounts  a 

mechanism by which the chloroplast regulates cyclic and noncyclic electron transport. It is 

reported  that  this  mechanism  is  closely  related  to  the  ferredoxin  and 

plastoquinone/plastoquinol complex with restriction of electron flow from PSII to PQ (Arnon

and Chain, 1975). This is explained here mathematically, when the equation R4 (PQ + 2 Fdred 

+2 HP
+ → PQH2 + 2 Fdox) which regulates the system became zero. Moreover, the addition of 

NADPH,  H+
N to  isolated  thylakoids  in  the  presence  of  ferredoxin  stimulates  cyclic 

photophosphorylation (Arnon and Chain, 1975; Ravenel  et al., 1994) and the NADPH,H+
N

/NADP+ ratio has been proposed to regulate the partitioning of electrons between the cyclic 

and noncyclic pathways at the level of ferredoxin (Arnon and Chain, 1975). 

The existence of two electron transfer pathways leads to a novel explanation of the regulation 

of cyclic and noncyclic electron transport to optimize the ratio of ATP and NADPH, HN
+ in  

vivo. The P/2e- ratio never falls significantly below 1.5 in the case of light reactions. Studies 

have been carried out regarding the possible contribution of cyclic phosphorylation to non-

cyclicphosphorylation; it is suggested that not more than 10% of the total phosphorylation 

could be due to cyclic  phosphorylation (Reeves and Hall,  1973). This means,  90% of the 

photophosphorylation is due to non cylic electron flow. This is applicable while considering 

in vivo biomass production.

Additionally it is noted that, water releases as a result of light reactions, if and only if cyclic 

reactions are absent. As this is not the case, inside the cell, the produced water molecule might 

be used for other reactions (e.g. Calvin cycle uses one molecule of water); furthermore, cell 

cytoplasm is aqueous. The overall reactions indicate the overall stoichiometry in terms of the 

external metabolites; this is very helpful in determining optimal yields. The metabolic flux 

distribution values for the metabolites of photosynthetic systems are shown in Table 3.22. 
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(a) (b)(a) (b)

Figure 3.37: Metabolic flux distribution for light reactions 

(a): NADPH,H+
N = 100 µ mols-1 and ATP4- = 300 µ mol s-1 (b): NADPH,H+

N = 100 µ mol s-1 

and ATP4- = 200 µ mol s-1

Studied systems Light reactions
(µ mol s-1)

Calvin cycle
(µ mol s-1)

Exchangeables 
fixed

ATP4- = 300
NADPH,HN

+   = 100
Glucose = 100

Production/
consumption 
rates  for 
exchangeables

hν680 = -200
hν700 = -500
H2O = 200

NADP+ = -100
ADP3- = -300

Pi2- = -300
HN

+ = -300
O2 = 50

NADPH,HN
+   = -1200

NADP+ = 1200
H2O = -1200
ADP3- = 1800
ATP4- = -1800

Pi2- = 1800
HN

+ = 1800
CO2 = -600

Table 3.29: Metabolic flux distributions for photosynthesis
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3.8.2 Calvin cycle
In order to analyse MFA, it was required to provide one of the output/input production or 

consumption values from the exchangeables  listed,  as the system detected  zero degree of 

freedom.  Hence,  when  we  fixed  the  glucose  production  =  100 µ  mol  s-1,  we  found  the 

metabolic flux distributions as shown in the Figure 3.21. The flux distribution of Calvin cycle 

reactions can also be explained in terms of EFM of Calvin cycle (100 times of Calvin cycle  

EFM, since glucose = 100 µ mol s-1); see the rates of exchangeable metabolites from Table 

3.22.

In Figure 3.21, the equation R8 (Ru5P2- ↔ Xu5P2-) is having negative value of about -400 µ 

mol s-1 which means it goes in the reverse direction; it can proceed the direction so, as the 

particular  reaction  is  thermodynamically  reversible,  ∆G~0.  Also,  the  carbon  fixation  by 

RuBP4- occurs  6  times  greater  than  that  of  glucose  production.  The  energy  consuming 

reactions are R2, R3 and R13. From these, P/2e- ratio is calculated as 1.5 (JATP
4-/JNADPH,HN

+), 

which is considered and confirmed as true value by recent experiments (Kramer et al., 1999). 

The metabolic flux distributions in terms of exchangeables are given in Table 3.22. From the 

table,  one  molecule  of  glucose  production  needs  18  ATP4- and  12  NADPH,HN
+,  exactly 

matching with the classical studies.

The most  interesting  thing is,  even though we are  not  considering  enzymatic  effects,  the

metabolic system mathematically works and predicts physiological yields closely matching 

with the experimental  results.  We agree the importance  of enzymes  like RuBisCO which 

catalyses the carboxylation of RuBP (CO2  + RuBP4- + H2O  → 2  (PGA)3- + 2 HN
+) during 

Calvin cycle reactions. In fact, it is the most abundant protein in plant leaves accounting 50% 

of  the  soluble leaf  protein.  But,  these kinds  of  information  are not  necessary in  order  to 

analyse the metabolic network using neither MFA nor EFM analyses.
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R3 = 1200 

R2 = 1200 

Figure 3.38: Metabolic flux distribution for Calvin cycle reactions Glucose = 100µ mols-1

3.8.3 Electron transport and oxidative phosphorylation
For mitochondrial electron transport system, two metabolite consumption/production rates are 

fixed to obtain the possible flux distributions  shown in Figure 3.22.  The flux distribution 

figures express the presence of two various elementary modes at different conditions. 

The P/O ratio may be lower when oxidative phosphorylation reactions are coupled to other

reactions (e.g. Krebs’ cycle), or if, any of the reactions are blocked by inhibitors or due to 

climatic stress. When the rate of use of ATP is relatively low, the rate of electron transfer 

decreases and when demand for ATP increases, the electron transfer rate also increases. 

By  fixing  various  values  for  P/O  ratio,  we  have  studied  the  connections  with  other 

reactions/or  complexes  involved  in  the  electron  transport  and  oxidative  phosphorylation 

similar to the studies previously done for light reactions. We considered four situations for 

mitochondrial phosphorylation, P/O ratio: (a) FADH2 = 2 and NADH, HN
+ = 3.33; (b) FADH2 

= 2, NADH, HN
+ = 0; (c) FADH2 = 0, NADH, HN

+= 3.33 (d) FADH2 = 0, NADH,HN
+ = 1. The 
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condition  (a)  is  normal,  while  (b),  (c)  and (d)  are  abnormal  and  the  cell  survival  rarely 

happens. The metabolites are fixed as follows and the metabolic flux distributions are shown 

in Figure 3.22:

(a) ATP  4-   = 533 µ mol s  -1   and FADH  2  = -100 µ mol s  -1     

This is the normal physiological cell condition according to almost all theories (including our 

results).  All  fluxes  are  positive  for  reversible  as  well  as  irreversible  reactions  without 

violating any thermodynamic or biochemical constraint. Figure 3.22 (a) is formed as a result 

of two EFMs of mitochondrial electron transport of Table 3.21 (100 EFM 1 + 100 EFM 2,

since the rates are fixed as ATP4- = 533 µ mol s-1 and FADH2 = -100 µ mol s-1). The reactions 

R3 and R4 representing metabolic processes at cytochrome/ubiquinone and water formation 

proceed at similar rates (200 µ mol s-1). Further, R1 ~100 µ mol s-1 which means NADH, HN
+ 

= -100 µ mol s-1; it produces ATP4- at the rate of 333 µ mol s-1; again, FADH2 = -100 µ mol s-1 

which produces ATP4- at the rate of 200 µ mol s-1. I.e. in total, ATP4- production = 533 µ mol 

s-1

(b) FADH  2 = -100 µ mol s  -1   and ATP  4-   = 200 µ mol s  -1  

Figure 3.22 (b) is obtained because of 100 times of EFM 2 (Table 3.21), since the rates are 

fixed as ATP4- = 200 µ mol s-1 and FADH2 = -100 µ mol s-1. Hence, EFM 1 (associated with 

NADH, HN
+ oxidation) does not occur due to the low rate values we fixed for the system. In

fact, this is the condition when P/O ratio is lower than the usual circumstances; the metabolic 

flux distribution shows R1 = 0, which means NADH, HN
+ = 0; the phosphorylation occurs 

only because of  FADH2. Eqn.  R1 is  associated  with ubiquinone/ubiquinol  and complex I 

(NADH- dehydrogenase):

UQ + NADH,HN
+ + 4 HN

+ → UQH2 + 4 HP
+ + NAD+

Just  a  while  ago,  it  is  reported  that  similar  condition  happens,  only  if  rotenone  (a  toxic 

chemical) inhibits the transfer of electrons from iron-sulfur centers of mitochondrial complex 

I to ubiquinone, interfering the ATP production (Moller, 2001). In the same way, rotenone 

can influence the mitochondrial life of insects and kill them; hence, a light dusting of it on the 

plant leaves protects the plants for several days. 
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(a) (b)(a) (b)

(c) (d)(c) (d)

Figure 3.39: Various possibilities of oxidative phosphorylation in mitochondria
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(c) NADH,H  N
+   = -100  µ mol s  -1   and ATP  4-   = 333  µ mol s  -1  

This condition happens when P/O ratio is lower than the previous case; the metabolic flux 

graph gives R2 = 0, i.e. FADH2 = 0, the condition where FADH2 oxidation does not occur. In 

that case, phosphorylation occurs only due to NADH, HN
+. This condition can make severe 

challenges for the survival of a cell. The flux distribution Figure 3.22 (c) shows the presence 

of only one EFM (EFM 1) associated with NADH, HN
+ oxidation.

(d) NADH,H  N
+   = -100  µ mol S  -1   and ATP  4-   = 100  µ mol S  -1  

This situation stands for very low P/O ratio. Neither of the two EFMs involved in the system

(EFM 1 and EFM 2) do not precede well due to the rate values we provided. Hence in Figure 

3.22 (c), the reactions R2, R3 and R4 are occurring in the negative direction. It is possible for 

R2 and R3 to be in reverse direction; but, it seems impossible for R4. However in such a case, 

the transmembrane potential is certainly affected so that the calculations done in paragraph 

3.4.4 might  be reconsidered.  This would clearly call  for a variable  stoichiometry analysis 

considering that the  ∆G already calculated at nominal conditions does not remain valid as 

soon as Q-cycle is no longer functioning in a “normal” way. 

R2 FADH2 + UQ ↔ FAD + UQH2    

R3 UQH2 + 2 cyto Fe3+ + 2 HN
+→ UQ + 4 HP

+
 + 2 cyto Fe2+

R4 ½ O2 + 4 HN
++ 2 cyto Fe2+ → 2 cyto Fe3+ + H2O + 2 HP

+

Nevertheless,  inhibitors  like  ‘antimycin  A’  can  create  such  a  situation  in  mitochondria.

Antimycin A binds to the Q site of cytochrome c reductase, thereby inhibiting the oxidation of 

ubiquinol in the electron transport chain of oxidative phosphorylation (Moller, 2001). Moller 

studied very well this phenomenon; the inhibition of this reaction disrupts the formation of the 

proton gradient across the inner membrane. The production of ATP is subsequently inhibited, 

as protons are unable to flow through the ATP synthase complex (Moller, 2001).

Further,  uncouplers  of  oxidative  phosphorylation  inhibit  the  coupling  between  electron 

transport  and  phosphorylation  reactions  and  thus  inhibit  ATP synthesis  without  affecting 

respiratory chain and ATP synthase (Terada, 1990). In the presence of an uncoupling agent 

(though  it  is  relatively  low),  the  P/O  ratios  drop;  but,  the  cell  can  compensate  this  by 

increasing the rate of electron flow; ATP levels can be kept relatively normal (Emerson et al.,

1944).  At  high  levels  of  an  uncoupler,  the  P/O ratios  approach  zero  and the  cell  cannot 

maintain ATP levels. This condition may occur  in vivo, if cell consumes an uncoupler like 

ethanol. In such cases, alcohol directly affects mitochondria (Fukumura  et al., 2003). When 

the possibility of a bypass of complex I via rotenone-insensitive pathway and other inhibitory 
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possibilities are taken into account, the ATP yield can vary from zero to three per NADH, H+ 

oxidation which may lead serious diseases. Thus, the worst condition may occur due to the 

effect  of  uncouplers  on  mitochondria  explaining  the  metabolic  condition  of  drunkers. 

However, mitochondrial  diseases are rare, because the defects in the respiratory chain are 

incompatible  with life and affected embryos rarely survive to birth (Garrett  and Grisham, 

2000). Thus, MFA acts as a platform to study and understand the relative ATP production 

differences in cellular level and how the complexes are involved in the electron transport of 

respiratory chain without conducting any experiments.

On a methodological point of view, this clearly shows that EFM brings useful topological 

information, considering a set of hypotheses concerning reversibility of reactions. When this 

set does not remain valid, only MFA can bring further useful and interesting information.

3.8.4 Krebs cycle
The Krebs cycle provides intermediates for numerous biosynthetic processes in the cell. It is 

always found oxidative phosphorylation couples to the mitochondrial electron transport chain 

via succinate. However, here we consider the reactions involved only in Krebs cycle.  The 

metabolic flux map is shown in Figure 3.23 obtained by fixing Coenzyme A production as 

100 µ mol s-1; it seems that all reactions happen at the same rate. 

The P/O quotient, the measure of the coupling between electron flow and phosphorylation

may vary depending on the extent of coupling between oxidation and ATP synthesis; if the 

membranes are leaky to protons (uncoupled), or if the protons are used for the processes other 

than ATP synthesis (e.g. for ion transport), then the measured P/O ratio will be less than the  

maximal one (Harris, 1995). 

3.8.5 Glycolysis
While analysing metabolic flux analysis for glycolysis, the program detected zero degree of 

freedom; hence one flux (input or output) value was fixed for the calculation. We assumed the 

glucose consumption as 100 µ mol s-1. The estimated intracellular fluxes are shown in the 

graph  (Figure  3.23).  The  flux  distribution  reflects  exactly  the  existence  of  only  one 

elementary flux mode. All fluxes are positive for reversible as well as irreversible reactions,

thus  not  violating  thermodynamical  or  biochemical  constraint.  The  metabolic  flux 

distributions for respiratory components are listed in Table 3.24 in terms of exchangeables.
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Recent  evidence  from  labelling  studies  and  metabolic  network  models  suggest  that  the 

organisation of carboxylic acid metabolism in plants is highly dependent on the metabolic and 

physiological demands of the cell (Sweetlove et al., 2010). 

For all the 5 metabolic sub systems considered here, the constructed elementary modes are 

irreversible and indecomposable (Table 3.21) which clearly demonstrate the metabolic flux 

distributions  for  each  system  under  study  (Table  3.22  and  3.24).  Table  3.23  depicts  all 

metabolites (exchangeable and non exchangeables) involved in each sub system of central 

carbon metabolism.
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Figure 3.40: Metabolic flux distributions for Krebs cycle and Glycolysis
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Light reactions Calvin cycle
NE E NE E

Pc (Cu+)
Pc (Cu2+)
Fdox

Fdred

PQH2

PQ
HP

+

hν700

hν680
O2

H2O
H+

N

NADP+

NADPH,HN
+ 

ATP4-

ADP3-

Pi2-

RuBP4-

PGA3-

1-3BPGA4

G3P2-  
DHAP2-

Ru5P2-

R5P2-  

FBP4-

F6P2-

G6P2-

E4P2-

Xu5P2-

SBP4-

S7P2-

O2

H2O
CO2

Glucose
NADP+

NADPH,HN
+

ATP4-

ADP3-

Pi2-

HN
+

Oxidative phosphorylation Krebs cycle Glycolysis
NE E NE E NE E

H+
P

UQ
UQH2

cyto Fe3+

cyto Fe2+

H+
N

H2O
O2

FAD
FADH2

NAD+

NADH,H+
N

ATP4-

ADP3-

Pi2-

Oxaloacetate2-

Citrate3-  
cis-Aconitate3-

D-Isocitrate3- 

2-
Ketoglutarate2-

Succinyl-
CoA-
Succinate2-  
Fumarate2-

Malate2-

H+
N

H2O
CO2

Coenzyme A
Acetyl CoA-
ATP4-

ADP3-

Pi2-

FAD
FADH2

NAD+

NADH,HN
+

Pyruvate- 
FBP4-

F6P2-

G6P2-

2PGA3-

3PGA3-

PEP3-

1-3BPGA4

G3P2-  
DHAP2-

HN
+ 

Glucose 
H2O 
NADH,H+

N

NAD+ 
ATP4-  
ADP3-

Pi2- 
CO2

Co A
AcCoA-

Table  3.30:  Metabolites  involved  in  each  sub  system  NE:  non  exchangeables;  E: 
exchangeables

Studied 
systems

Oxidative 
phosphorylation

Krebs cycle Glycolysis 

Exchangeables 
fixed

FADH2  = -100  
ATP4-  = 533

CoenzymeA = 100 Glucose = -100

Production/ 
consumption 
rates  for 
exchangeables

HN
+ = -533  

O2 = -100  
H2O = 733  
ADP3-  = -533
 Pi2-  = -533  
NADH,H+

N = -100  
NAD+ = 100  
FAD = 100  

HN
+ = -200  

H2O = -200  
CO2 = 200  
ADP3-  = -100  
Pi2-  = -100  
ATP4-  = 100  
AcetylCoA- = -100  
FADH2 = 100  
FAD = -100  
NADH,H+

N = 300  
NAD+ = -300  

CoA = -200
AcCoA- = 200  
H2O = 200  
NADH,H+

N = 400
NAD+ = -400
ATP4-  = 200 
ADP3-  = -200 
Pi2-  = -200
CO2 = 200  

Table 3.31:  Metabolic flux distributions for respiratory system
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3.9The unique tuning of Photosynthesis and 
respiration

Without any doubt, it can be said that photosynthesis and respiration altogether control plant 

activities;  both  processes  are  inevitable  for  the  plant  growth  and  survival.  It  is  always 

convenient to couple the reactions that are necessarily operated together such as Calvin cycle 

and light reactions; same for all the three respiratory sub systems of respiration, i.e. electron 

transport followed by oxidative phosphorylation, Krebs cycle of mitochondria and glycolysis 

of cell cytosol reflecting the in vivo plant central carbon metabolic system. The perfect tuning 

of photosynthesis and respiration are represented and studied in the following sections.

3.9.1 The energy model construction 

3.9.1.1 Light reactions with Calvin cycle

 Calvin  cycle  plays  a  complementary  role  and  always  associated  with  light  reactions  of 

photosynthesis,  as  they  are  the  source  of  energy available  for  photosynthesis.  In  cellular 

structural level, the ATP synthesis happens in such a way that the metabolites of Calvin cycle  

can utilize ATP, at once it is produced as shown in Figure 3.24. Two possibilities are there to 

study the coupling. 

