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Travel Time Estimation Using Sparsely Sampled Probe GPS Data
in Urban Road Networks Context

By
Amnir Hadachi

Abstract:

This dissertation is concerned with the problem of estimating travel time per
road sections in urban context using sparsely sampled GPS data. One of the
challenges in this thesis is the use of sparsely sampled data. The thesis work and
the report were done in a period of two years and half.

The thesis research work was conducted within the project PUMAS, which is an
advantage for our research regarding the collection process of our data from the
real world field and also in making our tests. The project PUMAS (Plateforme
Urbaine de Mobilite Avancee et Soutenable / Urban Platform for Sustainable and
Advanced Mobility) is a preindustrial project that has the objective to inform
about the traffic situation and also to develop and implement a platform for
sustainable mobility in order to evaluate it in the region, specifically Rouen,
France. The result is a framework for any traffic controller or manager and also
estimation researcher to access vast stores of data about the traffic estimation,
forecasting, and status.

Sparsely sampled probe GPS data refers to the case where vehicle send their
current location at a fixed frequency. The frequency aspect makes it not enough
to directly measure the speed or travel time on the road section.

In order to overcome these challenges the contributions of this thesis mainly
around the following subjects:

1. Digital map and GIS information:

During our research work we noticed the importance of creating the digital map.
For example, in transportation planning and logistic, it is advantageous to use
digital map or numerical incorporated with information such as transportation
facilities data, speed limits, roadway indicator, and type of roads. These
information are very helpful to improve traffic algorithms and estimations. Thus,
we extracted our digital map from OpenStreetMap (OSM) and we added our GIS
information that contains all the information needed such as speed limit at each
section, intersection, defining the type of roads and its directions, new features,
etc.

2. Map-matching problem
In our approach we defined a spatial analysis criteria and we defined the area of
interest by detecting the road sections that has the highest probability, where the
GPS position should be matched on the digital map, without scanning the whole
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map. Then, we added temporal analysis criteria. Finally, we applied an
orthogonal projection on the GPS position into the concerned road section that
have the highest score of the combination of spatial and temporal criteria.
Moreover, we added the notion of the orientation in order to enhance the map
matching. The orientation informs us about the direction that the car is
following; making it easier to be located on the road that has the same direction
as the car’s heading. In some of the case we still have non-matching cases.
Therefore, we added a correction method that makes a new prediction of the
defective data and then apply the whole process of map matching to the
corrected data.

3. Time dependent shortest path problem

The time-dependent shortest path problem given a departure and arrival time
was one of our research interests. There are many solutions that has been
developed for different types of graphs such as Dijkstra in the case of positive
weights, Bellman in the general case, etc. However, these methods are time
consuming regarding the computational process, which mean that they need
enhancement and speed up. We adopted a new approach by applying the process
in a database context. In this method we introduced a new step that we called a
learning phase, where we process on offline mode using a recursive Dijkstra. The
results of this learning process are saved in the database. Then, during the online
mode the method uses the output of the learning step that is called by the map
matching. Introducing this learning step at the level of the database enhanced the
speed of finding the answers on online mode.

4. Travel time estimation per road sections
The use of sequential Monte Carlo approach to estimate travel time using
sparsely sampled GPS data is certainly not new. However, to our knowledge the
application of Monte Carlo methods on urban networks has not been found in the
literature.

a. Travel time estimation using Monte Carlo method
Using this approach we adopted the Monte Carlo method to our case by defining
a state equation. The creation of the filter was done in a way to process and use
the sparsely sampled GPS data. The filter gave us the ability to estimate the
moment when the probe vehicle enters a road section and also when it exits the
same road section. By considering these information it was easy for us to know
how long the probe vehicle was in that section.

b. Travel time estimation using Monte Carlo method enhanced with
measurements and road sections characteristics
To enhance the approach, we injected the algorithm with additional information
concerning the travel time distribution of each road sections. This information
concerned the measurements and the features of the road sections on the road
network.



Résumé:

Cette these porte sur le probleme de l'estimation des temps de parcours, de
véhicules, par section de route dans un contexte urbain, en utilisant les données
GPS a faible densité d’échantillon. L'un des défis de cette thése est d'utiliser ce
genre de données. Par ailleurs, les travaux de cette thése et le rapport ont été fait
dans une période de deux ans et demi.

La these s’inscrit dans le cadre du projet PUMAS (Plateforme Urbaine de Mobilité
Avancée et Soutenable), ce qui est un avantage pour nos recherches en ce qui
concerne le processus de collecte de données réelles sur le terrain ainsi que pour
faire nos tests. Le projet PUMAS est un projet préindustriel qui a pour objectif
d’informer sur la situation du trafic mais également de développer et de mettre
en ceuvre une plate-forme de mobilité durable afin de 1'évaluer dans la région,
notamment a Rouen, France. Le résultat offre un cadre pour tout contréleur de la
circulation, gestionnaire ou chercheur pour accéder a de vastes réserves de
données sur l'estimation du flux du trafic, sur les prévisions et sur I'état du trafic.

Les données GPS échantillonnées, réferent au cas ou les véhicules envoient leurs
positions courantes, a une fréquence fixe. L'aspect de la fréquence n’est pas
suffisant pour mesurer directement la vitesse ou le temps de déplacement sur les
sections de route.

Afin de surmonter ces défis les contributions de cette thése s’articulent
essentiellement autour des themes suivants:

1. Carte numérique et information SIG:

Au cours de notre travail de recherche, nous avons été convaincu de I'importance de la
création de la carte numérique. Par exemple, dans la planification des transports et de
la logistique, il est avantageux d'utiliser la carte numérique intégrante des
informations telles que les données des installations de transport, les limites de
vitesse, indicatrice de la chaussée et le type de routes. Ces informations ont été tres
utiles pour améliorer les algorithmes de la circulation et des estimations. Ainsi, nous
avons extrait de OpenStreetMap (OSM) notre carte numérique et nous avons ajouté
nos informations SIG qui contiennent toutes les informations nécessaires telles que la
vitesse limite pour chaque section, les intersections, la définition du type de routes et
de ses orientations, etc.

2. Géo-référencement

Dans notre approche, nous avons défini un critére d'analyse spatiale et nous avons
défini la zone d'intérét en détectant les trongons de route qui ont la plus forte
probabilité, ou la position GPS doit étre mappé sur la carte, sans scanner celle-ci
enticrement. Ensuite, nous avons ajouté des criteres d'analyse temporelle. Et enfin,
nous avons appliqué une projection orthogonale des positions GPS, qui ont le score le
plus élevé de la combinaison des critéres spatiaux et temporels, sur le trongon de route
concerné. De plus, nous avons ajouté la notion du cap en vue d'améliorer
I'appariement sur la carte. Le cap nous renseigne sur la direction que la voiture a
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suivie; ce qui rend sa localisation sur la route facile vis-a-vis du sens de la circulation
sur la section de route concernée. Suite a des rejets de données ou des mauvaises
correspondances constatées, nous avons ajouté une méthode de correction qui fait une
nouvelle prédiction des données défectueuses, avant d’appliquer l'ensemble du
processus du géo-référencement aux données corrigées.

3. Probléme du plus court chemin dépendant du temps

Le probleme du plus court chemin dépendant du temps connaissant un départ et une
arrivée a été 'un de nos sujets de recherche. Il existe de nombreuses solutions qui ont
¢té développées pour les différents types de graphiques tels que Dijkstra dans le cas
des poids positifs, Bellman dans le cas général, etc. Toutefois, ces méthodes prennent
beaucoup de temps en ce qui concerne le processus de calcul, ce qui nous a amen¢ a
les améliorer. Nous avons, pour cela, adopté une nouvelle approche en appliquant le
processus dans un contexte de base de données. Cette méthode, nous a permis
d’introduire une nouvelle étape, que nous avons nommée phase d'apprentissage, ou
nous avons procédé, en mode hors ligne, en utilisant le Dijkstra récursive. Les
résultats de la phase d'apprentissage sont enregistrés dans la base de données. Puis,
pendant le mode en ligne, la méthode utilise la sortie de la phase d'apprentissage qui
est appelée par le géo-référencement. L'introduction de cette phase d'apprentissage au
niveau de la base de données améliore le temps de réponse en mode en ligne de fagon
significative.

4. Estimation du temps de parcours par section de route
L'utilisation de I’approche de Monte Carlo séquentielle pour estimer le temps de
déplacement a l'aide des données GPS, a faible densité d’échantillon, n'est certes pas
nouvelle. Toutefois, a notre connaissance, l'application de méthodes de Monte Carlo
pour estimer les temps de parcours sur les réseaux urbains ne figure pas dans la
littérature.

a. Estimation du temps de parcours en utilisant la méthode Monte Carlo

En utilisant cette approche, nous avons adopté la méthode de Monte Carlo pour notre
cas en définissant une équation d'état. La création du filtre a été¢ faite de maniere a
traiter et a utiliser les données GPS a faible densité d’échantillon. Le filtre nous a
donné¢ la capacité d'estimer le moment ou le véhicule traceur pénétre dans une section
de route et aussi quand il en sort. En tenant compte de ces informations, il était aisé de
savoir combien de temps le véhicule traceur a mis pour traverser la section de route en
question.

b. Estimation du temps de parcours en utilisant la méthode Monte Carlo
améliorée avec les mesures et les caractéristiques des sections de route.
Pour améliorer l'approche, nous avons modifi¢ l'algorithme en injectant des
informations historiques relatives a la distribution des temps de parcours de chaque
section. Ces informations concernent les mesures et les caractéristiques des sections
de route sur le réseau routier.
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Chapter 1: Introduction

1.1 General view and Background

The urban road traffic today experiences increased rates of traffic jams that
threaten the environment, the people’s behavior and also the transport
efficiency. In order to tackle these problems, knowledge about the traffic
conditions is a must at many levels of urban traffic management and policy.

The involvement of traffic management can be seen in variations of factors, such
as network structure, public transportation, city size, etc. Urban traffic
management efficiency is relaying on the capability of individuals to plan their
own trips more accurately. From this statement it is clear that travel time
information plays a big role in urban traffic management. Moreover, it reflects
the performance of urban road networks. Besides, travel time estimations or
predictions, if accurate and reliable, can be beneficial to network users. The
impact can be seen in the decreasing number and level of both the traffic jams
phenomenon and the users stress.

Travel time information is essential for transportation planning, transportation
operation, and of course, transportation management. In addition, it is a
necessity to characterize urban traffic or traffic in general.

Travel time appears to be the most significant measure of road traffic
information. Over the last decade, many researchers have conducted travel time
estimation [14], [15], [16] and demonstrated its importance in practical
applications of transportation and logistics [17], [18]. The use of travel time
estimation enhances efforts in many fields to give road users the information
needed for understanding the road traffic status [19].

In practice, the methodologies applied to estimate or predict travel time depends
on the data available. Furthermore, the approaches that will be adopted differ in
terms of the provided data from sensors available on the urban network. We
have to take into consideration that the urban networks are not completely
covered with sensors as much as the freeways. As a consequence, it will be a
challenge to develop a model or a method that will work in all scenarios.

In order to make the real-time traffic monitoring a success, we need information
about the networks state in the past, present and also the future. The
information required is collected from a variety of sources, such as inductive
loops, cameras and floating cars. Besides, this information should be as complete
and accurate as possible.
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Unfortunately, all data collected suffer some specific problems. For example, all
local sensors detection techniques do not provide an actual traffic state in terms
of queue lengths and delays due to traffic jam or traffic lights. Furthermore, the
travel time collected from probes [10] showed high variances, which means that
they need a preprocessing before use.

Another conceivable source of data is the Global Positioning System (GPS).
Nowadays, the information we can get from GPS is so rich for exploitation. This
latter can be used through floating car in the urban network. The data collected
can give us information about the network status, which in turn implies traffic
status.

Throughout time, the literature on travel time estimation using GPS sensors has
grown thanks to the technology that become more available. Most of the
research, such as [109] and [110] conducts high frequency data, which eliminate
many of the challenges of interest due to the progress done. However, low
sampling frequency continues to be a challenge because of the difficulties
presented by this kind of data. Some of the difficulties faced when dealing with
sparsely sampled data with low frequency is the inference of the probes path
between two positions reports, which may involve in some case a considerable
number of road section in the urban network, like it was stated in [111] and
[112]. Another point regarding the difficulties is to estimate the travel time spent
on each individual road section. A variety of local methods have been developed
for this issue like in [113], [114], and [115].

By taking into consideration the idea proposed by Gustafsson [5] it is important
to start by preprocessing the data before trying to estimate the travel time in
order to reduce errors caused by the GPS [7] or the Map-matching [9]. These
preprocessing steps are very important, especially when dealing with the
sparsely sampled GPS data with low frequency.

In this chapter the background is described in order to give an idea how this
research work took its path regarding the available data and tools. Next, the
research objectives and restrictions are defined in order to make a clear
statement of thesis context and boundaries of the research. Then, our strategy
and contribution regarding the problematic are summarized. Finally, a clear
outline of the dissertation of this thesis is given.

1.2 Research Objectives and Restrictions

This section is going to be elaborated in a manner to establish a clear description
of the travel time estimation problematic. Travel time is the outcome of traffic
flow processes, which brings up the question of the governance. In this case,
travel time is ruled by interactions between traffic supply characteristics and
traffic demands. Moreover, the non-linearity interactions between the
heterogeneous groups (vehicle, drivers, road) bring to life a complex problem,
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due to their behavioral characteristics. Nevertheless, in real world field we have
enough information to estimate travel time with a certitude that is close to the
reality.

1.2.1 Objectives

The main objective of this dissertation is to develop a methodology capable of
estimating travel time in a specific platform, using a database of sparsely
sampled GPS data. To reach our main objective, we are obliged to deal with other
issues related to the preprocessing of the sparsely sampled raw data. We named
these in our dissertation the preprocessing tools. The preprocessing tools
contain the process of building our digital map and its geographic information
system (GIS), filtering the raw data, map matching and shortest path problem.

1.2.2 Scopes

Travel time estimation is a broad research topic. In literature, a wide variety of
techniques were used in order to estimate travel time. Those methods can be
classified in terms of special scope, road type, input traffic data, etc. In this
dissertation the research will be limited in the following manner:

First, the work done applies to an urban road network. This means that the
spatial scope is limited to urban road type in an urban network context. Of
course the concept can be easily extended to other kind of networks.

Although there are a lot of factors influencing urban travel time, such as the
weather, traffic composition and public transit. In this dissertation we will focus
on the road network geometry that will be used in the process of the map
matching and correcting the raw data errors.

The raw data that is used in this dissertation is the sparsely sampled GPS data
with low frequency. This kind of data is massively available, that's why the
researchers are using it a lot in their application and research. However, the
sparsely sampled data present a big challenge when it comes to its use, especially
when estimating travel time per road sections (details of the challenges chapter
2).

Finally, this research focuses on travel time estimation per road section in urban
areas. The estimation will be run on a historical database of sparsely sampled
GPS data on offline mode and also on online mode, by simulating the data. In
general, travel time estimation is used for forecasting but also for real time route
guidance. Apparently, longer the estimation accuracy of traffic either in the
future or present is, the more the models rely on statistical and theoretical
assumptions regarding the data size and future traffic conditions [116]. In fact,
the estimation of travel time plays a big role in learning about the traffic aspects
and its behaviors.
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1.3 Project PUMAS

We had a chance to conduct this research within the project PUMAS, which
helped us in the collection process of our data from the real world field and also
in conducting our tests. The project PUMAS [117] (Plateforme Urbaine de
Mobilite Avancee et Soutenable / Sustainable and Advanced Mobility and Urban
Platform) is a preindustrial project that has the objective to inform us about the
traffic situation, to evaluate gas emission and also to develop and implement a
platform for sustainable mobility in order to evaluate it in the region, specifically
in Rouen, France.

1.3.1 Description

The PUMAS project aims at developing a software platform for collection and
analysis of road traffic information in real time. The software platform will
benefit to local Public Authorities (towns, cities, regions), providing them with:

* Real time knowledge of current and future traffic conditions along urban
and peripheral networks in terms of travel times and traffic patterns,

* A significant contribution to greenhouse and pollutant gas emission
models, in real time and throughout the area, based on the knowledge of
flow mean speed along all the city road sections

* An accurate tool for urban mobility decision-making through the
permanent day-to-day monitoring of traffic conditions in the area.

The project is based on the floating car data concept, by equipping a significant
sample of vehicles operating constantly in a given area (public buses, for
example) with an on-board device with GSM and mapping capabilities, thus
capturing their speed, journey time and location. This data is transmitted via
GPRS or WiFi (Figure 1.1) to a platform for analysis. Real-time and predictive
travel times are produced using enhanced algorithms.

A thousand of vehicles were fitted with a custom-made on-board unit in order to
do travel time estimation, prediction and path reconstruction in the urban
agglomeration of Rouen (Normandy). More details about the project will be
discussed in chapter 2.
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Figure 1.1: V2I Communication used in the project PUMAS
1.3.2 PUMAS Expectations

The results awaited from the PUMAS project are the following:

» Demonstrate the feasibility and added value of mixing conventional traffic data
with probe data to generate travel times in a city context

e Compare the floating cars data source approaches of dedicated fleet versus
general public floating cars data.

e Evaluate traffic based versus statistical algorithms and identify their best
performance domains with a possibility of fusion

1.4 Contributions and Relevance

In this section we will show the main contributions of this dissertation and also
the scientific relevance of the approach and the methods used.

1.4.1 Contributions
The main contributions of this thesis can be summarized as follows:
a. The estimation of travel time per road sections was done on urban road
network, using sparsely sampled GPS data. Moreover, the estimation was

based on the family of sequential Monte Carlo Method, more specifically
on particle filter.
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b. We made a study about the speed profile, where we conducted the
characteristics of the speed distribution in the urban road network. The
speed distribution study focused on the impact of the speed aspect on
road sections.

c. We also implemented the same study for the location of sparse probes in
order to know the evolution of the displacement of the vehicle in the
urban road sections. The two studies concerning the location and the
speed were done because we will use them in the estimation of travel
time for improvement purposes.

d. Finally, this dissertation also dealt with the shortest path problem that we
used in the process of map matching for raw data. Besides, we made an
enhancement of the map matching process. In addition, the thesis work
spawned software with friendly graphical user interface, where we can
process and run the system on offline mode or online mode. Moreover, we
can see the results of the process directly on the road network map.

1.4.2 Scientific Relevance

The aim of this work is to estimate travel time on urban road sections. The
concerned roads are the ones with no dedicated sensing infrastructure and for
which the only potentially available source of data is sparse GPS probe data. The
challenge relies on the nature of the available data.

For this reason, first we proposed an enhanced map matching technique applied
to sparse GPS data by using probe vehicle heading and road orientations,
itinerary reconstruction without any external information, spatio-temporal
analysis, and correction of the rejected data during the process.

Then we presented an original approach to solve this problem by using an
applied Monte Carlo Method and historical probabilities distributions of travel
time per road sections. The sequential Monte Carlo approach has been used in
many research cases. However, the application of Monte Carlo method on urban
networks to estimate travel time has not been found in the literature.

The output of this thesis can be very beneficial by using it in a data-driven
method or model-based method in order to forecast or monitor in real time the
traffic status. Due to the complexity of urban traffic, it is also promising to
combine the two methods to get better results.

1.4.3 Practical Relevance

The research results of this dissertation are used in the PUMAS system. This
shows that our approach meets the industrially required standards. To be more
specific, the practical relevance of this research work is to estimate travel time
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per road sections, using the sparsely sampled GPS data as accurately as possible
and to implement it in the PUMAS system to apply it for real world environment.

1.5 Road Map

Apart from the Chapter 1 where we present the dissertation in general, the
following chapters will be as follows (Figure 1.2):

Chapter 2:
The chapter 2 gives a state-of-art of some techniques used to compute the travel

time based on the technology and the nature of data collected for that purpose.
Then, the chapter talks about the travel time estimation models with all the
techniques used. It describes and analyses some similar project to ours. Finally, it
gives a description and details about the project PUMAS in order to give a clear
idea about the context of this thesis and the added value.

Chapter 3:
In this chapter we give a clear description of the tools used in the preprocessing

step. In this step we make a raw data check for any incoherence. Then, we create
the digital map embedded with our new characteristics of the geographic
information system (GIS). Finally, we show the enhancement done to the map-
matching process and the shortest path problem computation.

Chapter 4:
This chapter presents a study of the observed distributions from the empirical

data in the historical database of the speed and location. This study is
particularly important for the applied Monte Carlo Method used to estimate the
travel time per road sections. Then, it presents a clear description of how the
method was adapted to our case in order to estimate the travel time per road
sections.

Chapter 5:
The chapter 5 presents the implementation’s structures and the software

processes of the system created in this thesis work. In addition, each section
shows the results and analysis of the tests done in order to validate the methods
and algorithms proposed in this thesis.

Chapter 6:
The final chapter summarizes the main conclusions of this research work and

offers directions for future research.
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Figure 1.2: Schematic overview of the structure of the dissertation
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Chapter 2: Literature Review of Travel
Time Measurement in Urban Areas

2.1 Introduction

Since the earliest human settlement, cities and traffic have grown hand-in-hand.
The same factors that draw the congregation of large urban areas leaded to
intolerable levels of traffic jams on urban road networks.

The urban traffic management has been conducted by researcher through
processing specific sources of information such as public transport management
and priority, traffic management in urban areas, and real-time traffic light signal
management. The traffic management measurement has increased throughout
time that leaded the focus of research to change from architectural aspect like
effective monitoring of traffic using Variable Message Signs (VMS) [30] to
involving extensive data acquisition, enforcement, and control [31] such as
pedestrian activity, traffic speed, heavy goods vehicles, cycling, public transport
usage, vehicle occupancy and congestion. This change in the approach of
research gives more accuracy and effectiveness in the management strategy and

policy.

The more we know about the information available on the road network such as
Variable Speed Limits (VSL) and Hard Shoulder Running (HSR), and its evolution
through time, the more accurate and effective the traffic management will be.

