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A vous deux, 
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« Le Soleil envie la Terre comme la Terre envie le Soleil.  

L’un reçoit la lumière et l’autre brille de mille feux. » 

J.D. 
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Abstract 

 Circadian oscillators rely on transcriptional mechanisms that regulate a wide 

array of biological activities. In mammals, the suprachiasmatic nucleus pacemaker is 

the chief conductor of the body that sets the tempo and dynamics through 

timekeeping signals to unify the timing of the different performers—the so-called 

secondary or peripheral oscillators. Each element of this biological orchestra shares 

common molecular mechanisms, in which clock genes such as Per1-3, Cry1-2, 

Clock, Bmal1 and Rev-erbα are essential.  

 In this large multi-oscillatory system, one putative performer, the food-

entrainable oscillator, has been shown to respond to the restriction of food availability 

to a specific time of the day. As a result, beyond the reach of the main conductor, the 

food-entrainable oscillator is able to adjust the phase and amplitude of a plethora of 

behavioral and physiological events controlled by secondary oscillators. This is 

especially highlighted by the ability of animals to predict feeding time, as evidenced 

by food-seeking behaviors a few hours prior to the expected food access. In addition, 

many circadian oscillators are specifically involved in metabolic functions for a proper 

energy balance. The tight relationship between the metabolic states of the body and 

functioning of circadian oscillators is particularly illustrated by the genetic 

perturbations of the molecular clockwork. 

 The work performed during this PhD thesis aimed at investigating the role of 

the transcriptional silencer Rev-erbα in both the circadian clockwork of the food-

entrainable oscillator and metabolic regulations. Firstly, by evaluating food-

anticipatory components in animals fed once a day at the same time, we showed that 

mice lacking Rev-erbα display a reduction in locomotor activity prior to food access 

compared to littermate controls. Accordingly, the rises in body temperature and 

corticosterone that anticipate mealtime are also diminished. Interestingly, daily p-ERK 

expression in hypothalamic regions and daily PER2 expression in the cerebellum of 

Rev-erbα KO mice are not phase-adjusted to feeding time. These results indicate 

that Rev-erbα participates in the integration of feeding signals and in food-seeking 

behaviors. Secondly, by investigating energy balance in fasted, normal chow or high-

fat fed animals, we revealed that Rev-erbα KO mice exhibit greater reliance on lipid 

fuels as energy substrates, contributing to a mild hyperglycemic state. We also found 

that Lipoprotein lipase (Lpl) expression, important for fatty acid uptake and utilization, 

is strongly up-regulated in peripheral tissues of Rev-erbα KO mice, predisposing 

mice to obesity. In this regard, we uncovered a new molecular pathway that ties 

clock-driven Lpl expression to energy homeostasis. These findings highlight the 

significance of daily Rev-erbα oscillations to prevent the appearance of the metabolic 

syndrome. 

 In conclusion, we provide evidence that REV-ERBα may be a part of the food-

entrainable oscillator clockwork that triggers food-anticipatory components, and 

represents a pivotal player to link the core clock machinery to metabolic pathways.  
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Résumé 

 Introduction 

 Les rythmes biologiques sont une propriété fondamentale du vivant. En effet, 

la plupart des espèces animales présentent une rythmicité journalière (p.ex. rythme 

d’activité-repos). Cette rythmicité est la conséquence d’une adaptation de ces 

espèces aux variations périodiques de leur environnement (p.ex. cycle lumière-

obscurité). La rythmicité des fonctions biologiques repose sur l’existence d’un 

système endogène composé d’oscillateurs – ou horloges – biologiques capables 

d’imposer une rythmicité circadienne (circa : environ, dies : jour) à de nombreux 

paramètres physiologiques et comportementaux, tels que les métabolismes lipidique 

et glucidique, les sécrétions hormonales (p.ex. corticostérone), la prise alimentaire ou 

le cycle veille-sommeil.  

 Chez les mammifères, l’horloge principale est localisée dans les noyaux 

suprachiasmatiques (NSC) situés à la base de l’hypothalamus. Bien que ces noyaux 

présentent des oscillations auto-entretenues proches de 24 h, ces dernières sont 

ajustées principalement par le cycle d’alternance jour/nuit. Plus exactement, l’activité 

des NSC est synchronisée (c.-à-d. remise à l’heure) par la lumière du jour, qui leur 

est transmise directement par la rétine via le tractus rétino-hypothalamique. A partir 

des NSC, l’information va être relayée vers différentes structures centrales (p.ex. 

l’hypothalamus) ou périphériques (p.ex. le foie) dont les activités seront à leur tour 

synchronisées sur 24 h par l’intermédiaire de voies neuronales et neuroendocrines. 

D’autres oscillateurs, dits secondaires, sont localisés dans différentes parties du 

cerveau et dans les organes périphériques (Fig. 1).  
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Figure 1. Les oscillateurs centraux et périphériques 

L’activité cellulaire des noyaux suprachiasmatiques (NSC), situés à la base de l’hypothalamus, est 
synchronisée sur 24 h par l’alternance rythmique du jour et de la nuit. Ce message rythmique est 

ensuite distribué par les NSC à différents oscillateurs centraux (c.-à-d. dans le cerveau) ou 
périphériques (p.ex. le foie). 

 

 Sur le plan moléculaire, la genèse des rythmes circadiens est basée sur la 

coexpression de gènes spécifiques appelés « gènes d’horloges ». Parmi ces gènes, 

Per1-3, Cry1-2, Bmal1, Clock, Rorα et Rev-erb constituent le cœur de la machinerie 

moléculaire des oscillateurs. La régulation des boucles moléculaires de rétroaction 

qui génèrent les oscillations circadiennes peut être décrite comme suit : le point de 

départ est une première boucle positive qui introduit deux facteurs de transcription, 

CLOCK et BMAL1. Ces facteurs dimérisent et vont transloquer dans le noyau, puis 

se fixer à l’ADN et initier, via une séquence E-box, la transcription des gènes Per1-3, 

Cry1-2, Rorα et Rev-erbα. La seconde boucle dite négative, est formée par les 

protéines PER et CRY qui, lorsqu’elles s’accumulent dans le cytosol, s’associent et 

vont transloquer à leur tour dans le noyau, au sein duquel le complexe PER:CRY 

inhibe sa propre transcription en interagissant avec le dimère CLOCK:BMAL1. Une 

boucle supplémentaire fait intervenir les récepteurs nucléaires ROR et REV-ERB, 

qui ont respectivement un effet activateur et inhibiteur sur la transcription de BMAL1 

via une séquence RORE. Cette boucle additionnelle représente ainsi le lien entre 

lesdites positive et négative et permet d’assurer la précision des oscillations 

circadiennes. Le fonctionnement de ces boucles conduit par conséquent à un rythme 

d’expression de différents ARNm et protéines qui varient sur 24 h (Fig. 2). 
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Figure 2. Modèle cellulaire simplifié de la rythmicité circadienne 

Les oscillations moléculaires des gènes d’horloges se déroulent sur 24 h grâce à un jeu réciproque 
d’activation (flèches bleues) et d’inhibition (flèches noires) de la transcription. 

 

 Comme introduit plus haut, les NSC, en tant que chef d’orchestre, 

communiquent avec l’ensemble de l’organisme pour ajuster de nombreuses fonctions 

biologiques sur 24 h. La destruction des NSC chez le rongeur induit une arythmie 

comportementale parallèle à une abolition du rythme de prise alimentaire, de 

température ou de corticostérone. Les NSC ont des connexions directes avec 

différents noyaux situés en particulier dans l’hypothalamus et qui contrôlent le cycle 

veille-sommeil ou encore la prise alimentaire (p.ex. le noyau dorsomédian). Les NSC 

peuvent aussi recevoir des informations du noyau ventromédian, de l’aire 

hypothalamique latérale ou du noyau arqué, qui jouent des rôles clés dans le 

métabolisme énergétique. Ce réseau de communication sous le contrôle des NSC, 

permet dès lors l’organisation rythmique de fonctions comportementales et 

métaboliques. 

 Les gènes d’horloges susnommés ne sont pas seulement exprimés dans les 

NSC mais sont potentiellement présents dans tous les tissus, toutes les cellules de 

l’organisme. Leur expression a été particulièrement décrite dans le foie, au sein 

duquel ils contrôlent localement environ 10% du transcriptome. Parmi les 49 
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récepteurs nucléaires identifiés chez la souris, acteurs moléculaires essentiels pour 

la régulation du métabolisme, environ 40% d’entre eux ont une expression qui varie 

au cours du cycle lumière-obscurité, en particulier dans le foie et le tissu adipeux. Au 

sein de cette famille de récepteurs nucléaires, des données récentes suggèrent que 

le gène Rev-erb est un acteur essentiel des rouages des horloges biologiques et du 

métabolisme.   

 En effet, des souris pour lesquelles le gène Rev-erb a été invalidé, montrent 

un phénotype circadien altéré, en particulier une période endogène réduite, ainsi 

qu’une réponse à la synchronisation photique augmentée. Ceci indique clairement 

que la machinerie moléculaire de l’horloge principale des NSC est affectée en 

l’absence de Rev-erb. De la même manière, ces souris présentent des 

modifications sur le plan métabolique, notamment un niveau élevé de cholestérol et 

de triglycérides. En outre, Rev-erb a été impliqué dans la sécrétion biliaire et le 

métabolisme des lipides en contrôlant l’expression du gène Srebp1c. 

 

Objectifs et résultats – partie 1 

 La première partie de mon travail de thèse a été de définir le rôle joué par le 

récepteur nucléaire Rev-erb dans les mécanismes de synchronisation par la 

nourriture d’une horloge circadienne putative, non encore localisée, appelée 

« horloge alimentaire ». Cette dernière – si tant est que ce soit une structure unique 

– semble permettre aux animaux d’exploiter les régularités temporelles de la 

disponibilité en nourriture dans leur environnement, même en l’absence de l’horloge 

principale des NSC. Ainsi, différentes espèces sont en mesure de rechercher des 

ressources alimentaires au moment le plus propice de la journée. En laboratoire, des 

rongeurs placés en condition de restriction alimentaire temporelle (c.-à-d. un accès à 

la nourriture limité à quelques heures par jour et à heure fixe) montrent une 

augmentation d’activité locomotrice quelques heures avant l’heure du repas, en 

parallèle à une augmentation de température et de sécrétions hormonales. Ces 

sorties physiologiques et comportementales seraient donc le reflet d’un mécanisme 

adaptatif lors de périodes de raréfaction des ressources alimentaires. Il est fait 

l’hypothèse que le mécanisme moléculaire à l’origine de cette horloge permettant la 
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synchronisation alimentaire (c.-à-d. à l’heure des repas) serait similaire à celui des 

NSC. 

 Afin d’explorer davantage les rouages moléculaires de cette horloge 

alimentaire, nous avons étudié des souris déficientes (ou knockout ; KO) pour le 

gène d’horloge Rev-erb. De manière intéressante, en condition de lumière-

obscurité 12 h - 12 h, l’activité locomotrice ainsi que l’augmentation de température 

en anticipation de l’heure du repas observées chez des souris témoins, étaient 

diminuées chez des souris KO pour Rev-erb (Fig. 3). Ce résultat a également été 

observé chez des souris KO placés en condition d’obscurité totale, ou porteuses de 

lésions des NSC. En parallèle à une diminution de l’activité locomotrice et de la 

température corporelle, le pic de libération de corticostérone en anticipation de 

l’heure du repas présent chez les souris sauvages, n’était pas observé chez les 

souris KO pour Rev-erb ; indiquant qu’une sortie physiologique additionnelle 

contrôlée par l’horloge alimentaire était altérée chez ces dernières.   

 

Figure 3. Activité locomotrice de roue (à gauche) et température corporelle (à droite) en 
condition de restriction alimentaire 

Quelques heures précédant l’accès à la nourriture (rectangle orange), les souris témoins (en bleu) 
présentent une forte augmentation de l’activité locomotrice, en parallèle à une élévation de leur 
température corporelle. Ces composantes d’anticipation sont diminuées chez les souris KO (en 

rouge).  

 

 Toutefois, la synchronisation de l’oscillateur hépatique à l’heure du repas était 

conservée chez les souris KO (Fig. 4). De la même manière, les oscillations de la 

protéine d’horloge PER2 dans les structures hypothalamiques était modifiée sous 

l’effet de la restriction temporelle dans les deux génotypes. Autrement dit, la 

synchronisation des oscillateurs hypothalamiques et de l’oscillateur hépatique à 
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l’heure des repas, était préservée en l’absence du gène d’horloge Rev-erb. 

Cependant, ni PER2, ni p-ERK (un marqueur d’activation cellulaire) ne répondaient 

clairement à la restriction dans le cervelet des souris KO.  

 

Figure 4. Expression de l’ARNm Per2 dans le foie 

La restriction alimentaire temporelle induit un changement de phase du rythme de Per2 dans les deux 

génotypes.  

 

 L’ensemble de ces résultats suggèrent un rôle essentiel de Rev-erb dans le 

fonctionnement de cette horloge alimentaire qui pourrait, parmi les régions 

cérébrales étudiées, faire intervenir le cervelet dans la modulation de l’expression de 

l’activité anticipatrice. Néanmoins, du fait de la participation de Rev-erb aux 

régulations du métabolisme, nous avons évalué des paramètres métaboliques 

comme le niveau de glycémie ou de glycogène hépatique. De manière inattendue, 

nous avons découvert que les souris KO avaient des niveaux plus élevés de glucose 

et de glycogène hépatique en comparaison des souris témoins, indépendamment de 

la condition de nourrissage (Fig. 5). De plus, en période de jeûne induite par la 

restriction temporelle, les KO montraient des valeurs de température corporelle 

nettement supérieures à celles de souris témoins (Fig. 3). Ces observations 

rendaient compte de changements non négligeables dans l’homéostasie énergétique 

des souris déficientes en Rev-erb qui pourraient contribuer à l’altération des sorties 

comportementales et physiologiques de l’horloge alimentaire. 
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Figure 5. Rythme de la glycémie (haut) et du glycogène hépatique (bas) 

En période de nourrissage ad libitum (gauche) ainsi qu’en période de restriction alimentaire (droit), les 
niveaux de glucose plasmatique et de glycogène hépatique sont plus élevés chez les souris KO (en 

rouge) en comparaison aux souris contrôles (en bleu). 

 

Objectifs et résultats – partie 2 

 La seconde partie de mon travail de thèse a dès lors consisté à étudier le 

phénotype métabolique des souris KO pour Rev-erb. Par une association originale 

d’approches in vivo et in vitro pour l’exploration des métabolismes glucidique et 

lipidique, nous avons pu mettre en évidence que le gène Rev-erb joue un rôle 

essentiel dans la balance énergétique. De manière remarquable, les souris KO ont 

une plus grande adiposité et sont hyperglycémiques, même si elles mangent la 

même quantité de nourriture standard (ou normocalorique), au même moment de la 

journée et avec une activité physique similaire aux souris témoins. En outre, 

l’hyperglycémie a également été observée après un jeûne de 24 h (Fig. 6), et n’est 

pas la conséquence d’un défaut de sécrétion d’insuline ou d’une insulino-résistance 

– comme le confirment notamment les résultats du clamp euglycémique 

hyperinsulinémique (Fig. 6).  
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Figure 6. Concentration de glucose plasmatique après une période de jeûne de 24 h (à gauche) 
et  clamp euglycémique hyperinsulinémique (à droite) 

 Les souris KO (en rouge) montrent une hyperglycémie même après une période de jeûne. 

 

 La différence majeure entre les souris sauvages et les souris déficientes en 

Rev-erb réside dans la manière dont ces dernières métabolisent les nutriments : en 

effet, nos données de calorimétrie indirecte ont révélés que les KO synthétisent plus 

de lipides pendant la phase de prise alimentaire (c.-à-d. phase nocturne) contribuant 

à une surchage lipidique, et utilisent moins de glucides pendant la phase de repos 

(Fig. 7), contribuant au maintien d’une légère hyperglycémie sur le cycle de 24 h. De 

façon intéressante, cette augmentation de l’utilisation des lipides (ou des corps 

cétoniques) en l’absence de Rev-erb  est également observée lors d’une période de 

jeûne de 24 h. 

 

Figure 7. Calorimétrie indirecte 

Les souris KO (en rouge) métabolisent davantage les glucides de nuit et les lipides de jour, en 
comparaison aux souris contrôles (en bleu). 
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 En outre, nous avons montré que le phénotype « gras » est très accentué 

lorsque les KO sont sous nourrissage hypercalorique (c.-à-d. riche en graisses ; 

Fig. 8). Cette obésité induite par la nourriture va conduire à de multiples altérations 

métaboliques. Des modifications de la quantité et du rythme d’expression de la 

glycémie, de l’insuline, de la leptine (Fig. 8) et des acides gras libres sont également 

constatées de manière importante chez les souris KO. Les oscillateurs périphériques 

tels que le foie et le tissu adipeux, sont également touchés par une surcharge 

lipidique. Notamment, l’expression hépatique de gènes de la lipogenèse est 

augmentée chez les souris KO.  

 

Figure 8. Adiposité totale (à gauche) et concentration de leptine (à droite) 

Indépendamment de la condition de nourrissage (normo- ou hypercalorique), les souris KO ont une 
plus grande adiposité corrélée à de plus grandes concentrations de leptine.  

 

 Enfin, nous avons démontré que le phénotype « gras » des souris KO résultait 

également d’une perte de contrôle par les oscillateurs périphériques, en l’absence de 

REV-ERB, de l’expression d’un gène clé du métabolisme, la Lipoprotéine lipase 

(Lpl), intervenant dans l’hydrolyse des triglycérides et l’entrée des acides gras libres 

dans les cellules. En effet, le gène de la Lpl était surexprimé dans différents tissus 

périphériques tels que le foie, le muscle et le tissu adipeux (Fig. 9). Cette 

surexpression notamment dans le tissu adipeux et le muscle conduit respectivement 

à un meilleur stockage et à une utilisation préférentielle des acides gras. 



24 
 

 

Figure 9. Expression du gène de la Lipoprotéine lipase dans différents tissus 

L’ARNm de la Lpl est surexprimé à différents temps dans les organes périphériques des souris KO 
pour Rev-erbα. 

 

 De façon intéressante, nous avons pu révéler que la régulation de l’expression 

de l’ARNm de la Lpl n’impliquait pas directement le répresseur transcriptionnel REV-

ERB mais l’activateur transcriptionnel CLOCK (Fig. 10), qui en l’absence de REV-

ERB in vivo démontrait des niveaux d’expression d’ARNm supérieurs à ceux 

mesuraient chez des souris témoins. 

 

Figure 10. Dosage de l’activité luciférase 

L’analyse des séquences promotrices du gène de la Lpl a mis en évidence une E-box fonctionnelle 
qui peut interagir avec le facteur CLOCK. 
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Conclusion 

 L’ensemble de nos données indique que le répresseur transcriptionnel Rev-

erb joue un rôle charnière dans les fonctions circadiennes ainsi que dans le 

métabolisme. En effet, d’un point de vue circadien, l’absence de Rev-erb altère la 

synchronisation à l’heure des repas – démontré par une réduction des sorties 

comportementales et physiologiques de l’horloge alimentaire, ainsi que par l’absence 

d’ajustement du rythme de PER2 dans l’oscillateur cérébelleux. Sur le plan 

métabolique, la délétion de ce gène modifie notamment le métabolisme des lipides – 

démontré par une accumulation excessive de tissu adipeux, une utilisation 

préférentielle des acides gras, ainsi qu’une perte de contrôle de l’expression de la 

Lpl. 

 Néanmoins, la possibilité que la diminution de la capacité d’anticiper l’heure 

des repas soit essentiellement reliée aux modifications de la balance énergétique ne 

peut pas être exclue. Cette hypothèse qui donnerait dès lors un rôle moindre aux 

perturbations du cœur de la machinerie moléculaire circadienne induites par 

l’absence même du gène d’horloge Rev-erb, est soutenue par la synchronisation de 

l’oscillateur hépatique à l’heure des repas, ainsi que par l’ajustement dans divers 

oscillateurs hypothalamiques de l’expression de la protéine d’horloge PER2 en 

condition de restriction alimentaire.  

 En conclusion, au-delà de positionner Rev-erb à l’interface entre régulations 

circadiennes et métaboliques, ces travaux indiquent l’importance de prendre en 

considération les modifications du métabolisme induites par la délétion d’un gène 

d’horloge – notamment dans un organisme entier – pour l’étude des fonctions 

circadiennes telles que l’entraînement à l’heure des repas. En ce sens, l’utilisation 

d’outils génétiques permettant de désactiver spécifiquement l’expression d’un gène 

d’horloge dans un tissu donné ou à un stade précis du développement pourrait être 

une méthode de choix pour mieux explorer les rouages de cette mystérieuse horloge 

alimentaire. 
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Chapter 1 GENERAL INTRODUCTION 

1. Beats, rhythms and life1 

1.1 Introduction 

 Dynamic cyclic events and the steady recurrence of identical rhythm patterns 

are a common feature of both music and life. Various characteristic and repetitive 

pulses can be identified in different kinds of music, such as hip-hop, blues or classical 

music, just as we can observe various regular recurring events in nature. Some occur 

at a high frequency (e.g., human heartbeats) and others at a much slower frequency 

(e.g., annual migration). The idea that life is organized rhythmically, which has been 

originally hypothesized a long time ago (see part 1.2), paved the way for the 

development of a discipline of research studying biological rhythms, called 

chronobiology (from the greek: chrónos, meaning "time"; bios, "life" and -logia, "study 

of").  

 The historical emergence of this relatively new scientific research area 

radically changed our way of seeing living creatures, from basic organisms such as 

algae to more complex organic systems such as human beings. Since the last 

century, the study of biological rhythms is turning out to be one of the most 

fascinating interdisciplinary research fields in modern biology, receiving a vast 

amount of attention from other disciplines. I will present first the brilliant thoughts and 

discoveries that gave birth to chronobiology. Then, I will progressively introduce the 

different concepts and terminology used in our research area and show that 

biological rhythms can vary according to their duration and can have very complex 

and fascinating beats, the same as rhythmic patterns in music.   

1.2  Horologium Florae 

 The observation of rhythmic events in living species comes first from 

description on leaf movements, which has been probably known over 2300 years ago 

(mentioned in Wolfgang Engelmann, 2002). Daily periodic movements of the leaves 

                                                           
1
 This title is freely inspired from “Beats, Rhymes and Life”, the fourth album of the famous hip-hop groug “A 

Tribe Called Quest”. 
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of the tamarind tree, Tamarindus indica, were initially and clearly reported by 

Androsthenes of Thasos, admiral under Alexander the Great, 400 years before Christ 

(mentioned in Bretzl, 1903). Much later, in 1729, the French astronomer Jean 

Jacques Ortous de Mairan observed the daily opening and closing of the leaves of a 

sensitive heliotrope plant (probably Mimosa Pudica)2. de Mairan then performed an 

experiment to test whether this biological “behavior” was simply a response to the 

daily appearance of the sun. To do so, he confined the plant to the dark (i.e., a 

constant condition of darkness). He observed that in the absence of sunlight, the 

leaves of this plant opened during the usual daylight hours and closed at night. Even 

if de Mairan did not conclude that Mimosa Pudica has an internal clock, his 

experiment was the first scientific demonstration of the persistence of a rhythmic 

event in constant darkness.  

 It took 30 years before further scientific investigations on this biological 

mechanism in plants followed de Mairan’s observation. Indeed, independent 

researches by Duhamel Du Monceau and Zinn in 1759 (for review, see McClung 

2006), showed that the rhythm of leaf movements in constant darkness was 

independent of fluctuations in environmental temperature. In other words, this “clock” 

mechanism appeared to be endogenous. In 1832, De Candolle gave more details on 

the period of this inner clock. He showed that in constant light conditions, opening 

and closing rhythm of the leaflets of a sensitive plant (e.g., Mimosa), was maintained 

with a period close to, but not exactly, 24 h. To make use of circadian terminology, 

this signifies that the endogenous period of Mimosa’s clock runs free (or free-runs3) 

with its own timing (Fig. 1). De Candolle also showed that the rhythm could be 

inverted by manipulating the light-dark cycle. Later on, Darwin tried to understand the 

selective advantage of the periodic leaves movements (mentioned in Bunning and 

Moser 1969).  

 These pioneering observations paved the way for further studies focusing on 

biological rhythms, and thus the establishment of the discipline of chronobiology.  

                                                           
2
 The botanical observations of de Mairan would have passed into obscurity, if his colleague, M. Marchand, had 

not published the results for him. 
3
 “Free running” being a term used to describe a circadian rhythm that is not entrained to external time cues. 
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1.3 Chronobiology, modern times 

 In the 20th century, chronobiology became its own discipline of research (in 

parallel to evolution, genetics and development). Observations of rhythmic events 

became numerous, particularly in animals. For example, the psychologist JS 

Szymanski reported in 1914 that goldfish swimming occurs with a 24-h activity 

rhythm, even in the absence of external cues such as light. In 1922, Curt Richter 

reported daily pattern of locomotor activity in rats. In 1937, researchers created an 

international organization for the study of biological rhythms (for review, see 

Koukarri)4. At the same time, brilliant and leading figures in chronobiology were 

influential in establishing many concepts and key criteria to define the biological 

clock.  

1.3.1 Halberg, “Circadian” rhythm 

 In the 1950s, Franz Halberg—regarded as the father of chronobiology—

observed several kinds of differences among groups of mice in the counts of 

circulating blood eosinophils when they were sampled at different clock hours. He 

also noticed that after blinding, rectal temperature in mice showed an approximately 

24-h periodicity. He created the term circadian, which comes from the Latin circa, 

meaning “around” and dies, “day” (Halberg et al. 1977; Halberg et al. 2003). As a 

result, biological phenomena observed with a roughly 24-h period (i.e., from 20 to 28 

h) were so named. 
                                                           
4
 Research on biological rhythms was strong and colorful in Germany and the rest of Europe in the 18

th
 and 19

th
 

centuries. In the 20
th

 century, in spite of the prevalent skepticism of scientific establishment in the USA, 
chronobiology no longer hid, became popular and conceptual advances were flourishing. In the sense, the 1960 
symposium at Cold Spring Harbor Laboratory laid the groundwork for the field of chronobiology. 

Figure 1. Leaf movements of a representative 
species 

(A) Sleep movements of Phaseolus coccineus. The 

position of the primary leaves of a seedling at night 

is at the left and during the day is at the right. (B) 

Circadian rhythm of leaf movements of P. coccineus 

entrained to light/dark cycles and monitored in 

continuous light. As can be inferred from the leaf 

positions in (A), the peaks of the curve represent the 

nightime leaf position. The vertical lines indicate 24-h 

intervals. The period for this trace is ∼27 h. From 

(McClung 2006) 
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Circadian: relating to biologic variations or rhythms with a frequency of 1 cycle in 24 ± 4 h; 

circa (about, approximately) and dies (day or 24 h). Note: term describes rhythms with an 

about 24-h cycle length, whether they are frequency-synchronized with (acceptable) or are 

desynchronized or free-running from the local environmental time scale, with periods slightly 

yet consistently different from 24 h … (Halberg, 1977) 

 

 In spite of further extensive studies of circadian rhythms, many other important 

cycles were concurrently delineated and studied. This includes infradian rhythms, 

which show a period longer than 24-h and can occur at monthly, seasonal or yearly 

intervals (e.g., annual migration); and ultradian rhythms, which occur with a period 

shorter than 24-h (e.g., thermoregulation). It is important to mention that within each 

cycle, the time at which the peak of a rhythm occurs is called the “acrophase”, 

whereas the time at which the trough of a rhythm occurs is the “bathyphase”. The 

difference between the peak (or trough) and the mean value (mesor) of a wave is 

called the amplitude (Fig. 2)5. 

 

Figure 2. Terms used to describe circadian rhythms.  

The period is defined as the time to complete one cycle. The mesor is the average value around which 

the variable measured oscillates. The amplitude of the rhythm is defined as the distance between the 

mesor and the acrophase (or half the peak-to-peak amplitude). Within each cycle, the acrophase and 

the bathyphase represent the time point where the parameter measured shows the highest or the 

lowest value, respectively.  

 

 

 

Whether we measure, hour by hour, the number of dividing cells in any tissue, the volume of 

urine excreted, the reaction to a drug, or the accuracy and the speed with which arithmetical 

problems are solved, we usually find that there is a maximum value at one time of day and a 

minimum value at another. (Aschoff 1965) 

                                                           
5
 Acrophase and other parameters of a rhythm are defined by a mathematical model, usually a cosine function.  
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1.3.2 Aschoff, light is a Zeitgeber 

 Jürgen Aschoff, one of the brilliant founders of chronobiology, used for the first 

time in 1954 the German term Zeitgeber (“time giver” or “synchronizer”) to define an 

exogenous (external) cue that triggers some sort of change in an organism’s 

endogenous clock. Light is the most prominent entraining agent for a wide variety of 

species, but other, so-called non-photic Zeitgebers such as food, which will be 

discussed further, can influence internal clocks. In 1960, Aschoff observed that an 

increase in the intensity of light in constant (light) conditions causes a lengthening of 

the free-running period for a nocturnal (dark-active) organism and a shortening of the 

period for a diurnal (light-active) organism6 (Aschoff 1960). He also contributed in 

unraveling the physiological mechanisms that regulate circadian rhythms in birds, 

mammals and especially in humans (Chandrashekaran 1998). Indeed, Aschoff & 

Wever from 1962 demonstrated that in the absence of environmental cues (e.g., 

light) human’s endogenous clock free runs with a period slightly longer than 24 h 

(Aschoff 1965)—an observation also made by the French explorer and scientist, 

Michel Siffre (1964), when he isolated himself in a deep cave without time cues for 

several months. 

