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Abstract

The amount and complexity of data generated by information sys-
tems keep increasing in Warehouses. The domain of Business Intelligence
(BI) aims at providing methods and tools to better help users in retriev-
ing those data. Data sources are distributed over distinct locations and
are usually accessible through various applications. Looking for new in-
formation could be a tedious task, because business users try to reduce
their work overload. To tackle this problem, Enterprise Search is a field
that has emerged in the last few years, and that takes into considera-
tion the different corporate data sources as well as sources available to
the public (e.g. World Wide Web pages). However, corporate retrieval
systems nowadays still suffer from information overload. We believe that
such systems would benefit from Natural Language (NL) approaches
combined with Q&A techniques. Indeed, NL interfaces allow users to
search new information in their own terms, and thus obtain precise an-
swers instead of turning to a plethora of documents. In this way, users
do not have to employ exact keywords or appropriate syntax, and can
have faster access to new information. Major challenges for designing
such a system are to interface different applications and their underlying
query languages on the one hand, and to support users’ vocabulary and
to be easily configured for new application domains on the other hand.

This thesis outlines an end-to-end Q&A framework for corporate
use-cases that can be configured in different settings. In traditional BI
systems, user-preferences are usually not taken into account, nor are
their specific contextual situations. State-of-the art systems in this field,
Soda1 and Safe2 do not compute search results on the basis of users’
situation. This thesis introduces a more personalized approach, which
better speaks to end-users’ situations. Our main experimentation, in
this case, works as a search interface, which displays search results on a
dashboard that usually takes the form of charts, fact tables, and thumb-
nails of unstructured documents. Depending on users’ initial queries,
recommendations for alternatives are also displayed, so as to reduce re-
sponse time of the overall system. This process is often seen as a kind of
prediction model.

Our work contributes to the following: first, an architecture, imple-
mented with parallel algorithms, that leverages different data sources,
namely structured and unstructured document repositories through an
extensible Q&A framework, and this framework can be easily configured
for distinct corporate settings; secondly, a constraint-matching-based
translation approach, which replaces a pivot language with a conceptual
model and leads to more personalized multidimensional queries; thirdly,
a set of NL patterns for translating BI questions in structured queries
that can be easily configured in specific settings. In addition, we have
implemented an iPhone/iPad™ application and an HTML front-end that
demonstrate the feasibility of the various approaches developed through
a series of evaluation metrics for the core component and scenario of the
Q&A framework. To this end, we elaborate on a range of gold-standard
queries that can be used as a basis for evaluating retrieval systems in

1L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger (2011) Data-thirsty
business analysts need SODA: search over data warehouse. CIKM 2011.

2G. Orsi, P. Milano, P. Leonardo, L. Tanca, E. Zimeo, and U. Sannio (2011) Keyword-
based , Context-aware Selection of Natural Language Query Patterns. EDBT 2011.
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this area, and show that our system behave similarly as the well-known
WolframAlpha™ system, depending on the evaluation settings.
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Résumé

Le volume et la complexité des données générées par les systèmes d’in-
formation croissent de façon singulière dans les entrepôts de données. Le
domaine de l’informatique décisionnelle (aussi appelé BI) a pour objectif
d’apporter des méthodes et des outils pour assister les utilisateurs dans
leur tâche de recherche d’information. En effet, les sources de données ne
sont en général pas centralisées, et il est souvent nécessaire d’interagir
avec diverses applications. Accéder à l’information est alors une tâche
ardue, alors que les employés d’une entreprise cherchent généralement à
réduire leur charge de travail. Pour faire face à ce constat, le domaine
« Enterprise Search » s’est développé récemment, et prend en compte
les différentes sources de données appartenant aussi bien au réseau privé
d’entreprise qu’au domaine public (telles que les pages Internet). Pour-
tant, les utilisateurs de moteurs de recherche actuels souffrent toujours
de du volume trop important d’information à disposition. Nous pensons
que de tels systèmes pourraient tirer parti des méthodes du traitement
naturel des langues associées à celles des systèmes de questions/réponses.
En effet, les interfaces en langue naturelle permettent aux utilisateurs de
rechercher de l’information en utilisant leurs propres termes, et d’obtenir
des réponses concises et non une liste de documents dans laquelle l’éven-
tuelle bonne réponse doit être identifiée. De cette façon, les utilisateurs
n’ont pas besoin d’employer une terminologie figée, ni de formuler des
requêtes selon une syntaxe très précise, et peuvent de plus accéder plus
rapidement à l’information désirée. Un challenge lors de la construction
d’un tel système consiste à interagir avec les différentes applications, et
donc avec les langages utilisés par ces applications d’une part, et d’être
en mesure de s’adapter facilement à de nouveaux domaines d’application
d’autre part.

Notre rapport détaille un système de questions/réponses configurable
pour des cas d’utilisation d’entreprise, et le décrit dans son intégralité.
Dans les systèmes traditionnels de l’informatique décisionnelle, les préfé-
rences utilisateurs ne sont généralement pas prises en compte, ni d’ailleurs
leurs situations ou leur contexte. Les systèmes état-de-l’art du domaine
tels que Soda1 ou Safe2 ne génèrent pas de résultats calculés à par-
tir de l’analyse de la situation des utilisateurs. Ce rapport introduit
une approche plus personnalisée, qui convient mieux aux utilisateurs fi-
naux. Notre expérimentation principale se traduit par une interface de
type search qui affiche les résultats dans un dashboard sous la forme de
graphes, de tables de faits ou encore de miniatures de pages Internet.
En fonction des requêtes initiales des utilisateurs, des recommandations
de requêtes sont aussi affichées en sus, et ce dans le but de réduire le
temps de réponse global du système. En ce sens, ces recommandations
sont comparables à des prédictions.

Notre travail se traduit par les contributions suivantes : tout d’abord,
une architecture implémentée via des algorithmes parallélisés et qui prend
en compte la diversité des sources de données, à savoir des données struc-
turées ou non structurées dans le cadre d’un framework de questions-
réponses qui peut être facilement configuré dans des environnements
différents. De plus, une approche de traduction basée sur la résolution

1L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger (2011) Data-thirsty
business analysts need SODA : search over data warehouse. CIKM 2011.

2G. Orsi, P. Milano, P. Leonardo, L. Tanca, E. Zimeo, and U. Sannio (2011) Keyword-
based , Context-aware Selection of Natural Language Query Patterns. EDBT 2011.
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de contrainte, qui remplace le traditionnel langage-pivot par un modèle
conceptuel et qui conduit à des requêtes multidimensionnelles mieux per-
sonnalisées. En outre, en ensemble de patrons linguistiques utilisés pour
traduire des questions BI en des requêtes pour bases de données, qui
peuvent être facilement adaptés dans le cas de configurations différentes.
Enfin, nous avons implémenté une application pour iPhone/iPad™ et une
interface de type « HTML » qui démontre la faisabilité des différentes ap-
proches développées grâce à un ensemble de mesures d’évaluations pour
l’élément principal (le composant de traduction) et un scénario d’éva-
luation pour le framework dans sa globalité. Dans ce but, nous intro-
duisons un ensemble de requêtes pouvant servir à évaluer d’autres sys-
tème de recherche d’information dans le domaine, et nous montrons que
notre système se comporte de façon similaire au système de référence
WolframAlpha™, en fonction des paramètres d’évaluation.
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The amount of data that is stored in companies is growing over time. As an
example, table 1.1 shows the evolution of the proportion of companies storing
more than 1TB and more than 100TB in 2009 and 2010 (from [62]). These

Year companies storing companies storing
more than 1TB more than 100TB

2009 74% 24%
2010 87% 29%

Table 1.1 – Data growth trends

growing data must be stored in appropriate data structures and algorithms
should be implemented in such a way that these data can be queried in an
efficient manner. Databases are generally distributed over different data sources
and can be corrupted or data can be redundant. Data loading from production

1
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systems is performed by an extraction transformation loading (ETL) tool to
be then analized by BI tools to generate reports and dashboards.
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Figure 1.1 – Evolution of the number of users with company growth

As shown on the chart Figure 1.1, the number of users grows with the
growth of companies (with respect to revenue). A direct consequence is an in-
creased amount of documents generated by users. As a result, users are faced
with the problem of information overload. Indeed, many corporate applica-
tions are entry points for information. Besides, searching for information in a
single application (like the company’s intranet) is not an easy task, beacause
of information overload, and because the order according to which result items
are ordered is not based on relevancy for the specific user.

In our thesis, we tackle this problem in supporting information access. In-
deed, our contributions are:

• a framework that allows natural language search over data warehouses

• a question answering system that offers personalized results

First, we present how data are structured in warehouses. Second, we in-
troduce the BI domain and some of current challenges in this area. Then, we
present how BI can benefit from techniques used in Question Answering (Q&A)
systems. Finally, we formulate the main problem of interest of our work.

1.1 Structured data

The history of structured data has followed the history of physical storage
devices. Indeed, improved storage capabilities has made it possible to store
larger databases. Recent years have seen a major turning point in database
history. Indeed, state-of-the-art database management systems rely on main
memory instead of classic disk storage.

The way data are organized in the database is defined in a model : it de-
fines how elements are organized from a semantic point of view. Early data
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Figure 1.2 – Conceptual model of the EFashion dataset used for experimenting our
system

structures like specification lists used in the Baseball NL interface [25] are
based on hierarchical relations between database entities. We reproduce below
an example of specification list (from [26]):

Month = July
Place = Boston
Day = 7
Game Serial No. = 96
(Team = Red Sox,Score = 5)
(Team = Yankees,Score = 3)

This structure combines hierarchies (for instance, the game occurs at a specific
place on a specific month) and associations marked with parentheses.

In modern database systems, there are several abstraction layers for repre-
senting data structures:

• Physical layer: Dababase Management System (DBMS)-specific data
structure

• Logical layer: data organization which eases database administration
(usually performed by database administrator). The most popular logical
representation of data is based on the relational architecture

• Conceptual layer: domain- and application-specific representation of re-
lations, dependencies and constraints of data.

We further present the relational model in section 1.1.1 and introduce the
multidimensional model which is widely used to model data warehouses in
section 1.1.2.

1.1.1 Relational model

Relational model is a logic model which defines a set of relationships (or ta-
bles). Each relationship is described with attributes. Besides, each relationship
is identified with a set of its attributes (this set is then called primary key of
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the relationship). Some attributes that reference primary keys of other rela-
tionships are called foreign keys.

This model is used by many modern DBMS, and therefore it has been pop-
ular for the last few decades. The data are usually first conceptually designed
by domain experts, in some visual representation.

We reproduce figure 1.2 an example of conceptual model on the basis of the
eFashion dataset, which is described Appendix ??. In this model, the relation-
ships are represented as boxes (for instance ARTICLE_LOOKUP) and attributes
(e.g. ARTICLE_ID) are represented with rows. The constraints of uniqueness
(i.e. the combination of primary and foreign keys) are depicted with links
between boxes attributes.

1.1.2 Multidimensional model

Multidimensional models are popular, especially for BI purposes, because they
“facilitate complex analyses and visualization” [10]. Data warehousing is a col-
lection of decision support technologies and aims at enabling the knowledge
worker (executive, manager, analyst) to make better and faster decisions [10].
Indeed, the relational model dating from the 70’s is not optimized for the pro-
cessing of huge amount of data. For instance, knowledge workers will process
this amount of data and aggregate them at different levels of granularity along
different analysis dimensions to understand some facts that seem unusual. Ag-
gregating data is a very expensive task and therefore the need for a new model
has emerged over years.

This model has influenced front-end tools, database design and query en-
gines for OLAP [10]. A classic definition of multidimensional models has been
proposed by Golfarelli et Rizzi [23]. An intuitive representation is a multidi-
mensional cube, where each axis corresponds to a dimension of the model and
a cell of the cube corresponds to a fact instance aggregated along the different
dimensions. The objects of analysis are numeric measures (e.g. sales, budget,
revenue, etc.). Each numeric measure depends on a set of dimensions which
provide the context for the measure [10]. Each dimension is described by a set
of attributes. Attributes can be related to each other through a hierarchy of re-
lationships [10]. Figure 1.3 is an example of a multidimensional data model. In
this figure, two fact tables (‘sales’ and ‘reservations’) contain several measures
(e.g. ‘days’, ‘revenue’ and ‘reservation days’). Rounded nodes correspond to
dimensions organized in hierarchies. The depth of the node (i.e. the distance
from the fact table) to the dimension corresponds to the level of the dimension
in the hierarchy. Finally, attributes at a specific hierarchy level are underlined
(e.g. ‘age’, ‘phone number’ and ‘invoice year’).

As introduced above, multidimensional architecture is usually preferred to
relational one, when there is a huge amount of data to aggregate. Therefore,
some DBMS implementations optimize some of these operations, and the mul-
tidimensional architecture is preferred to the relational one. In some implemen-
tations, the multidimensional architecture can be used directly with relational
databases, because the targetted applications prefer the multidimensional rep-
resentation. Hybrid architectures have also appeared, where the logical layer
is composed of both relational tables (for instance for representing large quan-
tities of detailed data) and multidimensional implementations for less detailed
/ more aggregated data.
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hierarchy attribute

facts

measure

Figure 1.3 – Multidimensional data schema of the dataset eFashion

We present in the following the star data schema, which is probably the
most popular one. Then we explain why multidimensional models are used
in BI. In addition, we introduce the notion of functional dependencies which
brings constraints in multidimensional data models. Finally, we briefly intro-
duce database query languages.

Star data schema

A popular implementation representing the multidimensional data model is the
star schema [10]. It consists of a single fact table and surrounding tables for
each dimension. A refinement of this model is the snowflake schema, where the
(dimensional) hierarchy is represented by normalizing the dimension tables.

Star-schema is the best-known schema for modeling data warehouses. Typ-
ically the star-schema is composed of several tables in the middle called fact
tables. These fact tables correspond to the measures. All tables arround these
fact tables correspond to analysis axes or dimensions. The star-schema is ac-
tually a special case of the snowflake-schema, which is not further detailed
here1.

The model displayed figure 1.2 is organized according to the star-schema:
two fact tables (SHOP_FACTS and PRODUCT_PROMOTION_FACTS) are surrounded
by several tables corresponding to different analysis axes.

Online analytical Processing (OLAP) operations

Standard operations on the cube are called OLAP operations: rollup (increase
the level of aggregation), drill-down (decrease the level of aggregation) along
one or more dimension hierarchies, slice and dice (selection and projection)
and pivot (reorient the multidimensional view of data) [10]. Front-end tools
let users execute these operations. Figure 1.4 is a screenshot of a BI tool that

1The interested reader can refer to http://en.wikipedia.org/wiki/Snowflake_schema
for more details on the snowflake data schema.
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is used to create dashboards. When checking/unchecking boxes on the left-
upper panel or when double-clicking on parts of the chart, these operations are
triggered and new charts are being rendered accordingly.

Figure 1.4 – State-of-the-art BI tools for exploring data

Role of hierarchies

Two objects (measures or dimensions) are functionally dependant if one de-
termines the other (see also section 5.1 page 97). For instance, knowing an
instance of the dimension ‘City’ determines the related instance of the dimen-
sion ‘State’. Another example that involves a measure and a dimension is that
the ‘Sales revenue’ is determined by a ‘Customer’ (e.g. aggregated from unit
sales in a fact table). Functional dependencies are transitive: if A determines
B which determines C, then A determines C. In the most simple scenario,
all measures are determined by all dimensions. This is the case when using
a basic dataset, for instance reduced to one fact table with dimensions in a
star schema. Functional dependencies are important to compose meaningful
queries. For instance, they can be used to ensure that suggested queries do not
contain incompatible objects which would prevent their execution. However,
business domain models do not necessarily capture and expose this informa-
tion. Hierarchies of dimensions are more common though, usually exploited in
reporting and analysis tools to enable the drill-down operation. For instance,
if a Year → Quarter hierarchy is defined, the result of a user drilling down
on “Year 2012” is a more fine-grained query with the “Quarter” dimension,
filtered on “Year” ’s value 2012. If hierarchies of dimensions can be used to
determine minimal dependency chains, techniques are required to help with
automatic detection of functional dependencies. In particular, the approach
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presented by [55] is to create domain ontologies from conceptual schemas and
use inference capabilities.

1.2 BI and the need for relevant answers

The BI field aims at increasing the efficiency of decision-making activities in
providing key figures of very large data that are generated and processed for
instance by Enterprise Resource Planning (ERP) or Customer Relationship
Management (CRM) systems. To ease this task of seeking for relevant data,
tools have been designed (see screenshot figure 1.4). Such tools can be used by
non database experts. However, the construction of a valid query that meets
user’s need is still a pain. Indeed, such tools are not natural in the sense that
users need to know how data are conceptually organized in the data model, in
order to formulate meaningful queries.

In the following, we introduce the BI domain and the increasing importance
of mobility in business workers’ tasks. Then, we detail specific aspects of
corporate settings.

1.2.1 Introduction to Business Intelligence

BI is defined as the ability for an organization to take all capabilities and
convert them into knowledge, ultimately, getting the right piece of information
to the right person at the right time via the right channel. During the last two
decades, numberous tools have been designed to make available a huge amount
of corporate data for non expert users (see Figure 1.4). These tools vulgarize
notions belonging to the multidimensional world like data schema, dimensions,
measures, members, hierarchy levels etc. These concepts are usually not named
in those tools, but their existence is assumed. In the above-referenced figure,
none of these concepts appears. The upper-ribbon is composed of filters (i.e.
selected members); the left panel lets users select dimensions. Measures have
been selected in a previous step. User experience studies have been carried
on [5] to determine where to position each component, such that its semantics
is better understood by users (and seems natural to them). Figure 1.5 is an
example of a graphic interface that lets users select dimensions (e.g. ‘Year’),
measures (e.g. ‘Sales revenue’), predifined filters (e.g. ‘This year’) and execute
the query in a subsequent step.

1.2.2 Mobility in BI and the growing popularity of natural
search interfaces

In recent years, mobile devices have significantly invaded business users’ ev-
eryday life. Indeed, capabilities of such devices have increased and wireless
internet connections have developed as well. As a result, mobile devices are
getting more and more popular and are extensively used in corporate settings,
especially by employees who travel a lot.

The major advance in this field is probably the speech-to-text feature. In-
deed, voice recognition is a technique that has improved significantly (at the
condition that the user is a native speaker). Users can thus speak out loud
instead of interacting with computers through traditional devices (mouse and
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Figure 1.5 – Graphic interface to build multidimensional queries

keyboard). This eases access to corporate data sources, but a range of re-
quirements specific to business use-cases still needs to be checked. We briefly
describe those requirements in the following subsection.

1.2.3 BI and corporate settings

In corporate settings, users are well identified on the network and use different
applications with possibly different authentification methods. The different
systems can be for instance CRM systems or any Content Management System
(CMS).

These various systems interact in some cases to offer aggregated information
to end-users. However, each system usually has its own security management
rules for users and/or groups of users. Therefore, allowing these applications
to interact is a tricky issue.

Security requirements

As opposed to traditional answering systems (e.g. retrieving data from the
World Wide Web (Web)), corporate systems must comply to security con-
straints. Some of these constraints are for instance:

• some users cannot access some ressources, but they are allowed to get
access to them

• some users can access some resources, but they are not allowed to get
access to them

• some users can grant access to some resources they host to some users
or groups of users

• the access to some resources to users or groups of users is granted at a
specific time, for a limited (or unlimited) duration, but the terms can be
changed at any time by an authorized user (or by a user belonging to an
authorized group of users)



1.3. Q&A AND ITS BENEFITS FOR BI 9

A direct implication of these constraints is that a resource that was granted
to some user at a specific time, which authorization has been revoked later on
must not be accessible to the user (e.g. as a search result) afterward. These
aspects will be further detailed and applied to our case in chapter 3 which
describes the implementation of the proposal.

Context-aware applications

Researchers aggree that aggregating information from several data sources –
not only corporate ones in the best case – promises more accurate results in the
context of IR (see [33]). To allow interaction between these data sources, one
need to enter into an agreement on what can be shared accross applications
(this involves security considerations as sketched out above) and on how the
environment is being modeled. Business workers share a consensual view on
main concepts used in their daily work, which eases this process.

Context is a very active research domain, and thus it has been defined many
times. The definition that is usually kept because of its generality is the one
from Dey [14]:

“A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends
on the user’s task.”

Taking into account context in corporate settings makes sense, first because
users are well identified on the network (for instance through single-sign-on
technology). This “context-awareness” can be used in an efficient way in order
to provide personalized items of interest (e.g. search results, answers, etc.).
To illustrate this, let consider a user who builds a query on a spreadsheet
application and expects a chart as a response (see figure 1.6). On this figure,
the generated chart must be of convenient size (i.e. not too large, such that it
fits well in the spreadsheet). On the other hand, charts displayed on dashboards
(see figure 1.4) or on desktop-specific applications (see figure 1.7) should be of
bigger size.

1.3 Q&A and its benefits for BI

According to Hirschman [34], the goal of Q&A is to allow users to ask questions
in NL using their own terminology and receive back a concise answer. Q&A
is often seen as a subfield within IR (see for instance [27]). The purpose of
IR [45] is to retrieve meaningful, or at least relevant information from a large
repository of documents basing on a formulation of an information need. This
information need is usually expressed by the means of keywords. The most
popular examples of IR systems are search engines on the Web. While IR
systems retrieve documents relevant for a specific query, Q&A systems aim at
answering a question as concisely as possible [34]. The main benefit of Q&A
systems is that users do not have to get through the list of documents to find
appropriate answers; the most likely answer is returned by Q&A systems. The
most advertised advantage of Q&A systems is that users waste less time in
searching for answers.

We have seen in section 1.2 that existing tools interfacing data warehouses
support users when designing their queries. However, there is still a gap to
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bridge which can be compared to the Q&A gap between query space and doc-
ument space. Concerning BI, users are supposed to be experts of the domain
(i.e. they know the key indicators, or dimensions, used to describe their data),
but they do not know the exact terminology that has been used to conceptually
model the data schema. Users may use synonyms, or variant terms, or phrases
formulated differently. The document space can be compared to the database
itself, where a (structured) document would be a structured query (which is
the requested information in our case). The growth and the “triumph” [31]
of the Web in the 90’s have focused researchers’ attention on IR: indeed, the
Web can be considered as an infinite corpus. One of its major drawbacks is
that in the field of Q&A systems, it’s not possible to tell whether the answer of
a question is known or not, while it usually is in corpus-based systems. Data
warehouses in productive environments are modeled with hundreds of measures
and possibly as many dimensions. As a result, the number of potential queries
(i.e. the combinations of these objects) is huge, and similar in that sense to
the problem of answering questions from large corpora of text.

Recently, researchers have emphasized the benefits and possible interactions
of Q&A systems for BI systems. Ferrández and Peral [15] have proposed a
system where the data schema of the data warehouse and the ontology schema
of a Q&A system can be merged. In that way, the system is able to generate
queries to the data warehouse and to the Web. More generally, the topic of
combining data coming from various sources in corporate settings is of utmost
interest and has been named “enterprise search” by Hawking [31] ten years ago.
The different data sources can be trusted data sources (e.g. data warehouses),
corporate information systems (e.g. intranet Web pages) or external sources

Figure 1.6 – Charts generated in an Excel instance must be of relatively small size
compared to other applications like a dashboard
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Figure 1.7 – Chart rendered on a desktop application

(e.g. Web pages from competitors)

1.3.1 Watson, a success story

Watson [17] has probably been the system that has made the strongest im-
pression in Artificial Intelligence (AI) in 2010. Indeed, it is the first artificial
program that has won the american Jeopardy! TV show. In this game, clues
are presented to players (instead of questions), and players must provide an-
swers in the form of questions (i.e. the question corresponding to the clues).
For instance, instead of answering “Ulysses S. Grant” or “The Tempest”, an-
swers must be “Who is Ulysses S. Grant?” or “What is the Tempest?” [17]. The
underlying architecture (called DeepQA [16]) is generic enough, such that it
can be applied not only to Jeopardy!, but also to text retrieval (for instance
compete to the TREC campaigns), enterprise search, etc. The system is com-
posed of several statistic models that generate hypothesis and evidences. The
synthesis of all potential hypotheses and evidences produces answers that are in
turn merged and ranked. A part of the process consists in acquiring knowledge
from various sources, which is partly a manual task.

1.3.2 Challenges in the field of structured data search

Research in the field of search over structured data consists mainly of key-
word search over structured data. As introduced above, natural interactions
with structured data becomes now popular in the community. Personalization
meets a similar goal to recommender systems, where a personalized query can
be seen as as a suggested query from recommender systems point of view. Be-
sides, extensive work focused on prediction systems. Indeed, analysis of sessions
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of multidimensional queries shows that queries are often refined in an intera-
tive manner. To ease query formulation taking into account this observation,
predictive models have been proposed, that predict queries that are more likely
to be next users’ queries (and pro-actively execute them).

A great challenge in this field is thus to propose comprehensive frameworks
that tackle the problems of personalization, query prediction and recommenda-
tion in the context of multidimensional analysis (and not only one of them).
As an example, personalization in the work of Golfarelli et al. [24] is tackled
with users’ preferences (at least for qualitative preferences).

1.4 Problem formulation

We consider a user’s query q called question in the following (to make the dis-
tinction with structured queries simply called queries). The problem of trans-
lating a user’s query expressed in natural language in a structured (database)
query can be formalized as finding mappings t from a question q and a family
of results (ri)i∈I :

t ∶ { Q→ RI

q ↦ (ri)i∈I
(1.1)

where I = [1, n] is the interval of ranks associated to each result (i.e. n is the
number of results that the question leads to). The index i of items ri of the
family is interpreted in that case as the rank of the result ri (i.e. rank(ri) = i).
The rank i assigned to a result r is computed by a scoring function that we
note score(r) ∈ [0,1]:

rank ∶ { R → I
r ↦ φ(score(r)) (1.2)

where φ is a bijection from [0,1] ⊂ R to I ⊂ N⋆. In the context of multidimen-
sional queries, we consider that a result is a multidimensional query Q and a set
of metadata (which can be the chart title or application-specific requirements
in terms of visualization like the color panel, the expected size of the frame
containing the chart, etc.). We note: r = (Q,M) ∈ R; in the following Q is the
notation for a structured query and M the one for metadata.

1.4.1 Machine translation and pivot languages

The problem introduced above (formula 1.2) is similar to the problem of trans-
lating natural language sentence from a (natural) language to another. The dif-
ference is that we target here a structured (artificial) language (i.e. a database
language) instead of a natural language. This problem is one of the most diffi-
cult one in AI and one of the most popular (at least until the 90’s); is has thus
a long history in computer science. A popular representation of two classic
approaches is displayed figure 1.8. Figure 1.8a is the class of approaches that
use a “pivot-language” to translate a source language to a target language. The
difficulty of this approach, and its main limitation, is that the different sub-task
when going from the first language to the pivot language generate noise, and
more noise is introduced when translating this pivot language to the second
language. The second class is represented figure 1.8b: no pivot language is
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(a) Translation approach using a pivot
language

(b) Statistical translation approaches

Figure 1.8 – Two classic translation appraoches

required, but the translation usually relies on statistical models, that require
costly resources.

1.4.2 What is not of the scope of our work

In our work, following interesting topics have not been investigated:

• searching over the Web and aggregating results from the Web and results
from trusted sources

• generating results that cannot be rendered as charts

Indeed, we have focused on translating questions in structured queries for data
warehouses (see section 1.4.1). The framework described in chapter ?? is ex-
tensible and also supports other kinds of data sources. The application-driven
motivation of our work explains why we consider a subset of possible query
results.

1.5 Contribution to the state of the art

Our contributions to the state of the art are as follows:

1. a comprehensive framework for Q&A dedicated to business users which
leverages contextual information to offer more personalized results

2. a NL query interface associated to a speech-to-text tool

3. a translation approach

• that has been proven to be valid in at least 3 european languages

• which graph-matching bases on constraints satisfaction rules

4. a plugin-based architecture which ensures a high degree of portability

5. an overall approach which makes the system quite independant with re-
spect to the domain according to our evaluation results
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1.6 Organisation of the thesis

This thesis is organized as follows:

1. chapter 2 page 15 surveys the related work of Q&A systems for structured
data for questions formulated in NL

2. chapter 3 page 57 presents the global architecture of the system and
provides implementation details of the end-to-end approach

3. chapter 4 page 75 provides details on the core technique used to translate
NL questions in database queries

4. chapter 5 page 97 defines the adopted conceptual query modeling and
provides research directions on personalization based on this model

5. chapter 6 page 119 reviews our experimentation results and compares the
performances of our system to some standards of the field

6. chapter 7 page 135 concludes the thesis and suggests follow-up research
based on the proposal

As additional material, the interested reader will find further information
in the following appendix sections:

1. appendix A page 139 provides a (long?) example of pattern which is part
of the system

2. appendix B page 143 is an example of query logs introduced in chapter 5

3. appendix C page 145 discusses the conceptual query modeling and its
translation in actual structured queries

4. appendix D page 147 provides screenshots of the front-ends

5. appendix E page 151 reproduces the source code of some classes and
illustrates how parallelism has been achieved in the implementation
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NL is the most natural and easy way to express information need [33], be-
cause it is not restricted to expert users who know how to formulate formal
queries (e.g. Structured Query Language (SQL) or MultiDimensional eXpres-
sion (MDX) queries).

NL interfaces have been investigated by researchers in both Information
Retrieval (IR) and Database communities. In the IR community however, the
keyword search has become popular because of the success of commercial search
engines which have made extensive use of algorithms for matching keywords
to documents. Interfaces to unstructured documents have become popular as
the Web has made available huge amount of textual data, and recently as the
famous J eopardy! quiz was won by IBM’s Watson [17] system. This trend
seems to evolve slightly. For instance, WolframAlpha™ is a popular search
service1 based on structured data, that accepts keyword queries as well as some
questions in NL. However, the proportion of NL questions that are understood
by WolframAlpha™ is still low, and therefore this system is still subject to
improvements.

Interfaces to structured data have focused much researchers’ attention for
decades, but the field seems to have known a renewed interest for a few years,
probably thanks to the development of the Semantic Web (SW). Today’s se-
mantic technologies cannot be easily manipulated by standard users, and there-
fore there is a need for interfaces. Indeed, users prefer NL interfaces than the
logic which bases the SW. Unger et al. [67] have illustrated this problem in the
context of the SW, where data are usually represented as Resource Description
Framework (RDF) triples. Consider for instance the following question [67]:

“Who wrote The Neverending Story?” (2.1)

In the best case, triple data answering this question would be of the form:

< [person,organization],wrote, ‘Neverending Story’ > (2.2)

where [person,organization] would be a placeholder for a subject representing
a person or an organization in the data. Depending on the adopted approach,
this triple would be either retrieved based on distance metrics with respect
to the question (2.1), or the result of the execution of a formal query (in this
case a SPARQL Protocol and RDF Query Language (SparQL) query) which
would look like:

1http://www.wolframalpha.com/
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1 SELECT ?x WHERE { ?x ?p ?y .
2 ?y \ac{RDF}:type ?c .
3 }
4 HAVING expr_1
5 ORDER BY expr_2
6 LIMIT expr_3
7 OFFSET expr_4

Listing 2.1 – Example of SparQL query template operating on top of RDF data

where expr_1, expr_2, expr_3 and expr_4 are placeholders for various
SparQL expressions. In this example, not-expert users would not write triples
(especially because some NL questions cannot be translated in this represen-
tation, e.g. when there are aggregations or filter constructs which are not
faithfully captured [67] by SparQL). Nor would they write a formal SparQL
query like the one shown in 2.1, because the syntax is not straightforward to
standard users.

The area of NL interfaces to structured data is even broader than IR, in
particular there is a range of systems that translate NL queries in goals, e.g. in
the context of (household) appliances (see for instance the Exact system [75]).
These kind of systems are out of the scope of our thesis, and therefore they
will not be described in this chapter.

In our work, we outline the major dimensions of existing systems and
present the new trends and challenges of state-of-the-art systems. The his-
tory of NL interfaces can be developped as follows:

1. early years of domain-specific systems

2. complex question answering in a specific domain

3. rise of domain-awareness in NL interfaces (through learning techniques)

4. data-driven systems (or schema-unaware approaches)

We present in the following the main dimensions used throughout the paper.

2.1 Main Dimensions

The input to every NL interfaces is the (1) data, and (2) user questions rep-
resenting information needs, which are translated to an (3) internal repre-
sentation of the needs employed by the system and/or directly mapped to
(4) database queries that finally, are executed by the underlying query engine
to produce the final answers. The main problem tackled by a NL interfaces ap-
proach is to transform the question to the internal representation and then to
the database query – i.e. (2) ↦ (3) ↦ (4) – or to directly mapped the question
to the query – i.e. (2) ↦ (4). This problem is hard when considering the large
and rapidly evolving mass of structured data that have become available. The
major challenges modern NL interfaces are facing in this regard is to operate
across domains (5) domain-independence as well as to adopt to new domains
(6) portability. For evaluating the quality of the NL interfaces output, different
(7) metrics based on the user questions the system can understand as well as
the database queries it can produce, have been proposed.
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2.1.1 Data sources

Data are organized in structures of various kind. In the case of unstructured
documents (e.g. raw textual documents), the structure is defined by the corpus
that contains the documents and the metadata possibly attached to the doc-
uments (e.g. the title or the authors’ names). In semi-structured documents
(e.g. Web pages) the structure explicitely surrounds the content of the doc-
uments (e.g. categories in Wikipedia). In structured documents (databases,
knowledge bases, etc.) the nature of the structure depends on the logic adopted
when these documents have been created. In any case, data structures can be
reduced to a set of entities and relations between those entities of possibly
various kind.

