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Abstract

Towards Socially Intelligent Robots 1in
Human Centered Environment

Robots are no longer going to be isolated machines working in factory or merely
research platforms used in controlled lab environment. Very soon, robots will be the
part of our day-to-day lives. Whether it is street, office, home or supermarket, robots
will be there to assist and serve us. For such robots to be accepted and appreciated,
they should explicitly consider the presence of human in all their planning and
decision making strategies, whether it is for motion, manipulation or interaction.
This thesis explores various socio-cognitive aspects ranging from perspective-taking,
social navigation behaviors, cooperative planning, proactive behaviors to learning
task semantics from demonstration. Further, by identifying key ingredients of these
aspects, we equipped the robots with basic socio-cognitive intelligence, as a step
towards making the robots to co-exist with us in complete harmony.

In the context of socially acceptable navigation of a robot, it is a must that the
robot should no longer treat us, the human, only as dynamic obstacles in the envi-
ronment. For example, the robot should even decide to take a longer path, if it is
satisfying the human’s desire and expectation and not creating any confusion, fear,
anger or surprise by its motion. This requires the robot to be able to reason about
various criteria ranging from clearance, environment structure, unknown objects,
social conventions, proximity constraints, presence of an individual or a group of
people, etc.

Similarly, for the task when the robot has to guide a person from his/her current
position to another place, it should support the person’s activities and guide him /her
in the way he/she wants to be guided. It is quite natural that there will be intentional
or unintentional deviations in the person’s motion from the path expected by robot.
Further, because of person’s behavior of leave-taking or temporary suspending the
guiding process, if required, the robot should exhibit goal oriented approaching and
re-engagement behaviors.

A human friendly robot should neither be over-reactive nor be simple wait and move
machine.

On the other hand, when a robot has to explicitly work together with us in a
cooperative Human-Robot Interactive manipulation scenario, it should be able to
analyze various abilities and affordances of the person it is interacting with. Such
capabilities of perspective taking is important for various decisions e.g. where to
put an object so that human can reach it with least effort, where and how to show
an object to the human, how to grasp an object so that human can also grasp it
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for object hand-over tasks, etc. All these require the robot to reason beyond the
stability of object’s grasp and placement even for basic tasks such as show, give,
hide make-accessible, put away, etc.

Capability to ground day-to-day interaction with the human, to ground the changes
in the environment, which happened in the absence of the robot, to generate a
shared plan for solving day-to-day tasks, such as clean the table, are some of the
other important aspects for the existence of the robots in our day-to-day life. The
grounding could be in terms of the object that the human is trying to refer, the
agents and the actions, which might be responsible behind some changes, whereas
the task planning could be deciding possible cooperation and help among different
agents. All these requires the robot to reason at different levels for planning the
task: at symbolic level to decide how to achieve the task and to assign roles to the
agents; at geometric level to ensure the feasibility of the actions. Further, reasoning
on the efforts and current state and desire of the agents should be taken into account
to decide about the amount, extent and method of cooperation, and for grounding
interaction and changes.

Another aspect of socio-cognitive interaction is behaving proactively, i.e. planning
and acting in advance by anticipating the future needs, problems or changes.This
demands the robots to be capable of reasoning about how to behave proactively,
where to behave proactively to support ongoing interaction or task and so on.

Learning from demonstration of day-to-day tasks is an important aspect for the
robot to efficiently perform the tasks. Even for basic tasks such as give, hide,
make accessible, show, etc., depending upon the situation, the same task could be
performed entirely differently. We should not expect that for each and every task,
the robot will be provided with a situation-by-situation based example about how
to perform that task. Hence, just imitating the actions of a demonstration is not
sufficient. The robot should be able to understand the goal of the demonstration,
i.e. what does the task mean in terms of desired effect. The robot should learn
it autonomously at appropriate level of abstraction to be able to reproduce them,
in diverse situations in different ways. It requires reasoning beyond the levels of
trajectory and sub-actions.

This thesis focuses on these issues, which raise new challenges that cannot be handled
appropriately by simple adaptation of state of the art robotics planning, control and
decision making techniques. The thesis, first identifies such basic socio-cognitive
ingredients from the child development and human behavioral psychology research
and presents the general architecture for socially intelligent human-robot interaction.
Next, we will present a generalized domain theory for Human Robot Interaction
(HRI) and derive various research challenges under a unified framework. Further,
we will introduce new terms and concepts from HRI point of view and develop
frameworks for integrating them in robot’s motion, manipulation and interaction



behaviors. Implementation results on different types of real robots (PR2, HRP2,
Jido,...) will show the proof of concept. This is a step towards Socially Intelligent
Robots with the vision to build a base for developing more complex socio-cognitive
robot behaviors for future co-existence of human and robot in complete harmony.

Keywords: Human Robot Interaction (HRI), Theory of HRI, Socially Intelligent
Robot, Reasoning about Human, Multi-State Perspective Taking, Mightability Analy-
sis, Mightability Maps, Shared Attention, Situation Assessment, Agent State Analy-
sis, Human-Robot Interactive Manipulation, Spatial Reasoning, Socially Aware Navi-
gation, Social Robot Guide, Cooperative Robot, Proactive Behavior, Theory of Proac-
tivity, Shared Plan, Affordance Graph, Grounding Interaction, Grounding Changes,
Learning from Demonstration, Emulation Learning, Domestic Robots, Robot Assis-
tant, Service Robot.
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1.1 Motivation: Manava, The Robot

The robot Manava has been hired recently as an assistant in a Luzury Hotel. It is
afternoon and rush hour to check-in. Mr. John, the manager, requested, "Please
guide Mr. Smith to room number 108". Manava asks, "May I have the access
key?" Interestingly while asking Manava does not stand still in his current posture,
instead it plans where Mr. John could hand over the keys with least feasible effort
and proactively stretches out its hand to take the key from him. Mr. John smiles
and hands-over the key. Having the access key, Manava approaches Mr. Smith,
greets him and starts to "take” him to the room. On the way in the lobby Mr.
Kumar’s family is coming. Manava "smoothly" adapts its path to politely pass by
Mr. Kumar’s family from their left sides. Manava deliberately did not pass amid
them or from their right sides, hence did not create any confusion or discomfort
for Mr. Kumar’s family members. Now they are moving in o hallway, the robot is
maintaining itself on the right half of the hallway, so that Ms. Leena smoothly passes
by with her great smile without any discomfort or confusion. Down the hallway, Mr.
Smith finds an interesting painting and stops for a while to take a look. Manava
adapts its motion to support Mr. Smith’s activity while showing destination oriented
inclination. Further while passing through the lounge, Mrs. Amelia was moving
slowly with a walker. Manava smoothly adapts his path to overtake Mrs. Amelia
from her left side by maintaining appropriate proximity. Manava deliberately did
not overtake from the right side of Mrs. Amelia, and she continues, as she does not



2 Chapter 1. Introduction

notice anything uncomfortable. On the way, Mr. Smith sees his important client
Mr. Lee and spontaneously reaches towards him. Manava does not terminate the
task, instead it approaches Mr. Smith to again establish the guiding process from
the expected meeting place. Again, the path to approach is inclined towards the next
place to move to achieve the task of taking Mr. Smith to the destined room. As Mr.
Smith is now comfortable with Manava, he predicts the next via place and mowves
ahead of Manava to reach there. Manava does not show any unnecessary reactive
motion. Finally, they reach to the room number 108.

Tiwred Mr. Smath asks for beer, Manava goes ahead to fetch the beer bottle. Inter-
estingly when grasping the bottle Manava thinks about the associated task in terms
of what to do with the bottle and where and how. Therefore, it deliberately grabs
the bottle in such a way, which leaves sufficient space for Mr. Smith to take the
bottle. Then it approaches towards Mr. Smith and gives the bottle at a place, which
requires Mr. Smith to put least effort to see and take it. Intelligently while giving
the bottle Manava maintains the front and top of the bottle visible from Mr. Smith’s
perspective. This makes Mr. Smith aware about the "object” he is taking. Happy
Mr. Smith "rates” Manava by pressing the "rate me” button twice.

Manava now returns to the reception lobby. There is not much work, but as being
a curitous robot, it is observing the activities of people around. On the corner table
while preparing the coffee, Sam asks her sister Ammy, "Can you make the sugar
container accessible to me?". Ammy takes the container, puts it somewhere and
runs away to play with the toys nearby. By observing the effect of Ammy’s action
Manava understands a new task "Make Accessible object X" as: "X should be easier
to be reached and seen by the target-person”. Manava is happy to learn a new task
and could not resist itself from beeping spontaneously.

It’s now the dinnertime, and Manava has been asked to assist at Mr. Kumar’s
dining table. Manava s fetching the items one by one. Mr. Kumar is searching
for something. Manava looks for the items which are hidden from Mr. Kumar’s
perspective and hints most relevant item, "Are you looking for the salt, it is behind
the Jug on your right". Manava deliberately does not reach to the salt to take and
gwe it to Mr. Kumar, as it estimates that if Mr. Kumar will just lean forward, he
can see and reach the salt container. Hence, Manava is interestingly able to analyze
the ability to reach and see from Mr. Kumar’s perspective not only from his current
state but also from a virtual state: if he will lean forward.

In the kitchen, chief chef is making spicy chicken curry. Manava proactively antic-
ipates the need of curry powder by the chef. It finds that curry powder container
s not reachable by the chef from his current position but Manava can reach it from
its current position. As being far from the chief chef, Manava requests the assistant
chef, "can you please make this curry powder accessible to the chef" and gives the
container to him. Interestingly Manava did not plan to go and make it accessible
directly to the chief chef, as it finds an alternative plan with less overall time and
effort. Further as chef is busy now, instead of giving the container in the hand of
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chef, Manava plans to make the curry powder accessible to him, the make accessible
task, which he has learnt newly. Manava is also intelligent enough to estimate the
ability of assistant chef to make some object accessible to the chef and his ability to
take some object from Manava with least effort. Surprisingly happy with Manava,
the chef also rates it by pressing the "rate me" button thrice. And a happy Manava
goes to recharge itself to take up the watchdog responsibility in the night.

Manava is a kind of intelligent social robot, which supports the vision of this thesis:

"Human and robot should co-exist in complete harmony"

But, why Manava is Social? Because it is...

", liwing or disposed to live in companionship with others or in a community, rather
than in isolation..." (definition of social, [dictionary.reference.com [)

Hence, we derive our motivation for this thesis: To explore various socio-cognitive
building blocks as exhibited by Manava: perspective taking, proactivity, following
social norms of navigation, reducing effort and confusion, learning from our day to
day activity, planning cooperative tasks, etc. to design and develop algorithms and
frameworks to equip the robots with such socio-cognitive abilities.

In fact, Manava is not far from being a reality. Robots are already entering into
our day-to-day lives. They are expected to help and cooperate [Project |, guide
[Thrun 2000], or even play with us, teach us (see HRI survey [Goodrich 2007]) and
that too with lifelong learning from our day-to-day activities [Pardowitz 2007].

When looked through the socio-cognitive window, the AI (Artificial Intelligence),
hence artificial agents should be able to take into account high level factors of other
agents such as help and dependence, [Miceli 1995|. Here the agents’ social reasoning
and behavior is described as their ability to gather information about others and of
acting on them to achieve some goal. Which obviously means such agents should
not exist in isolation, instead must fit in with the current work practice of both
people and other computer systems (agents), [Bobrow 1991]. While exploring this
fit’, works on social robots such as [Breazeal 2003|, and survey of socially interactive
robots such as [Fong 2003] altogether outline various types of social embodiment.
This could be summarized as soctal interfaces to communicate; soctable robots,
which engage with humans to satisfy internal social aims; socially situated robots,
which must be able to distinguish between ’the agents’ and ’the objects’ in the
environment; socially aware robots, situated in social environment and aware
about the human; soctally intelligent robots that show aspects of human style
social intelligence.

And the Manava robot "dreamed" above is equipped with such basic socio-cognitive
aspects to fit in our environment: reasoning from others’ perspective, proactive be-
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haviors, navigating by maintaining social norms, learning task semantics at human
understandable symbolic level, performing day-to-day human interactive object ma-
nipulation task in the way accepted and expected by us, and so on.

As we will discuss next, the existence of basic socio-cognitive abilities become evident
from the age of 12 months and as we grow, we acquire more complex socio-cognitive
abilities and behaviors.

1.1.1 Child Development Research
1.1.1.1 Visuo-Spatial Perspective Taking

From the research of child development, visuo-spatial perception comes out to be an
important aspect of cognitive functioning such as accurately reaching for objects,
shifting gaze to different points in space, etc. Very basic forms of social under-
standings, such as following gaze and pointing of other’s as well as directing other’s
attention by pointing, begins to reveal in children as early as at the age of 12 months,
|Carpendale 2006]. At 12-15 months of age children start showing the evidence of an
understanding of occlusion of others’ line-of-sight [Dunphy-Lelii 2004], [Caron 2002];
and an adult is seeing something that they are not when looking to locations behind
them or behind barriers [Deak 2000], for both: the places [Moll 2004] and the ob-
jects [Csibra 2008]. In [Flavell 1977] two levels of development of visual perspective
taking in children have been hypothesized and further validated [Flavell 1981]. At
earlier development, which Flavell calls as level I, children starts to understand,
which object the other person can see and later they develop level 2, that others can
have different view of the same object when looking at it from different positions.
Having developed such key cognitive abilities, the children could then show basic
social interaction behaviors. For example, intentionally producing visual percept in
another person by pointing and showing things and interestingly from the early age
of 30 months, they could even deprive a person of a pre-existing percept by hiding
an object from him /her [Flavell 1978|. Further studies such as [Rochat 1995], sug-
gest that from the age of 3 years, children are able to perceive, which places are
reachable by them and by others, as the sign of early development of allocentrism
capability, i.e. spatial decentration and perspective taking. Evolution of such basic
socio-cognitive abilities of visuo-spatial reasoning in children enable them to help,
co-operate and understand the intention of the person they are interacting with.

Motivated from above evidences of basic socio-cognitive aspects, we will first equip
the robot with such perspective taking capabilities of perceiving abilities to see and
reach by self and others. Then based on these we will develop the frameworks to
share the attention; produce visual percept, such as show an object; deprive visual
percept, such as hide an object; facilitate reach by making an object accessible or
directly giving it; deprive reaching by putting away.
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1.1.1.2 Social Learning

From the perspective of social learning, which in loose sense is "A observes B and
then ’acts’ like B", in [Carpenter 2002|, three components have been identified:
Goal, Action and Result. Based on what is learnt there are basically three categories:
Mimicking, Emulation and Imitation. Mimicking is just reproducing the action
without any goal. Emulation, [Wood 1998|, [Tomasello 1990], is bringing the same
result, which might be with different means/actions than the demonstrated one.
Imitation |Lunsky 1965, [Piaget 1945] is bringing the same result and with same
actions. Here it is important to note that depending upon the level of abstraction the
imitated action could be the movement, style, trajectory, and other details all the
way down to which hand was used and the exact position of the fingers, etc. In one
sense, we can say that Emulation involves reproducing the changes in the state of the
environment that are the results of the demonstrator’s behavior, whereas Imitation
involves reproducing the actions that produced those changes in the environment.

Emulation is regarded as a powerful social learning skill, accounting for a large
portion of social learning also among great apes [Tomasello 1990]. In fact, this
also facilitates to perform a task in a different way. As studied in |Lempers 1977],
children can show an object to someone in different ways: by pointing, by turning
the object, by holding it so that other can see it. Similarly, it has been shown
that the children are able to hide an object from another person in different ways,
[Flavell 1978]: by placing a screen between the person and the object, by placing
the object itself behind the screen from the person’s perspective. These suggests
that from the early developmental stages, a child is able to distinguish the desire
effect and desired end state of a task from ’how’ to achieve that task.

Motivated from these evidences, we also separate imitation and emulation parts of
learning. Therefore, we equip our robots to perceive effect of a task/goal separately
from the action and use it to develop a framework to understand the task’s semantics
independent from its execution. This facilitates task understanding in a 'meaningful’
term as well as provides flexibility of planning alternatively for a task depending
upon the situation.

1.1.1.3 Pro-social and cooperative behaviors

Apart from imitating and emulating, children also begin to demonstrate prosocial
[Svetlova 2010], |Eisenberg 1998| and cooperative behaviors [Warneken 2007| from
as early as the age of 14 months. Prosocial behaviors are aimed at acting on behalf
of another agent’s individual goal whereas cooperative behaviors are aimed toward
achieving a shared goal. Such behaviors are not only core of complex social-cognitive
behavioral coordination skills but also give rise to complex mind reading and com-
munication capabilities, [Tomasello 2005].

Motivated from these core blocks of behaviors, we have developed frameworks, which
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facilitate the robot to generate shared plans for cooperatively achieving joint tasks,
as well as to behave proactively to ease the achievement of the others’ individ-
ual/joint tasks.

1.1.2 Human Behavioral Psychology Research
1.1.2.1 How do We Plan to Manipulate

On the other hand from our behavioral aspect, for performing pick and place
task, we, the human, do posture based motion planning [Rosenbaum 1995],
[Rosenbaum 2001|. Before planning a path to reach, we, the human, first find a
single target posture. This target posture is found by evaluating and eliminating
the candidate postures by prioritized list of requirements called constraint hierar-
chy: a set of prioritized requirements defining the task to be performed. Then a
movement is planned from the current to the target posture. The Key motivational
aspect is: the planning is not just a tradeoff between costs, but a constraint hier-
archy and only the postures, for which the primary constraint is met, are further
processed to test the feasibility of additional constraints.

Inspired from this we have also developed a framework, which first finds the final
configuration of the robot and the human for performing basic human robot inter-
active manipulation tasks. And for doing so, the planner hierarchically introduces
relevant constraints at different stages of planning. From the convergence of the
task planning point of view this approach serves an important purpose of reducing
the search space significantly before introducing the next constraint and hence the
time for finding a solution.

1.1.2.2 Grasp Placement Interdependency

Further, to find the target-posture, we have to choose the target-grasp. Works such
as [Zhang 2008|, [Sartori 2011| show that how we take hold of objects depends upon
what we plan to do with them. Further it has been shown that initial grasp configu-
ration depends upon the target location from the aspect of task [Ansuini 2006], end
state comfort [Rosenbaum 1992], [Zhang 2008], shape of the object [Sartori 2011],
relative orientation of the object as well as on the initial and the goal positions
[Schub6 2007].

Inspired from these studies, we have developed planning and decision making frame-
works for performing human interactive manipulation tasks, by emphasizing interde-
pendency nature of grasp and placement and introduction of hierarchical elimination
of candidates based on task requirement, human’s perspective, current environmen-
tal constraints, and so on.

We, the human, even tend to take hold of an object in an awkward way to permit a
more comfortable, or more easily controlled, final position [Zhang 2008]. Therefore,
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we also allow the robot to autonomously select different grasp, even non-trivial one,
by taking into account the effort, comfort, and needs not only of itself but also from
the human perspective. A few examples of such needs are: minimize the human’s
effort to see or reach the object, to ensure the feasibility for the human to grasp
the object if required, to ensure that the human can significantly see the object, its
front, its top, and so on.

