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Abstract

Since delay-sensitive and bandwidth-intense multimedia applications have emerged in

the Internet, the demand for network resources has seen a steady increase during the

last decade. Specifically, wireless networks have become pervasive and highly popu-

lated. These motivations are behind the problems considered in this dissertation. The

topic of my PhD is about the application of game theory, queueing theory and learning

techniques in wireless networks under some QoS constraints, especially in partially ob-

servable environments. We consider different layers of the protocol stack. In fact, we

study the Opportunistic Spectrum Access (OSA) at the Medium Access Control (MAC)

layer through Cognitive Radio (CR) approaches. Thereafter, we focus on the conges-

tion control at the transport layer, and we develop some congestion control mechanisms

under the TCP protocol.

The roadmap of the research is as follows. Firstly, we focus on the MAC layer, and

we seek for optimal OSA strategies in CR networks. We consider that Secondary Users

(SUs) take advantage of opportunities in licensed channels while ensuring a minimum

level of QoS. In fact, SUs have the possibility to sense and access licensed channels, or

to transmit their packets using a dedicated access (like 3G). Therefore, a SU has two

conflicting goals: seeking for opportunities in licensed channels, but spending energy for

sensing those channels, or transmitting over the dedicated channel without sensing, but

with higher transmission delay. We model the slotted and the non-slotted systems using

a queueing framework. Thereafter, we analyze the non-cooperative behavior of SUs,

and we prove the existence of a Nash equilibrium (NE) strategy. Moreover, we measure

the gap of performance between the centralized and the decentralized systems using the

Price of Anarchy (PoA).

Even if the OSA at the MAC layer was deeply investigated in the last decade, the perfor-

mance of SUs, such as energy consumption or Quality of Service (QoS) guarantee, was

somehow ignored. Therefore, we study the OSA taking into account energy consumption

and delay. We consider, first, one SU that access opportunistically licensed channels,

or transmit its packets through a dedicated channel. Due to the partial spectrum sens-

ing, the state of the spectrum is partially observable. Therefore, we use the Partially

Observable Markov Decision Process (POMDP) framework to design an optimal OSA

policy for SUs. Specifically, we derive some structural properties of the value function,

and we prove that the optimal OSA policy has a threshold structure.
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Thereafter, we extend the model to the context of multiple SUs. We study the non-

cooperative behavior of SUs and we prove the existence of a NE. Moreover, we highlight

a paradox in this situation: more opportunities in the licensed spectrum may lead to

worst performances for SUs. Thereafter, we focus on the study of spectrum management

issues. In fact, we introduce a spectrum manager to the model, and we analyze the

hierarchical game between the network manager and SUs.

Finally, we focus on the transport layer and we study the congestion control for wireless

networks under some QoS and Quality of Experience (QoE) constraints. Firstly, we

propose a congestion control algorithm that takes into account applications’ parameters

and multimedia quality. In fact, we consider that network users maximize their expected

multimedia quality by choosing the congestion control strategy. Since users ignore the

congestion status at bottleneck links, we use a POMDP framework to determine the

optimal congestion control strategy. Thereafter, we consider a subjective measure of the

multimedia quality, and we propose a QoE-based congestion control algorithm. This

algorithm bases on QoE feedbacks from receivers in order to adapt the congestion window

size. Note that the proposed algorithms are designed based on some learning methods

in order to face the complexity of solving POMDP problems.



Université d’Avignon et des Pays de Vauclus

Résumé et organisation de la thèse

Mots clès : Théorie des jeux, Évaluation de performances, Apprentissage.

La dernière décennie a vu l’émergence d’Internet et l’apparition des applications mul-

timédia qui requièrent de plus en plus de bande passante, ainsi que des utilisateurs qui

exigent une meilleure Qualité de Service. Dans cette perspective, beaucoup de travaux

ont été effectués pour améliorer l’utilisation du spectre sans fil. Le sujet de ma thèse

de doctorat porte sur l’application de la théorie des jeux, la théorie des files d’attente

et l’apprentissage dans les réseaux sans-fil, en particulier dans des environnements par-

tiellement observables. Nous considérons différentes couches du modèle OSI. En effet,

nous étudions l’accès opportuniste au spectre sans fil à la couche MAC en utilisant la

technologie des radios cognitifs (CR). Par la suite, nous nous concentrons sur le contrôle

de congestion à la couche transport, et nous développons des mécanismes de contrôle de

congestion pour le protocole TCP.

Les expériences de la Federal Communication Commission (FCC) révèlent que le spec-

tre sans fil est encore très peu utilisé. Afin d’optimiser son utilisation, la technologie

CR a émergée ces dernières années. En effet, cette technologie a permis d’explorer au

mieux les opportunités qui existent dans le spectre fréquentiel. Tout d’abord, nous nous

concentrons sur la couche MAC, et nous étudions les stratégies d’accès opportuniste

au spectre sans fil pour les utilisateurs secondaires (SUs). Nous considérons que les

SUs peuvent profiter des opportunités dans les canaux primaires, tout en assurant un

niveau minimal de qualité de service. Nous considérons que les SUs peuvent également

choisir de transmettre leurs paquets en utilisant un canal dédié (comme la technologie

3G par exemple). Par conséquent, les SUs ont deux objectifs conflictuels: la recherche

des opportunités dans les canaux primaires, mais en dépensant de l’énergie pour détecter

les canaux non utilisés, ou la transmission à travers le canal dédié, mais avec un délai

de transmission plus élevé. Nous modélisons le système en utilisant la théorie des files

d’attente et la théorie des jeux, et nous considérons à la fois le modèle slotté et le modèle

non-slotté. Par la suite, nous analysons le comportement non-coopératif des SUs, et nous

prouvons l’existence d’un équilibre de Nash entre les SUs. En outre, nous proposons une

expression analytique du prix de l’anarchie qui mesure l’écart de performance entre le

système centralisé et le système décentralisé.

Malgré que l’OSA à la couche MAC a été profondément étudié dans la dernière décennie,

les performances des SUs, telles que la consommation d’énergie ou la qualité de service,
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ont été en quelque sorte ignorées. Nous étudions l’OSA avec des contraintes d’énergie et

de qualité de service. Nous considérons, en premier lieu, que les SUs peuvent accéder aux

canaux primaires, ou transmettre à travers un des canaux dédiés. L’état du spectre sans-

fil est partiellement observable par les SUs. Par conséquent, nous utilisons les Processus

de Décision Markovien dans les environnements Partiellement Observables (POMDP)

pour concevoir la stratégie optimale d’OSA pour les SUs. Plus précisément, nous tirons

certaines propriétés structurelles de la value function et nous prouvons que la politique

optimale d’OSA pour les SUs est une politique à seuils.

Par la suite, nous étudions le modèle dans un contexte multi-utilisateurs. Nous analysons

le comportement non-coopératif des SUs et nous prouvons l’existence d’un équilibre de

Nash. En outre, nous mettons en évidence un paradoxe dans cette situation: plus de

disponibilités du spectre sans fil peut engendrer une perte de performance pour les SUs.

Par la suite, nous nous concentrons sur l’étude de la gestion du spectre sans-fil. En

effet, nous introduisons un gestionnaire de spectre dans le modèle, et nous analysons

le jeu hiérarchique entre le gestionnaire du réseau et les SUs. Plus précisément, nous

prouvons l’existence d’un équilibre de Stackelberg, une stratégie commune pour les SUs

et le gestionnaire du réseau de telle sorte que l’utilisation du spectre soit optimisée.

Enfin, nous nous concentrons sur le contrôle de congestion à la couche transport et

nous étudions le contrôle de la congestion pour les réseaux sans fil avec des contraintes

de qualité de service et de qualité d’expérience. Nous proposons, en premier lieu, un

algorithme de contrôle de congestion qui prend en compte les paramètres des applications

et la qualité multimédia. En effet, nous considérons que les utilisateurs maximisent leur

qualité multimédia en choisissant une politique de contrôle de congestion. Etant donnée

que les utilisateurs ne connaissent pas l’état de congestion aux goulots d’étranglement

dans le réseau, nous utilisons un POMDP pour modéliser le contrôle de congestion.

Par la suite, nous considérons une mesure subjective de la qualité multimédia, et nous

proposons un algorithme basé sur la qualité d’expérience pour contrôler la congestion.

En effet, Les utilisateurs adaptent la taille de leur fenêtre de congestion en se basant sur

les rétroactions de la qualité d’expérience. Nous utiliserons des modèles d’apprentissage

pour concevoir les algorithmes de contrôle de congestion afin de remédier à la complexité

des solutions des problèmes POMDP.
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Chapter 1

Introduction

The first decade of the new millennium has seen the rise of the number of Internet users.

Moreover, there has been a steady increase in requirements and expectations of network

services. In fact, a growing number of multimedia applications, ranging from audio

and video to sophisticated simulations and virtual reality environments, emerged in the

Internet. Indeed, wireless networks become pervasive, highly populated and increasingly

complex. Note that wireless communications become a key element in our modern life,

such as cellular phones, wireless headset, Satellite TV receiver, etc. Specifically, there

has been a dramatic development of the mobile telecommunication industry. In fact,

the number of cellular users has already surpassed the number of users subscribing to

wired telephone services. Thereby, the demand for wireless spectrum has been growing

rapidly, and the spectrum scarcity is becoming a severe problem that we have to face.

We propose, in this dissertation, some applications of game theory, self-adaptivity and

learning in wireless networks at different layers of the protocol stack. In fact, we study

the network management at the Medium Access Control (MAC) layer, and the con-

gestion control at the transport layer. Then, we focus on the Opportunistic Spectrum

Access (OSA) at the MAC layer through the Cognitive Radio (CR) paradigm. There-

after, we study the congestion control at the transport layer under some QoS and QoE

constraints.

Basically, the term cognition (from Latin, cognoscere, ”to know”) was used in many

disciplines to model aspects that are closely related to the concepts of knowledge, intel-

ligence, and learning. Note that the increasing capacity of mobile devices opened doors

for introducing smart behaviors and mechanisms in wireless networks. In networking,

cognition is mainly motivated by the system complexity and the difficulty to develop

simple decision-making elements. Recent years have seen a wide use of the words cog-

nitive, intelligent or smart in different networking and communication contexts. For

2
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example, [1] and [2] mentioned cognitive radio, [3] and [4] mentioned cognitive networks,

and we find smart radio in [5], and smart antennas in [6]. All these terms are accepted

with a justification for where to add cognition to the network. Joseph Mitola III pre-

sented the CR idea firstly in a seminar at KTH, The Royal Institute of Technology in

Stockholm [1]. The concept of CR comes out of the aim to utilize the radio spectrum

more efficiently, and opened new doors for emerging applications. In fact, experiments

from the Federal Communication Commission (FCC) reveals that the wireless spectrum

is not efficiently utilized (see Figure 1.1).

Figure 1.1: Opportunistic spectrum access can provide improvements in spectrum
utilization (Figure taken from [7]).

In the literature, the legacy spectrum holders are denoted primary users (PUs), and

the unlicensed users are denoted secondary users (SUs). It was mentioned in the FCC

report [8] that PUs are unaware of the presence of SUs.

Sharing efficiently network resources has been, usually, handled in a decentralized man-

ner at the transport layer through end-to-end congestion control mechanisms. Note that

TCP dominates today’s communication protocols at the transport layer, in both wireless

and wired networks, due to its simple and efficient solutions for end-to-end flow control,

congestion control and error control of data transmission over IP networks (see [9] and

[10]). However, despite of the success of TCP, the existing TCP congestion control is

considered unsuitable for delay-sensitive, bandwidth-intense, and loss-tolerant multime-

dia applications, such as real-time audio streaming, and video-conferences (see [9] and

[11]). Therefore, multimedia users aim to utilize intelligent congestion control that is

aware of the media content and the wireless environment.
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1.1 Outline

This dissertation is structured into three parts. In the following chapter, we provide

some techniques for the design, the analysis and the implementation of QoS-based ap-

plications for wireless networks in partially observable environments. Furthermore, we

present some applications of game theory, self-adaptivity and learning in wireless net-

works. In the second part of this dissertation, we focus on the OSA in CR networks.

In Chapter 3, we derive an optimal sensing policy for SUs having the possibility to

transmit through a dedicated band, or to sense licensed channels. We consider both the

slotted and the non-slotted models for PUs. Furthermore, we propose, in Chapter 4,

an optimal energy-delay constrained OSA for CR networks. We formulate the problem

using a POMDP framework, we derive some structural properties, and we prove the

existence of an optimal threshold-based stationary policy. The non-cooperative OSA,

in CR networks, is studied in Chapter 5. We model the OSA problem using Partially

Observable Stochastic Game (POSG), and prove the existence of a symmetric Nash

equilibrium (SNE) between SUs. Moreover, we study the network management in order

to improve the spectrum utilization through a Stackelberg game formulation. In the

third part of this dissertation, we focus on the self-adaptive congestion control at the

transport layer. We present a media-aware congestion control in Chapter 6. Follow-

ing this chapter, in Chapter 7, we present a QoE-aware congestion control algorithm

for conversational services in wireless environments. We conclude this dissertation and

give possible directions for future researches in Chapter 8. We provide all the thesis

publications in Appendix A.
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Unlike wired networks, in which the data transmission is isolated from interaction with

other transmissions, in wireless networks, the medium is shared between all devices

that are in the same transmission range. To overcome the interference between wireless

devices, wireless networking technology has become an active research area in the last

decade. Wireless networks are increasingly used with the advent of standards such

as WiFi, WiMAX, Bluetooth and UMTS. There is no doubt that the next-generation

wireless technologies promise higher levels of complexity.
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This chapter is devoted to introduce the CR architecture and the congestion control, and

to define some basic theoretical concepts, which will be used in the following chapters.

The remaining sections of the chapter are structured as follows: In the next section, we

present CR networks and their practical implementation. We introduce, in Section 2.2,

the congestion control for wireless networks. Section 2.3 provides some insight about

the decision theory, and we describe some basics of the queueing theory in Section 2.4.

Section 2.5 introduces the game theory, and Section 2.6 introduces learning algorithms.

We present some application of game theory, self-adaptivity and learning for wireless

networks in Section 2.7. Finally, Section 2.8 concludes the chapter.

2.1 CR networks

There is a general agreement that traditional fixed spectrum allocation can be very inef-

ficient, considering that most of the time, bandwidth that was allocated is not used and

the corresponding channel is idle, which form spectrum holes. Although the unlicensed

access to the spectrum achieves better utilization of the spectrum by using spectrum

holes, (see Figure 2.1) it introduces new challenges such as: the identification of spec-

trum holes, the competition between SUs, etc. Note that the design of CR networks

involves several disciplines, such as decision theory, queueing analysis and game theory.

Figure 2.1: Wireless spectrum holes.

Furthermore, many studies showed that while some frequency bands in the spectrum

are heavily used, other bands are largely unused. Note that most of the available radio

spectrum was already allocated to existing wireless systems. Thus, the importance of

CR paradigm aroused for allocating valuable wireless resources. The term cognition is

described as the faculty of a mobile or a network to adapt its communication parameters

(transmission power for mobiles or frequency for a base station) to perturbations of its

environment. For instance, Ian F. Akyildiz et al. defined CR in [7] as follows:

”A ”Cognitive Radio” is a radio that can change its transmitter parameters based on

interaction with the environment in which it operates”.
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A big new challenge in the networking community is how to put cognition into net-

works. A radio system having this capability is called a CR, which generally uses the

Software-defined Radio (SDR) technology. In fact, CR users are equipped with an SDR

in order to sense and access the licensed spectrum. The SDR is considered to be the

key technology that allows mobile devices to implement CR in practice. Both concepts

SDR and CR are introduced in order to enhance the efficiency of the spectrum utiliza-

tion in wireless systems. An SDR is defined as a reconfigurable wireless communication

system that tunes dynamically its transmission parameters, such as operating frequency

bands, modulation mode and transmission protocol. This adjustability can be achieved

by software-controlled signal processing algorithms. The main functions of an SDR are:

• Multi-band operation: the ability to transmit over different frequency spectrums

(cellular bands, TV bands, etc.).

• Multi-standard support : the ability to support different standards (GSM, WiMAX,

WiFi, etc.), and different interfaces within the same standard (e.g. 802.11a,

802.11b, 802.11g in the WiFi standard).

• Multi-service support : the ability to support multiple types of services (3G, broad-

band wireless Internet, etc.).

• Multi-channel support : the ability to transmit and to receive over multiple fre-

quency bands simultaneously.

Figure 2.2: Components of a CR user.

A CR is aware of its environment, the internal state and predefined objectives, and looks

for channel occupancy, modulation, etc., in order to make decision about its behavior.
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For instance, a CR user may use SDR, so that it can reconfigure itself in order to optimize

its transmission parameters. We illustrate, in Figure 2.2, the architecture of a CR node.

The different components of a CR user are defined as follows:

• An SDR-based wireless transceiver that observes the activity of the frequency

spectrum, and changes dynamically its transmission parameters.

• A spectrum analyzer that uses measured signals to analyze the spectrum utilization

and ensure that the transmission over the spectrum is not interfered with PUs.

Various signal processing techniques can be used in order to infer the spectrum

usage information.

• A decision maker that defines the spectrum access strategy based on knowledge

of the spectrum utilization. The optimal decision depends on the PUs’ behavior,

as well as the competitive or cooperative behavior of SUs. Different techniques,

such as optimization theory, game theory and stochastic optimization, can be used

in order to obtain an optimal solution.

• A learning and knowledge extraction mechanism that uses information of spectrum

usage to understand the RF environment, i.e. the behavior of PUs. CR users

maintain a knowledge base in order to adapt their transmission parameters and

achieve the desired objective.

The new spectrum-licensing paradigm, initiated by the FCC in [8], promoted the idea

of using the CR technology in order to face the spectrum scarcity problem. The new

spectrum licensing allows unlicensed users to access the spectrum as long as they do

not harm PUs, which can be achieved by spectrum sensing or power control. With the

development of the CR technology, Dynamic Spectrum Access (DSA) and OSA become

promising approaches that achieve major gains in the efficiency of spectrum utilization,

and solving the spectrum scarcity problem. The design of DSA involves academia and

industry, as well as spectrum policy makers to deal with both technical consideration

and regulatory requirements. Furthermore, the development of DSA requires multidis-

ciplinary knowledge, such as wireless communications, signal processing, optimization,

artificial intelligence, decision theory, etc. For example, the competition and the cooper-

ation between SUs accessing the same licensed bands can be modeled using game theory

and utility-based techniques.

Game theory seems an ideal mathematical tool for evaluating the performance of com-

munication systems. Since licensed channels have been opened for the unlicensed use,

several works have focused on the interaction between SUs. Note that SUs may compete

or cooperate with each other when accessing the spectrum. The competitive and the
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Table 2.1: Standards for CR Aspects

Aspects Covering Standard Bodies

Definition IEEE Dyspan, ETSI, ITU-R.

Coexistence IEEE 802.19, IEEE Dyspan.

SDR IEEE Dyspan, SDR forum, ITU-R, OMG.

Radio Interfaces IEEE 802.22, 3GPP.

Heterogeneous Access ESTI, IEEE Dyspan.

Spectrum Sensing IEEE 802.22, IEEE Dyspan.

cooperative behavior of SUs was depicted in [12], [13], [14], [15], [16] and [17]. For ex-

ample, authors of [18] proposed a game theoretic framework to analyze the behavior of

cognitive radios for distributed adaptive channel allocation. They defined two different

objective functions for the spectrum sharing games, which capture the utility of selfish

users and cooperative users, respectively. Based on the utility definition for cooperative

users, they showed that the channel allocation problem can be formulated as a potential

game, and thus converges to a deterministic channel allocation Nash equilibrium point.

The survey paper [19] presented some some application of game theory. The survey

outlines research challenges and future directions in game theoretic modeling approach

in CR networks.

The potential of CR users has been recently identified by various policy [8] and [20],

research [21], standardization [22], [23], and [24], and commercial organizations. The

IEEE 1900 Standards Committee on Next Generation Radio and Spectrum Management

was established in 2005 and jointly supported by the IEEE Communications Society

(ComSoc) and the IEEE Electromagnetic Compatibility (EMC) Society. The concern

of IEEE 1900 is to address key standardization issues in the emerging fields of spectrum

management and advanced radio system technologies such as CR, SDR, and adaptive

radio systems. Tables 2.1 and 2.2 give some standards for the CR technology. The paper

[25] and references therein provide an extensive study of standards in the CR field.

The licensed spectrum can be utilized by SUs through either OSA or Dynamic Spectrum

Sharing (DSS). In the first approach, SUs access licensed channels only when PUs are

not using them. Using the DSS, SUs are allowed to use simultaneously the spectrum

with PUs, as long as their transmissions do not cause harmful interferences with PUs.

The main challenge for CR networks is to locate spectrum holes and distribute them

efficiently. The surveys [7], [26] and [27] provide a summary about recent works and

design issues in CR networks.
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Table 2.2: IEEE Dyspan Working Groups

IEEE 1900.1 Terminology and concepts for next generation radio systems and
spectrum management.

IEEE 1900.2 Interference and coexistence analysis.

IEEE 1900.3 Conformance evaluation of SDR software modules.

IEEE 1900.4 Architectural building blocks enabling network device distributed
decision-making in heterogeneous wireless access networks.

IEEE 1900.5 Policy language and policy architectures for managing CR, and
for DSA applications.

IEEE 1900.6 Spectrum sensing interfaces and data structures for dynamic spec-
trum access and other advanced radio communication systems.

IEEE P1900.7 Radio interface for white space dynamic spectrum access radio
systems supporting fixed and mobile operation.

IEEE 802.22 Wireless communication at 54-863 MHz. It has an arrangement
related to the identification of PUs and defining power levels so as
not to interfere with adjacent bands. It is targeting at using CR
techniques to allow sharing of the TV spectrum with broadcast
service.

2.2 Congestion control in wireless networks

With the increase of the heterogeneity and the complexity of the Internet, the standard

TCP congestion control mechanism becomes inefficient (see [28] and [29] for example).

The main reasons, for this inefficiency, is that congestion signals are only indicated

by packet loss, and TCP uses fixed Additive Increase Multiplicative Decrease (AIMD)

algorithm to adapt the congestion window size. Nevertheless, the window size should

be changed according to the network environment and the media content. Note that

physical impairments of the wireless transmission medium increase the complexity of

designing a media-aware congestion control for wireless environments.

Despite of the success of TCP, the existing congestion control is considered unsuitable

for delay-sensitive, bandwidth-intense, and loss-tolerant multimedia applications, such

as real-time audio streaming, video-conferences etc. (see [9] and [11]). There are three

main reasons for this:

• First, TCP is error-free and trades transmission delay for reliability. In fact, pack-

ets may be lost during transport due to network congestion and physical impair-

ments. TCP keeps retransmitting them until they are transmitted successfully,

even with a large delay. Note that although multimedia packets are successfully

received, they are not decodable if they are received after their respective delay

deadlines.
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• Secondly, TCP congestion control adopts an AIMD algorithm, which linearly in-

creases its congestion window size per Round-Trip Time (RTT) when there is no

packet loss, and multiplicatively decreases the congestion window size when packet

loss occurs. This results in a fluctuating TCP throughput over time, which signif-

icantly increases the end-to-end packet delay, and leads to worse performances for

multimedia applications [11].

• Finally, standard TCP congestion control is based on network performance metrics

(namely QoS metrics) and not on a subjective metric of the quality perceived by

the user (measured through the QoE). In wireless systems, where the environment

has an important impact on the quality of multimedia applications, a QoE-based

congestion control for TCP is welcome.

Some variant of TCP was proposed, such as TCP Vegas [30] and FAST TCP [31],

using the RTT values for the congestion indication. Note that the RTT usually increase

before packet losses occur when the network is congested. FAST TCP is developed at the

Netlab, California Institute of Technology and now being commercialized by FastSoft. It

is compatible with existing TCP algorithms, requiring modification only to the computer

which is sending data.

The key idea of designing a wireless TCP is to distinguish the cause of packet loss [28].

Many schemes are proposed in the literature. For example, TCP Veno [32] estimates the

backlogged packet in the buffer of the bottleneck link, as illustrated in Algorithm 1. It

determines the optimal throughput the network can accommodate based on the minimal

RTT, denoted BaseRTT . The difference between the optimal throughput and the actual

throughput can be used to derive the amount of backlogged packets in the queue of the

bottleneck link. TCP Veno suggests that the loss is said to be random if the number of

backlogged data is below a threshold β, and congestive otherwise.

Algorithm 1 TCP Veno Algorithm: distinguish the cause of packet loss [32]

when packet loss is detected by fast retransmit:
if (DIFF < β) then

ssthresh = cwndloss⇥ (4/5);
//where DIFF = (cwnd/BaseRTT − cwnd/RTT )⇥BaseRTT
//random loss ( due to bit errors ) is most likely to have occurred

else
ssthresh = cwndloss/2 ;
// congestive state is most likely to have occurred,
//even there occurs random loss at this time

end if
when packet loss is detected by retransmit-timeout timer:
ssthresh is set to half of the current window ;
slow start is performed; // performs the same action as in Reno
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2.3 Decision-making models

Whether we make it consciously or not, every day we make several decisions. Frequently,

it is not trivial to make the right decision for some problems. Usually, decisions we take

have not only immediate results or outcomes, but impact also our future decisions.

Unless we take into account both present and future impact of our decisions, we may

not achieve good overall performances. We study, in the following section, a decision

model, useful for studying a wide range of multi-stage optimization problems.

2.3.1 Markov decision process

We focus, in this section, on the sequential decision model, Markov decision process

(MDP), where the decision maker, usually called agent or controller, makes decisions

sequentially. We denote by decision epoch, every time the agent has to make a decision.

At every decision epoch, the agent observes the state of the system and chooses an

action. Choosing an action in a given state has mainly two results: the agent receives a

reward, and the system evolves to a possibly different state at the next decision epoch.

We formulate an MDP problem as follows:

• Decision epochs: Denote by T the set of decision epochs. If this set is finite, the

decision problem is said to be finite horizon problem, otherwise it is called an

infinite horizon problem.

• States: At every decision epoch, the system occupies a state s(t). S denotes the

set of all possible states.

• Actions: We denote the set of actions for each state s by As, and the set of all

possible actions is referred to as A = [s2SAs.

• Immediate reward R : S ⇥ A ! IR: We denote by rt(s, a), defined for state s 2 S
and action a 2 As, the real-valued function that assigns, for a given decision epoch

t, a value as outcome for taking the action a in the state s. If rt(s, a) is positive,

it is called reward function. Otherwise, it is called cost function.

• Transition probabilities P : S ⇥ A ⇥ S ! [0, 1]: When the agent takes the action

a in the state s, the system state in the next decision epoch is determined by

transition probabilities pt(.|s, a). We usually assume that
P

j2S pt(j|s, a) = 1.

• Decision rules : Decision rules are functions dt : S ! A, which specify the action

choice when the system is in the state s at the decision epoch t.
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A decision rule is said to be Markovian if it depends on previous system states and

actions only through the current state of the system, and said to be deterministic if it

determines the action to be chosen with certainty. We define, in the following, strategies

for agents in our decision problem.

Definition 2.1. A policy, contingency plan or strategy specifies the decision rule to be

used at every decision epoch. A policy ⇡ = (d1, d2, · · · ) is a sequence of decisions, one

for every decision epoch. We denote Γ the set of all possible policies.

Definition 2.2. We call a stationary policy, a policy that determines the action to be

chosen depending on the system state, regardless of decision epochs. A stationary policy

has the form ⇡s = (d, d, · · · ), and we denote by Γs the set of all stationary policies.

The utility function, denoted U , represents the satisfaction of the agent. Note that the

agent is trying to maximize its utility function if we have considered a reward function in

the instantaneous reward, or trying to minimize its utility function if we have considered

a cost function in the instantaneous reward. Specifically, there are three types of utility

functions: the total expected reward, the average expected reward, and the discounted

expected reward, defined as follows:

• The total expected reward: V =
P
t2T

rt(s, a).

• The average expected reward: V = lim inf
T!1

1
T

TP
t=1

rt(s, a).

• The discounted expected reward: V =
P
t2T

γtrt(s, a), where γ is a discount factor.

Note that MDP is not designed to solve decisions problems when the system state is

partially observable. Hopefully, decision problems for partially observable environment

can be modeled using a Partially Observable Markov Decision Process (POMDP) frame-

work.

2.3.2 Partially observable Markov decision process

The POMDP is a very general and powerful framework, extending the application of

MDPs to a wider range of problems. Smallwood and Sondik proposed the first exact

POMDP algorithm in 1971, [33]. They proposed the value iteration algorithm to solve

POMDP problems (see [33], [34] and [35]). Note that a POMDP is an MDP, in which

agents are unable to observe the system state. The agent’s goal remains to maximize

the expected future rewards.

A POMDP can be described as a tuple hT ,S,A, R,P,Ω, Oi where:
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• T ,S,A, R and P describe an MDP.

• Ω is a finite set of observations an agent can experience of its world.

• O : S ⇥ A ! Π(Ω) is the observation function, which maps actions and states to

a probability distribution over possible observations.

As the agent does not directly observe the global state of the system, it infers the global

system state based on past observations and actions that can be summarized in a belief

vector !(t) = {!1(t), ..., !2N (t)}, where !j(t) is the conditional probability that the

system state s(t) = j.

Note that a POMDP may be reduced to an MDP over the belief space. Specifically,

we define, in the following, an important property of the value function for a POMDP

optimization: the Piecewise Linear and Convex (PWLC) property.

It is due to Smallwood and Sondik [34] that the value function V (λ(t)) is shown to be

convex and piecewise linear, as illustrated in Figure 2.3, where λ(t) denotes the belief

vector at the time slot t. In the example illustrated in Figure 2.3, the domain of V (λ(t))

is partitioned into a finite number of regions. Each region is characterized by a Υ-

vector. Note that the value function is given by the inner product of λ(t) and a vector

Υi(t), where λ(t) is in the region characterized by the vector Υi(t). The belief vector

is transformed into a possibly different point in the space of belief at the succeeding

time slot, depending on actions and observations. Note that the domain of V (λ(t− 1))

is partitioned into tree regions at the time slot t− 1, and become partitioned into four

regions at the time slot t. The PWLC property of the value function is the key element

for designing an optimal solution for POMDP problems.

Definition 2.3. The value function V (λ(t)), where λ(t) is the belief vector, is said

to be PWLC if it can be represented by a finite set of |S|-dimensional vectors, Υ =

{Υ1,Υ2, · · · }, such that V (λ(t)) is the inner product of the belief vector and a Υ-vector.

We present, in the following section, one of the major approaches of programming that

is usually used in order to solve MDP and POMDP problems.

2.3.3 Dynamic programming

The Dynamic Programming (DP) techniques transform complex problems, such as MDP

and POMDP, into sequences of simpler subproblems. The key idea of the DP is the

multi-stage nature of the optimization procedure. Richard Bellman introduced the term

dynamic programming in 1940s. He refined this concept to the modern meaning in 1953
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Figure 2.3: The structure of the value function at the time slots t− 1 and t.

[36] for decision problems. The optimality of the DP solution results from the following

principle of optimality:

Definition 2.4. In an optimal sequence of decisions or choices, each subsequence must

also be optimal.

MDP and POMDP problems are solved, with the DP, by using Bellman’s equations,

which are also called DP equations or optimality equations.

Definition 2.5. The Bellman’s equations are expressed as follows:

• The total expected reward: V ⇡(s) = r(s, ⇡(s)) +
P
s02S

p(s0|s, ⇡(s))V ⇡(s0).

• The average expected reward: gu(s0) + V π(s|s0) = r(s, ⇡(s)) +
P

s02S

p(s0|s, ⇡(s), s0)V π(s0|s0),

where gu(s0) is a constant that depends on the initial state s0.

• The discounted expected reward: V ⇡(s) = r(s, ⇡(s)) + γ
P
s02S

p(s0|s, ⇡(s))V ⇡(s0),

where γ is a discount factor.

2.4 Queueing analysis

Basically, the queueing theory is the mathematical study of waiting lines or queues.

Note that the queueing theory was applied in diverse fields. Specifically, the queueing

theory represents an important mathematical tool for computer and network analysis.

For example, the queueing analysis may answers the following questions:

• What is the packet delay at routers?

• What is the fraction of packets that will be lost?
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Figure 2.4: Single-server queueing
model. Figure 2.5: Multi-server queueing

model.

• What is the optimal size of the buffer?

A queueing model can be either single-server (see Figure 2.4) or multi-server (see Figure

2.5), and is characterized by:

• The arrival process: it is usually assumed that the arrival times (of packet for

example) are independent and have a common distribution. A Poisson process

arrival is defined by exponential inter-arrival times.

• The service times : they are usually assumed to be independent and identically

distributed, and independent of the inter-arrival times.

• The service discipline: there are many possibilities for the order in which costumers

enter service (FIFO, LIFO, Random, priority, PS, etc.).

• The service capacity : the number of servers helping customers.

• The waiting capacity : the number of costumers that can be present in the system

simultaneously.

Despite of the complexity of the queueing theory, its application for the performance

analysis of wireless networks may be remarkably straightforward.

Kendall introduced a shorthand, four-part notation a/b/c/d to characterize these queue-

ing models. The first letter determines the inter-arrival time distribution, the second one

determines the service time distribution, the third letter specifies the number of servers,

and the last one represents the waiting capacity of the system. For example, the letter

G denotes a general distribution, an exponential distribution is denoted by the letter M,

and D denotes deterministic distribution. Some examples are M/M/1, M/M/c, M/G/1,

M/M/c/K. Moreover, we have the very special PASTA [37] property:

Definition 2.6. ForM/·/· queueing systems with Poisson arrivals, the PASTA property

holds: arriving customers find on average the same situation in the queueing system as
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an outside observer looking at the system at an arbitrary point in time. More precisely,

arriving customers observes the system in its stationary regime.

The major performance measures, in the analysis of queueing models, are:

• The distribution of the waiting time and the sojourn time of a customer. The

sojourn time is the waiting time plus the service time.

• The distribution of the number of customers in the system.

• The distribution of the busy period of the server.