The processing of these extensive data needs a careful selection of the
appropriate speeds and operational lane strategies. However, the fluctuating
aspect of their patterns makes it a real challenge to control and master the
system effectiveness.

The urban context makes choosing the appropriate data an important step in the
traffic management. The complexity of urban traffic relies on its actors (personal
vehicles, public transportation, etc) that can constitute a source of conflict. Thus,
priority system as Automatic Vehicle Identification and localization (AVI/AVL) is
a must in order to enhance the traffic management strategies.

Of course there exists some systems like the Automatic Incident Detection (AID).
This latter uses probe vehicle data, which are one of the interest of the Intelligent
Transportation Systems (ITS) community research [32].

One important piece of metric information that can help in investigating traffic
status is travel time. Many techniques have been developed in order to gather
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information about traffic flow, speed, and travel time including: probe vehicles
[4], loop detectors, mobile sensors [6], and so on. Different methods based on
prediction models and historical data have been explored by researchers to
estimate travel time [8].

2.2 Travel Time Estimation Using Traffic Information Systems

Most of the studies related to travel time estimation were done based on the fact
that the traffic flow is uninterrupted [1], [2]. However in the real world field
these studies cannot be directly applicable because traffic flow is highly dynamic.
In order to find a solution to this issue in the literature there are many
approaches for estimating travel time in urban areas such as data fusion, fuzzy
control theory, and microscopic traffic simulation, etc; but all these techniques
need costly GPS data. Therefore, the choice of the approach to adopt in order to
estimate travel time is related to the nature of data available.

During these last years various types of sensors have been developed to collect
various type of data about the traffic. Overall, traffic data can be summed up to
velocity data (distance per unit time), flow data (number of vehicles per time
units), occupancy data (percentage of time a point on the road is occupied by
vehicles), density data (number of vehicles per distance unit), and travel time
(time needed to travel between two location). An additional kind of data is the
vehicle trajectory data collected from vehicles equipped with GPS devices. The
last kind of data gives the advantage to compute directly travel time and also
distance velocities.

2.2.1 Loop Detectors

The traffic measurement is mainly based on counting the number of vehicles on
the road. One of the technologies used for this purpose is the inductive loop
detector that is buried under the road infrastructure to detect the passage of a
vehicle. The information is collected locally in housing and conveyed to a central
traffic management where they are aggregated.

Moreover, the loop detectors can provide accurate information regarding the
velocity data that can be provided by the loops by checking consecutive crossing
times. In addition to the flow and occupancy data [20], this leads to deduce the
traffic density [21].

Computing technologies for travel time based on magnetic loops are reliable, but
they correspond to old technology over fifty years and remain quite expensive
because they require civil engineering and maintenance. Thus, they are only
present in the economically advanced countries and in big cities.
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Figure 2.1: Schematic diagram for illustration

Regarding the information collected from the loop detectors many extrapolation
methods have been developed to estimate travel time [22], [35].

2.2.1.1 Half-Distance Approach

In this approach the assumption is that the speed measured by a set of dual loop
detectors (figure 2.1) is valid to the half-distance on both sides. Therefore, the
travel time between the two loops is defined as follows (equation 2.1):

D D
Top = % V_: + V_:) (2.1)
Where,
* V,and V,: average speed measured at loop A and B respectively, for a
specific time interval.

e T,_p:travel time between loop A and B
* D,:is the distance separating the two loops

2.2.1.2 Average Speed Approach

In this approach its name reflects the assumption. Which is: the average speed
will be the average of the two speed measured by the two loops (equation 2.2).
Then the equation will be:

Dgq

Ta-v = Grvirz

(2.2)

Where,
* V,and V,: average speed measured at loop A and B respectively, for a
specific time interval.
e T,_p:travel time between loop A and B
e D,:is the distance separating the two loops

2.2.1.3 Minimum Speed Approach

For this approach the minimum speed detected by the loops will be assumed to
be the speed of the vehicle during his travel between the two loops. Hence the
equation 2.3 will be:

Dg
To-p = (2.3)

Vmin

Where,
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*  Viin @ minimum speed measured by loop A and B.
T,_p: travel time between loop A and B
e D,:is the distance separating the two loops

2.2.2 Video and License Plate Readers

Travel time can be measured also by using automatic plate recognition system
(APR)[11]. The difference between loop detectors and ARP system is that loop
detectors can only provide information about the flow and local speed; thus
some errors are present in the estimation of travel time; however, the APR
system gives more accurate travel time.

The process starts by having at least two fixed ARP systems on the road (figure
2.2). Then when the vehicles pass by the first APR system it will read its plate
number. After, when he passes the second APR system it will do the same.
Finally, the server will match the plate numbers and their time stamp tags in
order to measure the travel time between the two APR systems [12].

Figure 2.2: Schematic diagram for APR System Illustration

2.2.3 Radar

The radars have the ability to collect velocity, flows, and occupancy data when
you place them along the side of roads. There are mainly implemented in
highways rather than urban areas. Moreover, they are suitable with massive data
collection; nevertheless, the collected data has low accuracy. Moreover, the
accuracy data collected decreases in arterial environment.

The radar uses vehicle speed S computed using the time difference AT
corresponding to the vehicle reaching at the leading edges of two range bins. The
distance D separating the range bins is known. The vehicle speed is given by
equation 2.4:

D
S = AT (2.4)
Where,
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* D: distance between leading edges of the two range bins and
* AT: time difference corresponding to the vehicles arrival at the leading
edge of each range bin.

2.2.4 Bluetooth

Bluetooth readers are based probes detection. They scan the area range and
check if there is any Bluetooth enabled device; then they can determine travel
times and speeds between points on a roadway network [133]. The Bluetooth
data give a straight measurement of travel time between pairs of scanners. The
data include the “duration” of the vehicle to pass the range detection of the
Bluetooth scanner [3].

Thus the Bluetooth can give the following information (Figure 2.3): entry and
exit timestamp of the Bluetooth (A) and (B) range. The information collected
helps to conclude with the duration of the Bluetooth (A) and (B). Finally the
travel time is given by the following equation 2.5:

Travel Time = ETb - ExTa + Db (2.5)

Where,
* ETb: Entry Timestamp at Bluetooth range (B)
* ExTa: Exit Timestamp at Bluetooth range (A)
* Db: duration at Bluetooth range (B)

Bluetooth
Range

AN A

I\\. 7| N A
([ -—/ < (™ /L
l | | |
| | | |
| | - % |
] ] Travel Time Ert ]
Enfry TimE:::lmp Timesttrzmp TimE::;mp
Tlmils\t)amp (A) (B) (B)

Figure 2.3: Road section travel time computation for Bluetooth approach
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2.2.5 WiFi Technology

Getting travel time using WiFi localization alone is accurate enough for route
planning but it’s not the case for individual road section estimation.

The technique used to estimate travel time is by knowing the location of the
vehicle and the distance to the next WiFi spot [134].

The difficulty appears when there is noise affecting the localization of the car
making it difficult to attribute the travel time to the concerned road section.
However this problem can be fixed partially by adding an algorithm to estimate
the nearest neighbor as it was shown in [13]. The author compared two
approaches a probabilistic classifiers method and k-nearest neighbor method. In
[13] the results showed that the best classification accuracy is possible using a
simple brute force approach (K-nearest neighbor).

Another issue with using WiFi localization alone is that sometimes it cannot
detect hotspot accurately due to the outages present in the WiFi data. As
consequence, they will be missing information of travel time in some road
sections.

2.2.6 Sparsely sampled GPS Data

Sparsely probe GPS Data denotes the case when the probes send GPS
information at a fixed frequency. Moreover, sometimes it is not frequent enough
to measure the velocity evolution or the travel time in an accurate way
(frequency can be more than 10 seconds).

The use of this kind of data to estimate travel time presents many challenges.
The first one is related to mapping of the GPS location on the road network or the
digital map. This implies that the correct position should be found and matched
to the right road section as well as the right itinerary of the probe journey.
Second challenge is related to the situation when the probe travels many road
sections in the road network before sending the GPS data. Thus, the estimation of
path is required in order to compute travel time estimation.

All these issues will be discussed in details in this dissertation because it is one of
the topics conducted in this research work.

Sparsely sampled GPS data are the most challenging data to process in order to
estimate travel time per road section. For example (Figure 2.4) illustrates the
sparse data used in [23]. The data is covering the whole area and it is 2-weeks
long multi-modal tracks (2 waves - to account for seasonal variation) of 81 users
within 2010-2011 [23]. The ubiquity of this kind data is going to make it the
most used and available among the traffic information systems next decades.
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2.2.7 High frequency GPS Data

The high frequency GPS insinuates when the probe vehicle has the ability to send
GPS information every few second or each second (no more than 10 seconds).
This aspect makes the data the most accurate regarding the itinerary and also
the travel time per road section.

It seems that using this kind of technology is the most accurate but still poses
some problems with the map matching, especially close to the roundabouts or
intersections. This will affect the localization on the map and also computing
travel time [135].

Moreover, receiving this kind of data each second through the means of
communication into the server is expensive. However, there some potential
solution to this issue that Project PUMAS has treated.

2.3 Travel Time Estimation/Prediction Models

Available models can be categorized based on their way of computation to
different kinds of statistical models, mathematical models, simulation models,
and artificial intelligence models. Thanks to research, there are hybrid models
too, where the hybrid models incorporate the combination of two or more the
above cited models.

For example the statistical models include Particle Filtering [24], Monte Carlo
Method [25], Kalman Filtering [26], Bayes Analysis [27], etc. The models that
took advantage of research in the Artificial intelligence are mostly based on
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Neuro-Fuzzy models [28] and Artificial Neural Networks [29]. All these cited
models have shown good performance in the linear environments such as
freeways and highways. Moreover some of them have shown also good results in
complex and non-linear environments such as urban networks.

In this section the discussion will be about reviewing a number of these models
and methods by type: “statistical, mathematical, and hybrid”.

2.3.1 Statistical Approach

Proposed by Gordon et al [33], this kind of algorithm, which uses particle
filtering, has gradually emerged as the best technique for processing nonlinear
signals. The concept of resampling introduced by Gordon has allowed many
issues related to estimations and predictions to be solved, and also opened new
windows to be explored and developed. The particle filtering algorithms [34] can
estimate probability through successive measurement by using a finite set of
Dirac measurements centered in the corresponding points of "particles".

Applying the Monte Carlo Method relies on two things: making the Monte Carlo
approximation and resampling size. This method permits us to represent the
density of the filter p(:) by samples. In general sampling gives a probability that
depends on sampling size. In addition, the method allows us to sample the
particles using a law q(:) called the importance law, the size/the number being
chosen by the user. The estimation made by this method is valid when the
samples are normalized.

In [35] the approach presented was based on an unscented Kalman filter in order
to estimate travel time in urban networks. The algorithm used stochastically the
vehicles count data from loop detectors and also the travel time data. The
process of this method allowed doing real time estimation of travel time and the
estimation of upstream of vehicles number as well as the number of mid-road
sections.

The Kalman filter is a very good tool to estimate the variables when we are
dealing with a linear problem. In case the problem is non-linear then the
approach will change either to particle filter or other derived methods from
Kalman filter such as extended Kalman filter or particle Kalman.

Let’s move now to the Bayesian Analysis. For example in [36] the article shows
how they use Bayesian approach to estimate arterial road section travel speed
and travel time in urban network. Besides, the input data was collected from
loop detectors and probe vehicles equipped with Dedicated Short-range
Communication device.

Moreover the Bayesian analysis gives this flexibility to combine with prior
information and data. For example you can incorporate a prior distribution for
future analysis with past information about the parameter. It provides also
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conditional inferences on the data without reliance on asymptotic
approximation. In addition, it obeys to the likelihood principle and thanks to the
probabilities representation in the method that gives a clear interpretation of the
parameters.

However, the Bayesian analysis cannot tell you how to select a prior. Besides, the
Bayesian inferences need skills to translate subjective prior beliefs into
mathematically formulated prior. It can also produce posterior distributions that
are heavily influenced by the prior distributions.

To sum up, during this presentation of the statistical methods we showed some
advantages and also some disadvantages depending on the nature of the data
and also on the objectives of the analysis behind using it. But still can be a good
approach if combine between two or more methods and of course by choosing
the right one that will fit the problematic or the situation treated.

2.3.2 Artificial Intelligence Approach

Artificial Intelligence is the discipline where we seek to understand the natural
intelligence and create intelligent system capable of performing the same actions
as the natural ones [41]. Today, applying this technique is kind of fashion among
all fields of research, especially the intelligent transportation system sector [42].

One of the most popular Artificial Intelligence technique is the Artificial Neural
networks (ANN) and the Neural Network (NN). These two latter techniques have
been applied in many fields [43], [44].

Neural network has been explored a lot in research. For example in [29] a novel
travel time prediction was developed using artificial neural network with cluster
method. The logic of the algorithm is based on functional relation between real
time traffic data as input variable and actual travel time data as the output. The
use of clustering method is to reduce the data features with less input and
preserve the original traffic physiognomies. Then the travel time forecasting is
obtained by inserting the real time traffic data into the functional relation. The
article results showed good forecasting performances.

Using neural network helped a lot dealing with nonlinear spatio-temporal
relationship for example in [37] the author adopted recurrent neural networks
in order to forecast freeway travel time. The test was done on synthetic data and
the results were pretty good. The inconvenient issue with this approach is that in
order to have good results you need detailed traffic information.

However the author tried to fix this problem, which is noticeable in his article in

[38] where he suggests a freeway travel time forecasting that exhibits both
qualities accuracy and robustness with respect the gap in input data.
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To understand why this approach needs a lot of information about traffic in
order to give good results; we have to go back to the structure of artificial neural
networks. The ANN are constructed by using nodes, which are laid in different
layers. The manner in which the layers and nodes are designed and connected to
each other is called “topology or architecture”. The frequently used architecture
is the “feed-forward” and “recurrent” architecture.

The most used and famous architecture is the feed forward [39] where the
network is build with startup input layer and ends with an output layer. Between
these two layers there a layer called the hidden layer, where most computations
will be done. Besides, in this design unidirectional road sections or connections
connect the nodes or neurons.

The second type is the recurrent architecture [40] and it is the same structure as
the feed forward the only difference is the kind of connections between the
neurons. In this case the road sections are bidirectional or even recurrent
providing feedbacks to the neuron itself.

Using this kind of approach can be very helpful dealing with nonlinear complex
problems. However, there are some disadvantages for example the ANN can be
slow in converging to the final results [136] and this is due to the nonexistence of
physical insight in the construction of the mapping approximation of the results
parameters. Moreover, using the ANN can be less accurate when the future traffic
patterns did not exist in the training samples and also the number of weight in
ANN is pretty large and time-consuming regarding the training process
(Meldrum, 1995)[139].

It is clear that if we have more information we will have a rich hidden layer,
which means that we are improving the quality of the predictions or the results;
however, we are making the situation more complicated for the mapping
process, which means that the convergence process to the results will take a lot
of time to do so.

To conclude, this technique is interesting but needs more adjustments to be done
in order to improve it. And of course this opinion depends on our needs and also
on the case that we are conducting.

2.3.3 Simulation Approach

Nowadays, traffic simulation models are becoming important tools for the
assessment of the traffic infrastructure performance, traffic status, and driver’s
behavior analysis. Simulation can help in the validation process and also to
predict the behavior of a system regarding different scenarios.

Traffic is categorized as dynamic model. Thanks to this, we can represent the
evolution of traffic over time. This representation will incorporate the notion of
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space and time variations. Besides, the characteristics of the road network are an
important element in the creation of the simulation models.

The dynamic models are segmented into two groups: macroscopic and
microscopic models. But we will consider also the mesoscopic models, which is a
combination of the two other models, cited above. The mesoscopic approach is
when a large number of vehicles can interact in a quantum-mechanically
correlated fashion.

2.3.3.1 Macroscopic Simulation

The macroscopic model has this ability to generate dynamic characteristics of
the traffic flow, where it is considered in its general shape and not by its
constituted elements.

The macroscopic models are an analogy between the traffic flow and physics.
Traffic is represented by aggregation to the characteristics of fluid mechanics
such as density, speed, and flow rate. In this type of models the behaviors of the
drivers is considered to be homogeneous. This kind of modeling assumes that
the first movement of the vehicles depends on the overall state of traffic.

The macroscopic models in general describe the evolution of time and space.
The variables used to illustrate the empirical dynamics of the traffic are listed
and determine the change in the flow. In addition, the model normally puts the
hypothesis that the traffic evolution can be described by successive steady states.

The most commonly used model to illustrate road traffic is LWF [Lighthill and
Whitham, 1955] and [Richards, 1956] models. This model is build based on the
analogy with fluids dynamics and it is a first order model. The LWF model is
composed of three main equations:

* The velocity equation defined as the ratio of the flow on the
concentration.

* The conservation equation. (Coming from the conservation of the number
of vehicles on a road section and for a period of time).

* The fundamental diagram postulates that the speed of flow is obtained
continuously for a steady state, it does depend only on the instantaneous
concentration. This is an equation of state generally separating a fluid
portion and a congested portion.

The equations 2.6 are as follows:
Q(x,t) = K(x,t)XV(x,t)
dQ(x,t) , OK(xt)

pw + ryent (2.6)

V(x,t) = Ve(K(x, 1))

Where,
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*  Q(xt) is the flow corresponding to the number of vehicles flowing in an
abscissa x and at a time t per time unit.

* K(x,t) is the concentration corresponding to the number of vehicles per
unit of length lying on a section adjacent to the abscissa x, at time t.

¢ V(x.) is the flow speed.

* V,(K(x,t)) is the speed obtained from the fundamental diagram.

There is many research work done derived from LWF model. For example in [45]
the author presents a dynamic macroscopic model which includes a system that
presents a traffic light delay into a stream of vehicles entering a freeway.
Moreover, the model is capable of predicting the average vehicle delays and also
the queue length estimation. In addition, this latter estimation is compared to
theoretical and empirical data.

After this brief introduction about the macroscopic model, we will discuss the
advantages and disadvantages of this kind of simulation.

The main advantages of the macroscopic traffic simulation are the
representation aspect. This means that the model gives the ability to simulate
large road network. Besides, they are designed in order to size or resize
infrastructure, obtain efficiency measures about: speed, density, travel time,
traffic flow, and set back the travel time between pairs of origin-destinations.

Concerning the disadvantages we can resume them to the fact that the details of
any localized traffic is flattened out. This means that it does not make any
representation of:

* Different type of vehicles

* Driving style (playing with speed, acceleration, braking...)

* Drivers behavioral variations

* Intersection

To sum up, macroscopic models provide a global view of the traffic but not a
focus analysis. The next section will be about the microscopic model.

2.3.3.2 Microscopic Simulation

In the microscopic models flow is not considered as overall homogenous when it
is taken in its entirety because the models focus on the kinematics of each vehicle
in the system. This means that the model takes into consideration the behavior of
each driver in terms of its immediate environment. Moreover, the microscopic
models have the ability to make assumptions about trigger actions from
individual interactions between vehicles.

Furthermore this kind of model is useful to test algorithms and methods to
estimate travel time. For example in [47] the author created an algorithm aimed
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at estimating travel time on road sections of a road network using a convex
optimization framework. Then he used the approach presented in [46] to
evaluate the algorithm. The microscopic approach used allowed to accurately
reproduce the macroscopic properties of traffic as well as inconsistent driving
patterns observed in real life.

Based on the article [46] it is clear that the microscopic approach can help to
evaluate the effectiveness of conceivable intelligent transportation system (ITS)
strategies under non-recurrent congestion. The ITS strategies conducted in [46]
include incident management, adaptive ramp metering, traveler information
systems, arterial management, and a combination of those strategies.

The hardest part of the microscopic models is to formalize the specific
movement of the vehicles such as lane change, arrivals at intersections. These
actions require the calibration of decisional parameters like the influence of the
vehicle on other lines, or the reaction time.

The limitations of the microscopic models depend on the complexity of problem
that the model is trying to solve. One of the main problems with microscopic
traffic simulation is the heavy computation resource when we try to reproduce
realistic patterns of traffic.

However this model has some advantages, one of them being the focus on the
driver, which means that he is localized at anytime. In addition, the aggregation
of individual behaviors leads to the fundamental variables of traffic. This model
gives you the ability to introduce heterogeneity in the traffic classes to learn
more about vehicles and drivers. Finally, they allow real consideration of the
interactions in the development of specific actions.

The actual capacity of the transportation systems is not evaluated from the
physical considerations of the infrastructure but from the interaction between
the vehicles. This point pushes us to think about the general impact on the traffic
flow and on the traffic status. To conclude, it seems that both microscopic and
macroscopic approaches are motivating and by combining the two it will give
interesting results regarding the flow of the traffic, density, and the travel time.
Based on this view the next point will be the mesoscopic models, which are a
combination between the two of them [49] (Figure 2.5).
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Microscopic phenomena may have
- macroscopic consequences

dissipation of traffic
congestion

Figure 2.5: Example of scale interactions and their representation by
model coupling [49]

The illustration in figure 2.5 shows the characteristics that the mesoscopic
models can give us. We can observe the macroscopic aspect of the traffic and we
have this ability to zoom in and see the microscopic aspect too.

2.3.3.3 Mesoscopic Simulation

The mesoscopic models comprehend individual agents that refer to real vehicles.
Additionally, the simulation is driven by the road characteristics such as
junctions. This means that the mesoscopic model fills the gap between the
macroscopic and microscopic models. In many researches conducted using this
kind of model treated many issues like queuing networks [50], or sustainability
aspect of traffic like studying Carbone oxide emission from vehicles and gas
kinetic models [48].

Generally underneath mesoscopic models traffic flow details are described at
high level. However, at the same time the flow behavior and interactions are
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shown at a low level too. This aspect has been helping a lot in analyzing the
traffic status. For example in [51] the author presents an application of
multimodal mesoscopic dynamic traffic assignment model where he analyses the
transportation system network under emergency conditions. To conduct this
case an extension to a mesosscopic dynamic traffic assignment model was settled
to determine quantitative indicators for estimating the exposure of the
components regarding the traffic network.