1.1.2.3 How do We Navigate

One the other hand when we move or interact, we prefer to maintain social or inter-
action distances, [Hall 1966]. Further there are private space of human, interpreted
as territorial effect, [Liebowitz 1976], which plays an important role in human navi-
gation pattern. The conflict in people avoidance behavior while walking in opposite
direction is well known. It has been observed that there could be multiple failed
attempts to break symmetry in such situation before a successful attempt to avoid
and pass by. In [Helbing 1991], it has been proved mathematically that having an
asymmetric probability of each individual to pass from a side, i.e. bias towards
passing from a particular side will reduce the number of conflicting and failed at-
tempts in avoidance behavior. Hence, it suggests a need of following a particular
social or cultural norm of passing by, which could be from left side or right side
depending upon the country. Further because of this bias, people stick to a par-
ticular side while passing through a walkway, forming a sort of virtual lane. This
behavior reduces the frequency of situations of avoidance and corresponding delays.
Further, in the situation where a person has to avoid another person, he/she does
so by minimizing his/her deviation, hence he/she will pass another person along a
tangent to the territory of another person.

Inspired from these, for a robot to be acceptable by its navigation strategy, we have
equipped the robot to take into account such human-socio factors in its planning
and decision making strategies, while avoiding, passing by and moving in human
centered environment. This will further avoid conflicting and uncomfortable situa-
tions. Further to minimize the deviation as well as to avoid exerting any repulsive
force onto the person, the robot plans a smooth deviation in its path and that too
by trying to pass the person through a tangent point to the territory of that person.
Moreover the robot treats people moving together as ’a group’ and adapts its path
accordingly.

1.1.2.4 Social Forces of Navigation

In [Helbing 1995], [Helbing 1991] it has been suggested that people motion exerts a
kind of social force which in turn influences the other person’s motion, decision and
behavior. Such social forces are attractive or repulsive, which in turn can be used
to push or pull a person. But at the same time, the attractive social force exerted
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by some other person or object [Helbing 1995] can sometime destruct or deviate a
person from a joint task, such as guiding.

Therefore, if the robot has to guide a person, it should not assume that the person
would always follow the robot and that too by tracing its path. We have devel-
oped a framework, which could take into account natural deviation in the person’s
behavior/motion and provides the person with the flexibility to be guided in the
way he/she wants. Further, in the case the person has deviated significantly, the
framework tries to exert an attractive social force by its goal oriented approaching
behavior as a re-engagement effort to influence/fetch/push/drag the person towards
the goal.

1.2 Socially Intelligent Robot

We define a socially intelligent robot as follows:

"A socially intelligent robot is equipped with the key cognitive capabilities to under-
stand and assess the situation and the environment; the agents and their capabilities;
and exhibits behaviors, which are safe, human understandable, human acceptable and
socially expected.”

Hence, the definition includes all the characteristics of social interfaces, human
awareness, socially situated, as discussed in the motivation section. This also pro-
vides latitude to incorporate a blend of expected socio-human factors like comfort,
intuitiveness and so on.

Next, we will identify the hierarchy of cognitive and behavioral capabilities for an
agent to be socially situated and socially intelligent, which we call Social Intelligence
Embodiment Pyramid. Followed by that, we will explain the blocks, which are
within the scope of this thesis.

1.2.1 Social Intelligence Embodiment Pyramid

As shown in figure 1.1, we have conceived a social intelligence embodiment pyra-
mid by identifying a hierarchy of socio-cognitive abilities and behavioral aspects.
This is based on exploring the studies of child development and human behavioral
psychology and by analyzing about which ability or behavior serves for realizing
which other ability or behavior. That is why, we have identified layers of various
building blocks. We have identified and placed key cognitive and behavioral abilities
at bottom layers. This includes perspective taking, affordance and effort analyses,
basic situation assessment capabilities as key cognitive aspects. And we place ba-
sic navigation, manipulation, communication and attention aspects of oneself at key
behavioral level. Note that the aspects of emotion, facial expression, could be placed
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as non-verbal aspects of communication. As already mentioned, such aspects are
beyond the scope of the thesis, so we avoid placing them explicitly in the pyramid.
Then the basic pro-social aspects have been identified, which require the key capa-
bilities of the lower layers to further make an agent capable to co-exist socially. We
attribute these two layers as pro-social because these are contrary to anti-social and
further facilitate the existence of oneself in the society. (in fact the term pro-social
has been created by social scientists as an antonym for antisocial, [Batson 2003] and
attributes to the aspects that benefit others’ |Eisenberg 2007|, [psychwiki Prosocial |
and even suggesting to have biological roots [Knickerbocker 2003]).More complex
socio-cognitive abilities have been identified and placed above it, each of them again
depends upon a combination of the basic blocks of layers below. For example, de-
ciding to help proactively without asking for it, cooperate with someone to compete
with someone else, negotiating by assessing situation, and aspects like these, which
required abilities to reason by combining multiple blocks of lower layers.

Note that at every level there is a decisional component involved, only the level of
abstraction will be different. Further a socially intelligent agent should take into
account human factor, task oriented constraints at different layers in the analysis,
decision-making and planning processes. And of course, all of these aspects could
be learnt and refined lifelong. Hence, we place the socio-human factors, task factors,
decisional and planning aspects and learning outside the pyramid, which in fact are
equally important for a socially intelligent agent.

1.2.2 Scope and Focus of the Thesis

There have been works on social robots, with focus on facial expression [Bruce 2002],
emotion [Breazeal 2002], verbal interaction, therapy, etc. See survey [Fong 2003] for
related works on such aspects.

The focus of this thesis will be complementary to the above-mentioned aspects of
social interface, facial expression, speech synthesis. In this thesis we will explore
various human-socio aspects such as what a socially intelligent robot should infer
about human, how should it move, how should it manipulate objects for human, how
should it cooperate with humans, how should it behave proactively, and what does a
task mean. We will develop frameworks to equip the robot with capabilities to take
into account such human-socio aspects in its motion, manipulation, cooperation,
and proactive behavior as well as to learn tasks at human understandable level.

We will instantiate key blocks of different layers by taking into account human
factors, task oriented constraints and develop frameworks to autonomously deciding
and planning one or another components of the decision and planning block of
figure 1.1. We will push the socially intelligent agent’s abilities and behavior up
to a level from where more complex behavior could be developed in future. From
the perspective of learning, we will focus on one key aspect: understanding of a
demonstrated task independent of its execution, which has not been explored enough



10 Chapter 1. Introduction

Expectation /\ Planning Why
i ff
Status Undesired effect Where
. Desired effect What
Social Norm
~ ) Constraints How
Preference /Fully Soually\
X [ Intelligent Preconditions Whom
Cultural Bias / \  Agent \ —
TS Task When
Intuitiveness / \ Factors —
_D ) : Decisiona
esire .
E— PN Negotiation e
( S Aspect
Comfort ~_ o)
~\\Analysis ~ ~
Safety Intention ulti-modal social\ * complex Socio- o
— Analysis signal analysis Cognitive co- Imitation
. - analysis _ existence X
Socio-Human A - v suggesting better aspects Emulation
\ \ntenvening alternative
Factors = Mimicking

Collaborate to
Compete

) —
-=7 Social
Learning
//’_\\ Pro social
Proactivity e /) Behavioral
S aspect
. P Pro-social
Action-Effect/ ™\ (Grounding) (.. )\ Cognitive
Result Analysis Noo aspect
- " - Ke
Attention (focusing, N . . - & = v
. ( . & Communication) (Manipulation) (Navigation) ( ... )\Behavioral
sharing, fetching Moo -7 \ aspect

Goal

Belie: understanding

- . -—= Key
~
Vlsuo-.SpatlaI. ¢ )\ Cognitive
Perspective Taking N aspects

Figure 1.1: The Social Intelligence Embodiment Pyramid, which we have
constructed based on the evidence form psychology, child development and human
behavioral research, as discussed in this chapter. The basic socio-cognitive abilities
at lower layers lead to more complex socio-cognitive behaviors and eventually make
an agent fully socially intelligent. Therefore, from Human-Robot Interaction (HRI)
perspective, we propose the bottom-up social embodiment approach. For this, in this
thesis, the pyramid and the different blocks at different layers will serve to develop
frameworks and algorithms and introduce concepts from HRI perspective.

in robotics. This will serve another important aspect of a socially intelligent agent
to understand the task at appropriate level of abstraction to "meaningfully" interact
with human and to plan alternatively, based on situation, to achieve that task.

By equipping the robot with basic cognitive, behavioral and co-existence aspects,
we will demonstrate the socio-cognitive behaviors by different robots: HRP2, PR2
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and Jido, and discuss that these basic abilities are in fact the building blocks for
more complex socio-cognitive behaviors.

1.2.3 Approach: Bottom-up Social Embodiment

Inspired from child developmental research and emergence of social behaviors, we
adapt the approach to grow the robot as "social" by developing basic key com-
ponents, instead of taking 'a’ complex social behavior and top down realizing the
components for that behavior. Our choice of bottom up approach serves the objec-
tive of this thesis: building a foundation for designing more complex socio-cognitive
behaviors by exploring and realizing open 'nodes’ to diversify and build upon.

1.3 Outline of the Thesis

Next chapter (chapter 2) will present the state of the art, identify research chal-
lenges and outline the contribution of the thesis in terms of the blocks of figure 1.1.

Chapter 3 will present the first contribution of the thesis as a unified theory of
HRI based on causal nature of environmental changes. We will present a gener-
alized domain of HRI in terms of agent’s state, abilities, affordances, and various
other facts related to HRI. Altogether, they will serve as the attributes of the en-
vironment. Then, we will present a generalized notion of action and derive various
research challenges of HRI within a unified framework of causality of environmen-
tal changes. We will take this as an opportunity to also incorporate the various
scientific contributions of different chapters of the thesis within this framework.

Chapter 4 will present another contribution of the thesis, the concept of Mighta-
bility Analysis, which stands for "Might be Able to...". This enables the robot to
reason on the agent’s visuo-spatial abilities and non-abilities from multiple states
the agent might attain, if he/she/it would put different levels of effort.

Chapter 5 will present the contribution of thesis in terms of enriched affordance
analysis and rich situation assessments based on geometric reasoning on 3D world
model obtained and updated in real-time. We will also introduce the concept of
Agent-Agent Affordance and a framework to analyze such affordances.

Both, chapter 4 and chapter 5 will instantiate key environmental attributes of
visuo-spatial ability, effort and affordances, as presented in generalized theory of
HRI in chapter 3. These in fact correspond to the bottom layer of the social em-
bodiment pyramid, sketched in figure 1.1, which will serve a base for developing
other contributions of thesis at higher levels of the pyramid in subsequent chapters.
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Chapter 6 will present the contribution of the thesis from the navigational aspect
of the robot. It will present framework to plan a socially expected and acceptable
path as well as to guide a human in the way he/she wants to be guided. We will
also compare the results with a purely reactive navigation behavior.

Chapter 7 will present the contribution of the thesis in terms of bridging the gap
between Manipulation and HRI. It will identify the important property of grasp-
placement inter-dependency and present a generic framework to plan basic human
robot interactive manipulation tasks, such as show, give, hide, make-accessible by
taking into account a hierarchy of constraints from the perspective of task, human
and the environment.

Chapter 8 will present the contribution by introducing the concept of Affordance
Graph, which will enrich the knowledge about various affordances and action pos-
sibilities between any pair of an agent and an object as well as between any pair of
agents. This also facilitates to incorporate effort in grounding, decision-making and
shared cooperative planning, and converts various decisional and planning aspects
as graph search problem. Further, this chapter will introduce the link between sym-
bolic level and geometric level planners as well as the concept of geometric task level
backtracking to solve for a series of tasks.

Chapter 9 will contribute in presenting a generalized theory of proactivity, to
"regulate" the allowed proactivity of an agent as well as to identify potential spaces
for synthesizing proactive behaviors. Further, a framework to instantiate proactive
behavior will be presented. Some results from preliminary user studies will be
presented, advocating that carefully designed proactive behaviors indeed reduce
human partner’s effort and confusion and our framework is able to achieve that.

Chapter 10 will present the contribution of the thesis as an initiative to understand
day-to-day tasks in terms of desired effects and that too at appropriate levels of ab-
stractions. This is an important aspect of emulation learning, which could facilitate
the robot to perform the same task in different ways in different situations.

Chapter 11 will conclude the thesis with a summary of the concepts and frame-
works introduced in the thesis followed by the potential future work and application.
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2.1 Introduction

In this chapter, we will discuss the state of the art in robotics, related to the various
blocks of socio-cognitive development as identified and discussed from the psychol-
ogy, human behavioral and child development perspectives in the introduction chap-
ter (chapter 1). We will discuss the related works, identify the research challenges
and the system requirements for efficient human-robot interaction and highlight
the contribution of the thesis. We will use figure 1.1 as reference and illustrate the
contribution of the thesis in terms of both the research and the system development.

2.2 Visuo-Spatial Perspective Taking, Situation Aware-
ness, Effort and Affordances Analyses for Human-
Robot Interaction

Figure 2.1 shows the contribution of the thesis at key cognitive layer. The top
right green block shows the contribution in terms of equipping the robot with ba-
sic visuo-spatial perspective taking abilities. Representation of reachable and ma-
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Figure 2.1: Contributions of the thesis in the Key Cognitive components layer of
the Social Intelligence Embodiment Pyramid. An arrow, in this figure and other
related figures in this chapter, shows the utilization of one component in developing
the other component. For example Visuo-Spatial Perspective Taking and Effort
Analysis contribute to develop the notion of Mightability Analysis, i.e. analyzing
what an agent might or might not be able to see and reach, if he/she/it will put a

particular effort.
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nipulable workspace has already received attention from various researchers. In
|Zacharias 2007|, the kinematic reachability and directional structure for the robot
arm have been generated. Although, it is an offline process, such representa-
tion has been shown useful in generation of reachable grasp [Zacharias 2009]. In
|Guilamo 2005|, an offline technique for mapping workspace to the configuration
space for redundant manipulator has been presented based on the manipulability
measure. In [Guan 2006], a Monte Carlo based randomized sampling approach
has been introduced to represent the reachable workspace for a standing humanoid
robot. It stores the true or false information about the reachability of a cell by us-
ing the inverse kinematics. However, most of these works focus on which places are
reachable in the workspace. Moreover, none of these works focus on such analysis
with different postural and environmental constraint as well as they don’t estimate
such abilities of the human partner, which is one of the important aspect for decision
making in a Human-Robot Interaction scenario.

Regarding the visual aspect of visuo-spatial reasoning, in the domain of Human-
Robot Interaction (HRI), the ability to perceive what other agent is seeing has been
embodied on various robots, to learn from ambiguous demonstration [Breazeal 2006],
to ground ambiguous references [Trafton 2005a|. Such visual perspective taking has
also been used in action recognition [Johnson 2005], for interaction [Trafton 2005b]
as well as for shared attention |Marin-Urias 2009b|. However, most of such works
answer to the question: which object is visible? They do not reason about the visible
spaces in the environment, which in fact is a complementary issue.

We have equipped our robots with rich geometric reasoning capabilities to analyze
not only which are the reachable and visible objects, but also which are the reach-
able and visible places, that too in the 3D space and on horizontal support planes.
This facilitates the robots to autonomously find places in different situations for
performing various tasks for the human: give, show, hide, etc. Further, we have
equipped the robots to reason on the non-abilities of the agents. The robots can
find out, which are not reachable and not visible places from an agent’s perspective.
We will show that such capabilities facilitate the robots to autonomously find places
in different situations for competitive tasks and games: hide, put away, etc. as well
as for grounding interaction and changes. The robots are further able to find the
objects, which are obstructing and occluding another object or some place from
an agent’s perspective. This enriches the robots’ knowledge about why an agent is
deprived from reaching and seeing something and help in reasoning on how to ’aid’
him /her/it for reaching and seeing that object.

Further, the state of the art on perspective taking focuses on analyzing agent’s
abilities to see or reach an object or place from the current state of the agent. This
is not sufficient for the robots to live in human-centered environment, as will be
clear from the following example.

Let us consider a common task in Human-Human Interaction (HHI): make an ob-
ject accessible to a person, which is currently invisible and /or unreachable for that
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() (d)

Figure 2.2: (a) Initial scenario for the task of making the green bottle (indicated
by red arrow) accessible to person P2 by person PI. PI puts the bottle so that
it will be visible and graspable by P2 if she will: (b) stand up, lean forward and
stretch out her arm; (c) just stretch out the arm; (d) lean forward and stretch out
the arm from the sitting position. In (b) PI is trying to reduce self-effort, in (c) she
is trying to reduce P2’s effort, whereas in (d) she is trying to balance the mutual
effort. This suggests the need of reasoning from other’s perspective from multiple
effort levels, for day-to-day interaction, task planning as well as understanding the
task semantics from demonstration.

person. In figure 2.2(a), person PI has to make green bottle accessible to person P2.
Depending upon the current mental/physical state, desire and relation, P! could
prefer to perform the task by putting the bottle at different places, figures 2.2(b),
2.2(c) and 2.2(d). Here, the interesting point is, for taking the decision about where
to place the object for different requirements such as to reduce self-effort (figure
2.2(b)), to reduce other’s effort (figure 2.2(c)) or to balance mutual effort (figure
2.2(d)), P1 is able to infer from P2’s perspective, the feasible placement of the
object. P1 is able to reason that if P2 will stand up, lean forward, and stretch out
her arm, she can get the bottle (figure 2.2(b)), whereas in the case of figure 2.2(c),
P2 will be just required to stretch out the arm. In figure 2.2(d), P! leans forward
and puts the bottle at a place, which requires P2 to lean and stretch out the arm to
take it. This indicates that we, the human, do not only know what an agent would
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be able to see and reach from his current position, but also what he/she can see
and reach if he/she will put different efforts, which plays an important role in our
decision making and planning a task for others. The task was same in these three
cases, only where to perform the task has been changed, based on different mutual
effort requirements.

Above example suggests that the robot should be able to perform the perspective
taking not only from an agent’s current state but also from different states the
agent might attain. For this, first we have developed a qualitative notion of effort
hierarchy as shown in the Effort Analysis block of figure 2.1. Then, based on this we
have introduced the concept of Mightability Analysis, which fuses the effort analysis
with wvisuo-spatial perspective taking to analyze agent’s ability to see or reach from
multiple states achievable by the agent. Mightability stands for Might be Able to...
and it enriches the robot’s knowledgebase with the facts like "the humani who is
currently sitting might be able to see the object? if he will stand up and lean forward".
This type of multi-state perspective taking is absolutely important for efficient day-
to-day human robot interaction and reasoning on effort, which is currently missing
in state of the art robotics systems. Chapter 4 will present the contribution of the
thesis on visuo-spatial perspective taking, effort analysis, Mightability analysis and
least feasible effort ability analysis, as shown in figure 2.1.

Figure 2.1 also shows the contribution of the thesis in terms of elevating and enrich-
ing the affordance analysis from HRI perspective. In cognitive psychology, Gibson
|Gibson 1986] refers affordance as what an object offers. He defined affordances as all
action possibilities, independent of the agent’s ability to recognize them. Whereas,
in Human Computer Interaction (HCI) domain, Norman [Norman 1988| defines af-
fordance as perceived and actual properties of the things, that determines how the
things could be possibly used. He tightly couples affordances with past knowledge
and experience. In robotics, affordances have been viewed from different perspec-
tives: agent, observer and environment; hence, the definition depends upon the
perspective, [Sahin 2007]. Irrespective of the shifts in the definitions, affordance is
another important aspect for a socially situated agent for performing day-to-day
cooperative human-robot interactive manipulation tasks. Affordance itself could be
learnt |Gibson 2000] as well as could be used to learn action selection |Lopes 2007].