1.3.3 Bünning, the heritability of circadian rhythms 

 In the early 1930s, Erwin Bünning, a great biologist and botanist, 

demonstrated the inheritance of circadian rhythms. In 1932, Bünning started to cross 

bean plants with different endogenous periods and demonstrated that the next 

generation had periods of intermediate duration, thus refuting the idea that daily 

rhythmicity is learned, as first argued earlier by Richard Semon (1904). In 1935, 

Bünning undeniably determined in plants the genetic origin of the "biological clock," a 

term he coined. However, it took several years until the existence of a genetic-basis 

for circadian rhythms was firmly admitted. Bünning also laid out the basis of 

photoperiodism. He suggested that plants display endogenous phases of light and 

dark sensitivity, important in the photoperiod response of flowering (mentioned in 

Koukkari and Sothern 2006).  

                                                           
6
 A phenomenon extended and called now “Aschoff’s Rule”. 
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1.3.4 Pittendrigh, temperature compensation 

 The biologist Colin Pittendrigh (1918-1996) “brought to chronobiology a 

degree of experimental elegance and rigour which remained unsurpassed” 

(Chandrashekaran 1998). Work by Pittendrigh confirmed Bünning’s hypothesis that a 

rhythmic process underlies the photoperiodic time-measurement. He defined several 

key criteria (highlighted below) a biological clock must have to be so called. His 

scientific research on Drosophila pseudoobscura in the early 1950s7, demonstrated 

that daily rhythm in eclosion persists in constant conditions and can be entrained by 

light cycles close to the flies’ endogenous period; and more importantly, that the 

period of eclosion remains relatively constant when exposed to changes in 

environmental temperature. In other words, the eclosion rhythms of Drosophila were 

temperature compensated, unlike the rates of most chemical reactions (Pittendrigh 

1954).   

 In 1958, Pittendrigh also developed the concept of the phase response curve 

(PRC), which predicts how the biological clock would be affected by a change in its 

light schedule (Pittendrigh 1954; Menaker 1996; McClung 2006). It was also in 1960 

that Patricia DeCoursey demonstrated on a time graph a daily light sensitivity rhythm 

of locomotor activity in rodent by testing the effects of light pulse at different times of 

the day (De Coursey 1960). The PRC is now a powerful and precise tool for the study 

of circadian rhythms (Fig. 3-4). 

                                                           
7
 As an aside, it is important to mention that it was also in the 50’s that Gustav Kramer and Klaus Hoffman 

demonstrated that starlings, which use the sun to navigate, possess an internal clock, important to compensate 
for the sun's movements throughout the day, and thus essential for migration.  
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Figure 3. Light-pulse phase response-curve of a nocturnal animal 

Animals are kept in constant darkness. The free-running activity can be phase shifted by light-pulses 

in a phase-dependent manner. (A) When light-pulse is given in the middle of the subjective day 

(light/rest-phase for a nocturnal animal), there is no strong effect on the onset of an animal activity. 

Whereas, light-pulses administrated at the beginning of the subjective night (i.e., dark/active phase for 

a nocturnal animal), phase-delayed the activity rhythm, while light-pulse delivered at the end of the 

active period caused phase-advance. Note that “subjective” day/night are defined by the segments of 

inactive and active period, respectively, during entrainment by a light-dark cycle. 

 

Figure 4. Light-pulse phase response-curve of a flying squirrel rodent 

(Left) 24-h activity record, called actogram, of a flying squirrel. The first yellow arrow indicated the first 

light-pulse, which was given 1 min after the onset of the daily activity period and which caused a 

phase-delay. The second yellow arrow points to a ligh-pulse that was given 9 h after the onset of 

activity, which caused a phase-advance of the locomotor activity the following day. (Right) Light-

reponse curves for two flying squirrels, A and B. Adapted from (De Coursey 1960). 
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1.4 Take-home message 

 In living creatures, most essential biological functions show a rhythmic pattern 

close to 24 h. These endogenous daily variations, called circadian rhythms, allow 

organisms to anticipate and prepare for periodic changes in the environment, such as 

light, temperature, food availability and other periodic phenomena. Circadian rhythms 

are generated by biological clocks, which are a temperature compensated system. 

Circadian rhythms are mostly synchronized to the daily environmental light-dark 

cycle—ultimately determined by the Earth’s rotation. When isolated from periodic 

environmental time cues or Zeitgebers, the endogenous rhythm persists (i.e., free-

runs), with a period slightly longer or shorter than 24 h (Fig. 5).  

 

Figure 5. Input and ouput pathways of a biological clock 

Different Zeitgebers can entrain the internal biological clock in order to regulate circadian rhythms to a 

precise 24-hour period. 
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2. One clock to rule them all  

 In the recent past, scientific investigations were conducted in bacteria, fungi, 

plants, birds and mammals, as well as molecules and cells. The fact that circadian 

rhythms have been observed in a wide range of organisms, suggests that temporal 

organization result from an evolutionary process, which started when life consisted 

only of single cells. 

2.1 The tree of life 

 As aforementioned, circadian rhythms—thus the presence of a biological 

clock—have been revealed in organisms ranging from prokaryotes to eukaryotes. As 

an aside, it is important to remember than until the mid 1980s, it was thought that 

only eukaryotes had circadian rhythms. However, several research groups in the 80’s 

discovered that prokaryotes were also capable of expressing circadian rhythms 

(Johnson et al. 1996) that meet all the criteria of bona fide biological clocks. For 

instance, the prokaryote, Synechococcus8, has been shown to possess a circadian 

clock regulating cell division9 that is entrained by a light-dark cycle and that is 

temperature-compensated (Fig. 6) (Sweeney and Borgese 1989; Huang et al. 1990). 

 

                                                           
8
 Synechococcus is a unicellular cyanobacterium that is very widespread in the marine environment.  

9
 Cell division cycle in cyanobacteria can be a much more rapid process than circadian cycle. However, it has 

been demonstrated that the circadian clock mechanism is independent of cell division cycle, while the later 
depends on the phase of the circadian clock such that cell division is gated to occur only in specific circadian 
phases. 
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Figure 6. Rhythms of nitrogenase activity of Synechococcus sp. RF-1  

(Left) Rhythms of nitrogenase activity in several different light-dark (LD) cycles followed by constant 

light conditions (LL). The cultures were adapted to the LD conditions for one week before exposing 

them to LL. (Right) Endogenous rhythm of nitrogenase activity of Synechococcus sp. RF-1 at several 

different temperatures. The cultures were all initially grown at 28°C under a 12:12 LD regimen for 1 

week. They were then transferred to LL at 22, 26, 29, and 33°C, respectively. The N2-fixing activity of 

these cultures incubated at various temperatures was assayed at 2 h interval for a period of 4 days. 

From (Huang et al. 1990) 

 

 Hence, the 20th century has left us with an impressive list of living organisms 

that exhibit circadian rhythms (Fig. 7) (for review, see Dunlap 1999; Vansteensel et 

al. 2008). At present, a common statement is that circadian rhythms are ubiquitous in 

living systems. Besides the observations of rhythmic behavioral/physiological outputs 

in many organisms supporting this thought, additional evidence comes from the 

identification of specific genes, named “clock genes”, which are the genetic basis for 

circadian oscillations and which can be expressed in virtually all cells.  

 

Figure 7. Circadian systems in the universal tree of life 

The diagram, designed by Jay C. Dunlap, represents the range of organisms in which circadian 

systems/rhythms have been described. In blue are represented the phylogenic groups in which 

circadian rhythms have been investigated. In red are represented those species in which genetic and 

molecular analysis of clock mechanism has progressed significantly. Line lengths correspond to 

evolutionary distance between phylogenic groups. From (Dunlap 1999) 
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2.2 Discovery of (the) clock gene 

 In 1971, Konopka and Benzer isolated the first clock mutant Drosophila 

melanogaster. They showed that a gene mutation on a specific region of the X 

chromosome drastically alters the period length of the circadian clock regulating 

eclosion and locomotor activity rhythms (Konopka and Benzer 1971). The gene was 

thus named Period, and its precise location discovered later (Bargiello and Young 

1984). This was the first description of a genetic component of a circadian clock. 

From then on, “clock” mutation was also demonstrated in Neurospora and the green 

algae Chlamydomonas (mentioned in Ralph and Menaker 1988).  

 

Figure 8. Individual locomotor activity rhythms of normal or mutant flies kept in constant 
darkness 

All flies were previously exposed to a 12 h-12 h light-dark cycle. Each line represents the start of a 
successive interval. Vertical black bars represent the level of activity. For visual continuity, data are 
double-plotted, so that two days are represented horizontally. From (Konopka et al. 1971) 

 

 Later, Ralph and Menaker described for the first time a single-gene mutation 

that specifically affects the circadian clock of a vertebrate. This mutation, Tau, 

caused a dramatic shortening of the period (called Tau) of the circadian locomotor 

rhythm of golden hamsters (Fig. 8) (Ralph et al. 1988). In the 1990s, Takahashi and 

colleagues succeed in identifying the first mammalian clock gene by inducing 

circadian clock mutations in mice with the N-ethyl-N-notrosourea (ENU)-induced 

mutagenesis strategy. As a result, a semidominant mutation in a key gene, named 

Clock, was found to dramatically affect circadian rhythms (Fig. 9). Clock mutant mice 

displayed an abnormally long period of daily activity and eventually became 

arrhythmic in constant darkness (Vitaterna et al. 1994; King et al. 1997).  
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Figure 9. Effect of the Clock mutation in mice 

Locomotor activity and DNA sequence data from wild-type and Clock/Clock mutant mice. On the 

actogram, the white and black bars represent the day and night periods, respectively. Note that activity 

records are double-plotted. Mice were kept in light-dark cycle for 8 days and then transferred to 

constant darkness (arrows). Below each actograms are represented the DNA sequence to illustrate 

the AT transversion that causes the mutation. Adapted from (King et al. 1997) 

 

 All these findings demonstrated that clock genes are fundamental components 

of a biological clock and are necessary for normal circadian function. Considerable 

progress has been now made in discovering many more genetic components of the 

biological clock10. In addition, the ongoing characterization of these genes at the 

transcriptional and translational levels contributes to precisely characterizing their 

role and notably, how they interact to generate circadian oscillations (see part 2.3.2). 

Hereafter the focus will be especially on mammals.  

2.3 Discovery of the first pacemaker in mammals  

 Since several physiological processes are controlled in a circadian way, the 

question of an anatomical substrate (in parallel to the identification of clock genes) at 

the basis of the temporal organization of dynamic events—like humans optimize their 

social/professional activities by referring to their wristwatch—has emerged decades 

ago. By referring to the results presented above, I will introduce what we currently 

know regarding the functioning of the circadian timing system in mammals. Is there 

only one main clock which drives all the circadian rhythms? Or are several 

                                                           
10

 The cross-species approach, in particular between fruit flies and mice, was a driving force in chronobiology to 
identify clock gene by homology of DNA sequence.  
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clocks/oscillators11 involved? Where are they localized? Do they all contain the same 

“clock” genes? 

2.3.1 The suprachiasmatic nucleus: a great conductor  

 Considering the fact that mammals showed daily rhythms of biological 

functions, synchronized to the 24-h light-dark cycle, it has been thought that an 

entrainment pathway must involved an organ that is sensitive to the periodic 

variations of illumination. In this context, a cerebral structure identified relatively early 

in the 20th century became the subject of much attention.  

 In 1937, Pate demonstrated that enucleation in cats induced atrophy of a 

specific region of the hypothalamus—nucleus ovidens. Much later in 1972, a direct 

projection from the retina to the suprachiasmatic area of the hypothalamus was 

demonstrated in the rat (Moore and Lenn 1972). This area was further described as a 

bilateral region containing two groups of neurons (10000-12000 total in population) 

dorsal to the optic chiasm and just lateral to the periventricular nucleus and third 

ventricle (Moore et al. 2002). Of note, these nuclei are also subdivided in a ventral 

(core) area and a dorsal (shell) area based on their afferents and the neurochemical 

nature of cells in each area (Fig. 10, 12). 

 

Figure 10. SCN localization in mice 

Coronal section of a mouse brain showing the localization of the SCN, and below cresyl violet staining 
demonstrating the dense cellular packing in the ventromedial and dorsolateral part of the SCN. See 
text for description. OC: optic chiasma; 3V: third ventricule. Adapted from the Franklin-Paxinos atlas. 

                                                           
11

 I am adding the term “oscillator” to define a biological entity capable of generating circadian rhythms (e.g., of 
gene expression), but, amongst other things, that does not impose its rhythmicity to other entities.  
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 Interestingly, Curt Richter at about the same time identified the anterior 

hypothalamus as a “biological pacemaker” involved in sleep-wake cycles (Richter 

1967). Two years later, the effect of a removal of the suprachiasmatic nucleus (SCN) 

by bilateral electrolytic lesions in rats was tested by Moore and Eichler (1972) and 

Stephan and Zucker (1972). Surprisingly, the SCN ablation abolished the rhythm of 

adrenal corticosterone (Moore and Eichler 1972), as well as those of locomotor 

activity, food intake and drinking behavior (Stephan and Zucker 1972; Nagai et al. 

1978). Further observations were then made in other mammals (Fig. 11) (Edgar et al. 

1993; DeCoursey et al. 1997). 

Control animal     SCN-lesioned animal 

 

Figure 11. Effect of SCN lesions in the diurnal rodent, Ammospermophilus leucurus 

Two actograms representing the locomotor activity of an intact SCN animal (Left) and an SCN-
lesioned animal (Right). Recordings were performed using microchip transponder scanner for a period 
of 12 days. Each line corresponds to one day. Vertical black data line represents the number of bouts 
of activity per 10-min bin. Above the actograms, the schedule bars indicate the light and the dark 
conditions. Adapted from (DeCoursey et al. 1997) 

 

 In 1979, a brilliant work by Inouye and Kawamura tested the autonomy of the 

rat SCN clock. They isolated a small hypothalamic “island” that contains the SCN, 

thus free of all neural inputs from other brain structures. Then, they recorded neural 

(multiple unit) activity from two electrodes simultaneously, one in or near the SCN 

and the other in different neural locations. In intact animals, SCN and all brain sites 

tested presented a circadian rhythmicity of spontaneous neural activity, while in 

animals (that were also blinded) with this hypothalamic island containing the SCN, 

rhythmic electrical activity was lost elsewhere but persisted in the island (Inouye and 

Kawamura 1979). In brief, the rhythmic activity of the island did not depend on inputs 

from other brain areas.  
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 A few years later, it was demonstrated that brain slices containing the SCN 

maintained a circadian rhythm in electrical activity (Green and Gillette 1982). It was 

also shown after isolation of the SCN that the peptide hormone vasopressin—which 

is synthesized in and secreted daily by the SCN (see Fig. 12, for the distribution of 

the different peptides in the SCN)—continue to be released in a circadian fashion for 

several days in vitro (Moore 1983; Earnest and Sladek 1986). Of interest, in the early 

90’s, a circadian rhythm in membrane conductance was revealed in isolated basal 

retinal neurons (Michel et al. 1993). Afterward, isolated neurons from the rat SCN 

were shown to express independently phased circadian firing rhythms, indicative of 

the presence of single-cell circadian oscillators (Welsh et al. 1995).  

 

Figure 12. Drawing representing neuropeptide distribution in the SCN neurons 

Many of the neurons within the core SCN express the neuropeptides VIP, GRP and the 

neurotransmitter GABA (not represented here). Neurons of the dorsal shell mostly express the 

neuropeptide AVP and GABA as well. AVP: arginine vasopressin; VIP: vasoactive intestinal 

polypeptide; GRP: gastrin-releasing peptide.  

 

 To further investigate a role for the SCN as a main conductor of circadian 

rhythmicity, Ralph and colleagues in 1990 used wild-type and Tau mutant hamsters 

(the latter having shortened endogenous periods, see part 2.2). By transplanting the 

SCN from a donor to a host animal bearing SCN lesions (SCN-x), they were capable 

of restoring a circadian rhythmicity. Interestingly, the transplant restored a free-

running rhythm that was characteristic of the period of the donor. Indeed, if the donor 

was a Tau mutant hamster, the SCN-lesioned wild-type hamster behaved as a Tau 

mutant. SCN-lesioned Tau mutant in turn, could be converted to a wild-type hamster. 

In other words, the restored rhythms always exhibited the period of the donor 

genotype (Ralph et al. 1990).  
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 All these findings showed that the SCN is a driving oscillator in the circadian 

system. The SCN will therefore be referring as a circadian pacemaker, i.e., a self-

sustained biological oscillator that can be entrained to external cues and distribute a 

rhythmic message to the rest of the body. 

2.3.2 Light input to the pacemaker  

 SCN neurons form an endogenous pacemaker sensitive to the daily light-dark 

cycle which appears to orchestrate a wide range of physiological and behavioral 

circadian rhythms in mammals. Since terminals of retinal axons were discovered in 

that location (Moore et al. 1972), a mediating role for the mammalian visual system in 

photic entrainement has been thus extensively investigated.  

 The eye is the sole light-sensitive tissue in mammals12. The SCN, especially 

the core region, receives input from the retina through a monosynaptic projection 

from retinal ganglion cells, the retinohypothalamic tract, which uses glutamate as a 

main neurotransmitter and is the main carrier of photic information13. The retina 

contains many neurons interconnected by synapses. Three types of neurons, called 

photoreceptors, are sensitive to light: rods that are primarily used in situations of less 

intense light and provide black-and-white vision; cones that function best in bright 

daytime light and are responsible for colour vision; and the intrinsically-photosensitive 

retinal ganglion cells (ipRGCs), crucial for non-image forming functions, that are 

presented below.  

 In 1999, Freedman and colleagues observed that photoentrainment was 

maintained in mice lacking both rods and cones, thus demonstrating that 

synchronization of circadian wheel-running activity to the light-dark cycle depends on 

an additional photoreceptor (Freedman et al. 1999). Meanwhile, a group of retinal 

ganglion cells were shown to contain a sensitive photopigment, called melanopsin 

that is excited in particular by blue-light. It was also revealed that the anatomical 

distribution of melanopsin-positive retinal cells was similar to the pattern of cells 

known to connect with the SCN (Provencio et al. 2000). Interestingly, the thus named 

                                                           
12

 In other vertebrates, light can be perceived by the pineal gland or deep brain photoreceptors. 
13

 Two addition neural pathways connect to the SCN: an indirect retinal projection from the ventral lateral 
geniculate nucleus of the thalamus, the geniculo-hypothalamic tract, which uses the neuropeptide Y; and a 
raphe-hypothalamic pathway that connects raphe nuclei to the SCN and uses 5-HT as neurotransmitter. 
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ipRGCs were capable of depolarization even when all synaptic inputs from rods and 

cones were pharmacologically blocked, supporting Freedman’s observation. In 

addition, the spectral sensitivity of ipRGCs and the fact that these cells respond more 

sluggishly to light than cones and rods, suggested that they could be the primary 

photoreceptors for photic entrainment of the SCN pacemaker (Berson et al. 2002). 

This has been further confirmed by Hattar and his colleagues, who showed that 

axons of ipRGCs directly target the SCN (Hattar et al. 2002).  

 To formally investigate the role of melanopsin in light entrainment of the SCN 

pacemaker, Panda and colleagues generated mice lacking the melanopsin gene. 

These mice entrained normally to a light-dark cycle and did not show altered 

endogenous period in constant darkness. However, they displayed altered light-

induced phase resetting of the SCN demonstrating that melanopsin is required for 

normal circadian photoentrainement (Panda et al. 2002). Of interest, mice lacking 

ipRGCs expressed more deficits in circadian light responses (Guler et al. 2008). 

Moreover, mice deficient in both melanopsin and classical photoreceptors exhibited 

an entrainment phenotype comparable to that of enucleated mice (Panda et al. 

2003). In short, partial functional redundancy may exist between ipRGCs, rods, and, 

to a lesser extent, cones to ensure normal photic entrainment (Fig. 13) (Paul et al. 

2009; Altimus et al. 2010; Lall et al. 2010).  

 



50 
 

 

Figure 13. Schematic view of retinal circuitry and light entrainment 

Photic signals are conveyed to the SCN via photoreceptor cells, especially the melanopsin-containing 

cells, which project directly to the SCN along the retinohypothalamic tract. Signal transduction to the 

molecular oscillator likely involves VIP, PACAP and glutamate releases at terminals. Changes in 

intracellular Ca2+ concentration lead to activation of several kinase pathways (e.g., MAPK, PKA) that 

in turn activate the transcription of different genes that are part of the SCN molecular architecture. 

Adapted from (Morse and Sassone-Corsi 2002). 

 

 Among the multiple neurotransmitters that can affect SCN cells, glutamate and 

pituitary adenylate cyclase-activating polypeptide (PACAP) release from the 

retinohypothalamic terminals play a crucial role for mediating the circadian actions of 

light (Morse et al. 2002; Meijer and Schwartz 2003; Hannibal 2006). SCN cells 

contain receptors sensitive to the peptides, NMDA, PAC2 and VPAC, leading to the 

activation of signaling pathways that will lead in turn to transcription-transduction and 

phosphorylation reactions that will influence the SCN’s molecular machinery. In this 

context, neurons located in the ventrolateral part of the SCN have a strong capability 

of light-induced gene expression. The c-Fos gene, which has DNA-binding properties 

for transcriptional activation and whose transcription is regulated by phosphorylated 

CREB (Ginty et al. 1993), is proposed as a functional marker of the photic pathway. 

Indeed, bright light pulses administrated during the subjective night have been shown 

to induce FOS expression in the SCN (Fig. 14) (Rea 1989; Kornhauser et al. 1990).  
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Figure 14. Photomicrographs of SCN coronal sections stained for c-Fos immunoreactivity. 

(A) Control rat, and (B) a rat which received 15 min of bright (2200 lux) white light exposure. SON, 

supraoptic nucleus; OC, optic chiasm. Magnification = 30x. From (Rea 1989) 

 

 To summarize, for a proper phase-adjustment of the mammalian pacemaker to 

the external environment, SCN neurons receive direct input from the retina in order to 

synchronize cellular activities to the 24-h light-dark cycle. In this context, the ipRGCs 

play an important role to mediate photic entrainment and activate (through glutamate 

and PACAP releases) multiple protein kinases, immediate early genes such as c-Fos 

and clock genes (Fig. 15), which will be further presented in the following part. 

 

 

Figure 15. Signal transduction of photic 

messages in the mammalian SCN 

Glutamate and PACAP releases following 

photic stimulation interacts with NMDA and 

PAC1 receptors, respectively. The light-

induced increase of Ca2+ leads to the 

activation of several cytoplasmic 

mechanisms that in turn leads to the 

phosphorylation of the transcription factor 

CREB and to induction or change of clock 

gene expression. In parallel, the stimulation 

of the PAC1 receptor activates several 

signaling pathways (e.g., cAMP/PKA), 

resulting in the potentiation of attenuation 

of glutamate signaling. CaMKII: 

Ca
2+

/calmodulin-dependent kinase II, IP3: 

inositol 1,4,5-trisphosphate, NMDAR: N-

methyl-d-aspartate receptor, PKC: protein 

kinase C, PLC: phospholipase C. From 

(Hannibal 2006)  
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2.3.3 A journey to the center of the clock 

 The process of SCN synchronization involves the transcriptional activation of 

different genes. As outlined above, light-induced cellular changes in calcium and 

kinase levels within the SCN (Motzkus et al. 2000; Hannibal 2006) lead to activation 

of immediate early genes, such as c-Fos, containing a cAMP responsive element 

(CRE) in their promoter region (Fig. 15). Interestingly, the Period (Per) clock gene, in 

particular its two isoforms Per1 and Per2 (Albrecht et al. 1997; Albrecht et al. 2001), 

have been shown to be light-responsive and to also possess CRE sequence in their 

promoter (Travnickova-Bendova et al. 2002). Thus the Per genes play a major role 

for the establishment of a new circadian phase following a change/perturbation in the 

light-dark schedule (Fig. 16).  

 

Figure 16. Photic modulation of Per genes in a diurnal rodent 

Coronal sections of the SCN of diurnal rodents exposed to a light-pulse (100 lux, 1 h) or not (control) 

during the subjective day (midday or Circadian Time 04) and the early (CT12) and late night period 

(CT20). Scale bar = 1 mm. Adapted from (Caldelas et al. 2003) 

 

  

  



53 
 

 However, in the absence of environmental light variations, biological rhythms 

are still observed in the circadian range, from cellular (e.g. electrical activity of SCN 

neurons) to behavioral levels (e.g., locomotor activity of an animal). These self-

sustained activities take their origin from a clockwork that orchestrates rhythmic gene 

expression, and thus periodic fluctuations in cellular functions. Indeed, the 

mammalian molecular basis of circadian oscillations relies on clock genes/proteins, 

which control their own transcription/translation. Among some of the discovered 

factors are the essential Period 1-3 (Per1, Per2, Per3), Cryptochrome 1,2 (Cry1, 

Cry2), circadian locomotor output cycles kaput (Clock) or its analogue neuronal PAS 

domain protein 2 (Npas2), brain and muscle Arnt-like 1 (Bmal1), reverse viral 

erythroblastis oncogene products (Rev-erbα and Rev-erbβ) and retinoic acid-related 

orphan receptors (Rorα, Rorβ, Rorγ) (Ko and Takahashi 2006; Guilding et al. 2007). 

 Clock genes are co-expressed (in virtually all tissues) and their products 

reciprocally interact at the transcriptional/translational levels to generate circadian 

oscillations. At least three auto-regulatory feedback loops are interconnected (Fig. 

17): one positive in which CLOCK and BMAL1 dimerize to activate the E-box14 

mediated transcription of Per and Cry genes; one negative whereby upon reaching a 

critical concentration, PER and CRY proteins enter into the nucleus to inhibit the 

transactivation mediated by CLOCK:BMAL1, therefore inhibiting their own 

transcription; and an interconnecting loop, in which Rors can activate the 

transcription of Bmal1 and Npas2, whereas Rev-erbs can repress Bmal1, Clock and 

Npas2, via retinoic acid–related orphan receptor response element (RORE15) 

(Preitner et al. 2002; Guillaumond et al. 2005; Crumbley et al. 2010; Crumbley and 

Burris 2011). This loop ensures the fine-tuning of circadian rhythms. In addition, post-

translational mechanisms such as protein phosphorylation, affect stabilization, 

degradation and subcellular localization of clock proteins, thus contributing to the 

molecular clockwork16 (Lee et al. 2001; Ko et al. 2006). 

 

                                                           
14

 The consensus sequence for the E-box element is CANNTG (where N = ANY base). 
15

 The 11pb consensus sequence for the RORE is WAWNTRGGTCA (where W = A or T, N = ANY, R = A or G). 
16

 This model is continuously completed. 
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Figure 17. Simplified cellular model of the mammalian molecular circadian clockwork  
 
Circadian rhythms are generated by transcriptional/translational feedback regulatory loops of core 

clock genes. CLOCK (or NPAS2) and BMAL1 can dimerize to rhythmically transactivate genes 

containing a specific DNA sequence (E-box) in their promoter region. As a result, the transcriptional 

activity of Pers, Crys, Rors, and Rev-erbs is enhanced, and their products from translational activity 

are cyclically released in the cytoplasm. Then, when PERs and CRYs proteins reach a critical 

concentration, they form heterodimers that translocate into the nucleus to repress transcriptional 

activity induced by CLOCK (NPAS2):BMAL1, leading to their own repression. An additional loop 

involves the nuclear receptors Rev-erbs and Rors, which can translocate into the nucleus to modulate 

Bmal1, Clock, and Npas2 transcription via opposite action on a RORE sequence located in their 

promoter. 

 

 Overall, this highly sophisticated clock mechanism takes ~24 h to complete 

one full oscillation. Thus, each clock component has its acrophase at a specific time 

of the day17 (Fig. 18) and mutation/deletion have profound consequences on 

circadian organization (see part 5.3).  

 

                                                           
17

 Intriguingly, regardless of whether an animal is diurnal or nocturnal in terms of behavior, the circadian 
pattern of clock gene expression in the SCN is not markedly different. Not to mention the same aspect in SCN 
electrical activity that occurs during the day period in both diurnal and nocturnal animals. 
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 It is now well-established that the circadian clockwork can function within a 

single cell. Besides, SCN neurons are circadian pacemakers that can show rhythms 

in electrical activity when isolated from other neurons (Fig. 19). However, SCN 

neurons in vivo are part of a network. Hence, in order to be in an exact synchrony, 

SCN neurons may communicate with each other through gap-junctions (Jiang et al. 

1997; Long et al. 2005), synaptic interactions, GABAergic transmission (Shirakawa et 

al. 2000) and neuropeptide release (Aton et al. 2005; Kim et al. 2009). As a result of 

synchronization, the precision of the period of the SCN pacemaker increases as a 

function of its cells interactions. In other words, the fluctuations in the period of 

electrical activity decrease as single-cells synchronize to a cellular network, which 

synchronize further to an entire living organism (Fig. 20). As an aside, it is important 

to mention that we currently have little knowledge regarding the inter-relationships 

within the SCN between rhythmic neural electrical activity and rhythmic gene 

Figure 18. Circadian variations of clock genes 

mRNA in the SCN 

Rev-erb α and Per1 mRNA levels peak early in 

the subjective day, Per2 and Cry1 levels peak 

later in the subjective day, while Bmal1 peaks in 

antiphase to these, in the subjective night. 

Expression of clock proteins are delayed by 4–

6 h with regard to mRNA. Subjective night is 

indicated by the black bar along the time axis. 

Note that Clock (not represented) is continuously 

expressed. From (Guilding and Piggins 2007) 

 

 

Figure 19. Circadian variations of 

electrical activity in SCN neurons 

2 cells were recorded from separate mouse 

SCN explants. Both display a circadian 

rhythms in firing rate.  

From (Herzog et al. 1997) 

 



56 
 

expression18. Despite this fact, it clearly appears that both ionic and molecular 

mechanisms are in perpetual reciprocal interaction (and can even be phased over 

time) to produce a functional pacemaker (for review, see Colwell 2011).  