2.5 Game theory

2.5.1 Overview

In this section, we present some basics of the game theory. The game theory models the

behavior of multiple players in interaction. It provides mathematical tools for studying

conflicts and cooperation between rational players. Note that rational players are players

wanting more rather than less of a good. The rationality is widely used as an assumption

of the behavior of individuals in micro-economic models, and appears in almost all

decision-making models.

There are several applications of game theory. If players know only their local state, the

non-cooperative game may be adapted by players. In non-cooperative games, players

act individually in order to maximize their own payoff. If players care about the long-

term benefits, the repeated game may be employed in order to take into account future

rewards. If a group of players cares about mutual benefits, the cooperative game may be

employed. In fact, in cooperative games, coalitions of players, having joint actions, are

formed in order to maximize a mutual utility. Finally, a stochastic game is a dynamic

game with probabilistic transitions, played by one or more players.

We define a game by the following components:

• A set of players : N = {1, · · · , n}.

• A set of actions: A = [i2NAi, where Ai is the set of all possible actions for the

player i.

• An utility function: We define the utility function for player i, ui : A ! IR, the

player preference. We denote vector of utility functions for all players by u =
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(u1, · · · , un) : A ! IRn. Note that the utility function represents the desirability

of an action for players. An utility function for a given player assigns a number

for every possible outcome of the game with the property that higher (or lower)

number implies that the outcome is more preferred.

In the following, we define strategies for a player in the game.

Definition 2.7. A strategy of a player defines the action the player will select in every

distinguishable state of the world. In repeated games, the strategy of a player is a set

of decision rule, one for each stage of the game, that specify the action to be chosen.

2.5.2 The Nash equilibrium

The most famous property of game theory is the Nash Equilibrium [38]. The NE is an

action vector such that there is no individual benefit from unilateral deviation.

Definition 2.8. The NE is defined as a set of strategies (one for each player), having

the property that there is no increase in the utility of any player if it chooses a different

action, given other players’ actions. Note that u⇤ = (u⇤1, u
⇤
2, ..., u

⇤
N ), is a NE if:

8i 2 {1, . . . , N}, u⇤i = argmax
ui

Ri(ui,u
⇤
−i). (2.1)

2.5.3 Hierarchical game

When there is some hierarchy or priority between players in the game, the latter may

be modeled using a hierarchical game. Specifically, players are divided into two sets:

leaders and followers. In fact, there are two stages in the game: leaders choose, first,

theirs actions, and then followers choose their actions based on observations of leaders’

actions. One of the proprieties of such game is the Stackelberg Equilibrium, which is a

situation where neither leaders nor followers have incentive to change theirs actions.

Definition 2.9. The Stackelberg equilibrium is defined as a couple of strategy profiles

(µ⇤,u⇤), where the strategy µ⇤ maximizes the utility of the leaders, and u⇤ is the best

response of followers to leaders’ strategies.

Stackelberg game formulations were already proposed in the CR literature (see for ex-

ample [39] and [40]), as the natural hierarchy between PUs and SUs is very similar to

the hierarchy between leaders and followers.
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2.5.4 Partially observable stochastic games

Partially observable stochastic games [41] can be considered as an extension of stochastic

games for partially observable environments [42]. It is also very closely related to the

model of an extensive game with imperfect information [43]. Furthermore, POSG can

be seen as an extension of a POMDP for the multi-user context [33]. In fact, POSG

focus on self-interested users in partially observable environments. A POSG is a tuple

< I,S, {b0}, {Ai}, {Oi},P, {Ri} > defined by:

• I is a set I = {1, ..., N} of N players.

• S is a finite set of states.

• b0 represents the initial state distribution.

• Ai is a finite set of actions for player i.

• Oi is a finite set of observations for player i.

• P is a set of Markovian state transition and observation probabilities, where

P(s0,o|s,a) denote the probability of taking the joint action a in state s results in

a transition to the state s0 and the joint observation o.

• Ri : S ⇥A1 ⇥ · · · ⇥An ! IR is a reward function for the player i.

2.6 Learning

In the architectures of future networks, where mobiles manage their communication

parameters autonomously (power, frequency, ...), it is important to study learning al-

gorithms that allow mobiles to use efficiently network opportunities. There are many

applications of learning-based algorithms in the literature such as sharing spectrum in

cognitive networks, routing protocols in ad hoc networks or as the distribution of traffic

between operators. Specifically, MDP problems can be solved by many online rein-

forcement learning approaches, which can be classified into two categories: model-based

approaches (e.g. RTDP [44] and Prioritized Sweeping [45]), and model-free approaches

(e.g. Q-learning [46] and SARSA [47]). A model-based learning approach builds empir-

ical models of the state evolution and the resulting reward based on interaction experi-

ences, and applies standard DP algorithms such as value iteration or policy iteration to

solve it. In contrast to the model-based approach, a model-free approach directly learns

the optimal policy without specifying any model of the state evolution and reward func-

tion. There were some friendly debates within the reinforcement learning community
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as to whether model-based or model-free could be shown to be clearly superior to the

other (see [48] and [49]). However, all these reinforcement learning approaches suffer

from the well-known curse of dimensionality problem, meaning that a practical MDP

problem involves an enormous state and action spaces, which significantly impacts the

complexity and the convergence time to solve the problem.

2.7 Some applications of game theory, self-adaptivity and

learning in wireless networks

In this dissertation, we focus on the MAC layer, and we study the wireless spectrum

management. Specifically, CR has been considered as a promising technology to enhance

the radio spectrum efficiency via opportunistic transmission at link level. Note that

locating frequencies that are not utilized by PUs, at a given time slot, represents the main

challenge in designing CR networks. Moreover, SUs’ transmissions depend not only on

opportunities available in the licensed spectrum, but also on the competition with each

other. Note that if CR users support multimedia applications, such as video streaming,

VoIP or online gaming, they must be able to guarantee some QoS requirements. We

further focus, in this dissertation, on self-adaptive wireless networks, where CR users

are energy-efficient and have some QoS requirements that must be guaranteed.

Furthermore, we focus on the transport layer, and we study the congestion control in

wireless networks under some QoS and Quality of Experience (QoE) constraints. Note

that network users ignore, generally, the buffers’ occupation level, which depends on

the throughput of all users transmitting over the network. Specifically, we focus, in

this dissertation, on the design of foresighted congestion control mechanisms for wireless

networks, which are aware of the media content. We describe, in the following, some

applications of game theory, self-adaptivity and learning in wireless networks.

2.7.1 Cognitive radio

During this dissertation, we address different layers of the protocol stack. We focus,

first, on a low level of the protocol stack, the MAC layer. The first, contribution of this

dissertation is an OSA policy for CR networks. In fact, we consider a system composed of

several channels, where only one channel is shared between all SUs. Note that SUs have

also the aptitude to sense licensed channels, and use one of them if it is idle. Specifically,

we consider both the slotted and the non-slotted models, and we study the OSA as a

queueing system. Thereafter, we consider that SUs may decide individually whether to

sense licensed channels or to use the dedicated band. We prove the existence of a NE
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between SUs, and we compare the performance of SUs at the NE with the performance

of the global system, managed through a centralized controller, using the price of the

anarchy (PoA).

The second contribution is a POMDP-based OSA mechanism for CR networks. In fact,

we consider that SUs take into account energy consumption and QoS requirements, which

were often ignored in existing OSA solutions. Specifically, we formulate the problem

using a POMDP framework with an average reward criterion, and we assume that SUs

may decide to use another dedicated medium of communication (such as 3G) in order

to transmit their packets. We derive some structural properties of the value function,

and we show the existence of optimal OSA policy in the class of threshold strategies.

Moreover, we propose two learning and knowledge extraction mechanisms. Most of

researches in the OSA area assume that some information such that statistics about the

activity of PUs are priory known by SUs, which may not be realistic in decentralized

systems. In practice, CR users base on learning methods to get insight about the Radio

Frequency (RF) environment. Specifically, we present two learning-based protocols to

estimate licensed channels’ dynamics: rate estimator, and transition matrices estimator.

The last, but not the least, contribution at the MAC layer is a non-cooperative OSA

for CR networks. In fact, as SUs spend energy for sensing licensed channels, they may

choose to be inactive during a given time slot in order to save energy. Then, there

exists a tradeoff between large packet delay, due to the presence of PUs and collisions

between SUs, and high-energy consumption (spent for sensing and transmitting over

licensed channels). We study this problem considering a two levels approach. Firstly,

we consider several SUs competing in order to access licensed channels, and we study the

NE among these SUs. The NE is obtained by using a Linear Program (LP). We identify a

paradox in this CR context: when licensed channels are more occupied by PUs, this may

improve the spectrum utilization by SUs. Second, based on this observation, we propose

a Stackelberg formulation, where a network manager may increase the occupation of

licensed channels in order to improve the average throughput of SUs. We prove the

existence of a Stackelberg equilibrium that maximizes the average throughput of SUs.

2.7.2 Transport layer

We focus on the transport layer and we highlight the following contributions: The first

contribution is a media-aware congestion control mechanism. In fact, we consider several

end-to-end users sharing the network. As users ignore the congestion status at bottleneck

links, we model the congestion control using a POMDP framework. Moreover, we prove

the existence of an optimal stationary policy, and we derive some structural properties
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of the value function. Thereafter, we propose a low-complexity learning-based algorithm

that can be implemented on mobile devices having a limited computational capacity.

The second contribution, at the transport layer, is a QoE-aware congestion control for

conversational services in wireless environments. In fact, standard TCP congestion

control is based on network performance metrics (namely QoS metrics) and not on

a subjective metric of the quality perceived by the user (measured through the QoE

metrics). Therefore, we propose an end-to-end QoE-based congestion control mechanism

that maximizes the subjective quality of multimedia through Mean Opinion Score (MOS)

feedbacks from receivers.

2.8 Conclusion

In this chapter, we have introduced some theoretical concepts that will be useful for the

analysis of wireless networks in partially observable environments. We have presented

some applications of the game theory, self adaptivity and learning in partially observable

environment. Specifically, we study the OSA at the MAC layer in CR networks and

the self-adaptive congestion control at the transport layer. Since the static spectrum

allocation has been shown not efficient and unable to manage the increasing number of

wireless users, a new licensing scheme is being developed allowing the dynamic access

to the spectrum in order to improve the spectrum utilization, through CR approaches.

Nevertheless, implementing the CR technology introduces new challenges about the

management of the wireless spectrum. To achieve such goal, several disciplines can be

involved, such as decision theory, queueing analysis and game theory. We study in the

following part of this thesis the impact of the OSA mechanisms on the performance

of SUs. Specifically, the next chapter focuses on the performance of SUs through a

queueing analysis. We consider both the centralized and the decentralized models.
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3.1 Introduction

Since the FCC has proposed, in November 2002, to open the use of many bands that has

already been assigned but not sufficiently utilized, CR-based wireless network architec-

tures have been proposed in order to allow SUs to access licensed channels. Indeed, the

FCC report reveals that the electromagnetic spectrum has gaps, i.e. frequency bands

that are assigned to licensed users, at a particular time and specific geographic location,

are not being utilized. Note that locating unused frequencies, accounting for the energy

spent in sensing, represents a big challenge for SUs. Moreover, the proposed CR archi-

tectures do not guarantee some QoS levels for SUs, which are mainly impacted by the

PUs’ activity and the interaction between SUs.

The operation model, described in [20], introduces a new set of theoretical problems

involving game theory, queueing theory, and decision theory. Specifically, we focus, in

24
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this chapter, on SUs having the faculty to sense licensed bands and access them if idle, or

to access a dedicated channel. We are interested in designing an optimal OSA policy for

unlicensed users. In the first part of this chapter, we consider slotted communications

for PUs and SUs. Indeed, we consider that the system is perfectly synchronized, and we

assume that PUs and SUs have the same slot duration. Moreover, we ignore the sensing

errors, i.e. the false alarm and missing probability of sensing are zero. Thus, if the

SU senses a licensed channel as idle, it is still idle during the whole time slot. Most of

previous works in the OSA area for CR networks have already taken these assumptions

(see [50], [51], [52], and [53]). In the second part of this chapter, we consider a more

realistic scenario, where PUs operate in a non-slotted mode. Due to the agreement

between the service provider and PUs, the number of licensed channels should be higher

than the number of PUs transmitting simultaneously. We further assume that PUs are

able to determine whether there is a free licensed channel or not. As PUs have the

highest priority to access their own licensed channels, if all the licensed channels are

occupied, a new PU preempts a SU that is using a licensed channel. The rejected SU

aborts the transmission and tries to transmit the whole packet at the next time slot.

As the access to licensed channels is opportunistic, successful SUs’ transmissions are

highly dependent of the presence of PUs. Note that the dedicated channel represents a

guarantee of a QoS level for SUs.

Lots of recent works dealt with CR technologies and their performances. The survey

paper [2] presented some interesting problems for evaluating the performance of CR

systems. In [54], authors considered an energy efficient spectrum access policy. Each SU

senses the spectrum and selects subcarriers taking into account data rate requirements

and maximum power limit. This work is close to ours as authors studied the problem

by considering a non-cooperative behavior of SUs. Moreover, they considered energy

efficient allocation scheme. Note that authors considered that each SU that has traffic

to transmit systematically senses the spectrum and locates the available subcarrier set.

In fact, authors decoupled the sensing and the access decisions, and the OSA problem is

resumed to a decision about which channel to access from the set of available subcarriers.

However, in our model, we consider that SUs may decide to access the dedicated channel

without sensing the licensed spectrum.

Authors of [55] proposed an OSA algorithm for SUs composed of two parts: first, a SU

decides whether the licensed channel is idle or not. Second, it determines whether this

channel is a good opportunity or not. However, authors did not consider the impact

of multiple SUs. In fact, they have focused on the model of one SU accessing oppor-

tunistically a channel licensed for a PU. In [56], [57] and [58], authors considered the

non-cooperative behavior of CR users accessing multiple licensed channels.
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Unlike most of previous works in the DSA area, we study decision-making methods and

the corresponding equilibrium analysis using the queueing theory. Jagannathan et al.

considered in [59] a model similar to ours, where SUs choose either to acquire dedicated

spectrum or to use spectrum holes. They considered a pricing model and studied the

interaction between SUs as a non-cooperative game. There are several differences be-

tween their work and ours. Firstly, they considered that SUs sense systematically the

licensed spectrum and make the decision about transmitting over licensed channels or

through the dedicated spectrum after the sensing outcome. However we consider that

SUs choose the transmission medium before sensing in order to economize the energy

spent for sensing when accessing dedicated bands. Secondly, they considered that there

is a centralized component that schedule SUs trying to access licensed channels, whereas

we consider that SUs are in competition, and collisions occur when several SUs access

the same licensed channels. Moreover, authors did not consider the energy spent for

sensing licensed channels.

In [60], authors considered a model where there are several channels available to choose

from. The transmitter has to probe the channels to learn their quality. Probing many

channels may yield one with a good gain but reduces the effective time for transmission

within the channel coherence period. The problem is to obtain optimal strategies to

decide when to stop probing and start transmitting.

Author of [61] proposed a cross-layer queueing model that considers multiple CR users

competing for spectrum opportunities. They considered an infrastructure-based CR

system consisting a CR base station and multiple CR users. The base station controls

transmissions to/from CR users. In this chapter, we consider an infrastructure-less CR

network, where CR users access, solely, licensed channels.

In [62], authors considered a scheduling algorithm that estimates the number of packet

which can be transmitted over a frame by each SUs in each licensed channel. In contrast

to this work, where a central scheduler performs the spectrum scheduling, we consider

that SUs contend to access licensed channels, without the need of a central controller.

Authors of [63] applied the queueing analysis to characterize the relationship between

the arrival rate of the cognitive traffic and the queue distribution of CR user. The design

of cooperative CR for SUs was depicted, using a queueing analysis, in [64] and [65].

The remainder of this chapter is as follows. In the next section, we present the system

model. Section 3.3 focuses on the model where PUs’ transmissions are slotted. In

Section 3.4, we present the non-slotted model, and we conclude the chapter in Section 3.5.
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3.2 The system model

In this chapter, we consider a system composed of K + 1 channels, where PUs are

licensed to use K channels, and one dedicated channel is shared between all SUs. PUs

(resp. SUs) arrive following a Poisson process with rate λp (resp. λs). Note that each

SU decides whether to sense the licensed channels or not. If it senses the spectrum and

finds one free channel, it transmits its packets. We denote by p the probability that a

SU senses licensed channels. This probability may be considered as the proportion of

SUs that chooses to sense the spectrum. This repartition of SUs can be set by a central

controller, or determined individually by SUs in a decentralized manner. Moreover, we

consider that SUs are operating via a limited battery, and have to be energy efficient.

We assume that there is a cost ↵ for sensing one licensed channel, and if a SU decides to

sense, it senses all the K licensed channels. Note that SUs may sense licensed channel

and stop sensing once they find a free channel. However, this strategy will increase the

collision between SUs. Many works, such as [54], [59] and [66], considered that SUs sense

all the licensed channels. Some other works considered periodic sensing (see [67] and

[68]), whereas authors of [69] and [70] considered that the SU selects and senses randomly

one licensed channel. None of these strategy was shown to be better than the others since

it is highly dependent to the studied model. For example, if SU do not care about energy

consumption, total sensing is the best strategy. However, if SUs do not care about the

transmission delay, sensing one licensed channel (either random or periodic) may be the

best strategy. The service rates are denoted by µp (resp. µs) for the licensed channels

(resp. the dedicated channel), and are supposed to have an exponential distribution.

The system model is depicted in Figure 3.1, and is composed of two sub-systems. The

first one, namely subsystem S1, represents the secondary subsystem, and the primary

subsystem, denoted by S2, is licensed for PUs and open for SUs’ opportunistic access.

We give, in the following, some intuitions about the optimal OSA strategy for SUs in

our model. Because of the cost of sensing, when the blocking probability in the primary

subsystem S2 increases, SU have less incentive to sense the spectrum. In fact, even if

SUs do not find a free licensed channel, they also pay the sensing cost. However, if they

decide to use the dedicated channel without sensing, they do not pay the sensing cost

but transmit their packet with higher delay than using the licensed channels. Moreover,

the more there are SUs in the subsystem S1, the higher is the transmission delay for all

the SUs using that subsystem. Thus, there is a tradeoff for SUs whether to sense or not

licensed channels. Table 3.1 summarizes the parameters of the model.

Obviously, SUs have to deal with the two following performance metrics: the packet delay

and the energy spent for transmission. In fact, if the SU senses licensed channels and

finds one free channel, it transmits the held packet with a lower delay than transmitting
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Table 3.1: Description of system parameters

Parameter Description

λp arrival rate of PUs

λs arrival rate of SUs

µp service rate in a licensed channel

µs service rate for a SU in the dedicated channel

K the number of channels allocated for PUs

p probability of sensing licensed channels

↵ the cost of sensing one channel for a SU

⇢(p)
(λp+pλs)

µp

over the dedicated channel. However, it spends energy for sensing licensed channels.

We define the main global metric of the system, which is the average total cost US , as

a composition of the two following parts: the average sojourn time of a SU inside the

system and the cost of sensing:

• The average sojourn time, denoted by TS , depends on several parameters: arrival

rates of PUs and SUs, service rates, the number of licensed channels and the

sensing probability.

• The sensing cost cs depends on the number of licensed channels, and on the prob-

ability of sensing. We assume that this cost is linear with the number of licensed

channels, i.e. cs(p,K) = ↵Kp. In fact, the cost of sensing represents the energy

spent in sensing. Note that SUs are supposed to sense all the licensed channels.

The average total cost, for a SU that chooses to sense licensed channels with probability

p, is given by:

US(p,K) = TS(p,K) + cs(p,K) = TS(p,K) + ↵pK. (3.1)

The average sojourn time TS of a SU inside the system depends on the decision taken

by the SU: to use licensed channels or the dedicated one. We denote by TS1 (resp. TS2)

the sojourn time if the SU that decides to transmit over the dedicated channel (resp.

licensed channels). We assume that the sensing period is negligible compared to the

sojourn time in both subsystems. Thus, the average sojourn time TS is expressed by:

TS(p,K) = (1− p)TS1(p,K) + pTS2(p,K). (3.2)
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3.3 The slotted model

In this section, we consider that SUs and PUs evolve in a slotted model, and that

they have the same time slots’ durations. Moreover, we consider a perfect sensing, i.e.

the false alarm and the missing probability equal zero. The secondary subsystem S1

is composed of SUs that have not sensed the licensed channels (see Figure 3.1). Note

that SUs that sensed licensed channels and do not find a free one are rejected from the

system. As the dedicated channel is equally shared between all SUs, the subsystem S1

can be modeled using an M/M/1 queue. In fact, SUs are sharing one dedicated channel

during the time slot.

Figure 3.1: The OSA model for CR networks

The primary subsystem, namely S2, is composed of the two following types of users:

• PUs,

• SUs that have sensed the licensed channels and have found, at least, one free

channel.

The subsystem S2 can be modeled using an M/M/K/K queue, known as the Erlang-B

model, with arrival rate λp+ pλs. Note that the Erlang-B model (M/M/K/K) was used

in order to model CR networks in [71]. The blocking probability, which is the probability

that any mobile finds all channels occupied, is given by the following Erlang-B formula:

Π(p,K) =
⇢(p)K

K!PK
n=0(

⇢(p)n

n! )
, (3.3)

where ⇢(p) =
(λp+pλs)

µp
. This blocking probability depends not only on the number of

licensed channels K, but also on the probability p of sensing. In fact, if the sensing

probability increases, the input rate in the subsystem S2 increases, and the blocking

probability Π(p, k) increases. Note that, for simplicity reasons, we have considered in

this section that PUs and SUs have the same priority to access licensed channels. The
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paper [72] extended our model taking into account the priority of PUs in the expression

of the blocking probability. However, They did not consider the possibility for a PU

to reject a SU in service if it does not find a free channel. In the next section of this

chapter, we consider a more general system taking into account the priority of PUs,

where a PU that does not find a free channel may reject a SU in service.

In the next section, we focus on the optimal sensing probability or the optimal proportion

of SUs that sense licensed channels, which minimizes two important metrics: the average

sojourn time and the average total cost.

3.3.1 Optimization of global performances

The global analysis is well-suited for models where a CR base station transmits the

traffic of SUs over multiple licensed channels in the wireless spectrum. We focus, in

this section, on the average cost function of SUs. The arrival rate in the dedicated

channel (subsystem S1) is composed of SUs that have not sensed licensed channels.

Then, the arrival rate of SUs for that dedicated channel is λs(1 − p). We assume that

the maximum arrival rate, that is λs, which corresponds to the case where all SUs do

not decide to sense, is lower than the service rate µs. Thus, we have a sufficient stability

condition for the M/M/1 queue with a PS policy, which models the subsystem S1. As

the dedicated channel is shared between all SUs, the more there are SUs transmitting

over the dedicated channel, the higher is the sojourn time in the system (higher is the

transmission delay). Note that QoS requirements for SUs may be achieved by using an

admission control mechanism by the Service Provider (SP).

The average sojourn time TS1 for a SU, depending on the probability p that SUs sense

the licensed channels and the number of licensed channels, is expressed as follows:

TS1(p,K) =
1

µs − λs(1− p)
. (3.4)

If a SU decides to sense licensed channels, its average sojourn time depends on the arrival

rate of the PUs λp, and the proportion of SUs pλs that have decided to sense licensed

channels. Then, we determine explicitly, in the following, the average sojourn time TS2

for a SU that decide to sense the licensed channels:

TS2
(p,K) =

1−Π(p,K)

µp

. (3.5)

Note that a SU that decides to sense and does not find a free licensed channel is rejected

from the system and try to retransmit at next time slot. Thus, the average sojourn time
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of a SU in the system is expressed as follows:

TS(p,K) =
1− p

µs − λs(1− p)
+

p(1−Π(p, k))

µp
. (3.6)

For notation convenience, let us consider the following function: X(p,K) = p(1 −
Π(p,K)). By introducing the function X(p,K) in the expression of the average sojourn

time, we obtain the following simpler expression of the average sojourn time:

TS(X(p,K)) =
1− p

µs − λs + λsp
+

X(p,K)

µp
. (3.7)

In order to avoid the interference with PUs, SUs have to sense licensed channels before

accessing them, and pay a cost for sensing. Note that SUs spend energy for sensing the

spectrum. In fact, we model by the sensing cost, the energy spent for sensing licensed

channels. The average cost function US(p,K) for a SU that senses licensed channels

with a probability p, is expressed as follows:

US(p,K) = TS(p,K) + ↵pK. (3.8)

=
1− p

µs − λs + λsp
+

p(1−Π(p,K)

µp
+ ↵Kp.

We denote by Π0(p,K) the derivative of the blocking probability with respect to the

sensing probability p. The following proposition states the sensing probability that

minimizes the average cost function.

Proposition 3.1. For all values of ↵ and K, the average cost function US(p,K), defined

in Equation (3.9), is minimized when the sensing probability is equal to:

p = min(1,max(p0, 0)) := p⇤,

where p0 is the solution of the following equation:

1−Π(p,K)− pΠ0(p,K) = −↵Kµp +
µpµs

(µs − λs(1− p))2
. (3.9)

Proof. By replacing the function X(p,K) in Equation (3.9), the average cost function

can be rewritten as follows:

US(p,K) =
1− p

µs − λs + λsp
+

X(p,K)

µp
+ ↵pK.
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After some algebra, the derivative of the average cost function, with respect to the

sensing probability p, is expressed as follows:

@US

@p
(p,K) =

−µs +
@X
@p (p,K)(µs − λs(1− p))2 + ↵Kµp(µs − λs(1− p))2

µp(µs − λs(1− p))2
.

Note that @X(p,K)
@p = 1− Π(p,K)− pΠ0(p,K). Thus, the derivative of the cost function

US(p,K) equals 0 if and only if:

1−Π(p,K)− pΠ0(p,K) = −↵Kµp +
µpµs

(µs − λs(1− p))2
.

Therefore, the derivative of the average cost function with respect to the sensing prob-

ability equals 0 if and only if p = min(1,max(p0, 0)) := p⇤, where p0 is the solution of

Equation (3.9).

The main drawback of the optimal sensing probability p⇤, the solution of the global

optimization, is that it needs a central controller, in order to develop an optimal OSA

mechanism. Indeed, the SP has to design the network such that a proportion p⇤ of SUs

senses the licensed channels. In practice, it would be difficult to control and to design

such centralized control. To overcome this hurdle, we look in the next section for a

distributed mechanism, based on individual decisions of SUs about the OSA.

3.3.2 Individual opportunistic sensing policy

The main characteristic of the next generation networks is the transition from well-

structured networks to infrastructure-less networks, and from centralized to decentral-

ized networks. Recently, several researches focused on self-adaptive networks and au-

tonomous devices. In this section, we consider that SUs decide individually whether to

sense or not licensed channels. In fact, SUs try to minimize, solely, their average cost

functions. Specifically, we model this system using a non-cooperative game with an infi-

nite number of players (as we do not restrict neither the time horizon of the system nor

the number of SUs). Note that game theory principle may be applied for resource allo-

cation problems in a decentralized manner for wireless communications (see the survey

paper [73] and [74] for some examples). Thus, we consider a game theoretical approach

in order to design a decentralized OSA mechanism.

We consider that each SU decides on its probability p to sense or not licensed channels.

It looks for minimizing its average cost function U(p, p0,K), which depends on its prob-

ability p, and the probability p0 of all other SUs. The individual average cost function
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U(p, p0,K) is expressed as follows:

U(p, p0,K) = (1− p)TS1(p
0,K) + pTS2(p

0,K) + ↵pK. (3.10)

Note that the contribution to the cost by any individual SU is zero as we are not

limited to a fixed number of SUs. Then, the equilibrium of this game is a Wardrop

equilibrium, which was first studied in the context of road traffic since the 1950s in [75].

For notation convenience, we denote by US(p,K) = U(p, p,K). Let us define, in the

following theorem, the equilibrium for our non-cooperative game as a strategy that

minimizes the cost function U , against others using the NE strategy.

Theorem 3.2. The sensing probability pE is a NE policy for the OSA problem between

SUs if and only if:

pE = argmin
p

U(p, pE ,K), 8p 2 [0, 1].

The following proposition proves the existence of a NE strategy for our non-cooperative

game between SUs.

Proposition 3.3. For all values of ↵ and K, the NE policy for the OSA problem between

SUs exists. Moreover, the sensing probability at the NE is expressed as follows:

• if 1
µs−λs

> ↵K + 1−Π(0,k)
µp

;

– if 1
µs

< ↵K + 1−Π(1,k)
µp

then pE = {0, p0, 1}.

– else pE = 0;

• else

– if 1
µs

> ↵K + 1−Π(1,k)
µp

then pE = p0;

– else pE = 1.

where p0 is the solution of the following equation:

1

µs − λs(1− p)
= ↵K +

1−Π(p,K)

µp
. (3.11)

Proof. From Equation (3.10), the first argument derivative of the average cost function

is expressed as follows:

@U

@p
(p, p0) = TS2(p

0,K)− TS1(p
0,K) + ↵K.
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The probability p0 is a NE strategy for the OSA problem if and only if the first argument

derivative of the average cost function equals 0:

↵K + TS2(p
0,K) = TS1(p

0,K).

This equation characterizes a NE strategy for SUs. After some algebra, this expression

may be expressed as follows:

TS1(p
0,K) = ↵K +

1−Π(p0,K)

µp
.

Thus, the necessary and sufficient condition for the existence of a NE strategy for the

OSA problem between SUs is:

1

µs − λs(1− pE)
= ↵K +

1−Π(pE ,K)

µp
.

Let us prove that 1
µs−λs(1−p) and ↵K + 1−Π(p,K)

µp
intersect once in [0, 1]. Suppose that

9p1 < p2 2 [0, 1] such that 1
µs−λs(1−p1)

= ↵K + 1−Π(p1,K)
µp

and 1
µs−λs(1−p2)

= ↵K +
1−Π(p2,K)

µp
. Therefore, we obtain:

Π(p2,K)−Π(p1,K)

µp
=

λs(p2 − p1)

(µs − λs(1− p1))(µs − λs(1− p2))
.

After some algebra, we obtain:

µpλs(p2 − p1)

Π(p2,K)−Π(p1,K)
 µ2

s − 2µsλs − λ2
s − λsp1p2,

which leads to a contradiction as
µpλs(p2−p1)

Π(p2,K)−Π(p1,K) > 0 and µ2
s − 2µsλs−λ2

s −λsp1p2 < 0.

Note that we have assumed that µs  2λs in order to give SUs incentive to sense and

access licensed channels.

Consider that ↵K + 1−Π(0,K)
µp

< 1
µs−λs

and ↵K + 1−Π(1,K)
µp

> 1
µs
. Thus, we have two

equilibriums pE = 0 and pE = 1. These equilibriums represent a Follow The Crowd

(FTC) phenomenon ( see [74]). In fact, there is an FTC behavior when the individual’s

tendency to choose an action increases with the probability of choosing this action

by other individuals. For instance, when all SUs choose to sense licensed channels

(p0 = 1) the best response of a SU is to sense licensed channels, and therefore the

equilibrium pE = 1 exhibits an FTC characteristic. Moreover, there exists a unique

equilibrium p0 = p0 2]0, 1[, where p0 is the unique solution of Equation 3.11. Therefore,

pE = {0, p0, 1}.
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Consider that ↵K + 1−Π(0,K)
µp

> 1
µs−λs

and ↵K + 1−Π(1,K)
µp

> 1
µs
. It follows that pE = 1

is the unique Nash equilibrium for the OSA game between SUs.

Consider that ↵K + 1−Π(0,K)
µp

> 1
µs−λs

and ↵K + 1−Π(1,K)
µp

< 1
µs
. Therefore, pE = p0 is

the equilibrium strategy for our OSA game, where p0 is the solution of Equation 3.11.

Consider that ↵K + 1−Π(0,K)
µp

< 1
µs−λs

and ↵K + 1−Π(1,K)
µp

< 1
µs
. It follows that pE = 0

is the unique Nash equilibrium for the OSA game between SUs.

Given the existence of a NE strategy for the OSA problem between SUs, the follow-

ing proposition compares the sensing probability at the NE and the optimal sensing

probability.

Proposition 3.4. For all values of ↵ and K, the optimal sensing probability is higher

than the sensing probability at the NE, i.e. pE  p⇤.

Proof. We prove this proposition by contradiction. Assume that there exists a sensing

cost ↵0 > 0 and a number of licensed channels K0 such that pE > p⇤. As p⇤ minimizes

the average cost function, we have:

TS(p
⇤,K0) + ↵0p

⇤K0  TS(p
E ,K0) + ↵0p

EK0.

However, pE is the sensing probability at the NE. Therefore, we have the following

inequality:

TS(p
⇤, pE) + ↵0p

⇤K0 ≥ TS(p
E ,K) + ↵0p

EK0.

After some algebra, combining the two previous inequalities, we obtain:

(1− p⇤)TS1(p
⇤) +

p⇤(1−Π(p⇤,K0))

µp
 (1− p⇤)TS1(p

E) +
p⇤(1−Π(pE ,K0))

µp
.

It follows that:

(1− p⇤)(TS1(p
⇤)− TS1(p

E))  p⇤

µp
(Π(p⇤,K0)−Π(pE ,K0)).

Note that TS1 is decreasing with p and Π is increasing with p, then for pE > p⇤, the left

hand side is positive and right hand one is negative which leads to a contradiction.

Finally, for all ↵ and all K, the optimal sensing probability is higher than the sensing

probability at the NE, i.e. pE  p⇤.

This result is somehow intuitive. In fact, there is a lack of performance due to the

selfishness of SUs in the decentralized system. In fact, SUs have less incentive to sense
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licensed channels in a self-adaptive context than in a centralized network. Furthermore,

the following proposition gives us a higher bound of the average cost function at the NE.

Proposition 3.5. For all values of ↵ and K, we have the following higher bound of the

average cost function when using a NE policy:

US(p
E ,K)  1

µs − λs
.