Method 1: Using the entire reactions 
In this method, we have just coupled the reactions of light reactions (Table 3.6) and Calvin 

cycle  (Table  3.8).  The  entire  reactions  are  again  given  in  the  Table  3.25.  The  matrix 

constructed is given in Table 3.26. The system of light reactions coupling with Calvin cycle 

has 21 reactions and 33 metabolites on which 10 are exchangeables. The exchangeables and 

nonexchangeables corresponding to light reactions and Calvin cycle remain the same for the 

coupling too, except for the energy molecules: NADPH, HN
+ and NADP+.  
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Reaction Metabolic equations ∆Gphysio 

(kJ/mol)
R1 2 hν680: H2O + 2 HN

++ PQ → PQH2 + ½ O2 + 2 HP
+ -129

R2 PQH2 + 2 Pc (Cu2+) + 2 HN
+ ↔ PQ + 2 Pc (Cu+) + 4 HP

+  -2.8
R3 1 hν700: Pc (Cu+) + Fdox → Pc (Cu2+) + Fdred  -91.9
R4 PQ + 2 Fdred + 2 HP

+ → PQH2 + 2 Fdox  -121
R5 2 Fd red + 2 HN

+ +  NADP+→ 2 Fdox + NADPH,HN
+ -19.4

R6 3 HP
+ + HN

+ + ADP3- + Pi 
2- → 3 HN

+ + ATP4- + H2O  -24.5
R7 CO2+ RuBP4- + H2O    →    2  (PGA)3- + 2 HN

+ -41
R8 PGA3- + ATP4-↔ 1,3BPGA4-+ ADP3- -6.7
R9 1,3BPGA4- + NADPH,HN

+ ↔ G3P2- + NADP+ + Pi2- 0
R10 G3P2- ↔  DHAP2- -0.8
R11 DHAP2-  + G3P2-  ↔  FBP4- -0.8
R12 FBP4-+ H2O→ F6P2-+ Pi2- -27.2
R13 F6P2-+ G3P2-  ↔ E4P2- + Xu5P2- -3.8
R14 Ru5P2- ↔ Xu5P2- -0.4
R15 S7P2- + G3P2- ↔  Xu5P2-+ R5P2- -5.9
R16 DHAP2-+ E4P2- ↔  SBP4- -1.7
R17 SBP4- + H2O → S7P2-+ Pi2- -29.7
R18 R5P2- ↔ Ru5P2- -0.4
R19 Ru5P2-  + ATP 4- →  RuBP4-  + ADP3- + HN

+ -15.9
R20 F6P2- ↔  G6P2- -2.9
R21 G6P2- +  H2O →  Glucose + Pi Negative 

Table 3.32: Metabolic equations for photosynthesis (Method 1)
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Figure 3.41: Metabolites involved in photosynthesis
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Table 3.33: Metabolic matrix for photosynthesis (Method 1) E = hν700, hν680, ATP4-, ADP3-, Pi2-, 
HN

+, H2O, CO2, Glucose, O2 ; NE = PGA3-; RuBP4-;  Ru5P2-; R5P2-; 1,3-BPGA4-; G3P2-; DHAP2-; FBP4-; F6P2-; 
E4P2-;   Xu5P2-; G6P2-;  S7P2-; SBP4-; PQ; PQH2; Pc (Cu2+); Pc(Cu+); Fd  ox; Fd  red; HP

+; NADPH,HN
+; NADP+; 

Abbreviations : hν700  and hν680  = photons at  700 nm and 680 nm respectively;  O2 = oxygen; H2O =  water; 
NADPH,HN

+  =  nicotinamide  adenine  dinucleotide  phosphate  ;  NADP+  =  reduced  nicotinamide  adenine 
dinucleotide phosphate; ATP4- =  adenosine triphosphate; ADP3- = adenosine diphosphate, energy molecule; Pi2- 

= inorganic phosphate; HN
+ and HP

+ = protonated hydrogen at N and P phases; Fd ed = reduced ferredoxin; Fd ox 

= oxidised ferredoxin; Pc (Cu+) = reduced plastocyanin; Pc (Cu2+)= reduced plastocyanin; PQH2 = plastoquinol; 
PQ =plastoquinone; DHAP2- = dihydroxyacetone phosphate; 1, 3-BPGA4-= 1, 3- diphosphate glycerate; CO2 

= carbon dioxide ; E4P2- =  erythrose-4-phosphate;  FADH2  =  reduced flavin adenine dinucleotide;  FBP4- = 
fructose 1, 6-biphosphate; F6P2- = fructose -6-biphosphate; G1P2-  = glucose -1-phosphate; G6P2- = glucose
6-phosphate;  G3P2- =   glyceraldehyde  -3-phosphate ;  NADPH,HN

+  =  nicotinamide  adenine  dinucleotide 
phosphate  ;  NADP+  =  reduced  nicotinamide  adenine  dinucleotide  phosphate;  PGA3- =  3-phosphoglycerate; 
RuBP4- =  ribulose 1, 5-bisphosphate;  R5P2- =  ribose-5-phosphate;  Ru5P2- = ribulose-5-phosphate; SBP4- = 
sedoheptulose 1, 7-biphosphate; S7P2- = sedoheptulose-7-biphosphate; Xu5P2- = xylulose-5-phosphate
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Directions 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1
Reactions R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21

FBP4- NE 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0

F6P2- NE 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0

E4P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0

1-3BPGA4- NE 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

SBP4- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0

S7P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0

RuBP4- NE 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

R5P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0

Ru5P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 -1 0 0

G6P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

G3P2- NE 0 0 0 0 0 0 0 0 1 -1 -1 0 -1 0 -1 0 0 0 0 0 0

DHAP2- NE 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 0 0 0 0 0

PGA3- NE 0 0 0 0 0 0 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

Xu5P2- NE 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
PQ NE -1 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PQH2 NE 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pc(Cu2+) NE 0 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pc(Cu+) NE 0 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fdox NE 0 0 -1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fdred NE 0 0 1 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NADP+ NE 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

NADPH, HN
+ NE 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

HP
+ NE 2 4 0 -2 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HN
+ E= -2 -2 0 0 -2 2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Pi2- E= 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1

ADP3- E= 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

ATP4- E= 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0
O2 E+ 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CO2 E- 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H2O E= -1 0 0 0 0 1 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -1

Glucose E+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
hν 6 8 0 E- -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hν 700 E- 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Method 2: using the obtained EFMs 
We have seen that  light  reactions  subsystem has  2 EFMs revealing  cyclic  and noncyclic 

photophosphorylation pathways. Besides, Calvin cycle system has only one EFM. 

Subsequently,  in  the  coupling  dealing  the 

EFMs  of  both  systems  involve  only  3 

equations,  which  stand  for  21  reactions  of

light  reactions  (6)  and  Calvin  cycle  (15) 

subsystems;  in  other  words,  these  3 EFMs 

are equivalent  to the 21 reactions  of Table 

3.28. As the inputs and outputs come under 

the  group  ‘exchangeables’,  they  are  taken 

the  same  as  in  the  previous  system.  Then 

only  two  energy  molecules  NADPH,  HN
+; 

NADP+ are remaining, which fall under non 

exchangeable  group.  The  matrix 

representing  the  metabolic  network

constituted  of  three  EFMs  is  given  in  the 

Table  3.27. The  energy  of  each  EFM  is 

taken from the paragraphs 3.7.1 and 3.7.2.

Directions 1 1 1
Reactions R1 R2 R3

NADP+ NE 0 -1 12
NADPH, HN+ NE 0 1 -12

Pi2- E= -1 -2 18

ADP3- E= -1 -2 18

ATP4- E= 1 2 -18

HN
+ E= -1 -2 18

O2 E+ 0 0.5 0

CO2 E- 0 0 -6

H2O E= 1 1 -12

Glucose E+ 0 0 1
hν 6 8 0 E- 0 -2 0
hν 700 E- -3 -2 0

Table  3.34:  Metabolic  matrix  for 
photosynthesis  (Method  2) E  =  hν700,  hν680,
ATP4-, ADP3-, Pi2-, HN

+, H2O, CO2, Glucose, O2; NE
= NADPH, HN

+; NADP+

Light 
reactions

Metabolic equations ∆Gphysio 

(kJ/mol)
R1 3 hν700 + HN

+ + ADP3- + Pi 
2- → ATP4- + H2O -485.9

R2 2 hν680 + 2 hν700  + 2 HN
+ + NADP+ + 2 ADP3- + 2 Pi2- → 2 

ATP4- + H2O + NADPH,HN
+   + ½ O2                         

-365.2

Calvin 
cycle

R3 12 NADPH,HN
+ +  12 H2O + 6 CO2 + 18 ATP4- →  12 

NADP+ + Glucose + 18 HN
+ + 18  ADP3- + 18  Pi2-

~ -150

Table 3.35: Metabolic equations for photosynthesis (Method 2)

3.9.1.2 Mitochondrial reactions with Glycolysis 
Here, we have coupled the reactions occurs in mitochondria with cytosolic glycolysis. These 

two processes are closely related and combinely know as cellular respiration. Similar to the 

previous methods 1 and 2, we couple these three sub systems in two ways. 
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Method 1: Using the entire reactions 
Respiration reactions involve 5 reactions of electron transport and oxidative phosphorylation,

9  reactions  of  Krebs  cycle  and  11  reactions  of  glycolysis.  Thus  altogether,  there  are  25 

reactions  as  in  Table  3.29.  The  metabolites  are  separated  into  exchangeables  and  non 

exchangeables. The metabolic matrix is given in Table 3.30.

Reaction Metabolic equations ΔGphysio

(kJ/mol)
R1 Glucose + ATP4- →  G6P2- + HN

+ +  ADP3- -27.2
R2 G6P2- ↔ F6P2- -1.4
R3 F6P2-  + ATP4- →  FBP4- + HN

+ + ADP3- -25.9
R4 FBP4-  ↔ DHAP2- + G3P2- -5.9
R5 DHAP2-  →  G3P2- Negative
R6 3 PGA3-  ↔  2PGA3- -0.6
R7 2 PGA3-  ↔  PEP3- +  H2O -2.4
R8 G3P2- + Pi2- + NAD+ → 1-3BPGA4- + NADH, HN

+

-16.7R9 1-3BPGA4- + ADP3-  → 3PGA3- +  ATP4- 
R10 PEP3- +  HN

+ +  ADP3- →  pyruvate- +  ATP4- -13.9
R11 pyruvate-   +   CoA   +   NAD+ →   CO2 +  AcCoA-  + 

NADH,HN
+

R12 NADH,HN
+ + UQ + 4 HN

+ → NAD+ + UQH2 + 4 HP
+ -70.5

R13 FADH2
 + UQ ↔  FAD + UQH2    -2.9

R14 UQH2 + 2 cyto Fe3+ + 2 HN
+→ UQ + 4 HP

+
 + 2 cyto Fe2+ -11.7

R15 ½ O2 + 4 HN
++ 2 cyto Fe2+ → 2 cyto Fe3+ + H2O + 2 HP

+ -79.4
R16 3 HP

+ + HN
+ + ADP3- + Pi 

2- → 3 HN
+ + ATP4- + H2O -68.1

R17 Oxaloacetate2-+ Acetyl CoA- + H2O → Citrate3-+ Coenzyme 
A + HN

+
Negative

R18 Citrate3- ↔ cis-Aconitate3- + H2O 0
R19 cis-Aconitate3- + H2O + HN

+ ↔ D-Isocitrate2-   
R20 D-Isocitrate2-  +  NAD+ +  HN

+ →  NADH,HN
+ +  2-

Ketoglutarate- + CO2

Negative

R21 2 -Ketoglutarate- + NAD+ + CoenzymeA → Succinyl-CoA- 

+ NADH,HN
+  + CO2

Negative

R22 Succinyl-CoA-  +  ADP3- +  Pi
2-   ↔      Succinate2-  + 

Coenzyme A + ATP4-
0

R23 Fumarate2-  + H2O ↔ Malate2-  0

R24 Malate2- + NAD+ ↔ Oxaloacetate2- + NADH,HN
+ 0

R25 Succinate2-  + FAD ↔ FADH2 + Fumarate2- 0

Table 3.36: Metabolic equations for respiration (Method 1)



Directions 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0
Reactions R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25

Oxaloacetate2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0

Fumarate2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1

Citrate3- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

CisAconitate3- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0

D-Isocitrate2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0

2–Ketoglutarate- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0
Succinyl-CoA- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0

Succinate2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1

Malate2- NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
FAD NE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
FADH2 NE 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1

CytoFe2+ NE 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -2 0 0 0 0 0 0 0 0 0 0
CytoFe3+ NE 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 2 0 0 0 0 0 0 0 0 0 0
UQ NE 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0
UQH2 NE 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0

G6P2- NE 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F6P2- NE 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FBP2- NE 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DHAP2- NE 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PEP3- NE 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3PGA3- NE 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2PGA3- NE 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G3P2- NE 0 0 0 1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1-3BPGA4- NE 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CoenzymeA NE 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 -1 1 0 0 0
AcetylCoA- NE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
pyruvate- NE 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HP
+ NE 0 0 0 0 0 0 0 0 0 0 0 4 0 4 2 -3 0 0 0 0 0 0 0 0 0

HN
+ E= 1 0 1 0 0 0 0 0 0 -1 0 -4 0 -2 -4 2 0 0 -1 -1 0 0 0 0 0

Pi2- E= 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0

ATP4- E= -1 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

ADP3- E= 1 0 1 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0
glucose E- -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO2 E+ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0

H2O E= 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 -1 1 -1 0 0 0 -1 0 0

O2 E- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 0 0

NAD+ E= 0 0 0 0 0 0 0 -1 0 0 -1 1 0 0 0 0 0 0 0 -1 -1 0 0 -1 0
NADH, HN+ E= 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 0 0 0 0 1 1 0 0 1 0

Table 3.37 : Metabolic matrix for respiration (Method 1) E = NADH,HN
+; NAD+, HN

+; O2;  H2O; 
CO2;  ADP3-;  Pi2-;  ATP4-;  Glucose;  NE =  UQ, UQH2,  Cyto(Fe2+),  Cyto(Fe3+),  HP

+,  Fdox,  Fdred Oxaloacetate2-, 
Citrate3-, cis-Aconitate3-, D-Isocitrate2-, 2-Ketoglutarate-, Succinyl-CoA-, Succinate2-, Malate2-,  Fumarate2-, F6P2-; 
G6P2-; FBP4-; DHAP2- ; G3P2-  ; 2PGA3-  ; 3PGA3-;  PEP3-;  1-3 BPGA4-; pyruvate- Coenzyme A ; Acetyl CoA- ;
Abbreviations : H2O = water; CO2  = carbon dioxide; NADH,HN

+ = nicotinamide adenine dinucleotide; NAD+ = 
oxidised nicotinamide adenine dinucleotide; ATP4-  = adenosine triphosphate; ADP3- = adenosine diphosphate; 
Pi2- =  inorganic  phosphate; 2PGA3-=  2-phosphoglycerate ;  PEP3- =  phosphoenol  pyruvate;   DHAP2-  = 
dihydroxyacetone phosphate; 1, 3-BPGA4-= 1, 3- diphosphate glycerate FBP4- = fructose 1, 6-biphosphate; 
F6P2- =  fructose  -6-biphosphate;  G6P2- =  glucose 6-phosphate;  G3P2- =  glyceraldehyde  -3-phosphate ;  3 
PGA3- =  3-phosphoglycerate;  O2 =  oxygen;  FAD = flavin  adenine  dinucleotide  ;  FADH2 = reduced  flavin 
adenine dinucleotide;  HN

+ and HP
+  = protonated hydrogen at N and P phases; Cyto(Fe2+) = reduced iron of 

heme; Cyto(Fe2+) = oxidised iron of heme; UQH2 = Ubiquinol; UQ = Ubiquinone
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Method 2: Using the obtained EFMs 
The elementary flux mode for glycolysis  and Krebs cycle  gave one for each sub system, 

where oxidative phosphorylation has two EFMs. Hence in total, 4 EFMs (given in Table 3.31) 

stand for 25 reactions of respiration system. The matrix with 4 EFMs is created (Table 3.32) 

by separating metabolites into exchangeables and nonexchangeables. Exchangeables are the 

same metabolites, we classified for method 1. Only 4 metabolites act as non exchangeables:

FAD, FADH2, Coenzyme A and Acetyl CoA- .

Oxidative
phosphorylation

R1 2 H+
N + 2 ADP3- + 2 Pi 

2- + ½ O2 + FADH2 → FAD + 2 ATP4- + 3 H2O

R2 3.33 H+
N + 3.33 ADP3- + 3.33 Pi 2- + ½ O2 + NADH,H+

N → NAD+ + 
3.33 ATP4- + 4.33 H2O

Krebs cycle R3 2 H+
N + 2 H2O + ADP3- + Pi 2-  + Acetyl CoA- +  FAD + 3  NAD+→ 3 

NADH,HN
+ +  FADH2 + 2 CO2 +  ATP4- + Coenzyme A

Glycolysis R4 Glucose + 4 NAD+ + 2 ADP3- + 2 Pi2- + 2 CoA → 2 ATP4- + 2 Acetyl 
CoA- + 2 H2O + 2 CO2 + 4 NADH,HN

+ 

Table 3.38:  Metabolic equations for respiration (Method 2)

Directions 1 1 1 1
Reactions R1 R2 R3 R4
FAD NE 1 0 0 -1
FADH2 NE -1 0 0 1
AcetylCoA- NE 0 0 2 -1
CoenzymeA NE 0 0 -2 1

HN
+ E- -2 -3.33 0 -2

Pi2- E- -2 -3.33 -2 -1

ADP3- E- -2 -3.33 -2 -1

ATP4- E+ 2 3.33 2 1

NAD+ E= 0 1 -4 -3
NADH, HN+ E= 0 -1 4 3

H2O E= 3 4.33 2 -2

O2 E- -0.5 -0.5 0 0

CO2 E+ 0 0 2 2
Glucose E- 0 0 -1 0

Table 3.39: Metabolic matrix for respiration (Method 2) E = NADH,HN
+; NAD+, HN

+; O2;  H2O; 
CO2; ADP3-; Pi2-; ATP4-; Glucose; NE = FAD, FADH2, Coenzyme A, Acetyl CoA- 
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3.9.2 Elementary flux mode analysis
The coupled systems obtained for photosynthesis and respiration (using method 1 and 2) are 

subjected to analyse the network topology and intracellular fluxes using elementary flux mode 

analysis and metabolic flux analysis similar to what we have done for each small sub system 

of photosynthesis and respiration.

3.9.2.1 Light reactions with Calvin cycle 

EFM analysis  was performed on the  coupled systems representing  in  vivo photosynthesis

obtained using method 1 and method 2. With respect to EFM analysis on the systems, Method 

1 and 2 should give the same EFMs. As expected, two elementary modes were calculated by 

both of the systems which were similar: one corresponds to the production of energy, ATP4- 

via cyclic photophosphorylation (EFM 1) and one for the production of a molecule of glucose 

(EFM 2) maintaining the classical  photosynthetic  stoichiometry along with the number of 

quanta of light and extra energy (ATP4-). This extra energy is used for other in vivo cellular 

metabolic functions.

EFM 1
In the  case  of  first  system (method  1),  EFM 1 shown below is  resulted  due  to  the  four 

equations R2 R3 R4 R6 listed in Table 3.25: 

3 hν700 + H+
N + ADP3- + Pi 

2- → ATP4- + H2O ∆Gphysio = -485.9 kJ/mol 

This is the same EFM, we have found for the cyclic photophosphorylation. 

When we analysed  the  second system (i.e.  method  2),  the  same EFM is  resulted;  it  was 

because of R1 of Table 3.28. Remember that, R1 of the second system itself is an EFM, which 

originally resulted from light reactions.