 

 

 

 In the context of synchronization, the SCN pacemaker uses many output 

pathways to adjust biological functions to a 24-h schedule. The daily increase in SCN 

neuron firing rate itself has been assumed to be an output of the circadian system 

(Colwell 2011). It will be show in the following part that the periodic synchronous 

fluctuations of thousand of neurons are interpreted outside the SCN by other brain 

regions and peripheral tissues at a specific time of the day.  

2.4 The mammalian circadian timing system  

 Up to now, I focused on the SCN pacemaker to introduce the fundamental 

mechanisms at the basis of circadian oscillations. However, the SCN is not the sole 

biological entity that can exhibit self-sustained activity, rhythmic clock gene 

expression, and/or that can distribute a periodic message to the rest of the body. 

Indeed, the circadian timing system is multi-oscillatory by nature, particularly in 

                                                           
18

 In the context of cell-autonomous oscillations and intercellular coupling, the participation of glial cells has to 
be taken into consideration.  

Figure 20. Distribution of circadian 

periods in two types of SCN culture 

and at the animal level 

(A, D) Electrical activity in dispersed cell 

culture. Note the strong fluctuations in the 

intrinsic periods between single cells. (B) 

Electrical activity of single-cell recorded in 

SCN slice culture. Note that the periods 

vary less between single-cells. (C) Period 

of locomotor activity in individual rats, 

depicting slight variations from one animal 

to another. (D, E) Period variations within 

a dish and a slice. (F) Distribution range 

of behavioral rhythm. From (Honma et al. 

2004) 
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mammals. It is composed of several endogenous oscillators in anatomically discrete 

locations that form a highly sophisticated circadian network, regulating an amazing 

array of biological functions. In this context, major brain areas (e.g., hypothalamic 

nuclei) and peripheral organs (e.g., liver) possess their own clockwork to regulate the 

transcription of genes and hence local cellular events.  

2.4.1 The brain oscillators  

 The output of the clock machinery consists of changes in neural activity and 

gene expression associated with neurotransmitter releases. Apart from generating 

self-sustained circadian clock gene expression, the interlocked positive and negative 

feedback loops within the SCN are essential for the rhythmic transcriptional control of 

circadian output genes or clock-controlled genes (CCGs) (Fig. 21).  

 

 

 GABA, glutamate, AVP, VIP, transforming growth factor α (TGFα), prokineticin 

2 (PK2), cardiotrophin-like cytokine (CLC), are strong candidates for intrinsic 

timekeeping signals that travel from the SCN to the rest of the brain (Guilding et al. 

2007). For instance, rhythmic immunoreactivity for the AVP CCGs has been 

demonstrated in efferent projections of the SCN (van Esseveldt et al. 2000). 

Interestingly, as demonstrated by SCN grafts experiments, the humoral release of 

AVP is important for the restoration of circadian electrical activity in the 

paraventricular nucleus (PVN) of the hypothalamus in the absence of direct neural 

connections (Tousson and Meissl 2004). In addition, AVP release from SCN 

terminals has been demonstrated to be crucial to control daily variations in 

Figure 21. Clock-controlled 

genes linked to the circadian 

molecular mechanism. 

Both positive and negative limbs 

reciprocally interact to govern the 

transcription of CCGs.  
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corticosterone levels (Kalsbeek et al. 1992; Kalsbeek et al. 1996). Another interesting 

candidate, PK2, has been shown to be expressed on a circadian basis and to be 

modulated by light exposure (Cheng et al. 2005). Furthermore, the 

intracerebroventricular injection of PK2 inhibits locomotor activity (Cheng et al. 2002). 

Recent observations in mice lacking PK2 support its role in the circadian control of 

locomotor activity (Li et al. 2006). Intriguingly, transplantation experiments of isolated 

SCN tissue have demonstrated that SCN projections are not required for the control 

of circadian locomotor rhythms, suggesting that a diffusible factor such as PK2 may 

sustain circadian activity (Silver et al. 1996). However, graft transplantation of SCN 

failed to restore endocrine rhythms (Meyer-Bernstein et al. 1999), showing that the 

daily SCN output signaling are either accomplished through synaptic connections or 

rely on nearby tissues that are direct targets of local diffusible factors.  

 Detailed topography of the SCN efferents has been revealed by studies using 

anterograde and retrograde tracing techniques (Watts and Swanson 1987; Watts et 

al. 1987; Kalsbeek et al. 1993). Within the hypothalamus, the SCN connects with the 

PVN, dorsomedial nucleus (DMH), ventromedial nucleus, lateral hypothalamic area 

(LH), arcuate nucleus (ARC) and retrochiasmatic area. SCN efferents can also 

terminate in the preoptic area, the bed nucleus of the stria terminalis and the lateral 

septum. The paraventricular nucleus of the thalamus (PVT) is also directly 

innervated. SCN projections to the habenula and amygdala (AMY) are also 

considered (Fig. 22) (for reviews, see Kalsbeek and Buijs 2002; Saper et al. 2005; 

Dibner et al. 2010). Furthermore, it has been revealed that SCN efferents can 

indirectly control crucial neuroendocrine rhythms for the distribution of rhythmicity to 

the entire body, such as those of melatonin. In short, a multisynaptic pathway 

involving the PVN, the preganglionic sympathetic neurons in the spinal cord and the 

superior cervical ganglia, allow the SCN to control the rhythmic synthesis of 

melatonin19 by the pineal gland (Moore and Klein 1974; Kalsbeek et al. 2006). 

                                                           
19

 Melatonin, secreted during the night, is a key hormone for seasonal and circadian variations in biological 
functions.  
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Figure 22. Direct SCN projections 

Efferent pathways from the SCN (red) to hypothalamic (yellow) and thalamic (green) brain regions. 

AMY, amygdala; ARC, arcuate nucleus; BNST, bed nucleus of the stria terminalis; DMH, dorsomedial 

hypothalamus; HB, habenula; IGL, intergeniculate leaflet; LS, lateral septum; POA, preoptic area; 

PVN, paraventricular nucleus of the hypothalamus; PVT, paraventricular nucleus of the thalamus; 

SCN, suprachiasmatic nuclei; sPVZ, subparaventricular zone. From (Dibner et al. 2010) 

 

 The discovery of clock genes, amongst other things, uncovered in turn a 

substantial number of brain structures, outside the SCN, that exhibit circadian 

oscillations. The retina was the first autonomous oscillator—pacemaker—to be 

discovered outside the SCN. Cultured retina exhibited circadian rhythms of melatonin 

synthesis that can be entrained by light cycles; that was free-running in constant 

darkness; and that was temperature compensated20 (Tosini and Menaker 1996; 

Tosini and Menaker 1998). The olfactory bulb is one additional brain structure that 

can also oscillate in a self-sustained manner (Granados-Fuentes et al. 2006). The 

habenula (Hb), especially the lateral Hb, may contain an autonomous oscillator as 

well (Zhao and Rusak 2005; Guilding et al. 2010). A vast number of brain locations 

have now been identified as extra-SCN oscillators—thus oscillators that do not meet 

the criteria to be classified as pacemakers. Indeed, more than 20 extra-SCN tissues, 

such as the hippocampus and the AMY have shown at least one rhythmic cycle of 

clock components observed at the mRNA or protein level (for an exhaustive list, see 

Guilding et al. 2007).  

                                                           
20

 Of note, the Tau mutation shortened the free-running rhythm of melatonin synthesis by 4 h, suggesting that 
common mechanisms may be shared between the SCN and the retina pacemakers.  
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 Circadian rhythms have also been observed by using transgenic Per1-

luciferase rats. Interestingly, 14 of the 27 brain areas examined expressed Per1 in a 

rhythmic fashion in vitro (Abe et al. 2002). Among these structures, the ARC nucleus, 

the pineal and pituitary glands all expressed rhythms that persisted for several days 

in vitro, although rhythmicity in some regions damped more rapidly over time than 

others (Fig. 23). 

 

 

 

Figure 23. Real-time recording of bioluminescence from Per1-luciferase transgenic rats 

Tissues were explanted 1 h before light-offset (see arrow and light and dark periods in the top left 

plot). Note that the SCN differs from other tissues in the phase and amplitude of PER1-luc circadian 

expression. AN: arcuate nucleus; Pit: pituitary gland; Pin: pineal gland. Adapted from (Abe et al. 2002). 

 

 All these findings indicate that the brain contains several circadian (strong or 

weak) oscillators that regulate multiple biological functions (Fig. 24). However, most 

oscillators depend on signals derived from the SCN for their cellular activities. In that 

respect, the SCN delivers circadian time information to the whole body through 

neuronal (e.g., autonomous nervous system) and humoral routes to fine-tune its 

control of many brain and peripheral tissues.   

 

 



61 
 

 

Figure 24. Potential circadian oscillators in the mammalian brain 

Self-sustained circadian oscillators are shown shaded in red, semiautonomous oscillators in blue, and 

slave oscillators in green. AMY, amygdala; ARC, arcuate nucleus; BNST, bed nucleus of the stria 

terminalis; CB, cerebellum; CX, cortex; DG, dentate gyrus; DMH, dorsomedial hypothalamus; DRN, 

dorsal raphe nucleus; HB, habenula; Hip, hippocampus; LH, lateral hypothalamus; ME, median 

eminence; MRN, median raphe nucleus; NAc, nucleus accumbens; NTS, nucleus of the solitary tract; 

OB, olfactory bulb; OVLT, vascular organ of the lamina terminalis; Pi, piriform cortex; Pin, pineal gland; 

Pit, pituitary gland; PVN, paraventricular nucleus of the hypothalamus; PVT, paraventricular nucleus of 

the thalamus; Ret, retina; RVLM, rostral ventrolateral medulla; SCN, suprachiasmatic nuclei; SON, 

supraoptic nucleus; VLPO, ventrolateral preoptic area; VTA, ventral tegmental area. From (Dibner et 

al. 2010). 

2.4.2 The peripheral oscillators  

 As aforementioned, several hypothalamic nuclei receive direct neuronal 

connections from the SCN (Watts et al. 1987; Dibner et al. 2010). Interestingly, these 

nuclei project in turn to peripheral tissues, such as the liver (la Fleur et al. 2000; 

Shibata 2004), pancreas (Buijs et al. 2001) and adipose tissue (Kreier et al. 2002) via 

autonomic output pathways.  

 Indeed, the role of the autonomic nervous system is not only illustrated by the 

sympathetic innervations that permit the SCN to control melatonin release, but also 

by the multisynaptic pathway that connects the SCN to the adrenal gland. Autonomic 

projections of the SCN via the PVN to the intermedio-lateral column of the spinal cord 

to the adrenal contribute to the daily release of the adrenocorticotropic hormone 

(ACTH) (Buijs et al. 1999). This network is highlighted by the finding that light induces 

(clock) gene expression and corticosterone secretion in/by the adrenal gland via the 
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SCN-sympathetic nervous system—since SCN lesions and transection of a 

sympathetic nerve route completely suppressed this effect (Ishida et al. 2005).  

 Virtually all peripheral tissues contain a circadian oscillator, as many express 

clock genes and can, in culture, show 24-h rhythms in gene expression (see part 

4.1.2 for more detailed) (Tei et al. 1997; Damiola et al. 2000; Abe et al. 2002). As an 

example, the adrenal gland exhibits rhythmic clock gene expression that is disturbed 

in clock mutant mice (Oster et al. 2006). In addition, circadian oscillations are also 

observed in several peripheral tissues by using real-time visualization of circadian 

expression of mPER2::LUC reporter in vitro (Fig. 25) (Yoo et al. 2004) and in vivo 

(Tahara et al. 2012).  

 

 Surprisingly, some tissue explants can sustain circadian cycles that dampen 

over several days, even when they were derived from SCN-lesioned animals. 

However, SCN lesions produced internal phase desynchrony between tissues but not 

between cells within a given tissue. These observations suggest that the SCN plays a 

role as a phase coordinator and that, organ-specific synchronizers at the cell and 

tissue levels may exist to ensure a coupling between cells and thus tissue oscillations 

for several cycles (Yoo et al. 2004). Nevertheless, this conclusion was not supported 

by other studies which showed that the circadian oscillations observed in tissue 

explants did not necessarily imply that cells were synchronized in vivo (Yamazaki et 

al. 2000; Stratmann and Schibler 2006), and that the SCN central pacemaker is 

essential to impose phase coherence between oscillating cells within a peripheral 

Figure 25. Circadian oscillations 

of PER2-luc in the SCN and 

peripheral tissues 

Tissues were taken 1 h before 

light-offset (see arrow and light 

and dark periods in the bottom left 

plot). Note that all tissues show 

circadian oscillations for several 

days that dampened differently 

over time. From (Yoo et al. 2004) 
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organ (Guo et al. 2006). In addition, contrary to peripheral oscillators, the coupling 

between SCN neurons also renders them more resilient to clock gene mutations (Liu 

et al. 2007). 

 Taken together, these findings indicate that the SCN, in coordination with the 

light-dark cycle, is essential to synchronize cell-autonomous oscillators in the brain 

and peripheral organs, via direct and indirect neural projections as well as releases of 

humoral factors. However, light is not the unique input or Zeitgeber that can 

orchestrate rhythmic activities in an oscillator. I will show that non-photic cues such 

as food can influence the brain (including the SCN) as well as peripheral oscillators 

(Fig. 26).  

 

Figure 26. Organization of the circadian timing system 

The master clock, located in the suprachiamatic nuclei (SCN) of the hypothalamus, adjusts the timing 

of many secondary clocks/oscillators in the brain and peripheral organs, in part via nervous pathways 

(dotted red lines). Light perceived by the retina is the most potent synchronizer of the SCN clock 

(dashed yellow arrow) while mealtime can synchronize peripheral clocks (blue arrows). 

 

2.4.3 Adaptive value of circadian oscillations  

 Long before humans introduced the concept of time and invented a clock 

mechanism to better apprehend their own world and organize their diverse activities, 

probably the first and simplest living organisms on earth adapted to nature’s motions 

by developing a sensitive internal measuring system to evaluate the approximate 

duration of external events, and the intervals between them, enabling them not to 

merely passively follow their environment, but on the contrary anticipate changes in 

an active manner and optimize their own metabolism.  
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 In such a perspective, it is therefore not surprising to observe periodic 

fluctuations of life functions in a wide variety of species and to identify gene 

sequences in portions of multiple organisms’ DNA that are at the base of a 

remarkable molecular clock mechanism. The likely ubiquitous nature of the latter can 

be viewed as the result of evolution. Indeed, organisms having a clock machinery 

(functional or not) probably share a common ancestry. Biological clocks could 

represent a vestigial mechanism, providing evidence for evolution. In that respect, 

chronobiology may in the future unlock some of the mysteries relating to 

development and evolution. 

 In any case, it is certain that either the inheritance of the characteristics of a 

well-adapted ancestral predecessor, or the fact that more than a few creatures on, in 

and above earth have evolved an internal time-keeping system in parallel, imparted a 

non-negligible survival advantage allowing them to deal with nature’s fickleness, such 

as the daily variations of sunlight, temperature, water/food availability, as well as 

greater phenomena such as seasonality, severe cold conditions, etc. 

 Furthermore, the presence of a clock timing system not only improves the 

ability of a living organism to adapt—metabolically speaking—in a rhythmic 

environment but considerably enhances its fitness under competitive conditions (e.g., 

feeding, mating and predation). In this context, the benefit of a clock system is also 

highlighted by its ability to respond to several stimuli, even in distinctive conditions. 

For instance, cavefish have evolved for millions of years in the perpetual darkness of 

subterranean caves in Somalia and present complete eye degeneration. 

Nevertheless, this fascinating animal still retains a circadian molecular clock that can 

be entrained by feeding time (Cavallari et al. 2011).  

 The benefits of having a clock therefore accrue to all organisms across their 

diverse kingdoms. 
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3. The mysterious food-entrainable oscillator 

3.1 Food as a Zeitgeber, first evidence 

 Foraging is fundamental for an animal to survive and can be influenced by 

several factors such as genetics and learning and memory capacities. Another 

element that may help animals in their search for food resources is the circadian 

timing system. Although light is the most prominent Zeitgeber, several non-photic 

stimuli, such as food, have been also shown to entrain circadian rhythms. 

Interestingly, feeding time can act not only on the SCN and peripheral tissues, but 

also on an oscillator which is not yet well-defined, called the food-entrainable 

oscillator (FEO), which helps multiple animals in their search for food. 

“A primary task of the foraging organism is to exploit spatial and temporal regularities of food 

availability in the environment.” (Mistlberger 1994) 

3.1.1 Honey bees 

 In the early 20th century, it was already known from von Buttel-Reepen that 

honey bees were able to learn the time of day when flowers secrete nectar 

(mentioned in Moore 2001). Meanwhile, the Swiss physician August Forel, when he 

had breakfast with his family on a terrace each morning, noticed that some forager 

bees from a hive located not far from his summer home, started to visit his breakfast 

table and even arrived, after a few days, at the time when breakfast was served. He 

also noticed that bees still came even if no food was put on the table, suggesting that 

this daily visit was not related to odor or other stimuli from food (mentioned in Renner 

1960). He suggested that “the bees remember the hours at which they had usually 

found sweets … they have a memory for time (Zeitgedächtnis)”. 

 In 1929, lngeborg Beling, a student of the famous ethologist Karl von Frish, 

published the first study on the time-sense of bees. Beling observed that honey bees 

were able to associate the time of day with the presentation of a food reward. By 

training bees to collect a sugar solution at specific location and during specific 

periods of time on several consecutive days, she observed that bees continued to 

return to the sugar source with greatest frequency at 24-h intervals even if sugar was 

no longer present (Fig. 27); food presented at 19-h or 48-h intervals did not train the 



66 
 

bees. In addition, Beling and her colleague Otto Wahl demonstrated a few years later 

that bees shielded from external factors such as light, temperature and humidity 

could still be trained to collect nectar and pollen at different times of day21. However, 

von Frish and colleagues did not conclude that time-sense in bees relies on an 

endogenous clock (mentioned in Moore and Rankin 1983; Moore 2001).   

 

 Evidence for the presence of an endogenous biological clock was given a few 

decades later by Max Renner (1955), in a series of translocation experiments. 

Renner trained bees in his laboratory in France to collect sugar water between 8:15 

p.m. and 10:15 p.m., and then he transported the bees overnight to New York, where 

they were placed in similar laboratory conditions. He observed that the following day 

of departure, bees arrived at the feeding table at the same previous French fixed 

time, despite having been displaced (Renner 1960). Renner’s studies give strong 

evidence that bees are oriented in time with an endogenous clock. 

3.1.2 Craving rats 

 In the early 1920s, Curt Richter would have first observed a phenomenon of 

circadian food anticipation in rats (mentioned in Davidson 2006). Later, Bolles and 

colleagues, as well as Edmonds, showed that when food22 was restricted to a 1-h 

span, rats exhibited increases in locomotor activity preceding food presentation, even 

thought food was presented during the light period (when rats are resting) or two 

times per day (Bolles and Stokes 1965; Bolles and Moot 1973; Edmonds 1977). In 

                                                           
21

 Bees were apparently moved 180 m below the surface of earth, in a salt mine, to exclude cosmic radiation 
influence.  
22

 Normocaloric standard chow pellets  

Figure 27. The time-memory of bees  

The bees were trained to come to a sugar 

source at a fixed time (16 to 18 h) during 

several consecutive training days. As they 

visited the sugar they were marked individually. 

The left graph shows the results on the test 

day, when sugar was omitted. The bees 

(individually numbered, see bar graphs) 

continued to arrive at the feeding location at 

the same time of the day. From (Saunders 

1977) 
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1979, Friedrich K. Stephan demonstrated that timely controlled food-seeking 

behaviors did not depend on the SCN pacemaker. He showed that bilateral SCN 

lesioned rats—thus arrhythmic in locomotor and feeding/drinking behaviors—that 

were previously fed on an ad libitum (AL) basis and then exposed to a restricted 

feeding (RF) schedule (i.e., rats received one meal every 12-h intervals) in constant 

darkness23, still displayed food-anticipatory locomotor activity (Fig. 28). Stephan 

concluded that food-anticipatory activity (FAA) was controlled by an oscillator outside 

the SCN (Stephan et al. 1979; Stephan et al. 1979; Stephan 1983). 

 

Figure 28. Food-anticipatory activity in SCN-x rats   

Double-plotted actograms (48 h time scale) showing locomotor activity for 2 rats (SCN6-7) in constant 

darkness. The arrow indicates the time when rats were SCN lesioned. Black line indicates the 

beginning of 1 h restricted feeding (food was given every 12-h intervals, thus twice a day). Note the 

increase of activity prior to the two mealtimes. From (Stephan 1983) 

3.1.3 Food anticipation in nature 

 Of note, other species such as fishes (Lopez-Olmeda et al. 2010), birds, mice, 

hamsters, rabbits24 (Caba and Gonzalez-Mariscal 2009), golden shiners (Lagud and 

Reebs 2000), marsupials and primates (Boulos et al. 1989) can all show abrupt food-

seeking behaviors prior to feeding time (for a review, see Mistlberger 1994). As 

aforementioned, even cavefish that have evolved in dark subterranean caves can 

show FAA in response to periodic food availability (Fig. 29) (Cavallari et al. 2011). 

                                                           
23

 To avoid a masking effect (i.e., inhibiting effect of light) on locomotor activity, such experiments are 
conducted in constant dark conditions.  
24

 Rabbit pups are normally fed by nursing only once a day and show a clear locomotor anticipatory behavior to 
the arrival of the nursing mother (see Caba and Gonzalez-Mariscal 2009). 
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3.2 The circadian characteristics of the food-entrainable oscillator 

 As demonstrated above, there is much evidence of an extra-SCN oscillator 

sensitive to feeding time that can control circadian behavioral activity. This oscillator 

was the object of much attention in the early 80s, particularly in rats. Numerous 

studies characterized the properties of the so-called FEO.   

3.2.1 Transient cycles and persistence  

 Stephan in the early 80s observed that SCN-lesioned rats25 exposed to a 24-h 

interval RF schedule exhibited after phase shifts of mealtime, transient cycles that 

are characteristics of photic entrainment (Fig. 30) (Stephan 1984). Meanwhile, other 

groups demonstrated that rats previously fed at a fixed time of the day, could show 

after being in AL conditions a more rapid entrainment when reexposed to RF, and 

could also exhibit bursts of activity associated with the former mealtime when food 

deprived. In other words, a previous experience of a scheduled RF facilitates the 

(re)appearance of FAA in response to food deprivation (Fig. 31) (Coleman et al. 

1982; Stephan 1992; Mistlberger 1994). Of note, FAA can persist at its usual phase 

                                                           
25

 As an aside, the study of FAA is facilitated in SCN-X rats, since the circadian control of locomotor activity by 
the SCN pacemaker is eliminated, making it easier to assess the FEO output under restricted feeding challenge.    

Figure 29. Food-anticipatory activity in 

fishes 

Representative actograms of zebrafish (A) 

and cavefish (B) maintained under constant 

darkness and fed once a day at a fixed time 

(ZT = 0). The mean waveforms of zebrafish 

and cavefish are represented below the 

actograms.  

Each point in the mean waveform has been 

calculated as the mean 6 SEM from 10 min 

binned data across all the experimental 

days (n = 30) shown on each actogram and 

all experimental aquaria (n = 5 for zebrafish 

and n = 3 for cavefish). 

From (Cavallari et al. 2011) 
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for a few days in some food-restricted animals that are placed back in AL conditions. 

However, in most cases, persistent activity is not observed following a day of AL 

access. On the other hand, FAA can reappear at its usual period even after repeated 

periods of AL access interrupted by food deprivation, or even 50 days after the last 

RF schedule (Clarke and Coleman 1986; Mistlberger 1994). Thus, this suggests that 

the FEO rapidly uncouple from (circadian) effectors that control (at least) locomotor 

activity, rather than dampen over time (Mistlberger 1994). 

 

 

Figure 30. Food-anticipatory activity in an 

SCN-X rat followed phase shifts of 

mealtime 

Double-plotted actogram of daily locomotor 

activity. Rectangles indicate 2 h food access 

during RF. DD or constant dark conditions. 

Phase shifts of food access are shown on 

the left. * indicates 2 days power failure and 

loss of data. 

Note that strong FAA appeared ~2-3 h prior 

to mealtime immediately few days after RF. 

Following phase delays of food access (e.g., 

- 4 h or - 8 h), clear transient cycles in 

activity are observed. Following phase 

advances, however, this rat did not show 

clear transients in activity. From (Stephan 

1984) 
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Figure 31. Food-anticipatory activity in a normal rat under light-dark conditions 

(A) Single-plotted actogram of wheel-running activity of a rat during AL food and RF access. The white 

rectangle during the light period indicates time of food access. Triangles represent the beginning 

(pointing down) or end (pointing up) of total food deprivation. (B, C, D) Waveforms of wheel running 

during AL (7 day average), RF (7 day average), and total food deprivation (3 day average), 

respectively. From (Mistlberger 1994) 

3.2.2 Feeding behavior and entrainment limits   

  Interestingly, rats both with and without SCN lesions are not capable of 

anticipating feedings at 18-h intervals (Stephan et al. 1979). Further experiments 

demonstrated that FAA is expressed only if food access is given under a circadian 

range. As a comparison, anticipatory wheel-running activity in SCN-ablated rats could 

not be reliably observed at 22-h intervals or shorter, and at 31-h intervals and longer 

(Fig. 32) (Boulos et al. 1980; Stephan 1981).   
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Figure 32. Limits of food entrainment in SCN-X rats   

Rats bearing SCN lesions were maintained in constant darkness and exposed to RF at short interval 

periods (i.e., 21, 20, 22 and 23-h intervals between food access; left figures) and long interval periods 

(i.e., 27, 29, 31, 33-h intervals; right figures). Note that rats entrained to the 24-h feeding schedule and 

can show consistent entrainment to schedules between 23 and 29 h. Black lines indicate food access 

and number on the left indicate the period of the feeding schedule. From (Stephan 1981) 

 

 The circadian limit of entrainment and the fact that FAA onset occurs regularly 

with a positive phase angle (i.e., a few hours before mealtime, see Fig. 31), 

especially for long intervals, may suggest that the mechanism at the base of the FEO 

is relatively supple and have a memory of phase displacement. The latter can be also 

supported by the post-feeding activity that can be seen in some animals (Fig. 32, left 

actograms, 24-h and 21-h intervals). The study of the free-running capacity of this 

putative FEO is obviously limited by the deleterious effect of prolonged food 

deprivation. These experiments are nevertheless informative of the circadian nature 

of the FEO.   
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3.2.3 Conclusion on FEO’s properties 

 The demonstration of a circadian range of entrainment, split transients and 

strong phase-specific persistence suggests that FAA is not simply the result of 

associative learning, classical conditioning or hourglass mechanism26. On the 

contrary, the above FAA characteristics are indicative of an oscillator that possesses 

a flexible intrinsic mechanism and that probably has the ability to retain or 

“remember” a circadian phase—likely associated with the memory of a specific 

location, as observation of food anticipation in bees supports this thought27. 

 All these findings thus confirm the existence of one (or multiple) oscillator(s) 

that drive FAA under restricted food access and that is anatomically independent of 

the SCN.  

3.3 Food anticipation, outputs and inputs 

3.3.1 The multiple aspects of the food-entrained physiology 

 In addition to general and wheel-running lomocotor activities, other 

behavioral/physiological parameters appeared to be controlled by the FEO as well. 

Not surprisingly, drinking behavior can be synchronized to the periodic food access, 

increasing (i.e., number of licks) a few hours before mealtime or being maintained 

during food deprivation (Boulos et al. 1980; Clarke et al. 1986). FAA can also be 

observed by assessing lever pressing behavior (Boulos et al. 1980) or by evaluating 

food-bin approaches (Mistlberger 1994).  

 Concomitant to an increase of locomotor activity, a rise of body temperature 

can also be measured in normal or SCN-X rats prior to feeding time. In addition to 

this food-anticipatory thermogenesis (FAT), a diet-induced thermogenesis (DIT) is 

observed as well (Fig. 33) (Krieger 1974; Nelson et al. 1975; Challet et al. 1997). The 

anticipatory rise in temperature, regardless of its association with physical activity, 

can be viewed as an adaptive mechanism that prepares an organism to ingest food 

efficiently. Moreover, DIT is related to the cost of digestion, absorption and nutrient 

processing and is as well a consequence of enhanced brown-adipose tissue (BAT) 

                                                           
26

 Not excluding, however, the participation of memory, conditioning, etc.  
27

 As starling birds give evidence of interactions between compass navigational system, memory and circadian 
clock systems.  
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thermogenesis due to excessive food consumption during a short time window. On 

the other hand, the decrease in body temperature before FAT can reflect the 

economizing strategy to save energy during food deprivation and to optimize food-

seeking behaviors at a specific time of the day (Fig. 33). 

 

Figure 33. Rise in body temperature before mealtime in control rats   

Mean core body temperature during 2 days of restricted feeding. The dashed rectangle indicates food 

access time. FAT: food-anticipatory thermogenesis; DIT: diet-induced thermogenesis. Adapted from 

(Davidson et al. 2000) 

 

 Corticosterone is another physiological parameter that shows a drastic 

elevation in anticipation to food arrival (Krieger 1974; Nelson et al. 1975). In 

nocturnal animals fed on AL basis, a regular peak of corticosterone occurs at the 

day-night transition and is controlled by the SCN pacemaker (Fig. 43). However, if 

food is restricted to a temporal window during the day, a second peak of 

corticosterone is observable before feeding time (Fig. 34). Of note, this RF-induced 

peak is not related to a possible stress induced by a food deprivation, since neither 

24-h ACTH levels nor 24-h adrenal and plasma corticosterone levels were higher in 

food-restricted animals (Wilkinson et al. 1979). In addition, rats or mice that were 

stressed by tube restraint for 2 h at the same time for several days do not develop an 

anticipatory corticosterone peak prior to stress-time (Ottenweller et al. 1987) nor 

show a phase advance of circadian activity rhythm (Challet et al. 1998). Thus, these 

findings suggest that the anticipatory acrophase of corticosterone induced by feeding 

time is likely controlled by a FEO.   
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 Finally, other metabolic variables, such as leptin and ghrelin rhythms can be 

phase-shifted in response to restricted day feeding (Fig. 35) (Bodosi et al. 2004; 

Martinez-Merlos et al. 2004). Both leptin and free fatty acids are entrained by a 2-h 

RF schedule. In particular, leptin and free fatty acids levels increase after and before 

mealtime, respectively, and can persist during food deprivation. However, i.c.v. 

administration of leptin failed to elicit FAA, suggesting that leptin rise is likely a direct 

response to food intake. On the other hand, the elevation of free fatty acids before 

mealtime could reflect mobilization of energy substrates to sustain FAA (Martinez-

Merlos et al. 2004). Parameters such as glucagon, insulin, and cholesterol, can also 

be affected by RF (Velasco et al. 1994; Diaz-Munoz et al. 2000; Martinez-Merlos et 

al. 2004). However, further investigations are needed to ensure that these metabolic 

actors are controlled by the FEO in the absence of a circadian control from the SCN 

pacemaker, and are not only a response to a low metabolic state.  