Proof. Consider that 1
µs

< ↵K + 1−Π(1,k)
µp

and 1
µs−λs

< ↵K + 1−Π(0,k)
µp

. Therefore, the

average cost function is expressed as follows:

US(p
E ,K) =

1

µs − λs
.

Second, Consider that 1
µs

> ↵K + 1−Π(1,k)
µp

and 1
µs−λs

> ↵K + 1−Π(0,k)
µp

. Thus, the

average cost function verifies:

US(p
E ,K) =

1−Π(1,K)

µp
+ ↵K  1

µs
 1

µs − λs
.

Otherwise, the average cost function can be bounded as follows:

US(p
E ,K) = ↵K +

1−Π(pE ,K)

µp
=

1

µs − λs(1− pE)
 1

µs − λs
.

Finally, the higher bound of the average cost function is US(p
E ,K)  1

µs−λs
.

It is well known that the utility of the global optimization is higher than the utility when

using NE strategies. Giving the existence of the NE strategy for SUs, we focus in the

next section on the lack of performance (utility) induced by the competition between

SUs. In order to measure this gap of performance, we introduce the metric of the PoA.

3.3.3 Price of anarchy

Koutsoupias and Papadimitriou [76] introduced the concept of Price of Anarchy, which

captures the deterioration of the performance of a decentralized system, due to the self-

ishness of its agents. This metric is well studied in routing games [77], where the PoA

describes the worst possible ratio between the total latency of a NE strategy and the

latency of an optimal routing of the traffic. This metric describes the gap of perfor-

mance in terms of individual utility between an optimal centralized system and a totally

decentralized system.
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The PoA is expressed as the ratio between the optimal utility (obtained with a central-

ized system) and the utility at the NE (obtained with a decentralized system when using

a NE policy). In our context, we define the PoA as follows:

PoA =
US(p

⇤,K)

maxp2pE US(p,K)
 1. (3.12)

Our aim is to determine an expression of the minimal value of the PoA or to bound it,

in order to measure the worst performance of the decentralized system. The following

proposition gives us the worst-case lack of performance when upgrading from centralized

networks to self-adaptive networks

Proposition 3.6. For all values of ↵ and K, we have the following lower bound of the

PoA:

PoA(↵,K) ≥ 2(λs − µs +
p

µs(µs − λs))

λs
:= PoA. (3.13)

Proof. The price of anarchy is expressed by the following ratio:

PoA(↵,K) =
US(p

⇤,K)

maxp2pE US(p,K)
.

Suppose, first, that 1
µs

> ↵K+ 1−Π(1,k)
µp

and 1
µs−λs

> ↵K+ 1−Π(0,k)
µp

. Therefore, we have

pE = 1. As we have proved in Proposition 3.4, p⇤ ≥ pE , then p⇤ = 1. Thus, we have

PoA(↵,K) = 1. Let us focus on the gap between the utility function at the equilibrium

and the optimal utility function. We have for all p⇤, ↵ and K

US(p
E ,K)− US(p

⇤,K) =
1

µs − λs(1− pE)
− p⇤

1−Π(p⇤,K)

µp

− ↵Kp⇤ − 1− p⇤

µs − λs(1− p⇤)

= −p⇤ 1−Π(p⇤,K)

µp

− ↵Kp⇤ +
p⇤µs − λsp

E(1− p⇤)

(µs − λs(1− p⇤))(µs − λs(1− pE))

It’s clear that the difference between the utility function at the equilibrium and the

optimal utility function is maximal when pE = 0. Note that the price of anarchy

is minimal when US(p
E) − US(p

⇤) is maximized. Then, the PoA is minimized when

pE = 0. We focus on the analysis of the PoA in this particular case. Suppose that
1−Π(p⇤,K)

µp
+ ↵K < 1

µs−λs
. Then, we have for all p⇤, ↵ and K

U(p⇤, p⇤) <
p⇤

µs − λs
+

1− p⇤

µs − λs(1− p⇤)
.
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Thus, we obtain

U(p⇤, 0) <
p⇤

µs − λs
+

1− p⇤

µs − λs
=

1

µs − λs
,

which leads to a contradiction. In fact U(0, 0) = 1
µs−λs

> U(p⇤, 0), and if pE = 0

is an equilibrium, then U(0, 0) < U(p0, 0) for all p0. Finally, we have when pE = 0,
1−Π(p⇤,K)

µp
+ ↵K ≥ 1

µs−λs
.

Moreover, when pE = 0, we have the following expression of the price of anarchy:

PoA(↵,K) =

p⇤(1−Π(p⇤,K))
µp

+ ↵p⇤K + 1−p⇤

µs−λs(1−p⇤)

1
µs−λs

.

Thus, combining previous results, the price of anarchy is bounded by:

PoA(↵,K) ≥ p⇤ +

1−p⇤

µs−λs(1−p⇤)

1
µs−λs

.

After some algebra, we obtain the following lower bound of the PoA:

PoA(↵,K) ≥ p⇤ +
(µs − λs)(1− p⇤)
µs − λs(1− p⇤)

=
µs − λs(1− (p⇤)2)
µs − λs(1− p⇤)

.

We denote the following function F (X) = µs−λs(1−X2)
µs−λs(1−X) . The derivative of F (X) with

respect to X is expressed as follows:

F 0(X) =
λ2
sX

2 + (2µsλs − 2λ2
s)X + λ2

s − λsµs

(µs − λs(1−X))2
.

Note that F 0(X) = 0 forX =
λs−µs±

p
µs(µs−λs)

λs
. Moreover, we have F (0) = 1. Then, the

function F (X) is minimized when X =
λs−µs+

p
µs(µs−λs)

λs
, and its minimum is F (X) =

µs−λs(1−(
λs−µs+

p
µs(µs−λs)

λs
)2)

µs−λs(1−λs−µs+
p

µs(µs−λs)

λs
)
.

Finally, for all ↵ and K, we obtain the lower bound of the price of anarchy:

PoA(↵,K) ≥ 2(
λs − µs +

p
µs(µs − λs)

λs
).

This closed-form of the lower bound of the PoA is very interesting as it depends neither

on the sensing cost ↵ nor on the number of licensed channels K. Therefore, the SP may

tune the service rate of the dedicated channel, µs, and the arrival rate of SUs, λs, by
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using some admission control for example, in order to minimize the gap between the NE

and the global optimization’s performance. In the following section, we present some

numerical illustrations.

3.3.4 Numerical illustrations

This section presents the performance analysis of the proposed OSA mechanism. For this

end, we have performed extensive numerical computations with different configurations

of the system. Furthermore, two performance metrics are considered: the sensing cost

and the capacity of the system (number of licensed channels). We fix the arrival rate

for PUs (reps. SUs) at 0.6 (reps. 0.8), and we consider different service rates for the

licensed channels (µp = 0.8) and the dedicated channel (µs = 1.1). Under these setting,

the PoA is analytically evaluated to PoA ≥ 0.7524 from Proposition 3.6.

We focus, first, on the case of one licensed channel, and we set the sensing cost to 0.1.

Figure 3.2 illustrates the average total cost depending on the sensing probability of SUs.

We observe that the average total cost is minimized when the SUs sense licensed channels

with a probability p = 1, i.e. all SUs sense licensed channels. In fact, since the sensing

cost is relatively low (cs = 0.1), all SUs have incentive to sense licensed channels.

Secondly, we consider multiple licensed channels and we set K to 10. As we have already

assumed that the sensing cost is linear with the number of licensed channels, choosing to

sense licensed channel become costly for SUs with the increase of the number of licensed

channels (cs = 1). We plot, in Figure 3.2, the average total cost, with K = 10 licensed

channels, and we observe that SUs have less incentive to sense the licensed channels

compared to the first scenario (K = 1). In fact, the average cost is minimal when SUs

sense licensed channels with a probability of 0.427.

3.3.4.1 Sensing cost

We evaluate, in the present section, the impact of the sensing cost parameter ↵ on the

performance of the proposed OSA mechanism, given a fixed number of licensed channels

(K = 10). Mobile devices equipped with a CR have usually a limited battery, and

have to be energy efficient. The main challenge of designing an energy-aware CR is

to determine the appropriate OSA strategy, as SUs spend energy for sensing licensed

channels. We plot, in Figure 3.4, the optimal probability of sensing for SUs p⇤ and

the sensing probability of SUs at the NE pE . We remark that both probabilities are

decreasing with the sensing cost ↵. This result is intuitive, as increasing the sensing cost

decreases the incentive of SUs to sense licensed channels. Furthermore, this observation
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validates the analytical result obtained in Proposition 3.4. In fact, the optimal sensing

probability p⇤ (obtained from the global optimization of the centralized system) is always

higher than pE (the sensing probability obtained at the NE).

It is straightforward that the non-cooperative behavior of SUs induces a worse perfor-

mance compared to the centralized system. We focus on the gap of performance induced

when migrating from centralized to decentralized networks. We illustrate the PoA, de-

fined by Equation (3.12), in Figure 3.5. We observe that the minimum of the PoA equals

0.7559. Note that theoretically, the PoA is higher than 0.7524. Thus, the performances

obtained by simulations are slightly better than the lower bound obtained analytically

from Proposition 3.6. Given this result, we are able to design a decentralized OSA

mechanism for energy-efficient SUs in self-adaptive CR networks, which is at worst 75%

far from the optimal.

Note that the energy spent for sensing licensed channels depends not only on the cost

of sensing ↵, but also on the number of licensed channels K, as the sensing cost cs is

assumed to be linear with K. We evaluate, in the following section, the impact of the

capacity on the performance of the proposed OSA mechanism.

3.3.4.2 Capacity

In this section, we are interested in the impact of the number of licensed channels on the

proposed OSA mechanism. We fix the sensing cost ↵ at 0.3, and we vary the number

of licensed channel from 1 to 20. An interesting analysis of [78] shows that the average

number of available licensed channels in TV white-bands is about 15. Note that under

these settings, the blocking probability decreases with the number of licensed channels

whereas the sensing cost increases.

Figure 3.3 depicts the impact of the number of licensed channels on both the optimal

sensing probability and the sensing probability at the NE for SUs. We observe that both

p⇤ and pE are decreasing, and that p⇤ is always higher than pE . This result has already

been proved analytically in Proposition 3.4. We plot, in Figure 3.6, the average total

cost with the number of licensed channels. We remark that the average cost is minimal

for K = 2. Note that increasing the capacity of the system increases the opportunities

in the primary subsystem S1, but also increases the sensing cost cs.

Similarly to the sensing cost analysis, we measure the gap of performance between the

global system and the decentralized system through the PoA. Figure 3.7 illustrates the

PoA depending on the number of licensed channels K. The worst-case performance

gap is 0.7619 obtained with 4 licensed channels. This result is slightly higher than the
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Figure 3.2: The average total cost function US(p) for ↵ = 0.1, with one licensed
channel, K = 1, and ten licensed channels, K = 10.

Figure 3.3: The probability of sensing depending on the number of licensed channels
in both the centralized and the decentralized systems.

analytical result of the Proposition 3.6, which says that the lower bound of the PoA

equals 0.7524.

3.3.5 Summary

In this section, we have defined an optimal OSA policy for SUs. Moreover, we have

proposed a decentralized policy for self-interested SUs and we have evaluated the gap

of performance between both approaches (global optimization and decentralized opti-

mization) through the PoA metric. Nonetheless, we have taken the assumptions that

PUs operate in a slotted model, and that they are perfectly synchronized with SUs. We
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Figure 3.4: The optimal probability of sensing depending on the sensing cost ↵.

Figure 3.5: The price of anarchy depending on the sensing cost ↵.



Chapter 3. Opportunistic Spectrum Access for CR Networks: A Queueing Analysis 43

Figure 3.6: The average total cost depending on the number of licensed channels in
both the centralized and the decentralized system for the slotted model.

Figure 3.7: The price of anarchy depending on the number of licensed channels in
the slotted model.

release theses assumptions in the next section by considering that the PUs evolve in a

non-slotted regime, and that they may preempt a SU using licensed channels at their

arrival. Releasing these assumptions significantly complicates the problem, as SUs have

to face the reject form licensed channels by PUs, as well as the competition with each

other.
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3.4 The non-slotted model

In the present section, we relax some assumptions that were taken in order to simplify

the study of the system. Indeed, we consider a more realistic model in which PUs evolve

in a non-slotted mode, and have the highest priority to access licensed channels. Thus,

if a PU does not find a free licensed channel, it rejects one SU (if there is one SU using

licensed channels) and start transmission. We consider that SUs can detect that a PU is

present and free immediately the channel. We further assume that if the SU is rejected,

it gets no reward and is rejected from the system. When there are several SUs using

licensed channels, a PU chooses randomly one SU to reject. Note that interruption from

PUs is a key factor impacting the performance of SUs in CR networks. This assumption

was also considered in [79]. We model, in the following section, the reject probability of

SU in the primary subsystem.

3.4.1 Reject probability

We denote by Wp(t) (resp. Ws(t)) the number of PUs (resp. SUs) using the licensed

channels at the time slot t, whereWp(t)+Ws(t)  K. Specifically, the primary subsystem

can be modeled using a bi-dimensional Markov process, Z(t) = {Wp(t),Ws(t)}. The

probability that a SU will be rejected, when using a licensed channel, is denoted by

Pr(p,K). This probability depends on the proportion p of SUs that senses licensed

channels, and the number of licensed channels. Note that each SU that joins the system

with a Poisson process observes the system in its stationary regime, according to the

PASTA property (see Definition 2.6).

We denote by P0(n,m) the probability that a SU will be rejected, when it joins a licensed

channel and the primary subsystem has already n PUs and m SUs. Note that we have

necessary n+m < K, and the reject probability is expressed as follows:

Pr(p,K) =
n+m=K−1X

n,m/n+m=0

P0(n,m)⇡(n,m), (3.14)

where ⇡(n,m) is the stationary probability of the Markov process Z(t), described in

Figure 3.8. The stationary probabilities ⇡(n,m) can be computed using standard tools

of Markov theory. Let us focus on the reject probabilities P0(n,m), it is possible to

express the relation between probabilities P0(n,m) as a linear system. Note that for

all states (Wp(t),Ws(t)) = (n,m), such that n + m = K − 1, P0(n,m) is expressed as
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Figure 3.8: The bi-dimensional Markov chain of Z(t).

follows:

P0(n,m) =

8
>>>>><
>>>>>:

1
K

λp

λp+µp
+ K−1

K
λp

λp+µp
P0(1,K − 2) +

µp

λp+µp
P0(0,K − 2) if n = 0,

λp

λp+2µp
+

µp

λp+2µp
P0(K − 2, 0) if m = 0,

1
m+1

λp

λp+2µp
+ m

m+1
λp

λp+2µp
P0(n+ 1,m− 1)

+
µp

λp+2µp
(P0(n− 1,m) + P0(n,m− 1)) otherwise.

Otherwise, for n+m < K − 1, the probability P0(n,m) is expressed as follows:

P0(n,m) =

8
>>>>>>>>>><
>>>>>>>>>>:

pλs

pλs+λp+µp
P0(n,m+ 1) +

λp

pλs+λp+µp
P0(n+ 1,m)

+
µp

pλs+λp+µp
P0(n,m− 1) if n = 0,

pλs

pλs+λp+2µp
P0(n,m+ 1) +

λp

pλs+λp+2µp
P0(n+ 1,m)

+
µp

pλs+λp+2µp
P0(n− 1,m) if m = 0,

pλs

pλs+λp+2µp
P0(n,m+ 1) +

λp

pλs+λp+2µp
P0(n+ 1,m)

+
µp

pλs+λp+2µp
(P0(n− 1,m) + P0(n,m− 1)) otherwise.

We assume that the reject probability Pr(p, k) is increasing with the sensing probability

p. This assumption is somehow realistic. Indeed, the greater is the number of SUs that

choose to sense, the higher is the probability to be rejected by PUs. In the following

section, we study the impact of the reject probability on the average cost function, and

we determine the optimal OSA policies for SUs.
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3.4.2 Average total cost

The average sojourn time T r
S1

for a SU that chooses to join the dedicated channel without

sensing licensed channels is given by:

T r
S1
(p,K) =

1

µs − λs(1− p)
. (3.15)

Moreover, the average sojourn time of a SU that chooses to sense licensed channels is

defined by:

T r
S2
(p,K) =

(1−Π(p,K))(1− Pr(p,K))

µp
. (3.16)

Therefore, the average sojourn time of a SU in the non-slotted model is expressed as

follows:

T r
S(p,K) =

1− p

µs − λs(1− p)
+

p(1−Π(p,K))(1− Pr(p,K))

µp
. (3.17)

The average cost function is expressed as follows:

U r
S(p,K) =

1− p

µs − λs(1− p)
+

p(1−Π(p,K))(1− Pr(p,K))

µp
+ ↵pK.

For notation convenience, we define Y (p,K) = p(1 − Π(p,K))(1 − Pr(p,K)). By sub-

stituting Y (p,K) in the expression of the average cost function, we obtain the following

expression:

U r
S(p,K) =

1− p

µs − λs(1− p)
+

Y (p,K)

µp
+ ↵pK.

The first intuition one can make is that releasing the assumption that PUs evolve in a

slotted model induces a loss of performance. Let us denote by p⇤r the optimal sensing

probability of a SU in the non-slotted model.

Proposition 3.7. For all values of ↵ and K, the average cost function U r
S(p,K) is

minimized when the sensing probability is equal to:

p = min(1,max(pr0, 0)) := p⇤r ,

where pr0 is the solution of the following equation:

@Y

@p
(p,K) = −↵Kµp +

µpµs

(µs − λs(1− p))2
. (3.18)

Proof. The proof of this proposition is analogous to the proof of Proposition 3.1 by

replacing X(p,K) by Y (p,K).
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Furthermore, the following proposition gives us a relation between the average cost

obtained with the slotted system and the average cost obtained with the non-slotted

model.

Proposition 3.8. For all values of ↵ and K, the optimal value of the average cost

function is higher in the non-slotted model than in the slotted one:

US(p
⇤,K)  U r

S(p
⇤
r ,K).

Proof. Suppose, first, that µs − ↵K(µs − λs(1− p))2  0. Then, it follows from Propo-

sition 3.7 that p⇤ = 0. Therefore, the average cost function is expressed as follows:

US(p
⇤,K) =

1

µs − λs
.

Let us derive the average cost function with respect to the reject probability. After some

algebra, we obtain the following expression of the derivative of the average cost function

with respect to the reject probability:

@U r
S

@Pr
(Pr) = −

p(1−Π(p,K))

µp
 0.

We remark that U r
S(Pr) is decreasing with Pr. Thus, we have the following lower bound

of the average cost function:

U r
S(Pr) ≥ U r

S(1) =
1

µs − λs
+ ↵p⇤rK ≥

1

µs − λs
,

which leads to:

US(p
⇤,K)  U r

S(p
⇤
r ,K).

Second, suppose that µs − ↵K(µs − λs(1 − p))2 > 0. Therefore, we prove analogously

that U r
S(Pr) is increasing with Pr, and we obtain that U r

S(Pr) ≥ U r
S(0).

Finally, the average cost function in the non-slotted model is higher than the average

cost function in the slotted one, i.e. US(p
⇤,K)  U r

S(p
⇤
r ,K).

This result is somehow intuitive as the reject of a SU introduces a lack of performance to

the system. We focus, in the next section, on the study of the non-slotted self-adaptive

CR network model.
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3.4.3 Individual optimization

We consider a distributed system in which each SU decides individually whether to sense

or not licensed channels. In fact, each SU decides on its probability p of sensing licensed

channels. Note that a SU aims to minimize its average cost function Ur(p, p
0,K), which

depends on its probability p and the probability p0 of other SUs. Thus, the average cost

function is expressed as follows:

Ur(p, p
0,K) = (1− p)T r

S1
(p0,K) + pT r

S2
(p0,K) + ↵pK. (3.19)

We prove, in the following proposition, that the non-cooperative OSA for SUs has a NE.

Proposition 3.9. For all values of ↵ and K, the NE strategy for the OSA problem

exists. Moreover the sensing probability at the NE is given by:

• if 1
µs−λs

> ↵K + (1−Π(0,k))(1−Pr(0,K))
µp

;

– if 1
µs

< ↵K + (1−Π(1,k))(1−Pr(1,K))
µp

then pEr = {0, p0r, 1}.

– else pEr = 0;

• else

– if 1
µs

> ↵K + (1−Π(1,k))(1−Pr(1,K))
µp

then pEr = p0r;

– else pEr = 1.

where p0r is the solution of the following equation:

1

µs − λs(1− p)
= ↵K +

(1−Π(p,K))(1− Pr(p,K))

µp
. (3.20)

Proof. The proof of this proposition is analogous to the proof of Proposition 3.3 by

replacing X(p,K) by Y (p,K).

For notation convenience, we denote for all p and K, Ur(p, p,K) by U r
S(p,K). Further-

more, the following proposition gives us a higher bound of the average total cost at the

NE.

Proposition 3.10. For all values of ↵ and K, we have the following higher bound of

the average cost function at the NE:

U r
S(p

E
r ,K)  1

µs − λs
.
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Proof. The proof of this proposition is analogous to the proof of Proposition 3.5 by

replacing X(p,K) by Y (p,K).

Given the existence of the NE for the proposed OSA mechanism in the non-slotted

model, we study the gap of performance between the average cost at the NE and the

average cost of the centralized system.

3.4.4 Price of anarchy

The PoA models the lack of performance between the utility at the NE and the optimal

utility, and is defined by the following ratio:

PoAr(↵,K) =
U r
s (p

⇤
r ,K)

maxp2pEr U r
s (p,K)

 1. (3.21)

Let us focus on the expression of PoA. Similarly to the slotted model, our aim is to

determine a lower value of the PoA or to bound it, in order to define the worst-possible

lack of performance of the decentralized system. The following proposition gives us a

lower bound of the price of anarchy, called PoAr.

Proposition 3.11. For all values of ↵ and K, we have the following lower bound of the

PoA:

PoAr(↵,K) ≥ 2(λs − µs +
p
µs(µs − λs))

λs
:= PoAr.

Proof. The proof of this proposition is analogous to the proof of Proposition 3.6 by

replacing X(p,K) by Y (p,K).

This closed-form lower bound of the PoA is interesting, as it depends neither on the

sensing cost ↵, nor on the number of licensed channel k. Thus, the SP has only to tune

µs and λs in order to maximize the performance of the decentralized system.

In the following section, we present some numerical illustrations that validate our theo-

retical findings.

3.4.5 Numerical illustrations

This section presents the performance analysis of the proposed OSA mechanism. For

this end, we have performed extensive Matlab simulations with different configurations

of the system. Furthermore, two performance metrics are considered: the sensing cost

and the capacity of the system. We consider the same values of the system model

parameters defined in Section 3.3.4. Moreover, we assume that PUs may preempt SUs
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in service. Firstly, we focus on the sensing cost ↵. Thereafter, we study the impact of

the capacity (number of licensed channels) on the OSA mechanism.

3.4.5.1 Sensing cost

We evaluate, in this section, the impact of the sensing cost ↵ on the performance of the

proposed OSA mechanism. Figure 3.9 illustrates the average cost function in both the

slotted PUs transmissions and the non-slotted model. We observe that the average cost

of SUs is always higher in the non-slotted model than in the slotted one, which validates

the results of Proposition 3.8.

We observe, in Figure 3.10, that the optimal probability of sensing licensed channels is

decreasing with ↵ in both models. However, we remark that the optimal probability

of sensing in the non-slotted model p⇤r is more sensitive to the sensing cost ↵ than the

optimal probability of sensing in the slotted model p⇤. In fact, in the non-slotted model,

the reject probability decreases the benefit of sensing in term of utility.

Let us focus on the lack of performance induced by the non-cooperative behavior of SUs

in the decentralized model. We obtain from Proposition 3.11 a lower bound of the price

of anarchy PoAr = 75.24%. This result is lower than the minimum value of the PoA

obtained from Figure 3.11, which is 0.8289.

The number of licensed channels has a major leverage on the behavior of SUs and impacts

not only the average sojourn time, but also the energy consumption, as the sensing cost

grow linearly with the number of licensed channels. We depict, in the next section, the

impact of the capacity on the performance of the proposed OSA policy.

3.4.5.2 Capacity

In the present section, we are interested in the impact of the number of licensed channels

on the performance of the proposed OSA mechanism for SUs. We set the sensing cost

↵ to 0.3 and we vary the number of licensed channel from 1 to 20. Note that under

these settings, the blocking probability decreases with the number of licensed channels,

whereas the sensing cost increases.

Firstly, we observe, in Figure 3.12, that both the optimal sensing probability p⇤r and

the sensing probability at the NE pEr are decreasing with number of licensed channel

K. Moreover, we remark that the sensing probability at the NE is lower or equal than

the optimal sensing probability. In fact, the non-slotted system is more sensitive to the

number of licensed channels than the slotted one. Second, we obtain from Figure 3.13
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Figure 3.9: The global optimum depending on the sensing cost ↵ in both the slotted
and the non-slotted models.

Figure 3.10: The optimal sensing probability depending on the sensing cost ↵.

that the non-slotted model induces a higher average cost for SUs compared to the slotted

model. Finally, we conclude with the analysis of the price of anarchy depending on the

number of licensed channels K. In Figure 3.14, we observe that the minimal value of the

price of anarchy is 0.8672, which is not so far from the lower bound given by Proposition

3.11, which is 75.24%.

Both the sensing cost and the capacity of the system are important factors in the per-

formance of CR users. The SP may tune the system parameters in order to optimize

the QoS for its SUs without the need for a centralized controller.
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Figure 3.11: The price of anarchy depending on ↵.

Figure 3.12: The probability of sensing depending on the number of licensed channels
in non-slotted model.

3.4.6 Summary

As like as the slotted model, we have studied, in this section, the non-slotted OSA in

both the centralized and the decentralized manners. We have proved the existence of a

NE strategy, and we have evaluated the gap of performance in the decentralized system

through the POA.
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Figure 3.13: The average cost function with the number of licensed channels in both
the slotted and the non-slotted models.

Figure 3.14: The price of anarchy with the number of licensed channels K in the
non-slotted model.
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3.5 Conclusion

In this chapter, we have studied the performance of OSA in CR networks. We have

considered both the slotted and the non-slotted models. We have considered the global

optimization of the centralized system, and we have determined the optimal sensing

probability. Furthermore, we have considered the the individual optimization in a de-

centralized manner, and we have proved the existence of a NE equilibrium between SUs.

We have studied the performance of these approaches and we have evaluated the gap of

performance between them using the well-studied metric: the PoA. Simulation results

have validated our theoretical findings.

In the next chapter, we study the OSA for CR under energy and QoS constraints.

Specifically, we formulate the model using a POMDP framework, and we present an

optimal threshold-based OSA policy.
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4.1 Introduction

The traditional spectrum management is based on agreements between the SP and

PUs. CR is considered as the key technology that enables unlicensed users to access the

licensed spectrum. Furthermore, the new spectrum-licensing paradigm, initiated by the

FCC in 2008 [8], has promoted the idea of using the CR technology to face the spectrum

scarcity problem. It allows unlicensed users to access the spectrum as long as they do

not harm licensed users’ transmissions.

Although the use of licensed bands by CR users is widely recognized, it is not well

understood which applications are suitable for CR users, and what type of traffic a

CR user may support. In fact, if CR users support multimedia applications, such as

55
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Figure 4.1: First use case: Using CR in ad-hoc communication. If the licensed
frequency f1 is not used by PUs, SUs can communicate in ad-hoc mode using f1.

Figure 4.2: Second use case: using CR for BS’s transmissions. If the licensed fre-
quency f1 is not used by PUs, the BS serves its users using f1.

video streaming, VoIP or online gaming, they must be able to guarantee some QoS

requirements. These motivations are behind the problem considered in this chapter.

The model that we are studying in this chapter is suited for several use-cases of the

CR paradigm in wireless networks. Firstly, this model allows ad-hoc connections to use

spectrum holes (frequencies that are not utilized by PUs), as illustrated in Figure 4.1.

Second, we may consider that SUs are CR base stations, which are able to sense the

activity of a primary base station, and take advantage of spectrum holes for transmitting

on the downlink (see Figure 4.2).

Many works focused on the study of optimal OSA in CR networks (see [80], [81] and [82]).

In [83], the authors focused on the OSA taking into account the energy consumption.

They formulated their problem as a POMDP and derived some properties of the optimal

OSA policy. Their control parameter is the duration of sensing used by a SU at each time

slot in order to determine the PU’s activity. They provided heuristic control policies

by using grid-based approximations, which have low complexity but give suboptimal

control policies. Authors of [53] incorporated the energy constraint in the design of

the optimal OSA policy. They formulated the problem also using a POMDP with a
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finite horizon criterion. They established a threshold structure of the optimal policy for

the single channel model without providing analytical expression of the threshold. The

main difference between these works and ours is that we consider not only the energy

consumption, but also the transmission delay. Moreover, we consider a POMDP with an

average reward criterion. Authors of [84] analyzed the latency of DSA in CR networks

by considering a dedicated control with embedded control channel. In [85], authors

considered an adaptive modulation scheme in order to guarantee a delay for SUs. The

difference between their work and our’s is that they considered a dynamic spectrum

sharing and we are considering an OSA context.

It is noteworthy that the impact of the energy consumption or the capacity of CR users

to support additional QoS requirements such as the expected delay, to the best of our

knowledge, has been somehow ignored in the literature, partially due to the difficulties

in analyzing it. In fact, it is very important for today’s wireless networks to garantee

a certain level of QoS. As SUs are not licensed to use the spectrum, the transmission

delay of their packets depends not only on the PUs’ activity but also on the competition

with each other.

Our main contribution is to consider, in this CR setting, an optimal OSA mechanism

that takes into account energy consumption and transmission delay. Note that, taking

into account the delay as well as the energy consumption significantly complicates the

optimization problem. For instance, without considering the delay constraint, the SU

achieves the best tradeoff between trying to access licensed channel and sleeping to con-

serve energy. However, the design of energy-QoS tradeoff lies among several conflicting

objectives: gaining immediate access, gaining spectrum occupancy information, con-

serving energy, and minimizing packet delays. The novelty of this work is to study an

energy-QoS tradeoff OSA mechanism for SUs in a CR network. The major contributions

of this chapter are:

• The problem is formulated as an infinite horizon POMDP with average criterion.

Usually, OSA mechanisms for CR networks were modeled using POMDPs with

expected total discounted reward (see [80], [83] and [27] for some examples). How-

ever, as decisions are taken frequently by SUs (every time slot) the discount rate is

very close to 1. Thus, the average expected reward is more suited to model OSA

mechanisms [86].

• In order to gain insights into the energy-delay constrained OSA, we derive struc-

tural properties of the value function. We are able to show that the value function

is increasing with the belief and decreasing with packet delays. These structural

results not only give us insights about the optimal OSA policy, but also reduce
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the computational complexity when seeking for the optimal policies. In fact, the

value function can be approximated by simple functions (see [87]).

• We show that the SUs maximize their average rewards by adopting a simple thresh-

old policy, and we derive closed-form expressions of these thresholds.

• Since SUs may use a dedicated channel for their packets, the optimal threshold

policy guarantees a bounded delay.

• We propose some learning algorithm to estimate the RF environment on-the-fly.

The organization of this chapter is as follows. In the next section, we describe the pri-

mary and the secondary user models. Section 4.3 presents our Markov decision process

framework. In Section 4.4, we study the existence of an optimal threshold policy for

our opportunistic spectrum access with an energy-QoS tradeoff. We propose two learn-

ing based protocols for the estimation of state transition rates in Section 4.5. Before

concluding the chapter, we present, in Section 4.6, some numeric illustrations.

4.2 Model

We consider a wireless network where N independent channels are licensed to PUs. The

state of each channel n 2 {1, . . . , N} is modeled by a time-homogeneous discrete Markov

process sn(t). The state space is {0, 1}, where sn(t) = 0 means that the channel n is

free for SUs’ access, and sn(t) = 1 means that the channel n is occupied by PUs. The

following matrix gives the transition probabilities of the channel n:

Pn =

 
↵n 1− ↵n

βn 1− βn

!
.

In fact, SUs observe a ”good” channel (ON) if PUs are not using the licensed channel. On

the other hand, the presence of PUs in the licensed channel results in a ”bad” channel

(OFF) for SUs. Therefore, the licensed channels can be modeled by the ON/OFF

Gilbert-Elliot model [88], [89]. The transition rates evolve as illustrated in Figure 5.1.

Note that this model was used in several works in the OSA area (see [80], [27], [83] and

[53] for some examples).

The global state of the system, composed of the N channels, is denoted by the vector

s(t) = [s1(t), ..., sN (t)], and the global state space is S = {0, 1}N . The transition

probabilities can be determined by statistics of the PUs’ traffic, and are assumed to be

known by SUs. We present, in Section 4.5, some methods allowing the SU to estimate

these transition probabilities on-the-fly.
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Figure 4.3: The channel transition probabilities for channel i.

We consider that all the N licensed channels are open for SUs’ transmissions when PUs

are not using them. The aim of SUs is to find licensed channels that are not used by

PUs during a given time slot. Note that looking for opportunities in licensed channels

may induce not only a large packet delay, but also higher energy consumption, spent

for sensing and transmissions over licensed channels. This may be caused by high traffic

of PUs or collisions between SUs. For this end, we consider an OSA that takes into

account packet delay, throughput and energy consumption. In order to introduce some

QoS guarantee for SUs, we assume that, at any time slot, SUs have access to the network

through another technology referred to as dedicated channel. This assumption ensures

a higher bound of packet delays, while benefiting from licensed spectrum holes. Indeed,

the aim of SUs is to find a tradeoff between the following conflicting objectives: trans-

mitting with a guaranteed delay, but with higher cost using the dedicated channel, or

transmitting with a lower cost using the licensed channels, but without delay guarantee.

The objective of SUs is to minimize the transmission cost accounting for energy con-

sumption and transmission delay, i.e. a QoS guarantee with the lowest possible cost. In

order to achieve such goal, a SU has to choose at each time slot one of the following

actions:

• to be inactive during the time slot in order to save energy,

• to sense a licensed channel and to transmit if the channel is available during the

time slot, else to wait for next time slot,

• to sense a licensed channel and to transmit if the channel is available during the

time slot, else to use the dedicated channel.