EFM 2

In the case of first system (method 1), EFM 2 is resulted from 20 equations (from R1 to R21,  

excluding the reaction, R4 of Table 3.25). There may have a question: why R4 is excluded 

from the  metabolic  pathway;  the  answer  will  get  when  we analyze  MFA which  will  be 

described in the paragraph 3.9.3.1.

EFM 2 is;

24 hν700 + 24 hν680 + 6 CO2 + 6 HN
+ + 6 ADP3- + 6 Pi2-→ Glucose + 6 O2 + 6 ATP4-

∆Gphysio = - 4532.4 kJ/mol (from Table 3.25)
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Again, the same EFM is observed when we have done the EFM calculations on the second 

system (method 2), as a result of  R2 and R3 of Table 3.28; this means, both the coupling 

results give the same topology as expected.

Moreover,  the  two resulted  EFMs support  the  already known global  equations.   For  one 

molecule of oxygen production, it is discovered that 8 photons are necessary (Jorgensen and 

Svirezhev, 2004). We have obtained the same from the resulted EFM equation. Our results 

also suggest that for the production of either glucose or oxygen, cyclic photophosphorylation 

is  not  necessary,  although  it  is  important  for  the  metabolite  level  maintenance.  This  is

confirmed by experiments (Reeves and Hall,  1973) and will be explained while analysing 

MFA.  Photosynthesis  provides  more  energy  than  which  is  required  for  one  molecule  of 

glucose production. The extra ATP produced from EFM 2 and EFM 1 will be utilized for 

other cell requirements like metabolite transports or anabolic processes in cellular level. The 

coupling of light reactions with Calvin cycle provided two elementary modes revealing the 

strong influences of two photosystems and the quantity of light (photons) in photosynthesis. 

The elementary mode which constitutes the reactions is a linear pathway without any branch 

points  so  that  all  intermediates  between  CO2 and  glucose  are  lumped  to  give  the  global 

equations like a black box metabolic model of photosynthesis. 

3.9.2.2 Mitochondrial reactions with Glycolysis 

Essentially, respiration system is also analysed to calculate the elementary flux modes. The 

systems of respiration created via method 1 and method 2 provided 3 EFMs with considerable 

energy; as expected, the EFMs obtained from both methods were found similar.

EFM 1
O2 + 2 NADH,HN

+ + 6.64 ADP3- + 6.64 Pi2- + 6.64 HN
+ → 8.64 H2O + 2 NAD+ + 6.64 ATP4-

Method 1 gave EFM 1 as a combination of 4 equations, R12 R14 R15 R16 (Table 3.29); it  

was originally given by mitochondrial electron transport and oxidative phosphorylation. The

second system (method 2) also supported the same result, as the system itself was built by 

EFM originally came from mitochondrial  electron transport and oxidative phosphorylation 

(See Table 3.31).

EFM 2
10  NAD+ +  O2 +  Glucose + 8  ADP3 - + 8  Pi2- + 4 HN

+

                                                                      → 10 NADH,HN
+ + 4  H2O +  6  CO2 + 8  ATP4-
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Method 1 gave EFM 2 as a combination of 24 equations, R1 to R25 excluding R12 (Table  

3.29); one molecule of glucose decomposes into CO2 and energy (ATP4- and NADH, HN
+). 

The second system (method 2) also favoured EFM 2 due to the combination of equations R1, 

R3 and R4 (See Table 3.31). It means that respiration can occur without the oxidation of 

NADH, HN
+. Therefore, this may be referred as partial respiration. 

EFM 3
6 O2 + Glucose + 41.3 ADP3- + 41.3 Pi2- + 41.3 HN

+→ 47.3 H2O + 6 CO2 + 41.3 ATP4-

Method 1 gave EFM 3 as a combination  of 25 equations,  R1 to R25 of Table 3.29; one 

molecule of glucose decomposes into CO2 and tremendous energy, ATP4-. It is because of the 

complete oxidation of NADH,HN
+. The second system (method 2) also favoured EFM 3 due 

to the combination of entire equations R1, R2, R3 and R4 of Table 3.31. 

The three EFMs offer three possibilities. EFM 1 gave energy without the decomposition of 

glucose and EFM 2 and 3 gives energy along with the decomposition of glucose; but the 

amount of energy is highly varied. Obviously, all these pathways are depending on the energy 

demand;  partial  respiration  and full  respiration  are  controlled  by many physiological  and 

biochemical  factors.  From Table  3.29,  the  energies  associated  with  each EFM cannot  be

calculated  as  the  exact  free  energies  of  all  reactions  at  physiological  conditions  are  not 

available.

3.9.3 Metabolic Flux Analysis

3.9.3.1 Light reactions with Calvin cycle 
The estimated fluxes are shown in Figure 3.25, where the fluxes for glucose = 100 µ mol s-1 

and CO2 = -600 µ mol s-1.  In Figure 3.25 (a), all fluxes are positive except R4 and R14; R14 

is negative, but indicated in green colour, which means it can go in the reverse direction (see 

the free energy given in Table 3.25). Besides, the negative value of R4 marked in red colour 

shows that it cannot precede so. From MFA analysis of light reactions (paragraph 3.8.1), we

have  already  seen  that  equation  R4  has  very  important  role  in  controlling  cyclic 

photophosphorylation by maintaining P/2e- ratio. 

Also, in Figure 3.25 (b), R1 is zero, but from MFA flux distribution from the Table 3.33, it is 

found that equal amounts of photons are absorbed by the system, but, R1 became zero; it 

explains the absence of EFM 1 (EFM responsible for cyclic reaction), which is the exact  in  

vivo metabolism in cellular  level.  For  the  production  of  glucose,  cyclic  reactions  are  not 
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required.  Recent  studies  support  this  flux distribution:  non-cyclic  photophosphorylation  is 

enough for Calvin cycle in vivo as it produces sufficient ATP and NADPH,HN
+ (Reeves and 

Hall, 1973). This is the reason why equal amounts of photons are absorbed. Since, only non 

cyclic photophosphorylation is proceeding, the ratio of photons at 680 and 700 nm are found 

equal which is quite normal. 

While in the case of Figure (a), it could be said that in order to balance the metabolic network, 

P/2e- ratio and to avoid cyclic photophosphorylation R4 occurs in the negative direction to 

control the system (Reeves and Hall, 1973). Precisely, enough ATP is made by the non cyclic

electron transfer chain to carry out stoichiometric CO2 fixation and the role of cyclic electron 

transfer  is  reduced.  But  under  stress  conditions,  it  may  dramatically  change  (Fork  and 

Herbert, 1993). 

Certainly, the reaction R4 may occur positively at normal conditions; this is because, inside 

the chloroplast, numerous types of reactions happen and in cellular metabolism, there is a big 

demand for energy molecule, ATP4-. Even then, in the case of glucose production since such a 

big amount of energy is not necessary, R4 appeared to be negative. Usually, cyclic reactions 

are  also necessary to maintain  the cell’s  whole functions.  Here,  the photophosphorylation 

ratio, P/2e- is calculated as 1.33 (from Figure (a)), which has been accepted for many years. 

However  nowadays,  our  result,  the  P/2e-  ratio  obtained  from  Calvin  cycle  alone  (1.5)

(paragraph 3.8.2) is widely accepted as true value (Kramer  et al., 1999). As 1.33 is not the 

normal case, if cyclic photophosphorylation happens, our results are exactly matching with 

the experimental true value.
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Studied systems Light reactions + Calvin 
cycle using method 1

(µ mol S-1)

Light reactions + Calvin cycle 
using method 2

 (µ mol S-1)
Exchangeables 

fixed
Glucose = 100

CO2 = -600
Glucose = 100

CO2 = -600

Production/ 
consumption 

rates for 
exchangeables

hν680 = -2400
hν700 =-41.4
H2O = -786

O2 = 600
ADP3- = 186
ATP4- = -186

Pi2- = 186
HN

+ = 186

hν680 = -2400
hν700 =-2400

H2O = 0
O2 = 600

ADP3- = -600
ATP4- = 600
Pi2- =-600
HN

+ = -600

Table 3.40: Metabolic flux distribution for photosynthesis

Figure 3.42: Flux distributions for photosynthesis: (a) method 1 (b) method 2      

Glucose = 100 µ mol s-1 and CO2 = -600 µ mol s-1
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3.9.3.2  Mitochondrial reactions with Glycolysis 

The estimated fluxes are shown in Figure 3.26, where the fluxes for glucose = -200 µ mol s -1 

and O2 = -300 µ mol s-1.  In Figure, all fluxes are positive, although some reactions are zeroes. 

The flux distribution showed in Figure 3.26 (a) represents a condition which is perfect for a 

cell where glucose and oxygen are fixed as, glucose = -200 µ mol s-1 and O2 = -300 µ mol s-1. 

Here, enormous energy is produced both in the form of NADH,HN
+ and ATP4-.  The third 

elementary flux mode, EFM 3 is using here in order to produce such a big amount of energy

and hence complete glucose decomposition occurs. But, Figure 3.26 (b) use EFM 2 instead of 

EFM  3,  therefore  R12  becomes  zero  and  this  is  why  in  EFM  2,  R12  was  absent.  R12 

corresponds to the reaction originated from electron transport and oxidative phosphorylation, 

which  associated  with ubiquinone/ubiquinol  pool  and NADH,HN
+;  the  complex  I,  NADH 

dehydrogenase is supposed to be one of the main reasons, if ATP production appears to be 

low (Moller, 2001). Almost similar facts are found in Figure 3.26 (c) and (d). Analogous to 

Figure 3.26 (a), (c) is also a perfect situation, where an ideal organism can have. If we verify 

the  metabolic  flux distributions  given in  Table  3.34,  the  resulting  energy can be seen as 

exactly same for both the methods.

In Figure 3.26 (d), R2 = 0; R2 again corresponds to the reaction associated with NADH,HN
+.

Hence, we can conclude that, if there is no need of much energy; first of all, the system has a 

tendency to suppress the reaction associated with the complex I, accurately matching with the 

invivo  condition;  however,  sometimes the related deficiencies  of NAD+/ NADH,HN
+ cause 

problems (Moller, 2001). Mitochondria regulate the redox balance in the cell which makes an 

integral  part  of  a  flexible  metabolic  system  in  the  photosynthetic  cell  like  leaf  cell 

(Gardestrom and Lernmark,  1995).  There  is  a  substantial  reduction  in  decarboxylation  of 

TCA cycle intermediates takes place during respiration in the presence of light. At normal 

situation, a leaf would probably be some mixture between a total and partial TCA cycle in 

most metabolic conditions. However, all these are important to override disturbances caused 

by the changing environment, which plants are adapted to (Gardestrom and Lernmark, 1995).
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(a) (b)

(c) (d)

Figure 3.43: Flux distribution for respiration: i) method 1: (a) Glucose = -200 µ mol s-1, 
O2 = -300 µ mol s-1 (b) Glucose = -100 µ mol s-1, O2 = -100 µ mol s-1; ii) method 2 (c) Glucose
= -200 µ mol s-1, O2 = -300 µ mol s-1(d) Glucose = -100 µ mol s-1,O2 = -100 µ mol s-1
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Nevertheless, the EFM and MFA are interesting and relatively easy tools to study the relevant 

metabolic  pathways.  It  needs some  input/output  fluxes  to  calculate  the  intracellular  rates 

without perturbing any bioprocesses. However, understanding the topology by EFM analysis, 

we assumed and studied the rates which cause the metabolical limitations without conducting 

any experiments which is a very tough and tedious process. The interesting fact is our results 

could explain the in vivo observations done by earlier studies.

Studied systems Glycolysis + mitochondrial
reactions using method1

(µ mol s-1)

Glycolysis + mitochondrial 
reactions using method 2

(µ mol s-1)
Exchangeables 

fixed
Glucose = -200

O2 = -300
Glucose = -200

O2 = -300

Production/ 
consumption 

rates for 
exchangeables

NADH,HN
+ = 1800

NAD+ = -1800  
H2O = 1670

ADP3- = -2270
ATP4- = 2270
Pi2- = -2270
HN

+ = -2270
CO2 = 1200

NADH,HN
+ = 1800

NAD+ = -1800  
H2O = 1670

ADP3- = -2270
ATP4- = 2270
Pi2- = -2270
HN

+ = -2270
CO2 = 1200

Exchangeables
fixed

Glucose = -100
O2 = -100

Glucose = -100
O2 = -100

Production/
consumption 

rates for 
exchangeables

NADH,HN
+ = 1000

NAD+ = -1000  
H2O = 400

ADP3- = -800
ATP4- = 800
Pi2- = -800
HN

+ = -800
CO2 = 600

NADH,HN
+ = 1000

NAD+ = -1000  
H2O = 400

ADP3- = -800
ATP4- = 800
Pi2- = -800
HN

+ = -800
CO2 = 600

Table 3.41: Metabolic flux distributions for respiration

3.10Conclusion
Plant  metabolic  network  is  very complex  as  it  involves  a  large  number  of  reactions  and 

metabolites. In addition to this, complex metabolic topography and compartmental separation 

at the organ and organelle levels increase the demand to focus on relatively small and simple 

metabolic systems which control and regulate plant metabolic pathways.  Quite reasonably, as 

central metabolism is the major metabolic pathway, without none can survive, it captures all 
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attention.  The  case  study  involving  a  compartmentalised  stoichiometric  model  of  plant 

metabolism  separate  various  enzymes  which  regulate  the  transport  and  metabolites  that 

interconnect the entire plant metabolic network. The metabolic networks of photosynthesis 

and respiration were studied and analysed. The obtained results are trustworthy and satisfying 

with the already existing experimental values and clearly explain regulating complexes and 

reactions without entering into the keen details of genetic and kinetic studies. This work is 

still in the initial stages of development for the entire plant growth modelling, but holds future 

promise for other organ and developmental sub models. In order to achieve that, more studies

in the specialized isotopic techniques may be needed to measure the carbon fluxes in organ 

level, as the calculation of material and isotopic balance for the entire system is not often 

possible. 

3.11Main outcomes of Chapter 3
- Two levels of metabolism are needed to analyse: first level is for energy metabolism 

(central carbon metabolism) while second level stands for global reactions producing 

biomass from basic constituents.

- In the cell level, the process of photosynthesis and respiration are studied separately to 

establish the energy model; each complex involved in light reaction and mitochondrial 

electron transport  processes are studied providing thermodynamic  constraints  while 

analysing MFA and EFM. The present approach was completely detailed mechanisms

of energy transducing processes.

- The  directions  of  reactions  involved  in  Calvin  cycle  reactions,  Krebs  cycle  and 

glycolysis processes are issued from literature data.

- Satisfying in vivo results are found while analysing small metabolic networks as well 

as the coupled metabolic networks using EFM and MFA techniques. 

- The study of central carbon metabolism provided the link between physical parameters 

and biochemical parameters (light energy to chemical energy). 

- Importantly, EFM analysis associated with detailed energetics analyses of chloroplast 

and  mitochondrion  reveals  that  the  mathematical  analyses  supported  by  convex 

algebra  permits  to  recover  the  main  pathways  such  as  cyclic  and  noncyclic

phosphorylation pathways and NAD+ and FAD producing pathways. 
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Chapter 4 Metabolic model 
for lettuce leaves – Results

and discussion
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4.1Introduction
Leaf metabolic model - the metabolic model for leaves is the primary step to achieve the 

entire biochemical process plant model, which we developed as per the general design of the 

whole plant growth model. A minimum knowledge of plant leaf metabolism is necessary for 

the  construction  of  leaf  metabolic  model.  Leaf  metabolism  involves  several  types  of 

metabolism other than the central carbon metabolism which may create network complexity, 

and  this  complexity  increases  with  the  increase  in  number  of  participating  reactions.  In 

addition, in order to produce one metabolite in an in vivo metabolic pathway, there may have 

lots  of  possibilities,  copying  of  which  makes  difficulties  in  the  calculation  of  metabolic

system/model. Therefore, the most possible/observed relevant pathways are accounted while 

constructing leaf metabolic network.

The purpose of this chapter is to apply leaf metabolic model in the case of lettuce (Lactuca 

sativa) leaves; the model validation is necessary in any type of models and it is important, as 

it is one of the primary steps of any general plant metabolic model. We agree that only leaf 

metabolic model is not sufficient to validate the growth of lettuce; nevertheless, as the main 

part of lettuce plant itself are leaves constituting almost 75% of plant biomass, an approximate 

validation is achievable. Consequently, the reactions that may happen in lettuce leaves were 

chosen for the model construction. The aim is to compare and verify the leaf metabolic model 

of lettuce  (Lactuca sativa)  leaves using the experimental data found from USDA reference

[Int.  ref. 6] and chambers of Guelph university,  where the same type of lettuce grown in 

Controlled Environment Systems Research Facility (CESRF);  it shows the need of various 

levels of measurements for more accurate biochemical plant growth predictions. 

4.2Leaf metabolic model for lettuce
In day time,  due to photosynthesis,  carbon enters  through leaf  stomata  and assimilates  in 

chloroplasts  as  sugar  phosphates  (glyceradehyde-3-phosphates  or  G3P),  starch,  etc.  The 

metabolite G3P enters into the cell cytoplasm and using this as substrate, sucrose sugar forms. 

Usually in all plants, the carbon fixed by photosynthesis accumulates as starch in chloroplasts, 

which remobilized at night to support metabolism and growth via respiration. Lettuce plants 

are exceptional in this context; they do not contain starch (Int. ref. 6); so, by the time being we 

do not account starch for leaf model.
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Like  every biomass  composition  of  plant  leaves,  lettuce  contains  proteins,  carbohydrates, 

lipids  and  fatty  acids  in  higher  amounts,  while  nucleic  acids  and chlorophylls  are  found 

relatively very low compared to the rest of the biomass components. Subsequently, protein, 

lipid,  fatty  acid  metabolisms  are  considered  in  addition  to  the  central  carbon  metabolic 

pathways, the synthesis and maintenance of which require considerable energy. In the absence 

of proteins, growth and maintenance of organs stop and thus, it represents the rate limiting 

step for potential growth rate. The rate of protein synthesis depends on genomic level (both 

the rate of transcription and translation of the genetic information) and also on the amino acid

supply for the growth of the polypeptide chain. 

Knowing the entire leaf metabolism, the main fuelling reactions of the cells associated with 

the plant metabolism are rerouted in such a way as to channel the main carbon flux into the 

biosynthetic pathway required for final product synthesis-  biomass. To achieve, or at least 

approach,  one must  know how carbon partitioning occurs  between the fuelling  reactions, 

biomass and product (though input carbon = output carbon); i.e. for leaf metabolic model, the 

leaf  biomass  composition  as  well  as  the  input/output  carbon  measurements  are  primarily 

required. This necessitates the development of means to determine the partitioning of carbon 

flux between the fundamental biosynthetic pathways (Vallino and Stephanopoulos, 1990). 

Similar to the metabolic flux analysis studies on central carbon metabolic pathways described

in chapter 3, the carbon flux of each reaction in the leaf network can be calculated knowing 

the extracellular data, mainly in terms of CO2 uptake/O2 release. For that, it was required to 

represent  the  leaf  cellular  metabolism  in  a  matrix  form.  It  is  quite  obvious  that  not  all 

biosynthetic reactions have been incorporated. Thousands of reactions are there, to include all 

would be impractical. Therefore, one of the preliminary steps in the development of the model 

was to  extract  those reactions  that  represent  the major  carbon fluxes; most  of them were 

available in the literature or data bases like KEGG and MetaCyc.

