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Résumé

Les méthodes traditionnelles de dimensionnement à la fatigue s’appuient sur l’utilisation

de coefficients dits de “sécurité” dans le but d’assurer l’intégrité de la structure en couvrant

les incertitudes inhérentes à la fatigue. Ces méthodes de l’ingénieur ont le mérite d’être

simples d’application et de donner des solutions heureusement satisfaisantes du point

de vue de la sécurité. Toutefois, elles ne permettent pas au concepteur de connaître

la véritable marge de sécurité de la structure et l’influence des différents paramètres de

conception sur la fiabilité. Les approches probabilistes sont envisagées dans cette thèse afin

d’acquérir ces informations essentielles pour un dimensionnement optimal de la structure

vis-à-vis de la fatigue.

Une approche générale pour l’analyse probabiliste en fatigue est proposée dans ce

manuscrit. Elle s’appuie sur la modélisation des incertitudes (chargement, propriétés du

matériau, géométrie, courbe de fatigue) et vise à quantifier le niveau de fiabilité de la

structure étudiée pour un scénario de défaillance en fatigue. Les méthodes classiques de

fiabilité nécessitent un nombre important d’évaluations du modèle mécanique de la struc-

ture et ne sont donc pas envisageables lorsque le calcul du modèle est coûteux en temps.

Une famille de méthodes appelée AK-RM (Active learning and Kriging-based Reliability

Methods) est précisément proposée dans ces travaux de thèse afin de résoudre le problème

de fiabilité avec un minimum d’évaluations du modèle mécanique. L’approche générale est

appliquée à deux cas-tests fournis par SNECMA dans le cadre du projet ANR APPRoFi.

Mots-clés : dimensionnement en fatigue, analyse probabiliste en fatigue, analyse de

fiabilité, métamodèle, krigeage, classification

ix



x



Abstract

Traditional procedures for designing structures against fatigue are grounded upon the

use of so-called safety factors in an attempt to ensure structural integrity while masking

the uncertainties inherent to fatigue. These engineering methods are simple to use and

fortunately, they give satisfactory solutions with regard to safety. However, they do not

provide the designer with the structure’s safety margin as well as the influence of each

design parameter on reliability. Probabilistic approaches are considered in this thesis in

order to acquire this information, which is essential for an optimal design against fatigue.

A general approach for probabilistic analysis in fatigue is proposed in this manuscript.

It relies on the modelling of the uncertainties (load, material properties, geometry, and

fatigue curve), and aims at assessing the reliability level of the studied structure in the

case of a fatigue failure scenario. Classical reliability methods require a large number of

calls to the mechanical model of the structure and are thus not applicable when the model

evaluation is time-demanding. A family of methods named AK-RM (Active learning and

Kriging-based Reliability methods) is proposed in this research work in order to solve the

reliability problem with a minimum number of mechanical model evaluations. The general

approach is applied to two case studies submitted by SNECMA in the frame of the ANR

project APPRoFi.

Keywords: fatigue design, probabilistic analysis in fatigue, reliability analysis, metamodel,

Kriging, classification
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Résumé étendu

Contexte

Le phénomène de fatigue se traduit par une lente dégradation des propriétés mécaniques

d’un matériau sous l’application d’un chargement variable dans le temps. Cette dégra-

dation progressive appelée endommagement par fatigue peut entrainer la formation de

fissures au sein d’une structure constituée de ce matériau et éventuellement conduire à sa

rupture brutale. Bien que le phénomène de fatigue soit affecté par de nombreuses incer-

titudes (propriétés du matériau, nombre de cycles à rupture, géométrie, chargement,...),

la philosophie de dimensionnement en fatigue reste essentiellement déterministe. Les mé-

thodes traditionnelles s’appuient sur l’utilisation de coefficients dits de “sécurité”, codifiés

et validés par retour d’expérience, dans le but d’assurer l’intégrité de la structure en cou-

vrant les incertitudes inhérentes à la fatigue. Ces méthodes de l’ingénieur ont le mérite

d’être simples d’application et de donner des solutions heureusement satisfaisantes du

point de vue de la sécurité. Toutefois, elles ne permettent pas au concepteur de connaître

la véritable marge de sécurité de la structure ainsi que l’influence des différents paramètres

de conception sur la fiabilité. Les approches probabilistes peuvent être envisagées afin d’ac-

quérir ces informations essentielles pour un dimensionnement optimal de la structure. Ces

approches consistent à modéliser par des distributions statistiques l’aléa des paramètres

entrant dans le calcul de la durée de vie afin d’approcher en sortie du modèle mécanique

la réponse aléatoire de la structure.

Malgré leurs intérêts indéniables, les approches probabilistes restent très marginales

dans l’industrie pour des raisons philosophiques (le risque de défaillance n’est plus caché

derrière la notion rassurante de coefficient de “sécurité”) et culturelles (probabilités et

statistiques restent l’apanage des mathématiciens). Afin de promouvoir ces approches pour

le dimensionnement en fatigue des structures, le projet DEFFI (Démarche Fiabiliste de

conception en Fatigue pour l’Industrie) a été initié par le CETIM en 2005 [Bignonnet

and Lieurade, 2007; Bignonnet et al., 2009; Ferlin et al., 2009; Lefebvre et al., 2009].

Dans sa continuité, le projet APPRoFi (Approche mécano-Probabiliste Pour la conception

Robuste en Fatigue), financé par l’Agence Nationale de la Recherche et regroupant les

laboratoires universitaires Roberval-UTC, LaMI-IFMA et LMT-ENS Cachan ainsi que
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les industriels CETIM, Modartt, Phimeca et SNECMA, a été lancé avec pour objectif

de développer une méthodologie globale d’évaluation de la fiabilité pour des structures

existantes sollicitées en fatigue. Comme fil conducteur à ce projet, deux cas-tests sont

fournis par SNECMA. Ces cas-tests sont constitués de modèles mécaniques numériques

coûteux en temps de calcul et de données permettant de caractériser les incertitudes du

chargement, de la géométrie de la structure, des propriétés du matériau ainsi que de son

comportement en fatigue.

Objectifs

Dans le cadre du projet APPRoFi, les objectifs de cette thèse sont les suivants :

• définir une approche générale pour l’analyse probabiliste en fatigue. Ce point vise

également à proposer des modélisations stochastiques pertinentes pour le chargement

et la courbe S − N .

• développer des méthodes efficaces pour les analyses de fiabilité et de sensibilité. Ces

méthodes doivent être parcimonieuses (économiques) du point de vue du nombre

d’appels au modèle numérique et applicables au cas des faibles probabilités.

• traiter les deux cas-tests fournis par SNECMA.

Les apports de la thèse portant sur ces trois objectifs sont présentés succinctement dans

ce résumé.

Approche générale pour l’analyse probabiliste en fatigue

Cette partie introduit l’approche probabiliste proposée dans le premier chapitre de thèse et

qui représente une amélioration de la méthode probabiliste contrainte-résistance [Thomas

et al., 1999]. Cette dernière consiste à comparer deux distributions statistiques, à savoir la

contrainte S et la résistance R afin soit de dimensionner une structure avec un objectif de

fiabilité, soit de calculer la probabilité de défaillance d’une structure existante (voir Figure

1). Dans le cadre du calcul de la probabilité de défaillance, c’est-à-dire de la probabilité

que R ≤ S, la contrainte S représente les incertitudes du chargement, des propriétés du

matériau ainsi que de la géométrie de la structure. La résistance R modélise, quant à elle,

les incertitudes du comportement en fatigue du matériau. En établissant des lois pour S

et R à partir de données expérimentales, la probabilité de défaillance peut facilement être

calculée par intégration numérique. Toutefois, la valeur de cette probabilité est fortement

liée aux choix des lois et il n’est pas possible de déterminer l’influence de chaque variable

aléatoire sur la fiabilité de la structure étant donné que différents aléas sont inclus dans

la distribution de S. A partir de cette constatation, une autre approche est proposée dans
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Figure 1 – Distributions S et R dans l’approche probabiliste contrainte-résistance. L’aire
grise illustre le domaine des évènements défaillants.

le cadre du projet APPRoFi. Cette approche, illustrée en Figure 2, conserve les variables

aléatoires du problème et ne nécessite plus de définir les distributions de S et R.

Les propriétés matériaux, la géométrie de la structure et le chargement sont respec-

tivement modélisés par les vecteurs aléatoires Xm, Xg et Xl définis à partir de données

expérimentales. Le comportement en fatigue du matériau est représenté par un modèle pro-

babiliste de courbes S−N dont la courbe fractile est définie par la variable aléatoire Uf . La

première étape de l’approche consiste à tirer aléatoirement une réalisation {xm, xg, xl, uf }
des variables aléatoires. Un chargement virtuel F (xl) est généré à partir du vecteur xl.

Le concept d’Equivalent Fatigue (EF) [Thomas et al., 1999] est utilisé afin de synthétiser

ce chargement en un simple cycle d’amplitude constante notée Feq(xl, uf , Neq) qui, répété

Neq fois, produit le même endommagement en fatigue que F (xl). Ce cycle équivalent est

ensuite appliqué au modèle numérique de la structure qui dépend des propriétés xm du

matériau et de la géométrie xg. L’amplitude du cycle de la réponse du modèle numérique

est notée σeq(xm, xg, xl, uf , Neq). La valeur de la fonction de performance G caractérisant

l’état de la structure étudiée et associée au scénario de défaillance en fatigue est calculée

comme étant la différence entre la résistance r(uf , Neq) correspondant à la valeur de la

courbe S − N fractile à Neq cycles et l’amplitude σeq(xm, xg, xl, uf , Neq). Une valeur né-

gative ou nulle de G signifie que la réalisation est dans le domaine de défaillance, dans le

cas contraire elle appartient au domaine de sûreté. Afin de déterminer la probabilité de

défaillance et l’influence des variables aléatoires sur la fiabilité, une méthode de simulation

type Monte Carlo est envisageable mais peut être avantageusement remplacée par une mé-

thode de la famille AK-RM développée dans le cadre de cette thèse pour des raisons de

temps de calcul.
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propriétés du matériau
et géométrie aléatoires

Xm, Xg

paramètres aléatoires
du chargement Xl

courbe S −N

fractile aléatoire Uf

xm, xg xl uf

chargement virtuel F (xl)

modèle numérique
cycle EF

Feq(xl, uf , Neq)

cycle de réponse
σeq(xm,xg,xl, uf , Neq)

résistance
r(uf , Neq)

G = r − σeq

Méthode de simulation
ou AK-RM (Chapitre 2)

Pf et influences
sur la fiabilité

Figure 2 – Approche probabiliste implémentée dans le cadre du projet APPRoFi.

Calcul efficace de la probabilité de défaillance

Cette partie présente succinctement les méthodes proposées dans le second chapitre de

cette thèse afin d’évaluer la fiabilité des structures dans un contexte industriel où le modèle

mécanique numérique est coûteux en temps de calcul et où la probabilité de défaillance

est supposée faible. Dans la suite, l’espace standard Un, où les variables aléatoires U =

{U1, . . . , Un}t sont gaussiennes indépendantes de moyennes nulles et de variances unitaires,

est considéré. L’équivalent de la fonction de performance G dans cet espace est noté

H(U) ≡ G(T −1(U)) où T est la transformation isoprobabiliste.

Evaluation par simulation de la probabilité de défaillance

Pour évaluer la probabilité de défaillance d’une structure, les méthodes de simulation

demeurent des méthodes incontournables surtout pour traiter des problèmes dont l’état-

limite H(u) = 0 est complexe (forte non-linéarité, plusieurs points de défaillance, domaine
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de défaillance non connexe, ...). La simulation de Monte Carlo (MCS) est la méthode

de référence et permet de traiter théoriquement tout type de problème. Son principal

inconvénient est le nombre d’appels à H nécessaires, surtout lorsque la probabilité recher-

chée est faible. Pour diminuer ce nombre d’appels, plusieurs méthodes sont envisageables.

Une première approche peut être d’éviter les calculs superflus lorsque la monotonie de la

fonction de performance est établie (souvent le cas pour des problèmes de mécanique des

structures, voir De Rocquigny [2009]). Le tirage d’importance (IS) proposé par Melchers

[1990] permet aussi de réduire considérablement le nombre d’appels à H sous l’hypothèse

d’une topologie du domaine de défaillance faisant apparaître un maximum de densité de

probabilité bien identifié, sans extremums secondaires. Ce point est couramment appelé

“point de défaillance le plus probable”. Enfin les Subset Simulations (SS) introduites par

Au and Beck [2001] en fiabilité semblent être la méthode la plus aboutie pour réduire le

nombre d’appels sans hypothèse sur la forme de l’état-limite.

Cependant, toutes ces méthodes sont difficilement envisageables pour traiter des pro-

blèmes industriels mettant en œuvre des fonctions de performance complexes et très coû-

teuses en temps de calcul (typiquement le cas des modèles éléments finis). Le point commun

des méthodes de simulation est la nécessité de classer des points en fonction du signe de

la fonction de performance (négatif ou nul = défaillant, positif = sûr). Partant de cette

constatation, une stratégie de classification économique est proposée dans cette thèse.

Cette technique basée sur un métamodèle de krigeage [Matheron, 1973; Sacks et al., 1989]

et appliquée aux différentes méthodes de simulation évoquées précédemment conduit à la

création d’une nouvelle famille de méthodes appelée AK-RM pour Active Learning and

Kriging-based Reliability Methods.

Principe de classification des méthodes AK-RM

L’objectif des méthodes AK-RM est de classer une population de points {u(j) ∈ Un, j =

1, . . . , N} selon le signe de H(u(j)) avec le minimum d’évaluations de la fonction H. La

stratégie de classification proposée réside dans l’utilisation d’un métamodèle de krigeage

permettant à partir d’un plan d’expériences, c’est-à-dire à partir d’un ensemble d’obser-

vations de H(u), de prédire la valeur de H notée µH̃(u∗) en un point u∗ pour lequel H

n’a pas été évaluée. L’application du krigeage à la fiabilité est récente [Romero et al.,

2004; Kaymaz, 2005] mais de nombreux travaux [Bichon et al., 2008; Ranjan et al., 2008;

Picheny et al., 2010; Bect et al., 2011; Dubourg, 2011] montrent l’intérêt croissant porté

à ce type de métamodèle pour l’évaluation de la probabilité de défaillance. En plus de son

caractère interpolant, le krigeage est de nature probabiliste et présente donc l’avantage

par rapport aux autres métamodèles (surfaces de réponse quadratiques, chaos polynomial,

support vector machine,...) de fournir un indicateur a priori de l’incertitude de prédiction

sans calcul mécanique supplémentaire. Cet indicateur appelé variance de krigeage et noté

σ2
H̃

(u∗) est très utile car il permet au travers de fonctions dites d’apprentissage d’enrichir
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de façon itérative le plan d’expériences avec des points sélectionnés afin de raffiner le mé-

tamodèle dans une zone d’intérêt. Dans le cadre de la fiabilité, cette zone n’est autre que

le voisinage de l’état-limite H(u) = 0.

Pour une population de N points {u(j) ∈ Un, j = 1, . . . , N}, la technique de classifi-

cation proposée peut se résumer ainsi :

1. Choisir un plan d’expériences initial (environ 10 points) dans la

population et faire les calculs correspondants de la fonction de perfor-

mance H ;

2. Construire le métamodèle de krigeage à partir du plan d’expé-

riences ;

3. Evaluer la fonction d’apprentissage : pour chaque point u(j),

prédire µH̃(u(j)) et σ2
H̃

(u(j)), puis évaluer la fonction d’apprentissage

U(u(j)) = |t − µH̃(u(j))|/σH̃(u(j)) où t = 0 pour l’état-limite ;

4. Apprentissage itératif ou arrêt de l’algorithme

4.1. Si minj(U(u(j))) ≤ 2, évaluer H au point u◦ = arg minj U(u(j))

et ajouter ce point au plan d’expériences. Retourner à l’étape 2 pour

construire le métamodèle avec le plan d’expériences enrichi ;

4.2. Sinon, arrêter l’algorithme et évaluer la probabilité de défaillance

à partir du signe des moyennes de krigeage {µH̃(u(j)), j = 1, . . . , N},

représentatives du véritable signe de H en chacun de ces points.

Les étapes 3 et 4 de l’algorithme font appel à la fonction d’apprentissage U définie de

façon à identifier les points de la population dont le signe de la fonction de performance

est fortement incertain. Illustrée en Figure 3, cette fonction indique la distance, en nombre

d’écarts-types de krigeage, entre la moyenne de krigeage et le seuil défini par t = 0 :

U (u) =
|t − µH̃ (u) |

σH̃ (u)
(1)

Sous l’hypothèse de gaussianité de la prédiction de krigeage, 1 − Φ(U(u)) représente la

probabilité que le signe de H(u) soit différent du signe de µH̃(u) (Φ étant la fonction

de répartition de la loi normale centrée réduite). Le point u◦ où il est le plus intéressant

d’évaluer la fonction de performance est donc celui qui minimise la fonction U . Cette

évaluation est réalisée si la condition d’arrêt de l’apprentissage minj U(u(j)) > 2 à l’étape

4 n’est pas respectée. Cette condition signifie que le signe de µH̃ en chaque point de la

population est identique au signe de H correspondant avec un niveau de confiance supérieur

à Φ(2) = 97.7%. Lorsque cette condition est respectée, il devient possible d’utiliser le

signe des moyennes de krigeage {µH̃(u(j)), j = 1, . . . , N} pour évaluer la probabilité de

défaillance.
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L’algorithme décrit dans cette section est mis en œuvre pour guider les méthodes de

simulation évoquées précédemment. Les méthodes AK-MCS, AK-MCSm (m pour monoto-

nie), AK-IS et AK-SS sont validées sur un ensemble d’exemples académiques. Les résultats

montrent qu’elles sont parcimonieuses du point de vue du nombre d’appels à H et qu’elles

fournissent des classifications très similaires (et même rigoureusement identiques dans la

très grande majorité des cas) aux méthodes de simulation classiques.

Figure 3 – Illustration de la fonction d’apprentissage U à évaluer en trois points différents
u(1), u(2), u(3) avec une moyenne de krigeage positive. La valeur de la fonction d’appren-
tissage en chacun de ces points est respectivement 2, 1 et 0.8. Les aires grisées représentent
les probabilités 1 − Φ(U(u(j))) que le signe de H soit différent de celui de µH̃ . Le point
u(3) est celui qui a la plus grande incertitude sur le signe de H(u(3)).

Applications et résultats

Le troisième chapitre de cette thèse traite des deux cas-tests du projet APPRoFi. Les in-

certitudes de chargement, des propriétés du matériau et de son comportement en fatigue

sont considérées pour ces deux études (la géométrie est déterministe car il est montré

qu’elle a peu d’influence sur la fiabilité ici). La modélisation du chargement est envisagée

selon trois méthodes : une stratégie basée sur la définition de situations de vie élémentaires

[Thomas et al., 1999; Bignonnet et al., 2009; Lefebvre et al., 2009], une approche par coef-

ficient de sévérité et une méthode modélisant la dispersion des matrices Rainflow avec des

densités conjointes de probabilité [Nagode and Fajdiga, 1998, 2000, 2006; Nagode et al.,

2001; Nagode, 2012]. La modélisation du comportement en fatigue est réalisée, quant à elle,

au moyen de courbes S − N probabilistes issues de la littérature [AFNOR, 1991; Guédé,

2005; Guédé et al., 2007; Perrin, 2008; Sudret, 2011]. L’approche probabiliste développée
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dans le premier chapitre est implémentée afin de traiter la réponse aléatoire en fatigue

des deux structures étudiées. Celle-ci est couplée aux méthodes AK-RM afin de permettre

une évaluation de la fiabilité avec peu d’appels aux modèles numériques. De plus, le cal-

cul mécanique déterministe est optimisé aux moyens de méthodes numériques avancées

(méthode LATIN [Ladevèze, 1999] et stratégie multiparamétrique [Boucard and Champa-

ney, 2003]) par le laboratoire LMT-ENS Cachan, partenaire du projet. La méthodologie

globale du projet APPRoFi permet finalement d’évaluer la probabilité de défaillance en

un temps convenable. Il est de plus montré par le calcul des facteurs d’importance que

les modélisations du chargement et de la courbe S − N sont les paramètres ayant le plus

influence sur la fiabilité en fatigue au détriment des propriétés du matériau considérées,

et cela pour la connaissance des données à disposition.

Conclusions et perspectives

Un schéma général de calcul pour l’analyse probabiliste en fatigue ainsi que des méthodes

économiques d’évaluation de la fiabilité des structures ont été proposés dans ce travail de

recherche. Ces méthodes de fiabilité, regroupées sous la dénomination AK-RM pour Active

Learning and Kriging-based Reliability Methods, sont basées sur un métamodèle de krigeage

permettant de prédire précisément le signe de la fonction de performance en chaque point

d’une population sans avoir à effectuer un grand nombre de calculs mécaniques coûteux.

Afin d’évaluer la fiabilité des deux cas-tests du projet APPRoFi, les incertitudes de char-

gement, des propriétés du matériau et de son comportement en fatigue ont été, dans un

premier temps, modélisées à partir de méthodes issues de la littérature. Dans un second

temps, ces incertitudes ont été propagées au travers du schéma général de calcul en fatigue

grâce aux méthodes AK-RM. La probabilité de défaillance et les facteurs d’importance des

deux cas-tests ont ainsi pu être évalués en un temps raisonnable. En effet, seulement 27

calculs mécaniques ont été nécessaires pour le cas du blade support, soit un temps de calcul

total de 2, 25 heures en couplage avec les méthodes numériques du laboratoire LMT-ENS

Cachan.

Ce travail de recherche ouvre de multiple perspectives. Tout d’abord, une étude plus

approfondie des modélisations du chargement et de la courbe S − N serait à envisager

étant donné leurs influences sur la fiabilité. L’utilisation de processus Gaussiens [Pitoiset,

2001; Benasciutti and Tovo, 2005] ou de chaînes de Markov [Mattrand and Bourinet,

2011; Mattrand, 2011] pourrait, entre autre, représenter une alternative aux modélisations

étudiées dans cette thèse pour le chargement.

De même, l’analyse de sensibilité réalisée au moyen des facteurs d’importance pour-

rait être complétée par une approche globale telle que les indices de Sobol’. Ces indices

étant habituellement calculés par simulation de Monte Carlo, un métamodèle de krigeage

pourrait être utilisé afin d’en diminuer le coût de calcul (voir Marrel et al. [2009]).

xx



Une troisième idée serait l’introduction de coefficients partiels spécifiques aux struc-

tures étudiées en lieu et place des coefficients de “sécurité” traditionnels. La calibration

de ces coefficients pour un objectif de fiabilité donné [Gayton et al., 2004] permettrait de

définir des règles de dimensionnement à la fois simples à suivre pour le concepteur, mais

aussi plus adaptées aux structures à dimensionner.

Enfin, la résolution d’un problème d’optimisation sous contrainte de fiabilité pourrait

être envisagée par l’intermédiaire des méthodes AK-RM sur la base des récentes avancées

faites dans ce domaine avec un métamodèle de type krigeage [Bichon et al., 2009; Dubourg,

2011; Dubourg et al., 2011].
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Introduction

Context

Fatigue corresponds to the progressive deterioration of material strength under repeated

loading and unloading. This phenomenon affects most of the structures that are currently

operating, and represents approximately 90% of the in-service failures [Robert, 2009]. Its

consideration is thus a priority when designing new structures. However, structural design

is a complex task due to the significant number of uncertainties that are inherent to the

fatigue phenonemon. For instance, the fatigue behaviour of materials is experimentally

proven to be dispersed, and structures generally undergo variable stress levels depending

on customer usage and operating conditions. Current procedures for designing structures

against fatigue consist of deterministic approaches that are either codified in standards or

based on the know-how acquired through experience feedback. These methods are groun-

ded on the use of so-called safety factors in an attempt to ensure structural integrity while

masking the inherent uncertainties and the lack of knowledge. Such factors are supposed

to guarantee a reliability level which in practice cannot be assessed. Although these de-

terministic methods give mostly satisfactory solutions, they often lead to over-design, and

consequently unnecessary expenditures. Within the scope of cost optimization, engineers

are asked to design functional structures that remain safe while using a minimum quantity

of raw materials. Such an objective can only be fulfilled through a better understanding

of the structural behaviour. From this perspective, the safety margin and the most in-

fluent design parameters on structural reliability represent extremely valuable knowledge.

Probabilistic approaches are a possible way to acquire this knowledge, as they enable the

uncertainties of the different parameters involved in fatigue calculation to be propagated

to the mechanical responses of structures. However, these approaches currently have few

followers in industry due to the interdisciplinary skills required, as well as the cultural

breakaway that they represent.

In 2005, CETIM launched the DEFFI project (Démarche Fiabiliste de conception

en Fatigue pour l’Industrie) to promote the development of probabilistic approaches for

mechanical fatigue design [see Bignonnet and Lieurade, 2007; Bignonnet et al., 2009; Fer-

lin et al., 2009; Lefebvre et al., 2009]. In this project, the probabilistic Stress-stRength†

†The capital letters refer to the mathematical notation S for Stress and R for stRength.
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approach [Thomas et al., 1999] was applied to case studies from different industrial fields

(railway, aerospace, aeronautics...). In 2008, the APPRoFi project (Approche mécano-

Probabiliste Pour la conception Robuste en Fatigue), funded by ANR (Agence Nationale

de la Recherche) and bringing together academic partners (Laboratoire Roberval-UTC,

LaMI-IFMA, LMT-ENS Cachan) and companies (CETIM, Modartt, Phimeca, SNECMA),

was launched to make industrialists further aware of the potential benefits of probabilistic

approaches in fatigue design. From a scientific point of view, the objective of the project

is to implement a global methodology in order to determine, within a short space of time,

the failure probability of already designed structures as well as the most influent design

parameters on structural reliability. The project is based on two challenging case studies

submitted by SNECMA. For each of these case studies, data are available on material

tests (fatigue, tensile/compression), geometrical tolerances, and field measurements of the

in-service loads. Computationally demanding finite element models simulating the mech-

anical behaviours of the structures are also provided. Starting from this set of information,

the following points are identified as relevant directions to investigate in order to fulfil the

scientific objective of the project:

1. stochastic modelling of the material, geometry and load. Statistical infer-

ence methods (frequentist and Bayesian) are applied to model the dispersion of the

material properties and structure dimensions. Methods are also reviewed to depict

the uncertainties of the in-service loads on the basis of field measurements. Point 1

is studied by Phimeca. Load modelling is also partly investigated by LaMI-IFMA.

2. stochastic modelling of the fatigue behaviour. In practice, the fatigue beha-

viour of a material is characterized by performing numerous experiments on smooth

specimens. The results are then analysed in order to plot the S − N curve of the

material. Given that a large scatter is observed in the fatigue life when tests are

performed at a similar stress level, the S −N curve clearly presents a random nature.

The objective of Point 2 explored by CETIM, LaMI-IFMA and Phimeca is the char-

acterization of probabilistic S − N curves modelling this uncertainty.

3. efficient evaluation of the mechanical behaviour. The evaluation of the nu-

merical model simulating the mechanical behaviour of a structure is often a time-

demanding process (typically the case of a finite element analysis which may take

several minutes to several hours). Classical sampling-based reliability methods re-

quire a substantial number of model evaluations and are consequently inapplicable

in a suitable amount of time. Numerical strategies are developed in this project

to reduce the CPU time of succeeding model evaluations. Point 3 is researched by

LMT-ENS Cachan and Laboratoire Roberval-UTC.

4. efficient reliability assessment. As mentioned above, classical sampling-based

2
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reliability methods are incompatible with computationally demanding models. Al-

ternative reliability methods based on metamodels are thus studied in Point 4 in

order to considerably reduce the number of model evaluations required to assess the

failure probability. On the one hand, Modartt investigates sparse grids. On the other

hand, LaMI-IFMA proposes a family of methods based on a Kriging metamodel.

These latter methods represent the main contribution of this thesis.

Thesis objectives

Within the APPRoFi project, the objectives of this thesis are:

• to define a general approach for probabilistic analysis in fatigue. This point also

deals with the stochastic modellings of the in-service loads and fatigue behaviour on

the basis of existing methods in the literature.

• to develop reliability methods that are parsimonious with respect to the number of

numerical model evaluations and applicable to small failure probability cases.

• to handle the two case studies submitted by SNECMA.

Contents

This thesis is divided into three chapters, one for each of the objectives listed above.

Chapter 1 is concerned with structural design against fatigue failure. The deterministic

approaches are first detailed, and the use of safety factors in industry is briefly discussed.

Following this, the principles of the probabilistic approach are introduced with statistical

methods to model the uncertainties of the load and fatigue behaviour. The Stress-stRength

approach implemented in the DEFFI project is then examined, and its limits are illustrated

on an academic example. The alternative approach proposed in the frame of the APPRoFi

project is finally explained.

Chapter 2 is devoted to the assessment of the failure probability for industrial ap-

plications. Sampling-based reliability methods are first reviewed. Given the considerable

number of numerical model evaluations required by these sampling techniques, Kriging-

based methods are proposed as more parsimonious alternatives. These methods form the

AK-RM family (Active learning and Kriging-based Reliability Methods) and are valid-

ated on a chosen set of academic examples involving high non-linearity and small failure

probabilities.

In Chapter 3, the different contributions of the thesis are applied to the case studies of

the APPRoFi project. The uncertainties of the fatigue behaviour, material properties and

load are considered. Their stochastic modellings are detailed, and methods of the AK-RM

family are implemented to determine the failure probability and the influent parameters on

structural reliability. The global methodology is proven to be operational and transferable

in design offices in order to rapidly assess the reliability of structures.

3
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1. Structural design against fatigue failure

1.1 Introduction

The fatigue phenomenon is associated with the repeated loading and unloading of a mater-

ial. The progressive deterioration of the material’s strength resulting from the application

of these cyclic loads, whose nominal stress values are below the ultimate strength and can

be below the yield strength, is known as fatigue damage. This fatigue damage accounts for

approximately 90% of the structural failures observed in service [Robert, 2009], making

the consideration of the fatigue phenomenon a priority when designing new structures.

In a material, manufacturing defects are zones where plastic deformations may appear

under very low nominal stresses. These plastic deformations are negligible for one stress

cycle, but the succession of cycles produces an accumulation of microplasticity which may

lead to the initiation of microscopic cracks. These cracks then propagate until they form a

macroscopic crack that causes fracture. The process of fatigue damage is generally divided

into three steps which are:

• the initiation of a macroscopic crack. This thesis focuses on this step, given that

crack initiation is considered as the failure criterion for the structures studied in the

APPRoFi project.

• the propagation of the macroscopic crack.

• the sudden fracture at the critical crack size.

The fatigue behaviour of structures is strongly affected by uncertainties. In addition

to the unavoidable manufacturing defects, the applied loads are random, and the mater-

ial properties present inherent scatters. The consideration of these uncertainties in the

fatigue design process is necessary to devise reliable structures. A common practice in

industry is the use of so-called safety factors in an attempt to ensure structural integrity

while covering the inherent uncertainties. These factors based on practical experience or

codified in standards are convenient to use, but they often lead to over-design. Addition-

ally, the safety margin and the most influent design parameters on structural reliability

which represent valuable information for the designer remain unknown. Starting from this

observation, probabilistic approaches have been developed to contribute a better under-

standing of structural behaviours. These approaches are the main topic of this chapter

which is organized as follows. Section 1.2 reviews important considerations in fatigue,

and briefly presents the common deterministic fatigue design approaches employed in in-

dustry. Section 1.3 introduces the probabilistic approaches as a means to expand the

knowledge of uncertainties in the mechanical response of structures. In this section, the

statistical modellings of the in-service loads and S − N curves are also discussed, and the

probabilistic Stress-stRength approach by Thomas et al. [1999] is explained. Finally, the

approach proposed in the APPRoFi project is presented as an alternative to calculate an

accurate estimate of the failure probability as well as the influent parameters on structural

reliability.
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1.2. Deterministic fatigue design

1.2 Deterministic fatigue design

1.2.1 Introduction

This part is structured as follows. Section 1.2.2 introduces important considerations in

fatigue. Sections 1.2.3 and 1.2.4 present the deterministic fatigue design in the case of a

constant amplitude load and a variable amplitude load respectively. Section 1.2.5 explains

the equivalent fatigue concept. Finally, Section 1.2.6 briefly presents the deterministic

design approaches that are employed in industry.