An early data structure is called hierarchical list and used in the Baseball
system [26]. We reproduce an example of such a list below:

Month = July
Place = Boston
Day = 7
Game serial No. = 96
(Team = Red Sox,Score = 5)
(Team = Yankees,Score = 3)

This list could also be represented as a set of facts. ‘Month’, ‘Place’, ‘Team’
and ‘Score’ are entities, ‘Game serial No.’ is an attribute, and there are to
kinds of relations: hierarchical relation (depicted with white spaces in the list
representation) and a standard relation (depicted with parentheses).

We classify the different data structures as follows:

• early data structures (Prolog databases; hierarchical lists)

• relational databases

• XML databases (which is an example of hierarchical database)

• ontologies; linked data

The way to access (i.e. query) and modify data depends on the data structure.
For example, relational databases are logically represented with the relational
model (see section 1.1.1 on page 3) and queries are usually expressed in a speci-
fic language, like SQL (or MDX). Hierarchical lists are hierarchical structures
(like XML documents) that are composed of embeded key-value pairs with
optional attributes. XML documents are more generic, since keys in those
documents are nodes (i.e. can be trees themselves). Ontologies are not more
generic than XML databases from the structure point of view, but ease the
expression of semantic relationships between entities (namely concepts and in-
dividuals).

2.1.2 Users’ questions

Traditional DBMSs provide an interface where users can query the data in
various ways, usually in a formal query language such as SQL. We present in
the following two kinds of input to database interfaces, namely keyword queries
and NL queries.
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Keyword query

A keyword query consists in a set of words traditionally used in the context of
document search. Traditionnally, documents are represented in a vector space,
where the vectors are composed of the terms of the documents. Search engines
have made this paradigm popular. Hearst [33] reports that the number of words
in queries over Web search engines trends to increase (the experiment compared
queries performed over a month in 2009 and in 2010): queries from 5 to 8 words
increase up to 10% while queries from 1 to 4 words decrease up to 2%. It seems
indeed that users are more and more aware of new capabilities of state-of-the-
art search engines, and are less reluctant to express their information need in a
more “natural” way. Therefore we focus further on natural inputs to interfaces
in the following section.

Natural language query

In this state of the art, we focus on natural language interfaces, and not on key-
word search over structured data, even if the latter has become quite popular
lately. A significant recent system with this respect is Soda [8].

Early systems do not undersand well-formed sentences (usually in English),
but some basic syntactic constructions; such language was called “English-like”
by some authors [72]. More recent systems try to go further and to capture as
much as possible regularities as well as some irregularities of NL.

Most of current systems handle only a subset of NL questions. This subset
of NL is called controled NL. Some systems even go further, and are able to
analyze why a question can not be answered. There are basically two cases:

• the question is beyond the system’s linguistic coverage (i.e. the system
does not understand the question)

• the underlying knowledge base (e.g. database) does not contain any fact
answering the question (i.e. the semantics of the question is fully or
partly captured but there is no answer to such a question)

NL questions are classfied based on their type:

• factoïd questions (i.e. questions that can be answered by an objective
fact, usually questions staring with wh-words except ‘why’)

• complex questions which answers are usually subjective to the answerer,
and for which there might be several correct answers, possibly contra-
dicting each other

Complex questions can be ‘why’-questions, ‘how’-questions or definition-
questions. Factoïd questions have been defined by Soricut & Brill [61] as ques-
tions “for which a complete answer can be given in 50 bytes or less, which is
roughly a few words” (see also Kwok et al. “Scaling question answering to the
Web, WWW). Several finer classification have been proposed in specific do-
mains or applications. For instance, in the case of temporal questions, Saquete
et al. [57] have proposed the classification reproduced table 2.1 on the following
page.
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Question type Example
Single event temporal questions “When did Jordan close
without temporal expressions the port of Aqaba to Kuwait?”
Single event temporal questions “Who won the 1988 New
with temporal expressions Hampshire republican primary?”

Multiple events temporal questions “What did G. Bush do after
the U.N. Security Council

with temporal expressions ordered a global embargo on
trade with Irak in August 90?”

Multiple events temporal questions “What happened to world oil
prices after the Iraqi

without temporal expressions annexation of Kuwait?”

Table 2.1 – Question classification for temporal databases from [57]

Error feedback

NL interfaces output database queries. Those queries must be then be executed
by underlying DBMS. The execution of queries can lead to different failing
states:

• the query execution fails (the generated database query is not valid)

• the query execution lead to an empty result set

In both cases, the system may inform the user and/or suggest or rephrase the
query. This is a task performed by systems belonging to the range of feedback-
based approaches (see section 2.6 on page 40).

2.1.3 Internal representation

The syntactic representation of a question (also called parse tree because the
tree representation is usually adopated) is an intermediate representation, be-
fore the internal representation of the question (i.e. the semantic representa-
tion) is being created. In many systems however, the syntactic representation
also contain pieces of semantic information. For instance, nodes of the syn-
tactic tree contain information about how to generate fragments of the target
database query. The nodes of the tree representation contain information about
words and relations between words of the question. Typical semantic informa-
tion contained in a syntactic parse tree are the database elements that those
words refer to. Those semantic information (also referred to as meaning in
early systems) are kept in a lexicon. The syntactic parse tree usually does not
try to resolve ambiguities, and keep all possible interpretations. Resolution of
ambiguities is done afterward, when the semantic representation is being built
out of the syntactic representation. Figure 2.1 on the facing page is an example
of parse tree of the question “Who produced the most films?” processed in the
system described in [67]. In the figure, nodes hold syntactic information (e.g.
‘WP’ stands for wh-pronoun). The result of the parse tree depends on the
chosen parser.
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Figure 2.1 – Example of parse tree for the question “Who produced the most films?”
from [67].

System Internal representation DB query
Baseball [25] specification list

√

Lunar [72] meaning representation language X
Chat-80 [69] logic expression X
Team [28] logic expression X
Qwerty [49] logic expression X
Irus [6] meaning representation language X
Precise [54] graph representation X
Masque/SQL [2] meaning representation language X
NaLIX [42, 41] XQuery

√
DaNaLIX
C-Phrase [47] λ-calculus X
Panto [68] graph representation X
Orakel [12] λ-calculus X
Miller et al. [46] semantic frames X
Zettlemoyer et Collins [76] λ-calculus

√

Wolfie [66] Prolog
√

PowerAqua [44] graph representation X
DeepQA [17] semantic triples

√

Table 2.2 – Semantic meaning representations

2.1.4 Database queries

The parse tree (which may or not contain semantic information in the nodes
of the parse tree) must then be interpreted in some internal semantic repre-
sentation. Table 2.2 displays semantic meaning representations used in various
systems. As shown in the table, the internal semantic representation can be or
not the target query representation. The semantic representation is intented to
capture as much as possible the user’s intent, and is sufficient to generate the
final database query. While the syntactic representation may contain lots of
ambiguities, the semantic representation does not. The adopted semantic repre-
sentation depends on the data structure, and thus the target DBMS. However,
some systems contain components that translate the semantic representation
in the different database query languages, for instance when there are several
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underlying systems with different query languages. This kind of architecture
participate to make the system more domain-independant (see section 2.1.5 on
the facing page for more details).

Query languages

Relational databases are generally associated with the SQL query language
(and temporal databases are associated to an extension of SQL called temporal
SQL). Multidimensional databases (e.g. data warehouses) are associated with
MDX, which is a SQL-like query languages dedicated for handling measures,
dimensions and hierarchies (key concepts of multidimensional models). Other
data stuctures are associated with their own query language. For instance,
hierarchical lists (or specification lists) is not associated with a language, but
to a similar structure, which is a template where empty slots correspond to
the expected items of the resultset. XML databases are associated to XPath,
and semantic databases (e.g. RDF) are usually queried with languages derived
from SparQL which looks similar to SQL.

Recently, a new range of query languages have appeared and are associated
to a new class of DBMSs, namely NoSQL (for ‘not only SQL’). These DBMSs
are optimized for special data models and large data sets beyond the scope of
this survey.

In the following we review the main primitives that appear in query lan-
guages: selection, constraints and query modifiers.

Selection a selection consists in choosing the expected database attribute
to appear in the resultset. In SQL, the selection is expressed as SELECT t.x,
where t is a table and x a field or attribute belonging to t. In SparQL it
corresponds to variables that are defined in the query, and that must sat-
isfy the constraints defined in the WHERE section of the SparQL query (see
section 2.1.4). In MDX, the selection corresponds to the ordered set of dimen-
sions or measures that should appear in the resultset, with the information
about the level of the expected attributes in the hierarchy, and the filters. For
instance, SELECT Country.[All members] corresponds to the selection of the
dimension ‘Country’ with no filter (i.e. selection of all members of the dimen-
sion ‘Country’). Selection for a hierarchical list corresponds to a slot in the
structure template. A selection in a XPath query can be expressed: nodename
(selects all nodes with the name nodename), /nodename (selects the root node
nodename), //nodename (selects all nodes nodename no matter where they
occur), @attr (selects attribute attr), etc.2. In SparQL, a selection can be
expressed also differently. Indeed, the output of a SparQL query can be a
data structure of the same kind than the data themselves (i.e. a graph). This
is performed with the CONSTRUCT keyword.

Constraints Canstraints in database queries aim at reducing the size of the
resultset. In the case of SQL, SparQL and MDX, such constraints are in-
troduced with the WHERE keyword. In SQL, these constraints can define how
different tables can be joined together such that attributes belonging to differ-
ent tables can appear in a single view (i.e. in the resultset). Other kinds of

2for more details, see http://www.w3schools.com/xpath/xpath_syntax.asp
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constraints are about the values of attributes. In SparQL, the constraints are
expressed with triples (which can be made of some blank node or undefined
node). Thus, a SparQL constraint is about relations between entities (see
joins for relational databases), or about entities themselves (which type must
be the entity? If this is a litteral, in what range of value must it belong?,etc.).

Query modifiers Conceptually, modifiers are primitives that modify the
resultset afterwards. Such primitives are:

• order the resultset along a given attribute (e.g. ORDER BY in SQL)

• select at most n tuples of the resultset (e.g. LIMIT x in SQL)

• select only different tuples (e.g. the keyword DISTINCT in SQL)

• etc.

In SparQL, it is possible to test if a set of constraints can be satisfied from the
data, and to combine these tests with optional constraints (OPTIONAL keyword)
or mandatory constraints (FILTER keyword).

2.1.5 Domain-independence

Domain-independance is the ability of a system, to operate accross different
domains simultaneously. In practice, this means that a domain-independant
system would be on top of different data sources that belong to different do-
mains, and that this system is able to meet users’ requests for any of these
domains. The main difficulty of building domain-independant systems is the
ability to translate NL constructions differently in the different application
domains. For instance, the qualitative expression “middle-aged” can be in-
terpreted completely differently accross the different domains (see how it is
interpreted in our Q&A system in section 4.2.1 on page 77).

2.1.6 Portability

A system is said portable if it can be easily configured for different domains (and
not the first domain for which it was first designed). Domain-independance
(section 2.1.5) is a step further, because different domains are considered simul-
taneously; while in portable systems the challenge consists in easing the effort
of the system administrator when configuring the system. Portable systems
are also referred to as configurable interfaces in the following. Configurable in-
terfaces let users improve the system’s capabilities, both the linguistic coverage
S and the system coverage K (see Fig. 2.2 on the following page).

Minock et al. [47] have identified three kinds of configuration applicable to
NL interfaces:

• let users name database elements, so that phrases used in the question
can be easily mathed with database elements

• offer a General User Interface (GUI) that automatically generates seman-
tic rules or a grammar for translating NL questions in database queries
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• use machine learning techniques to induce semantic rules or a grammar
from annotated corpora

These ways of configuring interfaces are not of equal cost: for instance, the
third one (machine learning techniques) can be highly costly if it requires a huge
volume of annotated data. The cheapest configuration is based on user interac-
tion, where no initial configuration is needed, but domain-specific knowledge is
learned based on user interaction. An example of such a system is NaLIX [42].

2.1.7 Metrics

Several evaluation metrics have been introduced in various systems. We review
them briefly below. We present the interesting figure 2.2 copied from Han et
al. work [29]. It shows the tradeoff between linguistic coverage (S in the
figure) and the expressions that can be answered from a knowledge base (K
in the figure). The goal of any interface would be that the linguistic coverage
comprises all expressions that can be answered from the knowledge base.

S KS ∩K

Figure 2.2 – Linguistic coverage vs. logical coverage within interfaces, copied
from [29]. S represents the range of expressions that are understood
by the system and K the range of expressions that can be answered
from the knowledge base.

FluencyWoods

Woods [72] defines fluency as “the degree to which virtually any way of express-
ing a given request is acceptable”. Fluency measures roughly how easy to use
is a system. Intuitively, a good fluency means a “natural” interface in the sense
of natural interfaces [33]. This requires advanced natural language techniques,
and would probably lead to systems that can interpret more expressions than
those that can be actually answered by the knowledge base (S ∖K in figure 2.2
would not be negligeable).

CompletenessWoods

Completeness was first defined in Woods’ work related to the Lunar [72] system.
It measures if there is a way of expressing any query which is logically possible
from the database. In the end, it measures if the interface can answer all
possible questions. In figure 2.2, completeness would be represented by S
comprising K (K ⊂ S).

SoundnessPopescu

An interface is said sound if “any SQL output is a valid interpretation of the
input English sentence” [75]. In figure 2.2, this evaluates the expressions of
V = S ∩K.
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CompletenessPopescu

An interface is said complete if it “returns all valid interpretations of input sen-
tences” [75]. Yates et al. have reused this metrics in their Exact system (not
surveyed here). They do not claim that users should restrict their questions
to query only tractable qestions; but they suggest that identifying classes of
questions that are semantically tractable and measuring the prevalence of these
questions is the direction of current research.

User’s intent

Yates [75] makes an assumption, that if the interface is sound, complete and if
a single SQL statement can be produced from a NL question, then the interface
has unambiguously determined user’s intent.

Predictability

Within user interfaces, predictability has been pointed out as the essential fea-
ture of user interfaces in the 90’ by Norman [50] and Schneiderman et Maes [58].
Predictability and the feel of control seems however to be in contradiction with
personalization, which is the one pillar of recent IR systems.

2.2 Anatomy of NL interfaces systems

The main problem to solve is to map user’s intent expressed in a natural way
(say unstructured way) to a database query, which is a structured expression
where there is no room for ambiguity unlike natural language. The problem
that NL interfaces systems try to solve is equivalent to finding a mapping f
between natural language questions q and families of structured queries (q′i)i
(where the index corresponds to the rank of the structured query):

f ∶ { Q→ (Q′)I
q ↦ (q′i)i

where i ∈ I = [0, n] is the index of q′i.

2.2.1 Lexicon

The lexicon is a data structure that is used to reduce the ambiguity in words
when analyzing users’ questions. NL interfaces are usually composed of two
lexicons: a domain-dependant lexicon and a domain-independant lexicon. The
domain-dependant lexicon defines words in terms of semantic rules (see sec-
tion 2.2.2). The domain-independant lexicon defines how to interpret words
independantly from a specific domain. For instance, wh-question words define
constraints on the structure of the expected database query (e.g. in SQL).

2.2.2 Semantic rules

Semantic rules define the semantics of question words. The input is a node, or
a part of the parse tree being constructed, and the output contains information
on how to construct part of the final database query. The final database query
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1 2 3 4 5
NL query

intermediate query

query graph

logic query graph

database query

Figure 2.3 – Big picture of NL interfaces systems

will be generated from the parse tree, which contains semantic information in
the nodes, in addition to lexical and syntactic information. The idea behind
this process is a linguistic theory [missing ref], where the global meaning of a
sentence is defined by the individual meanings of words / expressions in the
sentence, and by the syntactic relationships between the words / phrases.

2.2.3 Main problems to solve

The main problems to solve are threefold. First, NL systems should have the
broadest linguistic coverage (such that in the best case, users can employ teir
own terminology). Secondly, there should be some mechanisms that allow users
to query other domains with a low porting cost. Thirdly, there should be some
components responsible for checking that generating database queries are valid
(in terms of syntax).

2.3 Taxonomy of main approaches

Figure 2.3 depicts the big picture of translating NL queries to database queries.
In the figure, nodes represent various steps involved in the translation (from NL
questions to structured queries) and edges the iterations performed by actual
systems surveyed in this work. We consider two main ranges of approaches,
namely classic translation approach and iterative approach introduced below,
which are then further refined.

• Classic translation approach: The classic translation approach consists in
going from 1○ to 5○ through 2○, 3○ and 4○ (step 2○ being optional).
To reach step 3○, semantic rules are needed to find out what database
elements should be associated to question phrases.

• Iterative approach: The iterative approach does not go directly from 1○
to 4○, but goes back to 3○ (and/or to 4○) several times before reaching
step 5○. Those iterations correspond to question reformulations, that
involve user-feedback to interpret semantically the question in terms of a
database query.

The way translation from NL questions to formal query has evolved over
years. Table 2.3 on the next page presents an overview of major systems that
we take into consideration in this survey.

2.3.1 Domain-dependent semantic parsing

Early systems belong to this class of approaches. The amount of knowledge
necessary to translate NL questions to database queries is encoded in a lexicon.
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Table 2.3 – Overview of major NL interfaces to structured data. ‘Q’ stands for
‘Query’, ‘D’ for ‘Data’, ‘A’ for ‘Answer’, ‘P’ for ‘Portability’, ‘L’ for
‘Linguistic coverage’ and ‘E’ for ‘Error feedback’
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The systems allow users to employ a subset of English (i.e. a controlled lan-
guage) to query databases. The lexicon, however, is a huge linguistic resource
which defines how each word and/or phrases must be translated into database
elements, and what semantic rules to trigger to get, in the end, the desired
database query.

Lexicon

The lexicon is a resource that defines a set of words that belong to a domain.
Those words are associated to a meaning, which is a semantic rule that controls
how this word must be interpreted in the current data domain and for the data
structure. In addition, the lexicon also contains a list of specific rules that
modify the global meaning of the query being generated, based on some words
that are already defined in the lexion. The lexicon usually combines both
syntactic with semantic pieces of information. For instance, the same word
would have a different interpretation whether it is a noun or a verb in the
sentence where it occurs.

Limitation

The domain dependence is however the great limitation of those systems; this
is due to the cost of the lexicon. Indeed, porting such systems to other domain
would mean provide a new lexicon and corresponding semantic rules, which is
highly costly.

2.3.2 Complex question translation

The next generation of NL interfaces aims at increasing their linguistic cover-
age. This is performed with the distinction of both domain-dependent know-
eldge and domain-independent knowledge. The domain-dependent knowledge
base consists in semantic rules triggered by words, phrases or syntactic infor-
mation encoded in a parse tree. Those rules produce fragments of the target
query language (or of the intermediate query language) to be then combined
and modified to generate the final qurey language. The domain-independent
knowledge base is composed of lexical information in a dictionary (which might
be completed with domain-dependent knowledge, like the most likely senses of
words used in the application domain).

2.3.3 Feedback-driven approaches

This range of systems translate NL questions to database queries basing on
users’ feedback. We distinguish between the following kinds of feedback:

Authoring tool configuration

Authoring tools are GUI that permits users to edit domain-specific knowledge
(e.g. the lexicon that is used to translate NL questions to internal queries).
Editing such domain-specific knowledge within these tools can be straighfor-
ward (like synonyms to be used in user’s question to describe the same database
elements) or more complex (like semantic rules to translate user’s terms to logi-
cal elements). Describing this knowledge is not an easy task for standard users,
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for instance semantic rules that define how to map words and phrases to logical
elements, and rules that define how information from the parse tree must be
combined to produce the final logical query. For that reason, recent advanced
systems try to infer such rules basing on dialog-like interaction with the user.

Interactivity

Authoring tools introduced in the previous section are intended to be used as a
preliminary task when porting the interface to other domains. Other systems
do not explicitely ask users to answer questions to get the domain-specific
knowledge, but infer this knowledge on the basis of interaction. This range
of systems suggests NL questions to users that could be reformulations of the
current user’s question. To the best of our knowledge, there are two different
kinds of such interaction, when the system cannot interpret a question:

• the system tries to change words and/or phrases in user’s question, so
that the system is able to interpret the question

• the system also comprises a repository of successfully answered questions,
and suggests one of those questions replacing some slots with terms used
in the user’s question, and ensuring that the generated question can be
interpreted by the system

Recent work [38] investigate how to present similar questions in NL as inter-
pretations of the current question. This is a way of making the user think
she controls what is happening, which is one of the expected features in
modern interfaces. This paraphrasing feature is also present in NaLIX and
DaNaLIX [42, 41] and C-Phrase [47] works.

2.3.4 Learning-based approaches

The learning-based approach consists in learning a grammar or a set of rules
that map NL sentences to logical forms. Learning-based approaches are popu-
lar among the NLP community. Indeed, learning techniques reduces the cost of
linguistic resources, which is being learned over time. In the case of NL inter-
faces, this allows to port the system to other domains with a limited cost. Most
systems need a corpus of labelled examples, e.g. a set of sentences mapped to
their corresponding logical form.

However, such corpora are rarely available, and are costly to produce. Some
systems adopt strategies to address this (see Wolfie section 2.7.3 on page 49
for instance).

Statistical models

Table 2.4 on the next page summarizes the different statistical models used by
learning-based systems. Miller et al. [46] use a probabilistic recursive transition
network and consider the probability P (T ∣W ) of a parse tree T given a word
string W :

P (T ∣W ) = P (T ) × P (W ∣T )
P (W )



30 CHAPTER 2. STATE OF THE ART

System Model
Miller et al. [46] recursive transition network
Zettlemoyer et Collins [76] log-linear model

Table 2.4 – Different statistical models used by learning-based systems

System Training data volume
Miller et al. 4000 sentences
Zettlemoyer et Collins [76] 600/500 training examples3

Table 2.5 – Volume of training data of different systems

This model combines both state transition probabilities and word transition
probabilities. The state transition probability concerns the labelling of a com-
bination of semantic and syntactic information recursively (the label of a node
is computed given the labels of the previous node in the syntactic order, and
the parent node). The word transition probability is the probability of a word,
given the previous syntactic word and a semantic information (attached to the
parent node in the parse tree).

Zettlemoyer et Collins [76] use a log-linear model to learn a combinatory
categorial grammar. This grammar, which also defines the domain-specific
lexicon of the parser, contains semantic information (i.e. to which λ-calculus
formula a given word and/or phrase should be associated).

Shortcomings of these approaches

These components rely on statistical models, that often require a large amount
of annotated data. For instance, a statistical parser require a significant num-
ber of questions annotated with corresponding parse tree. Table 2.5 shows the
volume of training data corresponding to two systems (Miller et al. and Zettle-
moyer et Collins). Besides, training data should also be composed of negative
examples, whose availability is a strong requirement as pointed out by Giordani
et Moschitti [22].

2.3.5 Schema-unaware approaches

A range of recent systems aggregate potential answers from different sources.
This range of systems have emerged in parallel with the success of the SW
technologies. The particularity of these approaches is that they cannot rely
on the schema of underlying knowledge bases because the different sources are
potentially modelled in very different ways. Thus, the set of systems repre-
sented by these approaches try to bridge the gap between user terminologies
and the different terminologies used in the different knowledge bases that the
interfaces talk to. These approaches can be seen as an extension of several
approaches presented before, namely ‘complex question translation’ (because
the question is further analyzed to map it with the terminology used in the
different knowledge bases) and ‘learning-based approaches’ (because some of
the systems represented in these approaches contain learning components).
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System D SK S

Baseball specification lists lexicon cost of the lexiconsemantic rules

Lunar proprietary schema lexicon cost of the lexicon

semantic rules simple data structures
exact term matching

Table 2.6 – Systems belonging to the domain-dependant parsing range of ap-
proaches. ‘D’ stands for “data structure”, ‘SK’ for “semantic knowledge”
and ‘S’ for “Shortcomings”.

Terminology mapping

In previous approaches, end-users were not aware of how data were modeled
in the knowledge base. This requires advanced natural language processing to
map user’s terminology with database terminology. In schema-unaware app-
praoches, the systems do not talk to a single database, but to potentially an
unlimited number of sources where the structured data are to be found. Each
of those sources has its own logical schema, naming conventions, etc. Then, the
system must know how to communicate with these knowledge bases, and what
strategies to adopt to reduce the computation cost of generating distributed
queries (see below). In some cases, it’s also critical to aggregate results from
different sources.

Shortcoming of these approaches

The major shortcoming is related to scalability and efficiency. In particular, in
cases where the knowledge bases are searched over Internet (for instance Linked
Data4), the computational complexity of mapping and expanding user query
terms to the terminology of respective knowledge bases is a limiting factor.
Internet latency in this case is also to be considered since the databases are
not hosted.

2.4 Domain-dependent semantic parsing

The major systems are Baseball [25] and Lunar [72]. Both systems are
surveyed below. Table 2.6 overviews these systems.

2.4.1 Baseball [25]

Baseball aims at answering questions about baseball results. The main con-
cepts in the data are games, teams, scores, day, month, place (of a game). The
domain is quite close, which means that there is few ambiguity in terms of
word meaning.

Data structure

The data structure is a list structure called specification list. This is a hier-
archical structure, where each level correspond to an attribute associated to a

4See http://linkeddata.org/.
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value, or a nested specification list. An attribute can also be modified. For in-
stance, the city Boston is represented by City = Boston; an unknown number
of games is represented by Gamenumber of = ?.

Semantic knowledge

The semantic knowledge necessary to map questions to the data structure is
defined in the lexicon on the one hand, and in a set of semantic rules (called
subroutines) on the other hand.

Lexicon The lexicon maps words or idioms to their meaning in the same
data structure presented section 2.4.1 on the preceding page as well as their
POS (part-of-speech). Wh-words are also referenced in the lexicon.

Subroutines Subroutines are a set of semantic rules that modify the query
representation or make choices in cases of ambiguity. For instance, a word
that can have two POS (noun and verb) is disambiguated with the help of
some heuristic, like the fact that any sentence can only have one main verb. A
meaning modification routine consists for instance in adding a modifier in an
attribute. For example, the word ‘team’ has the meaning Team = (blank).
The word ‘winning’ before the word ‘team’ will lead to the modification
Teamwinning = (blank).

Question translation step by step

Dictionary lookup The question is first tokenized in words, and empty
words are left aside. The remaining words as well as adjoining words are
looked up in the lexicon for the POS and the meaning. The output is a list of
attribute/value pairs with extra information like the POS of each word and if
the word is a wh-word.

Syntactic bracketting POS of each word is used to syntactically analyze
the question in term of phrases. Phrases are surrounded by brackets and the
main verb is left aside. The parsing proceeds from right to left and bases on
heuristics. For instance, prepositions are associted to the rearest right noun
phrase to generate a prepositional phrase. Each phrase is then tagged with its
functional role in the sentence (subject and object).

Subroutines activation Some words trigger additional rules that mod-
ify the data structure of the query and/or disambiguate some words. For
instance, the word ‘What’ followed by the word ‘team’ (whose meaning is
Team = (blank)) modify the latter meaning to Team = ?.

Shortcomings

The main shortcoming of the system is the cost that is required to produce the
semantic knowledge base (the lexicon and the set of semantic rules). Authors
suggest an improvement for handling unknown words, where the meaning could
be expressed based on existing words in the lexicon. Porting the system to
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another domain requires a significant effort, since one needs to rewrite entirely
the knowledge base.

2.4.2 Lunar [72]

Lunar was published more than ten years after Baseball. Lunar (unlike
Baseball) has been experimented with scientific data and targets expert users.

Data structure

Authors do not give much details about the data (provided by the NASA5). It
looks almost like relational tables with a dedicated formal query language. The
data are about chemical analyses of lunar rocks from the Apollo 11 expedition6.
The application domain is again very closed but more complex than that of
Baseball; some expertise is required to validate the answered provided by
Lunar.

Internal query representation

Woods [72] has defined a meaning representation language which is used to rep-
resent internally users’ intent. This language is a combination of propositions
(whose evaluation leads to a truth value) and commands (or actions to be per-
formed by the DBMS). Propositions are composed of database objects (classes
or table names and instances or variables). Propositions are combined together
with logical predicates like OR, AND, etc. Commands are TEST (to test the truth
of a proposition), PRINTOUT to print out the evaluation of a proposition and
commands for loops (FOR) to be used with a quantifier.

Question translation step by step

Syntactic parsing the input question is first syntactically parsed using a
general-purpose grammar (domain-independent grammar). The grammar is
based on Augmented Transition Network linguistic formalism [71], which is al-
most equivalent to the context-free grammar formalism. The syntactic parsing
also needs a lexicon which contains terms belonging to the domain. It con-
tains for instance technical names of samples recolted during the expedition.
‘S10046’ is thus recognized as a proper noun by the parser [74].

Semantic mapping a set of rules transform the syntactic parse tree into
a meaning representation (see section 2.4.2). The rules are triggered both by
the syntactic structure of the parse tree (the label of nodes like NP for noun
phrase or VP for verb phrase) but also on the words present in the question
(like ‘S10046’ which is a sample name in the lexicon, or ‘contain’ which has
a semantics also defined in the lexicon). The rule results in a database query
pattern with slots to be filled with items from the lexicon. As the system also
supports quantification, authors presents some heuristics on how to resolve the
attachment in the generated propositions.

5See http://www.nasa.gov.
6See http://www.nasa.gov/mission_pages/apollo/missions/apollo11.html.
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Query execution The internal query representation is composed of com-
mands that the database retrieval component understands and executes to
retrieve data and display/print them.

Shortcomings

The shortcomings of the Lunar system are threefold. First, the NL processor
(called “English processor” by its authors) is closely tailored to “the way ge-
ologists habitually refer to” database elements [73]. Therefore, the system is
highly domain-dependant, and the lexicon cannot be re-used in different do-
mains. Secondly, authors state that it is tailored to very simple data structure,
and that the system – or part of it – must be re-implmented in order to consider
new data sources. Last but not least, the database entities matching approach
is an exact term matching technique, which is not applicable in most domains
(e.g. the logic name given by the database administrator to tables is usually
different from the conceptual name considered by experts of the domain). As
an example, compare logical names in table 6.2 on page 122 and conceptual
names on figure 1.2 on page 3.

2.5 Complex question translation

This class of approaches aims at increasing the linguistic coverage of NL inter-
faces. In addition to the systems of this class need domain knowledge, but the
involved processing are independant from the unerlying DBMS.

As for domain-dependant systems, the domain-dependent knowledge base
corresponds to a lexicon which defines the meaning of words and expressions.
This meaning is expressed with a set of semantic rules that map words and
expressions plus syntactic information to fragments of database queries.

Besides, the domain-independant knowledge base is composed of the fol-
lowing components:

1. a syntactic parser which operates iteratively with the semantic rules

2. a set of NLP tasks that aim at resolving linguistic ambiguities (such as
anaphora resolution and ellipsis resolution [6])

The syntactic parsing might be performed iteratively and in parallel with the
semantic component process, as it is the case in Irus [6].

Table 2.7 on the facing page overviews various systems that we compare in
this section.

2.5.1 Chat-80 [69]

This system is the ancestor of many future interfaces [3] like Masque [2]. The
database is composed of facts about world geography (facts about ocans, seas,
rivers, cities and relations. The database itself is implemented as ordinary
Prolog. Questions are expressed in a subset of English. The subset of English
qustions is a formal but user-friendly language [69]. The main difference with
its predecessor (Lunar) is that much effort has been spent on increasing the
linguistic coverage. In particular, the system translates English determiners
(‘a’, ‘the’, ‘some’, ‘all’, ‘every’) and negation and focus on linguistic phenomena,
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System D SK S

Chat-80 Prolog vocab. (100 domains) NL ambiguities
domain-indep. know- presupositionsledge base

Qwerty temporal DB
semantic rules grammar tailored
semantics of temp- to DB schema
oral PPs

Irus hierarchical DB
domain-dep. dictionary domain knowledge
interpretation rules to generate MRL
linguistic resources

Precise relational DB

lexicon prevalence of trac-
table questions

semantic rules
SQL-specific
lack of user-feed-
back

Panto triple store
dom. indep. lexicon parser limitation

authoring tool SparQL express-
iveness

Table 2.7 – Systems belonging to the complex question translation range of ap-
proaches. ‘D’ stands for “data structure”, ‘SK’ for “semantic knowledge”
and ‘S’ for “shortcomings”.

like noun attachment and transformational aspects (that cannot be covered by
context-free grammars).

Portability

The authors claim that the system is adaptable to other application [69]. In
particular, it is composed of a small vocabulary of about 100 domains (exclud-
ing proper nouns), and a small domain-independant knowledge base of about
50 words.

Lexicons

The system is composed of a small vocabulary of English words that are related
to the database domain, plus a dictionary of about 50 domain-independent
words. These lexicons consist in rules in the Extraposition grammars formal-
ism [52]; those rules are processed by Prolog and output Prolog clauses. In
addition to these two lexicons used to parse the question, a dictionary is made
up of semantic rules in the form of templates that define how a word associated
to a predicate must be also associated with its arguments.

Question translation steps

Parsing The parser analyzes the syntactic categories of words and determin-
ers (domain-independant lexicon) plus nouns and verbs which are database-
related elements (domain-dependant lexicon). Proper nouns are represented
by logical constants while most verbs, nouns and adjectives are represented as
predicates with one or more constants.
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Interpretation The output of the parser is interpreted by filling the predi-
cates identified in the previous step. This is performed using a set of templates
that are part of the system’s initial configuration.

Scoping This step consists in defining the scope of determiners and some
operators (for instance the operator that counts items).

Planning The output of the previous step is a logical expression. However, to
avoid combinatory explosion when executing the Prolog query, some strategies
to optimize the query have been implemented: reordering the predications in
the Prolog query; putting braces arround independent subproblems to avoid
too many backtracking procedures

Limitations

Constraints in NL are not convered (for instance “Which ocean. . . ” presuppose
there is only one right answer).