 

Figure 34. Rise in plasma 

corticosterone before mealtime in 

control rats 

Mean plasma corticosterone levels in 

male and female rats under RF 

schedule. Food access is indicated 

by white rectangles along the X-axis. 

Note that both male and female rats 

showed a peak of corticosterone 

before food access. Adapted from 

(Krieger 1974) 

Figure 35. Effects of feeding restricted to the light 

cycle on the diurnal rhythms of leptin and ghrelin 

in rats 

In rats with feeding restricted to the 12-h light period, 

phase-shift of plasma leptin (Pl Lep) and plasma 

ghrelin (Pl Ghre) can be observed. Hypothalamic 

ghrelin contents (HY Ghre) was not significantly 

affected. Filled symbols, RF rats; open symbols, free-

feeding rats. Gray column, dark period. Adapted from 

(Bodosi et al. 2004) 
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3.3.2 Will run for almost anything 

 As outlined above, standard food provided only for a few hours per day can 

elicit behavioral and physiological activation, especially in rats. A temporal restriction 

protocol can be replaced by a hypocaloric feeding protocol, in which a limited amount 

of food is given at a fixed time point (i.e., usually 50% of the AL daily intake). In this 

procedure as well, food anticipation is observed in SCN intact rats (Challet et al. 

1997). In addition, it has been mentioned that the anticipation of two mealtimes can 

be observed in rats (Mistlberger et al. 2012). Of note, if three meals are given for 

instance at 8-h intervals (thus three times per day), FAA is only observed for two out 

of the three meals and sometimes FAA jumps or shifts (with transient cycles) to 

another feeding time (Mistlberger 1994). This observation gives support to the control 

of FAA by the circadian system and not (only) by a memory/learning system. 

 Besides normocaloric food, access to salt solutions or salty food for 2 h each 

day failed to induce FAA (Rosenwasser et al. 1985). Similar results have been shown 

in rats that had access to a daily meal of protein, carbohydrate or fat, plus a free 

access to a complementary diet. Conversely, rats limited to two daily single-

macronutrient meals (i.e., associated protein-fat, or protein-carbohydrate meals) can 

exhibit FAA (Mistlberger et al. 1990). Thus, the energetic content of a meal appears 

to be crucial to entrain the FEO. This view is partially confirmed by a study 

demonstrating that glucose is sufficient to affect the circadian properties (i.e., elicit 

transients after phase-shift of feeding time) of the FEO (Stephan and Davidson 

1998). Of note, gastric distention does not seem necessary to synchronize the FEO 

(Stephan 1997). 

 Palatable but nonnutritive meals, such as saccharin, do not arouse the FEO, 

excluding taste as a main factor of entrainment (Mistlberger and Rusak 1987). Brief 

access to sucrose solution produces behavioral anticipation only after food 

deprivation in rats (Pecoraro et al. 2002; Waddington Lamont et al. 2007). Other 

attractive snacks, such as chocolate provided once a day at the same time without 

food deprivation, can induce FAA (Fig. 36) (Mendoza et al. 2005). However, this is 

not observed if the chocolate has no nutritional value, again confirming the 

importance of food energy content (Mistlberger et al. 1987). On the other hand, in 

hamsters, temporally limited daily access to chocolate can elicit FAA only if the SCN 



76 
 

is ablated or if the animals have limited access (i.e., 70%) to their standard food (Abe 

and Rusak 1992). In free-fed mice, however, a palatable chocolate snack failed to 

induce food anticipation, even if mice avidly consumed the snack and even if some 

related food-seeking behaviors can be detected (Hsu et al. 2010). Thus, the ability of 

the circadian system, in particular the FEO, to respond to palatable food, may 

depend on the motivational and metabolic states specific to each species, in addition 

to the nutritive aspects of the food.  

  

 From all these findings, we have seen that FAA can be induced by temporal 

restriction, hypocaloric feeding and to some extent by a daily palatable meal. Hence, 

the role of brain reward pathways in anticipatory behavior in rats can be highly 

considered. In addition, some addictive substances such as methamphetamine 

(MAP) have been demonstrated to act on the circadian timing system. In particular, 

daily injections of MAP have been shown to induce behavioral activation a few hours 

before the time of injection that can persist on the day of withdrawal (Shibata et al. 

1994; Iijima et al. 2002). In addition, in SCN-X rats and mice, continuous MAP 

exposure can restore a locomotor rhythm in the circadian range (Honma et al. 1987), 

while in intact animals exposed to constant dark conditions, MAP lengthens the free-

running period (Tataroglu et al. 2006). Of interest, the free-running activity induced by 

MAP can be entrained by a RF schedule in SCN-x rats. However, no FAA is 

detectable in this experimental design (Fig. 37) (Honma et al. 1989).  

Figure 36. Daily fixed access to a palatable 

meal entrained locomotor activity in rats.  

Mean activity waves for locomotor activity in 

restricted feeding scheduile (RFS; white 

circles) and in palatable meal entrainment 

(PME; black circles) groups during AL (A, D), 

during entrainment (B, E) and for the 3 days in 

food deprivation (C) or 4 days following 

interruption of palatable meal (F). Horizontal 

black bar indicates mealtime and vertical line 

indicates palatable mealtime (B, E). Horizontal 

white bar and dotted line indicate time of 

expected mealtime (C, F). Values represent 

mean±S.E. * Post hoc Tukey P<0.05. From 

(Mendoza et al. 2005) 
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 The intriguing effect of MAP suggests that a methamphetamine-sensitive 

oscillator (MASCO), also independent of the SCN, can control behavioral rhythmicity. 

However, it is not excluded that both MAP and food can act on the same circadian 

system, a unique oscillator (originally the FEO), or more likely, a multiple oscillator 

system (at least FEO + MASCO). As an aside, this system could be tightly 

associated with brain regions that form reward pathways and could rely on close 

molecular feedback loops that generate circadian oscillations in the SCN and extra-

SCN tissues as will be further discussed. 

3.4 When restricted feeding affects the circadian timing system 

 Usually, locomotor activity, body temperature, fatty acid synthesis (Hems et al. 

1975), or expression of specific genes (see below), start to increase at the beginning 

of the light-dark transition, provided that free-fed nocturnal animals are synchronized 

to a 12:12 light-dark cycle. Conversely, after having been acclimatized to a circadian 

feeding schedule, many animals’ body functions adapt to be in phase with feeding 

time.  

Figure 37. Methamphetamine-induced 

locomotor rhythm entrains to restricted 

daily feeding in SCN lesioned rats. 

Triple plotted actographs of SCN lesioned 

rats before, during and after the RF 

schedule. Note that rats were also blinded 

during the procedure (black arrow heads). 

Parallel vertical lines in the actograph 

indicate (left) methamphetamine treatment 

and (right)  

RF schedule: RF 10-14 means the food 

presentation from 10 to 14 h and RF 10-16 

from 10 to 16 h.  

Note that no FAA can be detected during 

the RF protocol. Note also that after 

termination of methamphetamine 

treatment, animals were de novo 

arrhythmic.  

From (Honma et al. 1989) 
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3.4.1 Peripheral tissues 

 In response to RF, the stomach has been shown to increase its capacity for 

distension (Martinez-Merlos et al. 2004). Disaccharidase and even mitotic activities 

showed rhythmic changes in the gastro-intestinal system with higher levels around 

the feeding time (Nishida et al. 1978; Scheving et al. 1983). Moreover, clock gene 

oscillations in peripheral tissues can be shifted by feeding time and thus be 

uncoupled from the circadian control of the central SCN pacemaker (Damiola et al. 

2000; Stokkan et al. 2001; Feillet et al. 2006). In particular, the liver (Fig. 38), kidney, 

heart and pancreas, showed gradual phase resetting of rhythmic gene expression in 

response to daytime feeding, similar to a change in photoperiod, indicative of the 

involvement of a clock-dependent mechanism (Damiola et al. 2000). Moreover, the 

liver oscillator, important for glucose and lipid homeostasis, has been demonstrated 

to exhibit significant metabolic phase adjustments and increased levels of metabolic 

genes expression in response to food restriction (Lima et al. 1981; Baez-Ruiz et al. 

2005). The fact that many physiological, metabolic and endocrine events (e.g., 

temperature, corticosterone changes as outlined above) are affected by a RF 

schedule suggests that some peripheral signals may serve to regulate, or even 

entrain the circadian functioning of other organs and tissues that communicate with 

(or represent) the FEO. 

 

 

Figure 38. Circadian accumulation of clock and clock-controlled genes in the liver 

Daytime feeding changes the phase of circadian gene expression in the liver. Mice, kept under a light-

dark regimen (lights on 6 a.m., lights off 6 p.m.), were fed exclusively during the light phase (6 a.m. to 

6 p.m.) or during the dark phase (6 p.m. to 6 a.m.). From (Damiola et al. 2000) 
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 In this context, glucocorticoids are good candidates. Indeed, the glucocorticoid 

hormone analog dexamethasone has been shown to induce circadian gene 

expression in cultured fibroblasts and to transiently change the phase of clock gene 

expression in the liver, kidney, and heart (Balsalobre et al. 2000). Besides, 

glucocorticoids can feed back to the central nervous system to modulate brain 

oscillators (Sage et al. 2004; Malek et al. 2007). The nutrient-responsive adenosine 

monophosphate-activated protein kinase (AMPK) is another candidate to inform the 

core clock machinery of metabolic changes (see part 4.4.2) (Lamia et al. 2009)). 

 Thus, feeding schedule has strong Zeitgeber properties on peripheral tissues, 

as evidenced by the uncoupling of peripheral oscillators from the SCN. Interestingly, 

peripheral organs connect directly through nervous pathways to the brain and can 

release multiple metabolic signals that can affect the core clock machinery.  

3.4.2 Brain nuclei  

 Contrary to peripheral oscillators, the SCN pacemaker is relatively impervious 

to the synchronizing effect of mealtime, provided that the animals are exposed to a 

light-dark cycle and ingest enough daily energy. Under severe food restriction (i.e., 

caloric restriction), however, the phase of the SCN and its synchronization to light are 

modified (Challet 2010). Different studies have measured c-FOS expression, as a 

marker of neuronal activity (Dragunow and Faull 1989) in different brain areas, to 

assess their responses to a scheduled feeding. In food-entrained rats, increased c-

FOS immunoreactivity before and after mealtimes have been observed in the DMH, 

LH, perifornical area, and only after feeding in the PVN (Angeles-Castellanos et al. 

2004; Gooley et al. 2006). In hypothalamic regions such as the LH, DMH and 

perifornical area, c-FOS expression has even been shown to persist for a few days 

when food was not provided at the expected time (Angeles-Castellanos et al. 2004). 

Several additional structures such as the BNST, lateral septum, nucleus accumbens 

(NAc), AMY, prefrontal cortex and PVT, showed up-regulated c-FOS expression in 

anticipation to food access (Fig. 39) (Angeles-Castellanos et al. 2007).  

 Besides, dopamine release is up-regulated in advance of a scheduled 

mealtime in the NAc (Hsu et al. 2010). In addition, the neuropeptide Y (NPY) and 

agouti-related peptide (AgRP) has been shown to increase prior to mealtime in, for 
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instance, the ARC nucleus, the PVN but not the DMH (Yoshihara et al. 1996; 

Crowley et al. 2005). PER2 rhythms are also sensitive to scheduled feeding in limbic 

forebrain areas (Waddington Lamont et al. 2007). Moreover, a phase-shift of mPer1 

and mPer2 expression is observed in mice fed only for 4 h during the daytime in the 

cerebral cortex and hippocampus, as well as moderately in the striatum, piriform 

cortex and PVN, and without effect in the SCN (Wakamatsu et al. 2001). Hypocaloric 

feeding has also been shown to affect PER1 and PER2 expression in multiple brain 

nuclei (e.g., DMH and ARC) (Feillet et al. 2008). These studies support the view that 

the FEO is probably not a unique structure, but involves several hypothalamic and 

corticolimbic brain regions.  

 

Figure 39. Temporal patterns of c-FOS immunoreactivity in corticolimbic structures 
Food-entrained rats (○) and their ad libitum controls AL (●). Significant cellular activation can be 

observed in all structures during the time when rats are anticipating food access and after mealtime. 

The hippocampus (F) is the only structure that does not show cellular activation associated with FAA 

and feeding. The horizontal bar on the abscissa represents food access. Values are mean±S.E. * 

Significant difference between AL and RF group obtained with the Tukey post hoc test (P<0.01), α for 

the AL group between peak and low time points, and δ for RF. From (Angeles-Castellanos et al. 2007) 

 

 It is worth noting that subdivisions of specific brain nuclei, such as the compact 

and ventral parts of the DMH, do not exhibit the same degree of response to RF in 

mice. In particular, mPer1 mRNA expression was strongly induced after feeding in 

the compact part of the DMH, while no significant rhythmicity was detected in AL 
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conditions (Mieda et al. 2006). In addition, the PER2 rhythm has been shown in some 

limbic forebrain structures to be dependent on adrenal integrity (Lamont et al. 2005), 

suggesting that corticosterone levels during a RF-schedule can act downstream of 

the SCN to synchronize the activity of structures, probably important to anticipate 

food access.  

 In addition to the synchronizing properties of RF, palatable meals also have an 

entraining effect on extra-SCN oscillators. Indeed, in rats with unrestricted standard 

food access, c-FOS and PER1 expression were shown to be in phase with a daily 

palatable meal in the PVT and limbic structures (Mendoza et al. 2005; Mendoza et al. 

2005; Angeles-Castellanos et al. 2008). However, no effects are observed on PER2 

levels in the limbic system in response to a daily access of sucrose solution in freely 

fed rats (Waddington Lamont et al. 2007). This was observed despite the efficiency of 

a sucrose solution in eliciting dopamine release in the NAc (Bassareo and Di Chiara 

1999; Rada et al. 2005). Taken together, these results show that some “hedonic” 

feeding signals can affect gene expression. However, the effects appear rather 

limited since the expression pattern of additional clock components is lacking. 

Therefore, the accurate synchronizing properties of a palatable meal on the core 

clock machinery remains to be further investigated. 

 To summarize, the results cited above give evidence that feeding 

synchronization—and the negative metabolic state associated with food restriction—

implies phase-adjustment of metabolic processes and gene expression in peripheral 

and brain tissues. As a result, many organs could likely play an essential role in food 

anticipation. Thus, the mammalian body is being carefully explored with a "fine-tooth 

comb" to delineate the FEO substrate(s) and its intrinsic core clock mechanism. 
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3.5 The food-entrainable oscillator, a needle in a haystack 

 As indicated above, the relevance of peripheral oscillators as well as brain 

nuclei for the generation of food-entrainable oscillations seems undeniable. 

Nonetheless, very little is known as of yet regarding the location and the exact 

molecular basis on which the FEO relies. The identification of the neural substrate 

and the molecular basis of the so-called FEO have indeed proved to be a real 

challenge these last 30 years. Different approaches have been used, but neither 

anatomical nor molecular approaches have really succeeded in elucidating the neural 

substrate or the precise molecular functioning of this mysterious oscillator. 

3.5.1 Lesional and pharmacological approaches 

 Subdiaphragmatic vagotomy was used in one study to remove afferents from 

the periphery to the brain and severely impact the normal function of the gastro-

intestinal tract. In this study, there was no change in the amount of FAA 

(Comperatore and Stephan 1990). Notably, the vagus nerve does not seem 

necessary for the ghrelin reponse to nutrients (Williams et al. 2003). To further 

investigate neural routes of communication between the periphery and the central 

nervous system, capsaicin-induced visceral deafferentation was performed in rats 

bearing SCN lesions (Davidson and Stephan 1998). However, as for vagal 

transection, capsaicin deafferentation did not prevent FAA, thus questioning the 

implication of neural pathways. The role of the liver oscillator in response to food 

restriction has also been investigated in rats rendered cirrhotic with carbon 

tetrachloride. These rats displayed, however, similar FAA and RF-entrained free fatty 

acids levels compared to normal rats (Escobar et al. 2002; Escobar et al. 2005). 

Nonetheless, abnormalities in liver functioning were not described in these studies. 

Of note, adrenalectomy did not block FAA either (Stephan et al. 1979). This result 

opposes to the highlighted role of corticosterone in the resetting of the circadian 

system, and can suggest that corticosterone signaling is somewhat dispensable for 

food entrainment. Of great interest, a study has investigated the role of the digestive 

system in the food-entrained oscillations that underlie FAA. The authors entrained 

rats to dual RF (i.e., two meals per day) and observed that FAA occurred for both 

meals. However, PER1-LUC rhythmicity in the digestive system (including liver, 

esophagus, stomach and colon) showed entrainment only to one-meal, dispelling the 
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hypothesis that FAA arises as a unique output of rhythms in the gastrointestinal 

system. Thus food anticipation is likely an output of a circadian FEO, likely located in 

the brain (Davidson et al. 2003). 

 On the other hand, brain regions can detect blood-borne feedback signals that 

can be indicative of perturbations in energy balance, such as diminished circulating 

metabolic fuels (e.g., glucose) or high food intake in a short time-period. In that 

context, lesion or induced-degeneration of brain structures essential for relaying 

circulating signal from the periphery, such as the area postrema28 and the ARC 

nucleus29, failed to affect FAA (Mistlberger and Antle 1999; Davidson et al. 2001). On 

the contrary, lesion of the parabrachial nuclei, which receive information from visceral 

and gustatory afferents and direct inputs from the area postrema and the nucleus of 

the solitary tract (NTS), altered food-anticipatory bin approaches and slightly 

attenuated FAT (Davidson et al. 2000). In one study, destruction of the ventromedial 

nucleus have also been found to affect FAA (Inouye 1982), but another study points 

to the importance of a sufficient time for recovery after lesion and the evaluation of 

food entrainment (Mistlberger and Rechtschaffen 1984). A lesional approach 

focusing on the paraventricular and lateral hypothalamic areas also failed to abolish 

FAA or mealtime associated food-bin approaches (Mistlberger and Rusak 1988). The 

pharmacological depletion of orexin neurons, essential for regulation of arousal and 

appetite, induced hypophagia and weight loss but did not affect anticipation of a daily 

meal (Mistlberger et al. 2003). Rats bearing large lesions of the AMY, hippocampus 

or NAc were able to anticipate meal timing (Mistlberger and Mumby 1992). Of note, 

specific ablation of the shell part of the NAc had a positive effect on FAA (Mendoza et 

al. 2005). Treatment with the dopamine antagonist haloperidol did not affected food-

entrained rhythms in intact rats either (Mistlberger et al. 1992). However, 6-

hydroxydopamine, a neurotoxin that selectively kills dopaminergic and noradrenergic 

neurons, injected into the PVN did eliminate the anticipatory rise of corticosterone 

(Honma et al. 1992). Lesion of the PVT appeared to change the phase of the food-

anticipatory corticosterone peak (Nakahara et al. 2004), without affecting FAA 

(Landry et al. 2007). Finally, zinc-induced anosmia in rats did not affect anticipation 

                                                           
28

 A region that lacks the blood-brain barrier (BBB). 
29

 The presence of a BBB is controversial for the ARC since some vessels in the ventromedial part lacks some 
BBB markers. At least, the close relationship of the ARC with the median eminence makes it important to 
integrate metabolic changes in the periphery.  
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during scheduled feeding, indicating that olfaction does not play an exclusive role—

Forel’s assumption (Coleman and Hay 1990).  

 Of great interest, the DMH has been shown to be crucial for producing 

circadian rhythms such as those of sleep and waking, locomotor activity, feeding and 

corticosteroid production. In addition, the DMH connects with several hypothalamic 

nuclei including the lateral area and the PVN (Chou et al. 2003; Saper et al. 2005). 

The DMH has thus been tested as a putative FEO. In that context, a first study 

demonstrated that cell-specific lesions of the DMH in rats caused a drastic reduction 

in the preprandial rise in locomotor activity, body temperature and wakefulness (Fig. 

40). The authors additionally showed that the degree of FAA correlated with the 

number of remaining DMH neurons (Gooley et al. 2006).  

 

Figure 40. DMH lesions attenuate food entrainment. 

After 3 weeks of restricted feeding, rats were deprived of food for 2 d so that the underlying behavioral 

and physiologic rhythms could be observed in the absence of the daily feeding-time cue. Black, 

rhythms during ad lib feeding; gray, rhythms during food deprivation period. (a–f) Unlesioned rats 

showed a marked shift induced by restricted feeding in the rhythms of locomotor activity (a), body 

temperature (c) and wakefulness (e). However, in DMH-lesioned rats, rhythms of locomotion (b), body 

temperature (d) and wakefulness (f) remained in phase with the light-dark cycle rather than with the 

daily meal. Data are reported as hourly mean s.e.m. White-black bars at top, light-dark cycle; vertical 

gray bars, timing of food availability during restricted feeding. Rhythms during ad lib feeding and food 

deprivation are plotted twice to emphasize daily rhythmicity. From (Gooley et al. 2006) 
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 Nevertheless, further studies focusing on the DMH showed, by using similar 

and complementary methods to induce lesion and assess food anticipation, that food 

entrainment in DMH-x rats was normal and even persisted during a food deprivation 

(Landry et al. 2006; Landry et al. 2007). Clock gene expression, temperature and 

activity rhythms could be RF-entrained in DMH-ablated mice as well (Moriya et al. 

2009). Conversely, two additional studies gave evidence that the DMH may still play 

a role in the control of food anticipation. The first in mice showed that after 

widespread destruction of the mediobasal hypothalamus, comprising the DMH and 

parts of the VMH and ARC, a reduction of FAA to a similar extent than the initial 

study of Gooley et al. 2006 was observed but without affecting the entrainment of 

Per2 gene expression to mealtime in the liver (Tahara et al. 2010). The second study 

explored the tight connection between the SCN pacemaker and the putative DMH 

FEO in rats. The authors first revealed the presence of DMH GABA-projections to the 

SCN that can inhibit its intrinsic neuronal activity. Then they reported that DMH-

lesion, which results in a diminution of FAA, leads simultaneously to increased 

neuronal activity in the SCN (at the level of c-FOS expression). Intriguingly, the 

concomitant lesion of the SCN in the same animals (i.e., previously DMH-lesioned) 

restored FAA. They thus proposed that in intact animals, the DMH may play a role in 

food entrainment by inhibiting the activity of the SCN (Acosta-Galvan et al. 2011). 

However, the SCN lesions appeared rather incomplete in the actograms provided in 

Acosta-Galvan et al. 2011, and the metabolic state of the animal, especially after 

deep surgery, has not been communicated. Therefore, further studies are needed to 

clarify the exact role of the DMH. In addition, it is important to note that, in both this 

last study and those cited above, further behavioral, physiological or gene expression 

measures, as well as their evaluation in different lighting conditions, are truly lacking 

for the study of food entrainment.  

 From all these results, it appears likely that the FEO is not confined to only 

one (peripheral or central) structure. In the contrary, the FEO may be a network of 

distributed circadian oscillators (weak or strong, see Fig. 24) that allow the integration 

of multiple messages and that permit sustained food-entrainable rhyhms of behavior 

and physiology even in the absence of one component (Fig. 41).  
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3.5.2 Gene deletion strategy  

 Genetic strategies allowing modifications of the genome, especially in mice, 

have been widely used to study the FEO clockwork. Clock mutants were the first 

models phenotyped in the context of food entrainment. In spite of having a strong 

circadian SCN defect (Vitaterna et al. 1994), ClockΔ19 mutant mice exhibit higher 

and longer FAA than wild-type mice when challenged with RF, both in light-dark or 

constant dark conditions (Pitts et al. 2003). This result was also confirmed with the 

Clock-null mutant mice that also showed normal food-entrained clock gene 

expression to RF (Horikawa et al. 2005). It is interesting to note that both mutations 

did not affect the SCN functioning in the same manner and neither affected food 

entrainment. This could in part be explained by functional redundancy between clock 

genes, since NPAS2, a paralog of the CLOCK protein, can also heterodimerize with 

BMAL1 (Reick et al. 2001). In this context, deletion of Npas2 has been shown to 

have effect on Per2 mRNA oscillations in extra-SCN tissues (Reick et al. 2001). 

However, in response to temporal RF, mice knockout for Npas2 only displayed a 

Figure 41. Cartoon of the mammalian circadian 

system, illustrating known (solid arrows and circles) 

and hypothesized (dashed arrows and circles) 

components and pathways 

Circles without clock hands represent processes directly 

driven by other clocks or external stimuli. Sine waves 

represent overt rhythms. Light–dark cycles entrain a 

circadian pacemaker in the suprachiasmatic nucleus 

(SCN). SCN outputs via polysynaptic pathways drive 

daily rhythms of activity and feeding, autonomic 

efferents, hormones and body temperature, all of which 

contribute to phase control of circadian clocks and 

driven processes in peripheral organs. If food is 

temporally restricted, locomotor activity comes under 

control of a timing mechanism (most likely neural) with 

circadian properties that generates food anticipatory 

activity. There may be a central food-entrainable 

oscillator (FEO) coordinating behavioral and 

physiological rhythms to mealtime, or there may be a 

distributed system of central and peripheral FEOs, 

entrained in parallel by feeding related stimuli. From 

(Mistlberger 2011) 
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slightly delayed FAA (Dudley et al. 2003). The SCN functioning is also severely 

affected in mice double-mutant for Cry1 and Cry2 (van der Horst et al. 1999). These 

double-mutant mice expressed delayed and unstable FAA in light-dark or constant 

dark conditions, and disrupted FAA was also noticed when the SCN pacemaker was 

lesioned (Iijima et al. 2005).  

 A role in food anticipation for the main clock components Per1 and Per2 has 

also been investigated. Mice with a mutated Per1 gene (Per1Brdm1, considered a null-

mutant allele) exhibited FAA at levels close to their wild-type littermates (Feillet et al. 

2006). On the contrary, Per2Brdm1-mutant mice (that carry a deletion in the PAS 

domain) expressed reduced food anticipation of wheel-running and general activities 

as well as body temperature in response to temporal RF or hypocaloric feeding, 

regardless of the lighting conditions (Fig. 42). Per2 mutation, however, did not 

interfere with hepatic clock gene entrainment to RF (Feillet et al. 2006). On the 

contrary, in Per2ldc-mutant mice (a null-mutant allele) normal FAA both in a light–dark 

cycle and in constant darkness was observed. In addition, double Per1ldc; Per2ldc 

mutant mice exhibited normal FAA (Storch and Weitz 2009). The different 

consequence relative to complete or partial loss-of-function mutation strategies (i.e., 

creating partially or completely non-functional proteins) on the circadian timing 

system may explain these discrepancies (for review, see Challet et al. 2009). 

 

Figure 42. Daily wheel-running activity in wild-type (WT) (A), Per1 (B), and Per2 (C) mutant mice 

with hypocaloric feeding under light-dark conditions 
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Gray shading indicates lights off. Animals were fed ad libitum, submitted to hypocaloric feeding, and 

subsequently released into constant darkness with food ad libitum with the exception of the last day 

(arrow) when no food was accessible. The gray line indicates the time when hypocaloric food was 

provided. The arrow shows FAA at the expected time in both WT and Per1 mutant mice fed ad libitum 

in constant darkness. The bottom graph represents the mean daily-activity profile during the last 8 

days of hypocaloric feeding period (n = 6 in WT and Per1−/− mice and n = 4 in Per2
Brdm1 

mice; mean ± 

SEM). The gray line on the X axis indicates time of feeding. Note the lack of food-anticipatory activity 

in Per2 mutant mice (C). From (Feillet et al. 2006) 

 

 As studies that explored a role for the DMH in food anticipation gave diverging 

conclusions, investigations on the involvement of the Bmal1 clock gene in the FEO 

(and DMH) is controversial as well. Bmal1-/- mice (null-allele) are arrhythmic in 

constant darkness and strong alterations of their SCN clock machinery are observed 

(Bunger et al. 2000). In addition, when challenged with RF, Bmal1–/– mice did not 

show significant increase of locomotor activity and body temperature prior to 

mealtime (Fuller et al. 2008). By using viral vector containing the Bmal1 gene, Fuller 

and colleagues were able to demonstrate that the injection of this vector in the SCN 

of the Bmal1-/- mice can restore light-entrainable circadian rhythms (i.e., those of 

locomotor activity and body temperature) without positively affecting food-entrained 

rhythms. Moreover, injection of the viral vector containing the Bmal1 gene in the 

DMH can restore the ability of Bmal1-/- mice to entrain to RF without affecting light 

entrainment. The authors thus concluded that the DMH harbors a Bmal1-based FEO 

(Fuller et al. 2008). However, these results have been challenged by further studies 

showing that some FAA can be observed in the Bmal1–/– mice (Mistlberger et al. 

