M. Born and E. Wolf, Principles of Optics, p.81, 1980.
DOI : 10.1017/CBO9781139644181

J. W. Goodman, Introduction to Fourier Optics. McGraw-Hill book company, p.73, 1996.

J. Meyzonnette and T. Lépine, Bases de radiométrie optique.Cépadù es -Editions, 2003.

G. Moulin, Composants optiques transparents pixellisés destinés au transport etàetà la formation d'images. Thèse de doctorat en sciences, Laboratoire Charles Fabry de l'Institut d'Optique, Faculté des sciences d'Orsay -Université Paris-Sud XI, pp.27-42, 2008.

C. Benoit-pasanau, Modélisation et simulation de composants optiques diffractifs et pixellisés en vue de leur caractérisation et de leur optimisation Thèse de doctorat en sciences, Laboratoire Charles Fabry de l'Institut d'Optique, Faculté des sciences d'Orsay -Université Paris-Sud XI, pp.50-55, 2010.

J. E. Sheedy, C. Campbell, E. King-smith, and J. R. Hayes, Progressive Powered Lenses: the Minkwitz Theorem, Optometry and Vision Science, vol.82, issue.10, pp.1-10, 2005.
DOI : 10.1097/01.opx.0000181266.60785.c9

D. Casasent, Spatial light modulators, Proc. IEEE 65, 1977.
DOI : 10.1109/PROC.1977.10439

C. Warde, A. D. Fisher, D. M. Cocco, and M. Y. Burmawi, Microchannel spatial light modulator, Optics Letters, vol.3, issue.5, pp.196-198, 1978.
DOI : 10.1364/OL.3.000196

B. Berge and J. Peseux, Lens with variable focus, 1997.

P. Berthelé, B. Fracasso, and J. Bougrenet-de-la-tocnaye, Design and characterization of a liquid-crystal spatial light modulator for a polarization-insensitive optical space switch, Applied Optics, vol.37, issue.23, pp.5461-5468, 1998.
DOI : 10.1364/AO.37.005461

N. Fraval and J. Louis-de-bougrenet-de-la-tocnaye, Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths, Applied Optics, vol.49, issue.15, pp.2778-2783, 2003.
DOI : 10.1364/AO.49.002778

Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device, Optics Express, vol.14, issue.18, pp.8013-8018, 2003.
DOI : 10.1364/OE.14.008013.m002

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan et al., High-precision open-loop adaptive optics system based on LC-SLM, Optics Express, vol.17, issue.13, pp.10774-10781, 2003.
DOI : 10.1364/OE.17.010774

V. Gerald, P. Piosenka, and . Leahy, Auto-focusing optical apparatus, 1992.

S. Epstein and S. Kurtin, Variable focal length lens, TW477902, 1998.

K. Matsumoto, Liquid crystal lens and imaging lens device, US2007216851, p.68, 2006.

J. N. Haddock, W. Kokonaski, R. Clarke, P. Rawlins, P. Crossley et al., Electro-active diffractive lens and method for making the same, pp.20090256977-68, 2008.

S. Morokawa and Y. Takaki, Optical device containing a liquid crystal element for changing optical characteristics of a lens element, p.5815233, 1993.

J. Ballet and J. Cano, Composant optique transparent pixellisé comprenant un revêtement absorbant, son procédé de réalisation et son utilisation dans unélément unélément optique, FR2888948, p.143, 2005.

J. Ballet, C. Bovet, and J. Cano, Composant optique pixellisépixelliséà nano-parois, FR2888949, 2005.

J. Ballet, C. Bovet, and J. Cano, Composant optique pixellisépixelliséà parois absorbantes, son procédé de fabrication et son utilisation dans la fabrication d'unélémentunélément optique transparent, FR2888950, p.143, 2005.