In this thesis, we have proposed a more general notion of affordances, which combines
the definitions from diverse disciplines as well as elevates the notion of affordances to
other agents, by incorporating inter-agent task performance capabilities in addition
to agent-object affordances. Our notion of affordance includes what an agent can do
for other agents (give, show, ...); what an agent can do with an object (take, carry,
...); what an agent can afford with respect to places (to move-to, ...); what an object
offers (to put-on, to put into, ...) to an agent, as shown in affordance analysis block
of figure 2.1. Affordance have been used in robotics for tool use [Stoytchev 2005],
for traversability [Ugur 2007| for the robot, but rich geometric reasoning based what
an agent offers to another agent (give, show, hide, make accessible, ...) and where,
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with which effort level; what an object offers to an agent (to put something on, to
put something inside, ...) and where in a given situation, have not been seen in state
of the art robotics systems from human robot interaction point of view. Chapter 5
will present the contribution of the thesis in terms of this rich affordance analysis.

Further, we have incorporated the effort analysis, Mightability Analysis and affor-
dances to equip the robot with rich reasoning of agent’s capabilities, as shown in
Multi-Agent Affordance Analysis block of figure 2.1. We have introduced the con-
cept of Taskability Graph, which will encode what each agent could do for all other
agents and with which levels of mutual efforts; Manipulability Graph, which will en-
code what each agent could do with all the objects and with which effort level; and
fuse them to construct Affordance Graph, which will encode different possible ways
in which an object could be manipulated among the agents and across the places,
along with the corresponding effort levels. This will serve as a basis for addressing
a range of HRI problems, such as grounding interaction, grounding the agent, ac-
tion, effort and object to the environmental changes, generating shared cooperative
plan, within a unified framework based on graph search. Chapter 8 will present
this contribution of the thesis. The Taskability Graph, which basically encodes the
agent-agent affordance is conceptually different and even complementary to the In-
terpersonal Map, presented in [Hafner 2008|. There, the idea was to use affordances
to model the relationship between two robots and common representation space to
allow robots to compare their behavior to that of others. Whereas, in the Taska-
bility Graph, the idea is to encode different action possibilities between two agents,
such as to give, show, hide, etc.

Situation Awareness, the ability to perceive and abstract important information from
the environment [Bolstad 2001], is an important capability for the people to perform
tasks effectively [Endsley 2000]. From the practical requirements of efficient human-
robot interactive manipulation, we have equipped the robot to analyze various states
of the agent, his/her/its visual attention and the states of the objects, as show in
figure 2.1. The physical states include facts like head turning, hand moving, hand
manipulating object, and so on.

Further, to provide the robot with explicit understanding about what will be effect
of manipulating a container object 0bj2, on another object 0bj1, which is found to
be inside 0bj2, we have categorized different states for obj1 such as closed inside,
covered by, laying inside and enclosed by.

All such analyses are done by using a rich 3D model of the environment and the hu-
man, which are updated online (see appendix B for the description), and a set of facts
are produced in real time for a real human-robot interactive scenario. These serve
the purpose of planning, monitoring and executing basic cooperative tasks in a typ-
ical human robot interactive scenario for our high-level task planner [Alili 2009] and
the robot supervision system [Clodic 2009|. Chapter 5 will present the contribution
of the thesis, which equips the robot with such situation assessment capabilities.
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Figure 2.3: Contribution of the thesis in the Key Behavioral component layer of
Social Intelligence Embodiment Pyramid.

System development contribution in the attention component has been shown in fig-
ure 2.3. Based on rich geometric reasoning of situation assessment and visuo-spatial
perspective taking we have equipped the robot to: share the attention by looking
at the object, the other agent is looking at; fetch the attention of the other agent
by first looking at him and then looking at the place or object of interest; focus the
attention of the robot itself on human activities, if his hand has been detected as
manipulating something. Here it is important to note that there are complemen-
tary aspects of attention based on saliency, [Ruesch 2008], or by modeling artificial
curiosity [Luciw 2011] or intrinsic motivation [Oudeyer 2007], which is beyond the
scope of the thesis. Chapter 5 will briefly show few results of such attentional be-
haviors, which in fact have been integrated in different interaction scenario presented
throughout the thesis and basically serve to our supervision system [Clodic 2009]
for activity monitoring and action execution.

As being a social robot, it should take into account a hierarchy of constraints and
preferences associated with us, the human, in its navigation and manipulation plan-
ning strategies. Next two sections will describe the contribution of the thesis at key
behavioral level, as summarized in figure 2.3.
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Taking into account the human, in robot’s navigation and manipulation strategies,
has already been addressed in various ways from different aspects. Works, such
as [Sisbot 2008, takes into account the human’s comfort and visibility aspects in
cost grid for path planning to navigate and manipulate, assuming a static human.
In |Kruse 2010], these aspects have been further incorporated in optimistic plan-
ning, which returns a solution which might require other agent to move or clear the
path, while respecting the visibility and comfort criteria. Whereas [Kirby 2009]
incorporates human like walking in hallway in cost grid based framework. In
[Marin-Urias 2009a| the human’s perspective has been taken into account in the
placement planning of the robot. This thesis will be complementary to these works,
where we will develop frameworks, which will explicitly reasons on the environment
structure, motion of the humans present in the environment, spaces around the
humans, social norms of navigation and manipulation at symbolic level along with
rich geometric reasoning, and decides to behave in a 'particular’ way based on the
situation. This also makes the robot ’aware’ about its own behavior or decision.
Below we will discuss in detail the existing navigation and manipulation works in
HRI and outline the contribution of the thesis.

2.3 Social Navigation in Human Environment and So-
cially Aware Robot Guide

As robots will be required to navigate around us for various reasons: following
[Gockley 2007], passing [Pacchierotti 2005], accompanying [Hoeller 2007], guiding
[Martin 2004| a person or a group of people |[Martinez-Garcia 2005], it is apparent
that various aspects ranging from safety, reasoning about spaces around human to
social norms and expectations should be reflected in the robots’ motion.

As shown in figure 2.4, we have identified different aspects of navigation, which a
robot should take into account while navigating in the human centered environment.

e Physically Safe: Physical safety is one of the most important aspects. The
robot should avoid collision with other entities (Agents and Objects) in the
environment. Fraichard presents a guideline about the motion safety in terms
of collision avoidance, |Fraichard 2007].

e Perceivable Safe: Because of the presence of human, the robot should not
only avoid physical collision, but also try to make the human feel safe. One
way to achieve this type of perceived safety is to signal its intention at appro-
priate instance of time and space. For example, studies in [Pacchierotti 2005],
[Pacchierotti 2006a], indicates that the robot should start avoiding maneu-
ver at a particular signaling distance so that the human will feel safe and
comfortable. Similarly, the human should not feel unsafe by evading motion
[Shi 2008].

e Comfortable: The robot motion should not cause any discomfort to the



2.3. Social Navigation in Human Environment and Socially Aware

Robot Guide 21
(Motion (Aspect)
Behavior) (Desired Model)
Sociable
Obeying socio-cultural Social norms & models

conventions and expectations
Natural & Intuitive

Moving in a human-like

) Situation-dependent
trajectory/manner

Human motion models

Comfortable
RObOt'S By considering human’s Human’s Comfort &
. physical/mental state and desire awareness models
Motion
Perceivable Safe
Explicitly approaching/avoiding . — ol
\ the human with proper signalling Human'’s proximity mode
Reactively avoiding obstacles Physically Safe
and reactively reaching to place Human model as

obstacle/object/place

Figure 2.4: We have categorized various factors and qualified the motion aspects,
which the robot is expected to take into account while navigating in the human

centered environment.

people in the environment. The notion of comfort is wide ranging starting
from maintaining a proper distance to considering mental state and aware-
ness of the human. For example, in |Sisbot 2007a|, [Kirby 2009|, [Lam 2011|,
[Tranberg Hansen 2009|, [Huang 2010], [Svenstrup 2010|, comfort has been
modeled as maintaining proper distance around human. Towards elevating
the notion of comfort beyond the aspect of maintaining a physical distance,
[Martinson 2007] takes into account the noise generated by the robot motion
itself and presents an approach to generate an acoustic hiding path while
moving around a person. Whereas, in [Tipaldi 2011], by avoiding the robot to
navigate in the areas causing potential interference with others, while perform-
ing the tasks like cleaning the home, the "do not disturb" aspect of comfort
has been addressed.

Natural & Intuitive: If the robot would move in a human like pattern,
it would be more predictable and the human would find the robot’s mo-
tion as natural and intuitive. Again, there are various aspects of being
natural and intuitive, such as moving in a smooth trajectory, minimize jerk
[Arechavaleta 2008], direction following [Kirby 2007] to follow a person in a
natural manner, to make the robot move along with the people who are moving
in the same direction towards the goal of the robot, as an attempt to exhibit
human-like motion behavior in highly populated environments, [Miiller 2008|.
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e Sociable motion: We regard sociable motion as executing a path, which is

planned by considering the socio-cultural expectations, influences and favors,
the agents (the humans and the robots) can exchange in the social environment.

A very generic definition of being social could implicitly incorporate the as-
pects of safety, comfort, and naturalness, but one can be safe and comfortable
for someone by maintaining a very large distance from him/her, but perhaps
will not be considered social. Therefore, the sociable motion should exploit the
fact that the humans are social being, therefore, would have some expectations
from others beyond safety and comfort and the same could be expected from
him /her as well. Using this idea, some researchers are trying to fulfill such
expectations of the human by the robot’s motion, whereas others are trying
to exploit the expectations from the humans while planning the motion.

The model for pedestrian behavior by Helbing [Helbing 1991] includes a bias
towards a preferred side in the cases of conflict, hence breaking symmetry. In
a related way, pedestrians can often be observed to walk in virtual lanes in
corridors. Which side to prefer is a cultural preference, a norm that varies
between cultures. In [Helbing 1991|, [Helbing 1995]|, it has been suggested
that human motion exerts a kind of social force that influences the motions
of other people. Hence, the robot can use this model to predict as well as to
influence the motion of humans.

In |Kirby 2009], a cost grid based framework is used to assign higher cost on
the right side of the person, hence biasing the robot to pass by from the left.

Several publications try to exploit the idea that people, as being social agents,
adapt to the environment and other agents in a favorable manner, so the
robot may use that knowledge about humans to pursue its navigation goals.
For example, a person who stands in the way of a robot may very well
move aside without discomfort if approached by the robot who wants to pass,
[Kruse 2010], [Miiller 2008], moving humans may themselves adapt their mo-
tion to avoid collision with the robot [Trautman 2010].

In the context of Human-Robot Co-existence with a better harmony, it is necessary
that the Human should no longer be on the compromising side. The Robot should
‘equally’ be responsible for any compromise, whether it is to sacrifice the shortest
path to respect social norms or to negotiate the social norms for physical comfort
of the person. In [Clodic 2006], we evaluated the long-term performance of our tour
guide robot, which suggests that navigating in a human centered environment by
considering a person only as a mobile object is neither enough nor accepted. In this
context, it is also important that robot should be able to do a higher-level reasoning
for planning its path based on the local structure of the environment, clearance
around human, intended motion of the human and obviously the social-cultural
conventions of the country or the place it is 'working’ in. In [Althaus 2004| the
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robot tries to behave human like by maintaining 'proper’ orientation and distance,
while approaching and joining a group of people. In [Shi 2008], robot tries to adjust
its velocity around the human. In [Sisbot 2007b], the robot takes into account
human’s visibility and hidden areas, whereas in [Krishna 2006], the robot considers
unknown dynamic objects from the hidden zones while planning the path to generate
a proactively safer velocity profile. In [Paris 2007], virtual autonomous pedestrians
extrapolate their trajectories in order to react to potential collisions.

However, most of these approaches lack in some of the basic socio-cultural aspects
such as to pass by or overtake a person from the correct side, proactively maintain
itself to a particular side while moving in a narrow passage like corridor, avoid
passing through a group of people moving together. All such aspects are necessary
for avoiding conflicts and exhibiting socially expected behaviors as discussed in
section 1.1.2. Also, the existing approaches either assume that the environment
topological structures like corridor, door, hall, etc. are known to the robot or no
obvious link between the robot motion behavior with the local environment structure
has been shown. Further, not all of these approaches consider the smoothness of the
path, which is important for exhibiting natural and predictable motion, as discussed
earlier.

Our goal is to develop a mobile robot navigation system which:

(i) Autonomously extracts the relevant information about the global structure
and the local clearance of the environment from the path planning point of
view.

(ii) Dynamically decides upon the selection of the social conventions and other
rules, which needs to be included at the time of planning and execution in
different sections of the environment.

(iii) Plans and re-plans a smooth path by respecting social conventions and other
constraints.

(iv) Treats an individual, a group of people and a dynamic or previously unknown
obstacle differently.

We will present a wia-points based framework to plan and modifying smooth path
of the robot by taking into account static and dynamic parts of the environment,
the presence and the motion of an individual or group as well as various social
conventions. It also provides the robot with the capability of higher-level reasoning
about its motion behavior as exhibited by Manava, such as passing and overtaking
a person from a correct side. The robot selectively adapts reactive and proactive
behaviors depending upon the environment part (wide space, narrow passage, door,
...) as an attempt to avoid conflict as well as to maintain least feasible length of
path. This contribution is summarized in navigation block of figure 2.3. First part
of chapter 6 will present the contribution of the thesis in terms of a framework to
generate socially acceptable path in human-centered dynamic environment.

On the other hand, if the navigation task is more than just reaching to a goal,
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other kinds of social aspects become more prominent. Guiding a person to a goal
place is one of such scenarios, where the robot has to coordinate motion not just to
avoid discomfort, but also to achieve a joint goal. Here, the context of guiding is
different from guiding a visually challenged person [Kulyukin 2006] in the sense, the
human will not simply follow the robot by some physical means. It also differs from
the wheel-chair guiding [Gulati 2008], as robot and human both can take decisions
independently.

In [Clodic 2006], we have evaluated the long-term performance of our tour guide
robot Rackham. It revealed that in the context of guiding, it is necessary that
robot should no longer treat human as a dynamic entity quietly following the robot.
The simple stop-and-wait model of the joint task of guiding based on presence and
re-appearance of the person to be guided is neither enough nor appreciated. The
robot should explicitly consider the presence of human and his/her natural behavior
in all its planning and control strategies. In this context, assuming the human to
be a social entity, the robot should not expect that the person to be guided would
exactly and always trace the path of the robot or always follow the robot. The
person could show various natural deviations in his/her path and behavior, perhaps
by different social forces imposed by the environment and other agents. The person
can slow down, speed up, deviate or even suspend the process of being guided for
various reasons. And as being a social robot, the robot should not stop the guiding
process, it should try to support the person’s activities and re-engage the person if
required. This poses challenges for developing a robot’s navigation behavior, which
is neither over-reactive nor ignorant about the person’s activities.

In [Martinez-Garcia 2005], a scenario of multiple robots guiding a group of people
is presented. In |[Martin 2004|, the scenario of guiding a visitor to the desired staff
member has been addressed, but from the viewpoint of reliable person tracking.
In [Pacchierotti 2006b], an office guide robot has been implemented, but the focus
of the motion control module is on people passing maneuver. In [Zulueta 2010],
multiple robots guide a group of people, but they focus on the strategy to make
a formation that would restrict people to leave the group or to minimize the work
done to bring the left people back. Our focus on the complementary issues of sup-
porting the person’s activity and to reason on the joint-task and final-goal oriented
deviations in the robot’s path.

We argue that a social robot should allow and support the natural deviations of the
person and avoid showing unnecessary reactive or forcing behavior. Further, in case
the human has deviated significantly the robot should exhibit re-engagement efforts
by exerting social forces (see section 1.1.2 of the introduction chapter (chapter 1)) by
its motion. We have developed an approach for social robot guide, which monitors
and adapts to the human’s commitment on the joint task of guiding and shows
appropriate goal oriented re-engagement efforts, while providing the human with the
flexibility to be guided in the way he/she wants, as summarized in Navigation block
of figure 2.3. To our knowledge, it is the first work in the context of guiding from
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Figure 2.5: Typical planning components of an object manipulation task. We have
identified various constraints from HRI perspective, while planning for each of the
components. In chapter 7, we have instantiated it from the perspective of pick-
and-place type HRI tasks (figure 7.2), exploited inter-dependencies of some of these
components and presented a framework to incorporate a hierarchy of such constraints
while planning for a set of basic tasks.

the viewpoint of monitoring and adapting to the human commitment on the joint
task as well as verifying and carrying out appropriate goal oriented re-engagement
attempts, if required. Second part of chapter 6 will present this contribution of
the thesis of socially aware robot guide.

2.4 Manipulation in Human Environment

In a typical day-to-day HRI, the robot needs to perform various tasks for the human,
hence should take into account various human oriented and social aspects. As shown
in figure 2.5, we have separated the key components for planning a typical object
manipulation task, which involves " From the starting state, reach to take the object
and carry it to the goal". Here, the goal could be partially provided, or specified
in terms of various constraints, as will be clear in chapter 3, where we will present
the generalized HRI theory. From the figure we can identify three complementary
aspects:

(i) Trajectory Planning (to move and/or to manipulate)
(ii) Placement Planning (position and orientation of the robot and of the object)
(iii) Configuration Planning (of the whole body and of the object)

From the perspective of planning basic human robot interactive object manipulation
tasks, different components such as trajectory to reach, trajectory to carry, position
and configurations of the robot and the objects are influenced by the presence of
human. For example, works such as [Sisbot 2007b]|, [Sisbot 2010], [Mainprice 2011]
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take into account human factors such as comfort in planning the path or trajectory.
Works such as [Marin-Urias 2009a|, reason about the human for planning the place-
ment position of the robot’s base to perform the task for the human. Here, we are
essentially interested in the complementary aspect of planning the configuration of
the robot and configuration and position of the object for performing basic human-
robot interactive object manipulation tasks, such as to give, to show, to hide, etc.
In this context, reasoning about the human’s abilities, effort, selection of a ’good’
grasp and synthesis of a 'good’ placement of the object with respect to the human,
turn out to be prominent factors to reason about. And various constraints identified
in the figure 2.5 influences the choice of grasp and placement. Hence, in this context
it is not sufficient that the robot selects grasp and placement of the object from the
stability point of view only, as it will be clear from the discussion below.

Figure 2.6 shows two different ways to grasp and hold an object to show it to
someone. In both cases, the grasp is valid and the placement in space is visible
to the other human, but in figure 2.6(a) the object will be barely recognized by
the other person, because the selected grasp to pick the object and the selected
orientation to hold the object are not good for this task. We would rather prefer to
grasp and hold the object in a way, which makes it significantly visible and also tries
to maintain the notions of top and front from other person’s perspective, as shown
in figure 2.6(b). Similarly for other tasks, such as to give or to make something
accessible to the human, there will be a different set of constraints and preferences
and will require a different set of information (e.g. grasp possibility, reachability of
the other human) for behaving in a socially acceptable and expected way.

In the context of Human-Robot Interaction, study of a human handing-over an
object to a robot |[Edsinger 2007| shows that the human instinctively controls the
object’s position and orientation to match the configuration of the robot’s hand.
Whereas in [Cakmak 2011], a study on a robot handing-over an object to human
shows preferences on object’s goal position and orientation. A similar study was
performed on the Robonaut |Diftler 2004] to grasp the tool handed by a human.
Basic human-robot interactive tasks "taking", "giving" or "placing" and incorpo-
rating the symbolic constraint of maintaining object upright have been addressed
in [Bischoff 1999]. In [Kim 2004], the robot takes into account human’s grasp for
hand-over task.