Imagining the movement of vehicles as packages travelling together can
represent the mesoscopic operations. Each road section is subject to the
following computation (equation 2.7):
(1) = f(9:(8), (D), P)  (2.7)

Where,

* 1;(t): travel time per road section i.

*  ¢;(t): the flow.

e (;(t): the occupation.

* P;: other parameters to conduct.

As it was mentioned before the mesoscopic models are a combination of
microscopic and macroscopic models, which means that, they will combine the
advantages and disadvantages of these two models. The mesoscopic models
consume less time in computation regarding the microscopic models and they
give more details than the macroscopic models.

Moreover, it is not easy to design the mesoscopic models without drifting off to
one of the models cited before (Macroscopic, Microscopic).

2.4 Similar Projects

In this section we focus on different projects aimed to answer the same question
with which we are confronted in our thesis. We chose to discuss in this section
the Mobile Millennium project and INRIX Traffic project. The objective of this
literature survey is to gather technical elements and research methods, which
will give an overview of different technologies available and applied methods.
This section contains also a presentation of the PUMAS project, which constitutes
a platform for our thesis to test and evaluate our research approaches in real life
application for pre-industrial purposes.

2.4.1 Mobile Millennium Project

The Mobile Millennium project is identified in the field of research aimed at

developing a system for monitoring traffic in real time and it is based on the GPS

integrated in mobile phones to gather traffic information. The project was

launched after a public-private partnership agreement involving the University

of Berkeley, NAVTEQ (digital map producer) Calstran (The California

Department of Transportation), and finally Nokia Research Center. The project
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was launch on November 2008, although research and data collection have
previously started at the University of Berkley. This research project consists of
three concrete applications and they are as follows:

* A mobile phone application has been made available to the public for 12

months.

* An experiment size, in a controlled environment called "Millennium
Century."

* Finally, Mobile Millennium ensures the confidentiality and security of
data.

2.4.1.1 System Architecture

The Mobile Millennium project [52] aimed to gather data from probe vehicles
preserving the anonymity of the sender of the information. This architecture as
in shown figure 2.6 involves four different entities:

* Probe vehicle (carrying a phone with a GPS)

* Telephone operator (Network provider)

* A proxy server to ensure the anonymity of data

* Areconstruction system traffic

GPS
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Figure 2.6: Architecture of the Mobile Millennium System [52]
The system architecture is based on the concept of "Virtual Trip Lines" (VTLs).

These are a kind of geographical markings stored directly at the client level; in
our case it is the mobile phone.
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The passage of a vehicle by a VTL launches an update of the velocity and position
where it is performed at the proxy server via an HTTP request. This applies to
the anonymity of the information; it performs a suppression of the MAC address
and the identifier of the array antenna. Then transmit it to the server traffic
reconstruction. Not to mention that all data exchanged is encrypted for safety
and reliability reasons.

The geographical aspect of VTLs facilitates the data anonymisation, because the
only thing needed is the velocity at a point of several vehicles to estimate the
traffic in the area; however, if the data is a timestamp kind, it is necessary to
possess the identification of the vehicle in order to know its previous location;
therefore, the estimation of the speed of the driven section will be possible.

Finally the data collected are used to reconstruct the state of traffic and speeds
on different axes using a reconstruction algorithm of traffic flow. The algorithm
is based on non-linear flow models capable of reproducing accurately the impact
created by an accident or a bottleneck. An algorithm of inverse modeling
estimates the integration of these models. This algorithm is based on filters; two
filters were tested, the Kalman filter and Newton relaxation "Nudging" [52].

2.4.1.2 Mobile Phone Application

The operation of the application is based on a basic principle, when the
application is launched on the free phone user; it sends information (position
and velocity) of traffic each time they pass though VTLs, therefore, viewing real-
time traffic conditions is visible.

However this application is beyond the original concept of our project and the
thesis work since the traffic information obtained by the user from a data fusion
of different sources:

* Mobile phones with the application, all taxis in San Francisco (GPS data)

* Fixed speed cameras

* Magnetic loops and historical data.

5000 users have downloaded the application over the period where the software
was available. Today, the application is no longer available but the users who
have previously downloaded it remains operational.

2.4.1.3 Millennium Century

Century Mobile is a full-scale experiment that took place on 8 February 2008 to
study the feasibility of the System. The aim of this experiment is to estimate the
traffic based only on data from the GPS integrated in mobile phones
(Smartphone). The experiment involved 100 cars equipped with mobile phones
Nokia N95 (with GPS) on a portion of highway about 16 km for 8 hours. This
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stretch of road was chosen because it has a large number of loops and also the
presence of bottleneck. The Berkeley has mobilized 165 students to drive these
cars between 10h and 18h. The objective was to determine if it is possible to
estimate the statue of traffic with just the information sent by the "Smartphone”,
especially with a low penetration of vehicles.

The VTLs were placed at the same locations as the magnetic loops in order to
establish a comparison. These comparisons were made on two portions each one
is having a clean penetration rate (3 to 4% for the left side, rarely more than 2%
for the right portion) Here is the result in (figure 2.7)[52]:
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Figure 2.7: Penetration Rate (Magnetic Loops vs. VTLSs)

As expected, the results are less accurate when the precision is high. However, it
is interesting to note that even with a low penetration rate, information is of high
quality and comparable to those obtained through the magnetic loops for a much
lower cost. This experiment was therefore successful.

2.4.1.4 Conclusion

The project has achieved its goal of estimating traffic by collecting GPS data from
mobile phones, even with low penetration rates while respecting the
confidentiality and anonymity of data. However, the project was informing about
only the main roads in the city not all the road sections.

2.4.2 INRIX Traffic Project

INRIX is a private company based in Seattle created in July 2004 by two former
Microsoft executives. It is a leader in the field of traffic information in the U.S,,
either historical or real-time prediction. The principle is simple and relatively
common to other projects. It develops in three stages [53]:

* The collection of information through various sources (trade name: Smart
Dust Network).

* The analysis and treatment with the Fusion Engine.
* The redistribution results to various organizations and devices.
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2.4.2.1 Smart Dust Network

A major benefit in INRIX system is the number and diversity of data collected. In
fact it consists of more than 350 sources such as GPS traces provided by
corporate fleets (taxis ...), existing sensors belonging to public bodies (up to 90%
of the existing sensors in United States) such as magnetic loops, data from cell
phones, information on accidents and construction cites but also information on
the present and future climate or one-time events (concerts, games ...).

Thus, INRIX own announcement dated and past information on average speeds
for more than 1600000 km 400000 km in the USA and in Europe through 6
countries (France, Germany, Netherlands, Belgium, Luxembourg and the United
Kingdom) and that real-time data representing 126 urban and 260000 km of
roads to the United States and 400,000 km of inland different to Europe [54].

2.4.2.2 Fusion Engine

Another strength of INRIX system is their analysis program, processing and data
fusion system named Fusion Engine. The Fusion Engine is based on Bayesian
network and it uses different proprietary algorithms error correction to deal
with data acquired via the Smart Dust Network.

Another feature of the Fusion Engine is the use of error detection algorithms, and
it allows also:

* The detection of dysfunctional traffic sensors as magnetic loops that can
sometimes take longer to repair. The process is almost in real time, so
that data provided by these sensors are not taken into account by the
Fusion Engine in its calculations;

* Collaborative filtering: in fact, by combining different sources of
information about a geographic area at a given time, INRIX is able to
detect the data off sketches or outliers, comparing different information
received;

* Optimization of spatial granularity: thanks to the diversity of sources and
their number, INRIX is able to determine real-time traffic conditions with
good accuracy. Regarding the quantity of data available at a specific time
on a geographical area, the Fusion Engine is able to adjust in real time the
accuracy or spatial granularity of data to maximize the accuracy of the
traffic information;

* Although when the data are insufficient for a given stretch of road, which
means when the minimum error threshold is not reached, no information
will be given to that concerned road portion.

2.4.2.3 Conclusion
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As we have seen, INRIX is positioned on the market at different levels: It provides
both solutions directly to the end user (mobile application), data to integrators
(manufacturers or manufacturers of GPS) or data for the public sector. Based on
this last point, INRIX approaches PUMAS project objectives. However, INRIX and
mobile millennium focuses mainly on major routes, roads and highways.
Conversely, the project PUMAS is more interested in the entire urban traffic
networks.

2.5 The PUMAS Project System

The project PUMAS is a pre-industrial project involving industrials and research
laboratories. This variety creates an atmosphere full of different views and helps
to create a flexible system design, where it was easy to conduct research and also
industrial view. PUMAS stand for urban platform for advanced and sustainable
mobility (Plateforme Urbaine de Mobilité Avancée et Soutenable). One of the
main contributions of this dissertation has been design, implementation, and
testing of preprocessing module of the PUMAS project System. This section
presents an overview of the project and how our work is related to it. Moreover,
the design decisions include using Historical database and real time data
provided by our probe vehicles.

2.5.1 Introduction

PUMAS is a project labeled by competitiveness clusters Mov'eo (DAS Mobility
Solutions) and Advancity (COS New uses and mobility). It was held at the call for
proposals No. 8 Unified Inter-ministerial Fund (FUI). PUMAS is funded by the
state (DGCIS - General Directorate for Competitiveness, Industry and Services),
Ile de France and Haute-Normandie Region FEDER (European Union).

The project aims to develop mobility platform software, and to evaluate the

territory of the Community of Agglomeration of Rouen Elbeuf Austreberthe
(CREA).

The project offers urban areas one integrated solution, flexible and economical:
* Knowledge of traffic conditions and real-time decision support;
* The development of sustainable mobility;
* Measuring the emission of Greenhouse Gases.

Nowadays, collecting data about traffic is available using different kind of
sensors. However, there is no tool to extrapolate the state of the circulation and
the air quality in a dynamic and real-time manner over the whole territory.
PUMAS try to give an answer to these needs by innovating ideas:

* Data collection method based on probe vehicle, less expensive and more
flexible than traditional data collection by sensors embedded on the
ground;

* Dynamic transmission architecture to use the best available data from
probe vehicles in different places and times;

46



* (Calculations performing real-time prediction and estimation of travel
time;

The purpose of the PUMAS project is to create a platform of travel time
information to towns and cities.
The main objectives are:

. Create a new generation of software producing journey times, matching
the users expectations.
. Participate in the emerging sustainable economy where public transport

systems are an alternative to road networks by providing better information on
traffic conditions.

2.5.2 System Architecture

To view a system architecture there are many ways but we chose to show the
functionality architecture of the system as it is illustrated in (Figure 2.9). There
are two components, the server and the embedded box in the cars named PUMAS
Box.

The PUMAS Box is capable of collecting information about probe vehicle journey.
The Box performance can be resumed as follows:

* The ability to gather data, the GPS position, travel time, traffic jam.

* The ability to temporarily store and process data

* The ability to store reference data (eg. Mapping)

* The ability to communicate data to a server: GPRS or WiFij,

* Power supply (cigarette lighter or installation)
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* The ability to read other sensors (plug OBD2, CAN)
* Functionality Automatic update of software

Concerning the server, it can specify tasks such as gathering information sent by
PUMAS Box or historical data, filter the data, save the data into the database,
process the data in the database.

Moreover, the server is capable of enriching the historical database and process
all the information in it.

In order to improve server performance, it was necessary in addition to the
treatments mentioned above, the following tools:

* Monitoring of data processing (reporting of treatment)

* Support for the production of maps (OpenStreetMap size)

* Help the placement of PUMAS Points (map + statistics)

* Production of updates for packages shipped (invisible to the user)

* PUMAS Administration Server.

After describing the PUMAS system architecture lets describe the nature of data
stored in the databases. This latter is really important to understand it because
the work done in this dissertation is related to the data collected from the real
world field that constitute the historical database.
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2.5.3 Nature of Data used in the Database

The data used in the database can be categorized by two kind PUMAS Box data,
and Historical data. The PUMAS Box data contains information about the probe
vehicle running in real time on the urban network. The information collected
from them during a journey travel is containing: GPS position, Travel time per
road section, traffic jam information, etc.

However, the historical data contains sparsely sample GPS information
(discussed in section 2.3.6), where the GPS data has a frequency of one minute
between each successive input. This means that we have a lack of information
between two successive GPS positions.

Our focus in this thesis will be on “Historical data”. The idea is to filter the data in
order to correct all the errors related to the GPS and the positioning on the
digital map. Then, enhance the data with estimated travel time per road sections.

Now, we described a little bit the nature of data in our database that it will play a
big role in our work. Lets move to some details about the module in PUMAS
system.

2.5.4 System Modules in the Server

The PUMAS server system modules can be divided into five sections: raw data
input, preprocessing, processing, server manager, and output. All these
components interact with each other in order to process the data and give
information about the traffic. Each section in the structure has a specific
functionality (see Figure 2.9). All of these sections will be described and discuss
their role in the PUMAS server system.

Raw Data Input

The raw data used are received in real time either by WiFi or GPRS. The data is
constituted of the PUMAS Box messages (discussed in section 2.5.2) that contain
information about our probe vehicles. The second raw data is the sparsely
sample GPS information (discussed in section 2.3.6 and 2.5.3), that we have in
our historical database, which we receive also in real time and we added it to the
old one existing in the database.

Preprocessing

This module does all the preprocessing of raw data. For example the PUMAS Box
messages are conjugated and adjusted in such way to fit with the input interface
of processing module. This way the processing module has the data in the right
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way to run on. Concerning the sparsely sample GPS information the module will
prepare this data and filter it in order to be enrich with travel time estimation
per road section. In order to do so, the system will create the digital map and
filter the data from GPS errors and coherence errors. Then, it will reconstruct the
itinerary of the probe vehicles. Finally it will run the algorithms to estimate the
travel time per road section or what we call PUMAS section.

Processing

The processing module contains two main algorithms that will make the traffic
information nicely viewed. The first algorithm is a simulation process of the
evolution of travel time estimation based on the belief propagation approach. It
was created and developed by our partner in the project INRIA [137]. The
second algorithm is regroup all the travel time collected or estimated from the
historical data during the preprocessing step to reconstruct a general view of
traffic status. This latter was created and developed by our industrial partner in
the project EGIS [138]. Then all the information coming from these algorithms
will be regrouped in such a way to cover the whole urban network with travel
time information per road section and also traffic jam detected in real time.

Server Manager

The server manager module is in charge of displaying the information given by
the processing module and display it in a nicely way. Moreover, it process the
data used in order to store it in the archive database. This module is in charge of
doing any kind of update regarding the functionality of the whole system or
regarding the digital map if needs an update. Besides, an external supervisor
where he can supervise and check if there is any problem in the server system
can control this section. The module does also an analysis of the information
collected from the previous section in the chain. This latter process helps to
detect the trouble if there is any and also locate the origin of the problem.

Output

The output of the PUMAS system will be a digital map representing the urban
road network. In this map they will be information about the traffic, where travel
time is specified per road section and also the traffic status (detection of any
traffic jam). The output framework gives a real time visualization of the output of
the PUMAS system. Moreover, inside the system there are two modules of
analysis and evaluation that can be viewed too. This later and output can be used
for optimization or research in the future.
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After giving a general overview about the PUMAS server system, the next section

will be about the data collection process and the experiment done in the real
world field.

2.5.5 Data Collection and Field Experiments

The purpose of the experiment is to collect data from the real-world field. During
the experiment we used three instrumented vehicles. The experiment allowed us
to obtain data from the fields in sufficient quantities to calibrate and analyze the
behavior of travel time estimator algorithms.

Firstly, we defined constraints such as jams in small urban road or in the bridge
sections that we might face in order to test the performance of the system in
tough situations. We chose the itineraries based on those constraints.

Our aim in the first scenario is to test our embedded system in the car’'s PUMAS
Box (Figure 2.10). The PUMAS Box is a system that sends information to the
server such as GPS position, traffic jam if detected (discussed in section 2.5.2),
etc. Besides, it collects the data that we need for testing the travel time
estimation algorithms.

Figure 2.10: The Embedded System PUMAS Box

We had the chance to choose the city of Rouen, France, which has a multitude of
different kinds of urban area roadway including bridges in the downtown,
expressways, and small roads between buildings. The city is an excellent test-
field as it affords a variety of scenarios with different situations regarding the
road infrastructure (Figure 2.11).

Moreover, the fact that the itineraries during the experiment were chosen based
on the displacement of the traffic observed on the real-world field; will lead us to
have a variety of situations. Besides, the data acquisition in the field was based
on different modalities such as traffic flow, traffic density, rush hours, etc.
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Figure 2.11: Itinerary Sample Reconstructed from The Collected Data

During this experiment the following equipment was used:
Three Citroen C3 LaRA with their embedded systems consisting of: PC

with RT maps (software with a component based framework for rapid
development of multi-modal applications), a PUMAS-BOX connected to the PC
and communicating with the server, a fixed GPS, a color camera positioned at the
windshield, a sparsely sample GPS box transmitter; which we used in order to
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test our system and collect data in the real-world field. Moreover, C3 LARA is the
first prototype of an intelligent vehicle that was developed by the robotics center
of the Ecole des Mines de Paris and IMARA team from INRIA, France.

* Modes of transmission-type WiFi and GPRS.

* Server to retrieve data from PUMAS-BOX.

The experiment took place in the city of Rouen, France over three days. The
outcome was more than 1400 km driven and almost 4GB of data was collected.
The data collected will be used to simulate our needed data and also to construct
areference data in order to run our tests and also compare our results.

2.6 Conclusion

This section has covered four main parts. First, we presented the methodologies
adopted to estimate travel time based on the technologies used to gather traffic
information. The second part was about the different kind of models that help to
estimate travel time. Then, we presented a state of art about the similar projects
that treats the same problematic. Finally, the last part was a description of the
PUMAS project, this being important for the understanding of the context of this
dissertation and thesis research.
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Chapter 3: Preprocessing Tools

3.1 Introduction

There are two types of data used to estimate travel time. Data collected from
fixed sensors on the roadside [59] and another one coming from floating cars
[57], [58]. The one that interest us regarding our thesis will be the second type.
The most common floating car data is collected from delivery vehicles or taxis
and this type of vehicles are almost all the time on the freeway, highways, urban
roads, or arterials roads. Based on the last idea it is clear that this kind of data
coming from this kind of vehicles is convenient for the estimation of travel time
in urban areas.

As we know there is nothing perfect, which means the second type has positive
and negative attributes. The first thing that will come to mind especially
nowadays is the cost of this data. It is really cheap to get them regarding other
type of data collection. And this is due to the fact that all the companies collect
those data for marketing purpose, business, or logistics optimization, which
made those data available in a large scale. However, the data provided from
these floating cars are sparsely sample GPS data where the frequencies vary
between 1 to 3 minutes.

The reason why is that those companies running the system do not need to know
precisely the path of their cars. They need only to know the areas location.
Another challenge is that this kind of data presents the need of preprocessing
before processing any computation to estimate the travel time.

Building a traffic system to estimate travel time per road section using millions
of data coming from floating cars is an algorithmic and computational challenge.
In order to make good estimations preprocessing the data is a must; therefore,
the error coming from the data is reduced. The preprocessing steps have various
subcomponents that need significant research work, development, and
integration to be done.

This section presents the preprocessing that has been done in this thesis work to
make our sparsely sampled GPS data ready to be used for travel time estimation.

The first step is to represent the urban network by building a road model using
geographic information system (GIS). This step is crucial for the travel time
estimation using floating cars information both for data collection and also for
the results analysis [55], [56].
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The second step is the data check or coherence check. Working with sparsely
sampled GPS data implies a frequency in the data reception time. Thus the data
frequency should be checked for any incoherence in the frequency or ambiguity.
The most common and intuitive procedure, and also which is used in this work
thesis is to track the number of consecutive GPS points that are less than a
specified time distance (1 minute) from each other.

The third phase is the map-matching process. This step is very important to the
travel time estimation process. Moreover, the map matching is widely conducted
in research applied to transportation. It seems that this field of research on map-
matching techniques is still challenging and potentially difficult. During the
thesis work the map-matching technique has been used with enhancement in the
algorithm to improve the performances.

Finally, the last step in the preprocessing part is the path reconstruction. This
step is very important for the travel time estimation per road section. By using
sparsely sampled GPS data, we need to define the road section taken by the
probes. This process is a graphs problem well known in computer science,
operation, and transportation research and it will be used in by the map
matching process.

3.2 Urban Network Representation

As it was stated in the section (3.2) this part is about the building of the urban
road networks using GIS information. This rubric contains an introduction about
the importance of GIS information in constructing road networks. The following
section is about road models that constitute information about the road and it is
important for estimating traffic status. Besides, the context of the digital map is
very important regarding the purpose of use. Finally, the extraction technique
used in order to build the digital map using GIS with the information needed. All
the work presented here in this dissertation section was implemented for the
thesis purpose and also for the PUMAS project.

3.2.1 Introduction

Today, with the technological evolution many domains have been influenced,
especially the geographic representation of maps has evolved from paper
illustration to digital or numerical [60]. Besides, thanks to the evolution of
databases all the geographical information are stored and integrated often by the
geographical information system (GIS). The GIS is really useful because they
make many tasks easy to do such as spatial planning for cities and land use.

Moreover, in transportation planning and logistic, it is advantageous to use
digital map or numerical incorporated with information such as transportation
facilities data, speed limits, roadway indicator, and type of roads. All this
information is very helpful to improve traffic algorithms and estimations.
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There are two kinds of GIS mapping data the vector model and the raster model.
The vector approach is designed to store and encode as collection of coordinates.
For example in our context the road will be encoded to a linear feature of a set of
point coordinates. However, the raster model encodes the road map to a
collection of multiple grid cells.

Each of these approaches has advantages and disadvantages. For example the
advantages of Vector data can present as follows:
* Data can be represented at its original resolution.
* Graphic output is usually more visually pleasing;
* Accurate geographic location of data is maintained.
* Allows for efficient encoding of topology, and as a result more efficient
operations that require topological information such as proximity,
network analysis.