E. Carcolé, J. Campos, I. Juvells, and S. Bosch, Diffraction efficiency of low-resolution Fresnel encoded lenses, Applied Optics, vol.33, issue.29, pp.6741-6746, 1994.
DOI : 10.1364/AO.33.006741

E. Carcolé, J. Campos, and S. Bosch, Diffraction theory of Fresnel lenses encoded in low-resolution devices, Applied Optics, vol.33, issue.2, pp.162-174, 1994.
DOI : 10.1364/AO.33.000162

E. Carcole, J. Campos, I. Juvells, J. R. De, and F. Moneo, Diffraction theory of optimized low-resolution Fresnel encoded lenses, Applied Optics, vol.34, issue.26, pp.5952-5960, 1995.
DOI : 10.1364/AO.34.005952

E. Victor-arrizon, L. A. Carreon, and . Gonzalez, Self-apodization of low-resolution pixelated lenses, Applied Optics, vol.38, issue.23, pp.5073-5077, 1999.
DOI : 10.1364/AO.38.005073

J. Cano and C. Bovet, Procédé de réalisation d'un composant optique transparent, composant optique intervenant dans ce procédé etélémentetélément optique ainsi obtenu, p.2872589, 2004.

C. Biver, C. Bovet, J. Cano, S. Caplet, and R. Fayolle, Sealing of cellular structure along a periphery, p.2009136109, 2008.

L. Berthelot, Elément optique transparent comprenant un ensemble de cellules, 2008.

F. Shi, Etude des propriétés physico-chimiques de surfaces microstructurées : applicationàapplicationà la fabrication de verres organiques ophtalmiques digitaux Thèse de doctorat en sciences, CIRIMAT, 2006. 6 [34] Laëtitia Pont. Conception et réalisation de microdispositifs pour l'optique ophtalmique pixellisée, Thèse de doctorat en sciences, 2007.

J. Navarro, Cellules photovolta¨?quesphotovolta¨?ques organiques transparentes dans le visible, Thèse de doctorat en sciences, 2008.

I. Savin-de-larclause, Dépôt organosilicié par plasma froid basse pression et pression atmosphérique sur substrats microstructurés, Thèse de doctorat en sciences, 2008.

S. Poirier, Etude et mise en oeuvre de liquides fonctionnels par procédé jet d'encre pour la réalisation de microdispositifs optiques, Thèse de doctorat en sciences, 2009.

V. Santucci, Elaboration et caractérisation de couches minces polymères par CVD et photo-CVD pour des applications optiques originales, Thèse de doctorat en sciences, 2009.

P. Lefillastre, Contribution au développement d'une nouvelle technologie d'optique ophtalmique pixellisée. Etude et optimisation du report de films fonctionnalisés sur une surface courbe, Thèse de doctorat en sciences, LAAS-CNRS, 2010.

C. Bovet, J. Cano, and G. Mathieu, Composant optique pixellisé aléatoirement, son procédé de fabrication, et son utilisation dans la fabrication d'unélément unélément optique transparent, p.2888951, 2005.

S. Wang, E. Bernabeu, and J. Alda, Unified and generalized Fresnel numbers, Optical and Quantum Electronics, vol.85, issue.12, pp.1351-1358, 1007.
DOI : 10.1007/BF00625811

E. James, R. V. Harvey, and . Shack, Aberrations of diffracted wave fields, Appl. Opt, vol.17, issue.18, pp.3003-3009, 1978.

P. Pellat-finet, Optique de Fourier. Théorie métaxiale et fractionnaire, p.12, 2009.

N. Virendra and . Mahajan, Aberrations of diffracted wave fields. I. optical imaging, J. Opt. Soc. Am. A, vol.17, issue.12, pp.2216-2222, 2000.

G. Sherman, J. Stamnes, and E. Lalor, Asymptotic approximations to angular-spectrum representations, Journal of Mathematical Physics, vol.17, issue.5, pp.760-776, 1976.
DOI : 10.1063/1.522975

K. Matsushima, H. Schimmel, and F. Wyrowski, Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves, Journal of the Optical Society of America A, vol.20, issue.9
DOI : 10.1364/JOSAA.20.001755

J. Pérez, Optique, fondements et applications. Dunod, p.145, 2000.

M. Bass, Handbook of Optics -Fundamentals, techniques and design -Vol I, 1995.

A. Stockman, Colorimetry, in The Optics Encyclopedia : Basic foundations and practical applications, pp.207-226, 2003.

P. Green and L. Macdonald, Colour Engineering, p.22, 2002.

D. M. Cottrell, J. A. Davis, T. R. Hedman, and R. A. Lilly, Multiple imaging phase-encoded optical elements written as programmable spatial light modulators, Applied Optics, vol.29, issue.17, pp.2505-2509, 1926.
DOI : 10.1364/AO.29.002505