Figure 4.4 illustrates the action diagram for SUs. Our important contribution is to

consider the average packet delay in the optimal decision. Moreover, we consider that

sensing licensed channels has a cost for SUs, which models the energy spent when sensing

licensed channels. Given these constraints, we seek for an optimal OSA policy for SUs

in CR networks. In the remainder of this chapter, we focus on the model of one SU

accessing opportunistically licensed channels. The multi-user context will be studied in

the following chapter.
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Figure 4.4: The action diagram for SUs. There are mainly two decision steps: the
sensing decision and the access decision.

4.3 POMDP framework

The global system state s(t) cannot be directly observed by a SU. To overcome this

difficulty, the SU infers the global state of the system based on observations that can be

summarized in a belief vector !(t) = {!1(t), ..., !2N (t)}, where !j(t) is the conditional

probability (given observations and decisions history ) that the system state s(t) = j,

at the time slot t. Since the N channels are independent, we may consider the following

simpler belief vector:

λ(t) = [λ1(t), .., λN (t)],

where λi(t) is the conditional probability that the channel i is available at the time slot

t. This approximation was used in several analysis such as [90] and [91]. Hence, we

study the OSA for SUs in CR networks as a POMDP problem. Our OSA mechanism

can be formulated using a POMDP framework described as follows:

State We define the state of the system as a composition of belief and delay (λ(t), l(t)).

The delay of a packet held by a SU is denoted by l(t). When the SU receives a new

packet, its delay equals one, and increases by one every time slot, except when the SU

transmits the packet. We assume that the SU does not accept a new packet until it

transmits the held one. We take this assumption in order to evaluate the impact of the

OSA mechanism on the delay of the packets. As part of my future work, I will analyze the

effect of traffic characteristics such as throughput and traffic model on the performance

of the OSA mechanism. Note that the SU does not have accurate information about

the first part of the system state, i.e. the belief vector λ(t), but has a perfect knowledge

about the packet delay.
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Action The SU makes a two-level decision. It chooses, first, whether to sense the

licensed channels or not. Then, it decides about the transmission over the licensed

channels or using the dedicated one. It is straightforward that the SU transmits over

the licensed channels if idle. Therefore, the second step decision is taken when there

are no opportunities in licensed bands. In fact, when the licensed channel was sensed as

occupied, the SU has two options:

• to wait for the next slot;

• to transmit using the dedicated channel.

Without loss of generality, we assume that both decisions are made at the beginning of

the time slot. For each time slot t and each state (λ(t), l(t)), we consider that the three

possible actions for SUs are:

a(t) =

8
>>>>><
>>>>>:

0 : to be inactive;

1 : to sense and to transmit only if the channel is available during the slot;

2 : to sense and to transmit if the channel is available during the time slot,

else to transmit through the dedicated channel.

Observation and belief When the SU decides to sense (i.e. to take action a(t) 2
{1, 2}), one channel n⇤(t) is determined and the SU observes the channel occupancy

state sn⇤(t)(t) 2 {0, 1}. Let ✓(t) be the observation outcome at the time slot t, where

✓(t) = 0 if the channel is sensed as idle, and ✓(t) = 1 otherwise. The SU takes into

account the history of observations and actions by updating the belief vector based on

observation outcomes. For each channel n, the conditional probability, λn(t + 1) :=

Pr(sn(t+ 1) = 0|a(t), ✓(t)), is updated as follows:

λn(t+ 1) =

8
>><
>>:

βn + (↵n − βn)λn(t) if a(t) = 0 or n 6= n⇤(t),

↵n if a(t) 6= 0, or ✓(t) = 0 and n = n⇤(t),

βn if a(t) 6= 0, or ✓(t) = 1 and n = n⇤(t).

(4.1)

The belief update function depends mainly on licensed channels’ transition rates ↵ and

β. Indeed, these statistics may not be available for SUs. Specifically, we propose, in

Section 4.5, some learning methods that allow the SUs to estimate the RF environment

on-the-fly. Note that we can extend easily our model to sense not only one licensed

channel, but also a subset of the licensed channels.

Channel choice policy At a given time slot t, the SU chooses a licensed channel

n⇤(t) 2 N to sense based on its belief vector λ(t). There exists several channel choice

policies in the literature like total sensing (see [66] and [59]), opportunistic sensing (see



Chapter 4. Energy-efficient Delay-constrained Opportunistic Spectrum Access in
Cognitive Radio Networks 62

[80] and [53]), randomized sensing (see [69] and [70]), and periodic sensing (see [67] and

[68]). An example of opportunistic and greedy channel choice policy is to sense the

channel that has the highest probability to be idle, i.e. n⇤(t) := argmaxn(λn(t)).

Policies We define a sensing and access policy µ as a vector [µ1, µ2, . . .], where µt is a

mapping from a state (λ(t), l(t)) to an action a(t) at the time slot t. We denote by Γ

the set of all possible policies.

Reward and costs The SU tries to maximize its revenue by increasing the reward

(obtained from successful transmissions) and decreasing the costs (spent for sensing and

transmissions). Note that the cost of transmission over the dedicated channel is higher

than the cost paid for transmission using the licensed channels. The different cost and

rewards for SUs are denoted by:

• Reward: Let Φ be the reward representing the number of delivered bits when the

SU transmits its packet.

• Costs: Let cs be the energy cost function for sensing a licensed channel, measured

as monetary units. This function depends on the action a(t) taken by the SU as

follows:

cs(a(t)) =

(
cs, if a(t) > 0,

0, if a(t) = 0.

The PU and the SP (for the dedicated access), charge a price for each successfully

transmitted packet. Those prices are respectively Pp for a transmission over a

licensed channel and P3G for a transmission over the dedicated channel. Indeed,

P3G is higher than Pp. Therefore, when the SU transmits successfully a packet,

it obtains the reward zt(a(t), ✓(t)), which depends on the action a(t) and the

observation ✓(t), and is expressed as follows:

zt(a(t), ✓(t)) =

8
>><
>>:

0, if a(t) = 0,

Φ− Pp if a(t) ≥ 1 and ✓(t) = 0,

Φ− P3G, if a(t) = 2 and ✓(t) = 1.

• Delay: In order to model the impact of the delay, we introduce an additional cost

when a packet is not transmitted. This cost depends on the current delay l(t) of

the packet, and is defined by the function f(l(t)). This function is assumed to be

increasing with l(t), in order to growth the incentive of transmitting the packet

when it becomes delayed.

• Instantaneous reward: At the time slot t, the instantaneous reward rt of a SU

depends on the system state (λ(t), l(t)) and the action a(t), and is expressed as
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follows:

rt((λ(t), l(t)), a(t)) = zt(a(t), ✓(t))− f(l(t))− cs(a(t)).

The problem faced by the SU consists of maximizing its average expected reward:

R̄(µ) = lim
T!1

1

T
IEµ

 
TX

t=1

rt((λ(t), l(t)), a(t))|λ(0), l(0)
!
,

while λ(0) is the initial belief vector. It is very important to consider the average reward

rather than the total reward or the discounted cost as the SU takes frequently decisions.

Then, our objective is to find an optimal sensing policy µ⇤ that maximizes the average

expected reward R̄(µ):

µ⇤ = argmax
µ2Γ

lim
T!1

1

T
IEµ

 
TX

t=1

rt((λ(t), l(t)), a(t))|λ(0), l(0)
!
. (4.2)

For simplicity reasons, and to get deep theoretical analysis, we may restrict our study

to the set of stationary policies. A stationary policy is a mapping that specifies for

each state, independently of time slots, an action to be chosen. Note that looking

for stationary policies reduce significantly the computational complexity of the OSA

problem. In some particular MDP and POMDP problems, we are able to determine an

optimal policy in a smaller set reduced to stationary policies. We prove in the following

proposition that there exists an optimal stationary policy for our POMDP problem.

Proposition 4.1. There exists an optimal stationary policy for our POMDP formula-

tion of the OSA problem described in Equation (4.2).

Proof. The proof results from Theorems 8.10.9 and 8.10.7 of [92]. Note that we have a

POMDP with a discrete state space.

First, the immediate reward rt((s, l), a) is finite, i.e. −1 < rt((s, l), a) < +1 (as all

costs and rewards are finite). Second, we prove that there exists a stationary policy d1

for which the derived Markov chain is positive recurrent.

Let us focus on the following belief vector:

Λ0 = (λ1, λ2, ..., λN ) such that λj = Ωj−1(βj |0), for j = 1, . . . , N,

where λj represents the belief of a channel that was not sensed for j successive slots.

Denote by d1 the stationary policy which senses licensed channels at every slot, with

a greedy channel choice policy. Suppose that ↵ ≥ β, the analysis of the other case
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is analogous. Let us prove that the derived Markov chain is positive recurrent. Note

that if a SU senses the licensed channel i as busy, its belief equals β, the least belief

probability over all the licensed channels, and therefore the SU will choose another

licensed channel to sense in the next time slot as it is considering a greedy channel

choice policy. The probability that the system returns to the initial belief from any

state Λ is p(λ) =
QN

k=0(1 − Ωn(λj)) > 0, n 2 {O, ..., N}, and then the return time to

the initial belief ⌧j follow a geometric distribution so that E{⌧j} = 1
p(Λj)

. Therefore, all

state are positive recurrent under d1.

Third, let us prove that gd
1

> −1 and the set {b 2 Sb : rt((s, l), a) > gd
1

for some a 2
A} is finite and no empty. As the policy d1 senses licensed channels every slot, gd

1

=

−f(l(t))− cs − (f(l(t)) + Pp − Φ)λn⇤ . If we have the following inequality

−f(l(t))− cs − (f(l(t)) + Pp − Φ)λn⇤ > max{−f(l(t)),Φ− cs − P3G − (Pp − P3G)λn⇤}

for all belief b, the policy always sense licensed channels is optimal and we have achieved

our goal. Otherwise, the set {b 2 Sb : rt((s, l), a) > gd
1

for some a 2 A} is finite and

no empty.

Finally, we obtain from the theorems 8.10.9 and 8.10.7 of [92] that there exists an average

optimal stationary policy.

Given this result, we can restrict our problem to the set ΓS of stationary policies. Then,

for the rest of this chapter, we omit the time index t, and we look for an optimal sensing

policy that is a mapping from a system state (λ, l) to an action a, independently of the

time slot t. Before seeking for the optimal OSA policy, we make an analysis of the value

function of the POMDP problem.

We denote by Ωns(λ|✓), the function that updates the belief vector λ when the user

chooses to be inactive in the current slot, i.e. the SU takes action 0. The function

Ωs(λ|✓) updates the belief vector λ when the SU senses a licensed channel in the current

slot and observes ✓, i.e. the SU takes the action 1 or 2.

We define, in the following, the value function V (λ, l). Let us denote by Qa(λ, l) the

action-value function of taking the action a in the current slot when the information

state is (λ, l). Therefore, the value function is expressed as follows:

V (λ, l|λ0, l0) = max
a2A

(gu(λ0, l0) +Qa(λ, l|λ0, l0)) , (4.3)

where (λ0, l0) is the initial state of the system and gu(λ0, l0) is a constant that depends on

the initial state. Note that for any stationary policy, the state of the SUs is an irreducible

Markov chain with one ergodic class. Thus, a unique steady state probability exists, and
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we can omit the initial distribution. Thus, the value function for our POMDP problem

can be expressed as follows:

gu + V (λ, l) = max
a2A

Qa(λ, l), (4.4)

where gu is a constant. The optimal policy for our POMDP problem is the one that

chooses the following action in the state (λ, l) :

a⇤(λ, l) = argmax
a2A

Qa(λ, l). (4.5)

We determine the action-value function for each different action 0, 1 and 2. When the

SU decides to wait, i.e. to take the action a = 0, we have:

Q0(λ, l) = −f(l) + V (Ωns(λ|✓ = 0), l + 1). (4.6)

When the SU chooses to sense the channel n⇤ and decides to wait for the next time slot

if the channel n⇤ is busy, i.e. to take action 1, we have:

Q1(λ, l) = −cs + λn⇤(Φ− Pp + V (Ωs(λ|✓ = 0), 1)) (4.7)

+(1− λn⇤)(−f(l) + V (Ωs(λ|✓ = 1), l + 1)).

When the SU chooses to sense the channel n⇤ and to transmit using the dedicated

channel if the channel n⇤ is busy, i.e. to take action 2, we have:

Q2(~λ, l) = Φ− cs + λn⇤(−Pp + V (Ωs(λ|✓ = 0), 1)) (4.8)

+(1− λn⇤)(−P3G + V (Ωs(λ|✓ = 1), 1)).

For the remainder of this chapter, we take some assumptions that simplify the analysis of

the optimal policy. We focus on the case of one licensed channel. The multichannel case

will be studied in Section 4.3.2. We take the assumption that there exists a packet delay

l⇤ such that the SU transmits its packet using the dedicated channel if the observation

is ✓ = 1. In fact, this assumption is somehow realistic, as the SU has no interest to

keep the file in its buffer indefinitely. We denote by ↵ and β the transition rates of the

licensed channel, and λ the belief of the SU.

4.3.1 The single channel model

To solve the POMDP problem, the belief vector is a key element as it gives us insights

about the system state. Firstly, we analyze the belief update function. The following
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lemma gives us some properties of the belief update function Ωns. We consider that

↵ ≥ β. When ↵  β, the analysis is similar and results are analogous.

Lemma 4.2. We have the following properties of the belief update function Ωns.

1. The update function Ωns(λ|✓) is increasing with belief λ.

2. We have the following equivalence:

Ωns(λ|✓) ≥ λ , λ  ⇡(0),

and

Ωns(λ|✓)  λ , λ ≥ ⇡(0),

where ⇡(0) = β
1−↵+β is the stationary probability that the licensed channel is idle.

Proof. First, the update function Ωns is linear with the belief because Ωns(λ) = β +

(↵ − β)λ. As we have considered the case where ↵ ≥ β, then the update function is

increasing with the belief.

Second, let us prove that Ωns(λ) ≥ λ for all beliefs λ  ⇡(0) by induction on the belief.

1. We have the initial condition: β  ⇡(0) = β
1−↵+β and Ωns(β) = β + (↵− β)β ≥ β.

2. Assume that we have: Ωns(λ) ≥ λ, for a given λ  ⇡(0).

3. The induction operator derives the following belief value: Ωns(Ωns(λ)) = β+(↵−
β)Ωns(λ) ≥ β + (↵− β)λ = Ωns(λ).

Thus, Ωns(λ) ≥ λ for all λ  ⇡(0). The analysis for λ ≥ ⇡(0) is similar.

Figure 4.5: The belief update function Ωns with respect to number of time slots the
channel was not sensed.
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Figure 4.5 depicts the belief evolution. As shown in [34], the value function for a POMDP

over a finite time horizon is PWLC with respect to the belief vector. In Proposition 4.3,

we show that the value function for our POMDP problem over an infinite horizon with

the average criterion has also this property.

Proposition 4.3. The value function V (λ, l), given by Equation (4.4), is PWLC with

respect to the belief vector λ over an infinite horizon with average criterion.

Proof. The proof of the Proposition 4.3 is similar to [34] where the authors considered

the finite time horizon problem. Hence, we briefly describe the procedure for this proof.

For all belief vectors λ, the value function V (λ, l⇤) is linear with the belief:

V (λ, l⇤) = Q2(λ, l
⇤)− gu,

= −gu + Φ− cs − P3G + V (Ωs(λ|✓ = 1), 1) +

λn⇤(P3G − Pp + V (Ωs(λ|✓ = 0), 1)− V (Ωs(λ|✓ = 1), 1)).

Then the value function V (λ, l⇤) can be rewritten as an inner product of the belief vector

and a Υ-vector. As Q2(λ, l) = Q2(λ, l
⇤), for all l, the action-value function Q2(λ, l) can

be also rewritten as an inner product of the belief vector and a Υ-vector. We suppose

that Proposition 4.3 holds for all packet delays higher than l+1, and we prove that the

proposition is true for packet delay l. After some algebra, we can rewrite the action-value

functions given in Equations (4.6) and (4.8) in terms of Υ-vector as follows:

Q0(λ, l) = −f(l) + max
Υ2Γl+1

< Ωns(λ|✓),Υ >= −f(l) +
X

s2S

!s

"
X

s02S

P (s0|s)ΥΩns(λ|θ)
l+1

#
, (4.9)

and

Q1(λ, l) = −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(−f(l) + max
Υ2Γl+1

< Ωs(λ|✓ = 1),Υ >)

= −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)

 
−f(l) +

X

s2S

!s

"
X

s02S

P (s0|s)ΥΩs(λ|θ=1)
l+1

#!
, (4.10)

where Υ
Ωns(λ|✓)
l+1 and Υ

Ωs(λ|✓=1)
l+1 are, respectively, the Υ-vectors for the regions containing

belief vectors Ωns(λ|✓) and Ωs(λ|✓ = 1), respectively. Each term in the square brackets

of Equations (4.9) and (4.10) are elements Υλ,l of a Υ-vector Υl. Thus, the action-value

functions can be rewritten as an inner product of the belief vector and a Υ-vector Υl.

Moreover, there is only a finite number of such Υ-vector Υl, since we have a finite set of

belief for all l. As the maximum of a finite set of piecewise linear and convex functions
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is also piecewise linear and convex, the Proposition 4.3 holds for all beliefs and packet

delays.

Note that monotonicity results help us for establishing the structure of the optimal

policies (see [93] for an example) and provide insights into the underlying problem. The

following propositions states monotonicity results of the value function with respect to

each of its parameters.

Proposition 4.4. For a given belief vector λ, the value function is monotonically de-

creasing with packet delays, i.e. V (λ, l)  V (λ, l0) for l ≥ l0.

Proof. Let us prove that the value function V (λ, l) is monotonically decreasing with

packet delays, for a given belief vector λ. Note that SUs take the action 2 for all beliefs

λ when the packet delay is l⇤. Therefore, we have:

V (λ, l⇤) = Φ− cs + λ(−Pp + V (↵, 1)) + (1− λ)(−P3G + V (β, 1)).

Note that the SU chooses the action that maximizes its average expected reward for the

packet delay l⇤ − 1 and belief λ, as follows:

V (λ, l⇤ − 1) = max
a

Qa(λ, l
⇤ − 1)− gu

≥ Q2(λ, l
⇤ − 1)− gu,

≥ Φ− cs + λ(−Pp + V (↵, 1)) + (1− λ)(−P3G + V (β, 1))− gu,

≥ V (λ, l⇤).

Let us prove that this propriety holds for all packet delays using a backward induction

on packet delays:

1. Initial condition: For all belief vector λ, we have that: V (λ, l⇤)  V (λ, l⇤ − 1),

2. Suppose that V (λ, l + 2)  V (λ, l + 1), 8λ.

3. We have:

Q0(λ, l) = −f(l) + V (Ωns(λ|✓), l + 1),

≥ −f(l + 1) + V (Ωns(λ|✓), l + 2),

= Q0(λ, l + 1).
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Q1(λ, l) = −cs + λ(Φ− Pp + V (↵, 1)) + (1− λ)(−f(l) + V (β, l + 1)),

≥ −cs + λ(Φ− Pp + V (↵, 1)) + (1− λ)(−f(l + 1) + V (β, l + 2)),

= Q1(λ, l + 1).

Q2(λ, l) = −cs + Φ− P3G + V (β, 1) + λ(P3G − Pp + V (↵, 1)− V (β, 1)),

= Q2(λ, l + 1).

The inequalities come from the induction assumption and the monotonicity of the

penalty function f(l).

Finally, the value function is decreasing with packet delays.

This result is intuitive as for the same belief λ and for a given packet delay, the maximum

expected remaining reward that can be accrued is lower than the one the SU can get

with a smaller packet delay. We present, in the following lemma, a result that will be

useful for the proof of the monotonicity of the value function with respect to the belief.

Lemma 4.5. We have the following inequality:

−Pp + V (↵, 1) ≥ −P3G + V (β, 1).

Proof. We prove this lemma by contradiction. Suppose that −Pp + V (↵, 1) < −P3G +

V (β, 1). Let us prove, in the following, that the constant gu is higher than Φ− cs − Pp:

gu + V (↵, 1) ≥ Q2(↵, 1),

gu + V (↵, 1) ≥ −cs + ↵(φ− Pp + V (↵, 1)) + (1− ↵)(φ− P3G + V (β, 1)),

gu + V (↵, 1) ≥ −cs + φ− Pp + V (↵, 1),

gu > Φ− cs − Pp.

We take the assumption that the immediate reward when the channel is idle is positive,

i.e. Φ − cs − Pp ≥ 0. We have already assumed that the SU takes the action 2 in the

state (λ, l⇤) for all belief vector λ, i.e a⇤(λ, l⇤) = 2, 8λ. Therefore, we have:

gu + V (λ, l⇤) = −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(φ− P3G + V (β, 1)).
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Let us focus on the packet delay l⇤ − 1. If λ  ⇡(0), the following inequality holds:

Q0(λ, l
⇤ − 1) = −f(l⇤ − 1) + V (Ωns(λ), l⇤),

= −gu − f(l⇤ − 1)− cs + Ωns(λ)(φ− Pp + V (↵, 1))

+ (1− Ωns(λ))(φ− P3G + V (β, 1)),

= V (λ, l⇤)− f(l⇤ − 1) + (Ωns(λ)− λ)(P3G − Pp + V (↵, 1)− V (β, 1)),

< V (λ, l⇤).

The inequality is due to the assumption that −Pp+V (↵, 1) < −P3G+V (β, 1), the belief

update function Ωns(λ) ≥ λ, and the delay penalty f(l⇤ − 1) is positive. As the value

function V (λ, l) is decreasing with packet delays (see Proposition 4.4), then we have:

Q0(λ, l
⇤ − 1) < V (λ, l⇤) < V (λ, l⇤ − 1). Note that we have already proved that gu is

positive. Thus, the SU does not take the action 0 when the packet delay is l⇤ − 1. Let

us focus on the action 1, we have the following inequality:

Q1(λ, l
⇤ − 1) = −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(−f(l⇤ − 1) + V (β, l⇤)),

= −cs + λ(φ− Pp + V (↵, 1)) + (1− λ) ( φ− gu − f(l⇤ − 1)− cs

+β(−Pp + V (↵, 1)) + (1− β)(−P3G + V (β, 1))) ,

< −cs + λ(φ− Pp + V (↵, 1))

+ (1− λ)(φ− gu − f(l⇤ − 1)− cs − P3G + V (β, 1)),

< −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(φ− P3G + V (β, 1)),

= Q2(λ, l
⇤ − 1).

The first inequality is due to the assumption that −Pp+V (↵, 1) < −P3G+V (β, 1), and

the second one is because gu, f(l
⇤ − 1) and cs are positive. Thus, the optimal strategy

is to take the action 2 when the packet delay is l⇤ − 1.

Let us prove by backward induction on l, that the optimal action is the action 2 for all

belief vector λ  ⇡(0).

• If the SU takes the action 2 when the packet delay is l⇤, then it takes also the

action 2 when the packet delay is l⇤ − 1.

• We suppose that SU takes the action 2 when the packet delay is l < l⇤ − 1.
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• We have the following inequality:

Q0(λ, l − 1) = −f(l − 1) + V (Ωns(λ), l),

= −gu − f(l − 1)− cs + Ωns(λ)(φ− Pp + V (↵, 1))

+ (1− Ωns(λ))(φ− P3G + V (β, 1)),

= V (λ, l)− f(l − 1) + (Ωns(λ)− λ)(P3G − Pp + V (↵, 1)− V (β, 1)),

< V (λ, l).

The inequality is due to the assumption that −Pp + V (↵, 1) < −P3G + V (β, 1),

Ωns(λ) ≥ λ, and f(l − 1) is positive. As the value function is decreasing with the

packet delay (see Proposition 4.4), then Q0(λ, l − 1) < V (λ, l − 1) + gu, i.e. the

SU does not take the action 0 with the packet delay l − 1. Let us compare the

action-value functions Q1(λ, l − 1) and Q2(λ, l − 1):

Q1(λ, l − 1) = −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(−f(l − 1) + V (β, l)),

= −cs + λ(φ− Pp + V (↵, 1)) + (1− λ) ( φ− gu − f(l − 1)− cs

+β(−Pp + V (↵, 1)) + (1− β)(−P3G + V (β, 1))) ,

< −cs + λ(φ− Pp + V (↵, 1))

+ (1− λ)(φ− gu − f(l − 1)− cs − P3G + V (β, 1)),

< −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(φ− P3G + V (β, 1)),

= Q2(λ, l − 1).

The first inequality is due to the assumption that −Pp+V (↵, 1) < −P3G+V (β, 1)

and the second one is because gu, f(l− 1) and cs are positive. Thus, The optimal

strategy is to take action 2 when the delay of its packet equals l − 1.

Finally, the SU takes action 2 for all packet delays and beliefs lower than ⇡(0).

Let us focus on the action-value function Q2(↵, 1), when the packet delay is l = 1, we

have:

Q2(↵, 1) = −cs + ↵(φ− Pp + V (↵, 1)) + (1− ↵)(φ− P3G + V (β, 1)),

Q2(↵, 1) = φ− cs − P3G + V (β, 1) + ↵(P3G − Pp + V (↵, 1)− V (β, 1)),

−gu +Q2(↵, 1) = −gu + V (↵, 1)− Pp + φ− cs + (↵− 1)(P3G − Pp + V (↵, 1)− V (β, 1)).
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As the SU takes the action 2 also for the state (β, 1), we have the following expression

of the constant gu:

gu + V (β, 1) = −cs + β(φ− Pp + V (↵, 1)) + (1− β)(φ− P3G + V (β, 1)),

gu + V (β, 1) = φ− cs − P3G + V (β, 1) + β(P3G − Pp + V (↵, 1)− V (β, 1)),

gu = φ− cs − P3G + β(P3G − Pp + V (↵, 1)− V (β, 1)).

Thus, we obtain:

−gu +Q2(↵, 1) = V (↵, 1) + P3G − Pp + (↵− β − 1)(P3G − Pp + V (↵, 1)− V (β, 1)).

As we have assumed that P3G − Pp + V (↵, 1) − V (β, 1) < 0, and P3G > Pp, we obtain:

V (↵, 1) + gu  Q2(↵, 1), and the SU takes also the action 2 in the state (↵, 1):

gu + V (↵, 1) = Q2(↵, 1) = −cs + ↵(φ− Pp + V (↵, 1)) + (1− ↵)(φ− P3G + V (β, 1)).

Finally, let us evaluate the difference between V (↵, 1) and V (β, 1). We have:

V (↵, 1)− V (β, 1) = (↵− β)(P3G − Pp + V (↵, 1)− V (β, 1)),

V (↵, 1)− V (β, 1) < 0.

and

V (↵, 1)− V (β, 1) = (↵− β)(P3G − Pp + V (↵, 1)− V (β, 1)),

(V (↵, 1)− V (β, 1))(1− ↵+ β) = (↵− β)(P3G − Pp),

V (↵, 1)− V (β, 1) =
(↵− β)(P3G − Pp)

1− ↵+ β
,

> 0.

which leads to a contradiction. Therefore, −Pp+V (↵, 1) ≥ −P3G+V (β, 1). The analysis

is similar when λ > ⇡(0).

We study the monotonicity of the value function with respect to the belief. Intuitively,

with a higher belief, for a given packet delay, the SU obtains better rewards. We prove,

in the following proposition, that this intuition is true.

Proposition 4.6. For a given packet delay l, the value function is monotonically in-

creasing with beliefs λ, i.e. V (λ, l) ≥ V (λ0, l) for λ ≥ λ0.
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Proof. Let us prove that the value function V (λ, l) is increasing with beliefs λ for a given

packet delay l. For all λ1  λ2, we have:

V (λ1, l
⇤) = −gu − cs + Φ− P3G + V (β, 1) + λ1(P3G − Pp + V (↵, 1)− V (β, 1)),

 −gu − cs + Φ− P3G + V (β, 1) + λ2(P3G − Pp + V (↵, 1)− V (β, 1)),

= V (λ2, l
⇤).

This inequality results from the Lemma 4.5. Let us prove that this propriety holds for

all packet delays using backward induction:

• Initial condition: There exists a packet delay l⇤, such that V (λ1, l
⇤)  V (λ2, l

⇤),

8λ1  λ2,

• Suppose that V (λ1, l + 1)  V (λ2, l + 1), 8λ1  λ2,

• we have the following expressions of the action-value functions:

Q0(λ1, l) = −f(l) + V (Ωns(λ1|✓), l + 1),

 −f(l) + V (Ωns(λ2|✓), l + 1),

= Q0(λ2, l).

The inequality is a direct result from the induction assumption and the Lemma

4.2. Moreover, we have:

Q2(λ1, l) = −cs + Φ− P3G + V (β, 1) + λ1(P3G − Pp + V (↵, 1)− V (β, 1)),

 −cs + Φ− P3G + V (β, 1) + λ2(P3G − Pp + V (↵, 1)− V (β, 1)),

= Q2(λ2, l).

The inequality comes also from the Lemma 4.5.

First case Assume that Φ + f(l) − Pp + V (↵, 1) − V (β, l + 1) ≥ 0. Then, we

have:

Q1(λ1, l) = −cs − f(l) + V (β, l + 1) + λ1(Φ+ f(l)− Pp + V (↵, 1)− V (β, l + 1)),

 −cs − f(l) + V (β, l + 1) + λ2(Φ+ f(l)− Pp + V (↵, 1)− V (β, l + 1)),

= Q1(λ2, l).

Finally, we have that V (λ1, l)  V (λ2, l).
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Second case Assume that Φ + f(l)− Pp + V (↵, 1)− V (β, l + 1) < 0. Then, for

all beliefs λ, we have:

Q1(λ, l) = −cs + λ(φ− Pp + V (↵, 1)) + (1− λ)(−f(l) + V (β, l + 1)),

 −cs − f(l) + V (β, l + 1),

 −cs − f(l) + V (Ωns(λ|✓), l + 1),

 Q0(λ, l).

In fact, we have that β  Ωns(λ|✓) for all beliefs, and the value function V (λ, l)

is increasing with beliefs for the packet delay l+ 1 (induction assumption). Thus,

gu + V (λ, l) = max {Q0(λ, l), Q2(λ, l)}. Therefore, we have proved that V (λ1, l) 
V (λ2, l).

Finally, the value function is increasing with beliefs for all packet delays.

In the following lemma, we prove that gu > −f(l).

Lemma 4.7. The value function’s constant gu is higher than −f(l).

Proof. we have:

gu + V (↵, 1) ≥ Q0(↵, 1),

gu + V (↵, 1) ≥ −f(l) + V (Ωns(↵), l + 1),

gu + V (↵, 1)− V (Ωns(↵), l + 1) ≥ −f(l),
gu > −f(l).

The inequality comes from the monotonicity of the value function and Ωns(↵) < ↵.

Once we have studied the monotonicity of the value function with respect to both of its

parameters, we are able to show that the optimal OSA policy has a threshold structure.

4.3.2 The multichannel model

Note that Lemma 4.2 holds for the multichannel model. In fact, if ~λ1  ~λ2, then λn⇤
1


λn⇤
2
and Ωns(λn⇤

1
)  Ωns(λn⇤

2
), and therefore, Ωns(~λ1)  Ωns(~λ2). Second, consider that

λn⇤  ⇡(0). Then, we have Ωns(λn⇤) ≥ λn⇤ , and thus Ωns(~λ) ≥ ~λ. Otherwise, we have

Ωns(~λ)  ~λ.

The Proposition 4.3 can be straightforwardly extended to the multichannel model. Fur-

thermore, we have studied, in Proposition 4.4, the monotonicity of the value function
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for a fixed belief value with respect to the packet delay. This proposition can be also

straightforwardly extended to the multichannel model.

Let us focus on the Proposition 4.6. The monotonicity of the value function with respect

to the belief vector depends on the order relationship over the belief set and also on the

monotonicity of the belief update functions Ωs(λ|✓ = 0) and Ωs(λ|✓ = 1) depending on

the belief vector. Note that the monotonicity of the value function with respect to the

belief is the main difficulty for extending our study to the multichannel model, and will

be considered as a part of our future works.

4.4 Optimal threshold policy

We determine, in this section, an optimal OSA policy for the SU, and we study the

structure of such policy. An intuitive behavior of a SU that is accessing opportunistically

the spectrum, and that is aware of both energy consumption and transmission delay, is:

• When the packet is recent, i.e. the delay of the packet is small, and the belief is

small the SU chooses to wait for better opportunities at next time slots.

• For a delayed packet, the SU chooses to sense and access the dedicated channel if

there are no free licensed channels.

We prove in this section, that the intuition is true, and there exists an optimal sensing

policy, which has a threshold structure.

Note that SUs have a two-level decision. the first decision for a SU is whether to sense

the licensed channels or to wait, depending on its belief, λ, and the current delay of the

packet, l. Specifically, we have the following result, which gives us a threshold policy on

the belief probability that answers this question.

Proposition 4.8. For a given packet delay l, the optimal action for the SU is to wait

for the next time slot, i.e. a⇤(λ, l) = 0 if and only if λ  λ⇤, where λ⇤ is the solution

of the equation λ⇤ = max(0,min{Th1(λ⇤, l), Th2(λ⇤, l)}). The thresholds Th1(λ⇤, l) and

Th2(λ⇤, l) are expressed as follows:

Th1(λ⇤, l) =
V (Ωns(λ⇤|✓), l + 1)− V (β, l + 1) + cs
f(l) + Φ− Pp + V (↵, 1)− V (β, l + 1)

, and

Th2(λ⇤, l) =
V (Ωns(λ⇤|✓), l + 1)− V (β, 1) + cs − f(l)− Φ+ P3G

−Pp + V (↵, 1) + P3G − V (β, 1)
.
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Proof. In this proposition, we determine explicitly the best action a⇤(λ, l) for the SU

depending on the belief λ and the packet delay l. For a given information state (λ, l),

the SU decides to take the action 0 if and only if Q0(λ, l) ≥ max {Q1(λ, l), Q2(λ, l)}.