Query execution Even relatively complex queries are answered in less than
one second [69]. The Prolog expression is executed to retrieve the answer.
Authors note however, that the answering process (i.e. query execution) is
the limiting factor (while modern systems are limited by the question analysis
task).

2.5.2 Qwerty [49]

The specificity of this system is that it is intended to interface temporal
databases. This system has thus an increased linguistic coverage and a better
temporal expressivity. Input questions are expressed in controlled NL. The
grammar used in the system takes into account some aspects of temporality of
NL such as tenses and temporal PPs that modify sentences. The system pro-
duces queries in SQL/Temporal query language, which is dedicated to temporal
databases.

Portability

The grammar used for parsing questions and translating it into the formal
language is specifically designed for use with a particular database schema.
Thus, this system cannot be considered as a portable system.

Question translation steps

Semantic parsing The NL question is parsed using the Type Grammar
framework. While parsing, the question is being trasformed into a logical rep-
resentation called LAllen. This formal language is based on interval operators.
The translation bases on a linguistic theory, that semantics of sentences is
modified by temporal preposition phrases (PPs). In this work, PPs are consid-
ered as variants of standard generalized quantifiers, where the quantification
is over time. The temporality in NL questions can be explicit (like ‘When’,
‘Which year’) or implicit (“Did Mary work in marketing?”). The quantification



2.5. COMPLEX QUESTION TRANSLATION 37

also allows iterations of PPs (“every year until 1992”). In addition to tem-
poral quantifiers, the system recognized quantification over individuals (“some
employees”), coordination and negation. The semantic mapping to logical ex-
pression is performed basing on a bottom-up approach, simultineously with the
parsing.

Query translation The logic expression is translated in SQL/Temporal,
the database query language dedicated to temporal databases. Some logical
query produce infinite SQL/Temporal queries. Some heuristics have been im-
plemented to prevent such behaviour.

Query execution The SQL/Temporal query is finally evaluated by the
database engine to produce the answers.

Shortcomings

The translation of NL questions in Temporal/SQL is performed using a gram-
mar which is tailored to the schema of the database. Therefore this system
cannot be used for other databases.

2.5.3 Irus [6]

The Irus system processes the question independantly from the underlying
domain and DBMS, which is a big change with respect to previous systems.
The meaning formalism used to represent internally the query is the same as
in the Lunar system (MRL, namely meaning representation language) but its
expression is domain and DBMS-independent. Besides, Irus analyses linguis-
tically the question and integrates state-of-the-art NL processing components,
such as anaphora and ellipsis resolution.

Internal query representation

The internal meaning representation language is a descendant of that of Lunar
The language has the following general form [6]:

(FOR <quant> X / <class> : (p\ X) ; (q\ X))

where quant is a quantifier such as EVERY, SOME, THREE, HALF, etc., X is the
variable of quantification, <class> is the class of quantification of X, (P\ X)
is a predicate that restricts the domain of quantification and (q\ X) is an
expression being quantified, or an action such as PRINT\ Y.

Question translation steps

Syntactic parsing The syntactic parsing of NL questions is performed using
the ATN grammar formalism. The authors claim that the syntactic parser can
benefit from semantic mapping as well in the syntactic parsing, both evolving
in a cascaded system. The output of the syntactic parsing is a partse tree, where
nodes correspond to syntactic information about question words and phrases
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Semantic mapping The semantic mapping is done in interaction with the
syntactic parser. It requires a domain lexicon, which defines the semantics of
the words and expressions used in users’ queries. The main subtasks involve
disambiguation (pronouns and other anaphoric expression resolution, ellipsis
resolution, references resolution through discource information).

Query execution The meaning representation language can be used to in-
terface any database system, at the condition that there is a component re-
sponsible for the translation from the internal language to the target query
language.

Shortcomings

The system is said transportable – portable to new application domains and
can interface any DBMS – but a new domain-specific knowledge base must be
provided. Authors propose as next step an authoring tool where this knowledge
can be written by expert users.

2.5.4 Precise [54, 53]

Precise maps questions expressed in natural language to SQL queries. The
interesting approach in this system, is the introduction of semantically tractable
questions. This class of questions is guaranteed to be mapped to the correct
SQL query. This reduces then the classic gap between the query space and the
data space.

Internal query representation

The internal query representation is different from the one of systems presented
so far. The system builds an attribute-value graph that maps words of the
question to database elements, and a relation graph that maps relation tokens
(i.e. some words of the question) to the names of relations belonging to the
database. Both graphs are eventually used to generate the SQL query.

Lexicon

The lexicon defines the mapping between tokens and database elements. It is
composed of 1) the tokens; 2) the database elements; 3) the binary relations
that bind both tokens and database elements.

Question translation steps

Syntactic parsing A lexicon is composed of elements that have been auto-
matically extracted, and is used to perform the matching with question tokens.
NL processing task are: tokenizing the question into words, categorizing those
tokens into syntactic markers (i.e. empty words) and tokens which are words
that can be potentially associated with database elements. In addition to the
lexicon, the system is composed of a parser which is implemented as a plug-in.
The parser can thus be changed for experimentation purposes. Authors have
experimented the system with a syntactic dependency parser which outputs a
graph (namely an attribute/value graph) composed of paths linking database
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elements together. These paths will then be composed together based on ag-
gregation and combination of foreign keys in the case of relational databases.
The lexicon is also composed of a set of restrictions corresponding to prepo-
sitions and verbs. These restrictions define the join paths connecting relation
and attributes. The set of those restrictions defines the semantic part of the
lexicon. A component is also responsible for classifying questions into tractable
and not-tractable questions. This is done linking words of the question with a
set of compatible elements of the database. Precise also implements strategies
for correcting syntactic parsing errors (namely semantic over-rides) based on
the semantics defined in the lexicon.

Semantic mapping the interpretation in terms of structured query consists
in choosing a path between database elements. This choice is a constraint
satisfying problem defined in the parse tree. Paths generate SQL fragments
that are then aggregated.

Feedback component

In the case where there is no possible interpretation (even trying to correct
possible syntactic errors) the system asks the user to rephrase the question.

Shortcomings

The main contribution of the system is the ability of predicting whether a ques-
tion can be answered (tractable questions) or not. Experiments have been lead
in a few domains (geography, restaurants and jobs) but there is no proof that
tractable questions are prevalant in general. Besides, the semantic knowledge
component contains semantic rules that define how to translate two graphs
(namely attribute-value graph and relation graph) to the target query in SQL.
There is no claim regarding the cost of changing the target query language
(here SQL). Moreover, authors conclude on the user-feedback component, and
suggest that users should get better information on why answering a question
had failed.

2.5.5 Panto [68]

Panto generates SparQL queries, that can be executed to get answers to the
information need expressed through a question in NL. The data are organized
in a knowledge base, more specifically an ontology (RDF or OWL7 formalism).
The most interesting aspect in Panto is that its most important component
(the linguistic component, i.e. the parser) is implemented as a plug-in compo-
nent, that can be easily replaced by an other one. This permits thus to benefit
from the improvements in terms of linguistic coverage, when integrating state-
of-the-art parsers.

Portablity

“Panto is designed to be ontology-portable”. To ensure portability, Panto
comprises a domain-independant component. This component is a lexicon

7See http://www.w3.org/TR/owl-features/.
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composed of WordNet8 entries. For portability purposes, users can collaborate
and improve the domain-dependent component (the domain ontology) defining
their own synonyms to be added in the lexicon which bases the question parsing
step.

Internal query representation

The internal query representation is a graph representation called query triples.
It is a representation of the parse tree, that is then mapped to database queries
(i.e. RDF triples) thanks to the lexicon.

Question translation steps

Syntactic parsing words from the NL query are first mapped to entities
(concepts, instances, relations) of the ontology. This corresponds to the “entity
recognition” task, and several tools are used, such as WordNet and string met-
rics algorithms. Then, a syntactic parser is used to recognize nominal phrases
in the question. Those phrases are represented by pairs in the parse treee. In
addition, some NLP tasks are integrated in this step, such as the recognition
of negation.

Semantic mapping Pairs of nominal phrases from the parse tree are asso-
ciated to triples in the sense of the ontology, and composed of entities of the
domain ontology. This association is performed using the domain knowledge
(the database). Besides, two additonal components are involved in this step:
the question target identifier which identifies the target in the parse tree, and
a component responsible for the recognition of solution modifier in the sense
of SparQL (e.g. commands FILTER or UNION). Those components basically
base on rules triggered by the recognition of some words (e.g. wh-words for the
former component). The triples mentionned before along with the target and
modifier information constitute the internal representation of the query.

Query execution The internal representation of the query mentionned
above is interpreted into SparQL statements, that can be then executed to
retrieve requested facts. The target item is used in this step to decide what to
put after the SELECT command in the generated SparQL statement. Query
post-processing procedures are triggered, for example basing on the negation
recognized in the parsing step. The negation is usually translated in the FILTER
SparQL clause to specificy the set of triples that must not appear in the result
of the execution of the SparQL statement.

2.6 Feedback-driven approaches

The systems presented in the previous section still require intensive configu-
ration efforts, and thus cannot be considered as portable. As a result, several
systems have arisen where semantic grammars are created automatically on the
basis of user interaction. We distinguishes between configuration (authoring

8See http://wordnet.princeton.edu.
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System D SK S

Team any

domain-dep. lexicon NLP limitations
semantic rules no proper eval.

authoring tool missing discourse
knowledge

Masque/- Prolog lexicon (logic pred.) exec. time
SQL relational DB authoring tool use-feedback
NaLIX XML DB lexicon NLP limitations

DaNaLIX XML DB
lexicon no evaluation
dom.-indep. knowledge XQuery onlyuser interaction

C-Phrase relational DB
lexicon

basic evaluationsemantic rules
sentence patterns

Orakel triple store

dom.-indep. lexicon ling. assumptionsdom.-dep. lexicon
semantic rules labels in DB are
authoring tool concepts/instance names

Table 2.8 – Systems belonging to the feedback-driven range of approaches. ‘D’
stands for “data structure”, ‘SK’ for “semantic knowledge” and ‘S’ for
“shortcomings”.

tools) and knowledge acquisition through user interaction when the system is
being used.

Table 2.8 sums up the different systems that belong to this class of ap-
proaches.

2.6.1 Team [28]

The data are structured in a database about geographic facts like the largest
cities in the world, the population of each country etc. The Team system
is intended to be used with two kinds of users: standard users and database
experts, who engages dialogue to provide needed information to port the system
to other application domains. This system belongs thus to configurable systems,
where the required knowledge to port the system is provided by the expert user,
interacting with a dedicated authoring tool.

Internal query representation

The meaning of users’ queries are internally represented in formal logic.

Lexicon

A lexicon is used to map words and expressions of NL to their meaning in
terms of database elements. Close classes of words are supposed to be domain-
independent and to have a fix meaning. Open classes of words, however, have
a much more important frequency in users’ queries, and their meaning is sup-
posed to be domain-independent. The meaning is composed of both syntactic
and semantic information. Entries for nouns are the instances to which their
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refer, or a class (or concept) in a type hierarchy; entries for adjectives and
verbs correspond to the possible predicate and how to find arguments of the
predicate in the NL question.

Database schema

In addition to the lexicon, a resource about how logical forms can be translated
in terms of database elements must be available. This resource expresses for
instance the link between predicates (that appear in the logical forms) and
database relations and attributes or the definition of the class hierarchy in
terms of database relations or fields.

Portability

Portability is performed in using the system in a different mode (knowledge
acquisition). In this mode, the database/domain expert informs the system
on how data are organized in the database, what are the database elements
and what words and expressions from NL are used for those elements. The
acquisition consists in a tool, where the expert must answer questions; the
answers of those questions will impact the resources like the lexicon and the
database schema, that are both used to interface the database.

Question translation steps

The system is divided into two sub-systems: Dialogic that maps NL questions
to formal expressions and a schema translator that translates formal logical
queries in database queries.

Syntactic parsing The parsing of the NL question is performed using an
augmented-phrase structure grammar. The parser produces possibly several
parse trees for one question; then one of the parse trees is selected basing on
syntactic heuristics.

Semantic mapping Several processings are responsible for resolving some
domain-specific ambiguities like noun-noun combinations and vague predicates
like ‘have’ or ‘of’ [28]. Finally, a quantifier determination process is triggered.
In the end, a logical form of the question is identified.

Query generation The logical form is then translated in the database query.
This translation bases on the conceptual schema as well as the database schema
(which defines the structure of the database) to perform the translation.

Shortcomings

Team relies on some Natural Language Processing (NLP) modules, and there-
fore the overall performance of the system depends on the performances of
these tasks. Moreover, the system is able to retrieve facts from the database,
but not to aggregate these facts.
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2.6.2 Masque/SQL [2]

Masque is a NL interface to Prolog databases, and Masque/SQL is an ex-
tension of it that supports SQL query language. The system is entirely written
in Prolog. The system is meant to be domain-portable. Users can indeed add
new entities in the lexicon through a domain editor.

Lexicon

The lexicon defines the semantic of words that are expected to appear in users’
questions. The meaning of words are described in logic predicate. Possible
argument types of predicates are organized using the hierarchical is-a relation.

Internal query representation

The internal query representation is a Prolog-like language called Logical Query
Language. Question words are translated to predicates or predicate arguments.
The types of those arguments are described in the is-a relation hierarchy

Portability

The system can be used with different domain databases, but this requires to
edit the specific knowledge in a dedicated editor. This knowledge consists in
entities linked with the hierarchical is-a relation. User also has to explicit links
between words and corresponding logic predicates; the entities in the taxonomy
are used to restrict the possible arguments of the predicates. Each predicate is
also linked to the corresponding SQL statement.

Question translation steps

Syntactic parsing A dictionary consists of all English words that the system
understands and is used by an extraposition grammar to parse the question.

Semantic mapping The dictionary composed of lexical units also associates
words to their meaning in the form of logic predicate. The internal formal
representation is a Prolog-like meaning representation language (LQL).

Query execution The internal representation is translated to SQL using an
algorithm, and then SQL is executed in the underlying DBMS. The transla-
tion consists of rules triggered by the structure of the LQL expression; each
unit LQL expression is associated with a SQL fragment; all fragments are then
combined to produce the final SQL expression. The system has also been exper-
imented with Prolog as query language in association with a Prolog database.

Shortcomings

Authors report two major limitations of the system. First, the execution time
of the system for any query is not less than 6 seconds. Secondly, users are not
properly informed of the reason why their queries have failed (i.e. which step
of the processing has failed).
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2.6.3 NaLIX [42] and DaNaLIX [41]

NaLIX is an interactive interface to XML databases for questions expressed
in natural language.

Question history

The system is composed of a query history that keeps all successfully answered
queries. Queries from this history are intended to be used as templates for
formulating new queries. This feature also permits users better understand the
linguistic coverage of the system.

Internal query representation

The internal query representation is the target database query, i.e. XQuery9.

Portability

There is no internal representation of the query (the NL question is directly
translated to an XQuery expression). Thus, the translation is dependent on the
DBMS and the target query language (i.e. XQuery). In addition to the porta-
bility feature of NaLIX, DaNaLIX takes advantage of domain-dependent
knowledge which can be automatically acquired on the basis of user interaction.
When ported to a new domain, the system starts with a generic framework;
then domain-dependent knowledge is being learned from user interaction.

Question translation steps

Syntactic parsing The parsing consists in identifying words and phrases
using the Minipar dependency parser (dependency among words and not hier-
archical constituents). An other component is responsible for checking whether
words and phrases identified in the previous step can be mapped to directives
(e.g. return or group by clauses) in the target query language (XQuery).
Each word and phrase that can match a directive is further typed, depending
on the kind of directive. The output of the parser is a tree with those roles
as labels of phrases of the initial query. The vocabulary mismatch is overcome
using WordNet. In DaNaLIX, an additional step consists in transforming the
parse tree using domain knowledge basing on relevant rules.

Semantic mapping Each item from the parse tree is translated into a frag-
ment of the target query language (XQuery). This is done using a series of
processings. Basically, a set of rules define how to combine items of the parse
tree to get XQuery clauses. There are also further treatments like nesting and
grouping developped in [43]. In cases when the system does not understand
how to map a given phrase to a XQuery constituent, the system interacts with
users and suggests potential reformulations. NaLIX seems to be the first NL
interface that introduces user interaction to select the correct parse interpre-
tation.

9See http://www.w3.org/TR/xquery/.
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Query execution The question is directly translated into a XQuery expres-
sion, which is the data query language. The XQuery expression is then executed
to retrieve answers. Answers are basically XML answers. Different visualiza-
tion of the answers are possible (text view for simple answers, hierarchical list
view or raw XML). Besides answers to queries, the system implements an ad-
vanced error manager that also supports users in rephrasing queries that were
not correctly parsed nor accurately translated.

2.6.4 C-Phrase [47]

C-Phrase is a system that translates questions expressed in NL in queries for
relational databases. The system outputs expressions in tuple calculus – closed
to First Order Logic (FOL) – that can be easily translated in a database query
language like SQL.

Lexicon

Semantic information are encoded in a lexicon. It maps tokens with syntactic
information (such as the head and the modifier in dependency analysis) and
semantic information (translation in λ-calculus). It is represented as a set of
rules that form the grammar of the parser. An example of such a rule is:

HEAD→ ⟨“cities”, λx.City(x)⟩

In addition, the system comprises a set of sentence patterns, in the form of
context-free rules. Such a rule is for instance:

QUERY→ ⟨“list the” .NP,answers(x∣NP(x))

Authors say that they “rarely” see users who do not use already defined sentence
paterns. This set of rules are automatically created by an authoring tool. The
tool explicitely asks for meaningful names of different database elements (i.e.
relations, attributes and join paths). It also permits to define new concepts in
NL.

Internal query representation

The internal query reprsentation is λ-calculus.

Question translation steps

Semantic parsing The parsing bases on a context-free grammar, augmented
with λ-calculus expressions. The framework (λ-SCFG) works with two pars-
ing trees: one for parsing syntactically the NL sentence; the other one for
expressing the semantics of the first one in λ-calculus. Input questions are first
tokenized and normalized. Then, the sequence of tokens is analyzed to idenfity
database elements, numeric values, and proceed to some spelling corrections.
The structure is then transformed in the form of tuple calculus queries. This
is done based on a set of rules that map lexical and syntactic parses to tuples.
Each rule has a plausibility; in the end, the product of plausitilities of all rules
used in a parse is used to rank potential semantic interpretations. In case of
ambiguity, the user is asked to rephrase the question, or to select the best
rephrasing proposition.
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Query generation The tuple query is converted in SQL.

Shortcomings

Authors of the C-Phrase system suggest that the system should be further
evaluated. Besides, they point out that bootstrapping the authoring tool is a
tedious task.

2.6.5 Orakel [12]

Orakel [12]’s main feature is the portability. This portability is based on the
use of subcategorization frames, which are linguistic structures composed of
predicate and arguments. The feedback consists in an authoring tool. This
tool (which is called FrameMapper) is used to generate the domain-specific
knowledge and is intended to be used by expert of the domain.

Role of lexicon

The system is composed of three kinds of lexicons:

• domain-independant lexicon defining determiners, wh-pronouns and
spatio-temporal prepositions

• domain-specific lexicon which defines the meaning of verbs, nouns and
adjectives

• ontological lexicon which is automatically created from the data, and
maps ontology instances and concepts to proper nouns and standard
nouns

Categories of the domain-independant lexicon are generic categories such as
those of a generic ontology like DOLCE10.

Internal query representation

The internal query representation is λ-calculus. The question is represented in
a language which is an extension of FOL (in addition to FOL: quantifiers and
operators).

Customization process and portability

Users can customize the system, i.e. create a domain-specific lexicon which
maps subcategorization frames (arity n) to an ontology relation (arity n). This
mapping is called a definition. The interesting thing is that binary relations
where the range is an integer – for instance height(mountain, int) – can also
be mapped to adjectives with various degrees (base, comparative, superlative
forms) and possibly the positive or negative scale (as in Team). This mapping
is performed by users themselves through a front-end tool.

10See http://www.loa.istc.cnr.it/DOLCE.html.
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Question translation steps

Semantic mapping Both processes question parsing and semantic mapping
are done in a single process. The parsing is based on the LTAG11 linguistic
representation. The parsing operates in a bottom-up fashion: each question
word is associated with an elementary tree. Then, all elementary trees are
combined together to get the syntactic parse tree of the entire sentence.

Query execution The FOL internal query representation is then translated
in the database query language like SparQL (for ontologies) or the language
used for ontologies expressed in F-Logic. This translation is peformed using a
Prolog program.

Shortcomings

Supports only factoid questions (wh-questions plus questions starting with ex-
pressions like “How many” for counting) but not complex questions like those
starting with ‘why’ or ‘how’. Besides, there is a strong assumption that cate-
gories of the domain-independant lexicon should be aligned with those of the
database (the domain ontology). The second one, is that the generation of the
ontological lexicon assumes that the labels used in the database correspond
to instance and concept names. The front-end system used to improve the
domain-specific knowledge allows to increase the linguistic coverage and is a
nice tool for porting the interface; however it might not be user-friendly since
the underlying concepts (like the semantic frames) are complex.

2.7 Learning-based approaches

Learning-based approaches are approaches where machine learning algorithms
are the core of the translation mechanism. These algorithms aim at learning
domain-specific knowledge (e.g. a lexicon). This knowledge is used to parse
the question and get clues on on how to translate it to a database query.

Table 2.9 on the following page compares the different systems that belong
to this class. The first system (M. et al. in short) is more theoretical, and
therefore has not been evaluated with any specific database implementation.
In the following, we further describe each of these systems.

2.7.1 Miller et al. [46]

The main caracteristics of this system is that it is fully statiscal. It is composed
of three components for parsing, semantic interpretation and discourse resolu-
tion and are associated with corresponding statistic models. Each component
produces a set of ranked items, and the chosen interpretation of the question
is the best one of the final component.

Question translation steps

The different steps correspond to the different components of the system.

11Lexicalized Tree Adjoining Grammar, see http://www.cis.upenn.edu/~xtag/tech-
report/.
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System D SK S
M et al. any stat. models no evaluation

Z. et C. λ-claculus DB dom.-dep. lexicon only λ-calculussemantic rules

Wolfie Prolog DB machine-learning (lexicon) no eval. for long
phrases

Table 2.9 – Systems that incorpore machine learning approaches in order to inter-
face structured data. ‘D’ stands for “data structure”, ‘SK’ for “semantic
knowledge” and ‘S’ for “shortcomings”.

Syntactic parsing The string of words W is searched for the n-best candi-
dates of parse trees T basing on the measure P (T )P (W ∣T ). The parse tree
contains syntactic as well as semantic information. The statistical model is
based on the recursive transition network model12. This model is more de-
tailed in section 2.3.4 on page 29. The model is trained with a set of questions
annotated with the corresponding parse trees.

Semantic mapping The semantic mapping step is composed of two sub-
steps: first, a model associates a pre-discourse meaning to both a parse tree
and the corresponding string of words. Second, a post-discourse meaning is
retrieved from the pre-discourse meaning, the string of caracters, the parse tree
and the history. Both pre-discourse meaning and post-discourse meaning are
represented using semantic frames. The construction of the frames is integrated
in the parse tree. Then, the statistical model is used to disambiguate the
frames, for instance when there is no information about the frame type or
when there is no information about a slot to fill. The second phase (post-
discourse meaning) corresponds to ellipsis resolution. It takes the previous
meaning (final meaning of previous questions) and the pre-discourse meaning
(of the current question), and finds the best meaning. Previous meaning and
pre-discourse meaning are represented as vectors, whose elements correspond
to slots in the frame meaning representation. The statistical model applies
different kinds of operations on those vectors (INITIAL, TACIT, REITERATE,
CHANGE and IRRELEVANT). Those operations combine elemnts of both vectors to
compute the vector which corresponds to the meaning of the current question.

Query generation The paper does not expalin how is performed the query
generation.

2.7.2 Zettlemoyer et Collins [76]

The system aims at translating NL sentences to λ-calculus expressions. The
system is based on a lerning algorithm that needs a corpus of sentences labelled
with λ-calculus expressions. The system induces then a grammar. The statistic
model is a log-linear model. The paper focus only on the generation of λ-
calculus expression from questions expressed in NL.

12See http://www.informatics.sussex.ac.uk/research/groups/nlp/gazdar/nlp-in-
pop11/ch03/chapter-03-sh-1.1.html.



2.7. LEARNING-BASED APPROACHES 49

Portability

The proposal has been tested for two application domains: a database of US
geography and a database of job listings.

Internal query representation

The query is internally represented in λ-calculus.

Question translation

The syntactic parsing is performed using a combinatory categorial grammar.
The nodes of the resulting parse tree are composed of both syntactic and se-
mantic information. The grammar of the parse operates with a domain-specific
lexicon, which maps question words and expressions to a syntactic type as well
as a semantic type. Several funtional rules define how syntactic types can be
associated

Learning component

The learning algorithm takes as input a training set composed of pairs (Si, Li)
where Si is a string of words and Li a logical form. The algorithm also takes
as input a lexicon. The learning algorithm will determine how a string of
words will be parsed to produce a parse tree, and what words from the lexicon
are required to produce such trees. The algorithm involves then learning the
lexicon and learning the distribution over parse trees for a given string of words.

Shortcomings

The experiments are based on databases rewritten in λ-calculus. It would be
interesting to implement an additional module that transforms λ-calculus ex-
pressions to any database query language and measure the overall performance.

2.7.3 Wolfie [66]

Wolfie is a system that learns a lexicon that is used to translate NL questions
in database queries.

Lexicon

The lexicon consists in a mapping from sentences to semantic representation
(logical database queries). The mapping consists in two steps: first, phrases
that compose the sentence are associated to database elements (or symbols
in the representation). Second, it says how those intermediate representation
must be combined to get the final database query.

Learning

Due to the nature of the lexicon, the number of possible interpretations of a NL
sentence is huge (the problem is computationally intractable). To cope with
that, authors propose an active learning algorithm which selects only most rele-
vant examples to be then annotated. The learning algorithm bases on a greedy
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System D SK S

PopwerAqua triple stores dom.-indep. lexicon data indexing
assumption

DeepQA
semantic data dom.-indep. lexicon primarily designed fordom.-dep. lexicon

sources syntactic frames unstructured documentssemantic frames

Table 2.10 – Systems belonging to the schema-unaware range of approaches. ‘D’
stands for “data structure”, ‘SK’ for “semantic knowledge” and ‘S’ for
“shortcomings”.

approach. The generation of candidate meanings for each phrase consists in
finding maximally common meaning for each phrase. But, the algorithm also
aims at finding a general meaning for the whole sentence and not only mean-
ings for the phrases that are part of the sentence. The evaluation corpus is
composed of 250 questions on US geography paired with Prolog queries.

Shortcomings

The system has not been evaluated with long phrases; the paper describes how
it works for phrases of maximum two words. Besides, “the algorithm is not
guaranteed to learn a correct lexicon in even a noise-free corpus”.

2.8 Schema-unaware approaches

This section describes modern systems that are portable, because they operate
accross various domains simultaneously (they interface databases of various
domains). Table 2.10 sums up the different systems that are surveyed in this
section.

2.8.1 PowerAqua [44]

PowerAqua takes as input several semantic sources (heterogeneous ontolo-
gies) and a question (expressed in NL). This system is an improvement of
the system Aqualog [19]. The latter system was able to answer questions re-
lated to one domain ontology only (which is a problem in the context of the
SW composed of many heterogeneous ontologies). The geatest contribution
of PowerAqua is the method for mapping user terminology with ontology
terminology (and the system is unaware of the data structure of the semantic
sources).

Domain portability

The portability cost is negligible. Indeed, the system has a learning component
responsible for the acquisition of domain-specific lexicon which maps users’
relations (expressed in NL) to knowledge represented in the domain ontology.
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Internal query representation

The internal query representation is called query triples. It is triples like RDF
triples used in the data (ontology), but these triples are based on terms of the
query.

Lexicon

PowerAqua as well as Aqualog use domain-independant lexicon WordNet.

Question translation steps

Syntactic parsing Users’ questions are first parsed syntactically, and ques-
tions are categorized (for instance on the basis of the wh-question word). Both
the parse tree and the category of the question are used to generate the internal
query representation, query triples. The sense of words used in the question
are disambiguated using word sense disambiguation algorithms. Those query
triples are composed of question words, and may be then modified so that they
are compatible with the database. The linguistic component of PowerAqua
also consists in algorithms that make decisions, for instance for correctly in-
terpreting the conjunctions and disjunctions terms (‘and’/‘or’). The question
may also contain constraints, that are sub-questions to be anewered prior the
actual question. Furthermore, the system provides a way to treat two instances
(from two semantic sources) as equivalent, and thus ease the answering process
(in particular in cases where more than one semantic source are required to
answer the question). The mapping from users’ terms to database elements is
done using a metrics similar to the edition distance.

Semantic mapping the semantic mapping consists in processing query
triples to retrieve the ontology triples that are associated to the query triples.
First, the algorithm tries to filter the sources (the ontologies) in order to only
consider those that contain all or most of the query triples. Query triples
must then be filtered to take into account the potential high number of triples
generated in the previous step, and the fact that a question can involve sev-
eral different semantic sources. The mappings established in the previous step
(query terms and ontology terms) are ranked basing on a sense disambiguation
algorithm that uses WordNet and the is-a taxonomy. In this step, the equiv-
alence between two terms is computed based on the label of the term (edition
distance) but also on the position in the taxonomy (ancestors and descendants).

Query generation Potential ontology terms (database elements) must be
processed to generate the final ontology query. Terms identified in different
relevant ontologies must be used to generate triples (first sub-step); these triples
must then be linked, these triples belonging or not to the same ontology (second
sub-step). In this step, relations will be created from terms identified in the
previous step. A relation (in the query triple) does not always correspond to
a relation (expressed in ontology triple): sometimes, a new triples must be
generated.
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Limitation

Authors make the assumption that the SW provides an indexing mechanism.

2.8.2 DeepQA [16]

The DeepQA project is part of the well-known Watson system. Watson
has been the major event in the Q&A community in 2010. Indeed, it is the
first artificial system which has won the american Jeopardy! quizz. Watson
queries a wide range of different sources and aggregates the different results to
produce answers.

Question

Watson has been designed for Jeopardy! where questions are not standard
questions, but clues that should help understanding what the question is about.
For instance, in a classic Q&A process a question would be “What drug has
been shown to relieve the symptoms of ADD with relatively few side effects?”.
In Jeopardy! the corresponding clue would be “This drug has been shown to
relieve the symptoms of ADD with relatively few side effects”. The expected
response would then be “What is the Ritalin?” [17].

Answers

Another particularity of Jeopardy! is that an answer are not simply a phrase
corresponding to what the clues are about, but the answer must be the expected
question corresponding to the clues. For instance, a valid response can be “Who
is Ulysses S. Grant?” but not “Ulysses S. Grant” [17].

Data

The data (sources) used by Watson are mostly unstructured documents as in
most Q&A systems. DeepQA however also leverages databases and ontologies
such as DBpedia13 and the Yago14 ontology; this is why we consider this
system in this survey.

Question translation

Question translation for databases involves different steps that are detailed
below:

Question analysis The parsing of the question involves many tasks: shallow
parses; deep parses; logical forms; semantic role labelling; coreference resolu-
tion; relations (attachment relation and semantic relations); named entities;
etc. Semantic relation detection is one of those tasks. For instance for the ques-
tion “They’re the two states you could be reentering if you’re crossing Florida’s
northern border”, the relation would be borders(Florida, ?x, north).

13See http://dbpedia.org/About.
14See http://www.mpi-inf.mpg.de/yago-naga/yago/.
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Hypothesis generation The module responsible for this step takes as input
the analysis parses and generates candidate answers for every system sources.
Those candidate answers are considered as hypothesis to be then proved basing
on some degree of confidence. To produce candidate answers, a large variety
of search techniques are used. Most of them concern textual search, but some
consist in searching knowledge bases, more specifically triple stores. The dif-
ferent search techniques lead to the generation of multiple search queries for a
single question; then the result list is modified to take into account constraints
identified in the question. The search is based on named entities identified in
the clue. If a semantic relation has been identified in the question analysis
step, a more specific SparQL query can be performed on the triple store. In
this step, recall is preferred as precision, leading to the generation of hundreds
of candidate answers to be then ranked according to the confidence of each
candidate.

Soft filtering Candidate answers are not directly scored and ranked, since
those algorithms require lots of resources. Instead, the hundreads of candidate
answers corresponding to a single question are first pruned, to produce a subset
of initial candidate answers. The involved algorithms are lightweight in the
sense that they do not require intensive resources (soft filtering). The candidate
that do not pass the soft filtering threshold are routed directly to the final
merging stage. The model used to filter the candidate in this step as well as
the threshold are determined on the basis of machine learning over training
data.

Hypothesis and evidence scoring Candidate answers that successfully
pass the previous step are scored again in this step. This involves a wide range
of scoring analysis to support evidences for candidate answers. First, evidences
for the candidate answers are being retrieved. In the context of triple stores,
those evidences are triples related to entities and semantic relations identified
in the question. Those evidences are then scored, to measure the degree of
certainty of these evidences. For instance the score is determined on the basis
of subsumption, geospacial and temporal reasoning. The DeepQA framework
suports a wide range of scorers (components) that provide scores for evidences
with respect to a candidate answer. The evidences from different types of
sources can also be combined (for instance from unstructured content and from
triple stores) using a wide range of metrics. In the end, scores of evidences are
combined into an evidence profile. This profile “groups features into aggragate
evidence dimensions that provide an intuitive view of the feature view”.