M. Peloux, P. Chavel, F. Goudail, and J. Taboury, Shape of diffraction orders of centered and decentered pixelated lenses, Applied Optics, vol.49, issue.6, pp.1054-1064, 2010.
DOI : 10.1364/AO.49.001054

URL : https://hal.archives-ouvertes.fr/hal-00700311

M. Peloux, P. Chavel, F. Goudail, and J. Taboury, Shape of diffraction orders in pixelated lenses, EOS Topical Meeting on Diffractive Optics, Koli (Finland), Compact Disk, 1926.
URL : https://hal.archives-ouvertes.fr/hal-00751519

P. Chavel, M. Peloux, G. Moulin, D. F. Kuang, J. Hugonin et al., Optique diffractante ou optique diffractive ? Conférencè a l'´ ecole thématique du réseau algérien d'optique NOUR 21 Sources Laser et Photonique, p.26, 2010.

P. Chavel, J. Ballet, C. Bovet, J. Cano, and P. Lefillastre, Optically transparent component with two sets of cells, p.64, 1941.

G. J. Swanson, Binary optics technology : theoretical limits on the diffraction efficiency of multilevel diffractive optical elements. MIT tech. rep, p.124, 1991.

G. J. Swanson, Binary optics technology : The theory and design of multi-level diffractive optical elements. MIT tech. rep, p.48, 1989.

C. Benoit-pasanau, F. Goudail, P. Chavel, J. Cano, and J. Ballet, Minimization of diffraction peaks of spatial light modulators using Voronoi diagrams, Optics Express, vol.18, issue.14, pp.1815223-15235, 2010.
DOI : 10.1364/OE.18.015223

URL : https://hal.archives-ouvertes.fr/hal-00555817

C. Beno??tbeno??t-pasanau, F. Goudail, P. Chavel, J. Cano, and J. Ballet, Reducing the diffraction artifacts while implementing a phase function on a spatial light modulator, Applied Optics, vol.50, issue.4, pp.509-518, 2011.
DOI : 10.1364/AO.50.000509

M. Peloux and P. Chavel, Element optique transparentàtransparentà plusieurs couches constituées de pavages cellulaires, FR1152134, p.64, 2011.

E. Ben-eliezer, E. Marom, N. Konforti, and Z. Zalevsky, Experimental realization of an imaging system with an extended depth of field, Applied Optics, vol.44, issue.14, pp.2792-2798, 1967.
DOI : 10.1364/AO.44.002792

H. Oksman and J. Eisner, Wide depth of focus inraocular and contact lenses, p.68, 1994.

A. Zlotnik, O. Shai-ben-yaish, K. Yehezkel, M. Lahav-yacouel, Z. Belkin et al., Extended depth of focus contact lenses for presbyopia, Optics Letters, vol.34, issue.14, pp.2219-2221, 2009.
DOI : 10.1364/OL.34.002219

A. Jampolsky, Flexible refracting membrane adhered to spectacle lens, p.68, 1969.

B. Fermigier, F. Guilhaumon, M. Koscher, and S. Mazé, Disk for modification of the power of an optical component, p.68, 2006.

B. Fermigier and M. Koscher, Curved disc for modifying a power of an optical component, WO2009080940, p.68, 2007.

M. Larsson, C. Beckman, A. Nyström, S. Hård, and J. Sjöstrand, Optical properties of diffractive, bifocal, intraocular lenses, Applied Optics, vol.31, issue.13, pp.2377-2384, 1992.
DOI : 10.1364/AO.31.002377

J. Michael and . Simpson, Diffractive multifocal intraocular lens image quality, Appl. Opt, issue.19, pp.313621-3626, 1992.