However, these works assume that either the grasp or to place position and ori-
entation are fixed or known for a particular task, [Berenson 2008|, [Xue 2008]. In
addition, either it is assumed that the human grasps the same surface as the robot
grasping sites and just shifts the robot grasp site accordingly [Kim 2004] or it learns
that there should be enough space for the human to grasp [Song 2010|. These ap-
proaches do not synthesize simultaneous grasps by the human and the robot for
object of different shapes and sizes. However, works such as [Adorno 2011] begin to
represent a cooperative task in terms of relative hand configurations of the human
and the robot. However, most of the above-mentioned works still lack the incor-
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(b)

Figure 2.6: The person on the left is showing an object to the other person. Notice
the key role of how to grasp and place. In both the cases, the grasp is valid and the
placement in the space is visible to the other person, but (a) is not the good way
to show as the hand occludes object’s features from the other person’s perspective,
whereas (b) is the better way to show, as the object’s top is maintained upright,
features are not occluded and the object is recognizable as a cup to the other per-
son. This suggests the necessity of incorporating various human-oriented symbolic
constraints, beyond the stability aspects of grasp and placement, in day-to-day HRI
tasks (chapter 7).
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poration of some of the key complementary aspects from the human’s visuo-spatial
perspective about reachability, visibility and on different effort levels, which the hu-
man partner can put, while planning for a task. In addition, the set of the tasks
considered from HRI perspective are limited: hand-over or to place, [Cakmak 2011],
[Bischoff 1999|. Also, the notion that selecting a particular grasp restricts potential
placement and feasibility of the task and vice-versa has not been explicitly consid-
ered in the planning frameworks from the HRI tasks perspective.

In this thesis, first we will identify the key constraints for basic human-robot in-
teractive manipulation tasks. Then, we will identify the importance of considering
grasp and placement inter-dependency, hence the need of planning for pick and place
components together. Then, we will present a generic human robot interactive ma-
nipulation tasks planner, which could plan for a set of manipulation tasks by incor-
porating various constraints and considering the grasp-placement inter-dependency.
To our knowledge, it is the first planner to consider this type of rich human-oriented
constraints and grasp-placement inter-dependency for planning object manipulation
tasks for HRI context. In the framework, the task is modeled as a set of constraints
from the perspective of the agents involved. The framework can autonomously de-
cide upon the grasp, the position to place and the placement orientation of the
object, depending upon the task, and the human’s perspective while ensuring least
effort of the human partner. This contribution is summarized in the Manipulation
block of figure 2.3 and presented in chapter 7.

2.5 Grounding Interaction and Changes, Generating
Shared Cooperative Plans

One might wonder about the inclusion of interaction and changes grounding and
generating shared cooperative plan into a single section. However, we have done
it purposefully, because we are essentially interested here in the common aspect of
analyzing affordances and effort based planning.

Based on the key cognitive components, the robot is further equipped to analyze
the basic pro-social cognitive components as shown in figure 2.7. We have equipped
the robot to analyzes the effect of a demonstrated action, in terms of changes in
various facts. This contribution, which will be presented in first part of chapter 10,
will be compared with state of the art and discussed in more detail in section 2.7
from the point of view of learning task semantics.

The grounding block of figure 2.7 shows the contribution of the thesis in terms of
grounding interaction and changes to the objects, with the possible actions and to
the agents involved. The problem of symbol grounding, [Harnad 1990], and the sub-
problem of anchoring, [Coradeschi 2003] are basically establishing the link between
the symbols in one’s knowledgebase to some input (verbal, sensory-motor) sub-
symbols, which could be manipulated and/or reasoned about. In [Harnad 1990],
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discrimination and identification have been seen as two important aspects in the
grounding process. For example, categorizing the objects as bottles is identification,
whereas distinguishing between two bottles based on some criteria is discrimination.
In the context of Human-Robot verbal interaction this discrimination for grounding
could be seen as disambiguating the object referred |Trafton 2005a|, [Trafton 2005b],
|[Lemaignan 2011c|, [Lemaignan 2011b]. A part of the approach to disambiguate
depends upon the perspective taking based mechanism, which was limited in two
main aspects: the notion of effort was missing, the interaction scenario was between
two agents, one human and a robot. In this thesis we will enrich such grounding
capabilities by overcoming those limitations.

In MACS project [Rome 2008] and the related works [Lorken 2008], the notion of
using affordances for robot control and for grounding planning operators have been
presented in the context of robot interacting with the environment having objects.
They present an interesting aspect of using affordances within the planning problem.
Because of its domain of interest, the notion of affordance was limited to action
possibilities of the robot with respect to the objects, such as the liftable affordance
of a cylinder, with the planning operator lift. In this thesis we are interested in a rich
notion of affordance analysis mechanism, which not only reasons about agent-object
action possibilities but also agent-agent task performance capabilities.

In addition, very often robot and human have to work cooperatively. Either it is to
give something to a third person or to clean the table by putting the objects in the
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trashbin, the robot should be able to generate a set of actions not only by planning
for itself but also for all the agents in the environment including the humans.

As long as the robot reasons on the current states of the agents, the complexity
as well as the flexibility of cooperative task planning is bounded in the sense, if
the agent cannot reach an object from current state, it means that agent cannot
manipulate that object, similarly if the agent cannot give an object to another
agent it means he/she/it will not do so. But thanks to Mightability Analysis, our
robot is equipped with rich reasoning of agents’ ability from multiple states/efforts.
This introduces another dimension: effort in the grounding and cooperative task
planning, as theoretically every agent would be able to perform a task, only the
effort to do so will vary.

We are interested in elevating such grounding and shared task planning capabilities
by incorporating a rich set of affordances, by incorporating the notion of effort
and by enlarging the domain to multi-agent context. By doing so, a subset of
grounding problems becomes the planning problem among different agents with
different efforts. For example, assume there are three agents (humanl, human2 and
robot1) sitting around a table, and there are bottles placed at different locations on
the table. If humanl asks robotl, "please give me the bottle," then the problem of
grounding ’which bottle’ humanl needs involves various affordances planning, such
as who can and cannot see and reach which of the bottles and with what levels of
efforts; who can or cannot give which of the bottles, to whom and with what levels



2.5. Grounding Interaction and Changes, Generating Shared
Cooperative Plans 31

of mutual efforts.

We will introduce the concept of Tuskability Graph, Manipulability Graph and fuse
them to construct Affordance Graph, which will encode different possible ways an
object could be manipulated among the agents and across the places, as shown in
Mightability based affordance analysis block of figure 2.1. We will show its ap-
plication for grounding interaction, changes as well as for generating shared plan.
Cooperation block of figure 2.8 shows contribution of the generation of shared plan
by reasoning about effort of multiple agents. This contribution of the thesis will be
presented in the first part of the chapter 8. In addition, we will show that the
similar mechanism could be used to ground changes in the environment, in terms of
agents, efforts, objects and actions, assuming that during the course of those changes
the robot was not monitoring the environment, as shown in grounding block of fig-
ure 2.7.

On the other hand, to solve a complex task that requires a series of actions by
different agents, a close interaction between high-level task planner and the low-
level geometric planner is required. It is now well known that while symbolic task
planners have been drastically improved to solve more and more complex symbolic
problems, the difficulty of successfully applying such planners to robotics problems
still remains. Indeed, in such planners, actions such as "navigate" or "grasp" use
abstracted applicability situations that might result in finding plans that cannot
be refined at the geometrical level. This is due to the gap between the represen-
tation they are based on and the physical environment (see the pioneering paper
[Lozano-Perez 1987]). Earlier we have proposed in [Cambon 2009] a general frame-
work, called AsyMouv, for intricate motion, manipulation and task planning prob-
lems. This planner was based on the link between a symbolic planner running
Metric FF [Hoffmann 2003] with a sophisticated geometric planner that was able to
synthesize manipulation planning problems [Alami 1990], [Siméon 2004]|. The sec-
ond contribution of AsyMov was the ability to conduct a coordinated search of the
symbolic task planner and its geometric counterpart.

In this thesis, we extend this approach and apply it to the challenging context of
human-robot cooperative manipulation. We propose a scheme that is still based on
the coalition of a symbolic planner and a geometric planner but which provides a
more elaborate interaction between the two planning environments. We have devel-
oped a two-way handshaking framework, which facilitates such interaction between
the planners and allows to take into account different effort based affordances as
well as various social, personal, and situation based constraints. The idea is that
the two planners should backtrack at their levels and inform each other about feasi-
bility, constraints and alternatives for performing a task or sub-task as summarized
in the task factor part of figure 2.9. We have elevated the geometric counterpart
of such frameworks from the typical trajectory or path planner to a far richer geo-
metric task planner and then we have introduced the notion of geometric task level
backtracking. This reduces the burden of the symbolic planner to worry about the
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geometric parameters and the constraints of the task as well as avoid flooding the
symbolic planner with unnecessary fail reports, which could be handled at geometric
level itself by backtracking. This contribution of the thesis will be presented in the
second part of the chapter 8.

2.6 Proactivity in Human Environment

A social agent is expected to behave proactively. For a robot to be co-operative and
socially intelligent, it is not sufficient for it to be active or just reactive. Behaving
proactively in a human centered environment is one of the desirable characteristics
for social robots [Cramer 2009], [Salichs 2006].

Proactive behavior has been studied in robotics but there is a clear lack of a uni-
fied theory to formalize the spaces to synthesize such behaviors. Proactive be-
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havior, i.e. taking the initiative whenever necessary to support the ongoing inter-
action/task is a mean to engage with the human, to satisfy internal social aims
such as drives, emotions, etc., [Dautenhahn 2007]. Proactive behavior could be
at various levels of abstractions and could be exhibited in various ways ranging
from simple interaction |L’Abbate 2007], to proactive task selection [Schmid 2007],
[Kwon 2011], [Schrempf 2005], [Buss 2011]. In [Schmid 2007], [Schrempf 2005], the
robot estimates what the human wants and selects a task using probability den-
sity function. In [Hoffman 2010|, a cost based anticipatory action selection is
done by the robot to improve joint task coordination. In [Kwon 2010], temporal
Bayesian networks are used for proactive action selection for minimizing wait time.
In [Carlson 2008], the robot wheelchair takes control when handicapped human
needs it. In [Cesta 2007, activity constraints violation based scheduler is used to
remind human. In [Duong 2005|, switching hidden semi-Markov model is used to
learn house occupant’s daily activities and to alert the caregiver in case of abnor-
mality.

But most of these existing works assume ’a’ particular kind of proactive behavior
and instantiate or validate them. There exists no comprehensive analytical frame-
work to reason about what are the potential spaces in which an intelligent artificial
agent could autonomously synthesize proactive behaviors depending upon the spec-
ifications of task, context and situation. This is important for life-long adaptivity
and evolvability of an autonomous agent, by diminishing behavior feeding on case-
by-case basis.

We identify three different aspects of proactivity:

(i) Autonomous synthesis of the type of proactive behavior, i.e. how to behave
proactively such as speak, suggest, reach out, warn, etc. It is basically synthe-
sizing the operators or actions, which perhaps are not completely grounded.

(ii) The situation based instantiation of that type of proactive behavior (what to
speak, where to reach out), grounding the actions.

(iii) On time ezecution of that behavior, so that it would be regarded as proactive
and does not seem to be reactive.

As shown in Proactivity block of figure 2.8, to address the point (i) as mentioned
above, we will present generalized theory of proactivity, based on the potential
spaces and influence of the proactive behavior on ongoing interaction or on the
planned course of actions and categorize different levels of proactivity. This will
provide a mean to regulate the "allowed proactivity" of a robot with different levels
of autonomy from the perspective of HRI. For the point (ii), we will adapt the
framework of our HRI task planner to instantiate various human-robot interactive
object manipulation related proactive behaviors. Aspect (iii) is complementary to
this thesis and being explored by other contributors in our group. However, we will
provide pointers our robot supervisor software, which is responsible to execute and
control the robot with such proactive behaviors based on the situation.
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In addition, we have conducted a set of user studies to validate a couple of hypoth-
esized proactive behaviors. The results suggest that proactive behaviors are indeed
important aspect of being socially situated. This is based on our finding that proac-
tive behaviors reduce the confusion of the human partner and if such behaviors are
also human-adapted, they further reduce the effort of the human partner. Further,
for the users, the robots seem to be more supportive and aware in the cases the
robots behaved proactively. Chapter 9 will present this contribution of the thesis.

2.7 Learning Task Semantics in Human Environment

One of the main challenges in 'natural’ and ’cooperative’ existence of the robots
with us is, the robots should be capable to understand the semantics of day-to-day
tasks independent from their executions. Further, such understanding should be at
the level of abstraction comprehensible by the human and could be scaled to diverse
environment. This will also facilitate the achievement of the same task in different
ways depending upon the situation.

Various researchers have addressed many aspects of robot learning through demon-
stration, see [Argall 2009] for a survey. In |Gribovskaya 2011]|, trajectories for pick-
and-place type tasks have been learnt by the robot with constraints on orientations.
In [Muhlig 2009], the task of pouring by a human performer has been adapted at tra-
jectory level by the robot for maintaining collision free movement. In [Calinon 2009,
[Dragan 2011], learning of the trajectory control strategies has been presented from
the point of view of adapting to modified scenarios. In [Ye 2011], configuration and
landmarks based motion features have been encoded in the learnt trajectory to avoid
novel obstacles and to maintain critical aspects of the motion. Such approaches are
in fact complementary to learning the symbolic description of the task: what does
the task mean and how (at non-trajectory level) to perform the task. This will help
to generalize the learnt skill for diverse scenarios as well as to facilitate the transfer of
learning among heterogeneous robots. Further, such symbolic level understandings
will support natural human-robot interaction.

At symbolic primitives level, the task is mainly learnt in two forms:
(i) Sub-action based: The task is learnt based on the sequence of sub-actions.

(ii) Effect based: The task is learnt based on the effect in terms of changes in the
environment.

In the sub-action learning approaches, the task, place an object next to another object
would be inferred as reach, grasp and transfer_relative, [Chella 2006]. Take a bottle
out of the fridge would be sub-symbolized as Open the fridge, Grasp the bottle, Get
the bottle out, Close the fridge and Put the bottle on the table in a stable position,
[Dillmann 2004]. In [Pardowitz 2007], incremental learning of the task precedence
graph, for the tasks of pouring the bottle and laying the table, has been presented.
In [Kuniyoshi 1994], the robot grounds the task of assembling a table by a human
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in terms of reach, pick, place and withdraw, and tries to learn the dependencies to
facilitate reordering and adapting for different initial setups. In [Ogawara 2003], a
hybrid approach tries to represent the entire task in a symbolic manner but also
incorporates trajectory information to perform the task.

However, most of these approaches actually reason on actions, i.e. trying to represent
a task in sub-tasks/sub-actions from the point of view of execution. There is no
explicit reasoning on the semantics of the task independent of the execution. As
mentioned earlier in this thesis, our focus will be on task understanding from the
effect point of view, i.e. to emulate the task. Recognizing the effect of actions, based
on initial and resulting world states, has been discussed as an important component
of causal learnability, and a complementary aspect for reasoning action level, i.e.
how to generate that effect, [Michael 2011].

As mentioned in section 1.1.1, from the perspective of social learning, which in a
loose sense is, A observes B and then ’acts’ like B, Emulation, is regarded as a
powerful social learning skill. This is related to understanding the effect or changes
of the task, which in fact facilitates to perform a task in a different way. For
successful Emulation (i.e. bringing the same result, which might be with different
means/actions than the demonstrated one), understanding the "effect" of the task
is an important aspect.

From the aspect of analyzing effects in terms of the task driven changes, the robot
tries to learn the effect through dialogue or by observation. In [Cantrell 2011],
through dialogue, the task to follow a person will be understood as to remain
within 1 meter of the person. From the perspective of learning interactive ob-
ject manipulation tasks by observing human demonstrations, in [Ekvall 2008], the
effect of pick-and-place type tasks have been analyzed by using predicates such as
holding object, hand empty, object at location, etc. In [Montesano 2007|, the robot
performs different actions such as grasp, touch and tap on different objects to an-
alyze the effects; once learnt could be used to select the appropriate action for
achieving a particular effect |Lopes 2007]. However, the effects of each action on
the object were described in terms of velocity, contact and object-hand distance.
In [Tenorth 2009], a first order knowledge representation and processing system
KnowRob is presented. It represents the knowledge in action centric way and learns
the action models of real world pick-and-place domain, coupled with object and its
properties. In [Schmidt-Rohr 2010]|, an approach has been presented to learn ab-
stract level action selection from observation. In this, the position, the orientation,
and the symbolic interpretations of the performer’s body movement, such as bow,
pick object are considered.

However, in all these approaches, the effects from the perspective of changes in
target-agent’s (the agent for whom the task is being performed) abilities have not
been exploited, which is one of the basic requirement even for a set of basic yet
key tasks in a typical human-human interactive manipulation scenario: give, make
accessible, show, hide, put-away, hide-away. One common effect of such tasks is to
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enable and/or disable the actions or abilities of the target-agent. For example, make
accessible enables the target-agent to take the object whenever he/she wants. Hide
deprives the target-agent from the ability to see the object. Hence, reasoning on
the effect of a task from target-agent’s perspective is a must for understanding such
tasks.

Let us look back to our example scenario of figure 2.2 from the learning point of
view. Assume that the robot is observing the task as performed in figure 2.2(c),
and learns just by reasoning on the actions, in terms of symbolic sub-tasks such
as grasp bottle, carry bottle and put bottle at 'x’ distance from the person P2 or
put the bottle reachable by P2’s current position. In this case, it will not be able
to identify that the tasks performed in situations as shown in figures 2.2(b) and
2.2(d) are the same tasks. This is because of two main reasons: (i) what the robot
has learnt actually is how to perform the task, (ii) it did not reason at correct
level of abstraction required for such tasks. In this example, the more appropriate
understanding of the task should be: the object should become ’easier’ to be seen,
reached and grasped by the target-agent. This is only possible when the robot will also
reason on the aspect complementary to reasoning on actions, which is analyzing the
effect. Further, the robot should be able to infer the facts at a level of abstractions,
which are not directly observable, such as comparative facts: easier, difficult, etc.
and use them in learning process.

In [Michael 2011], two desirable capabilities of an autonomous causal learnability
have been discussed as: (a) Ability to infer the indirect facts, which could be ob-
tained by ramifications of the action’s effects. (b) Build a hypothesis that the agent
can use to make predictions of effect-based resultant world state from a novel initial
state, which has not been observed before.

The main contribution of the thesis is to deal with the above-mentioned two com-
ponents in the following manner:

(i) Hierarchical Knowledge building: Enriching the robot’s knowledge with a set of
hierarchy of facts. By reasoning on the multi-state visuo-spatial perspective of the
agent, we enable the robot to infer comparative facts such as easier, difficult, main-
tained, reduced, etc. as well as qualitative facts such as supportive, non-supportive,
etc. The robot’s knowledge has been further enriched with hierarchy of facts related
to the object’s state. In our knowledge such facts have neither been generated nor
been used in the context where the robot is trying to understand human-human or
human-robot interactive object manipulation tasks from demonstrations. The social
learning block of figure 2.9, shows this contribution of the thesis, presented in first
part of chapter 10.

(ii) Learning Situation and Planning-Independent Task’s Semantics: We present an
explanation based learning (EBL) framework to learn effect-based tasks’ semantics
by building a hypothesis tree. Further, we have incorporated m-estimate based
reasoning to find consistency based relevant predicates for a task. The framework
autonomously learns at the appropriate level of abstractions. We show that such
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understanding successfully holds for novel scenarios as well as facilitates transfer
of task’s understanding to heterogeneous robots. Second part of the chapter 10
presents this contribution of the thesis.

The high-level socio-human block of figure 2.9 gives a global idea about the various
socio-cognitive factors, a sub-set of which could be incorporated in the various frame-
works and algorithms developed in this thesis. Further, the decisional and planning
block shows various aspects, which the presented frameworks and algorithms enable
the robot to autonomously decide.