Final merging and ranking This step aims at ranking and merging “the
hundreds of hypotheses based on potentially hundreds of thousands of scores to
identify the single best-supported hypthesis given the evidence and to estimate
its confidence” (or likelyhood).

Answer merging To cope with candidate answers that might be equivalent
(e.g. leading to the same answer) but with different surface forms, authors
propose to first find similar candidate answers and to merge them in a single
candidate answer.
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Final ranking After merging candidate answers, they must be ranked based
on merged scores. This is done using a machine-learning approach. This ap-
proach requires a training dataset of questions with known answers with appro-
priate scores. In this step ranking scores and confidence estimation (estimation
of the likelihood of a given candidate answer) must be computed in two sep-
arated processes in intelligent systems. For both processes, the set of scores
can be grouped according to the domain and intermediate models specifically
used for the task. The output of these intermediate models is a set of inter-
mediate scores. Then, a metalearner is trained over this ensemble of scores.
This approach allows for iteratively improving the system with more complex
models, and adding new scorers. The metalearner uses multiple trained models
to handle different question classes (for instance, scores for factoid questions
might not be appropriate for puzzle questions).

Drawbacks

Watson has been primarly designed for unstructured content: “Watson’s cur-
rent ability to effectively use curated databases to simply ‘look up’ the answers
is limited to fewer than 2 percent of the clues”.

2.9 Challenges

According to Hearst [33], challenges of modern NL interfaces to structured data
are twofold:

• speech input (dialog-like interaction: Siri). This means that the future
systems must be able to understand ill-formed sentences and mispelled
words.

• social search (collaboration, asking people, crowdsourcing). This could
also comprise systems that broadcast the question to other systems that
are expert in some fields, and then aggregate respective answers.

The next generation of interfaces will not focus on the user (personalized
systems) but on non-textual information through non-textual input [33]. A
promising research direction is thus to analyze non-textual documents (pic-
tures, videos, voice records, etc.) and try to find clues based on textual (or
non-textual) formulations of any user’s information need.

Going back to BI, nowadays’ challenges are to make business tools more
user-friendly in terms of user experience. In the last few years, the major
challenge was to prevent users from writing structured queries (e.g. in SQL or
MDX). Now, they do not want to spend to much time: 1- learning how to use
their business tools; 2- how to adapt the existing tools to new infrastructures
(e.g. DBMS) or domain. The latter challenge meets the ones of the so-called
gamification domain which is a research area that has become popular in BI.

2.10 Conclusion

We have reviewed most significant systems that belong to NL interfaces. These
systems are however only a tiny subset of all systems that interface structured
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data, or of Q&A systems. For instance, a popular domain of research nowa-
days is the search over structured data on the basis of keywords (instead of
natural language inputs). Besides, we tried to focus on recent systems, since
Androutsopoulos et al. [3] surveyed systems in the mid 90’s.

We proposed a rough taxonomy of approaches, namely classic translation
approaches and iterative translation approaches that are then refined in the fol-
lowing classification of approaches: approaches basing on domain-dependant se-
mantic parsing; approaches performing complex question translation; feedback-
driven approaches; learning-based approaches and schema-unaware approaches.
This classification is motivated by the various methods employed by the sys-
tems of these different classes. Early years of NL interfaces focused on specifics
of some DBMS in order to generate valid database queries. Later on, while
standards in database query languages (e.g. SQL) have appeared, the focus
was more on increasing the linguistic coverage of the respective systems. Then,
in parallel with the success of semantic technologies, the need has appeared to
interface various databases of possibly different domains: the respective sys-
tems are not aware anymore on how data have been modeled, and what are the
terms in use in the particular domain. This knowledge has then to be learnt
automatically.

A learning from this survey, is that the performance of most systems (or
maybe of all of them) rely on the performances of underlying tasks, namely
natural language tasks (e.g. entity recognition, identification of frames, etc.)
which still focus much researchers’ attention.

Challenges for future natural language interfaces are even more natural in-
terfaces, such as speech-to-text features (users won’t have to type their queries
anymore in the near future) as well as the role of communities (in particular
crowdsourcing which is already very popular among the Q&A community).

In the next three chapters (chapter 3 on page 57, chapter 4 on page 75 and
chapter 5 on page 97) we will present our contribution to the state of the art
as a proposal for a system interfacing data warehouses in the context of BI.
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Previous chapter concludes on challenging systems, that they should not
only offer personalized results, but also non-textual pieces of information on the
basis of not-well formed queries, or even on the basis of non-textual formulation
of an information need. To this end, we present a personalized Q&A system
that leverages queries expressed in NL or keywords, and offers results in the
form of charts or tables of values. This system has been entirely implemented,
and details are provided in this chapter.

The notion of context of a given entity is defined by a set of entities that
interact with this entity. Thus, the context of a user is defined by its envi-
ronment – the application she is using, the documents she creates, the search
that she performs, etc. It must also take into account her social network, or
other users who have a common interest or goal which can be measured by
some distance metrics. These notions are further detailed in [65] through an
application to auto-completion of BI queries. The personalization process that
is presented in this work takes into account not only characteristics about the
user – her profile – but also so-called preferences, which are used basically to
filter and disambiguate the vast amount of potential resources of interest for
the current user.

57
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This chapter is organized as follows: first, we present the Q&A framework
itself, its architecture and how personalized results are rendered. Secondly,
we detail the extensibility of the framework from the point of view of a sys-
tem administrator who would like to extends its current capabilities. Thirdly,
we elaborate on performance considerations and more specifically on the mul-
tithreaded implementation of the framework described in this chapter. Last
but not least, we detail how we have integrated the notion of context intro-
duced above in our system, and provide as an example further insight on usage
statistics.
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3.1 Q&A Framework

As pointed out in the state of the art in chapter 2 on page 15, a limitation
of many historic Q&A systems is that they are tailored to specific domains
and sometimes datasets. Our proposal is a framework with standard linguistic
features1 that can be efficiently extended to specific domain applications.

The general architecture of the system is represented on figure 3.1 on the
facing page. The upper ribbon corresponds to the different available front-ends.
Currently, two front-ends have been implemented:

• a desktop application which is available as an HTML 5 application

• and an iPhone™/iPad™ native application

The interested reader will find screenshots of the application Appendix D on
page 147. The second horizontal ribbon (entitled ‘Answering System’ on fig-
ure 3.1 on the facing page) corresponds to the main processing of the query
(sent by front-ends applications) to underlying search engines. The lower rib-
bon corresponds to the different search engines involved for retrieving answers
from different data sources integrated to the system.

3.1.1 Authentification

We have identified three security requirements in corporate environments that
we consider in our proposal:

• users authenticate to the platform, possibly using a single-sign-on tech-
nology

• each user accesses a different subgraph of the data model; and usually
cannot access the entire schema

• the token given to the user for authentification purposes is associated to a
timeout; in which case user must authenticate again in case of inactivity

Authenticating on the platform consists in filling the pair ‘user name/pass-
word’ that must be specified on the front-end. Users who want to get person-
alized results must log on the system. Not-authenticated users can however
benefit from generic results, when the underlying plug-ins do not explicitely
require users to be authenticated. Thus, some search results are common to all
users while some are specific to authenticated users (according to their profile
and/or situation as detailed later).

Social network of users

Users have properties that are of interest for offering accurate personalized
results. Such properties can be for instance their job title, their work location
(country and city), their branch etc. For example, users of a search client on
a mobile device (e.g. iPhone™) provide queries of minimum length, but expect
it to be augmented with contextual information, like their geo-location from
which the city they live in can be inferred. These information can be provided
by corporate directory services, for instance via the LDAP2 exchange format.

1We will define these features in chapter 4 on page 75.
2Lightweight Directory Acess Protocol
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Users are commonly represented in a graph called social network, where
nodes represent users and edges the relationships that they share. These rele-
tionships can be either hierarchical (for instance the ‘reports-to’ relationship)
or not (like ‘has-business-contact’). Figure 3.2 provides a snapshot of a social
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network of some corporate users. This kind of representation allows to compute
easily distance metrics between users. Examples of these kinds of metrics will
be given in section 6.3 on page 131 in the context of auto-completion.

Integration of corporate single-sign-on technologies

In corporate settings, single sign-on is a technology that monitors access control
to independant software systems (i.e. applications) that users are allowed to
access. The two major properties of this technology are:

• users have to log in once, and are not asked again for their credentials
when accessing other applications that belong to the corporate network

• when users log off from any application, they are logged off from all
applications that use single sign-on
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The front-end applications that have been developped in the context of this
work use single sign-on. This ensures that any corporate user has access to
the Q&A system, and is able to experiment it and eventually provide usefull
feedback.

3.1.2 Search & prediction services

The search app component (see figure 3.3) is responsible for sending users’ re-
quests to the back-end system, and feedback to the user (e.g. error codes and
messages). As displayed on the figure, the front-end tools send information
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Figure 3.3 – HTTP/REST communication between the back-end and front-end sys-
tems

about context (e.g. which kind of device is being used, the geo-location of the
user, etc.). The front-end application displays some of the error messages that
are caught in the back-end or front-end system. The prediction service intro-
duced here aims at providing auto-completion of users’ queries (e.g. propose
‘revenue’ when user has typed ‘re’). The prediction mechanism that we have
implemented in this context is detailed section 6.3 on page 131 and in [65].

Users’ questions

Users’ questions are expressed in NL. We decided not to restrict the way users
formulate queries (i.e. the syntax of valid queries), because we assume that the
linguistic coverage of the system will improve over time, based on query logs
that will be collected by system administrators and possibly thanks to machine
learning techniques (on-going work).

Speech-to-text

The mobile front-end applications (iPhone™ and iPad™) are composed of a
speech-to-text component. Currently, the system supports three european lan-
guages (English, German and French) and we do expect even more in a near
future. These applications have been implemented in the context of the project
‘Search360’ at SAP Research.
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3.1.3 Answering system

This section describes the main component of the Q&A framework. It aims at
analyzing and processing users’ input in order to retrieve pieces of information
of interest. Figure 3.4 depicts the architecture of the core answering system.
It is composed of two services: user context service and search service. The
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Figure 3.4 – Architecture of the answering system

former service provides information about the user (i.e. information about her
profile, properties about which front-end application she is currently using,
which device has been used, etc.). These information can then be directly
accessed by search plugins, to offer personalized results. The latter service is
triggered by search requests initiated by front-end applications.

Question analysis, as well as results retrieved by search engines (see sec-
tion 3.1.4 on page 67) are stored in two data structures: query graph and
answer graph. Both query tree and answer tree are graph structures. The
query graph, in particular, can be compared to a parse tree in Q&A systems.

In the next section, we further introduce the parse tree, and present the
different plugins involved in providing annotations to this graph structure.

Parse tree & plugins

In Q&A systems, the parse tree is a graph structure that stores linguistic
information about user’s question (e.g. part-of-speech tags, words stems, . . . ).
Here, we use the term ‘query graph’ since it’s less generic and targets the
generation of structured queries (e.g. MDX or SQL). The query graph is a
common tree data structure for storing annotations, i.e. information resulting
from the analysis of users’ questions. The annotations are created by different
annotators called query plugins. We present below different query plugins that
have been implemented.

To support more sophisticated queries (e.g. range queries or queries with
orderings) and go beyond keyword-like questions, we have to allow adminsitra-
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tors to define custom vocabulary (such as ‘middle-agged’) and more complex
linguistic patterns, where ‘top 5’ is a simple example. Such artifacts may ex-
port variables, such as the beginning and end of the age range in the case of
‘middle agged’ or the number of objects to be shown to the user in the case of
‘top 5’. We will discuss further our solution for defining linguistic patterns in
chapter 4 on page 75.

Information Extraction plugins These plugins are named ‘Query plug-
ins’ on figure 3.4 on the facing page. These plugins are the first ones in the
pipeline that analyze the user’s question by applying information extraction
components. These components contribute to a common data structure, the
so-called query tree. By default, the system is equipped with three types of in-
formation extraction plugins that can be instantiated for different data sources
or configurations:

• plugins for matching artifacts of the data source’s metadata within the
query

• plugins for recognizing data values (directly executed inside the underly-
ing database)

• plugins for applying natural language patterns (e.g. for range queries)

These plugins jointly capture lower-level semantic information to interpret a
user’s question that can be interpreted in the context of the data warehouse
metadata in subsequent processing steps.

These basic plugins are are part of the framework (by default). They are
intended to be general-purpose query annotators for standard entities (in the
sense of named entities). These entities can be of different type (see basic
examples of such entities in table 3.1). We use a standard information extrac-

Entity type Example
numeric 123
date June, 1st 2012
country Germany

Table 3.1 – Examples of named entity types used by the basic query plugin

tion system (SAP BusinessObjects Text Analysis™, a succesor of the system
presented in [35]) with a custom scoring function. As scoring function for eval-
uating individual matches we adapted the scoring that was presented in [9]. In
a nutshell, it combines TF-IDF3-like metrics with Levenshtein4 and punishes
in addition matches where the length of a term in the metadata is much longer
than the string occuring in the users’ question. A threshold on the score limits
the number of matches that are considered for further processing.

We discuss in section 3.2 on page 68 how the standard query plugin can be
efficiently configured for application-specific settings.

3Term Frequency-Inverse Document Frequency, see http://fr.wikipedia.org/wiki/TF-
IDF.

4See http://en.wikipedia.org/wiki/Levenshtein_distance.
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1. Data schema query plugin The data schema query plugin annotates
words and phrases that correspond to entities belonging to the data schema
of a data warehouse. These entities are indexed in a dictionary (or lexicon)
in an efficient way, and are compiled by the Named entity recognizer (NER)
such that they can be efficiently recognized at query time. This process (in-
dexing and named entity compilation) is performed when the system starts-up
and when a change in the data schema is observed. Besides, it is possible to
specify variants for entities being recognized and to define confidence metrics
for each entity from the query input. These confidence values are computed
by default with the distance mentioned above, but it is still possible to define
custom confidence values before compiling the dictionary. An example that
demonstrates the importance of such metrics and that shows how we use these
metrics is presented in section 4.3.1 on page 88.

2. Natural language query plugin This component annotates expressions
(which are language-specific) in users’ questions. The created annotations are
supposed to be independant from the application domain, but can be configured
for a specific application. In particular, it is well-known that various expressions
refer to the same meaning (and also that the same expression can be interpreted
differently based on the context where it appears). For example, the expression
“best country” is interpreted (in BI applications) as the selection of the first
member of the dimension “Country”, where members are ordered basing on a
measure (which can be explicit in the query). Table 3.1 on the preceding page
lists some examples of expressions grouped by a type called feature.

Feature Example

top-k “best country”
“2 least cities selling x”

range
“between x and y”
“more than x”
“before January”

Table 3.2 – Examples of NL features that are annotated

The actual implementation of this plugin is not described here, but further
described in section 4.2.3 on page 79.

3. Background knowledge query plugin The system is composed of a
background knowledge base intended to be domain-independant, which can be
configured and specialized for the specific applications. As an example, knowing
the data type of dimensions is much important when rendering charts, and this
kind of knowledge can be easily stored in the knowledge base. Figure 3.5 on
the facing page is an example of chart5 that has been rendered without any
knowledge about data type of the main dimension (i.e. ‘Invoice date’). Indeed,
the x-axis is a time dimension (dimension ‘Invoice date’). In that case, the
convention is to order the members along this dimension (while in general, for
non time or numeric related dimensions the order is based on the values of the
plotted measure, like in this example).

5Charts rendered in the system are further described in section 3.1.3 on page 66.
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Figure 3.5 – Example of chart rendered without any knowledge on dimensions’ data
types

Interpreting the semantics of dimensions is however not obvious. In general,
in the case of dates, there are many different time formatting templates (e.g.
YYYY-MM-dd or YYYY, dd MM). Depending on which template has been adopted,
the order of members on the axis would be different. Similarly, there is no single
way to refer to members. For instance, the values of the dimension ‘Quarter’
might be in the form ‘Qx’ (e.g. ‘Q1’, ‘Q2’, . . . ) or of the form ‘x’ (e.g. ‘1’, ‘2’,
. . . ). The BI community6 has established some guidelines or good practices
for rendering charts. In our experiments (see chapter 6 on page 119 ), we have
observed following guidelines in order of importance:

1. the chart type should represent the desired analysis type (e.g. a pie
chart is preferred for analyzing contributions while bar charts are better
for comparing them). The notion of chart preferrence will be defined
section 5.2.3 on page 107 .

2. time-related dimensions should be on the x-axis or in the legend area
(but never on the y-axis). Besides, series should be ordered based on
time order (and not based on the values of the plotted measure).

3. when a legend is required (e.g. when there are more dimensions than
the chosen chart type can render), the number of members of the series
appearing in the legend should be as small as possible

The similar problem arises for geographic data. Indeed, in that case it is
better to represent measures’ values on a geo-map (representing the values of

6UK national statistics department has published some of these guidelines at http://
www.neighbourhood.statistics.gov.uk.
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the geographic dimension) instead of ordering geographic members basing on
their lexico-graphic order.

Nevertheless, a standard form of the dataset must be used in order to
compare results. In our work, this standard form is defined as follows:

• measures are ordered given the lexico-graphic order

• dimensions are ordered given the same order

• dimensions’ values are ordered given the lexico-graphic order of their
members, regardless of the data type of the corresponding dimension (as
the chart displayed figure 3.5 on the preceding page)

Answer tree

The answer tree is a graph data structure that contains different answers of
different types corresponding to the input question. The answer types that we
consider are enumerated below.

Charts A chart is a chosen visualization for a given dataset. It aims at better
describing the data, emphasizing graphically areas of interest in the data. The
same dataset can be rendered in different ways (e.g. as a bar chart, a pie chart,
etc.).

Figure 3.6 on the next page represents two ways of representing graphicaly
the same dataset. The first visualization (a) is a bar chart while the second
one (b) is a pie chart.

Tables Tables are a flat representation of the dataset. In BI, it often takes
the form of a subset or of an aggregation of (a) fact table(s). For instance, the

Fact Title Sales
f1 Pacific Sales Manager 383200$
f2 European Sales Manager 1124400$
f3 North American Sales Manager 1660050$

Table 3.3 – Facts answering the question “Sales target per department in 2001”

facts represented in table 3.3 correspond to the dataset which visualization is
depicted on figure 3.6 on the next page. In this example, data come from a
relational database, and the real attribute and table names have been renamed
to the dimension and measure names used in the domain application.

A table can also be a cross-table, in which case the first column corresponds
to a dimension (like the dimension “Title” in Table 3.3). We have reproduced
an example of such a cross-table table D.1 on page 148 .

Web results Web results are pieces of Web pages that should be relevant
with respect to users’ queries. Web results can be:

• unstructured documents (raw text)

• semi-structured content (e.g. Wikipedia pages)
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Figure 3.6 – Two visualization types corresponding to the same dataset

• structured content (e.g. Freebase, WolramAlpha, . . . )

Searching for documents on the Web and offering relevant documents or pieces
of documents is a challenging task, merely because of the large amount of
available resources. Intuitively, users’ queries should be modified based on
trusted information (coming from the different knowledge bases bound to the
system). This seems to promise more accurate and personalized results than
querying the different Web services with users’ inputs. The corresponding
component is part of the system and has been implemented, but is not of the
scope of this thesis. Therefore we do not focus on it, and its implementation
is not further described there.

3.1.4 Search engines

Search plugins operate from annotations held by the query tree and generated
by the different information extraction plugins. Search plugins intend to ex-
ecute queries on back-end systems, which could be indeed traditional search
engines in the context of the federated search. They use recognized semantics
from the query tree and formulate arbitrary types of queries. In the case of a
traditional search engine, a plugin might take the users’ question, rewrite the
question using the recognized semantics to achieve higher recall or precision.
However, for Q&A we define an abstract implementation of a plugin that is



68 CHAPTER 3. PERSONALIZED AND CONTEXTUAL Q&A

equipped with algorithms to transform the semantics captured in the query
tree to a structured query.

The output of a search plugin is a stream of objects representing a well-
structured result together with its metadata (e.g. consisting of the datasource
that was used to retrieve the object or a score computed inside the plugin).

Search engines are components that actually retrieve documents or pieces
of documents from a corporate repository or a public data source (i.e. the
Web). Figure 3.7 is an illustration of different search engines used by default.
Components with dotted lines are examples of new component that can be
implemented in addition but that are not necessary at the time.

Search engines

Semantic
Layer (BOE)�� ���� ��

Web Search
(Google, Yahoo,
Bing, Freebase,
Wolfram Alpha)

Database
(NewDB)�� ��DB Tables

Application

Search
API�� ��Data

. . .

�� ��WWW Content

Universes

Databases

bR
H

Figure 3.7 – Search engines implemented as plug-ins

In our work, we focus on the second component entitled ‘Content server’
which is a corporate document repository. It contains data schemas of data
warehouses (called universes in the implementation of the BI system that we
use) from which we generate database queries. The mapping from the query
tree (see section 3.1.3 on page 62) to answers (stored in a structure called
answer tree) is performed through patterns which will be defined in chapter 4
on page 75 . These patterns capture the semantics of users’ questions, and
generate database queries accordingly.

3.2 Extensibility of the framework

The system is configured and set up for standard settings, but can be configured
for improving its overall performance in different environments. We present
first how to implement new plugins in the framework in section 3.2.1. Then,
we describe how to configure the linguistic resources that are part of the system
in section 3.2.2 on the facing page.

3.2.1 Implementing new plugins

The plugins that have been introduced so far (see section 3.1 on page 59) can
be specialized for application-specific settings. Besides, additional plugins can
be easily implemented. In this section, we provide information on how such
extensions can be made.
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Query plugins

Query plugins annotate the query tree. Any such plugin must implement the
interface reproduced on Listing 3.1

1 IParsingQueryPlugin {
2 public void annotate(
3 QueryTree queryTree , SessionContext sessionContext );
4 }

Listing 3.1 – Interface of any query plugin

As shown above, the method annotate takes as argument sessionContext
that corresponds to available contextual information about the user.

Search plugins

As introduced above, search plugins take as input not only users’ tokenized
question, but the graph structure where the question has already been analyzed
(see listing 3.2).

1 ISearchEnginePlugin {
2 public ResultIterator search(
3 QueryTree queryTree ,
4 SessionContext sessionContext );
5 }

Listing 3.2 – Interface of any search plugin

As reproduced on the listing, the only required method is the search method
which takes as argument the query tree and the session context of the user
currently logged on (sessionContext).

Answer plugin

Answer plugins are responsible for rendering answers and results. As repro-
duced in listing 3.3, these kinds of plugins consist in augmenting an existing
answer with an ordered set of visualizations corresponding to a result.

1 IAnswerPlugin {
2 public void augmentAnswer(Answer answer ,
3 SessionContext sessionContext ,
4 QueryTree queryTree );
5 }

Listing 3.3 – Interface of any answer plugin

3.2.2 Configuration of linguistic resources

Query plugins (see section 3.2.1) use lexicons and other linguistic resources
to annotate users’ questions. The system is composed of following linguistic
resources:

• lexicons of the data schema

• domain-independant knowledge base

• parsing rules for natural language features
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• contextual user model

We describe below how to configure the different resources below.

Configuration of the lexicons

Lexicons of the data warehouse schema are generated automatically. They are
generated and indexed again when there are changes in the data models (this is
checked when the system starts up). The location of the different data models
is specified in a configuration file.

Configuration of domain-independant knowledge bases

The domain-independant knowledge base is composed of time and geographic
knowledge. It is currently used to interpret semantically dimensions and dimen-
sions’ values of geographic and time-related type as pointed out section 3.1.3 on
page 62. The domain-independant knowledge base is a triple repository (RDF)
which statements must comply an RDF schema, which can be personalized
(with new classes, attributes and predicates).

Natural language features

NL features (see section 4.2.3 on page 79 ) are defined as custom regular ex-
pressions which export property pairs. New parsing rules can be easily added
to the system, and the syntax depends on the tools used for entity recogni-
tion. Custom features (or patterns, see section 3.1.3 on page 62 for a short
description) are simply declared in the feature definition file.

1 feature:topk_feature rdf:type feature:GGUL_Feature ;
2 rdfs:label "top␣k" ;
3 query:generatesAnnotationsOfType query:TokKAnnotation ;
4 feature:cgulExpression
5 "#group␣topk{<top >|[OD␣number ]<[0-9]+>[/OD]"
6 ^^xsd:string .

Listing 3.4 – NL feature definition

The mechanism for NL pattern is very powerful. It is used to implement
custom functionalities (e.g. range queries, top-k queries or custom vocabulary
such as shown for “middle-agged” (see figure 4.1 on page 78) that goes beyond
keyword-matching. As explained in the previous section, natural language
patterns are configured using RDF (see listing 3.4 for an example). Mandatory
properties are:

• rdf:type: the kind of feature being defined. When defining new NL
features, the object should always be feature:CGUL_Feature

• rdfs:label: the name given to the feature. There is no requirement of
uniqueness

• feature:cgulExpession: the expression to be matched by the rule. This
expression must be of type xsd:string, and the syntax depends on the
NER software being used (see below)

The three main parts of a natural language patterns are:
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1. Extraction Rules: The basis for natural language patterns are
extraction rules. In our case we use the CGUL rule language7, which
can be executed using SAP BusinessObjects Text Analysis™. It bases
similarly as CPSL [4] or JAPE [13] on the idea of cascading finite-state
grammars meaning that extraction rules can be built in a cascading way.
Thus any other rule engine can be used for this purpose. We make heavy
use of built-in primitives for part-of-speech tagging, regular expressions
and the option to define and export variables (e.g. the ‘5’ in ‘top 5’).
Note, that a rule might simply consist of a token or a phrase list, e.g.
containing ‘middle-aged’.

2. Transformation Scripts: Once a rule fired, exported variables may
require some post-processing, e.g. to transform ‘15,000’ or ‘15k’ into
‘15000’, an expression that can be used within a structured query. In
many cases there is also the need to compute additional variables. The
most simple case for such functionality is to output beginning and
ending of the age range defined by a term such as ‘middle-agged’. To do
additional computations and transformations, we allow to embed scripts
inside a natural language pattern, which can consume output variables
of the extraction rule and can define new variables as needed.

3. Referenced Resources: A rule is often specific for a resource in some
metadata graph. For instance in figure 4.2 on page 81 the pattern for
AgeTerms applies only to the dimension ‘Age’, the ‘Context’ pattern only
to nodes within the user profile and other patterns apply only to certain
data types (e.g. patterns for ranges to numerical dimension values) –
which are also represented as nodes. In order to restrict the domain of
patterns, we allow to specify referenced resources.

Configuration of contextual user model

There is not a single way of modeling users’ context in corporate environments:
many information about the authenticated user on the network are usually
stored in a LDAP8 system, but each application usually adds profile attributes
that are not shared accross various applications.

In the answering system, we provide a basic profile model, where users
are automatically logged on on the basis of the network authentification (see
section 3.1.1 on page 59). Our model of users is currently composed of profile
information, such as surname, last name, job title, location, etc. This can
be configured in order to add new attributes and relations. We base on the
corporate social network system that has been described in [63], which provides
a so-called social provider which is loaded when the system starts up. In this
system, the social network is represented as a graph (see figure 3.2 on page 60).
Each user of the system is then associated to a node in the graph (userNode),

7http://help.sap.com/businessobject/product_guides/boexir4/en/sbo401_ds_tdp_
ext_cust_en.pdf

8Lightweight Directory Access Protocol, see http://en.wikipedia.org/wiki/
Lightweight_Directory_Access_Protocol.
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and further configuration can be provided monitoring what attributes shall be
loaded in the graph.

3.3 Multithreading and performance considerations
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Figure 3.8 – Average overall processing time depending on the number of threads
being executed in parallel

The first implementation of the system described so far suffered from the
lack of parallel algorithms, and therefore its performance was not satisfactory.
We have reported on figure 3.8 the mean execution time (for the same set of
queries) for different number of parallel threads. Performance tests have been
lead on a 64-bit operating system with 8Gb RAM memory and Intel Core2
Duo processor. The second series (see legend “without timeout”) corresponds
to the results of a subset of queries only (the ones that do not generate a
timeout signal). Indeed, the timeout is sent by the back-end system in order
to prevent the system from being stucked for queries which execution takes too
long. Parallel programming does not improve processing time for those queries.
As expected, it seems that we gain in performance when increasing the number
of cores. The overall processing time remains important, mainly because of the
chart generation process which optimization was not the purpose of our work.

We have introduced parallel algorithms in the following components of the
answering framework:

• pattern execution

• (object) query generation

• (database) query generation

• query execution
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The interested reader will refer to appendix E on page 151 for more informa-
tion on the actual implementation of the component responsible for pattern
execution.

3.4 Conclusion

3.4.1 Summary & discussion

We have presented the architecture of the answering framework. It behaves as
a corporate system, where users are well identified on the network, and have
profiles of two kinds (shared properties that can be reached from any corporate
application, and private properties specific to each application). End-users ac-
cess the system through the HTTP protocol. So far, three front-end applications
have been implemented: a desktop application (in HTML 5), an iPhone and
iPad applications (these front-ends will be introduced in chapter 6 on page 119).
Information about users (“User Context”), data models of the data warehouses
and various domain- and language-specific configurations are aggregated in a
graph structure. Then query plugins operate on this graph, and the output
(answer graphs) are then processed by search engines to render results (e.g.
to execute SQL or MDX queries and to render corresponding charts). In ad-
dition, the framework is extensible. Configuration can be easily performed to
take into account new domains (the system interfaces several data warehouses)
and/or new languages. Configuring additional query plugins is the right way
to go in the scope of context-aware applications. Indeed other coporate appli-
cations provide meaningful information in some cases, and the system would
thus provide more personalized results. Search plugins would be used for in-
stance to support additional stuctured query languages (in addition to SQL
or MDX), like SparQL. In chapter 6 on page 119 dedicated to experiments
and evaluation, we will show how easy is the configuration of the system for
additional domains. Moreover, we have implemented the system using parallel
algorithms, which has improved a lot the performances of the system.

Compared to state-of-the-art systems in the BI domain (e.g. Soda [8]),
we provide more personalized results because the framework takes also into
consideration contextual information (from the “user context” component). In
addition, the processing pipeline of our system is similar to some extent to some
recent systems, like [67]. However, our system is not yet perfect, and we suggest
several directions to improve it. First, the execution time of the system can be
reduced, even if we have investigated parallel algorithms to make it optimal.
Currently, new questions (i.e. questions that have never been asked before) are
being answered in a few seconds. We believe that this is due to the call to some
native libraries (the NER), plus the fact that the constraint mapping engine
(Jena executing SparQL over RDF) is not optmized. A solution would be to
re-implement the constraint mapping algorithms in such a way that it would
be executed in-memory.

3.4.2 Organization of the next chapters

In chapter 4 on page 75 we detail the technique used to translate NL queries in
database queries, i.e. patterns. Then, we present the conceptual query model
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that is used in our system to represent multidimensional queries in chapter 5 on
page 97. The overall answering system is evaluated in chapter 6 on page 119.
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Linguistic patterns are widely used in Information Extraction (IE) and In-
formation Retrieval (IR). In IE, patterns are used in unstructured documents
(text corpora, Web documents) to extract information basing on the structure
(syntactic information) and on the terms (lexical information) identified in the
text. More generally, the idea is that the same piece of information can be ex-
pressed in various ways, and that a pattern (i.e. a set of constraints) captures
the common characteristics of those different expressions of the same idea. This
is depicted in table 4.1 on the next page. The strong assumption there is that
given a sentence, it is possible to find a set of constraints that can define the
meaning of the sentence, or the information that a user is looking for. It is
obviously not true in general, because there is not a single interpretation of NL
sentence inputs, but constraints in the patterns help in limiting the ambiguity
of the textual input.

75
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Question Entities
Sales revenue per year (Sales revenue) [Year]
Revenue over years (Sales revenue) [Year]
Sales results per FY (Sales revenue) [Year]

Table 4.1 – The same idea can be represented in different ways. The second column
expresses constraints that are satisfied by all questions from the first
column

4.1 Linguistic patterns in IR

A pattern (or part of it) is usually defined and associated with the notion
of syntactic axis. Indeed, pattern in this field can be reffered to as lexico-
syntactic patterns (terms and syntax) or morpho-synatactic patterns (terms
and their categories plus syntax). Despite the fact that they are extensively
used, there are very few comments on the definition of such patterns. They have
been defined in the linguistic theory [32] as “a schematic representation like a
mathematical formula using terms or symbols to indicate categories that can
be filled by specific morphemes”. Patterns used by Sneiders [59] are regular
strings of characters where sets of successive tokens are replaced by entity
slots (to be filled by corresponding terms in the actual textual document).
This means that a pattern in this sense is an extension of regular expressions
(where patterns from the regular expression are slots that may be of various
type in linguistic patterns). An innovation in [60] is the definition of a pattern
being composed of two subpatterns: one required pattern (regular patterns) and
one forbidden pattern, that corresponds to pattern that must not match the
message. Finkelstein-Landau et Morin [18] formally define morpho-syntactic
patterns related to their IE task: they aim at extracting semantic relationships
from textual documents. A pattern A can be decomposed as:

A = A1 . . .Ai . . .Aj . . .An (4.1)

In this formula, Ak k ∈ [1, n] denotes an item of the pattern A which is a part
of a text (without any a priori constraint on the sentence boundaries). An
item is defined as an ordered set of tokens composing words1. In this approach
the syntactic isomorphy hypothesis is adopted. Let B = B1 . . .Bi . . .Bj . . .Bn

be a pattern. This hypothesis states the following assertion [40]:

∃(i, j)
A ∼ B

win(A1, . . . ,Ai−1) = win(B1, . . . ,Bj−1)
win(Ai+1, . . . ,An) = win(Bj+1, . . . ,Bn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ô⇒ Ai ∼ Bj (4.2)

which means that if two patterns A and B are equivalent (they denote the same
string of characters), and if it is possible to split both patterns in identical
windows composed of the same tokens (when applied to string of characters),
then the remaining items of both patterns (i.e. Ai and Bj) share the same
syntactic function.