A. L. Cohen, Practical design of a bifocal hologram contact lens or intraocular lens, Applied Optics, vol.31, issue.19, pp.3750-3754, 1992.
DOI : 10.1364/AO.31.003750

A. L. Cohen, Diffractive Bifocal Lens Designs, Optometry and Vision Science symposium, p.69, 1993.
DOI : 10.1097/00006324-199306000-00003

A. Klein, Understanding the diffractive bifocal lens, Optometry and Vision Science symposium, p.69, 1993.

C. Dahnér, M. Larsson, A. Nyström, and S. Hård, Letter imaging by diffractive, bifocal intraocular lenses: a computer study, Applied Optics, vol.33, issue.7, pp.1135-1140, 1994.
DOI : 10.1364/AO.33.001135

T. Jack, . Holladay, A. Henny-van-dijk, V. Lang, T. R. Portney et al., Optical performance of multifocal intraocular lenses, J. Opt. Refract. Surgery, vol.16, pp.413-422, 1996.

E. Peli and A. Lang, Appearance of images through a multifocal intraocular lens, Journal of the Optical Society of America A, vol.18, issue.2, pp.302-309, 2001.
DOI : 10.1364/JOSAA.18.000302

R. Montés-mico, E. Espana, I. Bueno, N. Charman, and J. L. Menezo, Visual performance with multifocal intraocular lenses, Ophthalmology, vol.111, issue.1, pp.85-96, 2004.
DOI : 10.1016/S0161-6420(03)00862-5

F. Castignoles, M. Flury, and T. Lepine, Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs, Optics Express, vol.18, issue.5, pp.5245-5256, 2010.
DOI : 10.1364/OE.18.005245

URL : https://hal.archives-ouvertes.fr/ujm-00461006

N. Larry and . Thibos, Retinal image quality and visual performance, International Wavefront Congress Meeting, p.103, 2008.

H. Rouger, Y. Benard, and R. Legras, Effect of Monochromatic Induced Aberrations on Visual Performance Measured by Adaptive Optics Technology, Journal of Refractive Surgery, vol.26, issue.8, pp.10-73, 2009.
DOI : 10.3928/1081597X-20090901-01

F. W. Campbell and D. G. Green, Optical and retinal factors affecting visual resolution., The Journal of Physiology, vol.181, issue.3, pp.576-593, 1965.
DOI : 10.1113/jphysiol.1965.sp007784

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357668/pdf

L. James, D. J. Mannos, and . Sakrison, The effects of a visual fidelity criterion on the encoding of images, IEEE Transactions On Information Theory, issue.4, pp.20-73, 1974.

A. K. Jain, Fundamentals of Digital Image Processing, p.73, 1989.

T. Kratzer, E. Hofmann, and L. Mendel, Method for performing a contrast vision test, pp.2006056252-73, 2004.

T. Kratzer and J. M. Cabeza-guillén, Human eye neuronal contrast sensitivity function determining method for correcting defective vision of eye, involves calculating neuronal contrast sensitivity function by dividing optical and physiological contrast sensitivity functions, pp.102008041458-73, 2008.

E. Carcolé, M. S. Millán, and J. Campos, Derivation of weighting coefficients for multiplexed phase-diffractive elements, Optics Letters, vol.20, issue.23, pp.2360-2362, 1995.
DOI : 10.1364/OL.20.002360

M. Simpson and J. Futhey, Multi-focal diffractive ophtalmic lenses, EP0335731, p.78, 1988.

G. A. Myers, S. Barez, W. C. Krenz, and L. Stark, Light and target distance interact to control pupil size, American Journal of Physiology, vol.27, issue.3, p.82, 1990.

B. Winn, D. Whitaker, D. B. Elliot, and N. J. Phillips, Factors affecting light-adapted pupil size in normal human subjects, Investigative Opthtalmology and Vision Science, vol.35, issue.3, pp.1132-1137, 1994.

D. Atchison, G. Smith, and A. Johnston, Prismatic Effects of Spherical Ophthalmic Lenses, Optometry and Vision Science, vol.57, issue.11, pp.779-790, 1980.
DOI : 10.1097/00006324-198011000-00001

D. Ronald, W. Blum, and . Kokonaski, System, apparatus, and method for correcting vision using an electro-active lens, pp.2007216862-88, 1999.

R. D. Blum, W. Kokonaski, V. S. Iyer, J. N. Haddock, and M. Mattison-shupnick, Multifocal lens having a progressive optical power region and a discontinuity, pp.2008273169-88, 2007.