• First, we assume that Q1(λ, l) > Q2(λ, l). Let us compare Q0(λ, l) and Q1(λ, l).

The inequality Q0(λ, l) ≥ Q1(λ, l) is equivalent to:

−f(l) + V (Ωns(λ|✓), l + 1) ≥ −cs + λ(Φ− Pp + V (↵, 1))

+(1− λ)(−f(l) + V (β, l + 1)),

V (Ωns(λ|✓), l + 1) ≥ V (β, l + 1)− cs + λ(f(l)

+Φ− Pp + V (↵, 1)− V (β, l + 1)).

As the value function V (λ, l) is decreasing with packet delays and increasing with

beliefs, we have that V (↵, 1) ≥ V (β, l + 1). Moreover, we have already assumed

that the immediate reward Φ is higher than the cost Pp. Thus, the expression

f(l) + Φ − Pp + V (↵, 1) − V (β, l + 1) is positive, and we obtain the following

equivalence:

Q0(λ, l) ≥ Q1(λ, l), V (Ωns(λ|✓), l + 1) ≥ V (β, l + 1)− cs + λ(f(l) + Φ− Pp

+V (↵, 1)− V (β, l + 1)).

Define the functions F and G as follows:

F (λ, l) = V (Ωns(λ|✓), l + 1),

G(λ, l) = V (β, l + 1)− cs + λ(f(l) + Φ− Pp + V (↵, 1)− V (β, l + 1)).

Note that:

– If F (λ, l) ≥ G(λ, l), then Q0(λ, l) ≥ Q1(λ, l), and the optimal action for the

SU is a(t) = 0.

– If F (λ, l) < G(λ, l), then Q0(λ, l) < Q1(λ, l), and the optimal action for the

SU is a(t) = 1.

We have proved, in Proposition 4.3, that the value function is PWLC with beliefs.

Therefore, for all packet delays, the function F (λ, l) is PWLC and increasing with

λ, and the function G(λ, l) is linear and increasing with λ. Let us study the sign

of F (λ, l)−G(λ, l). Under these setting, six cases rise up:

1. F (λ, l) is always higher than G(λ, l), see Figure (4.6, case 1).

2. F (λ, l) is always lower than G(λ, l), see Figure (4.6, case 2).
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3. F (λ, l) and G(λ, l) intersect once and F (β, l) < G(β, l), see Figure (4.6,

case3).

4. F (λ, l) and G(λ, l) intersect once and F (β, l) ≥ (β, l), see Figure (4.6, case

4).

5. F (λ, l) and G(λ, l) intersect twice and F (β, l) ≥ (β, l), see Figure (4.6, case

5).

6. G(λ, l) is tangent to F (λ, l), see Figure (4.6, case 6).

Figure 4.6: The analysis of the threshold: the functions F (λ, l) and G(λ, l).

Let us focus on the study of F (⇡(0), l) and G(⇡(0), l). Suppose that the SU chooses

the action 0 for the state (⇡(0), l). Then, we obtain the following inequality:

gu + V (⇡(0), l) = −f(l) + V (Ωns(⇡(0)), l + 1),

gu + V (⇡(0), l)  −f(l) + V (Ωns(⇡(0)), l),

gu + V (⇡(0), l)  −f(l) + V (⇡(0), l),

gu  −f(l).

This leads to a contradiction as gu > −f(l) (see Lemma 4.7). It follows that

Q0(λ, l) < Q1(λ, l), and F (⇡(0), l) < G(⇡(0), l). Thus, F and G intersect once

for belief probability in [β,↵]. Finally, the optimal OSA policy is depicted in the

following:

– The SU takes the action 0 for all beliefs lower than the following threshold:

Th1(λ, l) =
V (Ωns(λ|✓), l + 1)− V (β, l + 1) + cs
f(l) + Φ− Pp + V (↵, 1)− V (β, l + 1)

,
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and takes the action 1 otherwise.

• Second, we consider the case where Q2(λ, l) > Q1(λ, l). Then, we have to compare

the actions 0 and 2, which is equivalent to comparing the action-value functions

Q0(λ, l) and Q2(λ, l). The SU takes the action 0 instead of the action 2 if and only

if Q0(λ, l) ≥ Q2(λ, l), which is equivalent to:

−f(l) + V (Ωns(λ|✓), l + 1) ≥ −cs + λ(Φ− Pp + V (↵, 1))

+(1− λ)(φ− P3G + V (β, 1)),

V (Ωns(λ|✓), l + 1) ≥ V (β, 1) + Φ+ f(l)− cs − P3G

+λ(P3G − Pp + V (↵, 1)− V (β, 1)).

Note that we have, from Lemma 4.5, that P3G−Pp+V (↵, 1)−V (β, 1) ≥ 0. Then,

we can provide the same analysis presented in the previous case with the function

F (λ, l) = V (Ωns(λ|✓), l + 1) and the function G(λ, l) = V (β, 1) + Φ + f(l) − cs −
P3G + λ(P3G − Pp + V (↵, 1)− V (β, 1)). The former is PWLC and increasing with

λ, and latter is linear increasing with λ. Thus, we obtain the following threshold

policy:

– The SU takes the action 0 for all beliefs lower than the following threshold:

Th2(λ, l) =
V (Ωns(λ|✓), l + 1)− V (β, 1)− Φ− f(l) + cs + P3G

P3G − Pp + V (↵, 1)− V (β, 1)
,

and takes the action 2 otherwise.

This proposition gives us a necessary and sufficient condition on the sensing decision of

SUs depending on the belief probability λ. Consequently, if λ > λ⇤, then the optimal

action for the SU is to sense licensed channels, i.e. a⇤(λ, l) 6= 0.

Furthermore, we have proved, in Lemma 4.2, that the belief vector may be decreasing

with the belief update function Ωns(.). It follows that there are less opportunities, at

the next time slot, to transmit the packet. Thus, the SU should never decide to wait,

i.e. action 0, if the belief decreases with Ωns(.). The following proposition proves that

this intuition is true.

Proposition 4.9. For all λ > ⇡(0) and l, the SU never takes the action 0 and thus,

Q0(λ, l) < max {Q1(λ, l), Q2(λ, l)}.
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Proof. We have from the Lemma 4.2 that if λ > ⇡(0) then Ωns(λ)  λ. Suppose that

the SU takes the action 0 for a belief λ and packet delay l. Thus we have:

gu + V (λ, l) = −f(l) + V (Ωns(λ), l + 1),

gu + V (λ, l)  −f(l) + V (Ωns(λ), l),

gu + V (λ, l)  −f(l) + V (λ, l),

gu  −f(l).

This leads to a contradiction as gu > −f(l). The first inequality is because the value

function is decreasing with the packet delay, and the second one is because the value

function is increasing with the belief and Ωns(λ)  λ. Thus, if λ > ⇡(0), then the SU

never takes the action 0 and then Q0(λ, l) < max {Q1(λ, l), Q2(λ, l)}.
Remark 4.10. The SU never chooses the action 0 after it transmits a packet over the

licensed channel because Ωs(λ, ✓ = 0) = ↵ > ⇡(0).

Note that if licensed channels are often occupied, the SU would decide to transmit using

the dedicated channel. We depict, in the following proposition, the threshold structure

of the optimal decision about the use of the dedicated channel.

Proposition 4.11. For all belief λ, the SU chooses to use the dedicated channel in spite

of waiting for the next time slot if and only if the delay l of the current packet verifies:

−f(l)− Φ+ P3G + V (β, l + 1)− V (β, 1) > 0.

Proof. Let us compare the value-action functionsQ1(λ, l) andQ2(λ, l) for all belief vector

λ and packet delay l. The SU waits for next time slot after sensing if Q1(λ, l) ≥ Q2(λ, l),

which is equivalent to:

−cs + λ(Φ− Pp + V (↵, 1)) + (1− λ)(−f(l) + V (β, l + 1)) ≥ −cs + λ(Φ− Pp + V (↵, 1))

+(1− λ)(φ− P3G + V (β, 1)),

−f(l) + V (β, l + 1)φ− P3G + V (β, 1) ≥ 0.

Remark that this condition depends only on the packet delay l.

Note that this expression depends neither on the cost of sensing Cs nor on the belief

vector λ. That is obvious, as this expression determines the best action to do after

sensing a channel. We have the last property about the optimal threshold policy.



Chapter 4. Energy-efficient Delay-constrained Opportunistic Spectrum Access in
Cognitive Radio Networks 80

Corollary 1 (Never Wait After Sensing). For all l, if the penalty cost −f(l) is lower than
Φ− P3G, then the SU transmits on the dedicated channel when the licensed channel is

sensed as busy.

Proof. If −f(l) is lower than Φ−P3G, then −f(l)−Φ+P3G+V (β, l+1)−V (β, 1) is always

negative. In fact, V (β, 2)−V (β, 1) is negative, and −f(l)−Φ+Pp+V (β, l+1)−V (β, 1) is

decreasing with l. Therefore, the previous expression is negative for all delays l ≥ 1.

Remark 4.12. We obtain a two-level threshold structure of the optimal OSA policy, one

threshold for each decision step (see Figure 4.4). In fact, the SU has to choose between

the two following options: to sleep (action 0), or to sense the licensed channels (action

1). This decision is made using the threshold expressed in Proposition 4.8, based on the

belief vector. Thereafter, the SU makes decision about using the dedicated channel or

not (action 2), if it decides to sense licensed channels, depending on its packet delay,

regardless the belief, based on Proposition 4.11.

Obviously, the optimal OSA policy depends on the transition rates ↵ and β of the PUs’

activity. Most of researches in the OSA area assume that some information such that

the statistics about the PUs’ activity, or the licensed channel transition rates are priory

known by the SUs, which may not be realistic in decentralized systems. In practice,

an SDR that implement CR uses some learning methods to get insight about the RF

environment. We present, in the following section, some learning methods that can be

used in order to learn transition rates of the licensed channel on-the-fly.

4.5 Online learning of the RF environment

We have already proved that SUs have an optimal energy-delay constrained policy hav-

ing a threshold structure, given perfect knowledge of channels transition rates. However,

in practice, some information, such as transition rates ↵ and β, are not available for the

SU. In this section, we consider a model where the SU does not have external informa-

tion about the state transition rates. In the following, we present two learning based

protocols for SUs in order to estimate the licensed channels dynamics: rate estimator,

and transition matrices estimator.

4.5.1 Rate estimator

In this approach, the SU starts with an initial arbitrary values of ↵ and β. Then, it

updates them every time slot depending on information about the system state. In

fact, the SU computes its sensing policy based on the estimators ↵̂ = {↵̂1, ..., ↵̂N} and



Chapter 4. Energy-efficient Delay-constrained Opportunistic Spectrum Access in
Cognitive Radio Networks 81

β̂ = {β̂1, ..., β̂N}, where ↵̂i (resp. β̂i) is the estimator of ↵i (resp. βi). In practice, the SU

estimates the following parameters. First, the SU estimates ↵̂i, which is the probability

that the channel i is sensed as idle, given that it was idle in the previous slot. Second,

the SU estimates ⇡̂i(0), the stationary probability that the licensed channel is sensed as

idle. Finally, the SU obtains the estimated value of βi based on the following relation:

β̂i = (1− ↵̂i)
⇡̂i(0)

1− ⇡̂i(0)
.

Formally, the licensed channels’ transition rates are estimated based on the following

counting processes:

• The vector K̂ = {K̂1, ..., K̂N}, where K̂i represents the number of time slots a

channel stays in the idle state, i.e. K̂i is incremented if the channel i is sensed and

is idle at time slots t and t− 1.

• The vector Î = {Î1, ..., ÎN}, where Îi represents the number of time slots that the

channel is sensed and is idle.

• The vector M̂ = {M̂1, ..., M̂N}, where M̂i represents the number of time slots that

the channel is sensed.

Therefore, the SU estimates the state transition rates ↵̂ and ⇡̂i(0) based on the following

expressions: ↵̂i =
K̂i

Îi
and ⇡̂i(0) =

Îi
M̂i

.

The convergence of the previous estimators, ↵̂ and β̂, depends on the occurrence of

two successive sensing of the same channel. The SU may not sense frequently the

same channel in two successive time slots. Therefore, this estimation method may be

inaccurate, and may also harm the SU decision. We propose, in the next section, a more

accurate, but also more complex, learning method named transition matrices.

4.5.2 Transition matrices estimator

We present, in this section, a learning protocol that estimates the transition matrices.

We define the set of transition matrices {Pi(0), Pi(1), ...}, where Pi(j) is the transition

matrix of the channel i, when this channel was not sensed during j consecutive slots.

For example, if the channel i was sensed, j slots before as idle, then the current belief

on the state of this channel is (1, 0) ⇤ Pi(j).

Similarly to the rate estimator, the transition matrices are estimated using counting

processes. Note that the previous learning protocol is somehow a particular case of this
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Table 4.1: Simulation parameters

Parameter Value

P3G 80

Pp 10

cs 5

Φ 35

Table 4.2: Simulation scenarios

Scenario Description ↵ β

Scenario 1 Licensed channels are often occupied 0.15 0.1

Scenario 2 Licensed channels are often idle 0.85 0.7

Scenario 3 Licensed channels have low transition rates 0.95 0.05

approach. In fact, estimating ↵ and β is equivalent to estimating the set of transition

matrices such that the channel was sensed in the previous slot {P1(0), ..., PN (0)}. In-

deed, this learning based protocol gives a more accurate estimation of PUs’ activity.

Specifically, transition matrices estimator method updates the set of transition matrices

every time slot in contrast to the rate estimators method which updates the transition

rates only if SU senses as idle of the same licensed channel channel for two successive

time slots. However, it needs more memory and computational complexity compared to

the rates estimators method. Depending on the computational capacity of the SU, it

may choose to implement either the rates estimator or the transition matrices estimator

method.

4.6 Numeric illustrations

We make extensive numerical experimentations over important number of packets, in

order to evaluate the performance of the proposed OSA mechanism, and validate the

threshold structure of such policy. We consider 4 i.i.d licensed channels, i.e. N = 4

(with 4 licensed channels, we have approximately 106 states). Furthermore, the system

parameters are summarized in Table 4.1. We consider a model composed of four sym-

metric channels, and we simulate the system depicted in Figure 4.7. The three different

scenarios studied in this chapter are illustrated in Table 4.2.

In this section, we describe the optimal threshold OSA policy, given perfect knowledge

about the transition rates of licensed channels. We consider, first, the single channel

case and then, we focus on the multichannel model. In the second part of this section,

we present some results using estimated values of transition rates, and we compare the

performance of the two proposed learning methods.
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Figure 4.7: The simulation model.

4.6.1 Single channel model

In this section, we consider only one licensed channel having transition rates ↵ = 0.15

and β = 0.1. Figure 4.8 illustrates the optimal OSA policy of a SU depending on

the belief and the packet delay. For each packet delay, the SU has a threshold policy

depending on beliefs. We observe, in Figure 4.8, that the threshold belief probability λ⇤

is decreasing with packet delays. Furthermore, the maximum packets delay is 13 time

slots, regardless the belief vector.

Consider the same scenario with transition rates ↵ = 0.7 and β = 0.85. We observe,

in Figure 4.9, that the optimal OSA policy of the SU has also a threshold structure.

Furthermore, a packet has at most a delay of 3 time slots regardless its belief. Indeed,

the SU always choose the dedicated channel for packets having a delay of 3 slots.

We have proved, in this section, that our numerical results validate our analytic finding.

Indeed, the optimal OSA policy has a two-level threshold structure. We study in the

next section the OSA mechanism in a multiple licensed channels context.

4.6.2 The multichannel model

In this section, we consider a model composed of 4 licensed channels. Note that when

there are multiple licensed channels, SUs have to decide which one they have to sense

and access. We implement, in our simulations, a natural greedy channel choice policy.

In fact, we consider that the SU chooses the channel that has the highest belief.

We simulate the first scenario depicted in Table 4.2 and we illustrate, in Figure 4.10,

the optimal OSA policy for SUs, depending on packet delays. For each packet delay l,
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Figure 4.8: The optimal OSA policy with one licensed channel, with ↵ = 0.15 and
β = 0.1.

Figure 4.9: The optimal OSA policy with one licensed channel, with ↵ = 0.7 and
β = 0.85.

the best action for the SU is to wait for the next slot if its belief probability is lower

than λ⇤. Otherwise, the SU decides to sense the licensed channels. We observe that the

maximum packet delay l⇤ equals 9. Then, when the packet delay is l = 9, the SU decides

to sense and to transmit using the dedicated channel if the sensed channel is occupied

(action 2). This observation validates the result of Proposition 4.11, as the choice of the

action 2 depends only on the packet delay, regardless the belief vector.

We illustrate the optimal OSA policy for SUs obtained through simulating the second

scenario of Table 4.2, in Figure 4.11. We observe that the SU chooses to transmit over

the dedicated channel if there are no opportunities in the licensed spectrum, when the

delay of the packet equals 5 slots, regardless its belief. Otherwise, it senses the licensed

channels if its belief is higher than the threshold λ⇤, and wait if its belief is lower. This

result is intuitive as in this scenario, licensed channels are more often idle, inducing a
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Figure 4.10: The optimal OSA policy in the scenario 1.

Figure 4.11: The optimal OSA policy in the scenario 2.

lower packet delay. Note that in both scenarios, the threshold belief λ⇤ is decreasing

with the packet delays.

Finally, we consider the last scenario depicted in Table 4.2. We observe, in Figure 4.12,

that the maximum packet delay equals at most 5 time slots. We further observe that

the OSA policy for SUs has also a threshold structure. However, the threshold belief

probability λ⇤ is not monotonous with packet delays. In fact, in this scenario, licensed

channels are more static (the probability for each channel to stay occupied or idle is

high enough). Thus, it appears one kind of periodic threshold strategy. One more

observation, in this scenario, is that the SU changes the choice of the licensed channel

to sense if it was sensed as occupied at the last time slot. Indeed, a channel sensed as

occupied has a belief of β, the lowest possible belief, and will not be chosen at the next

time slot, as we are using a greedy channel choice policy.
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Figure 4.12: The optimal OSA policy in the scenario 3.

Figure 4.13: The average reward for scenario 1.

4.6.3 The multichannel model using estimated values of α and β

We simulate the three scenarios presented in Table 4.2, with estimated values of licensed

channels’ transition rates. Moreover, we consider both learning approaches presented

in Section 4.5. In this section, we evaluate the performance of these learning methods

using the two following metrics: The average reward and the average delay. We consider

the model with known values of ↵ and β (studied in Section 4.6.2) as a reference model.

Figures 4.15 and 4.16 show that both learning protocols converge. In fact, we observe

that both protocols converge before 400 iterations. However, in Figures 4.13 and 4.14,

we can observe that the transition matrices estimation method converge 3 times faster

(about 1000 iterations) than the rate estimators method (about 3000 iterations).
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Figure 4.14: The average delay for scenario 1.

Figure 4.15: The average reward for scenario 2.

Figure 4.16: The average delay for scenario 2.
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4.7 Conclusion

In this chapter, we have used a POMDP framework for designing an optimal OSA policy

for CR networks taking into account an energy-delay tradeoff for SUs. Introducing a

QoS metric in the OSA policy is very important, with the emergence of heterogeneous

mobiles that are able to transmit their QoS-dependent traffic over different mediums of

communication like 3G, WiFi and TV White Space. We have provided some structural

properties of the value function and we have proved the existence of an optimal stationary

OSA policy that has two-level threshold structure. We have been able to determine

explicitly the threshold structure of the optimal policy.

Note that the interaction between several SUs has not been considered here, and in

the literature very few, at the best of our knowledge. This perspective is also very

important because if the channel choice policy is the same for all the SUs, there could

have lots of collisions between several SUs that have sensed the same licensed channel.

In the following chapter, we extend this study to the multichannel context. Indeed, we

consider that SUs make decision individually and try to maximize their own benefits.
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5.1 Introduction

Due to the recent and dramatic development of the wireless communication industry,

the demand for wireless spectrum has been growing rapidly. Thus, the spectrum scarcity

is becoming a challenge for several recent studies. Both academic and industry are rec-

ognizing that traditional fixed spectrum allocation is very inefficient, such that most of

the time the bandwidth that was allocated is not optimally used and the corresponding

channel is idle, which forms spectrum holes [8]. CR [1], which is a new paradigm for de-

signing wireless communication systems, appeared in order to enhance the utilization of

the radio frequency spectrum. It was considered as the key technology that enables SUs

to access the licensed spectrum. Typically, SUs access opportunistically the spectrum

when it is not used by PUs. The presence of several SUs in the same portion of spectrum

89
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band enhanced the need to efficiently share the spectrum. Indeed, the utilization of the

radio spectrum is reduced due to collisions among SUs under decentralized channel se-

lection schemes. In order to optimize the utilization of the scarce spectrum resources,

DSA become a promising approach to increase the efficiency of spectrum usage and to

solve the scarcity problem.

Surprisingly, the impact of the energy constraint, due to the limited mobile users’ bat-

tery, and the capacity of CR to support additional QoS were somehow ignored and not

sufficiently studied in the literature. In many wireless systems, it is very important to

provide reliable communications while sustaining a certain level of QoS. However, chal-

lenges in providing the QoS assurances increase due to the fact that SUs operate under

constraints on the licensed channels’ occupancy, and competition between each other.

We investigate an important problem for determining the OSA mechanism, and we

propose a general model that allows us to study the impact of energy consumption and

expected delay on the OSA policy. The main novelty of our approach is to consider

a POSG framework. The theory of POMDP was widely and successfully used, like in

[80], [53] and [90], to model and build OSA mechanisms in CR networks. However,

those works do not consider the competition between SUs. Very few works proposed to

model such competition(see [94] and [95] for example). Moreover, those works do not

have significant results. In fact, using a DP approach to solve a POMDP is possible

by transforming it into a completely observable MDP over belief states [95]. It is very

difficult to generalize this technique for POSG as the SUs may have different beliefs.

This problem was alleviated by introducing the notion of generalized belief state in [41],

however the optimal algorithm becomes intractable beyond a small horizon. In our work,

we focus on the existence of an SNE between SUs. The SNE is solved using a Linear

Program (LP). Second, we identify paradoxical behaviors of SUs. One of the observed

paradoxes here is a kind of Braess paradox, a well-studied paradox in routing context [96].

Our paradox indicates that decreasing the spectrum occupancy may lead degradation of

the performance in term of the average throughput for SUs. This observation is due to

the increase of the aggressiveness of SUs when the spectrum availability increases. We

look further for a network control mechanism in order to optimize the average throughput

of SUs at the SNE. For this end, we consider a Stackelberg game formulation [97].Note

that Stackelberg game formulations was already proposed in the CR literature (see for

example [39], [40] and [98]), as the natural hierarchy between PUs and SUs is very

similar to the hierarchy between leaders and followers. Nevertheless, it was not used in

order to enhance the network usage. In the second part of this chapter, we propose a

control mechanism, for the network manager using a Stackelberg game formulation, such

that the total average throughput of the SUs is maximized in this partially observable

environment.
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Many works focused on the study of optimal OSA policies in CR networks. In [80],

the authors studied decentralized MAC protocols such that SUs search for spectrum

opportunities without a central controller. They considered a POMDP and proposed an

analytical framework based on this mathematical tool. However, the authors consider

neither energy consumption nor any QoS constraint in their OSA policy. The prob-

lem of maximizing the throughput of traffic subject to some constraints on its delay

received the extensive attention of pioneering work [99]. Authors of [100] described lin-

ear programming solvers for MDP, which are able to handle finite and infinite horizon

problems. Moreover, authors of [101] considered a problem similar to ours but in a

queueing context. They used the linear programming in order to solve an MDP and to

study the equilibria for N players scenario in a stochastic game context. Few works fo-

cused on how SUs should operate in order to satisfy some QoS requirements and energy

constraints. Authors of [53] incorporated the energy constraint in the design of the op-

timal OSA policy, in a single user context, and formulated their problem as a POMDP.

The major difference between this work and ours is that the authors do not considered

the competition between SUs. In [102], the authors presented a queueing analysis of

a CR with multiple SUs. They proposed an adaptive algorithm to find the optimal

contention probability that minimizes the expected delay. Authors of [103], proposed an

energy-efficient non-cooperative strategy for resource allocation in CR networks based

on a game theoretical approach. In summary, the main contributions of the chapter are

as follows:

• We model a non-cooperative sensing and access game as a POSG. We prove the

existence and uniqueness of an SNE for this OSA game.

• In the non-saturated regime, we exhibit an optimal sensing policy where SUs may

sense licensed channels, even if they do not have any packets to transmit. Indeed,

by sensing the licensed channels, a SU gets information on the RF environment.

• We highlight an interesting paradox, which says that increasing the spectrum

occupancy may increase the SUs’ average throughput. Indeed, SUs become less

aggressive, which induces a better utilization of the spectrum holes (less collisions).

• Finally, we propose a control mechanism for the network manager in order to

increase the average total throughput of the network at the SNE. For this purpose,

we formulate the hierarchical framework as a Stackelberg game, where the network

manager acts as the leader and SUs act as followers.

The remainder of the chapter is organized as follows. In Section 5.2, we introduce our

system model. The utility function and the NE analysis are presented in Section 5.3. We
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propose a Stackelberg-based mechanism for the network manager in order to optimize

the licensed channels’ utilization in Section 5.4. We present some simulation results in

order to discuss the performance of the proposed model in Section 5.5, and we conclude

the chapter in Section 5.6.

5.2 The model

We consider M time-varying channels licensed for PUs and N SUs accessing oppor-

tunistically the available channels. The occupancy of each channel k 2 {1, . . . ,M} is

modeled by a time-homogeneous discrete Markov process denoted sk, where the state

sk = 0 (resp. sk = 1) means that the channel is idle (resp. busy). The licensed channels’

transition rates are illustrated in Figure 5.1, where βk represents the probability that

the licensed channel k becomes idle, such that it was occupied in the previous time slot,

and ↵k represents the probability that the licensed channel k becomes idle such that it

was idle, in the previous time slot.

Figure 5.1: The discrete time Markov chain describing channel k occupation state.

The global system state, at each time slot t, is composed of the states of the M channels

and is denoted by the vector s(t) = (s1(t), ..., sM (t)). This global state is also called the

Spectrum Occupancy State (SOS). The global state space is denoted by S = {0, 1}M .

We consider a slotted system, where SU access opportunistically the licensed channels

when they are not used by PUs. Moreover, we consider a non-saturated regime such

that the arrival of packets from upper layer to the transmission layer follows a Bernoulli

process with parameter qa. As long as the SU has a packet to transmit, a new packet is

blocked and lost. The packet arrival processes for SUs are supposed to be independent

and identically distributed. We further assume that a SU transmits, at most, one packet

per time slot. Moreover, we consider an exclusive access to the licensed channels. In

fact, when at least two SUs decide to transmit over the same channel, there is a collision

and packets are lost (see Figure 5.2). This assumption is usual in CR networks problems

related to the MAC layer (see [90] and [104]).

At each time slot t, we define the packet delay li(t) for the SU i as the number of elapsed

time slot from the arrival of the packet into the transmission buffer until the time slot
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Figure 5.2: SUs transmissions

t. Therefore, li(t) = 0 means that the SU has no packet to transmit at the time slot t.

At the beginning of each time slot, the SU i has a perfect knowledge about the current

packet delay li(t), but ignores the SOS that can not be directly observed due to the

partial spectrum sensing. Then, SUs have a partial observation of the global system

state. Specifically, we study our problem using a POSG formulation.

A POSG is defined as a tuple (N ,S, b0, {Ai}, {Oi},P, {Ri}), described as follows:

• N a finite set of SUs indexed {1, . . . , N},

• S a finite set of states, |S| = M

• b0 the initial state distribution,

• Ai the finite set of actions for SU i (we define by A = A1 ⇥ . . . ⇥ AN the joint

action set),

• Oi the finite set of observations for SU i (we define by O = O1 ⇥ . . . ⇥ ON the

joint observation set),

• P a set of state transition and observation probabilities, i.e. P(s0, o|s, a) is the

probability that taking action a in state s results in observing o and a transition

to state s0,

• Ri : S ⇥A ! IR the reward function for SU i.

System state: We denote the state of the users by x(t) = (x1(t), . . . , xN (t)), where

xi(t) = (λi(t), li(t)) represents the state of SU i, and x−i(t) denotes the state of SUs

other than i. Since the M channels are independent, it was proved in [80] that we can

consider the following simpler belief vector:

λi(t) = (λi
1(t), ..,λ

i
M (t)),
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where λi
k(t) is the conditional probability for the SU i that the channel k is available at

the time slot t. The state space of SU i is referred to as Xi, and X = [iXi represents

the set of all possible joint state of SUs.

Belief : Each SU senses at most one licensed channel in order to get information about

the SOS. We denote by ✓(t) = (✓1(t), · · · , ✓N (t)) the set of observations of all the SUs,

where ✓i(t) = 0 means that the SU i has sensed the licensed channel as idle. If ✓i(t) = 1,

then the licensed channel was sensed as occupied. The observation space is denoted by

O = {0, 1}. Each SU i updates its belief vector λi(t) based on its observation outcome

✓i(t). Define the observation probability Pi(✓i(t) = ✓0), the probability that the SU i

observes ✓0 at the time slot t. For each licensed channel k, the conditional probability

λk(t+1) depends not only on the observation of the SU, but also on its action. We denote

by Ω(.|ai(t), ✓i(t)) the update operator of the belief vector for each licensed channel.

Actions and strategies: Each SU has two actions to take sequentially, as illustrated

in Figure 5.2. The first action, called sensing-action, is taken at the beginning of each

time slot. This action determines whether the SU senses or not the licensed channels,

based on the belief vector and the current packet delay. This sensing action induces

an observation ✓i. Then, the SU takes a second action, called access-action, which

determines if it transmits its packet using the licensed channel or not. Certainly, this

action has to be taken only if there are free licensed channels, and the SU has a packet

to transmit. The joint action of all SUs is denoted by a(t) = (a1(t), · · · , aN (t)), where

ai(t) denotes the action of SU i and a−i(t) = (a1(t), · · · , ai−1, ai+1 · · · , aN (t)) denotes

the joint action set of SUs other than i. For notations convenience, we consider that the

SU has only 3 possible actions:

• The action ai = 0: the SU chooses to be inactive during the time slot. If the SU

has a packet in its buffer, then the delay of the packet increases.

• The action ai = 1: the SU chooses to sense licensed channels and not to transmit.

Note that sensing licensed channels allows the SU to get more information that

may improve the future rewards. If the SU has a packet in its buffer, then the

delay of the packet increases.

• The action ai = 2: the SU chooses to sense licensed channels and to transmit if

idle. This action is possible only if the SU has a packet in its buffer.

Let us denote by Ai(xi) the action space of SU i, when it is in the state xi, and by

A = [iAi the set of possible joint actions of SUs. Note that the action space for a SU

depends on its state. For example, a SU that has no packet in its buffer (li(t) = 0)
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cannot choose the action 2, i.e. Ai = {0, 1}. However, a SU having a packet to transmit

chooses any action, i.e. Ai = {0, 1, 2}.

Based on the SU’s action ai and its observation ✓i, we have the following belief update,

which comes from the Markov process. For all licensed channels n 2 {1, · · · ,M}, the
belief is updated as follows:

λn(t+1) := Ω(λn(t)|ai(t), ✓i(t)) =

8
>><
>>:

βn + (↵n − βn)λn(t) if ai(t) = 0;

βn if ai(t) 6= 0 and ✓i(t) = 1;

↵n if ai(t) 6= 0 and ✓i(t) = 0.

The strategy of SUs is defined by the probability of choosing a given action depending

on its state xi(t) = (λi(t), li(t)). We call a strategy for the SU i, a function ui as

a vector [ui(1), ui(2), . . .], where ui(t) : Xi ⇥ Ai ! [0, 1] is a mapping from a state

xi(t) and an action ai(t) to a probability of taking the action ai(t) in the state xi(t).

We denote by u := (u1, · · · , uN ) the multi-policy of all SUs (whose ith element is

ui = [ui(1), ui(2), . . .]), and u−i is the set of strategies of all SUs other than i. The set

of all possible strategies is denoted U .

Instantaneous reward: We denote by cs the energy spent for sensing and ct the

energy spent for transmission. For each SU i, a natural definition of the instantaneous

reward ri(t) is a composition of the throughput Φ and the energy costs. We introduce an

additional cost, f(li(t)), in order to penalize the current packet delay. The instantaneous

reward of a SU depends explicitly not only on its action ai(t), but also on the actions

of all other SUs, denoted by a−i(t). Furthermore, it depends on the state and the

observation of SU i, xi and ✓i. The instantaneous reward of the SU i at the time slot t

is defined by:

ri(xi(t),a(t), ✓i(t)) =

8
>>>>>>><
>>>>>>>:

Φ− cs − ct, if ai(t) = 2, ✓i(t) = 0 and 8j 6= i, aj(t) 6= 2;

−cs − ct, if ai(t) = 2, ✓i(t) = 0

and 9j 6= i, aj(t) = 2 (collision);

−f(li(t))− cs, if ai(t) = 1 or ai(t) = 2 and ✓i(t) = 1;

−f(li(t)), if ai(t) = 0.

(5.1)

where a(t) = [ai(t)|a−i(t)], and xi(t) = (λi(t), li(t)).

Problem statement: The objective of the SU i is to maximize the average expected

reward, given the initial condition xi(0) = x0. Usually, in OSA problems modeled using

a POMDP formulation, the objective function is the expected total discounted reward

like in [80], [105], [106] and [107]. In our context, we observe that decisions have to

be taken frequently, at each time slot, which leads to a discount rate very close to 1
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(see [86]). Thus, it is natural to consider policies on the basis of their average expected

reward. Therefore, the SU i seeks for the optimal strategy ui that maximize:

Ri(ui,u−i) = lim
T!1

1

T
IEu

 
TX

t=1

ri(xi(t),a(t), ✓i(t))|x0
!
. (5.2)

We study the OSA problem in a non-cooperative setting, where each SU has its own

state information and tries to maximize its average expected reward. Then, our problem

will be studied in the following section through the concept of NE. Indeed, the SUs

interact themselves through collisions when several SUs transmit over the same idle

licensed channel. For simplicity reasons, and to get a deep theoretical analysis for the

non-cooperative game between SUs, we consider only the set of stationary policies. A

stationary policy is a mapping from a state xi and action ai to a probability ui(xi, ai),

which does not depend on the time slot t. In the next section, we propose an analysis of

the non-cooperative game. Our goal is to compute the set of all best responses strategies

for a SU against a stationary multi-policy of all other SUs. Furthermore, we use a LP

technique, which gives us a description of the NE for our non-cooperative game.