Next, chapter (chapter 3) will first present the contribution of the thesis by pro-
viding a generalized domain theory of Human-Robot Interaction. This is a step to-
wards developing a unified framework in which the above-mentioned socio-cognitive
components could be incorporated and which could lead towards realizing different
behavioral aspects discussed with reference to the Social Intelligence Embodiment
Pyramid (figure 1.1) constructed in the introduction chapter. The chapters after-
ward will present the rest of the contributions of the thesis.






CHAPTER 3

Generalized Framework for
Human Robot Interaction

Contents

3.1 Introduction . ... ... . ...ttt 39
3.2 Environmental Changes are Causal . . . . . ... ... .... 40
3.3 HRI Generalized Domain Theory . . . . . . . .. v v v v v 41
3.3.1 HRI Oriented Environmental Attributes . . . . . . . ... .. 41
3.3.2 HRI Oriented General Definition of Environmental Changes . 47
3.3.3 HRI Oriented General definition of Action . . . . . . ... .. 48

3.4 Development of Unified Framework for deriving HRI Re-
search Challenges . . .. ... .. ... ............. 50
3.4.1 Task Planning Problem . . ... ... . ... ......... 50
3.4.2 Constraint Satisfaction Problem . . .. ... ... .. .. .. ol
343 Partial Plan . . . . . .. ..o 52
3.4.4 Deriving HRI Research challenges . . . ... ... ... ... 52

3.5 Switching among Different Representations and Encoding:
State-Variable Representation . . . . . .. ... ........ 58
3.6 Until Now and The Next . . . . . .. ... ... ........ 60

3.1 Introduction

Research in Human Robot Interaction (HRI) has begun to guide the direction of fu-
ture of personal, domestic and service robotics. It is a domain incorporating diverse
disciplines, see the survey [Goodrich 2007] for some of such interesting pointers.
However, we still lack a general formal description of Human Robot Interaction do-
main, which could be used to identify the spaces for HRI research as well as could
provide a guideline to design and develop various components for HRI. There have
been attempts to generalize the Human-Robot Interaction, [Scholtz 2003], but it
discussed HRI along different dimensions: roles (supervisor, peer, ...), the physical
nature of robots (mobile platform on ground, fixed base, unmanned systems in the
air, ...), the number of systems a user may be required to interact with simultane-
ously, and the environment in which the interactions occur. And a similar taxonomy
is presented in [Yanco 2004| by incorporating human-robot physical proximity.
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Figure 3.1: <WI, A, WF> triplet, showing Causal Nature of Environment Change,
a sequence of actions A on initial world WI at time ¢; results into a final world WF
at time ty.

In this chapter, we will present a theory for HRI, along a complementary dimension:
Causality of Changes in the Environment, so that most of the HRI challenges could
be represented in a unified framework of Planning. For this, we will first present
a generalized description of Environmental Attributes, Agent and Action from HRI
perspective and then we will derive various challenges of HRI in a formal way,
which will also link the contributions in the rest of the chapters within this unified
framework.

3.2 Environmental Changes are Causal

In the context of HRI, we adapt the typical relations of task, agent, action and
environment; see [Ghallab 2004|, [Michael 2011], [Kakas 2011], [Novak 2011]. We
define, a task T can be achieved by a series of actions A by a set of agents Ag,
causing some changes C in the environment En, see figure 3.1. As |[Michael 2011],
we also postulate that changes could be values of the directly observable facts DF
e.g. for the fact variable objects visible to a human, and values of the inferred facts
IF, e.g. least feasible effort requires to see an object. Note that we call them as
fact variables because they are not ground atoms (in fact when the environment is
represented in state variable notation, see [Ghallab 2004|, these fact variables will
be similar to state variable with some unground parameters). Further, we ramify
that observation /inference could be based on a single time instant, for example, boz
is on table, or based on a course of time, such as ball is moving. We define the set
F of all such fact variables as:

F=DFUIF (3.1)
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Let L be the set of all possible values of all the fact variables F' in the environment.
Hence, at a particular instance of time ¢;, the state s of the environment will be a
subset of L, i.e. s C L.

We will adapt the notions of class, type variable and constant from |Ghallab 2004],
for our current discussion in HRI context. We partition HRI domain into various
classes. The minimal set of classes consists of: Robots, Humans, Objects, Lo-
cations and the classes related to their attributes. These classes define the type
variables of the domain. Note that type variables could be a class itself such
as variable type Obj of class Object. Similarly, variable types Rob of Robots,
Hum of Humans, Loc of Locations as well as union of classes such as variable
type Ag, which stands for agents, and consists of classes Robot and Human, i.e.
Ag € Robots U Humans. Similarly, we define type variable Et which stands for
entity, such that Et € Agent U Objects. Instances of these type variables are the
constant symbols, such as Humanl as an instance of Ag, which exists in the envi-
ronment.

We define, the set of all the agents AG and the set of all objects OBJ constitute to
the set of entities ET in the environment, i.e.

ET=AGUOBJ (3.2)
Agents are the active entities in the environment, who can act upon another Agents
and Objects, where Objects are passive entities in the environment.

Here, we are particularly interested in identifying those attributes of environment,
which constitute to the set of environmental facts from HRI aspect. Hence, below
we will mainly identify HRI oriented entities and their attributes.

For the rest of the discussion, to get rid of time suffix, we will use WI for initial
environment and WF for final environment as shown in figure 3.1.

3.3 HRI Generalized Domain Theory

In this section we will present a generalized domain theory for HRI, by identifying
the attributes, and then providing the generalized definitions of action and changes.

3.3.1 HRI Oriented Environmental Attributes

We define the state space for agent variable Ag as follows:

Sag = Geometrical _Statesy x Physical _Stateay x Mental _Stateaq

(3.3)

x Spatial _ Relation sy x Proxemics_ Relation aq
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Similarly, we define the state space for object variable Obj as follows:

Sopj = Geometrical _Stateoy; X Physical _Stateoy; X Spatial _Relationoy;

x Intrinsic_ Affordancegy;
(3.4)

For a particular instance ag € AG and a particular instance ob € OB/J, the states
will be 5,4 and s, receptively, where s,q € Sag and s € Sop;-

Below we explain each of the above constituting attributes.

Geometrical state of an entity e € AG U OBJ is a tuple:

Geometrical _State, = (position, orientation, con figuration) (3.5)

Spatial relation is defined as the relative position of an entity e; € AG U OBJ with
respect to any other entity e; € AGUOBJ, where e; # e;. It is a tuple of the form
(€i,ej,sr). Where sr € SpRel and SpRel is set of all possible spatial relation types
defined in the domain:

SpRel = {On, In, Left, Far, Adjacent, ...} (3.6)

Note that there might exist more than one types of spatial relation for a given pair
of entities (e;, e;), for example, an object could be Adjacent to an agent and could
also be on the Left side of the agent. Therefore, there will be set of such tuples
representing all the spatial relations between the entity pair, which is denoted as:

SRif = {(es,e5,57)} (3.7)

At a given instance of time, for a particular entity e € AG U OBJ, there will be a
set of all the spatial relations between e and all other entities e; € AG U OBJ as
follows:

Spatial _Relation, = U SR¢ (3.8)

e;€AGUOB.J
e;#e

Prozemics relation is defined as the proxemics zone in which an agent ag; € AG is
belonging with respect to any other agent ag; € AG, where ag; # ag;. It is a tuple
of the form PRgy! = (ag;, agj,pxr). Where pxr € PxrSpc and PxrSpc is set of all
possible proxemics spaces defined in the domain:

PxrSpe = {Intimate, Personal, Social, Public} (3.9)

Note that, there will be only one type of proxemics relation for a given pair of agents’
positions.

It is worth mentioning that the PxrSpc contains the spaces defined by [Hall 1966,
however the ranges of these zones should be adapted in HRI based on the shape and
size of the agents and various other factors.
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At a given instance of time, for a particular agent ag € AG, there will be a set of
proxemics relations between ag and all other agents ag; € AG as follows:

Proxzemics_ Relationgg = U PRy (3.10)

ag; €AG
agj#ag

We define physical state space of agent variable Ag as:

Physical _Statey = Attention physical 4, X Postureay x Hand_statea,

xHand_modeag x Motion_status g
(3.11)

where for a particular agent ag € AG,

Attention_physical,, = (looking _atag, pointing _atag) (3.12)

looking _atqqy and pointing__at,q are set of all the entities and locations, ag is looking
at and pointing at in the given time instance.

The posture of a particular agent ag € AG is:

Postureqg € {standing, sitting, ...}, (3.13)

Further, for the agent variable Ag, we define the hand state space as:

N9
Hand_stateag = H (hand_occupancy_statusfgg) (3.14)
i=1

where, N;l4 9 is number of hands of the Ag type. This representation facilitates to
incorporate agents of different types having different number of hands.

For a particular ag € AG, hand_stateqg is set of N;?g number of tuples of the form
hand_occupancy _status = (ht,ov), where ht € HandType and HandType is set
of all the possible hand types in the domain. And ov € OccVal, where OccVal is
the set of all the possible occupancy status of the hand. We define below the minimal
required elements of these sets from HRI perspective:

HandType = {Right _hand, Left hand} (3.15)
OccVal = {Free_Of Object} U{(Holding Object,{Object Names})} (3.16)

For a particular agent ag of class humans, a valid hand state hs,y € Hand_state,q
could be

((Right_hand, Free_Of _Object), (Left hand, (Holding Object,{glass}))).
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From HRI perspective, for an agent it is important to distinguish the mode of the
hand, is it in the mode to do something, such as to point, waiting to take, to give,
etc., which we term as manipulation mode, or it is in the rest mode. Therefore, we
define the set of hand mode types HandM ode as follows:

HandMode = {(Rest_Mode, Rest _Mode_type)} U {Manipulation Mode}
(3.17)
where Rest Mode_type can be:

Rest_Mode_type = {Rest_by Posture}U{(Rest _on_ Support, Support Name)}

(3.18)
Rest by Posture corresponds to the situations when the hand is in rest mode
identified as rest postures. Rest on_ Support corresponds to the situations when
the hand is resting on some support. For example, someone sitting on a chair and
the hand is on a table in front or on the armrest of the chair.

Based on the relative posture of the arm with respect to shoulder and torso, the
spatial relation of hand with respect to object in contact and with the knowledge
about the whole body rest-posture of the agent, such modes can be inferred by
geometric reasoning. We will present the results of such reasoning at geometric
level in the next two chapters.

We define for the agent variable Ag, the hand mode space as:

N
Hand_mode sy = H (hand_pos_modeag) (3.19)
i=1

For a particular ag € Ag, Hand_modeg—qq is the set of N,fg number of tuples
of the form hand_post _mode = (ht,hm). ht € HandType as defined earlier and
hm € HandM ode defined above.

For the agent variable Ag, we define the motion status space as:

Motion_statusag = H BdPtMotSt®? (3.20)
bpe BodyPart 4

BdPtMotSt" is a set of tuples of the form (bp, mst), where bp € BodyPart 44 and
mst € MotSt. BodyPart g, is the set of symbols to represent different body parts
of the agent class to which Ag belongs. For HRI domain, we define the following
minimal set of body parts:

N9
BodyPartay = {whole_body, torso, head} U U hand (3.21)
i=1

MotSt is the set of possible symbols in which the motion status could be qualified.
For HRI domain, we define the following minimal set as:

MotSt = {not_moving, moving, turning} (3.22)
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For a particular instance of ag € AG, the physical state will be ps,y €
Physical _Stateay. An example physical state ps,, could be:

Attention Physical Posture

—
({box,red_bottle},{red bottle}) | , | standing | ,

looking at pointing at

Hand state

(Right _hand, (Holding _Object, {blue_bottle})), (Left hand, Free Of Object) |,

Hand _mode

(Right _hand, Manipulation _Mode), (Left hand, (Rest _on_ Support, Tablel)) | ,

Motion _status

A

{{whole__body,not _moving), (torso,not _moving), (head, turning),

(Right _hand, moving), (Left hand,not _moving)}

Motion__ Status

(3.23)

Physical state space of object variable Obj is:
Physical _Stateoy; = {MotSt} (3.24)
where MotSt is defined in eq. 3.22.

Mental state of a particular agent ag € Ag consists of tuple:

Mental _stateqy = (Belie f,q, Emotional _stateqgq, Attention_mentalag) (3.25)

Belief could include agent’s awareness about the situation, the task, etc. Works such
as |Gspandl 2011], [Hoogendoorn 2011] could be used to provide the robot with the
belief management capabilities of the agents in the environment.

Emotional state of a particular agent ag € Ag could be:

Emotional _state,q C {Happy, Angry, Sad, ...} (3.26)

Intrinsic_ Affordance of object are the functionality it could provide or support:

Intrinsic_Affordance = {to_put_on,to_grasp,to_put_into,to_carry,

) (3.27)
to_push,to_lift, ...}

Note that this notion of affordance is similar to [Gibson 1986, in the sense, it
defines affordances as action possibilities, independent of the agents. However, from
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the HRI perspective, in this thesis we will enrich the notion of affordance (chapter
5) with agent-object and agent-agent action possibilities. That is why to avoid any
confusion, we use the term Intrinsic_ Affordance.

Ability oriented facts requires the capability to analyze self-ability and abilities of
others, which is a key for any autonomous and cooperative agent. Inferring and
grounding a variety of environmental changes expressed in terms of the agents abil-
ities, e.g. "a change in environment state, which could result into the loss of an
agent’s ability to reach some object," would be possible in the unified framework
if we appropriately incorporate ability as attribute to infer the facts such as "loss
of reach-ability". Therefore, we assimilate the basic abilities of an agent into the
attributes of the environment, as will be explained next.

We define AB4g, the set of basic abilities for agent variable Ag as a set Abug,, where,
each Aby, is a tuple:

AbAg - (Tab7 Paba ECab) (328)

where Ty, € TypeAb is the type of the ability:
TypeAb = {speak, see, reach, grasp, ...} (3.29)

P, is the parameters of the ability type. Depending upon T, P, can be NULL,
ordered list of entities, words (sentence), etc.

EC,, is the enabling condition, which if will be met, the feasibility of T, will
hold for the particular agent in a given state of the environment. This enabling
condition depends upon the given instance of environment, and hence differs from
the typical notion of pre-conditions of an action. In this context, it is important to
equip the robot with the capabilities of analyzing agents’ abilities, not only from
the current state of the agents but also from a set of different states attainable by
the agents. This enabling condition is an ordered list of ec;, where ec could be an
action (definition of which, from the HRI perspective, we will adapt in the next
section), an effort (defined in chapter 4), an instance of agent’s state defined in
eq. 3.3, an instance of the environment state itself, etc. This notion of enabling
condition facilitates the reasoning beyond the current state of an agent, which is
desirable from HRI perspective. For example, it is not sufficient to know that an
agent could not reach an object from his/her/its current state. The robot should
be also able to figure out the agent’s state and/or actions in which the agent might
reach the object.

This facilitates the robot to estimate that the humanl € AG will be able to reach
the cup (currently unreachable), if he will achieve a state by standing up and then
leaning forward from his current state. In this case, the enabling condition will be
(stand _up,lean_ forward) and an instance of the human’s ability will be:

(reach, cup, {(stand _up,lean__ forward)}) € abilitygumani (3.30)
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Theoretically, finding these enabling conditions, based on the environment, could
be viewed as a planning problem in a sub-domain, as we have a given state, and
we want to know the resulting state, in which the effects of the ability is satisfied.
Hence, it depends upon the domain and the requirements of the HRI context, to
decide about the different types of abilities to be pre-computed as the facts of the
environment.

As defined in the beginning of the chapter, F' the set of all fact variables. For the
HRI domain, these fact variables could be the attributes of the entities, and abilities
as defined above or could be a derived fact such as "places where agent agl € AG
could give object ob to agent ag2 € AG, places which an agent can reach with a
particular effort eft, and so on. Hence, the set of all the fact variables F', mentioned
in section 3.2, which defines the attributes of the environment is actually a super-
set of all the attributes defined above. One way to represent such facts is to use
parameterized state variable, as will be outlined in section 3.5. In the next section,
based on F', we will define what does a change in the environment mean.

3.3.2 HRI Oriented General Definition of Environmental Changes

The state space of an environment En is defined as:

Sen= [ Vs (3.31)
feF
where Vy is the set of all possible values the fact variable f could take. As we defined
in the beginning of the chapter, L as the set of all possible values of all the facts in
the environment, we can say that:

L= w (3.32)
fer

If a fact variable f has been assigned a single value at any instance, it is said to be
grounded, otherwise f is said to be ungrounded. At any instance t, the state of the
environment, denoted as s; € Sg, will be the grounded values of all the facts:

si=J vy (3.33)
fer

where, vy € Vy is the value of the fact variable f at that instance. We say there is
a change in two instances of environment, s; and s;, if the value of at least one fact
variable f € F is different in both of the instances:

change(s;, sj) — Eif\vjc € s5i A vfc SN 'ch # vjc (3.34)

Let us denote two instances of the environment as the initial and the final states
Sinit and sg;,. Change in the environment, denoted as Cilm is a set of tuples:

Sinit

Ol = {(f, 0 vi™)| f € F APt € Vy Avf™ € Vy) (3.35)
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where f, is the fact variable, v}mt and vjfm are the values of the fact variable in

initial and final states.

This notion of environmental changes together with our domain of HRI facilitates to
incorporate making changes in the agent’s mental state within the unified framework
of planning, as will be clear from our discussion about action in the next section.

3.3.3 HRI Oriented General definition of Action

As mentioned earlier, we will use typical notion of intention behind an action: an
action a is an act, which cause changes in the environment.

a = action = IEnni, IEN 43| (apply (a, Engpi) results_into Engimy,) A

(CE"“” - NOT_NULL>

Eninit

(3.36)

The dictionary definition of ’action’ incorporates expressing by means of attitude,
voice and gesture, [merriam webster.com a|. Further, it is important for a human-
robot interactive system to be multi-modal. Hence, to facilitate the reasoning on
generalized multi-modal space for proactive actions, we adapt a broader delineation
of action, which includes verbal and non-verbal acts of the agent:

type_action (a) C {verbal, gaze, gesture, motion, manipulation, ...} (3.37)

For the changes caused by non-agent, terms such as tendency (for falling due to
gravity, etc.) |Rieger 1976], event (corresponds to internal dynamics of the system)
[Ghallab 2004| have been used. We assume that such events or tendencies could in
fact be triggered by an action of the agents. For example, an agent’s action might
trigger an intentional (to drop something into the trashbin) or accidental free fall
(unknowingly hitting something placed on the table’s edge) of an object.

We define an action as a tuple:
a = (name, parameters, preconditions, effect) (3.38)

For most of the discussion, we will omit some of elements of the tuple and represent
an action as a or a(parameters).

An action can cause changes in any of the environmental facts, which includes at-
tribute’s values of an agent, such as agent’s mental state. Hence, saying, "How
are you?" also falls into our definition of an action if its intention is to change
the fact related to the emotional state of the agent from sad to happy, hence,
(Emotional _state, Sad, Happy) € C3/™

Sinit*

Saying "hey..." is also an action if its intention is to fetch visual or mental attention
i.e. changing facts related to the attentional part of the agent’s state. Verbal action
could also change the belief about what, when, how, where, etc. about the situation,
task, etc. Actions could be to confuse or to clarify ’something’ depending upon the
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Figure 3.2: An action can be further decomposed into sub-actions and there could
be different kinds of dependence relations among them. Note that A is an action
and A, where suffix 7 € {1,2,1.1,2.1..}, indicates sub-action.

need of the game or task: co-operation or competition. An action could cause
change in the agent’s self-mental and physical states e.g. looking around to update
own knowledge about the environment. Our representation of action contains its
name/type, the performing agent, and the parameters of the action, but unless
necessary, we will avoid their explicit mention.