4.2.1 Model construction 
To construct  a  simplified  network for leaf  metabolism,  the main  fuelling and metabolite-

generating bioreactions,  such as light reactions,  mitochondrial  electron transport  reactions,

Calvin cycle reactions, Embden-Meyerhof-Parnas pathway, Pentose phosphate pathway and 

Krebs or tricarboxylic  acid (TCA) cycle were assembled. Some of the reactions involving 

biomass  component  synthesis  and  maintenance  requirements  were  expressed  as  lumped 

reactions as explained in chapter  3; for example, the equations for energy metabolism (light 
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reactions and mitochondrial electron transport oxidative phosphorylation) obtained as a result 

of EFM/MFA analysis form the first four equations (R1, R2, R3 and R4) of the metabolic 

model: 

R1. 1 ADP + 1 Pi + 3 hν700  → 1 ATP + 1 H2O

R2. 2 ADP + 1 NADP+ + 2 Pi + 2 hν700 + 2 hν680 →2 ATP + 1 NADPH, H+ + 0.5 O2 + 1 

H2O

R3. 2 ADP + 2 Pi + 1 FADH2 + 0.5 O2 →  2 ATP + 1 FAD + 3 H2O

R4. 3 ADP + 1 NADH, H+ + 3 Pi + 0.5 O2 →  3 ATP + 1 NAD+ + 4 H2O

The energy molecule,  ATP is  considered as an intermediate  in  the stoichiometric  matrix. 

According to Vallino and Stephanopoulos, a reaction is included to dissipate excess ATP and 

to account maintenance and futile cycles (Vallino and Stephanopoulos, 1990). To maintain a 

steady state approximation for ATP, this excess is removed by the conversion of ATP into 

ADP. 

R35. 1 PPi + 1 H2O ↔ 2 Pi

R36. 1 AMP + 1 ATP ↔ 2 ADP

R37. 1 NAD+ + 1 NADPH ↔ 1 NADH + 1 NADP+

Finally, to minimize the network dimension of the system, the metabolites involved at branch 

points of the biosynthetic pathways are considered. For example, there are several metabolites

between aspartyl  semialdehyde and lysine; however, due to steady state assumption, all of 

them need  not  to  be  taken  into  account,  as  they  comprise  a  non-branching  sequence  of 

reactions of which proceed at same rates. At the same time, the lumping reactions of Calvin 

cycle, glycolysis, TCA cycle, etc. were taken carefully; lumping surely makes the metabolic 

network  a  reduced  one.  But,  sometimes  it  may  create  problems  for  finding  substrate 

metabolites for additional metabolic pathways such as protein, fatty acid, lipid metabolism, 

etc.  For  example,  if  we summarise  most  of  the reactions  in  terms  of  the  building  block, 

‘glucose’, the entire metabolic pathway will not run properly;  the unavailability of simple 

molecules such as G3P, PEP, G6P, F6P, acetate, pyruvate, etc. in the system may block the 

matrix  calculations  of the entire  system;  in fact,  the matrix  representation and calculation

stands for the exact in vivo physiological conditions. It should be noted that the same happens 

in the case of almost all organisms; however we say, glucose as building block, it does not 

directly participate in all types of metabolic reactions. Usually, when there is a need, it breaks 

into simple molecules (G3P, PEP, G6P, F6P, acetate, pyruvate) and becomes available for all 

other constructive metabolic pathways. It might be seen that the removal of metabolites like 
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G3P may cause ‘network traffic jam’ in the system analysis.  Because of the same reason, 

Calvin cycle, glycolysis and TCA cycle reactions are kept as exactly same, without repeating 

the equations.

Further, proteins are made up of various types of amino acids. Consequently, amino acids are 

produced in the very beginning of protein synthesis.  A number of amino acids are partly 

synthesized  in  the  mitochondria  (Jones  and  Fink,  1981),  and  it  is  assumed  that  the 

intermediates of these reactions can be transported across the inner mitochondrial membrane. 

If  it  is  in  the  order,  G3P → sucrose  → glucose  → pyruvate,  the  metabolite  pyruvate  is

necessary for cysteine production which is transported across the mitochondria. Also, there 

are lots of possibilities to produce pyruvate (other than the way suggested), as most of the 

reactions  are  reversible  and  highly  depending  on  the  cellular  pH;  different  metabolic 

pathways would be possible/accessible in the cellular level according to the environmental 

stress conditions. Nevertheless, we have considered the most occurring pathway for the same.

Additionally, tetrahydrofolate (THF) and its derivatives, collectively termed folates related to 

the synthesis of nucleic acids, e.g. purines, thymidylate (anyhow, we did not account nucleic 

acids  in  our  model,  as  the  contribution  is  small),  triglycerides  and  amino  acids  like 

methionine,  glycine  and  serine  were  taken  into  account.  The  precursors  of  THF  are 

synthesized  in  the  cell  cytosol  and plastids  (Linka  and  Weber,  2010).  Further,  additional

metabolic pathways were added for each amino acid production and to balance the production 

and consumption of their precursors. 

Equations for macromolecules

The equations for the production of protein (using amino acids), lipids and fats (constituting 

brassicasterol  and  triglycerides)  and  other  carbohydrates  (involving  sugars,  disaccharides, 

fibers, etc.) were added to the system. This has been done taking the reference (Int. ref. 6) due 

to the unavailability of biomass composition from lettuce plants (Lactuca sativa) grown in the 

controlled  chambers.  As  per  [Int.  ref.  6],  the  fresh  biomass  contains  95% of  water.  The

biomass components involved are calculated for 1 g of dry biomass as in Table 4.1.
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Biomass components Composition  as  per 
the reference for 1 g 
of dry biomass (g)

Composition  for 1g 
of  dry  biomass  (g) 
(recalculated  for 
normalisation)

Biomass  component 
percentage (%)

Protein 0.276 0.3228 32.28
Triglycerides 0.022 0.0257 2.57
Brassicasterol 0.008 0.0093 0.94

Fibers 0.28 0.327 32.75
Sugars 0.269 0.3146 31.46

Biomass (Total) 0.855 1 100
Ash 0.13 - -
Total 0.985 - -

Table 4.42: Available biomass composition (Int. ref. 6)

The reference does not provide any information about chlorophylls, DNA, RNA, etc. From 

other literatures, they are found to be very small compared to the rest of the components. For 

example, RNA content is approximately 0.001g, while chlorophyll content is 1.8 ×10-6 g (Int. 

ref. 7; Fontes et al., 1997). Without accounting ash (Ca2+, Mg2+, Fe2+, K+, etc.), the sum of all 

nutrients do not give 1 g of biomass in total; hence, the second column of Table 4.1 is meant

for the biomass composition which we used for our metabolic network model. Additionally, 

the amounts of amino acids for protein (Table 4.2), saturated, unsaturated, polyunsaturated 

fatty acids, for lipid formation (Table 4.3) and sucrose, glucose, fructose for sugars (Table 

4.4), etc. were taken from the same reference. 

4.2.1.1 Protein production

There  are  20  amino  acids  present  in  proteins.  The  precise  amino  acid  content  and  the 

sequence of those amino acids, of a specific protein is determined by the sequence of the 

bases in the gene that encodes that protein. The chemical properties of the amino acids of 

proteins determine the biological activity of the protein. Protein production is assumed as a

result of poly condensation process of amino acids. The amino acid present in 1 g of dry 

biomass was taken from [Int. ref. 6]; but, as the composition of the important amino acids,  

asparagine and glutamine (both play major roles in metabolism) were absent, we have taken 

them into account by some approximations as given below:

Total protein content in 1g of dry biomass = 0.276 g

Total amino acid content in 1g of dry biomass = 0.226 g

So, total amount of glutamine and asparagine in 1 g of dry biomass = 0.276 - 0.226 = 0.05 g
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The  approximate  ratio  between  glutamine  and  asparagine  was  assumed  (Giannino  et  al., 

2008) which gave a total amino acid content of 0.276 g (third column of Table 4.2). 

Then, if  ‘N’ number of amino acids present in one mole of protein,  (N-1) mole of water 

releases:

N amino acids  protein + (N-1) H2O

Taking this concept, calculations were made (Table 4.2), to know the moles of amino acids 

(aa) needed for one mole of protein production (CH1.57O0.356 N0.2835 S0.005). 

Then, N1 aa1 + N2 aa2 + N3 aa3 +...  protein + (N1 + N2 + N3 +...) H2O

0.0126  Alanine  +  0.0119  valine  +  0.0128  isoleucine  +  0.00989  threonine  +  0.00734 

asparagine + 0.0114 lysine + 0.0214 aspartate + 0.0259 glutamine + 0.00226 methionine + 

0.0251 glutamate + 0.0119 leucine + 0.00744 serine + 0.0014 cystine + 0.0157 glycine + 

0.00826 proline  +  0.00802 arginine  +  0.00102 tryptophan  + 0.00324 tyrosine  +  0.00618 

phenylalanine + 0.00287 histidine  1 Protein + 0.20668 H2O

Protein 
components 
(Amino acids)

Mass of 
amino acids 
in 1 g of dry 
biomass (g)

Mass  of  amino 
acids  in  1  g  of 
dry biomass (g) 
after adding asn 
& glu

Molar  mass 
of  amino 
acids 
(g/mol)

Moles of 
amino 
acids/g 
of 
protein

Amino acids  /C 
of  protein  (in 
mol)

alanine 0.0132 0.0132 89 0.0005 0.0126
valine 0.0165 0.0165 117 0.0005 0.0119

isoleucine 0.0198 0.0198 131 0.0005 0.0128
threonine 0.01398 0.01398 119 0.0004 0.00989

asparagine - 0.0115 132 0.0003 0.00734
lysine 0.0198 0.0198 146 0.00049 0.0114

aspartate 0.0337 0.0337 133 0.0009 0.0214
glutamine - 0.0444 145 0.0011 0.0259

methionine 0.004 0.004 149 0.00009 0.00226
glutamate - 0.0436 147 0.0010 0.0251

leucine 0.0185 0.0185 131 0.0005 0.0119
serine 0.009 0.009 105 0.0003 0.00744
cystine 0.004 0.004 240 0.00006 0.0014
glycine 0.0139 0.0139 75 0.00067 0.0157
proline 0.0112 0.0112 115 0.0003 0.00826
arginine 0.0165 0.0165 174 0.0003 0.00802

tryptophan 0.0019 0.0019 165 0.00004 0.00102
tyrosine 0.0078 0.0078 204 0.00013 0.00324

phenylalanine 0.0132 0.0132 181 0.00027 0.00618
histidine 0.0053 0.0053 155 0.0001 0.00287

Total 0.226 0.276
water 0.20668

Table 4.43: Available amino acid composition [Int. ref. 6](asn = asparagine; glu = 
glutamate)
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4.2.1.2 Lipid production

Additionally,  lipid  (triglyceride)  formation  is  considered;  it  is  always  associated  with 

unsaturated,  saturated,  polyunsaturated  fats  and  glycerol.  Similar  to  protein  formation,  it 

releases water as per the following equation.

α unsaturated fats + β saturated fats + γ polyunsaturated fats + ∂ glycerol  triglyceride + 3 ∂ 

H2O, where ∂ = α + β + γ 

Triglyceride
components 

Composition as per 
the reference 1 g of
dry biomass (g)

Composition 
for 1g  of
triglyceride 
(g)

Molecular 
formula

Components  /
C  of
triglycerides 
(in mol)

Unsaturated fats 0.001 0.0455 CH1.847O0.0962 0.0226
Saturated fats 0.004 0.182 CH1.97O0.0999 0.0895
Polyunsaturated fats 0.017 0.773 CH1.66O0.097 0.39
Triglycerides 0.022 1 CH1.201O0.0488 1
Brassicasterol 0.0094 - CH1.64O0.036 -

Table 4.44: Available lipid component composition [Int. ref. 6]

The sum of moles of unsaturated, saturated, polyunsaturated fats from Table 4.3 gives the 

number of moles of water involved. 

0.0226 unsaturated fats + 0.0895 saturated fats + 0.39 polyunsaturated fats + 0.167 glycerol 

 triglyceride + 0.5013 H2O

Usually, brassicasterol is associated with lipids; but, like most other macromolecules, it is not

a polymerised product. 

0.6429  G3P  +  0.0357  S-ade-methionine  +  0.4643  NAD+  +  0.357  O2  0.0357  S-ad-

homocysteine + 0.4643 NADH, H+ + 0.6429 Pi + 1 brassicasterol + 0.9643 CO2 + 0.0357 H2O

4.2.1.3 Carbohydrate (sugars and fibers) production

Sugars

In lettuce biomass, sugars involve in the mainly in the form of glucose, fructose and sucrose. 

As the amount of sucrose was not listed in the Int. ref. 6, an approximation is taken (total 

sugar content - glucose + fructose = sucrose) as shown in the Table 4.4.
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Components of 
sugars

Composition as per 
the reference 1 g of 
dry biomass (g)

Composition 
in 1g  of 
sugars (g)

Components  /
C of sugars (in
mol)

glucose 0.0854 0.2715 0.032
fructose 0.0994 0.3159 0.037
sucrose 0.1298 0.4159 0.0487

Total sugars 0.3146 1 1
Fibers 0.327 - -

Table 4.45: Available carbohydrate composition Int. ref. 6

From Table 4.4, the production of one mole of sugars (CH1.9O0.9548) corresponds to: 

0.032 glucose + 0.0373 fructose + 0.049 sucrose  1 sugars 

Fibers

Fiber production needs energy in the form of ATP; the formation is almost same as starch, so 

the equation was taken from the reference (Cogne, 2003).

0.167 G6P + 0.167 ATP  0.167 PPi + 0.167 ADP + 1 fibers; where the molecular formula 

of fibers is CH1.67O0.835

Further  from  Table  4.5,  for  one  mole  of  leaf  biomass  constituting  protein,  lipids 

(brassicasterol and triglycerides) and carbohydrates (sugars and fibers) with respect to Int. ref. 

6 is,

0.3518 Protein + 0.0469 Triglycerides  + 0.0168 Brassicasterol  +  0.3089 Fibers  + 0.2757 

Sugars  Biomass

Biomass 
components 

moles  /g  of  dry 
weight

Molecular formula 
(CHONS)

Moles per C mol of
biomass

Protein 0.01379 CH1.57O0.356 N0.2835 S0.005 0.3518
Triglycerides 0.0018 CH1.201O0.0488 0.0469
Brassicasterol 0.00065 CH1.64O0.036 0.0168
Fibers 0.0121 CH1.67O0.835 0.3089
Sugars 0.0108 CH1.9O0.9548 0.2757
Biomass 0.0392 (Total) CH1.674O0.6469N0.099 S0.0018 1.0000 (Total)

Table 4.46: Molar biomass composition

With all of the above information and stoichiometric equations (given in Table 4.6), a reliable 

metabolic network for leaves was constructed as in Figure 4.1 and 4.2. Figure 4.1 stands for 

central  carbon  metabolism  involving  energy  metabolism  occurring  at  different  cell 

compartments  (choloroplast,  cytosol,  mitochondria,  etc.);  it  produces  sugars  and  fibers 

contributing  biomass  production.  Figure  4.2  describes  the  pathways  for  lipid  and protein

production.  The leaf metabolic model is constituted of 107 reactions and 118 metabolites. 
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From various literatures, 59 reactions were taken as reversible. The metabolites like HNO3, 

CO2, H2O, hν700, hν680, H2S were assumed as inputs where biomass and O2 as outputs; thereby, 

8 exchangeable metabolites (E) and 110 non exchangeable metabolites (NE) were defined. 

Equations used for leaf metabolic model network

1. Central carbon metabolism (Bioenergetics):
(a) Light reactions

[1]  1 ADP + 1 Pi + 3 hv700 → 1 ATP + 1 H2O  
[2]  2 ADP + 1 NADP+ + 2 Pi + 2 hv700 + 2 hv680 → 2 ATP + 1 NADPH, H + + 0.5 O2 + 1 H2O

(b) Mitochondrial phosphorylation
 [3]  2 ADP + 2 Pi + 1 FADH2 + 0.5 O2 → 2 ATP + 1 FAD + 3 H2O
 [4]  3.33 ADP + 1 NADH, H+ + 3.33 Pi + + 0.5 O2 → 3.33 ATP + 1 NAD+ + 4.33 H2O

2. Nitrogen fixation 
  [5]  4 NADPH, H+ + 1 HNO3 → 4 NADP+ + 1 NH3 + 3 H2O

3. Carbon fixation 
(a) Calvin cycle

  [6]  1 RuBP + 1 CO2 + 1 H2O → 2 3PGA
  [7]  1 3PGA + 1 ATP ↔ 1 1-3BPGA + 1 ADP
  [8]  1 1-3BPGA + 1 NADPH, H+ ↔ 1 G3P + 1 NADP+ + 1 Pi
  [9]  1 G3P ↔ 1 DHAP
  [10]  1 G3P + 1 DHAP ↔ 1 FBP
  [11]  1 FBP + 1 H2O → 1 F6P + 1 Pi
  [12]  1 G3P + 1 F6P ↔ 1 E4P + 1 Xu5P
  [13]  1 Ru5P ↔ 1 Xu5P
  [14]  1 R5P + 1 Xu5P ↔ 1 G3P + 1 S7P
  [15]  1 DHAP + 1 E4P ↔ 1 SBP
  [16]  1 SBP + 1 H2O → 1 S7P + 1 Pi
  [17]  1 R5P ↔ 1 Ru5P
  [18]  1 ATP + 1 Ru5P → 1 RuBP + 1 ADP
  [19]  1 F6P ↔1 G6P
  [20]  1 G6P + 1 H2O → 1 glucose + 1 Pi

(b) Pentose phosphate pathway
  [21]  1 G3P + 1 S7P ↔ 1 F6P + 1 E4P

4. Respiration 
(a) Glycolysis

  [22]  1 glucose + 1 ATP → 1 G6P + 1 ADP
  [23]  1 F6P + 1 ATP →  1 FBP + 1 ADP
  [24]  1 3PGA ↔ 1 2PGA
  [25]  1 2PGA ↔ 1 PEP + 1 H2O
  [26]  1 PEP + 1 ADP → 1 pyruvate + 1 ATP

(b) Krebs cycle
  [27]  1 coenzymeA + 1 pyruvate + 1 NAD+ → 1 acetylcoA + 1 NADH, H+ + 1 CO2

  [28]  1 oxaloacetate + 1 acetylcoA + 1 H2O → 1 coenzymeA + 1 citrate
  [29]  1 citrate ↔ 1 cisaconitate + 1 H2O
  [30]  1 cisaconitate + 1 H2O ↔ 1 isocitrate
  [31]  1 isocitrate + 1 NAD+ → 1 oxoglutarate + 1 NADH, H+ + 1 CO2

  [32]    1 coenzymeA + 1 oxoglutarate +  1 NAD+ ↔ 1 Succinyl-CoA +  1 NADH, H+ + 1 CO2