2008; Pendergast et al. 2009; Storch et al. 2009). Besides, methodological and data 

issues have been raised regarding Fuller and colleagues’ findings (Fuller et al. 2009; 

Mistlberger et al. 2009; Mistlberger et al. 2009). These caveats aside, it is important 

to mention that Bmal1–/– mice have profound developmental and metabolic defects 

(see part 4.3.1). To avoid these problems, a recent study has investigated food-

entrainable activity in mice lacking Bmal1 only in the nervous system. They showed 

that the emergence of FAA was severely delayed in these mice, supporting an 

essential role of the Bmal1 clock gene (in the nervous system) for a rapid adaptation 

to periodic feeding (Mieda and Sakurai 2011). 

 Mice lacking specific feeding-related genes have also been studied. 

Genetically obese Zucker ( fa/fa) rats that carry a mutation in the leptin receptor (see 

part 4.2.1 for a detailed description) displayed anticipatory rhythms greater than that 
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of control rats, that were maintained during food deprivation. This can suggest that 

leptin action is not an essential entrainment cue for the FEO (Mistlberger and 

Marchant 1999). On the other hand, mice carrying a mutation in the ghrelin receptor 

(GHSR knockout (KO) mice), exhibited diminished FAA and c-FOS immunoreactivity 

in several hypothalamic nuclei in response to RF (Blum et al. 2009; LeSauter et al. 

2009). Moreover, hypothalamic c-FOS expression patterns in unrestricted wild-type 

(WT) mice receiving daily i.p. injections of ghrelin can mimic those of mice under 

restricted feeding schedules (Blum et al. 2009). These results indicate that ghrelin 

can play a strong role in food entrainment. The role of ghrelin is highlighted by two 

additional studies. The first demonstrated that injections of ghrelin in free-fed animals 

(that were food-deprived following the injection) can increase general locomotor 

activity and subsequent food intake. In addition, the authors of the first study showed 

that the stomach oxyntic gland cells contained a putative FEO, since ghrelin and 

clock gene expression (i.e., PER1 and PER2) were controlled by the time of food 

availability and rhythmic expression of oxyntic cell ghrelin was abolished in Per1-

Per2(Brdm1) double-mutant mice (LeSauter et al. 2009). The second study gives 

evidence that the injection of ghrelin or an antagonist of the ghrelin receptor can 

increase or decrease, respectively, FAA prior to access to a palatable meal 

(Merkestein et al. 2012). Ghrelin thus seems to be a strong humoral signal to 

modulate food anticipation and motivational associated-behaviors such as feeding. 

 Genetic perturbations of several additional genes also led to interesting 

phenotypes regarding food entrainment. As outlined above, orexin is essential to 

regulate feeding and arousal. Orexin KO mice display reduced wakefulness and FAA 

but normal FAT before feeding time (Akiyama et al. 2004; Mieda et al. 2004; Kaur et 

al. 2008). Nevertheless, chemical destruction of hypothalamic orexin-producing 

neurons did not affect FAA (Mistlberger et al. 2003), thus not supporting an 

indispensable role for orexin. The role of the melanin-concentrating hormone (MCH, 

a neuropeptide that stimulates feeding) in food anticipation has been explored in 

mice deficient for the MCH1 receptor, with no effect (Zhou et al. 2005). On the other 

hand, melanocortins, crucial for the regulation of energy homeostasis, may influence 

food entrainment. Indeed, mice deficient for the melanocortin receptors MCR3 exhibit 

attenuated wakefulness and locomotor activity prior to food presentation concomitant 

with impaired clock gene expression in AL and RF conditions (Sutton et al. 2008). 
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Deletion of the orphan nuclear receptor Ear2 in mice, essential for the development 

of the locus coeruleus, reduced FAA in response to a RF challenge. Of note, Ear2-/- 

mice have impaired Per1 and Per2 expression in the frontal cortex as well as 

diminished NA levels in this brain region (Warnecke et al. 2005). Investigations 

focusing on the role of mu-opiod receptors in adapted-reward behaviors are also 

informative. During or prior to the activation of anticipatory behavior to a coming 

reward, the mesolimbic opioid system is activated (Spruijt et al. 2001). Of interest, 

mu-Opioid receptor KO mice do not show evidence of ethanol self-administration, or 

display attenuated MAP-induced behavioral sensitization and cocaine conditioned 

place preference—or reward cocaine effect—compared to wild-type littermates 

(Roberts et al. 2000; Hall et al. 2004; Shen et al. 2010). In the context of food 

entrainment, mu-KO mice showed reduced locomotor activity in anticipation of food 

access (Kas et al. 2004). This may suggest that a functional opioid system is 

essential to adapt behavior to the limited temporal access of a daily reward such as 

food. Finally, mutation in mice of the ionotropic glutamate receptor δ2 gene (Grid2), 

selectively expressed in Purkinje cells, led to an impairment of motor coordination 

and to a severe reduction of food-anticipatory components (Mendoza et al. 2010).  

 Hence, the FEO location does not appear to be confined to a unique structure. 

Multiple genes involved in clock regulation pathways, metabolic and feeding 

pathways, or even reward pathways, have emerged concurrently as important actors 

to drive food entrainment.  

3.6  General conclusion  

 The necessary effort to feed life has favoured the evolution of a food-

entrainable system to track temporal regularities and anticipate predictable changes 

of food resources in nature. Indeed, animals that occupy different time niches can 

forage at the most appropriate time of the day to ensure their survival. The increased 

expression of anticipatory behavior and physiology during artificially (i.e., in 

laboratory conditions) reduced food availability can thus reflect the triggering of 

circadian, motivational and metabolic processes to ensure that foraging takes place 

in the most efficient manner. 
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 From the studies presented above, the molecular (circadian) control of food 

anticipation is still elusive in mammals—both at the tissue and cellular levels—, but 

two working hypotheses emerge. The first is an assumption that food entrainment is 

dependent on at least a few clock genes (i.e., Per2, Bmal1, Npas2 and Cry1-2) and 

thus a food-entrainable clockwork model can be shaped and served to further 

integrate the role of other clock-related genes yet to be tested (for a review, see 

Challet et al. 2009). The second hypothesis opts for the involvement of other 

(circadian) mechanisms for food entrainment to be determined and supporters based 

their hypothesis on the observations that canonical clock genes are not involved for 

the functioning of the FEO nor for the MASCO30 (Mohawk et al. 2009; Storch et al. 

2009). 

 Incidentally, most of the studies that investigate the functions of genes in food 

entrainment used germline KO mice, which make the interpretation of results a bit 

challenging. Indeed, on one hand, the circadian system has been demonstrated to be 

relatively impervious to genetic perturbations in vitro (Baggs et al. 2009), which is 

supported in vivo by the few strong effects of clock gene deletion on the SCN 

pacemaker. Thus, significant impairment of the FEO clockwork could be hard to 

detect. On the other hand, clock gene deletion (as well as lesion of brain nuclei) can 

have broad consequences, in particular, on energy homeostasis (see part 4.3.1), 

rendering the evaluation of circadian food entrainment more difficult. 

 Finally, beyond the need to also (re)consider the participation of reward and 

learning processes in food entrainment (Silver et al. 2011), study of the simplest 

organisms (e.g., bee) could probably be informative for further investigations of the 

food-entrainable system. In parallel, the use in the future of inducible and reversible 

knockout, or even, optogenetic tools for targeted neural inhibition/activation may help 

to find the “needle(s) in the haystack”.  

                                                           
30

 The close nature between the MASCO and the FEO (a sole entity or two different systems) was mentioned 
earlier.  
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4. The circadian metabolism 

4.1 Circadian control of metabolic functions 

 In the previous part, we have seen that food restriction triggers direct 

consequences on the circadian system and energy balance. The following part will 

show that metabolic regulations are tightly regulated within the brain and peripheral 

tissues and that clock genes play a crucial role in this context.  

4.1.1 The hypothalamus 

 Considerable experimental work has highlighted the important role of 

hypothalamic nuclei in the control of feeding and energy metabolism. The 

ventromedial hypothalamic nucleus, LH and ARC nucleus contain glucose-sensing 

neurons and receive nutritional information from blood-borne signals and neuronal 

messages from brainstem nuclei, including parabrachial nucleus and NTS. Among 

the key hormones that modulate feeding via hypothalamic activity, leptin synthesized 

by adipocytes acts in particular on ARC to inhibit appetite and stimulate energy 

expenditure (Ahima and Lazar 2008). Insulin, released from the β cells of the 

pancreas, also has anorexigenic effects on the metabolic hypothalamus (Gerozissis 

2008). On the other hand, ghrelin, released by the stomach (that play a strong role in 

food entrainment), activates NPY/AgRP containing neurons in the ARC to increase 

appetite and decrease energy expenditure (Nogueiras et al. 2008).  

 As outlined before, an important role of the SCN is to orchestrate the internal 

ticking of different central and peripheral tissues. Therefore, 24-h rhythmic patterns 

can be observed for a plethora of metabolic substrates and hormones, such as 

glucose (Yamamoto et al. 1987; La Fleur et al. 1999), non-esterified fatty acids 

(NEFA), insulin (Yamamoto et al. 1987) and leptin levels (Kalsbeek et al. 2001), and 

are abolished in the absence of the SCN (Fig. 43). In addition, expression in the SCN 

of receptors to metabolic hormones (i.e., insulin, ghrelin and leptin) raises the 

possibility that peripheral hormonal signals can feedback to the SCN (Unger et al. 

1989; Hakansson et al. 1998; Zigman et al. 2006). 
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Figure 43. Daily rhythms in basal plasma glucose concentrations and a number of 

glucoregulatory hormones during different experimental conditions 

Plasma glucose, corticosterone, insulin and glucagon concentrations across the 24-h light/dark cycle 

show clear day/night rhythms in intact rats under conditions of ad libitum (Ad lib) feeding but are 

abolished by an SCN lesion (SCN-x). Adapted from (Kalsbeek et al. 2010) 

4.1.2 Circadian transcriptome 

 Microarray analysis of the mouse liver transcriptome showed that 9% of more 

than 2000 genes studied oscillate in a circadian manner and may be under the 

control of the SCN (Akhtar et al. 2002). Thus, the SCN modulates both behavior and 

metabolism by altering the phase of peripheral oscillators provided that food is freely 

available. Recent genome-wide transcriptome analyses performed in the SCN, liver, 

adrenal gland of mice, revealed that around 10% of transcripts are regulated in a 

circadian manner (Ueda et al. 2002; Oishi et al. 2003; Lowrey and Takahashi 2004; 

Oishi et al. 2005; Miller et al. 2007; Hughes et al. 2009). Of note, among these 

transcripts are found key regulators of glucose and lipid metabolism, and 

components of the xenobiotic detoxification pathway. Of the 49 nuclear receptors, 

that are key actors of metabolic regulations (see below), approximately 40% were 

cyclic in the liver or white adipose tissue (WAT) (Yang et al. 2006). Liver 

posttranscriptional and translational mechanisms contribute as well to circadian 

coordination (Reddy et al. 2006). 

 Therefore, the whole circadian system participates in the daily variation of 

metabolism. Several biological approaches and genetic models have given further 

insight into the maintenance of metabolic homeostasis and the crosstalk between the 

circadian system and metabolism, as will be further discussed below. 
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4.2 Metabolic diseases are associated with circadian disturbances 

4.2.1 Genetic obesity and diabetes 

 Monogenic causes of obesity and diabetes are relatively rare, especially in 

humans. For instance, early-onset obesity has been associated with a mutation in the 

leptin receptor in humans (Clement et al. 1998). In rodents, however, genetic 

syndromes of obesity and diabetes mellitus offer models of choice to analyze 

circadian disturbances associated with metabolic physiopathology. 

 In obese Zucker rats, which carry a mutation (i.e., fa) in the leptin receptor 

gene, daily rhythms of locomotor activity, body temperature and feeding are phase-

advanced (i.e., the active phase starts in the afternoon in contrast to the nocturnal 

onset in fa/? littermates) and their day-night amplitude is generally reduced 

(Fukagawa et al. 1992; Murakami et al. 1995; Mistlberger et al. 1998). The molecular 

clockwork in peripheral tissues is consistently disrupted in genetically obese, diabetic 

or not, mice. More precisely, in obese ob/ob and KK mice as well as in obese and 

diabetic KK-AY mice, the amplitude of daily profiles of clock gene expression in the 

liver or white adipose tissue is generally reduced, if not barely sizeable (Ando et al. 

2005; Ando et al. 2011). The results are more contrasted in obese and diabetic db/db 

mice because in their liver, expression of clock genes can be either decreased (i.e., 

Per2), up-regulated (i.e., Per1) or phase-advanced (i.e., Bmal1) (Kudo et al. 2004). 

Of interest, in ob/ob mice, alterations in peripheral clocks occur earlier than metabolic 

symptoms, such as morbid obesity and hyperinsulinemia, thus suggesting that 

metabolic disturbances are not the main cause of altered clockwork (Ando et al. 

2011). Within the central nervous system of ob/ob or KK-AY mice, clock gene 

oscillations have been studied in the NTS. The most salient changes concern Bmal1 

and Rev-erbα whose daily expression is up- and down-regulated, respectively 

(Kaneko et al. 2009). Moreover, the molecular clockwork of the SCN is not markedly 

affected in leptin-deficient, obese (i.e., ob/ob) mice (Ando et al. 2011). Unexpectedly 

in view of the severe dampening of overt rhythmicity in db/db mice, the amplitude of 

SCN molecular oscillations is significantly increased in these mice compared to db/+ 

littermates (Kudo et al. 2004). Finally, it is worth mentioning that ob/ob mice show 

increased photic resetting of the master clock (Sans-Fuentes et al. 2010). 
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4.2.2 Diet-induced obesity  

 In nature, species are not often confronted to food abundance. On the 

contrary, food can be rare for most animals and foraging is a key for survival (thus 

contributing to energy expenditure). Consequently, obese animals in the wild are 

uncommon, except for some species in which overweighting is important to support 

long periods of fasting (e.g., penguins, bears), and those species living in proximity to 

humans and consuming greasy food that is discarded by people. Most laboratory-

based research on obesity is carried out in rodents (West and York 1998). Control 

animals usually have an ad libitum access to a normocaloric chow diet. Despite this 

free access, most rodents regulate their consumption and the time when they eat and 

do not become obese.  

 Obesity can be induced by feeding rodents on an ad libitum basis with a high-

fat diet (HFD, more than 50% of metabolizable energy derived from fat). Short-term 

high-fat feeding reduces circadian variations of leptin levels in rats (Cha et al. 2000), 

and humans (Havel et al. 1999), thus suggesting that dampened circulating leptin 

could contribute to the development of obesity. In mice, high-fat feeding attenuates 

the daily pattern of food intake, with a higher consumption during the day and a 

concomitant decrease during the active period, before significant mass gain. 

Moreover, changes in the concentration and temporal pattern of expression of 

glucose, insulin, leptin and NEFA are also observed (Fig. 44) (Kohsaka et al. 2007).  

 

  

 

Figure 44. High-Fat Diet Alters Diurnal 

Patterns of Metabolic Markers. 

Mice were maintained on a 12:12 LD cycle and 

fed either RC (black lines) or HF diet (gray dotted 

lines) ad libitum for 6 weeks (n = 6–8 per group 

per time point).(A) Diurnal variation in serum 

leptin, glucose, insulin, free fatty acid (FFA), and 

corticosterone levels. Adapted from (Kohsaka et 

al. 2007) 
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 High-fat feeding also leads to difficulties in maintaining wakefulness during the 

active period and increases non-rapid eye movement sleep in mice (Jenkins et al. 

2006), as well as postprandial sleepiness in humans (Wells et al. 1997), suggesting 

that metabolic state affects neural structures regulating sleep. Equally interesting, 

HFD seems to have a direct effect on the main circadian clock. In mice, HFD 

lengthens the free-running period (Kohsaka et al. 2007) and disrupts photic 

synchronization of the SCN to light, as shown by slower re-entrainment to shifted 

light-dark cycle and reduction in light-induced phase-shifts (Mendoza et al. 2008). 

There is also a clear change in neuropeptide expression in the mediobasal 

hypothalamus, despite no major modification of the core clock machinery in that 

region (Kohsaka et al. 2007). In the brainstem, more precisely in the NTS, mice fed 

with HFD display altered daily patterns of clock gene expression (Kaneko et al. 

2009). Taken together, these results suggest that central dysfunctions may contribute 

to the development of obesity.  

 Oscillations of clock genes have been found in human WAT (Garaulet et al. 

2011), but no difference has been detected in the characteristics of these oscillations 

between lean, overweight and diabetic individuals (Otway et al. 2011). By contrast, 

the circadian timing of peripheral tissues is markedly modified by fat overload in 

rodents. HFD alters the diurnal variation in glucose tolerance and insulin sensitivity 

by influencing clock functioning (Rudic et al. 2004). In the liver, changes are seen in 

the level as well as the rhythmic pattern of major components of lipid homeostasis 

and adiponectin metabolic pathway, with parallel modifications in clock gene 

expression (Kohsaka et al. 2007; Barnea et al. 2009). In HFD-fed animals, 

expression of metabolic actors is asynchronous in liver and adipose tissue, 

suggesting the importance of temporal coordination among metabolic tissues. 

Furthermore, HFD also attenuates the amplitude of Clock, Bmal1 and Per2 in 

adipose tissue (Kohsaka et al. 2007). Hence, altered circadian clock function within 

adipose tissue may promote excess fat storage (especially intra-abdominal fat).  

 In summary, impairment of clock gene oscillations and metabolic pathways 

may explain the altered coordination of metabolic functions and clock-controlled 

output signaling, contributing to obesity and associated disorders (e.g., diabetes, 

sleep disturbances). Recent evidence also demonstrates that disruption of the 

circadian timing system solely, has various consequences on metabolism. 



97 
 

4.3 Circadian disruption is associated with metabolic dysfunctions 

4.3.1 Altered endogenous clockwork  

 As for the study of the FEO, one of the first clock genes studied was Clock. 

Homozygous C57BL/6J Clock mutant mice are hyperphagic, show a dampened 

feeding pattern, with increased food intake during the rest period, and attenuated 

energy expenditure at night, thus contributing to fat excess. Clock mutant mice 

display severe metabolic alterations, including hypercholesteronemia, 

hypertriglyceridemia, hepatic steatosis and hyperglycemia. In addition, Clock 

mutation leads to day-night changes in the expression of hypothalamic 

neuropeptides, like CART (Cocaine and amphetamine regulated transcript) and 

orexin mRNA, which play a role in central circuits regulating feeding and arousal (Fig. 

45) (Turek et al. 2005). Furthermore, Clock mutation induces profound changes in 

glucose homeostasis, such as increased insulin sensitivity and altered 

gluconeogenesis (Rudic et al. 2004). Of interest, in the liver, Clock has been shown 

to directly drive the expression of glycogen synthase 2 via E-boxes (Doi et al. 2010).  

  

 In Clock mutant mice generated on a CBA/6CaH background (which 

synthesize melatonin contrary to the C57BL/6J strain), impairments in glucose 

tolerance, insulin secretion, liver Pepck mRNA expression and increased insulin 

sensitivity are also observed, although these mice do not become spontaneously 

obese unlike C57BL/6J Clock mutants (Kennaway et al. 2007). Moreover, Clock 

Figure 45. Clock mutation alters the diurnal rhythms of 

clock and metabolic genes. 

Clock mutant mice display altered circadian patterns and 

abundances of Per2 mRNA (A) and mRNAs encoding 

hypothalamic peptides involved in energy balance. 12:12 LD 

cycle is indicated by bar at the bottom. Values for WT (redline) 

and Clock mutant (black line) mice are displayed as relative 

abundance (RA; mean +/- SEM). Brains were collected at 4-h 

intervals across the 24-h cycle. Orx: orexin; Ghr: ghrelin; 

CART: cocaine- and amphetamine-regulated transcript. From 

(Turek et al. 2005) 
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(Jcl:ICR) mutant mice display levels of triglycerides and NEFA lower than control 

mice, and cholesterol and glucose levels do not differ. Due to reduced lipid 

absorption and hepatic lipogenesis, these mice challenged with HFD show reduced 

body mass elevation, leptin and insulin levels (Oishi et al. 2006; Kudo et al. 2007). In 

spite of these discrepancies, due notably to strain-related differences, mutation of the 

Clock gene clearly has an impact on lipid metabolism, since Clock has been shown 

to participate in liver cholesterol accumulation (Kudo et al. 2008) and to amplify 

obesity in ob/ob mice (Oishi et al. 2006).  

 Bmal1, a close partner of Clock, has been shown to participate in adipocyte 

differentiation and lipogenesis (Shimba et al. 2005). Sensitivity to exogenous insulin 

is increased by deletion of Bmal1, while gluconeogenesis is suppressed (Rudic et al. 

2004). Liver-specific deletion of Bmal1 in mice nicely confirmed its strong 

involvement in glucose metabolism. L-Bmal1−/− mice have impaired expression of 

clock-related genes involved in hepatic glucose regulation such as glucose 

transporter 2, glucokinase or pyruvate kinase. L-Bmal1−/− mice were hypoglycemic 

during the resting period, were more glucose tolerant, have normal insulin sensitivity 

and production, and normal total body fat content compared to wild-type mice (Lamia 

et al. 2008). Altogether, these results demonstrate that Clock and Bmal1 modulate 

hepatic function to regulate glucose and fatty acid homeostasis. 

 Recent elegant studies have explored the role of Clock and Bmal1 in the 

pancreatic islets, demonstrating that the pancreas harbors a functional circadian 

oscillator (Fig. 46) (Marcheva et al. 2010; Sadacca et al. 2011). They showed that 

pancreas-specific Bmal1 mutant mice have higher blood glucose levels during the 

whole 24 h, impaired glucose tolerance and reduced insulin secretion. Moreover, 

pancreatic islets of these mutant mice have altered development and produced less 

insulin, suggesting that intact clock functioning in the pancreas is essential for normal 

insulin secretion (Marcheva et al. 2010). This study establishes clearly that circadian 

components can regulate local metabolism. 
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 Mutation of the core clock gene Per2 can also lead to abnormal conditions. In 

Per2-/- (Per2tm1Brd) mice, daily corticosterone rhythm is markedly attenuated. Of 

interest, when fed with HFD, these mice eat more during the rest period compared to 

wild-type mice and develop bigger obesity (Yang et al. 2009). Moreover, the rhythmic 

pattern in Per2-/- mice of alpha-melanocyte-stimulating hormone (α-MSH), a powerful 

appetite suppressing peptide, is disrupted and peripheral injection of α-MSH induces 

weight loss (Yang et al. 2009). In mice in which Per2 is fully ablated, lipid metabolism 

was altered with decreases in both plasma NEFA and total TG, and TG contents in 

the WAT (Grimaldi et al. 2010). In Per2−/− mice, and to a lesser extent in Per1−/− 

mice, glucose tolerance was increased (i.e., improved) compared to wild-type 

animals (Dallmann et al. 2006). By contrast, in Per1−/−;Per2−/− double-mutant mice 

(129/sv background) glucose tolerance and insulin sensitivity were both attenuated 

(Lamia et al. 2008). Triple mutant mice for Per1-Per2-Per3 gain more body mass on 

HFD than wild-type mice, similar to Per3 single mutant mice, thus indicating that the 

Per3 mutation alone accounts for the obese phenotype (Dallmann and Weaver 

2010). 

 Along with core clock components, secondary actors of circadian oscillations 

take part in metabolic functions. Rorα, activator of Bmal1 transcription, has been 

shown to participate in the regulation of Apolipoprotein C-III (Apo C-III) gene involved 

in triglyceride metabolism (Raspe et al. 2001), and lipid homeostasis in skeletal 

muscle (Lau et al. 2004). Rev-erbα, repressor of Bmal1, is involved in adipocyte 

differenciation (Fontaine et al. 2003; Wang and Lazar 2008) and rhythmic bile and 

Figure 46. Cell autonomous oscillator 

in pancreas 

Islets from Per2Luc mice were imaged, 

and the orange trace at the right 

represents the bioluminescence rhythm 

collected from the islet in the orange 

square (left). Traces from other islets 

are shown below. Adapted from 

(Marcheva et al. 2010) 
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lipid homeostasis (Le Martelot et al. 2009). Rev-erbα-/- mice displayed elevated 

serum Apo C-III and triglycerides levels (Raspe et al. 2002). Moreover, although the 

deletion of Rev-erbα alone has only a minor effect on hepatic glucose regulation (Le 

Martelot et al. 2009), the alterations are more pronounced with concomitant mutation 

of Per2 (Schmutz et al. 2010). Indeed, the expression of key enzymes of glucose 

metabolism, such as glucose-6-phosphatase or glucokinase, was more affected in 

the liver of Rev-erbα-/-/Per2 mutant mice.  

4.3.2 Altered rhythmic environment 

 There are two main external causes of disruption in circadian rhythmicity. The 

first one concerns chronic changes in timing of light-dark cycles, such as shift-work or 

chronic jet-lag. The second way relates to behavioral activity (e.g., physical activity, 

feeding) occurring on a regular basis during the usual resting period, such as during 

night-work. As detailed below, both situations have deleterious consequences on 

circadian organization and metabolic health. 

 Housing mice to light-dark cycles too short (i.e., 20 h) for enabling daily 

synchronization of their master clock leads to larger body mass gain and increased 

insulin/glucose ratio, indicative in the fasted state of insulin resistance (Karatsoreos 

et al. 2011). In human subjects exposed to controlled 28-h sleep-wake cycles under 

dim light (so-called ‘forced desynchronization’ protocol), circadian misalignment 

impairs glucose tolerance and reduces sensitivity to insulin (Scheer et al. 2009). 

Additionally, constant exposure of mice to bright or dim light leads to increased body 

mass and reduced glucose tolerance compared to mice housed under a regular light-

dark cycle (Fig. 47) (Fonken et al. 2010). Repeated weekly shifts of 24-h light-dark 

cycle in rats fed with regular chow diet lead to circadian desynchronization and 

trigger higher body mass gain (Tsai et al. 2005).  
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Figure 47. Body mass, fat pad mass, and glucose tolerance were altered in mice exposed to 

bright or dim light at night. 

(A) Weekly body mass for mice throughout the study (*P ≤ 0.05 when ligh-dark (LD) differs from both 

ligh-light (LL) and dim-light (DM) groups; 
&
P ≤ 0.05 between all groups). Mice exposed to light at night 

had elevated body mass beginning 1 wk after placement in experimental light conditions and 

continuing throughout the remainder of the study. (B) Body mass gain and epididymal fat pad mass 

differed among groups at the conclusion of the study, suggesting increases in body mass may be 

caused by changes in body fat composition. (C) Mice exposed to either DM or LL had reduced glucose 

tolerance, and DM and LL mice failed to recover blood glucose as rapidly as LD mice (*P ≤ 0.05 when 

LD differs from both LL and DM groups; 
+
P ≤ 0.05 when glucose level is higher in the DM group than 

in the LD group). (D) Body mass at the time of the GTT correlated positively with final blood glucose 

levels. (Fonken et al. 2010) 

 

 Being nocturnal animals, laboratory rats and mice exposed to a light-dark 

cycle consume most of their daily food during the night period. Access to food 

restricted to a few hours during the light phase usually leads to mild body mass loss 

or no change at all (Castillo et al. 2004; Feillet et al. 2006; Sutton et al. 2008). In 

more rare cases, food-restricted rats with chow diet available only for a few hours can 

increase their body mass (Martinez-Merlos et al. 2004). A clear contribution of 

circadian timing of food intake in body mass gain has been shown in Zucker rats (Fig. 

48) (Mistlberger et al. 1998). As mentioned above, fa/fa rats ingest a large proportion 

of food during the usual resting phase (i.e., light phase) in nocturnal rats. This study 

was the first to demonstrate that by limiting food access to the normal period of 

activity and feeding (i.e., nighttime in nocturnal rats), Zucker rats gained less body 

mass compared to free-fed animals, in spite of similar amounts of food intake 

between both groups (Mistlberger et al. 1998). More recent observations confirm 
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nicely the metabolic consequences of unusual timing of feeding. Mice fed ad libitum 

with HFD display a rapid increase in daytime feeding that takes place weeks before 

the obese phenotype is detectable (Kohsaka et al. 2007). Furthermore, when HFD 

was restricted to the light phase, mice gained more body mass than those on the 

same diet but with access limited to the dark phase (Fig. 48) (Arble et al. 2009). 

 

Figure 48. Importance of feeding time in genetic or diet-induced obesity 

In Zucker rats (upper panels), obese individuals (i.e., fa/fa; blue lines and bars) eat more during 

daytime than control littermates (fa/?; red lines and bars). When food access is limited to nighttime 

(orange lines and bars), fa/fa rats gain less body mass in spite of similar whole energy intake 

compared to free-fed individuals (modified with permission from (Mistlberger et al. 1998)). In C57BL6 

mice (lower panels), free access to a high-fat diet is associated with an increase in daytime feeding 

(purple line), while chow feeding is mostly nocturnal (red line). If high-fat feeding is restricted to 

daytime or nighttime hours (light and dark purple bars, respectively), body mass gain is larger in the 

former, despite comparable energy intake (drawn from data in refs. Martinez-Merlos et al. 2004; 

Kohsaka et al. 2007). 

 

 Another paradigm used to awaken rodents during their resting period (i.e., 

daytime) is forced activity that leads to internal desynchronization (Salgado-Delgado 

et al. 2008). Keeping food intake to the normal feeding period (i.e., night) in spite of 

diurnal forced activity prevents body mass and metabolic changes (Salgado-Delgado 

et al. 2010). Considering that exposure to bright light at night is an aggravating factor 

for the occurrence of pathologies in human night-workers (Arendt 2010), it may be 

clinically relevant to develop shift-work models in day-active animals.  
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4.4 Transcriptional networks connecting molecular clockwork and metabolic 

pathways  

 From genetic strategies allowing modifications of the genome in mice, it has 

been discussed above that most, if not all, clock gene deletions lead to a broad range 

of metabolic diseases. In addition, the effects of unhealthy food and incorrect timing 

of food intake on metabolic regulatory centers and the core clock machinery have 

been introduced. In this last section, an overview of the emergent understanding of 

the communication within the circadian clock circuitry will be given. The different 

molecular pathways by which clock-related nuclear receptors are involved in 

metabolism and the effects of nutrient “sensors” on core clock components are 

illustrated below (Fig. 49).  