Similar to [Novak 2011], we also allow an action to be recursively subdivided into
(sub)actions as long as the basic characteristics of an action: causing change in the
environment is respected. This facilitates to reason at different levels of abstrac-
tion and to plan using hierarchy of abstraction spaces [Sacerdoti 1974], [Alili 2009].
Hence, at different levels of abstraction, an action could be of single agent such
as grasp, put, etc., or could be combined act of multiple agents, such as hand-
over, carry together a heavy object or push a car together. Depending upon the
level of decomposition, an action can be co-operative action by multiple agents, e.g.
clean_ table or it can be a micro action e.g. move_joint. Therefore, the symbolic
level task, clean the room, could also be treated as an action at appropriate level
of abstraction, because it satisfies the definition of an action: intended to cause
changes in the world state.

An action can be assigned to an agent or a group of agents. Even if an action has
been assigned to an agent, when decomposed into sub-actions by the planner or by
the agent, it can involve actions of other agents also, see figure 3.2. For example, if
the robot has to perform the action "clean the room", at the highest level the agent
for this action is robot, but while decomposing it into sub-actions, it can ask human
partner to clean one of the tables in the room (Typel: independent sub-actions) or
ask human to open cabinet so that it can clean it (Type2: dependent sub-actions)
or ask human to hold and carry together a heavy object to place it properly in the
room (Type3: tightly coupled concurrent sub-actions), see figure 3.3. In figure 3.2,
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Figure 3.3: An instantiation of action decomposition.

action A itself is Type 1 at highest level of abstraction. Whereas at the next level of
decomposition Al is again Typel but A2 and A3 are Type 2 as they depend upon
Al and A2 respectively. Similarly, in next level of decomposition A1.1 and A1.2
are Type 1 as could be executed independent of each other. But A3.1 and A3.2 are
Type3 as both will be required to be performed simultaneously.

3.4 Development of Unified Framework for deriving HRI
Research Challenges

In this section we will derive various research aspects of HRI addressed in this
thesis. Above mentioned domain of HRI and the notion of environment and action,
facilitate to address a wide range of HRI issues, which are linked to the changes in
the environment. Under the assumption that environmental changes are causal, we
will be able to bring together various HRI aspects, under the unified framework of
planning problem.

3.4.1 Task Planning Problem

To represent the causality of environmental changes, we use the typical general
model of the planning domain ¥ = (S, A4, &, ), which is independent of any partic-
ular goal or initial state. Where S is set of states, A is set of actions, £ is set of
events and -y is state transition function. We define a planning problem as:

P = (% 50,9, F in,A in,F _av,A_av,) (3.39)

sp is initial state of the environment represented in eq. 3.33, g is set of expressions
of the requirements a state must satisfy in order to be a goal state. Here, we are
deliberately avoiding to give an expression for g, because it will depend upon the
representation of planning domain. If it is set theoretic representation, it will be a
subset of all the propositions, if it is state variable representation it will be a set
of grounded as well as ungrounded state-variable expressions. However, depending
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upon g, there could be a set of goal states:
S, = {si € Spnls; satisfies g} (3.40)

It is important to note that we relax the assumption of restricted goal of classical
planning problem by explicitly mentioning other elements in the planning problem
tuple. This is because of the fact, that in HRI domain controlling the system re-
quires more complex objectives than just giving a final goal state. For example,
the system should go through a set of states and actions, the system should avoid
a set of states and actions, a set of facts should always be maintained and so on.
Extended goal could be represented in different ways, such as temporal logic, utility
function or by utilizing other planning under uncertainty frameworks. The detail
about representation of such extended goal is beyond the scope of the current dis-
cussion, which depends upon the type of extended goal we want to incorporate.
However, to facilitate the discussion with extended goal, we have explicitly incor-
porated F'_av, F'_in, A in and A av in the planning problem defined above.
F_in = {(precond, f in)} is a set of expressions, which tells about the facts to be
maintained during the intermediate states of the plan. F'_av = {{(precond, f _av)}
is a set of expression, which tells about the facts to be avoided during the inter-
mediate states of the plan. Where precond = {v}} is set of preconditions in terms
of grounded fact, i.e. precond C L. If precond is not NULL then f in or f awv
should be considered to be maintained or avoided, only when the precond is getting
satisfied. If precond is NULL, we assume that f in or f av should be maintained
or avoided always. A aw is the set of actions, which should be avoided to be incor-
porated in the plan and A _in is the set of actions, which should be incorporated
in the plan. We assume that even if the elements of these sets are not directly
provided, the system is able to deduce them and populate g, F'_in, F'_awv if they
are provided in the form of constraints. Next, we will briefly outline the constraint
satisfaction problem.

We assume that given an instance of planning problem, a plan A is produced which
is a sequence of actions:
A= <a1,a2,...,ak> (341)

3.4.2 Constraint Satisfaction Problem

Constraint satisfaction problem (CSP) in general is: given a set of variables and
their domains, and the set of constraints on the compatible values that the variables
may take, the problem is to find a value for each variable within its domain such that
these values meet all the constraints, (see [Ghallab 2004]). From HRI perspective, we
define a constraint c¢; restricts the possible values of a subset of fact variables, { fi} C
F. A constraint can be specified explicitly by listing the set of all allowed values or
by the complementary set of forbidden values or by using relational symbols. We
will basically use this notion of CSP to restrict the solution space for a task, by a
set of constraints Ctrs = {c;}.
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3.4.3 Partial Plan

We adapt the definition of a partial plan from [Ghallab 2004], as a tuple:
7= (A% <,B,L7) (3.42)

where, A= = {a1,a9,...,ax} is a set of partially instantiated actions, < is a set of
ordering constraints on A= of the form (a; < a;), B is the set of binding constraints
on the variables of action in A=, L™ is the set of causal links of the form (a; — a;).

3.4.4 Deriving HRI Research challenges

Using the above representation of planning problem, and how much and which type
of information is provided, below, we will derive various HRI research challenges for
a variety of sub-domains: affordance analysis, manipulation and motion task plan-
ning, learning, proactive behavior, prediction, grounding interaction and changes,
etc. This will also present the various contributions of the thesis into the unified
theoretical framework.

3.4.4.1 Perspective Taking, Ability and Affordance Analysis

As discussed earlier, our HRI domain incorporates abilities of an agent as attributes
of the environment state. This requires that the robot should be able to perform
such analyses for all other agents in the environments, which is termed as per-
spective taking. Further, our definition of ability (eq. 3.28) allows to incorporate
enabling condition for an ability. This could enrich the decision-making, planning
and affordance analysis capabilities of the robot. However, it imposes the need of
reasoning about the abilities of the agent beyond the current state of the agent.
A sub-problem of analyzing such abilities is to find the feasibility of an ability of
an agent, from a virtual state attainable by the agent, if he/she/it would put a
particular effort. Further, such abilities, inheriting the notion of effort could serve
for enriched affordance analysis. For example, the robot would be able to find the
feasibility of picking an object with the effort involved and feasibility of giving an
object to another agent with the criteria of balancing mutual effort, and so on. In
chapter 4 and chapter 5, we will focus on such ability and affordance analysis,
which will serve as the basis for other contributions of the thesis.

3.4.4.2 HRI Manipulation Task Planning

Consider an instance of eq. 3.39, for the task to show an object 0bj by agent agl
to agent ag2. If the planning problem is expressed in terms of the constraints
on the desired goal state that the object should be visible to the ag2, then this
provides greater flexibility of synthesizing the plan A. There will be different types
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of decisions, the planner will be required to take: where to perform the task, i.e.
reasoning on the goal state; how to perform the task, i.e. reasoning on A. Depending
upon the situation and other constraints, the task planner can result into various
plans:

(i) A = (grasp(agl,obj), carry(agl,obj), hold(agl, obj,at(P))), i.e. grasping, car-
rying and holding the object at a place to make it visible to ag2.

(ii) The plan could involve to displace another object 0bj2, which is potentially
occluding the object obj from the agent ag2’s current perspective.

(iii) The plan could even involve third agent ag3 by giving the object to him and
asking to show the object to the ag2.

(iv) Even the plan could involve a verbal action by agent agl to enhance the knowl-
edge of ag2 about obj and a set of actions for the ag2 to see the object. For example,
A = (say(”Obj is behind the box”), stand _up(ag2),lean__ forward(ag2)).

However, for each of these plans, the question of deciding a goal state has to
be addressed. Now assume that a partial plan (see eq. 3.42) is also provided
to the task planner in terms of partially grounded ordered sub-actions, e.g.
(grasp(agl,obj,use_grasp(GSP)),carry(agl, obj, to(P)), hold(agl, obj, at(P))).
Further, assume that each of these sub-actions could further be decomposed only
into move__hande sub-action. Then this left the planner with the trajectory finding
problem in the workspace. In this case, the planner will have less flexibility to plan
alternatively, however it will still have flexibility of planning different trajectories.
Moreover, if the parameters of these sub-actions, such as the grasp G.SP, the place
P are not grounded by the planning problem specification, the planner would still
have latitude to decide about the final state, by grounding the not-grounded fact
variables of the final environmental state, denoted as sy. While deciding the sy,
the planner could incorporate a set of constraints from the perspective of the task,
the agents, the environment, etc. Hence, the constraint satisfaction problem can be
solved to get the search space Sg, in which s; would lie.

In fact, the problem of finding final world state sy incorporates a reasoning mecha-
nism, which will take into account already partially specified goal state g, the set of
constraints C'trs, the set of desired and undesired facts Fj,, Fy, and the ungrounded
parameters of the set of desired and undesired actions A;,, Fy,. In chapter 4, we
will present the frameworks to ground the values of one of the important parameter
of most HRI tasks, "the places" and then in chapter 7, will exploit the aspect of
planning by instantiating the final environmental state with a set of constraints for
a set of basic HRI tasks, assuming the A is already provided in terms of partial plan
of Pick and Place type sub-actions, with some ungrounded parameters.

In general, different types of constraints at the time of planning decide the search
space for finding a solution as well as could influence the possibility of different
plans for the task. For example, consider the same task of showing the object with
constraints that the object should be at the right side of the agent ag2 on the
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plane of the table tabl and change in the ag2’s Geometrical _State is undesirable.
Depending upon sp, the plans (i) discussed earlier, which involves displacing the
occluding object may no longer be obtained. Also the plan (iv) would not be found
as agl could not ask human to perform some action. In addition, the flexibility
of selecting the places about where to perform the task, which in fact could lead
different sub-actions including involving third agent, will be more restricted.

This decision of synthesizing the action, the environment state and selecting the
agents and parameters of the action could be performed and refined during planning
as well as execution of a task. In fact, there is a fuzzy boundary between the
symbolic task planner, which plans a task by deciding the high-level actions A and
the geometric task planner, which tries to ground the final environmental state and
finds a feasible solution for basic actions. Also the constraints on agent, action,
final world states will be accumulating and evolving during the course of planning,
execution and interaction. In chapter 8, we will try to identify these aspects and
try to establish a link between both the planners to better converge towards a plan
for a high-level goal.

3.4.4.3 HRI Navigation Task Path Planning

Generally, the robots navigating in human centered environment need to find a
path, which satisfies a set of safety, comfort and social constraints. We have already
relaxed the notion of restricted goal in the planning problem in eq. 3.39, which
facilitates to incorporate various undesired facts during the intermediate states of
the plan. Further, we can adapt a form of satisfiability problem, see [Ghallab 2004]
to constraint the planning during a particular step.

From the navigation point of view, the goal state could be in terms of the fact on the
final position of the robot. A fluent, fl; is defined as a grounded fact that describes
state of the environment at a given step 4 of planning (and during execution also to
monitor the need of re-planning). For a path or trajectory planning problem, step
depends upon the resolution used to discretize of space or time or spacing between
the via-points in the topological map. We can constraint the planner by proving a
set of facts to avoid Fy,, which could also be incorporated into the set fluents that
must hold at step i of planning: A fI7 AA fI;. Where, fl." € FLT is the set of facts
that should hold at step 7 and fI; € FL,; is the set of facts that should not hold
at step . For example, if the robot should not enter into the personal space of the
human on the way and should pass by from the left side of the human throughout
the path to the goal, then for each relevant human, h, (robot,h,Left) € FL}
and (robot, h, Personal _Space) € FL;. Note the criteria of whether a human
is relevant to consider at a particular step in the planning strategy depends upon
various factors, such as the distance, prediction of potential future relative positions,
the task, the local structure of the environment and so on. In chapter 6 we will
discuss on this aspect. There could be other types of constraints if the current step
of planning corresponds to a particular environmental state such as the robot is in
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corridor. In this case the constraint could be to maintain a particular side in the
corridor. Hence, there could also be a set of preconditions for a particular constraint
to be applied.

Similarly, if the task is to guide a person to the goal position, the description of final
environment state could be same as earlier. However, a new set of constraints at
each state of planning and execution will be emerged to incorporate a set of social
behavior. For example, the robot should not go out of the social region of the person
to be guided and so on.

In chapter 6, we will present various constraints as a set of different groups of rules,
the notion of selective adaptions of such rules based on the preconditions. Then we
will present algorithms to plan a path based on the initial and desired goal states,
while maintaining these sets of rules.

3.4.4.4 Learning from Demonstration

Various aspects of learning from demonstration could also be achieved within the
framework of the planning domain and the planning problem described earlier. De-
pending upon which element of the planning domain >, as defined earlier, is observ-
able and/or provided, the robot could learn various parameters for decision-making
and planning in Human-Robot interaction. Such learning could involve understand-
ing task semantics in terms of effect, learning trajectory preference based on agent
and situation, learning to select actions and agent for a particular task in a partic-
ular situation, etc. The accuracy and resolution of the learning will depend upon
those of observed parameters of the planning problem.

By comparing the two environmental states W1 = s; and WF' = sy, the robot could
find the changes in the environment C}}/f", as defined in eq. 3.35. This will facilitate
to find the effect of a task in terms of changes on the facts of the environment. This
in fact helps in emulation aspect of social learning, by knowing the task semantics in
terms of what to achieve for the task. Whereas, by observing the course of actions
A, the robot could learn how to perform the task. Depending upon the abstraction
space of the action, the robot could learn the task at the trajectory level or at sub-
action level. However, even if only one element from the tuple (WI, A, WF) was
observable, the robot could learn something. For example, if something has been
demonstrated to the robot and only W I was observable, then the robot could learn
at-least the preconditions of the task with repeated demonstrations.

Learning space of a task semantics in terms of effect could be at the level of directly
observable changes/non-changes in the environmental state as well as at the level
of changes/non-changes of the inferred facts, which could be built upon comparing
two values of a particular fact. For example, easiest visibility maintained, reacha-
bility becomes easier. In chapter 10, we will identify the key facts from learning
basic HRI tasks, present a hypothesis space and then an explanation based learning
framework to learn task semantics in terms of the desired effect to achieve.
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Figure 3.4: Observation and Learning components correlation. The aspect of effect
based task understanding, marked by * (important for emulation learning) will be
one of the contributions of the thesis.

Figure 3.4 shows the possible components, which could be learnt based on what is
observable or provided to the robot.

3.4.4.5 Predicting Future States

If s9 and the plan in terms of the sequence of action A is known, the final environ-
mental state space Sf;n could be constructed by 7y (sp, A). Depending upon which
assumption of the classical planning domain is relaxed, S’};n could be a single state,
or a set of states or probabilistic representation of the states.

From HRI perspective, this capability could be achieved by simulating the actions
and the triggered events in the given state, which could be related to level 3 of
situation awareness |[Endsley 2000], which corresponds to ability to project from
the current state, events and dynamics to anticipate future events/actions A future
and their implications, the Sf;n. The accuracy and resolution of predicted S};n
will depend on those of sy and A. Such prediction could be also used to behave
proactively in HRI as well as for HRI task planning in advance many steps ahead.
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This will be illustrated in the chapter 7 and chapter 8, when planning in future
is done for various reasons.

3.4.4.6 Synthesizing Past State

As opposed to the problem of prediction, where sy and A are used, if the final
environment sy and A are known, SOEn could be synthesized, by removing the effects
of A and any event E (observed or provided) from s;. As A could be composed
of sub-actions and different agents, again depending upon how much and at which
level of abstraction, the parameters of A is known, S%n could be a single state or
partially grounded state, in the sense some of the facts are not grounded. Even
sub-actions of A could be "guessed".

3.4.4.7 Grounding Interaction and Changes

As the presented HRI domain incorporates agent’s abilities, affordances coupled with
situation assessment, the robot could ground the interaction as well as environmental
changes by using the same planning domain, in which, one or the other element is
not grounded. For example, if there are two humans and a robot sitting around
the table and one human asks the robot to give the cup, the robot could ground
"which" cup, based on the cup which is "easily" reachable to the robot than the
other agents.

Further, if some object has been displaced by an agent and the robot was oblivious
of that, then it can also ground the change by reasoning about the agent and the
probable action. This could help the robot to ground what, how, who, where like facts
about a change, which happened in the absence of the robot’s attention. Chapter
8 will present an affordance graph based framework to demonstrate such abilities of
the grounding objects, changes and agents.

3.4.4.8 Synthesizing Proactive Behavior

Dictionary definition of the term proactive is: "Acting in anticipation of future
problems, needs and changes." [merriam webster.com b]. Hence, any action defined
in section 3.3.3 is proactive if it satisfies the additional characteristics mentioned
above. Proactive actions by an autonomous intelligent agent could be synthesized
in different spaces depending upon "how much" and "which parts" of the currently
planned or being executed actions/roles of all the agents and the outcomes will be
altered. For synthesizing proactive behavior, we need to incorporate the notion of
partial plan, so that the proactive planner can reason on the search space of partial
plan to come up with proactive behaviors. For this, we assume that the proactive
planner is also provided with a partial plan (see eq. 3.42) of the planning problem.
This partial plan could even be provided by the human partner during the course
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of interaction, such as "I will give this bottle to you", or even could be inferred
by the robot. Moreover, the robot itself could obtain a partial plan, based on the
specification of the planning problem of the task.

Once the partial plan is known, which could also be a NULL plan, the robot could
proactively reason about how to completely ground the plan by instantiating or
binding the variables of the plan. The robot partially or fully synthesizes a solution
for an ongoing interaction and the task and proactively communicates it through
different actions, which in fact will be the proactive action AP"°. In Chapter 9
will develop a general framework for representing different spaces for synthesizing
different level of proactive behavior. This is based on which elements of the planning
problem described in eq. 3.39 and the partial plan if any, are being altered and what
were the actual status (grounded/not grounded) of those elements.

3.5 Switching among Different Representations and En-
coding: State-Variable Representation

Until this point, we have used set theoretic representations to describe the HRI
domain and to derive different research aspects within the framework of a planning
problem.

However, depending upon the requirements, the description of the planning problem
can vary and the domain could be represented into one or the other form, see
[Ghallab 2004] for different representations, set-theoretic, classical and state-variable
and their comparison. In particular, state-value representation is especially useful
for representing domains in which a state is a set of attributes that ranges over finite
domains and whose value changes over time, which in fact is the case for most of
the attributes of our HRI domain described earlier. Therefore, next, we will briefly
illustrate the feasibility of converting the HRI domain into state-value representation
and outline the equivalent planning problem.

For the continuity, we briefly describe the ingredients of state-variable representation
(see [Ghallab 2004] for detail):

Constant Symbols: A domain consists of a set of constants. For our HRI domain, it
will be names of all the agents, objects, locations, etc. e.g. Humanl, PR2 Robot,
Grey Tape, Room1, and so on.

Classes of Constant: Constant symbols could be partitioned into disjoint classes,
such as robots, humans, locations, objects, etc.