  [33]  1 fumarate + 1 H2O ↔ 1 malate
  [34]  1 NAD+ + 1 malate ↔ 1 oxaloacetate + 1 NADH, H+
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  [35]  1 Succinate + 1 FAD ↔ 1 fumarate + 1 FADH2

5. Energy Balancing reactions
  [36]  1 PPi + 1 H2O ↔ 2 Pi
  [37]  1 AMP + 1 ATP ↔ 2 ADP
  [38]  1 NAD+ + 1 NADPH ↔ 1 NADH + 1 NADP+

6. Connecting reactions
  [39]  2 pyruvate + 1 NADPH, H+ → 1 2-oxoisovalerate + 1 NADP+ + 1 CO2 + 1 H2O
  [40]      1 PEP + 1 CO2 + 1 H2O ↔ 1 oxaloacetate + 1 Pi
  [41]  1 R5P + 1 ATP ↔ 1 RBP + 1 ADP
  [42]  1 NADPH, H+ + 1 CO2 ↔ 1 NADP+ + 1 formate

[43]  1 acetylcoA + 1 formate ↔ 1 coenzymeA + 1 pyruvate
  [44]  1 coenzymeA + 1 acetate + 1 ATP ↔ 1 acetylcoA + 1 PPi + 1 AMP
  [45]  1 coenzymeA + 1 acetate ↔ 1 acetylcoA + 1 H2O

7. Carbohydrate production
  [46]  1 glucose ↔ 1 fructose
  [47]  1 fructose + 1 UDP-glucose ↔ 1 sucrose + 1 UDP
  [48]  1 UMP + 1 G1P ↔ 1 UDP-glucose + 1 H2O
  [49]  1 G6P ↔ 1 G1P
  [50]  1 UDP + 1 H2O ↔ 1 Pi + 1 UMP
  [51]  0.032 glucose + 0.037 fructose + 0.0487 sucrose → 1 sugars
  [52]  0.167 G6P + 0.167 ATP → 0.167 PPi + 0.167 ADP + 1 fibers

8. Protein production
  [53]  1 aspartate + 1 NH3 ↔ 1 asparagine + 1 H2O
  [54]  1 ATP + 1 homoserine + 1 H2O ↔ 1 threonine + 1 ADP + 1 Pi
[55]  1 pyruvate + 1 glutamate + 1 2-oxobutanoate + 1 NADPH, H+ ↔ 1 isoleucine +  1 oxoglutarate

+ 1 NADP+ + 1 CO2 + 1 H2O
  [56]  1 glutamate + 1 2-oxoisovalerate → 1 valine + 1 oxoglutarate
  [57]  1 pyruvate + 1 glutamate → 1 alanine + 1 oxoglutarate
  [58]  1 acetylcoA + 1 glutamate + 1 2-oxoisovalerate + 1 NAD+ + 1 H2O →1 coenzymeA +
 1 oxoglutarate + 1 leucine + 1 NADH, H+ + 1 CO2

  [59]  1 homocysteine + 1 serine ↔ 1 2-oxobutanoate + 1 cysteine + 1 NH3

  [60]    2 cysteine + 1 NAD+ ↔ 1 cystine + 1 NADH, H+

  [61]  1 THF + 1 glycine + 1 NAD+ ↔ 1 CH2=THF + 1 NADH, H+ + 1 NH3 + 1 CO2

  [62]  1 oxoglutarate + 1 glutamine + 1 NADH + 1 H+ → 2 glutamate + 1 NAD+

  [63]  1 glutamate + 1 ATP + 1 NADPH, H+ → 1 glutamate- γ -semialdehyde + 1 ADP + 
1 NADP+ + 1 Pi
  [64]  1 glutamate-γ-semialdehyde → 1 1-pyrroline-5-carboxylate + 1 H2O
  [65]  1 1-pyrroline-5-carboxylate + 1 NADPH, H+ → 1 proline + 1 NADP+

  [66]  1 glutamate + 1 glutamate- γ -semialdehyde ↔ 1 oxoglutarate + 1 ornithine
  [67]  1 ornithine + 1 NH3 + 1 CO2 ↔ 1 citrulline + 1 H2O
  [68]  1 aspartate + 1 ATP + 1 citrulline ↔ 1 fumarate + 1 arginine + 1 PPi + 1 AMP
  [69]  2 PEP + 1 E4P + 1 ATP + 1 NADPH, H+ → 1 chorismate + 1 ADP + 1 NADP+ + 4 Pi
   [70]  1 glutamate + 1 4-hydroxyphenylpyruvate ↔ 1 oxoglutarate + 1 tyrosine
  [71]  1 chorismate + 1 NADP+ ↔ 1 4-hydroxyphenylpyruvate + 1 NADPH, H+ + 1 CO2

  [72]  1 glutamate + 1 phenylpyruvate → 1 oxoglutarate + 1 phenylalanine
  [73]  1 glutamine + 1 serine + 1 chorismate + 1 5p-ribosyl-1-pp  →  G3P + 1 oxaloacetate + 1  
glutamate + 1 tryptophan + 1 PPi + 2 H2O
  [74]  1 RBP + 1 Pi ↔ 1 5p-ribosyl-1-pp + 1 H2O
  [75]  1 Succinyl-CoA + 1 pyruvate + 1 aspartate + 1 glutamate + 1 ATP + 2 NADPH, H+ → 
1 Succinate + 1 coenzymeA + 1 lysine + 1 oxoglutarate + 1 ADP + 2 NADP+ + 1 Pi + 1 CO2

  [76]  1 aspartate + 1 ATP + 1 NADPH, H+ ↔ 1 aspartate-semialdehyde + 1 ADP + 1 NADP+ + 1 Pi
  [77]  1 aspartate-semialdehyde + 1 NADH, H+ ↔ 1 NAD+ + 1 homoserine
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  [78]  1 G6P + 3 ATP + 2 NADP+ + 3 NH3 → 1 histidine + 3 ADP + 2 NADPH, H+ + 4 Pi 
  [79]  1 chorismate ↔ 1 phenylpyruvate + 1 CO2 + 1 H2O
  [80]  1 glutamate + 1 ATP + 1 NH3 ↔ 1 glutamine + 1 ADP + 1 Pi
  [81]  1 oxaloacetate + 1 glutamate ↔ 1 aspartate + 1 oxoglutarate
  [82]  1 Succinyl-CoA + 1 homoserine ↔ 1 coenzymeA + 1 succinylhomoserine
  [83]  1 succinylhomoserine + 1 H2S ↔ 1 Succinate + 1 homocysteine
  [84]  1 pyruvate + 1 NH3 + 1 H2S ↔ 1 cysteine + 1 H2O
  [85]  1 2-oxobutanoate + 1 NH3 + 1 H2S ↔ 1 homocysteine + 1 H2O
  [86]  1 homocysteine + 1 CH3THF→ 1 methionine + 1 THF
  [87]  0.0126 Alanine + 0.0119 valine + 0.0128 isoleucine + 0.00989 threonine + 0.00734 asparagine
+ 0.0114 lysine + 0.0214 aspartate + 0.0259 glutamine + 0.00226 methionine + 0.0251 glutamate + 
0.0119 leucine  +  0.00744 serine  +  0.0014 cystine  +  0.0157 glycine  +  0.00826 proline  +  0.00802 
arginine + 0.00102 tryptophan + 0.00324 tyrosine + 0.00618 phenylalanine + 0.00287 histidine → 1 
Protein + 0.20668 H2O

9. Lipid production
  [88]  1 THF + 1 ATP + 1 formate ↔ 1 10-formylTHF + 1 ADP + 1 Pi
  [89]  1 10-formylTHF ↔ 1 methenylTHF + 1 H2O
  [90]  1 methenylTHF + 1 NADH, H+ → 1 CH2=THF + 1 NAD+

  [91]  1 CH2=THF + 1 NADH, H+ ↔ 1 CH3THF + 1 NAD+

  [92]  1 DHAP + 1 NADPH, H+ → 1 glycerol3P + 1 NADP+

  [93]  1 glycerol3P + 1 ADP ↔ 1 ATP + 1 glycerol
  [94]  1 palmitate + 1 NADP+ → 1 palmitoleate + 1 NADPH, H+

  [95]  1 oleate + 1 NADP+ → 1 linoleate + 1 NADPH, H+

   [96]  1 linoleate + 1 NADP+ → 1 g-linolenate + 1 NADPH, H+

   [98]  1 acetylcoA + 1 CO2 → 1 malonylcoA
  [99]  1 stearate + 1 NADP+ → 1 oleate + 1 NADPH, H+

  [100]  1 palmitate + 2 NADPH, H+  + 1 malonylcoA → 1 stearate + 1 coenzymeA + 2 NADP+ + 
1 CO2 + 1 H2O
  [101]  1 S-ad-homocysteine + 1 methionine ↔ 1 S-ade-methionine + 1 homocysteine
  [102]   0.6429  G3P  +  0.0357  S-ade-methionine  +  0.4643  NAD+ +  0.357  O2 →   0.0357  S-ad-
homocysteine + 0.4643 NADH, H+ + 0.6429 Pi + 1 brassicasterol + 0.9643 CO2 + 0.0357 H2O
  [103]  0.0428 stearate + 0.0143 palmitate → 1 saturated-fats + 0.0143 H2O
  [104]  0.0192 palmitoleate + 0.0385 oleate → 1 unsaturated-fats + 0.0192 H2O
  [105]  0.0138 linoleate + 0.0416 g-linolenate → 1 polyunsaturated-fats + 0.0138 H2O
  [106] 0.0895 saturated-fats + 0.0226 unsaturated-fats + 0.39 polyunsaturated-fats + 0.167 glycerol → 
1 triglycerides + 0.5013 H2O

10.Biomass production
 [107] 0.0469 triglycerides + 0.01678 brassicasterol + 0.3518 Protein + 0.3089 fibers + 0.2756 sugars 
→ 1 biomass

Table 4.6 : Stoichiometric equations used for leaf biochemical model
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4.2.2 Results and Discussion
The  preliminary  analysis  was  carried  out  to  check  the  stoichiometry  of  all  participating 

reactions. It revealed 4 sets of cyclic reactions, all of them involved the energy components 

such as ATP, ADP, Pi, NADH, H+/NADPH, H+, etc. 

They  are  schemed  in  Figure  4.3  revealing  their  cyclic  nature  and  described  below  as  4 

relations: 

Relation: 1 (involving 4 reactions) [1 R27 -1 R38 + 1 R42 + 1 R43 = 0]

[R27]  1 coenzymeA + 1 pyruvate + 1 NAD+→1 acetylcoA + 1 NADH + 1 H+ +1 CO2

 [R38]   1 NAD+ + 1 NADPH  ↔1 NADH + 1 NADP+

  [R42]  1 NADPH + 1 H+ + 1 CO2 ↔ 1 NADP+ + 1 formate 

[R43]  1 acetylcoA + 1 formate ↔ 1 coenzymeA + 1 pyruvate 

Relation: 2 (involving 5 reactions) [-1 R10 -1 R11 + 1 R15 + 1 R16 + 1 R21 = 0]

  [R10]  1 G3P + 1 DHAP ↔ 1 FBP

  [R11]  1 FBP + 1 H2O → 1 F6P + 1 Pi

  [R15]  1 DHAP + 1 E4P↔1 SBP

  [R16]  1 SBP + 1 H2O  → 1 S7P + 1 Pi

  [R21]  1 G3P + 1 S7P ↔  1 F6P + 1 E4P

Relation: 3 (involving 6 reactions)  [1R20 + 1 R22 -0.5 R36 -0.5 R37 -0.5 R44 + 0.5 R45 =0]

[R20]  1 G6P + 1 H2O → 1 glucose + 1 Pi

[R22]  1 glucose + 1 ATP →1 G6P + 1 ADP

[R36]  1 PPi + 1 H2O ↔  2 Pi

[R37] 1 AMP + 1 ATP ↔ 2 ADP

 [R44]  1 coenzymeA + 1 acetate + 1 ATP↔ 1 acetylcoA + 1 PPi + 1 AMP

[R45]  1 coenzymeA + 1 acetate ↔  1 acetylcoA + 1 H2O

Relation: 4 (involving 6 reactions)  [1R11 + 1R23 -0.5 R36 -0.5 R37 -0.5 R44 + 0.5 R45 = 0]

 [R11]  1 FBP + 1 H2O → 1 F6P + 1 Pi

 [R23] 1 F6P + 1 ATP→1 FBP + 1 ADP

[R36] 1 PPi + 1 H2O ↔  2 Pi

 [R37] 1 AMP + 1 ATP ↔  2 ADP

 [R44]  1 coenzymeA + 1 acetate + 1 ATP ↔  1 acetylcoA + 1 PPi + 1 AMP

[R45]  1 coenzymeA + 1 acetate ↔ 1 acetylcoA + 1 H2O

However,  elementary  flux  mode  calculations  do  not  be  perturbed  as  a  result  of  cyclic 

reactions, while metabolic flux analysis does. But, MFA overcome this, when the constraints 
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are applied in terms of relations for the equations involved in the cyclic reactions which will 

be explained later.
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Figure 4.46: Cyclic reactions involved in the leaf metabolic network

4.2.2.1 Elementary flux mode analysis
Elementary flux mode analysis  provided a  way to systematically  identify sets  of  relevant 

pathways of leaf metabolic network (Schuster et al., 1999, 2002; Trinh, 2009). They are the 

simplest (steady-state) flux distribution and metabolic routes that a metabolic network can 

show. The elementary flux modes for the leaf network were calculated using METATOOL 

5.1 (von Kamp and Schuster, 2006; Klamt et al., 2005; Pfeiffer et al., 1999; Schuster et al., 

2000; Urbanczik and Wagner, 2005). 

There  were  202  EFMs  in  total,  in  which  186  EFMs  were  strictly  linked  to  biomass 

production; this large number of EFMs illustrates the complexity of the high level connections 

within the network. However, we have classified these EFMs into 4 main groups based on the 

nature  of  inputs  and outputs.  The first  2  groups of  EFM pathways  involve the  pathways 
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utilising cyclic and noncyclic photophosphorylation of light energy. The third group of EFMs 

shows relatively small, but possible futile pathways. They are not directly linked to energy 

metabolism,  but  related  to  the  energy  metabolites  like  phosphate,  Pi  and  maintain  the 

metabolic  network.  Fourth  group stands  for  biomass  production;  186  EFMs of  4th group 

reveals  186 possibilities  to  obtain  the  leaf  biomass.  This  is  the  case,  where  we consider 

thermodynamic (reversibility/irreversibility) constraints; in the absence of these constraints, 

the metabolic network provided 1632 EFMs in which almost 1500 pathways account biomass 

production. 

However, Group [1] contains 4 EFMs: EFM 1, EFM 2, EFM 3 and EFM 4 in the list of 

elementary flux obtained (see below); same for Group [2] and [3]. Group [4] contains 186 

EFMs involving biomass production and it was difficult to express, as each EFM contains 

hundreds of equations; therefore, the EFMs involved are given in the appendix. 3.

Group [1] contains 4 EFMs = [1 2 3 4] involving cyclic photophosphorylation

Group [2] contains 8 EFMs = [5 6 7 8 9 10 11 12] involving noncyclic photophosphorylation

Group [3] contains 4 EFMs = [13 14 15 16] involving futile cycles

The stoichiometric contributions of each reaction involved in the first three groups are given 

in Table 4.6. In the table, as Group [3] is formed as a result of cyclic reactions, the relations 

along with stoichiometris are mentioned, while the stoichiometries involved for Group [4] is 

not shown as it was complicated to calculate. 
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Table  4.47 : Stoichiometries involved in different groups of EFMs  ‘-‘sign indicates the 
energy consumption. The relations for Group [3] are found from paragraph 4.2.2 

4.2.2.2 Metabolic flux analysis

While  analysing  flux  distribution  of  leaf  metabolic  network,  4  degrees  of  freedom were 

detected. Furthermore,  the  preliminary  analysis  has  shown 4  cyclic  reactions  without  the 

breaking of which (the cyclic effect) could give wrong results, as they are associated with the 

energy metabolites like phosphates. 

It  is reported that cyclic  photophosphorylation happens only 10% compared to non cyclic 

photophosphorylation  (Reeves  and Hall,  2003).  From this  knowledge,  we have  applied  a

constraint  which  correlates  cyclic  (R1)  and  non  cyclic  photophosphorylation  (R2)  of  the 

metabolic network: 1 R2 - 9 R1 = 0.

Similarly, the ATP production ratios associated with FADH2 and NADH, H+ of mitochondrial 

oxidative phosphorylation was also linked: 3 R3 -2 R4 = 0. 

These constraints in terms of energy metabolites make much difference in the flux distribution 

which automatically break the effects of cyclic reactions (as they associated with the energy 

Group 1 Stoichiometries involved (Cyclic) Energy inputs
1 2 R1 + 2 R20 + 2 R22 -6 hv700

2 2 R1 + 2 R11 + 2 R23 -6 hv700

3 2 R1 + 1 R36 + 1 R37 + 1 R44 - 1 R45 -1 hv700

4 2 R1 - 2 R10 + 2 R15 +2 R16 + 2 R21 + 2 R23 -6  hv700

Group 2 Stoichiometries involved (Non cyclic) Energy inputs
5 0.375 R2 + 0.375 R4 + 2 R20 + 2 R22 + 0.375 R38 -0.75 hv700 -0.75 hv680

6 0.375 R2 + 0.375 R4 + 2 R11 + 2 R23 + 0.375 R38 -0.75 hv700 -0.75 hv680

7 1.5 R2 + 1.5 R4 + 2 R36 + 2 R37 + 1.5 R38 + R44 + R45 -3 hv700 -3 hv680

8 0.375 R2 + 0.375 R4 +2 R20 + 2 R22 + 0.375 R27 + 0.375 
R42 + 0.375 R43

-0.75 hv700 -0.75 hv680

9 0.375 R2 + 0.375 R4 + 2 R11+ 2 R23 +0.375 R27 + 0.375 
R42 + 0.375 R43

-0.75 hv700 -0.75 hv680

10 0.375 R2 + 0.375 R4 – 2 R10 + 2 R15 + 2 R16 + 2 R21 + 
2 R23 + 0.375 R38

-0.75 hv700 -0.75 hv680

11 1 R2 + 1 R4 + 1 R27 + 5.33 R36 + 5.33 R37 + 1 R42 + 
1 R43 + 5.33 R44 -5.33 R45

-2 hv700 -2 hv680

12 0.375 R2 +0.375 R4 -2 R10 + 2 R15 + 2 R16 + 2 R21 + 
2 R23 + 0.375 R27 + 0.375 R42 + 0.375 R43

-0.75 hv700 -0.75 hv680

Group 3 Stoichiometries involved (Futile pathways) Not directly linked to 
energy

13 1 R27 -1 R38 + 1 R42 + 1R43 = 0 Relation 1
14 1 R11 + 1 R23 – 0.5 R36 – 0.5 R37 – 0.5 R44 + 0.5 R45 = 0 Relation 4
15 1 R20 + 1 R22 – 0.5 R36 – 0.5 R37 – 0.5 R44 + 0.5 R45 = 0 Relation 3
16 1 R10 - 1R15 -1 R16 -1 R21 – 1 R23 + 0.5 R36 + 0.5 R37 + 

0.5 R44 -0.5 R45 = 0
Relation 2 + 4
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molecules); in addition,  the usage of these constraints eliminates four degrees of freedom. 