However, it has also some negative aspects like:

* The location of each vertex needs to be stored explicitly.

* For effective analysis, vector data must be converted into a topological
structure. This is often processing intensive and usually requires
extensive data cleaning. As well, topology is static, and any updating or
editing of the vector data requires re-building of the topology.

* Algorithms for manipulative and analysis functions are complex and may
be processing intensive.

* Continuous data such as elevation data is not effectively represented in
vector form. Usually substantial data generalization or interpolation is
required for these data layers.

* Spatial analysis and filtering within polygons is impossible

To sum up the analysis of Vector data approach: their coordinates define the map
elements such as points, lines and polygons. The structure describing topological
relations between different objects provides a faithful graphical representation.
The advantages of this system characterized by better management of databases
data, and better graphic measures are more accurate than they are. Its main
disadvantages are to be able to present a more complex data structure.

After checking the Vector data we will move to the raster data. The advantage
can be illustrated as follows:

* The geographic location of each cell is implied by its position in the cell
matrix. Accordingly, other than the origin point such as bottom left
corner, no geographic coordinates are stored.

* The programming is usually easy thanks to the nature of the data storage
technique data analysis.

* The inherent nature of raster maps, for example one-attribute maps, is
ideally suited for mathematical modeling and quantitative analysis.
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* Discrete data, which facilitates the integration of the two data types.
* Grid-cell systems are very compatible with raster-based output devices
like electrostatic plotters, graphic terminals.

Concerning the disadvantages of the raster data are as follows:

* The cell size establishes the data illustration resolution.

e Itis difficult to represent linear features depending on the cell resolution.
Consequently, network linkages are difficult to establish.

* Processing the data attributes may be heavy to do so if the existing data is
large. Moreover, the Raster maps inherently reflect only one attribute or
characteristic for an area.

* Since most existing input data is in vector form, thus a conversion vector-
to-raster is needed which means extra processing (time consuming).

* Most output maps from grid-cell systems do not conform to high quality
cartographic needs.

To summarize the raster model, the area is subdivided to represent a grid of
cells. Each cell contains digital information relative to an identifier, a qualitative
or quantitative parameter. This is comparable to the term "pixel" (picture
element) which is the smallest information unit contained in an image divided
into grid. The dimensions of the cell are the resolution space.

After introducing the GIS information, the next sections will discuss how we
choose to represent our digital map. Based on the PUMAS project needs and also
by conducting research approach we will show how we choose the appropriate
approach. This part is a challenge in finding an compromise between industrial
needs and research approaches that can adopted in order to be productive in the
practical world (real word life situations).

3.2.2 Road Model and Digital Map

The road model in standard case involves information about geometric and
topological characteristics of urban roads; all this information follows a
hierarchical structure. The road system model describes the characteristics of
the streets and roads in a large scale of transportation system.

The road model can be defined in different ways depending on the research case
and it is a part of the GIS information. Both of road model and GIS constitute the
final results, which is the digital map. Moreover, using a digital map in our case
will assure us the following statements:
* Maps ensure consistency and facilitate traffic analysis operations.
e Maps support data collection and can help monitor vehicles and traffic
activities.
* Maps make it easier to present, analyze and disseminate traffic estimation
results.
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In addition, technology evolution has given a considerable push to GIS
information. For example nowadays, we have better database software that
allows managing a vast amount of information, which is referenced to digital
map.

Starting from this point the real world structure contains enough information or
objects such as road network, road junctions, road sections, nature, etc. All this
information is incubated in the digital map in order to approach a replica of the
real world. Moreover, this information is organized in what is called GIS layer.
This latter contains information that is not affected by any relation between the
objects or layers. The real world represented by GIS information encloses many
layers as the (Figure 3.1) shows.

Besides, in our case the need for modeling large areas (urban road network of
Rouen) pushed us to choose the digital map, which is the best solution till now.

Unluckily, most of these are used for routing purposes; consequently, it does not
contain fine-grained information about the junctions and the connections lanes

over junctions [62], [61].
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Figure 3.1: GIS Layers

Based on this analysis, it is important to add information to our digital map in
order to improve the travel time estimation, map-matching, and path
reconstruction. That's why we will add information about the junction and their
lane road sections by detecting their locations. The section before introduced the
vector data, which contains coordinates defining the road network map elements
as points (Coordinates). Based on this, we will choose the vector data approach
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because it will give the information needed in order to construct the added
information to the digital map in an easy and flexible way.

Thus, we will introduce a PUMAS point as the intersection between two different
roads, the zone around this junction will be a PUMAS zone, and a PUMAS section
is the set of segments and nodes between two PUMAS points (Figure 3.2).

In the previous paragraphs, we described our approach concerning the road
model and its implication regarding the digital map. The next level, will be
putting enlightenment on the context model. Since, the road model is extended
by the knowledge about the context. The following section will analyze the
context of our work in this thesis and define what we need as information to add
to our road model that will be viewed on our digital map characteristics.
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Figure 3.2: PUMAS Digital Map, Added Features
3.2.3 Context Model
As it was stated in the section 3.2.2, the context model will complete the
information needed to the digital map though the road model characteristics.

Let’s start by describing the two existing context models. The first one is the
global context and the second one is the local context.
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The global context is related to the background objects such as buildings or
vehicles. It is possible to find that the background information and the traffic
roads have a relationship that give important information when it is combined
and also there is the case where the roads show a typical obvious feature that is
important. As a consequence, the road model and the context should be adapted
to the region of interest where information is useful. However, in the urban road
traffic context, the only thing that is very important is this relationship between
the road and the vehicles, as Baumgartner et al stated it in his articles [63], [64].

Concerning the local context it is when we assign a relation between a small road
number and the context objects. For example, in dense urban areas, the building
footprints are almost parallel to the roads and vice-versa. The relation in this
case is an occlusion or cast shadow on. Besides, all this relation must be
implemented in the extraction process and internal evaluation.

However, for our case we will not focus on this aspect because we are not willing
to create a new digital map from scratch but one by taking into consideration the
relationship between road and vehicles. This decision is based on our objective
regarding the thesis work and the project PUMAS.

The next section is about the map extraction strategy adopted in order to build
our digital map by taking into consideration all the decisions made during the
analysis presented in section 3.2.2 and 3.2.3.

3.2.4 Extraction and Digital Map Building Strategy

For our thesis work the best representation of the digital map is the direct graph,
which means the digital map is built based on the set of nodes and road sections.
This kind of representation is based on vector data as it was stated before this is
the right representation for our case. Besides, for anything related to traffic
estimation it is indeed the most used [65] by most map databases for navigation
and display purpose. For these reasons in order to achieve our objective of this
thesis, “Open Street Map” [148] has been chosen as a source to extract the digital
map. OpenStreetMap (OSM) is an international project established in 2004 to
create a free map of the world. The data collected contains many kind of
information such as the roads, railways, rivers, forests, buildings and more. The
data collected are re-usable under a free license ODbL (since 12 September
2012).

Moreover, this latter is an open source data built by consumers and it is an online
access designed to build free editable map of the whole word from GPS traces
uploaded by users around the world [66]. However, the physical representation
of the road network topology is not accurate or unavailable. Thus, it is important
to add the road layout such as intersections and junctions. For this reason, we
will add these features that we described clearly in section 3.2.2 (PUMAS points,
PUMAS sections, PUMAS zones).
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The following graph (Figure 3.3) shows the extraction process and building of
the new digital map with the added characteristics (illustration figure 3.4).
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Figure 3.3: Extraction & Enhancement Process

First step is to import the Open Street Map data using “PgRouting” protocol,
which allows as the extract the nodes and road sections. With these data we can
constitute the digital map. Then at the level of our server using “PostGreSQL” and
“PostGIS” queries we launch what we call PUMAS kits that allows adding the new
characteristics (PUMAS points, PUMAS sections, PUMAS zones) to the extracted
digital map.

PgRouyting and PostGreSql are packages containing all the functions that we can
use to create a routing database; Load routing data, Import satellite images, or
add information to the map. Moreover, it contains also the database server
features in order to run and maintain the GIS information and the digital map
data.
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All the data are stored in the database of raw data. Moreover, the system is
capable of doing update to the map directly from the OSM data and processes the
PUMAS Kits to add the characteristics.

Now after creating the digital map the next important part before doing any
travel time estimation is preprocessing. The raw data used should be checked
and cleaned and also mapped to the digital map or what is called the map
matching process. The next section will debate these issues.

3.3 Raw Data Check and Map Matching

The purpose of this section is to put a light on the importance of validating the
raw data before using it. The use of sparsely sampled data presents many
challenges concerning the path reconstruction and the map-matching process.
The Map matching process is the process of aligning a series of observed user
positions with the road network on a digital map. It is a preprocessing
requirement step for many applications, such as traffic flow analysis and travel
time estimation, which is the case of this dissertation.

3.3.1 Introduction

Estimating travel times per road sections on a urban road network requires an
efficient path reconstruction and accurate map-matching, which is the subject of
the algorithms described in this section. As it was described in the section 2.3.6
the sparsely sampled GPS data has this characteristic of sending GPS information
at a fixed frequency, which is unusual to use for road section travel time or
measuring velocities. This type of data presents many challenges.

The first challenge is the frequency of the data that has consequences on the path
reconstruction. The probe vehicle can often travel a multiple of road sections
between two successive GPS measurements when the frequency is high. Thus,
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estimating the path travelled by the probe vehicle will have low probability of
precision. As consequence it will affect the travel time estimation. For all these
reasons the process of running a check or validation of the raw data is a must.
The section 3.3.2 will introduce the approach adopted in our case to validate the
data used in this dissertation work.

The second challenge is about the map matching. The GPS data measurement
should be mapped to the digital map in order to know the exact location of the
probe vehicle. Thus the exact location and the path reconstruction between two
successive GPS data is a must for the travel time estimation.

The third challenge is the path reconstruction. The path reconstruction is related
to look for the realistic path taken by the probe vehicle. This process is very
important in order to know the concerned road sections that are involved in the
vehicle itinerary. This latter is very important in the travel time estimation per
road section.

Based on this introduction it is important to enlighten the fact that any
estimation model needs precise information about the digital map (Section 3.2)
and the data itself, which means path and location. For these reasons the
following sections in this chapter will describe how we managed to reduce the
errors coming from the raw data by introducing new approaches in dealing with
these issues cited above.

3.3.2 Raw Data Check

The raw data that constitute our historical database is a sparsely sampled GPS
data. Sparsely sampled probe GPS data is currently the most ubiquitous data
source on the arterial network or urban network. Thus in order to make a check
of data frequency or what we call time step let’s start by illustrating the data.

The raw data contains information of probe vehicles let's put
Vie{Vy,V,,Vs,...,V,} the set of floating cars in the database. Each floating car V;
has a set of GPS locations and time information. We will note t}e {t;,t5,t5,t5,

... t4,} the time of reception of the GPS data coming from the floating cars. For the
purpose of checking the time step between GPS location ¢; of a specific floating V;
car we will define two kinds of time steps (equation 3.1):

hi=¢l  — ¢t
(=t

i gl i

Where, h} check the time step between the first data and the second one.
However, k}check the time step between the first data and the third one.
Moreover our sparsely sample GPS data has a frequency of one minute; therefor,
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we will define the step hy = 60 seconds and the second step kg = 120 seconds.
The defined steps will be used in our equation in order to make a decision.

We define our two check functions (equation 3.2 and 3.3) as follows:

. 1 if hi<h
:r(h;.)={ folyshe g
0 if Rl > h
And,
. 1 ifki<k
T(k;)={ ,f 7 33)
0 if k!> ks

The conditions defined on the two function above was based on the fact that
there is a risk regarding the results of our work in this dissertation when the
sparsely sampled GPS data with intervals beyond 60 seconds. For example,
reconstructing the path will be affected and also the travel time estimation.

Finally, we define our check operator as follows (equation 3.4):

T(h}) + T(k}) #0 , then we validate the data of reception time t}
1<isn -
1=j=m T(h}) + T(k}) =0 , thenwe reject the data of reception time t;
(3.4)

The following chain graph shows the building tree structure in order to make the
raw data validation using the equation 3.4 (Figure 3.5).

T _

”

Figure 3.5: Chain structure of raw data Validation for a specific floating
vehicle.

The graph shows how the computation structure is built and in each cell we will
find the out put of this equation T(h]l-) + T(k}) and then we apply the rule
presented above in order to make a decision of keeping the data or not.
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3.3.3 Map Matching Process
3.3.3.1 Overview

The map-matching problem is related to the correlation between the probe
vehicle path and the vector map of the concerned road section. The problem
aspect can vary depending on the input data and also on the desired output. In
our case we are concerned by the current position of the probes in our historical
database and the input that is the sparsely sampled GPS data.

The purpose behind using the map matching is to correct the GPS localization
errors. The trajectory mapping has to process a stream of infrequent position
samples and map them to an accurate itinerary. Using the sparsely sampled GPS
data brings up a challenge of processing inaccurate data and matches them to an
accurate trajectory.

In the literature we can classify the map-matching technique to three kinds or
approaches: geometric approach, topological approach, and enhanced approach.

The geometric approach takes into consideration the shape of the road section
and the GPS position. In other word, each GPS position is matched to the closed
node detected on the road section extracted from the digital map. It is exactly
what Bernstein and Kornhauted (1996) named point-to-point matching and the
method does not take into consideration the way road sections are connected.
Another type of geometric approach is point-to-curve method. In this method as
it was clearly stated by Kim (2000) [67] the fixed GPS position is matched to the
closed curve by using an orthogonal projection on the concerned road section.
The other type is called curve-to-curve (White, 2000; Phuyal, 2002) and it refers
to the probe trajectory is matched to the digital map road sections. Moreover
there are many studies and research done by combining all these methods
described above such as (Taylor, 2001; Bouju, 2002).

The next type is related to the topology of the roads, which means the
relationships existing between the entities like points, lines, and polygons. The
relationships can be categorized as follows: adjacency when it's a point,
connectivity when it’s a line, and containment when it’s a polygon. We could also
combine the geometry with the topology as it was done by Greenfeld (2002)
where the map matching is using the geometrical road sections and also the
connectivity and contiguity of the road sections.

The last category is the enhanced map matching and we mean by that when the
algorithm uses such as Kalman filter, particle filter, fuzzy logic, etc. For example,
Honey (1989) hosted in his article [68] the first kind of map matching technique.
He used DR sensor positions and then used the map matching to match them into
the map. This method has been discussed in many publications [67], [70], one
being the [69] where GPS data was used instead of DR sensor positions.
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Moreover, Zhao states that the error region can be derived from the GPS error
variance. Thus, we can detect the road sections that have a high probability that
the GPS position should be associated to them without scanning the whole map.

3.3.3.2 Problem Statement and Definitions

In order to understand the problem of map matching for sparsely sampled GPS
data trajectories we will define it in a formal way:

Definition 1: (GPS Trace) A GPS trace is a set of GPS position of a specific probe
vehicle W= {cl,cz,c3,...,cn . Each positionc,eW contains the following

«“

information: latitude “lat”, longitude “Ing”, timestamp “t “ and the vehicle

heading.

Definition 2: (Probe Trajectory) the probe trajectory T is a set of GPS position
with a time interval between two successive GPS position. The GPS positions
don't exceed a certain threshold AT =Iminute. For example:
T:c,—c,—>c;—>...—>c,,where ¢g¥and O<c,,. r<AT and (I1<i=<n).

Definition 3: (PUMAS section) is a road section “s” associated with an id. Each
section contains the following information: length value s., a starting point
s.start, ending point s.end, and a set of node and segments or polylines
describing the road section in the digital map.

Definition 4: (Road Network) is direct orientated graph G(V,E), where V is a set of
vertices representing the road aspects such as intersections, junction, and
terminal points. Finally, E is a set of edges illustrating the PUMAS sections.

Definition 5: (Path) is a set of connected road sections which means in our case is
a set of PUMAS sections thus P:s, —s,—=s,—..—>s5, where

s.-start =V,,s,.end =V,,s,  .end = s, .start,s,.cape,l <k <n.

Now we can state the map matching problem as follows: Given a raw sparsely
sampled GPS data trajectory T and a road network G(V,E), find the path P from G
that matches T with its real path.

3.3.3.3 Map Matching System
To describe clearly the map matching that we adopted in our thesis work and

also in order to show the modification added. The structure was built this way as
it is shown in the (Figure 3.6).
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Figure3.6: Map Matching System

The system can be split into three main processes. The data preprocessing is the
step where the data is prepared in order to be checked. In the preprocessing data
analysis the data will be analyzed following some regulations regarding spatio-
temporal rules or analysis. Finally, the results step is when the data is matched to
the digital map with respect to the path reconstruction [132] that will be
discussed in details in section 3.4.

3.3.3.3.1 Data Preprocessing

This component contains information about road network (edges, vertexes) and
GPS traces from the probe vehicle (historical database). Each GPS trace is a GPS
trajectory from the probe. This latter will be used to retrieve each possible
situation for each GPS sample data. In other words, the system will build a set of
all GPS samples and their candidate road sections they lie on.

Thus for a given trajectory? :¢, =c¢, =c¢;—..—c,, we retrieve the entire
PUMAS sections candidate for each GPS position ¢; within a radius r defined by

the GPS receiver error. The next step is to get the line segments candidate where
the orthogonal projection of ¢; will be on the PUMAS sections. The line segment

orthogonal projection will be defined as follows:

Definition 6: (Line segment orthogonal projection, LSOP) the LOSP of a position
¢; to a PUMAS section s; is the point p on s, such that p =argminy, dist(p;,c),

where dist(p;,c) is the distance between ¢ and any point p; ons.
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Definition 7. (Notation) we will note s/ the jth candidate edge and p/ the jth
candidate of point p; (illustration figure 3.7).

Figure 3.7: Candidate projection points for a sample pi

After selecting all the potential candidates Pc:p/ — p/> — p/> —..— p/ the

issue now to find the best match trajectory 7 :¢, = ¢, = ¢, —=>...—¢,.

3.3.3.3.2 Preprocessing Data Analysis
In this step we were inspired by (Zhao, 97) [69] approach and we will conduct
two analyses to match the trajectory. First the process will start with a spatial

analysis and then a temporal analysis.

Spatial Analysis:

This analysis takes into account the distance between a single GPS position and
its PUMAS sections candidate. Moreover, it will take into consideration the road
network topology to avoid redundant information about the paths. To determine
the path we will use the shortest path algorithm (Dijkstra) that we will discuss in
details in section 3.4. In order to do this analysis we will define what we call an
inspection probability function.

Definition 8: (Inspection probability function) it is defined as the likelihood that a
GPS position ¢, matches a candidate p; using the distance between these two

parameters dist(p;,c,) .

If we want to model the GPS error measurement it can be modeled as a normal
distribution [71] of the distance between ¢, and p; . This probability indicates the

weight of the fact that the point ¢, can be matched top/. We define the
Inspection probability function as follows (equation 3.5):
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N o/ -’
O(p;) = exp| 3.5
V270 20° (3-5)
Where,
y! =dist(p/,c,)is the distance between ¢, and p/. For the mean it will be a zero

mean and the standard deviation equal to 20 meters based on the empirical
evaluation.

The inspection probability function does not take into consideration the context
where the GPS position it is. For that reason it can be some situation when
matching will be wrong. For example we can have a situation when GPS location
has been matched to the wrong PUMAS section, as shown in (figure 3.8) where
the matched point was in another PUMAS section and there is no link connecting
the two PUMAS sections. In order to solve this issue we will introduce the
transfer probability function.

“{Cm

Figure 3.8: An example of wrong matching

Definition 9: (Transfer probability function) the transfer probability for a given
projection candidate p; and p;, for two successive sparsely sampled GPS data
¢; and c,,, is the likelihood that the true path from ¢; to ¢, follows the shortest

path through p; to p;,,.

The transfer probability function will be expressed as follows (equation 3.6):

De. .
_ i—i+1
A =)=
(i,2)=(i+l,e)

Where,
. De,-_>,-+1 = diSt(Ci+1,Ci) is the Euclidian distance between c;,, and c;.

. L(,-,Z)_>(,-+1,e) is the length of the shortest path given by the algorithm

e

defined in section 3.4 between p; and p;,, .
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Therefore the spatial analysis function will be the combination of the inspection
probability and the transfer probability. It will be expressed as follows (equation
3.7):

VlSlS}’l,S(plZ %piil):q)(piil)*[\(piz epiil) (3'7)

The spatial function explicitly computes the likelihood that a probe vehicle drove
along p;to p;, using the two probabilities defined before. This means that we

are taking into consideration the geometric and topological aspect of the
network in our computation. However, in reality it is not sure that the probe

vehicle will take the shortest path that’s why we keep ®(p/) in order to reflect

that aspect. Each candidate generated will check and have a value of spatial
function and the one with the highest scope is the closed map matching of
sparsely sampled GPS data to reality.

Temporal Analysis:

The temporal analysis measures the average speed travel between two
neighborhoods position. Then it will compare the average speed with the speed
limit on each candidate paths. This information will be used to match the
trajectory to the candidate’s paths with the closest similar speed limit during
that time interval.