5.3 Nash equilibrium

In this section, we consider one licensed channel (M = 1), and N SUs trying to access

it. Note that SUs decide, solely, whether to access or not this licensed channel. Each

SU looks for maximizing its average expected reward defined in Equation (5.2). Before

analyzing the NE and its properties, we define, in the next section, the Best Response

(BR) strategy, a standard concept in game theory (see [108]).

5.3.1 The best response function

In game theory, the best response is defined to be the strategy (or strategies) that

produces the most favorable outcome for a player, given others’ strategies. The concept

of best response is central to John Nash’s best-known contribution, the Nash equilibrium.

Definition 5.1. The best response strategy BR(.) is defined as follows:

8i 2 {1, · · · , N}, BRi(u−i) = argmax
ui

Ri(ui,u−i). (5.3)

Note that the average expected reward function Ri(ui,u−i) can be expressed as follows:
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Ri(ui,u−i) =
X

x2X

X

a2A

1X

✓0=0

Y

j 6=i

⇡
uj

j (xj)uj(xj , aj)ri(xi,a, ✓
0)⇡ui

i (xi)ui(xi, ai)Pi(✓i = ✓0)

=
X

x2X

X

a2A
⇡ui

i (xi)ui(xi, ai)
Y

j 6=i

1X

✓0=0

Pi(✓i = ✓0)⇡
uj

j (xj)uj(xj , aj)ri(xi,a, ✓
0)

=
X

xi2X

X

ai2Ai

⇡ui

i (xi)ui(xi, ai)
X

x−i

X

a−i

1X

✓0=0

(5.4)

Y

j 6=i

Pi(✓i = ✓0)⇡
uj

j (xj)uj(xj , aj)ri(xi,a, ✓
0),

where ⇡ui

i (xi) is the stationary probability that the state of the SU i is xi, which depends

on the strategy ui of the SU. The following lemma gives us a simpler expression of the

average expected reward.

Lemma 5.2. The average expected reward Ri(ui,u−i) of the SU i is expressed as follows:

Ri(ui,u−i) =
X

xi2Xi

1X

ai=0

⇡ui

i (xi)ui(xi, ai)ri(xi,a, ✓i) + [Φ(1− P̄tr(u−i))Π(0)

−(1−Π(0))f(li)− cs −Π(0)ct]ui(xi, 2), (5.5)

where Π(0) is the stationary probability that the licensed channel is idle, and P̄tr(u−i)

represents the probability that at least one SU j 6= i transmits over the licensed channel

during the current time slot.

Proof. The average reward function, that a SU is trying to maximize, is expressed by:

Ri(ui,u−i) =
X

x

X

a

1X

✓0=0

Pi(✓i = ✓0)
Y

j 6=i

⇡
uj

j (xj)uj(xj , aj)ri(xi,a, ✓i)⇡
ui

i (xi)ui(xi, ai).
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Let us define the set A⇤
−i = {a−i|9j 6= i s.t. aj = 2}. The expected reward can be

expressed by:

Ri(ui, u−i) =
X

xi

X

x−i

1X

ai=0

X

a−i

1X

✓0=0

Y

j 6=i

Pi(✓i = ✓0)⇡
uj

j (xj)uj(xj , aj)ri(xi,a, ✓i)⇡
ui

i (xi)ui(xi, ai)

+
X

xi

X

x−i

X

a−i2A⇤
−i

Y

j 6=i

Pi(✓i = 0)⇡
uj

j (xj)uj(xj , aj)[−cs − ct]⇡
ui

i (xi)ui(xi, 2)

+
X

xi

X

x−i

X

a−i2A⇤
−i

Y

j 6=i

Pi(✓i = 1)⇡
uj

j (xj)uj(xj , aj)[−cs − f(li)]⇡
ui

i (xi)ui(xi, 2)

+
X

xi

X

x−i

X

a−i2A/A⇤
−i

Y

j 6=i

Pi(✓i = 0)⇡
uj

j (xj)uj(xj , aj)[Φ− cs − ct]⇡
ui

i (xi)ui(xi, 2)

+
X

xi

X

x−i

X

a−i2A/A⇤
−i

Y

j 6=i

Pi(✓i = 1)⇡
uj

j (xj)uj(xj , aj)[−cs − f(li)]⇡
ui

i (xi)ui(xi, 2)

Ri(ui, u−i) =
X

xi

1X

ai=0

⇡ui

i (xi)ui(xi, ai)ri(xi,a, ✓i)

+
X

xi

X

x−i

X

a−i

Y

j 6=i

Pi(✓i = 0)⇡
uj

j (xj)uj(xj , aj)[−cs − ct]⇡
ui

i (xi)ui(xi, 2)

+
X

xi

X

x−i

X

a−i

Y

j 6=i

Pi(✓i = 1)⇡
uj

j (xj)uj(xj , aj)[−cs − f(li)]⇡
ui

i (xi)ui(xi, 2)

+
X

xi

X

x−i

X

a−i2A/A⇤
−i

Y

j 6=i

Pi(✓i = 0)⇡
uj

j (xj)uj(xj , aj)Φ⇡
ui

i (xi)ui(xi, 2)

Ri(ui, u−i) =
X

xi

1X

ai=0

⇡ui

i (xi)ui(xi, ai)ri(xi,a, ✓i)

−
X

xi

X

x−i

X

a−i

Y

j 6=i

⇡
uj

j (xj)uj(xj , aj)cs⇡
ui

i (xi)ui(xi, 2)

−
X

xi

X

x−i

X

a−i

Y

j 6=i

Pi(✓i = 0)⇡
uj

j (xj)uj(xj , aj)ct⇡
ui

i (xi)ui(xi, 2)

−
X

xi

X

x−i

X

a−i

Y

j 6=i

Pi(✓i = 1)⇡
uj

j (xj)uj(xj , aj)f(li)⇡
ui

i (xi)ui(xi, 2)

+
X

xi

X

x−i

X

a−i2A/A⇤
−i

Y

j 6=i

Pi(✓i = 0)⇡
uj

j (xj)uj(xj , aj)Φ⇡
ui

i (xi)ui(xi, 2)

Ri(ui, u−i) =
X

xi

1X

ai=0

⇡ui

i (xi)ui(xi, ai)ri(xi,a, ✓i(t))− cs⇡
ui

i (xi)ui(xi, 2)

−
X

xi

f(l)(1−Π(0))⇡ui

i (xi)ui(xi, 2)

−
X

xi

Π(0)ct⇡
ui

i (xi)ui(xi, 2)

+
X

xi

Φ(1− P̄ ⇤)Π(0)⇡ui

i (xi)ui(xi, 2).
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Note that P̄tr(u−i) can be expressed as follows:

P̄tr(u−i) = 1−
Y

j 6=i

X

xj2Xj

1X

aj=0

⇡
uj

j (xj)u(xj , aj). (5.6)

Note that the interaction between the SU i and other SUs is summarized in the proba-

bility P̄tr(u−i). We are able now to define the expected instantaneous reward r̄i for SU

i as follows:

r̄i(xi, ai,u−i) =

1X

✓0=0

IEu[ri(xi,a, ✓i)]Pi(✓i = ✓0) (5.7)

r̄i(xi, ai,u−i) =

8
>><
>>:

(Φ(1− P̄tr(u−i)) + f(l)− ct)Π(0)− f(l)− cs, if ai = 2,

−f(li)− cs, if ai = 1,

−f(li), if ai = 0.

Note that r̄i(xi, ai,u−i) represents the instantaneous reward that the SU i expect when

taking the action ai in the state xi, and the multi-policy of all other SUs is u−i. Thus, the

average expected reward Ri(ui,u−i), given by Lemma 5.2, can be rewritten as follows:

Ri(ui,u−i) =
X

xi

X

ai

⇡ui

i (xi)ui(xi, ai)r̄i(xi, ai,u−i). (5.8)

The set of best response strategies for a SU, given fixed strategies for all other SUs, can

be computed using a LP, as proposed in [100]. In the following, we present such a LP,

which determines the set of all best response strategies for player i against a stationary

policy u−i of all its opponents. We denote by zi,ui
(xi, ai) = ⇡ui

i (xi)ui(xi, ai), the steady

state probability that the system state of SU i is xi 2 X , and that the action ai 2 Ai is

chosen. The following LP gives us the best response policies, for all SUs i 2 {1, · · · , N},
and for all multi-policy u 2 U .

LP(i,u): Find z⇤i,ui
(xi, ai), where (xi, ai) 2 Xi ⇥Ai, that maximizes:

X

xi

X

ai

zi,ui
(xi, ai)r̄i(xi, ai,u−i),

subject to:

X

aj

zi,ui
(r, aj)−

X

xi

X

ai

zi,ui
(xi, ai)pxiair = 0, 8r 2 X ,

X

xi

X

ai

zi,ui
(xi, ai) = 1,

zi,ui
(xi, ai) ≥ 0,
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where pxay is the probability that the system switches from state x to state y by taking

the action a.

Let M1(A) denote the set of probabilities measures over a set A, and let us define Γi(u)

as the set of optimal solutions of LP(i,u). A point to set mapping γi(zi), given a

non-negative real numbers zi = {zi(x,a), (xi, ai) 2 Xi ⇥Ai}, is defined as follows:

• if
P
ai

zi(xi, ai) 6= 0 then γi(xi, ai, zi) := { zi(xi,ai)
P

a0
i

zi(xi,a0i)
} is a singleton. Note that

γi(xi, zi) = {γi(xi, ai, zi) : ai 2 Ai(xi)} is a point in M1(Ai(xi)).

• Otherwise, γi(xi, zi) := M1(Ai(xi)), the set of all probabilities measures over

Ai(xi).

Define gi(zi) as the set of stationary policies that choose the action ai in the state xi with

a probability in γi(ai, xi, zi). Moreover, we define the occupancy measures f(x0,u) for

a multi-policy u as {fi(x0,u), (ai, xi) 2 Xi ⇥ Ai, 8i|fi(x0,u) = ⇡ui

i (xi)ui(xi, ai)}. Note

that for each player i and stationary policy ui, the state of that player is an irreducible

Markov chain with one ergodic class. Thus, a unique steady-state probability exists.

Therefore, we can omit the initial state distribution x0.

Proposition 5.3. For any stationary multi-policy OSA for SUs, we have the following

properties:

1. If z⇤i,u is an optimal solution of LP(i,u), then any element v 2 gi(z
⇤
i,u) is an

optimal stationary response for SU i against the stationary policy u−i of other

SUs. Moreover, the multi-policy w = [v|u−i] satisfies fi(w) = z⇤i,u.

2. The optimal sets Γi(u), 8i are convex, compact, and upper semi-continuous in u−i,

where u is identified with points in
NQ
i=1

Q
xi

M1(Ai(xi)).

3. For all i, gi(zi) is upper semi-continuous in z over the set of solutions for LP(i,u).

Proof. The proof of (1) follows from Theorem 2.6 of [109]. The first part of (2) is a direct

result of the LP. However, the second part follows by applying the theory of sensitivity

analysis of LP by Dantzig et al. [110] in the Theorem 3.6 of [111] to LP(i,u). The last

property follows from the definition of gi(zi).

5.3.2 The Nash equilibrium

We model the interaction between SUs as a non-cooperative game. Let us define the

concept of NE between SUs in our model.
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Definition 5.4. The NE is defined as a set of strategies (one for each player) u⇤ =

(u⇤1, u
⇤
2, ..., u

⇤
N ), such that:

8i 2 {1, . . . , N}, u⇤i = argmax
ui

Ri(ui,u
⇤
−i). (5.9)

A successful transmission for a SU over the licensed channel depends not only on the

PUs’ activity but also on the competition with other SUs. When a SU senses the channel

as idle, it transmits successfully its packet if and only if the action of all other SUs is not

to transmit on the licensed channel during the current slot. Indeed, a SU that chooses

an action a 2 {0, 1} does not impact the instantaneous reward of other SUs. Given this

remark, we have the following theorem, which states the existence of a NE multi-policy

for our OSA problem between SUs.

Theorem 5.5. There exists a stationary multi-policy u⇤ that is a Nash equilibrium.

Proof. Consider a fixed value of the stationary probability that the channel is idle, Π(0).

Note that for each SU i and any stationary policy ui, the state process of that SU is

an irreducible Markov chain with one ergodic class. Moreover, the strategies chosen by

any SU does not depend on the cost realization. Otherwise, a SU could use the costs to

estimate the state and actions of other SUs. Thus, from the Theorem of fixed point of

Kakutani, a fixed point ui 2 BR(u−i) exists. Proposition 5.3 implies that the stationary

multi-policy g = {gi(zi)8i} is a NE.

After proving the existence of a NE of our game, the second problem we address now

is to determine a particular type of equilibrium: the Symmetric Nash Equilibrium. A

symmetric multi-policy u⇤ = (u⇤, u⇤, · · · , u⇤) is an SNE if and only if:

Ri(u
⇤,u⇤

−i) ≥ Ri(ui,u
⇤
−i), 8i and 8ui 6= u⇤. (5.10)

In order to find an SNE, we assume that N − 1 SUs use a strategy u0, and a tagged SU

(without loss of generality, the user N) uses the strategy uN . Therefore, a multi-policy

u = (u0, · · · , u0, uN ) := (u−N, uN ) is an SNE if and only if:

uN = u0 2 BR(u−N). (5.11)
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5.3.3 Properties of the Nash equilibrium

Let us define by Ptr(ui) the attempt rate for a SU i. Ptr(ui) is expressed as follows:

Ptr(ui) =
X

x0
i2X

⇡ui

i (x0i)ui(x
0
i, 2), (5.12)

where ⇡ui

i (xi) is the stationary probability that the state of the SU i is xi, and ui is

the mixed strategy of the SU i. The following proposition states that for each SU i, its

attempt rate is always the same at different SNE of the game.

Proposition 5.6. Consider two SNE u⇤
1
6= u⇤

2
, such that u⇤

1
= (u⇤1, · · · , u⇤1) and u⇤

2
=

(u⇤2, · · · , u⇤2). Therefore, the attempt rates for any SU i at the SNE are unique and equal:

8i 2 {1, · · ·N}, Ptr(u
⇤
1) = Ptr(u

⇤
2) := P ⇤.

Proof. Consider z⇤0 the solution of the LP that maximizes r̄i(xi, ai,u−i), and z⇤✏ the

solution of the LP that maximizes r̄i(xi, ai,u−i) + ✏ ai=2. Note that, in the second

problem, the reward for the action 2 is increased, compared to the first one. Assume

that
P

xi
z⇤0(2, xi) >

P
xi
z⇤✏ (2, xi), then we obtain:

X

xi

X

ai

z⇤✏ (ai, xi)r̄i(xi, ai,u−i) + ✏
X

xi

z⇤✏ (2, xi),


X

xi

X

ai

z⇤0(ai, xi)r̄i(xi, ai,u−i) + ✏
X

xi

z⇤✏ (2, xi),

<
X

xi

X

ai

z⇤0(ai, xi)r̄i(xi, ai,u−i) + ✏
X

xi

z⇤0(2, xi).

(5.13)

Therefore, z⇤0 is the optimal solution that maximizes r̄i(xi, ai,u−i)+ ✏ ai=2, which leads

to a contradiction as z⇤✏ is assumed to be the optimal solution of r̄i(xi, ai,u−i) + ✏ ai=2.

The first inequality is because z⇤0 maximizes r̄i(xi, ai,u−i), and the second one is due to

the assumption. Then, we obtain that
P

xi
z⇤0(xi, 2) 

P
xi
z⇤✏ (xi, 2).

Note that the attempt rate of the SU i is expressed by Ptr(ui), and the attempt rate of

other SUs is expressed by P̄tr(u−i). Therefore, if the attempt rate of other SUs decreases,

the reward r̄i(xi, 2) increases and then the attempt rate Ptr(ui) increases. In fact, a SU

decreases its attempt rate if all the other SUs increase their attempt rates. Finally, the

BR function of SU i decreases with the attempt rate of other users P̄tr(u−i).

Since we are considering SNE strategies, we have Ptr(ui) = P̄tr(u−i). Suppose that

there are two Nash equilibrium strategies, u1 and u2 having different attempt rates,
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Ptr(u
1) < Ptr(u

2). As both u1 and u2 are SNE, we have the following inequality:

Ptr(BRi(u
1

−i)) = Ptr(u
1) < Ptr(u

2) = Ptr(BRi(u
2

−i)), (5.14)

which lead to a contradiction, as BRi(.) is a decreasing function with respect to the

attempt rate.

We denote by P ⇤ the attempt rate of a SU when all SUs use a SNE strategy. As usual

in non-cooperative games, the utilization of the resource is suboptimal at the NE. In

the following section, we look for a network manager’s control mechanism in order to

optimize an important global metric of the system, the average total throughput.

5.4 Network management

The SNE between SUs has been deeply investigated using a LP technique in the previous

section. Note that interactions between SUs induce collisions. Henceforward, we focus

on the impact of the PUs’ activity on the performance of the global system. Since the

resource utilization at the SNE is generally suboptimal, we propose to introduce some

control in order to enhance the spectrum utilization. We propose a simple mechanism

by introducing some kind of hierarchy in the OSA game. We obtain this hierarchy by

introducing a controller, named the network manager. This controller plays as a leader

in the Stackelberg game, and the SUs play as followers.

We formulate the problem of maximizing the average total throughput of the system as

a Stackelberg game. The objective of the network manager is to maximize the average

total throughput of the system at the SNE. Note that the average total throughput of

the system is defined as follows:

U⇤ =
1

N

NX

i=1

Ptr(u
⇤
i )
Y

j 6=i

(1− Ptr(u
⇤
j )).

From Proposition 5.6 , the attempt rates at the SNE of all SUs are equals. Thus, we

obtain:

U⇤ = P ⇤(1− P ⇤)N−1.

The following proposition gives us the attempt rate at the SNE that maximizes the

average total throughput of the system.
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Proposition 5.7. When the attempt rate at the SNE, P ⇤, is equal to 1
N , the average

total throughput U⇤ is maximized.

Proof. As we have N users transmitting over the same licensed channel, with an average

probability of P , we have a successful transmission, if the channel is idle, with probability

P (1−P )N−1. The probability P ⇤ maximizes P (1−P )N−1 if and only if (1−P ⇤)N−1−
P ⇤(N − 1)(1−P ⇤)N−2 = 0, then (1−NP ⇤)(1−P ⇤)N−2 = 0. Therefore, when P ⇤ = 1

N ,

the utility for SUs is optimal.

Note that the attempt rate P ⇤ obtained from a multi-policy SNE, given by Theorem

5.5, does not necessarily equal the optimal attempt rate obtained from Proposition 5.7.

Then, the network manager makes a decision (an intervention) in order to influence the

SNE multi-policy.

The question that we have to answer is how the network manager can impact SUs’

policies in order to maximize the average total throughput of the system at the SNE.

Before, we state, in the following proposition, some properties of the attempt rate and

the channel occupancy. The following proposition shows that increasing the channel

occupancy decreases the attempt rate of SUs at the SNE.

Proposition 5.8. P ⇤ is decreasing when Π(0) decreases.

Proof. Consider two stationary probabilities that the channel is idle Π1(0) and Π2(0),

such that Π1(0) < Π2(0). Consider two SNE strategies, u1 obtained with the stationary

probability Π1(0), and u2 obtained with the stationary probability Π2(0). Note that, for

a given value of attempt rate P ⇤, the immediate reward for the action ai = 2 is higher

for the channel having a stationary probability of Π2(0) than for the channel having

a stationary probability of Π1(0) (see Equation (5.8)). Let us denote by Ptr(u
1) the

attempt rate obtained with strategy u1, and by Ptr(u
2) the attempt rate obtained with

strategy u2. We obtain from Proposition 5.6 that Ptr(u
1) < Ptr(u

2) (decreasing Π(0)

decreases the instantaneous reward for the action ai = 2).

Finally, we obtain that the attempt rate P ⇤ decreases when the stationary probability

that the licensed channel is idle decreases.

We have the following relationship between Π(0) and β0.

Lemma 5.9. Π(0) is increasing with β0.

Proof. The stationary probability Π(0) is defined as follows:

Π(0) =
β0

1− ↵+ β0
.
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Figure 5.3: The Stackelberg game model of the SU throughput maximization.

The derivative of Π(0) with respect to β0 is:

@Π(0)

@β0
=

1− ↵

(1− ↵+ β0)2
.

As ↵ 2 [0, 1], then the derivative of Π(0) with respect to β0 is always positive. Therefore

Π(0) is increasing with β0.

Given this result, the network manager varies the channel occupancy state in order

to maximize the average total throughput of SUs at the SNE. Figure 5.3 depicts the

relationships between PUs, the network manager and SUs.

Moreover, the stationary probability that the licensed channel is idle is given by Π(0) =
β

1−↵+β . It is obvious that the stationary probability Π(0) is increasing with β. Thus,

by reducing β, the network manager can reach a target value of stationary probability

Π(0) that maximizes the average total throughput of SUs at the SNE. We denote by β0

the transition rate that maximizes the average total throughput of SUs at the SNE.

Remark 5.10. Note that if P ⇤ > 1
N , then β0 < β, and the network manager increases

the channel occupancy in order to maximizes the average total throughput of SUs at the

SNE. However, if P ⇤ < 1
N , then the target value β0 that maximizes the average total

throughput at the SNE is above the PUs’ transmission rate, i.e. β0 > β. Therefore, the

network manager cannot improve the performance of the system. Indeed, the network

manager can only decrease the transition rate from state occupied to idle, by occupying

the licensed channel after it was already occupied. Figure 5.4 illustrates the impact of

the transition rate β0 on the attempt rate when using an SNE policy.
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Figure 5.4: The attempt rate when using a SNE policy with respect to the transition
rate β0.

Let us define the network manager’s (leader) actions by:

• a
p
1: the network manager occupies the licensed channel if this channel was already

occupied in the previous slot and becomes idle in the current slot;

• a
p
2: the network manager does not occupy the channel if this channel was occupied

in the previous slot and becomes idle in the current slot.

In fact, when the leader chooses the action a
p
1, the licensed channel is not used by PUs

but appears occupied for the followers (SUs). Then, the leader’s action impacts the SNE

of the followers. The set of the leader’s actions is denoted Al = {ap1, ap2}. We define a

mixed strategy of the leader by a mapping µ : Al ! [0, 1], where µ(a) is the probability

that the leader takes the action a. Note that we have µ(ap2) = 1 − µ(ap1). Given a

strategy µ of the network manager, the induced transition rate β0 is:

β0(µ) = (1− µ(ap1))⇥ β, (5.15)

where β is the transition rate of PUs. Denote by u⇤(µ) the SNE of the followers when

the leader’s strategy is µ. In fact, the action of the leader µ changes the transition

rate from β to β0(µ), which impacts the SNE of the followers. The objective of the

leader (network manager) is therefore to find a strategy µ that maximizes the average

throughput of the system:

Ū(µ,u⇤(µ)) =
1

N

NX

i=1

Thri(u
⇤(µ)) = P ⇤(u⇤(µ))(1− P ⇤(u⇤(µ)))N−1. (5.16)
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The network manager problem can be expressed as follows:

µ⇤ = argmax
µ

U(µ,u⇤(µ)), (5.17)

where u⇤(µ) is an SNE among the N SUs taking into account the strategy of the leader.

The vector of actions (µ⇤,u⇤(µ⇤)) is by definition a Stackelberg equilibrium [108], and

we have the following theorem, which proves the existence of such equilibrium.

Theorem 5.11. There exists a Stackelberg equilibrium for our hierarchical game with

a network manager and N SUs.

Proof. We have proved, in Proposition 5.7, that the attempt rate at the SNE P ⇤, which

maximizes the leader’s utility should be equal to P ⇤ = 1
N , where N is the number

of SUs. Moreover, we have proved, in Proposition 5.8, that P ⇤ decreases when Π(0)

decreases, and that Π(0) is increasing with β. Thus, the leader computes the value of

β0 = min{β0,β}, and uses the following strategy:

µ(ap1) = 1− β0

β
, and µ(ap2) =

β0

β
.

Note that SUs converge to an SNE where every SU maximizes its own utility taking into

account the new channel transition rates (↵,β0). Therefore, there exists a Stackelberg

equilibrium between the network manager and SUs.

5.5 Numerical illustrations

We illustrate, in this section, some Matlab-based simulation results in both saturated

(qa = 1) and non-saturated regimes (qa < 1). We consider five SUs (N = 5) transmitting

opportunistically, and we assume that the deadline delay is 3 slots. The deadline delay

is the time by which the packet must be transmitted. We set the transmission cost

ct = 100; the sensing cost cs = 5 and the throughput Φ = 200kbit/s. Moreover, we

consider a delay penalty function f(l) = min {l, lmax}, where lmax is the deadline delay.
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Figure 5.5: The equilibrium policy in the saturated case with ↵ = 0.1, β = 0.9 and
ct = 100.

5.5.1 Symmetric Nash equilibrium

Consider, first, the saturated regime, where SUs have always packets to transmit. There-

fore, we obtain the following set of states:

State index 1 2 3 4 5 6

l 1 1 2 2 2 2

λ ↵ β ↵ β Ω(↵) Ω(β)

We can observe, in Figure 5.5 obtained with ↵ = 0.1 and β = 0.9, that a SU chooses

a mixed strategy composed of the three possible actions: sleeping; sensing; sensing and

transmitting. Moreover, when the transmission cost increases ct = 500, we observe, in

Figure 5.6, that SUs have less incentive to sense and transmit.

Secondly, we focus on the non-saturated regime with qa = 0.85. When a SU transmits

a packet, its local state l becomes 1 if it receives a new packet at the time slot t (with

probability qa), otherwise l = 0. Therefore, we obtain the following set of states:

State index 1 2 3 4 5 6 ... 18

l 0 0 0 0 0 0 ... 2

λ ↵ β Ω(↵) Ω(β) Ω2(↵) Ω2(β) ... Ω2(β)

Consider ↵ = 0.9 and β = 0.1, a scenario where the licensed channel stays in the same

state during long periods, as it is the case with TV white bands [78]. We plot, in

Figure 5.7, the multi-policy SNE obtained after solving the LP. We observe that the

probability of sensing when the SU has no packet to transmit, i.e. ai = 1, is increasing

with the number of consecutive time slots the SU have not sensed the licensed channel.

It means that the SU tries to get information about licensed channels by sensing even if

it has no packet to transmit.
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Figure 5.6: The equilibrium policy in the saturated case with ↵ = 0.1, β = 0.9 and
ct = 500.

Figure 5.7: The equilibrium policy in the non saturated case with ↵ = 0.9, β = 0.1
and qa = 0.85.

5.5.2 Braess paradox

Figure 5.8 illustrates the attempt rate P ⇤ depending on the number of SUs. We ob-

serve that the attempt rate at the SNE is decreasing with the number of SUs, which is

somehow intuitive, as the collision probability 1 − P ⇤(1 − P ⇤)N−1 increases due to the

competition between SUs. In Figure 5.9, a Braess kind of paradox is illustrated. In-

deed, there is a degradation of the performance of the system when additional resource

is added. Specifically, we have an opposite formulation, saying that reducing system

resources induce better performances. When the average spectrum occupancy (station-

ary probability that the licensed channel is occupied, i.e. 1−↵
1−↵+β ) is less than 0.5, the

average throughput of the system increases with the average occupation of the channel.

In order to understand this phenomenon, we study the impact of the average channel

occupancy on the average total throughput of the system. The SUs’ attempt rate is

decreasing when the channel is less available. Surprisingly, the average throughput is

not always increasing with the offered channel opportunities. In fact, we observe, in

Figure 5.9, that when the channel is available more than 50% of time, the average SUs’

throughput is decreasing when the licensed channel is idler. The attempt rate is P = 1
5
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Figure 5.8: The attempt rate at the SNE depending on the number of SUs for ↵ = 0.95
and β = 0.9.

Figure 5.9: The attempt rate and the average throughput with the channel occupancy
for ct = 100.

Figure 5.10: The attempt rate and the average throughput with the channel occu-
pancy for ct = 900.

when the channel availability is 0.5, and the average throughput is maximal for this

channel availability. Note that it has been already proved that the SUs’ attempt rate,

that maximizes the average total throughout is 1
N , where N is the number of SUs.

In Figure 5.10, there is another example in which the average throughput is always

increasing with the average channel occupancy.
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Figure 5.11: The average throughput depending on β.

5.5.3 Stackelberg equilibrium

Let us consider a scenario where two SUs are competing in order to access a licensed

channel. The PUs’ transition rate ↵ is set to 0.1. We consider, first, that β = 0.8,

and we illustrate, in Figure 5.11, the average throughput of the SUs depending on the

transition rate β. We observe that the optimal value of β0, which is also the transition

rate at the Stackelberg equilibrium, is equal to 0.6. Therefore, the network manager has

to decrease the transition rate from the occupied state to the idle state (i.e. β) from 0.8

to 0.6, which increases the average throughput of SUs from 0.2415 to 0.25.

Secondly, we consider that the PUs’ requirement is β = 0.3. Thus, the network manager

has to increase β0 in order to increase the average throughput of SUs, which require

that PUs use less the licensed channel. However, as we have already assumed that the

SUs’ access is opportunistic, PUs are unaware of the presence of SUs, and the network

manager cannot increase β0. Thus, the optimal action of the network manager is to be

inactive (β0 = β), as it cannot improve the actual SUs’ performance.

Finally, Figure 5.12 illustrates the average channel availability (Π(0)) that maximizes the

throughput for SUs at the SNE. We considered that PUs occupy the licensed channel

with a probability Π(1) = 0.5. Then, when the cost is higher than 100, there is no

paradox, as we cannot increase the channel availability (the network manager has to

increase Π(0)).

5.6 Conclusion

In this chapter, we have set up a non-cooperative OSA mechanism for CR networks, and

we have considered that SUs are in competition in order to access a licensed channel.

Both the saturated and the non-saturated regimes have been studied, and we have
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Figure 5.12: The optimal channel utilization with the transmission cost.

proved the existence of an SNE multi-policy for the OSA problem, modeled as a non-

cooperative game between SUs. Moreover, we have proved that the attempt rate at

the SNE is unique. The impact of both the arrival rate and the transmission cost on

the system performances has been deeply studied. Simulation results have shown that

more opportunities of transmission may decreases the average throughput of the system

due to the aggressiveness and the competition between SUs. In fact, we have found

Braess paradox where reducing system resources induce better performance. In order to

optimize the average throughput of the system, we have proposed a Stackelberg game

model for the network manager. We have proved the existence of an optimal strategy

for the network manager. This strategy is defined by increasing the average time that

the licensed channel is occupied.

In the following part of this thesis, we study self-adaptive congestion control at the

transport layer, especially for multimedia applications. We focus, in the next chapter,

on the resources management in wireless networks at upper layer of the protocol stack,

the transport layer. Specifically, we propose some content-aware congestion control

mechanisms for partially observable environments.
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TCP dominates today’s communication protocols at the transport layer in both wireless

and wired networks, due to its simple and efficient solutions for end-to-end flow con-

trol, congestion control and error control of data transmission over IP networks (see [9]

and [11]). However, despite the success of TCP, the existing TCP congestion control

is considered unsuitable for delay-sensitive, bandwidth-intense, and loss-tolerant mul-

timedia applications, such as real-time audio streaming and video-conferences (see [9]

and [11]). There are two main reasons for this. First, TCP is error-free and trades

transmission delay for reliability. Packets may be lost during transport due to network

congestion and errors, but TCP keeps retransmitting lost packets until they are success-

fully transmitted, even if this requires a large delay. The error-free restriction ignores

delay deadlines of multimedia packets, i.e. the time by which they must be decoded.

Note that even if multimedia packets are successfully received, they are not decodable if

they are received after their respective delay deadlines. TCP congestion control adopts

an AIMD algorithm. This results in a fluctuating TCP throughput over time, which

114
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significantly increases the end-to-end packet transmission delay, and leads to poor per-

formance for multimedia applications [11]. To mitigate these limitations, a plethora of

research focused on smoothing the throughput of AIMD-based congestion control for

multimedia transmission (see [112] and [113]). These approaches adopt various conges-

tion window updating policies to determine how to adapt the congestion window size

to the network congestion. However, these approaches seldom explicitly consider the

characteristics of the multimedia applications, such as delay deadlines and distortion

impacts of multimedia packets.

In this chapter, we propose a media-aware POMDP-based congestion control, referred

to as Learning-TCP, which exhibits an improved performance when transmitting mul-

timedia packets. Unlike the current TCP congestion control protocol that only adapts

the congestion window to the network congestion (e.g. the packet loss rate in TCP Reno

and the RTT in TCP Vegas), the proposed congestion control algorithm also takes into

account multimedia packets’ distortion impacts and delay deadlines when adapting its

congestion window size. Importantly, the proposed media-aware solution only changes

the congestion window updating policy of the TCP protocol at the sender side, without

requiring modifications to feedback mechanisms at the receiver.

Note that the multimedia quality obtained by receivers is impacted by the network con-

gestion incurred at bottleneck links, which is only partially observable by senders based

on feedback of network congestion signals. In order to capture dynamics of the network

congestion and optimize the expected long term quality of multimedia transmissions,

we formulate the media-aware congestion control problem using a POMDP framework.

The proposed framework allows users to evaluate the network congestion variations over

time, and provides the optimal threshold-based congestion window updating policy that

maximizes the long-term discounted reward. In this chapter, the considered reward

is the multimedia quality, measured using the well-known Peak Signal to Noise Ratio

(PSNR).