Thus, as a matter of fact, P/O ratio and P/2e- ratio were fixed. Hence, only one experimental 

value in terms of input or output is needed in order to predict the biomass output.

Figure 4.47: Flux distribution for leaf model 

For example, if 0.978 mole of CO2 is used as an input for the entire culture of lettuce plants,

the  amount  of  other  exchangeable  metabolites  (the  required  amounts  of  light  energy, 

nutrients,  etc.)  involved can  be  predicted  along with  the  flux distribution  (Figure 4.4)  as 

shown below: 

hν700 = -5.64 µmol/S; hν680 = -4.84 µmol/S; H2S = -0.00175 µmol/S;

HNO3 = -0.0975 µmol/S; O2 = 1.19 µmol/S; H2O = -0.769 µmol/S;

Biomass = 0.978 µmol/S, where Biomass = C H 1.67 O 0.6469 N 0. 099 S 0.0018.

Flux distribution values for reactions participated in the leaf model are given in the appendix 

4. From Figure 4.4, we can see that the reactions are not thermodynamically violating and 
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hence, satisfying the normal behaviour of leaf metabolic network. In the same way, the leaf 

metabolic model can be validated by comparing it with the available experimental data.

4.3Comparison and verification with the 
experimental data 

Very few experimental data were available to validate the leaf metabolic model of lettuce. 

The percentage  of  the  biomass  components  varies  according to  the  plant  species  and the 

environmental  condition  where  it  grows.  The leaf  biomass  composition  was  necessary to 

predict  the  in  vivo flux  distribution  of  lettuce  leaves.  Due  to  the  unavailability  of  plant 

composition of lettuce grown in controlled environments, the plant composition was taken 

from  Int.  ref.  6  as  mentioned  before.  As  the  cellular  composition  changes  with  the

environmental  conditions,  it  was  important  to  consider  the  differences  in  input  output 

metabolite (nutrient) fluxes along with the biomass composition. However, using Int. ref. 6, 

the  following  stoichiometric  equation  was  proposed  to  describe  the  model  after  the 

application of constraints in the forms of P/2e- and P/O ratios.

If one mole of CO2 is consumed by the plant of dry biomass, C H 1.67 O 0.6469 N 0. 099 S 0.0018:

0.0017 H2S + 0.797 H2O + 0.097 HNO3 + 5.83 hυ700 + 5 hυ680 + CO2 → Biomass + 1.22 O2, 

where molecular weight of biomass = 25.47 g/mol.

From the equation, 11 photons (in µmol) are required to produce one mole of dry biomass 

while 9 photons are necessary to produce one mole of oxygen; it matches with the earlier 

studies (Jorgensen and Svirezhev, 2004) which say the requirements: 10-12 photons for the

fixation of CO2 in biomass and 8-10 photons for O2 formation (Tredici, 2010). It is because 

of, what we have applied as the first constraint for the flux distribution (knowing the relative 

ratio of cyclic and non cyclic photophosphorylation).

Without applying the constraints itself, the EFM analysis already revealed the metabolically 

possible  pathways  involved  in  the  biomass  production,  excluding  the  cyclic 

photophosphorylation  reaction,  R1  (see  the  EFM  pathway  for  biomass  production  from 

appendix 3); besides, oxygen production depends on the noncyclic photophosphorylation, R2.

Nevertheless, the above metabolic equation for biomass production reveals the importance of 

cyclic photophosphorylation. The whole photons absorbed by the plants cannot be directly 

used  for  biomass.  Some  of  them wasted  as  heat  or  fluorescence;  for  example,  the  small

pathways such as the EFMs of group [1, 2 and 3] (Table 4.6). Due to the energy costs in 

maintenance processes like concentration gradients across the cell wall, futile cycles, transport 
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costs, etc., the energy consumption and production metabolites (ATP, NADPH/NADH) were 

assumed as non exchangeables and that is why, the above equation for biomass production 

does not account energy. 

4.3.1 Global estimation considering final experimental data
From experiments of lettuce grown in controlled environment, the experimental data, average 

dry biomass weights for initial and final stages of one plant are collected. 

Initial weight of the plant after seedling (in dry weight) = 1.5 g

Final weight at the end of the culture (in dry weight) = 24.9 g

Biomass production at the end of the culture = 24.9 -1.5 = 23.4 g 

From the Guelph chamber measurements where the lettuce grown, the carbon and nitrogen 

consumed per plant for the entire experimental culture were: 

Total carbon consumed per plant (as measured) = 0.978 mol

Total nitrogen consumed per plant (as measured) = 0.069 mol

According to the model performance, if 0.978 mol of CO2 is used as an input, 0.978 C mol of 

biomass will be getting as output respecting the stoichiometric balance (C H 1.67 O 0.6469 N 0. 099 S 

0.0018).  But,  as the experimental  biomass  composition  was not available,  it  was difficult  to 

validate the metabolic model very well. However, the first validation has been done using Int. 

ref. 6, 

Total biomass (in moles) at the end of the culture = 23.4g ~ 0.918 mol (instead of 0.978 mol), 

since the molecular weight of the biomass is 25.47 g/mol. 

Thus, differences in carbon and nitrogen contents in the biomass predictions have been clearly 

observed;  thus,  the  predicted  values  were  found  to  be  relatively  higher  than  that  of  the 

experimental values.

The third column of Table 4.7 indicates the model predictions: if CO2  accumulation (0.978 

moles) per plant for the entire culture is used as the input, according to the model predictions, 

0.0975 moles of nitrate is necessary (as per biomass stoichiometry) which is relatively higher 

than what observed from experimental data 0.069 moles. If the biomass production at the end 

of the culture (23.4/25.47 = 0.918 moles) is used as input for the metabolic model (fourth

column), nitrate accumulation in biomass must be 0.0915 moles, far from the experimental 

nitrogen accumulation. Thus, obviously the biomass composition details of leaves grown in 
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controlled  chambers  along with the  rest  of  the experimental  data  are  needed for  accurate 

model validations. 

Table 4.48: Model predictions. ‘+ sign’ indicates output components while ‘– sign’ indicates 
input components 1) if CO2 accumulation in the biomass is used as an input 2) if Biomass 
production is used as an input

From the dry biomass experiments, the carbon and nitrogen contents are listed.

C content in the final dry biomass = 0.7467 mole

N content in the final dry biomass = 0.0665 mole

Oxygen produced during the entire culture from the chamber experiments = 0.7679 mole

No. Exchangeables Stoichiometric 
coefficients when CO2 

measured value as input 
is fixed (in mole)

Stoichiometric 
coefficients 

when biomass 
measured value 

as output is 
fixed (in mole)

1 Oxygen release +1.19 +1.12
2 H2S accum -0.0018 -0.0017
3 H2O accum -0.769 -0.722
4 NO3 accum -0.0975 -0.0915
5 Photon (light 

energy) used
1. hν680

2. hν700

-4.84
-5.64

-4.54
-5.3

6 Biomass +0.978 +0.918
7 CO2 accum -0.978 -0.918
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Using these experimental data and model predictions of Table 4.7, yields were calculated as 

in Table 4.8.

No. Yield 
substrate/biomass

(predicted) mole of 
substrate/mole of 
carbon in biomass

(experimental) mole  of 
substrate/mole of 
carbon in biomass

1 Oxygen release 1.22 1.028
2 NO3 uptake 0.099 0.089

Table 4.49: Experimental and predicted yields

4.3.2 Time course analysis of mass balanced data
The amounts of nitrogen and carbon accumulation in the biomass with respect to time during 

lettuce growth culture were calculated from the supplied and disappeared CO2 in the gas level 

of the closed chamber where lettuce has grown; hence, the carbon (input) accumulated in the 

biomass or used by the plant have been calculated. But, as we targeted to build leaf metabolic 

model,  it  was not possible to get the values only for leaves.  Hence,  we assumed that the 

lettuce leaves represent 75% of total biomass where root represent the rest (Table 4.10). The 

amount of nitrate accumulated in the plant is also indicated in the table, knowing the supplied 

and disappeared nitrate levels in the hydroponics solution of the lettuce culture. Hence, the 

model was expected to validate the biomass production and nitrogen accumulation (outputs), 

when we imply the carbon consumed/accumulated in the leaves (input).

I.e. carbon accumulation (input)  nitrogen accumulation in the biomass (output) + Biomass 

(output)

For this validation, it was required to imply the exact dry biomass composition of lettuce into 

the  metabolic  model,  the  same  which  has  grown in  the  closed  and controlled  chambers. 

However,  as  we  said  earlier,  we  have  taken  it  from  Int.  ref.  6.  Using  the  carbon  input 

(experimental value) in the model, the exact biomass and nitrogen accumulated in the biomass 

were predicted (Table 4.9).

Time 

(days)

Expt 

Carbon 

accu

(mol)

Expt

Nitrogen

accu 

(mol)

Expt

dry wt

biomass 

(g)

Expt

dry wt 

biomass

(mol)

Predicted

biomass

(mol)

Predicted 

biomass 

(g)

Predicted

Nitrogen 

accu 

(mol)
16/06/2004 0.0569 No data 1.125 0.044 0.0563 1.43 0.0054
23/06/2004 0.0998 0.0067 No data No data 0.0998 2.54 0.0096
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30/06/2004 0.2498 0.0165 No data No data 0.2498 6.36 0.024
07/07/2004 0.428 0.0293 No data No data 0.428 10.88 0.041
14/07/2004 0.585 0.0413 No data No data 0.585 14.89 0.0561
21/07/2004 0.759 0.051 18.675 0.733 0.758 19.29 0.0726

Table 4.50 : Experimental and predicted data comparison

Figure 4.48 : Comparing predicted and experimental biomass

The experimental and the predicted biomass values are increasing in the same manner with 

time (Figure 4.5). The predicted final biomass value is very close to the experimental value.
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Figure 4.49 : Comparing predicted and experimental nitrogen amount in the biomass

The predicted and experimental nitrogen accumulation in the biomass was not found exactly 

matching (Figure 4.6). The disagreement may be probably due to the following reasons: 

• The equation that is used (Int. ref. 6) for the biomass composition may be violating 

with  the  actual  biomass  composition  of  lettuce  grown  in  Guelph  experimental 

chambers.  We do not know where and in what environmental  condition they were 

grown.

• Due to the absence of stem and root models in the metabolic network: we have taken 

only an approximation- 75% of the dry biomass represents leaf biomass. 

• Usually,  the  nutrients  like  nitrate  enters  root  cells  from  the  hydroponics  culture 

solution is either reduced to ammonium for amino acid synthesis in the root cell and 

exported to the shoot as amino acids, or transported directly to the shoot as nitrate. 

Export from root to shoot occurs in the xylem stream. Nitrate transported to the shoot 

is converted to ammonium and then amino acids in chloroplasts. In most plants, the 

main transported amino acids are glutamine and asparagines; their  composition we 

used for  the model  was also an approximation.  Moreover,  nitrogen assimilation  is

regulated at many levels and at many stages in the growth process.
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• The difference in water  contents of fresh biomass:  the lettuce  grown in controlled 

chambers  were  found  93%  of  it  contains  water,  while  the  biomass  composition 

equation that used in the model assumes 95%.

Nevertheless,  the  results  obtained  can  be  considered  as  the  first  step  of  the  biochemical 

model, since, in the case of lettuce, the leaves predominate both in the biochemical model and 

in the edible biomass level.

4.4General propositions for more accurate 
metabolic model validation

For general metabolic model, similar to leaf model, separate metabolic models for different 

organs are some of the minimum requirements. In addition to this, the biomass compositional 

changes during each growth phase can also be taken into account (if possible), it may help, if  

someone has keen interest to predict at a particular point of growth or period of time what 

happens or what can be happened, what may be the exact situation, etc. in terms of growth,

quality  and  composition  of  food.  However,  depending  on  the  plant  physiology  and 

morphology, these requirements can vary slightly. 

Further essential demands are from dry biomass experiments:

• Biomass  composition-  the  exact  biomass  composition  along  with  protein,  lipid, 

chlorophyll, carbohydrate, nucleic acids, etc. 

• For stem model, xylem and phloem composition and for root model, root composition 

is required.

• Differentiate  the plant  composition for leaf,  root,  stem, fruit,  etc.  so that  it  can be 

applied for each specific organ metabolic model, if required. This could be coupled 

later  after  understanding  the  rest  of  the  metabolical  and  physical  mechanisms 

depending on which type of plant is needed to be modelled.

Up to a great extent, plant growth rate depends on the biomass rate regulated by the rates of 

substrate  uptake.  Strong  correlations  exist  between  growth  rate,  whole  plant  canopy, 

photosynthetic, respiration and transpiration rates. Therefore, along with the above mentioned 

requirements, the experimental data that we have used for our model validation (i.e. the rate 

and quantity of input and output metabolites) are also needed.
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4.5Conclusion 
For the first step of the plant biochemical model,  leaf metabolic model is established and 

compared with lettuce plants grown in controlled chambers of Guelph University. Taking the 

carbon  accumulation  amount  in  the  biomass  as  input,  the  metabolic  model  predicted  the 

quantity of biomass; it is compared with the actual biomass obtained at the end of the culture. 

The graphs plotted for the predicted biomass and experimental biomass were found matching. 

But, the predicted values and experimental values of nitrogen accumulation in the biomass 

were not so much satisfying; in fact, the predicted values were much higher than the measured 

values. The possible reasons are explained. More experimental values are required in terms of

biomass composition, nitrogen accumulation in biomass, oxygen release and carbon source 

transport/concentration  in  each  organ  level  to  achieve  the  whole  biochemical  modeling, 

including root model and stem model.  However, agreeing the data limitations we had, the 

results  found were satisfying and promising for the first attempt of leaf metabolic  model. 

Moreover,  the  model  also  calculates  metabolic  fluxes  and  other  interesting  features  like 

hormone signaling which are hidden in the large EFMs of biomass production pathways and 

makes certainly far predictive method for metabolic studies and modeling for other areas of 

biology. For the designed general plant growth model, this model  enabled us to couple and 

validate  the  biochemical  perturbations  and  energy  exchange  with  respect  to  physical 

limitations  (e.g.  light  availability),  thus  provided,  the  link  between  matter  and  energy

exchange laws of the physical mechanisms in addition to the biomass growth and composition 

exploration.

For MELiSSA loop target, taking our first attempt as an example, the complete biochemical 

model when it will be developed and coupled to establish the overall model of higher plant 

growth, the biochemical  model  will  play a major role as it  can predict  not only the final 

biomass,  but also,  the time-course level  of plant  growth, the required inputs for the plant 

growth, in terms of light energy consumption, amount of CO2, nutrients, etc. connecting with 

the physical mechanisms of plant growth factors. Hence, along with all these, the biomass and 

oxygen production for the crew can be predicted, knowing by which the fluxes from other 

compartments of MELiSSA loop can be controlled and managed.

4.6Main outcomes of Chapter 4
- The first level modelling described in chapter 3 allowed, the second level modelling of 

metabolism.
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- The leaf metabolic model was constructed for lettuce leaves; hence, in addition to the 

central carbon metabolism, protein, lipid and carbohydrate formations were added.

- The constructed leaf metabolic network was analysed; EFM and MFA gave possible 

pathways and flux distribution for biomass production. 

- Using the data from Guelph experiments (CESRF) and USDA [Int. ref. 6], the mass 

balanced leaf model was compared and data reconciliation has been done. 

- Variation  is  found  for  experimental  and  model  prediction  regarding  nitrogen 

accumulation  in  biomass.  The  possible  reasons  for  this  deviation  and  general

propositions for more accurate metabolic model validation are suggested. 
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Conclusion and perspectives
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Conclusion and perspectives
The initial  objective of this thesis was to construct a general biochemical model for plant 

growth containing  different  sub  models  for  plant  organs,  in  order  to  connect  it  with  the 

designed  plant  growth  model  of  MELiSSA  loop  concept.  From  various  modelling

methodologies,  appropriate  metabolic techniques which use mass balance and steady state 

approaches  were  selected,  satisfying  preliminary  MELiSSA  loop  model  concept  of  any 

continuous system. Then, there were two levels of metabolism to be modelled: central carbon 

metabolism and the secondary metabolism relating global reactions producing biomass from 

basic constituents.

One  challenge  that  became  immediately  apparent  in  the  initial  stages  of  this  study  was 

associated with the localisation of metabolites, thermodynamics, the physiological condition, 

etc. in specific compartments within the plant cell. That was solved using recent studies found 

from various literatures. The case study involving a compartmentalised stoichiometric model 

of plant metabolism may provide new insights to other plant biologists. The analysis showed

the secrets hidden under different compartments: the analysis in central carbon metabolism, 

the  study  using  EFM  and  MFA  techniques  revealed  the  importance  of  thermodynamic 

constraints in the energy metabolism model. Without the usage of constraints, the EFM as 

well  as MFA analysis  on the network system under consideration will  give wrong result. 

Therefore, the biochemical knowledge of complexes and at what physiological condition they 

are  involved,  etc.  in  a  metabolic  system must  be known.  Luckily,  most  of  the  metabolic 

pathways were already known (e.g. Calvin cycle, Krebs cycle), and the rest are probably on 

the way. Assuming various physiological conditions in the energy level (ATP4-, NADH/H+, 

NADPH/H+), the metabolic flux analysis successfully predicted which complexes could be 

affected, if there is a lack of energy in the cell level; also at normal conditions, what will be

the proportional rate of reactions. The proportional rates are predicted from the EFM results; 

also it provided the thermodynamically and metabolically feasible pathways, if we subject to 

analyse a system of stoichiometric metabolic equations in the form of matrices. It describes 

how  our  method  has  been  fruitfully  employed  to  model  the  metabolism  in  various 

compartments.  Depending  on  the  direction  of  reactions  in  terms  of  reversibility  or 

irreversibility we provide, the metabolic analysis result will change. 

As a preliminary step of the initial aim of our thesis, the leaf model is successfully constructed 

for lettuce plant leaves. The constructed leaf model is applicable only for lettuce plants, as the 
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biomass composition, including protein, lipid and carbohydrate formation for lettuce leaves 

were included in the model. Usually, leaf model alone is not sufficient for model validation, 

as the biochemical model, which itself is a sub model in the designed plant growth model for 

MELiSSA loop. It is incomplete due to the absence of stem and root models, and by the time 

being, it was not possible to build them due to the absence of available data. 

Directions for the future

• The metabolic methods used for the modelling or small network studies can be used 

for purposes (e.g. medicinal) other than plant modelling and experimental validations. 

It  can  provide  promising  results.  This  can  also  make  more  interesting,  if  isotopic

labelling can be done, at least in the case of simple network studies.

• The  modelling  approach  for  the  plant  model  can  be  attained  once  root  and  stem 

metabolic models are available, and knowing the carbon source contents in organ level

to connect all of the three models (in the case of lettuce). So, isotopic label studies are 

necessary in order to connect leaf and root sub models.

• For other type of plants having storage organ at roots or branches will have different

morphology and the biochemical model will be different, although the central carbon 

metabolism will be the same.

• It is necessary to study and develop each and every plant model separately, those are

aimed to cultivate in the controlled chambers of MELiSSA loop.

• Though our model is aimed for plants grown in life support system, the same type of 

models can be used in the area of agriculture, where plants grow in greenhouses. 