Thus for a given two candidate points p;and p;, for two successive GPS
positions ¢; and ¢, . The shortest path from p; to p;,, is a set of PUMAS section
{s;,s‘z,s;,....,s;,}. We will note average speed V, .. ..., of the shortest path as

follows (equation 3.8):

k
2

Vi) = Am=1 (3.8)

i—i+l

Where,
. lm = S;n-l is the length of concerned PUMAS section of s, .
e At_,,=¢,t—C.t]s the time interval between two sparsely sampled
data ¢; and ¢, .
Moreover, each PUMAS section s;n is associated with s;n.v. In order to measure

the similarity between the average speed from p; to p;,, and the section speed
limit; we will use the cosine distance. By considering the vector with k elements
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of the same speed V, , and the vector (s;.v,s'z.v,...,s}c.v)T the temporal

(i,2)—=>(i+l,e

analysis function will be as follows (equation 3.9):

k
E (s,-v* Vm,(i,z)—>(i+l,e))
T(p; = pi)= \/ = (3.9)

k

k
2 2
2 (s,v)" * \/E (Viyiisrer)
m=1

m=1

3.3.3.3.3 Output

In this component we will describe the matching process based on the spatial
and temporal analysis. In order to make a clear description we will illustrate the
process in the following (figure 3.8). Thus, we were able to generate candidate

graph G, (V,,E,) for atrajectory T :c, =~ ¢, = ¢, —>..—>c,.
Where,
* V,is the set of candidates for each sparsely sampled GPS data.
* E,is the set of PUMAS sections representing the shortest path between
any successive candidate positions.
Which means that each G’ is associated with CI)(pij). And each Section is
associated with A(p; = p;,,) and T(p; — p;.,).

Therefore by combining the equations of spatial analysis function and the
temporal analysis function we will have our final equation 3.10 as follows:

ST(p; = pi)=S(p; = pi.)*T(p; = p;,,),Vl<isn (3.10)

To make a decision about all candidates we will consider a candidate path
sequence P, : p/' = p;’ = p;’ —....— p, for the entire trajectory T that is a path

in the candidate graph. The total score for candidate path P, is

F*(Pp) = EST(pff — p:#). Then the aim is to find the one with the highest score
i=1

as the best matching path for the trajectory. Thus the selection expression will

be (equation 3.11):

P =argmax, F (P,),YP, € G,(V;,E;) (3.11)
After we find the path P that reflects the true path we run a check on the sparsely

sampled GPS data orientation c¢;.capeif it is logical with the PUMAS section

s;.cape .
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Definition 10: (Orientation check function) this function checks the orientation
between the sparsely sampled GPS data
T :c,.cape — c,.cape — c,.cape —> ... —>c,.cape and the PUMAS section selected

orientation P : s,.cape — s,.cape —> s,.cape —> ... —> s, .cape . The function attributes

a score of one if it fits otherwise a zero.

The orientation function check is defined as follows (equation 3.12):

1 if cNs =true
CF.(c,.cape,s,.cape) = (3.12)
0 if c"Ns = false

Where,
¢’ Ms° is an operator with condition rules defined as follows:

Table3.1: € (1S Operator Table

o = i-eape ¢ = Si-eape c’nNs’
360° 360°

¢ E ]0,0.25] s°E ]0,0.25] True

c e ]0.25,0.5] 5T e ]0.25,0.5] True

cE ]0.5,0.75] s € ]0.5,0.75] True

e ]0.75,1] s e ]0.75,1] True

The table above shows the condition when the intersection rule should be true.

Which means that the operator is equal to true when ¢ and s are from the

same interval.

However we don’t run this check on a specific sparsely sampled GPS data if the
speed on the probe at that position is lower than 4km/h. Because based on the
empirical data the orientation is not precise or sometimes wrong when the speed
is lower than 4km/h.

In case the check was activated and finds a false case where the orientation is not
following the same orientation of the PUMAS section. We will call the correction

process to correct the sparsely sampled GPS data concerned.

Correction Step

This process of correction aims to change the concerned position ¢, by a

predicted positionc,,, knowing ¢, and ¢,,. Many researches have been done
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regarding this issue of prediction. In our case we will be inspired by [72] where
the author used a method to complete the gap of lost data and we will adopt it to
our case.

In our case we have each sparsely sampled GPS data can be characterized by the
position coordinated x-axis and y-axis. Thus we can write c¢,(x,,y,) and

¢ (X1, ¥y) . The future position or predicted position will be c}m (X,,>Y,4) and
will be predicted as follows (equation 3.13):

_ ES
X, =X, +u*cost
Vi =Y, +u*cosf
Vi = Vi

) and, 0= arctan[—] (3.13)
X = X

and, u= \/(xk — X )+ =2)

Where, u represents the step length between each sparsely sampled data. 6 is
the estimated direction angle of the probe.

After predicting the new position, the correction process is done and we run
again the system with new correction added to the raw data as (figure 3.6)
shows. Moreover, this process of correction is done only once for each set of
trajectories T from the raw data.

To sum up in this section 3.3 we showed how the raw data is processed in order
to make it ready to be used for the travel time estimation. In the following
section we will describe in details the path reconstruction that we used in the
map matching process.

3.4 Path Reconstruction on Database Context

Path reconstruction can be seen as the shortest path problem between two
vertices in weighted graphs is very well known as a graph problem. There are
many solutions that have been developed for different types of graphs such as
Dijkstra in the case of positive weights, Bellman in the general case, etc.
However, these methods are time consuming regarding the computational
process, which means that they need enhancement and speed up. In this section
we will discuss these techniques and how we dealt with it in this thesis work.

3.4.1 Introduction
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The choice of a way to move goods can be done by taking into account the travel
time, cost, parking, etc. In general, the tools used to guide this choice are based

on solving technical "problem of shorter path”. Given a graph G,(V,,E,) for
given starting candidates position p’ €V, to the final destination candidate
position p{, €V, the issue is to find the optimal shortest path regarding the

constraints to travel from p; to p;,, .

The shortest path problem is one of optimization problems over the network
studied since the fifties (Bellman, 1958 [74]). All these studies are based on
finding a path in a graph based on a single objective. Indeed, the shortest path
problem for a traditional objective of minimizing the time, cost, or both.

One aspect of shortest path problem that interests us in this dissertation is the
time-dependent shortest path. This issue has been studied for the case of
determining the shortest path. In other words we looking for the shortest path
between two nodes or positions and it is called in the literature the point-to-
point shortest path problem with time dependency.

Concerning the point-to-point algorithm the most famous one is the Dijkstra
1959. The process starts by the initial position and it scans all the neighbors
around it. All the paths found will be ranked based in the minimal sum of cost of
the visited edges or roads in our case. In each subsequence step, the algorithm
will apply a relaxation to the minimal cost, which means it has the highest rank
then visits again all its neighbors and ranks them again. The process will stop
when the end node or position is reached.

The number of nodes visited during the search usually helps to evaluate the
routing algorithm performance. For example, Dijkstra makes a scan of the
neighbors in a circular area aspect enclosing the start position and the ending
position. This explains why the algorithm needs a lot of computation time when
the road network is dense. For this reason, many methods have been embedded
to the algorithm to make it faster.

To sum up these enhancement methods we will put them into categories as it
was cited in [75] as follows:

Shortest-path with Bi-directed search: In this approach as it was illustrated in
[76], [77] the search starts from both positions start and end, at the same time.
Thus, the scanning time will be reduced because there is two processes running
at the same time and the visit for a specific node will happen only once. By using
this approach the running time improves.
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Shortest-path with Goal-directed search: This approach affects the nodes
ranks that are unlikely to be on the shortest path [78]. Moreover, it applies the
same principal to the road section regarding the shortest path.

Shortest-path with Multi-level approach: This method in [80] adds shortcuts
indexes to the road network when it is possible in order to bypass many edges at
a time during the routing process. The sub-class follows a hierarchical routing.
First layer contains the full resolution of the network and the next layer contains
less nodes and road sections. This aspect makes the searchlight but we lose in
the accuracy.

Shortest-path with Bounding boxes: Checks if there is any possibility that the
concerned node can be in the shortest path if not it is rejected and not
considered [79].

There are many researches done in the shortest path problem but we have to be
more specific regarding our case to narrow our focus on the real issue in this
dissertation. The fact that the data used is sparsely sampled GPS data and we
have to find the path between each pairs of successive data put as in the situation
of point-to-point shortest path. Moreover, we have to take into consideration
that between each two GPS position there is a time gap, which means that our
approach to solve this issue is time dependent. To sum up we are dealing with
point-to-point shortest paths on time dependent road networks.

3.4.2 Related work and Analysis

The shortest path problem is one of the subjects that have been conducted for
many decades. Besides, many innovative ideas have been proposed to compute
the point-to-point shortest path. Starting from the 1950th a lot of work related to
our subject was developed but the purpose behind was different. The studies
done in solving the shortest path were more for transportation planning or road
network analysis not for individual travel time.

The first work in this period related to time dependent shortest path with a
recursive formula that gave the needed shortest path with the minimum travel
time between a starting point and ending position was citied in [81]. In this
article by taking the positive travel time value the method gives the shortest path
from all nodes to a given final destination.

In Dijkstra’s algorithm [73] the shortest path problem in a static directed graph
is solved by using non-negative weights in a polynomial time. The algorithm can
easily be extended to dynamic case with time dependence [82]. However, the
FIFO in the tree structure is not mentioned which is really important to get the
right path in time dependence case.
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There were many similar algorithms developed to solve this issue such as by
Whiting & Hillier. But the most used and enhanced algorithm is Dijkstra and
there are many derived algorithm from it. One of the famous one is the A*
algorithm which adds the concept of closeness [87] to push the search to the
target node [88]. Besides, based on the nodes visited the Dijkstra visits almost all
of them however in terms of norm he is actually the smaller.

One of the aspect that shortest path have it is this time dependence issue which
is interesting for our dissertation. The time-dependent shortest path problem
has many applications in transportation. One of the articles that attracted us is
[86] where the other adopted an algorithm where he compute all-to-one shortest
path in a discrete dynamic network. Moreover, the author emphasizes that his
method is the most appropriate to the dynamic transportation systems like the
intelligent transportation systems. He put also in his approach specific
characteristics that the shortest path problem depends on. We summarized them
as follows in the table below.

Table 3.2: Time-dependent Shortest Path Classification after [86]

Network properties *  FIFO network
* Periodic network: cost and delay follow a
periodic patterns
* Zero delay arcs: no delay taken into
consideration
Waiting cost *  With memory: waiting cost depends on
waiting period
*  Without memory: cost is independent from
waiting time
Waiting constraints * Forbidden waiting
* Allowed waiting
* Bounded waiting: waiting allowed but

bounded.
Source and * One-to-all: finding the path from the source to
destination all possible destinations.

* All-to one: finding the path from all possible
sources to one destination.

* One-to-one: finding the path from one source
to one destination

Objective * Fastest path: minimum cost path with cost =

delay

* Bi-criteria: cost and time

* Multi-criteria path: the use more than one
criteria.
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Another aspect of shortest path problem is in the database context, which is
similar to our work in this dissertation. The fact it is on a database it involves the
development of intelligent transportation systems (ITS). Our thesis deals with
this issue of time-dependence shortest path on a database context. Besides, there
is much reason by storing this processed data that can help for ITS purposes. For
example in [84] the author suggested storing data in order to perform shortest
path process. In [85] the authors explicitly refer to this issue where they deal
with moving objects and they use a classical shortest path approach based on
distance.

3.4.3 Problem statement

In the domain of traffic the road network are dynamic and time dependent. In
fact between two positions of sparsely sampled GPS positions ¢, and c¢,,,, we

can have many possible paths. Moreover, the time received at the first position
and the second position can vary depending on the probe vehicle. In our work we
will focus on finding the right path based on the travel time per road section and
also the travel time between the two positions ¢, and c,,, in order to reconstruct

the path that was used by our probe vehicle.

The problem in our case is to find the optimal path that respects the travel time
between ¢, andc,,. By stating our problematic, it will be easy to find the

appropriate algorithm, adapt it, and enhance it to our case.
As a start we will define clearly the model:

Definition 11: G(V,E) is an oriented graph which means that each edge (i, j) has a
defined orientation regarding its connections with other edges. This aspect
makes the graph dynamic. Moreover, each position ¢, has a time of reception

associated to it ¢,.f.

Definition 12: let [[:E — Rbe a cost function that assigns a cost IT, to each
(i,/))E E. Given aroot r, EV the shortest path problem (SPP) consists in finding

the directed trajectory T such as the path 7, from i to j exist and it is the shortest

path with respect to the weight function.

Definition 13: (First in First out property) for each pair of time t and t’ with t>t":
V(@i,j)E EI(,j,t)+t<II(i,j,t")+t'. This means in our case, that when the probe
vehicle left from a node at time t he cannot arrive a final destination node before
t’. That’s why this condition is really important in our case to rebuild the path of
our sparsely sampled GPS data in our historical database especially in the case of
a death node (the reached node does not lead to the final destination).
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First, before modeling the time-dependent shortest problem (TDSPP), which is
the interest in our case, let’s start by formulating the shortest path problem. The
classical formulation of shortest path problem is as follows:

Let M € {—I,O,I}M*‘E‘ be the incidence matrix of the graph G(V,E) and its elements
are m;, and (equation 3.14):

ij

1 if v=i
m. =10 otherwise

1 v=j
(3.14)

Moreover we will consider a network flow problem [83] illustrated by f, such as
(equation 3.15):

1 for v=i
f, =1 -1 for v=j
0 YveV\{ij}
L (3.15)

Thus the shortest path problem will be as follows (equation 3.16):

.
min E I1.x..
(i.jpee VY

(SPP): YveVv myx, =f

VG, EE x,€{0,1}
L (3.16)

The representation above illustrates one unit of data with the requirement that
the unit reaches the destination passing the arcs (i,j) at minimum total cost. The
fact that SSP is a linear program, then all the solution is solvable. Thus it is easy
to add the time dependence aspect to our formula (equation 3.16) by introducing
extra variable ¢, , which is the time of arrival at node v.
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min ¢

v

Vi, )EE x4, +T1G,ji1,) <1,

(TDSPP)/ Ywwev mx; = f,

(i.))EE
Vi, )EE x,€{0.1}

YWEV =20
L (3.17)

Where II(i, j,t,) represents the cost of the arc (i,j) at time ?,. The representation

above of the TDSPP contains the flow conservation constraint of the road
network and also the arrival time 7, at the destination node j starting from

departure node i at time f,. Since, in our case we are trying to find the shortest

path to reach node j with respect to the travel time between node i and j that we
know from our sparsely sampled data; the arrival time constraint is satisfied.
Which means ¢, +11(, j,1,) = ;.

However this is a general representation of our case with a cost function and its
constrain regarding the data used. Besides, we will state clearly how to define
our cost function and the process in the following sections of this dissertation.
But the problem can be summarized to a Time-dependent Shortest Path Problem
for a Given Departure and Arrival Time (TDSPP-GDAT).

3.4.4 Strategy adopted To Solve TDSPP-GDAT

In this section we will start by reminding the case problem and define some
concepts and definitions that play an important role in the solving process.

First, in our case we have sparsely sampled GPS data that constitute our
historical database. This data has gap of information between each successive
data. The problem is to find out the real path that has been taken by the probe
vehicle between two known positions [129].

Let’s now define some function that we will use in showing how we solved this
graph problem.

Definition 14: (Travel time constraint function) is the time needed to go from the
source position ¢,.f to the destination or target c,,,.t. The function will be defined

as follows: h(c,_,,,.T)=c,.t—c..t. In other words this function represents the

i—i+]

travel time that the probe vehicle did to go through the two positions.
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Definition 15: (Travel time per road section function) this function computed the
travel time needed to cross it. The formula is a basic one based on the length of
the road section and the speed limit on the concerned road section. This latter

. . o e;.lenght
information we get from the digital map. f(e;.f) = —V . (3.18)
e

i*"l
Definition 16: (Cost function) clearly the cost function will be related to two other
functions defined early that are related to the departure time and arrival time.
The cost function will give a sense to the constraints by an accumulated cost
associated to the estimated travel path or formally (equation 3.19):

f(e.1)
(k,k+1,c,_,,,.T)= A (3.19)
o kséﬂ h(c,yn T)

Definition 17: (Total path weight) the total weight path is the weight that we
attribute to a specific path starting from source position to the final destination
(equation 3.20).

{W(Pi)=Ck.t+H(k’k+1’Ck—>k+l T) (320)

These formulations constitute the core of the process of making a decision
regarding the time dependency and constraints in our case.

The system process was done at the database level in order to run the process of
learning routing process. This means that we will find the entire time dependent
shortest path possible between all the nodes. The process will be done only once
on offline status. Then on online status we will call the module, he will give the
solution that he has already in his archives saved on the database.

In order to solve the time- depended shortest problem in our case TDSPP-GDAT
we decided to combine two approaches the classical algorithm of Dijkstra [73]
and the time-dependent shortest path problem with least travel time in a given
interval presented by Ding [89]. However, this latter approach has been chosen
because it can be easily generalized and modified for our case TDSPP-GDAT, by
simplifying the arrival time function to our special case. This means that the path
is determined after the travel time per road section function is processed. In
other words we defined the time dimension on each node of the graph. Then we
have to apply the travel time constraint function in order to have the weight on
the edges for all the paths. Based on this decoupling we are close to what is
called in literature Two-step- least travel time [89].

Definition 18: (Two-step- least travel time) the algorithm determines the least
arrival time to a specific node by performing a Dijkstra. The main advantage of
this algorithm of decoupling the time refinement and path selection is the ability
to figure out the right arrival time when we already know the arrival time.

81



Based on this definition, the situation is applicable to our case we will add some
modification to the strategy in order to make useable to solve our case. Because
in Tow-step least travel time they try to estimate the right arrival time function;
however, in our case we already know the arrival time. The issue then is to find
the path with arrival time function that is close to reality.

For this reason we adopt an approach where we will gradually explain the
process in the database context step by step. We distinguish two kinds of steps;
the first one is an offline step where we make a learning process of our digital
map or graph and the second one is online step where we find the appropriate
path for our case.

Before starting the algorithm we generate our graph by having all the vertices set
and all edges sets and also attribute the time distance to them by using the travel
time constraint function.

First step (offline)- Dijkstra based on travel time. At this level the purpose to
scan the whole graph that is already built with all the edges and vertices
enhanced with travel time per road section function information. This means
that the Dijkstra is involved in his search aspect. The algorithm starts by
initialization process where he gets from the list of vertices the start point v,

and the arrival point v,,,. Then he will search for all possible connections that

can lead him to reach the arrival point and computing at the same time the total
travel time per road section function as it was defined in definition 15 for each
path found. The final results will be a graph that contains information about all
paths possible from a starting vertex to an arrival vertex knowing the travel time
needed to do so. In order to make it clear we break it down into phases as
follows:

* Phasel: all the vertices in the graph are assigned to a travel time distance
equal to infinity except the initial vertex, which is equal to zero.

* Phase2: set the initial node to status of current and all the other vertices
to unvisited. Create a set of unvisited vertices excluding the initial vertex.

* Phase3: take into consideration all unvisited neighbors of the current
vertex and compute their travel time distance.

* Phase4: after considering all the potential neighbors we mark the current
vertex as visited thus it will be removed from unvisited vertices set. This
means that the visited vertex will be never visited again and its time
distance to all neighbors is recorded.

* Phase5: the next current vertex is marked with the lowest time distance
in the unvisited vertices set.

* Phaseé6: in case the unvisited set is empty then we stop. Otherwise, the
vertex in the unvisited set vertices with the lowest time distance is set to
current and we go back to phase3.
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This offline process will provide us a database with all possible tree paths from a
start point to an arrival point including the Travel time constraint function or
time distance information for each connection. Now during the online step the
information collected from the offline step will be used to compute the Cost
function and find the logical path for each pairs of the sparsely sampled GPS data
in the historical database.

Second step (online)- shortest pathfinder. In this step we will have as input
the two position from our sparsely sampled GPS data, starting position ¢, and

the arrival position ¢,,, with their time respectively ¢,.t and c,,,.f. Moreover, we

will have also the information concerning to which edge they are assigned to.
This latter information will help us find the concerned vertices v,and v,,,. By

consulting our database of possible paths done in first step we will have the set
of all possible paths. Therefore, it is easy to compute the weight of each path
using the cost function defined in definition 16 and as a consequence we will
have also the total weight for each path by conducting definition 17. Now we will
have the set of total weight per path W(P).

The next step is to get the real weight because we did not take into the
consideration the time distance between the GPS positions and the concerned
vertices.

Definition 19: (Data time distance function) is the function that computes the
time distance between the GPS position on the edge and the end or start point of

the edge. We will define as follows: 7, (c,) = fle)*Lic) (3.21).
e, lenght

Where, L(c,)=dist(v,,c,) is the Euclidian distance between GPS position and the
concerned vertex on the graph.

Therefore the weight for a specific path will be as follows(equation 3.22):

Total _Weight(P,) =T, (c,)+1I(k.k+1,c,_,,,,.T)+T,s(c.,,) (3.22)

Finally, the optimal path solving our TDSPP-GDAT will be the one with the
highest total weight. Thus the method proposed eliminates the data outliers
when compared to an estimated route

3.5 Conclusion

In this chapter we went through what we call in our dissertation the
preprocessing tools. This latter makes reference to all processes needed to make
the raw data in an urban context ready to be treated.

The first process was to extract the digital map from the “openstreetmap” and
also add new characteristics to it for enhancement purposes. Then we processed
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a raw data check in order to clean our Historical database from any ambiguity
information.

The second main tool in this chapter was the map matching process that we used
to match our raw data to the digital map. Our map matching was explained and
also the entire enhancement added to it in order to reduce all the error factors
and get a good representation of the data reflecting almost the reality.

The third part was related to the time-dependent shortest path problem given a
departure and arrival time. This is used by the map matching process at a certain
level of the process. In this part we explained our new approach in a database
context. We have adopted a new step called a learning phase that we processed
on offline status and then we described how the algorithm reacts when the map
matching on online status calls it.

Finally, after making all our raw data ready and filtered we will discuss in the

following chapter the core of our dissertation which is the travel time estimation
in a historical database context.
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Chapter 4: Travel Time Estimation
using Sparsely Sampled Data in an
urban network

4.1 Introduction

Estimating travel time in an urban road network using sparsely sampled data
from probes has proven to be a substantial challenge. The sparsely sampled GPS
data represents the vast majority of the data available in urban road networks
environment.

Nowadays the feature of probe vehicle data includes the variety of data type, the
lack of ubiquity and reliability, and the random aspect of its spatio-temporal
coverage. All these features make it insufficient to make a clear idea about the
macroscopic traffic model parameters with clear statement about the state
estimation for the large transportation network.