In practice, the sender needs to learn the network environment during transmission in

order to adapt its congestion control policy. Hence, we also propose an online learning

approach for solving the POMDP-based congestion control problem. A comparative

study of several existing congestion control mechanisms for multimedia applications and

the proposed solution is presented in Table 6.1.
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Table 6.1: Learning-TCP vs current congestion control solutions for multimedia
streaming

Algorithm Name of the
congestion
control

TCP-
Friendliness

Multimedia
support

Content
depen-
dency

Decision
Type

Rejaie
1999 [114]

RAP AIMD-based Source rate
adaptation

No Myopic

Cai 2005
[112]

GAIMD AIMD-based Playback
buffering

No Myopic

Bansal
2001 [113]

Binomial Al-
gorithm

Binomial
scheme

Source rate
adaptation

No Myopic

Our ap-
proach

Learning-
TCP

AIMD-like
media aware

Quality-
centric
congestion
control

Yes Foresighted

This Chapter presents a TCP-like window-based congestion control schemes that use

history information, in addition to the current window size and congestion feedback. In

summary, this chapter makes the following contributions:

Media-aware congestion control : The proposed Learning-TCP provides a media-aware

approach to adapt the AIMD-like congestion control policy to both varying network

congestion and multimedia characteristics taking into account source rates, distortion

impacts and delay deadlines of multimedia packets. Hence, the media-aware approach

leads to a significantly improved multimedia streaming performance.

POMDP-based adaptation: We propose a POMDP framework to formulate the media-

aware congestion control problem. It allows the TCP senders to optimize the congestion

window updating policy that maximizes the expected long-term quality of multimedia

applications. Furthermore, the network user has a partial knowledge about the bottle-

neck link status. In fact, the number of packets in transit over the bottleneck link queue

depends not only on the congestion window of the user, which is known, but also on the

congestion windows of all the other users, which cannot be observed. Therefore, the long

term prediction and adaptation of the POMDP framework under partial observation of

the system state is essential for multimedia streaming, since it can consider, predict, and

exploit the dynamic nature of the multimedia traffic and the transmission environment,

in order to optimize the application performance.

The POMDP solution is based on a set of updating policies composed of generic conges-

tion control algorithms, with general increase and decrease functions like: AIMD, Inverse

Increase/Additive Decrease (IIAD), Square Root inversely proportional Increase/propor-

tional Decrease (SQRT), and Exponential Increase/Multiplicative Decrease (EIMD).

Online learning for delay-sensitive multimedia applications : We present some structural

properties of the optimal solution. Thereafter, we propose a practical low-complexity
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online learning method to solve the POMDP-based congestion control problem on-the-

fly. The proposed learning method is designed for multimedia transmission that takes

advantage of structural results of the value function.

The chapter is organized as follows. In Section 6.1, we present the media-aware con-

gestion control problem that maximizes the performance of multimedia applications.

Thereafter, in Section 6.2, we formulate the problem using a POMDP-based framework.

Structural results and the proposed online learning method are presented in Section

6.3. Section 6.4 provides some simulation results that validate the congestion control

algorithm, and Section 6.5 concludes the chapter.

6.1 Media-aware congestion control formulation

6.1.1 Network settings

We assume that the network has a set of N end users indexed {1, · · · , N}. Each user is

composed of a sender node and a receiver node that establish an end-to-end transport

layer connection. Let wn represents the congestion window size of the user n. The

network system has some bottleneck links, which results in packet losses when buffers

are overloaded. Note that a user cannot observe the traffic generated by other users. In

fact, an end user n can only infer the congestion status by observing feedback information

from transmitted acknowledgments per RTT. For each acknowledgment, the end user n

observes congestion event on 2 {success, fail} (the packet being received successfully

or not by the receiver). We consider a time-slotted system with a slot duration of one

RTT. Moreover, we assume that the user n has a delay vector delayn of all packets in

its output queue, with delayin(t+ 1) = delayin(t) +RTT if the i-th packet in the queue

is not transmitted during the tth RTT . Before transmitting a packet, the user verifies

if delayin(t) < Dn, where Dn is the deadline delay of the packet. If not, it drops the

packet. The observed information on is available to the sender through transmission

acknowledgments (ACK) built into the protocol.

6.1.2 Two-level congestion control adaptation

A TCP-like window-based congestion control scheme increases the congestion window

after successful transmission of a window of packet, and decreases the congestion window

upon the detection of a packet loss event. A general description regarding the congestion
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Figure 6.1: Congestion window size over time with different update policies per epoch

control window size variation is:

wn  
(

wn + f(wn), if on = success;

wn − g(wn)wn, if on = fail.
(6.1)

Let us define µn(wn) = [f(wn), g(wn)] 2 A, as the updating policy that specifies the two

congestion window size variation functions (we refer to f(wn) as the increasing function

and g(wn) as the decreasing function), whereA represents the set of all updating policies.

Some existing examples of updating policies can be found in [112] and [113].

Unlike the existing TCP congestion control that fixes the congestion window updating

policy without considering applications’ characteristics, the proposed Learning-TCP uses

a two-level adaptation to update the congestion window. We define the congestion

control epoch Epochn as T ⇥ RTTs for user n to periodically change its congestion

window updating policy. In fact, we allow the sender to update its policy at the beginning

of each epoch, which it cannot change until the next epoch (see Figure 6.1). Indeed,

this chapter focuses on how to optimally determine the updating policy, at each epoch,

in order to improve the quality of multimedia applications.

6.1.3 Expected multimedia quality per epoch

In this section, we discuss the objective of the proposed media-aware congestion con-

trol. Denote application parameters as φk
n = (Rk

n, D
k
n, A

k
n) for user n in the kth epoch,

where Rk
n represents the source rate of the multimedia application. The source rate is

the average number of packets that arrives at the transmission buffer per second. For

example, in a VoIP call, the source rate can be controlled and adapted to the network

environment, since there are usually some rate control modules implemented in VoIP

software. We further assume an additive distortion reduction function for multimedia

applications as in [115], and Ak
n is the additive distortion reduction per packet in epoch
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k. Ak
n can be thought of as the media quality improvement of each packet. The following

equation depicts the expected distortion reduction per packet for the end user n:

E[Qt,k
n (wt

n,φ
k
n)] = Ak

n(1− pkn(w
t
n))

min {wt
n,bufn}X

i=1

I(delayin(t)  Dk
n), (6.2)

where bufn represents the number of packet in the buffer of the user n. The average

distortion reduction in the kth epoch is expressed as follows:

E[Qk
n(µ

k
n,φ

k
n)] =

1

T

TX

t=1

E[Qt,k
n (wt

n,φ
k
n)]. (6.3)

Specifically, a POMDP framework allows users to evaluate the network congestion

without perfect knowledge of the overall system state. For each epoch, the proposed

Learning-TCP allows the user n to select an optimal updating policy µopt,k
n that max-

imizes the expected distortion reduction in the epoch k, given application parameters

φk
n. Thus, the proposed algorithm performs the following optimization:

µopt,k
n = argmax

µk
n

1X

k=1

γkE[Qk
n(µ

k
n,φ

k
n)], (6.4)

where γ is a discount factor. Note that when the application has no delay deadline,

i.e. Dk
n = 1, the objective function in Equation (6.4) is equivalent to maximizing the

exponential moving average throughput in the epoch.

During periods of severe congestion, our algorithm may not be TCP-friendly, and there-

fore penalize other TCP flows. We describe, in the next section, how we adapt our

algorithm to be quality-centric and TCP-friendly.

6.1.4 TCP-Friendliness

TCP is not well-suited for emerging multimedia applications because it ignores QoS

requirements of the multimedia traffic. To address this issue, some approaches were

proposed using end-to-end congestion control schemes [116]. Since TCP is widely used

for traffic transport over the Internet, new congestion control schemes should be TCP-

Friendly. Therefore, TCP-Friendly congestion control for multimedia has recently be-

come an active research topic (see [117] and [112]). TCP-Friendliness requires that the

average throughput of applications using new congestion control schemes does not ex-

ceed that of traditional TCP-transported applications under the same circumstances (see

[118]). Therefore, we examine the competitive behaviors between TCP and Learning-

TCP.
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It is well known that the TCP congestion control strategy increases by one or decreases

by half the congestion window. Let us consider a scenario with a link having a capacity

of r packets per RTT, shared between two flows, one TCP-transported and the other

using our media-aware congestion control algorithm.

It is straightforward that updating policies in A are not necessarily TCP-Friendly (for

example, f(w) = w and g(w) = 1). However, there exists a non-empty subset of A,
whose policies do not violate the TCP-friendliness rule. Proposition 6.1 states that the

Learning-TCP algorithm can be TCP-Friendly.

Proposition 6.1. For all updating policies µ chosen from the set Afr = {µ(w) =

[f(w), g(w)]|f(w) = 3g(w)
2−g(w)}, the proposed Learning-TCP algorithm is TCP-Friendly.

Proof. The proof of this proposition is a generalization of the proof of [112] and [119]

made for AIMD(↵,β). We extend this result for a general updating policies f(w), g(w) :

R ! R. Denote by wL−TCP and wTCP the congestion windows of the Learning-TCP

transported flow and the TCP transported flow respectively. Assume that both flows

have the same RTT and MSS. The effect due to different RTT and MSS is beyond

the scope of this dissertation and is an issue in our future work. On one hand, when

wL−TCP + wTCP < r, the link is in the underload region and thus, the congestion

windows wL−TCP and wTCP evolves as follows:

wL−TCP (t+∆t) = wL−TCP (t) + f(wL−TCP (t))∆t (6.5)

wTCP (t+∆t) = wTCP (t) +∆t. (6.6)

On the other hand, when wL−TCP + wTCP ≥ r, the link is overloaded and conges-

tion occurs. We assume that both flows receive the congestion signal once congestion

occurs and we denote ti the ith time that the link is congested. Both flows decrease

simultaneously their window based on the following expression:

wL−TCP (ti) + wTCP (ti) = r (6.7)

wL−TCP (t
+
i ) = wL−TCP (ti)− g(wL−TCP (ti))wL−TCP (ti) (6.8)

wTCP (t
+
i ) =

1

2
wTCP (ti). (6.9)

The duration between ti and ti+1 is referred to as the ith cycle during which both flows

increase their window. Therefore, we have:

wL−TCP (ti+1)− wL−TCP (ti) = −
2g(wL−TCP (ti)) + f(wL−TCP )

2(f(wL−TCP ) + 1))
wmL−TCP (ti) +

rf(wL−TCP )

2(f(wL−TCP ) + 1))
.(6.10)
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Thus, independent of the initial values of wL−TCP and wTCP , after a sufficient number

of cycles, the congestion windows of these two flows in the overloaded region converge

to:

wL−TCP (th) =
f(wL−TCP )r

2g(wL−TCP ) + f(wL−TCP )
, (6.11)

wTCP (th) =
2g(wL−TCP )r

2g(wL−TCP ) + f(wL−TCP )
. (6.12)

Therefore, in the steady state, wL−TCP and wTCP increase and decrease periodically.

Their average throughput in steady state are expressed by the following:

w̄L−TCP =
(2− g(wL−TCP ))f(wL−TCP )r

4g(wL−TCP ) + 2f(wL−TCP )
, (6.13)

w̄TCP =
3g(wL−TCP )r

4g(wL−TCP ) + 2f(wL−TCP )
(6.14)

Finally, to guarantee the fairness between the flows, the necessary and sufficient condi-

tion is:

f(w) =
3g(w)

2− g(w)
. (6.15)

6.2 POMDP framework for media-aware congestion con-

trol

In the proposed framework, users have a partial knowledge about the congestion status

of bottleneck links. We define the congestion factor Cg, which represents the impact

of all users on the congestion status at the bottleneck link. The congestion factor can

be seen as a congestion level or occupation level of the bottleneck link. Cn represents

the set of all possible congestion factors. Since the user cannot observe the traffic

generated by other users and transmitted over the bottleneck links, it estimates solely

the average congestion factor based on history of its observations and actions. Therefore,

we formulate the problem with a POMDP framework. Moreover, the objective function

to optimize can be rewritten as follows:

Un =
X

k

γk
TX

t=1

Ak
n(1− pkn(w

t
n))

min {wt
n,bufn}X

i=1

I(delayin(t)  Dk
n). (6.16)

Note that the end user tries to maximize the number of packets successfully transmitted

before their delay deadlines.
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6.2.1 POMDP-based congestion control

Based on Equation (6.16), we define a POMDP-based congestion control of user n as a

follows:

Action: The user selects the congestion window updating policy µk
n 2 A, where µk

n is

the updating policy of user n in the kth epoch.

State: The state is defined as Xk
n = {Cg,φ

k
n} 2 Xn. The application parameters φk

n are

known by the user n. However, the congestion factor Cg 2 Cn, which is impacted by

the overall traffic transiting in the bottleneck link, cannot be directly observed by the

users. The user n has to infer the congestion factor based on the observed information

and feedback.

At each time slot, the system has a congestion factor Cg. The user takes an action µn,

which causes the environment to transit to C 0
g with probability T (C 0

g, µn, Cg). Having

the congestion factor C 0
g, the user observes on with probability O(on, C

0
g, µn). The belief

about the congestion factor is defined as b : Cn ! [0, 1]. The function b(.) represents the

probability distribution of the congestion factor at the kth epoch. Denote the chosen

congestion factor (i.e., inferred by the end user as the most likely of all possible congestion

factors) at the kth epoch by Ck
g . The belief distribution of the congestion factor b(Cg)

is updated as follows:

bkn(C
0
g) =

Pr(on|C 0
g, µ

k
n, b)Pr(C 0

g|µk
n, b)

Pr(on|µk
n, b)

;

=

O(on, C
0
g, µ

k
n)

P
Cg2Cn

T (C 0
g, µ

k
n, Cg)b

k−1
n (Cg)

Pr(on|µk
n, b)

. (6.17)

The denominator, Pr(on|µn, b), can be treated as a normalizing factor, independent of

C 0
g that causes b to sum to 1.

The probability pkn(wn) represents the average packet loss rate in the kth epoch when

the congestion window size is wn, which can be calculated as follows:

pkn(wn) =
X

Cg2Cn
Prob(Cg ≥ eCg|wn)bn(Cg), (6.18)

where eCg is the congestion level at the bottleneck link, which is not observable by

users. However, the average packet loss rate itself is observable by users, given a certain

congestion window wn.
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Utility: Based on Equation (6.16), the utility of user n is defined as the discounted

long-term expected reward:

Un =
1X

k=1

γk
X

Cg2Cn
un(X

k
n, µ

k
n)b(Cg), (6.19)

where un(X
k
n, µ

k
n) =

PT
t=1A

k
n(1− pkn(w

t
n))

min {wt
n,bufn}P

i=1
I(delayin(t)  Dk

n) represents the

immediate reward in the kth epoch.

A policy µopt
n = {µopt,1

n , µopt,2
n , ...} that maximizes Un is called an optimal policy that

specifies for each epoch k the optimal updating policy µopt,k
n to use. The optimal value

function Uk
n satisfies the following Bellman equation:

Uk
n(C

k
g ) = max

µk
n2A
{un(X

k
n, µ

k
n) + γ

X

C0

g2Cn

T (C 0
g|µk

n, Cg)U
k+1
n (C 0

g)}. (6.20)

The optimal policy at the kth epoch is expressed as follows:

µopt,k
n = arg max

µk
n2A
{un(X

k
n, µ

k
n) + γ

X

C0

g2Cn

T (C 0
g|µk

n, Cg)U
k+1
n (C 0

g)}. (6.21)

We prove in the next section the existence of optimal stationary policy and we show

how to determine such policy for our POMDP problem.

6.2.2 Existence of optimal stationary policy

Because of the difficulty of computation and implementation of the optimal solution for

POMDP-based problems, we would like to restrict attention to stationary policies when

seeking optimal solution. Note that we formulate our problem as an infinite horizon

POMDP with expected discounted reward.

The belief set is continuous, which may lead to an explosion of the solution size and the

computation complexity. Therefore, we transform the belief set to a discrete set. We

use an aggregation function that maps the belief states into a discrete set of beliefs. An

example of aggregation function is presented in Section 6.3. Moreover, for each belief, we

assume that there is a finite set of actions A. Under these assumptions, Theorem 6.2.10

of [92] can be applied and we can prove the existence of an optimal stationary policy

for our POMDP problem. Therefore, we restrict our problem to the set of stationary

policies. We are able to determine an algorithm that computes one such policy. We

can now omit the epoch index k, as the optimal stationary policies depend only on φ

and Cg. The goal of this POMDP problem is therefore to find a sequence of updating
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policies µn that maximizes the expected reward. For each belief, the value function can

be formulated as follows:

Un(Cg) = max
µn2A

{un(Xn, µn) + γ
X

C0
g2Cn

T (C 0
g|µk

n, Cg)Un(C
0
g)} (6.22)

Specifically, a powerful result of [34] and [35] says that the optimal value function for our

POMDP problem is PWLC in the belief. Then, every value function can be represented

by a set of hyper-planes denoted Υ-vectors, Γk, where Un(Cg) = maxΥ2Γk
b(Cg)Υ. Γk is

updated using the value iteration algorithm through the following sequence of operations:

Γµ,on
k+1  Υon

µ (Xn) =
un(Xn, µ)

|on|
+ γ

X

X02X

T (Xn, µ,X
0)O(on, C

0
g, µ)Υ(X 0), 8Υ 2 Γk, (6.23)

Γµ
k+1 = ⊕onΓ

µ,on
k+1 ; (6.24)

Γk+1 = [µ2AΓ
µ
k+1. (6.25)

Note that each Υ-vector is associated with an action that defines the best updating

policies for the previous (k−1) epochs. The kth horizon value function can be expressed

as follows:

U(Cg) = max
µn2A

2

6

4
un(X

k
n, µn) + γ

X

on

max
Υ2Γ

µn,o
k

X

C0

g2Cn

Pn(C
0
g |Cg)O(on, C

0
g , µ)Υ

3

7

5
. (6.26)

Many algorithms were proposed to implement solutions for POMDP problems by ma-

nipulating the Υ-vector using a combination of set projection and pruning operations

(see [34],[95] and [120]).

The main difficulty of POMDP-based optimization is the prohibitively high computa-

tional complexity and the assumption that statistics, such as the state transition prob-

ability are priory known, which may be not true in practice. To overcome this obstacle,

we propose an online learning method that allows the sender to determine the optimal

congestion control policy on-the-fly, with a low computational complexity.
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6.3 Online Learning

Solving a POMDP is an extremely difficult computational problem. In this section, we

show how the value function can be updated on-the-fly, and with a low computation

complexity, in order to solve the POMDP problem described in the previous section. In

the proposed learning model, the user maintains the state-value function Q(µn,φ, Cg)

as a lookup table, which determines the optimal policy in the current slot. In fact, the

state-value function Q(µn,φ, Cg) is updated as follows:

Q(µk−1
n ,φk−1, Ck−1

g ) βkQ(µk−1
n ,φk−1, Ck−1

g )+ (1−βk)(Un+ γQ(µk
n,φ

k, Ck
g )), (6.27)

where βk is a learning rate factor satisfying
P1

k=1 βk =1,
P1

k=1(βk)
2 <1, e.g.βk = 1

k .

At the epoch k − 1, the user gets the application parameters φk−1, estimates the con-

gestion factor Ck−1
g , and chooses the policy µk−1

n that maximizes Q(µk−1
n ,φk−1, Ck−1

g ).

At the epoch k, the user obtains the new application parameters, estimates the conges-

tion factor, chooses a congestion window updating policy, and updates the state-value

function Q(µk−1
n ,φk−1, Ck−1

g ).

The large state space Xn, due to the continuous space of congestion factors, may prohibit

an efficient learning solution, due to the complexity and the long convergence time. We

propose to adopt an effective state aggregation mechanism to reduce the complexity

and the convergence time of the learning algorithm. As an example of the aggregation

function, we may quantize the congestion factor to the nearest integer.

6.3.1 Adaptive state aggregation

We propose to use an aggregation function that maps the congestion factor space Cn
into a discrete space, as we have assumed in Section 6.2.2. This function aggregates

the adjacent average congestion factors C 0
g 2 ⌧n ⇢ Cn into a representative average

congestion factor value Cg. In this chapter, we propose an adaptive state aggregation

method that iteratively adapts the aggregation function. Let ∆(Cg, U
k
n , δ) represent the

adaptive aggregation function, defined as follows:

∆(Cg, U
k
n , δ) = Cn

g =
CL + CH

2
, (6.28)

where CL = invUk
n(U

min+(l−1)δ), CH = invUk
n(U

min+ lδ), and (l−1)δ  Uk
n(w|Cg)−

Umin < lδ. Note that invUk
n represents the inverse function of Uk

n(w|Cg), U
min denotes

the minimum value of the expected utility of the user starting from the previous epoch,
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and δ is referred to as the utility spacing that determines the aggregation function from

the expected utility-to-go domain.

6.3.2 Structural Properties

In this section, we develop some structural properties of the optimal policy and corre-

sponding value function, based on which we will then discuss approximation results of

the value function. This approximation allows us to represent compactly the value func-

tion. It was proved, in [35], that the optimal value function U⇤
n is PWLC with respect to

the belief vector. As we are considering a discrete set of average congestion factors, the

value function can be approximated using a PWLC function. Importantly, we are able

to control the computational complexity and achievable performance by using different

predetermined approximation error thresholds δ.

Algorithm 2 Online learning algorithm for POMDP-based congestion control

Initialize Q(µk
n,φ

k
n, Cg) = 0 for all possible application parameters, congestion factor

and updating policy;
Initialize φ, µn and Cg;
Un = 0;
while true do
φprev = φ;
µprev
n = µn;

Cprev
g = Cg;

Get the new application parameters φ;
Select the policy and congestion factor such as: (µk

n, Cg) =
arg max

µn,Cg

Q(µn,φ, Cg)bn(Cg) with probability (1 − ✏), else choose a random

policy and congestion factor;
Q(µprev

n ,φprev, Cprev
g ) βkQ(µprev

n ,φprev, Cprev
g ) + (1− βk)(Un + γQ(µn,φ, Cg));

Un = 0;
for t = 1! T do

Transmit packets using the updating policy µn and the congestion factor Cg;
Update the congestion window based on Equation (6.1);
Un = Un + Ak

n ⇥ recPkt, where recPkt is the number of packets received before
their delay deadlines.

end for
Update the beliefs based on Equation (6.17);

end while

We propose, in this section, a low-complexity online learning algorithm based on an ex-

tension of the on-policy TD-λ Algorithm [121], described in Algorithm 3. The proposed

learning method is greatly impacted by the utility spacing δ, and the number of states

in an epoch depends on the aggregation function ∆(Cg, U
k
n , δ). The size of the average

congestion set in the kth epoch is dUk,max−Uk,min

δ e+ 1.
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At the beginning of epoch k, the user receives the application parameters φk
n from the

upper layer, and selects the updating policy and the congestion factor that maximize its

state-value function. Then, the user transmits its packets during the epoch using the

chosen policy. At the end of the epoch, the user updates the state-value function based

on observation during the epoch. The following lemma proves the convergence of the

proposed algorithm.

Lemma 6.2. The proposed learning algorithm converges to the optimal value function

w.p.1.

Proof. The proof of this lemma follows from the Theorem 1 of [122]. In fact, Sarsa

algorithm converges to the optimal values function whenever the following assumptions

hold:

1. The state space and the action space are finite,

2. βk satisfies
P1

k=1 βk =1,
P1

k=1(βk)
2 <1, e.g.βk = 1

k ,

3. The reward function is bounded.

It is straightforward that the previous assumptions hold for our problem, and therefore,

the Algorithm 3 converges to the optimal values function.

6.3.3 Implementation and complexity

Although value iteration algorithms give an exact solution of POMDP optimization prob-

lems, those algorithms require a time and space complexity that may be prohibitively

expensive. In fact, to better understand the complexity of exactly solving the POMDP

problem, let |Γk| be the number of Υ-vectors in the kth epoch. In the worst case, the

Υ-vectors size in the (k+1)-th epoch is |A|⇥ |Γk| (see [123]), and the running time will

be |Xn|2 ⇥ |A| ⇥ |Γk|. It also requires solving a number of LPs for pruning vectors.

Interestingly, the proposed algorithm has a state space of |A| ⇥ |Cn| ⇥ |Φ|, and has a

polynomial time complexity. Therefore, this algorithm can be implemented on mobile

devices as it takes only a polynomial time when seeking for the optimal policy. Moreover,

the proposed algorithm is implemented only at the transmitter side and is transparent

for the receiver. We do not even require any change at routers. Moreover, as we have

proved that Learning-TCP is TCP-Friendly, any other congestion control algorithm

can be implemented in parallel. For first epochs, the Learning-TCP algorithm may

give suboptimal performance. However, a near-optimal result can be obtained after a

sufficient number of epochs. Interestingly, we can significantly speed up the learning and
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avoid this problem if the state-value functions are initialized with the values obtained

the last time Learning-TCP was used.

6.4 Simulations

In this section, we present some simulation results using MATLAB-based simulations of

the proposed Learning-TCP algorithm. Note that we do not study the performance of

congestion control schemes (AIMD, Binomial,...) as they were already deeply investi-

gated. Instead, we analyze the performance of LearningTCP that chooses one congestion

control schema every epoch. We consider that multimedia users are transmitting video

sequences at a variable bit rate of R = {1, 1.25, 1.5, ..., 5.75, 6} Mbps. We assume that

packets can tolerate a delay of D = {133, 266, 400, ..., 800} ms, and we set the packet

length to 1024 Bytes. Moreover, we assume that each frame has an additive distortion

per packet in the set Adistor = {0.05, 0.06, ..., 0.16}. We consider also a set of policies A
composed of IIAD and SQRT policies defined as follows:

IIAD: f(w) =
3β

2w − β
and g(w) =

β

w
; (6.29)

SQRT: f(w) =
3β

2
p
w + 1− β

and g(w) =
βp

w + 1
; (6.30)

where β 2 {0.1, 0.2, ..., 0.9}. We consider the set of average congestion factors Cn =

{1, 2, .., 50}, and we set γ to 0.1.

6.4.1 TCP-fairness

We focus, first, on the fairness of our proposed Learning-TCP. Figure 6.2 shows how the

proposed algorithm interacts with TCP transported flows depending on QoS parameters

chosen from the set Φ = R⇥D ⇥Adistor. In order to study this effect, we simulate 10

connections: 5 with TCP and 5 connections using the Learning-TCP algorithm, within

different QoS requirements and application parameters. We illustrate, in Figure 6.2, the

fairness ratio depending on the delay deadline and source rate. The fairness ratio (see

[113] and [114]) is defined by the ratio between the total throughput of Learning-TCP

connections and total throughput of TCP connections. The closer the fairness ratio is

to 1, the friendlier will the congestion control be to other TCP flows. We observe that

Learning-TCP has a fairness ratio close to 1 except with hard deadline delay and high

source rate. In fact, as we can see in Figure 6.2, when the delay deadline is lower than

300 ms and the source rate is higher than 4 Mbps, the fairness ratio is between 1.2 and
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Figure 6.2: Fairness ratio of Learning-TCP for different source rates and delay dead-
lines .

1.45. Indeed, with hard deadline delays and high source rates, the user needs higher

throughput in order to satisfy its QoS requirement.

6.4.2 Learning-TCP algorithms and fixed-policy algorithms

In this section, we investigate the interactions between Learning-TCP and other mul-

timedia congestion control algorithms. We consider a bottleneck link of capacity 100

Mbps shared between 10 users (one Learning-TCP; one TCP and 8 users using Binomial

congestion control) as described in Table 6.2. We simulate a video transmission appli-

cation during 350 time slots, and we assume that users receive a new set of application

parameters every epoch, T=50 RTT, where the RTT duration is 100 ms. In order to

illustrate the impact of the delay on the congestion control algorithms, we assume that

the deadline delay is 133 ms in the first epoch, and that it increases by 133 ms every

epoch. A real use-case of these simulation settings is a streaming application, where

the user may change the required quality at each epoch. Let us consider a congested

network, the user decreases at the end of each epoch the required quality of the stream-

ing, and increases the deadline delay, thereby decreases the packet loss probability. We

observe, in Figure 6.3, that the Learning-TCP uses different policies for each delay dead-

line. For hard delay deadlines, we observe that the throughput of the Learning-TCP

user is higher than the throughput of other users. Figure 6.5 illustrates the throughput

of TCP user and Figure 6.4 illustrates the throughput of Binomial congestion control

users. The Binomial-CC users obtain the highest average throughput (9.2 Mbps Versus

7.65 Mbps for TCP and 8.36 Mbps for Learning TCP). In fact, as we can see in Figure

6.3, the Learning-TCP gives the highest throughput for hard delay deadlines. However,

it is still TCP-friendlier in the average. Interestingly, we show in the next section, how

the proposed algorithm gives better video quality when obeying the friendliness rule.
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Table 6.2: Users in the network

IIAD1 IIAD2 IIAD3 IIAD4 TCP

I 0.3
w−0.1

0.6
w−0.2

0.9
w−0.3

1.2
w−0.4 1

D 0.2
w

0.4
w

0.4
w

0.8
w 0.5

SQRT1 SQRT2 SQRT3 SQRT4 LEARNING-TCP

I 3
8
p
w+1−1

3
4
p
w+1−1

9
8
p
w+1−3

3
2
p
w+1−1

f(w)

D 0.25p
w+1

0.5p
w+1

0.75p
w+1

1p
w+1

g(w)

Figure 6.3: Throughput of Learning-TCP.

Figure 6.4: Throughput of Binomial-CC.

Figure 6.5: Throughput of TCP.
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Figure 6.6: Average received video quality using different congestion control for mul-
timedia transmission.

6.4.3 Performances of Learning-TCP against others multimedia con-

gestion control algorithms

In order to evaluate the video quality (measured through the average PSNR, in decibels)

using different congestion control algorithms, we consider the previous scenario where 4

users use Binomial congestion control algorithm; 4 users use TCP and two users using

a Learning-TCP algorithm.

We simulate the transmission of a video sequence with length of 50 s (CIF resolution, 50

Hz frame-rate) and compressed by an H.264/AVC codec (any codec can be used, we used

this one just for illustrative purposes). We assume that users receive different values

of source rate and additive distortion per packet at every epoch. The delay deadline

varies between 133 ms and 800 ms. Figure 6.6 illustrates the video quality obtained

with different congestion control algorithms. We observe that the Learning-TCP leads to

better video quality. Therefore, our proposed approach outperforms others, especially for

real-time applications with hard deadline delay such as video-conferencing applications

for example. In fact, as illustrated in Figure 6.7, Learning-TCP users obtain the highest

percentage of packets delivered before their delay deadline. Indeed, our algorithm is able

to optimize the congestion window by considering the distortion impact, delay deadline

and the source rate.

6.5 Conclusion

In this chapter, we have formulated the media-aware congestion control problem as a

POMDP that considers the distortion impact, delay deadline and the multimedia source

rate. We have considered a set of generic TCP-friendly updating functions for the
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Figure 6.7: The percentage of packets delivered before their delay deadlines.

congestion window adaptation. The optimal policy allows the sender to optimize the

congestion window size that maximizes the long-term expected quality of the multimedia

application. We have also proposed an online learning method to solve the Learning-

TCP on-the-fly. Simulation results have shown that the proposed congestion control

algorithm outperforms conventional TCP-friendly congestion control schemes in terms

of quality, especially for real-time applications with hard delay deadlines. Moreover,

the proposed Learning-TCP algorithm is implemented only at the sender side, and is

transparent to the routers and the receiver.

Note that we have considered only the impact of QoS parameters (delay, source rate,

etc.) on the congestion control. In the next chapter, we focus on the quality perceived

by end users through a QoE-based congestion control algorithm. In fact, we consider

that users maximize the QoE, based on MOS feedbacks from receivers.
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7.1 Introduction

When the bottleneck link is overloaded or channel conditions are bad, the TCP through-

put decreases and cannot satisfy the source rate of the multimedia application. This

increases, generally, the jitter and the packet loss rate that could impact the user-

perceived quality, which is also known as the QoE. Although the QoE is affected by

some factors, such as the audio quality, devices, echo, etc., we focus, in this chapter,

on improving the QoE through a novel congestion control algorithm. The impact of

non-networking factors could be cataloged into a protocol stack to form a conceptual

133
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Figure 7.1: The experimental model

relationship between QoS and QoE (see [124] and [125]). The QoE is measured by MOS

values. In a subjective test, the QoE is rated on a scale of 1 (bad) to 5 (excellent) by

a significant number of people, and the average of the scores is called a MOS. Note

that, the ITU-T Recommendation P.911 [126] provides the reference for carrying out

subjective measurement of audiovisual materials.

In this chapter, we propose a QoE-aware POMDP-based congestion control algorithm,

referred to as MOS-TCP, which exhibits an improved performance when transporting

multimedia applications, specifically over a wireless path. Our algorithm is suited for

networks containing wireless branches, like the model depicted in Figure 7.1. The goal

of the MOS-TCP algorithm is to control the end-to-end congestion in order to maximize

the QoE, where packets can be lost due to congestion or randomly due to errors encoun-

tered across the wireless path. Unlike the current TCP congestion control protocol that

only adapts the congestion window to the network congestion (e.g. based on network

congestion signals, such as the packet loss rate in TCP Reno, or the round-trip time in

TCP Vegas), the proposed congestion control algorithm adopts a two-level congestion

control mechanism. Indeed, it adapts over time the congestion window size according to

the source rate and the QoE feedbacks. Moreover, we consider a set of updating policies

composed of generic congestion control algorithms with general increase and decrease

functions, such as AIMD, IIAD, SQRT, and EIMD. In order to capture dynamics of

the network congestion and optimize the QoE, we formulate the congestion control us-

ing a POMDP framework. The proposed POMDP framework allows users to evaluate

the network congestion variations over time, and determines an optimal threshold-based

congestion window updating policy in order to maximize the long-term discounted re-

ward. In this chapter, the QoE measured through the multimedia quality (MOS) defines

the reward.

In summary, we address the following contributions:
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QoE-aware congestion control : The proposed MOS-TCP adapts the AIMD-like conges-

tion control policy to both varying network congestion and multimedia characteristics.