Item Variables: Typed variable ranging over a class or union of classes of constants,
e.g. Agent € Robots U Humans. Note that in [Ghallab 2004], it is termed as Object
Variable, which is qualified here as Item Variable to distinguish it from the explicit
and widely practiced notion of objects in the environment in the HRI domain. Each
item variable v ranges over a set of constants, D,,.
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Item Symbol: We will name an instance of item variable as item symbol. These in
fact are constant within the domain, e.g. Human2, Robotl, Roomb, Grey Tape, etc.

Term: A term is either an item variable or a constant i.e. item symbol.

State Variable: Functions from the set of states and sets of constants (sets of con-
stants could be null also) into a set of constants. A k-ary state variable is an
expression of the form:

x(try, tro, ..., try) (3.43)

where x is the state variable symbol and tr; is a term as defined earlier.

A state variable denotes an element of a state-variable function. Further, a state
variable is intended to be a characteristic attribute of the state of the environment.
Hence, to represent the attribute Motion status presented in eq. 3.20, we could
define a state variable function AgMotStatus as follows:

AgMotStatus : Agent x Bodypare X S — Motiongype (3.44)

where Motionpype and Bodypgr: are item variables, which are rang-
ing over sets of constant item symbols {moving,not moving,turning} and
{whole_body,torso, head, UZN:’H hand} respectively. Ny, is another constant symbol,
which is maximum number of hands an agent can have in the domain. This encodes
the possibility of having a robot with more than two hands. S is the set of all the
possible grounded states. Then by instantiating this for each agent and each body
part from a particular state s € S, we can realize the attribute Motion status.

Similarly, rest of the attributes of the HRI domain presented earlier could be con-
verted into parameterized state-value representation.

A state variable of eq. 3.43 is grounded if each tr; is a constant. A state variable is
ungrounded if at least one tr; is item variable, as defined above.

Let, X be a set of all grounded state variable, i.e. if x € X is a k-ary state variable,
then at any time instance t;, the state of the environment s includes a syntactic
expression of the form x(b1, be, ..., by) = d;, where d; is the value of the state variable
and each b; being a constant, where ¢ = 1,2, ..., n.

En(t;) =s= |J{x(1,ba, ... 0x) = di} (3.45)
zeX

Relation Symbols: The rigid relations on the item symbols (constants) which are
always the same irrespective of the state of the environment for the given domain,
e.g. inside(Roboticsy qp, BuildingH)

Planning Operator: 1t is a tuple:

o = (identi fication(o), precondition(o), eff ect(0)) (3.46)

where,
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identification(o) consists of the name n of the operator and all the item variables
relevant to that operator, and expressed as n(uq, ..., ug).

precondition(o) consists of (i) set of expressions on state variables and (ii) rigid
relations.

effect(o) is a set of assignment of values to state variables.

Note that there are two parts of precondition of an operator. In this representation,
if an instance of operator o meets the rigid relations of the operator’s preconditions,
then it’s identification is qualified as an action a. If for an operator, there is no rigid
relation in the precondition, then each instance of it will be an action. For example,
give(robotl, humanl, grey tape), is an action provided there was no rigid relation
in the precondition. In the extended form of this representation, we assume that
parameters of an action could have ungrounded variables. Hence, our HRI oriented
definition of action could also be well incorporated for state-variable representation
based planning and adapted to encode various HRI problems discussed above.

A planning problem in state value representation is P = (X, sg,¢). So is an initial
state and the goal g is a set of expressions on the state variables. The goal g may
contain ungrounded expressions and could contain a set of goal states. Hence, in its
extended form it could incorporate the constraints and the planning problem could
be represented as satisfiability and constraint satisfaction problem, [Ghallab 2004].

To focus on the algorithmic aspects, in rest of the chapters we will avoid repeating
the theoretical formulations as done above for different problems unless it is really
required, such as in chapter 9 where we derive spaces and theory for synthesizing
proactive behaviors. For most of the chapters, we will stick with the notations, which
will better help in illustrating the core aspects of the problem and the algorithm.

A "truly intelligent" robot should "wire" most of the interpretative abilities from
the presented theory of causality nature of environmental changes grounded from
the perspective of HRI. Recent attempts are trying to link agents, actions and goals
in dynamic environment [Novak 2011], integrating planning and learning during
execution to dynamically enhance and refine them all [Agostini 2011].

3.6 Until Now and The Next

In this chapter, we have identified and presented a rich and general description
of HRI domain and action, incorporated various HRI aspects into unified theory
of causality of environmental changes and derived various HRI research challenges
under a unified theoretical framework of planning domain. Next two chapters will
present the contribution of the thesis in terms of the novel frameworks, algorithms
and concepts to instantiate some of the key attributes of HRI domain presented
in this chapter. This will lead us to instantiate the applications of the presented
framework interpreted above, in the subsequent chapters.
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4.1 Introduction

Interestingly humans are able to maintain rough estimations of visibility, reachability
and other capabilities of not only themselves but of the person, they are interacting
with. Moreover, it is not sufficient to know which objects are visible or reachable, but
also which are the visible and reachable places. For example if we need to find place
in 3D space to show or hide something from others. As discussed in section 1.1.1 of
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Figure 4.1: Contribution of this chapter. Rich visuo-spatial perspective taking,
which not only analyzes what is visible and reachable, but also what is not and why.
Effort analysis from a different perspective will also be presented, by developing a
set of qualifying effort types and effort-hierarchy. This will facilitate the robot to
reasoning on the effort in human understandable way. Further, we will developed the
concept of Mightability Analysis, derived by fusing visuo-spatial perspective taking
and effort analysis, which further facilitates to analyze the least feasible effort.

motivation chapter 1, studies in neuroscience and psychology suggest that from the
age of 12-15 months children start to understand the occlusion of others line-of-sight
and from the age of 3 years they start to develop the ability, termed as perceived
reachability for self and for others. As such capabilities evolve in the children, they
start showing cooperative, intuitive and proactive behavior by perceiving various
abilities of the human partner. Inspired from such studies, which suggest that
visuo-spatial perception plays an important role in Human-Human Interaction, we
equip our robot with the capabilities to maintain various types of reachabilities and
visibilities information of itself and of the human partner in the shared workspace.

We identify three complementary aspects about the ability to see or reach an object
or place z by an agent Ag:

(i) Direct: Given the current environment and the state of the agent Ag, z is
directly reachable or visible.

(ii) Within range, could be enabled: Given the current state of the agent,
z could be made reachable or visible to an agent Ag, if there will be some
change in states of other agents or objects in the environment. Basically, this
corresponds to the situations, in which something is otherwise within the reach

range or field of view of Ag, but Ag could not reach or see it because of other
agents or objects.
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(iii) Beyond range, inevitable self engagement: Given the current environ-
ment, = could be made visible or reachable only if the state of the agent Ag or
the state of z itself will change. This corresponds to the situations, in which z
is outside the reach range or field of view of Ag, and manipulating other agents
and objects will not be sufficient to make z visible or reachable to Ag.

For the ability to see, these points correspond to:

e visible (directly)
e occluded (by some object or agent)
e invisible (need some action by the agent itself)

For the ability to reach, these points correspond to:

e reachable (directly)
e obstructed (by some object or agent)
e unreachable (need some action by the agent itself).

This chapter will present the contribution to equip the robot with such reach visuo-
spatial perspective taking abilities. First, the visuo-spatial perspective taking for a
given environment will be presented. Then the robot’s ability to analyze the effort
of the agents will be presented. Then we will derive the concept of Mightability
Analysis, which stands for Might be Able to..., and elevates the robot’s capability
of perspective taking from multiple states of the agent. Figure 4.1 shows the con-
tribution and scope of this chapter. It also shows that we equip the robot not only
to reason about something is obstructed or occluded, but also the obstructing or
occluding object from an agent’s perspective.

This enriches the robot’s knowledge about the world state, facilitates rich human-
robot interaction, as well as elevates the decision-making and planning capabilities
about how to facilitate the ability to see or reach an object or a place z for an
agent Ag. In the case of occluded or obstructed, it could be achieved by making
changes in the other parts of the environment (such that displacing the obstructing
or occluding object or agent), without involving/disturbing the Ag and z. Whereas,
in the case of invisible and unreachable, it would be necessary to change the current
state/position of the Ag or z.

Next, we will present the detail about how to achieve such viso-spatial perspective
taking abilities and derive the concepts discussed above.

4.2 3D World Representation

The robot uses 3D representation and planning platform Move3D [Simeon 2001] to
reason on 3D world. Through various sensors, the agents and objects are updated
in this system. Figure 4.2(a) shows a real world scenario of Human and HRP2
robot sitting in a face-to-face interacting situation. Figure 4.2(b) shows its real
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Figure 4.2: Real world and its real time 3D representation in Move3D (see appendix
A for detail). The red bounding box shows the current workspace used construct
and update the Mightability Maps in real time.

time 3D representation in Move3D (see appendix A for the detail). Move3D further
facilitates the robot to check self and external collisions of all the agents and objects.

4.2.1 Discretization of Workspace

For reasoning on the spaces, the robot constructs a 3D workspace (red box in figure
4.2(b), dimension of 3m x 3m x 2.5m for current scenario) and discretizes it into
cells, each of dimension 5¢m x bem x bem. Note that the dimension and position of
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this bounding box for workspace can be decided upon the interest and requirement
of the human-robot interaction scenario and context. For most of the discussion
in this chapter, we will discuss in the context of human-robot interactive object
manipulation tasks, with the objects on the tables. So, we define the workspace
which is centered at the middle of the central table and large enough to cover all
the object and agents of interest. Such bounding box of the workspace facilitates to
achieve the goal of online updation of various facts related to places, such as visible
and reachable places from different agents’ perspectives. Further, each cell in the
workspace is marked as occupied or free of obstacles, and in the case of occupied,
the name of the corresponding object or the agent is associated to the cell.

4.2.2 Extraction of Support Planes and Places

In Move3D, the object’s shape is modeled as a polyhedron. We have developed
an approach to autonomously extract all possible support planes on which some
object could be placed. For this, first all the facet having vertical normal vectors
are extracted. All such facets belonging to same object are merged together. Then
a symbolic name is provided to the support name based on the object.

Further, to find visible and reachable places (cells) on table or any other support
plane, the cells belonging to planner tops are extracted and further the information
about the object belonging to that support plane is stored as supporting object.

This equips the robot to place an object on the top of a table plane, on the top of
any other object such as box. So, no external information about supporting surfaces
is provided. The robot autonomously finds and updates the places where it could
put "something", depending upon the environment.

4.3 Visuo-Spatial Perspective Taking

In this section, first we will describe calculation of places visible, reachable, occluded
and obstructed from an agent’s perspective. Then we will present such calculations
for the objects, further the calculation of occluding and obstructing object will be
presented.

4.3.1 Estimating Ability To See: Visible, Occluded, Invisible
4.3.1.1 For Places

For calculating the visibility, from a given position and yaw and pitch of the head,
robot finds the plane perpendicular to the axis of field of view. Then that plane is
uniformly sampled to the size of a cell of the 3D grid of the workspace. Then as
shown in figure 4.3, a ray is traced from the eye/camera position of the agent to
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Figure 4.3: Ray tracing based calculation of an agent’s Visibility from a particular
physical state of the agent. Red small box is an object. The points on the green ray
are said to be visible, whereas the points on red ray are said to be invisible. The
red object is said to be occluding object.

each such sample points on the plane. All the cells on the ray until an obstacle cell
(if any) are marked as Visible, as shown by green arrow. And all the cells from the
obstacle cell until the plane (red arrow) are marked as Occluded. Let the set of all
the cells in the environment’s 3D grid is G. The set of visible cells for a particular
agent for a particular environment is V' and that of occluded cells is O, then we
define the set of Inwvisible cells I as:

I=G-{VUO} (4.1)

Here it is important to note that these places are estimated for a given posture of
the agent for a given head orientation.

4.3.1.2 For Objects

We use two levels of object visibility calculation: Cell based for a rough but fast
estimation and Pizel based for finding precise percentage of how much the object is
visible. For cell based object visibility calculation, as the robot has the information
about the visible cells and to which object the cell belong, an object is said to be
visible if at least one cell belonging to that object is visible. Further, to estimate
"how much" an object is visible, a wisible area V.S is found for an object obj from
an agent Ag perspective as:

Vv Ad9

obj = NCobj X 2 X Celllength (4-2)

where, NCy; is number of visible cells which is multiplied to the area of one face
of the 3D cell to get the total visible area.
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For pixel based visibility information, the robot uses the projected image of the field
of view of the agent and calculates total number of pixels belonging to the object
of interest in that image. In case of pixel based estimation, we further define a
visibility score V.S of an object obj from an agent Ag perspective as:

Nobj
Nrov

VSAg _

o= (4.3)

where, N; is number of pixels of the object in the image of agent’s field of view
and Npoy is total number of pixels in that image.

Depending upon the level of accuracy required, VA or VS will be used to find
whether an object 0bj is occluded or invisible from an agent Ag perspective. If 0bj
is inside the solid angle formed by field of view of Ag and VA or VS is zero, the
object is said to be Occluded. If 0bj is outside the solid angle formed by field of view
of Ag, the object is said to be Invisible.

4.3.2 Finding Occluding Objects

The robot not only estimates that an object is occluded, but also finds the objects,
which is occluding that object from the agent’s perspective. For this, from each cell
belonging to the occluded object Obj, a ray R is traced back to the eye of the agent
Ag and a set S of cells satisfying following criteria is extracted on the ray: (a) cell is
occupied (b) cell does not belong to current object of interest, Obj. Then elements
of S are grouped based on the corresponding objects to which the cells belong.
Further, these objects are sorted in reverse order based on which cell appeared first
in the ray R. Hence, not only the objects, which are occluding an object is found
but also the relative order from the agent’s perspective is obtained.

4.3.3 Estimating Ability To Reach: Reachable, Obstructed, Un-
reachable

4.3.3.1 For Places

Although one can choose to calculate reachability of an agent using inverse kinemat-
ics (IK) approaches. But these approaches are expensive and take hours to calculate
and update |Zacharias 2007] in a changing human robot interactive environment. We
chose to postpone such expensive calculations until the last stage of actual move-
ment planning. As a first step to perceive reachability of an agent, we adapt from
how we perceive reachability. From the studies in [Carello 1989], [Bootsma 1992],
[Rochat 1997] the general agreement is that the prediction to reach a target with
the index finger depends on the distance of the target relative to the length of the
arm and plays as a key component in actual movement planning. Therefore, we will
also use the length of the arm to estimate the reachability boundary for the given
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posture of the agents. Hence, a cell will be marked as reachable from a particular
posture of the agent if: (i) it is within a distance of arm length from the shoulder
joint position and (ii) there is no occupied cell on the line joining the shoulder joint
and the cell. If (i) is not satisfied, then the cell is marked as Unreachable. If (i) is
satisfied but (ii) is not satisfied, then the cell is marked as Occluded. The joint limits
of shoulders of agents are used to restrict the directions vector from the shoulder to
calculate the reachable points by a particular hand.

Here it is important to note that in calculating this reachability, all the joints except
belonging to the arm of interest of the agent is assumed to be fixed. It is similar to
estimating: given this posture of the agent, if he/she/it will stretch out his left /right
hand, which are the places he can reach. It is the calculation of Mightability, which
we will introduce later on in this chapter, where robot activates one or another
joints of the agents by applying some virtual actions of symbolic efforts, such as
lean forward, turn around, to estimate reachablity in different postures.

An agent can show reaching behavior to touch, grasp, push, hit, point or take some
object from inside some container, etc. Hence, having a perceived maximum extent
of the agent’s reachability even with some over estimation will be acceptable as the
first level of estimating the ability, which could be further filtered by the nature of
the task as well as more rigorous kinematics and dynamics constraints.

4.3.3.2 For Objects

As already mentioned an agent can show reaching behavior to touch, grasp, push,
hit, point, take out or put into something from a container object, etc., precise
definition of reachability of an object depends on the purpose. So, at first level we
chose to have a rough estimate of reachability based on the assumption that if at least
one cell belonging to the object is reachable, then that object is Reachable. Further,
the total number of reachable cells belonging to that object is also stored. Note that
if required, this reachability is further refined based on the task requirement at later
stages of planning and decision-making. But again to facilitate online estimation
and updation, we prefer to avoid performing more expensive whole body generalized
inverse kinematics based reachability testing until the final stages of task planning,
where it is really required.

An object is said to be Obstructed if no cell of the object is reachable and at least one
cell of the object is obstructed. If an object is neither reachable, nor obstructed, it
is said to be Unreachable if the agent will stretch out his/her/its hand from a given
posture.

4.3.4 Finding Obstructing Objects

The robot not only estimates that an object is obstructed to be reached by an
agent from a given posture, but also finds the objects, which in fact are obstructing
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Figure 4.4: Taxonomy of reach actions studied in human movement and behavioral
psychology research, |Gardner 2001], [Choi 2004]:(a) arm-shoulder reach, (b) arm-
torso reach, (c) standing reach. We have adapted and enriched this taxonomy to
develop the human-aware effort analysis table as shown in figure 4.5(a).

that object from the agent’s perspective. For this, an approach similar to finding
occluding objects in section 4.3.2 has been used. The difference is from each cell
belonging to the obstructed object Obj, a ray R is traced back to the shoulder
joint of the agent Ag. And similarly the robot not only finds the objects, which is
obstructing but also finds the relative order from the agent’s perspective to reach.

Until now, we have discussed how we perform visuo-spatial perspective taking of the
agent from a given state. We have also discussed that how we extract information
about finding occluding or obstructing objects. This provides the information about
"what" is depriving an agent to see or reach something (place or object), which
should otherwise be visible and reachable from a given state of the agent. This
information can help in deciding "what" changes should be made in the environment
to enable the agent to see and reach without any additional effort by the agent itself.
However, as discussed earlier, there are objects and places, which are not visible or
reachable because they are beyond the field of view or reachability range of the
agent. This requires agent to put some effort to see or reach such places/objects
provided the environment is not altered. Below, we will first discuss our proposed
hierarchy of efforts and then we will present the concept of the Mightability Analysis,
which performs effort based visuo-spatial perspective taking.

4.4 Effort Analysis

Perceiving the amount of effort required for a task is another important aspect
of a socially situated agent. It plays roles in effort balancing in a co-operative
task as well as provides a basis for offering help pro-actively. A socially situated
robot should be able to perceive the effort quantitatively as well as qualitatively in
a 'meaningful’ way understandable by the human. An accepted taxonomy of such
"'meaningful’ symbolic classification of effort could be developed by taking inspiration
from the research of human movement and behavioral psychology, [Gardner 2001],
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Effort to Reach Effort to See Effort Level
No_Effort No_Effort Minimum: 0
Arm_Effort Head Effort

Arm_Torso_Effort Head _Torso_Effort
Whole_Body_Effort Whole_Body_Effort
Displacement_Effort Displacement_Effort

No_Possible_Known_Effort No_Possible_Known_Effort Maximum: 5

(a) (b)

Figure 4.5: Human-aware effort analysis and effort hierarchy (motivated from the
studies of human movement and behavioral psychology, [Gardner 2001], [Choi 2004]
(see figure 4.4): (a)Human-Aware Effort Analysis: Qualifying efforts to see and
to reach some object or place in the human understandable levels of abstraction.
(b)Human-Aware Effort Hierarchy: One possible way of comparative effort
analysis. Such analysis facilitates to ground, compare and reason about efforts in a
meaningful and human-understandable way for day-to-day human-robot interaction.

[Choi 2004|, where different types of reach actions of the human have been identified
and analyzed. Figure 4.4 shows taxonomy of such reaches involving simple arm-
shoulder extension (arm-and-shoulder reach), leaning forward (arm-and-torso reach)
and standing reach. This suggests us a way to qualify human effort in terms of main
body joints involved. Inspired from this we also equipped our robots to analyze and
reason on the efforts of all the agents at a human understandable level.