1Delimiting tokens is not an easy task in any language, since a word might be composed
of several tokens, and in some languages words boundaries are not obvious.
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The introduction of windows in the definition of patterns imposes their
components to be ordered given the syntactic order (for instance left to right
in English). The kind of patterns presented here has become very popular, in
particular among the SW community, for instance through Ontology Design
Patterns2, which is a platform meant to define classes of patterns widely used
in IE.

In the following, we adopt an other formalism, where the syntactic iso-
morphy is not kept, i.e. the expected characteristics (or features) from the
patterns do not have to be ordered along the syntactic axis in the sentence (or
the question) matched by the pattern.

4.2 Patterns for structured information

Patterns for structured content consist of structures that define a mapping
between text and a data structure (like a database). In our proposal, we relax
the syntactic constraint3 and wanted to have any kind of features to appear in
the pattern. This mapping is performed in several tasks:

• declaring the constraints that must be satisfied for the pattern to match
the question

• defining which part of the question must be exported according to the
constraint defined in the previous step

• defining what to recompute from the exported information in the question

• defining the actual mapping from the exported information to the data
structure

We will detail these tasks in the following.

4.2.1 Running example

In the following, we will consider as an example the following user’s query:

“Top 5 middle-aged customers in my city” (4.3)

which is also depicted figure 4.1 on the following page.

Question

Let Q = {q1, . . . qn} be a user’s question and qi i ∈ [0, n] tokens of the question.
For example, the question (4.3) can be represented as follows:

Q = {‘Top’, ‘5’, ‘middle-aged’, ‘customers’, ‘in’, ‘my’, ‘city’} (4.4)

Note that the word ‘middle-aged’ can also be decomposed in two words (i.e.
{‘middle’, ‘age’} ⊂ Q′). In the following, we use the term query to denote a
database query and the term question to denote a user’s query.

2See http://ontologydesignpatterns.org/wiki/Main_Page.
3The usefullness of this approach is also motivated by our iPhone™ application, where

the generated question is more a keyword query rather than a well-formed NL question.
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top 5

top-k

middle-aged

custom rule

customers

dimension

in my city

context

top

[order]

5

[nb]

customer

[dimension]

?1

[measure]

order & truncation

customer

[dimension]

?1

[measure]

basic query

city

[dimension]

Palo Alto

[value]

value filter
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[dimension]

20
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30

[end]

range filter

Legend: [nb]: nb of items
[?1]: unknown artifact

(a) Running example of question with annotations. The custom rule corresponds to
the feature f5.

1 SELECT
2 sum(Invoice_Line."DAYS"
3 * Invoice_Line."NB_GUESTS"
4 * Service."PRICE") AS revenue ,
5 Customer."LAST_NAME" AS customer
6 FROM City
7 INNER JOIN Customer
8 ON (City."CITY_ID"=Customer."CITY_ID")
9 INNER JOIN Sales

10 ON (Sales."CUST_ID"=Customer."CUST_ID")
11 INNER JOIN Invoice_Line
12 ON (Invoice_Line."INV_ID"=Sales."INV_ID")
13 INNER JOIN Service
14 ON (Invoice_Line."SERVICE_ID"=Service."SERVICE_ID")
15 WHERE
16 city = ’Palo␣Alto’ AND
17 age >= 20 AND
18 age <= 30
19 GROUP BY
20 customer
21 ORDER BY revenue
22 LIMIT 5

(b) Example SQL query that was generated from the above user’s ques-
tion

Figure 4.1 – Translating a user’s question into a structured query. NL patterns,
constraints given by the data and metadata of the data warehouse
(see figure 1.4 on page 6) have been applied to infer query semantics.
This was mapped to a logical, multi-dimensional query, which in turn
was translated to SQL. Note that the ‘revenue’ represents a proposed
measure, depicted as ‘?1’ in figure 4.1a. The computation of the mea-
sure ‘revenue’ and the join paths are configured in the metadata of the
warehouse.
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4.2.2 Users’ graphs and annotations

The different information held by questions’ annotations as well as additional
information about users (e.g. contextual information) are stored in a graph
repository. The framework incorporates a situation manager described in [63].
This framework is used to capture and monitore different kinds of events of
context-aware corporate applications. A use-case of the framework is the mod-
eling of the situation of users. This modeling was initially used for offering
personalized recommendations. An other use-case that we propose is to pro-
vide personalized search results. The situation framework brings a so-called
graph repository. Every user can access a set of personalized graphs stored in
this repository. The graphs are created by providers that decide who is allowed
to access what information. We have implemented one provider for each origin
of annotations. For instance, all annotations corresponding do data warehouse
entities come from a graph (in the graph repository) that has been generated
by a specific provider, the one dedicated to data models. At run-time, all
graphs belonging to the user (i.e. containing information about the user only,
and information that user is allowed to see) are used together with the parse
graph (see above), and used as a model (in the sense of RDF) when execut-
ing patterns. In nutshell, the graph of the parse graph contains annotation
about the user’s query, and the other graphs (i.e. the graphs coming from
the user’s graph repository) define all entities that have been referenced in the
parse graph.

So far, the graph repository is composed of the following graphs:

• the graph composed of textual annotations from the current question (i.e.
the parse graph, see section 4.2.4 on page 82)

• the graph composed of annotations about the physical device being used
and other contextual information like the geo-location of the user

Besides, some user-independant graphs are also part of the repository:

• the graph composed of domain-specific knowledge

• the graph composed of language-dependant linguistic knowledge

The latter graph has been detailed in section 3.2.2 on page 69.
An annotation is defined as a rooted graph which root is the set of tokens

(possibly empty) from the user’s question involved in the annotation. It refers
to a node of type Annotation belonging to set set of personalized graphs. We
note a ∈ A such an annotation and A the space of annotations. Note that
an annotation is not always bound to actual tokens of Q (for instance, the
annotation related to the physical device is not bound to any token from Q).

4.2.3 Feature

A feature fi ∶ Q→ A ∈ F is a mapping from the query to the set of annotations
for the feature i. The set of all annotations given a query Q for the feature i
is given by fi(Q). In the case where no annotation a ∈ fi(Q) is bound to the
query Q, a is independant from Q (but is still user-dependant). The number of
annotations in the query Q for the feature i is given by ∣fi(Q)∣. For example,
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Figure 4.2 – Example of the parse graph generated for the question “Top 5 middle-
aged customers in my city”. The upper-box (‘User Profile’) corresponds
to the feature f8; the box ‘Schema’ to the feature f6. The lower-box
corresponds to a class of features to which feature f5 belongs.

let the first feature be: f1 ∶ t ↦ t, i.e. the id mapping and the second feature
be: f2 ∶ t ↦ t′ where t′ is the base form of t, i.e. the mapping from terms to
their base forms. We have thus:

f1(Q) = id(Q) = Q (4.5)
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and:
f2(Q) = {t′ t ∈ Q} (4.6)

A feature can also map to more complex structures (a tree structure). Let f3
be the range feature and f4 be the top-k feature. An illustration of the latter
feature was given figure 4.1 on page 78. The range feature (i.e. feature f3) is a
domain-specific rule (which belongs to the range of custom rules, see figure 4.1a
on page 78) which exports the following information:

• [dimension]: the related dimension

• [begin]: the beginning value of the exported segment of text

• [end]: the ending value of the exported segment of text

The top-k feature (i.e. feature f4) exports:

• [order]: what order will be used (i.e. ascending or descending)

• [nb]: the maximum number of results to be retrieved (i.e. the query
modifier operator LIMIT in MDX)

• [dimension]: the related dimension

• [measure]: the related measure

Note that in the case of the top-k feature, the measure cannot be matched (1?
in figure 4.1 on page 78), in which case a valid measure will be selected as
explained later on. The exported items will then be rewritten or recomputed.
For instance in the case of feature f4, ‘five’ from ‘Top five customers’ can
be rewritten ‘5’ (so that it can be processed by the query generator), and
‘customers’ should be normalized as ‘customer’.

Let F be the set of features considered in a given application. The above
example (4.3) generates ∣F ∣ = 4 feature types and the features summarized in
table 4.2.

Feature Example Ann. count
f1 (id) ‘Top’; ‘5’; ‘middle-aged’;. . . ∣f1(Q)∣ = ∣Q∣ = 7
f2 (base forms) ‘top’; ‘five’; ‘middle’; ‘age’;. . . ∣f2(Q)∣ = 8
f3 (range rule) ∅ ∣f3(Q)∣ = 0
f4 (top-k) “[top] [5] [customers] [?1]” ∣f4(Q)∣ = 1
f5 (custom rule) “middle-aged” ∣f5(Q)∣ = 1

f6 (data model entities) (Sales revenue) ∣f6(Q)∣ = x[Customer]; [City]. . .
f7 (geographic entities) ∅ ∣f7(Q)∣ = 0

f8 (user profile) locale=“US” ∣f8(Q)∣ = ylocation=“Palo Alto”

Table 4.2 – Features and annotations for the example ( 4.3 on page 77)

Note that all annotations do not have to refer to actual tokens in the user’s
question. For instance f7 in table 4.2 is independant from Q. When an annota-
tion actually refers to tokens from Q, it keeps information about which tokens
are involved (via properties like offset and length).
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4.2.4 Parse graph

The parse graph of the query Q can be written:

p(Q) = {f1(Q), . . . , fk(Q)} (4.7)

where fi is the feature i. The parse graph of Q is the set of annotations for all
features. The total number of annotations in the parse graph of Q is given by:

∣p(Q)∣ =
k

∑
i=1

∣fi(Q)∣ (4.8)

The parse graph is implemented as an RDF graph. Each annotation a ∈ fi(Q)
for the query Q are nodes of type Annotation in the RDF graph. The annota-
tions are defined by a set of attributes and predicates (having the annotation
as subject):

• urn:grepo/query-tree#hasAnnotationType defines the type of the an-
notation. Those types are sub-types of the Annotation type. They are
summarized in table 4.3.

• urn:grepo/query-tree#referencesResource defines a reference to an
external resource. For instance, database entities are defined in the data
model of the data warehouse.

• urn:grepo/query-tree#confidence defines the confidence of the anno-
tation, i.e. a score that measures how relevant is the entity with respect
to user’s query. The computation of this score is performed by the named
entity recognition module.

• http://www.w3.org/2000/01/rdf-schema#label defines the label of
the annotation, i.e. the normalized text that carries this annotation.
The normalization process is further described in section 3 on page 57.

• urn:grepo/query-tree#originUri defines the vendor-specific ID of
database entities.

Type Uri
Dimension DimensionAnnotationType
Measure MeasureAnnotationType
Member DimensionValueAnnotationType
NLP feature NlpFeatureAnnotationType

Table 4.3 – Annotation types in the parse graph

Other predicates and attributes are defined in the case of NLP features, for
instance for describing the kind of NLP feature, what item can be exported,
etc.
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Figure 4.3 – Example for parse graph constraints and mapping rules to generate a
structrued query

4.2.5 Pattern

We present an example pattern in the appendix, section A on page 139. A
pattern is the technique used to translate questions in structured queries. It is
defined as a set of possibly optional constraints to be satisfied by the graphs,
plus rules that define how these constraints are translated in structured queries
composed of slots to be filled with actual data. Figure 4.3 is an illustration of a
pattern in two parts. The left-hand side (entitled ‘Where’) represents the set of
constraints that the different graphs must satisfy (i.e. the expected form of the
parse graph). The pattern triggers only if the constraints defined there are sat-
isfied. Some constraints defined here can be optional (as it will be explained in
section 4.2.5 on the following page). The right-hand side (entitled ‘Construct’)
represents the template of the structured query4 that will be generated.

Once the parse graph is created for a particular user’s question, the system
has to ensure domain- and aplication-specific constraints. In addition to con-
straints mentioned on figure 4.1 on page 78 dedicated to BI use-cases, other
apply on how entities occur together in the query, the data types of the rec-
ognized entities or to which other entities they relate to. Another constraint
takes the form of entity recommendation when the user did not include all
necessary information to compute a valid query or to add additional filter for
personalization. We discuss in the following two types of constraints:

1. relational constraints (see section 4.2.5 on the next page) which describe
4Note that the syntax of the generated structured query will be introduced in chapter 5

on page 97.
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situations like the fact that a dimension and a measure should belong to
the same data warehouse

2. property constraints, which filter nodes based on property values (see sec-
tion 4.2.5 on page 86), like the fact that two annotations are overlapping
or close to each other.

Then, we discuss a convenient feature of SparQL to inject additional variables
(see section 4.2.5 on page 86), e.g. to to generate additional values to be used
in the structured query if a certain graph pattern occurs.

Relational Constraints

SparQL queries are essentially graph patterns. Nodes and edges are adressed
by URIs5 or are assigned to variables which are bound to URIs or literals by
the SparQL query processor. This mechanism of expressing graph constraints
and of binding variables eases the configuration of our approach tremendously.
Figure 4.3 on the preceding page is a vizualized example of complex constraints
for selection and mapping rules that are used in our application setting. On
the left-hand side stands an excerpt of the constraints and variables used in our
BI use-case. The markers attached to a node represent in contrast to figure 4.2
on page 80 assigned variables or URIs. URIs are expressed in short form and
do not care a leading question mark. Edges between nodes and literals refer
to rdfs:label if they are not marked otherwise. Dashed lines illustrate that
a particular part of the graph pattern is optional (implemented trough an
OPTIONAL statement in SparQL). Q depicts the user’s question. Below are
annotation nodes and left to them assigned variable names (like ‘?a1’) which
form the parse graph. Other nodes reference metadata graphs (see figure 4.2
on page 80). The nodes like M in figure 4.3 on the previous page represent
resources, while nodes like represent literals, which will be reused later for
query composition. As discussed in next section, we map only literal variables
to the final query model, to separate the input and output model on conceptual
level. Note also that we define much more variables in the real-world use-case,
e.g. to handover data types and scores from the question to the query model,
which we leave out of the examples for sake of brevity. Our example exhibits
constraints for the following situations:

Natural Language Patterns (‘?a1’) The annotation (‘?a1’) addresses the
natural language pattern for the top-k feature (see figure 4.2 on page 80). The
top-k pattern exports the variables ‘number’ and ‘order’, which are bound
to ‘?nb’ and ‘?ord’. This rule might be combined with a rule triggered by
phrases like ‘order by . . . ’ to assign a variable holding the dimension or measure
such that an ordering can be applied. In general, different natural language
patterns can be easily combined using property constraints as explained in next
subsection. Patterns for ranges, custom vocabulary, my-questions etc. are
treated similarly. In particular in situations related to ranges and the mapping
of other data types, we define additional variables for the data type of the of
certain objects (e.g. ‘Date’ or ‘Numeric’) to handle them separately in the final

5Uniform Resource Identifier
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query generation. These attributes eventually influence the serialization of the
structured query.

Data Warehouse Metadata (‘?a2’ and ‘?a3’) The annotations ‘?a2’ and
‘?a3’ refer to a recognized measure and dimension bound via a matches rela-
tionship in figure 4.3 on page 83 and triggered by questions like “revenue per
year”. An arbitrary number of measures and two dimensions are allowed (due
to the requirement of rendering charts). By assigning the nodes for the mea-
sure (‘?m1’) and dimension (‘?d1’) to the same node for the data warehouse
(‘?w’) we ensure that these objects can be used together in a structured query
and lead therefore to a valid query. More precisely we check whether recog-
nized dimensions and measures are linked through a fact table (see figure ??
on page ??). For reuse in the structured query, we assign the labels of the rec-
ognized objects to variables (i.e. ‘?mL1’ for the measure label and ‘?dL1’ for
the dimension label). In some cases the system has to suggest fitting counter-
parts (e.g. compatible dimensions) to not aggregate all facts. In the example in
figure ?? on page ?? we choose ‘?d4’ as dimension if the question contains only
measures and ‘?m2’ as measure if it contains only dimensions. Thus the system
generates multiple interpretations for the user’s question. The SparQL blocks
that contain ‘?d4’ and ‘?m2’ are optional and contain a filter (i.e. a property
constraint as explained later) such that they are only triggered if either ‘?mL1’
or ‘dL1’ are not bound. The label of the recommended measure or dimension is
finally bound to the respective label variable that would otherwise be unbound
(i.e. ‘?mL1’ or ‘dL1’).

Data Warehouse Values (‘?a4’) Instead of the matches relationship, we
use the URI valueOf to assign the dimension value to the corresponding di-
mension (i.e. ‘?d2’). For later reuse, we assign the label of the value’s node
(‘?vL2’), e.g. ‘2009’ for a year, and the dimension value to a variable (‘?dL2’).
In the real-world use-case we consider not only one match situation (like in the
example) but a couple of other situations, where the declarative approach is
very valuable. For instance, we show here only the case where the matched
value does not belong to an already-recognized dimension (i.e. ‘d2’ would be
an additonal dimension in the query). For the situation where the value be-
longs to ‘?d1’ – an already-recognized dimensions – we define another optional
SparQL block which is triggered by the valueOf relationship between the an-
notation and the corresponding dimension. We treat single value matches for
one dimension differently than matches on multiple values that belong to the
same dimension. Our declarative approach eases this, because another set of
constraints can be simply defined with separate variables.

Personalization (‘?a5’) Annotation ‘?a5’ shows the personalization fea-
ture, which applies a filter for a dimension if a corresponding value is part of
the user profile (see ‘my city’ on figure 4.1 on page 78). The constraint captures
following situation: an annotation (‘?a5’) refers to a dimension (‘?d3’) that oc-
cursIn some resource (‘?profileItem’) that has some relationship (‘?rel’) to the
user (‘?user’). From the graph pattern, we consider for later porcessing the
label of the dimension (‘?dL3’) and the label of the user profile that occurs in
this dimension (‘?pItemL’). Note that constraints for personalization (as shown
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in figure 4.3 on page 83) do not refer to the my-pattern (shown in figure 4.2
on page 80) due to space constraints. If the constraints would be applied as
shown here, we would simply test for every matched dimension whether there
is a value mapping to the user profile. These examples highlight the flexibility
of using SparQL graph patterns to manage constraints and variables for query
composition in Q&A systems. Addtitional constraints have to be applied on
property or litteral level. They are detailed in the following sub-section.

Property Constraints

The following details the use of constraints through SparQL FILTER state-
ments considered in addition to graph patterns. They are less important on
conceptual level, but have many practical implications, e.g. to not generate du-
plicated queries or to add further functionality, which cannot be expressed on
graph pattern level. The first obvious additional constraint is to check whether
two annotations matching two distinct dimensions are different:

FILTER(!sameTerm(?a1, ?a2))

It is often crucial to separate objects that matched the same part of the user’s
question into several structured query; this is even more important for dimen-
sion names because they define the aggregation level of the final result. This
kind of constraints can be expressed using the metadata acquired during the
matching process. Assuming that the position of a match inside the question
has been assigned to the variable ?o1 and the offset and length of another an-
notation are assigned to ?o2 and ?l2, the filter for ensuring that the latter one
does not begin within the range of the first annotation can be expressed by:

FILTER(?o2 < ?o1 || ?o2 > (?o1 + ?l2)))

Property constraints are also used for more complicated query generation prob-
lems. It would then apply to dataType:Numeric, be triggered by phrases like
‘between x and y’ and include a script for normalizing numbers. In combi-
nation with matched numeric dimension values, one can define a filter that
tests whether two members where matched inside the matched range phrase
and generate variables defining the beginning and ending of a structured range
query.

Additional Variables

It is often usefull to define default values or to bind additional variables. An
example for a default value would be to limit the size of the query results if it
is not specified by the user. To do so, we add an optional SparQL block that
checks the variable ‘?nb’ and assigns a value if it is unbound using:

BIND(1000 AS ?nb)

There are plenty of other use-cases to inject additional variables, like defining
analysis types (which are part of the not-illustrated metadata that is assigned
to a structured query). These are indicators used to select the best fitting chart
type for a single result. To capture the analysis type, we use certain trigger-
words (see [64]) and additional constraints such as the number of measures and
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dimensions and the cardinality of dimensions. For instance we would select a
pie chart if a single measure and dimensions is mentioned in the question and
the user is interested in a ‘comparison’ (e.g. triggered by the term ‘compare’ or
‘versus’). However, if the cardinality of the dimension (which is maintained in
the metadata graph) would exceed a certain value (e.g. 10), a bar chart would
be a better fit because a pie chart would be difficult to interpret otherwise.

As result of the mapping step, we get an RDF graph containing all potential
interpretations (structured queries) of the user’s question. Since the query
model as such reflects the features of the underlying query language L (e.g.
projections and different types of selections) it is straightforward to serialize
this model to an actual string that can be executed on a data source. The
constraints defined in previous sections ensure on the one hand how to treat
different match situations and on the other hand that the generated queries are
valid. The great advantage of this approach is that complex constraints can be
defined in a declarative way and that they are to some extend separated from
the mapping problem, making the implementation much easier in presence of
complex requirements. The generated structured queries must then be scored
to provide a usefull ranking of results and to define an order according to which
the computed queries are eventually executed.

Application domain

A pattern for Q is a chosen pattern tQ matching the query Q and must satisfy:

tQ ∈ {t t(Q) ≠ ∅} (4.9)

Let T = {tQ1 , . . . , tQn} be the set of patterns used in the context of a domain
application. This demonstrates that the linguistic coverage of the system is
finite (since T is a finite set). ∣T ∣ is thus a simple way of expressing how broad
is the linguistic coverage of the system.

The implementation of the pattern encodes information on how the ranking
should be computed. This ranking relies on a confidence score. This score is
then incorporated in the query graph (defined in the first section) basing on
information defined in the second section (the parse graph). The computation
of this confidence score is presented section 4.3.1 on the next page.

4.2.6 Structured queries

We note B(t,Q) the set of queries generated by pattern t for the question
Q (see the right-hand side of figure 4.3 on page 83 and entitled ‘Construct’).
The set of constraints defined in a pattern matching the query Q is defined as
follows:

t(Q) = {f ′1(Q), . . . , f ′k(Q)} (4.10)

where ∀i ∈ [1, k] f ′i(Q) ⊂ fi(Q). In other words, a pattern matching a query Q
is defined by a subset of annotations in Q. Note that f ′i(Q) can be the empty
set.

Result

A result is determined by a pattern t and a query b ∈ B(t,Q). We note r = (t, b).
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4.2.7 Query logs

Query logs are used to keep trace of users’ queries, what results have been
opened, which patterns have triggered which results, etc. These logs are used
to compute metrics further detailed section 4.3.4 on the next page. An example
of generated query log has been reproduced in the listing B.1 on page 143.

Query logs are of utmost importance for analyzing the behavior of users
with respect to the data on the one hand, and the software being evaluated on
the other hand. We will focus further on the former in section 5.4 on page 111;
in particular we will focus on patterns of users’ queries in the context of OLAP
sessions.

4.3 Ranking the results

Not only one pattern usually matches the parse graph. For instance, some
pattern are more specific than other ones, i.e. there more constraints in terms
of expected annotations in the pattern section defining the constraints. As we
expect the best results to appear first, we need to rank the results based on
several metrics that we present in this section.

4.3.1 Confidence

Let ci,j ∈ [0,1] be the confidence of an annotation (where (i, j) is the position of
the annotation in the parse graph) and di ∈ [0,1] be a weight given to the i-th
feature in the parse graph. Then the confidence of a result r = (t, b) triggered
by pattern t basing on annotations is given by:

s1(r) =∑
i,j

dici,j

k ∣f ′i(Q)∣
(4.11)

where k is the number of features in the pattern t and ∣f ′i(Q)∣ the number of
annotations of the i-th feature in the pattern t.

4.3.2 Selectivity

Selectivity is based on the number σ of structured queries that can be generated
given a pattern and a question. Let σ = ∣B(t,Q) b ∈ B(t,Q)∣ be the number of
queries that have been generated by the pattern t corresponding to the result
r = (t, b). Then, confidence based on selectivity can be computed as:

s2 = {
1

∣B(t,Q)∣ if σ ≠ 0

0 otherwise
(4.12)

The case where σ = 0 is the one where the pattern does not generate any query
(useless pattern).

Note that all results r triggered by the pattern t will have the same selec-
tivity.

4.3.3 Complexity

Complexity of a result r corresponds to the number of entities in the gener-
ate conceptual structured query (i.e. b). These entities can be dimensions,
measures, filters, . . .
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Pattern σ

1Measure 5
1Measure_1Dimension 3 × 7 + 2 × 7 = 35
1Measure_2Dimension 3 ×C7

2 + 2 ×C7
2 = 105

Table 4.4 – Example of selectivity metrics for the example question (4.3) and the
dataset eFashion (see figure 1.3 on page 5)

Let b = {b1, . . . , bm} be the query decomposed in its m entities s.t. r =
(t, b). Let T be the entity types (dimension, measure, filter, . . . ). Let b′ =
(countt(b))t∈T be the vector representing the number of entities of type t in b
(if the type t is not represented in the query b, then the vector item for t has
the value 0). Then, the complexity of a result r is defined by:

s3(r) =
1

∣T ∣ ∑t∈T
θtb

′
i,t (4.13)

where 0 < θt < 1 is a weight given to type t and experimentally determined s.t.
∑t∈T θt < 1.

4.3.4 Metrics from query logs

The query logs is a rich source of information about implicit user feedback on
the result provided by the system. We focus on some metrics defined below.

Popularity

The definition of the popularity of a search result r = (t,B) for user u is given
by:

pu(r) =
tu,c(r) − tu,o(r)

maxr(tu,c(r) − tu,o(r))
(4.14)

where tu,c(r) is the time when the result r was closed by user u and tu,o(r)
the time when it was opened. This metrics measures how long a search result
has been seen by the user. This metrics should be used in conjunction with a
threshold. For instance, user might jump to another aplication once she gets
the desired result. As a result this metrics would be extremely high, because
she did not close the search result.

When the system is being used for the first time by user u (i.e. when u
has never opened search result r), tu,o(r) and tu,c(r) are undefined. This case
corresponds to the cold-start phase, and we consider the mean values for users
in the social network of u .

Co-occurrency

Co-occurrency measures how likely different database entities could apppear
together in a query. This measure is also used as a ranking function in the
context of auto-completion presented section 6.3 on page 131 and further de-
tailed in [65]. The assumption behind this metrics, is that a pattern should
get an higher rank if it generates a query composed of (database) entities with
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high co-occurrency (i.e. entities that appear often in user’s queries). The co-
occurrency between two database entities e1 and e2 is given by the Jaccard
index of the sets occu(e1) and occu(e2):

coocu(e1, e2) = J(occu(e1), occu(e2)) =
∣occ(e1) ∩ occu(e2)∣
∣occu(e1) ∪ occu(e2)∣

(4.15)

where occu(e) is the set queries that contain the entity e (computed from the
query logs of user u). The co-occurrency of all entities in a structured query
B is given by

coocu(B) = ( 2

∣B∣) ∑b,b′∈B
coocu(b, b′) (4.16)

The co-occurrency metrics for a result is defined as follows:

coocu(r) =
1

∣B′∣ ∑B∈B′
coocu(B) (4.17)

where B′ = {B r = (t,B)}.

Implicit user preference

The popularity metrics (see equation 4.14 on the previous page) is used as a
weight for the co-occurrence metrics to define users’ implicit preferences:

prefu,impl(r) =
1

∣R∣ ∑r∈R
αrpu(r)coocu(r) (4.18)

where R = {r = (t,B)} and αr is a parameter to be experimentally determined
s.t. ∑r∈R αr = 1.

Collaborative user preference

Ranking search results meets a similar goal as providing recommendations
(in the sense of recommender systems). The metrics presented equation 4.18
presents a problem for cold start users, i.e. those new to the system. Indeed,
those users do not have triggered search results, from which co-occurrences can
be computed. Collaborative recommender systems have introduced the con-
tribution of other users in the item scoring function to improve the system’s
coverage and enable the exploration of resources previously unknown (or un-
used) by the user. We follow the simple linear combination of the user-specific
value and the average over the set of all users. Instead of considering “the
whole world” where all users have the same role (weight), trust-based recom-
mender systems illustrate the importance of considering users’ social network,
e.g., favorating users close to the current user. Let SN(u) be the set of users
in user u’s social network, filtered in order to keep only users up to a certain
maximum distance. The refiend user preference can thus be rewritten as:

prefimpl(u, r) = α ⋅ prefu,impl(r) +
β

SN(u) ∑
u′∈SN(u)

prefu′,impl(r)
d(u,u′) (4.19)

where α and β are to be experimentally adjusted s.t. α + β = 1 and d(u,u′)
denotes the distance between both users u and u′.



4.4. SUMMARY & DISCUSSION 91

Explicit user preferences

Explicit user preferences have not yet been implemented in the system (see
chapter 3 on page 57). This kind of preference is expressed by users’ ratings:

prefu,expl(r) = { ratingu,r if u has already rated r
ratingu otherwise (4.20)

where ratingu,r ∈ [0,1] is the rating of user u for the result r and ratingu the
overage rating given by u.

User preference

From both implicit (collaborative) user preference and explicit user preference
defined equations 4.19 on the facing page and 4.20, we define the global user
preference as a simple linear combination of prefimpl(u, t) and prefu,expl(t):

s4(r) = α ⋅ prefimpl(u, r) + β ⋅ prefu,expl(r) (4.21)

where α and β are coefficients to be experimentally determined. This formu-
lation through a linear combination allows us to easily see the impact of the
implicit and the explicit preferences in the global metrics. As future work, one
could investigate other formulations, but the current one seems to be satisfac-
tory in our use-case.

4.3.5 Overall measure

We combine the different scores s1 to s4 to get the final score used as a ranking
metrics. The scores s2 and s3 depend on the the question Q. In our experi-
ments, we have combined these metrics as a linear combination of equal weight.
The reader interested in metrics based on query logs will also find in section 6.3
on page 131 an application of similar metrics to auto-completion.

4.4 Summary & discussion

In this chapter, we have presented the core techniques used to translate users’s
question (formulated in NL) in structured queries (e.g. SQL or SparQL). We
have proposed a new way of formulating patterns inspired from the IE com-
munity as well as a base of patterns, which form together a knowledge-base
dedicated to a Q&A system for BI purposes. Patterns define a set of con-
straints that users’ questions must satisfy as well as the data (data models of
the warehouses and data themselves) and knowledge bases (domain knowledge
and linguistic knowledge for language-dependant NL expressions). These con-
straints are associated with a template of conceptual structured queries (that
is then translated in each target query language as explained in the chapter 3
on page 57). Moreover, we have explained how we define ranking scores for the
results that are generated by these patterns. The ranking function combines
different metrics which take into consideration the confidence of the named-
entity recognition involved in the mapping of words from the user’s question
to known terms, the complexity of the pattern (i.e. measuring the number of
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New case Similar
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Figure 4.4 – Case-based reasoning approach applied to the problem of pattern
learning

entities that are part of the generated structured query) and the specifics of
the pattern (i.e. measuring the fact that a pattern is specific or generic).

However, the patterns used to translate users’ questions in structured
queries are costly resources. Therefore, we like to provide in the following
thoughts on how to acquire such patterns. Developing additional patterns (for
instance, for a new application domain, or in order to improve the linguistic
coverage of the system) is not a straightforward task (see the example pattern
reproduced appendix A on page 139). To ease this task, two classic approaches
are:

• learning approaches, which are algorithms that base on trained (or la-
belled) data, on user interaction data or on both

• authoring front-end tools (generally user-friendly GUI) where users can
easily generate new patterns on the basis of positive and/or negative
examples for validating rules (i.e. patterns) being created

This aspect of the problem has not been fully investigated since we focus further
on the implementation of the end-to-end system (see section 7 on page 135).
We develop both possible approaches introduced above, as a starting point for
future work on the subject.

4.4.1 Learning approaches

Case-based reasoning

Figure 4.4 is an illustration of the case-based reasoning approach for patterns.
In this approach, the problem to solve can be formulated as follows:

“Given a parse graph p(Q) for the question Q, what features fi(Q)
shall be considered in the new pattern, and for each of these fea-
tures, what annotations a ∈ fi(Q) from the parse graph shall be
included in the pattern. Eventually, what conceptual query shall
be associated with the pattern being build.”

New case The case correspond thus to the selection of
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Figure 4.5 – Classification problem involved for a large number of patterns

• relevant features (i.e. the choice of F ⊂ {f1(Q), . . . , fk(Q)} where k is
the number of features in p(Q))

• a mapping from the chosen features to the annotations, (i.e. F → A)

• a generated conceptual query referred to as B

Retrieve The ‘Retrieve’ step consists in retrieving similar cases. The retriev-
ing bases on similarity measures.

Reuse The ‘Reuse’ step aims at transforming the set of similar cases retrieved
in the preceeding step in order to build a new case (called Solved case in the
figure) which corresponds to the proposed solution to the problem stated above.
Thus, a solved case is made of a pattern – a set of constraints to be satisfied
by a parse graph plus a template of structured query.

Revise The solution proposed in the previous step has not been yet validated
(to prevent the system from being corrupted). The ‘Revise’ step consists in
validating cases proposed in the previous steps. For instance, a case can be
validated based on user’s feedback about positive and negative examples.

Retain The ‘Retain’ step consists in storing the case in the system, so that
it can be easily re-used in the future when a similar problem arises.

The approach described so far has been employed in the Q&A domain by
Ben Mustapha et al. [7]. They propose a system that learns an ontology used
to guide the interpretation of users’ questions in the context of semantic search.