1.2.2 Considerations in fatigue

The present section is based on the books by Suresh [1998] and Lalanne [2002]. The reader

may refer to them for further details and original references.

1.2.2.1 Constant amplitude load

The Constant Amplitude (CA)† load, depicted in Figure 1.1, is the simplest load in fatigue.

Its replicated cycle features a mean σm and an amplitude σa. The cycle may also be defined

with the extrema σmin = σm − σa and σmax = σm + σa, or finally, by the stress range ∆σ

and the stress (or load) ratio R that reads:

R =
σmin

σmax
(1.1)

Common stress ratio values are −1 and 0. R = −1 refers to the fully reversed load which

is characterized by a mean σm = 0 and a symmetric alternating amplitude σ′
a. R = 0

refers to the zero-tension fatigue where the load is purely tensile (σmin = 0).

The load rate is assumed to have no effect on the fatigue behaviour if the frequency re-

mains below 20 Hz [Robert, 2009]. This hypothesis enables the fatigue life to be expressed

as a number of cycles.

1.2.2.2 S − N curve

The fatigue behaviour of materials is characterized experimentally by applying a smooth

specimen to a CA force load (or displacement) until failure, i.e. until a crack is initiated.

The number of cycles to failure N thus obtained is carried forward into an S − N diagram

which typically consists of the alternating nominal stress amplitude undergone by the

specimen (easily derived from the applied load and the specimen’s cross-section) versus

N . By plotting N for different stress levels, the S − N curve, also known as the Wöhler

†A list of abbreviations is available in Appendix A. Note also that Appendix B provides a list of

notations.
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1. Structural design against fatigue failure

Figure 1.1: Characteristics of a constant amplitude load.

curve, is obtained (see Figure 1.2). This curve is generally expressed for R = −1, and is

commonly composed of three domains [Lalanne, 2002]:

I. The low cycle fatigue domain corresponds to the high stresses and relatively short

lives, i.e. N ≤ 104 − 105 cycles. In this domain, significant plastic deformations

are observed. The plastic strain ǫp is usually related to N by using the so-called

Manson-Coffin’s relation:

ǫp = C N c (1.2)

II. The high cycle fatigue domain with finite life (or zone of limited endurance) corres-

ponds to stresses that are lower than those in domain I. The number of cycles to

failure is between 104 − 105 and 106 − 107. In this domain, a linear relation is often

assumed between log σ′
a and log N . It is referred to as the Basquin’s relation:

σ′
a = B N b (1.3)

In this thesis, b and B are called the Basquin’s slope and the fatigue strength coeffi-

cient respectively.

III. The high cycle fatigue domain with infinite life corresponds to the number of cycles

to failure that are greater than 106 − 107. In this domain, a significant variation

of slope is observed, and the curve tends towards a horizontal limit known as the

fatigue limit σD. Stresses under this level never cause failure whatever the number

of cycles.

8



1.2. Deterministic fatigue design

Figure 1.2: The domains of the S − N curve.

Numerous relations exist in the literature [Lalanne, 2002] to associate the number of

cycles to failure with the stress level (e.g. Bastenaire’s, Stromeyer’s, Weibull’s,...). In this

research work, the Basquin’s relation is selected, as the study is restricted to the domain

of high cycle fatigue with finite life. Note that a ‘double’ Basquin’s relation may also be

used to consider the change of slope between log σ′
a and log N in domain III.

A large scatter in fatigue life is observed when replicating several fatigue tests at a

given stress level. The fatigue phenomenon is thus strongly affected by uncertainties which

are mainly due to:

• the heterogeneity of materials. The fatigue strength, i.e. the value of the nominal

stress at which failure occurs after N cycles, depends strongly on the chemical com-

position of some material grains in the critical zone where a crack will be initiated

[Lalanne, 2002].

• the manufacturing quality (surface roughness, geometry).

• the casting defects such as inclusions.

• the conditions of tests (corrosion, temperature, the control of the applied load...).

The observed scatter is characterized with statistical tools, and the median curve (50%

of the specimens tested at the given stress level fail at N) is generally plotted. The

fatigue strength at a given N is often considered as a Gaussian random variable [Lalanne,

2002] (truncated to positive values). The number of cycles to failure at a given stress

level is usually defined as a lognormal distribution [Lalanne, 2002; Guédé, 2005]. Note

that the consideration of fatigue life scatter is further discussed in Section 1.3.5 with the

introduction of probabilistic S − N curves.

9



1. Structural design against fatigue failure

In contrast to a smooth specimen, a complex structure cannot be considered as being

homogeneously affected by the applied load. Its geometry produces stress concentration

zones, and the critical location, i.e. the location that first reaches failure, is likely to be

located in these zones. The stress response undergone by the structure at this location

must therefore be acquired in order to determine the fatigue life according to the S − N

curve of the material. In practice, the stress response of the structure is either derived from

instrumenting the structure with sensors, or determined by applying field measurements of

the in-service loads to the numerical model representing the structural behaviour. Another

alternative is to conduct fatigue tests on real structures. The fatigue curve is then plotted

in a diagram depicting the applied force (or displacement) versus the number of cycles to

failure. However, conducting such fatigue tests is not always feasible due to prohibitive

costs and structure size.

1.2.2.3 Mean stress effect on fatigue life

As mentioned previously, the S − N curve is often drawn for a fully reversed load, but

it may also be expressed for R 6= −1. The fatigue behaviour is strongly affected by the

mean value σm in the way that a positive mean (i.e. tensile stress) decreases the fatigue

life, and conversely that a negative mean (i.e. compression stress) increases it as long

as |σm| is not too large. The mean effects can be represented in the Haigh diagram (see

Figure 1.3) which depicts different combinations of the stress amplitude and mean stress

providing a constant fatigue life. The three main expressions modelling the Haigh diagram

are [Suresh, 1998]:

• The modified Goodman line:

σa = σ′
a

(

1 − σm

Rm

)

(1.4)

where Rm is the tensile strength.

• The Gerber parabola:

σa = σ′
a

(

1 −
(

σm

Rm

)2
)

(1.5)

• The Söderbeg line:

σa = σ′
a

(

1 − σm

Ry

)

(1.6)

where Ry is the yield strength.

These expressions are used in order to convert a cycle having a stress ratio R1 into a cycle

with R2 which is equivalent in terms of fatigue life. The mean stress effect on fatigue

life is not considered in the same way for these three models. For instance, the Gerber

10



1.2. Deterministic fatigue design

parabola implies that tensile and compressive mean stresses have the same impact on

fatigue life, whereas the modified Goodman line considers that compressive mean stresses

are beneficial to the fatigue life.

Figure 1.3: Different models of the Haigh diagram.

1.2.3 Fatigue design under a constant amplitude load

The objective of fatigue design under a CA load is to determine the fatigue life. Let a CA

load be imposed on a smooth specimen. The nominal stress cycle deriving from this load

is denoted by (σm, σa). Let the S − N curve of the material be expressed for R = −1.

Figure 1.4 depicts the method which is as follows:

1. Convert the stress cycle (σm, σa) into its fully reversed equivalent (σm = 0, σ′
a) using

the Haigh diagram modelled for instance by the Gerber parabola.

2. Determine the number of cycles to failure corresponding to σ′
a with the S − N curve

of the material expressed for R = −1.

1.2.4 Fatigue design under a variable amplitude load

Structures generally undergo Variable Amplitude (VA) stress responses rather than CA

ones. As a result, the number of cycles that are applied is not as obvious, and cycle-

counting techniques are necessary to identify them, as well as estimate their damage

contributions. Figure 1.5 depicts the general procedure of the fatigue design approach.

Let F (t) be a VA force load applied to a structure. The design approach is as follows:

11



1. Structural design against fatigue failure

Figure 1.4: Fatigue design under a CA load.

1. Apply the load F (t) to the numerical model of the structure which is characterized

by a material and a geometry. The output of the model is the stress response σ(t)

at the critical location.

2. Decompose the stress history σ(t) into cycles using the Rainflow-counting method

(or other).

3. Convert the stress cycles into their R = −1 equivalents using the Gerber parabola

(or other).

4. Determine the fraction of damage of each stress cycle with the S−N curve expressed

for R = −1.

5. Cumulate the fractions of damage with the Palmgren-Miner cumulative rule (see

Section 1.2.4.2) to obtain the damage D.

6. Check if the damage causes failure with the design rule.

The Rainflow-counting method (Step 2) and the notion of damage (Step 4-6) are detailed

below.

1.2.4.1 Rainflow-counting method

The Rainflow-counting method is widely used in industry to identify the cycles of a VA

signal. The method was initially developed by Matsuishi and Endo [1968], and nowadays,

different algorithmic versions coexist [Downing and Socie, 1982; Amzallag et al., 1994].

However, the definition of a cycle as an hysteresis loop in the stress-strain plane (see Figure

12



1.2. Deterministic fatigue design

input load
F (t)

material prop.
geometry

S −N curve of the
material for R = −1

numerical model fractions of damage

stress response
σ(t)

damage D

(Palmgren-Miner rule)

stress cycles
(Rainflow-counting method)

design rule D < 1

stress cycles with R = −1
(Gerber parabola)

Figure 1.5: Fatigue design under a VA load.

1.6) is a shared principle. The four-point Rainflow-counting algorithm recommended by

the French national organization for standardization [AFNOR, 1993] is as follows:

1. The sequence of Ntp local minima and maxima known as the turning points (or

peaks and valleys) is extracted from the stress history σ(t).

2. The position in the sequence of turning points is indexed by i. At the first iteration,

i = 1.

3. The four successive turning points of the sequence are considered: σi, σi+1, σi+2,

σi+3.

4. The following ranges are calculated: ∆1 = |σi+1 − σi|, ∆2 = |σi+2 − σi+1|, ∆3 =

|σi+3 − σi+2|.

5. If ∆2 ≤ ∆1 and ∆2 ≤ ∆3, the couple (σi+1,σi+2) constitutes a cycle. Its mean

σm = (σi+1 + σi+2)/2 and its amplitude σa = |σi+1 − σi+2|/2 are calculated, and

stored for further analysis. The points σi+1 and σi+2 are extracted from the sequence

(Ntp = Ntp − 2), and σi and σi+3 are now successive turning points. The algorithm

goes back to Step 3 with i = i − 2 (or i = 1).

6. If the previous conditions are not satisfied, the algorithm goes back to Step 3 with

i = i + 1.

The algorithm stops when i + 3 > Ntp. The turning points which have not been extracted

from the sequence constitute the residue. The damage contribution of the residue is

13



1. Structural design against fatigue failure

significant as it contains the extreme turning points over the sequence. To extract this

damage contribution, the four-point algorithm described above is run again in order to

identify the cycles of a new sequence generated by repeating the residue. At the end of the

procedure, the full decomposition of the stress history into cycles is obtained. Note that a

counting threshold is often set in the Rainflow-counting method to avoid the consideration

of small cycles and noise. Such a threshold may have an impact on fatigue life prediction.

To conclude on this part, cycles are usually plotted in a 3D histogram, known as the

Rainflow matrix, which represents the number of cycles ordered by mean and amplitude

(see Figure 1.7).

Figure 1.6: Sequence of turning points (σ1, σ2, σ3, σ4) (on the left-hand side) with the
corresponding hysteresis loop in the stress-strain plane (on the right-hand side). The
segment (σ2, σ3) forms a cycle.
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Figure 1.7: Example of Rainflow matrix.
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1.2. Deterministic fatigue design

1.2.4.2 Cumulative damage

In fatigue, the evolution of the material deterioration is quantified by the concept of dam-

age denoted by D, which ranges between 0 (no deterioration) and 1 (failure). The fatigue

life is frequently predicted with the Palmgren-Miner cumulative damage rule [Miner, 1945]

that defines, for a stress level characterized by a mean σm,i and an amplitude σa,i, the

fraction of damage di as the ratio of the number ni of cycles undergone by the structure

to the number of cycles to failure Ni:

di =
ni

Ni
(1.7)

Note that Ni is derived from the S − N curve. The Palmgren-Miner cumulative damage

rule assumes that the order in which the cycles are undergone does not affect the fatigue

life and that the fractions of damage can be added in a linear manner. The damage D

then reads:

D =
∑

i

di =
∑

i

ni

Ni
(1.8)

Failure occurs if the sum reaches 1. The design rule is thus D < 1 (see Figure 1.5).

1.2.5 Equivalent fatigue concept

In industry, fatigue design codes can also be deterministic stress-strength approaches as

illustrated in Figure 1.8. The history σ(t) of the stress response is summarized into a

single stress value which is then compared with a given fatigue strength. The Equivalent

Fatigue (EF) concept is commonly used to summarize the stress response. It converts a

VA signal σ(t) into a simple CA cycle which, repeated an arbitrary number of times Neq,

produces the same fatigue damage to the structure. This cycle is generally defined as fully

reversed in order to be wholly characterized by its amplitude σeq. This amplitude is then

compared with the fatigue strength r at Neq cycles which is derived from the S − N curve

of the material expressed for R = −1. The design rule thus becomes σeq < r. In this

section, the EF concept is first applied to an assumed VA stress response at the critical

location of the structure. It is then extended to a VA load imposed on the global structure

as is usually the case for pre-dimensioning and test characterization.

1.2.5.1 Equivalent fatigue stress response

The stress response of a structure to an input VA load is assumed to be uniaxial at the

critical location (or at least dominated by a direction). Its cycles are extracted, and the

ith one is characterized by a mean σm,i, an amplitude σa,i and a number of occurrences ni.

The damage induced by these cycles is denoted by DR. Let Deq be the damage produced

by the EF cycle repeated Neq times. Given an arbitrary Neq, the symmetric alternating

amplitude σeq must be determined so that DR = Deq.
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1. Structural design against fatigue failure

input load
F (t)

material prop.
geometry

S −N curve of the
material for R = −1

numerical model
stress ampl.

σeq

strength r

at Neq cyles

stress response
σ(t)

EF concept

at Neq cycles
design rule σeq < r

stress cycles
(Rainflow-counting method)

stress cycles with R = −1
(Gerber parabola)

b

Figure 1.8: Deterministic stress-strength approach based on the EF concept.

On the one side, the damage DR is calculated as explained in the previous section.

For instance, assume that the Haigh diagram is modelled with the Gerber parabola, and

that the S − N curve is expressed as the Basquin’s relation given in Eqn(1.3). Using the

Palmgren-Miner cumulative rule, the damage DR reads:

DR =
∑

i

ni









σa,i

B

(

1 −
(

σm,i

Rm

)2
)









− 1
b

(1.9)

On the other side, the damage Deq simply reads:

Deq = Neq

(

σeq

B

)− 1
b

(1.10)

The equivalence of the damages gives:

∑

i

ni









σa,i
(

1 −
(

σm,i

Rm

)2
)









− 1
b

= Neq σeq
− 1

b (1.11)

In the literature [Thomas et al., 1999; Veldkamp, 2006], Neq is usually set to 106, but it

may also be the number of cycles observed in the life of the structure. Given this arbitrary

number of cycles, the EF amplitude is easily determined from Eqn.(1.11).
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1.2. Deterministic fatigue design

1.2.5.2 Equivalent fatigue load

The fatigue design approaches introduced previously require the knowledge of the stress

response at the critical location of the structure. Often, in-service measurements provide

the input loads, and the stress response history σ(t) is derived from a time-demanding

evaluation of the numerical model. Under some assumptions, the EF concept may also be

used to summarize the load applied to the global structure instead of the stress response

[Thomas et al., 1999; Veldkamp, 2006; Genet, 2006]. In such a case, the EF cycle of the

load is applied to the numerical model, and the cycle of stress response thus obtained is

interpreted as being repeated Neq times. The EF load is an extremely convenient tool as it

avoids the time-demanding calculation of σ(t). Additionally, it presents a large potential

for other fatigue applications. For instance in Morel et al. [1993], the amplitude of the EF

cycle is derived from field measurements, and then used as a setting value on a testing

machine in order to perform simple but representative fatigue tests on real structures.

The amplitude of the EF cycle may also be employed to compare different loads as it is a

scalar representation of the load severity.

The equivalence of the damages DR and Deq must be assessed strictly from the loads

that are independent from the geometry of the structure. Assume that a force load F (t) is

applied to the structure. The ith force cycle is characterized by a mean Fm,i, an amplitude

Fa,i and a number of occurrences ni. Assume that the EF cycle is fully reversed, and

features an amplitude Feq. This amplitude must be determined so that DR = Deq. On

the hypothesis that the global behaviour of the structure is elastic and quasi-static [Genet,

2006], the stress response at the critical location is proportional to the applied force:

σ(t) = λ F (t) (1.12)

where λ depends on the structure’s geometry and material. This linear assumption is

acceptable in the case of a structure designed for high cycle fatigue, as macroscopic cyclic

plasticity is not observed. According to Eqn.(1.12), the following relations can be written:















σm = λ Fm

σa = λ Fa

σeq = λ Feq

(1.13)

and the Basquin’s relation becomes:

λ F ′
a = B N b (1.14)

The damage Deq expressed from the force thus reads:

Deq = Neq

(

λ Feq

B

)− 1
b

(1.15)
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1. Structural design against fatigue failure

Concerning the damage DR, Eqn.(1.9) requires the knowledge of the tensile strength Rm.

The coefficient λ cannot be used to link the tensile strength to the ‘tensile force’ as

plasticity occurs. An approximation is therefore made by considering the ratio K of the

tensile strength to the stress at Neq cycles:

K =
Rm

σeq
=

Rm

λ Feq
(1.16)

K depends on the fatigue behaviour of the material, and is commonly set to 2.5 for steels

when Neq = 106 cycles [Thomas et al., 1999]. The damage DR then reads:

DR =
∑

i

ni









λ Fa,i

B

(

1 −
(

Fm,i

K Feq

)2
)









− 1
b

(1.17)

The equivalence of damages becomes:

∑

i

ni









Fa,i
(

1 −
(

Fm,i

K Feq

)2
)









− 1
b

= Neq Feq
− 1

b (1.18)

λ and B are removed by expressing the equivalence, therefore, the structure’s geometry

is not involved in the expression of the EF amplitude. Feq is assessed numerically using

Newton’s method to find the root of the following function f(Feq):

f(Feq) = 1 − Feq
1
b

Neq

∑

i

ni









Fa,i
(

1 −
(

Fm,i

K Feq

)2
)









− 1
b

(1.19)

The function f(Feq) is not defined for Feq = Fm,i/K. It is recommended to set the initial

point F
(0)
eq of Newton’s method so that F

(0)
eq > maxi(Fm,i/K).

1.2.6 Fatigue design codes in industry

The fatigue behaviour of structures is strongly affected by uncertainties [Svensson, 1997].

Tovo [2001] sorts these uncertainties into two fundamentally different categories that are:

• the inherent uncertainties of the material properties, loads, geometry and fatigue

behaviour.

• the errors of the numerical model as well as in the estimation of the parameters.

The first category is the aleatoric uncertainties. They correspond to the parameters en-

tering into mechanical modelling that are intrinsically random. The second category rep-
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1.3. Probabilistic fatigue design

resents the epistemic uncertainties. In fatigue, they are caused by a lack of knowledge in

the complex damage mechanism or by the shortage of experimental data. In contrast to

the aleatoric uncertainties, they can, in principle, be reduced.

Most structures are designed against fatigue with deterministic approaches that are

either codified in standards or based on practical experience. These approaches imply

the use of so-called safety factors in an attempt to ensure the integrity of the structure

while covering the inherent uncertainties mentioned above. Such factors are based on the

know-how acquired through experience feedback, and are consequently highly subjective.

In industry, two main fatigue design approaches exist:

• The first one is the application of the flowchart depicted in Figure 1.5 with safety

rules. A codified load history is imposed on the structure, and the fraction of damage

is calculated for each stress response cycle with a pessimistic S − N curve. This

curve can either be the isoprobabilistic S − N curve representing the median shifted

down by uf (e.g. 3) standard deviations, or the most conservative curve obtained

when multiplying the median one by a factor reducing the fatigue life and a factor

augmenting the stress level [AFCEN, 2000].

• The second approach refers to the deterministic stress-strength approach. A design

load representing the severity of the in-service loads is applied to the numerical

model, and its stress response is compared to a conservative fatigue strength. Such

a procedure may be grounded upon the EF concept as depicted in Figure 1.8.

For illustrations of such design approaches and safety factors, the reader is referred to codes

such as the RCC-M standard [AFCEN, 2000] for nuclear applications, or the FEM1.001

[FEM, 1998] for lifting machines.

1.3 Probabilistic fatigue design

1.3.1 Introduction

As mentioned previously, safety factors are applied in deterministic fatigue design ap-

proaches to cover the uncertainties that are inherent to the fatigue phenomenon. Although

these approaches mostly give satisfactory results, the use of safety factors often leads to

over-design, i.e. excessive dimensions and masses. Within the scope of cost optimization,

engineers are asked to design structures that are safe while using a minimum quantity

of raw materials. Such a challenge can only be met through a better understanding of

the structural behaviour. From this perspective, the knowledge of the safety margin and

the most influent design factors on structural reliability is valuable for the design process.

Deterministic methods are not sufficient to acquire this information, and probabilistic

approaches are gradually finding their way into industrial research in order to provide

answers to these recent expectations.
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1. Structural design against fatigue failure

This part is devoted to these approaches. Section 1.3.2 explains the principles of the

probabilistic approaches. Section 1.3.3 presents tools for inferring statistical distributions.

Section 1.3.4 discusses methods for modelling the uncertainty of the in-service loads. Sec-

tion 1.3.5 introduces the probabilistic S − N curves to model the scatter of the fatigue

behaviour. Section 1.3.6 explains the probabilistic Stress-stRength approach developed

by Thomas et al. [1999]. Finally, Section 1.3.7 presents the approach implemented in the

APPRoFi project.

1.3.2 Principles of the probabilistic approaches

In mechanics, probabilistic approaches are a way to consider the physical uncertainties

affecting a structure [Ditlevsen and Madsen, 1996; Lemaire, 2009]. With such approaches,

each parameter entering into mechanical modelling (e.g. structure dimensions, bound-

ary conditions, material properties, fatigue behaviour...) is no longer a single value or

number but a random variable. The mechanical response then becomes random, and its

uncertainty can be quantified.

The present section is based on Lemaire [2009] and Sudret [2011]. Figure 1.9 depicts

the general flowchart of a probabilistic approach. At first, a deterministic model M
(Step 1) must be defined, and particularly its input parameters x and its response y. As

mentioned above, the vector x is composed of the geometry, load and material parameters.

In fatigue design, the response y may for instance be a damage value, a stress level or a

number of cycles to failure.

Step 2 of the probabilistic approach is the stochastic modelling of uncertainties.

The variabilities of x are modelled with Probability Density Functions (PDF) such as

Gaussian, Weibull, uniform... The parameters are now random variables X = X(ω)†. In

practice, the PDFs are inferred from data sets that may be acquired by:

• quality controls for the geometry parameters.

• experience feedback and field measurements for the uncertainty of the in-service

loads.

• multiple tests on structures and specimens for material properties and fatigue beha-

viour.

Classically, the parameters of the PDFs are adjusted by maximum likelihood estimation,

and goodness-of-fit tests are conducted to determine whether the assumed distribution is

valid (see Section 1.3.3 for further details on these statistical inference methods). Bayesian

inference may also be used when the size of the data set is small and when there is a priori

†In this thesis, random parameters are written in capital letters. However, ω is sometimes used to

underline the random nature of the quantity. For instance, the random stress level and the random

number of cycles to failure are denoted by σ(ω) and N(ω) respectively.
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1.3. Probabilistic fatigue design

information. It consists in determining a ‘posterior’ distribution according to the Bayes’

rule, given a ‘prior’ believed distribution and the observation of data. Finally, when

no data are available, recourse to expert judgement is required. A distribution and its

parameters are simply assumed based on empirical knowledge.

Step 3 is the propagation of uncertainty. The response of the deterministic model is

now a random variable Y = M(X) whose realizations are only known when evaluating M
for a given realization x of X. The propagation of uncertainty aims at characterizing the

random response Y . Different analyses exist depending on the objective of the study. In

the frame of this thesis, a structural reliability analysis is conducted. In such an analysis, a

failure scenario of the structure is mathematically represented by a performance function

G(X) (or several) which is defined in order to give positive values in the safe domain

and zero or negative values in the failure domain. The objective of the analysis is then

to determine the failure probability Pf = Prob(G(X) ≤ 0) through the use of reliability

methods that are further discussed in Chapter 2. Note that the analysis also produces the

importance factors or sensitivity indices which quantify the influence of the random input

parameters on structural reliability. Finally, in the case of fatigue design, the performance

function G can either be the difference between 1 and the cumulated damage, the difference

between a fatigue strength and a stress level, or the difference between a reference number

of cycles and the number of cycles to failure.

Step 2
stochastic
modelling

Step 1
deterministic

model M

Step 3
propagation of

uncertainty

random input
parameters: X

model
M

characterization of
the random response Y

(reliability analysis or
sensitivity analysis)

Figure 1.9: Steps of the probabilistic approach in mechanics.

1.3.3 Basic statistical inference methods

This section introduces some basic methods that are employed in this research work for

modelling the uncertainty of the input parameters.

1.3.3.1 Maximum likelihood estimation

Statistical modelling aims at determining the stochastic model shared by a set of observa-

tions {x(1), . . . , x(Q)} which are presumed to be independent and identically distributed.
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1. Structural design against fatigue failure

To establish such a model, two types of methods exist in the literature: parametric methods

and non-parametric methods. Within a parametric framework, a statistical distribution

is assumed, and its parameters are inferred according to the observations. Conversely,

non-parametric methods such as kernel density estimation [Saporta, 2006] do not rely

on assumptions that the data are drawn from a given distribution. In the frame of this

thesis, a parametric method known as Maximum Likelihood (ML) estimation [Fisher,

1950] is used.

Assume fX to be the PDF of the random variable X whose available observations

are denoted by {x(1), . . . , x(Q)}. ML estimation aims at determining the parameters θ =

{θ1, . . . , θh} of fX according to the observations. For this purpose, the likelihood L is

expressed as:

L
(

θ; x(1), . . . , x(Q)
)

=
Q
∏

i=1

fX

(

x(i); θ
)

(1.20)

The ML estimate θ̂ corresponds to the value of θ that maximizes the likelihood. In

practice, the log-likelihood is used in order to determine θ̂. The optimization problem to

solve then reads:

θ̂ = arg min
Q
∑

i=1

− ln fX

(

x(i); θ
)

(1.21)

In some cases, an explicit expression of the ML estimate may be derived. However, the

optimization problem must often be solved numerically.

The selection of a PDF from a set of candidate models is done thanks to likelihood

criteria such as AIC (Akaike Information Criterion) [Akaike, 1974] and BIC (Bayesian

Information Criterion) [Schwarz, 1978]. These criteria measure the relative goodness of

fit of models, and are based on the maximum value Lmax of the likelihood attained at θ̂.

AIC reads:

AIC = −2 ln Lmax + 2 h (1.22)

where h denotes the number of components of θ. BIC reads:

BIC = −2 ln Lmax + h ln Q (1.23)

where Q is recalled to be the number of available observations. The model to select is the

one with the minimum AIC and BIC values. However, these criteria do not tell how well

a model fits the data in an absolute sense. They can in fact only be used for comparing

different models, and analysis must then be completed with goodness-of-fit tests to validate

model hypotheses. These tests are introduced in the next section.
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1.3. Probabilistic fatigue design

1.3.3.2 Goodness-of-fit tests

Goodness-Of-Fit (GOF) tests check whether there is evidence that a set of observations

does not arise from a given statistical distribution. The null hypothesis usually denoted by

H0 corresponds to the position where the observations arise from the assumed distribution.

Conversely, the alternative hypothesis H1 is the position where the observations are not

drawn from the assumed distribution. Let F0 be the Cumulative Distribution Function

(CDF) that is assumed, and F̂Q be the empirical CDF of the observations. GOF tests

quantify a distance between F̂Q and F0 known as the test statistic which is then compared

with a critical value, in order to determine whether H0 should be rejected or not (note

that H0 can never be proven). This critical value is associated with a significance level

which corresponds to the probability of making an error by rejecting H0. This probability

is usually set to 5%. Another way of using GOF tests is to use the p-value in order to

examine the strength of evidence that the set of observations provides against H0. The

p-value represents the probability of obtaining a test statistic at least as extreme as the

value observed, assuming that H0 is true. Hence the smaller the p-value, the stronger the

evidence against H0. Often, H0 is rejected when the p-value is below the significance level.

The first GOF test considered in this research work is Kolmogorov-Smirnov’s. Its

statistic D̂ reads:

D̂ = max
i∈{1,...,Q}

[

|F0(x(i)) − F̂Q(x(i))|, |F0(x(i)) − F̂Q(x(i−1))|
]

(1.24)

Under H0, this statistic is asymptotically (Q → +∞) distributed as [Saporta, 2006]:

Prob(
√

QD̂ > d) → K(d) =
+∞
∑

k=−∞
(−1)k exp(−2k2d2) (1.25)

H0 is then rejected if
√

QD̂ is higher than a critical value dα (see Saporta [2006] for tables

of dα depending on the significance level).

The Anderson-Darling test [NIST/SEMATECH] is an alternative to the Kolmogorov-

Smirnov test, and is often preferred for its ability to give more weight to the distribution

tails. Its statistic Â reads:

Â = −Q −
Q
∑

i=1

2i − 1

Q

(

ln(F0(x(i))) + ln(1 − F0(x(Q−i+1)))
)

(1.26)

Contrary to the Kolmogorov-Smirnov test, the critical values of the Anderson-Darling test

depend on the distribution which is assumed (see D’Agostino and Stephens [1986] for tables

of critical values). The asymptotic distribution of the Anderson-Darling statistic presents

a complex expression (see Marsaglia and Marsaglia [2004]). The calculation of the p-value

is therefore relatively difficult, but one may use the package ‘ADGofTest’ [Gil Bellosta,
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1. Structural design against fatigue failure

2011] of the programming language R which provides the p-value calculation based on the

works by Marsaglia and Marsaglia [2004].

1.3.4 Modelling of in-service loads

The uncertainty of the in-service loads must be considered in the fatigue calculation so

as to determine a correct structural design. Field measurements are generally conducted

to examine this uncertainty. The problem tackled in this section is the determination of

a stochastic model that matches the variability observed in a database of measurements.

A load mix strategy dividing load histories into elementary life situations and the use of

mixture models to represent Rainflow matrices are discussed here. It is important to note

that this section is restricted to the methods studied in the frame of the APPRoFi project.

Approaches such as the modelling of loads with stationary Gaussian processes [Pitoiset,

2001; Benasciutti and Tovo, 2005] or Markovian processes [Mattrand and Bourinet, 2011;

Mattrand, 2011] are possible alternatives.