4.4.1 Human-Aware Effort Analyses: Qualifying the Efforts

We have conceptualized a symbolic set of effort based on the body parts involved in
performing an action. Let us assume that an agent Ag is currently sitting on a chair.
From this current state Ag can put different efforts to attain different states to see
or reach something or to perform some task. From this current state if the agent has
to just turn his/her/its head to see an object or place, we term it as Head Effort.
If he/she/it has to turn torso, it is Torso_ Effort, if agent is required to stand up, it
is Whole_ Body_ Effort, if required to move, it is Displacement_ Effort. Similarly, if
the agent has to just stretch out his/her/its arm (to point, to reach, ...) an object
it is Arm_ Effort, if he/she/it has to turn around or lean, it is again Torso Effort
to reach and so on. The robot further associates descriptors like left, right. For
example, the robot could further distinguish the arm-torso efforts to reach, which is
turning left and reaching by right hand from another arm-torso effort, which might
be turning right and reaching by left hand, and so on. This effort analysis has been
shown in figure 4.5(a).

Associating a level of effort to such qualifying labels could further facilitate the
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(a)

Figure 4.6: Reaching to a place on the table with different types of efforts (a)
Arm_ Torso_ Effort and (b) Displacement Effort. Depending upon the individual’s
desired, situations, state and constraints, one or the other effort type could be
preferred or said to be requiring relatively less effort.

comparative analysis of efforts. One intuitive levels of effort has been shown in
4.5(b). For most of the human-robot day-to-day interaction situations, we can
reasonably use this to compare different efforts. In this thesis, wherever we talk
about such human-aware effort analysis by also incorporating the effort levels, we
will use the term human-aware effort hierarchy. Note that such effort hierarchy
may not always hold strictly, or there might exist a fuzzy boundary depending upon
the situation and individual preferences. For example. figure 4.6 shows an agent is
reaching to a place on the table with two different types of efforts. In both cases,
the categorization of the effort as shown in figure 4.5(a) holds, and the robot would
be able to distinguish between the Arm_ Torso Effort and Displacement_ Effort.
However, the interpretation of the relative level of effort might vary. Depending
upon the criteria to measure effort, one or the other effort type could be said to
be requiring less effort. The studies of musculo-skeletal kinematics and dynamics
models such as |Khatib 2009], [Sapio 2006|, combined with the time and distance
could be used to find a measure of relativeness of the efforts in such situations.

The significance of such effort analyses includes:

¢ Grounding Effort: It can be used to describe an effort to a meaningful
i.e. human understandable symbols, hence enriching the robot’s grounding
capabilities in human-robot interaction. The robot can further ground the
agent’s movement to a meaningful effort.

e Constraining planning and decision making: Another direct advantage
of such effort levels is that we can directly incorporate different constraints
related to the desire and physical state of an agent, in decision-making and
cooperative task planning. For example, if the agent is having back or neck
pain, we can exclude his efforts associated with the torso or head movement.
Someone who faces challenge in standing up or have reduced mobility, the
robot can directly restrict his maximum effort level as torso effort and so on.
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e Regulating effort levels: Similarly, current situation and preferences could
also be used to restrict the maximum allowed effort level or to exclude some
effort. For example, if someone is tired and sitting on a chair, the robot can re-
strict his/her effort in planning for a cooperative task, such as the agent would
not prefer to stand up or move, hence restricting his/her effort to Arm_ Effort.

e Incorporating social preferences: Further, such levels of effort can be used
to plan a cooperative task based on the relative social status of the agents.
For example if the agents are friends, the mutual efforts could be balanced, so
that both will lean forward for an object hand-over task. If one agent is boss,
another agent can plan to perform the task so that boss will be required less
effort, by standing and giving the object to the boss so that boss will require
only arm-effort to take it, and so on.

4.4.2 Quantitative Effort

As the robot reasons on 3D model of the agents with the rich information of joints,
it is further able to compare two efforts of same symbolic level, i.e. capable of
intra-level quantitative effort measures, based on how much the joint is required
to move/turn or how much the agent is required to move. However, as mentioned
earlier, the studies of musculo-skeletal kinematics and dynamics models such as
[Khatib 2009], [Sapio 2006], could be used to assign a quantitative measure to dif-
ferent effort types presented in figure 4.5(a).

4.5 Mightability Analysis

By fusing the effort-based analysis with visuo-spatial perspective taking, we have
developed the concept of Mightability Analysis, which stands for "Might be Able
to...". The idea is to analyze various abilities of an agent such as ability to see,
ability to reach, not only from the current state of the agent, but also from a set of
states, which the agent might achieve from his/her/its current state.

For performing Mightability Analysis, the robot applies, Ay = [a1,a9,...,a,], an
ordered list of virtual actions, to make the agent virtually attain a state and then
estimates the abilities by respecting the environmental and postural constraints of
the agent. Currently, the set of virtual actions are:

a; € {A}‘L/ead’A?/rm’A%?rso’A;‘;/osture’Ac‘l}splace} (44)
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Figure 4.7: A subset of virtual states from all possible attainable States of the
agents, which is used to proactively calculate and update the Mightabilities. This
is to make the robot more ’aware’ during the course of Human Robot Interaction.

where,

Apead € {Pan_ Head, Tilt Head}

AY™ C {Stretch_Out_Arm (left/right)}
AYrs° C {Turn_Torso, Lean_Torso}
Al‘j/osmre C {Make _Standing, Make _Sitting}
AC‘l/isPlace C {Move_To}
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The robot performs Mightability Analyses by taking into account collision as well
as the joint limits. The robot uses kinematic structures of the agents and performs
various virtual actions until the joint limits of the neck and/or torso are reached or
the collision of the torso of the agent with the environment is detected.

4.5.1 Estimation of Mightability

For maintaining a rich knowledge about the agents’ abilities, we have chosen a set
of virtual actions for which Mightability is to be computed and updated throughout
the course of interaction.

Figure 4.7 summarizes different virtual states for which the robot calculates and
continuously updates the Mightability.
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Figure 4.8: Mightability Maps of reachability for the Human and the HRP2 robot
corresponding to the real world scenario of figure 4.2. (a) and (b) show the
Arm__ Effort reachability from the current states of the agent in 3D grid (a) and on
table-top (b). It also distinguishes the reachability by the left hand only (yellow), by
the right hand only (blue) and by both hands (green) of an agent. (a) and (b) also
show that there is no common reachable place if neither of the agents will put any
further effort. (c) Shows the places, the human might reach, if he will maximally
possible lean forward, an action associated with Arm_ Torso Effort. The human
can reach more places as compared to (b). (d) Shows the reachable places if the hu-
man will turnaround and leaning, other actions associated with Arm_ Torso_ Effort.
The human might reach some parts of the tables of different heights on his both
sides.
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Note that depending upon the requirements the robot could apply a different set of
virtual actions from expression 4.4 to calculate the Mightability of an agent from a
different virtual state.

The robot first calculates the arm-shoulder reach. For this, the robot stretches the
hand of the 3D model of the agent by permissible limit of each shoulder’s yaw and
pitch joints and performs the to-reach perspective taking as explained in section
4.3.3. Then the robot virtually leans the agent’s model by its torso incrementally
(by an angular step of 5 degrees in current implementation) until there is collision
with the upper torso or the maximum limit of waist pitch joint has been reached.
And from each of these new virtual positions of the agent, the robot again performs
the visuo-spatial perspective taking as explained in section 4.3.3. Next, the robot
turns the torso of the agent’s model at its current position until collision or maximum
limit of human waist yaw is reached and again performs the visuo-spatial perspec-
tive taking. Similarly, to-reach visuo-spatial perspective taking of other states are
performed, such as virtually changing the posture of the agent from standing to
sitting or from sitting to standing. Similarly, the robot performs to-see perspective
taking as explained in section 4.3.1. First, it finds from the current head orientation
of the agent. Then it turns the head, towards left and right, until the neck joint
limit. Then it turns the torso left and right until collision or waist yaw limit is
reached. Such analyses are done for each agent in the environment, including the
robot itself. Since the system is generic to perform Mightability Analysis for any
type of agent in the environment, depending upon the kinematics structure of the
agent, some of the virtual states might not be feasible for that agent. For example
for PR2 robot there is no degree of freedom for the torso joint to lean forward.

4.5.1.1 Treating Displacement Effort

As already mentioned, the robot continuously maintains and updates visuo-spatial
abilities of all agents upto the Whole_ Body Effort Level. The estimation of Dis-
placement_ Effort level based ability to see or reach is calculated only when it is
required. For this, first the space around the object/place is uniformly sampled in a
co-centric circular manner with increasing radius. And the agent is virtually placed
at each such position, if there is no collision with the environment. From this new
virtual position, the ability to see and reach is calculated. If still not reachable or
visible, the agent is virtually leaned-forward by angular steps until collision or waist
joint limit. If still the object is not reachable, next sampled place around the ob-
ject /place is tested. The maximum radius of the circle to sample the places around
is limited by the total length of the arm and the torso to shoulder length, with the
assumption that agent’s ability to lean forward completely is the maximum effort
he can put to reach/see something from a position. Of course, if still the agent is
not able to see or reach, depending upon the situation or requirement, the further
subset of virtual action could be applied to the new position of the agent. In section
4.7, we will show the example of calculated Displacement Effort to reach an object.
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Figure 4.9: Mightability Maps of visibility for the Human on the right with
Head Effort. The blue cloud shows currently visible places, and the red cloud

shows the places, which the human can see if he will look around only by turning
head.

4.5.1.2 Mightability Map (MM)

When such Mightability analyses are performed at the levels of cells of the discretized
3D workspace, we term it as Mightability Maps (MM ).

Mightability Maps encode, which places an agent might be able to see and reach, if
he/she/it will put a particular effort or perform an action. This can be used for a
variety of purposes. For example, finding the candidate places where an agent can
perform a task for another agent with a particular effort level, or where an agent can
potentially hide an object from another agent with maximum possible effort level,
so that the agent can reason about potential places to search for.

Mightability Maps for the human and the humanoid Robot HRP2 from their current
states to reach have been shown in 3D, figure 4.8(a), and on table plane, figure 4.8(b).
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Figure 4.10: Common reachable regions: (a) for human and JIDO robot, (b) for
HRP2 and lean forward effort of Human, (c) for HRP2 and Human from their
current state in 3D and (d) on the table plane.

Robot also distinguishes among the cells, which could be reached only by left hand
(yellow), right hand (blue) and by both hands (green). The robot could use this
information to conclude that there is no common reachable region if neither of them
will lean forward. Figure 4.8(c) shows reachability of human on table with maximum
possible leaning forward. The robot also perceives that if human will turn around
and lean he might be able to reach parts of the side-by tables as well, as shown in
figure 4.8(d).

Figure 4.9 shows the visibility Mightability Maps for the human sitting on the right.
The red cloud shows the currently visible places for him, whereas the red cloud shows
the places which the human can see if he will put Head Effort and look around.

As such Mightability Analysis could be performed for different types of agents, figure
4.10(a) shows the common reachable region in 3D obtained by intersection operation
on reach Mightability Maps of Human and another single-arm robot Jido from their
current states. This in fact could serve as candidate place where Jido can hand over
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Figure 4.11: An interesting fact encoded in Mightability Maps because of environ-
mental constraints on possible virtual actions. Figures show the reachability of the
human on the table surface by Mightability Analysis for torso effort to attain the
state of maximal possible lean forward. As the human closer to the table could lean
less compared to sitting away from the table. Hence, even if the human is sitting
away from the table he can reach more parts of the table (see reachable regions in
(b)) compared to sitting very close to the table (see reachable regions in (a)).

an object to the human. As shown in figure 4.8(a) there was no common reachable
region from the current states of Human and HRP2, but as shown in figure 4.10(b),
HRP2 is able to estimate that if the human puts effort to lean forward then there
might exist a common reachable region. Figure 4.10(c) and (d) show the common
reachable region in 3D and on table plane from the current states of the Human
and HRP2 in a different setup where both are sitting side-by-side. These regions
respectively could serve as the candidate places to give an object and to put an
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Figure 4.12: Initialization and Calculation times for Mightability Maps for a typical
scenario as shown in figure 4.2. Hence, by choosing to update only those parts,
which have been affected by the changes in the environment, we achieve to maintain
Mightability Maps updated in real time.

object for the human to take.

Figure 4.11 shows an interesting observation about leaning forward reach. The
reachable region by leaning forward in figure 4.11(a) is less compared to that of
figure 4.11(b), even the human is closer to the table in the former case. This is
because, as mentioned earlier our approach respects the postural and environmental
constraints, and in the former case the human is very close to the table edge, hence,
could lean less as compared to the latter case where there is sufficient gap between
human torso and the table to lean more without collision.

4.5.1.3 Object Oriented Mightability (OOM)

When the Mightability analysis is performed for the object in the environment, we
call it Object Oriented Mightabilities (OOM).

Object Oriented Mightability encodes, which objects an agent might be able to see
and reach, if he/she/it will put a particular effort and perform an action. This can
be used for variety of decision-making and planning purpose. For example if robot
knows different effort levels to see and reach same object, it can generate a plan
to perform a shared task by taking into account time and effort. It could assign a
sub-task to an agent who can perform it with least effort.

4.5.2 Online Updation of Mightabilities

Figure 4.12 shows time for calculating various Mightability Maps for the human
and the HRP2 humanoid robot sitting face-to-face as shown in figure 4.2(a). It
also shows the time for one time process of creating and initializing cells of the
3D grid to discretize the workspace with various information like cells which are
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Figure 4.13: Example scenario with two humans, and the PR2 robot. There are
different objects, reachable and visible by different agents with different effort levels.

obstacle free, which contains obstacles, which are the part of the horizontal surfaces
of different tables, etc. Note that it took 1.6 seconds to create and initialize 3D grid
consisting of 180000 (60 x 60 x 50) cells, each of dimension 5¢m x 5em x 5em, hence,
0.000009 seconds for a single cell. Figure 4.7 also shows that for a typical scenario
as shown in figure 4.2 it takes about 0.446 seconds to calculate all the Mightability
Maps for the human and the robot, once the 3D grid is initialized. As these are
the calculation time for all the virtual states, for all the agents for all the cell, and
as practically the changes in the environment will affect a fraction of the 3D grid,
the Mightability Map set are updated online. For this, we have carefully devised
rule to update only those parts and those information, which are getting affected
by the change in the environment. For example due to movement of objects on
the table, the information about the cells belonging to the object’s old and current
positions need to be updated in 3D grid and then the visibility and reachability of
the agents. Similarly, if an agent is looking around, only the visibility Mightability
Map of that agent and that too only of his/her/its current state should be changed
as the position of the agent has not changed.

4.6 Mightability as Facts in the Environment

As discussed in section 3.3.1 of chapter 3, we have incorporated abilities of different
agents as the attributes of the environment. This facilitates to reason about the
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(b)

Figure 4.14: Least feasible effort analysis. For the current scenario of figure 4.13,
based on Mightability Analysis, the robot is able to find: (a) The least effort to see
the small tape by the right human. It successfully finds that the human will not
only be required to stand up but also to lean forward to see the small tape, which
is currently behind the box from the human’s perspective. (b) Least effort to reach
the black tape by the middle human, which is estimated to be lean forward effort.

environmental changes in terms of the facts associated with agents’ abilities. We
have defined in eq. 3.28, ability of an agent as a set of tuple Abay = (Typ, Pap, ECqp),
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Figure 4.15: Human-Human-Robot interactive scenario (Top). And its 3D model
constructed and updated online (Bottom).

where Ty, is the type of ability, P, is the parameter of the ability, EFCy; is the
enabling condition of the ability, which could be anything ranging from a state,
to an action of effort. Hence, we can easily represent the Mightability Maps and
Mightability Analysis in this form of environmental fact. For example, for Ag =
humanl, f = Abpuman1 = (see,objectl, Head Effort) will be a fact f € F of the
environment, which will constitute to determine the state s € S of the environment.
Hence, it facilitates to state a task planning problem discussed in chapter 3 in an
enriched way, e.g. find a plan so that the goal state will require more effort of the
humanl to see objectl, or find a plan so that the goal state consists of the fact:
object! is reachable by human2 with Whole_ Body Effort.
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Figure 4.16: Least Effort Analysis for the human currently sitting on the sofa to
reach the object on the right of the robot. The robot not only estimates that the
human will be required to move but also the possible positions to reach the object;
hence, need to put Displacement Effort, followed by leaning forward.

4.7 Analysis of Least Feasible Effort for an Ability

Using the Mightability Analysis, for a given scenario the robot is able to find the
multi-effort ability (see, reach, ...). From those efforts, then it can extract the least
feasible effort state from the current state of the agent, which makes an object visible
and reachable from the agent’s perspective.

Figure 4.13 shows one of the example scenarios, with two humans and the PR2 robot.
The robot constructs and updates, in real time, the 3D model of the world by using
Kinect based human detection and tag based object localization and identification
through stereo vision. In the current situation, the robot not only knows that the
object, small tape, is currently neither visible nor reachable to the human on the
right, but also able to estimate the least effort state to see it and reach it.

As shown in figure 4.14(a), the robot estimates that the human on the right will
be at least required to stand up and lean forward to see the small tape object,
which corresponds to Whole Body Effort. Similarly, the robot estimates that if
the human on the middle has to reach the black tape, he will be required to at least
put Torso_ Effort, as he is required to lean forward, figure 4.14(b).

Figure 4.15 shows another example scenario with the corresponding 3D model, which
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(a) Visuo-spatial ability graph in a particular state of the environment.

(b) Effort Sphere (c) Edge Description

Figure 4.17: Visuo-spatial ability graph and an edge description. Each edge encodes
the least feasible effort to see and reach an object by an agent. Note that for a
same agent-object pair both the efforts could be different, which has been captured
successfully by the Mightability Analysis.

is constructed and updated online. Figure 4.16 shows that the robot is able to
estimate that the least effort of the human sitting on the sofa will be required to
put Displacement Effort, to reach the object, which is on the right of the robot. It
also estimates that the human will not only be required to move but also will be
required to lean forward to reach the object. It further shows the possible positions
and postures of the human to reach the object. Note that at the symbolic level of
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effort, all such postures correspond to Displacement Effort. These could further be
ranked based on the path length to move to the location and the amount of leaning
forward required.

4.8 Visuo-Spatial Ability Graph

We store the facts of least effort related to Object-Oriented Mightability in a graph,
which we termed as visuo-spatial ability graph. It is a directed graph V.SA G:

VSA G =(V(VSA_G),E(VSA_G)) (4.10)

V (VSA_G) is set of vertices representing entities ET = AGUOBJ (AG is the set
of agents and OB.J is set of objects in the environment as discussed in chapter 3):

V(VSA G)={v(VSA_G)jv(VSA G)e AGVv(VSA_G)e€ OBJ} (4.11)
E(VSA G) is set of edges between an ordered pair of agent and object:

E(VSA G)={e(VSA_G)le(VSA_G)=(v;(VSA_G),v;(VSA_G),

4.12
(Sefs Res)) Avi (VSA_G) € AG Av; (VSA_G) € OBJ} (4.12)

where Scy is the least feasible effort to see and Ry is the least feasible effort to
reach. Hence, each edge in the graph is directed edge from an agent to an object in
the environment and shows the effort to see and reach the object. Figure 4.17 shows
the visuo-spatial graph of the current state of the environment and it also describes
what does an edge revels. The bigger the side of the sphere, greater is the effort.
Note that different effort levels to see and reach different object by all the agents
have been successfully encoded in the graph.

4.9 Until Now and The Next

In this chapter, we have 