Genetic approach

We have investigated the case where there might be a large number of pat-
terns in the repository. This case is relevant when the number of patterns
increases over time, for instance through machine learning algorithms. In this
case, we need a classification to decide which patterns are closer to the user’s
question. The approach that we have investigated is represented figure 4.5.
In this approach, the classification algorithm must first be determined. This
classification is then used to determine the translation of queries into patterns,
using a genetic algorithm and a learning base.
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Constraints Translation rules must satisfy following constraints:

• examples must be correctly translated

• generated patterns should be valid

These constraints, to be satisfied by individuals, lead to bonus scores.
Figure 4.6 is an illustration of the mutation process and selection of good indi-

patterns queries

q1

q2

p1

p2

q3
p3

p′1

p′2

p′3

Figure 4.6 – Illustration of how individuals are mutated and rewarded. Dashed cir-
cles on the left-hand side (p′i) are individuals automatically generated
out of queries qi. Individuals that are not patterns (e.g. q′3) are left
out. To be rewarded, generated patterns must be similar to original
examples (i.e. pi).

viduals based on their structure (for instance individuals that are not patterns
will be left out) and based on how faithfully they reproduce good examples (i.e.
how close are p′i to pi). On figure 4.7 one illustrates the problem of generating

1

3

2

4

Figure 4.7 – The curve represents both novelty (x-axis) and efficiency (y-axis) of
newly-created individuals being mutated. The problem can be reduced
to the search for local maximums. Area ‘1’ leads to better individuals,
but they are similar to the known ones; area ‘2’ is both efficient and
novel; area ‘3’ is not efficient and not novel and this area should be
avoided; area ‘4’ leads to worse individuals. In the latter case, one
must decide whether one should pursue or stop the local discovery of
new individuals

new individuals, that must be both efficient and novel. The former property
relates to the generality of the generated pattern (with respect to selectivity,
see section 4.3.2 on page 88). The latter one depends on the distance with
known examples and already-generated individuals.
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See also This approach has been further described by Watel [70].

4.4.2 Authoring tool

Authoring tools have been quite recently used in interfaces for Q&A (one the
most representative related work is NaLIX [42]). The benefits of such tools, is
that they allow non-expert users to enrich the system with new semantic rules.
Typically, users are assisted graphically in creating semantic mappings, and
examples of known pairs of questions and answers are displayed to users, so
that they can validate the rules being created. In our proposal (see figure 4.8),
the SPARQL pattern would be generated by the tool; the user would simply
express graphically a set of constraints based on positive and negative examples.

Figure 4.8 – Authoring tool: user loads unresolved questions

Identification of common annotations

First, users are invited to type a serie of questions (or to import them from
an external file). All these questions are supposed to be captured by the same
pattern. The drawback is that users are supposed to know the data, so that
they can think of queries (the system can also keep trace of unresolved question
that have been asked in the past, and suggest those questions). For example,
the questions “Revenue and margin in New York in Q2” and “Sales revenue
and margin in Texas in Q3” seem to correspond to the same pattern (i.e. two
measures and two filters). The set of questions are parsed, and the annotations
(with common annotation types) are used as annotations in the generated
pattern. In the end of this process, users can remove some annotations if they
think that they are not relevant for the current pattern.

Graphic construction of the structured query

The semantic information in the pattern lies in the mapping between the set
of annotation (the WHERE section of the pattern) and the generated structured
query (the CONSTRUCT section of the pattern). To this end, the graphic editor
guides users in designing the conceptual query, based on the annotations that
were identified in the previous step. Figure 4.9 on the following page is a
screenshot of a mockup.
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Figure 4.9 – Graphic construction of the pattern

Validation of the candidate pattern

Once user has finished designing the conceptual query, the pattern should be
validated to check that the results are the ones that the user expects. The
questions used in the first step (see section 4.4.2 on the previous page) are
used to test the candidate pattern. The validation process, for each question,
is as follows:

1. check that the pattern matches the question

2. execute the query and display the corresponding chart

If users are not satisfied with the pattern execution, they are able to get back
to the first step (see section 4.4.2 on the preceding page) or the second one
(see section 4.4.2 on the previous page). Eventually, when they are satisfied
with the generated pattern, they can add it to the pattern repository. Finally,
a last step would be required to test that the newly created pattern does not
generate conflicts with respect to other patterns in the system.
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Multidimensional models have been introduced in chapter 1 on page 1.
These models support users to express queries, since terms used to describe
model entities are terms used by the community (e.g. business terms), while
logical terms (e.g. the table names in a relational database schema) are ma-
nipulated by database administrators.

A model can be represented asM = (A,H,M), where A = {ai} is a set of
attributes (i.e. dimensions and attributes of dimensions), H = {hi} is a set of
hierarchical levels and M = {mi} is a set of measures.

5.1 Fact tables and functional dependencies

The execution of a multidimensional query results in a set of facts. Those
facts are extacted and aggregated from the fact tables. How these operations
are performed depends on the implementation of the database system. In the
following, a fact is written f and graphically display as a row, where each
column correspond to an attribute of at a given level or to a measure. In the
former case, the cell contains the selected attribute value at the given level (or
Members if no value is selected, i.e. if the attribute is not used as a filter). In

97



98 CHAPTER 5. QUERY MODELING

the latter case the cell contains the measure’s value corresponding to the filters
expressed (or not) in the other cells of the row. Table 5.1 provides an example of

Fact [Year] [Title] (Sales amount quota)
f1 2001 Pacific Sales Manager 383200
f2 2001 European Sales Manager 1124400
f3 2001 North American Sales Manager 1660050
f4 2001 Members 3167650

Table 5.1 – Facts answering the question “Sales target per department in 2001”

three facts, with the dimension [Title] and the measure (Sales Amount Quota)
from the dataset AdventureWorks1. The last row of the table is an example
of aggregation of the facts along the [Title] dimension (Members stands for a
selection of all possible members of the corresponding dimension). This fact
(f4) would be part, in our case, of an aggregate fact table. There can be more
than one attribute and more than one measure for each fact (i.e. on each
row of the fact table). Let fi be the i-th fact in the table 5.1 (i.e. the i-th
row). We note fi ⋅mj the value of the measure mj for the fact fi and fi ⋅aj the
selected value of the attribute aj (similar notation as the one used by Golfarelli
et al. [24]). Thus, according to table 5.1, f1 ⋅ (Sales amount quota) = 38200;
f1 ⋅[Title] = ‘Pacific Sales Manager’; f4 ⋅[Year] = 2001 and f4 ⋅[Title] = Members.

Dimensions and measures that appear in a single fact table are said compat-
ible or functionally dependant, because they can be used together in a database
query (MDX or SQL). Let E be the set of entities (attributes, hierarchy levels
and measures). Functional dependency D is an equivalence relation:

• D is reflexive: ∀e ∈ E eDe

• D is symetric: ∀e, f ∈ E eDf ⇒ fDe

• D is transitive: ∀e, f, g ∈ E { eDf
fDg ⇒ eDg

We note d(e) the equivalence class to which entity e belongs. Thus, e ∈ d(f)
means that e belongs to the set of entities with which f is compatible. Com-
patible entities are of interest, for instance to make sure that suggested entities
can be used to generate a valid query (this is illustrated in an application for
auto-completion in section 6.3 on page 131).

5.2 Multidimensional queries and preferences

A multidimensional query can be expressed as a set of dimensions (at a specific
hierarchy level), a set of measures plus constraints (or filters) on members
(e.g. selection of a subset of the members, or selection of all members) or on
measures (e.g. selection of all members where a specific measure has values in
a specific range) plus query modifier (such as ordering clauses or the truncating
operator).

1The dataset can be downloaded at http://msdn.microsoft.com/en-us/library/
ms124623(v=sql.105).aspx.
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In the following, we will present a formal representation of a query sec-
tion 5.2.1. Then, we will present how this formal representation can be auto-
matically translated into a common representation section 5.2.2 on page 102.

5.2.1 Formal representation of a query

The following structure:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dimensions = {[Department]}
measures = {(Sales target)}
filters = {[Year] = 2001}
truncation = ∅
ordering = [([Department], (Sales target). ↑)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

stands for a conceptual representation of a multidimensional query. The dif-
ferent attributes of the structure are:

• dimensions: (unordered) set of dimensions

• measures: (unordered) set of measures

• filters: (unordered) set of filters. A filter is a restriction on the resultset,
based on a dimension (selection of some dimension values) or on a measure
(where the measure value must verify a specific condition, like being in a
range of values)

• truncation: ordered list of truncation clauses. In some cases, only part of
the resultset must be returned. In particular, a truncation clause is used
in cunjunction with an ordering clause in queries like ‘top n’, where n is
the number of facts to be returned (see the LIMIT operator in MDX.

• ordering: the facts from the resultset must be ordered along a dimension
or measure, in ascending order (↑) or descending order (↓).

We further describe this structure in the following.

Analysis axes or dimensions

Dimensions are used to describe and aggregate facts (see section 5.1 on page 97).
Some dimensions belong to the same hierarchy (i.e. they are different levels of
the same hierarchy, as introduced in section 1.1.2 on page 6 ). For instance,
there are usually time and geographic hierarchies in multidimensional models.
The time hierarchy can be described as follows:

Year → Quarter → Month → Week → Day . . . (5.2)

and similarly the geographic hierarchy can be described as:

Region → Country → State → County → City → Street . . . (5.3)

Note that hierarchies can be seen as ordered sets of dimensions, where succes-
sive dimensions share a hierarchical relation. As a result, there is not a unique
decomposition of hierarchies in hierarchy levels (the decomposition depends on
the chosen hierarchical relation).
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In our model, we introduce a structure called axis group, which represents
a branch or a segment from a hierarchy of the formal representation. This axis
group is then broken down into headers which is then broken down into header
items, as represented figure 5.1. We have defined this structure, because it looks

Axis group 1
Header 1
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Figure 5.1 – Decomposition of axis groups in the formal query representation

similar to a bi-dimensional table (or crosstable), where both dimensions are the
two axis groups. There can be more axis groups in our structure. Rendering
data structures with more than two axis groups is illustrated with an example
in the appendix, section D.3 on page 148. Each axis group is decomposed in
headers which correspond to the selection of members for the different dimen-
sions involved in the hierarchy. For instance, in figure 5.1, Header 1 stands for
the selection of country ‘FR’ and city ‘Paris’ (because [Country] and [City]
belong to the same hierarchy). Then, each header is decomposed in a series of
items, namely header items. Those items correspond to the different hierarchy
levels of the hierarchy which corresponds to the axis group.

Measures

Measures values are numeric values (in general integer or double values) that
can be aggregated along different dimensions used in the model. A measure is
thus always associated to an aggregation function (which can be sum or avg,
but can be also more complex and defined in the data schema). In figure 5.1
which serves as a visual representation, measures’ values would be represented
in imaginary multidimensional cells in the body of the table. The dimension
of these cells would be the number of measures.

Filters

Filters are restrictions of a resultset based on dimensions’ or measures’ values.
For instance, the query ( 5.4):

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dimensions = {[Year]}
measures = {(Sales revenue)}
filters = {City ∈ {‘New York’, ‘Boston’}}
truncation = ∅
ordering = [[Year], [Sales revenue]. ↑)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

leads to the database query listing 5.1 on the facing page:
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1 SELECT
2 sum(Table__2."AMOUNT_SOLD"), Table__7."YR"
3 FROM
4 "EFASHION"."CALENDAR_YEAR_LOOKUP" Table__7
5 INNER JOIN
6 "EFASHION"."SHOP_FACTS" Table__2 ON (
7 Table__2."WEEK_ID"=Table__7."WEEK_ID"
8 )
9 INNER JOIN

10 "EFASHION"."OUTLET_LOOKUP" Table__1 ON (
11 Table__1."SHOP_ID"=Table__2."SHOP_ID"
12 )
13 WHERE
14 Table__1."CITY" IN (’New␣York’, ’Boston ’)
15 GROUP BY
16 Table__7."YR"
17 ORDER BY 2

Listing 5.1 – SQL query generated from conceptual query (5.4)

In this example, the query is composed of one filter which restricts possible
values of dimension [City] to ‘New York’ and ‘Boston’. It is possible to have
more than one filter, and filters based on measures’ values. In general, the
generated SQL query looks different (the clause HAVING is introduced when a
join is involved in the condition), but we keep a similar representation in the
conceptual query. Query ( 5.5) is an example of a query with a filter based on
the values of a measure:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dimensions = {[Year]}
measures = {(Sales revenue)}
filters = {Sales revenue > 1,000,000 $}
truncation = ∅
ordering = [([Year], [Year]. ↑)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5)

The generated SQL query is reproduced listing 5.2.

1 SELECT
2 sum(Table__2."AMOUNT_SOLD"),
3 Table__7."YR"
4 FROM
5 "EFASHION"."CALENDAR_YEAR_LOOKUP" Table__7
6 INNER JOIN "EFASHION"."SHOP_FACTS" Table__2 ON (
7 Table__2."WEEK_ID"=Table__7."WEEK_ID"
8 )
9 GROUP BY

10 Table__7."YR"
11 HAVING
12 sum(Table__2."AMOUNT_SOLD") > 10000000
13 ORDER BY 2

Listing 5.2 – SQL query generated from conceptual query (5.4)

Keywords HAVING and WHERE can be combined in the generated SQL or MDX
queries.
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Truncation

Truncation clauses are used to select a subset of the resultset. It can be associ-
ated with an ordering clause (see below). The truncation clause is composed of
an ordering and an integer value, which is the number of items from the result-
set to be returned. The ordering specifies along which dimension or measure
should the resultset be ordered before being truncated. In MDX, for instance,
this truncation clause is translated in the keyword LIMIT.

Ordering

The ordering clause specifies how the rows of the resultset should be ordered.
There can be more than one ordering clause, but the order of the clauses is
important (we use [] to note the ordered set). Each item of the clause is
a triple of the form (a1, a2,direction) where a1 and a2 can be measures or
dimensions and direction stands for ↑ or ↓ (i.e. for ascending or descending
ordering respectively). There can be more than one ordering clause. The
second clause is considered when there are equal rows (in the sense of the
order defined by ↑ and ↓). In practice, there are rarely more than two ordering
clauses.

5.2.2 Database queries

The most common syntax for multidimensional queries is MDX. An example
of a MDX query is reproduced listing 5.3:

1 SELECT
2 { [Measures ].[ Store Sales] } ON COLUMNS ,
3 { [Date ].[2002] , [Date ].[2003] } ON ROWS
4 FROM Sales
5 WHERE ( [Store ].[ USA].[CA] )

Listing 5.3 – Example of MDX query

In addition, MDX provides several built-in functions, such as date or mem-
ber functions. MDX or SQL queries can be automatically generated from the
data schema of the warehouse. The conceptual query is first decomposed in
its clauses, and each clause is associated with a database query fragment. All
these fragments are then merged into a single database query. We have ex-
perimented SAP BusinessObjects Semantic Layer™ to automatically generate
database queries out of conceptual queries. Figure 5.2 on the facing page is an
overview of the translation of conceptual queries into database queries (MDX
or SQL, depending on the data source).

Semantic layer

The above-mentioned semantic layer is a software that interface any DBMS
and let users build queries as an object representation, and unburden them
from formulating DBMS-specific expressions.

This tool is widely used in BI. We experimented it in an early version of
our Q&A system for data warehouses [39].
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Figure 5.2 – Automatic database query generation

5.2.3 Personalization of multidimensional queries

Personalizing multidimensional queries is an approach, where preferences can
be expressed in queries. These preferences are of different types. On the
one hand, quantitative preferences, like the one defined in [1] map objects
of preference to a value representing the degree of preference (for instance, a
scoring function is used to rank individual tuples based on preferences). On the
other hand, qualitative preferences are not associated with scoring functions
and can be expressed in various ways, like in [37]. The latter kind of preference
is usually expressed in an algebra. Chomicki [11] has shown that qualitative
preferences yield a broader expressiveness than quantitative preferences.

In order to offer personalized results, database queries are often enriched
with preferences [24]. For example, consider the structured query displayed
listing 5.4 that has been generated from conceptual query (5.1):

1 SELECT
2 NON EMPTY {[ Measures ].[ Sales Amount Quota ]} ON COLUMNS ,
3 NON EMPTY Hierarchize(Crossjoin ({[ Employee ].[ Employee
4 Department ].[ Department ]. Members},
5 [Date ].[ Calendar Year ].[ Calendar Year]. Members ))
6 DIMENSION PROPERTIES
7 PARENT_UNIQUE_NAME ON ROWS
8 FROM(
9 SELECT {[Date ].[ Calendar Year ].&[2001]}

10 ON COLUMNS FROM [Adventure Works])

Listing 5.4 – Structured query generated from conceptual query (5.1)

In some cases, this structured query leads to only one tuple, which probably
means that the query should be drilled down along the dimension [Employee
Department], that is:

1 [Employee ].[ Employee Department ].[ Department ]. Members

should be replaced with hierarchy level

1 [Employee ].[ Employee Department ].[ Title ]. Members

This is a naive example of preferences that can be naturally expressed in ad-
dition. In the following, we introduce a framework for expressing this kind of
preferences plus additional preferences well suited for BI use-cases.
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Expressing multidimensional preferences

The preference in the previous example (see listing 5.4 on the preceding page)
states that finest aggregated facts along the given hierarchy are preferred than
the coarsest ones. This kind of qualitative preferences is well expressed in the
MyOLAP algebra [24]:

FINEST([Employee][Employee Department])

The algebra enables the expression of preferences on hierarchies (like in the
example above), say CONTAIN(h, a) (facts including the level a along h are
prefered), NEAR(h, a2, a1) (facts which group-by set along h is between a2
and a1 are prefered), COARSEST(h) and FINEST(h). Preferences on at-
tributes are POS(a, c) (facts mapping to the member c are prefered) and
NEG(a, c) (facts not mapping to c are prefered). For measures, preferences
are BETWEEN(m,v1, v2) (facts which value on m is between v1 and v2 are
prefered), LOWEST(m) (facts which value on m is as low as possible) and
HIGHEST(m). In addition, preferences can be composed with two operators:
the composition P1 ⊗ P2 (composed preferences P1 and P2 are equally impor-
tant) and prioritization P1 ⊳ P2 (preference P1 is prioritized with respect to P2).
The formal definitions and notations introduced above can be found in [24].
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Chart type preference & analysis type

In addition to qualitative preferences from MyOLAP, we consider the chart
type as a preference. Indeed, all multidimensional queries that we generate are
intended to be visualized as charts. Given the structure of the internal query
(5.1), there are many ways to render it as a chart. However, chart types are
often associated with an analysis type which partly corresponds to the meaning
of the chart for the user. This has been outlined in [63].

Table 5.2 on the preceding page outlines different analysis types correspond-
ing to different chart types. This table has been created by hand on the basis
of analysis of some existing dashboards. A broader and deeper analysis should
be performed, in order to:

1. take into consideration new chart types (that are not part of the dash-
boards that we have considered)

2. validate the content of the table, which is subject to personal point of
view with respect to the semantics of charts belonging to the dashboards

5.2.4 Example of how patterns are mapped to structured
queries

For most of the cases like the example given in figure 4.1 on page 78, a struc-
tured query contains a data source, a set of dimensions and measures, a set
of filters and an optional set of result modifiers, e.g. ordering or truncation
expressions. For the example from figure 4.1 on page 78, a stuctured query
could be represented as follows:

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

data source = Resorts
dimensions = {Customer}
measures = {Revenue}

filters =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

City = ‘Palo Alto’,
Age ≥ 20,
Age ≤ 30

⎫⎪⎪⎪⎬⎪⎪⎪⎭
truncation = {(Revenue, ↓,5)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In there, curly brackets represent a set of objects, which might have a complex
structure (e.g. for filters, which consist of a measure or dimension, an operator
and a value). For truncations we use a triple consisting of the dimnesion or
measure on which the ordering is applied, the ordering direction (ascending ↑,
or descending ↓) and the number of items. Another intepretation for the user’s
question would be Q2, which is similar to Q1 except the proposed measure:

Q2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . .
measures = {Margin}
. . .
truncation = {Margin, ↓,5)}

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Since the reprentation shown above captures only a fraction of the potential
queries, we use RDF to capture the structure and semantics of the structured
query which is than serialized to an executable query in a subsequent step.
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As discussed earlier2, we define in the left part of figure 4.3 on page 83 how
to derive potential interpretations (i.e. variables and the constraints between
them) using a SparQL WHERE clause. Now we need to define the basic structure
of a query (in RDF) and how to map variables into this model using a SparQL
CONSTRUCT clause (illustrated in the right part of figure 4.3 on page 83). In
this way, we separate the pattern matching, which can be quiet complex, from
the actual mapping problem and ensure a fine-grained flexible control on how
to generate structured queries.

Some of the most important concepts of our query model are illustrated
in figure 4.3 on page 83. On the top, stands the root node Q defining a
structured query. Below, dashed lines represent parts that are optional in
the left side. These parts of the CONSTRUCT clause are only triggered if the
respective variables are in the result of the WHERE clause, making it easy to
describe alternative mappings for different situations as described in the parse
graph. Besides of the actual query semantics, we attach some metadata nodes
to the query node such as the data source DS . It is bound to the variable
‘?w’ representing the actual data warehouse upon which the generated query
shall be executed. Additional nodes are dedicated to: projection items PI ,
capturing all projections that are part of the final structured query; filter items

FI , expressing selections on a certain measure or dimension and truncation and
ordering clauses TO . The underlying structures are detailed in the following.

Projections

The most important part of the actual query are projections, which in our
use-case consists at least of one measure and dimension. To give a glimpse
on our full query model and further detail the example, we define different
kinds of expressions (via a common anchestor RDF type) where we depict
here the subclasses measure expression ME and dimensions expression DE .
These nodes capture common metadata (not shown here), such as navigation
paths (e.g. for drill-down operations) or confidence scores and refer to the
actual object that defines the projection, here the measure reference MR and
dimension reference DR . They are in our case the labels of recognized objects.
It does not matter whether we use the recognized dimensions and measures
(derived from ‘m1’ or ‘d1’) or the suggested ones (derived from ‘m2’ or ‘d4’) in
the final query since we defined in the WHERE clause that suggestions are only
made if no user input is available. We plan to include more complex artifacts
such as subnodes of the expression anchestor node to support for instance
computed measures.

Truncation and Ordering

The node TO in figure 4.3 on page 83 stands for Truncation and Ordering. It
represents ORDER BY and LIMIT clauses of a structured query or of a certain sub-
select within such a query. Thus, several nodes TO can occur as sub-node of a
query node. If the variable ‘?nb’ is not bound by the ‘TopK’ pattern, the default
value as described in section 4.2.5 on page 86 will be used and a single LIMIT
will be generated. The ‘Sorting Expression’ SE representing an ORDER BY is
not being generated in that case because the variable ‘?ord’ is unbound. If the

2We refer in this section to the figure 4.2 on page 80.
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user entered a question starting with ‘Top. . . ’ both variables ‘?nb’ and ‘?ord’
would be bound and we would suggest an artifact to apply the ordering (unless
the user entered ‘order by . . . ’, which is parsed by a dedicated pattern). Since
top-k questions usualy relate to a particular measure (even if the query would
be ‘top 5 cities’), we can safely apply the order to the recognized or suggested
measure by simply relating the node for the ‘Sorting Expression’ SE to the
one for the measure MR . Note that in any case every possible interpretation
with respect to the ORDER BY assigment would be generated.

Filters

Filter expressions depicted as FE represent a set of members or numerical
values in the case of measures to be used to filter the actual result. From a
data model perspective, filter expressions capture the metadata’s object (either
dimension or measure) on which the restriction is applied and a set or range of
values that defines the actual restriction. More complex filter expressions can
be defined as well (e.g. containing a sub-query). In our example, we show only
examples for member sets MS containing a single member which is represented
by a value reference VR . In the first case, a member was directly recognized
in the user’s question. The variable ‘?dL2’ originating from the dimension
‘?d2’ is directly assigned to the member set and a node for the value reference

VR is generated with a property for the actual value (i.e. ‘?vL1’). Note that
we do not need to care whether the respective dimensions will be considered
in the projections since this can be handled by constraints (see left part of
figure 4.3 on page 83). The second example handles personalization (e.g. “my
city”) and uses a filter leveraging the user profile. It works similarly as the
one for matched members except that the value reference VR relates to the
label of the object in the user profile that cares a similar value as one of the
members of a certain dimension (e.g. ‘Palo Alto’ for the dimension ‘City’).
Range queries are conceptually similar to the ones containing a member set,
no matter whether they are applied on dimensions or measures. The only
difference is that a natural language pattern is used for detecting numeric or
date range expressions in the user’s question to define variables and that there
are two value references defining the bounds of the actual filter expression.

5.3 Similarity measure based on preferences

In the following, we use the notations from [21]: we note C =< C1, . . . ,Cn, F > a
n-dimensional cube where n is the number of dimensions and F stands for the
fact table. The values of the dimension Di noted Dom(Di) are called members
and organized in a hierarchy Hi. A reference is a n-tuple < r1, . . . , rn > where
ri ∈Dom(Di) for i ∈ [1, n]. A MDX query is modeled as a set of references for
a given instance of a cube.

The distance between two MDX queries is defined as [21]:

dMDX(q1, q2) = γ × ddim(q1, q2) + (1 − γ) × dh(q1, q2) (5.6)

where γ ∈ [1, n] is a parameter, ddim measures the number of different references
and dh the measure inspired from the Hausdorff distance [30] which measures
the distance between two sets based on the distance between the elements of
the sets.



110 CHAPTER 5. QUERY MODELING

The similarity measure dMDX (see equation 5.6 on the previous page) does
not take into account preferences that appear in MyOLAP queries [24]. To
remedy this, we propose an alternative measure dMLP as follows:

dMLP (q1, q2) = δ × dMDX(q1, q2) + (1 − δ) × dpref(q1, q2) (5.7)

where δ ∈ [0,1] is a parameter and where dpref(q1, q2) measures a distance in
terms of preferences held by MyOLAP queries q1 and q2.

Let Cq1 be the set of facts in the result of q1 on the cube C and Cq2 be the
set of facts in the result of q2 on the cube C Notations and definitions can be
found in [24]. We define the priority pPi as a binary indicator that two facts
share a preference relation (and are not equivalent in terms of preference); i.e.

pPi(f1, f2) = { 1 if f1 <Pi f2 or f2 <Pi f1
0 otherwise

where f1 ∈ Cq1 and f2 ∈ Cq2 . Let P1 be the preference of query q1 and P2 be
the preference of query q2; we define the distance between q1 and q2 based on
preferences P1 and P2 as:

dpref(q1, q2) = ε ∑
(f1,f2)∈Cq1

×Cq2

((pp1(f1, f2) + pp2(f1, f2)
2∣Cq1 ∣ ⋅ ∣Cq2 ∣

)

+ (1 − ε)dpref(Cq1 ,Cq2))

where ε ∈ [0,1] is a parameter and dpref(Cq1 ,Cq2) is the preference distance
which is not based on individual facts, but on the sets of facts that belong to
the same result Cqi . We define dpref(Cqi ,Cqj) as:

dpref(Cqi ,Cqj) = {
1

Jacc(Cqi
,Cqj

) if Jacc(Cqi ,Cqj) ≠ 0

1 otherwise

An example of preference that does not apply to two facts but to a result
(i.e. to a set of facts) is the preference about which chart type to choose in
order to render the result. Let the facts f ∈ Cq be summarized in table 5.1 on
page 98 where q is the question “Sales target per department in 2001”. Two
popular representations for these facts could be a bar chart or a pie chart
representations (these charts have been reproduced figure 3.6 on page 67). The
prefered chart type is inferred from both the data, and annotations coming
from the NL analysis of the question, or even the application which triggers
the chart rendering. Bar charts are usually used for comparing data, while pie
charts is an analysis of the composition or contribution of data. The analysis
types that we consider for some chart types are reported table 5.2 on page 106.
The information about which is the preferred chart type (for a given structured
query) is stored in the conceptual query (see section 5.2.1 on page 99).

A simple similarity measure between two chart types is based on the com-
mon number of analysis types. Let A = {aj} be the set of analysis types (first
column of table 5.2 on page 106) and C = {ci} be the set of chart types (headers
of table 5.2 on page 106). Let ci be the chart associated to the result Cqi and
types ∶ C → A be the function such that types(ci) ⊂ A is the set of analysis
types corresponding to chart ci. The Jaccard index on these types is defined
as:

Jacc(Cqi ,Cqj) = Jacc′(ci, cj) =
∣types(ci) ∩ types(cj)∣
∣types(ci) ∪ types(cj)∣
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This index measures the number of common analysis types between two chart
types.

Note that we have presented here only one example of preference relating
two results (which are defined as sets of facts) for the chart type preference,
because is relevant to our application. The metrics dpref(Cqi ,Cqj) can be
further defined taking into account additional preferences. Examples are the
size of the result (i.e. which would be the preferred size for the chart?) or the
preferred colors of the chart, etc.

5.4 Prediction model

One believe that successive queries in logs follow some pattern, because users
usually build queries in an iterative manner [56]. This assertion is hard to
prove though, because real query logs are costly resources. For reducing exe-
cution time of queries in OLAP sessions, it would therefore be of interest to
pro-actively execute queries that would be the next queries trigered by users,
according to the pattern mentioned above.

In this section, we present a proposal for a prediction model for predicting
the most likely next queries in the context of an OLAP session.

5.4.1 Motivating Scenario

Let us suppose an OLAP user during a typical week at work who interacts with
the company data warehouse to perform several tasks:

• She is responsible for making management reports for the daily and
weekly sales of one product branch, and for analyzing the effect of pub-
licity on the sales targets in different regions for that specific branch.

• She is also responsible for market research for all products, finding factors
that significantly influence sales as they evolve over time.

While performing queries to obtain management reports and doing market
research, the user has learned that it gives best results first to get a sales report
per region, and then to analyze the effects of publicity on the sales according
to region. It is generally hard to determine which factors influence measures
like ‘Sales’, and therefore user experience helps in choosing the correct axis of
analysis. A good choice is often the time dimension (e.g. ‘Year’), which leads
to a first division according to that axis. Of secondary importance are location,
publicity, and so on, according to which axis the user will update her query
in a next phase. In this phase, the user also makes tryouts of factors, since
she is not confident with the factors that influence all products. Contrarily,
when working on daily and weekly sales reports of the one product branch she
is responsible for, she knows what to query due to her experience.

When working on the management reports, the user asks the data to be rep-
resented in a set of bar charts, since reporting styles are fixed in the company.
On the other hand, when researching sales factors of products, the user likes
to have the data also in numerical table format, since quite often when taking
the train home from work, she wants to take a look again at the data and do
offline tryout manipulations searching for sales factors on her smartphone or
tablet.
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From this scenario, we note the following:

• Querying is contextualized: User query behavior depends on the context
of the user. For example, the order of querying depends on the specific
activity the user is performing (management report or market research).

• Querying is preferenced: Depending on the context, the preferences of
the user also change. For example, the visualization preference changes
according to activity.

• Query structure is similar: While performing an activity, the structure
of a series of queries stays the same. For example, the user checks for
factors that influence sales by first querying according to time of year,
then location, and so on. So although the specific content of the queries
changes, the order in which dimensions are treated in subsequent queries
stays the same.

Thus for predicting the most likely next query, context and preferences have
to been taken into account together with the current query, as will be described
in section 5.4.4 on page 114. However, since query structures can be similar,
as illustrated in the last point above, it is important to cluster similar queries
for making predictions, which we present in section 5.4.3 on the next page.

5.4.2 Architecture

The first element in our architecture is the context manager (CM), which pur-
pose is to hide the context management complexity by providing a uniform way
to access context information. Context information is stored in a knowledge
database using a context model. User preferences are also part of this context
manager. The query translation engine (QT) is responsible for the automatic
transformation of a natural language query to a conceptual query. Next, the
query processor (QP) is in charge of processing a conceptual query. Such query
represents user’s search and preferences, represented in a structure (see for ex-
ample Q in section 5.2.1 on page 99), according to a specific template. The
QP enriches this query with context obtained from CM. This enriched request,
represented in MDX format, is then transferred to the query execution module
(QE). Then, the query execution module allows the satisfaction of the imme-
diate query by executing it taking into account the given context. Next, the
learning module (LM) is responsible for dynamically determining the user’s
behaviour model (classification step) from the recognized clusters representing
similar user’s situations (clustering). The user’s behaviour model, learned and
maintained by the LM, will be then used by the prediction module. Finally, the
prediction module (PM), guided by the user’s query, preferences and context,
is based on the results from the discovery process previously stored in the past
history of user queries. From this data, the PM is able to anticipate the future
user’s needs and to predict, and then execute in a proactive manner, the next
query. A triplet

< query,preferences, context > (5.8)

representing the user situation S is sent to the prediction module. From the
user’s behaviour model inferred by the LM, PM will determine the user’s most
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Figure 5.3 – Architecture of the module responsible for predicting and recommen-
dating queries

likely future query. Thus, the PM is responsible for selecting, from the user’s
behaviour model, the query that best represents the user’s future situation.

Two main processes compose this query prediction mechanism: the learning
process and the prediction process, as illustrated in figure 5.3. In the learning
process, similar situations are grouped into clusters during the clustering step,
as a way to reduce the size of the history log by looking for recurring situations.
A situation is defined as a triplet

< intention, context,preferences > (5.9)

containing the intention of the user in the form of a query, together with con-
textual and preferences information. In the next step, these clusters are in-
terpreted as states of a state machine, and the transition probabilities from
one state to another are calculated based on the history. This step, called
the classification step, aims to represent, from the recognized clusters, the
user’s behaviour model (M) based on their situations. The interpretation of
the changed situation as a trajectory of states allows to anticipate most prob-
able future states. In our approach, this process consists of estimating the
probabilities of moving from one situation to other possible future situations.