1.3.4.1 Load mix strategy

The load mix strategy [Thomas et al., 1999; Bignonnet et al., 2009; Lefebvre et al., 2009]

considers that in-service loads are mixtures of elementary life situations corresponding to

specific usages of the structure. An elementary situation features:

• field measurements of the corresponding load which are generally converted into

Rainflow matrices.

• a random percentage of occurrence during the structure’s life span. Such informa-

tion may be extracted from a customer survey or from field measurements of some

parameters in addition to the load.

Table 1.1 presents the load mix strategy as described by Bignonnet et al. [2009]. Q1 and

Q2 are quantities characterizing the structure’s usage (e.g. the carried mass and speed).

Two classes denoted by Qi
1 and Qi

2 are defined for each quantity Qi (e.g. the class ≤ 500

kg and the class > 500 kg for the carried mass, or ≤ 100 km/h and > 100 km/h for

the speed). Four elementary life situations then exist: (Q1
1, Q2

1), (Q1
1, Q2

2), (Q1
2, Q2

1) and

(Q1
2, Q2

2). Several Rainflow matrices M
(1)
j,k , M

(2)
j,k ,... representing the applied loads during

realizations of the situation (Q1
j , Q2

k) are derived from field measurements. Note that these

Rainflow matrices are normalized to a given reference (e.g. 1 second or 1 km) in order

to facilitate further use. For each class Qi
j , the ratio of the time spent in this class to

the structure’s life span is modelled with a random percentage of occurrence P i
j which is

usually considered as uniform [Lefebvre et al., 2009]. A Rainflow matrix L representing

a virtual life of the structure is generated by selecting a realization {p1
1, p1

2, p2
1, p2

2} of the
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1.3. Probabilistic fatigue design

four random percentages {P 1
1 , P 1

2 , P 2
1 , P 2

2 } and a Rainflow matrix to consider for each

elementary situation (see the circled matrices in Table 1.1). The matrix L then reads:

L = C
(

p1
1 p2

1 M
(4)
1,1 + p1

1 p2
2 M

(2)
1,2 + p1

2 p2
1;M

(1)
2,1 + p1

2 p2
2 M

(3)
2,2

)

(1.27)

where C is a coefficient transposing the normalized Rainflow matrices to the structure’s

estimated life span.

Elementary life sit. Random percentages Rainflow matrices

(Q1
1, Q2

1

)

P 1
1 × P 2

1 M
(1)
1,1; M

(2)
1,1; M

(3)
1,1;

�

�

�

�
M

(4)
1,1

(Q1
1, Q2

2

)

P 1
1 × P 2

2 M
(1)
1,2;

�

�

�

�
M

(2)
1,2 ; M

(3)
1,2

(Q1
2, Q2

1

)

P 1
2 × P 2

1

�

�

�

�
M

(1)
2,1

(Q1
2, Q2

2

)

P 1
2 × P 2

2 M
(1)
2,2; M

(2)
2,2;

�

�

�

�
M

(3)
2,2

Table 1.1: Illustration of the load mix strategy.

Two types of random variables are necessary in the load mix strategy: the percentages

of occurrence and the discrete variables enabling the selection of a Rainflow matrix for

each elementary life situation. The percentages characterizing the classes of a quantity

Qi are inevitably correlated, since their sum must be 100%. In the case depicted in Table

1.1, P i
2 can be defined as fully dependent on P i

1, i.e. P i
2 = 100 − P i

1, and consequently

only two random percentages (P 1
1 and P 2

1 ) are sufficient to model all the occurences. For

applications with a higher-than-two number of classes, the modelling of the percentages

is more complex and requires simplifying hypotheses. An approach for three classes, for

instance, could be to consider two percentages as uniform distributions and the third as

the difference between 100 and their sum (assuming the sum is below 100). Note that

the third percentage does not follow a uniform distribution in such an approach. The

second type of random variables involved in the load mix strategy consists of the discrete

variables enabling the selection of a Rainflow matrix for each elementary life situation. In

the illustration shown in Table 1.1, three discrete variables are necessary, one for each of

the following elementary life situations: (Q1
1, Q2

1), (Q1
1, Q2

2) and (Q1
2, Q2

2).

In addition to the complex definition of the percentages, the load mix strategy presents

two main limits for structural reliability analysis. First, a large number of random vari-

ables must be handled when numerous elementary life situations are defined. Second, the

consideration of discrete random variables in reliability is difficult, except for sampling-

based methods, but such methods are often inapplicable due to their high computational

cost (see Chapter 2).
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1. Structural design against fatigue failure

1.3.4.2 Mixture models of Rainflow matrices

Field measurements are generally conducted in a short period of time, and consequently,

all the cycles the structure may undergo during its life are not observed. The parametric

modelling of Rainflow matrices with unimodal joint PDFs is a solution to extrapolate more

damaging cycles. Nevertheless, Rainflow matrices are multimodal when load histories are

non-stationary random processes, and a simple joint PDF is thus not always sufficient

[Nagode et al., 2001]. This section introduces the concept of mixture models for the

particular case of Rainflow matrices, and is mainly based on the works by Nagode and

Fajdiga [1998, 2000, 2006]; Nagode et al. [2001]; Nagode [2012]. Note that after Nagode

et al. [2001], Rainflow matrices are considered in this section as representations of the

number of cycles ordered by mean σm and range ∆σ (instead of amplitude).

For convenience, let S be the random vector {Sm, Sr}t = {σm(ω), ∆σ(ω)}t where

Sm = σm(ω) is the random mean and Sr = ∆σ(ω) is the random range. A realization of

this random vector is denoted by s = {σm, ∆σ}t. A Rainflow matrix can be defined as a

weighted sum of component distributions:

fS(s; w, θ(1), . . . , θ(z)) =
z
∑

l=1

w(l) f
(l)
S

(s; θ(l)) (1.28)

where θ(l) are the parameters of the lth component distribution f
(l)
S

(s; θ(l)), and where

the mixing weights are denoted by w = {w(1), . . . , w(z)}t with w(l) ≥ 0 for l = 1, . . . , z

and
∑z

l=1 w(l) = 1. The component distributions are presumed as being conditionally

independent. Hence, f
(l)
S

(s; θ(l)) reads:

f
(l)
S

(s; θ(l)) = f
(l)
Sm

(σm; θ
(l)
Sm

) × f
(l)
Sr

(∆σ; θ
(l)
Sr

) (1.29)

where f
(l)
Sm

(σm; θ
(l)
Sm

) denotes the distribution of the random mean and f
(l)
Sr

(∆σ; θ
(l)
Sr

) the

distribution of the random range for the lth component.

Nagode et al. [2001] propose mixture models composed of Gaussian distributions for

means and two-parameter Weibull distributions for ranges. An illustration of such mixture

models is depicted in Figure 1.10. The Gaussian distribution of means corresponding to

the lth component reads:

f
(l)
Sm

(σm; θ
(l)
Sm

) =
1

√
2πσ

(l)
Sm

exp






−1

2

(

σm − µ
(l)
Sm

)2

σ
(l)
Sm

2






(1.30)

where θ
(l)
Sm

is the vector containing the mean µ
(l)
Sm

and the standard deviation σ
(l)
Sm

of the

random mean Sm for the lth component. Ranges are modelled with Weibull distributions

because the PDF support is R+. The Weibull distribution of ranges corresponding to the
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1.3. Probabilistic fatigue design

lth component reads:

f
(l)
Sr

(∆σ; θ
(l)
Sr

) =
h

(l)
Sr

λ
(l)
Sr





∆σ

λ
(l)
Sr





κ
(l)
Sr

−1

exp









−




∆σ

λ
(l)
Sr





κ
(l)
Sr









(1.31)

where θ
(l)
Sr

is the vector containing the shape parameter κ
(l)
Sr

and the scale parameter λ
(l)
Sr

of the random range Sr for the lth component. As expressed in Eqn.(1.29), Sm and

Sr corresponding to the lth component stand for independent variables. However, it is

underlined by Nagode et al. [2001] that a global correlation between mean and range can

be modelled by selecting an appropriate number of component distributions.

Figure 1.10: Illustration of a mixture model from Nagode et al. [2001]. The black dots
represent the cycles. The mixture model contains five component distributions.

In order to establish a mixture model, the number of component distributions z, the

mixing weights w and the parameters {θ(l), l = 1, . . . , z} have to be determined. Such

an analysis may be conducted with the REBMIX algorithm [Nagode and Fajdiga, 1998,

2000, 2006; Nagode et al., 2001]. Note that the R package called ‘rebmix’ [Nagode and Fa-

jdiga, 2011a,b] provides an implementation of the algorithm whose principles are presented

below. The reader is referred to Nagode [2012] for further details.

Principles of the REBMIX algorithm

For the sake of clarity, the algorithm, depicted in Figure 1.11, is described on a simple

one-dimensional Rainflow matrix, i.e. a histogram into which n fully reversed (mean = 0)

stress cycles are sorted according to the range. In the general case of a Rainflow matrix

ordered by mean and range, the procedure is similar.
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1. Structural design against fatigue failure

(a) Determination of the global mode for the
first component distribution (l = 1).

(b) Identification of the n(1) cycles (in grey) be-
longing to the first component distribution using
the iterative clustering procedure and the rough
estimation of the component parameters.

(c) Inference of the distribution’s parameters us-
ing ML estimation.

(d) Determination of the global mode for the
second component distribution (l = 2).

(e) Identification of the n(2) cycles (in grey) be-
longing to the second component distribution
and inference of the distribution’s parameters.

(f) Mixture model. The final residue is assigned
to the second component distribution according
to the Bayes decision rule.

Figure 1.11: Bases of the REBMIX algorithm after Nagode and Fajdiga [2006].
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1.3. Probabilistic fatigue design

For this simplified study, the objective is to define the one-dimensional Rainflow matrix

ordered by range as a weighted sum of component distributions:

fSr (∆σ; w, θ
(1)
Sr

, . . . , θ
(z)
Sr

) =
z
∑

l=1

w(l) f
(l)
Sr

(∆σ; θ
(l)
Sr

) (1.32)

Let the range axis be discretized into classes ∆σk of width br. The centre of the bin ∆σk is

denoted by ∆σk. The number of cycles falling into the bin ∆σk is nk, and the corresponding

relative frequency reads fk = nk/n. The number of cycles belonging to the lth component

distribution is n(l). The number of cycles of the lth component falling into the bin ∆σk

is denoted by n
(l)
k , and the corresponding relative frequency reads f

(l)
k = n

(l)
k /n(l). The

mixing weight w(l) associated with the lth component is calculated as:

w(l) =
n(l)

n
(1.33)

Initially, l is set to 1, n
(l)
k to nk, n(l) to n, and f

(l)
k to fk. The algorithm starts with the

determination of the global mode (see Figure 1.11(a)), i.e. the bin ∆σr(l) at which:

∆σr(l) = arg max
k

f
(l)
k (1.34)

This global mode characterizes the lth component distribution.

An iterative clustering procedure is then applied to determine the n(l) cycles be-

longing to the lth component distribution (see Figure 1.11(b)). The algorithm is provided

in Nagode [2012]. This procedure is based on the deviation e
(l)
k between n

(l)
k and the

component frequency at ∆σk:

e
(l)
k = n

(l)
k − f

(l)
Sr

(∆σk; θ
(l)
Sr

) br n(l) (1.35)

The most deviating cycles are gradually transferred to the residue, and the mixing weight

w(l) is recalculated using the updated number n(l) in Eqn.(1.33). At the end of the

procedure, the residue is composed of the n◦ cycles that do not belong to the lth component

distribution.

At each iteration of the clustering procedure, a rough estimation of the component

parameters θ
(l)
Sr

= {κ
(l)
Sr

, λ
(l)
Sr

}t enables the calculation of f
(l)
Sr

(∆σk; θ
(l)
Sr

) in Eqn.(1.35).

This rough estimation is based on the expression of constraints that prevent the component

distribution from moving away from its global mode. The first constraint ensures the

equivalence of the relative frequencies at the global mode:

f
(l)
Sr

(

∆σr(l) ; θ
(l)
Sr

)

br = f
(l)

r(l) (1.36)

The second constraint makes the global mode of the component distribution coincide with
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∆σr(l) :

∂f
(l)
Sr

(

∆σ; θ
(l)
Sr

)

∂∆σ

∣

∣

∣

∣

∣

∣

∆σ
r(l)

= 0 (1.37)

The parameters θ
(l)
Sr

are estimated using Eqns.(1.36) and (1.37). Note that in the case of

a Rainflow matrix ordered by mean and range, additional constraints are required. They

are obtained from the equivalences of the component conditional relative frequencies at

the global mode [Nagode and Fajdiga, 2006; Nagode, 2012].

Once the n(l) cycles belonging to the lth component distribution have been identified,

and the mixing weight w(l) has been calculated, ML estimation is applied in order to

refine the parameters of the component distribution (see Figure 1.11(c)). l is then set to

l +1, and the same method is conducted to determine the new lth component distribution

on the basis of the n(l) = n◦ cycles of the residue (see Figure 1.11(d) and Figure 1.11(e)).

The algorithm is run until the weight n(l)/n is below a critical weight wmin which is

set to avoid over-fitting (see Figure 1.11(f)). When this stopping condition is met, the

remaining cycles are assigned to the existing components using the Bayes decision rule

[Nagode, 2012], and the mixing weights and component parameters are recalculated. Note

that the user may also set a maximum number of component distributions. The most

adequate mixture model according to criteria such as AIC and BIC can be determined by

repeating the procedure with various maximum numbers of component distributions.

The parametric modelling examined in this section provides a continuous description

of the Rainflow matrices which may for instance be used to improve the load mix strategy

explained in Section 1.3.4.1. Within such an enhanced strategy, the elementary life situ-

ations feature mixture models instead of discrete Rainflow matrices.

1.3.5 Probabilistic S − N curves

As mentioned previously, the fatigue behaviour of materials is highly subjected to uncer-

tainties. This section introduces the probabilistic S − N curves as a way to model the

scatter observed in a data set of fatigue tests. It focuses on the ESOPE model that is

codified in the standard A03-405 [AFNOR, 1991], as well as the works by Guédé [2005];

Guédé et al. [2007]; Perrin [2008]. The reader may also refer to Sudret [2011] for further

details on these models. In practice, a probabilistic S − N curve features:

• a deterministic model D (or D−1) characterizing the median trend as σ50% = D(N)

or N50% = D−1(σ). This model may, for instance, be the Basquin’s relation which is

recalled to read σ50% = B N b for a given number of cycles N , or N50% = (σ/B)1/b

for a given stress level σ.

• a statistical distribution to model the scatter around the median trend. Such a

distribution may, for instance, be Gaussian or lognormal, and its dispersion may
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1.3. Probabilistic fatigue design

be represented by either a constant standard deviation or a constant coefficient of

variation at any N or σ.

Let E = {(σ(i), N (i)), i = 1, . . . , Q} be a data set of fatigue tests where σ(i) is the nominal

stress undergone by a specimen and N (i) the corresponding number of cycles to failure.

ESOPE and Guédé’s models are explained below.

1.3.5.1 ESOPE

The ESOPE model [AFNOR, 1991] depicted in Figure 1.12(a) is based on the works by

Bastenaire [1960]. Let F (σ, N) be the function characterizing the probability that the

specimen fails before N cycles under the stress level σ. At a given N , this function is

assumed to vary in σ as the CDF of a Gaussian random variable with mean µSN (N) and

standard deviation σSN (N). The mean µSN (N) corresponds to the deterministic model

D(N), and σSN (N) is supposed to be constant at any N , i.e. σSN (N) = σSN . As a result,

F (σ, N) reads:

F (σ, N) = Φ

(

σ − D(N)

σSN

)

(1.38)

where Φ is the standard Gaussian CDF (zero mean and unit variance). In the case of the

Basquin’s relation, F (σ, N) becomes:

F (σ, N) = Φ

(

σ − B N b

σSN

)

(1.39)

Given that F (σ, N) is the CDF of a Gaussian random variable, an isoprobability S − N

curve reads:

σ = B N b + uf σSN (1.40)

where uf is a realization of the standard Gaussian variable Uf which represents the random

isoprobability S − N curve.

The ESOPE model is characterized by the parameters θ = {B, b, σSN }t. As recom-

mended in the standard A03-405 [AFNOR, 1991], ML estimation is applied to estimate

these parameters according to the data set E. Let N(σ, ω) be the random number of cycles

to failure under a stress level σ. Its PDF fN (σ, N) reads:

fN (σ, N) =
∂F (σ, N)

∂N
(1.41)

The likelihood L is expressed as:

L (B, b, σSN ;E) =
Q
∏

i=1

fN

(

σ(i), N (i); B, b, σSN

)

(1.42)

The optimization problem consists in numerically finding the optimum θ̂ = {B̂, b̂, σ̂SN }t
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that reads:

θ̂ = arg min
θ∈R3

(− ln L (B, b, σSN ;E)) (1.43)

The solution of such a problem strongly depends on the starting point of the optimization

procedure. In this research work, a two-step procedure is implemented. First, the least

squares method is applied to determine rough estimates of B and b. The standard deviation

σSN is estimated by calculating the distance between the curve obtained by the least

squares method and the observations of E. Second, the ML estimation is performed

thanks to a simulated annealing algorithm whose starting point is the solution of the least

squares method.

Once the ESOPE model is fully determined, the initial hypothesis on the statistical

distribution must be validated a posteriori. A GOF test is performed to check whether

there is evidence against:

Uf =
σ − B N b

σSN
∼ N (0, 1) (1.44)

where N (0, 1) is the Gaussian distribution of parameters 0 (mean) and 1 (variance).

Figure 1.12(b) depicts an alternative model called ESOPE 2 in this thesis. For this

model, the coefficient of variation δSN is supposed to be constant at any N (instead of the

standard deviation σSN ). The function F (σ, N) of ESOPE 2 then reads:

F (σ, N) = Φ

(

σ − B N b

δSN B N b

)

(1.45)

The isoprobability S − N curve becomes:

σ = (1 + uf δSN ) B N b (1.46)

It is important to note that given Eqn.(1.46), all the isoprobability S − N curves feature

the same Basquin’s slope b. Finally, the GOF test conducted a posteriori checks whether

there is evidence against:

Uf =
σ − B N b

δSN B N b
∼ N (0, 1) (1.47)

1.3.5.2 Guédé’s model

In ESOPE, the distribution of the number of cycles to failure N(σ, ω) under the stress level

σ is not explicit. Guédé [2005]; Guédé et al. [2007] propose an alternative to ESOPE which

consider ln N(σ, ω) as a Gaussian random variable with parameters µN (σ) and σN (σ).

The model is depicted in Figure 1.13. Assuming that the random variables ln N(σ, ω) at

different stress levels are perfectly correlated, a single standard Gaussian random variable
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(a) ESOPE. (b) ESOPE 2.

Figure 1.12: ESOPE and ESOPE 2. The solid line represents the median curve (50% prob-
ability to fail at the stress level σ given N cycles). The dashed lines are the isoprobability
S − N curves defined at 2.5% and 97.5%, i.e. uf = ∓1.96.

Uf is sufficient to model the scatter as:

ln N(σ, ω) = µN (σ) + Uf σN (σ) (1.48)

The mean µN (σ) corresponds to the deterministic model D−1(σ). In the case of the

Basquin’s relation, it reads:

µN (σ) = A + a ln σ (1.49)

where a = 1/b and A = − ln(B)/b. The scatter in N is supposed to be correctly modelled

with a constant coefficient of variation δN at any stress level:

σN (σ) = δN µN (σ) (1.50)

As a result, ln N(σ, ω) becomes:

ln N(σ, ω) = µN (σ) (1 + Uf δN ) (1.51)

An isoprobability S − N curve is simply obtained by selecting a realization uf of the

standard Gaussian random variable Uf .

Guédé’s model features the parameters θ = {A, a, δN }t. The PDF fN (σ, N) of the

number of cycles to failure N(σ, ω) under the stress level σ is explicitly known as:

fN (σ, N) =
1

δN (A + a ln σ)N
φ

(

ln N − (A + a ln σ)

δN (A + a ln σ)

)

(1.52)

where φ is the standard Gaussian PDF. ML estimation is applied to estimate the para-
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meters of the model according to the data set E. The likelihood L is expressed as:

L (A, a, δN ;E) =
Q
∏

i=1

fN

(

σ(i), N (i); A, a, δN

)

(1.53)

Note that censored data, i.e. fatigue tests which have been stopped before failure, can be

considered in the ML estimation [Perrin, 2008; Sudret, 2011]. For a given censored test

(σ∗, N∗), the value of the PDF fN (σ∗, N∗; A, a, δN ) is replaced in the ML estimation with

1 − FN (σ∗, N∗; A, a, δN ) where FN is the CDF of N(σ, ω) that reads:

FN (σ∗, N∗; A, a, δN ) = Φ

(

ln N∗ − (A + a ln σ∗)

δN (A + a ln σ∗)

)

(1.54)

Finally, the GOF test conducted a posteriori checks whether there is evidence against:

Uf =
ln N(σ, ω) − (A + a ln σ)

δN (A + a ln σ)
∼ N (0, 1) (1.55)

Figure 1.13: Guédé’s model. The solid line represents the median curve (50% probability
to fail at N cycles given the stress level σ). The dashed lines are the isoprobability S − N
curves defined at 2.5% and 97.5%.

1.3.5.3 Selection of the most adequate model

Given that the models are determined using ML estimation, likelihood criteria AIC and

BIC are relevant means for model selection [Perrin, 2008]. Additionally, the GOF tests

provide p-values which can be used to rank the initial hypotheses of the models. The

combination of AIC, BIC and the p-value thus represents a helpful approach for selecting

the most adequate model.
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1.3. Probabilistic fatigue design

1.3.6 Probabilistic Stress-stRength approach

1.3.6.1 Structural design calculation

The probabilistic Stress-stRength approach [Thomas et al., 1999; Bignonnet and Thomas,

2004] is an engineering tool for designing new structures against fatigue with a given reli-

ability objective (or targeted failure probability). It consists of comparing two statistical

distributions, namely S and R, the former modelling the uncertainty of the in-service

loads while the latter models the uncertainty in the mechanical properties of the structure

to design. These distributions are commonly called Stress for S and stRength for R. As

depicted in Figure 1.14, the aim of the approach is to ascertain the mean strength µR

which ensures a reliability objective P ◦
f , considering that the distribution S is known to

be characterized by a mean µS and a standard deviation σS and that the Strength R

presents an inherent scatter in the form of a coefficient of variation δR. It is important

to firstly outline that the probabilistic Stress-stRength approach was implemented in the

DEFFI project [Bignonnet and Lieurade, 2007; Bignonnet et al., 2009; Ferlin et al., 2009;

Lefebvre et al., 2009] which is mentioned in introduction of this thesis.

Figure 1.14: Potential stRength distributions depending on its inherent scatter δR, the
Stress distribution and the reliability objective.

Stress-Strength Interference analysis

In the probabilistic Stress-stRength approach, the failure scenario is mathematically rep-

resented by the performance function G given as follows:

G(R, S) = R − S (1.56)

Failure occurs when the performance function is negative, i.e. when S is larger than R as

illustrated in Figure 1.15. The failure probability Pf consequently reads:

Pf = Prob(G(R, S) ≤ 0) = Prob(R − S ≤ 0) (1.57)
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Within the frame of the probabilistic Stress-stRength approach, the Stress-Strength In-

terference (SSI) analysis [Booker et al., 2001] is applied to assess this failure probability.

This very simple and convenient engineering tool assumes that both S and R are known

and independent PDFs. Consequently, the failure probability simply reads:

Pf =

∫ +∞

−∞
fS(s)FR(s)ds (1.58)

where fS is the assumed PDF of S and FR is the assumed CDF of R. The failure prob-

ability may be calculated using any numerical integration technique, but in some cases,

analytical expressions are directly available [Lemaire, 2009]. For instance, on the hypo-

thesis that S and R are Gaussian distributions, the failure probability becomes:

Pf = Φ



− µR − µS
√

σ2
R + σ2

S



 (1.59)

where σR is the standard deviation of R. Thomas et al. [1999] mention that S may either

be a Gaussian, lognormal or Weibull distribution, whereas R is Gaussian given that it is

a combination of many variables (see the following paragraph on stRength distribution).

The next step is the capitalization of available data in order to determine the parameters

of the distributions S and R.

Figure 1.15: Stress-Strength Interference analysis. The dark area depicts the failure events.

Stress distribution

Figure 1.16 illustrates the general procedure for modelling the uncertainty of the in-service

loads. Beforehand, field measurements are conducted to obtain representative histories of

the different loads imposed on the structure. Let us assume that these recordings are force

histories F (t), but they can be defined in any other load quantity, e.g. in terms of displace-
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ment. On the basis of these force histories, modelling techniques such as those detailed in

Section 1.3.4 are applied to model the uncertainties with random load parameters Xl (e.g.

random percentages of occurrence). By drawing a realization xl of these random para-

meters, a virtual load is generated. The damage contribution (or severity) of this virtual

load is then summarized into an EF cycle of amplitude Feq(xl, b, Neq) repeated Neq times.

Numerous realizations of the random parameters are drawn, and a large number of Feq

values is thus obtained. The distribution S modelling the variability of Feq is considered

in this section as Gaussian, because such an assumption provides an analytical expression

of the failure probability when combined with a Gaussian stRength (see Eqn.(1.59)).

uncertainty of in-service loads

field measurements F (t)

random load parameters Xl

xl

virtual load

Basquin’s

slope b
EF cycle Feq(xl, b, Neq)

distribution S in Feq

S ∼ N (µS , σ
2
S)

Figure 1.16: Definition of the Stress distribution S.

StRength distribution

The stRength R represents the uncertainty of the mechanical properties (material proper-

ties, fabrication process) having fatigue damage consequences for the structure to design.

To enable a comparison with S, R is defined as the distribution of the fatigue strength

in force at Neq cycles. The objective here is to determine the coefficient of variation

δR = σR/µR interpreting the relative scatter of the fabrication process and its fatigue

damage consequences. Remember that the designer’s final aim is to set µR, given the

inherent scatter of R, the distribution S and the reliability objective P ◦
f . The general
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procedure to determine R and the coefficient δR is depicted in Figure 1.17. Fatigue tests

performed on specimens and on structures which are similar to the one being designed are

collected in order to provide sufficient knowledge. On a stRength−N diagram, the data

sets at different numbers of cycles are combined into one group at Neq cycles following

the concept of Equivalent Fatigue strength (EF strength) [Hanaki et al., 2010] depicted

in Figure 1.18. The empirical mean mR and the unbiased estimate s∗
R of the standard

deviation are then calculated from the group at Neq cycles. Given that the number Nt

of tested samples is usually small, the confidence in the stRength distribution R may be

weak. Thomas et al. [1999] consider that an acceptable mean value can be estimated with

Nt ≥ 8 samples: µR = mR. Assuming that R is a Gaussian random variable and that

µR = mR, the standard deviation is set as the upper bound of the confidence interval

defined by the risk γ:

σγ,Nt

R = s∗
R

√

Nt − 1

kNt−1;γ/2
(1.60)

where kNt−1;γ is the χ2 quantile. The quantity of interest, i.e. δγ,Nt

R , is derived from the

standard deviation and the mean. The distribution R is thus characterized only by δγ,Nt

R .

As mentioned previously, R is always considered as Gaussian.

uncertainty in the mechanical properties of the
structure to design (material, fabrication process)

data sets of fatigue tests for
specimens and similar structures

EF strength concept at
Neq cycles

mR and s∗R at Neq cycles

µR and σ
Nt,γ
R at Neq cycles

R ∼ N (δγ,Nt

R )

Figure 1.17: Definition of the stRength distribution R.

Risk analysis

An EF cycle of reference is arbitrarily selected in the distribution S (see Figure 1.19). Its
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1.3. Probabilistic fatigue design

Figure 1.18: Concept of Equivalent Fatigue strength. The black dots represent the avail-
able data set of fatigue tests. These samples at different numbers of cycles are projected
to Neq cycles, parallel to the median S − N curve of the material. The group of grey dots
is thus obtained, and the empirical mean mR and unbiased estimate s∗

R of the standard
deviation can be calculated at Neq.

amplitude is denoted by Fn, and its severity is defined as the positive α quantile:

Fn = µS + α σS (1.61)

The probability of exceeding Fn is then:

Prob(s > Fn) = 1 − Φ

(

Fn − µS

σS

)

= Φ(−α) (1.62)

Typical probabilities are 10−2, 10−3, 5 × 10−4. Fn represents neither a certain type of

situation nor the most severe observed load. It is an arbitrary amplitude that enables the

conversion of the failure probability calculation into a simple specification procedure. Fn

is associated with an acceptance criterion in stRength defined at κ standard deviations

below the mean stRength (see Figure 1.19):

µR = Fn + κσγ,Nt

R (1.63)

The relative mean strength m∗
R is defined as:

m∗
R =

µR

Fn
=

1

1 − κδγ,Nt

R

(1.64)
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S and R are recalled to be Gaussian distributions. By introducing Fn and the coefficient

of variation δS of S in Eqn.(1.59), the targeted failure probability P ◦
f can be rewritten as:

P ◦
f = Φ









− µR − µS
√

(

µR δγ,Nt

R

)2
+ (µS δS)2

Fn

Fn









(1.65)

It is then recast as:

P ◦
f = Φ









−
m∗

R − 1
1+α δS

√

(

m∗
R δγ,Nt

R

)2
+
(

δS

1+α δS

)2









(1.66)

In Eqn.(1.66), the parameters α, δS , δγ,Nt

R are known. The relative mean strength m∗
R can

thus be assessed for a given reliability objective P ◦
f .

Figure 1.19: Reference EF cycle defined by Fn.

Figure 1.20 depicts an example of the structural design calculation from the designer’s

point of view. In practice, the reference EF cycle with amplitude Fn is applied to the

numerical model. In this illustration, the numerical model output used for fatigue cal-

culation is assumed to be the maximum principal stress σI at the critical location. The

designer checks that the point (Neq, σI) is below the isoprobability S − N curve of the

material that corresponds to the median curve shifted down by κ standard deviations (κ

determined using Eqn.(1.64)). In this example, the failure probability is below P ◦
f as the

gap is positive.

Conclusion

The probabilistic Stress-stRength approach detailed in this section is particularly well

adapted for industrial applications in the field of high cycle fatigue with linear mechanical

behaviour. Under some assumptions, it enables new structures to be designed with a given
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Figure 1.20: Illustration of the structural design calculation. The numerical model is from
Relun [2011].

reliability objective. The probabilistic Stress-stRength approach consists of comparing the

distributions S and R that respectively model the uncertainty of the in-service loads and

the uncertainties in the mechanical properties of the structure to design. On the one

hand, S is characterized by a mean and a standard deviation, and on the other, R features

an inherent scatter in the form of its coefficient of variation. SSI analysis is applied in

order to provide an expression of the targeted failure probability which depends on the

distributions assumed for S and R (typically Gaussian). Finally, the mean strength µR

is determined by considering the inherent scatter of the stRength, the distribution S and

the reliability objective. In the frame of this thesis, the objective is not to ascertain the

optimum design of a new structure but to assess the failure probability of an already

designed structure. The adaption of the probabilistic Stress-stRength approach to this

case is explained in the next section.