The main conclusion of this thesis is that, though higher plant growth modelling was found 

difficult  at  the  very  beginning,  the  theories  hidden  in  the  metabolism along  with  recent 

metabolic techniques/studies helped to establish the leaf metabolic model. The results were 

found satisfying and promising for the first step of plant biochemical model, even though we 

had  data  limitations.  Also,  the  EFM  results  showed  that  the  metabolic  knowledge  with 

thermodynamical directions can aid in predicting the metabolic routes of biomass product, the 

technique described here can be used more generically as it enlightens metabolic studies and 

modeling  for  other  areas  of  biology.  Any attempt  to  construct  a  stoichiometric  model  of 

eukaryotic system, particularly higher plants may not be complete, if this property has not 

been well addressed. Among the large number of publically available metabolic techniques,

our  approach may significantly contribute  to  the  identification  of  new pathways  in  many 

different eukaryotic systems. 
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For the designed general plant growth model, this model  enable to couple and validate the 

plant biochemical perturbations and energy exchange with respect to physical limitations (e.g. 

light availability), thus it links matter and energy exchange laws of the physical mechanisms 

in addition to the biomass growth and composition exploration. Considering MELiSSA loop, 

when the complete biochemical model will be coupled to the designed model of higher plant 

growth,  the  biochemical  model  will  play  a  major  role,  as  it  can  connect  directly  to  the 

prediction of plant growth requirement factors (light energy consumption, amount of CO2, 

nutrients,  etc.)  as  well  as  human  requirement  factors  (CO2 release,  biomass  and  oxygen

consumption), knowing by which the fluxes from other compartments of MELiSSA loop can 

be  controlled  and  managed. Thus,  the  approach  we  used  for  this  thesis  along  with  the 

designed model for plant growth surely fulfil our target of controlling and predicting plant 

growth for human survival during long term space missions. Further, the modelling concept 

can  be  used for  the  agricultural  purposes,  as  greenhouses  are  very common in  industrial 

levels.
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Appendices





a. List of URLs used
For the construction of leaf metabolic network, familiar metabolic reactions and pathways for 

plants  such  as  Calvin  cycle,  glycolysis,  Krebs  cycle,  pentose  phosphate  pathway, 

carbohydrate metabolism, amino acid metabolism, lipid metabolism, etc.  are adapted from

biological data bases, AraCyc, KEGG, MetaCyc and PlantCyc. Most of the metabolites were 

in the reduced or charged form. 

AraCyc http://www.arabidopsis.org/biocyc/index.jsp, consulted on 10/6/2009
KEGG http://www.genome.jp/kegg/kegg1.html, consulted on 25/4/2009
MetaCyc http://metacyc.org/ consulted on 12/7/2009
PlantCyc http://www.plantcyc.org/, consulted on 29/8/2009

I



b. List of metabolites used in the leaf 
metabolic model

The below listed metabolites can be found from Table 4.6.

10-formylTHF 10-Formyltetrahydrofolate
1-3BPGA 1,3- bisphospho-D-glycerate
2PGA 2-phospho-D-glycerate
3PGA 3-phospho-D-glycerate
5p-ribosyl-1-pp 5-phospho-alpha-d-ribosyl 1-pyrophosphate 
AcCoA Acetyl-CoA
ADP Adenosine diphosphate
AMP Adenosine monophosphate
ATP Adenosine-triphosphate
CH2=THF Methyltetrahydrofolate
CH3THF 5-formyl-tetrahydrofolate
cisaconitate Cis aconitate
CO2 Carbon dioxide
DHAP Dihydroxyacetone phosphate
E4P D-erythrose-4-phosphate
F6P D-fructose-6-phosphate
FAD Flavine adenine dinucleotide (oxidised form)
FADH2 Flavine adenine dinucleotide (reduced form)
FBP D-fructose-1,6-bisphosphate
G1P D-glucose 1-phosphate
G3P Glyceraldehyde-3-phosphate
G6P D-glucose 6-phosphate
g-linolenate Gamma-linolenate
glycerol3P Glycerol 3-phosphate
H+ Hydrogen ion 
H2O Water
H2S Hydrogen sulphide
HNO3 Nitrate 
hν680 Photon of light at 680 nm
hν700 Photon of light at 700 nm
malate L-malate
methenylTHF 5,10-methenyltetrahydrofolate
NAD+ Nicotinamide adenine dinucleotide
NADH, H+ Nicotinamide adenine dinucleotide (reduced form)
NADP+ Nicotinamide adenine dinucleotide phosphate

II



NADPH, H+ Nicotinamide adenine dinucleotide phosphate (reduced form)

NH3 Ammonia
O2 Dioxygen (molecular oxygen)
oxoglutarate 2-oxoglutarate or 2-ketoglutarate
PEP Phosphoenolpyruvate
Pi Inorganic phosphate
PPi Pyrophosphate
R5P Alpha-D-ribose 5-phosphate
RBP Ribose 1,5-bisphosphate
Ru5P D-ribulose 5-phosphate
RuBP D-ribulose 1,5-bisphosphate
S7P Sedoheptulose 7-phosphate
S-ade-methionine S-Adenosyl-L-methionine
S-ad-homocysteine S-Adenosyl-L-homocysteine
SBP Sedoheptulose-1,7-bisphosphate
THF Tetrahydrofolate
UDP Uridine-diphosphate

UDP-glucose 
Uridine 5'-(trihydrogen diphosphate) 

alpha-D-glucopyranosyl ester
UMP Uridine-monophosphate
Xu5P D-xylulose 5-phosphate

III



c. Elementary flux modes
Obtained Elementary flux modes 
EFMs are given in the order of serial number (of EFMs), thermodynamic direction, number of 

reactions  involved  in  each  EFM,  original  reactions  involved  in  the  EFM,  mass  balanced 

equation, etc.

1. Energy metabolism involving  cyclic photophosphorylation
1,0,3, R1 R20 R22, -6 * hv700

2,0,3, R1 R11 R23, -6 * hv700

3,0,5, R1 R36 R37 R44 R45, -1 * hv700

4,0,6, R1 R10 R15 R16 R21 R23, -6 * hv700

2. Energy metabolism involving  noncyclic photophosphorylation
5,0,5, R2 R4 R20 R22 R38, -0.75047 * hv700 -0.75047 * hv680

6,0,5, R2 R4 R11 R23 R38, -0.75047 * hv700 -0.75047 * hv680

7,0,7, R2 R4 R36 R37 R38 R44 R45, -3 * hv700 -3 * hv680

8,0,7, R2 R4 R20 R22 R27 R42 R43, -0.75047 * hv700 -0.75047 * hv680

9,0,7, R2 R4 R11 R23 R27 R42 R43, -0.75047 * hv700 -0.75047 * hv680

10,0,8, R2 R4 R10 R15 R16 R21 R23 R38, -0.75047 * hv700 -0.75047 * hv680

11,0,9, R2 R4 R27 R36 R37 R42 R43 R44 R45, -2 * hv700 -2 * hv680

12,0,10, R2 R4 R10 R15 R16 R21 R23 R27 R42 R43, -0.75047 * hv700 -0.75047 * hv680

3. Futile pathways
13,0,4, R27 R38 R42 R43,

14,0,6, R11 R23 R36 R37 R44 R45,

15,0,6, R20 R22 R36 R37 R44 R45,

16,0,9, R10 R15 R16 R21 R23 R36 R37 R44 R45,

4. Biomass production pathways
17,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 R25 

R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -6.0447 * hv700 -6.0447 * hv680 -0.0022055 * H2S -0.12256 

* HNO3 -1.2293 * CO2 1.4981 * O2 -0.96619 * H2O 1.2293 * biomass

IV



18,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R24 R25 

R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -3 * hv700 -3 * hv680 -0.0010946 * H2S -0.060825 * HNO3 

-0.61011 * CO2 0.7435 * O2 -0.47952 * H2O 0.61008 * biomass

19,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 R25

R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -117.0719  *  hv700  -117.0719  *  hv680  -0.042715  *  H2S 

-2.3736 * HNO3 -23.8089 * CO2 29.0144 * O2 -18.7127 * H2O 23.8077 * biomass

20,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R24 R25 

R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -117.0719  *  hv700  -117.0719  *  hv680  -0.042715  *  H2S 

-2.3736 * HNO3 -23.8089 * CO2 29.0144 * O2 -18.7127 * H2O 23.8077 * biomass

21,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 R25 

R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -100.489 * hv700 -100.489 * hv680 -0.036665 * H2S -2.0374 

* HNO3 -20.4364 * CO2 24.9046 * O2 -16.0621 * H2O 20.4354 * biomass

22,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R24 R25 

R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

V



R103 R104 R105 R106 R107, -100.489 * hv700 -100.489 * hv680 -0.036665 * H2S -2.0374 

* HNO3 -20.4364 * CO2 24.9046 * O2 -16.0621 * H2O 20.4354 * biomass

23,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -302.3506 * hv700 -302.3506 * hv680 -0.10959 * H2S -6.0896

* HNO3 -61.0822 * CO2 74.437 * O2 -48.0079 * H2O 61.0792 * biomass

24,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -522.8696  *  hv700  -522.8696  *  hv680  -0.19005  *  H2S 

-10.5606 * HNO3 -105.9292 * CO2 129.0891 * O2 -83.2556 * H2O 105.9239 * biomass

25,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 R25 

R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R44 R45

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -151.0142 * hv700 -151.0142 * hv680 -0.0551 * H2S -3.0618 

* HNO3 -30.7117 * CO2 37.4264 * O2 -24.1381 * H2O 30.7102 * biomass

26,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102

R103 R104 R105 R106 R107, -302.3506 * hv700 -302.3506 * hv680 -0.10959 * H2S -6.0896 

* HNO3 -61.0822 * CO2 74.437 * O2 -48.0079 * H2O 61.0792 * biomass

27,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

VI



R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -522.8696  *  hv700  -522.8696  *  hv680  -0.19005  *  H2S 

-10.5606 * HNO3 -105.9292 * CO2 129.0891 * O2 -83.2556 * H2O 105.9239 * biomass

28,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R24 R25 

R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102

R103 R104 R105 R106 R107, -151.0142 * hv700 -151.0142 * hv680 -0.0551 * H2S -3.0618 

* HNO3 -30.7117 * CO2 37.4264 * O2 -24.1381 * H2O 30.7102 * biomass

29,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S -0.10129 

* HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

30,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S -0.10322 

* HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

31,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

32,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

VII



R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

33,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

34,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

35,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S -0.10129 

* HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

36,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S -0.10322 

* HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

37,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44 R45 

VIII



R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S -0.10129 

* HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

38,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S -0.10322 

* HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

39,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

40,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

41,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44 R45

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

IX



42,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

43,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

44,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

45,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

46,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

X



R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S -0.10598 

* HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

47,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.309 * hv700 -5.309 * hv680 -0.0019243 * H2S -0.10693 *

HNO3 -1.0726 * CO2 1.307 * O2 -0.84298 * H2O 1.0725 * biomass

48,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.4011 * hv700 -5.4011 * hv680 -0.0019631 * H2S -0.10909 

* HNO3 -1.0942 * CO2 1.3335 * O2 -0.86002 * H2O 1.0942 * biomass

49,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 R45

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

50,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

51,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

XI



R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

52,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

53,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.309 * hv700 -5.309 * hv680 -0.0019243 * H2S -0.10693 * 

HNO3 -1.0726 * CO2 1.307 * O2 -0.84298 * H2O 1.0725 * biomass

54,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.4011 * hv700 -5.4011 * hv680 -0.0019631 * H2S -0.10909 

* HNO3 -1.0942 * CO2 1.3335 * O2 -0.86002 * H2O 1.0942 * biomass

55,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -100.6175  *  hv700  -100.6175  *  hv680  -0.036469  *  H2S 

-2.0265 * HNO3 -20.3272 * CO2 24.7715 * O2 -15.9763 * H2O 20.3262 * biomass

56,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

XII



R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.4011 * hv700 -5.4011 * hv680 -0.0019631 * H2S -0.10909 

* HNO3 -1.0942 * CO2 1.3335 * O2 -0.86002 * H2O 1.0942 * biomass

57,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

58,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -100.2108  *  hv700  -100.2108  *  hv680  -0.036563  *  H2S 

-2.0318 * HNO3 -20.3799 * CO2 24.8356 * O2 -16.0177 * H2O 20.3788 * biomass

59,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

60,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

61,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 R45 

XIII



R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

62,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

63,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

64,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S -0.11218 

* HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

65,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R45

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.3251 * hv700 -5.3251 * hv680 -0.0019301 * H2S -0.10725 

* HNO3 -1.0758 * CO2 1.311 * O2 -0.84553 * H2O 1.0757 * biomass

XIV



66,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.4178 * hv700 -5.4178 * hv680 -0.0019692 * H2S -0.10943 

* HNO3 -1.0976 * CO2 1.3376 * O2 -0.86267 * H2O 1.0976 * biomass

67,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

68,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

69,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

70,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

XV



R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

71,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -95.7345 * hv700 -95.7345 * hv680 -0.034699 * H2S -1.9282

* HNO3 -19.3407 * CO2 23.5693 * O2 -15.201 * H2O 19.3398 * biomass

72,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -95.574 * hv700 -95.574 * hv680 -0.034738 * H2S -1.9303 * 

HNO3 -19.3625 * CO2 23.5959 * O2 -15.2181 * H2O 19.3616 * biomass

73,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R45

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -1764.187  *  hv700  -1764.187  *  hv680  -0.63943  *  H2S 

-35.5323 * HNO3 -356.4091 * CO2 434.3331 * O2 -280.1218 * H2O 356.3913 * biomass

74,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102

R103 R104 R105 R106 R107, -95.574 * hv700 -95.574 * hv680 -0.034738 * H2S -1.9303 * 

HNO3 -19.3625 * CO2 23.5959 * O2 -15.2181 * H2O 19.3616 * biomass

75,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

XVI



R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

76,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

77,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

78,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

79,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

80,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

XVII



R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

81,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

82,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R45 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S -0.11253 

* HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

83,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.3176 * hv700 -5.3176 * hv680 -0.0019274 * H2S -0.1071 * 

HNO3 -1.0743 * CO2 1.3092 * O2 -0.84434 * H2O 1.0742 * biomass

84,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.41 * hv700 -5.41 * hv680 -0.0019664 * H2S -0.10927 * 

HNO3 -1.096 * CO2 1.3357 * O2 -0.86143 * H2O 1.096 * biomass

85,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R44 

XVIII



R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S -0.11237 

* HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

86,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S -0.11237 

* HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

87,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S -0.11237

* HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

88,0,100, R2 R3 R5 R6 R7 R8 R9 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S -0.11237 

* HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

89,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R44

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -3858.6376  *  hv700  -3858.6376  *  hv680  -1.3986  *  H2S 

-77.7163 * HNO3 -779.5397 * CO2 949.9752 * O2 -612.6837 * H2O 779.5005 * biomass

XIX



90,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.41 * hv700 -5.41 * hv680 -0.0019664 * H2S -0.10927 * 

HNO3 -1.096 * CO2 1.3357 * O2 -0.86143 * H2O 1.096 * biomass

91,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -97.9508 * hv700 -97.9508 * hv680 -0.035502 * H2S -1.9728 

* HNO3 -19.7885 * CO2 24.1149 * O2 -15.5529 * H2O 19.7875 * biomass

92,0,100, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -5.41 * hv700 -5.41 * hv680 -0.0019664 * H2S -0.10927 * 

HNO3 -1.096 * CO2 1.3357 * O2 -0.86143 * H2O 1.096 * biomass

93,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -3741.0928  *  hv700  -3741.0928  *  hv680  -1.365  *  H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

94,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

XX



R103  R104  R105  R106  R107,  -3741.0928  *  hv700  -3741.0928  *  hv680  -1.365  *  H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

95,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -7019.4181  *  hv700  -7019.4181  *  hv680  -2.5611  *  H2S

-142.3186  *  HNO3 -1427.538  *  CO2 1739.6494  *  O2  -1121.9818  *  H2O 1427.4663  * 

biomass

96,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R22 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -3741.0928  *  hv700  -3741.0928  *  hv680  -1.365  *  H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

97,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -3283.8674  *  hv700  -3283.8674  *  hv680  -1.1982  *  H2S 

-66.5803 * HNO3 -667.8396 * CO2 813.8535 * O2 -524.8924 * H2O 667.8061 * biomass

98,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103 R104 R105 R106 R107, -97.5626 * hv700 -97.5626 * hv680 -0.035597 * H2S -1.9781 

* HNO3 -19.8413 * CO2 24.1793 * O2 -15.5944 * H2O 19.8403 * biomass

99,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

XXI



R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -3283.8674  *  hv700  -3283.8674  *  hv680  -1.1982  *  H2S 

-66.5803 * HNO3 -667.8396 * CO2 813.8535 * O2 -524.8924 * H2O 667.8061 * biomass

100,0,100, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R17 R18 R19 R20 R21 R23 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 

R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 

R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83

R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 

R103  R104  R105  R106  R107,  -7019.4181  *  hv700  -7019.4181  *  hv680  -2.5611  *  H2S 

-142.3186  *  HNO3 -1427.538  *  CO2 1739.6494  *  O2  -1121.9818  *  H2O 1427.4663  * 

biomass

101,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R24 

R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -24.5661 * hv700 -24.5661 * hv680 -0.0089633 * H2S

-0.49808 * HNO3 -4.996 * CO2 6.0883 * O2 -3.9266 * H2O 4.9957 * biomass

102,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -117.0719 * hv700 -117.0719 * hv680 -0.042715 * H2S 

-2.3736 * HNO3 -23.8089 * CO2 29.0144 * O2 -18.7127 * H2O 23.8077 * biomass

103,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R44

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.489 * hv700 -100.489 * hv680 -0.036665 * H2S 

-2.0374 * HNO3 -20.4364 * CO2 24.9046 * O2 -16.0621 * H2O 20.4354 * biomass

XXII



104,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -302.3506 * hv700 -302.3506 * hv680 -0.10959 * H2S 

-6.0896 * HNO3 -61.0822 * CO2 74.437 * O2 -48.0079 * H2O 61.0792 * biomass

105,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -522.8696 * hv700 -522.8696 * hv680 -0.19005 * H2S 

-10.5606 * HNO3 -105.9292 * CO2 129.0891 * O2 -83.2556 * H2O 105.9239 * biomass

106,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R24 

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -151.0142 * hv700 -151.0142 * hv680 -0.0551 * H2S 

-3.0618 * HNO3 -30.7117 * CO2 37.4264 * O2 -24.1381 * H2O 30.7102 * biomass

107,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S 

-0.10129 * HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

108,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

XXIII



R102 R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S 

-0.10322 * HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

109,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S

-0.10129 * HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

110,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S 

-0.10322 * HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

111,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S 

-0.10129 * HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

112,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S 

-0.10322 * HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

113,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

XXIV



R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.0289 * hv700 -5.0289 * hv680 -0.0018227 * H2S 

-0.10129 * HNO3 -1.016 * CO2 1.2381 * O2 -0.7985 * H2O 1.0159 * biomass

114,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -5.1107 * hv700 -5.1107 * hv680 -0.0018576 * H2S 