Moreover, the penetration rate of this kind of data is still typically low which
mean the information regarding the urban network can not be homogeneous
thus it is not representing the full traffic state of the system [90].

However, this data can be processed and enriched to make it usable for the
macroscopic level. In order to so we can for example enrich it with travel time
estimation per road section.

Regarding the literature on travel time estimation using this kind of data
presents two challenges the first is finding the path that was taken by the probe,
which tried to solve in chapter 3 of this dissertation. The second one is to find the
travel time spent in each road section and there are many methods that have
been developed for this purpose such as:

In [90] where the author used a probabilistic approach to model the travel time
in an arterial network using low frequency taxi GPS information. The model
developed assumes the following hypothesis: between two successive data there
is at least a road section and it does not take into account the case when the two
GPS data are located in the same road section. The problem with this approach, it
needs to observe the route travel time on the road section, which is not the case
with sparsely sampled data. That's why he used a simulation based on the
maximum likelihood. This solution is good after all but it is not reflecting the
reality and it complexity.
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Another approach was presented in [92], where the author used a statistical
approach to increase the reliability and the estimation of travel time by using all
the observed data from the probes. The model learns from the data and predicts
the travel time for any trajectory in the network.

Whereas, there is another context of estimating travel time, which concerns us in
our dissertation, is estimating travel time in a historical database. Some of the
work done in this area was based on the analysis of traffic information from the
real world data. By applying many techniques such as fuzzy logic, artificial
intelligence, mathematical models or statistical models.

For example in [93] the authors established a mathematical model to estimate
travel time using GPS data from probe vehicles. The historical travel time data
was used to adjust his statistical travel time estimation model based on historical
travel time data. The result of this approach was good in a fluid traffic but the
model was unable to perform good results when there is congestion in the
network.

A probabilistic model to estimate travel time in arterial network using sparsely
sampled GPS data is presented in [149]. The author used an Expectation-
Maximization algorithm to estimate the probability distribution of travel time
through the road section. As the roads sections travel time are not directly
observed, a simulation based on EM algorithm is proposed. The author assumes
in his analysis that the travel time per road sections are independent, which not
the case in reality.

In some article like in [150] and [151], they took into consideration the
dependency of travel time per road sections using Spatio-temporal auto
regression moving average approach. These models, however, were applied to
stationary sensor data and not probe vehicle data. Thus, they used the traffic
flow information in order to estimate travel time.

Another approach, using sparsely sampled GPS data from ambulance, is
presented in [152]. The author used a Bayesian approach to estimate travel time.
The travel time was assumed to be independent and follow a log-normal
distribution. Besides, the parameters are estimated using a Markov chain.
However, the approach presented does not take into consideration the variance
of travel time and speed.

All the methods presented do not take into account very important fact such as
the dependency and the variance of travel time per road sections. That's why we
choose to use particle filter in our approach because it gives us this ability to take
into consideration all those features of travel time in reality (dependency,
variance).
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Our approach in this thesis work will be by presenting a new method to estimate
travel time per road section at a microscopic level using Monte Carlo Method and
historical probability distributions of travel time on each road section. The
estimation will be done in the Historical database in order to enrich it with travel
time information using sparsely sampled GPS data.

4.2 Problem Statement

In this section we will try to formalize the problem of travel time estimation in
our case. We will start by illustrating the situation that we have to solve. First, we
will state some definitions in order to make it easy to understand the problem.

Definition 19: (PUMAS Points) is the virtual node on the digital map where the
road section intersects (green squares on Figure 4.1). This means that any road
section or PUMAS section is defined by a starting PUMAS point nj,p and an

ending PUMAS pointn/ .

Definition 20: (Moment of Passage, Mp/) is the time when the probe vehicle
passes through the PUMAS points. Thus each PUMAS point will have the
information related to its position on the map and also the estimated time when
the probe vehicle went through it Mp/ .

Definition 21: (Travel time per section) is the total time needed to cross the
whole road section. In other words it is the time needed to go through the
starting PUMAS point of the road section till reaching the ending PUMAS point of
the same road section.

Vi = , - Vi
d %

1

Figure 4.1: Illustration of Sparsely Sampled GPS Data on the Digital Map.

The issue is to estimate the travel time between two successive sparsely sampled
GPS data. The process start by detecting all the road sections which means find
out all the PUMAS points between the two successive sparsely GPS data.
Moreover this process can be done successfully when we apply all the processes
described in chapter 3. After determining the PUMAS points the remaining step
is to estimate the moment of passage through those virtual position (PUMAS
points) then it is easy to find out the travel time estimation per road sections.

Our approach to solve the problem will be based on the family of sequential
Monte Carlo Methods (MCM). These methods are interesting for us due to their

88



aspect. They are a comprehensive approach based on an exploration of the space
state of the problem using particles with a randomly changing dynamics. All
these particles are distributed according to the probability of the process to
estimate conditional observations issued by the sensors.

Moreover, it does not require explicit resolution of the problem equations; this
method is applicable regardless of the complexity of these equations, especially
in terms of non-linearity and non-Gaussian.

4.3 Particle Filter Model

The particle filter (PF) proposed originally by Gordon et al [95], this kind of
algorithm which uses particle filtering has gradually emerged as the best
technique for processing nonlinear signals. The concept of resampling
introduced by Gordon has allowed many issues related to estimations and
predictions to be solved, and also opened new windows to be explored and
developed. The particle filtering algorithms can estimate probability through
successive measurement by using a finite set of Dirac measurements centered in
the corresponding points of "particles".

This approach has a lot of success in the scientific community and its application
has covered all kind of fields. It was used in the 1950s to simulate polymer
chains of great length [99] and also to solve problems of physics during World
War II [100]. Since the 1990s, these simulation methods have become
widespread in various fields such as radar signal processing [101], genetics
[102], robotics [103], and the classical Bayesian estimation [104], and also it has
been applied to localization, navigation, tracking [94] or multiple target tracking
[96], vision [97], and communication [98].

In many applications the goal is to estimate the posterior probability density for
the states by using some observations. Thus we have to define the states
equation parameters that we will denote by the vector X, = {xo,xl,xz,...,xt} while
the vector Y, ={y0,y],y2,...,y,} denotes all the observations up to time t. Let's

consider the following model representing the state equation and the
observation equation 4.1:

{xnl = f(xt)+ u,
(4.1)

v, =h(x,)+b,

Where u, ~p, ()and b ~p,() are the process and measurement noises

respectively. Besides, f and h are two arbitrary nonlinear functions. Moreover
they are assumed to follow an independent distribution with known densities.
And the system state process can be defined as follows (equation 4.2):
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p(X)=px)] [ px\ %) (4.2)

The prior distribution of the state at initial state t=to is given by p(x,). The
particle filters are usually used when the posterior density p(Xr\Yt)and the
observation density p(Y,\Xt) are non-Gaussian. The observations are
conditionally independent given the states (equation 4.3):

pOAX) =[P \x)  (43)

k=0
We should forget that the purpose of the method is to estimate the posterior
density p(x,\Y,). Since the case is neither linear nor Gaussian the posterior

representation should be the total probability density function. Thus the
estimation will be as follows (equation 4.4):

p(X \Y)= p(yt\Xl’Yt—l)p(xf\XT—I’YZ—I)p(X_ \Y_)
t t p(y[\Yt_l) -1 t-1 (44)
= p(yt\xt)p(xt\xf_l)p(xt_l \Yt_l)
pOy,\Y)

The expression became as it is shown above due the definition of the system’s
state process (equation 4.2).
The key idea behind the PF is to approximate the probability distribution by

applying a weighted sample set. Let’s {Xf”}?v are the samples set drawn from

i=1

the posterior. Then the estimation expression will be:

A lN ]
P(X\Y)=—)doX -x? 4.5
<,,>N§<,,> (4.5)

Where 6(X,) is the Dirac delta function. The sampled in this situation are equally
correct because they are drawn from the posterior itself. As a consequence, their
weight sum will be equal to one. The value 1/N added is in order to respect the
law of total probability. This estimation can be used for example to have an idea
about different moments of the posterior by computing the expectation and the
covariance.

The samples that we have cannot be drawn from the posterior simply because it
is unknown. To mitigate this problem, it is possible to choose an alternative
known probability distribution density ¢(X,\Y,)instead of using p(X,\Y)).

Therefore, they are drawn using ¢(X,\Y,) which is depending on Y, (equation
4.6).
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q(X,\Y)=q(x \X,,.Y,)q(X,\Y))

= q(xt \ Xz—l ’Yr )q(Xr—l \ Yz—l)

The last equality (equation 4.6) that is shown is due to the restriction that the
states at time t-1 and older are independent of the measurement at time t. This

(4.6)

implies that we have the power to draw {xf”}fv] from ¢(x,\X_.,Y) and

i=

{ X0 = { X0 xm}}N form {Xt(_"i}il the set without adjusting.

-]
t-1 t il

To make the estimation of the posterior by exploiting these samples we should
associate them with what is called the importance weight w, (equation 4.7).

W0 2 PXONY) () PO A PN
i i i -1
Cog(X"\Y) p() " g \XAY)

t =11t

(4.7)

The only relationship that is important for us is the weights regarding the
pY.)
t — -

particles thus we can neglec
p(Y,)

. Thus the expression of equation 4.7 will be:

@ _ PO NN p(x"\x)
Wi = 0 Wi
q(x,"\X',Y)

t -1t

(4.8)

We can make it simpler by using the state of propagation density (equation 4.9),
q('xz \ Xr—l’Yz) = P(xt \ X[_l) (49)

Therefore, the weight equation 4.8 will finally as follows:

wf” =p(y, \xf"))wt(i)1 (4.10)

As a consequence, the estimation of the posterior equation 4.5 will be at the end
as follow:

» N (D) A
P(X\Y)= Y we (X, -X")

i=1
BUE— (4.11)
W =

N

)
2w
j=1

During the PF algorithm process, time evolves; as a consequence, it pushes the
samples tend to spread and the weights for almost all the samples tends to zero.
This means they are not helping to converge to the estimation. However, there is
a solution to this issue. We should just check the covariance of the samples and
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the covariance obtained from the weighted sampled. Besides, by comparing the
two covariance, we will get the efficiency measurement of our sampling. It is
shown in many application of the filter like in [108] that we can estimate the
efficiency by using the following expression (equation 4.12):

1

Ny=—75— (4.12)

0w )

And in order to know if the samples have spread far enough the use of threshold

can give this information normally it is defined as follows: N, = ZTN

To sum up, the particle filter algorithm can be illustrated as follows:
1. Initialization at t=to Generate samples x, ~ p(x,) for

Calculate w{’ = p(y, \ x") for
i=1,....... ,N and Normalize

2. Measurement update t> to Calculate w"” = p(y, \ x”)w") for

i=1,...... ,N and Normalize

()
W,

N

()
v
j=1

3. Re-sampling for each t> to (a) Take N samples with replacement
N

from {x("’}._l where the probability to

w: =

tJ

take sample iis w" =

. =

. This step is

z|=

called Sampling Importance Re-
sampling (SIR) or Bayesian bootstrap.
(b) Only re-sample when

1
Ng=——a <N
>, )

w_ 1
and set w,"” = —
N

92



A N @) _
P(X,\Y):Ew, (X, -X")
i=l1

(@) ()

4. Prediction or estimation

- W
W = T
()
2w
Jj=1
5. Iteration Let t=t+1 and iterate to process #2
o A ©
Probabilities &Y
| Initialisation Prediction k
P(AJ/\A l)
s Weighting q(YA ‘XA_)
% S
Y,
: . +1
Resampling
o 9 g y
N
o 7 ~a
Time

Figure4.2: Particle Filter Process

After this remainder (figure 4.2) of some generalities about the particle filter
based on the Monte Carlo methods. This approach allows us to construct
recursively a cloud of particle weighted approaching the filter law. However, the
recursive nature of the filter leads to a degeneration of the cloud induced by an
augmentation through time of the unconditional variance of its weights. In order
to control this degeneration of the particle clouds the resampling process allows
to limit this aspect by giving more importance to the significant weights. Our
objective in this dissertation is not to make the basic algorithm of particle filter
better, but to find out the best adaptive one for our case of study in this thesis
work. More details about the changes done will be shown in the next sections of
this chapter.

After this discussion we will describe some of the known distribution used in the
field.
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a. Normal distribution

The most used probability distribution to describe a physical situation is the
normal distribution. The reason behind this statement is that most of the outputs
from many processes are normally distributed.

All normal distributions have the same general shape. However, they can differ
in their mean value and their variation, regarding the situation studied.

The normal distribution can be described mathematically as follows (equation
4.13):

1 —(x-u)’

()= ——e
/ o271
Where,

* xisany value of the random variable,
* O isthe population standard deviation,
* uisthe population mean.

(4.13)

And by influencing the mean and the standard deviation we can have different
representation of the probability distribution, however, the total area
(probability) under each normal curve equals 1.

b. Lognormal distribution

The log-normal distribution is a skewed distribution, which starts zero, rises to a
maximum before falling more slowly to infinity (figure 4.3). It is connected to
normal distribution: X is a log-normal distribution if In(X) is a normal
distribution.

The normal distribution can be described mathematically as follows (equation
4.14 and 4.15):

—(Inx-p)*
1 e 20,2

f(X) = XO'I\/E (4.14)

And the parameters required to specify the function are: u, the average natural

log transformation of the input data, and the variance o; of the natural-log
transformation of the input data. They are defined as follows:
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2 (4.15)
0,= [In(Z+1)

Where,
* xisany value of the random variable,
* 0O isthe population standard deviation,
* uisthe population mean.

| —m=0,5=10,
|7 M=0,5=5,
| M=0,8=2,
| Meogg, | "
|—m=0,5=0.5, | _
| M=0,520.25, | ..o i

Figure 4.3: Several lognormal distributions with different mean and
variance

Galton and McAlister 1897 did the first article in the literature where they
initiated the study of the distribution in order to use the geometric mean as an
estimation of location. It seams that this distribution give interesting results for
example in [107] the author used this distribution to estimate the path/location
and travel time using sparsely sampled GPS data.

4.4 Travel time parameters Distributions

In the previous section we skimmed through the particle sampling process
where we choose a distribution for our particles. Which is an important process
in the Monte Carlo approaches because it will affect the output of the particle
filter. Regarding our work in this dissertation to estimate the travel time per
road section is touching three aspects location or distance, time, and speed.
Based on this three aspect we will discuss and try to define their distributions.

4.4.1 Speed distribution on a road section
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Making a good estimation of travel time need a good understanding of traffic
dynamics. Especially in our case in this dissertation we will use an adaptive
particle filter where vehicle’s speed is one of the parameters that we will affect
with particles approach. Thus defining the closed probability density distribution
of speed is needed in order to give a good estimation of travel time. Our interest
in this section is to define the speed distribution model per road section in an
urban context.

We have to take into consideration that the driver selects the speed. Each driver
has his/her own way of driving. Some of them respect the speed limits others
not. Besides, there are other factors involved that can push the driver to not
respect the regulations such as vehicle’s capacity and power, road condition,
driver ability and so on.

The speed distribution can provide answer to the issue discussed above. Where
the distribution will show all the arrangement of speed values showing their
observed or theoretical frequency of occurrence. The research done in this
subject has shown that the speed distribution is normally distributed; however,
the properties or the characteristics of the probability distribution function (pdf)
on each urban road section can vary depending on the driver behavior (Figure
4.4).

0.06
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Figure 4.4: Speed Normal Probability Distribution

This kind of distribution allows us to characterize the speed using two features
the mean and the standard deviation. Another aspect of the distribution is when
we have the same mean but different standard deviations (Figure 4.5). This
issues discussed will be check in chapter 5.
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Figure 4.5: Example of two pdf with same mean and different standard
deviations

These kinds of speed can be clearly noticed when we try to find out the speed
profile in the road network (more details in chapter 5). The speed profiles are a
graphical representation of speed features plotted by location. Besides, the use of
speed profiles can help to analyze and evaluate the speed attitudes. The purpose
behind this enlightenment is to show: how hard to estimate the right speed
distribution that reflects the reality. As the Figure 4.6 shows that the driving
behavior can be really complicated because of the people’s interaction when
using their vehicles between themselves and the use of speed on the urban road.
Moreover, based on the figure 4.6 we can notice that the speed displacement of
the male’s speed graph cover in uniform way a large interval.

Male driver speed at crosswalk when
pedestrian approaches to cross.
Driving simulator study.
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Distance (m)

Figure 4.6: Speed Profile [Aronson 06]

After this brief discussion about the speed distribution it is clear that it is not
easy to come out with a perfect distribution reflecting the reality but we will try
to approach this reality. In order to determine the shape of the speed
distribution, a common method to use is the histogram. Although the histogram
method is widely used for data interpretation in many areas, it should be
commented that the histogram method has a potential limitations because this
method strongly depends on data origin, bin interval, and bin width [118]. This
issue point to the fact that the histogram should be well constructed. Besides, the
histogram is very good to use to get brief information about the speed
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distribution and there are some cases when we don’'t have this issue of
discontinuity of data.

In the case when the characteristics of speed data are homogeneous which is the
case for expressway in the urban areas then the speed probability density
distribution can be conventionally described as normal distribution. However,
the speed in urban networks can follow a bimodal distribution or polymodal
distribution in this case there is no specific distribution function available [119].
However, it seems from figure 4.6 that the appropriate distribution of the speed
is a bimodal distribution, will conduct an analysis in chapter 5 based on the
observed speed data from historical data

Thus the appropriate way to estimate density function of the bimodal or
polymodal distributions is the mixture model. The mixture model tries to cluster
data into specific groups so that the data in the group have more similarity
between each other [120]. We can represent the mixture model by using any
kind of probability density distribution. In general the most used distribution is
the Gaussian mixture model due to its simplicity of the estimation process;
moreover, it is used for computational, mathematics, and optimization
operations [121].

The Gaussian mixture model can be defined in general as follows [121]:

P
DX\ Uy yeeis Uy Spseees SpsToeees Tp) = EtiN(ui,si'l)
= (4.16)

Where 7,(7;z0) is a mixing proportion and each Gaussian distribution
N(uw,,s;") has its own mean g, and s; ' is the inverse variance which refers to the

precision. For example in the case of bimodal model (figure 4.7) the value of P
will be equal to 2. Besides, the bimodal distribution has two mixture

components (7,and 7, ); the condition on these proportions is the sum is equal

P
toone Y7, =1[119], [121].

i=1
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Figure 4.7: Example of Gaussian Bimodal Distribution

In the urban network due to the traffic jam phenomena a single distribution
cannot be appropriate to the situation. Thus the speed distribution needs two
separate regimes as a mixture of two different Gaussian or normal density
distribution. From this point, the first mixture component representing the low-

speed regime can be formulated as N(u,,s;') and the second mixture

component showing the high-speed regime can be represented by N(u,,s;'). As
consequence, the speed Gaussian mixture model in this case will be as follows:

pv(V\Mluu'zaSpsz,Tl’Tz) = TIN(MI,SI_I)+T2N(‘L£2,S;1) (417)

P
By using Eri =1the equation 4.17 become:

i=1

PO\ 5,5,,5,,T) = (L= T)N (1,57 + TN (4, 55") (4.18)

Where T=1,

Moreover we will put the hypothesis that the speed distribution parameters will
be define by two speeds of low-speed and high-speed regime as follows:

1. The low-speed regime is when we have a heavy traffic which mean either
we have traffic jam situation or stop and go situation due to light traffic or
road intersection or maybe just a dense traffic situation. The value of this
kind of speed will be defined based on the study done on each road
section where we find the min speed used on the concerned road section.
We will noteitasv,, .
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2. The high-speed regime v, is when we have fluid traffic no traffic jam. In

order to define the value of that speed we will use our data to define the
85t percentile speed.
The hypothesis will be checked during the test phase in chapter 5.

Definition 22: (85th percentile speed) is the speed at or below which 85 percent
of vehicle travel in a road section.

4.4.2 Locations distribution on a road section

The probability density function of a vehicle’s displacement on a road sections is
a linear combination of normal distribution based on [122]. This aspect is due to
the uncertainty of the traffic on the road section or to the different behaviors of
the drivers (figure 4.8).

bd !
fowe} Y

Locations
Figure 4.8: the pdf of GPS locations [122]

Based on this analysis, it is clear that most of the cases the vehicle locations x
follows a normal distribution on a road section. Moreover, the vehicle locations
distribution is related to the speed evolution during the period Af when the
vehicle passes by the road section. Thus the locations distribution is a normal

distribution p(x) (as defined in 4.3).

4.4.3 Travel Time distribution on a road section

For the travel time probability distribution we will use the fact that travel time is
related to the speed on the road section. Which means that the probability
distribution of travel time is proportional to the speed probability distribution
on the road section (equation 4.19).
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p.()xp (v) and v=§

Thus  p. (1) p,(=)
v (4.19)

by using the fact that the travel time distribution is proportional to the speed
distribution (defined in 4.4.2, equation 4.18) we have the following results:

X _ X _
px(t) = (I_T)N(_uupsl 1)+N(_’M2aszl)
Vinin Vinax (420)

Where the N(f,ul,sl‘l) will be defined as follows (equation 4.21):
v

X
x 1 _M(v_;)
N( b 12 1_1 = 2 ( 2 —1\2 )
1% H3 (s—l) /2” *Xp 2v (S )

(4.21)

and, v andv,, are respectively low and high-speed regime when the traffic
status on the road section is congested or fluid.

4.5 Travel time estimation using adaptive Monte Carlo approach

In this section we will expose the process adopted in order to create our adaptive
method to estimate travel time [129]. As a remainder, our historical data has
special features. The data used is a sparsely sampled GPS data where an interval
of one minute between each successive GPS data point [130]. Therefore, the data
has a frequency of one minute between each GPS point which is not the case for
normal GPS data received from a normal GPS receiver where data is received
each second (illustration figure 4.9).