1.3.6.2 Reliability assessment

Two adaptions of the probabilistic Stress-stRength approach to reliability assessment can

be devised depending on available data. The simplest alternative is formulated in terms

of a load quantity (e.g. in force). In such a case, S remains the distribution of the EF

amplitude Feq, but R is this time fully characterized by its parameters µR and σR which

are determined according to data sets of fatigue tests on the structure. Assumptions are

made on the distributions followed by S and R, and SSI analysis is applied to assess the

failure probability using Eqn.(1.58). Note that the numerical model of the structure is not

required in this adaption. However, the fatigue behaviour of the structure is often unknown

since conducting fatigue tests on a structure is usually unfeasible due to prohibitive costs or
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structure size. It is then necessary to resort to the second adaption which simply requires

data sets of tests performed on smooth specimens in order to characterize the S −N curve

and other material properties. Note that experimental data on the structure’s geometry

may also be considered. The second adaption is depicted in Figure 1.21. Its different steps

are described in the following paragraphs.

random material

prop. and geometry

Xm, Xg

random load

parameters Xl

fatigue tests

on specimens

xm, xg xl

virtual load F (xl)

numerical model
EF cycle

Feq(xl, b, Neq)

cycle of stress response

σeq(xm,xg,xl, b, Neq)
EF strength at

Neq cycles

Stress distribution S in σeq stRength distribution R

G = R− S

SSI analysis

Pf

b

Figure 1.21: Probabilistic Stress-stRength approach for reliability assessment.

Stress distribution

The uncertainties of the material properties, geometry and applied loads are statistically

modelled with the random vectors respectively denoted by Xm, Xg and Xl. The first

step of the procedure is the selection of a realization {xm, xg, xl}. A virtual load F (xl) is

generated with xl, and the corresponding EF cycle of amplitude Feq(xl, b, Neq) repeated

Neq times is calculated using the Basquin’s slope b of the S−N curve. The EF cycle is then

applied to the numerical model which depends on xm and xg. A cycle of stress response
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is thus derived from the model evaluation. Assuming that the S − N curve is provided

for R = −1, this cycle is converted into its fully reversed equivalent whose amplitude

is σeq(xm, xg, xl, b, Neq). Several values of σeq are derived from the evaluation of the

numerical model for various realizations of the random variables. The observed dispersion

in σeq is modelled with a statistical distribution which corresponds to the Stress S.

stRength distribution

The uncertainty in the fatigue behaviour of the material is modelled with the stRength

distribution R. The EF strength concept presented in Section 1.3.6.1 is applied to determ-

ine the scatter of the fatigue strength at Neq cycles. As mentioned previously, a Gaussian

distribution is usually assumed for R [Lalanne, 2002].

SSI analysis

Given the distributions S and R, the failure probability is assessed using the SSI analysis,

and particularly Eqn.(1.58).

Limits

The application of the probabilistic Stress-stRength approach to reliability assessment

present two main limits. First, the influence of each random variable on structural reliab-

ility cannot be determined since Xm, Xg and Xl are gathered in S (remember that the

knowledge of the most influent variables represents a valuable information for the design

process). Second, the failure probability is extremely sensitive to the distribution that S

is assumed to follow. In this section, a simple example gives evidence of these two limits.

The beam case study illustrated in Figure 1.22 is subjected to a force F (t) in C.

Assuming that the structure remains in the elastic domain, the maximal stress in A reads:

σ(t) =
F (t)

4(w v − v2)
+

6 F (t) l w

w4 − (w − 2 v)4
(1.67)

where v and w define the cross-section of the beam and l its length. σ(t) is supposed

to be the stress response used for fatigue calculation. In other words, Eqn.(1.67) is the

numerical model representing the mechanical behaviour of the case study.

The uncertainties of the geometry, force and fatigue behaviour of the material are

considered in this example. Table 1.2 reports the different random variables. The determ-

inistic parameters v, w and l are replaced with Gaussian variables V , W and L respectively.

The uncertainty of the force F is modelled with a simplified load mix strategy (see Section

1.3.4.1) involving only two elementary life situations. The most severe situation features

a Rainflow matrix M1 and a random percentage of occurrence P1 which is considered as

uniform in the interval [0; 60%]. The second situation is characterized by a Rainflow mat-

rix M2 and a random percentage P2 = 100−P1. The Rainflow matrices are modelled with
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Figure 1.22: Characteristics of the beam case study.

independent joint Gaussian PDFs whose parameters are given in Table 1.3. The extreme

Rainflow matrices providing the number of cycles ordered by mean Fm and amplitude Fa

are depicted in Figure 1.23. Instead of sampling in the joint PDFs, the axes Fm and Fa

are arbitrarily discretized in order to represent the different cycles imposed on the struc-

ture. The number of occurrences of each cycle is obtained by reading the n axis which

corresponds to the value of the joint Gaussian PDF multiplied by a constant C (applied

to define a suitable life span). A virtual Rainflow matrix L(p1) representing a potential

service life of the structure is generated by drawing a realization p1 of P1:

L(p1) = p1 M1 + (1 − p1) M2 (1.68)

The virtual Rainflow matrix L(p1) is then summarized into an EF cycle of symmetric

alternating amplitude Feq(p1, b, Neq) repeated Neq = 106 times. Note that for the calcula-

tion of the EF cycle, the Basquin’s slope b is −0.3, and the ratio K of the tensile strength

to the stress at Neq = 106 cycles (see Eqn.(1.16)) is set to 2.5. Once determined, the EF

cycle is applied to the numerical model characterized by a selected geometry {v, w, l}. The

fully reversed cycle of the stress response in A is obtained using Eqn.(1.67). It features

an amplitude σeq(v, w, l, p1, b, Neq) and is interpreted as a cycle being repeated Neq = 106

times. Several values of σeq are calculated for various realizations of the random variables.

The dispersion observed is modelled with the distribution S which is then compared to

the distribution R of the EF strength at Neq = 106 cycles.

This case study is devised to be representative of the complex structures examined in

this thesis. A small failure probability (≈ 10−6) is thus defined, and the evaluation of

the numerical model, i.e. Eqn.(1.67), is considered as time-demanding. The latter condi-

tion limits the number of σeq values that can be evaluated in a practical amount of time,

therefore the Stress distribution must be determined with a relatively small number of

σeq values. In this study, three sets, each composed of only 100 σeq values, are considered

(see Figure 1.24). ML estimation is applied to determine the parameters of the Gaussian,
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Variable Distribution Parameters

V (mm) Gaussian µV = 3; δV = 3%

W (mm) Gaussian µW = 50; δW = 3%

L (mm) Gaussian µL = 103; δL = 3%

P1 (%) Uniform [0; 60]

R (MPa) Gaussian µR = 180; δR = 10%

Table 1.2: Random variables of the beam case study.

Mean Std. dev.

M1
Fm (N) 0 30

Fa (N) 700 50

M2
Fm (N) 0 50

Fa (N) 250 50

Table 1.3: Parameters of the independent joint Gaussian PDFs of the Rainflow matrices
M1 and M2.

lognormal and Weibull distributions fitting these sets. GOF tests are also conducted to

determine how well the assumed distributions fit the sets. The Anderson-Darling test is se-

lected since it gives more weight to the distribution tails where failure occurs. SSI analyses

are applied to assess the failure probability. The First Order Reliability Method (FORM)

is also applied to determine the influences of the Stress and stRength on structural reliabil-

ity (see Section 2.3.3.2). For this application, the elasticities of the Hasofer-Lind reliability

index β = −Φ−1(Pf ) with respect to the standard deviations σS and σR of the Stress and

stRength distributions are quantified. The elasticity value Eσi
must be interpreted as

the percentage by which the Hasofer-Lind reliability index is increased when the standard

deviation of the ith random variable is raised by 1%.

Table 1.4 reports the results of the first set. The values of the likelihood criteria are

extremely similar, but the Gaussian distribution giving a failure probability of 4.9 × 10−6

seems the most adequate model according to its p-value. For the second set (see Table

1.5), the highest p-value is obtained for the Gaussian distribution, but the lognormal

distribution seems to be a relevant alternative according to AIC and BIC. The choice of the

distribution has a significant impact on the estimation of the failure probability, since Pf

is either 1.5×10−6 or 12×10−6. For the third set (see Table 1.6), the Weibull distribution

gives the best results, and the failure probability is 0.23 × 10−6. This study shows that

the accuracy of the probabilistic Stress-stRength approach for reliability assessment is
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(a) Least severe matrix L(0). (b) Most severe matrix L(60).

Figure 1.23: Extreme Rainflow matrices obtained as mixtures of M1 and M2.

strongly affected by the number of model evaluations which can be performed in a practical

amount of time. In addition, confidence in the failure probability is extremely limited,

since the interference between Stress and stRength is at the extremes of the poorly known

distribution tails. For this case study, the order of magnitude of the failure probability

seems to be between 10−5 and 10−7, which represents a relatively wide interval. To finish,

it can be noted for this case study that the elasticities of the Hasofer-Lind reliability index

show that the standard deviation of the stRength has more impact on structural reliability

than the standard deviation of the Stress when the latter is modelled with a Gaussian or

Weibull distribution. An opposite behaviour is observed with a lognormal Stress.

Stress distribution AIC BIC p-value Pf EσR
EσS

Gaussian 818 823 0.81 4.9 × 10−6 −0.61 −0.39

Lognormal 820 826 0.65 53 × 10−6 −0.33 −0.63

Weibull 819 825 0.66 1.6 × 10−6 −0.76 −0.36

Table 1.4: First set - Impact of the Stress distribution S on the failure probability and
elasticities of the Hasofer-Lind reliability index.

Stress distribution AIC BIC p-value Pf EσR
EσS

Gaussian 797 802 0.45 1.5 × 10−6 −0.66 −0.34

Lognormal 796 801 0.37 12 × 10−6 −0.40 −0.56

Weibull 802 807 0.40 0.63 × 10−6 −0.79 −0.32

Table 1.5: Second set - Impact of the Stress distribution S on the failure probability and
elasticities of the Hasofer-Lind reliability index.
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(a) First set. (b) Second set.

(c) Third set.

Figure 1.24: Fitting of probability distributions to the three empirical sets of 100 σeq

observations. The solid line is Gaussian. The dashed line is Weibull. The dotted line is
lognormal.

Stress distribution AIC BIC p-value Pf EσR
EσS

Gaussian 773 779 0.69 0.72 × 10−6 −0.71 −0.29

Lognormal 779 784 0.29 5.0 × 10−6 −0.48 −0.49

Weibull 771 776 0.92 0.23 × 10−6 −0.84 −0.23

Table 1.6: Third set - Impact of the Stress distribution S on the failure probability and
elasticities of the Hasofer-Lind reliability index.

1.3.7 Proposed approach in the context of the APPRoFi project

1.3.7.1 Motivation

In the previous section, it has been shown that the probabilistic Stress-stRength approach

for reliability assessment provides failure probability values which are sensitive to the

assumption made on the distribution followed by the Stress. Additionally, the influence of

each random variable on structural reliability cannot be determined since the uncertainties
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of the material properties, geometry and load are gathered in S. In the frame of the

APPRoFi project, a more general probabilistic approach [Echard et al., 2011c; Gayton

et al., 2011] is proposed to overcome the limits of the Stress-stRength approach. First,

the SSI analysis is replaced with a more robust reliability method in order to assess the

failure probability with a suitable confidence level. Second, the random variables are kept

separate throughout the whole approach process so as to enable the determination of the

random variables’ influences on structural reliability. It is also important to note the

uncertainty of the fatigue behaviour is considered through various probabilistic S − N

curve models instead of the EF strength concept. Specific behaviour of materials can thus

be considered, and the most adequate S − N curve model can be selected using likelihood

criteria and p-values of GOF tests.

1.3.7.2 Procedure

The approach is depicted in Figure 1.25. The uncertainties of the material properties,

geometry and applied loads are statistically modelled with random vectors respectively

denoted by Xm, Xg and Xl. The uncertainty in the fatigue behaviour of the material is

modelled with a random variable Uf , which represents the random isoprobability S − N

curve (see Section 1.3.5). Note that the deterministic model of the S −N curve is assumed

as the Basquin’s relation. The first step of the approach is the selection of a realization

{xm, xg, xl, uf } of the random parameters. A virtual load F (xl) is generated with xl, and

the corresponding EF cycle of symmetric alternating amplitude Feq(xl, uf , Neq) repeated

Neq times is calculated using the Basquin’s slope b(uf ) of the isoprobability S − N curve

determined by uf . The EF cycle is then applied to the numerical model which depends

on xm and xg. The output σeq(xm, xg, xl, uf , Neq) of the numerical model is compared

to the strength value r(uf , Neq) of the isoprobability S − N curve at Neq cycles in order

to determine whether the selected realization leads to failure. The failure probability is

finally assessed by repeating the different steps presented above with various realizations.

Sampling techniques such as Monte Carlo Simulation are a possibility to estimate the

failure probability, but they are inapplicable in the case of a computationally demanding

numerical model since they require a substantial number of model evaluations. In Chapter

2, alternatives are proposed to assess the failure probability in a parsimonious way with

regard to the number of model evaluations. These alternatives called Active learning and

Kriging-based Reliability Methods (AK-RM) can be seen as ‘guided’ sampling techniques,

as they iteratively determine which evaluation should be carried out to best improve the

accuracy of the failure probability estimate.
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random material
prop. and geometry

Xm, Xg

random load
parameters Xl

random isoprob.
S −N curve Uf

xm, xg xl uf

virtual load F (xl)

numerical model
EF cycle

Feq(xl, uf , Neq)

cycle of stress response
σeq(xm,xg,xl, uf , Neq)

strength value
r(uf , Neq)

G = r − σeq

Sampling-based reliability method
or AK-RM (Chapter 2)

Pf and influences on
structural reliability

b(uf )

Figure 1.25: Probabilistic approach implemented in the APPRoFi project.

1.3.7.3 Important remarks

In the frame of the probabilistic approach implemented in the APPRoFi project, the

performance function G is formulated in terms of stress, but an equivalent formulation

is also possible in terms of number of cycles. In the latter formulation, the flowchart of

Figure 1.25 is slightly changed. For a given realization of the random variables, the stress

response amplitude σeq(xm, xg, xl, uf , Neq) is carried forward into an S − N diagram for

determining the number of cycles to failure N(σeq) which depends on the isoprobability

S−N curve defined by uf . The performance function then simply consists of the difference

between N(σeq) and Neq (remember that the stress response cycle is interpreted as a cycle

being repeated Neq times).

The performance function can also be expressed in terms of damage. In such a for-

mulation, the EF concept is removed, and the cycles extracted from F (xl) are directly

applied to the numerical model. The damage D(xm, xg, xl, uf ) induced by the stress

response σ(xm, xg, xl) is calculated using the Palmgren-Miner rule as well as an isoprob-

ability S−N curve defined by uf . The performance function is then the difference between

1 and D(xm, xg, xl, uf ). This is the framework adopted by Guédé [2005].
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The following comments can be made on the range of applications of these formulations:

• The formulations in terms of stress and number of cycles are equivalent for any

mechanical behaviour.

• For problems involving a linear mechanical behaviour, the formulations in terms of

stress and number of cycles are similar to the formulation in terms of damage.

• In the case of a very limited and localized plasticity, the formulations in terms

of stress and number of cycles represent acceptable approximations of the damage

formulation (remember the linear assumption of the EF concept).

• For non-linear applications, only the damage formulation provides usable fatigue

calculation results.

• Although damage formulation can be applied to any fatigue problem, it is nonetheless

a high computational effort. For a given realization of the random variables, all

the cycles extracted from F (xl) must be applied to the numerical model. In the

formulations in terms of stress and number of cycles, a simpler calculation is sufficient

as the stress response is only determined for the EF cycle summarizing F (xl).

1.3.7.4 Illustration on the beam case study

The probabilistic approach implemented in the APPRoFi project is illustrated on the

beam case study already examined in Section 1.3.6.2. ESOPE 2 model is considered for

the probabilistic S − N curve in order to define the same stRength distribution R as the

one reported in Table 1.2. Given that ESOPE 2 model presents a constant Basquin’s

slope b for all the isoprobability S − N curves (see Eqn.(1.46)), the calculation of the EF

amplitude no longer depends on the realization uf , and the approach can be simplified by

directly considering the stRength distribution R at Neq cycles on the right-hand side of

Figure 1.25.

For this illustration, the failure probability is assessed using Importance Sampling (IS)

and AK-IS. Importance Sampling is a sampling-based method that requires a relatively

large number of numerical model evaluations. Its application to the beam case study

aims at providing a reference estimate of the failure probability. AK-IS is the member

of the AK-RM family that constitutes a ‘guided’ Importance Sampling. To be relevant,

AK-IS must provide an accurate estimate of the failure probability with the least possible

number of numerical model evaluations. The reader is referred to Chapter 2 for details

and validation of the AK-RM reliability methods which represent the major contribution

of this thesis.

Table 1.7 reports the reliability results. Importance Sampling requires NE = 5 × 104

evaluations of the numerical model to assess the failure probability with a coefficient of

50



1.3. Probabilistic fatigue design

variation of δ = 2%. AK-IS only requires NE = 82 evaluations to provide the same failure

probability estimate. The probabilities assessed using SSI analyses in Section 1.3.6.2 are

also reported in Table 1.7 for the most adequate models according to the likelihood criteria.

It can be seen that the SSI analysis conducted on the third set with a Weibull distribution

provides the closest failure probability value. For this application, AK-IS enables the

failure probability to be accurately assessed with less model evaluations than the SSI

analyses.

In Section 1.3.6.2, only the influences of the Stress and stRength on structural reliab-

ility could be determined. With the proposed approach, the elasticities with respect to

the standard deviations σV , σW , σL, σR and the upper bound bP1 = 60% of P1 can be

calculated. Table 1.8 reports these elasticities. The standard deviations of the geometry

variables are seen to have a limited impact in comparison to the upper bound bP1 of the

load parameter P1 and the standard deviation of R. It is also observed that EσR
is re-

latively close to the elasticities observed when the Stress S is modelled with a Weibull

distribution in the probabilistic Stress-stRength approach (see Tables 1.4, 1.5 and 1.6).

Reliability method NE Pf δ %

IS 5 × 104 0.74 × 10−6 2.00

AK-IS 82 0.74 × 10−6 2.00

SSI - First set (Gauss) 100 4.9 × 10−6 -

SSI - Second set (lognormal) 100 12 × 10−6 -

SSI - Third set (Weibull) 100 0.23 × 10−6 -

Table 1.7: Reliability results on the example of the beam case study. AK-IS is compared
with Importance Sampling and the SSI analyses conducted in Section 1.3.6.2. NE refers to
the number of numerical model evaluations. δ is the coefficient of variation of the failure
probability estimator.

Geometry Load Fatigue

EσV
EσW

EσL
EbP1

EσR

−0.039 −0.070 −0.004 −0.310 −0.811

Table 1.8: Elasticities of the Hasofer-Lind reliability index with respect to the standard
deviations of V , W , L and R and the upper bound bP1 = 60% of the uniform percentage
P1.
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1.4 Conclusion

In this chapter, probabilistic approaches have been discussed as a possible alternative to

the current deterministic fatigue design approaches based on so-called safety factors. After

presenting the principles of the probabilistic approaches in mechanics, different methods

for modelling the inherent uncertainties of the fatigue phenomenon have been examined.

First, the modelling of the in-service loads has been considered through a mix strategy

of elementary life situations and a mixture of joint PDFs. Second, the uncertainty in the

fatigue behaviour of materials has been tackled with the use of probabilistic S −N curves.

Following this discussion on stochastic modelling, the probabilistic Stress-stRength ap-

proach has been introduced as a tool for either designing new structures against fatigue

with a given reliability objective or estimating the failure probability of an already de-

signed structure. This approach is grounded upon the EF concept for summarizing the

damage content of the load into an easily manageable cycle, and SSI analysis for quantitat-

ively predicting structural reliability. The Stress-stRength approach represents a practical

engineering tool, but as illustrated in this chapter, confidence in its failure probability

value is extremely limited as an assumption must be made on the distribution followed

by the Stress. Additionally, this approach does not allow to determine the influence of

each random variable on structural reliability. Starting from these observations, a more

general probabilistic approach has been proposed in the frame of the APPRoFi project.

This approach remains based on the EF concept, but replaces the SSI analysis with more

robust reliability methods discussed further in Chapter 2. In addition, the uncertainty of

the fatigue behaviour is considered through probabilistic S−N curve models instead of the

EF strength concept. The application of this approach to a simple structural reliability

problem has demonstrated that an accurate failure probability estimate and the influences

of random variables can be determined for a smaller computational cost than that of the

probabilistic Stress-stRength approach. Finally, note that the proposed approach, groun-

ded upon the EF concept, is restricted to applications involving high cycle fatigue or very

limited and localized plasticity. Its range of applications can be widened by expressing

the performance function in terms of damage, but the numerical model evaluation is more

time-demanding in this case.
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Structures are generally designed against fatigue failure with determin-

istic approaches based on so-called safety factors in an attempt to ensure

the structural integrity while covering the inherent uncertainties (ma-

terial, loads, geometry, lack of knowledge in the damage mechanism...).

These factors are based on the know-how acquired through experience

feedback, and are consequently highly subjective. The use of safety

factors often leads to over-design and masks any information about the

safety margin and the influent design parameters on structural reliabil-

ity. Probabilistic approaches are a means to provide the designer with

this missing information. The probabilistic Stress-stRength approach

[Thomas et al., 1999] is a practical engineering tool that is currently

used in some design offices for either designing a structure against fa-

tigue with a given reliability objective, or assessing the failure probab-

ility of an already designed structure. It basically consists of comparing

two statistical distributions, namely the Stress and the stRength. The

limits of the approach are that its failure probability value is extremely

sensitive to the assumption made on the distribution followed by the

Stress, and the influences of the random variables on structural reliab-

ility cannot be determined. A more general probabilistic approach is

proposed in the frame of the APPRoFi project to overcome these two

limits. The Stress and stRength distributions are no longer defined,

and the different random variables are kept separate throughout the

whole reliability process. The approach is coupled with specific reliabil-

ity methods devised to determine the failure probability and the influent

random variables with only a limited number of numerical model eval-

uations. These reliability methods are detailed in Chapter 2.

Chapter summary
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2. Active learning & Kriging-based Reliability Methods

2.1 Introduction

In the frame of this thesis, the physical space is denoted by X n ⊆ R
n. X = {X1, . . . , Xn}t

denotes the physical random vector of which a realization is written x = {x1, . . . , xn}t ∈
X n. The structural response is characterized by the performance function G depending

on the random vector X. At a given realization x, its evaluation gives a scalar value which

enables the definition of:

• the safe domain S =
{

x = {x1, . . . , xn}t ∈ X n : G(x) > 0
}

,

• and its complement, the failure domain F =
{

x = {x1, . . . , xn}t ∈ X n : G(x) ≤ 0
}

.

Structural reliability analysis aims at assessing the failure probability Pf that reads:

Pf = Prob(G(X ≤ 0)) (2.1)

By introducing the joint PDF fX(x) of the random variables, the probability is recast as:

Pf =

∫

F
fX(x)dx1 . . . dxn (2.2)

To assess the failure probability of a structure, sampling-based reliability methods are

very popular, especially as they can deal with complex limit states (high non-linearity,

non-convex and/or disconnected domains of failure, system reliability...). Monte Carlo

Simulation, the most general approach, can, in theory, deal with any structural reliability

problems. However, its computational cost makes it inapplicable in the case of small fail-

ure probabilities. Some alternatives such as Importance Sampling [Melchers, 1990] and

Subset Simulation [Au and Beck, 2001] considerably reduce this cost, but the number of

performance function evaluations that is required remains incompatible with computa-

tionally demanding numerical models (e.g. finite element models). This observation has

led to the development of metamodels which are fast-to-evaluate representations of the

performance function. As a contribution to this field of research, a family of four Active

learning and Kriging-based Reliability Methods (AK-RM) [Echard et al., 2011a; Gayton

and Echard, 2012] are proposed in this thesis to deal with computationally demanding

models and small failure probabilities.

This chapter is organized as follows. Section 2.2 recalls the widely used isoprobabilistic

transformation. Section 2.3 reviews Monte Carlo Simulation, as well as its classical al-

ternatives which are more efficient for dealing with small failure probabilities. Section 2.4

introduces metamodels, particularly Kriging, as a means to conduct reliability analyses for

a significantly smaller computational cost. Section 2.5 describes the general approach of

AK-RM, namely AK-MCS. Section 2.6 exposes its three alternatives (AK-MCSm, AK-IS,

AK-SS) that are more efficient for small failure probability cases.
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2.2. Isoprobabilistic transformation

2.2 Isoprobabilistic transformation

The isoprobabilistic transformation T aims at simplifying the joint PDF fX(x) in the

integral expression of the failure probability, Eqn.(2.2). By definition, this transformation

preserves the probability. It associates the physical random variables X with independent

Gaussian ones characterized by zero means and unit variances. The latter variables are

commonly denoted by U and referred to as standard Gaussians. The performance function

in the standard space Un is denoted by H and reads:

H(U) ≡ G(T −1(U)) (2.3)

The failure domain in the standard space is F = {u = {u1, . . . , un}t ∈ Un : H(u) ≤ 0}.

By using the isoprobabilistic transformation T , the failure probability is recast as:

Pf =

∫

F
φn(u)du1 . . . dun (2.4)

where φn is the n-dimensional standard Gaussian PDF.

For independent physical random variables, the isoprobabilistic transformation T is

simply derived, variable by variable, from the equality of the cumulative probabilities

between the physical realization xi and the corresponding ui in the standard space:

xi
T→ ui = Ti(xi) ⇔ Φ(ui) = FXi

(xi) (2.5)

where Φ and FXi
are the CDFs of Ui and Xi respectively. T is then the composition of

two CDFs:

xi
T→ ui = Φ−1(FXi

(xi)) (2.6)

Reciprocally, the inverse transformation T −1 reads:

ui
T −1

→ xi = F −1
Xi

(Φ(ui)) (2.7)

In the case of correlated variables, ui cannot be associated with xi variable by variable.

The transformation Ti then becomes a function of x:

ui = Ti(x) (2.8)

As suggested by Der Kiureghian and Liu [1986], the transformation T can be characterized

by the Nataf transformation [Nataf, 1962]. Let X = {X1, . . . , Xn}t be random variables

that are correlated. The correlation matrix is denoted by C. Using Eqn.(2.6), the cor-

related Gaussian variables Ū with zero means and unit variances are obtained as follows:
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2. Active learning & Kriging-based Reliability Methods

ūi = Φ−1(FXi
(xi)) (2.9)

Let C̆ denote the correlation matrix of the variables Ŭ. The element C̆i,j is linked to the

element Ci,j by [Lemaire, 2009]:

Ci,j =

∫ +∞

−∞

∫ +∞

−∞

(

F −1
Xi

(Φ(ŭi)) − µXi

σXi

)





F −1
Xj

(Φ(ŭj)) − µXj

σXj



φ2(ŭi, ŭj , C̆i,j)dŭidŭj

(2.10)

where µXi
(respectively µXj

) is the mean of Xi (resp. Xj) and σXi
(resp. σXj

) is the

standard deviation of Xi (resp. Xj). The elements of C̆ are numerically determined using

Eqn.(2.10). Note that semi-empirical equations linking Ci,j and C̆i,j exist in the literature

[Der Kiureghian and Liu, 1986] to ease calculations. Once determined, the matrix C̆ is

recast as:

C̆ = LL
t (2.11)

where L is the lower triangular matrix of the Cholesky decomposition. The independent

standard Gaussian variables are finally obtained by:

ui = Ti(x) =
∑

j

L
−1
i,j ŭj =

∑

j

L
−1
i,j Φ−1(FXj

(xj)) (2.12)

Note that the characterization of the dependence between random variables can be gener-

alized with the concept of copulas, the Nataf transformation in fact making the hypothesis

of a Gaussian copula [Lebrun and Dutfoy, 2009].

2.3 Sampling-based reliability methods

2.3.1 Monte Carlo Simulation

By introducing the indicator function IF (u) = {1 if H(u) ≤ 0 and 0 otherwise}, Eqn.(2.4)

becomes [Ditlevsen and Madsen, 1996; Lemaire, 2009]:

Pf =

∫

Un
IF (u)φn(u)du1 . . . dun = E [IF (U)] (2.13)

where E[.] is the mathematical expectation. Simulation methods are often applied to

estimate this integral. The most popular is the Monte Carlo Simulation (MCS) which

constitutes a numerical integration method relying on repeated random sampling, as il-

lustrated in Figure 2.1. Given NMCS independent copies {U(j), j = 1, . . . , NMCS} of U

distributed according to φn, the estimator P̂f of the failure probability reads:

Pf ≈ P̂f =
1

NMCS

NMCS
∑

j=1

IF
(

U(j)
)

(2.14)
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Its coefficient of variation δ is expressed as follows:

δ =

√

1 − Pf

NMCS Pf
(2.15)

The major drawback of Monte Carlo Simulation is the large number of points at which H

should be evaluated, in order to obtain a suitable coefficient of variation of P̂f . Eqn.(2.15)

shows that assessing a probability of 10−p with a targeted δ = 10% requires NMCS = 10p+2

evaluations. Monte Carlo Simulation is consequently inapplicable to problems involving

small probabilities and time-demanding performance function evaluations.

Figure 2.1: Monte Carlo Simulation. The black dots represent points located in the failure
domain F .

2.3.2 Monte Carlo Simulation under monotony

In many mechanical structures, the performance function happens to be monotonic with

respect to its random input variables. De Rocquigny [2009] notes that an insufficient

attention is brought to monotony in structural reliability analysis, and formulates its basic

features. He further proposes Monotonic Reliability Methods which consist in progressively

narrowing some robust upper and lower bounds on the failure probability through an

adaptive sampling.

A performance function H†, as depicted in Figure 2.2, is globally monotonic if:

∀i, ∃si ∈ {−1; 1}, a ≥ 0, u ∈ Un, H(u1, . . . , ui + si a, . . . , un) ≤ H(u1, . . . , ui, . . . , un)

(2.16)

†Note that monotony in X n is preserved in Un in case of independent physical variables, due to the

fact that the isoprobabilistic transformation is then the composition of two CDFs that are, by definition,

monotonically increasing functions.
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where si characterizes the monotonic trend in the ith direction. Suppose H is evaluated

at a point u(1) which is found to lie in S. The sub-domain E+
u(1) delimited by the ‘corner’

u(1) necessarily constitutes an ensured safe domain. Conversely, for a point u(2) lying in

F , the sub-domain E−
u(2) bordered by u(2) forms an ensured failure domain. Such features

enable the definition of robust lower and upper bounds on the failure probability as follows

[De Rocquigny, 2009]:

Prob(u ∈ E+) ≤ Pf ≤ 1 − Prob(u ∈ E−) (2.17)

where E+ =
⋃

j E+
u(j) and E− =

⋃

k E−
u(k) . The evaluation of H at a point lying in the

margin between E+ and E− constitutes a definite improvement to the bounds on Pf . A

simple accept-reject Monte Carlo Simulation or a more sophisticated sampling strategy

can be used to generate new points in the margin.

Figure 2.2: Ensured sub-domains E+
u(1) and E−

u(2) on the hypothesis that H is monotonic.
Evaluations of H at points lying in these sub-domains are worthless.

In this paragraph, the procedure of Monte Carlo Simulation under monotony (MCSm)

is restricted to the classification of a fixed sample population into the safe and failure

subsets. The calculation of the lower and upper bounds on the failure probability is then

not considered. Let H be a monotonic performance function in the standard space. The

algorithm is as follows:

1. Generate a population PMCS according to φn, and composed of NMCS points.

2. Evaluate H at a point in PMCS. This point may be drawn uniformly from the

population, but the selection of a location close to the limit state is recommended.

In some cases, the nature of some random variables can be determined intuitively.