 

Figure 49. A schematic illustration of the cross-talk between circadian components and 

metabolic regulators  
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The master clock housed in the SCN is connected to several brain and peripheral clocks to 

orchestrate rhythmic activities. All clocks share a common molecular mechanism in which the clock 

genes are coexpressed, and the generation of circadian oscillations is made from 

transcriptional/translational interactions (represented in the gray box; for more details, see Fig. 17). 

Clock genes can influence, directly or indirectly, the rhythmic expression of many metabolic genes 

(listed in the blue box). Clock components can also control rate-limiting enzymes in the NAD
+
 salvage 

pathway (i.e., Nampt) and heme biosynthesis (i.e., Alas1). Intracellular metabolism through the action 

of SIRT1, AMPK, and heme can impinge both metabolic genes and core clock machinery. In addition, 

epigenetic modifiers, such as HDAC3 recruited by REV-ERBα via NCoR1, modulate clock and 

metabolic gene transcription (orange box). 

4.4.1 The nuclear receptors’ dynamic network 

 Transcriptomal analyses have demonstrated that a large number of nuclear 

receptors are expressed in a circadian manner (Yang et al. 2006). Among them, 

Rors, Rev-erbs and peroxisome proliferator-activated receptor (Ppars) genes appear 

to be pivotal players at the interface between the circadian system and metabolism 

(Teboul et al. 2008). 

 As introduced earlier, RORs and REV-ERBs compete for binding RORE in 

clock gene promoters (Preitner et al. 2002; Guillaumond et al. 2005; Crumbley et al. 

2010; Crumbley et al. 2011). Rev-erbα has also been shown to repress its own 

transcription through a Rev-erbα responsive element (RevRE) located in its promoter 

(Adelmant et al. 1996). Interestingly, RORα binds to this site, thus controlling the 

transcription of Rev-erbα (Raspe et al. 2002). Hence, genes containing 

RORE/RevRE in their promoter are activated by RORα and repressed by REV-

ERBα. This highlights the occurrence of dynamic interactions within the core clock 

machinery.  

 In skeletal muscle, Rorα directly regulates the mouse caveolin-3 (Cav-3) and 

carnitine palmitoyltransferase-1 (Cpt1) genes, involved in fatty acid metabolism (Lau 

et al. 2004). Rorα also enhances activity of the human Apo C-III gene promoter 

(Raspe et al. 2001) and binds to the rodent Apolipoprotein A-I (ApoA1) RORE (Vu-

Dac et al. 1997). Additional evidence for the role of Rorα in metabolism is provided 

by the fact that cholesterol is a putative ligand of RORα (Kallen et al. 2004). 

Numerous studies have shown that REV-ERBs also influence lipid and energy 

homeostasis. The expression of a dominant negative version of Rev-erbβ in 

transfected cell lines attenuates expression of genes involved in lipid metabolism, 

such as fatty acid binding protein 3-4 (Fabp3-4), cluster of differentiation 36 (Cd36), 
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stearoyl-Coenzyme A desaturase 1, and cellular energy balance (e.g., uncoupling 

protein 3, Ucp3). Similarly to Rorα, Rev-erbα can bind directly to the human Apo C-III 

promoter (Raspe et al. 2002) and the rat Apoa-I promoter RevRE (Vu-Dac et al. 

1998). For the repressive action on Bmal1 transcription, Rev-erbα has been shown to 

recruit the nuclear receptor corepressor (NCoR)/histone deacetylase 3 (HDAC3) 

complex (Yin and Lazar 2005). Of interest, genetic disruption of NCoR1-HDAC3 

interaction in mice induces changes in Bmal1 expression and circadian behavior with 

concomitant effects on metabolism (e.g., increased insulin sensitivity, altered 

expression of metabolic genes). Surprisingly, loss of a functional NCoR1-HDAC3 

complex also protects mice from diet-induced obesity (Alenghat et al. 2008). On the 

other hand, a recent study has explored the role of the circadian genomic recruitment 

of HDAC3 in the mouse liver. They showed that REV-ERBα controls the circadian 

expression of lipid metabolism genes by recruiting the repressive chromatin modifier 

HDAC3 (and NCoR) to the genome during the light period, therefore preventing 

lipogenesis at a time when animals are resting. In addition, deletion of either Hdac3 

or Rev-erbα results in hepatic steatosis indicating steady lipogenesis (Fig. 50) (Feng 

et al. 2011). 

 
Figure 50. Regulation of hepatic lipid homeostasis by HDAC3  

(Left) Hepatic TG levels in livers from 9-week-old WT and Rev-erbα KO. Values are mean ± SEM (n = 

4). *P < 0.05 by Student’s t test. (Right) Model depicting the mechanistic links between the daily cycles 

of Rev-erbα expression (orange oval), HDAC3 genomic recruitment, epigenomic status, and hepatic 

lipogenesis. Adapted from (Feng et al. 2011) 

 

 These findings demonstrate that the circadian control of epigenetic modifiers 

by clock components is critical for normal metabolic processing. Additional evidence 

of the involvement of Rev-erbs in metabolism is provided by studies on heme which 

has diverse biological functions, including oxygen sensing, cell respiration and 

metabolism (Tsiftsoglou et al. 2006). Heme, whose expression occurs in a circadian 

manner (Kaasik and Lee 2004) can bind to both REV-ERB (Raghuram et al. 2007). 
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Heme binding to REV-ERBs facilitates recruitment of the nuclear corepressor NCoR 

(Yin et al. 2005; Raghuram et al. 2007). The rate-limiting enzyme in heme 

biosynthesis Aminolevulinate synthase 1 (Alas1), is directly controlled by the clock 

(Zheng et al. 2001). Heme biosynthesis is also influenced by the nutritional status 

through the regulation of Alas1 by the PPARγ coactivator 1α (PGC-1α) (Handschin et 

al. 2005). This nuclear receptor coactivator is induced by fasting (Handschin et al. 

2005) and participates in a variety of metabolic pathways such as glucose and lipid 

regulation (Lin et al. 2005). Moreover, both PGC-1α and heme are able to modulate 

the expression of circadian genes (Dioum et al. 2002; Kaasik et al. 2004; Liu et al. 

2007). These results illustrate how REV-ERBs can sense dynamic metabolic 

changes and transmit them to the core clock machinery. 

 PPARs are members of the nuclear hormone receptor superfamily of ligand-

activated transcription factors. The three PPARs (α, δ, γ) have been shown to 

regulate carbohydrate, lipid, lipoprotein and energy metabolism (Gervois et al. 2000; 

Yoon 2009). PPARα is rhythmically expressed in tissues with high fatty acid 

catabolism rates such as the liver and adipose tissue. PPARγ is rhythmically 

expressed in liver and WAT, while PPARδ expression oscillates in liver and brown 

adipose tissue (BAT) (Yang et al. 2006). PPARα is likely to play a role in connecting 

circadian physiology to metabolism. Pparα-deficient mice have normal rhythmic 

behavior and clock gene expression in the SCN, but PPARα deficiency alters Bmal1 

and Per3 expression in the liver. PPARα directly regulates hepatic Bmal1 expression 

through a response element located in its promoter (Canaple et al. 2006). Besides, it 

has been shown that Pparα is a clock-controlled gene (Oishi et al. 2005) and daytime 

feeding inverts its circadian expression pattern in the liver (Canaple et al. 2006). 

Interestingly, PPARα is also connected to the nuclear receptor Rev-erbα because the 

PPARα agonists (fibrates) induce liver expression of Rev-erbα. In addition, PPARα 

(as well as PPARγ) can directly transactivate Rev-erbα via RevRE located in its 

promoter (Vu-Dac et al. 1998; Gervois et al. 1999; Fontaine et al. 2003). Clearly, all 

these data demonstrate that the metabolic sensor PPARα may play a prominent role 

in circadian functioning. Other results indicate that PER2 has the capacity to recruit 

PPARα or REV-ERBα for the modulation of Bmal1 expression (Fig. 51) (Schmutz et 

al. 2010), again showing intimate interactions between clock and metabolic 

components in the clock circuitry.  
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 PPARγ and PPARδ are both involved in energy homeostasis. A recent study 

reveals that PER2 can interact directly with PPARγ to repress its transcriptional 

activity. Ablation of Per2 in cell culture increased induction of adipogenic genes, while 

deletion of Per2 in mice results in slight changes in circadian expression of PPARγ 

target genes in WAT (Grimaldi et al. 2010). These results demonstrate that the 

control of PPARγ by a circadian actor is essential for normal lipid metabolism. 

Interestingly, PGC-1 (PPARγ coactivator 1, as introduced above), which is involved in 

thermogenesis and associated metabolic responses (Puigserver et al. 1998; Liu et al. 

2007), is rhythmically expressed in phase with PPARγ, PPARδ and thermogenic 

genes such as Ucp1 and Thyroid receptor α (Trα), in BAT (Yang et al. 2006). 

Furthermore, PGC-1 can specifically bind PPARγ (Puigserver et al. 1998), whereas 

the latter can also interact with Ucp-1 promoter (Sears et al. 1996). All these findings 

suggest that PPARs, could transmit (diurnal) changes in heat dissipation to the 

circadian system. 

 Based on these data, nuclear receptors are controlling an amazing array of 

metabolic functions and are capable of communicating the body metabolic state to 

the core clock machinery. Incidentally, other nuclear receptor subgroups also 

participate in the interplay between metabolic and circadian physiology (e.g., Retinoid 

X receptor, Liver X receptor and Estrogen-related receptor) (for reviews, see Yang et 

al. 2006; Teboul et al. 2008; Asher and Schibler 2011).  

Figure 51. Model of how PER2 may 

couple E-box-driven and nuclear 

receptor-regulated gene expression. 

In the oscillator, both PER proteins act as 

repressors of E-box-mediated circadian 

transcription via interaction with BMAL1 

and CLOCK. In addition, PER2 can 

modulate NRE-mediated transcription via 

interaction with nuclear receptors. This 

affects expression of Bmal1 in the oscillator 

and target genes. These output targets can 

be modulated via E-boxes, NREs, or both. 

PER2–nuclear receptor interactions may be 

involved in this regulatory process (hatched 

arrows) to coordinate clock output 

processes. Modified from (Schmutz et al. 

2010) 
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4.4.2 Nutrient sensors interact with clock components  

 The tight connection between the circadian timing system and metabolism is 

also underscored by the role of nutrient sensors. Clock adaptation to metabolic 

reactions is likely to be achieved also by direct input of nutrient sensing regulators to 

the intrinsic clock machinery.  

 Recent evidence has demonstrated that local changes in cellular energy, such 

as redox reactions (portmanteau for reduction-oxidation), can influence the circadian 

expression of core clock genes and clock-related nuclear receptors. Nicotinamide 

adenine dinucleotide (NAD+) and its reduced form NADH, are coenzymes found in all 

living cells. NAD+ also exists in a phosphorylated form NADP+ and can be reduced 

to NADPH. NAD(P)+ and NAD(P)H are involved in cellular redox reactions. 

Interestingly, CLOCK:BMAL1 and NPAS2:BMAL1 heterodimers can sense 

intracellular redox status. The DNA-binding activities of these dimers are influenced 

by both reduced and oxidized forms of NAD(H) and NADP(H) in an opposing 

manner. The reduced forms (NADH and NADPH) activate DNA binding of 

CLOCK:BMAL1 and NPAS2:BMAL1, whereas the oxidized forms (NAD+ and 

NADP+) inhibit it, consistent with a role as redox sensors (Fig. 52) (Rutter et al. 

2001). 

 

 

 

 

  

Figure 52. Metabolic states and the 

mammalian circadian feedback loop 

BMAL1 can bind to Clock or NPAS2, and 

these heterodimers activate transcription. 

Alternatively, BMAL1 can form homodimers 

with itself that do not activate transcription. 

The formation of the Clock: BMAL1 and 

NPAS2:BMAL1 heterodimers and their 

binding to DNA is stimulated by reduced 

NADH and inhibited by oxidized NAD. These 

heterodimers enhance the expression of the 

clock genes Cry and Per (not shown) and 

the clock output gene Ldh. CRY proteins 

repress Clock: NPAS2-mediated gene 

activation, possibly by oxidizing the NAD
+
 

cofactors associated with these proteins. 

Conceivably, the negative action of CRY 

proteins on Clock-NPAS2 could be 

reinforced by lactate dehydrogenase (LDH), 

which may increase the cellular 

concentration of NAD
+
. (Only 

unphosphorylated NAD electron carriers are 

shown.). From (Schibler et al. 2001) 
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 These results raise the possibility that cell energy metabolism can influence 

circadian rhythmicity. For example, these clock protein sensors might participate in 

the rhythm imposed by the alternation of fasting-feeding. Indeed, NAD:NADH ratio is 

modified under fasting and feeding conditions since starvation lowers NADP:NADPH 

(i.e., shift toward a reduced state) in both rat liver mitochondria and cytoplasm 

(Williamson et al. 1967). Thus, for feeding synchronization, it is plausible that the 

cellular redox status could transmit changes in energy metabolism directly to the 

clock architecture. In this context, it is tempting to think that irregular mealtimes could 

also contribute to circadian misalignment by subtle perturbations of local circadian 

oscillator functioning.  

 Sirtuin 1 (SIRT1), another energy sensor, has recently been found to link 

circadian to metabolic physiology. SIRT1 is a NAD-dependent histone deacetylase 

that contributes to epigenetic gene silencing and a plethora of biological processes 

ranging from gluconeogenesis, insulin secretion and sensitivity, lipid regulation, 

mitochondrial activity and thermogenesis, adipogenesis and adipocyte differentiation, 

apoptosis, to caloric restriction-dependent life span extension (Blander and Guarente 

2004; Dali-Youcef et al. 2007; Yu and Auwerx 2009). SIRT1, whose expression 

occurs in a circadian manner, has been shown to influence circadian transcription of 

several clock genes (e.g., Per2, Cry1, Bmal1 and Rorα) (Asher et al. 2008). 

Moreover, SIRT1 can directly bind CLOCK:BMAL1 heterodimers and promote 

deacetylation of PER2 (Asher et al. 2008), BMAL1 and histone H3 (Nakahata et al. 

2008). Interestingly, SIRT1 can interact with and deacetylate PGC-1α to control the 

expression of gluconeogenic and glycolytic genes (Rodgers et al. 2005). In addition, 

hepatic SIRT1 is able to modulate the expression of PPARα (Purushotham et al. 

2009). Importantly, SIRT1 can also repress the fat regulator PPARγ and it is 

activated during fasting to promote fat mobilization in WAT, again demonstrating its 

clear implication in lipid homeostasis (Picard et al. 2004). Furthermore, SIRT1 has 

been shown to be decreased in adipose tissue endothelial cells from obese human 

subjects (Villaret et al. 2010). Of interest, since fat accumulation is associated with 

several adverse complications, such as diabetes and hypertension, caloric restriction 

(and consequent fat depletion) which has multiple biological and life-extending 

benefits (Barzilai and Gabriely 2001), may be used to prevent or treat metabolic 

disruptions. 
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 In addition to NAD(P)+ and SIRT1, AMP-activated protein kinase (AMPK) is a 

further important nutrient sensor. AMPK is sensitive to fluctuations in the cellular 

AMP:ATP ratio and can be activated by various factors such as exercise, glucose 

deprivation or leptin treatment. The functions of AMPK cover the whole-body energy 

balance (e.g., food intake, body mass, lipid and glucose homeostasis, cholesterol 

and triglyceride synthesis, energy expenditure) (Kahn et al. 2005). In mouse skeletal 

muscle and cultured myotubes, AMPK has been demonstrated to regulate genes 

involved in energy metabolism, by acting in coordination with SIRT1. Interestingly, 

AMPK activation increases NAD+ levels, which in turn enhance SIRT1 activity, 

resulting in the deacetylation and activation of the downstream SIRT1 target PGC-1α 

(Canto et al. 2009). Deletion of the AMPKγ3 subunit in mice leads to impaired 

expression profiles of clock genes in skeletal muscle in response to the AMPK 

activator AICAR (5-amino-4-imidazole-carboxamide riboside), and attenuated daily 

variations of the respiratory exchange ratio (Vieira et al. 2008). AMPK also has direct 

actions on the clock machinery. AMPK phosphorylates and destabilizes CRY1 

(Lamia et al. 2009). Casein kinase Iε, an important regulator of PER proteins stability, 

is also phosphorylated by AMPK which induces subsequent degradation of PER2 

and phase-shifts of peripheral oscillators (Um et al. 2007). Recently, it has been 

demonstrated that mice deficient for either AMPKα1 or AMPKα2 have altered 

circadian feeding behavior and free-running period (Um et al. 2011). Surprisingly, the 

rhythmic gene expression of leptin, PGC-1α and nicotinamide phosphoryl-transferase 

(NAMPT), a rate-limiting enzyme in the NAD+ salvage pathway regulated by 

CLOCK:BMAL1 (Nakahata et al. 2009; Ramsey et al. 2009), was abolished in AMPK-

deficient mice (Um et al. 2011). This study reveals that AMPK is to some extent 

involved in the cycling of NAMPT-(NAD+)-SIRT1-PGC-1α pathway. In addition, 

prolonged activation of SIRT1 by its agonist SRT1720 causes an indirect activation of 

AMPK, and both SIRT1 and AMPK respond to low-energy levels (Bordone and 

Guarente 2005; Kahn et al. 2005). Therefore, SIRT1 and AMPK may have 

overlapping functions to ensure the fine-tuning of metabolic and clock regulations. 

 Finally, it is important to mention that the mammalian molecular circadian 

clockwork (based on transcriptional–translational events) overviewed in this section, 

is not a unique cellular clock model. Indeed, circadian redox rhythms of 

peroxiredoxins, which are antioxidant enzymes, can occur independently of 
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transcription, thus defining a metabolic non-transcriptional oscillator (O'Neill and 

Reddy 2011). 

4.5 General conclusion  

 At the molecular/cellular levels, the recent findings cited above highlight 

multiple transcriptional crossroads between circadian and metabolic pathways in 

organs involved in metabolism, namely liver, adipose tissue, pancreas and muscle. 

Nuclear receptors such as Rors and Rev-erbs are well-situated to receive metabolic 

signals and integrate them into the core clock architecture. In addition, fluctuations in 

cellular metabolism can directly influence the transcriptional activity of core clock 

components such as Cry1, Per2, Clock and Bmal1. This can be of importance to 

adapt behavior and physiology to situation where food availability is limited in time.  

 At the level of the organism, the circadian timing system provides internal 

temporal organization controlled locally by brain and peripheral oscillators—including 

the FEO network—that can be reset by feeding time, and supervised by the master 

SCN pacemaker mainly reset by ambient light. Impairment of this internal timing due 

to altered endogenous (local) clockwork or misalignment with external cues, light 

and/or mealtime, has deleterious impact on health. 

 

 

 

 

 

 

 

[…} the hierarchically dominant position of the SCN is impressive, but limited. We like to think 

of it as an orchestra's conductor, using a large repertoire of gestures to set the timing of 

individual musicians in playing their instruments. However, the success of the symphony not 

only depends on the signs given by the director, but also on the capacity of the individual 

musicians to play their parts. (Schibler and Sassone-Corsi 2002) 
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5. Aim of the thesis 

5.1 Role of Rev-erbα in the clockwork of food anticipation 

 During my PhD thesis, which started in October 2008, I was involved in the 

study of the food-entrainable oscillator (FEO). In terms of molecular machinery, one 

of the current predictions is that food-entrainable oscillations are generated by 

transcriptional/translational feedback loops similar to those already described in the 

SCN. In this context, several mutant and KO mice models were used to test this 

hypothesis and Feillet and colleagues in 2006 gave strong evidence that Per2 is a 

circadian gene critical for behavioral food anticipation. This finding was a first step to 

better understand the functioning of the FEO. However, the other key components of 

the clockwork involved in food anticipation remained to be identified. 

 Thus, we assessed the involvement of the nuclear receptor Rev-erbα as a 

putative circadian regulator of food-entrainable oscillations. As outlined in the 

introduction, Rev-erbα is a transcriptional repressor that is expressed in a circadian 

manner (mRNA acrophase ZT6-10, Fig. 53) in all tissues studied up to now. 

Furthermore, Rev-erbα has been demonstrated to regulate several clock components 

including, Clock, Npas2 and Bmal1. In addition, the depletion of Rev-erbα in vivo was 

shown to shorten the SCN period length and disrupt the shifting response to light. All 

these findings thus support a role for Rev-erbα as a modulator of circadian-

dependent functions and make it an ideal candidate for the integration of 

environmental changes into the core clock machinery during food synchronization. 

 

 

Figure 53. Daily expression of Rev-erbα mRNA 

Note that the acrophase of Rev-erbα expression occurs in the middle of the light period. From 

http://bioinf.itmat.upenn.edu/circa 
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 As a model to investigate further the FEO, we used mice KO for Rev-erbα 

(kindly provided by Pr. Ueli Schibler and raised in our facility). WT and KO mice, with 

or without a functional SCN, were exposed to schedules of restricted feeding in 

different lighting conditions. We analyzed multiple food-entrained rhythms such as 

general locomotor and wheel-running activities, body temperature and corticosterone. 

We also studied the expression of PER2, considered as a component of the FEO 

clockwork, and p-ERK proteins in different brain areas, both in ad libitum (AL) and 

restricted feeding (RF) conditions. Since the liver oscillator plays a role in food 

synchronization, we evaluated the hepatic expression of clock and clock-controlled 

genes in response to RF challenge (Fig. 54).  

 

Figure 54. Study of the food-entrainable oscillator network in Rev-erbα KO mice 

We assessed the effect of scheduled feeding on central oscillators as well as the liver oscillator. 

Several behavioral and physiological food-entrained rhythms were evaluated.  
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5.2 Role of Rev-erbα in energy homeostasis 

 As highlighted in the introduction, the nuclear receptor Rev-erbα participates in 

several molecular pathways, especially in the cross-talk between the circadian 

system and metabolism. Indeed, Rev-erbα is highly expressed in peripheral tissues 

essential for energy homeostasis such as the liver, adipose tissue, skeletal muscle. 

In addition, this gene was shown to regulate the transcription of metabolic actors 

involved in lipid metabolism.  

 Besides, REV-ERBα expression has been demonstrated to be stabilized by 

the glycogen synthase kinase 3 beta (GSK3β). Heme binding to REV-ERBs can 

facilitate the recruitment of the nuclear corepressor NCoR, which in turn increase the 

capacity of REV-ERBα to recruit the repressive chromatin modifier HDAC3 to the 

genome (Fig. 55). Of importance, GSK3β, heme and HDAC3 are all involved in 

particular in energy homeostasis.  

 

Figure 55. The nuclear receptor Rev-erbα and its partners 

Rev-erbα transcription is controlled in particular by the CLOCK-BMAL1 heterodimer. REV-ERBα is 

regulated at the post-translational level by glycogen synthase kinase (GSK 3β), thereby regulating its 

stability. REV-ERBα protein can mediate repression by recruiting the nuclear corepressor NCoR1, 

which then activates the histone deacetylase (HDAC) 3. Heme binding to REV-ERBα facilitates the 

recruitment of NCor1. As a result, genes that contain a RORE sequence in their promoter are 

repressed. 

 

 Hence, we started in the early 2009 to gain insight into the role of Rev-erbα in 

energy homeostasis in vivo, since there was no report at this time on the metabolic 

adaptation of the Rev-erbα-deficient mice to various feeding challenges. Our 

investigation on energy balance was also justified by the fact that the use of clock 

mutants to study food entrainment implies a necessary exploration of their metabolic 

phenotype before drawing robust conclusions.  
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 In this context, we explored daily metabolism of carbohydrates and lipids in 

chow-fed, fasted or high-fat-fed Rev-erbα KO mice and their WT littermates. In 

particular, we assessed the adaptation of both genotypes to different nutritional 

challenges by evaluating behavioral, physiological and metabolic parameters. We 

have also evaluated the functioning of metabolically active tissues that are 

themselves peripheral oscillators, including the liver, adipose tissue and muscle, at 

the molecular levels (Fig. 56).    

 

Figure 56. Study of energy homeostasis in Rev-erbα KO mice 

We analyzed the physiological and molecular responses of multiple metabolic tissues in response to 

different feeding challenges (i.e., normocaloric versus high-fat feeding, fasting versus high-

carbohydrate refeeding challenge).  

 

 

 

 

 

 

  



116 
 

  



117 
 

Chapter 2 RESULTS  

1. The Rev-erb clock gene participates in the circadian clockwork 

of food anticipation 
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SUMMARY 

Limiting food access to a time window during the day (termed restricted feeding, RF) has 

profound synchronizing effects on circadian rhythms. A few hours before mealtime, rodents 

display food-anticipatory activity (FAA) as well as changes in physiological parameters (e.g. 

rise in body temperature). Food anticipation is thought to be controlled by a circadian food-

entrainable oscillator (FEO), independent of the central clock in the suprachiasmatic nucleus 

(SCN). Recent studies showed that disruption of some of the well-known circadian clock 

genes fails to affect the FEO, therefore questioning the hypothesized SCN-like molecular 

mechanisms responsible for food anticipation. In this context, we focused on the Rev-erbα 

clock gene. We showed that Rev-erbα-/- mice subjected to RF exhibited reduced FAA 

compared to wild-type littermates as demonstrated by decreased locomotor activities, 

regardless of the lighting conditions. In accordance with behavioral data, the anticipatory 

thermogenesis was nearly absent and the food-anticipatory peak of corticosterone was also 

diminished in Rev-erbα-/- mice. Conversely, hepatic clock gene expression was shifted in 

response to daytime feeding in both genotypes, indicating that disrupted FAA is not the 

consequence of impaired liver synchronization in Rev-erbα-/- mice. On the other hand, PER2 

expression was not phase-adjusted to mealtime in the cerebellum while p-ERK expression 

was not clearly responsive to scheduled RF in several hypothalamic regions. The present 

results indicate that mice lacking Rev-erb exhibit altered food anticipation, suggesting that 

this gene may be a component of the FEO. 

 

 

 

 

 

 

 

 

 

 

  



3 
 

INTRODUCTION 

 

 In mammals, the circadian timing system is composed of several endogenous 

oscillators. The suprachiasmatic nucleus (SCN), the central clock located in the anterior 

hypothalamus, is principally synchronized to the environmental light-dark cycle. The SCN in 

turn controls the daily rhythmicity of many aspects of physiology and behavior. The 

molecular machinery of the SCN clock is based on transcription/translation feedback loops of 

clock gene expression. Among them, Bmal1, Clock, Period 1-3 (Per1-3), Cryptochrome 1-2 

(Cry1-2), Ror,β and Rev-erb,β are essential (Crumbley and Burris, 2011; Guillaumond et 

al., 2005; Preitner et al., 2002). Secondary oscillators, whose molecular mechanisms are 

close to the SCN, are also present in multiple brain regions and peripheral tissues (Dibner et 

al., 2010). 

 Besides the light-dark cycle, feeding is a potent synchronizer for the circadian system 

as well (Damiola et al., 2000; Hara et al., 2001; Stokkan et al., 2001). When food availability 

is limited to a regular time window each day, rodents can readily adapt those schedules and 

predict the time of food access. They develop food-seeking behaviors a few hours in 

anticipation of meal access, concomitant with physiological and hormonal activations 

(Mistlberger, 1994). In addition, RF-induced adaptation is highlighted by the phase-

adjustment of clock-related gene expression in several peripheral tissues (Damiola et al., 

2000).  

 Food-anticipatory rhythms have the properties of a clock-controlled process: it occurs 

gradually (1 to 3 h before mealtime); it persists over days in the absence of food; it is 

expressed only if food access is given within the circadian range (22-31 h); and it shows 

transient cycles when food is presented at a new phase (Mistlberger, 1994). Besides, food 

anticipation survives the ablation of the SCN clock (Marchant and Mistlberger, 1997; 

Stephan et al., 1979). Altogether, these data indicate that food anticipation is an output of a 

circadian food-entrainable oscillator (FEO), likely located in the brain (Davidson et al., 2003).  

 The identification of the neural substrate and the molecular basis of the so-called FEO 

proved to be a real challenge these last 30 years (for reviews, see Challet et al., 2009; 

Mistlberger, 2011). In particular, the SCN-like molecular mechanism hypothesis at the basis 
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of food entrainment is currently not fully supported. Few studies gave evidence that clock 

components (i.e., Per2 and Bmal1) may be essential for the FEO molecular clockwork (Feillet 

et al., 2006; Mieda and Sakurai, 2011). However, the implication of other canonical clock 

genes (e.g., Per1, Clock, Npas2, Cry1-2) has been revealed mild (Dudley et al., 2003; 

Horikawa et al., 2005; Iijima et al., 2005; Mendoza et al., 2010a) or even non significant 

(Feillet et al., 2006; Pitts et al., 2003; Storch and Weitz, 2009)  

 Therefore, in the current study we sought to evaluate the role of the nuclear receptor 

Rev-erbα in the molecular clockwork of the FEO. For that purpose, we used mice lacking the 

Rev-erbα clock gene (knockout, -/-) and their control littermates (wild-type, +/+). Both 

genotypes were maintained in a regular 12 h:12 h light-dark cycle (LD) or constant darkness 

(DD) with food available ad libitum (AL) and then challenged with scheduled RF. Wheel-

running behavior, general activity and body temperature were recorded. We also 

investigated the effect of the daily feeding schedules on energy balance and hepatic clock 

genes oscillations. The expression of PER2 and p-ERK proteins was also determined in brain 

regions such as the dorsomedial hypothalamus and cerebellum, assumed to play a role in 

food entrainment (Acosta-Galvan et al., 2011; Gooley et al., 2006; Mendoza et al., 2010b). 
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METHODS 

Animals and housing conditions 

The founder Rev-erbα+/- mice kindly provided by Prof. Ueli Schibler (University of Geneva, 

Switzerland) were rederived on a C57BL6/J background (Charles River Laboratories, France) 

and backcrossed until N5 in our local animal care facilities (Chronobiotron UMS 3415, 

Strasbourg). The Rev-erbα deletion strategy is described in (Preitner et al., 2002). Mice were 

maintained under a 12 h light and 12 h dark (LD 12:12) conditions or in constant darkness 

(DD), in a temperature controlled room (22 ± 1 °C). Regular chow (SAFE 105, Augy, France) 

and water were provided ad libitum (AL) except during the period of RF (see experimental 

procedures). Mice were housed individually in transparent plastic cages equipped with a 

running wheel (12.5 cm in diameter). All experiments were performed in accordance with 

the Guide for the Care and Use of Laboratory Animals (1996), the French National Law 

(implementing the European Communities Council Directive 86/609/EEC) and approved by 

the Regional Ethical Committee of Strasbourg for Animal Experimentation (CREMEAS). 