W. Singer and H. Tiziani, Born approximation for the nonparaxial scalar treatment of thick phase gratings, Applied Optics, vol.37, issue.7, pp.1249-1255, 1998.
DOI : 10.1364/AO.37.001249

H. Sauer, P. Chavel, and G. Erdei, Diffractive optical elements in hybrid lenses: modeling and design by zone decomposition, Applied Optics, vol.38, issue.31, pp.6482-6486, 1999.
DOI : 10.1364/AO.38.006482

URL : https://hal.archives-ouvertes.fr/hal-00867851

M. Testorf, Perturbation theory as a unified approach to describe diffractive optical elements, Journal of the Optical Society of America A, vol.16, issue.5, pp.1115-1123, 1999.
DOI : 10.1364/JOSAA.16.001115

A. V. Pfeil, F. Wyrowski, A. Drauschke, and H. Aagedal, Analysis of optical elements with the local plane-interface approximation, Applied Optics, vol.39, issue.19, pp.3304-3313, 2000.
DOI : 10.1364/AO.39.003304

H. Wang, D. Kuang, and Z. Fang, Diffraction analysis of blazed transmission gratings with a modified extended scalar theory, Journal of the Optical Society of America A, vol.25, issue.6, pp.1253-1259, 2008.
DOI : 10.1364/JOSAA.25.001253

G. Moulin, F. Goudail, P. Chavel, and D. Kuang, Heuristic models for diffraction by some simple micro-objects, Journal of the Optical Society of America A, vol.26, issue.4, pp.767-775, 2009.
DOI : 10.1364/JOSAA.26.000767

URL : https://hal.archives-ouvertes.fr/hal-00751502

I. Bailey and A. L. Lovie, New Design Principles for Visual Acuity Letter Charts, Optometry and Vision Science, vol.53, issue.11, pp.740-745, 1976.
DOI : 10.1097/00006324-197611000-00006

F. L. Ferris and I. Bailey, Standardizing the Measurement of Visual Acuity for Clinical Research Studies, Ophthalmology, vol.103, issue.1, pp.181-182, 1996.
DOI : 10.1016/S0161-6420(96)30742-2

M. Bach, The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis. Graefe's Arch, Clin Exp. Ophthalmol, vol.245103, issue.7, pp.965-971, 2007.

C. Bonnet, Manuel pratique de psychophysique. Editions Armand-Colin -collection U, p.105, 1986.

R. C. Lenne, A. Vingrys, and G. Smith, Automated visual acuity testing, Clinical and Experimental Optometry, vol.68, issue.5, pp.190-195, 1994.
DOI : 10.1111/j.1444-0938.1994.tb06534.x

M. Peloux, J. Hugonin, and P. Chavel, Heuristique de la diffractionàdiffractionà l'infini par une discontinuité d'indice dans une lamè a facesparalì eles, p.120, 2011.

N. Elias and . Glytsis, Two-dimensionally-periodic diffractive optical elements : limitations of scalar analysis, J. Opt. Soc. Am. A, vol.19, issue.4, pp.702-715, 2002.

V. Kettunen, M. Kuittinen, and J. Turunen, Effects of abrupt surface-profile transitions in nonparaxial diffractive optics, Journal of the Optical Society of America A, vol.18, issue.6, pp.1257-1260, 2001.
DOI : 10.1364/JOSAA.18.001257

E. Hecht, Optics Fourth Edition, p.123, 2002.

M. G. Moharam and T. K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction, Journal of the Optical Society of America, vol.71, issue.7, pp.811-818, 1981.
DOI : 10.1364/JOSA.71.000811

J. Hugonin and P. Lalanne, Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization, Journal of the Optical Society of America A, vol.22, issue.9, pp.1844-1849, 2005.
DOI : 10.1364/JOSAA.22.001844

URL : https://hal.archives-ouvertes.fr/hal-00869730

E. Marszalec, B. Martinkauppi, M. Soriano, and M. Pietikainen, Physics-based face database for color research, Journal of Electronic Imaging, vol.9, issue.1, pp.32-38, 2000.

M. Peloux, J. Hugonin, and P. Chavel, Fourier optics heuristics for diffraction at infinity by an index discontinuity in a one-dimensional slab, Journal of the Optical Society of America A, vol.28, issue.8, pp.281648-1655, 2011.
DOI : 10.1364/JOSAA.28.001648

URL : https://hal.archives-ouvertes.fr/hal-00860981