5.4.3 Query Clustering

The first step of our mechanism is the clustering of users’ queries. Indeed,
as the history log contains a trace of all observed queries of a user for a given
situation, it is likely that some of them are similar. Since the size of this history
in a dynamic environment can be quite large, clustering similar queries for a
user represents an appropriate solution to reduce the data size and arrive to a
feasible number of states, which are not too general and not too specific. Also,
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the analysis of the clusters allows a better definition on users habits, which
can improve the accuracy of our prediction mechanism. The input to this step
are vectors representing users queries stored in the history. The main task of
the clustering is to detect recurrent and similar queries from all the queries
situations in the history. In fact, the clustering is responsible to determine
the query that is the closest to a set of queries. This provides us a powerful
mechanism to evaluate users’ queries, as a user can express the same query in
a slightly different way by using queries that have a sufficient similarity.

To calculate the similarity between two queries we use the distance metric
defined in the previous section. To build the clusters, we start with randomly
selecting x queries from the query logs and making sure that a minimal distance
exists between them. They serve as the seeds for the clusters. Then, we treat
each query of the logs, and assign it to the cluster for which the associated
seed has the minimum distance. In that way, clusters of similar queries are
obtained. The clusters are used for recommendation purposes. A BI user that
is exploring a dataset and performs a query will possibly be interested in similar
queries, so using the distance metric we identify the query cluster which is most
similar to the current user query, and select a number of queries contained in
that cluster to recommend to the user.

Context information which we consider relevant for our purposes considers,
but is not limited to, the following items:

• User role: This refers to whether the user is for the moment acting as (real
time) decision maker in a business process, or whether she is manager,
only interested in overview and periodically generated reports.

• Current activity: This context item is related to the user role, but refers to
the specific task a user is performing. Tasks include gathering information
for periodic sales reports, querying to analyze current customer behavior
and so on.

• Active applications: The set of applications that are momentarily actively
used by the user. For example, if the user is also working on an Excel
stylesheet, data representation preferences in context can be inferred from
this.

• Device capabilities: The technical and hardware specifications of the de-
vice the user is working with, or by extent to the surrounding devices,
can be taken into account. For example, data representation preferences
will be different if the user is working with a smartphone, a tablet or with
a desktop computer.

• Location: The current location of the user can influence her needs or pref-
erences with regards to geographical information like points of interests,
etc.

5.4.4 Query Prediction

We propose an approach predicting users’ future query in order to proactively
execute a query that can fulfill her future needs. Indeed, this approach is
based on the assumption that common situations can be detected, even in
dynamic and changing environment. Based on this assumption, this prediction
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Figure 5.4 – Illustration of the Markov chains. Cloud shapes represent clusters of
similar queries (e.g. q3 or q4). A particular query is selected in each
cluster (e.g. q′1, q′2, . . . ). This particular query corresponds to the
most likely next user’s query of any query belonging to the preceeding
cluster, according to the model.

mechanism considers a time series (as a set of states being the clusters of the
previous step) representing the users observed situations. These observations
are time stamped and stored in a log file after each query execution (history).
Thus, by analysing the history H represented by the triplet

< intention, context,preferences > (5.10)

the prediction mechanism can learn the users behaviour modelM in a dynamic
environment, and thus deduce the most likely next query.

We infer the most probable next query by modeling user query behavior
as Markov chains3. Each query cluster represents a state in the associated
Markov chain. The series of states of the system has the Markov property.
A series with the Markov property is such that the probability of reaching a
state in the future, given the current and past states, is the same probability
as that given only the current state. So past states give no information about
future states. If the machine is in state x at time n, the probability that it
moves to state y at time n + 1, depends only on the current state x and not
on past states (see figure 5.4 for an illustration of the model). The transition
probability distribution can be represented as a matrix P , called a transition
matrix, with the (i, j)-th element of P equal to:

Pij = Pr(Xn+1 = j∣Xn = i) (5.11)
3This choice is motivated by the fact that queries from query logs are supposed to be

iteratively created. Thus each cluster of the Markov model corresponds to an intermediate
step of data analysis.
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The initial probability Pr(Xn+1 = j∣Xn = i) is 1
m

where m is the number
of queries that can follow the current query Qi. Pr(Xn+1 = j∣Xn = i) could be
updated by counting how often query Qj is preceded by query Qi and dividing
this number by the total amount of queries that were observed as following
query Qi. This means however that the past is as important as the present.
In most cases the series of queries a user performs will evolve through time.
For example, if the history considers queries performed by the user during
the last six months, then we want the more recent queries having relatively
more influence on the user behavior model than older queries. Consequently,
the transition probability function should be updated in a way that recent
transitions have more importance than older ones. For that, the following
exponential smoothing method can be used so that the past is weighted with
exponentially decreasing weights:

Pij = α × xj + (1 − α)P ′
ij (5.12)

P ′
ij represents the old probability and xj is the value for the choice taken at

query Qi with respect to query j. xj is zero or one. If xj = 1 then query Qj

was executed after query i, xj = 0 if not. Using this method, the sum of all
outgoing probabilities remains 1, as it is required for a transition probability
matrix. The parameter α is a real number between 0 and 1 that controls
how important recent observations are compared to history. If α is high, the
present is far more important than history. In this setting, the system will
adapt quickly to the behavior of the user. This can be necessary in a rapidly
changing environment or when the system is deployed and starts to learn. In
a rather static environment, α can be set low. In conclusion, by incorporating
the learning rate, we make sure the user behavior model is dynamic and evolves
together with changing habits or preferences of the user.

5.5 Summary & discussion

In this chapter, we presented results of multidimensional queries. These re-
sults are displayed in fact tables. Headers of the table are the measures and
dimensions involved in the multidimensional query. Then, we have introduced
the functional dependencies, as entities that belong to the same hierarchy (i.e.
dimensions of different levels in the same hierarchy) or entities that are valid
in the sense that they can appear together in the same query. As we will de-
scribe in chapter 6 on page 119, this relation is usefull in some application,
for instance for suggesting valid entities when auto-completing queries. In the
answering framework that has been detailed in chapter 3 on page 57, we have
mentioned conceptual queries as abstract multidimensional queries. In this
chapter, we described the conceptual model of these queries, and the links be-
tween this conceptual model and the visualization of data. Indeed, one aims at
rendering query results as charts or table, as it will be shown in the chapter 6
on page 119. Then, we have made explicit the translation from conceptual
queries to actual implementation of query languages (e.g. SQL or MDX). In
our case, this is performed by underlying BI systems. The second part of the
chapter is dedicated to personalization of multidimensional queries. Therefore,
we have integrated some existing approach for qualitative personalization (the
MyMDX approach [24]) with other kinds of preferences (which are domain-
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specific), such as chart preference. These preferences are intended to be used in
some human-computer interaction process, where users formulate queries and
refine them in an iterative way (i.e. in the context of a session of multidimen-
sional queries). The proposal is thus to suggest queries of interest for the user,
as being the range of most likely next queries. The prediction is made by a
prediction model, that is trained based on a corpus of queries, and computed
distance between multidimensional queries (expressing preferences as explained
above).

The conceptual query model introduced above has been fully integrated in
the answering framework (see also chapter 3 on page 57). The scenario which
recommends queries of interest based on a prediction model is currently being
evaluated. This topic is interesting in practice, since predicting most likely
next queries and executing them in an pro-active manner reduces execution
time of the system.





Chapter 6

Experiments & evaluation

Outline

6.1 Evaluating an IR system . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1.1 Classic evaluation metrics . . . . . . . . . . . . . . . . . . . 120

6.2 Evaluation proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.1 US Census Bureau data . . . . . . . . . . . . . . . . . . . . 121
6.2.2 Evaluation corpus . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.3 Performance results . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.4 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Auto-completion – an experiment on the search platform . . . . . 131
6.3.1 Usage statistics in BI documents . . . . . . . . . . . . . . . 131
6.3.2 Collaborative co-occurrence measure . . . . . . . . . . . . . 132
6.3.3 Query expansion . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.4 Results of the experimentation . . . . . . . . . . . . . . . . 134

In the area of IR, there are many methods and techniques for achieving a
similar goal. For instance, a popular survey [3] about NL interfaces to struc-
tured data (which is a tiny area within IR) reports not less than six ranges of
approaches for translating NL in database queries. As a result, much effort has
been devoted to promoting evaluation metrics on the one hand, and campaigns
on the other hand, such that the wide range of systems can be compared.

We present in section 6.1 classic evaluation metrics and campaigns for IR.
Then, we describe section 6.2 on the following page our evaluation protocol and
the results that we got. Besides the Q&A system itself, we detail in section 6.3
on page 131 the experiment that we led in the context of the search platform.

6.1 Evaluating an IR system

Evaluating an IR system is not an easy task. Indeed, considering classic metrics
of precision and recall (see section 6.1.1 on the following page), we believe that
for the sake of objectivity, queries from the test corpus should not be formulated
by users who know well the data schema. Moreover, there is no dataset nor
goldstandard queries that can be used besides those from TREC evaluation,
but are not suitable for BI purposes.

119
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6.1.1 Classic evaluation metrics

Main evaluation metrics in IR are precision and recall and their variants. Their
definition is given below.

Precision and recall

Precision, on the one hand, measures relevancy taking into account the total
number of retrieved documents, and thus estimates the brevity of the system’s
response. It is defined as:

p = ∣{retrieved documents} ∩ {relevant documents}∣
∣{retrieved documents}∣ (6.1)

Recall, on the other hand, measures relevancy but in terms of completeness:
the more relevant results are returned, the better the recall metric is. It is
defined as:

r = ∣{retrieved documents} ∩ {relevant documents}∣
∣{total relevant documents}∣ (6.2)

In many applications, recall is preferred than precision, because the precision
metric is not relevant in the case of system that returns huge number of results
(e.g., search systems over the Web). In other cases, precision is much more
interesting than recall, for instance when there is at most one relevant document
(thus recall is always 0 or 1).

Precision at k

In some cases, especially when recall is not relevant, an interesting metric is
the rank of correct results. Precision-at-k (noted p@k) is such a metric:

p@k = min(k, ∣{retrieved documents} ∩ {relevant documents}∣)
min(∣retrieved documents∣, k) (6.3)

It measures the precision taking into account at best the k first results triggered
by any search procedure.

6.2 Evaluation proposal

In this section, we apply the metrics introduced in the previous section, and
describe the results that we have got.

We propose an evaluation where:

• the document repository (i.e. the structured data) are external data (i.e.
they are not the data that have been used for experimenting the system
in the first place)

• queries are formulated by real users, but not users who took part to the
implementation of the system

• the document repository can be used to compare the system to other
similar system(s)

We introduce the data (i.e. the document repository) as well as the queries in
the following.
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Figure 6.1 – A few tables from the census dataset

6.2.1 US Census Bureau data

The public dataset from the US Census Bureau1 (called Census dataset in the
following) is composed of many demographic and economic facts. This dataset
is available as a relational database which we have integrated in our DBMS
(we use the SAP Hana™ database2). Figure 6.1 is an extract of some of the
48 tables that we have in our database dump. On this figure, we can see that
the table and field names are not the terms that can be used by real users to
query the dataset. For that reason, we have designed a multidimensional data
model which defines a mapping from the database elements to query terms.
As we can see on table 6.1, the same query term can be used for more than

Logic name Data model term
HHDFAM Family households
HINCY00_10 Household income 0$-10,000$
STATENAME State
PSTATABB State
PLSO2CRT Sulfur oxide combustion output emission rate

Table 6.1 – Comparison of logical names and terms used in the data model of the
Census dataset

one database element. For instance, the term “State” maps to the table field
STATENAME from the table Community and to the table field PSTATABB from the
table Plant.

The Census dataset is quite voluminous. To give an idea of the size of the
dataset, we provide table 6.2 on the next page the count of rows for the tables
that are included in the dataset.

These data are geographic, demographic and social census data. We have
integrated the Census dataset in our data warehouse and created manually the
data schemas corresponding to these dataset.

1See http://www.census.gov.
2See http://www.saphana.com.
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Table Size
DISTANCETOPOWERPLANTS 329802
FREEZIPCODEDATABASE 65535
HOUSING_AGG_AVM 44113
HOUSING_AGG_COMMUNITY_PROFILE 30223
HOUSING_DATAAMENITIES_2011 3907451
HOUSING_DATAAVM_NOV11 68844541
HOUSING_DATACOMMUNITY_PROFILE_2011 33416
HOUSING_DATADISTRICTS_Q32011 15258
HOUSING_DATAID_LOOKUP_SEP11 96658
HOUSING_DATAMEASURERESULTS_Q32011 535365
HOUSING_DATAPROGRAMS_Q32011 661936
HOUSING_DATASALESAGG_OCT11 286502
HOUSING_DATASALES_OCT11 380875
HOUSING_DATASCHOOLRATINGS_SEP11 81242
HOUSING_DATASCHOOLREVIEWS_SEP11_2 658026
HOUSING_DATASCHOOLS_Q32011 115243
HOUSING_DATAZONEON_AMENITIES_LKP_SEP11 3907451
HOUSING_DATAZONEON_GEOS_SEP11 85961
HOUSING_DATAZONEON_PROFILE_SEP11 48703
HOUSING_DATAZONEON_RELATES_SEP11 88868
HOUSING_DATAZONEON_SALESAGG_SEP11 320311
HOUSING_DATAZONEON_SCHOOLS_LKP_SEP11 71764
HOUSING_DATAZONEON_TO_BG_LKP_SEP11 246731
HOUSING_DATAZONEON_TO_ZIP_LKP_SEP11 124273
HOUSING_EGRD_EGRDPLT_V2 4998
HOUSING_EGRD_PLANT 4998
HOUSING_EGRD_PLANTMEASURES 9839
HOUSING_SAMPLE_COMMUNITY_PROFILE_2011 1757
HOUSING_SAMPLE_MEASURERESULTS_Q12011 8811
HOUSING_SAMPLE_PROGRAMS_Q12011 3002
HOUSING_VIEWS_ZIPS_2 29905
HOUSING_WALMART_RSS 33272
HOUSING_WEATHERFORECAST 1109137
WALMART_LOCATIONS 4411

Table 6.2 – Comparison of the sizes of tables from Census dataset

6.2.2 Evaluation corpus

As introduced section 6.2 on page 120, the evaluation corpus should be com-
posed of queries that have not been formulated by the same users as those who
had designed the data warehouse schema.

We present below the external collaboration platform ManyEyes™ on the
one hand, and the goldstandard queries that have been extracted from this
platform on the other hand.
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Figure 6.2 – ManyEyes collaborative platform

Collaborative visualization platform

ManyEyes™ is a collaborative platform3 where users share both datasets and
visualizations (e.g., charts) corresponding to these datasets. Besides, users
are invited to rank datasets and visualizations. Figure 6.2 is a screenshot of
the homepage of the platform. When exploring the available datasets used
by contributors, we observed that many datasets come from the US Census
Bureau, which we have described in section 6.2.1 on page 121.

Goldstandard queries

The dataset presented in section 6.2.1 on page 121 can be used to evaluate BI
systems. Indeed, when modeling this dataset in a multidimensional schema, we
end up with hundreds of dimensions and measures (see table 6.2 on the facing
page). Besides, we have observed that this dataset is very popular on search
systems for publicly available data sources (see popular tags on Figure 6.3 on
the next page). For example, WolframAlpha™ made part of the Census data4

available.
We have randomly selected titles of charts corresponding to Census dataset,

and suggest those titles as goldstandard queries that could be used as a test
corpus in order to evaluate any search system. These queries have been used
to evaluate our proposal (see section 6.2.4 on page 128).

The evaluation corpus is composed of the titles of the 50 best ranked vi-
sualizations (corresponding to the census dataset). This ensures that queries

3See http://www-958.ibm.com/.
4About WolframAlpha™: see http://www.wolframalpha.com/. See also http:

//blog.wolframalpha.com/2012/05/09/compute-american-community-survey-data-
for-every-geographic-area/.
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Figure 6.3 – Popular dataset tags on ManyEyes

are not formulated by agents who designed the data schema of the warehouse.
We present some of the goldstandard queries Table 6.2.2 on page 127. We have
measured performance in terms of execution time on the one hand, and IR
metrics on the other hand.

Our experiment shows that the system behaves to some extend similarly as
WolframAlpha™, which is a well-proven system. However, in the follwing we
like to discuss optimizations that would further improve our performance for
the given questions. The second column of table 6.2.2 (‘updated query’) depicts
modification required for the system to correctly interpret users’ requests. In
the last column (‘comment’) we provide a brief explanation on how the system
could be easily improved in order to correctly interpret users’ initial requests.

For instance, the second question “Home ownership by State” fails, because
the term ‘ownership’ is not part of the terminology of the data warehouse;
but the term ‘dewllings’ appears in some measures. Thus, basic linguistic
resources (like WordNet) could be used to relate synonyms or terms with similar
meanings. The fifth question (“And the whitest name in America is”) also
requires little effort to be understood by the system. Indeed, the base form
of the word ‘whitest’ is ‘white’ (which is known to the system). Thus adding
a stemming component would lead to a successful answered question in that
case.

An interesting question is “Where are rich people?”. It would require a little
more effort in order to be correctly processed by the system. To answer this
question, it requires to attach additional semantics to the data warhouse to
determine locations that would be recognized by the term ‘where’. In addition,
one would configure a range filter (e.g, using natural language patterns) to
declare the meaning of ‘rich’ (i.e. a certain income range). The question “of
Americans covered by health insurance” is of similar kind, because the term
‘cover’ can be translated to a filter on the fact table for “health insurance”.
The question “500MW+ Power Plants” would need a special natural language
pattern to correctly parse the expression “500MW+”.
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6.2.3 Performance results

We have measured the processing time of the overall answering system (see
figure 6.4). On this figure, we represent the processing time before rendering
the charts (plots “*”) and after rendering the charts (plots “x”).
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Figure 6.4 – Processing time before and after the chart generation process as a
function of the schema input nodes count

On this figure, we see that as expected the processing time seems to be
a proportion of the size of the graph used as input of the pattern matching
algorithm. The part of the execution time dedicated to rendering the chart is
approximatively a third of the global execution time. This is due to the fact
that datasets that are rendered as charts are too voluminous.

6.2.4 Evaluation results

We consider the following protocol:

1. Build a data schema for a goldstandard dataset (presented in previous
section)

2. Run the queries of the test corpus, and compute following evaluation
metrics:

a) average precision for all goldstandard queries
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b) precision-at-k (or precision@k)

c) overall processing time, and before chart generation of these queries

Recall is not a metrics of interest in our case, because the goldstandard queries
correspond to exactly one chart, i.e. one database query. We thus consider
a measure derived from precison called success at k that measures how far
is the first relevant answers within the list of results. The advantage of this
protocol, is that the considered queries during the evaluation (i.e. the test
corpus) have been formulated by real users. The major drawback is that many
of such queries contain noise (first because the “queries” were not supposed to
be queries, but titles). Therefore, we have only considered titles corresponding
to actual data in the dataset.
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Figure 6.5 – Success of answering goldstandard queries compared to WolframAl-
pha™

Figure 6.5 compares the success for k varying from zero to ten for the
answering system and WolframAlpha™. Corrected success stands for results
where the query has been modified in such a way that the system can bet-
ter respond. For instance, we have observed that WolframAlpha™ provides
better results if some queries are prefixed or suffixed with “US” or “Census”
to explicit a restriction to a subset of available data (“US”) or to the dataset
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itself (“Census”). Given the goldstandard queries, our system answers better
than WolframAlpha™. However, our observation is that one of the reasons why
we perform better is that WolframAlpha™ does not include the whole Census
dataset. Therefore, we have computed a secondary success measure, which
takes into account if the dataset is known or not (i.e. if the system is able to
answer the question). For WolframAlpha™, this has been determined by re-
formulating the questions several times until the expected result comes up. If
not, we considered the dataset unknown by the system. The results have been
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Figure 6.6 – Variant of success of answering goldstandard queries compared to Wol-
framAlpha™

plotted Figure 6.6. On this figure, we see that WolframAlpha™ performs better
(under the assumption presented above) from k = 4. This can be explained by
the fact that WolframAlpha™ has a better average precision than Quasl (see
table 6.4). Table 6.4, values have been computed based on the gold-standard

Quasl WolframAlpha™
0.26 0.43

Table 6.4 – Average precisions of Quasl and WolframAlpha™
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Figure 6.7 – Search-box of the answering system’s front-end with an auto-
completion implementation based on collaborative metrics

queries. The definition of average precision can be found in [48]. It roughly
corresponds to the proportion of good answers in the k first search results.

6.3 Auto-completion – an experiment on the search
platform

Besides the answering system itself (described in chapter 3 on page 57), we have
investigated auto-completion, i.e. the technique that allows to automatically
suggest expected words or keywords in the search box, while the user is typing
her query.

The front-end application of the system is composed of a search box, where
users are supposed to enter their query (see figure 6.7). This experiment aims
at providing suggestions on how to complete the current user’s query (before
the user validates the query). The problem of auto-completing a query is
formalized as follows [65]:

QE ∶ (u, q, params)↦ {(q1, r1), . . . , (qn, rn)} (6.4)

where (qi, ri) is the collection of scored queries such that for all i from 1 to
n, ∣qi∣ = [q∣ + 1. The idea in this formulation is to find candidate entities (i.e.
dimensions and measures) that are best associated with query q.

6.3.1 Usage statistics in BI documents

Functional dependencies and hierarchies previously presented provide very
structural knowledge regarding associations between BI entities. Beyond this,
some BI platforms propose repositories of documents like reports or dashboards
which can be used to compute actual usage statistics for measures and dimen-
sions. This kind of information is extremely valuable in our use case, since
query expansion implies to find the best candidate to associate to a given set
of measures and dimensions.

Structure of BI documents and co-occurrences

We use the structure of BI documents to define co-occurrences between mea-
sures and dimensions. For instance, BI reports are roughly composed of sections
which may contain charts, tables, text areas for comments, etc. Charts and
tables define important units of sense. Measures and dimensions associated
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in a same table/chart are likely to be strongly related and represent an anal-
ysis of specific interest to the user. Similarly, dashboards can be composed
of different pages or views which contain charts and tables. More generally,
any BI document referencing measures and dimensions could be used to derive
consolidated co-occurrences or usage statistics.

Personal co-occurrence measure

BI platforms provide access control rules for business domain models and doc-
uments built on top of them. Consequently, different users may not have access
to the same models and at a more fine-grained level to the same measures and
dimensions. Besides, repositories contain documents generated by and shared
(or not) between different users of the system. As a result, the measure of
cooccurrence that we define in this section is inherently personalized. Let us
consider a user u and let occu(e1) denote the set of charts and tables – visible
to the user u – referencing a BI entity e1, measure or dimension. Note that in
the following we only consider compatible entities (i.e. e1, e2 ∈ d).

We define the co-occurrence of two entities e1 and e2 as the Jaccard index
of the sets occu(e1) and occu(e2):

coocu(e1, e2) = J(occu(e1), occu(e2)) =
∣occu(e1) ∩ occu(e2)∣
∣occu(e1) ∪ occu(e2)∣

(6.5)

The Jaccard index is a simple but commonly used measure of the similarity
between two sample sets.

6.3.2 Collaborative co-occurrence measure

Cold-start users and coverage

In recommender systems, the coverage is the percentage of items that can actu-
ally be recommended, similar to the recall in information retrieval. Formula 6.5
presents a problem for cold-start users, i.e. those new to the system. Indeed,
these users do not have stored documents from which co-occurrences can be
computed. Collaborative recommender systems introduce the contribution of
other users in the item scoring function to improve the system’s coverage and
enable the exploration of resources previously unknowned (or unused) by the
user. A simple approach consists in using a linear combination of the user-
specific value and the average over the set of all users.

Using the social/trust network

The simple approach previously described broadens the collaborative contri-
bution to “the whole world” and all users have the same weight. Trust-based
recommender systems have illustrated the importance of considering the user’s
social network and, e.g., favoring users close to the current user [36]. Narrow-
ing the collaborative contribution down to close users presents benefits at two
levels: (a) results are more precisely personalized and (b) potential precom-
putation is reduced. Let us note SN(u) the set of users in u’s social network
which can be filtered, e.g., to keep only users up to a certain maximum dis-
tance. We propose the following refined co-occurrence measure, were α and β
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are positive coefficients to be adjusted experimentally such that α + β = 1:

cooc(u, e1, e2) = α ⋅coocu(e1, e2)+
β

∣SN(u)∣ ⋅ ∑
u′∈SN(u)

1

d(u,u′)coocu
′(e1, e2) (6.6)

This measure cooc(u, e1, e2) is defined for entities e1 and e2 exposed to the user
u by access control rules. The contribution of each user u′ is weighted by the
inverse of the distance d(u,u′). Relations between users can be obtained from a
variety of sources, including popular social networks on the Web. However, this
does not necessarily match corporate requirements since users of the system
are actual employees of a same company. In this context, enterprise directories
can be used to extract, e.g., hierarchical relations between employees. Clearly,
other types of relations may be considered but the actual construction of the
social network is not of the scope of this thesis.

User preferences

We distinguish explicit and implicit preferences, respectively noted prefu,expl
and prefu,impl. For a given entity e, we define the user’s preference function
prefu as a linear combination of both preferences, for instance simply:

prefu(e) =
1

2
(prefu,impl(e) + prefu,expl(e)) (6.7)

Explicit preferences are feedback received from the user, e.g., in the form of
ratings (in [0,1]) assigned to measures, dimensions. Let us note ru,e the rating
given by u to e and ru the average rating given by u. We define prefu,expl(e) =
ru,e if u has already rated e, and prefu,expl(e) = ru otherwise.

Implicit preferences can be derived from a variety of sources, for instance
by analyzing logs of queries executed in users’ sessions [20]. In our case, we
consider occurrences of BI entities in documents manipulated by the user as a
simple indicator of such preferences:

prefu,impl(e) =
∣occu(e)∣

maxe′(∣occu(e′)∣)
(6.8)

6.3.3 Query expansion

The aim of our system is to assist the user in the query design phase by ordering
suggestions of measures and dimensions she could use to explore data. When
she selects a measure or a dimension, it is added to the query being built and
suggestions are refreshed to form new consistently augmented queries.

Ranking

To complete a given query q = {e1, . . . , en} with an additional measure of di-
mension, we need to find candidate entities and rank them. Candidate entities
cj , j ∈ [1, p] are those defined in the same domain and compatible with ev-
ery ei determined using funtional dependencies. We then use the following
personalized function to rank each candidate cj :

ranku(cj , q) = { prefu(cj) if q = ∅
prefu(cj) ⋅ 1n ∑

n
i=1 cooc(u, cj , ei) otherwise (6.9)
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Measure Dimension Co-occurrence

Sales revenue

Quarter 0,38
State 0,25
Year 0,25
Category 0,25
Lines 0,22

Table 6.5 – Top-5 dimensions that most co-occur with the “Sales revenue” measure

The query expansion component can thus be defined as:

QE ∶ (u, q, params)↦ {(q1, ranku(c1, q)), . . . , (qp, ranku(cp, q))} (6.10)

Parameters

Beyond ranking, suggestions of the query expansion component can be fine-
tuned using various parameters:

• The maximum number of results.

• The type of suggested entities can be limited to measures and/or dimen-
sions.

• The domain can be restricted to a list of accepted models.

• Suggested dimensions can be grouped by and limited to certain hierar-
chies.

This may be used to reduce the number of suggestions and encourage the user
explore varied axis of analysis.

6.3.4 Results of the experimentation

We consider the query designer which simply presents a search text box to
the user (see figure 3.3 on page 61). As she types, candidate measures and
dimensions are proposed to the user as auto-completion suggestions. Figure 6.7
on page 131 shows measures (from distinct domain models) suggested when the
user starts typing ‘sa’: ‘Sales revenue’, ‘Avg of savegoal’ and ‘Keeper save goal’.
On the right side of the figure, the user has selected the first suggestion (i.e.
‘Sales revenue’) and keeps typing ‘c’. The system suggests the two dimensions
‘City’ and ‘Category’. The auto-completion initialization requires that the user
roughly knows the names of objects she wants to manipulate, which may be
a barrier to adoption. To help her get started and explore available data,
suggestions can be surfaced to the user before she even starts typing. For
instance, the most commonly used measures and dimensions of various domain
models could be suggested to start with. Table 6.5 presents the five dimensions
that most co-occur with a given measure named Sales Revenue.
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First, we sum up our contribution to the state of the art. Secondly, we
discuss our results, and suggest follow-up research topics as well as perspectives
to the work presented in this thesis.

7.1 Summary

Business users of today’s retrieval systems face the problem of finding relevant
documents in a short time. Indeed, there are many access points where infor-
mation can be found (e.g. applications like the corporate portal, wikis, forums,
etc.) and these applications do not co-operate correctly (e.g. underlying query
languages are different, and documents are of different types). More specifi-
cally in BI, today’s retrieval systems are able to offer reports or dashboards
that have been annotated beforehand, but annotating these documents is a
tedious task. Users may also want to execute queries over data warehouses,
because the information they are looking for may not already be in a report or
a dashboard. A range of retrieval systems on the Web are dedicated to seeking
for information over structured data belonging to various domains (such as
WolframAlpha). These systems are dedicated to non-expert users (standard
users); and provide not only one answer (as it would be in Q&A systems in
most of the cases) but a set of answers, corresponding to each interpretation
of user’s question (different interpretations correspond roughly to the domain).
In response to the issue mentionned beforehand, that finding information in
corporate settings is still a pain, retrieval systems in BI have emerged in cun-
junction with advances in visualization techniques aiming at delivering concise
answers related to huge amount of data.
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Numberous approaches and techniques were developed in order to inter-
face databases in NL, that we have sum up in chapter 2 on page 15. In
particular, systems which aggregate different data sources and which are
domain-independant focus today’s researchers’ attention (more specifically
Watson [16]). A typical approach consists in translating NL in an inter-
mediate query language (called pivot language in the NLP community), which
is then translated in the target (database) query language. Two other very
recent systems dedicated to BI questions, have also focused our attention are
Soda [8] and Safe [51]. The former system is a keyword-based search system
over data warehouses. It uses some kinds of patterns to map keywords and
some operators in the user’s query to rules to generate SQL fragments. It in-
tegrates various knowledge sources like a domain ontology etc. However, this
system does not focus on “using natural language processing to understand the
input” [8], nor any contextual information that should be taken into account
in modern system [33]. The latter system is an answering system dedicated
to mobile devices in the medical domain. It uses patterns in order to relate
keyword queries and NL queries. It uses semantic technologies to overcome the
problem of matching users’ terminology terms and database terms. They pro-
pose a variant of auto-completion, they suggest terms and relationships from
the ontology (and not only from the database). While authors insist on the
necessity of getting answers rapidly due to the domain (medical domain), more
than 30% of questions presented in their evaluation are answered in more than
50s.

The system that be propose is in the form of a search interface available
on desktop as well as on mobile devices, and has been described in chapter 3
on page 57. Users type or pronounce queries in their own terms, and search
results are eventually displayed in a dashboard. We focus in this thesis on the
translation of questions in NL in database queries. The system can be easily
configured:

• any data warehouse or more generally any repository of structured data
can be interface to our system with limited configuration effort. This
corresponds to the implementation of a new ‘search plugin’

• the system has been implemented for three languages (english, german
and french) but we are confident on the feasibility of supporting addi-
tional languages. The main limitation is imposed by the named entity
recognizer, that supports more than 30 languages. In terms of effort,
supporting a new language means translating data schema in the new
language, integrating named entity recognition rules for the new lan-
guage and translating sentences to be synthesized by the siri-like mobile
application.

We have implemented and end-to-end Q&A framework for BI. This framework
can be augmented with various search plugins, i.e. for supporting additional
data sources. Moreover, the different algorithms involved in this framework
have been implemented in a parallel way, in order to optimize the execution
time required by the overall system.

In chapter 4 on page 75, we define the patterns that are involved in the
translation of NL questions in conceptual queries (i.e. pivot language men-
tioned above). These patterns define constraints that must be satisfied:
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• in user’s question: words used by the user and (database) entities in her
query

• by the user’s context: device which is used to access the search applica-
tion, user’s profile (like her job title, her preferences, etc.)

Some of these constraints can be optional (for instance, a single pattern may
define that there should be at least one dimension in user’s query). Each
pattern triggers translation rules with slots, to be filled with actual values of
user’s query. This approach is inspired from the form-based Q&A approach,
but is much more flexible, since:

• there is no strong requirement in the order according to which the features
must be listed in the pattern

• the constraint problem is solved by a NER, wich allows variant (such
as synonyms), and not only well-formed terms with respect to the data
schema of the warehouse

The query model has been presented in chapter 5 on page 97. This model
is a high-level representation of any multidimensional query, that can be au-
tomatically translated in MDX or SQL (depending on the underlying data
warehouse).

We have evaluated our proposal in chapter 6 on page 119. This evaluation
consists in an original approach that we believe could be generalized to any
retrieval system in the BI domain. Indeed, in addition to an evaluation pro-
tocol, we suggest some gold-standard queries (formulated by real users) which
formulation vary from precise to very vague. Some additional metrics have also
been introduced, in particular distance metrics between patterns, which could
be the starting point to future work on machine learning.

The contribution to the sate of the art can be thus sumarized as follows:

• a set of constraint-matching algorithms, as a solution proposal to the
graph-matching problem already observed in keyword-based search in-
terfaces to structured data

• a framework for Q&A in the BI domain that can be easily configured for
new domains of application and for new kinds of data warehouses (e.g.
via the implementation of new search plugins)

• an evaluation framework for BI retrieval systems, through evaluation met-
rics and gold-standard queries from the Census dataset

• a basis for machine learning algorithms that would improve the system
that we have built

• a query model that we believe could be successfully associated to a pre-
diction model, and which main goal would be to decrease significantly the
response time of the entire system in executing pro-actively well-chosen
queries

We detail in the next section our proposal for future work, in order to improve
and go further the work presented in this thesis.
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7.2 Challenges & problems to be addressed in future
works

All the problems related to mapping NL queries to structured queries for data
warehouses have not been solved. We review below some research directions
to be considered as follow-up to the work presented in this thesis.