Genotype determination 

Genotyping was performed by PCR using tail biopsy. Briefly, tissue was digested with NaOH 

(25 mM) in the presence of EDTA (0.2 mM) at 95 °C for 25 min. 2µL of digested tissue was 

added to a DNA amplification reaction containing (in final concentration): 1X Taq Reaction 

buffer (Fermentas), MgCl2 2.8 mM (Fermentas), DMSO (Hybri-Max, Sigma D2650), dNTP 

0.39 mM and Taq DNA polymerase 1.25 U (Fermentas). Three primers were added to the 

mixture: a forward primer located in exon 2 (5’-CCAGGAAGTCTACAAGTGGCCATGGAAGA-3’, 

0.79 µM) and a reverse primer located in exon 3 (5’- CACCTTACACAGTAGCACCATGCCATTC-

3’, 0.55 µM) amplified a 340 bp band corresponding to the wild-type allele; and a forward 

primer located in the LacZ cassette (5’ AAACCAGGCAAAGCGCCATTCGCCATTCA-3’, > 0.55 

µM) amplified a band about 200 bp from the targeted allele. The PCR protocol consisted of 5 

min at 95°, 35 cycles of amplification (each cycle consisting of 1 min 15 s at 95°C, 1 min at 

62°C and 1 min 30 s at 72°C) and 10 min at 72°C. Products were separated by electrophoresis 

on 2% agarose gels stained with ethidium bromide and visualized under UV light. 
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Locomotor activity and body temperature recordings 

Mice were implanted intraperitoneally (i.p.) under constant gaseous anesthesia (oxygen-

nitrogen protoxide with a constant rate at 0.2 L/min and isoflurane at 2%) with a small 

transponder (G2 E-Mitter, Mini Mitter, Bend, Oregon, USA) allowing the continuous 

recordings of gross locomotor activity (general activity hereafter) and core body 

temperature. A PC-based acquisition system (VitalView, MiniMitter) recorded the 

aforementioned parameters plus the wheel-running activity 24 hours a day.  

Experimental procedures 

Independent experiments were conducted with distinct cohorts of mice (sex ratio about 

1:1). Mice were 2- to 5-month old at the beginning of each experiment and body mass and 

food intake were determined weekly.  

LD conditions: Rev-erbα+/+ and -/- mice (4-month old, n = 8-12 / genotype) fed on an AL basis 

for several weeks post-weaning were exposed to RF schedules in which food availability was 

reduced to 6 h per day, from ZT6 to ZT12 (ZT refers to Zeitgeber Time and ZT0 and ZT12 are 

defined as time of lights-on and lights-off, respectively) for up to 3 weeks. Note that this 

experiment was reproduced with another set of mice (n = 9 / genotype) and that additional 

age matched AL-fed animals (n = 20 / genotype) were kept in LD for further study of the 

rhythmic expression of metabolic parameters, clock gene expression in the liver and PER2 

and p-ERK expression in the brain (see results). 

DD conditions: Rev-erbα+/+ and -/- mice (5-months old, n = 6 / genotype) were placed in DD 

conditions and fed AL and then challenged with a RF paradigm in which food was given for 6 

h from 02:00 p.m. to 08:00 p.m for 4 weeks.  

DD conditions and SCN lesions: Rev-erbα+/+ and -/- mice (2 to 4-months old, n = 9-12 / 

genotype) maintained in LD conditions, were SCN-lesioned and immediately placed several 

weeks in DD for recovery. Mice were then exposed to temporal RF for which the food access 

was limited to 6 h per day for up to 3 weeks (from 02:00 p.m. to 08:00 p.m.). 

SCN lesions 

2 to 4-month old mice (n = 9-12 / genotype) were anesthetized with ketamine-xylazine 

(100 mg/kg-10 mg/kg, respectively) and placed in a stereotaxic apparatus. A lesioning 
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electrode (0.25 mm shaft diameter, 0.1 mm lead/contact diameter; SNEX-300, Rhodes 

Medical Instruments) was inserted into the SCN (0.5 mm posterior to bregma, 0.2 mm lateral 

to midline, 5.7 mm ventral to dura, incisor bar 0 mm below ears bars). Bilateral electrolytic 

lesions were generated with constant current (1.5 mA, 20 s; Lesion making device 53500, 

Ugo Basile, Italy). During the surgery procedure, animals were placed on heating pad 

(Harvard Apparatus, France) and treated with antiseptics and lidocaine 5%. After recovery 

from anesthesia, mice were weighted and injected i.p. with Metacam (1 mg/kg) and 

transferred back into their cages. Arrhytmicity was later assessed by evaluating locomotor 

activity with X² periodogram. Animals were killed at the end of the RF paradigm, and brains 

were removed and immediately frozen on dry ice. Lesions were confirmed by cresyl violet 

staining and only mice with complete SCN lesions were included in the analysis. 

Procedure for tissue and blood collections 

Mice (6-month old) from LD experiments, either on AL or RF conditions, were sacrificed at 

ZT0, ZT6, ZT12 and ZT18. Briefly, mice were injected with a lethal dose of pentobarbital, a 

blood sample was taken intracardially and two pieces of liver were cut and immediately 

flash-frozen in liquid nitrogen. Then animals were perfused transcardially with 50 mL PBS 1X 

(Phosphate-buffered saline, pH 7.2) and 50 mL PFA buffer (4% paraformaldehyde in 0.1M 

phosphate buffer, pH 7.4). Brains were removed and post-fixed in 4% PFA for 24 h at 4°C and 

cryoprotected successively for 24 h at 4°C into 10, 20 and 30% sucrose solution in 0.1M PB. 

Brains were then frozen in isopentane at −30 to -40°C and then stored at −80°C. 

Metabolic measurements  

The blood glucose rhythm was determined in mice from repeated tail blood microsamples 

(<1 µL) using a Glucotrend®Premium (Roche Diagnostics, Germany). Plasma glucose was 

evaluated with GOD-PAP Kit (BIOLABO, Maizy, FRANCE). Plasma corticosterone was 

measured using an EIA kit (AC-14F1, IDS, Paris, FRANCE). Plasma β-Hydroxybutyrate 

concentrations were determined with a Cyclic Enzymatic Method (Autokit 3-HB, Wako, 

Japan). Hepatic glycogen was determined following the methods of Murat and Serfaty 

(Murat and Serfaty, 1974). 
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Immunohistochemistry 

Coronal frozen brain sections (30 µm thick) of the hypothalamus and the cerebellum were 

made using a cryostat. Free-floating sections were rinsed in PBS 1X and incubated in a 

solution of 3% H2O2 (Sigma-Aldrich) in PBS for 30 min at room temperature. Sections were 

then rinsed in PBS, and incubated for 2 h in a blocking solution containing 10% goat serum in 

PBS with 0.3% Tween 20 in PBS. Then sections were incubated in the primary antibody 

solution (in PBS + 0.3% Tween 20 + 10% goat serum) for 24 h with gentle agitation at 4°C. 

We used a rabbit polyclonal anti-PER2 (1:2000; Alpha Diagnostic International, Cat. PER21-A; 

#869900A1) and a rabbit anti-p44/42 MAPK (1:20000; Cell Signaling #4370). Sections were 

then rinsed in PBS with 0.05% Tween 20 and incubated for 2 h at 4°C with a biotinylated 

anti-rabbit IgG made in goat (Vectastain ABC peroxydase kit PK6101), diluted 1:500 with 

0.3% Tween 20 in PBS on plate agitation at 4°C. Thereafter, sections were rinsed in PBS + 

0.05% Tween 20 and incubated for 1 h at room temperature with an avidin-biotin-

peroxidase complex (1:250; Vectastain Kit, PK6101; Vector Laboratories) in PBS + 0.05% 

Tween 20. Next, sections were rinsed in PBS, and incubated with 3,3′-diaminobenzidine (0.5 

mg/mL; Sigma) with 0.015% H2O2 in H2O. Thereafter, sections were rinsed with PBS, wet-

mounted onto gel-coated slides, dehydrated through a series of alcohol, soaked in toluene, 

and coverslipped with EUKITT. Photomicrographs were taken on Leica DMRB microscope 

(Leica Microsystems) with an Olympus DP50 digital camera (Olympus France). The intensity 

and number of immunoreactive cells in hypothalamic nuclei and the Purkinje layer of the 

cerebellum, respectively, were determined using NIH ImageJ software (Rasband, W.S., U. S. 

National Institutes of Health, Bethesda MD, USA). The average intensity or cell numbers was 

determined, as far as possible, from three brain sections per animal. The number of animals 

/ genotype / ZT was comprised between 2 to 6. 

mRNA extraction and quantitative Real-time PCR  

Pieces of frozen livers were homogenized in lysis buffer supplemented with β-

mercaptoethanol and total RNA was extracted according to the manufacturer’s protocol 

(Absolutely RNA Miniprep Kit, Stratagene, Agilent technologies). The RNA samples were 

further purified by precipitation with sodium acetate and isopropyl alcohol. RNA quality was 

evaluated with the Bioanalyseur 2100 (Agilent Technolgies; RNA integrity number > 6 for all 

samples). RNA quantity was measured using NanoDrop ND-1000 Spectrophotometer 
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(NanoDrop Technologies; A260/A280 and A260/A230 values were >1.7). cDNAs were synthesized 

from 1 µg of total RNA using the High Capacity RNA-to-cDNA Kit (Applied Biosystems). 

Quantitative Real-time PCR was performed and analyzed using an Applied Biosystems 7300 

Real-time PCR System with 1X TaqMan Gene Expression Master Mix (Applied Biosystems), 

1X TaqMan Gene Expression Assay (Applied Biosystems, see references below) and 1 µL of 

cDNA in a total volume of 20 µL. PCR conditions were 10 min at 95°C followed by 40 cycles of 

15 s at 95°C, 1 min at 60°C. PCR reactions were done in duplicate and negative controls (i.e., 

no-reverse transcription and no-template controls) were added to the reactions. Relative 

expression levels were determined using the comparative ΔCT method to normalize target 

gene mRNA to β-actin (reference below). A dilution curve of the pool of all cDNA samples 

was used to calculate the amplification efficiency for each assay (values were between 1.9 

and 2). The following TaqMan Gene Expression Assays were used: β-actin 

(Mm01205647_g1), Bmal1 (Arnt1, Mm00500226_m1), Clock (Mm00455950_m1), Dbp 

(Mm01194021_m1), Per1 (Mm00501813_m1) and Per2 (Mm00478113_m1). 

Analysis of locomotor activity and temperature data 

Locomotor activity data were double-plotted in actograms using a 5 min block size. Daily 

rhythms of general activity, wheel-running activity and body temperature were analyzed 

using a Clocklab software (Actimetrics, Evanston, IL, USA) associated to MatLab (MathWorks 

France). Mean activity profiles were quantified every 1 h during the last 10 days of the AL 

and RF conditions in the LD experiments, whereas for the DD experiment only a period of 5 

days was taken into account to avoid overlap between the nocturnal activity controlled by 

the SCN and the food-anticipatory activity. To determine the free-running period in animals 

in DD conditions, with or without SCN, X² periodogram was used. 

Statistical analysis  

All values are expressed as mean ± SEM. Normality and homogeneity of variance were 

assessed with Kolmogorov–Smirnov & Lilliefors test and Levene’s test, respectively. Data 

non-normal and/or heteroscedastic were subjected to logarithmic transformation before 

analysis. Alpha was set at 0.05. Data collected successively at different time points within 

each group were compared with ANOVA for repeated measures. Simple main effects 

approach was conducted if the interaction term was significant. Statistical analyses were 

performed with Statistica version 10 (StatSoft, Maisons-Alfort, France).  
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RESULTS 

Food anticipation is reduced in LD conditions in Rev-erbα-/- mice 

 We first determined if Rev-erbα deletion led to an impaired ability of mice to 

anticipate mealtime in LD conditions. No significant differences were found between 

genotypes fed AL regarding body mass and food intake (Figure S1A), 24-h body temperature 

rhythm (Figure 1B) and daily general locomotor activity (data not shown). The amount of 

daily wheel-running revolutions was not significantly different in Rev-erbα+/+ vs. Rev-erbα-/- 

mice exposed to LD (11665 ± 2382 vs. 7536 ± 2784, respectively; P = 0.27). For comparison 

purpose, data points were expressed as a percentage of total daily activity. The normalized 

circadian pattern of activity was similar in both genotypes placed in LD and fed AL (Figure 

1A,B). During the scheduled RF, both genotypes showed a similar body mass (Figure S1A). 

Moreover, body mass loss after one-week of RF was not different in both genotypes (+/+ = -

8.09 ± 2.12% vs. -/- = -9.52 ± 3.07%; n.s.). As expected, Rev-erbα+/+ mice expressed a strong 

FAA 1 h (from ZT5 to ZT6) before meal access, illustrated by significant increases of wheel-

running and general activities. In contrast, Rev-erbα-/- mice showed a reduced, albeit non 

significant (P = 0.09), percent elevation of wheel-activity 1 h prior to mealtime (Figure 1C,D). 

This result was further confirmed by the amount of general activity in Rev-erbα-/- mice, that 

did not vary significantly with time and was significantly decreased in anticipation, in 

comparison to Rev-erbα+/+ controls (Figure 1C,D). Moreover, a clear rise in body temperature 

a few hours before food arrival was observed in control animals, whereas in Rev-erbα-/- mice, 

thermogenesis in anticipation was nearly absent (Figure 1C,D). Of note, LD experiment was 

reproduced with an additional series of mice for the metabolic and mRNA/protein 

expression analyses presented thereafter. Their results as well as those of Rev-erbα+/- mice, 

which demonstrated similar increases of food-anticipatory components than Rev-erbα+/+ 

mice, are shown in Figure S2.  

FAA is nearly absent in Rev-erbα-/- mice exposed to constant darkness 

 Under LD conditions, it was difficult to exclude a potential masking effect of light that 

could contribute to the reduced food anticipation in Rev-erbα-/- mice. We therefore 

evaluated food-anticipatory parameters in DD conditions. During AL access to food, body 

mass and food intake (Figure S1B), and total daily amount of general activity were similar 

between both genotypes (data not shown), while total wheel-running activity was 



11 
 

significantly decreased in Rev-erbα-/- mice compared to Rev-erbα+/+ animals (5912 ± 2440 vs. 

15886 ± 2753, respectively; P = 0.018). As in LD conditions, Rev-erbα+/+ mice displayed a 

significant elevation of both wheel-running and general activities 1 h prior to food access, 

whereas Rev-erbα-/- mice demonstrated a significant reduction of FAA (Figure 2A,B). 

Moreover, the sharp preprandial rise in body temperature seen in control animals was not 

observed in Rev-erbα-/- mice, although the postprandial peak of body temperature occurred 

in both genotypes, thus indicating active food processing (Figure 2B). To further confirm the 

failure of Rev-erbα-/- mice to express a strong FAA, we performed SCN lesions (SCNx) in order 

to abolish the nocturnal activity component controlled by the SCN that could obscure food 

anticipation in DD. In control animals with successful SCN lesion, FAA was recognizable in 

some Rev-erbα+/+ animals (n = 4, Figure 2C), but not all (n = 4). However, none of SCNx Rev-

erbα-/- mice displayed significant FAA in response to food restriction (n = 5, Figure 2C). Of 

note, food-anticipatory wheel-running activity was also diminished in Rev-erbα-/- mice 

exposed to a skeleton photoperiod (data not shown). Thus, it was clear that, regardless of 

the lighting conditions, the time of the day when food was provided and the presence of a 

functional SCN pacemaker, the expression of FAA in Rev-erbα-/- mice was markedly reduced. 

Corticosterone and ketone body levels are decreased in anticipation in Rev-erbα-/- mice 

 We then decided to evaluate the energy balance in both genotypes fed AL or exposed 

to RF in LD conditions. 24-h plasma glucose levels were significantly higher in Rev-erbα-/- 

mice compared to their control littermates fed AL. This significant hyperglycemia was not 

detected when food access was restricted to 6 h during daytime, despite elevated plasma 

glucose levels at ZT6 and ZT18 in Rev-erbα-/- mice (Figure 3A). In addition, we observed that 

hepatic glycogen levels were also significantly higher in Rev-erbα-/- mice at ZT12, which 

correspond to the end of the resting period (Figure 3B). While RF induced a change in the 

daily rhythm of glycogen levels in both genotypes, significant higher values were also 

detected at ZT6 (i.e., prior to mealtime) in Rev-erbα-/- mice compared to Rev-erbα+/+ mice 

(Figure 3B). We then measured plasma ketone bodies, an important source of energy during 

starvation, which have been demonstrated to increase prior to food access in food-restricted 

rats (Escobar et al., 1998). In contrast to the absence of significant difference between both 

populations fed AL, however, plasma ketone bodies concentrations were significantly 

reduced in Rev-erbα-/- mice in RF conditions, in particular, at ZT6 (i.e., before food arrival) 
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and at ZT18 (i.e., after robust nocturnal activity) (Figure 3C).  Taken together, these results 

could suggest that Rev-erbα-/- mice do not mobilize energy to the same extent as their 

control littermates. Previous studies have shown that a second peak of corticosterone 

appears in anticipation of food access in wild-type animals (Nelson et al., 1975). There was 

no significant difference in the 24-h corticosterone profiles between both genotypes, in spite 

of lower rhythm amplitude in Rev-erbα-/- mice (Figure 3D). In RF conditions, a strong rise of 

plasma corticosterone concentration emerged prior to food access in Rev-erbα+/+ mice. On 

the opposite, there was no significant change in corticosterone values of Rev-erbα-/- mice 

during scheduled RF at ZT6 when both AL and RF conditions are compared. As a result, ZT6 

corticosterone levels were significantly lower in Rev-erbα-/- mice when compared to control 

animals (Figure 3D). Since the anticipatory peak of corticosterone is considered as an output 

of the FEO, the absence of a rise in corticosterone in Rev-erbα-/- mice further substantiates 

our behavioral observations. 

Hepatic clock gene expression is shifted by RF in both genotypes in LD conditions 

 Since daytime feeding changes the phase of circadian gene expression in peripheral 

tissues (Damiola et al., 2000), we also evaluated whether the synchronizing effects of RF on 

the liver oscillator involves Rev-erbα. For that purpose, we analyzed the mRNA expression of 

key actors of circadian molecular oscillations in both genotypes. In line with a previous 

report (Preitner et al., 2002), we found that Bmal1 and Clock mRNA levels were up-regulated 

in Rev-erbα-/- mice (Figure 4A). As a consequence, Clock mRNA 24-h rhythmicity was even 

abolished in the absence of Rev-erbα. However, the circadian temporal pattern of Per1, Per2 

and Dbp mRNA were not different between genotypes in AL conditions (Preitner et al., 2002; 

Figure 4C-E), in accordance with previous results. As expected, feeding time induced a 6-h 

phase shift of clock-related gene expression in control animals (Damiola et al., 2000; Stokkan 

et al., 2001) (Figure 4A-E). Food synchronization of hepatic oscillations also occurred in Rev-

erbα-/- mice, however, no phase-shift of mRNA expression could be detected for Bmal1 

(Figure 4A-E). This can be explained by the fact that the mRNA level of this clock component 

is severely up-regulated in the absence of Rev-erbα, and could therefore mask a change in 

their temporal expression. On the other side, Clock and Bmal1 genes may not be essential 

for hepatic food entrainment. In that respect, Rev-erbα does not appear either essential for 

phase-adjustment of peripheral oscillations, since 6-h phase-shifts or the core clock 



13 
 

components Per1, Per2, as well as the crucial clock output Dbp were observed when it is 

lacking (Figure 4A-E).    

Feeding time differently affected brain PER2 and p-ERK expression in Rev-erbα+/+ and Rev-
erbα-/- mice 

 A number of extra-SCN oscillators that could be part of the FEO network are sensitive 

to changes in the temporal organization of feeding behavior as well as those in energy 

balance (Dibner et al., 2010; Feillet et al., 2008; Mendoza et al., 2010b). We therefore 

investigated PER2 expression in key hypothalamic areas in mice fed AL and under RF 

paradigm. We also used as a marker of neuronal activation, the phosphorylated form of the 

Extracellular signal Regulated Kinases I/II (p-ERK), to assess its expression in both genotypes 

in response to a scheduled feeding. We found that all hypothalamic structures showed daily 

rhythmic expression of PER2 in both genotypes (Figure 5A). Of note, the amplitude rhythm 

of PER2 expression in the PVN and VMH was fairly diminished in Rev-erbα-/- mice, while PER2 

expression was 6-h phase-advanced in the DMH and ARC of Rev-erbα-/- mice (Figure 5A). No 

change was detected in the SCN which serve as an internal control to evaluate the reliability 

of our immunohistochemistry experiments (Figure 5A). Unexpectedly, adaptation of 

hypothalamic PER2 oscillations to food restriction, in particular in the DMH, was observed in 

both genotypes, as evidenced by an elevation of PER2 expression at time of food access 

(Figure 5A). Hence, as for the liver oscillator, feeding synchronization of hypothalamic 

oscillators, involved in particular in feeding regulation, does not seem to require the clock 

gene Rev-erbα. On the other hand, we analyzed p-ERK expression to identify relevant 

structures that may directly respond to food restriction. In AL conditions, we could not 

detect significant rhythmic pattern of p-ERK expression in hypothalamic regions when both 

genotypes were considered in the analysis (Figure 5B). However, our results indicate that the 

acrophase of p-ERK expression occurred around ZT12 in all hypothalamic nuclei in control 

animals, while p-ERK peak expression was less evident in the hypothalamus of Rev-erbα-/- 

mice. Interestingly, in response to RF, p-ERK expression peaked at mealtime in Rev-erbα+/+ 

mice. On the opposite, temporal changes in the expression of p-ERK in the hypothalamus of 

Rev-erbα-/- mice were hardly detected. Indeed, daily expression patterns were quite similar 

to those of AL conditions, in spite of a noticeable acrophase of p-ERK at the night-day 

transition in the SCN, PVN, VMH and DMH of Rev-erbα-/- mice. Besides that, only the ARC 
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nucleus seemed to adjust to food access in Rev-erbα-/- mice (Figure 5B). In the cerebellum, 

implicated in food anticipation (Mendoza et al., 2010b), the temporal pattern of PER2 and p-

ERK expression was undistinguishable in the two genotypes fed AL (Figure 5A,B). In response 

to daytime RF, PER2 expression was severely phase-advanced in control mice. Conversely, 

the shift in PER2 expression was not observed in Rev-erbα-/- mice (Figure 5A). In addition, p-

ERK expression was clearly up-regulated during food access in control animals, while the 

trough of p-ERK expression occurred prior to mealtime in Rev-erbα-/- mice (Figure 5B). 
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DISCUSSION 

 In the present study, we evaluated the role of an essential actor of the circadian 

timing system, the nuclear receptor Rev-erbα, which has not been considered in the context 

of food anticipation. We show that Rev-erbα-deficient mice have disrupted food-entrainable 

circadian rhythms, in particular those of locomotor activity, body temperature and plasma 

corticosterone. 

 Our results indicate that Rev-erbα-/- mice display a significant reduction of FAA in LD 

conditions compared to control animals. This is further confirmed by our investigations in DD 

conditions, in animals bearing or not SCN lesions. The lack of food-seeking behaviors in Rev-

erbα-/- mice was not linked to larger body mass loss, reduced food intake or delayed food 

intake during the 6-h daily access (data not shown). In accordance with behavioral results, a 

sharp rise in body temperature before food access occurred in Rev-erbα+/+ mice, whereas 

this anticipatory thermogenesis was nearly absent in the Rev-erbα-/- mice. Indeed, while 

control mice decreased their body temperature during food withdrawal, Rev-erbα-/- 

maintained body temperature values close to their respective values in AL feeding (Figure 

1B,C). The absence of phase- and amplitude-adjustment of the body temperature rhythm in 

Rev-erbα-/- mice could reflect altered FEO influence on thermoregulation. However, relative 

normothermia was not observed in Per2 mutant mice that showed a drastic reduction of 

FAA and preprandial thermogenesis. On the contrary, Per2 mutant mice showed similar RF-

induced drop of body temperature in late night hours than that in control littermates (Feillet 

et al., 2006). Hence, relative normothermia in Rev-erbα-/- mice could, instead, indicate that 

RF does not trigger to the same degree adaptive mechanisms to reduce energy expenditure 

as in wild-type littermates. 

 To further substantiate altered food entrainment in the absence of Rev-erbα, we 

measured hormonal and metabolic parameters, important for energy balance and that have 

been shown to increase prior to mealtime. In AL conditions, the 24-h plasma corticosterone 

profiles were not different between genotypes, suggesting that the adrenal peripheral 

oscillator (Oster et al., 2006) is likely unaltered in the absence of Rev-erbα. Interestingly, 

scheduled feeding affects the 24-h plasma corticosterone rhythm, with a shift of the 

acrophase of corticosterone at the night-day transition in Rev-erbα-/- mice, without changing 
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the peak at the day-night transition in control animals. However, the food-anticipatory peak 

of corticosterone, considered as a strong output of the FEO (Nelson et al., 1975) was absent 

in Rev-erbα-/- mice. Plasma glucose and hepatic glycogen levels were higher in Rev-erbα-/- 

mice in LD conditions. Of note, REV-ERBα has been suggested to play a role in hepatic 

gluconeogenesis in vitro (Yin et al., 2007). Hence, altered expression of gluconeogenesic 

actors could contribute to the elevated plasma glucose levels in Rev-erbα-/- mice. Mild 

hyperglycemia and increased hepatic glycogen levels in Rev-erbα-/- mice were also observed 

in RF conditions prior to food access. Of interest, dietary glucose can affect the circadian 

properties of the FEO (Stephan and Davidson, 1998). Thus, abnormal circulating blood 

glucose levels could alter the FEO functioning. However, rats rendered diabetic by 

streptozotocine injection exhibit normal FAA (Davidson et al., 2002). Therefore, the higher 

blood glucose levels and hepatic glycogen stores in Rev-erbα-/- mice could rather reflect 

decreased utilization of energy substrates to feed FAA—since the latter is clearly reduced in 

these mice. Nonetheless, we could not detect an elevation of ketone bodies levels in Rev-

erbα-/- mice prior to mealtime in RF conditions. Since Rev-erbα-/- mice are not hypoactive 

indicated by measurements of general activity and maintain relative normothermia in RF 

conditions, whether the absence of a rise in ketone bodies results from an increased 

utilization or a decreased mobilization of this energy source has to be further investigated.  

 Our findings also confirm that the molecular functioning of the liver oscillator is not 

impaired in LD conditions with food provided on an AL basis in Rev-erbα-/- mice, as 

demonstrated by undistinguishable Per1-2, Cry1-2 and Dbp circadian pattern (present 

results; Preitner et al., 2002). In addition, we demonstrate that central clock components can 

be phase-shifted in response to limited food access in the absence of Rev-erbα, despite its 

suggested role in the acute response of the liver clockwork to feeding (Tahara et al., 2011). 

Indeed, synchronization of the liver oscillator to feeding time was preserved in Rev-erbα-/- 

mice as demonstrated by a shift in Per1-2 and Dbp expression, suggesting that the disrupted 

FAA is not the consequence of impaired entrainment of the liver to scheduled feeding. Of 

note, the expression of clock-related genes in the liver of Per2 mutant mice was also shifted 

in response to daytime feeding (Feillet et al., 2006). Furthermore, mice with streptozotocin-

induced diabetes which demonstrate drastic elevation and reduction of serum glucose and 

insulin levels, respectively, displayed a similar phase shift of clock gene expression in 
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peripheral tissues such as liver in response to RF (Oishi et al., 2004). Thus, if liver 

dysfunctions contribute to altered energy status (i.e., high plasma glucose and low ketone 

bodies levels) in RF conditions, it is unlikely due to altered circadian oscillations. 

 We then investigated the expression of the core clock protein PER2 in key 

hypothalamic regions, involved in particular in feeding behavior and that exhibit circadian 

oscillations (Dibner et al., 2010; Horvath and Diano, 2004). Indeed, on one hand, PER2 

expression has been previously demonstrated to strongly respond to feeding time (Feillet et 

al., 2008). On the other hand, the DMH oscillator has been proposed as important for the 

expression of food-entrainable oscillations (Acosta-Galvan et al., 2011; Gooley et al., 2006). 

Our results show that PER2 expression in all hypothalamic nuclei studied (i.e., SCN, PVN, 

VMH, DMH, ARC) was not significantly different between both genotypes either fed AL or 

challenged with RF. Therefore, the diminished capability of food entrainment in Rev-erbα-/- 

mice does not appear to be correlated with altered molecular functioning of central 

hypothalamic areas. Conversely, increased expression of a marker of neuronal activation 

such as c-FOS, before and after mealtime, has been observed in several hypothalamic nuclei, 

including the DMH and the VMH (Angeles-Castellanos et al., 2004; Gooley et al., 2006; 

Ribeiro et al., 2007). Of interest, our data on p-ERK expression, which is a marker of neuronal 

activation, indicate that all hypothalamic nuclei, including the SCN, demonstrated a phase-

adjustment of p-ERK oscillations in control animals. On the contrary, the circadian pattern of 

p-ERK was only in phase with mealtime in the ARC of Rev-erbα-/- mice. Taken together, these 

results on p-ERK expression can suggest that hypothalamic regions are not activated to the 

same extent in Rev-erbα-/- mice compared to control animals during temporal food 

restriction.  