Vv, Vv
—> = m —=
d, d,
Vv, Vv,
— ] —> N
d; d,
Figure 4.9:Illustration of Sparsely Sampled Data on the Map (green squares
are the PUMAS points)
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The fact that our estimation is only related to the travel time we can assume that
our estimation process can be associated with the state equation as follows:

S,=8+V,*(,-t)+U  (a22)

Where Sp and Sk refer respectively to GPS coordinate of the PUMAS point and
the first GPS data received, Vk is the speed of the car at the moment of receiving
the GPS coordinates, tp and tk are respectively the time when the car was at the
PUMAS point position and when we receive the GPS data, and finally U is a white
state noise following a normal distribution that we add to the equation in order
to represent to the imprecision of our parameters. Then our objective is to
estimate tp :

_ S,-U-35§,

t
’ 4

+0, (4.23)

In our case we will process the unknown parameters of the equation by applying
a defined model are known. Thus, we will inject our data directly by applying the
particle process for each unknown parameters in order to simulate the
uncertainty of our data.

As a start, we will apply particles based on a normal distribution (Gaussian
distribution) for which the mean is the value of the parameter and the total area
under the normal curve is equal to 1. In our case, we choose a probability density
with a fixed standard deviation 0 that will make the particles evolve during the
resampling stage following the equation below:

1 _(YP B Y;r/Xt—l )2

P(Y, /Xz) = O'\/ﬂ exp( 20> ) (4.24)

Where Y, and v,

XI/XI—I

are respectively the observed positions of the PUMAS

points and the observed positions of the data on the map.

Thus our global particles equation will be as follows:
S, =8 +VIx -1)+U"  (4.25)
Therefore equation (4.25) becomes:

. S — U(i) _ S(i)
@O _"p k
tp - V(,‘) +tk (4.26)
k
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Now we apply this formula to the first GPS data received and we call the
estimated time of passage tp forward (tpf). Then we do the same for the second

GPS data received after one minute and we call estimated time of passage tp
backward (tpb) (figure 4.10).

() ()

P k 4.2
1y o +1, (4.27)
k
S _U(i) S(l)
) =1y, (4.28)
Vk+1
()
: tpb
t(l)
»f
Vi V,
O O K>
N d t(i) d
t(l) 1 pb g

1 V.‘7
il x> O
d’ d2
Figure 4.10:tp-forward and tp-backward illustration

Moreover we attribute a weight to each estimated tpf and tpb. The weight
function was defined in such a way to take into account the accuracy of the
estimation by using a time distance notion. These equations are:

(@)
A
Wl(’) =_r 'k (4.29)

L — L

ot =t
WO = (4.30)

L =1

Where W and W,” are the weight of tpf and tpb respectively. Finally the
estimation is computed as follows:

N
=1 () s (D) (1) 3 4(0)
tp - EE(VVl tpf +W2 tpb) (4.31)
i=1
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The algorithm will help us to estimate at what time the vehicle passed by the
PUMAS points tpi (algorithm 1, figure 4.11) and then we can compute the travel
time per PUMAS sections Tpj where j and i refer to the sections and PUMAS
points respectively.

TP' - tPi+1 B tPi (4.32)

J
After obtaining our estimation we add the estimated delay time on the PUMAS
zone due to traffic light duration as mentioned in [105] when we detect a

crossroad or the presence of traffic light in the itinerary of the vehicle; we can
compute it using the following equation:

D=Lxs

o (433
v (4.33)

Where L is length of the PUMAS section, V is the limit speed in the PUMAS section
concerned, and Sout is the number of vehicles that leave the PUMAS section
during a given period of time [t, t+ At [.

The filter estimator was created in such a way as to be adapted to our special

historical database and in the next section we will explain our experimental
process and then we will show our results.
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At time to.

Initialization.

Define an initial state.

Generate N particles for (S,.5,,;.V;.V,,,-U) Following p( S, ).p( S 1p( Ve )p(Vie)),

p(U).
Put w® = % Sampling Importance Resampling (SIR).

For j=1 to M do
Update the particles (5,5, v,V U®™)
For i=1 to N do

@ @
Compute ;) and 7).

Compute the weight W and W,".

(i) (@)
Normalize the weights Wl(i) =NL and Wz(i) = NWZ .
EWl(i) sz(i)
i=1 i=1
End.
Compute N =— and N, = N;
E(VVI(D)Z E(‘/Vz(i))2
i=1 i=1

If N, =N, (threshold) then

eff
. . SN
Resampling {tl(;“)’“/l(l)} -

Update the weights W,

Else If N, = N, (threshold) then

Resampling {tl(f,,),Wz(")}ﬁ-

Update the weights W,”.

End If.
End If

N
Compute the estimation: 7, = %E(Wl(') * t;,}) + W t;’b)) :
i=1

End.

Figure 4.11: Estimation filter algorithm1 (N: Number of particles, M:
Number of iterations) [129]

4.6 Travel time estimation using Monte Carlo method enhanced with
measurements and road sections characteristics

In this part we will show how we made an enhancement to the previous
algorithm. Some of the steps are similar but with some changes in the process
and the equations used.
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We keep the same state equation 4.22 as it was stated before with the same
notations and meaning:

Sp=Sk+Vk*(l‘p—l‘k)+U (4.22)

then after applying the particle with the same characteritics as it was shown
before. Which means the particles follow a normal distribution (Gaussian
distribution) for which the mean is the value of the parameter and the total area
under the normal curve is equal to 1. In our case, we choose a probability density
with a fixed standard deviation O as before equation 4.25

1 _(YP B Y;r/Xt—l )2

P(Y, /Xz) = O'\/ﬂ exp( 20> ) (4.24)

Therefore, the expression with particles (i) will be as before equation 4.27:

S, -U® -8

(@) )4

= -

p Vk(l)

after this step we apply as before this formula to the first GPS data received and
we call the estimated time of passage tp forward (tpf). Then we do the same for

the second GPS data received after one minute and we call estimated time of
passage tp backward (tpb).

+1 (4.26)

. S — U(i) _ S(i)
@& _"p k
tpf - 0 +1, (4.27)
k
) ()
t(i)=Sp_U =S ny
rb v ol (4.28)

however this time we will detect all the PUMAS points between the two GPS data.
Let’s note j the number of PUMAS points detected. Thus the formula (equations
4.27 and 4.28) will become as follows:

(i) i)
o Y S
pif Vk(i) k
(i) (i) fOl" J= {1,2,3,....,P}
@) Sl’f -U _Sk+1 +t (4‘34)
b= i k+1
; v

As a concequence, the weight expression based on time distance will become
(equation 4.35):
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W = vt
1,j t -t
o o= 123y
e 4.3
WZ(,j)=—p
L — L

the next step will be defining the new weight where the road sections
characteristics based on measurements introduced in the weight of the particles
equations.

Based on the study done before on this chapter, we know the probability
distribution of travel time of each road section on our network (section 4.4.4).
Thus the expression will be as follows (equation 4.36):

P
@) _ (i) (i)
wl - Ev‘/l,j Px(tpjf)
j=l
P

ol = W)
- (4.36)

Where,

P =(1=TN(——, 1,57+ TN (=, s ,53")
Vmin Vmax (43 7)

Finally the estimation is computed as before using the formula 4.38:
N , . . ,

t, = %Z(a};%g;f +@15)) for j= {1,23,..,P} .

now we have the estimation of the moment of passage on each PUMAS point

detected on the path and we can conclude with the travel time estimation per

road section using the equation stated before (equation 4.32) and we add also
the notion delay at intersections using equation 4.33.
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At time to.
Initialization.
Define an initial state.

Generate N particles for (Sk’Sk+1’Vk ’Vk+1’U) Following p( Sk )p( Sk+1 )p( ‘/k ),p(Vk+1 ),

; 1
Put W = — Sampling Importance Resampling (SIR).
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Forl=1to M do
Update the particles (S,Ei),S(i) VO ve U
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Forj=1to P do
Fori=1to N do
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Compute tpjf and tpjb.
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End.

End.
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i i=

Update the weights wl(i) .
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wy’ } :

i=1
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Resampling { b
J

Update the weights wgi) .

End If.
End If

Pj

N
Compute the estimation: tp = %E(a)f’) * t;;j)f + a);’) * l‘(l_)b) .
i=1

End.

Figure 4.12: Estimation filter algorithm2 (M number of iterations, P
number of PUMAS points, N number of particles) [132]
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4.7 Conclusion

To sum up, first we stated our problem statement where we defined exactly the
problematic that we are dealing with. Then we gave an overview of the study on
the parameters characterizing the traffic and their distributions regarding a road
section approach. The study of those parameters was used later on the
enhancement of the method proposed to estimate the travel time per road
section or road section. Next, we presented our approach to estimate the travel
time using a Monte Carlo method. Moreover, the approach was adapted to our
case of study. Finally, we showed how we made and enhancement to the
proposed method using the measurements and characteristics of the road
sections in urban road network [132]. The next chapter will show all the details
regarding the implementation of the whole system (software) plus the results of
all what was done in this research work.
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Chapter 5: Implementation, Results
and Analysis

5.1 Introduction

The following chapter will present the implementation of the system.
Furthermore, it will show and discuss the results of the experiments done using
real world data. We should remind that the data used in our historical database
is sampled with a rate of 60 seconds between each successive GPS data.

The results presented will be about each proposed algorithm. First, we will
discuss the results of the map matching which include:

* A spatial map matching,

* Updated spatial map matching,

* Spatio-temporal map matching

* A corrected spatio-temporal map matching.

The second point will be the verification of the stated hypothesis about the speed
distribution. Finally, we will show the results of travel time estimation using
basic Monte Carlo Method and enhanced one.

5.2 Building the Digital Map

In this section we will describe the implementation done in order to extract the
digital map and add the GIS information. This latter refer to the PUMAS points,
PUMAS sections, road type, road orientation, road section’s speed limit, etc.

5.2.1 Description and Implementation

As we said before in chapter 3 that we used OpenStreetMap (OSM) in order to
extract the XML file (Raw OSM Data) containing the information about the map.
The figure 5.1 shows the way the information extracted are written. For example
the node contains its id and to each way or section is connected and its
coordinates. Besides, it will have also the information about the ways or section,
their id, connection id, etc.
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<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGlmap 0.0.2">

<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900"
maxlon="12.2524800"/>

<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO"
uid="46882" visible="true" version="1" changeset="676636"
timestamp="2008—-09-21T21:37:45Z2" />

<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter"
uid="36744" visible="true" version="1" changeset="323878"
timestamp="2008—-05-03T13:39:23Z"/>

<node id="298884272" |at="54.0901447" lon="12.2516513" user="SvenHRO"
uid="46882" visible="true" version="1" changeset="676636"
timestamp="2008—-09-21T21:37:45Z" />

<way id="11" user="Masch" uid="55988" visible="true" version="5"
changeset="4142606" timestamp="2010—-03—-16T11:47:08Z">

<nd ref="22"/>

<nd ref="33"/>

<nd ref="44"/>

<tag k="highway" v="primary"/>

<tag k="name" v="bouhbouh"/>

<tag k="oneway" v="-1"/>

<tag k="maxspeed" v="90"/>

</way>

Figure 5.1: Example of OpenStreeetMap's XML file

The tool created using OSM-PgRouting allow us to import from the XML file all
the tags that we need such as the node points and tag way, corresponding to the
sections, the number of lanes on a section, the section is that a way or not (road
section orientation) and the speed limit. These attributes are essential because
later we used them in the map-matching process and the calculation of the
shortest paths and calculation of travel time estimation per road section.
Moreover, the calculation of the shortest path at the level of database context is
done during the process of creating the map with its GIS information. The
following figure 5.2 shows the classes implemented in order to do this task.
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Configuration

+getParameter()
-loadConfig()

DefaultHandler

PUMASHandler
-map: Map
-file: String -map: Ma
-database: String Ko— -poin':: Poiﬁt

-section: Section
-parents: String

+run()
+parserOSM() nee
-storeOSM() +startElement()
-createMap() +endElement()
-calculateShortestPaths() -parserAttributes()
-startElementNode()
-startElementWay()
-startElementTag()
-startElementNd()
-endElementNode()

-endElementWay()
-endElementTag()
-endElementNd

Figure 5.2: Class Diagram of the Building Digital Map Process

The parser class has a lot of functionalities. It reads the OSM file (XML) and
recovers the data using the function “parseOSM”, stores the data in the database
using the function “storeOSM” and transforms them into PUMAS Sections and
Points PUMAS using the function “createMap”. Finally, it starts the calculation of
shortest paths through the method “calculateShortestPaths”. Moreover, almost
all the function inside the parser class uses some instances of the PUMASHandler
class to handle some processes or events.

The PUMASHandler class it contains all the information and dictionary of the
new GIS information. Additionally, it helps the building of the new map with all
the information needed.

5.2.2 Results

The results are shown as map illustration (figure 5.3). By building, the digital
map we have all the information stored in the database. We have the information
regarding the exact position of PUMAS point, which refer to the start and end of
each road section. In addition to the PUMAS sections where know the length of
each section, the starting and the ending PUMAS points defining the section, and
also the speed limit on each section. Finally, we have the type of the PUMAS

113



section if it is expressway or an urban road, plus the orientation of the road (one
way or two ways). The road network contains 7739 PUMAS points and 18874
PUMAS sections.

~ N\ ’ ~ o N Wy .
- < \ L
N 7 > A

(a) (b)
Figure 5.3: (a) Extraction and reconstruction of the digital map, (b) is the
new map with the PUMAS points in red and the PUMAS section linking the
PUMAS sections

5.3 Map-Matching

As discussed in chapter 3, the navigations system cannot have good
performances sometimes in positioning the vehicles on a digital map of road
network due to the urban canyons, streets with dense tree cover, and tunnels. In
this section we will test the algorithm presented in chapter 3 and analyze the
results.

5.3.1 Description and Implementation

In chapter 3 we described in details our method. Figure 5.4 shows the top-down
analysis diagram where the map-matching function uses or calls other function
in its process.

For example, the function cap_threshold is the function that checks the condition
on the speed of the sparsely sampled GPS data (speed condition details chapter 3
section 3.3.3.3.3). The functions are coded using SQL; therefore, they contain SQL
queries. By receiving the raw data, the map_matching function sends an SQL
query to start the mapping process with the information about the activation of
the orientation_check process or not. Thus, the algorithm described in chapter 3
is running and processing the input data.
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Figure5.4: Top-Down Analysis of the SQL map matching function

As we presented in chapter 3 during the process of map_matching we call the
function that find out the shortest path between two sparsely sampled GPS data.
In the previous section of this chapter we showed that the learning process of the
finding shortest path is done when we are creating the digital map.

The function that the map_matching uses to call the shortest pathfinder is the
TDSPP_Calculator. This latter uses the class graph, class vertex, and class edge
(Figure 5.5). The class Edge represents the arcs of our graph. Then the class
vertex is the node of our graph. Finally the class graph is set of vertices and edges
constructing the whole graph.
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Figure 5.5: Class Diagram of the TDSPP_Calculator

5.3.2 Test Strategy

The test strategy describes the nature of data used and the manner how the test
will be done. In addition, we will state the criteria chosen in order to make the
evaluation of the results.

5.3.2.1 Dataset Description

In this part we will define the data used in order to run the test.

Road Network: In our experiment, we used the road network of Rouen city that
we created in the previous section (figure 5.6). The network contains 7739
vertices and 18874 road sections. The figure 5.6 shows the created digital map

that we use in our system. The gray segments are the road section and the one in
color show an example of trajectory with colored quality information.
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Figure 5.6: Road Network of Rouen

Test Data: the data was collected from the real world as it was described in
chapter 2 section 2.5.5. We used those data that have GPS information with a
frequency of one seconds. In order to make our tests we defined an experiments
plan. In this plan we defined trajectories that will pass by the big axes and the
small road in the city center.

This will allow us to compare the output of the algorithms and the ground truth
because we already know the exact trajectories.

5.3.2.2 Evaluation Approach

Ground Truth: the data collected from the real world field constitute the
ground truth. Moreover, the trajectories are known and defined before doing the
test. Thus all the data collected is from known trajectories and road sections. The
data that we will use in this test is the GPS data with a frequency of one second
collected from the field. Then we will use it to simulate our database sparsely
sampled GPS data with a frequency of 60 seconds. These simulated data will be
the input of our map-matching system.
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Evaluation Criteria: in order to evaluate our map-matching approach (STC-
Matching). We will check the running time and the matching quality. The running
time is measured by the actual program execution time. The matching quality is
measured using the accuracy metric defined as follows:

Number data correctly matched

A = (5.1)
Total number of data

Where, number data correctly matched is the number of data matched to the
right road section. The Total number of data (n) is the total number of data used
in the test, which are all the available GPS positions.

Baselines: during the presentation of the results and the analysis, we chose to
show the evolution of the idea that we had during working on this issue of map
matching, till reaching the final method presented in the chapter 3. First
approach that we adopted to deal with the problem was the spatial analysis
approach (S-Matching). Then we added the temporal analysis to the method (ST-
Matching). Next step was to take in to account the heading of the vehicle and the
road orientation, then make correction of the raw data that was rejected during
the process.

5.3.3 Experimental Results
5.3.3.1 S-Matching
5.3.3.1.1 Results

First test result that we are going to show is the accuracy results of the S-
Matching approach. Figure 5.7 shows that we have 60% of the data were
matched correctly to their concerned road sections. And 14% of the data was
matched but to the wrong road sections. Finally 26% of the data was not
matched at all.

26%

& Matched
Correctly

& Matched
Incorrectly

149%, v 60% Unmatched

n=4476

Figure 5.7: S-Matching Results
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5.3.3.1.2 Analysis

When we check the results closely we find out that there is some problem with
the digital map. Which explains the unmatched results. The problems that we
found is some missing nodes and sections on the digital map that they don’t exit
in the extracted XML file (figure 5.8).
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Figure 5.8: Case of missing node in the OSM map, (white node exist, black
node does not exist) ((a) digital map of the system, (b) Google map 2012)

Another problem detected with the digital map in some case we have a bad
fusion of OpenStreetMap road sections, which affect the creation of the PUMAS
Sections in the digital map used (figure 5.9). For example in figure 5.9 we can see
the creation of two road section in the circled road; however, in reality it is only
one road section.

(a) (b)
Figure 5.9: Example of bad fusion between OSM data and creation of PUMAS
sections ((a) digital map of the system, (b) Google map 2012)

Thus we made an update of the digital map in order to fix these issues by adding

the missing nodes and fixing this fusion problem in the creation of the PUMAS
sections.

119



5.3.3.1.3 S-Matching after The Map Update (Sup-Matching)

Figure 5.10 show that we made an enhancement of the results. We have 65% of
the data were correctly matched to the right sections and 19% of the data was
unmatched. Then the matched incorrectly has increased, now it is 16%. Which
mean that we saved some of the rejected data.

In the next section we will show the results when we add the temporal analysis
to the algorithm.

19%
& Matched
Correctly

& Matched
Incorrectly

Unmatched

16%

n=4476

Figure 5.10: S-Matching results after updating the map
5.3.3.2 ST-Matching
5.3.3.2.1 Results
The next result is the results of the spatio-temporal approach (ST-Matching
approach). Figure 5.11 show that we have 89% of the data were matched

correctly to the concerned road sections. And 3% of the data was matched but to
the wrong road sections. Finally 9% of the data was unmatched at all.
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Figure 5.11: ST-Matching results
5.3.3.2.2 Analysis

The temporal aspect add to the algorithm allow us to take into consideration the
real path logic in the matching process. Thus we take into consideration
trajectory logic between the sparsely sampled GPS data.

However, we noticed that some of the data is matched to the wrong section. This
problem is due to the fact the road orientation is in the opposite direction
compared to the vehicle’s heading received from the probes. The figure 5.12
illustrates clearly this problem related to the road orientation and the vehicle’s
heading.

—

&

Figure 5.12: Example of the orientation problem
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Another problem that we detected due to the road section orientation is
illustrated in figure 5.13. The figure shows in red the road that was chosen by the
mapping as the trajectory of the probe. But, it is not the right path and the right
one is in green, which the system should have chosen.

X

X
Figure 5.13: Orientation problem in the matching process

In order to reduce the rejected data due to the problem discussed above and also
the wrong matching we will add the orientation aspect and a correction step to
the algorithm (STC-Matching) as it was described in chapter 3.

5.3.3.3 STC-Matching

5.3.3.3.1 Results

The result illustrated in the figure 5.14 show the final result of the algorithm
proposed in this section. We succeed to make the matching process better. We

have to take into consideration that some of the problem are due to the digital
map missing data.
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Figure 5.14: STC-Matching results

n=4476

5.3.3.3.2 Analysis

The results obtained are satisfying to continue in our work for the next step of
estimating the travel time. Of course there is always more enhancement that we
can do. Besides, the 2% of wrong matching is not that significant compared to the
amount of data used, which will not affect our results.

5.3.4 Conclusion

After we tested the Map-matching algorithm proposed in this thesis. The outputs
show good results and encouraging. The table 5.1 resumes all the results
regarding all the algorithms approaches regarding the map matching process.
During the testing process we found out that the good functioning of the map-
matching algorithm depends not only on the robustness of the algorithm but also
on other factor such as a good GIS digital map and a good extraction algorithm.

Table 5.1: Results Summary of the Map-Matching Algorithm

S-Matching Sup- ST-Matching | STC-
matching Matching
Unmatched 26% 19% 9% 4%
Matched 14% 16% 3% 2%
Incorrectly
Matched 60% 65% 89% 94%
Correctly

The performance of the STC-Matching developed in this research can be
compared to other techniques of existing map matching algorithms. We will

summarize them in the following table:
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Table 5.2: The performance of some existing map matching algorithms and
ours

Map  Matching | Navigation Test Matched
algorithms Sensors Environments Correctly
Pyo etal, 2001 GPS Urban and | 88.8%
suburban
White et al, 2000 GPS Suburban 85.8%
Bouju et al 2002 GPS Suburban 91.7%
Yu etal, 2002 - - 86.3%
Srinivasan, 2003 - - 80.2%
Fu etal, 2004 80.5%
Syed and Cannon, | GPS/DR (Dead | Urban and | 92.5%
2004 Reckoning) suburban
Yang et al, 2003 GPS Suburban 96%
STC-Matching GPS Urban and | 94%
suburban

The results in table 5.2 shows the STC-Matching algorithm give good results
compared to the others. Especially, compared to the ones that they used the
same navigation systems.