-0.10322 * HNO3 -1.0354 * CO2 1.2618 * O2 -0.81377 * H2O 1.0353 * biomass

115,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

116,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

117,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

118,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

XXV



R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

119,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

120,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

121,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

122,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

123,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 

XXVI



R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

124,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

125,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

126,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

127,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R43 R44

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

XXVII



128,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

129,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

130,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R37 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.2273 * hv700 -5.2273 * hv680 -0.0019073 * H2S 

-0.10598 * HNO3 -1.0631 * CO2 1.2955 * O2 -0.83553 * H2O 1.063 * biomass

131,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107,  -5.309 * hv700 -5.309 *  hv680 -0.0019243 * H2S 

-0.10693 * HNO3 -1.0726 * CO2 1.307 * O2 -0.84298 * H2O 1.0725 * biomass

132,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

XXVIII



R102 R103 R104 R105 R106 R107, -5.4011 * hv700 -5.4011 * hv680 -0.0019631 * H2S 

-0.10909 * HNO3 -1.0942 * CO2 1.3335 * O2 -0.86002 * H2O 1.0942 * biomass

133,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107,  -5.309 * hv700 -5.309 *  hv680 -0.0019243 * H2S

-0.10693 * HNO3 -1.0726 * CO2 1.307 * O2 -0.84298 * H2O 1.0725 * biomass

134,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.4427 * hv700 -100.4427 * hv680 -0.036508 * H2S 

-2.0287 * HNO3 -20.3489 * CO2 24.7979 * O2 -15.9933 * H2O 20.3479 * biomass

135,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.6175 * hv700 -100.6175 * hv680 -0.036469 * H2S 

-2.0265 * HNO3 -20.3272 * CO2 24.7715 * O2 -15.9763 * H2O 20.3262 * biomass

136,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -5.4011 * hv700 -5.4011 * hv680 -0.0019631 * H2S 

-0.10909 * HNO3 -1.0942 * CO2 1.3335 * O2 -0.86002 * H2O 1.0942 * biomass

137,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

XXIX



R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.6175 * hv700 -100.6175 * hv680 -0.036469 * H2S 

-2.0265 * HNO3 -20.3272 * CO2 24.7715 * O2 -15.9763 * H2O 20.3262 * biomass

138,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -5.4011 * hv700 -5.4011 * hv680 -0.0019631 * H2S 

-0.10909 * HNO3 -1.0942 * CO2 1.3335 * O2 -0.86002 * H2O 1.0942 * biomass

139,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

140,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

141,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

142,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

XXX



R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

143,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

144,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

145,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

146,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.2108 * hv700 -100.2108 * hv680 -0.036563 * H2S 

-2.0318 * HNO3 -20.3799 * CO2 24.8356 * O2 -16.0177 * H2O 20.3788 * biomass

147,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 

XXXI



R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.2108 * hv700 -100.2108 * hv680 -0.036563 * H2S 

-2.0318 * HNO3 -20.3799 * CO2 24.8356 * O2 -16.0177 * H2O 20.3788 * biomass

148,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

149,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.2108 * hv700 -100.2108 * hv680 -0.036563 * H2S

-2.0318 * HNO3 -20.3799 * CO2 24.8356 * O2 -16.0177 * H2O 20.3788 * biomass

150,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.2108 * hv700 -100.2108 * hv680 -0.036563 * H2S 

-2.0318 * HNO3 -20.3799 * CO2 24.8356 * O2 -16.0177 * H2O 20.3788 * biomass

151,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R43 R44

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -100.2108 * hv700 -100.2108 * hv680 -0.036563 * H2S 

-2.0318 * HNO3 -20.3799 * CO2 24.8356 * O2 -16.0177 * H2O 20.3788 * biomass

XXXII



152,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

153,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

154,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R38 R39 R40 R41 R42 R43 R44 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5328 * hv700 -5.5328 * hv680 -0.0020187 * H2S 

-0.11218 * HNO3 -1.1252 * CO2 1.3712 * O2 -0.88436 * H2O 1.1251 * biomass

155,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1764.187 * hv700 -1764.187 * hv680 -0.63943 * H2S 

-35.5323 * HNO3 -356.4091 * CO2 434.3331 * O2 -280.1218 * H2O 356.3913 * biomass

156,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

XXXIII



R102 R103 R104 R105 R106 R107, -5.4178 * hv700 -5.4178 * hv680 -0.0019692 * H2S 

-0.10943 * HNO3 -1.0976 * CO2 1.3376 * O2 -0.86267 * H2O 1.0976 * biomass

157,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.3251 * hv700 -5.3251 * hv680 -0.0019301 * H2S

-0.10725 * HNO3 -1.0758 * CO2 1.311 * O2 -0.84553 * H2O 1.0757 * biomass

158,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.4178 * hv700 -5.4178 * hv680 -0.0019692 * H2S 

-0.10943 * HNO3 -1.0976 * CO2 1.3376 * O2 -0.86267 * H2O 1.0976 * biomass

159,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.7345 * hv700 -95.7345 * hv680 -0.034699 * H2S 

-1.9282 * HNO3 -19.3407 * CO2 23.5693 * O2 -15.201 * H2O 19.3398 * biomass

160,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -95.574 * hv700 -95.574 * hv680 -0.034738 * H2S 

-1.9303 * HNO3 -19.3625 * CO2 23.5959 * O2 -15.2181 * H2O 19.3616 * biomass

161,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

XXXIV



R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.7345 * hv700 -95.7345 * hv680 -0.034699 * H2S 

-1.9282 * HNO3 -19.3407 * CO2 23.5693 * O2 -15.201 * H2O 19.3398 * biomass

162,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -95.574 * hv700 -95.574 * hv680 -0.034738 * H2S 

-1.9303 * HNO3 -19.3625 * CO2 23.5959 * O2 -15.2181 * H2O 19.3616 * biomass

163,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

164,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

165,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

166,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

XXXV



R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.3617 * hv700 -95.3617 * hv680 -0.034794 * H2S 

-1.9335 * HNO3 -19.3937 * CO2 23.6339 * O2 -15.2426 * H2O 19.3927 * biomass

167,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

168,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S 

-0.11253 * HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

169,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S 

-0.11253 * HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

170,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.3617 * hv700 -95.3617 * hv680 -0.034794 * H2S 

-1.9335 * HNO3 -19.3937 * CO2 23.6339 * O2 -15.2426 * H2O 19.3927 * biomass

171,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

XXXVI



R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

172,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.3617 * hv700 -95.3617 * hv680 -0.034794 * H2S 

-1.9335 * HNO3 -19.3937 * CO2 23.6339 * O2 -15.2426 * H2O 19.3927 * biomass

173,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5504 * hv700 -5.5504 * hv680 -0.0020251 * H2S

-0.11253 * HNO3 -1.1288 * CO2 1.3756 * O2 -0.88717 * H2O 1.1287 * biomass

174,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

175,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.3617 * hv700 -95.3617 * hv680 -0.034794 * H2S 

-1.9335 * HNO3 -19.3937 * CO2 23.6339 * O2 -15.2426 * H2O 19.3927 * biomass

XXXVII



176,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

177,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -1752.7777 * hv700 -1752.7777 * hv680 -0.63953 * H2S 

-35.5375 * HNO3 -356.4621 * CO2 434.3976 * O2 -280.1635 * H2O 356.4442 * biomass

178,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -95.3617 * hv700 -95.3617 * hv680 -0.034794 * H2S 

-1.9335 * HNO3 -19.3937 * CO2 23.6339 * O2 -15.2426 * H2O 19.3927 * biomass

179,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3766.0043 * hv700 -3766.0043 * hv680 -1.365 * H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

180,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R22 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

XXXVIII



R102 R103 R104 R105 R106 R107, -3755.4576 * hv700 -3755.4576 * hv680 -1.365 * H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

181,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.3176 * hv700 -5.3176 * hv680 -0.0019274 * H2S

-0.1071 * HNO3 -1.0743 * CO2 1.3092 * O2 -0.84434 * H2O 1.0742 * biomass

182,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.41 * hv700 -5.41 * hv680 -0.0019664 * H2S -0.10927 

* HNO3 -1.096 * CO2 1.3357 * O2 -0.86143 * H2O 1.096 * biomass

183,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.3176 * hv700 -5.3176 * hv680 -0.0019274 * H2S 

-0.1071 * HNO3 -1.0743 * CO2 1.3092 * O2 -0.84434 * H2O 1.0742 * biomass

184,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -97.7838 * hv700 -97.7838 * hv680 -0.035541 * H2S 

-1.975 * HNO3 -19.8102 * CO2 24.1414 * O2 -15.57 * H2O 19.8092 * biomass

185,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

XXXIX



R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3766.0043 * hv700 -3766.0043 * hv680 -1.365 * H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

186,0,101, R2 R3 R4 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 

R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101

R102 R103 R104 R105 R106 R107, -3755.4576 * hv700 -3755.4576 * hv680 -1.365 * H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

187,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

188,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

189,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

190,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R22 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

XL



R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3833.1133 * hv700 -3833.1133 * hv680 -1.3986 * H2S 

-77.7163 * HNO3 -779.5397 * CO2 949.9752 * O2 -612.6837 * H2O 779.5005 * biomass

191,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

192,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3283.8674 * hv700 -3283.8674 * hv680 -1.1982 * H2S 

-66.5803 * HNO3 -667.8396 * CO2 813.8535 * O2 -524.8924 * H2O 667.8061 * biomass

193,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

194,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

195,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

XLI



R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3741.0928 * hv700 -3741.0928 * hv680 -1.365 * H2S 

-75.8506 * HNO3 -760.8255 * CO2 927.1694 * O2 -597.9752 * H2O 760.7873 * biomass

196,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3283.8674 * hv700 -3283.8674 * hv680 -1.1982 * H2S 

-66.5803 * HNO3 -667.8396 * CO2 813.8535 * O2 -524.8924 * H2O 667.8061 * biomass

197,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3833.1133 * hv700 -3833.1133 * hv680 -1.3986 * H2S

-77.7163 * HNO3 -779.5397 * CO2 949.9752 * O2 -612.6837 * H2O 779.5005 * biomass

198,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass

199,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R43

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -5.5422 * hv700 -5.5422 * hv680 -0.0020221 * H2S 

-0.11237 * HNO3 -1.1271 * CO2 1.3735 * O2 -0.88586 * H2O 1.1271 * biomass
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200,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3833.1133 * hv700 -3833.1133 * hv680 -1.3986 * H2S 

-77.7163 * HNO3 -779.5397 * CO2 949.9752 * O2 -612.6837 * H2O 779.5005 * biomass

201,0,101, R2 R3 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -97.5626 * hv700 -97.5626 * hv680 -0.035597 * H2S 

-1.9781 * HNO3 -19.8413 * CO2 24.1793 * O2 -15.5944 * H2O 19.8403 * biomass

202,0,101, R2 R3 R5 R6 R7 R8 R9 R10 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R23 

R24 R25 R26 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 

R44 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 

R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82

R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 

R102 R103 R104 R105 R106 R107, -3283.8674 * hv700 -3283.8674 * hv680 -1.1982 * H2S 

-66.5803 * HNO3 -667.8396 * CO2 813.8535 * O2 -524.8924 * H2O 667.8061 * biomass
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d. MFA results
Flux distribution for leaf metabolic network

The metabolic flux distribution values for reactions involved in the leaf metabolic network are 

given below.

 R1 = 0.26868  R36 = 0.6097  R72 = 0.0021331  
R2 = 2.4182  R37 = 0.55891  R73 = 0.00034404  
R3 = 0.0091171  R38 = 0.011907  R74 = 0.00034404  
R4 = 0.013676  R39 = 0.0081882  R75 = 0.0039221  
R5 = 0.097502  R40 = 0.045207  R76 = 0.0086011  
R6 = 1.0468  R41 = 0.00034404  R77 = 0.0086011  
R7 = 1.9604  R42 = -0.0074638  R78 = 0.00099773  
R8 = 1.9604  R43 = -0.014242  R79 = 0.0021331  
R9 = 0.80324  R44 = 0.55616  R80 = 0.084394  
R10 = 0.32629  R45 = -0.55744  R81 = 0.02515  
R11 = 0.7337  R46 = 0.023098  R82 = 0.0051951  
R12 = 0.35142  R47 = 0.013126  R83 = 0.0051951  
R13 = -0.69927  R48 = 0.013126  R84 = 0.0038533  
R14 = -0.34785  R49 = 0.013126  R85 = -0.0072937  
R15 = 0.46928  R50 = 0.013126  R86 = 0.0013771  
R16 = 0.46928  R51 = 0.26952  R87 = 0.34404  
R17 = 0.3475  R52 = 0.30209  R88 = 0.0067786  
R18 = 1.0468  R53 = 0.0025115  R89 = 0.0067786  
R19 = 0.096295  R54 = 0.003406  R90 = 0.0067786  
R20 = 0.58642  R55 = 0.0044038  R91 = 0.0013771  
R21 = 0.12143  R56 = 0.0040941  R92 = 0.0076734  
R22 = 0.55469  R57 = 0.0043349  R93 = 0.0076734  
R23 = 0.40741  R58 = 0.0040941  R94 = 1.9902e-005  
R24 = 0.13311  R59 = -0.00289  R95 = 0.00099098  
R25 = 0.13311  R60 = 0.00048166  R96 = 0.00074413  
R26 = 0.080746  R61 = -0.0054015  R97 = 0.0012854  
R27 = 0.033613  R62 = 0.075139  R98 = 0.010205  
R28 = 0.032271  R63 = 0.0056079  R99 = 0.0010309  
R29 = 0.032271  R64 = 0.0028556  R100 = 0.0012068  
R30 = 0.032271  R65 = 0.0028556  R101 = 0.00058584  
R31 = 0.032271  R66 = 0.0027523  R102 = 0.01641  
R32 = 0.0091171  R67 = 0.0027523  R103 = 0.0041096  
R33 = 0.011869  R68 = 0.0027523  R104 = 0.0010366  
R34 = 0.011869  R69 = 0.003578  R105 = 0.017888  
R35 = 0.0091171  R70 = 0.0011009  R106 = 0.045866  
R36 = 0.6097  R71 = 0.0011009  R107 = 0.97795  
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The listed flux distributions are obtained while CO2 consumption (input) is taken as -0.978 

moles for the model. The last value R107 represents the formation of biomass. R1 and R2 

stand  for  cyclic  and  non  cyclic  photophosphyrylation  (conversion  of  light  energy  into 

chemical  energy),  while  R3  and  R4  represent  the  mitochondrial  electron  transport  and 

oxidative phosphorylation. Thus, the reactions R1 to R4 provide the required energy for the 

entire metabolic network; any change in these reactions causes total perturbation of the leaf 

metabolic network and influence the leaf metabolic model.
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Abstract
For long term space missions, higher plants are necessary to be included in life support systems. The 
Micro Ecological Life Support System Alternative (MELiSSA) project of European Space Agency 
(ESA)  is  based  on  a  closed  life  support  system where  microbial  and  higher  plant  compartments 
support the consumer’s compartment. Plants consume the possible recycling wastes (waste water and 
CO2) and provide fresh food, potable water and oxygen to the crew. One of the key points for this kind  
of study is to maintain a system which recycles all the elements C, H, O, N, S, P, etc. That is why, the 
study is  based on the modelling of conversion stoichiometries;  they are the results  of  the control  
parameters of the system (physical limitations of mass and energy exchanges). As a preliminary step,  
we have established leaf metabolic model (a sub model of the plant biochemical model) involving
central carbon metabolism using metabolic techniques, elementary flux mode analysis (EFMA) and 
metabolic flux analysis (MFA). It is associated to an integrated approach of energetics and central  
metabolism. Due to data limitations, the leaf metabolic model was constructed taking the biomass
composition of lettuce (Lactuca sativa) from United States Department of Agriculture (USDA) and  
validated  with  the  experimental  data  where  lettuce  grown  in  controlled  Environment  Systems 
Research Facility (CESRF) of University of Guelph (Canada). For the first approach, the model is  
satisfying and promising; it can predict the biomass production connecting the physical plant growth 
factors  (light,  CO2 and  water  availability,  etc.)  along  with  time  course  growth  and  biomass  
composition.  However,  our  results  show  the  lack  of  sufficient  data;  hence,  various  kinds  of 
measurements required for more accurate model predictions are proposed. The future model must be 
able  to  control  and  manage  the  plant  growth  for  human  survival  knowing the  fluxes  from other  
compartments of MELiSSA loop. Further, the approach described here can be used more generically  
in  all  kinds  of  metabolic  studies  and  modeling,  especially  for  studying  simultaneous  and/or 
consecutive photosynthetic and respiratory metabolisms.

Résumé
Pour des missions spatiales de longue durée, les plantes supérieures doivent faire partie des systèmes  
de support-vie. Le projet Micro-Ecological Life Support System Alternative (MELiSSA, alternative de 
système de support-vie micro-écologique) de l’Agence Spatiale Européenne est basé sur un système 
clos  de  support  vie  qui  inclut,  autour  d’un  compartiment  consommateur,  des  compartiments 
microbiens et des plantes supérieures. Les plantes consomment les déchets pouvant être recyclés (les  
eaux usées et du CO2) et produisent de la nourriture fraîche, de l’eau potable et de l’oxygène pour 
l’équipage. Un des points clé pour ce type d’étude est le maintien d’un système qui assure le recyclage 
de tous les éléments C, H, O, N, S, P, … C’est pourquoi la base de l’étude repose sur une modélisation
des stœchiométries de conversion qui doit traduire les échanges de matière et d’énergie en fonction  
des limitations physiques qui sont les paramètres de contrôle du système. L’étape préliminaire a été  
d’établir un modèle métabolique de feuille (un sous-modèle du modèle biochimique), comprenant le
métabolisme  central  et  utilisant  les  techniques  métaboliques  d’analyse  des  modes  élémentaires 
(EFMA) et d’analyse des flux métaboliques (MFA) associé à une vision intégrée de l’énergétique du 
métabolisme central. En l’absence de données expérimentales suffisantes, le modèle métabolique de 
feuille  a  été  construit  à  partir  de  la  composition  de  la  biomasse  référencée  par  le  Département 
Americain de l'Agriculture (USDA) et  validé avec les données expérimentales de laitues (Lactuca  
sativa) cultivées dans l’installation de recherche des systèmes à environnement contrôlé (CESRF) de 
l’Université de Guelph (Canada). Pour la première approche, le modèle est satisfaisant et prometteur; 
il peut prédire la production de biomasse une fois connecté aux facteurs physiques de la croissance de 
plante  (lumière,  disponibilité  en  CO2 et  en eau,…) au  cours  du temps  et  à  la  composition  de la 
biomasse.  Cependant,  nos  résultats  souffrent  d’un  manque  de  données  pour  vérifier  les  modèles 
métaboliques; ainsi, différents types de mesures pour des prédictions plus précises sont proposés. Le  
futur modèle doit être en mesure de contrôler la croissance de la plante pour la survie des humains,  
connaissant  les  flux  provenant  des  autres  compartiments  de  la  boucle  MELiSSA.  Par  ailleurs,  
l’approche  décrite  ici  peut  être  utilisée  de  manière  plus  générale  pour  tous  types  d’études  et  
modélisations  du  métabolisme,  en  particulier  pour  étudier  le  fonctionnement  simultané  et/ou 
consécutif des métabolismes photosynthétique et respiratoire.