7.2.1 Personalized patterns

In our work, we do not consider personalized patterns, because we haven’t
seen any case where a pattern should be personalized. The case where it might
be of interest, is where the system could learn users terminology, and build
personalized patterns to this end.

7.2.2 Linguistic coverage

The current system as a good linguistic coverage, according to the evaluation
results presented in the previous chapter, but is currently limited. An imme-
diate follow-up to the current implemention is then to use machine learning
techniques to improve the current capabilities over time, basing for instance on
failing queries from query logs.

7.2.3 Prediction model

We have introduced in section 5.4 on page 111 a module performing query pre-
diction as an application to the personalization of multidimensional queries.
The implementation of this component is still in progress, and therefore we
suggest to further investigate both prediction and recommendation of multidi-
mensional queries.
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Pattern

We reproduce here an example of a pattern.

1 PREFIX rdf : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rdfs : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX data−binding : <http :// v i c e v e r s a t e ch . com/ rdfbeans /2.0/>
4 PREFIX bquery−model : <http :// r e s ea r ch . sap . corp / pattern/>
5 PREFIX grepo : <urn : grepo#>
6 PREFIX query− t r e e : <urn : grepo /query− t r e e#>
7 PREFIX s l a y e r : <urn : grepo / s l a y e r#>
8 PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
9

10 CONSTRUCT {
11 bquery−model : bquery data−binding : b ind ingClas s
12 "com . sap . r e s ea r ch . quest ionanswer ing . pattern . model . BusinessQuery "

.
13 bquery−model : d imens ionPro ject ionItem

data−binding : b ind ingClas s
14 "com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . DimensionProject ionItem"

.
15 bquery−model : p ro j e c t i on I t em data−binding : b ind ingClas s

"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . Expres s ionPro jec t ionI tem "
.

16 bquery−model : measureReference data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . MeasureReference "
.

17 bquery−model : measure data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . Measure"
.

18 bquery−model : memberClass data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . Dimension"
.

19 bquery−model : memberFilter data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . MemberFilter "
.

20 bquery−model : vectorMemberset data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . VectorMemberSet"
.

21 bquery−model :member data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model .Member"

139
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.
22 bquery−model : exp r e s s i onPro j e c t i on I t em

data−binding : b ind ingClas s
"com . sap . r e s ea r ch . ques t ionanswer ing . pattern . model . Expres s ionPro jec t ionI tem "
.

23 _: bquery rdf : type <http :// r e s ea r ch . sap . corp / pattern /bquery> .
24 _: bquery bquery−model : bquery/ analys i sType " comparison" .
25 _: bquery bquery−model : bquery/dataSource ?universeName .
26 _: bquery bquery−model : bquery/ hasPro jec t ionI tem

_: dimensionProject ionItem_1 .
27 _: bquery bquery−model : bquery/ hasPro jec t ionI tem

_: measureProjectionItem_1 .
28 ? pattern <urn : grepo / pattern#matches> _: query .
29 ? pattern rdfs : l a b e l ? patternLabe l .
30 ? pattern rdf : type ? patternType .
31 _: query rdf : type <urn : grepo / pattern#Query> .
32 _: query <urn : grepo / pattern#hasBusinessQuery> _: bquery .
33 _: bquery bquery−model : bquery/ ha sF i l t e rC l au s e

_: memberFilterClause .
34 _: memberFilterClause rdf : type bquery−model : memberFilter .
35 _: memberFilterClause bquery−model : memberFilter /hasMemberSet

_: memberSet .
36 _: memberSet rdf : type bquery−model : vectorMemberset .
37 _: memberSet bquery−model : typedMemberset/hasMemberClass

_: memberDimension .
38 _: memberSet bquery−model : vectorMemberset /hasMember

_:member_1 .
39 _: dimensionProject ionItem_1 rdf : type

bquery−model : d imens ionPro ject ionItem .
40 _: dimensionProject ionItem_1 bquery−model : dimension

_: dimension_1 .
41 _: measureProjectionItem_1 rdf : type

bquery−model : exp r e s s i onPro j e c t i on I t em .
42 _: measureProjectionItem_1

bquery−model : exp r e s s i onPro j e c t i on I t em /hasExpress ion
_: measureExpress ion .

43 _: measureExpress ion rdf : type bquery−model : measureReference .
44 _: measureExpress ion bquery−model : measureReference /hasMeasure

_: measure_1 .
45 _: measure_1 rdf : type bquery−model : measure .
46 _: measure_1 rdfs : l a b e l ?measureLabel_1 .
47 _: measure_1 bquery−model : measure/hasMeasureId

?measureOriginUri_1 .
48 _: measure_1 rdfs : i sDef inedBy ?measureUri_1 .
49 _: dimension_1 rdf : type bquery−model : memberClass .
50 _: dimension_1 rdfs : l a b e l ? dimensionLabel_1 .
51 _: dimension_1 bquery−model : memberClass/hasDimensionId

? dimensionOriginUri_1 .
52 _: dimension_1 rdfs : i sDef inedBy ?dimensionUri_1 .
53 _:member_1 rdf : type

<http :// r e s ea r ch . sap . corp / pattern /member> .
54 _:member_1 rdfs : l a b e l ?memberLabel .
55 _:member_1 bquery−model :member/hasValue ?memberLabel .
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56 _: memberDimension rdf : type
<http :// r e s ea r ch . sap . corp / pattern /memberClass> .

57 _: memberDimension rdfs : l a b e l ?memberDimensionLabel .
58 _: memberDimension bquery−model : memberClass/hasDimensionId

?memberOriginUri_1 .
59 _: memberDimension rdfs : i sDef inedBy ?memberUri_1 .
60 _: bquery <http :// r e s ea r ch . sap . corp / pattern#re f e r enc e sEnt i t y >

_: measure_1 .
61 _: bquery <http :// r e s ea r ch . sap . corp / pattern#re f e r enc e sEnt i t y >

_: dimension_1 .
62 _: bquery <http :// r e s ea r ch . sap . corp / pattern#re f e r enc e sEnt i t y >

_: memberDimension .
63 _: bquery bquery−model : bquery/ hasConf idence ? con f id ence .
64 }
65
66 WHERE {
67 ? pattern rdfs : l a b e l ? patternLabe l .
68 ? pattern rdf : type ? patternType .
69 ? queryUri query− t r e e : hasAnnotation ? annotationUri_1 .
70 ? annotationUri_1 query− t r e e : hasAnnotationType

<urn : grepo / f e a t u r e s / i n s t an c e s#MeasureAnnotationType> .
71 ? annotationUri_1 query− t r e e : r e f e r enc e sRe sou r c e ?measureUri_1

.
72 ? annotationUri_1 query− t r e e : con f id ence ?measureConfidence_1 .
73 ?measureUri_1 rdfs : l a b e l ?measureLabel_1 .
74 ?measureUri_1 grepo : o r i g i nUr i ?measureOriginUri_1 .
75 ? queryUri query− t r e e : hasAnnotation ? annotationUri_2 .
76 ? annotationUri_2 query− t r e e : hasAnnotationType

<urn : grepo / f e a t u r e s / i n s t an c e s#DimensionAnnotationType >.
77 ? annotationUri_2 query− t r e e : r e f e r enc e sRe sou r c e

?dimensionUri_1 .
78 ? annotationUri_2 query− t r e e : con f id ence

? dimensionConfidence_1 .
79 ?dimensionUri_1 rdfs : l a b e l ? dimensionLabel_1 .
80 ?dimensionUri_1 grepo : o r i g i nUr i ? dimensionOriginUri_1 .
81 ? queryUri query− t r e e : hasAnnotation ? annotationUri_3 .
82 ? annotationUri_3 query− t r e e : hasAnnotationType

<urn : grepo / f e a t u r e s / i n s t an c e s#DimensionValueAnnotationType>
.

83 ? annotationUri_3 query− t r e e : r e f e r enc e sRe sou r c e ?memberUri_1 .
84 ? annotationUri_3 rdfs : l a b e l ?memberLabel .
85 ? annotationUri_3 query− t r e e : con f id ence ?memberConfidence_1 .
86 ?memberUri_1 rdfs : l a b e l ?memberDimensionLabel .
87 ?memberUri_1 grepo : o r i g i nUr i ?memberOriginUri_1 .
88 ?measureUri_1 s l a y e r : hasUniverse ? un ive r s e Id .
89 ?dimensionUri_1 s l a y e r : hasUniverse ? un ive r s e Id .
90 ?memberUri_1 s l a y e r : hasUniverse ? un ive r s e Id .
91 ? un ive r s e Id rdfs : l a b e l ? universeName .
92 ? un ive r s e Id s l a y e r : hasLanguage ? language .
93 LET (? con f idence := ?measureConfidence_1 +

?dimensionConfidence_1 + ?memberConfidence_1 + 4)
94 }

Listing A.1 – Pattern matching queries like “Revenue per state in 2001?”
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Query logs

In this appendix, we reproduce a short example of query logs captured by our
Q&A framework.

1 {
2 "userQuery" : " revenue ␣per ␣ c i t y " ,
3 " c l i ckedDas lResu l tQuery " : "NonEmpty ( ( Revenue ) ␣IN␣

City : : ( Revenue .DESC) ) ; " ,
4 "PatternName" : "1Measure_1Dimension_2Filters " ,
5 "Universe " : "S360_CLUB_EN" ,
6 "Dimension" : "City " ,
7 "Measure" : "Revenue" ,
8 " resu l tType " : " da s lRe su l t " ,
9 " currentRank" : " 1 .34 " ,

10 " resultopenTime " : " 1341495982562" ,
11 " r e su l t c l o s eT ime " : " 1341496006179"
12 }
13 {
14 "userQuery" : " revenue ␣per ␣ c i t y " ,
15 " c l i ckedDas lResu l tQuery " : "NonEmpty ( ( Revenue ) ␣IN␣

Resort : : ( Revenue .DESC) ) ; " ,
16 "PatternName" : "1Measure_1Dimension_2Filters " ,
17 "Universe " : "S360_CLUB_EN" ,
18 "Dimension" : "Resort " ,
19 "Measure" : "Revenue" ,
20 " resu l tType " : " da s lRe su l t " ,
21 " currentRank" : " 0 .81 " ,
22 " resultopenTime " : " 1341496007538" ,
23 " r e su l t c l o s eT ime " : " 1341496009286"
24 }
25 {
26 "userQuery" : " revenue ␣per ␣ c i t y " ,
27 " c l i ckedDas lResu l tQuery " : "NonEmpty ( ( [ Sa l e s ␣ revenue ] ) ␣IN␣

State : : ( [ Sa l e s
28 ␣ revenue ] .DESC) ) ; " ,
29 "PatternName" : "1Measure_1Dimension_2Filters " ,
30 "Universe " : "eFashionS360_EN" ,
31 "Dimension" : " State " ,
32 "Measure" : " Sa l e s ␣ revenue " ,
33 " resu l tType " : " da s lRe su l t " ,
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34 " currentRank" : " 0 .66 " ,
35 " resultopenTime " : " 1341496011790" ,
36 " r e su l t c l o s eT ime " : " 1341496013598"
37 }
38 {
39 "userQuery" : " revenue ␣per ␣ c i t y " ,
40 " c l i ckedDas lResu l tQuery " : "NonEmpty ( ( [ Sa l e s ␣ revenue ] ) ␣IN␣

State : : ( [ Sa l e s ␣ revenue ] .DESC) ) ; " ,
41 "PatternName" : "1Measure_1Dimension_2Filters " ,
42 "Universe " : "eFashionS360_EN" ,
43 "Dimension" : " State " , "Measure" : " Sa l e s ␣ revenue " ,
44 " resu l tType " : " da s lRe su l t " ,
45 " currentRank" : " 0 .66 " ,
46 " resultopenTime " : " 1341496014521" ,
47 " r e su l t c l o s eT ime " : " 1341496016764"
48 }

Listing B.1 – Query log example

This log keeps trace of the user’s query, the pattern that were used, database
entities, the generated structured queries as well as clickthrough data (i.e. what
time and how long results were opened by the user).
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Mutldimensional queries

C.1 Automatic generation of SQL/MDX queries

We reproduce listing C.2 the automatic SQL generation for the following query:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dimension = {[City]}
measure = {(Sales revenue)}
filters = ∅
ordering = ∅
truncation = ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.1)

The datasource is a relational database, and for that reason the query genera-
tion ends up to an SQL query.

1 SELECT DISTINCT
2 "EFASHION" . "OUTLET_LOOKUP" . "CITY" AS DASL_1,
3 sum( "EFASHION" . "SHOP_FACTS" . "AMOUNT_SOLD" ) AS DASL_2
4 FROM
5 "EFASHION" . "OUTLET_LOOKUP"
6 INNER JOIN
7 "EFASHION" . "SHOP_FACTS"
8 ON
9 ( "EFASHION" . "OUTLET_LOOKUP" . "SHOP_ID"="EFASHION" . "SHOP_FACTS" . "SHOP_ID" )

10 GROUPBY "EFASHION" . "OUTLET_LOOKUP" . "CITY"

Listing C.1 – SQL query generation (1)

The following query:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dimension = {[Year]}
measure = {(Margin)}
filters = {State =′ Texas′} ∪ {State =′ NewY ork′}
ordering = {(Y ear, (Margin).DESC)}
truncation = ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.2)

ends up into the following technical query:

1 SELECT DISTINCT
2 sum( "EFASHION" . "SHOP_FACTS" . "MARGIN" ) AS DASL_1,
3 "EFASHION" . "CALENDAR_YEAR_LOOKUP" . "YR" AS DASL_2
4 FROM
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5 "EFASHION" . "CALENDAR_YEAR_LOOKUP"
6 INNER JOIN
7 "EFASHION" . "SHOP_FACTS"
8 ON (
9 "EFASHION" . "SHOP_FACTS" . "WEEK_ID"

10 =
11 "EFASHION" . "CALENDAR_YEAR_LOOKUP" . "WEEK_ID"
12 )
13 INNER JOIN "EFASHION" . "OUTLET_LOOKUP"
14 ON (
15 "EFASHION" . "OUTLET_LOOKUP" . "SHOP_ID"
16 =
17 "EFASHION" . "SHOP_FACTS" . "SHOP_ID"
18 )
19 WHERE
20 "EFASHION" . "OUTLET_LOOKUP" . "STATE" IN ( ’ Texas ’ , ’New␣

York ’ )
21 GROUPBY
22 "EFASHION" . "CALENDAR_YEAR_LOOKUP" . "YR"
23 ORDERBY 1 DESC

Listing C.2 – SQL query generation (2)
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Application screenshots

D.1 Desktop application

Figure D.1 is a screenshot of the desktop application.

Figure D.1 – Screenshot of the desktop application
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D.2 iPhone™/iPad™ application

Figure D.2 is a screenshot of the iPhone™ application. The component on the

Figure D.2 – Screenshot of the iPhone™ application

top is the search box, where users are invited to type their queries. Questions
can also be pronounced and recognized (the rounded rectangle entitled “Search
360” is indeed a button); in that case a colored bar shows the amplitude of the
voice and let users know that voice recognition service is running and ready for
use.

D.3 Search results

We have introduced section 3.1.3 page 66 different kinds of results used in the
different applications. Besides the standard fact table (an example can be found
in the section mentionned above), cross tables can be generated. Table D.1 is
an example of cross-table. The difference with a standard fact table is that it is

Year
City Store name 2009 2010 2011

New York Magnolia 1,023,060.70$ 1,687,359.10$ 1,911,434.30$
New York 5th 644,635.10$ 1,076,144.00$ 1,239,578.40$
Miami Sundance 405,985.10$ 661,249.80$ 811,923.60$

Washington Tolbooth 693,210.50$ 1,215,158.00$ 1,053,581.40$

Table D.1 – Example of a cross-table with two hierarchies
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possible to have two hierarchies (on both axis, respectively the first hierarchy
projected on the level “Year” and the second hierarchy projected on the level
“City”) while there can be only one hierarchy on a classic fact table.

In order to represent an additional hierarchy, the table structure is not suffi-
cient, and reports can be used to render the facts. On figure D.3, we reproduce

Figure D.3 – Example of report with two hierarchies (time and geographic hierar-
chies)

an example report output for the query composed of following entities:

• measures Sales revenue and Margin

• geographic hierarchy with the dimension City

• time hierarchy with the dimension Year
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Source code

We reproduce in this section the main classes that are part of our implemen-
tation.

1
2 public class Pattern2Das lSearchPlugin implements

ISearchEnginePlugin {
3
4 private stat ic Map<Str ing , DaSlProcessor> da s lP ro c e s s o r s =

new HashMap<Str ing ,
5 DaSlProcessor >() ;
6
7 protected HashMap<Str ing , Object> alreadyAddedQueries ;
8
9 @Override

10 public Re su l t I t e r a t o r search (QueryTree queryTree ,
11 f ina l Sess ionContext se s s i onContext ) {
12 try {
13 IGraph queryGraph = null ,
14 featureGraph = null , st fGraph = null , geoGraph = null ,
15 timeGraph = null , s lGraph = null , repoGraph = null ,
16 patternGraph = null , userGraph = null ;
17
18 IGraphRepoFactory f a c t o ry = ( IGraphRepoFactory )
19 OSGiHelper . getOSGiService ( Act ivator . getContext ( ) ,

IGraphRepoFactory . class ) ;
20 IGraphRepo graphRepo =

fa c t o ry . getGraphRepo ( se s s i onContext . getUserToken ( ) ) ;
21
22 queryGraph = graphRepo . getGraph (QueryTreeVocab .NS_DATA) ;
23
24 stfGraph = graphRepo . getGraph (STFVocab .NS_DATA) ;
25 featureGraph =

graphRepo . getGraph ( NlpFeatureVocab .NS_DATA) ;
26 geoGraph = graphRepo . getGraph (GKVocab .NS_GEOGRAPHIC_DATA) ;
27 timeGraph = graphRepo . getGraph (GKVocab .NS_TIME_DATA) ;
28 slGraph = graphRepo . getGraph (SLVocab .NS_DATA) ;
29 repoGraph = graphRepo . getGraph (RepoVocab .NS_UNKNOWN_DATA) ;
30 userGraph = graphRepo . getGraph (STFUserVocab .NS_DATA) ;
31 patternGraph = graphRepo . getGraph ( PatternVocab .NS_DATA) ;
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32
33 Model joinedModel = ModelFactory . createDefau l tMode l ( ) ;
34 jo inedModel = (Model ) queryGraph . getHandler ( ) ;
35 jo inedModel = ModelFactory . createUnion ( joinedModel ,

(Model )
36 stfGraph . getHandler ( ) ) ;
37 jo inedModel = ModelFactory . createUnion ( joinedModel ,
38 (Model ) featureGraph . getHandler ( ) ) ;
39 jo inedModel = ModelFactory . createUnion ( joinedModel ,
40 (Model ) geoGraph . getHandler ( ) ) ;
41 jo inedModel = ModelFactory . createUnion ( joinedModel ,
42 (Model ) timeGraph . getHandler ( ) ) ;
43 jo inedModel = ModelFactory . createUnion ( joinedModel ,
44 (Model ) slGraph . getHandler ( ) ) ;
45 jo inedModel = ModelFactory . createUnion ( joinedModel ,
46 (Model ) userGraph . getHandler ( ) ) ;
47 jo inedModel = ModelFactory . createUnion ( joinedModel ,
48 (Model ) patternGraph . getHandler ( ) ) ;
49
50 f ina l Model model = joinedModel ;
51 INodeQuery queryNode =

NodeQueryFactory . withType (SLVocab . CLASS_Universe ) ;
52 I t e r a t o r <INode> un i v e r s e I t e r a t o r =

slGraph . getNodes ( queryNode ) ;
53
54 while ( u n i v e r s e I t e r a t o r . hasNext ( ) ) {
55 INode universeNode = un i v e r s e I t e r a t o r . next ( ) ;
56 try {
57 // s e t up connect ion to un i ve r se
58 Univer seSes s i onHe lpe r s e s s i onHe lp e r = new

Univer seSes s i onHe lpe r (
59 universeNode . g e tAt t r ibute (RepoVocab . PROP_DATA_originUri ,

null )
60 ) ;
61 DaSlProcessor p ro c e s s o r = new

DaSlProcessor ( s e s s i onHe lpe r ,
62 universeNode . getLabe l ( ) ) ;
63
64 da s lP ro c e s s o r s . put ( universeNode . getLabe l ( ) , p r o c e s s o r ) ;
65 } catch ( Exception e ) {
66 l o gg e r . e r r o r ( "Could␣not␣ i n s t a n t i a t e ␣ das l ␣ p ro c e s s o r ␣ f o r ␣"
67 + universeNode . getLabe l ( ) + "␣due␣ to ␣"
68 + e . getMessage ( )
69 ) ;
70 }
71 }
72
73 f ina l INode bundleNode = stfGraph . createNode (
74 STFVocab . CLASS_Search360PlugInSearch
75 ) ;
76 bundleNode . s e tLabe l ( "Pattern2Dasl ␣ Search ␣Bundle" ) ;
77
78 f ina l HashMap<Str ing , INode> parameterSet t ings = new

HashMap<Str ing , INode>() ;
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79 parameterSet t ings . put (
80 "? queryUri " , FakeQueryNodeGenerator . doIt ( queryTree ,

queryGraph )
81 ) ;
82
83 f ina l Prior ityQueue<ScoredResultModel> constructedModels

= new Prior ityQueue<ScoredResultModel >() ;
84 Thread patternExecutorThread = new Thread ( ) {
85 @Override
86 public void run ( ) {
87 PatternExecutor . applyPatterns (model , constructedModels ,
88 s e s s i onContext . getUserToken ( ) , parameterSett ings ,

bundleNode
89 ) ;
90 }
91 } ;
92 patternExecutorThread . s t a r t ( ) ;
93
94 f ina l Prior ityQueue<BusinessQuery> bque r i e s = new

Prior ityQueue<BusinessQuery >() ;
95 Thread objectWrapperThread = new Thread ( ) {
96 @Override
97 public void run ( ) {
98 BQueryObjectWrapper . getBQueryObjects ( bquer i e s , constructedModels ,

model ) ;
99 }

100 } ;
101 objectWrapperThread . s t a r t ( ) ;
102
103 Bu f f e r edRe su l t I t e r a t o r r e s I t = new Bu f f e r edRe su l t I t e r a t o r (
104 this . g e tC la s s ( ) . getName ( ) , s e s s i onContext
105 ) {
106 boolean isRunning ;
107 boolean isQueueDone = fa l se ;
108
109 int NTHREADS =

eva lCon f i gu ra t i on . getProperty ( "EVAL_MODE" ) . toBoolean ( )
110 ? 1 : Runtime . getRuntime ( ) . a v a i l a b l eP r o c e s s o r s ( ) ∗ 2 ;
111 f ina l ExecutorServ i ce exec =

Executors . newFixedThreadPool (NTHREADS) ;
112 f ina l Queue<Result> r e s = new

LinkedBlockingQueue<Result >() ;
113 Map<Str ing , DaslResult> alreadyAddedQueries = new

HashMap<Str ing , DaslResult >() ;
114 IGraphRepoFactory f a c t o ry = ( IGraphRepoFactory )

OSGiHelper
115 . getOSGiService ( Act ivator . getContext ( ) , IGraphRepoFactory . class ) ;
116
117 IGraphRepo graphRepo =

fa c t o ry . getGraphRepo ( se s s i onContext . getUserToken ( ) ) ;
118 IGraph slGraph = graphRepo . getGraph (SLVocab .NS_DATA) ;
119
120 public void run ( ) throws Exception {
121 Thread schedulerThread = new Thread ( ) {
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122 @Override
123 public void run ( ) {
124 while ( ! isQueueDone ) {
125 while ( bque r i e s == null | | bque r i e s . peek ( ) == null ) {
126 try {
127 Thread . s l e e p (50) ;
128 } catch ( Inter ruptedExcept ion e ) {
129 }
130 }
131 while ( bque r i e s . peek ( ) != null ) {
132 BusinessQuery businessQuery = bque r i e s . p o l l ( ) ;
133 i f

( businessQuery . getDatasource ( ) . equa l s ( "$SIGNAL_DONE$" ) )
{

134 isQueueDone = true ;
135 break ;
136 }
137 DaslResult daslQueryAndChartType ;
138 try {
139 daslQueryAndChartType =

BQueryTranslation . bQueryToDaslQuery (
140 businessQuery , s e s s i onContext . getUserToken ( ) ,

slGraph , true
141 ) ;
142 i f ( alreadyAddedQueries . containsKey (
143 daslQueryAndChartType . getDaslQuery ( )
144 + daslQueryAndChartType . getUniverse ( ) )
145 ) {
146 DaslResult updatedDaslResult = alreadyAddedQueries
147 . get ( daslQueryAndChartType . getDaslQuery ( )
148 + daslQueryAndChartType . getUniverse ( ) ) ;
149 i f ( daslQueryAndChartType . ge tScore ( ) >

updatedDaslResult . ge tScore ( ) ) {
150 updatedDaslResult . s e tSco r e ( daslQueryAndChartType . ge tScore ( ) ) ;
151 updatedDaslResult . setPatternName (
152 daslQueryAndChartType . getPatternName ( )
153 ) ;
154 }
155 continue ;
156 }
157 scheduleQueryForExecution ( daslQueryAndChartType ) ;
158 } catch ( Exception e ) {
159 l o gg e r . e r r o r ( e . getMessage ( ) , e ) ;
160 }
161 }
162 }
163 exec . shutdown ( ) ;
164 }
165 } ;
166 schedulerThread . s t a r t ( ) ;
167 }
168
169 private void scheduleQueryForExecution (
170 f ina l DaslResult da s lRe su l t ) {
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171 alreadyAddedQueries . put (
172 das lRe su l t . getDaslQuery ( ) + das lResu l t . ge tUniver se ( ) ,

da s lRe su l t
173 ) ;
174
175 try {
176 l o gg e r . debug ( " execut ing ␣query="
177 + das lResu l t . getDaslQuery ( ) + "␣with␣ s co r e ␣"
178 + das lResu l t . ge tScore ( )
179 ) ;
180 Runnable requestHandler = new Runnable ( ) {
181 public void run ( ) {
182 try {
183 da s lP ro c e s s o r s . get ( da s lRe su l t . ge tUniverse ( ) ) . processQuery ( da s lRe su l t ) ;
184 r e s . o f f e r ( da s lRe su l t ) ;
185 } catch ( UnsupportedOperationException e ) {
186 l o gg e r . debug ( "query␣" + das lRe su l t . getDaslQuery ( )
187 + "␣ encountered ␣an␣ e r r o r "
188 ) ;
189 } catch ( Exception e ) {
190 l o gg e r . e r r o r (
191 " das l ␣ encountered ␣an␣ e r r o r ␣ t ry ing ␣ to ␣ execute ␣

Query␣"
192 + das lResu l t . getDaslQuery ( ) + " in ␣ un ive r s e ␣" +

das lRe su l t . ge tUniver se ( )
193 + "␣from␣ pattern ␣" + das lRe su l t . getPatternName ( ) ,

e
194 ) ;
195 }
196 }
197 } ;
198 exec . execute ( requestHandler ) ;
199
200 } catch ( Exception e ) {
201 l o gg e r . e r r o r ( "query=" + das lRe su l t . getDaslQuery ( ) + "␣

f a i l e d " , e ) ;
202 }
203 }
204
205 @Override
206 public void remove ( ) {
207 exec . shutdownNow ( ) ;
208 }
209
210 @Override
211 public Map<Str ing , Object> g e t S t a t i s t i c s ( ) {
212 return null ;
213 }
214
215 @Override
216 protected List<Result> moreResults ( Se s s i on s e s s i o n ) {
217 i f ( isRunning == fa l se ) {
218 isRunning = true ;
219 try {
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220 run ( ) ;
221 } catch ( Exception e ) {
222 l o gg e r . e r r o r ( e ) ;
223 }
224 }
225 while ( r e s . peek ( ) == null && ! hasFin i shedExecut ion ( ) ) {
226 try {
227 Thread . s l e e p (50) ;
228 } catch ( Inter ruptedExcept ion e ) {
229 }
230 }
231
232 List<Result> intermResult = new ArrayList<Result >() ;
233 while ( r e s . peek ( ) != null ) {
234 intermResult . add ( r e s . p o l l ( ) ) ;
235 }
236 return intermResult ;
237 }
238
239 private boolean hasFin i shedExecut ion ( ) {
240 return exec . i sTerminated ( ) && re s . peek ( ) == null ;
241 }
242
243 @Override
244 protected boolean hasMoreResults ( ) {
245 i f ( isRunning == fa l se ) {
246 isRunning = true ;
247 try {
248 run ( ) ;
249 } catch ( Exception e ) {
250 e . pr intStackTrace ( ) ;
251 }
252 }
253 boolean f i n i s h e d = hasFin i shedExecut ion ( ) ;
254 return ! f i n i s h e d ;
255 }
256 } ;
257
258 // t r i g g e r run method
259 r e s I t . hasNext ( ) ;
260 return r e s I t ;
261
262 } catch ( Exception e ) {
263 l o gg e r . e r r o r ( "" , e ) ;
264 }
265
266 return new L i s tR e s u l t I t e r a t o r (
267 this . g e tC la s s ( ) . getName ( ) , ses s ionContext , new

ArrayList<Result >() ) ;
268 }
269
270 public stat ic void populatePatternGraph (
271 f ina l IGraphRepo repo , f ina l Model model , f ina l INode

bundleNode ,
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272 f ina l IGraph slGraph , f ina l IGraph repoGraph , f ina l
St r ing queryLabel

273 ) {
274 f ina l IGraph patternGraph =

repo . getGraph ( PatternVocab .NS_DATA) ;
275 Thread populater = new Thread ( ) {
276 @Override
277 public void run ( ) {
278 St r ing query = ""
279 + "PREFIX␣ rd f : ␣

<http ://www.w3 . org /1999/02/22− rdf −syntax−ns#>\n␣"
280 + "PREFIX␣ rd f s : ␣

<http ://www.w3 . org /2000/01/ rdf −schema#>\n␣"
281 + "SELECT␣?query␣? patternLabe l ␣?bquery␣? en t i t yUr i ␣

?universeName\n␣"
282 + "WHERE␣{␣"
283 + "? pattern ␣ rd f : type ␣<urn : grepo / pattern#Pattern>␣ . ␣"
284 + "? pattern ␣ r d f s : l a b e l ␣? patternLabe l ␣ . ␣"
285 + "? pattern ␣<urn : grepo / pattern#matches>␣? query␣ . ␣"
286 + "?query␣ rd f : type ␣<urn : grepo / pattern#Query>␣ . ␣"
287 + "?query␣<urn : grepo / pattern#hasBusinessQuery>␣?bquery␣

. ␣"
288 + "?bquery␣ rd f : type ␣

<http :// r e s ea r ch . sap . corp / pattern /bquery>␣ . ␣"
289 + "?bquery␣

<http :// r e s ea r ch . sap . corp / pattern#re f e r enc e sEnt i t y >␣
? en t i t y ␣ . ␣"

290 + "? en t i t y ␣ r d f s : i sDef inedBy ␣? en t i t yUr i ␣ . ␣"
291 + "?bquery␣

<http :// r e s ea r ch . sap . corp / pattern /bquery/dataSource>␣
?universeName␣ . ␣"

292 + "}" ;
293
294 Query q = QueryFactory . c r e a t e ( query ) ;
295 QueryExecution qEx = QueryExecutionFactory . c r e a t e (q ,

model ) ;
296 Resu l tSet r s = qEx . ex e cS e l e c t ( ) ;
297
298 int bQueryCount = 0 ;
299 while ( r s . hasNext ( ) ) {
300 QuerySolution s o l = r s . next ( ) ;
301 // pat ternnode
302 St r ing patte rnUr i = PatternVocab .NS_DATA + "/"
303 +

URLEncoder . encode ( s o l . g e t L i t e r a l ( " patternLabe l " ) . t oS t r i ng ( ) ) ;
304 INode patternNode = patternGraph . getNode ( patte rnUr i ) ;
305 INode queryNode =

patternGraph . createNode ( PatternVocab .CLASS_Query) ;
306 queryNode . s e tLabe l ( queryLabel ) ;
307 patternGraph . createStatement (
308 patternNode , PatternVocab . PRED_Pattern_matches ,

queryNode , bundleNode
309 ) ;
310
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311 // bquery
312 St r ing bqueryUri = PatternVocab .NS_DATA + "/"
313 + URLEncoder . encode ( s o l . get ( "bquery" ) . t oS t r i ng ( )
314 ) ;
315 INode bqueryNode = patternGraph . getNode ( bqueryUri ) ;
316
317 i f ( bqueryNode == null ) {
318 bqueryNode = patternGraph . createNode (
319 bqueryUri , PatternVocab . CLASS_BusinessQuery
320 ) ;
321 bqueryNode . s e tLabe l ( "bquery␣" + bQueryCount++) ;
322 patternGraph . createStatement (
323 patternNode ,

PatternVocab . PRED_Pattern_hasBusinessQuery ,
324 bqueryNode , bundleNode
325 ) ;
326 }
327
328 INode entityNode =

slGraph . getNode ( s o l . get ( " en t i t yUr i " ) . t oS t r i ng ( ) ) ;
329 patternGraph . createStatement (
330 bqueryNode , PatternVocab . PRED_BQuery_referencesEntity ,
331 entityNode , bundleNode
332 ) ;
333 }
334 }
335 } ;
336 populater . s t a r t ( ) ;
337 }
338 }

Listing E.1 – Search plugin for the pattern approach
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