POMDP-based adaptation: We formulate the QoE-aware congestion control problem

using a POMDP framework. The framework allows senders to optimize the congestion

window updating policy that maximizes the long-term expected QoE. Furthermore, users

have a partial knowledge about the bottleneck link status. In fact, the number of packets

in the bottleneck link queue depends on the congestion windows of all users, which

cannot be observed. Therefore, the long term prediction and adaptation of the POMDP

framework is essential for optimizing the performances of multimedia applications.

Online learning for QoE-sensitive multimedia applications : Since the computation of an

optimal policy is usually time/process consuming, and as wireless devices are capacity-

limited, we propose practical learning method to solve the POMDP-based congestion

control problem on-the-fly. The proposed model-free learning algorithm is based on TD-

λ reinforcement learning, and is designed for QoE-sensitive multimedia applications.

This chapter is organized as follows. We introduce the QoE and explain the MOS

calculation in Section 7.2. In Section 7.3, we model the QoE-aware congestion control

problem that maximizes the performance of multimedia applications. Thereafter, in

Section 7.4, we formulate the problem using a POMDP-based framework. We present

a low-complexity algorithm to solve the POMDP in Section 7.5. Section 7.6 provides

experimental results that validate the proposed congestion control method, and Section

7.7 concludes the chapter.

7.2 QoE-aware networking and MOS measurement

To overcome the limitation of QoS-based optimization, QoE-based approaches are intro-

duced as a more effective way to optimize transmission algorithms and protocols with

respect to user satisfaction. QoE metrics are defined as a set of quantitative measures

to assess the perceived QoS of end users [127]. Moreover, a new approach, namely QoE-

aware networking, is proposed to re-formalize the service optimization problem and to

improve the user experience. Because the QoE metrics reflect the end user’s experience,

QoE-based approaches may improve the subjective service quality, optimize the use of

network resources, and provide services to more users without noticeable degradation of

users’ experience. Recently, QoE metrics are used to optimize various types of network

services. In cellular systems, authors of [128] used a QoE-based approach to allocate

downlink wireless resources among different applications. They defined several QoE

models for different types of applications such as file downloading, voice call and video
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streaming, and adopt QoE-based utility maximization to improve the user perceived

quality. In [129], authors applied QoE metrics to optimize IEEE 802.11 wireless LAN.

They used a machine learning approach to generate real-time QoE measurements and

used the QoE feedbacks to manage wireless network resources. In [130], authors used

QoE metrics for packet scheduling in multi-hop wireless networks. The packet scheduler

determines the packet drop pattern that minimizes the degradation of MOS values. In

P2P networks [131], scalable video coding and QoE metrics are used to optimize the

performance of P2P video streaming systems. In this chapter, we seek to enable QoE-

awareness in a more general setting. We integrate the QoE metrics within the TCP

protocol. Since TCP is a widely adopted building block in many network services, our

approach is applicable to a much wider spectrum of applications.

Since QoE metrics are subjective, the standard QoE measuring process should involve

human observers, e.g., when measuring VoIP quality, the MOS are often used as a subjec-

tive rating ranging from 1 (poor) to 5 (excellent). However, to enable QoE-awareness in

multimedia services, it is infeasible to use subject human tests for real-time applications.

Instead, some QoE online prediction methods should be used to estimate QoE from the

service output. The QoE prediction methods are dependent on the types of content.

A number of models are proposed for predicting QoE with different kinds of contents

including web service[132], voice services [133], audio/video content [134], etc. Instead

of proposing another new approach of QoE prediction, we base our experiments on the

QoE prediction results produced by an existing real system, i.e. Microsoft Lync system

[135] (previous known as Office Communication Server and Office Communicator [136]).

In the Lync system, the VoIP software measures a set of variables, which may affect the

QoE throughout the communication sessions. Based on the collected measurements, it

can predict the subjective QoE metrics in real-time. Furthermore, the QoE metrics are

normalized and represented in the standard MOS. Our considered Lync software pro-

vides several types of MOS values (NetworkMOS, ListeningMOS, conversationalMOS)

in order to represent the degradation in different phases of the whole communication pro-

cess (see Figure 7.2). The MOS prediction mechanism provides a quantitative approach

to evaluate the communication quality that end users have experienced.

• NetworkMOS is calculated purely based on obtained network statistics (informa-

tion), which include the packet loss, bit errors, packet delay, and jitter.

• ListeningMOS is not only decided by network parameters, but also by the choice

of audio codec and audio devices, as well as the recording conditions such as echo,

background noise level, talk-over, etc. It captures the perceived quality of an audio

stream at the receiver side. Note that both NetworkMOS and ListeningMOS are

only measured for unidirectional traffic.
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Figure 7.2: Different MOS measurements in Microsoft Lync system

• ConversationalMOS is measured for both sending and receiving streams. It takes

into account the round-trip delay in addition to all the above-mentioned factors.

Observing these different MOS values gives us a clear perspective on the performance

of the entire communication process. A congested network, for example, will cause

degradation in NetworkMOS, while a bad recording device can be identified from low

ListeningMOS values.

7.3 QoE-aware congestion control problem

We consider the same network model and congestion window adaptation defined in

Chapter 6. In this section, we discuss the objective of the proposed QoE-aware conges-

tion control. Denote by Rk
n the source rate of a multimedia application for user n in

the k-th epoch. The source rate is the average number of packets that arrives at the

transmission buffer per second at the transport layer. In fact, in a VoIP call, the source

rate can be controlled and adapted to the network environment, since there are usually

some rate control modules implemented in VoIP software.

We propose, in this chapter, a congestion control algorithm that dynamically changes

the congestion window updating policy in order to maximize the QoE. Therefore, it

is straightforward and somehow intuitive that each user has as objective to maximize

its own QoE. As we can see, in Figure 7.3, the MOS is correlated with the listener

satisfaction. The higher MOS, the greater the listener’s satisfaction. Therefore, the

objective of users is to maximize the expected future MOS starting from the current

slot. A similar utility function was used in [137]. Each user tries to optimize, selfishly,
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Figure 7.3: Relation between MOS and user satisfaction [134].

the following expected total discounted MOS:

Un =

1X

k=1

γkukn(µ
k
n, R

k
n), (7.1)

where γ is a discount factor, and ukn = MOSk
n(µ

k
n, R

k
n) is the received MOS by the user

n at the k-th epoch, when the source rate at the k-th epoch is Rk
n, and the user n

uses the congestion window updating policy µk
n. Since the network user do not take

frequently decision (it chooses a congestion control every TRTT), we have used the

expected discounted reward criterion instead of the average reward criterion. MOS-

TCP mechanism allows the user to maximize its expected total discounted MOS. In

fact, the QoE varies with the source rate, the congestion window updating policy, and

the congestion status at the bottleneck links. The latter depends not only on the user

n but also on other users. We show, in the next section, how the proposed POMDP-

based congestion control algorithm determines the optimal updating policy given partial

knowledge of bottleneck links status.

7.4 POMDP-based congestion control

The network user maximizes its expected discounted QoE expressed by Equation (7.1).

We formulate our problem using a POMDP-based framework as the global system state

is not well known for users. In fact, the user has a partial knowledge about the con-

gestion status at the bottleneck links. The latter depends on the congestion windows

of all users, which is unknown by the user n. Thus, the user n has to estimate solely

the impact of all the other users based on the history of observations and actions. In
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fact, the user n estimates the packet loss rate when it transmits data using the con-

gestion window wn. We define a POMDP-based congestion control of user n in a tuple

{A,Xn, On,Ωn, Pn, Un} as follows:

Action: The user selects the congestion window updating policy µn = {µ1
n, µ

2
n, ...} 2 A,

with µk
n is the updating policy of user n in the k-th epoch.

State: The state is defined as Xk
n = {pkn, Rk

n} 2 Xn. The source rate Rk
n is known

by the user n. However, the packet loss rate pkn, which is impacted by other users’

windows, cannot be directly observed. The user n has to infer the congestion status

of the bottleneck links using congestion observations and QoE feedbacks. The belief

of the packet loss rate is defined as b : [0, 1] ! [0, 1]. The function b(.) represents the

probability distribution of the packet loss rate.

Observed information and observation probability: The observed information

is defined by congestion events on 2 On. The observation probability is defined as a

function Ωn : Tn ⇥ On ! [0, 1]. Let Ωk−1
n (on = fail|wn) represent the probability of

packet loss when the congestion window size is wn at the (k − 1)-th epoch.

The conventional POMDP updates the belief function per time slot (RTT), but in the

proposed POMDP framework, bn(p
k
n) is updated per epoch. In fact, the belief distribu-

tion is kept the same within the epoch, which reduces the computational complexity and

also the memory requirement for calculating the optimal policy. Note that by updating

the belief per epoch, we also tolerate delayed MOS feedbacks.

State transition: The average packet loss rate pkn when using the congestion window

updating policy µk
n at the k-th epoch cannot be known by n until the end of the epoch.

Instead, the user estimates it based on the following expression:

b(pk+1
n |µk+1

n ) =
Prob(pk+1

n |pkn, µk+1
n )

P
p Prob(p|pkn, µk+1

n )
, (7.2)

where Prob(pk+1
n |pkn, µk+1

n ) is the probability that the packet loss rate will be pk+1
n at

the (k + 1)-th epoch when choosing the policy µk+1
n , given that the packet loss rate is

pkn.

Based on the MOS feedbacks obtained at the end of every epoch, the user chooses the

updating policy that maximizes the QoE, as illustrated in Figures 7.4 and 7.5.
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Figure 7.4: MOS exchange in bidirectional conversation.

Figure 7.5: System diagram of MOS-TCP in time epoch k and k + 1.

7.5 MOS-based POMDP algorithm

We propose, in this section, a POMDP-based algorithm in order to maximize the QoE

for multimedia applications. Every epoch, MOS-TCP users receive three feedbacks: Net-

workMOS, ListeningMOS and ConversationalMOS. These feedbacks reflect the listener’s

satisfaction, and the user has to choose the action that improves the total expected QoE.

Therefore, based on these feedbacks, we propose a POMDP-based algorithm that max-

imizes the expected QoE. Furthermore, as solving POMDPs is an extremely difficult

computational problem, we present a low computation complexity online learning algo-

rithm in order to solve the proposed congestion control. Note that learning algorithms

are very useful in wireless systems as they require low complexity.
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7.5.1 Packet-loss differentiation

The main obstacle, that wireless networks have to face, is physical impairments. The

fast recovery algorithm solves the single packet loss within one window. However, due

to the nature of wireless networks, a fading channel may cause contiguous packet losses.

Therefore, the key idea of designing a wireless TCP is to distinguish the cause of packet

loss. Many schemes were proposed in the literature. For example, TCP Veno [32]

estimates the backlogged packets in the buffer of the bottleneck link. It determines the

optimal throughput the network can accommodate based on the minimal RTT. The

difference between the optimal throughput and the actual throughput can be used to

derive the amount of backlogged packets. TCP Veno suggests that the loss is said to

be random if the number of backlogged data is below a threshold, otherwise the loss is

considered as congestive. In our congestion control algorithm, we implement the same

methodology, depicted in Algorithm 1, in order to distinguish random packet loss from

congestive loss.

7.5.2 The objective function

Since our objective is to avoid the congestion at bottleneck links and improve the QoE,

the MOS represents a consistent feedback that gives us information about the impact of

the congestion status on the multimedia quality. MOS feedbacks vary with the packet

loss rate and the jitter interval, which are related to the congestion status at the bot-

tleneck links. The higher the MOS, the better the QoE and the lower the packet loss

rate and the jitter interval. Note that our objective is to maximize the total expected

received MOS. Depending on the multimedia application, the user maximizes the ex-

pected QoE using NetworkMOS, ListeningMOS or ConversationalMOS feedback. All

these MOS feedbacks depend on the packet loss rate and on the jitter interval, both of

which depend on the source rate and the congestion window updating policy.

7.5.3 The optimal policy

A policy that maximizes Un is called an optimal policy µ
opt
n = {µopt,1

n , µopt,2
n , ...}, it

specifies for each epoch k the optimal updating policy µopt,k
n . The optimal value function

Uopt
n satisfies the following Bellman equation:

Uopt,k
n (pkn) = max

µk
n2A
{ukn(µk

n, R
k
n) + γ

X

p0

b(pkn)T (p
0|pkn)Jk+1

n (p0)}. (7.3)
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The optimal policy at the k-th epoch is expressed as follows:

µopt,k
n = arg max

µk
n2A
{ukn(µk

n, R
k
n) + γ

X

p0

b(pkn)T (p
0|pkn)Jk+1

n (p0)}. (7.4)

7.5.4 Online learning

Solving the presented POMDP is expensive in terms of time (calculation) and space

(memory) complexity. Then, it is not suitable for wireless systems with small capacity

multimedia devices. In this section, we present a low-complexity online learning algo-

rithm. Our online learning is an extension of the on-policy TD-λ algorithm Sarsa [121]

for POMDPs.

Each MOS-TCP user estimates the state-values Q(µk
n, R

k
n, p

k
n), defined as the expected

future reward starting from state (Rk
n, p

k
n) and taking the action µk

n. The MOS-TCP

user chooses, at every epoch, the optimal policy based on Algorithm 3. Specifically,

this algorithm supports delayed MOS feedbacks, as it changes the congestion window

updating policy per epoch. As illustrated in Figure 7.5, the user gets some feedbacks at

the end of each epoch, which reflects the impact of the network on the listening quality.

Therefore, the user applies the online learning algorithm in order to choose the congestion

window policy that maximizes the expected future MOS starting from the current slot.

At the beginning of epoch k, the user receives the source rate Rk
n from the upper layer and

selects the congestion window updating policy that maximizes its state-value function.

Then, the user transmits its packets during the epoch using the chosen policy. At the end

of the epoch, the user computes the packet loss rate and updates the state-value function

Q(µk
n, R

k
n, p

k
n) based on the observed MOS feedback. Moreover, the user updates the

belief probability of the packet loss rate. Depending on the MOS feedback considered in

the objective function, we denote Network-CC the MOS-TCP algorithm that maximizes

the NetworkMOS, Listening-CC the MOS-TCP that maximizes the ListeningMOS, and

Conversational-CC the algorithm that maximizes the expected ConversationalMOS.

7.5.5 Implementation and complexity

Although the value iteration algorithms give exact solutions for the POMDP optimiza-

tion problems (see [34]), they need expensive time and space complexities. In fact, the

sender needs a large storage space, and spends an exponential time when seeking for

the optimal policy. As we can see in Table 7.1, the complexity of the exact POMDP

solutions grows exponentially with the number of epoch. Importantly, our online learn-

ing algorithm can be implemented on mobile devices that do not have a sophisticated
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Algorithm 3 MOS-TCP online learning algorithm for POMDP-based congestion con-
trol

Initialize Q(µk
n, R

k
n, p

k
n) = 0;

k  1;
Get application parameters R1

n;
Choose arbitrarily the updating policy (µ1

n);
while true do
for t = 1! T do

Update the congestion window using policy µk
n ;

Update the observation probability Ωk
n based on congestion event observation;

end for
Evaluate the packet loss rate pkn;
The user gets the QoE feedbacks: MOS;
Update the beliefs based on Equation (7.2);
Get application parameters Rk+1

n ;
Choose updating policy

(µk+1
n ) = argmax

µk+1
n

Q(µk+1
n , Rk+1

n , pk+1
n )bn(p

k+1
n ),

with probability (1− ✏);
Else choose a random policy in A;

Q(µk
n, R

k
n, p

k
n) Q(µk

n, R
k
n, p

k
n) + ↵[MOS + γ ⇥X

pk+1
n

Q(µk+1
n , Rk+1

n , pk+1
n )bn(p

k+1
n )−Q(µk

n, R
k
n, p

k
n)];

k  k + 1;
end while

Table 7.1: Comparisons of exact POMDP solution and the proposed online learning
algorithms

Exact solution MOS-TCP

Consumed Memory O(|A||Vk−1||O|), with Vk is the solution of
the (k − 1)-th epoch

O(|A||X |)

Time complexity O(|X |2|A||Vk−1||O|) O(|A||X |)log(|A||X |)

calculation or a large memory space. Moreover, the proposed algorithm is implemented

only on the transmitter side and is transparent to the receiver side. We do not even

require any change at the routers. Interestingly, this algorithm supports the delay of

MOS feedbacks as it updates the congestion window updating policy per epoch.
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7.6 Numerical illustrations

7.6.1 Testbed experiments

Microsoft Lync is an integrated software-based communication and collaboration plat-

form, which is mainly designed for enterprise users. It provides various real-time com-

munication features such as instant messaging, software-based voip, and video/audio

conferencing through the same user interface. The system includes a set of server com-

ponents that can be deployed in the enterprise network. After installing the client-side

component, enterprise users can initiate audio/video calls with others or set up a group

conference through the IP network. Furthermore, it supports communications with

traditional phone through some PSTN gateway.

The system supports the standard Session Initiate Protocol (SIP) for signaling and

RTP/RTCP protocols for transmitting media packets. For the two-way communications,

clients can directly connect with each other and transmit data in a peer-to-peer way. For

multi-users conferencing sessions, a Multimedia Controller Unit (MCU) server can help

to coordinate the session and to replicate data packets to all receivers. When users are

behind some Network Address Translator (NAT) or firewalls, a mediation server allows

clients to relay data packets. The MOS prediction module in Lync is implemented at the

application layer and is independent on the transport protocol. The underlying transport

protocol in Lync can be TCP, UDP, or even server-relayed tunnels (e.g. Traversal Using

Relay NAT (TURN) protocol), depending on the connectivity of the Lync clients.

The proposed algorithm is implemented only at the sender side, and is transparent to

routers and receiver. However, an end-to-end signaling mechanism needs to be imple-

mented at the application layer on both the transmitter and the received side. Note

that a library-based MOS feedback mechanism can be adopted to help developers of

multimedia applications to design QoE-based multimedia applications without the need

of run-time training and signaling.

MOS feedbacks need to be sent from the receiver side to the sender at every epoch. The

MOS prediction and feedback are located at the application layer. Thus, there is no

need to modify the receiver part of the TCP code. Meanwhile, the TCP sender part

can be designed to be backward compatible, i.e. the sender works in normal mode when

there is no MOS feedback and switches to the MOS-based congestion control mode only

when the application layer has indicated it to do so. In this way, MOS-TCP clients can

still interact with the old non-MOS version ones.

In our experiments, the QoE trace is captured and anonymized from a deployed Microsoft

Lync 2010 Service in Microsoft Labs. The duration of the collected trace is about three
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months. The average length of each session is 11 minutes. From the original trace, we

extract only the PC-to-PC audio streams since it reflects the voice quality over pure

IP networks. The extracted part contains 1,935,110 end-to-end audio streams in total.

The audio codec used by clients is Microsoft RTAudio Speech codec with the clock

rate 16KHz. We use the Gilbert model to model the wireless channel conditions. This

approach was introduced in [138]. By generating synthetic traces that simulate the

wireless network being tested, multiple users can access the network simultaneously and

perform experiments.

We consider a set of policies A composed of AIMD, IIAD and SQRT, defined as follow:

AIMD: f(w) =
3β

2− β
and g(w) = β;

IIAD: f(w) =
3β

2w − β
and g(w) =

β

w
;

SQRT: f(w) =
3β

2
p
w + 1− β

and g(w) =
βp

w + 1
;

where β 2 {0.1, 0.2, ..., 0.9}. Note that the conventional TCP is AIMD(0.5). We compare

our proposed algorithms with other congestion control algorithms for multimedia appli-

cations. We focus, especially, on AIMD and Binomial congestion control algorithms. In

fact, authors of [113] proved that the AIMD-based Binomial congestion control algo-

rithms IIAD and SQRT are well-suited for multimedia applications. We consider that

the data is transmitted over an IEEE 802.11a wireless link and the playback delay is

200 ms. We use IEEE 802.11a in our numerical study only for illustrative purposes, and

any kind of wireless device can be used instead.

7.6.2 Unidirectional communications

In this section, we focus on the unidirectional communications with a speaker and a lis-

tener in each session. We present a comparative study between Listening-CC, Network-

CC and other congestion control algorithms. We compare, in different scenarios, the QoE

(ListeningMOS) and we consider the following congestion control algorithms: Listening-

CC, Network-CC, Binomial congestion control and AIMD algorithms. We do not com-

pare with Conversational-CC as we are considering unidirectional communications. We

consider that each pair is composed of a transmitter (speaker) and a receiver (listener).

Let us focus on the first scenario of Table 7.2. We run audio transmissions with different

source rates and we plot, in Figure 7.6, the obtained QoE for different type of users.
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Table 7.2: Experimental scenarios in unidirectional communications

AIMD IIAD SQRT NetworkCC ListeningCC

Scenario 1 2 2 2 2 2

Scenario 2 4 4 4 4 4

Scenario 3 8 8 8 8 8

Figure 7.6: ListeningMOS with different source rates in the first scenario.

Figure 7.7: Packet loss rate depending on the source rate in the first scenario.

We observe that the Listening-CC and Network-CC algorithms improve significantly

the QoE compared to AIMD and Binomial congestion control algorithms. Moreover,

the MOS obtained with Listening-CC is slightly better than the MOS obtained by the

Network-CC algorithm. Furthermore, as we can see in Figure 7.7, the packet loss rate

for Listening-CC users is higher than Network-CC. In fact, as the NetworkMOS de-

pends only on network factors, maximizing this MOS minimizes the packet loss rate and

the jitter interval. However, Listening-CC bases on ListeningMOS, which depends on

other factors than the network ones. Then, users can choose a policy that maximizes

the ListeningMOS even with higher values of packet loss rate and jittering. Consider

the second scenario of Table 7.2. We observe, in Figure 7.8, that Listening-CC and
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Figure 7.8: ListeningMOS with different source rates in the second scenario.

Figure 7.9: Packet loss rate depending on the source rate in the second scenario.

Network-CC algorithms lead to better QoE than Binomial and AIMD users. Moreover,

Listening-CC leads to slightly better QoE than Network-CC. Figure 7.9 illustrates that

the packet loss rate for both Listening-CC and Network-CC algorithms is increasing with

the source rate as the bottleneck link become overloaded. The fluctuation of packet loss

rate is due to the imperfect characteristics of the wireless link. In the third scenario of

Table 7.2, we consider more load on the bottleneck link. Figures 7.10 and 7.11 illustrates

the ListeningMOS and the packet loss rate for different congestion control algorithms. It

is clear that the MOS-TCP frameworks lead to better QoE. However, the improvement

decreases with the source rate, and all congestion control algorithms give the same QoE

for high values of source rate. In fact, with such number of audio sessions and source

rates, the wireless link is always overloaded and the source rates requested by users

cannot be satisfied. Therefore, the packet loss rate increases for all the users, and the

QoE decreases. In summarize, both Listening-CC and Network-CC algorithms improve

the QoE compared to other AIMD-based congestion control algorithms for multimedia

transmission. Moreover, Listening-CC is slightly better than Network-CC algorithm,
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Figure 7.10: ListeningMOS with different source rates in the third scenario.

Figure 7.11: Packet loss rate depending on the source rate in the third scenario.

Table 7.3: Experimental scenarios in bidirectional communications

AIMD IIAD SQRT NetworkCC ListeningCC ConversationalCC

Scenario 1 2 2 2 2 2 2

Scenario 2 4 4 4 4 4 4

Scenario 3 8 8 8 8 8 8

as it considers not only packet loss rate and jitter but also the impact of non-network

factors.

7.6.3 Bidirectional communications

We consider, in this section, bidirectional audio conversations. We run the three scenar-

ios presented in Section 7.6.2 with a bidirectional communication.
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Figure 7.12: ConversationalMOS with different source rates in the first scenario.

Figure 7.13: Packet loss rate depending on the source rate in the first scenario.

In the first scenario of Table 7.3, we run the conversations over the wireless link. Figure

7.12 illustrates the QoE (conversationalMOS) for Conversational-CC and other con-

gestion control algorithms with different values of the source rate. We observe that

the Conversational-CC leads to better QoE than Listening-CC and Network-CC algo-

rithms. Surprisingly, the improvement of Conversational-CC compared to Listening-CC

and Network-CC algorithms is more important for higher source rate. In fact, for high

values of source rate, we observe, in Figure 7.13, that Conversational-CC algorithm

is more aggressive than other congestion control algorithms as it leads to significantly

higher packet loss rate.

In the second scenario of Table 7.3, we plot, in Figures 7.14 and 7.15, the Conversational-

MOS and the packet loss rate for different congestion control algorithms depending on

the source rate. We observe that the Conversational-CC algorithm outperforms other

congestion control algorithms. Moreover, we remark that for some values of the source
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Figure 7.14: ConversationalMOS with the source rates in the second scenario.

Figure 7.15: Packet loss rate depending on the source rate in the second scenario.

rate, the Listening-CC in better than Network-CC and for other values Network-CC is

better.

Let us focus on the third scenario of Table 7.3. Figure 7.16 shows that the Conversational-

CC leads to better QoE than other congestion control algorithms. In fact, it bases on

the conversationalMOS feedback which takes into consideration both sent and received

audio streams, and is less sensitive to the network factors, such as packet loss rate and

jittering, than ListeningMOS and NetworkMOS. However, as we can see, in Figure 7.17,

when the Conversational-CC algorithm is higher than Listening-CC and Network-CC,

it leads to higher packet loss rate. Indeed, when the wireless link is overloaded, all con-

gestion control algorithms lead to worst performances. Finally, the Conversational-CC

is more suitable for bidirectional communications.

Although the improvements in MOS do not seem to be very large (0.1-0.3) in absolute

values, the relative improvements are actually significant. In the practical system (e.g.,

Microsoft Lync), only few users have MOS values below 3 or above 4. The dynamic
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Figure 7.16: ConversationalMOS with different source rates in the third scenario.

Figure 7.17: Packet loss rate depending on the source rate in the third scenario.

range of the MOS values is about 1.0. The region between 3.0 and 4.0 is a quite

sensitive interval of MOS for users. Our improvement is about 10% to 30% in the range.

Because the sessions in our traces are using the same audio codec and software version,

this means that the actual degradation of ListeningMOS is relatively small. However,

if we focus on the NetworkMOS, the improvements are significant. As we can see in

Figure 7.18, the improvement of MOS-TCP user is about 1 in NetworkMOS.

7.7 Conclusion

We have formulated, in this chapter, the QoE-aware congestion control problem as a

POMDP that maximizes the QoE for multimedia users. We have considered a set of

generic AIMD-like updating functions for the congestion window. The optimal policy

allows the sender to optimize the congestion window updating policy that maximizes

the expected discounted QoE. We have also proposed an online learning method to solve
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Figure 7.18: NetworkMOS for MOS-TCP user and a AIMD user.

the MOS-TCP on-the-fly. Experimental results have shown that the proposed algorithm

outperforms other congestion control schemes in terms of QoE. Note that the friendliness

of MOS-TCP can be studied similarly to the study of Learning-TCP in Chapter 6, and

will be a part of our future work.



Chapter 8

Conclusion and perspectives

8.1 Summary of contributions

In this dissertation, we have proposed some applications of game theory, self-adaptivity

and learning in wireless networks at different layers of the protocol stack. We have

focused, first, on the MAC layer, and we have studied the OSA in CR networks. We

have studied both the slotted and the non-slotted models using a queueing analysis.

In fact, we have proposed centralized and decentralized OSA mechanisms for SUs in

CR networks, and we have proved the existence of a NE between SUs. Moreover, we

have evaluated the gap of performance between the optimal solution, obtained from the

centralized system, and the performance at the NE, obtained from the decentralized

system, using the well-studied metric: the price of anarchy.

Secondly, we have used a POMDP framework in order to design an optimal OSA policy

for SUs in CR networks, taking into account energy and delay constraints. Introducing

a QoS metric in the spectrum sensing policy is very important with the emergence

of heterogeneous mobile devices that are able to transmit their traffic over different

mediums of communication like 3G, WiFi and TV White Space. We have provided

some structural properties of the value function, and we have proved the existence of

an optimal stationary OSA policy that has threshold structure. We have been able to

determine explicitly the threshold structure of the optimal policy.

Furthermore, we have focused on the non-cooperative OSA mechanism for CR networks,

and we have considered that SUs are in competition in order to access a licensed channel.

Specifically, we have proved the existence of an SNE multi-policy for the OSA problem,

modeled as a non-cooperative game between SUs, and that the attempt rate at the

SNE is unique. Simulation results have shown that more opportunities in the spectrum

153



Conclusion and perspectives 154

may decreases the average throughput of the system due to the aggressiveness and the

competition between SUs. In fact, we have found a Braess kind of paradox, where

reducing system resources induce better performance. In order to optimize the average

throughput of the system, we have proposed a Stackelberg game model for the network

manager. Furthermore, we have shown that a Stackelberg equilibrium strategy for our

problem exists. This strategy is defined by increasing the average time that the licensed

channel is occupied.

We have also proposed two learning and knowledge extraction mechanisms. Specifically,

we have presented two learning-based protocols for SUs in order to estimate licensed

channels’ dynamics: rate estimator, and transition matrices estimator.

Thereafter, we have focused on the transport layer, and we have formulated the media-

aware congestion control problem as a POMDP that considers the distortion impact,

delay deadline and the multimedia source rate. We have considered a set of generic TCP-

friendly updating functions, in order to optimize the congestion window adaptation by

maximizing the long term expected quality of multimedia applications. Moreover, we

have proposed an online learning method to solve the POMDP on the fly. Simulation

results have shown that the proposed congestion control algorithm outperforms con-

ventional TCP-friendly congestion control schemes in terms of quality, especially for

real-time applications with hard delay deadlines. Moreover, the proposed algorithm is

implemented only at the sender side, and is transparent to routers and receivers.

Finally, we have formulated the QoE-aware congestion control problem as a POMDP

that maximizes the QoE for multimedia users. We have considered a set of generic

AIMD-like updating functions for the congestion window. The optimal policy allows

the sender to optimize the congestion window size in order to maximize the long term

expected QoE. We have also proposed an online learning method to solve the MOS-TCP

on-the-fly. Experimental results have shown that the proposed algorithm outperforms

other congestion control schemes in terms of QoE.

8.2 Perspectives

8.2.1 Cooperative OSA in CR networks

It is well known that sensing the licensed spectrum is time and energy consuming.

Therefore, a cooperative OSA for SUs is welcome. Specifically, we may consider that

SUs decides individually whether to cooperate or not with each other, in order to max-

imize their own benefits. Note that a SU obtains more information about the spectrum
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occupancy if it cooperates with other SUs. However, it may have lower collision prob-

ability over a free licensed channel if it does not cooperate. In fact, if SUs does not

cooperate, other SUs ignore, generally, the status of the licensed channel sensed by that

user. Intuitively, there is a tradeoff for SUs between cooperating or not with each other.

This model can be studied using a game-theoretical approach. Moreover, depending

on the information exchanged between SUs, we may use Decentralized POMDP (Dec-

POMDP) or Interactive POMDP (I-POMDP) in order to design the optimal OSA policy.

In fact, if SUs exchange only the spectrum information, the optimal solution may be

obtained using a I-POMDP. However, if SUs exchange their internal states and beliefs,

Dec-POMDP determines the optimal OSA policy. Several challenges may be considered

in this model, such as message exchange protocol, the cost of sending messages, the

cooperative OSA, the impact of the exchanged information on the performances of SUs,

etc.

8.2.2 CR in TV white spaces

The TVWS are located in the VHF and UHF bands, and have some characteristics that

make them highly motivating for wireless communications. In fact, the TVWS have the

ability to cover a significant area with a relatively lower cost. Moreover, the Non-line-

of-sight performance of TVWS offers SUs the ability to penetrate obstacles such as trees

and buildings. Note that the new spectrum licensing allows unlicensed users to access

the spectrum as long as they do not harm the licensed users. Therefore, SUs need to

communicate with a database to obtain a list of currently available TVWS.

In our future works, we consider CR base stations that sense a subset of the spectrum

in order to locate some free frequencies. Thereafter, a SU that need to communicate

through the TVWS send a request to a CR base station to obtain information about free

licensed channels. Note that CR base stations may be either cooperating or competing

in order to take advantage from opportunities in the TVWS. We may also consider that

CR base stations sense the TVWS and sublease available channels for SUs that seek

for opportunities in the licensed spectrum. Intuitively, there is a tradeoff between the

number of sensed channels, as CR base stations care about the sensing cost and the

price that a CR base station charges for SUs. We study the cooperation between CR

base station and we analyze the performance of SUs as well as the benefit of CR base

station. Furthermore, we focus on the non-cooperative model, and we study the impact

of the competition between CR base stations on the benefit of each other. We also study

the impact of the competitive behavior of CR base stations on the performance of SUs.
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8.2.3 Media-aware TCP congestion control

Evolutionary games have been developed in biological sciences in the aim of studying

the evolution and equilibrium behavior (called Evolutionary Stable Strategies ESS)

of large populations. As the TCP is widely adopted building block in many network

services, there is a large population using TCP-based congestion control algorithms.

Note that the number of users that uses Learning-TCP has an impact on the expected

performances of network users. In our future works, we focus on the impact of the

fraction of users that uses Learning-TCP on the overall performances of bottleneck links,

and on the performance of Learning-TCP users. Specifically, this system can be modeled

using evolutionary game theoretic approach. Furthermore, an interesting perspective is

to evaluate the impact of multiple flows (multiple learning-TCP connections) on the

performance of Learning-TCP users, as well as the fairness between TCP flows and

Learning-TCP flows.

The proposed QoE-based adaptation can be straightforwardly extended to other kind of

content such as video applications. The only difference is that video or graphics based

QoE feedback is needed to train the QoE-decision based engine, which adapts the TCP

transmission. Moreover, we will develop a library-based MOS feedback mechanism,

which may be adopted in order to help developers of multimedia applications to design

QoE-based multimedia applications without the need of run-time training and signaling.

The proposed QoE-based congestion control algorithm can be extended to support a

wider set of applications. In fact, we will propose a QoE-based congestion control

mechanism for multicast multimedia streaming applications. Moreover, we may use

in our MOS-TCP an aggregation of different kind of MOS feedback: NetworkMOS,

ListeningMOS and conversationalMOS. This approach will be tested in our future works.
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