Such information is helpful to better select a point to evaluate. Assuming monotony,

an increase of the load variables (e.g. the size of a flaw) or a decrease of the resistance
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variables (e.g. tensile strength) from a current safe location leads to a new location

which is closer to the limit state.

3. Count the points lying in E+ and E−. They are respectively denoted by N+ and

N−.

4. Remove the points lying in E+ and E− from PMCS as they represent worthless

evaluations. NR denotes the number of points lying in the margin. The procedure

goes back to Step 2 while NR > 0.

5. Calculate the failure probability estimate as N−/NMCS. The coefficient of variation

δ of the estimator is obtained using Eqn.(2.15).

In conclusion, the consideration of monotony clearly enables a drastic reduction in the

number of performance function evaluations in comparison to Monte Carlo Simulation.

Nevertheless, H is inevitably evaluated at a substantial number of points in the vicinity

of the limit state, and the convergence thus remains slow.

2.3.3 Importance Sampling

2.3.3.1 Concept of most probable failure point

The Hasofer-Lind reliability index β [Hasofer and Lind, 1974] corresponds to the distance

between the origin O of the standard space and the closest failure point to O denoted by

P ⋆. The PDF is maximized in the failure domain at P ⋆ which is commonly referred to as

the Most Probable Failure Point (MPFP) †. Its location u⋆ = {u⋆
1, . . . , u⋆

n}t is determined

by solving the following constraint optimization problem:

β =
√

(u⋆t u⋆) = min
H(u)≤0

√

(ut u) (2.18)

Hasofer-Lind-Rackwitz-Fiessler (HLRF) algorithm [Rackwitz and Fiessler, 1978] and its

improved version (iHLRF) by Zhang and Der Kiureghian [1995] are commonly imple-

mented to find P ⋆. Note that the Hasofer-Lind reliability index is conventionally set as

negative if O lies in the failure domain.

2.3.3.2 First order reliability method

Calculation of the failure probability

The probability density function in F is, by definition, maximum at P ⋆. Additionally,

in the presence of a limited number of random variables, the density decreases rapidly

when the distance from the origin increases. Following these statements, the First Order

†note the discussion about naming P ⋆ in Lemaire [2009].
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Reliability Method (FORM), illustrated on an example in Figure 2.3, consists in replacing

the limit state H(u) = 0 by an hyper-plane at P ⋆ that reads:

H̃(u) =
n
∑

i=1

αi ui + β = 0 (2.19)

where {αi, i = 1, . . . , n} are the direction cosines of the vector P ⋆O, i.e. αi = −u⋆
i /β. The

hyper-plane is orthogonal to the vector P ⋆O, so the failure probability can consequently

be approximated by:

P̃f = Φ(−β) (2.20)

Concerning small failure probabilities, FORM is an efficient alternative to Monte Carlo

Simulation, as its number of performance function evaluations NFORM remains significantly

smaller than NMCS. Nevertheless, the previously cited optimization algorithms to find

P ⋆ are gradient-based, and FORM thus loses efficiency in high-dimensional problems.

Furthermore, the potential error made with the linearization of the limit state is unknown,

so additional sampling is therefore required to validate the approximation of the failure

probability.

Figure 2.3: FORM linear approximation of the limit state at the MPFP P ⋆.

Importance factors in reliability

FORM analysis also provides importance factors for the Hasofer-Lind reliability index

with respect to the random variables and their distribution parameters (mean, standard

deviation, correlation between two variables...). These factors offer a way to rank the

influence of the input random variables on reliability. The most significant variables should

be controlled to ensure structural integrity, while those playing a small role can be set to

deterministic values in order to simplify the analysis. This section is restricted to the

importance factors with respect to the distribution parameters. The parameter of the ith

62



2.3. Sampling-based reliability methods

random variable is denoted by pi. The sensitivity of the Hasofer-Lind reliability index

with respect to pi is denoted by Spi
and reads [Lemaire, 2009]:

Spi
=

∂β

∂pi

∣

∣

∣

∣

u⋆

(2.21)

Spi
represents the value by which β is increased when pi is raised by 1. It can be recast

as:

Spi
=

∂β

∂ui

∣

∣

∣

∣

u⋆

∂ui

∂pi

∣

∣

∣

∣

u⋆

=
∂β

∂ui

∣

∣

∣

∣

u⋆

∂Ti(xj)

∂pi

∣

∣

∣

∣

x⋆

(2.22)

where the variable Ui is deduced from the Xj using the isoprobabilistic transformation Ti.

By definition of the direction cosines, the sensitivity becomes:

Spi
= −αi

∂Ti(xj)

∂pi

∣

∣

∣

∣

x⋆

(2.23)

For correlated variables, the Nataf transformation, introduced in Section 2.2, can be ap-

plied. In the case of independent random variables, Eqn.(2.6) enables the sensitivity to

be recast as follows:

Spi
= −αi

1

φ(u⋆
i )

∂FXi
(xi)

∂pi

∣

∣

∣

∣

x⋆

(2.24)

For independent Gaussian random variables, sensitivities with respect to the mean Sµi

and standard deviation Sσi
simply read:

Sµi
=

αi

σi
(2.25)

Sσi
= −β α2

i

σi
(2.26)

Note that sensitivities with respect to standard deviations are negative if β > 0, thus

increasing a standard deviation always diminishes the reliability of the structure.

In the end, normalized sensitivities are often introduced to enable the comparison

between variables and parameters. They are known as elasticities and read:

Epi
=

pi

β
Spi

(2.27)

Epi
then represents the percentage by which β is increased when pi is raised by 1%.

2.3.3.3 Probability assessment using Importance Sampling

As already mentioned, additional sampling is required in order to validate the FORM

approximation of the failure probability. The variance reduction technique known as Im-

portance Sampling (IS) is commonly applied for this purpose [Melchers, 1990]. Importance

Sampling relies on the hypothesis that the weight of the failure probability is located in
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the vicinity of a unique MPFP. If such a hypothesis holds, sampling points centred on P ⋆,

as illustrated in Figure 2.4, is more efficient than sampling around the origin of standard

space. The probability of a failure event is in fact larger, and its variance is significantly

reduced. Given the sampling PDF ϕn, the failure probability can be recast as follows:

Pf =

∫

Un
IF (u)

φn(u)

ϕn(u)
ϕn(u)du1 . . . dun (2.28)

ϕn is often defined, in the standard space, as a n-dimensional Gaussian distribution centred

on the MPFP with uncorrelated components and unit variances. Note that other values

may also be considered for the variances, so as to tighten or spread out the conditioning.

Given NIS independent copies {Ū(j), j = 1, . . . , NIS} of the random vector Ū distributed

according to ϕn, the estimator P̂f of the failure probability reads:

Pf ≈ P̂f =
1

NIS

NIS
∑

j=1

IF
(

Ū(j)
) φn

(

Ū(j)
)

ϕn

(

Ū(j)
) (2.29)

Its variance Var[P̂f ] is expressed as:

Var[P̂f ] =
1

NIS







1

NIS

NIS
∑

j=1






IF
(

Ū(j)
)





φn

(

Ū(j)
)

ϕn

(

Ū(j)
)





2





− P̂ 2

f






(2.30)

The coefficient of variation δ of P̂f is given as the following ratio:

δ =

√

Var[P̂f ]

Pf
(2.31)

Importance Sampling based on the sampling PDF ϕn as defined in this section should

only be conducted if the MPFP is well isolated and that no secondary minima exist in

other areas of space. In such a case, Importance Sampling drastically reduces the number

of points to evaluate. Note that Importance Sampling can also be applied with other

sampling PDFs.

2.3.4 Subset Simulation

Subset Simulation (SS), introduced in structural reliability by Au and Beck [2001], is

another efficient alternative to Monte Carlo Simulation regarding small failure probabil-

ities. Its basic idea, illustrated in Figure 2.5, is to express the failure probability as a

product of larger conditional probabilities by introducing some intermediate events. Let

H be the performance function in the standard space and F = {u ∈ Un : H(u) ≤ 0} be

the failure domain. Let a decreasing sequence of sub-domains F1, F2 . . . , Fm be, so that
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2.3. Sampling-based reliability methods

Figure 2.4: Importance Sampling centred on the MPFP P ⋆.

F1 ⊃ F2 ⊃ . . . ⊃ Fm = F where Fk = {u ∈ Un : H(u) ≤ Hk}. The failure probability is

then expressed as the product of the conditional probabilities:

Pf = Prob(u ∈ F1)
m
∏

k=2

Prob(u ∈ Fk|u ∈ Fk−1) (2.32)

In practice, the thresholds {Hk, k = 1, . . . , m} are determined for obtaining conditional

probabilities close to 0.1 [Au and Beck, 2001]. Such a value represents a reasonable trade-

off between the number of simulation levels m and the number of performance function

evaluations.

Figure 2.5: Sequence of five simulation levels in Subset Simulation.

Figure 2.6 depicts the Subset Simulation procedure. The first simulation level is a

Monte Carlo Simulation (see Figure 2.6(a)). A population P1 of N1 points is generated

according to φn. The performance function is evaluated at each point of the population,
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and the threshold H1 is determined (see Figure 2.6(b)) so that the probability estimate

reads:

P̂1 =
1

N1

N1
∑

j=1

IF1

(

u(j)
)

≈ 0.1 (2.33)

where IF1(u(j)) = {1 if H(u(j)) ≤ H1 and 0 otherwise}. According to Eqn.(2.15), the

coefficient of variation δ1 of the probability estimator reads:

δ1 =

√

1 − Prob(u ∈ F1)

N1 Prob(u ∈ F1)
(2.34)

At the kth simulation level (k = 2, . . . , m), a Markov Chain Monte Carlo sampling tech-

nique is first applied to generate a population Pk following the conditional distribution

φn(.|u ∈ Fk−1) from the seeds, i.e. from the [0.1 × Nk−1] points lying in Fk−1. Figure

2.6(c) depicts such a population for k = 2. Au and Beck [2001] propose a modified version

of the Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970] to gener-

ate Pk. Let u(1) be a seed distributed according to φn(.|u ∈ Fk−1). A chain of points

u(1), u(2), . . . lying in Fk−1 is generated by simulating u(l+1) from the state u(l). The

algorithm is as follows:

1. Generate a candidate state ŭ(l+1): a point v̆(l+1) is simulated according to a n-

dimensional PDF centred on the current state u(l) and denoted by p(.|u(l) ∈ Fk−1).

Such a distribution is expressed as a product of independent PDFs {pi(.|u(l) ∈
Fk−1), i = 1, . . . , n} that are uniform with a width between 1 and 3 (usually 2).

The ratio ti = φ(v̆
(l+1)
i )/φ(u

(l)
i ) is calculated. ŭ

(l+1)
i is set to v̆

(l+1)
i with probability

min{1, ti} and to u
(l)
i with the remaining probability 1 − min{1, ti}. This step can

be seen as a random walk in the neighbourhood of the current state u(l).

2. Accept/reject the candidate state: the performance function is evaluated at the

candidate state ŭ(l+1). It is accepted as the state u(l+1) if it lies in Fk−1, i.e. if

H(ŭ(l+1)) ≤ Hk−1. Otherwise, it is rejected and the chain remains in the current

state: u(l+1) = u(l).

3. Add the state u(l+1) to the population Pk.

4. Replicate the algorithm several times with the [0.1 × Nk−1] seeds until Nk ≥ Nk−1.

Given the population Pk, the threshold Hk is determined (see Figure 2.6(d)) so that the

estimate P̂k of the conditional probability Prob(u ∈ Fk|u ∈ Fk−1) reads:

P̂k =
1

Nk

Nk
∑

j=1

IFk

(

u(j)
)

≈ 0.1 (2.35)
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2.3. Sampling-based reliability methods

(a) Generation of a population P1 using φ2. (b) The performance function is evaluated at
each point of P1 and the threshold H1 is de-
termined.

(c) The modified Metropolis-Hastings algorithm
is employed to generate a population P2 following
the conditional distribution φ2(.|u ∈ F1).

(d) The threshold H2 is determined.

(e) After 4 simulation levels, a population P5 is
generated following the conditional distribution
φ2(.|u ∈ F4).

(f) The threshold H5 is negative. It is then set
to H5 = 0. P̂5 is calculated and the failure prob-
ability is estimated by the product of the inter-
mediate probabilities.

Figure 2.6: Subset Simulation procedure.
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The coefficient of variation δk of the probability estimator is:

δk =

√

1 − Prob(u ∈ Fk|u ∈ Fk−1)

Nk Prob(u ∈ Fk|u ∈ Fk−1)
(1 + γk) (2.36)

where γk is a factor accounting for the correlation between the Nk points. The last level

is illustrated in Figure 2.6(e) and Figure 2.6(f). When the threshold Hk is negative, k is

set to m and Hm = 0. The failure probability estimate is finally obtained, on the basis of

Eqn.(2.32), by:

P̂f =
m
∏

k=1

P̂k (2.37)

The coefficient of variation δ of the failure probability estimator is given by:

δ =

√

√

√

√

m
∑

k=1

δ2
k (2.38)

Unlike Importance Sampling, Subset Simulation enables the detection of secondary

minima in other areas of space. Generality is thus preserved. Nevertheless, it inevitably

leads to a higher number of performance function evaluations. A slight modification of

Subset Simulation, known as iSubset, is proposed by Defaux et al. [2010] to reduce the

computational cost. Given that numerous simulation levels are unnecessary when an order

of magnitude of the failure probability is known, Conditional Sampling [Bernard and Fogli,

1987] is performed at the first simulation level. Such a sampling, depicted in Figure 2.7,

is characterized by an exclusion hyper-sphere centred on the origin of space with radius

βe to set.

Figure 2.7: First simulation level in iSubset.
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2.3.5 Conclusion

In this section, various sampling-based reliability methods have been introduced to handle

problems involving small failure probabilities. Other alternatives such as Directional

Sampling [Ditlevsen et al., 1988] are acknowledged by the author but not considered in

the frame of this thesis.

2.4 Kriging-based reliability methods

Performance functions generally depend on responses of numerical models simulating the

mechanical behaviours of structures. Despite considerable advances in computer techno-

logy over the last two decades, a single evaluation of such models remains time-demanding

(several minutes to several hours) due to the continuous need for more faithful represent-

ations to the real mechanical behaviours. Numerous calls to performance functions are

consequently not possible in a short space of time. In addition, structures encountered in

industry are fortunately designed with codified rules leading to large safety margins, i.e.

small failure probabilities. The sampling-based reliability methods reviewed in the previ-

ous section are possible solutions to assess small probabilities, but they are inapplicable

with computationally demanding models, in so far as they still require a substantial num-

ber of performance function evaluations. This statement motivates the use of metamod-

elling as a means to conduct structural reliability analyses in a more practical amount of

time.

2.4.1 Principles of metamodelling

Metamodels are widespread in computational sciences and employed to predict the out-

come of a time-demanding function at any point, providing that the outcomes at a few

other points are known. These latter points are usually called the Design Of numerical

Experiments (DOE). Metamodels are attractive tools because they are fast to evaluate

in comparison with the actual functions. However, the selection of the DOE is of high

importance. The DOE must contain a sufficient number of points in order to ensure an

accurate approximation of the function, but it must also keep this number to a minimum

so as to remain affordable at a low cost. This latter condition is often referred to as the

parsimony constraint.

In structural reliability analysis, the metamodel H̃ of the performance function H in

the standard space (or G̃ for G in the physical space) is built to provide an approximate

failure domain F̃ = {u ∈ Un : H̃(u) ≤ 0}. The integral formula of the failure probability

is then approximated by:

Pf ≈
∫

F̃
φn(u)du1 . . . dun (2.39)

In practice, the failure probability is assessed by applying a sampling-based reliability
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2. Active learning & Kriging-based Reliability Methods

method to the metamodel of the performance function. Note that a bias may be introduced

in the probability if the metamodel is not sufficiently refined.

Among metamodels, Quadratic Response Surfaces [Bucher and Bourgund, 1990; Das

and Zheng, 2000; Gayton et al., 2003] are the most popular although they are limited to

local interpolation. Polynomial Chaos [Ghanem and Spanos, 1991; Sudret and Der Ki-

ureghian, 2002] is an alternative to avoid this problem. However, the definitions of the

DOE and of the polynomial degrees are delicate issues [Blatman and Sudret, 2010]. More

recently, reliability methods based on Support Vector Machine have also been proposed

[Hurtado, 2004; Bourinet et al., 2011]. Finally, Kriging (also known as Gaussian process)

is investigated in this thesis for its stochastic and interpolation features (discussed in Sec-

tion 2.4.2.3). Its efficiency has been proven in structural reliability analysis [Romero et al.,

2004; Kaymaz, 2005; Bichon et al., 2008, 2009, 2011; Ranjan et al., 2008; Picheny et al.,

2010; Bect et al., 2011; Dubourg, 2011; Dubourg et al., 2011] and in related domains such

as uncertainty analysis and global sensitivity analysis [Kennedy et al., 2006; O’Hagan,

2006; Marrel et al., 2009].

2.4.2 Kriging theory

Kriging, pioneered by Krige [1951] and then theorized by Matheron [1973], considers the

performance function H as a realization of a Gaussian process H(u). The first step of

Kriging is the determination of the Gaussian process parameters according to the DOE.

Then, the best linear unbiased predictor is applied in order to estimate the outcome of

the performance function at an unobserved point. For more details on Kriging theory, the

reader may refer to Dubourg [2011, Chapter 1].

2.4.2.1 Identification of the Gaussian process

The model of the Gaussian process H(u) is expressed as [Sacks et al., 1989]:

H(u) = Y (u, η) + Z(u) (2.40)

where:

• Y (u, η) is the deterministic part giving an approximation of the response in mean.

It represents the trend of Kriging, and corresponds to a regression model that reads:

Y (u, η) = y(u)t η (2.41)

where y(u) = {y1(u), . . . , yb(u)}t is the vector of the basis functions and η =

{η1, . . . , ηb}t the vector of the regression coefficients. In this thesis, an ordinary

trend is favoured for Kriging, meaning that Y (u, η) is reduced to a scalar η. This

regression model is often sufficient, and other models do not necessarily bring any
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substantial gain according to Bichon et al. [2011]. The following equations in this

section are based on the assumption of ordinary Kriging.

• Z(u) is a stationary Gaussian process with zero mean and covariance between two

points of space u and v that reads:

cov (Z(u), Z(v)) = σ2
ZRθ(u, v) (2.42)

where σ2
Z is the process variance and Rθ is the correlation function characterized by

its set of parameters θ = {θ1, . . . , θn}t.

In this thesis, the anisotropic Gaussian model is selected to represent the correlation

function:

Rθ(u, v) =
n
∏

i=1

exp
[

−θi(ui − vi)
2
]

(2.43)

This model is dominant in engineering literature [Santner et al., 2003; Bichon et al.,

2008; Ranjan et al., 2008]. Note that the Matérn correlation function is a more flexible

alternative that is gradually finding its way in structural reliability analysis [Dubourg,

2011], but its use increases the computational cost [Bichon et al., 2011].

Let a DOE be defined by a set of NE points D = {u(1), . . . , u(NE)}t and their respective

observations h = {H(u(1)), . . . , H(u(NE))}t. The scalars η and σ2
z are estimated by [Jones

et al., 1998]:

η̂ =
1t

NE
R

−1
θ h

1t
NE

R
−1
θ 1NE

(2.44)

and:

σ̂Z
2 =

(h − η̂1NE
)t
R

−1
θ (h − η̂1NE

)

NE
(2.45)

where Rθi,j
= Rθ(u(i), u(j)) is the correlation matrix of the points in D and 1NE

denotes

the NE-length column vector of ones. η̂ and σ̂Z
2 in Eqn.(2.44) and Eqn.(2.45) depend on

the parameter θ through the matrix Rθ. This parameter is obtained by ML estimation

[Lophaven et al., 2002a]:

θ̂ = arg min
θ

(detRθ)
1

NE σ̂Z
2 (2.46)

In the DACE Matlab/Scilab Kriging toolbox [Lophaven et al., 2002a] employed in this

thesis, a pattern search approach known as the modified Hooke and Jeeves method is

proposed in order to solve the optimization problem. Full details on the algorithm and

performance tests may be found in Lophaven et al. [2002b]. Note that the artificial bee

colony algorithm [Karaboga, 2005; Karaboga and Basturk, 2007] has recently been pro-

posed by Luo et al. [2012] as an efficient alternative to the current optimization procedure

in DACE.
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2.4.2.2 Kriging prediction

In the previous section, the parameters of the Gaussian process have been determined. The

next step is the prediction of the outcome H(u∗) at an unobserved point u∗. Beforehand,

let r(u∗) denote the correlation vector between u∗ and the points in D. Hence:

r(u∗) = {Rθ(u∗, u(1)), . . . , Rθ(u∗, u(NE))}t (2.47)

The Best Linear Unbiased Predictor (BLUP), denoted by H̃(u∗), is a Gaussian random

variable:

H̃(u∗) ∼ N
(

µH̃(u∗), σ2
H̃

(u∗)
)

(2.48)

with Kriging mean [Jones et al., 1998]:

µH̃(u∗) = η̂ + r(u∗)t
R

−1
θ (h − η̂1NE

) (2.49)

and Kriging variance [Jones et al., 1998]:

σ2
H̃

(u∗) = σ̂Z
2






1 − r(u∗)t

R
−1
θ r(u∗) +

(

1 − 1t
NE

R
−1
θ r(u∗)

)2

1t
NE

R
−1
θ 1NE






(2.50)

2.4.2.3 Noteworthy features

Kriging presents two intrinsic features that motivate its application to structural reliability

problems in this thesis:

• Interpolation: Figure 2.8(a) shows that the predictor interpolates the observations

h, i.e. ∀i, u(i) ∈ D, µH̃(u(i)) = H(u(i)). The proof of this begins by noting that,

for a point u(i) ∈ D, the correlation vector r(u(i)) is equivalent to the ith column of

Rθ. Hence, the correlation vector reads:

r
(

u(i)
)

= Rθei (2.51)

where ei is the unit vector which is one for its ith row and zero for the others.

Eqn.(2.49) then becomes:

µH̃

(

u(i)
)

= η̂ + et
i (h − η̂1NE

) = et
ih = H

(

u(i)
)

(2.52)

Furthermore, Kriging variance is zero as Eqn.(2.50) changes to:

σ2
H̃

(

u(i)
)

= σ̂Z
2






1 − r(u(i))tei +

(

1 − 1t
NE

ei

)2

1t
NE

R
−1
θ 1NE






= 0 (2.53)
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• Measure of the prediction uncertainty: At a given point, Kriging not only

provides a prediction (Kriging mean) of the function outcome, but also a measure

of the prediction uncertainty (Kriging variance). As illustrated in Figure 2.8(b),

the Kriging variance may be used to find a point (or several) whose observation(s)

would lead to a substantial improvement in the metamodel’s accuracy. An iterative

enrichment of the DOE with wisely chosen points thus seems a relevant approach

to respect the parsimony constraint, i.e. to establish an accurate metamodel with a

limited number of function evaluations. Such an approach is commonly referred to

as an active learning method, and is further discussed in the next section.

(a) Kriging metamodel interpolating the obser-
vations.

(b) Global prediction improved by evaluating
y = x sin(x) at the point having the largest Kri-
ging variance, i.e. x = 10.

Figure 2.8: Illustrations of Kriging. The solid line is the function y = x sin(x). The
dashed line depicts the Kriging mean. The observations of the DOE are represented
by the black dots. The light grey area corresponds to the 95% confidence interval, i.e.
µH̃(x) ± 1.96 σH̃(x).

2.4.3 Active learning method

As far as the author is aware, Romero et al. [2004] are the first in applying Kriging to

structural reliability problems. In this early paper, the DOE of the Kriging metamodel

evolves following progressive lattice samplings, and consequently, does not consider the

additional information brought by the Kriging variance. The same statement can be

made regarding the method proposed by Kaymaz [2005]. Following these pioneering works,

Kriging is applied in an active learning scheme, where the DOE is iteratively enriched with

points selected through the evaluation of a learning function [Bichon et al., 2008; Ranjan

et al., 2008; Picheny et al., 2010; Bect et al., 2011; Dubourg, 2011; Echard et al., 2011a].

The general procedure of active learning can be summarized as follows:

1. Build the Kriging metamodel of H with an initial DOE.
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2. Find the point leading to the optimum of the learning function.

3. Enrich the DOE by evaluating H at such a point.

4. Build the new Kriging metamodel and go back to Step 2.

In structural reliability analysis, only points in the vicinity of the limit state H(u) = 0

represent relevant observations to refine the metamodel. Learning functions, discussed in

the following section, are specifically developed to find such points.

2.4.3.1 Learning function

Several learning functions are available in the literature related to structural reliability.

This section is restricted to the introduction of two functions that are easy to implement

and fast to evaluate.

Expected feasibility function

The active learning scheme of the Efficient Global Reliability Analysis (EGRA) [Bichon

et al., 2008] relies on the Expected Feasibility Function (EFF). Inspired by the contour

estimation work in Ranjan et al. [2008], EFF expresses the expectation that the actual

outcome of the performance function in a point u is expected to satisfy the equality

constraint H(u) = t [Bichon et al., 2011] (t = 0 for the limit state). The function reads:

EFF(u) = E
[

ǫ(u) − min(|H̃(u) − t|, ǫ(u))
]

(2.54)

where ǫ is set to focus the search in t ± ǫ. In Bichon et al. [2008], ǫ is proportional to the

Kriging standard deviation at each point: ǫ(u) = 2σH̃(u). By integrating over t ± ǫ, the

expectation becomes:

EFF(u) = µH̃(u)
[

2Φ
(

t−µH̃(u)
σH̃(u)

)

− Φ
(

t−ǫ(u)−µH̃(u)
σH̃(u)

)

− Φ
(

t+ǫ(u)−µH̃(u)
σH̃(u)

)]

−σH̃(u)
[

2φ
(

t−µH̃(u)
σH̃(u)

)

− φ
(

t−ǫ(u)−µH̃(u)
σH̃(u)

)

− φ
(

t+ǫ(u)−µH̃(u)
σH̃(u)

)]

+ǫ(u)
[

Φ
(

t+ǫ(u)−µH̃(u)
σH̃(u)

)

− Φ
(

t−ǫ(u)−µH̃(u)
σH̃(u)

)]

(2.55)

High values of EFF are obtained for points having Kriging means close to the threshold

t, as well as points having large Kriging variances. The performance function is thus

evaluated at the location where EFF is maximized. The search of the optimum point is

further discussed in Section 2.4.3.2.

Learning function U

Inspired by Kushner’s criterion [1964] and the lower confidence bounding function [Cox

and John, 1997] in optimization, the learning function U [Echard et al., 2009] is proposed

74



2.4. Kriging-based reliability methods

to focus the search in the vicinity of the limit state. At an unobserved point u, it reads:

U (u) =
|t − µH̃ (u) |

σH̃ (u)
(2.56)

As depicted in Figure 2.9, U measures the distance in standard deviations between the

Kriging mean and the threshold t (set to 0 for the limit state). Since Gaussianity is

assumed by Eqn.(2.48), 1 − Φ(U(u)) for t = 0 represents the probability that H(u) has

an opposite sign (negative/positive) from µH̃(u). A small value of U(u) leads to a large

probability, and consequently, the performance function should be evaluated at the point

where U is minimized.

Figure 2.9: Illustration of the learning function U for three points u(1), u(2), u(3) with
positive Kriging means. The values of U are respectively 2, 1 and 0.8. The grey areas rep-
resent the probabilities 1 − Φ(U(u(j))). The performance function H should be evaluated
at the point u(3).

Other alternatives

More sophisticated criteria such as the targeted Integrated Mean-Squared Error (tIMSE)

[Picheny et al., 2010] and the Stepwise Uncertainty Reduction (SUR) [Bect et al., 2011]

are available in the literature. Comparative studies of these learning functions have been

undertaken by Bect et al. [2011] and Li et al. [2011]. SUR is seen to converge the fastest to

a rough estimate of the failure probability, but its computational cost is larger than EFF

and U . In addition, the number of evaluations performed with U is rather comparable

to SUR’s when a refined estimate of the failure probability is targeted [Li et al., 2011].

Within this thesis, the learning function U thus seems acceptable for its simplicity and

efficiency.
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2.4.3.2 Search of the optimum

Learning functions are highly multimodal and consequently, finding the optimum is a

complex task. EGRA resorts to the gradient-free DIRECT (DIviding RECTangles) global

optimization algorithm [Jones et al., 1993; Gablonsky, 2001]. It consists of an iterative

division of the search domain into hyper-rectangles. The learning function EFF is cal-

culated at the hyper-centres, and the potentially optimal hyper-rectangles, determined

according to their size and EFF value, are sequentially divided. For further details on

the algorithm, the interested reader is referred to the DIRECT Matlab toolbox [Finkel,

2003]. In this thesis, the optimization is solved numerically by computing the learning

function at each point of a fixed population. Such a choice is seen as sufficient for the new

reliability methods devised in this research work (see Section 2.5).

2.4.4 Kriging prediction of the failure probability

In practice, the failure probability of Eqn.(2.39) is assessed by applying a sampling-based

reliability method to the refined metamodel of the performance function. For a given

population, Kriging offers two estimates of the failure probability:

• an estimate based on the mean values. The predicted failure domain is F̃ = {u ∈
Un : µH̃(u) ≤ 0}, and the Kriging mean indicator function IF̃ (u) = {1 if µH̃(u) ≤
0 and 0 otherwise} is introduced to assess P̃f .

• an estimate based on the full probabilistic information held in the Kriging predic-

tions [Picheny et al., 2010; Dubourg, 2011]. The predicted failure domain becomes

F̃ = {u ∈ Un : H̃(u) ≤ 0}, and the probabilistic indicator function IF̃ (u) =

{Φ(U(u)) if µH̃(u) ≤ 0 and 1−Φ(U(u)) otherwise} is introduced to assess P̃f . Note

that U is not defined at the points of the DOE, but the sign of the performance func-

tion value is known in such points. Finally, Φ(U(u)) is 1 (respectively 0) when U(u)

tends to +∞ (respectively 0), thus both estimates converge to the same P̃f .

In this thesis, the failure probability is estimated with the Kriging mean values. Hence

in the rest of the document, the predicted failure domain is defined as F̃ = {u ∈ Un :

µH̃(u) ≤ 0}, and IF̃ (u) refers to the Kriging mean indicator function. Note that the

second estimate is also calculated to observe the convergence in Section 2.5.3.
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2.5 Active learning and Kriging-based Monte Carlo Simu-

lation

2.5.1 Motivation

Kriging-based methods such as EGRA [Bichon et al., 2008] are mostly two-stage proced-

ures, where the construction of the Kriging metamodel through an active learning scheme

(stage 1) is completely independent from the subsequent sampling-based reliability analysis

(stage 2). Since stage 1 is performed regardless of the probability density, the performance

function may be observed in some areas that will not be covered by the random sampling

of stage 2. These observations consequently represent unnecessary evaluations that can

be avoided by merging both stages. In this thesis, a single-stage procedure is thus de-

vised to avoid these evaluations. The method is referred to as an Active learning and

Kriging-based Monte Carlo Simulation (AK-MCS) [Echard et al., 2009, 2010a,b, 2011a,b].

Following the classification concept [Hurtado, 2004], AK-MCS uses a Kriging metamodel

to classify a fixed Monte Carlo population into the safe and failure subsets, i.e. into the

points having positive performance function values and the points having negative per-

formance function values. The function U is evaluated at each point of the population,

and the Kriging metamodel is adaptively refined by evaluating the performance function

at the point leading to the smallest value of U(u). AK-MCS can be seen as a ‘guided’

Monte Carlo Simulation, where the sign of each point in the population is deduced from

a Kriging metamodel built with only a few wisely chosen observations of the performance

function.