Moreover the running time of the process figure 5.15 is acceptable. The “Inf’
notation in the graph means that we did not put a limit to the number of data
processed. The number of candidates represents the number of GPS position
injected into the system to be matched. Overall, the running time of the system is
acceptable.
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Figure 5.15: STC-Matching Running Time vs Number of candidates

Now that we showed the results concerning the map-matching process, we will
check our hypothesis stated about the speed distribution per road section.
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5.4 Speed Distribution

In this section we will check the hypothesis stated in chapter 4 about the speed
distribution.

5.4.1 Description

The test that we will conduct in this part is to try to found out if the speed
follows a bimodal distribution on each road section.

5.4.2 Test Strategy

5.4.2.1 Dataset Description

Road Network: In our experiment, we will use the same network defined before
in the map-matching test. The network contains 7739 vertices and 18874 road
sections.

Test Data: the data used in this test is the sparsely sampled GPS data available in
our historical database. The data contain about ten millions GPS positions that
was collected over one year.

5.4.2.2 Evaluation Approach

Evaluation Criteria: in this test analysis we will start by creating a histogram of
the speeds detected in each road section in our road network. The histogram will
help us to get an idea about the speed distribution.

5.4.3 Experimental Results

5.4.3.1 Results

The test ran on the historical database showed that almost all the speed

histograms of each section follow a bimodal distribution. The figure 5.16 gives an
overview of the results that we found after running the test.
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Figure 5.16: Overview of the speed histogram per road sections

The next figure 5.17 gives a view of the probability distribution of the speed on
each road section.
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Figure 5.17: overview of the pdf of the speed per road sections
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5.4.3.2 Analysis

Based on the results the bimodal distribution is the closed probability
distribution that can describe the speed distribution in reality. Thus, our
hypothesis is confirmed.

5.5 Travel Time Estimation

In this section we will conduct our test regarding the two approaches that we
presented in chapter 4. First we will present the results of the travel time
estimation using Monte Carlo Method (TT-MCM). Next we will show the results
of the travel time estimation based on the Monte Carlo Method enhanced with
measurements and road section’s characteristics (TT-MCM-E).

5.5.1 Description and Implementation

In order to run the process and get the travel time estimation per road section.
The function that estimates the travel time has to call another function that
compute the estimation of the moment of passage through the PUMAS points.

The moment of passage is computed using two different methods (TT-MCM and
TT-MCM-E). The TT-MCM approach uses the distance function and the shortest
path function (TDSPP_Calculator). Concerning the TT-MCM-E approach needs
the same functions as TT-MCM plus the road section’s distribution function that
is used in the process. The function road section characteristics uses the speed
data saved in the historical database in order to create the travel time
distributions for each road section.

The figure 5.18 shows the top-down analysis of the implementation.
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Moment of passage estimation
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Figure 5.18: Top-Down analysis of travel time estimation process
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5.5.2 Test Strategy
5.5.2.1 Dataset Description

Road Network: In our experiment, we will use the same network defined before
in the map-matching test. The network contains 7739 vertices and 18874 road
sections.

Test Data: In order to make our test we used the GPS data (one second
frequency) that was described and used for the map-matching test. The same
data collected from the experiment described in chapter 2.

5.5.2.2 Evaluation Approach

Ground Truth: we simulated our historical data using the same data used for the
map-matching test. As it was explained before, we changed the receiving
frequency of GPS information from one second to one minute. This yielded data
similar to our historical database, but with the advantage of the travel time
reference collected from the real-world field. The real world reference data will
allow us to validate our results coming from the two estimation methods.

Evaluation Criteria: to evaluate the two methods, we will check the running time
and the estimation errors. The running time is measured by the actual program
execution time. The estimation errors is measured using the percentage
difference error metric defined as follows:

Tp est Tp ref
Tp est + Tp ref
2

90 DifferenceError = *100

(5.2)

Where,
e Tp,, is the estimated travel time

Tp,, is the travel time of reference.

Baseline: to present the results we will process each method alone. In addition
we will discuss the results of each method.

5.5.3 Experimental Results

5.4.3.1 Travel time estimation based on Monte Carlo method (TT-MCM)
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5.5.3.1.1 Results

After running program on our simulated historical database we get the travel
time estimation. Then we compute the percentage difference error with the
travel time reference that we computed from the real-world field experiment
(Table 5.3).

Table 5.3: Sample of the Percentage Difference Error of TT-MCM Table

Section ID %Difference Error TT-MCM
18 20

19 0

20 0

23 8.10

26 24.11

82 5.88

83 33.33

84 5

In order to have a clear view of the results we will outline the percentage
difference error in a histogram (Figure 5.19).
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Figure 5.19: Histogram of Percentage Difference Error Frequency of The
TT-MCM

The histogram has a shape of half Gaussian distribution with an average
percentage difference error per road section equal to 7% and the standard
deviation equal to 13.57%.

5.5.3.1.2 Analysis

Based on the results obtained it seems that the TT-MCM algorithm give
interesting results by an average percentage difference error equal to 7% per
road section.
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5.5.3.2 Travel time estimation based on Monte Carlo method enhanced with
measurements and road sections characteristics (TT-MCM-E)

5.5.3.2.1 Results

We will run the same process for the TT-MCM-E on our simulated historical
database we get the travel time estimation Tp,, ,,_r- Next we compute the

percentage difference error (Table 5.4).

Table 5.4: Sample of The Percentage Difference Error of The TT-MCM-E
Table

Section ID %Difference Error TT-MCM
18 11,11

19 0

20 0

23 0

26 0

82 5.88

83 0

84 12,5

The same we will represent the results of the percentage difference error in a
histogram representation (Figure 5.20).
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Figure 5.20: Histogram of the Percentage Difference Error Frequency of the
TT-MCM-E
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The histogram has a shape of half Gaussian distribution with an average
percentage difference error per road section equal to 2% and its standard
deviation is 8%. Based on the description of the histogram there is a big chance
that the errors will be in the area of ]0-10].

5.5.3.2.2 Analysis

The result seems to prove that the TT-MCM-E approach gives better results than
the TT-MCM. However, in order to have a clear idea about the results we will
conduct a different criterion in comparing the two methods.

5.5.3.3 Comparison of the Two Methods
5.5.3.3.1 Evaluation Criteria

In order to have more information about the performance of the two methods we
will conduct a mean square error (MSE) evaluation. The MSE analysis is used to
evaluate the error between a series of numbers found in a pair of same
dimension vector arrays. For two distinct arrays X and Y, the general formula for
the MSE equation is defined as follows:

n

[E(xi _ yi)z]l/z
MSE = L

n (5.3)

Where,
* X is the ith element in array X

* Y, istheith elementinarray Y

* nisthe number of elements in arrays X and Y

Thus in our case the equation will be as follows:

[(Tpref - Tpext )2 ]1/2
1 (5.4)

MSE =

We will define also the percentage MSE as follows:

PCTMSE =100%*[15E

pe (5.5)

5.5.3.3.2 Results
131



The results will be represented in figure 5.21. The histogram gives an idea about
the percentage of mean square errors of the two methods. On one hand, It is
clear that the errors produced by the MCM approach are higher than the MCM-E.
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Figure 5.21: Histogram of PCTMSE (%) of the two methods

On the other hand, the MCM method produced almost a mean error of 32% and
the MCM-E approach a mean of 8% (Table 5.5). Therefore, the MCM-E has a
tendency to make less error per road section than the MCM method.

Table 5.5: Sample MSE Analysis of TT-MCE and TT-MCM-E

TP- MSE MSE PCTMSE | PCTMSE
Section | TP- | TP- | MCM- | (TP,MCM) | (TP,MCM- | (TP,MCM) | (TP,MCM-
-1D REF | MCM | E (s) E) (s) (%) E) (%)
18 2 3 2,5 1 0.5 33,33% 20%
19 3 3 3 0 0 0% 0%
23 40 34 40 6 0 17,64% 0%
83 9 8 7 1 2 12,5% 28,57%
Average 11,58 0,40 31,66% 8,39%

The mean error does not give a clear idea about the performance of the two
methods. For this reason will give the errors interval in order to know the MS
error percentage per road sections. The TP-MCM approach has an interval error
between 0% and 97% and the TP-MCM-E has an interval error between 0% and
34% (Table 5.6). Thus, the TP-MCM-E gives less error per road sections
compared to the TP-MCM method.
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Table 5.6: minimum and maximum MS Error per road sections

Methods | MS Error (TP-MCM) MS Error (TP-MCM-E)
min 0% 0%
max 97% 34%

5.5.3.3.3 Discussion of MSE Analysis

By checking the average MSE and PCTMSE in table 5.5 and figure 5.21 it is clear
that the TT-MCM-E method has the lowest percentage MS error per road section.
Based on this it seems that the TT-MCM-E approach gives better results than the
TT-MCM method. However, by checking the graph figure 5.21 and table 5.5
carefully, we found that in some cases the TT-MCM-E method misses sometimes
the real results or produces more error than the MCM method. Which means that
the problem is coming from the probability density function of travel time
extracted from the historical database of the sparsely sampled data that we used.
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Figure 5.22: Example of %MSE vs Road sections with error problem

To understand the source of this issue illustrated in figure 5.22. We will show the
speed data that we have in our historical database and it’s importance per road
section. This action will give us the impact on the probability density function of
travel time per road section because we use the speed information to extract it.
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From the map (figure 5.23) it is clear that some section does not have enough
data to learn about the travel time distribution per road section. Which explain
the reaction of the TT-MCM-E approach and its results. Because, in some road
sections either we don’t have enough data or no data in order to give a realistic
probability distribution of the travel time per road section that we use in MCM-E
approach. As consequence, the weighting process in the particle filter affects bad
quality weights to the particle. Thus, the travel time estimation is not good.

Concerning the running time of the system is shown in figure 5.24. We can see
that the system is capable of running a lot of data without any problem.
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Figure 5.24: Number of processed Data vs running time
5.5.4 Conclusion

The results collected in this thesis work regarding the travel time estimation
using the Monte Carlo Methods with an enhancement gave interesting and
encouraging results. In addition, the approach to estimate the travel time is new
and of Couse needs more test and enhancement. It is hard to do so, because of
the use of sparsely sampled GPS data, which is already challenging. Moreover,
filtering the data and the map-matching make the issue more complicated;
because the good performance depends also on the good performance of the
other components (filtering, map-matching, etc). Plus, to make good estimation
we need important amount of data with good quality.

5.6 System Platform for project PUMAS

The fact that this thesis works was done within a project; the Creation of a
friendly graphical interface where we can view all the information of the system
was a need. The interface will allow viewing the results in a statistic and
cartographic manner.

The parameters interface is set by default; however, we are allowed to change
the setting of the parameters as it is shown figure 5.25. The parameter window
contains all the parameters that are used in the system and we can control and
change them.
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Figure 5.25: Software Parameter window view

The graph representation is using layer in order to have a view of the map. For
example figure 5.26 show the PUMAS sections and the PUMAS points on the map.
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Ajouter un layer
Prétraitement
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Figure 5.26: View of the software with PUMAS sections and PUMAS point’s
layers

Through the interface we can view a specific trajectory and we can get all the
information regarding the travel time estimation, section ID, speed, etc by
clicking on the concerned road section. The figure 5.27 shows an example of a
trajectory.

—_
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Figure 5.27: Software View with information in the small window on the
left about a specific trajectory

5.7 Conclusion

To sum up, in this chapter we presented the results of this thesis work. The
chapter dealt with the implementation description, test strategy for each section,
evaluation criteria for each proposed method. Each presented results was
analyzed and discussed.

In general the results obtained concerning the map matching are encouraging.
However, there some issue where there is more work to be done; especially
regarding the digital map and the GIS information, some of the problems was
discussed in that section. For example, the map is not really representing the real
world, some road sections are missing or some intersections. We did as we could
an update of the digital map in order to reduce the errors.

Besides, we tested the travel time estimation results and analyze them. The new
approach presented is very interesting and promising. However, the approach
depends on other information that we collect from the historical database, which
mean we need a good data to get better performance.

Finally at the end we presented the GUI developed during this thesis period for
viewing the results in friendly way and easy to understand. The global results of
this thesis work are a good start for the new approach and as we know there is
nothing perfect from the first try. Thus, there some work to be done in the future
to make the approach more robust.
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Chapter 6: Conclusion and
Perspectives

6.1 Conclusion

This thesis research work was conduct within the project PUMAS, which was an
advantage for our research regarding the collection process of our data from the
real world field and also in making our tests. The research done can be listed
under the field of intelligent transportation systems. Besides, the output of this
thesis was software that was used in the project. The software was designed in
such manner to be integrated in any other design and also it is easy to add other
modules to it or make changes. Our objective was to estimate travel time using
sparsely sampled data in an urban context. The context and the nature of data
used presented many challenges, which pushed us to conduct many other issues
before treating our main goal.

After a bibliography study about the subject in chapter 2 we come out that we
need to investigate other sub subjects before estimating travel time per road
section. Our research work in this thesis investigated four fields and they are as
follows: building digital map with its specific geographic information system
(GIS), map-matching problem, shortest path problem, and estimating travel time
per road sections in a urban context.

6.1.1 Digital map and GIS information

During our research we faced the importance of creating the digital map for
example in transportation planning and logistic, it is advantageous to use digital
map incorporated with information such as transportation facilities data, speed
limits, roadway indicator, and type of roads. All this information is very helpful
to improve traffic algorithms and estimations. Thus, we extracted our digital map
from OpenStreetMap (OSM) and we added our GIS information that contain all
the information needed such as speed limit on each section, intersection,
defining the roads directions and type, new features, etc. the digital map created
in this thesis work can be used in any application for traffic purpose.

6.1.2 Map-matching problem

In our approach we were inspired by (Zhao, 97) approach to define the area of
interest and we defined a spatial analysis criteria by detecting the road section
that has the highest probability that the GPS position should be matched to it in
the digital map, without having to scan the whole map. Then we added temporal
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analysis criteria that we defined. Finally, we used (Kim et al, 2000) method by
applying an orthogonal projection on the GPS position into the road section
concerned that have the highest score of the combination of spatial and temporal
criteria. Moreover, we added the idea of road orientation and the vehicle’s
heading in order to enhance the map matching. The orientation informs us about
the direction that the car is following making it easier to locate the road that has
the same direction as car’s heading. In some of the case we still have a non-
matching cases. Therefore, we added a correction method (Balasundaram, 2009)
that make a new prediction of the defective data and then apply the whole
process of map matching to the corrected data.

6.1.3 Time-dependent shortest path problem

The time-dependent shortest path problem given a departure and arrival time
was one of our research interests. There are many solutions that has been
developed for different types of graphs such as Dijkstra in the case of positive
weights, Bellman in the general case, etc. However, these methods are time
consuming regarding the computational process, which mean that they need
enhancement and speed up. We adopted a new approach in a database context.
In this new method we introduced a new step that we called a learning phase
that we process on offline mode using a recursive Dijkstra and then when the
method is called by the map matching on online status. Introducing this learning
step at the level of the database enhanced the speed of finding the answer on
online mode.

6.1.4 Travel time estimation per road sections

The use of sequential Monte Carlo approach to estimate travel time using
sparsely sampled GPS data is certainly not new. However, the application of
Monte Carlo methods on urban networks has not been found in the literature.

Accurate travel time estimation is an important element for advanced traveler
information systems and advanced traffic management systems as well as for all
transport users. In urban networks, travel time estimation is challenging due to
many reasons such as the fluctuations in traffic flow due to traffic signals and
drivers behavior.

6.1.4.1 Travel time estimation using Monte Carlo method

Using this approach we adopted the Monte Carlo method to our case by defining
the state equation of the case studied. The creation of the filter was done in such
way to process and use the sparsely sampled GPS data. The filter gives us the
ability to estimate the moment when the probe vehicle enters a road section and
also when he exits the same road section. By considering these information it
was easy for us to know how long the probe vehicle was in that section. Which
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means that we have the travel time of the probe vehicle in that specific road
section.

6.1.4.2 Travel time estimation using Monte Carlo method enhanced with
measurements and road sections characteristics

The enhancement of this approach was by changing the algorithm by injecting it
with information concerning the measurements and characteristics of the
concerned road section on the road network. This information was injected at
the level of weighting process of the particles generated by the particle filter or
Monte Carlo method. The weight injected is a probability density distribution of
the time distribution on the road section learned from the historical database.
This maneuver makes this approach original and new.

Moreover, in order to have a results closed to reality we added in both methods
(TT-MCM and TT-MCM-E) the notion of delay time at the level of road
intersections. This aspect was added in order to illustrate the lost time at a traffic
light or when we are changing road sections during our journey trajectory.

In addition the results obtain are very encouraging to continue on the evolution
and enhancing the approach presented in this thesis work. Besides, it can be an
open window to solve other problematic in the domain of ITS and traffic
management.

6.2 Perspectives

The travel time estimation is a small puzzle of the big image of traffic status.
However, each small pawn constitutes the traffic chessboards that are very
important. Travel time estimation is one of those pawns. The future work that
can be done is to use the other pawns that will be discussed in the next sections.

6.2.1 Short-term agenda
6.2.1.1 Travel time in urban arterials

As a continuation of our research work it will be beneficial to use different
sensors to make the estimation of travel time more precise. The traffic data from
probe vehicles, loop detectors and camera detector sources have different levels
of precision, which may result in inconsistency and sometimes even
contradictory estimates. Data fusion is the processing tool and solution. This
latter takes into account the quality of the data provided by each source with an
aim of increasing the precision, reliability and robustness of the estimation.

Another aspect that can be very interesting is the combination of the
mathematical models and statistical models based on real world observation.
This approach will help to increase the precision of the estimation and also build
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an understanding of the real world and its behaviors. This approach needs a
large amount of data to be processed; however, nowadays with an advance in
technology and research it is possible to afford the data needed.

By building and making available a historical data of estimated travel time per
road sections. The next step will be to understand the traffic behavior. In order
to do so, for example we can introduce an artificial intelligence (AI) method. This
latter technique seeks to understand natural intelligence and to build intelligent
systems. There are many techniques that have been applied in the fields (Lee,
2009) [123]. The most common method in the Al is Neural Network (ANN). The
ANN have been applied in many fields like engineering management, science and
also psychology and it helps to improve the solving process of the transportation
problems (Dougherty, 1995) [124]. Moreover, the ANN capacity includes
classification, detection, pattern recognition, adaptive filtering, data inversion,
target tracking, estimation, modeling, etc. Besides, there is a statistical approach
that is applied to estimation, prediction and modeling. As an illustration, we can
take the work of (Zhang, 2003) [125] where he used data from loop detectors
and probe vehicles to create a linear model for travel time prediction.

6.2.1.2 Traffic jam detection in urban network

One of the aspects that characterize traffic is the appearance of congestion. Thus
it is an important step after getting information about travel time to detect
congestions in order to complete the picture about traffic status. Most of the
approaches used in the literature are based on the speed as a metric to describe
traffic situation. However, the speed in urban areas is influenced significantly by
road condition and traffic lights. Thus, applying this approach in real world field
is not a good idea. Which means using speed alone as a metric is not a good
choice. From this point of view, it is important to define a new metric in order to
detect the congestions. For example, as it was shown by (K. Zhang, 2010) [126]
the use of traffic rate as a metric and applying a spatio-temporal OD matrix gave
good results regarding traffic jam detection. Our idea will be to use what was
developed regarding the travel time estimation and use it as an input for the OD
matrix. By using an accurate representation of traffic status regarding spatio-
temporal aspect (ex. Travel time) the results of the OD matrix should be better
and closer to the reality.

Another approach to detect traffic congestions is by using cooperative vehicles.
Cooperative vehicle have been used to enhance traffic safety and management.
Though by this approach we can get more accurate information about the traffic
status using V2V communications. For example (Bauza, 2010) [127] proposed a
method to detect congestions by using a cooperative probe based on V2V
communications and a fuzzy logic without the need of any infrastructure sensors
deployment. The use of cooperative vehicle can help to detect the birth of
congestions. Moreover, we can add the sharing information aspect through the
V2V communication to avoid the phenomenon of traffic jams. Therefore, the
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approach presented may be promising for good work that can be done in this
issue, which will help a lot to understand the urban traffic.

6.2.2 Long-term agenda

For a long-term perspective we have to take into consideration the implications
and the impact of our research. All what is developed in transportation is a small
pixel of the whole image. This image is our cities and metropolitan regions.
Nowadays, managing our cities is an issue of concern of everybody such as
regional officials, road administrators, urban planners and citizens; in order to
make good decision about the future of our cities, they need correct information.
For example, making decisions about building new freeways, transit service
expansion, land use regulations are often expensive and controversial with long-
term consequences.

From this prospective we must attempt to understand how different alternatives
might affect land use, transportation, and the environment over the next
decades. Therefore as a project related to what was done in our research
regarding understanding the traffic via travel time estimation and prediction,
traffic jam detection, and traffic simulation or forecasting; we can add the idea of
land use in the system. Then we have to study the relationship between the road
traffic and the land use. As we know, when we create a new housing area for
example, we are obliged to create new roads. As a consequence, a new flow of
traffic will be injected in the road network of the city. Afterward by merging the
land use model and the dynamic traffic simulation model, we can help to make
decisions regarding the choice of the location and size of the land used.

Another interesting research subject for our society is evacuation under
emergency situation. Dynamic traffic simulation models are used to support
decisions when planning an evacuation. Till now, understanding the traveller’s
behavior under emergency evacuation condition is still conducted by
researchers. There are some models trying to model the situation like (Pel, 2011)
[128], but there is a lot of effort to be done regarding this issue in research.
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