2.5.2 Procedure

Let NE denote the number of performance function evaluations. Figure 2.10 depicts the

procedure which is as follows:

1. Generate a population PMCS according to φn
†. It consists of the points {u(j) =

{u
(j)
1 , . . . , u

(j)
n }t, j = 1, . . . , NMCS} to classify into the safe and failure subsets. These

points also represent candidates for future performance function evaluations.

2. Define the initial DOE. The performance function is evaluated at various points

in PMCS. In the original paper, around ten (NE ≈ 10) are uniformly drawn from

the population of candidates. However, such a selection may not lead to a sufficient

spread of the DOE due to the high density of candidates near the origin of space.

To convey a larger amount of information about the behaviour of the performance

function, space-filling designs such as Latin Hyper-cube Sampling [McKay et al.,

†For consistency of the document, the method is explained in the standard space but its application in

X n is also possible.

77



2. Active learning & Kriging-based Reliability Methods

1979] seem more suitable. Another alternative may, for instance, be a uniform

sampling of various points (e.g. 3) in each of the following subsets: {u ∈ PMCS :

‖u‖ < 1}, {u ∈ PMCS : 2 ≤ ‖u‖ < 3}, {u ∈ PMCS : 3 ≤ ‖u‖ < 4}... Note that

the number of observations is purposely small at first, since the DOE is iteratively

enriched in the subsequent active learning loop.

3. Perform the Kriging classification loop.

(a) Build the Kriging metamodel. An ordinary Kriging metamodel with an-

isotropic Gaussian correlation is built from the NE observations. DACE Mat-

lab/Scilab toolbox [Lophaven et al., 2002a] is used in this research work.

(b) Predict outcomes and assess P̃f . The Kriging predictions of the points

in PMCS are computed: {µH̃(u(j)), σH̃(u(j)), j = 1, . . . , NMCS}. The Kriging

mean indicator function (see Section 2.4.4) is introduced in Eqn.(2.14) to es-

timate the failure probability P̃f . The Kriging probabilistic indicator function

may also be used to provide a second estimate.

(c) Evaluate the learning function U and find u◦ = arg min
u∈PMCS

U(u). The

function U is evaluated at the [NMCS − NE ] unobserved points of PMCS. The

point u◦ ∈ PMCS leading to the smallest value of U(u) is easily found.

(d) Test the stopping condition on learning. The condition reads: U(u◦) ≥ 2.

This arbitrary value refers to a 97.7% confidence level on the sign of the per-

formance function outcome. The author recommends deactivating the condition

in the early iterations, due to the fact that the procedure might wrongly stop

with an insufficient DOE. Experience has shown that the stopping condition

can be activated, once the DOE includes both safe and failure points.

(e) Enrich the DOE. If the stopping condition is not satisfied, the DOE is en-

riched by evaluating H(u◦). Hence NE = NE + 1, and the procedure goes back

to Step 3a to build the new Kriging metamodel.

4. End. If the stopping condition is met, each point of the population is considered

to be classified with a sufficient confidence level. P̃f corresponds to the probability

estimated in Step 3b during the last loop. The coefficient of variation δ is calculated

using Eqn.(2.15). Note that if the coefficient of variation is too large, a new popu-

lation is generated, and the Kriging classification loop (Step 3) continues until the

stopping condition is satisfied again.

2.5.3 Validation

For the purpose of validating AK-MCS, examples which cover a wide variety of limit states

(high non-linearity, moderate number of random variables, non-convex and/or disconnec-
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Generate a population PMCS according to φn

{u(j) = {u(j)
1 , . . . , u

(j)
n }t, j = 1, . . . , NMCS}

Define the initial DOE: NE points ∈ PMCS

NE ≈ 10

Build the Kriging metamodel

Predict outcomes and

assess P̃f using Eqn.(2.14)

Enrich the DOE
with (u◦, H(u◦))

Evaluate the learning function U

and find u
◦ = arg min

u∈PMCS

U(u)

Test the stopping condition on learning†:
U(u◦) ≥ 2

NE = NE + 1

End

yes

no

†The stopping condition is activated, once the DOE includes both safe and failure points.

Figure 2.10: AK-MCS procedure. The light grey rectangle represents the Kriging classi-
fication loop (Step 3).

ted domains of failure) are studied in this section. The reader may refer to Echard et al.

[2009, 2010a,b, 2011a,b] for further applications.

2.5.3.1 Two-dimensional series system with four branches

The first example is a series system with four branches, also studied by Waarts [2000];

Schueremans and Van Gemert [2005]. The performance function reads as follows:

H(U1, U2) = min












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2

;

3 + (U1−U2)2
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2
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
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







(2.57)

where U1 and U2 are standard Gaussian distributed random variables. The problem is

represented in Figure 2.11. In this example, the population to classify into the safe and

failure subsets is composed of NMCS = 106 points. The initial DOE of AK-MCS is defined
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as ten points that are uniformly drawn from the population. The robustness of AK-MCS

is tested by applying the method to 100 different populations.

Figure 2.11: Safe (white) and failure (dark) domains on the example of the series system
with four branches.

The number of performance function evaluations (NE) for the 100 AK-MCS runs is

represented in Figure 2.12. It ranges between 86 and 127, which is significantly less than

the number of points to classify (NMCS). In Table 2.1, the number of points misclassified

by AK-MCS in each of the 100 populations is reported. The classification is found to be

exact in 61 cases, meaning that the AK-MCS estimate of the failure probability is strictly

similar to the Monte Carlo estimate. Among the remaining 39 cases, the largest error, i.e.

3, is negligible in comparison with NMCS. In this example, AK-MCS with a median DOE

of 102 observations is shown to be equivalent to a Monte Carlo Simulation of 106 points

(see Table 2.2 for the median reliability results).

Figure 2.12: Number of performance function evaluations (NE) for 100 runs of AK-MCS
on the example of the series system with four branches.
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Misclassified points Occurrence

0 61

1 27

2 7

3 5

Table 2.1: Number of misclassified points for 100 runs of AK-MCS on the example of the
series system with four branches.

Method NE Pf (×100) δ% (×100)

MCS 106 4.4591 × 10−3 1.525

AK-MCS 102 4.4587 × 10−3 1.527

Table 2.2: Median reliability results of Monte Carlo Simulation and AK-MCS over 100
simulated populations on the example of the series system with four branches.

Figure 2.13(a) depicts an example of a population classified by AK-MCS. Figure 2.13(b)

gives the corresponding DOE. In accordance with the definition of the learning function,

the observations are mainly located in the close vicinity of the actual limit state. It

can also be seen that the accuracy of the predicted limit state, i.e. µH̃(u) = 0, is high

among the points of the population but decreases in areas such as the intersections of

the four branches that are not covered by the random sampling. These intersections

are low probability zones whose impact on the failure probability is negligible. Two-

stage procedures such as EGRA, which construct the Kriging metamodel regardless of

the probability density, would unnecessarily enrich the DOE with numerous points in the

vicinity of these discontinuities. Nevertheless, it is important to note that bounds can be

adjusted in EGRA in order to limit the domain of interest. For instance, [−5; 5] × [−5; 5]

would be sufficient to avoid the consideration of these intersections. Note also that EGRA

has recently been improved to deal with system reliability problems such as this example

[Bichon et al., 2011].

Figure 2.14(a) depicts the evolution of the two estimates of the failure probability,

i.e. the estimate based on the Kriging mean values and the estimate based on the full

probabilistic information held in the Kriging predictions (see Section 2.4.4). Both tend

towards a similar value after 70 evaluations. However, at this iteration, 72 points are

still incorrectly classified by AK-MCS. Figure 2.14(b) depicts the evolution of the learning

function’s minimum value. For this AK-MCS run, the stopping condition is met after

NE = 117 evaluations, and no misclassified points remain. As a conclusion, an extremely

accurate classification is guaranteed with the stopping condition U(u◦) ≥ 2, but the user
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may stop the procedure when the convergence of the two estimates is visually reached, as

long as a less refined result is acceptable.

(a) Classification by AK-MCS. The light grey
dots depict the points having a positive Kriging
mean (safe), the black dots present a negative
Kriging mean (failure).

(b) Final DOE of AK-MCS. The crosses are the
initial DOE, and the dots represent the points
iteratively added to the DOE. The dark line de-
picts the predicted limit state µH̃(u) = 0.

Figure 2.13: Illustration of AK-MCS on the example of the series system with four
branches.

(a) Evolution of the failure probability estimates.
The solid line is the estimate based on the Kri-
ging mean values. The dashed line depicts the
estimate based on the full probabilistic informa-
tion held in the Kriging predictions.

(b) Evolution of the learning function’s min-
imum value, i.e. U(u◦).

Figure 2.14: Evolutions of the failure probability estimates and learning function’s min-
imum value on the example of the series system with four branches.

2.5.3.2 Modified Rastrigin function

The second example is based on the so-called Rastrigin function [Törn and Zilinskas, 1989].

This function is slightly modified to give a non-linear limit state involving non-convex and
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disconnected domains of failure (see Figure 2.15). The performance function reads:

H(U1, U2) = 10 −
2
∑

i=1

(

U2
i − 5 cos (2π Ui)

)

(2.58)

where U1 and U2 are standard Gaussian variables. The population to classify into the safe

and failure subsets is composed of NMCS = 2.5 × 104 points. The initial DOE of AK-MCS

is defined as ten points that are uniformly drawn from the population.

Figure 2.15: Safe (white) and failure (dark) domains on the example of the modified
Rastrigin function example.

The results are given in Table 2.3. 391 evaluations of the performance function are

sufficient to correctly classify the population into the safe and failure subsets (see Figure

2.16(a)). Figure 2.16(b) shows that the points of the DOE are located in the vicinity of

the different frontiers. In Figure 2.17(a), the failure probability estimate based on the

Kriging mean values is progressively improved. Such a behaviour can be related to the

gradual discovery of new failure zones. The two failure probability estimates are also seen

to tend towards a similar value after 360 evaluations of the performance function. At

this iteration, 40 points are still misclassified by AK-MCS. The evolution of the learning

function’s minimum value is given in Figure 2.17(b). As mentioned previously, the user

may stop the procedure when the convergence of the two estimates is visually reached, as

long as a less refined result is acceptable.

Method NE Pf δ%

MCS 2.5 × 104 7.43 × 10−2 2.23

AK-MCS 391 7.43 × 10−2 2.23

Table 2.3: Reliability results on the example of the modified Rastrigin function.
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(a) Classification by AK-MCS. The light grey
dots depict the points having a positive Kriging
mean (safe), the black dots present a negative
Kriging mean (failure).

(b) Final DOE of AK-MCS. The crosses are the
initial DOE and the dots represent the points
iteratively added to the DOE. The dark line de-
picts the predicted limit state µH̃(u) = 0.

Figure 2.16: Illustration of AK-MCS on the example of the modified Rastrigin function.

(a) Evolution of the failure probability estimates.
The solid line is the estimate based on the Kri-
ging mean values. The dashed line depicts the
estimate based on the full probabilistic informa-
tion held in the Kriging predictions.

(b) Evolution of the learning function’s min-
imum value, i.e. U(u◦).

Figure 2.17: Evolutions of the failure probability estimates and learning function’s min-
imum value on the example of the modified Rastrigin function.

2.5.3.3 Maximal deflection of a truss structure

The final example is a truss structure, proposed by Blatman and Sudret [2010], that is

illustrated in Figure 2.18. This application involves a moderate number of independent

random variables that are the Young moduli E1 and E2, the cross-section areas A1 and

A2, and the applied loads Pp for p = 1, . . . , 6. The characteristics of the random variables

are listed in Table 2.4. The response of the truss model is the deflection V1 at midspan.
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Given a threshold Vmax, the performance function reads:

G(E1, E2, A1, A2, Pp) = Vmax − V1 (2.59)

Three thresholds Vmax = {10; 11; 12} (cm) are considered so as to study the influence

of the probability level. One population is generated for each threshold. Their respective

sizes NMCS = {3.5 × 104; 2 × 105; 106} are determined to give an approximately 2.5%

coefficient of variation on the Monte Carlo estimator. The initial DOE of AK-MCS is

defined as ten points uniformly drawn from the population.

Figure 2.18: Truss structure with 23 members.

Variable Distribution Mean Std. dev.

E1, E2(Pa) Lognormal 2.1 × 1011 2.1 × 1010

A1(m2) Lognormal 2.0 × 10−3 2.0 × 10−4

A2(m2) Lognormal 1.0 × 10−3 1.0 × 10−4

P1 − P6(N) Gumbel 5.0 × 104 7.5 × 103

Table 2.4: Random variables for the example of the truss structure.

The reliability results are reported in Table 2.5. For the three thresholds, no points

are misclassified by AK-MCS. Its failure probability estimates are then strictly similar to

Monte Carlo estimates. For a constant δ, the probability level is seen to have a limited

effect on the number of performance function evaluations as NE only varies between 110

and 128.

Figure 2.19(a) depicts, for the threshold Vmax = 10, the failure probability estimates

that are either based on the Kriging mean values or on the full probabilistic information

held in the Kriging predictions. In the previous examples, a large difference between them

is observed in the early iterations. For the truss structure, the estimates are extremely

similar, even before convergence. Stopping the procedure before observing this convergence

may lead to an inaccurate reliability result. To avoid this, the original stopping condition

depicted in Figure 2.19(b) should be preferred.
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Method Vmax NE Pf

10 3.5 × 104 4.33 × 10−2

MCS 11 2 × 105 8.38 × 10−3

12 106 1.53 × 10−3

10 110 4.33 × 10−2

AK-MCS 11 128 8.38 × 10−3

12 124 1.53 × 10−3

Table 2.5: Reliability results for δ ≈ 2.5% on the example of the truss structure.

(a) Evolution of the failure probability estimates.
The solid line is the estimate based on the Kri-
ging mean values. The dashed line depicts the
estimate based on the full probabilistic informa-
tion held in the Kriging predictions.

(b) Evolution of the learning function’s min-
imum value, i.e. U(u◦).

Figure 2.19: Evolutions of the failure probability estimates and learning function’s min-
imum value on the example of the truss structure for the threshold Vmax = 10.

2.5.4 Computational cost of the prediction step

In the previous part, AK-MCS is proven to be parsimonious with respect to the number

of performance function evaluations. The computational cost of the prediction step in

the AK-MCS procedure (Step 3b in Section 2.5.2) is now investigated so as to provide

recommendations on AK-MCS’ range of applications.

Consider the following n-dimensional problem proposed by Rackwitz [2001]:

G(X1, . . . , Xn) =
(

n + 3σ
√

n
)−

n
∑

i=1

Xi (2.60)

where Xi for i = 1, . . . , n are lognormal distributed random variables with mean value

µ = 1, and standard deviation σ = 0.2. The computational cost of the prediction step
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depends on the dimension of space (n), the size of the DOE at the current AK-MCS

iteration (NE), and the size of the population to predict (NMCS). A set of 18 situations

are simulated by combining the following values for the tuning parameters:

• dimension of space: n = {2; 10},

• size of the DOE at the current AK-MCS iteration: NE = {10; 100; 400},

• size of the population to predict: NMCS = {104; 105; 106}.

The 18 simulations are conducted with a Intel Q9550 processor at 2.83 Ghz. Table 2.6

and Table 2.7 report the results in terms of the total CPU time, i.e. the sum of the CPU

time consumed by all of the CPUs utilized by the simulation. On the one hand, the CPU

time is obviously affected in a major way by the number of points in the population NMCS.

On the other hand, NE and n play relatively minor roles, at least in the studied ranges

of variation. According to these results, AK-MCS should be performed with a maximum

of 105 points to ensure a suitable computational cost. Failure probabilities higher than

10−3 can then be assessed with a reasonable coefficient of variation. Finally, note that the

parallel computing of the prediction step is also an easily-implementable solution in order

to reduce the time seen by the user.

NMCS

NE 10 100 400

104 < 1 1 4

105 2 8 38

106 13 82 370

Table 2.6: CPU time in seconds of the Kriging prediction for a dimension of space n = 2
(e.g. for NMCS = 105 and NE = 100, the CPU time is 8 seconds). The simulations are
conducted with a Intel Q9550 processor at 2.83 Ghz.

NMCS

NE 10 100 400

104 < 1 3 13

105 3 25 97

106 33 240 955

Table 2.7: CPU time in seconds of the Kriging prediction for a dimension of space n = 10
(e.g. for NMCS = 105 and NE = 100, the CPU time is 25 seconds). The simulations are
conducted with a Intel Q9550 processor at 2.83 Ghz.
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2.5.5 Conclusion

In this section, an Active learning and Kriging-based Monte Carlo Simulation (AK-MCS)

has been introduced. This ‘guided’ Monte Carlo Simulation is an iterative procedure

where a Kriging metamodel is used to classify a fixed population into the safe and failure

subsets. A learning function is devised to adaptively refine the metamodel. The validation

of the method on a set of examples shows that it provides an accurate classification of

the population while remaining parsimonious with respect to the number of performance

function evaluations (< 400 for the studied cases). In addition, its concept is similar

to crude Monte Carlo Simulations, making it an easily intelligible approach. Its imple-

mentation based on a Kriging toolbox such as DACE is also very accessible. Finally, it

is important to mention that AK-MCS has been successfully applied for the mechanical

and the thermo-chemical reliability assessments of an intensified heat exchanger reactor

[Boniface, 2010]. In Boniface’s PhD thesis, AK-MCS demonstrates the limits of FORM

and Quadratic Responses Surfaces.

2.6 Active learning and Kriging-based alternatives for small

probability cases

In spite of its parsimony regarding the number of performance function evaluations, AK-

MCS cannot be applied to applications involving small failure probabilities (at least not

in a short time). Three extensions of the original algorithm are thus proposed to handle

this case. With AK-MCS, they form the Active learning and Kriging-based Reliability

Methods, or AK-RM family [Gayton and Echard, 2012].

2.6.1 Active learning and Kriging based MCS under monotony

The first extension is proposed in the case of monotonic performance functions. The

Monte Carlo Simulation under monotony, exposed in Section 2.3.2, may be improved

considerably thanks to the Kriging classification loop of AK-MCS. The iterative selection

by the learning function U of new points in the vicinity of the limit state allows a drastic

reduction of the margin between the ensured safe and failure sub-domains. As a Kriging

prediction is necessary only for the few points lying in this margin, the computational

cost of the prediction step is substantially reduced. This extension is called AK-MCSm

(m standing for monotony).

2.6.1.1 Procedure

Let H be a monotonic performance function in the standard space. The ensured safe

and failure sub-domains are respectively denoted by E+ and E−. Figure 2.20 depicts the

procedure which is as follows:
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1. Generate a population PMCS according to φn. The points are denoted by

{u(j) = {u
(j)
1 , . . . , u

(j)
n }t, j = 1, . . . , NMCS}.

2. Perform crude MCSm until NE ≈ 10. MCS under monotony is run as explained

in Section 2.3.2. The number of points in PMCS and lying in the margin between E+

and E− is NR. N+ and N− refer to the number of points in the ensured safe and

failure sub-domains respectively.

3. Perform the Kriging classification loop.

(a) Build the Kriging metamodel. The metamodel is built from the NE ob-

servations. Note that the initial DOE consists of the ≈ 10 points evaluated by

crude MCSm at Step 2.

(b) Predict outcomes and assess P̃f . The Kriging predictions of the NR points

lying in the margin are computed: {µH̃(u(j)), σH̃(u(j)), j = 1, . . . , NR}. The

estimate P̃f of the failure probability reads:

P̃f =
N− +

∑NR

j=1 IF̃
(

u(j)
)

NMCS
(2.61)

where IF̃ (u) is the Kriging mean indicator function.

(c) Evaluate the learning function U and find u◦. The function U is evaluated

at the remaining NR points. The point u◦ leading to the smallest value of U(u)

is easily found.

(d) Test the stopping condition on learning. The condition reads: U(u◦) ≥ 2.

It is activated once the DOE includes both safe and failure points.

(e) Enrich the DOE. If the stopping condition is not satisfied, the DOE is en-

riched by evaluating H(u◦), and NE = NE + 1.

(f) Update NR, N+ and N−. Either E+ or E− is enlarged due to the new

observation H(u◦). The values of NR, N+ and N− are updated. The procedure

goes back to Step 3a to build the new Kriging metamodel.

4. End. If the stopping condition is met, each point of the population is considered

to be classified with a sufficient confidence level. P̃f corresponds to the probability

estimated in Step 3b during the last loop. The coefficient of variation δ is calculated

using Eqn.(2.15). Note that if the coefficient of variation is too large, a new popula-

tion of points lying in the margin between E+ and E− is generated by means of an

accept/reject Monte Carlo sampling. The Kriging classification loop (Step 3) then

continues until the stopping condition is satisfied again.

89



2. Active learning & Kriging-based Reliability Methods

Generate a population PMCS according to φn

{u(j) = {u(j)
1 , . . . , u

(j)
n }t, j = 1, . . . , NMCS}

Perform crude MCSm until NE ≈ 10

NE ≈ 10; N+; N−; NR

Build the Kriging metamodel

Predict outcomes and

assess P̃f using Eqn.(2.62)

Update NR,
N+ and N−

Evaluate the learning function U

and find u
◦ = arg min

u

U(u)
Enrich the DOE
with (u◦, H(u◦))

Test the stopping condition on learning†:
U(u◦) ≥ 2

NE = NE + 1

End

yes

no

†The stopping condition is activated, once the DOE includes both safe and failure points.

Figure 2.20: AK-MCSm procedure. The light grey rectangle represents the Kriging clas-
sification loop (Step 3).

2.6.1.2 Illustration

AK-MCSm is illustrated on an elementary R − S case:

G(R, S) = R − S (2.62)

where R and S are independent random variables. R is Gaussian with mean of 11 and

unit variance. S is uniform in the interval [6; 7.2]. The problem, depicted in Figure 2.21, is

considered in the standard space with the monotonic performance function H(UR, US). An

initial population of 106 points is generated according to φ2. Crude MCSm is performed

until NE = 10, and the Kriging classification loop is run until the stopping condition is

satisfied. Subsequently, 106 new points are simulated using φ2 and among them, only

those lying in the margin between E+ and E− are kept, so as to be also classified with

the Kriging loop. This procedure is repeated until the coefficient of variation of the failure

probability estimator is below ≤ 2.5%. To check its robustness, AK-MCSm is run for 100

different initial populations.
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Figure 2.21: Safe (white) and failure (dark) domains of the elementary R − S case.

The median reliability results are reported in Table 2.8. For this application, AK-

MCSm with a median DOE of 24 observations is equivalent to a Monte Carlo Simulation

of 1.14 × 108 points. Additionally, its computational cost is acceptable, since a median

CPU time of 106 seconds is measured. Note that AK-MCS is inapplicable, due to the

significant size of the population. Figure 2.22 shows the number of points misclassified

by AK-MCSm in each of the 100 populations. 84 cases present less than 4 misclassified

points, and the maximum value, i.e. 18, is negligible in comparison with the 1.14 × 108

points. Figure 2.23 illustrates the final DOE for a given run of AK-MCSm. The Kriging

classification loop is seen to add points mainly in the vicinity of the limit state.

Method NE (×100) Pf (×100) CPU time in s (×100)

MCS 1.14 × 108 1.41 × 10−5 -

AK-MCSm 24 1.41 × 10−5 106

Table 2.8: Median reliability results of Monte Carlo Simulation and AK-MCSm over 100
simulated populations on the elementary R − S case. The targeted coefficient of variation
is δ ≤ 2.5%. The median CPU time is given over 100 runs performed with a Intel Q9550
processor at 2.83 Ghz.

2.6.1.3 Conclusion

AK-MCSm is a simple but efficient extension of AK-MCS for the case of monotonic per-

formance functions. It reduces the computational cost of the prediction step considerably,

and small failure probability cases can thus be handled in a short space of time.
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Figure 2.22: Number of misclassified points for 100 runs of AK-MCSm on the elementary
R − S case.

Figure 2.23: Final DOE of AK-MCSm on the elementary R − S case. The crosses depict
the 10 evaluations made with crude Monte Carlo Simulation under monotony at Step 2.
The dots represent the 14 points added with the Kriging classification loop (Step 3). The
dark line depicts the predicted limit state.

2.6.2 Active learning and Kriging-based Importance Sampling

The application of the Kriging classification loop to a fixed population centred on the

MPFP is also an alternative to assess small failure probabilities. This approach represents

an improvement on the crude Importance Sampling technique with a Kriging metamodel.

It is referred to as AK-IS [Echard et al., 2011c, 2012]. By analogy with Importance

Sampling, AK-IS relies on the assumptions that the MPFP is well isolated and that no

secondary minima exist in other areas of space.
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2.6. Active learning and Kriging-based alternatives for small probability cases

2.6.2.1 Procedure

Let H be the performance function in the standard space. Figure 2.24 depicts the AK-IS

procedure which is as follows:

1. ‘Roughly’ search the MPFP. The HLRF algorithm (or other) is performed in

order to find the MPFP P ⋆. The performance function H is evaluated at NE =

NFORM points. Note that a precise P ⋆ is not required. Performing a few iterations

of HLRF is sufficient to move sufficiently the centre of the population.

2. Generate a population PIS according to ϕn. It is recalled that the sampling

PDF ϕn is the n-dimensional Gaussian distribution centred on the approximated P ⋆

with uncorrelated components and unit variances. The points in the population PIS

are denoted by {ū(j) = {ū
(j)
1 , . . . , ū

(j)
n }t, j = 1, . . . , NIS}.

3. Perform the Kriging classification loop.

(a) Build the Kriging metamodel. The metamodel is built from the NE obser-

vations. Note that the initial DOE consists of the NFORM points evaluated at

Step 1. It may also be uniformly drawn from the population PIS as in AK-MCS.

(b) Predict outcomes and assess P̃f . The Kriging predictions of the NIS points

are computed: {µH̃(ū(j)), σH̃(ū(j)), j = 1, . . . , NIS}. The estimate P̃f of the

failure probability is assessed using Eqn.(2.29) with the Kriging mean indicator

function IF̃ (ū).

(c) Evaluate the learning function U and find ū◦ = arg min
ū∈PIS

U(ū). The

function U is evaluated at the unobserved points of PIS. The point ū◦ ∈ PIS

leading to the smallest value of U(ū) is easily found.

(d) Test the stopping condition on learning. The condition reads: U(ū◦) ≥ 2.

It is activated once the DOE includes both safe and failure points.

(e) Enrich the DOE. If the stopping condition is not satisfied, the DOE is en-

riched by evaluating H(ū◦). Hence NE = NE + 1, and the procedure goes back

to Step 3a to build the new Kriging metamodel.

4. End. If the stopping condition is met, each point of the population is considered

to be classified with a sufficient confidence level. P̃f corresponds to the probability

estimated in Step 3b during the last loop. The coefficient of variation δ is calcu-

lated using Eqn.(2.31). Note that if the coefficient of variation is too large, a new

population is generated according to ϕn and the Kriging classification loop (Step 3)

continues until the stopping condition is satisfied again. At the end of the procedure,

the MPFP can be updated with the failure point which is the closest to the origin

of the standard space according to the Kriging predictions. The importance factors

are then calculated, as exposed in Section 2.3.3.2.
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‘Roughly’ search the MPFP P ⋆

NE = NFORM

Generate a population PIS according to ϕn

{ū(j) = {ū(j)
1 , . . . , ū

(j)
n }t, j = 1, . . . , NIS}

Build the Kriging metamodel

Predict outcomes and

assess P̃f using Eqn.(2.30)

Enrich the DOE
with (ū◦, H(ū◦))

Evaluate the learning function U

and find ū
◦ = arg min

ū∈PIS

U(ū)

Test the stopping condition on learning†:
U(ū◦) ≥ 2

NE = NE + 1

End

yes

no

†The stopping condition is activated, once the DOE includes both safe and failure points.

Figure 2.24: AK-IS procedure. The light grey rectangle represents the Kriging classifica-
tion loop (Step 3).

2.6.2.2 Two-dimensional non-linear performance function

AK-IS is first validated on a two-dimensional non-linear performance function H that

reads:

H(U1, U2) = 0.5(U1 − 2)2 − 1.5(U2 − 5)3 − 3 (2.63)

where U1 and U2 are standard Gaussian distributed random variables. The problem is

depicted in Figure 2.25. The HLRF algorithm is performed in order to find the single

MPFP. The number of HLRF iterations iFORM varies from 3 to 6 in order to observe the

effect of the precision of P ⋆ on the probability assessed by AK-IS. The corresponding P ⋆
3

to P ⋆
6 are illustrated in Figure 2.26. The population to classify into the safe and failure

subsets is composed of NIS = 104 points. The robustness of AK-IS is tested by applying

it to 4 sets of 100 different populations, one set for each iFORM value.

Table 2.9 reports the number of points misclassified by AK-IS. The maximum error is 3

which is negligible in comparison with NIS. Given the small number of misclassified points,

the AK-IS failure probability estimates are very similar to the corresponding Importance
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Figure 2.25: Safe (white) and failure (dark) domains on the example of the two-dimensional
non-linear performance function.

Figure 2.26: Locations of the MPFP P ⋆
iFORM

on the example of the two-dimensional non-
linear performance function.

Sampling estimates. The median reliability results are reported in Table 2.10. For the

different levels of iFORM, NE is seen to be significantly less than NIS. It is also observed, for

this example, that a less precise P ⋆ has a very slight impact on the number of evaluations

[NE−NFORM]. It thus seems suitable to limit the HLRF algorithm to a few iterations. Note

that the small increase in the coefficient of variation δ when the number of HLRF iterations

is reduced may be compensated by a larger population PIS. Finally, it is important to

mention that AK-IS is extremely fast, since the median CPU time of the AK-IS runs is

only 5 seconds with a Intel Q9550 processor at 2.83 Ghz.
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Misclassified points
Occurrence

iFORM = 3 iFORM = 4 iFORM = 5 iFORM = 6

0 96 99 94 94

1 4 1 5 3

2 0 0 1 2

3 0 0 0 1

Table 2.9: Number of points misclassified by AK-IS on the example of the two-dimensional
non-linear performance function. AK-IS is applied to 4 sets of 100 different populations,
one set for each iFORM.

Method iFORM NE
†(×100) Pf (×100) δ% (×100)

FORM 6 19 4.21 × 10−5 -

IS 6 19 + 104 2.86 × 10−5 2.39

AK-IS 6 19 + 7 2.86 × 10−5 2.39

AK-IS 5 16 + 7 2.86 × 10−5 2.39

AK-IS 4 13 + 8 2.88 × 10−5 2.48

AK-IS 3 10 + 8 2.87 × 10−5 2.94
†NE for IS and AK-IS is separated into the number required by FORM + the number for the Kriging

classification loop.

Table 2.10: Median reliability results over 100 runs of AK-IS for each iFORM on the
example of the two-dimensional non-linear performance function.

2.6.2.3 Dynamic response of a non-linear oscillator

The second example deals with a non-linear undamped single degree of freedom oscillator

that is depicted in Figure 2.27 [Rajashekhar and Ellingwood, 1993; Gayton et al., 2003;

Schueremans and Van Gemert, 2005]. The performance function reads:

G(C1, C2, M, R, T1, F1) = 3 R −
∣

∣

∣

∣

∣

2 F1

M ω2
0

sin

(

ω2
0 T1

2

)∣

∣

∣

∣

∣

(2.64)

with ω0 =
√

(C1 + C2) /M . The random variables are listed in Table 2.11. Note that the

distribution of the force F1 has changed in comparison to the previously cited research

papers in order to define a small failure probability, namely one that cannot be assessed

in a short space of time with AK-MCS. A reference failure probability estimate is set as

the median calculated over 100 runs of Monte Carlo Simulation with NMCS = 1.8 × 108

points. AK-IS is applied to 100 populations, each composed of NIS = 104 points.

96



2.6. Active learning and Kriging-based alternatives for small probability cases

M

C1

C2

z(t)

F(t)

F(t)

t

F1

T1

Figure 2.27: Dynamic response of a non-linear oscillator.

Variable Distribution Mean Std. dev.

M Gaussian 1 0.05

C1 Gaussian 1 0.1

C2 Gaussian 0.1 0.01

R Gaussian 0.5 0.05

T1 Gaussian 1 0.2

F1 Gaussian 0.6 0.1

Table 2.11: Random variables on the example of the non-linear oscillator.

The median reliability results are reported in Table 2.12. The methods give relatively

close estimates of the failure probability, but AK-IS confirms the FORM approximation

with only 38 additional evaluations of the performance function. The number of misclas-

sified points for the 100 AK-IS runs are listed in Table 2.13. These errors are clearly not

significant.

Method NE (×100) Pf (×100) δ% (×100)

MCS 1.8 × 108 9.09 × 10−6 2.47

FORM 29 9.76 × 10−6 -

IS 29 + 104† 9.13 × 10−6 2.29

AK-IS 29 + 38† 9.13 × 10−6 2.29
†NE for AK-IS is separated into the number required by FORM + the number for the Kriging classification loop.

Table 2.12: Median reliability results over 100 runs of AK-IS on the example of the non-
linear oscillator.
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Misclassified points Occurrence

0 97

1 3

Table 2.13: Number of misclassified points for 100 runs of AK-IS on the example of the
non-linear oscillator.

2.6.2.4 Conclusion

AK-IS is the extension of AK-MCS to a population centred on the MPFP. The number of

points to predict is considerably reduced in comparison with AK-MCS, and consequently,

small failure probabilities can be assessed in a very short space of time. Nevertheless, AK-

IS is limited to cases where the MPFP is well isolated, and where no secondary minima

exist in other areas of space.

2.6.3 Active learning and Kriging-based Subset Simulation

The last extension implements the Kriging classification loop within a Subset Simulation

(see Section 2.3.4) to reduce the computational cost of the two following steps:

• the evaluation of the performance function at the points in the first population P1.

• the evaluation of the performance function at the simulated candidate states in Step

2 of the modified Metropolis-Hastings algorithm.

In both cases, what matters is the position of the points in comparison with a given

threshold Hk (above or below) and not the performance function value. The Kriging

classification loop is appropriate to provide such information in a parsimonious way. This

extension is called AK-SS, and can be seen as an intermediary approach between the

general AK-MCS and the more specific AK-IS.

2.6.3.1 Procedure

Figure 2.28 depicts the AK-SS procedure. Let H be the performance function in the

standard space. Let a decreasing sequence of sub-domains F̃1 to F̃m be, so that F̃1 ⊃
F̃2 ⊃ . . . ⊃ F̃m = F̃ where F̃k =

{

u ∈ Un : µH̃(u) ≤ µH̃k

}

.

First simulation level, k = 1

The first simulation level in Subset Simulation is a Monte Carlo Simulation. AK-MCS is

thus performed with some modifications to consider the threshold µH̃1
. It goes as follows:

1. Generate a population P1 using φn. The points in P1 are denoted by {u(j) =

{u
(j)
1 , . . . , u

(j)
n }t, j = 1, . . . , N1}.
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Generate a population P1 according φn

{u(j) = {u(j)
1 , . . . , u

(j)
n }t, j = 1, . . . , N1}

Define the initial DOE: NE points ∈ P1

NE , k = 1

Determine the threshold µH̃k

Is µH̃k
≤ 0?

Perform the Kriging classification
loop for µH̃k

until U(u◦) ≥ 2

k = m, µH̃m
= 0 NE , k = k + 1

Perform the Kriging classification
loop for µH̃m

= 0 until U(u◦) ≥ 2

Generate a population of candidates

C̆
(l+1) from the seeds

End
Perform the Kriging classification
loop for µH̃k−1

until U(u◦) ≥ 2

Accept/reject the candidate states:

C
(l+1)

Add the states C
(l+1) to Pk

Update NE Is Nk ≥ Nk−1?

yes

no

yes no

Figure 2.28: AK-SS procedure.

2. Define the initial DOE. The definition of the initial DOE is important as the

threshold µH̃1
will be determined in Step 3 using a metamodel which has not yet

been adaptively refined. A relatively correct representation of the behaviour of the

performance function in the domain covered by P1 is thus beneficial at this early

stage. Latin Hyper-cube Sampling or the design proposed in Step 1 of AK-MCS

procedure (see Section 2.5.2) are possibilities.

3. Determine the threshold µH̃1
.

(a) Build the Kriging metamodel. The metamodel is built from the NE obser-

vations.
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(b) Predict outcomes. The Kriging predictions of the N1 points are computed:

{µH̃(u(j)), σH̃(u(j)), j = 1, . . . , N1}.

(c) Determine µH̃1
. The threshold µH̃1

characterizing the sub-domain F̃1 is de-

termined so that:

P̃1 =
1

N1

N1
∑

j=1

IF̃1

(

u(j)
)

≈ 0.1 (2.65)

where IF̃1
(u) = {1 if µH̃(u) ≤ µH̃1

and 0 otherwise}.

4. Is µH̃1
≤ 0?. The threshold µH̃1

is set to 0 if found negative.

5. Perform the Kriging classification loop.

(a) Build the Kriging metamodel. The metamodel is built from the NE obser-

vations.

(b) Predict outcomes and assess P̃1. The Kriging predictions of the N1 points

are computed: {µH̃(u(j)), σH̃(u(j)), j = 1, . . . , N1}. The estimate P̃1 is then

improved using Eqn.(2.65).

(c) Evaluate the learning function U and find u◦ = arg min
u∈P1

U(u). To con-

sider the threshold µH̃1
, the function U is modified as:

U (u) =
|µH̃1

− µH̃ (u) |
σH̃ (u)

(2.66)

It is evaluated at the [N1 − NE ] unobserved points of P1. The point u◦ leading

to the smallest value of U(u) is easily found.

(d) Test the stopping condition on learning. The condition reads: U(u◦) ≥ 2.

It is activated once the DOE includes points on both sides of µH̃1
.

(e) Enrich the DOE. If the stopping condition is not satisfied, the DOE is en-

riched by evaluating H(u◦). Hence NE = NE + 1, and the procedure goes back

to Step 5a to build the new Kriging metamodel.

6. If the stopping condition is met, each point of the population is considered to be

classified to the threshold µH̃1
with a sufficient confidence level. P̃1 corresponds to

the probability estimated in Step 5b during the last loop. The coefficient of variation

δ1 is calculated using Eqn.(2.34). If µH̃1
= 0, the procedure is finished. Otherwise,

the simulation level is set to k = k +1, i.e. k = 2, and a new population is generated

as explained in the next paragraph.

It is important to note that, following the principle of iSubset (see Section 2.3.4), the

population of the first simulation level may also be derived from Conditional Sampling.
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Generation of the population for the kth simulation level, k = {2, . . . , m}
The modified Metropolis-Hastings algorithm is applied to generate a population Pk fol-

lowing the conditional distribution φn(.|u ∈ F̃k−1). It is recalled that in crude Subset

Simulation, the performance function is evaluated at each simulated candidate state to

know whether it lies in F̃k−1 or not. The Kriging classification loop is applied to avoid

these evaluations. The procedure is as follows:

I. Generate a population of candidate states C̆
(l+1) from the seeds. This is

similar to Step 1 of the modified Metropolis-Hastings algorithm, explained in Section

2.3.4. The population is composed of [P̃1 × Nk−1] candidate states (assuming that

this number is an integer).

II. Perform the Kriging classification loop.

(a) Build the Kriging metamodel. The metamodel is built from the NE obser-

vations.

(b) Predict outcomes. The Kriging predictions of the candidate states are com-

puted.

(c) Evaluate the learning function U and find u◦ = arg min
u∈C̆(l+1)

U(u). The

following function U is considered:

U (u) =
|µH̃k−1

− µH̃ (u) |
σH̃ (u)

(2.67)

The function is evaluated at each of the unobserved candidate states of C̆(l+1) in

order to determine whether they are classified with a sufficient confidence level.

The candidate state u◦ leading to the smallest value of U(u) is easily found.

(d) Test the stopping condition on learning. The condition reads: U(u◦) ≥ 2.

(e) Enrich the DOE. If the stopping condition is not satisfied, the DOE is enriched

by evaluating H(u◦). Hence NE = NE +1, and the procedure goes back to Step

IIa to build the new Kriging metamodel.

III. Accept/reject the candidate states. If the stopping condition is met, each can-

didate state of C̆
(l+1) is considered to be classified to the threshold µH̃k−1

with a

sufficient confidence level. The candidate states are accepted if they lie in F̃k−1,

otherwise they are rejected, i.e. the Markov chains remain in the current state. The

population C
(l+1) of the states is thus obtained.

IV. Add the states C
(l+1) to Pk. The algorithm is then repeated with l = l + 1 until

Nk ≥ Nk−1.
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Calculation of P̃k for simulation levels k = {2, . . . , m}
For a simulation level k > 1, the procedure is slightly different from the first simulation

level. In Step 1, the population Pk is generated with the modified Metropolis-Hastings,

explained above. Step 2 is removed, as the DOE is composed of NE observations that

have already been made in the previous simulation levels. In Step 3c, the threshold µH̃k

characterizing the sub-domain F̃k is determined so that P̃k = 0.1. If found negative, µH̃k

is set to 0. In Step 5, the learning function U becomes:

U (u) =
|µH̃k

− µH̃ (u) |
σH̃ (u)

(2.68)

The last difference is the calculation of the coefficient of variation δk using Eqn.(2.36). The

procedure continues until µH̃k
= µH̃m

= 0. The failure probability is then assessed using

Eqn.(2.37), and the coefficient of variation of the estimate is calculated with Eqn.(2.38).

2.6.3.2 Illustration

AK-SS is illustrated on the example of the parabolic limit state proposed by Der Kiur-

eghian and Dakessian [1998]. The performance function reads:

H(U1, U2) = a − U2 − b(U1 − c)2 (2.69)

where U1 and U2 are standard normal distributed random variables, a = 5, b = 0.2 and

c = 0. Note that the latter parameters differ slightly from the original paper. Parameters

a and b are set to define a small failure probability (≈ 10−5); one that cannot be assessed

in a short space of time with AK-MCS. Parameter c is set to give a symmetric limit

state (see Figure 2.29) and consequently two MPFPs. In such a case, AK-IS leads to a

biased failure probability estimate as only one MPFP is identified. AK-SS is proposed as

a more general approach that can deal with such reliability problems more precisely. A

reference failure probability estimate is defined as the median calculated over 100 runs of

Subset Simulation with an initial population of N1 = 105 points. AK-SS is conducted with

the same initial populations. The Kriging classification loop is also implemented within

iSubset. Its exclusion hyper-sphere presents a radius βe = 3.5.

The median reliability results are reported in Table 2.14. The median failure prob-

ability estimates of the three methods are extremely similar. However, the number of

performance function evaluations is reduced from 5 × 105 to 38 for AK-SS and 27 for

AK-SS+iSubset. The iSubset trick also enables a decrease of the CPU time by 42% in

comparison with AK-SS. Figure 2.30(a) depicts the final DOE for a given run of AK-SS.

The Kriging classification loop is seen to add points mainly in the vicinity of the different

thresholds. The same comment can be made on the DOE of AK-SS+iSubset shown in

Figure 2.30(b).
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Figure 2.29: Parabolic limit state with its symmetric MPFPs P ⋆
1 and P ⋆

2 . The dark area
represents the failure domain.

Method NE (×100) Pf (×100) δ% (×100) CPU time in s (×100)

SS 5 × 105 1.91 × 10−5 3.42 -

AK-SS 38 1.90 × 10−5 3.28 260

AK-SS+iSubset† 27 1.92 × 10−5 3.27 150
†The radius of the hyper-sphere is βe = 3.5.

Table 2.14: Median reliability results over 100 runs of AK-SS and AK-SS+iSubset on
the example of the parabolic limit state. The median CPU time is given for 100 runs
performed with a Intel Q9550 processor at 2.83 Ghz.

(a) Final DOE of an AK-SS run. Five simulation
levels are observed.

(b) Final DOE of an AK-SS+iSubset run.
Three simulation levels are observed (the second
one is extremely close to the limit state).

Figure 2.30: Illustration of AK-SS and AK-SS+iSubset on the example of the parabolic
limit state. The crosses depict the initial DOE. The dots represent the points iteratively
added to the DOE with the Kriging classification loop. The solid line is the limit state.
The dashed lines are the different thresholds H(u) = µH̃k

.
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2.6.3.3 Conclusion

AK-SS corresponds to the implementation of the Kriging classification loop within Subset

Simulation. Unlike AK-IS, AK-SS is not based on any assumption of the limit state’s

shape. Nevertheless, it requires more predictions and performance function evaluations.

The computational cost of AK-SS may be improved by performing the first simulation level

with Conditional Sampling, as in iSubset. Finally, AK-SS can be seen as an intermediary

approach between the general AK-MCS and the more specific AK-IS.

2.7 Conclusion

A family of Kriging-based reliability methods called AK-RM has been presented in this

chapter. These methods represent improvements on various classical sampling techniques

through the addition of an iterative Kriging classification loop. The basic idea is to use the

predictions of the Kriging metamodel in order to classify a fixed population into its safe

and failure subsets, using the least possible number of performance function evaluations. A

specific learning function identifies the evaluations that should be carried out to adaptively

refine the metamodel in the vicinity of the limit state. To a certain extent, the AK-RM

family can be seen as ‘guided’ sampling techniques. Their validations on a set of examples

show that they are accurate classifiers, while remaining parsimonious with respect to the

number of performance function evaluations.

The first method of the AK-RM family (see Figure 2.31) is AK-MCS, which corres-

ponds to the combination of the Kriging classification loop with Monte Carlo Simulation.

Although it is the most general approach, it becomes computationally demanding for fail-

ure probabilities below 10−3. Alternatives are thus introduced to consider such reliability

levels. Given that the performance function of many structures happens to be monotonic

with respect to its random variables, AK-MCSm is suggested to take advantage of this

monotony. AK-IS is another approach that classifies points simulated in the vicinity of

the MPFP. The computational cost is considerably reduced, but the approach relies on

the hypothesis that the weight of the failure probability is well located. Finally, AK-SS

based on Subset Simulation is proposed as an intermediary method between the general

AK-MCS and the more specific AK-IS.

Note that the adaption of the Kriging classification loop to the case of multiple failure

modes (or system reliability) is currently being studied. It is also important to mention

that the principles of AK-RM have recently been applied to the tolerance Inspection of

Large Surfaces (AK-ILS) [Dumas et al., 2012, 2013]. Inspired by the learning function U ,

AK-ILS iteratively identifies the points that should be measured in order to determine

with the least number of measurements the conformity (or non-conformity) of the surface

being inspected.
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AK-MCS

general but limited

to Pf ≥ 10−3

AK-MCSm

for monotonic

performance functions

Reliability analysis

AK-RM

AK-IS

for well isolated

MPFP

AK-SS

trade-off between

AK-MCS and AK-IS

AK-System

for system reliability

problems

Tolerance inspection

AK-ILS

Figure 2.31: AK-RM family and current extensions.
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In industry, structures are designed with large safety margins, so that

failure has a small probability of occurring. Furthermore, performance

functions characterizing structural failure scenarios often depend on re-

sponses of numerical models whose evaluations are time-demanding. As

a consequence, the classical sampling-based reliability methods such as

Monte Carlo Simulation cannot be applied. Following this statement,

metamodelling is proposed in this chapter as a means to conduct struc-

tural reliability analyses in a more practical amount of time. Metamod-

els are fast-to-evaluate approximations of the performance function.

They require a Design Of numerical Experiments (DOE), i.e. a set of

points where the values of the computationally demanding performance

function are known. The selection of the DOE is of high importance,

as it must contain a sufficient number of points to build an accurate

metamodel, but must also keep this number to a minimum so as to re-

main practical in a short space of time. In this chapter, the Kriging

metamodel is selected because it presents two crucial features. First,

it interpolates the points in the DOE. Second, it provides a measure of

the prediction uncertainty (the Kriging variance). The latter feature

enables the use of Kriging in an active learning scheme which is an it-

erative enrichment of the DOE with well selected points. Within the

frame of structural reliability analysis, the best points to select are loc-

ated in the vicinity of the limit state. A learning function named U and

based on the Kriging variance is specifically proposed in this chapter to

identify these points. Finally, this learning function is employed within

four Active learning and Kriging-based Reliability Methods (AK-RM)

to deal with problems involving computationally demanding models and

small failure probabilities. The validation of these methods on a set of

examples shows that they provide accurate failure probability estimates

while remaining parsimonious with respect to the number of perform-

ance function evaluations.

Chapter summary
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3. Application to the case studies of the APPRoFi project

3.1 Introduction

This chapter is devoted to the application of the probabilistic approach exposed in Chapter

1 to two case studies submitted by SNECMA within the frame of the APPRoFi project.

These case studies involve computationally demanding numerical model and small failure

probabilities. To enable a prompt reliability assessment, the global methodology developed

in the APPRoFi project is applied. The probabilistic approach explained in Chapter

1 forms the backbone of this methodology. The computational cost of the structural

reliability analysis is then reduced in two ways. First, the CPU time of the numerical model

evaluation is optimized by LMT-ENS Cachan. The LATIN method [Ladevèze, 1999] is

used in order to diminish the time spent for a single model evaluation. A multiparametric

strategy [Boucard and Champaney, 2003] is also applied in order to decrease the time

demand of succeeding computations. For further details on these two numerical methods,

the reader may refer to Relun [2011] whose thesis also contributes to the APPRoFi project.

Second, Kriging-based reliability methods presented in Chapter 2 are applied to determine

the failure probability and the influent parameters on structural reliability with a limited

number of numerical model evaluations.

Note that, for confidentiality reasons, axis graduations are not displayed

and no order of magnitude of the failure probability is mentioned.

3.2 Bolted joint in an aircraft engine

The first case study is proposed by SNECMA’s aviation branch. It deals with a bolted

joint of blisks (also known as bladed disks and integrally bladed rotors) located in a jet

engine. One of these blisks undergoes high stresses in the vicinity of an oil evacuation hole.

The aim of the study is to determine the probability of crack initiation at this geometric

discontinuity due to fatigue loads. Figure 3.1 depicts the flowchart of the probabilistic

approach for this case study. The different steps of this flowchart are discussed below.

3.2.1 Fatigue behaviour

Probabilistic S −N curves are implemented in this thesis to model the dispersion observed

in a data set of 361 purely tensile (R = 0) fatigue tests provided by SNECMA. The

deterministic model of the S − N curves is selected as a ‘double’ Basquin’s relation, where

the change of slope is set to an arbitrary number of cycles NC . The deterministic model

is expressed as the median range ∆σ50%:

∆σ50% =

{

Bi N bi for N ≤ NC

Bs N bs for N > NC

(3.1)
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3.2. Bolted joint in an aircraft engine
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Figure 3.1: Probabilistic approach for the bolted joint case study.
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3. Application to the case studies of the APPRoFi project

The parameters of the three probabilistic S − N curve models discussed in Section 1.3.5

are inferred according to the data set. ESOPE, ESOPE 2 and Guédé’s model are depicted

in Figure 3.2. Relatively different behaviours are observed for these three S − N curve

models. The impact of modelling on the strength value for three numbers of cycles to

failure N1, N2 and N3 is quantified in Table 3.1. The median curves are seen to be rather

similar (particularly ESOPE 2 and Guédé’s model), but the isoprobability curves at 2.5%

and 97.5% present significant differences. Model selection is done using AIC, BIC and

the p-values of Kolmogorov-Smirnov tests. Table 3.2 reports the values of these criteria.

ESOPE 2 is selected in the frame of this study, due to the fact that it presents the smallest

AIC and BIC values and that there is not enough evidence to reject its initial hypothesis

at a sensible level (5%). As mentioned in Section 1.3.5, all the isoprobability S −N curves

of ESOPE 2 feature the same Basquin’s slopes bi and bs, i.e. bi(Uf ) = bi, and bs(Uf ) = bs

(Uf is recalled to denote the random isoprobability S − N curve).

(a) ESOPE. (b) ESOPE 2.

(c) Guédé’s model.

Figure 3.2: Fitting of ESOPE, ESOPE 2 and Guédé’s models to the fatigue tests for the
bolted joint case study. The solid line represents the median trend. The dashed lines are
the isoprobability S − N curves defined at 2.5% and 97.5%.
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3.2. Bolted joint in an aircraft engine

Model
N1 N2 = NC N3

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

ESOPE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ESOPE 2 0.96 1.01 1.05 0.98 0.97 0.96 1.06 1.00 0.95

Guédé 0.87 1.01 1.12 1.03 0.97 1.08 1.08 1.00 0.93

Table 3.1: Impact of the S −N curve model on the strength value for the bolted joint case
study. The results for different lives N1, N2 and N3 (see Figure 3.2) are normalized to
the strength value found using ESOPE. The percentages (2.5%, 50%, 97.5%) refer to the
isoprobability curves.

Model AIC BIC p-value

ESOPE 9103 9119 5 × 10−4

ESOPE 2 8980 8996 0.09

Guédé 9011 9027 0.13

Table 3.2: Measures of the relative goodness of fit of the probabilistic S − N curve models
for the bolted joint case study.

3.2.2 Load modelling

The bolted joint of blisks is subjected to various loadings including preloads and centri-

fugal, radial and axial loads of the blades. Deterministic sensitivity studies conducted by

LMT-ENS Cachan prove that the centrifugal load is the main source of fatigue damage

and that the variations of the other loads have no significant impact on the structural

response. The latter loads are thus set as deterministic, and only the uncertainty of the

centrifugal load is considered in this study.

The centrifugal load is derived from the rotational speed Ω which is associated with

the thrust that must be generated in order to make the aircraft move. Given that the

greatest thrust is observed at takeoff, the fatigue load is defined as a sequence of Neq

cycles (0, Ωi,max) where Neq is the number of flights performed by the engine during its

design life and Ωi,max the maximum rotational speed observed at the ith takeoff (see Fig-

ure 3.3). The load sequence presents variable ranges which are in fact due to the climatic

fluctuations of temperature at takeoff†. In this study, the load sequence is assumed to be

a mix of five missions {A, B, C, D, E} characterized by maximum rotational speeds Ω =

{ΩA
max, ΩB

max, ΩC
max, ΩD

max, ΩE
max}t at takeoff and temperatures T = {T A, T B, T C, T D, T E}t.

†The thrust generated by the jet engine is inversely proportional with ambient temperature. The

rotational speed required for reaching takeoff thrust is then linked to temperature in the following way:

the higher temperature, the higher the rotational speed.
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3. Application to the case studies of the APPRoFi project

Table 3.3 reports the characteristics of these missions. To consider the uncertainties of

the centrifugal load, the percentages of occurrence {pA, pB, pC, pD, pE} of the missions are

random variables. No load data are provided to determine the scatter of these percent-

ages, but according to SNECMA flight experts, an aircraft mostly takes off from a given

base and is consequently subjected to rather similar temperatures at takeoff through-

out its design life. Following this statement, the bolted joint of blisks is exposed to a

dominant mission (or rotational speed), and secondary missions are less and less fre-

quent as their corresponding temperatures at takeoff are further from the temperature

of the dominant mission. For a given aircraft, the temperature at takeoff can be mod-

elled by a squared exponential function. This function is considered as being a Gaussian

PDF fT (t) (see Figure 3.4). Given a mean µT and a standard deviation σT , the values

{fT (T A), fT (T B), fT (T C), fT (T D), fT (T E)} of the Gaussian PDF can be calculated, and

each percentage of occurrence pm for m = A, . . . , E can be defined as:

pm =
fT (T m)

∑E
i=A fT (T i)

(3.2)

Following Eqn.(3.2), the percentages are fully characterized by the PDF’s parameters µT

and σT . Setting these parameters as random variables thus enables random percentages

to be defined. In agreement with SNECMA engineers, the mean µT (ω) is considered as

a uniform random variable on the interval [min (T) − 5; max (T) + 5], and the standard

deviation σT (ω) as a Gaussian variable of mean 16 and variance 4.

Figure 3.3: Sequence of cycles in maximum rotational speed Ω at takeoff.

By drawing a realization {µT, σT }, a sequence of Neq rotational speed cycles is gen-

erated. This sequence is composed of Neq × pm(µT, σT ) cycles (0, Ωm
max) for each m =

A, . . . , E. Using the deterministic Basquin’s slopes bi and bs, the virtual sequence is trans-

formed into an EF cycle (0, Ωeq,max(µT, σT , bi, bs, Neq)) repeated Neq times.
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3.2. Bolted joint in an aircraft engine

Mission A B C D E

Ωmax 1.028 1.012 1.000 0.990 0.975

T 33.1 14.4 0 -11.2 -28.7

Table 3.3: Missions characterized by their maximum rotational speeds Ωmax and temper-
atures T at takeoff. The rotational speeds are normalized to ΩC

max. The temperature is
given as the difference with T C.

Figure 3.4: Gaussian distribution of the temperature at takeoff for a given aircraft. The
distribution is characterized by a mean µT and a standard deviation σT . The values
{fT (T A), fT (T B), fT (T C), fT (T D), fT (T E)} are used to define the percentages of occur-
rence following Eqn.(3.2).

3.2.3 Numerical model

In a preliminary sensitivity analysis by LMT-ENS Cachan, the material properties and

geometry of the numerical model are proven to have no significant impact on the struc-

tural response, thus they are considered as deterministic parameters respectively denoted

by {xm, xg}. The EF cycle (0, Ωeq,max(µT, σT , bi, bs, Neq)) is applied to the numerical

model. The output of interest is the cycle of the maximum principal stress (σI,min, σI,max)

interpreted as a cycle being undergone Neq times by the bolted joint of blisks. This

cycle features a maximum value σI,max(xm, xg, µT , σT , bi, bs, Neq) which is reached when

Ωeq,max(µT, σT , bi, bs, Neq) is applied, and a minimum value σI,min(xm, xg) for a rotational

speed of zero. Given that deterministic preloads are also applied to the numerical model,

σI,min(xm, xg) differs from 0 when the engine is not in operation. Therefore, the stress

cycle is not purely tensile (R ≈ −0.05), and a mean correction is necessary to enable

fatigue calculation. To convert the stress cycle into its purely tensile equivalent, a model

of the Haigh diagram is to be assumed and the tensile strength of the material must be

known. In agreement with SNECMA engineers, the mean correction is not performed.
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3. Application to the case studies of the APPRoFi project

Hence, σI,min(xm, xg) is said to be 0, and the range ∆σI(xm, xg, µT , σT , bi, bs, Neq) thus

corresponds to σI,max(xm, xg, µT , σT , bi, bs, Neq).

Numerical model evaluations by LMT-ENS Cachan show that a linear relation can be

assumed between σI,max(xm, xg, µT , σT , bi, bs, Neq) (≡ ∆σI(xm, xg, µT , σT , bi, bs, Neq)) and

Ωeq,max(µT , σT , bi, bs, Neq) in the interval [ΩE
max; ΩA

max] (see Figure 3.5). Given that the

geometry and the material properties are deterministic, the relation remains the same for

any realization of the random variables. The numerical model is therefore replaced with

an analytical expression whose computational cost is free.

Figure 3.5: Numerical model evaluations (white dots) by LMT-ENS Cachan showing that
a linear relation exist between σI,max and Ωeq,max in the interval [ΩE

max; ΩA
max] (black dots).

3.2.4 Reliability assessment

Table 3.4 recapitulates the random variables of the reliability problem. The performance

function G compares the range ∆σI(xm, xg, µT , σT , bi, bs, Neq) with the drawn strength

range ∆r(uf , Neq) at Neq cycles. AK-IS and AK-SS are implemented to pilot structural

reliability analyses. Given that the model is replaced with an analytical expression, Im-

portance Sampling and Subset Simulation are also applied to confirm results.

Random variable Denomination Distribution Parameters

µT (ω) Mean of fT (T ) Uniform [min (T) − 5; max (T) + 5]

σT (ω) Std. dev. of fT (T ) Gaussian µσT
= 16; σσT

= 2

Uf Isoprob. S − N curve Gaussian µUf
= 0; σUf

= 1

Table 3.4: Random variables of the bolted joint case study.
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3.3. Blade support case study

3.2.5 Results

The reliability results are reported in Table 3.5. A population of 1.2 × 104 points centred

on the approximated MPFP is classified using AK-IS and Importance Sampling. Similar

probabilities are obtained, but AK-IS requires only 54 evaluations of the performance

function. AK-SS and SS are performed to verify whether the MPFP is well isolated. For

computational reasons, AK-SS is performed with an initial population of 2 × 104 points,

whereas SS is performed with a significantly larger initial population. The results prove

that the MPFP is indeed isolated.

Method NE P norm
f δ

FORM 9 1.00 -

IS 1.2 × 104 0.66 2.41%

SS 3.5 × 106 0.65 2.10%

AK-IS 54 0.66 2.41%

AK-SS 451 0.66 10.56%

Table 3.5: Reliability results for the case study of the bolted joint. The failure probabilities
are normalized to the FORM approximation.

The elasticities of the Hasofer-Lind reliability index with respect to the standard de-

viations of µT (ω), σT (ω) and Uf are reported in Table 3.6. For this case study, the S − N

curve model is the most influent parameter on structural reliability.

Load Fatigue

EσµT
EσσT

EσUf

−3.4 × 10−2 −3.7 × 10−4 −0.973

Table 3.6: Elasticities of the Hasofer-Lind reliability index with respect to the standard
deviations of µT (ω), σT (ω) and Uf for the case study of the bolted joint.

3.3 Blade support case study

The blade support case study (see Figure 3.6) is an aerospace application which has already

been considered in the DEFFI project [Bignonnet and Lieurade, 2007; Bignonnet et al.,

2009; Ferlin et al., 2009; Lefebvre et al., 2009]. During its design life, the blade support is

shear-loaded by random fatigue displacements in its transverse direction. The aim of the

study is to determine the probability of crack initiation due to these fatigue loads. Figure
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3. Application to the case studies of the APPRoFi project

3.7 depicts the flowchart of the probabilistic approach for this case study. The different

step of this flowchart are discussed below.

Figure 3.6: Blade support case study. The displacement is applied to the white surface.
Its direction is represented by the arrow. The chequered area is fixed (no displacement
allowed in any direction).

3.3.1 Fatigue behaviour

A data set of 80 fatigue tests conducted with fully reversed cycles is provided by SNECMA.

The S − N curves are plotted as the Smith-Watson-Topper (SWT) strength (Smith et al.,

1970, see Section 3.3.5 for its definition) in terms of the number of cycles to failure. The

deterministic model of the S − N curves is selected as the Basquin’s relation. ESOPE,

ESOPE 2 and Guédé’s model are depicted in Figure 3.8. The impact of the model on

the SWT strength value for three numbers of cycles is quantified in Table 3.7. The three

models are extremely similar for the median curve and short lives (N1). For higher numbers

of cycles, the differences increase dramatically. AIC, BIC and the p-values of Kolmogorov-

Smirnov tests are reported in Table 3.8. ESOPE 2 is selected for its AIC and BIC values.

Additionally, the p-values of the three models are relatively high, meaning that there is

not enough evidence to reject their initial hypotheses. As mentioned in Section 1.3.5, all

the isoprobability S − N curves of ESOPE 2 feature the same Basquin’s slope b(Uf ) = b.

116



3.3. Blade support case study
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Figure 3.7: Probabilistic approach for the blade support case study.

N1 N2 = Neq N3

Model 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

ESOPE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ESOPE 2 0.99 1.01 1.02 1.19 1.01 0.92 1.73 1.02 0.80

Guédé 0.99 1.01 1.01 1.08 1.00 0.96 1.44 0.99 0.87

Table 3.7: Impact of the S − N curve model on the SWT strength value for the blade
support case study. The results for different lives N1, N2 and N3 (see Figure 3.8) are
normalized to the strength value found using ESOPE. The percentages (2.5%, 50%, 97.5%)
refer to the isoprobability curves.
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3. Application to the case studies of the APPRoFi project

(a) ESOPE. (b) ESOPE 2.

(c) Guédé’s model.

Figure 3.8: Fitting of ESOPE, ESOPE 2 and Guédé’s models to the fatigue tests for the
blade support case study. The solid line represents the median trend. The dashed lines
are the isoprobability S − N curves defined at 2.5% and 97.5%.

Model AIC BIC p-value

ESOPE 1402 1409 0.67

ESOPE 2 1380 1387 0.41

Guédé 1389 1396 0.41

Table 3.8: Measures of the relative goodness of fit of the probabilistic S − N curve models
for the blade support case study.

3.3.2 Material properties

The elastic-plastic behaviour of the material is characterized by the law of Chaboche

[1989]:

σ = Ry +
C1

C2
tanh (C2 ǫp) (3.3)
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3.3. Blade support case study

where the yield strength Ry and the hardening parameters C1 and C2 are random variables,

and where the plastic strain amplitude ǫp is obtained through the numerical model eval-

uation (see Section 3.3.4). Prior distributions of Ry, C1 and C2 and stabilized hysteresis

loops at different strain levels are provided. For each of these loops, relevant information

is extracted using the method described in [Lemaitre et al., 2009, Chapter 6]. Bayesian

inference is then used by Phimeca to establish the statistical distribution followed by Ry.

The prior distributions followed by C1 and C2 are also updated by Phimeca using Bayesian

techniques [Perrin, 2008]. The material properties are assumed to be lognormal variables,

and a strong correlation is set between C1 and C2. A realization of the random material

properties is denoted by {ry, c1, c2}.

3.3.3 Load modelling

Nine displacement histories d(t) (see Figure 3.9(a)) representing entire life spans of the

structure are available to quantify the uncertainty of the in-service loads. In addition to

the displacement, the course of the carrier rocket is characterized by its speed V , incidence

angle I and yaw angle Y (see Figure 3.9(b)). In this section, the modelling implemented

in the DEFFI project is first discussed. The alternative selected within the frame of

the APPRoFi project is then explained. Note that the load modelling is also discussed

in Appendix C with a parametric method following Nagode’s mixture models (Section

1.3.4.2). Developed after the APPRoFi project, this alternative was not applied to assess

structural reliability.

(a) Displacement. (b) Speed, incidence angle and yaw angle of the
carrier rocket.

Figure 3.9: Available histories.
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3.3.3.1 Load mix strategy in the DEFFI project

In agreement with SNECMA engineers, the displacement is assumed to depend strictly on

the quantities V , I and Y . Such an assumption enables the load mix strategy presented

in Section 1.3.4.1 to be applied. It is recalled that this strategy is grounded upon the

definition of elementary life situations whose percentages of occurrence are random. To

characterize these elementary situations, each of the quantities V , I and Y is divided into

three arbitrary classes (or intervals) as illustrated in Figure 3.10. The classes are V1, V2,

V3 for speed, I1, I2, I3 for the incidence angle, and Y1, Y2, Y3 for the yaw angle. Such

a division creates 27 elementary life situations, each one being denoted by (Vv, Ii, Yy) for

v = 1, 2, 3, i = 1, 2, 3 and y = 1, 2, 3. The nine displacement histories are decomposed into

these 27 situations, and the Rainflow-counting method is processed to obtain Rainflow

matrices. A total of 198 matrices is extracted using this method.

Figure 3.10: Definition of the different classes in speed, incidence angle and yaw angle.

For each class, nine values of the ratio of time spent in this class to the structure’s life

span can be calculated according to the displacement histories. The scatter of these nine

values are modelled by a random percentage of occurrence. In the DEFFI project, the

percentages of the classes I1, I2, Y1 and Y2 are assumed to be uniform random variables,

and the percentages of I3 and Y3 are defined as the corresponding rests (to get 100%). The

percentages of V1, V2 and V3 are deterministic given that their scatters are not significant

(see Figure 3.10).

A Rainflow matrix representing a virtual life of the structure is generated by selecting

a realization of the percentages and a Rainflow matrix for each elementary life situation.
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Up to 31 random variables are thus involved in the generation of such a virtual life: four

random percentages and up to 27 discrete variables for selecting the different Rainflow

matrices. This number of random variables represents a significant effort in structural

reliability analysis, and the consideration of discrete variables is also difficult in metamod-

elling. For these reasons, a different model is implemented in the APPRoFi project.

3.3.3.2 Severity coefficient-based model

The model implemented in the APPRoFi project focuses strictly on displacement. The

cycles of each displacement history are extracted using the Rainflow-counting method

(see Figure 3.11), and a mean correction is applied in order to convert each cycle into

its fully reversed equivalent†. As a result, the ith recording (for i = 1, . . . , 9) can now be

represented as a vector d′(i) containing the symmetric alternating displacement amplitudes

of its different fully reversed cycles. The vectors {d′(i), i = 1, . . . , 9} are depicted by their

empirical CDFs in Figure 3.12. They present relatively smooth shapes. The empirical

mean ml of the symmetric alternating displacement amplitude at a probability level l (l

varying between 0 and 1) can be calculated as:

ml =
1

9

9
∑

i=1

d
′(i)
l (3.4)

where d
′(i)
l refers to the symmetric alternating displacement amplitude of the ith vector

having a probability level equal to l (see Figure 3.12). The unbiased estimate s∗
l of the

standard deviation reads:

s∗
l =

1

8

9
∑

i=1

(

d
′(i)
l − ml

)2
(3.5)

Following this, the scatter of the symmetric alternating amplitude d′
l(ω) at a probability

level l (see Figure 3.13) is assumed to be modelled by:

d′
l(ω) = ml + CS(ω) s∗

l (3.6)

where CS = CS(ω) is a standard Gaussian random variable called severity coefficient. The

random variables d′
k(ω), d′

l(ω), . . . , at different probability levels are assumed to be per-

fectly correlated, thus a single realization cs of CS enables an entire CDF of the symmetric

alternating amplitude to be constructed, as shown in Figure 3.13.

A virtual life d′(cs) = {d′
0(cs), . . . , d′

l(cs), . . . , d′
1(cs)} is generated by discretizing the

CDF into Nf regularly-distributed probability levels. Given that the numbers of cycles

observed in the nine recordings is very similar, Nf is considered as deterministic. Using

†Note that Figure 3.11 which depicts the extracted cycles in an isometric plot shows that the mean

values of the cycles could have also been simply neglected.
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Figure 3.11: Extracted cycles of the nine displacement histories depicted in an isometric
plot of the mean dm and amplitude da.

the Basquin’s slope b of the S − N curve, the virtual life is finally summarized into an EF

cycle (fully reversed) repeated Neq times, and characterized by an amplitude deq(cs, b, Neq).

Figure 3.14 depicts an empirical distribution of the EF amplitude deq(cs, b, Neq) obtained

with the severity coefficient-based modelling. The distribution is more spread out than

the observed values.

Figure 3.12: Empirical CDFs of the vectors {d′(i), i = 1, . . . , 9}. At a probability level l, ml

and s∗
l are calculated using the symmetric alternating displacement amplitudes {d

′(i)
l , i =

1, . . . , 9}.
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3.3. Blade support case study

Figure 3.13: CDF of the symmetric alternating amplitude for two values of the severity
coefficient. The dashed line depicts the mean CDF obtained for cs = 0. The solid line
represents the CDF defined by cs = 2.

Figure 3.14: Empirical distribution of 1, 000 EF amplitudes deq at Neq cycles. The black
dots represent the EF amplitudes summarizing the nine displacement histories.

3.3.4 Numerical model

The EF cycle is applied to the numerical model simulating the elastic-plastic mechanical

behaviour of the blade support. The numerical model is characterized by a realization

{ry, c1, c2} of the material properties and a geometry xg, which is considered as determin-

istic given that a preliminary sensitivity analysis has proven that its influence on structural

response is minor. The outputs of the numerical model are the elastic strain amplitude

ǫe(ry, c1, c2, xg, cs, b, Neq), the plastic strain amplitude ǫp(ry, c1, c2, xg, cs, b, Neq) and the

maximum stress σmax(ry, c1, c2, xg, cs, b, Neq).
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3. Application to the case studies of the APPRoFi project

LMT’s multiparametric strategy and LATIN method [Relun, 2011] are employed to

reduce the CPU time of numerical model evaluations. For a single evaluation, the LATIN

solver appears to be competitive with the commercial code Abaqus [Relun, 2011]: the CPU

time using the LATIN method takes 800 seconds when considering a 141, 450 degrees of

freedom mesh and 48 time steps to solve the elastic-plastic problem, whereas Abaqus takes

1, 200 seconds (both computations are performed with a Intel Xeon W5650 processor at

2.6 Ghz - 6 cores). For succeeding numerical model evaluations, LMT’s multiparametric

strategy is seen to reduce the CPU time down to 40 seconds for small variations of the

material parameters.

A remote procedure call (see Figure 3.15) is set by Relun [2011] to enable communica-

tion between the probabilistic approach implemented by LaMI in Clermont-Ferrand, and

the efficient numerical model of LMT in Cachan. The AK-IS reliability method, imple-

mented for this case study, identifies the realization of the random variables, which, at the

current process stage, is relevant to compute. The realization is then automatically sent

to LMT’s numerical model, which, after evaluation, sends the values ǫe, ǫp, and σmax back

for fatigue calculation. No user intervention is required throughout the entire reliability

assessment.

Figure 3.15: Remote procedure call between LaMI’s methodology and LMT’s numerical
model.

3.3.5 Reliability assessment

Table 3.9 recapitulates the random variables of the reliability problem. For a given

realization of these random variables, the Smith-Watson-Topper (SWT) stress σSWT =

σSWT(ry, c1, c2, cs, b, Neq) on the stabilized cycle is calculated using the different outputs

of the numerical model:

σSWT =
√

E σmax (ǫp + ǫe) (3.7)

where E is the Young’s modulus. The performance function G compares the realization

of the SWT stress with the selected SWT strength rSWT(uf , Neq) at Neq cycles. As

mentioned previously, AK-IS is implemented to pilot the structural reliability analysis.
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3.3. Blade support case study

Random variable Denomination Distribution

Ry Yield strength Lognormal

C1 Hardening parameter 1 Lognormal

C2 Hardening parameter 2 Lognormal

CS Severity coefficient Gaussian

Uf Isoprob. S − N curve Gaussian

Table 3.9: Random variables of the blade support case study.

3.3.6 Results

Table 3.10 reports the reliability results. FORM approximation requires 19 evaluations

of the performance function. Note that the finite difference approximation of the gradi-

ent does not require a new call to the numerical model for the component Uf , since

the calculation of the EF load does not depend on Uf . Hence, only 16 evaluations are

time-demanding. The Kriging procedure in AK-IS requires 11 additional computations

to classify a population of NIS = 104 points simulated in the vicinity of the approxim-

ated MPFP. The limit state seems to be linear as the failure probabilities obtained by

FORM and AK-IS are extremely similar. Within the frame of this case study, the Kriging

classification procedure validates the FORM approximation with only a few additional

evaluations.

Method NE P norm
f δ

FORM 16 1 -

AK-IS 27 1.01 2.5%

Table 3.10: Reliability results for the blade support case study. The failure probabilities
are normalized to the FORM approximation.

The computational gain of AK-IS compared to crude IS is about 370 (10, 016/27).

Performing crude IS with the numerical model from Abaqus would require 139 days.

With AK-IS, the CPU time would drop to 9 hours (27 × 1, 200 seconds). Note that the

prediction step of AK-IS takes less than 3 seconds which is negligible in comparison with

the numerical model evaluation. Finally, by combining AK-IS with LMT’s methods, the

failure probability is assessed in 2.25 hours, given that the computational gain of the

LATIN + multiparametric strategy is 4 for this application. This case study proves that

combining parsimonious reliability methods with numerical strategies that reduce the CPU

time of succeeding model evaluations is of interest.

AK-IS enables the calculation of the direction cosines {αi, i = Ry, C1, C2, CS , Uf } of
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3. Application to the case studies of the APPRoFi project

the vector P ⋆O. The values are reported in Table 3.11. The severity coefficient CS and

the S − N curve model are the most influent parameters on structural reliability. The

minor impact of the material random variables is due to the fact that the global structure

remains in the elastic domain.

Material Load Fatigue

−α2
Ry

−α2
C1

−α2
C2

−α2
CS

−α2
Uf

−2.5 × 10−5 −1.6 × 10−5 −0.4 × 10−5 −0.270 −0.729

Table 3.11: Sensitivities −α2
i of the different random variables for the blade support case

study.

3.4 Conclusion

In this chapter, the probabilistic approach outlined in Chapter 1 and the parsimonious

reliability methods of the AK-RM family introduced in Chapter 2 have successfully been

coupled to handle the two case studies submitted by SNECMA within the frame of the

APPRoFi project. The methodology has been completed with LMT’s numerical methods

with the aim of reducing the CPU time of succeeding model evaluations. For the blade

support case study, prompt reliability assessment has been proven possible despite time-

demanding model evaluations and small failure probability. Additionally, it has been

shown for these case studies that structural reliability in fatigue is mainly affected by the

load and the S − N curve, thus attention should be turned to their modellings and the

definition of tools for model selection.
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Conclusion and future work

Conclusion

Fatigue in structural design is currently considered with deterministic approaches groun-

ded on the use of so-called safety factors. Although these deterministic approaches give

mostly satisfactory solutions, they often lead to over-design and are not sufficient to

provide the designer with the safety margin and the most influent design parameters on

structural reliability. To acquire this additional information, probabilistic approaches are

a possible alternative. The research as presented in this document represents a part of the

global probabilistic methodology developed in the ANR-funded project called APPRoFi,

and which aims at assessing the reliability of already designed structures within a short

space of time.

The first contribution of this research work is the definition of a general probabilistic

approach for fatigue analysis (Chapter 1). The proposed approach is an improvement on

the probabilistic Stress-stRength method [Thomas et al., 1999] which represents a prac-

tical engineering tool for assessing structural reliability in the context of fatigue. The main

limit of this method is the sensitivity of the failure probability estimate to the necessary

assumptions made on the distributions followed by the Stress and the stRength. Further-

more, the influences of random variables on structural reliability cannot be assessed since

these variables are carried either by the Stress or the stRength distribution. The proposed

approach overcomes these limits by keeping the different random variables separate from

each other. The advantages of this approach over the probabilistic Stress-stRength method

are demonstrated through an academic example. The approach is proven to enable the

assessment of a more accurate failure probability estimate, as well as a determination of

the random variables’ influences on structural reliability.

In the proposed approach, the failure probability can be assessed using sampling-based

reliability methods, but these are inapplicable in the case of a computationally demanding

numerical model since they require a substantial number of model evaluations. This thesis

thus proposes a family of reliability methods (Chapter 2) that are more parsimonious with

respect to the number of model evaluations. These methods named AK-RM (Active learn-

ing and Kriging-based Reliability Methods) represent improvements on various classical

sampling techniques through the use of a Kriging metamodel. They are based on a Kriging
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3. Application to the case studies of the APPRoFi project

classification loop that iteratively identifies the model evaluation which should be carried

out to enhance the classification of a given population into its safe and failure subsets. The

first proposed reliability method is called AK-MCS and corresponds to the combination of

the Kriging classification loop with Monte Carlo Simulation. It is applicable to structural

reliability problems involving high non-linearity and disconnected domains of failure, but

the computational cost of its prediction step is observed to dramatically increase for fail-

ure probabilities below 10−3. Alternatives are thus proposed to consider smaller failure

probabilities. AK-MCSm is first suggested to take advantage of the possible monotony of

the performance function with respect to its random input variables. AK-IS is a second

alternative that consists in classifying a population simulated in the vicinity of the most

probable failure point. The computational cost of the Kriging procedure is greatly reduced,

but the approach relies on the hypothesis that the weight of the failure probability is well

located. Finally, AK-SS representing an improvement on Subset Simulation is proposed

as an intermediary method between the general AK-MCS and the more specific AK-IS.

The last point of this thesis is the application of the proposed probabilistic approach

to the case studies of the APPRoFi project (Chapter 3). In these case studies, the uncer-

tainties of the in-service loads, fatigue behaviour and material properties are statistically

modelled. The load uncertainty is examined using a mix strategy based on random per-

centages of occurrences, a random severity coefficient-based approach, and a parametric

modelling of Rainflow matrices. The uncertainty of the fatigue behaviour is considered

through the implementation of three probabilistic S − N curve models which are ranked

according to likelihood criteria and goodness-of-fit tests. Structural reliability assessment

and the determination of the importance factors are carried out using a method from the

AK-RM family. Given that the numerical model of the blade support case study is com-

putationally demanding, the probabilistic approach coupled with AK-IS is completed with

LMT’s numerical methods so that the time required to perform the structural reliability

analysis is reduced. The global methodology is proven to enable prompt failure probability

assessment. An important conclusion drawn from the application of the methodology to

the case studies is that structural reliability is essentially influenced by the load modelling

and the S − N curve model.

Future work

Following the conclusion on the application of the probabilistic approach to the particular

case studies, further investigations should be conducted in the modellings of the in-service

loads and S − N curves to enhance reliability assessment. Given that the fatigue be-

haviour of materials is relatively well known in comparison with the loads applied to

structures, attention should first be drawn to the stochastic modelling of the load with

other approaches such as stationary Gaussian processes [Pitoiset, 2001; Benasciutti and

Tovo, 2005] or Markovian processes [Mattrand and Bourinet, 2011; Mattrand, 2011].
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3.4. Conclusion

In this research work, sensitivities are examined using importance factors. Global

sensitivity analysis such as Sobol’ indices is a step forward to a better understanding

of random structural response. These indices aim at determining the contribution of

each random variable to the variance of the structural response. They are commonly

estimated by means of Monte Carlo Simulation and consequently difficult to calculate

with time-demanding model evaluations. A Kriging metamodel can be used to estimate

them in a more efficient way, and, as proposed by Marrel et al. [2009], the full probabilistic

information held in the Kriging prediction can be considered to provide confidence intervals

on these indices. Other sensitivity measures such as Borgonovo’s [2007] may also be

calculated.

Safety factors are convenient to use, since they denote multiplicative coefficients to

apply to the load and resistance variables in the hope of obtaining a satisfactory design. In

comparison, the algorithmic procedure of probabilistic approaches seems disproportionate.

However, structural reliability analyses can be used to improve the concept of safety

factors. In fact, reliability-based calibration procedures [Gayton et al., 2004] may be

employed to set partial factors, which, when added to the design rule, confer the design

a given reliability objective. These factors are specific to the structures concerned and

consequently carry more meaning than traditional safety factors. They represent a relevant

direction to consider in order to settle probabilistic approaches in design offices.

The research as presented in this document is concerned with the problem of reliability

assessment, but uncertainties can also be considered in the design optimization process

with the purpose of devising robust and cost-effective structures. Such an advanced process

is commonly referred to as reliability-based design optimization. Finding the optimal set of

design parameters that minimizes some cost function while satisfying a reliability objective

is a problem of obvious interest in mechanical engineering. Nevertheless, it represents a

significant computational effort, given that a reliability problem needs to be solved for

each set of the design parameters. Following the recent advances in this field involving

Kriging [Bichon et al., 2009; Dubourg, 2011; Dubourg et al., 2011], the AK-RM family

may be adapted to tackle such analyses.
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A List of abbreviations

AIC Akaike information criterion

AK-ILS Active learning and Kriging-based method for inspection of large surfaces

AK-IS Active learning and Kriging-based importance sampling

AK-MCS Active learning and Kriging-based Monte Carlo simulation

AK-MCSm Active learning and Kriging-based Monte Carlo simulation under monotony

AK-RM Active learning and Kriging-based reliability methods

AK-SS Active learning and Kriging-based subset simulation

ANR Agence nationale de la recherche

APPRoFi Approche mécano-probabiliste pour la conception robuste en fatigue

BIC Bayesian information criterion

BLUP Best linear unbiased predictor

CA Constant amplitude

CDF Cumulative distribution function

DEFFI Démarche fiabiliste de conception en fatigue pour l’industrie

DOE Design of numerical experiments

EF Equivalent fatigue

EFF Expected feasibility function

EGRA Efficient global reliability analysis

FORM First order reliability method

GOF Goodness-Of-Fit

HLRF Hasofer-Lind-Rackwitz-Fiessler algorithm

IS Importance sampling

MCS Monte Carlo simulation

MCSm Monte Carlo simulation under monotony

ML Maximum likelihood

MPFP Most probable failure point

PDF Probability density function

SS Subset simulation

SSI Stress-strength interference

SWT Smith-Watson-Topper

VA Variable amplitude
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B List of notations

B.1 General notations

V Column vector

Vt Line vector

Vi ith component of V

M Matrix

.̂ Estimation

.̃ Approximation

Prob Probability

B.2 Deterministic mechanical values

Rm Tensile strength

N Number of cycles to failure

b Basquin’s slope, Eqn.(1.3)

B Fatigue strength coefficient in Basquin’s relation, Eqn.(1.3)

σ(t), F (t) Stress, force history

σm, Fm Mean value of a cycle

σa, Fa Amplitude value of a cycle

σmin, Fmin Minimum value of a cycle

σmax, Fmax Maximum value of a cycle

∆σ, ∆F Range of a cycle

σ′
a, F ′

a Symmetric alternating amplitude of a cycle

R Stress or load ratio

σeq, Feq Amplitude of the equivalent fatigue (EF) cycle (often fully reversed)

Neq Number of times an equivalent fatigue (EF) cycle is repeated

143



B. List of notations

B.3 Random values

B.3.1 Scalar and statistical values

X or X(ω) Random variable

x Realization of the random variable X

µX Mean of the random variable X

σX Standard deviation of the random variable X

δX Coefficient of variation of the random variable X

N (µX , σ2
X) Gaussian distribution with mean µX and variance σ2

X

fX Probability density function (PDF) of the random variable X

FX Cumulative distribution function (CDF) of the random variable X

φ Standard Gaussian probability density function (PDF)

Φ Standard Gaussian cumulative distribution function (CDF)

mX Empirical mean of the random variable X

s∗
X Unbiased standard deviation estimate of the random variable X

B.3.2 Vectorial values

X Random vector

x Realization of the random vector X

U Random vector of standard Gaussian variables

u Realization of the standard Gaussian vector U

P Population of points

fX Joint probability density function (PDF) of the random vector X

φn n-dimensional standard Gaussian probability density function (PDF)

B.3.3 Space notation and random functions

X n n-dimensional physical space

Un n-dimensional standard space

O Origin of the standard space

S Safe domain

F Failure domain

G(X) Performance function of the random vector X

H(U) Performance function in standard space Un
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B.3. Random values

B.3.4 Random mechanical values

S Stress distribution

R StRength distribution at Neq cycles

Uf Random isoprobability S − N curve

Xl Random load parameters

Xg Random geometry parameters

Xm Random material parameters

B.3.5 Kriging values

µH̃(u) Kriging mean at a point u

σ2
H̃

(u) Kriging variance at a point u

U(u) Learning function at a point u

u◦ Point leading to the smallest value of the learning function U

NE Number of numerical model (or performance function) evaluations

B.3.6 Reliability analysis products

Pf Failure probability

P̂f Failure probability estimator or estimate, depending on the context

P̃f Failure probability estimate obtained with a metamodel

P ◦
f Reliability objective, i.e. targeted failure probability

δ Coefficient of variation of the failure probability estimator

P ⋆ Most probable failure point (MPFP)

β Hasofer-Lind reliability index

αi Direction cosines of the ith random variable

Epi
Elasticities of the Hasofer-Lind reliability index with respect to the parameter p

of the ith random variable
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C Parametric modelling of the load

for the blade support case study

In Section 3.3.3.2, the load applied to the blade support case study is modelled with the

symmetric alternating amplitude d′ and a random severity coefficient CS . An alternative

approach inspired by the parametric modelling method outlined in Section 1.3.4.2 and

developed after the APPRoFi project is proposed in this appendix.

Selection of the symmetric alternating displacement amplitude’s CDF

The proposed approach aims at modelling the CDF of the symmetric alternating displace-

ment amplitude for which only 9 vectors {d′(i), i = 1, . . . , 9} are observed (see Figure

3.12). The ‘rebmix’ package for R [Nagode and Fajdiga, 2011a,b] is used to determine

whether multiple component distributions are required to model each vector d′(i). Mix-

tures of Weibull or lognormal distributions are assumed, and BIC is used to determine the

most adequate number z of components for each vector. The number of component distri-

butions is reported in Table C.1. A single Weibull distribution is found to be appropriate

for eight vectors. Only the first vector is better modelled with a mixture of two Weibull

distributions. For lognormal models, a single distribution is seen as relatively sufficient.

Following these results, it seems acceptable to consider that a vector d′(i) is adequately

modelled with a single distribution.

Given that z is now set to 1, the most satisfactory distribution between Weibull and

lognormal must be selected. For that, Table C.2 and Table C.3 report AIC, BIC and the

p-values of Kolmogorov-Smirnov tests. According to AIC and BIC (the lower, the better),

the Weibull distribution is the most appropriate. Its p-values are also considerably higher

than those of the lognormal distribution. The Weibull hypothesis is not rejected at a

5% significance level for five vectors (#2, 6, 7, 8, 9), and the p-values of the four other

vectors remain relatively high (≈ 1%) despite the large data set of cycles extracted in

each history. The Weibull model is thus selected as the distribution of the symmetric

alternating displacement amplitude.
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C. Parametric modelling of the load for the blade support case study

Modelling of the scatter observed in the CDF’s parameters

The nine Weibull distributions fitting the vectors {d′(i), i = 1, . . . , 9} provide nine ob-

servations of the random scale λ(ω) and shape κ(ω) parameters. Statistical models are

inferred by ML estimation for λ(ω) and κ(ω). Table C.4 shows that Gaussian, lognormal

and Weibull models have very similar AIC, BIC and p-values. In this study, λ(ω) is con-

sidered as a Weibull variable, since the AIC and BIC values are the lowest. Given that

the support of the Weibull distribution is R+, no truncation at 0 is required for λ(ω).

Concerning the shape parameter κ(ω), it is assumed that its realizations cannot be

below 1 which represents the bound between two drastically different Weibull PDF shapes

(remember that a Weibull distribution with κ = 1 corresponds to the exponential PDF).

Table C.5 shows that the Gaussian, lognormal and Weibull models have close AIC, BIC

and p-values. κ(ω) is defined as a Weibull random variable for its slightly better AIC and

BIC values.

For a given realization {κ, λ} of the Weibull distribution’s parameters, the Weibull

CDF of the symmetric alternating displacement amplitude is built, and a virtual life is

obtained by discretizing the CDF into Nf regularly-distributed probability levels. The

amplitudes associated with the different probability levels are calculated using the inverse

Weibull CDF that reads:

F −1(l) = λ (− ln(1 − l))
1
κ (C.1)

This function is not defined at the probability level l = 1. Therefore, a third random

variable is necessary to define the highest symmetric alternating displacement amplitude

observed in the virtual life. This random variable is denoted by Dmax and assumed to

be Weibull distributed, as Table C.6 shows that it is the model that best fits the nine

maximum amplitudes observed in the vectors {d′(i), i = 1, . . . , 9}.

Comparison with the severity coefficient-based model

A virtual life, i.e. a vector d′(κ, λ, dmax), is generated by selecting a realization {κ, λ, dmax}.

Using the Basquin’s slope b of the S −N curve, the life is summarized into an EF cycle re-

peated Neq times and characterized by its amplitude deq(κ, λ, dmax, b, Neq). Figure C.1(a)

depicts an empirical distribution of the EF amplitude obtained with the parametric model

presented in this appendix. Figure C.1(b) illustrates an empirical distribution which is

derived from the severity coefficient-based model exposed in Section 3.3.3.2. The EF

amplitude is seen to be less scattered with the parametric method. Using this model in a

structural reliability analysis would then lead to a smaller failure probability.
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Vector # z Weibull z lognormal

1 2 1

2 1 2

3 1 2

4 1 2

5 1 2

6 1 1

7 1 1

8 1 1

9 1 1

Table C.1: Determination using BIC of the number z of component distributions (Weibull
or lognormal) required to model each vector d′(i).

Vector #
Weibull

AIC BIC p-value

1 −7573 −7562 0.013

2 −8622 −8611 0.621

3 −8863 −8852 0.010

4 −8664 −8653 0.018

5 −9157 −9146 0.009

6 −7831 −7820 0.346

7 −8083 −8073 0.281

8 −7638 −7627 0.768

9 −8381 −8370 0.352

Table C.2: Measures of the relative goodness of fit of the Weibull distribution to the nine
vectors {d′(i), i = 1, . . . , 9}.
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C. Parametric modelling of the load for the blade support case study

Vector #
Lognormal

AIC BIC p-value

1 −7396 −7385 0.004

2 −8193 −8182 10−11

3 −8226 −8215 10−22

4 −8040 −8029 10−21

5 −8421 −8410 10−25

6 −7481 −7470 10−7

7 −7629 −7618 10−11

8 −7233 −7222 10−7

9 −7873 −7862 10−8

Table C.3: Measures of the relative goodness of fit of the lognormal distribution to the
nine vectors {d′(i), i = 1, . . . , 9}.

Distribution AIC BIC p-value

Truncated Gaussian −64.18 −63.79 0.89

Lognormal −63.96 −63.56 0.91

Weibull −64.35 −63.96 0.89

Table C.4: Comparison of Gaussian, lognormal and Weibull models for the random scale
parameter λ(ω). Given that the support of λ(ω) is R

∗
+, the Gaussian distribution is

truncated at 0.

Distribution AIC BIC p-value

Truncated Gaussian −9.44 −9.05 0.88

Shifted lognormal −9.72 −9.32 0.96

Shifted Weibull −9.92 −9.53 0.89

Table C.5: Comparison of Gaussian, lognormal and Weibull models for the random shape
parameter κ(ω). The support of κ(ω) is assumed to be ]1; +∞[, therefore, the Gaussian
distribution is truncated at 1 and the lognormal and Weibull distributions are shifted by
+1.

150



Distribution AIC BIC p-value

Truncated Gaussian −30.49 30.09 0.91

Lognormal −28.81 −28.41 0.74

Weibull −31.22 −30.83 0.93

Table C.6: Comparison of Gaussian, lognormal and Weibull models for the random highest
amplitude Dmax. Given that the support of Dmax is R

∗
+, the Gaussian distribution is

truncated at 0.

(a) Parametric model. (b) Severity coefficient-based model.

Figure C.1: Empirical distributions of 1,000 EF amplitudes deq at Neq cycles. The black
dots represent the EF amplitudes summarizing the nine observations {d′(i), i = 1, . . . , 9}.
The same scale is used for both figures.
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