 It was reported recently that the cerebellum harbors a circadian oscillator sensitive to 

feeding schedules and that genetic and pharmacological impairment of the cerebellar 

function led to reduced or lacking FAA (Mendoza et al., 2010b). In this context, we also 

determined the expression pattern of PER2 and p-ERK proteins in the cerebellum of Rev-

erbα-/- mice, since the latter exhibited reduced food-anticipatory components. Interestingly, 

we found no phase-adjustment of PER2 oscillations as well as a slight diminution of p-ERK 

expression in anticipation of eating in Rev-erbα-/- mice. Of interest, Per2 mRNA was not 

increased in anticipation to mealtime in Grid2ho/ho mice that have genetic cerebellar deficits, 
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and which demonstrated a lack of FAA (Mendoza et al., 2010b). Therefore, these results on 

PER2 and p-ERK expression in the cerebellum of Rev-erbα-/- mice could be a direct correlate 

to their defect to display strong food-anticipatory components.     

 The present findings indicate that mice lacking the Rev-erbα clock gene exhibit 

altered behavioral and physiological food anticipation, in addition to impaired p-ERK 

response to RF, implying that Rev-erbα may be a key component of the FEO. Our results 

could thus support the hypothesis that the basis of the FEO molecular mechanism is likely 

similar to those of well-known circadian oscillators, in line with previous studies (Dudley et 

al., 2003; Feillet et al., 2006; Iijima et al., 2005; Mieda and Sakurai, 2011). However, 

considering the strong involvement of Rev-erbα in metabolic regulations (Duez et al., 2008; 

Raspe et al., 2002; Yin et al., 2007), our results do not fully exclude that the decrease of FAA 

in Rev-erbα-/- mice could be linked to a metabolic defect at central or peripheral levels 

beyond preserved core clock gene oscillations. Therefore, the implication of Rev-erbα in 

metabolic processes in vivo has to be further explored. 
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FIGURE LEGENDS  

Figure 1. Food-anticipatory components are reduced in Rev-erbα-/- mice exposed to a 12:12 
light-dark cycle. 

(A) Representative double-plotted actograms (left, middle) and thermograms (right) of Rev-
erbα+/+ (upper panel) and -/- mice (lower panel) under LD conditions with food provided AL 
and then restricted to 6 h per day (grey box, food was provided from ZT6 to ZT12). (B-C) 
Normalized activity profiles and body temperature raw data representing the average of 10 
days during AL conditions (B) and RF conditions (C). Daytime and nighttime are indicated by 
white and black bars, respectively. The period of food access during RF is represented by the 
grey rectangle. (D) Percent of FAA over total daily activity from 4 h to 1 h before mealtime 
(left, middle) and rise in body temperature in anticipation (right). * significantly different 
from control animals (P < 0.05). Note that the main effect of time was not represented (see 
text).  

Figure 2. Food-anticipatory components are reduced in Rev-erbα-/- mice exposed to 
constant darkness. 

(A) Representative double-plotted actograms (left, middle) and thermograms (right) of Rev-
erbα+/+ (upper panel) and -/- mice (lower panel) under DD conditions with food provided AL 
and then restricted to 6 h per day (grey box, food was provided from 02:00 p.m. to 08:00 
p.m.). Constant darkness is indicated by a black bar. (B) Percent of FAA over total daily 
activity (average of 5 days) from 4 h before mealtime and 2 h after mealtime (left, middle) 
and rise in body temperature in anticipation (right). (C) Representative double-plotted 

actograms (left, middle) and corresponding χ2 periodograms (right) from SCN-X Rev-erbα+/+ (upper 
panel) and -/- mice (lower panel) under LD conditions and DD conditions (DD onset indicated 
by the black arrow) with food provided AL and then restricted to 6 h per day (grey box, food 
was provided from 02:00 p.m. to 08:00 p.m.). * significantly different from control animals (P 
< 0.05). Note that the main effect of time was not represented (see text). 

Figure 3. Plasma ketone bodies and corticosterone peaks in Rev-erbα-/- mice are decreased 
in anticipation of feeding time. 

24-h (A) plasma glucose, (B) hepatic glycogen, (C) plasma ketone bodies and (D) plasma 

corticosterone levels in both AL (left) and RF conditions (right). Daytime and nighttime are 

indicated by white and black bars, respectively, on the X axis. Food access during RF 

schedules is depicted by a grey rectangle. Data for ZT0 are double-plotted. * significantly 

different from control animals (P < 0.05). ~ for main effect of time (top left corner) or vs. 

control animals (above data point) (P < 0.05). 

Figure 4. mRNA expression of clock-related genes in the liver oscillator are synchronized by 
feeding time in both genotypes.  

Expression of Bmal1 (A), Clock (B), Per1 (C), Per2 (D), Dbp (E) under AL conditions (left panel) 

and RF conditions (right panel). Daytime and nighttime are indicated by white and black 

rectangles, respectively, on the X axis. Food access during RF schedules is depicted by a grey 

rectangle. Data for ZT0 are double-plotted. * significantly different from control animals (P < 
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0.05). ~ for main effect of time (top left corner) or vs. control animals (above data point) (P < 

0.05).  

Figure 5. PER2 and p-ERK expression in the hypothalamus and cerebellum of Rev-erbα-/- 
mice entrained by food.  

(A) PER2 and (B) p-ERK immunoreactive (ir) cells in hypothalamic nuclei and cerebellum of 

mice under AL conditions or exposed to RF schedules. Note that staining intensity was taken 

into consideration for all hypothalamic nuclei; while for the cerebellum, the number of 

labeled purkinje cells was counted. Data for ZT0 are double-plotted. ~ for main effect of time 

(top left corner) (P < 0.05).  

Supplemental Figure 1. Food intake and body mass of mice maintained in LD or DD 
conditions before and during scheduled feeding. 

Food intake (left) and body mass (right) determined weekly in (A) LD conditions and (B) DD 

conditions. The period of restricted feeding is indicated by the hatched bars. 

Supplemental Figure 2. Food-anticipatory parameters in mice maintained in LD or DD 
conditions under restricted feeding. 

(A) Percent of wheel-running activity and (B) general activity over total daily activity 1 h prior 

to meal access in three independent series of animals (i.e., LD1, DD and LD2). (C) Note that 

heterozygous mice (+/-) for Rev-erbα were added to the results. Results of Rev-erbα+/+ and 

Rev-erbα-/- mice depicted on figure A, B and C for the LD1 experiment are reproduced from 

Figure 1C-D and Figure 2B. An average of 10 days was also taken into account during the 

second LD experiment (LD2) to determine the amount of FAA at the end of the RF period.  
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ABSTRACT Mutations of clock genes can lead to
diabetes and obesity. REV-ERB�, a nuclear receptor
involved in the circadian clockwork, has been shown to
control lipid metabolism. To gain insight into the role
of REV-ERB� in energy homeostasis in vivo, we ex-
plored daily metabolism of carbohydrates and lipids in
chow-fed, unfed, or high-fat-fed Rev-erb��/� mice and
their wild-type littermates. Chow-fed Rev-erb��/� mice
displayed increased adiposity (2.5-fold) and mild hyper-
glycemia (�10%) without insulin resistance. Indirect
calorimetry indicates that chow-fed Rev-erb��/� mice
utilize more fatty acids during daytime. A 24-h nonfeed-
ing period in Rev-erb��/� animals favors further fatty
acid mobilization at the expense of glycogen utiliza-
tion and gluconeogenesis, without triggering hypoglyce-
mia and hypothermia. High-fat feeding in Rev-erb��/�

mice amplified metabolic disturbances, including ex-
pression of lipogenic factors. Lipoprotein lipase (Lpl)
gene, critical in lipid utilization/storage, is triggered in
liver at night and constitutively up-regulated (�2-fold)
in muscle and adipose tissue of Rev-erb��/� mice. We
show that CLOCK, up-regulated (2-fold) at night in
Rev-erb��/� mice, can transactivate Lpl. Thus, overex-
pression of Lpl facilitates muscle fatty acid utilization
and contributes to fat overload. This study demon-
strates the importance of clock-driven Lpl expression in
energy balance and highlights circadian disruption as a
potential cause for the metabolic syndrome.—Delezie,
J., Dumont, S., Dardente, H., Oudart, H., Gréchez-
Cassiau, A., Klosen, P., Teboul, M., Delaunay, F., Pévet,
P., Challet, E. The nuclear receptor REV-ERB� is
required for the daily balance of carbohydrate and lipid

metabolism. FASEB J. 26, 000–000 (2012). www.fasebj.
org

Key Words: circadian � obesity � hyperglycemia � respiratory
quotient � lipoprotein lipase

Altered circadian rhythmicity is a newly identified
determinant of metabolic disorders in humans (1).
Most aspects of behavior and metabolism display daily
rhythms, including sleep-wake and feeding-nonfeeding
cycles (2). These daily variations are controlled by a
circadian timing system made of interconnected clocks
and oscillators. In mammals, the master circadian
clock, located in the suprachiasmatic nuclei of the
hypothalamus, is mainly reset by ambient light and
synchronizes peripheral oscillations to 24 h. Secondary
oscillators are present in many brain regions and
peripheral organs (e.g., liver), and can be shifted by
feeding-related cues (3–5).

The molecular clockwork is based on autoregulatory
transcriptional and translational feedback loops involv-
ing clock genes and proteins that generate a rhythmic
transcriptional activity with a �24 h period. In this
clock network, two transcriptional activators, CLOCK
and BMAL1, stimulate the expression of Period (Per1–3)
and Cryptochrome (Cry1, 2) genes, whose proteins in turn
repress the CLOCK-BMAL1 transactivation (6). In ad-
dition to these main components, the nuclear receptors
ROR(�,�,�) and REV-ERB(�,�) compete to activate
and repress, respectively, the transcription of the Bmal1
and Clock genes, thereby reinforcing the robustness of
circadian oscillations (7–9).

Approximately 10% of the mammalian transcrip-
tome is under circadian regulation (10). In particular,
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metabolic processes are closely linked to circadian
oscillations, as evidenced by the transcriptional control
of genes involved in lipid and glucose metabolism by
clock-related factors (3, 11). Consequently, disruption
of the circadian clockwork leads to profound changes
in energy balance. Mutation of Clock leads to obesity
(12), while pancreas-specific Bmal1-mutant mice de-
velop diabetes (13). On the other hand, diet-induced
obesity affects the master clock as well as peripheral
oscillations in wild-type mice (14, 15) and exacerbates
metabolic phenotypes in mice with deficient clocks
(12, 16).

As outlined above, REV-ERB� is a component of the
circadian clockwork that is expressed in the brain and
peripheral tissues, such as liver, pancreas, adipose
tissue, and muscle (8, 17, 18). Furthermore, REV-ERB�
participates in the regulation of diverse metabolic
pathways, including adipocyte differentiation, gluco-
neogenesis, bile acid synthesis, and cholesterol homeo-
stasis (19–22). Besides, REV-ERB� can modulate the
expression of its own ligand, heme (23, 24), implicated
in cellular metabolism. Daily expression of REV-ERB�
has also been shown to control the circadian transcrip-
tion of various lipid metabolism genes by recruiting the
repressive chromatin modifier histone deacetylase 3 in
the liver (25). Taken together, these data suggest that
REV-ERB� may tightly connect the circadian system to
energy metabolism on a daily basis.

Here we show that mice lacking Rev-erb� display
changes in daily energy homeostasis, leading to en-
hanced lipid fuel utilization and production during
daytime and nighttime, respectively, and predisposing
to diet-induced obesity. This occurs with constitutive
elevation of the Lpl gene in peripheral tissues, likely
due to the defective clock regulation of this gene.

MATERIALS AND METHODS

Animals and housing conditions

Rev-erb��/� mice, kindly provided by Prof. Ueli Schibler (Uni-
versity of Geneva, Geneva, Switzerland) were rederived on a
C57BL6/J background (Charles River Laboratories, L’Arbresle,
France) and backcrossed until N5 in our local animal care
facilities (Chronobiotron, Strasbourg, France). Characterization
of the genetic background of the strain by Charles River
Laboratories indicated that mice were �95% C57BL6/J. The
Rev-erb�-deletion strategy is described in ref. 8. All mice were
maintained under a 12-h light-dark cycle in a temperature-
controlled room (22 � 1°C). Normocaloric chow diet (2.89
kcal/g, 14% kcal from fat, 27% kcal from protein and 59% from
carbohydrates; SAFE 105; SAFE, Augy, France) and water were
provided ad libitum unless specified otherwise. All experiments
were performed in accordance with the U.S. National Institutes
of Health Guide for the Care and Use of Laboratory Animals
(1996), the French National Law (implementing the European
Communities Council Directive 86/609/EEC) and approved by
the Regional Ethical Committee of Strasbourg for Animal Ex-
perimentation (CREMEAS).

Animal experiments

Behavior, physiology, and glucose homeostasis

Mice (4 mo old, n	10/genotype, sex ratio 1:1) were used for
measuring general locomotor activity and body temperature
after intraperitoneal implantation with a small transponder
(G2 E-Mitter; MiniMitter, Sunriver, OR, USA) under gaseous
anesthesia (2% isoflurane in 50:50 O2/N2O). Locomotor
activity and temperature data were recorded every 5 min, 24
h/d, with a PC-based acquisition system (VitalView; Mini-
Mitter) and analyzed with Clocklab (Actimetrics, Evanston,
IL, USA). Indirect calorimetry was performed on other mice
(n	10/genotype, sex ratio 1:1) as described previously (26)
as well as the hepatocyte study (see procedure below). For
glucose, insulin measurements and pancreas studies, mice
(n	12/genotype, sex ratio 1:1) were sampled at zeitgeber
time 0 (ZT0; lights on, onset of the resting/nonfeeding
period) and ZT12 (lights off, onset of the active/feeding
period).

Food withdrawal and refeeding experiments

Mice (4 mo old) were divided into 2 groups (4 males and 3
females/group/genotype); one group was unfed for 24 h
starting at ZT0, and the other was unfed for 24 h and then
refed for the next 24 h with a high-carbohydrate diet (3.63
kcal/g, 7.4% kcal from fat, 14.1% kcal from protein, and
78.5% kcal from carbohydrate; SAFE U8960v2). Both groups
were killed by lethal injection of pentobarbital at ZT0. Blood
samples were collected with 4% EDTA and centrifuged for 10
min at 5000 rpm at 4°C. Liver samples were flash-frozen in
liquid nitrogen. Locomotor activity and body temperature
were recorded as above.

High-fat-diet (HFD) challenge

Mice (4 wk old, sex ratio 1:1) were fed either with a chow diet
(as described above; n	12/genotype) or an HFD (4.65
kcal/g, 53.2% kcal from fat, 14.6% kcal from protein and
32.2% kcal from carbohydrate, SAFE U8955v3; n 	 12/
genotype) for up to 12 wk. Then, animals were sacrificed at
ZT0 and ZT12. Mice were unfed for 1 h before injection of a
lethal dose of pentobarbital. Blood samples were collected as
above. Liver, white adipose tissue (WAT; retroperitoneal and
perigonadal), and rectus femoris muscle were taken and
immediately flash-frozen in liquid nitrogen.

In vivo glucose homeostasis

The blood glucose rhythm was determined in mice fed ad libitum
from repeated tail-blood microsamples (
0.5 �l) using an
Accu-Check glucometer (Roche Diagnostics, Meylan, France).
For all metabolic tests, mice were unfed for 14 h (from ZT12 to
ZT2) and injected at ZT2. For the oral glucose tolerance test
(OGTT), mice received a glucose load via gavage (2 g/kg;
d-glucose; Sigma, Saint Quentin Fallavier, France). For the
glucagon stimulation test (GST) and pyruvate tolerance test (PTT),
glucagon (1 mg/kg; GlucaGen; Novo Nordisk, Bagsvaerd, Den-
mark) and pyruvate (1.5 g/kg; P5280; Sigma) were administered
intraperitoneally. Note that metabolic tests were separated by
several days. The euglycemic clamp study was done by the Mouse
Clinical Institute (MCI; Strasbourg, France) from ZT6 in animals
previously unfed from ZT0 to ZT6 (see method in ref. 27).

Pancreatic histology and immunohistochemistry

Pancreases were fixed in Bouin’s solution for 24 h and
dehydrated successively in 70% ethanol, 2-ethoxyethanol, and
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butanol. The tissue was embedded in paraffin, and 8-�m-thick
serial sections were cut on a microtome and collected on
gelatin-coated slides. For determination of islet area and
circularity, sections were stained with Carrazzi’s hematoxylin.
To assess insulin and glucagon content, sections were washed
with Tris buffered saline and incubated overnight with either
mouse anti-insulin (1:50,000; clone HUI018; Novo Nordisk)
or mouse anti-glucagon (1:60,000; clone GlU001; Novo Nor-
disk) antibodies. The sections were then rinsed and incu-
bated for 1 h with a biotinylated secondary antibody (1:2000;
Jackson ImmunoResearch, West Grove, PA, USA). Finally,
streptavidin-peroxidase conjugate (1:2000; Roche) was added
for 1 h after washing. Peroxidase activity was visualized with
0.5 mg/ml 3,3=-diaminobenzidine (Sigma) in the presence of
0.003% H2O2 in 50 mM Tris buffer containing 10 mM
imidazole (pH 7.6). Micrographs were taken on a Leica
DMRB microscope (Leica Microsystems, Nanterre, France)
with an Olympus DP50 digital camera (Olympus, Rungis,
France) and analyzed with ImageJ software (W. S. Rasband,
U. S. National Institutes of Health, Bethesda MD, USA).

Plasma metabolic parameters

Total, low-density lipoprotein (LDL), and high-density lipo-
protein (HDL) cholesterol levels were determined by a direct
colorimetric method (Biolabo, Maizy, France). Plasma leptin
was assayed with an ELISA kit (Leptin EZML-82K; Millipore,
Molsheim, France). Plasma glucose was evaluated with a
GOD-PAP kit (Biolabo). Plasma insulin was determined with
an ultrasensitive mouse insulin ELISA kit (Crystal Chem,
Downers Grove, IL, USA). Plasma glucagon was assayed with
a glucagon RIA (GL-32K, Millipore) after adding aprotinin
(250 kIU/ml) when blood samples were taken. Triglyceride
concentration was determined by a triglyceride determina-
tion kit (TR-0100; Sigma). The ACS-ACOD method (NEFA-
HR2; Wako, Osaka, Japan) was used for assaying plasma
nonesterified fatty acids (NEFAs). Plasma �-hydroxybutyrate
concentrations were determined with a cyclic enzymatic
method (Autokit 3-HB; Wako).

Hepatic glycogen and triglycerides

Hepatic glycogen and triglycerides were assayed following the
methods of Murat and Serfaty (28) and Miao et al. (29),
respectively.

Primary hepatocyte culture

Livers sampled from adult mice at ZT2 to ZT4 were immedi-
ately perfused at the flow rate of 3 ml/min via the portal vein
for 5 min with a calcium-free perfusion buffer (10 mM
HEPES, 140 mM NaCl, and 6.7 mM KCl, pH 7.65), supple-
mented by 0.6 mM EGTA, followed by an additional 2 min
with the Ca2�-free buffer, then 5 min with the same buffer
containing 5 mM CaCl2 and 15 mg/ml thermolysin (Liberase,
medium research grade; Roche). All solutions were kept at
37°C. The livers were then excised, and hepatocytes were
released by mechanical disruption of the liver capsule into 20
ml of Leibovitz L-15 medium (Invitrogen, Cergy-Pontoise,
France) supplemented with 100 IU penicillin and 100 mg/ml
streptomycin. The cells were filtered through a 70-�m nylon
mesh and centrifuged at 800 rpm for 2 min. The supernatant
and cell debris were aspirated, and the cell pellet was washed
2 times into 10 ml of the same medium. The resulting cell
pellet was finally resuspended in William’s medium E with
Glutamax (Invitrogen) containing 10% fetal bovine serum
(Invitrogen), 100 IU penicillin, 100 mg/ml streptomycin, and
0.2 �M insulin. Hepatocyte viability was assessed by trypan

blue exclusion. Hepatocytes were placed at 2.5 � 104 cells/
cm2 in collagen-coated 35-mm plates and cultured for up to 6
h in the resuspended medium at 37°C in 5% CO2 chamber.
After cell attachment, the medium was renewed without fetal
calf serum and supplemented with 10 nM dexamethasone
and 20 nM insulin for 12–16 h. Glucose production was
measured 2 and 24 h after incubation of hepatocytes in
glucose-free Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 16 mM lactate, 4 mM pyruvate, 10 nM
dexamethasone, and 20 nM insulin. Glucose release in the
medium was determined by the GOD-POD colorimetric
method (Sclavo Diagnostics International, Sovicille, Italy)
and normalized to the protein concentration determined by
the Bradford method.

mRNA extraction and quantitative real-time PCR

Samples of frozen livers were homogenized in lysis buffer
supplemented with �-mercaptoethanol, and total RNA was
extracted (Absolutely RNA Miniprep Kit; Stratagene; Agilent
Technologies, Santa Clara, CA, USA) according to the man-
ufacturer’s protocol. The RNA samples were further purified
by precipitation with sodium acetate and isopropyl alcohol.
For retroperitoneal WAT and rectus femoris muscle samples,
homogenization was done with QIAzol Lysis Reagent (Qia-
gen, Courtaboeuf, France), and total RNA was extracted
using an RNeasy Lipid Tissue Mini Kit (Qiagen) according to
the manufacturer’s protocol. RNA quality was evaluated with
the Bioanalyzer 2100 (Agilent Technologies; RNA integrity
number for all samples was �7). RNA quantity was measured
using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA; A260/A280 and A260/
A230 values were �1.8). cDNAs were synthesized from 1 �g of
total RNA using the High Capacity RNA-to-cDNA Kit (Ap-
plied Biosystems, Courtaboeuf, France). Quantitative Real-
time PCR was performed and analyzed using a 7300 Real-
Time PCR System with 1� SYBR Green PCR Master Mix
(Applied Biosystems), 0.9 �M primers (Invitrogen), and 1 �l
of cDNA in a total volume of 20 �l. PCR conditions were 10
min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min
at 60°C. PCR reactions were done in duplicate and negative
controls (i.e., no reverse transcription and no template con-
trols) were added to the reactions. Relative expression levels
were determined using the comparative 
CT method to
normalize target gene mRNA to 36b4. Primers were designed
and optimized for an annealing temperature of 60°C. To
assess primer specificity and product uniformity, sequences
were tested with the Basic Local Alignment Search Tool
(BLAST; U.S. National Center for Biotechnology Informa-
tion; http://blast.ncbi.nlm.nih.gov/), and postamplification
dissociation curves were determined. A dilution curve of the
pool of all cDNA samples was used to calculate the amplifi-
cation efficiency for each assay (values were between 1.85 and
2). Primer sequences are summarized in Supplemental
Table S1.

Cell culture, transfection, and luciferase assay

COS-7 cells were grown in DMEM supplemented with 10%
fetal bovine serum (Life Technologies, Inc.; Invitrogen), 1%
penicillin/streptomycin (Life Technologies) mix and sodium
pyruvate in a humidified atmosphere with 5% CO2 at 37°C.
Cells were plated in 24-well plates and transfected with
GeneJuice (Novagen; Merck, Darmstadt, Germany). Depend-
ing on the experiment, hROR� and hREV-ERB� expression
vectors (7) were used at either 100 or 200 and 200 ng/well,
respectively. The oBmal1-luc and mPer1-luc reporter construct
and mClock/mBmal1 expression vectors have been used pre-
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viously (30,31). The proximal promoter region of mLpl
(�143 to �186) was cloned in pGL3 basic (see Supplemental
Data for further information). All reporter constructs and
�-galactosidase reporter construct were used at 50 and 100
ng/well, respectively. Total transfected DNA amount was set
to an equal amount between all conditions by addition of the
corresponding empty vector. Luciferase assay was performed
48 h after transfection. Briefly, cells were rinsed twice in cold
PBS and lysed for 15 min in lysis buffer (25 mM Tris, 2 mM
EDTA, 1 mM dithiothreitol, 10% glycerol, and 1% TritonX-
100). The luciferase assay was performed using a luciferase
assay system kit (Promega, Charbonnieres, France) and a
PolarStar Optima luminometer (BMG Labtech, Ortenberg,
Germany). Results were normalized to �-galactosidase activ-
ity. Data [in relative luminescence units (RLU)] represent
fold induction once normalized to �-galactosidase. Experi-
ments were repeated 3 times, each condition in triplicate.

Statistical analysis

All values are presented as means � se. Area under the curve
(AUC) was determined as incremental area (i.e., above base-
line; see ref. 27). The 48-h respiratory quotient (RQ) data
were fitted to a cosinor function [f 	 a � (b � cos (2 � � �
(x � c)/24))], where x indicates the time, a the mean value,
b the amplitude, and c the acrophase. Statistical difference
between genotypes for a given parameter (e.g., amplitude)
was tested in an analysis of covariance. Normality and homo-
geneity of variance were assessed with Kolmogorov-Smirnov
and Lilliefors test and Levene’s test, respectively. Data that
were non-normal and/or heteroscedastic were subjected to
logarithmic transformation before analysis. Value of � was set
at 0.05. Unpaired Student’s t test was used to compare 2
groups. Luciferase assay data were analyzed using 1-way
analyses of variance (ANOVA) followed by Tukey HSD post hoc
analysis. Data collected successively at different time points
(e.g., locomotor activity) within each group were compared
with ANOVA for repeated measures. Two-way ANOVA was
performed to assess the effects of genotype and feeding
condition and the interaction between these factors. Three-
way ANOVA design was employed to test the aforementioned

factors plus the effect of time. Simple main effects approach was
conducted to examine each factor separately if the interaction term
was significant. Statistical analyses were performed with Statistica 10
(StatSoft, Maisons-Alfort, France).

RESULTS

Rev-erb��/� mice are slightly hyperglycemic without
insulin resistance

We first evaluated whether Rev-erb� deficiency affects
general physiology and behavior. No significant differ-
ence was found between Rev-erb��/� mice and their
wild-type (�/�) littermates regarding the amount and
timing of chow intake (Fig. 1A). Body mass was not
significantly different between 4-mo-old Rev-erb��/�

and Rev-erb��/� mice (24.02 � 1.11 vs. 25.58 � 1.20 g,
respectively). The daily patterns of general locomotor
activity and body temperature were very close in the two
genotypes (Fig. 1B, C). In sharp contrast, 24-h blood
glucose rhythm showed higher values in Rev-erb��/�

mice compared to Rev-erb��/� mice (Fig. 1D), suggest-
ing altered glucose homeostasis. Of note, mild hyper-
glycemia at the day-night transition has been previously
observed in Rev-erb��/� mice (20). To understand the
origin of this hyperglycemia in Rev-erb��/� mice, we
determined the day-night levels of insulin, glucagon,
and hepatic glycogen in both genotypes. Plasma insulin
was increased at ZT0 (lights on, onset of the resting
period; Fig. 2A), while hepatic glycogen content was
higher at ZT12 (lights off, onset of the active period;
Fig. 2B). These higher insulin and glycogen levels in
Rev-erb��/� mice are consistent with previous results
(20, 32). Plasma glucagon levels showed no difference
between genotypes (Fig. 2C). According to standard-
ized guidelines (27), we then compared the responses

Figure 1. Normal food intake, locomotor activity, and body temperature
(but higher blood glucose) in Rev-erb��/� mice. A) Rhythm of 24 h chow
intake in Rev-erb��/� and �/� mice. B) Rhythm of general locomotor
activity. C) Rhythm of core body temperature. D) Blood glucose profiles.
Values are expressed as means � se (n	10/group). Shaded area indicates
the dark (i.e., active) period. Data from ZT0 and ZT24 are double plotted
in panels B–D. Open circles, Rev-erb��/� mice; solid circles, Rev-erb��/�

mice. �P 
 0.05 for main effect of time; *P 
 0.05 for main effect of
genotype.

4 Vol. 26 August 2012 DELEZIE ET AL.The FASEB Journal � www.fasebj.org

www.fasebj.org


of both genotypes to metabolic challenges, by compar-
ing their respective AUC values, calculated as incre-
mental area (above baseline, to exclude the effect of
differences in fasting glucose levels between animals).
The OGTT (performed at the same ZTs as in ref. 13)
showed no significant difference between genotypes
either at ZT2 (Fig. 2D) or at ZT14 (Supplemental Fig.
S1C). Insulin sensitivity, assessed by the intraperitoneal
insulin sensitivity test (IPIST), was not significantly
modified in Rev-erb��/� mice compared to wild-type
mice, either at ZT2 (despite a trend toward increased
sensitivity; P	0.07 for AUC; Supplemental Fig. S1B), or
at ZT14 (Supplemental Fig. S1D). When Rev-erb��/�

mice were challenged with an OGTT after overnight
food withdrawal, their glucose-stimulated insulin secre-
tion was also similar to that of control mice (Supple-
mental Fig. S1A). Similarly, a hyperinsulinemic-eugly-
cemic clamp study performed from ZT6 in animals
previously unfed for 6 h indicated that the glucose
infusion rate, averaged over the last 60 min of the

clamp, was similar between genotypes (Fig. 2E), ruling
out any major alteration in whole-body insulin sensitiv-
ity. In addition, pancreatic islets from both genotypes
were identical in area, circularity, and insulin content
(Fig. 2F, G and Supplemental Fig. S2A). Altogether,
these observations suggest that the high blood glucose
seen in chow-fed Rev-erb��/� mice is not the result of
either insulin resistance or a defect in insulin secretion.

Gluconeogenesis is not enhanced in Rev-erb��/� mice

The following experiments were conducted to deter-
mine whether the hyperglycemia in Rev-erb��/� mice
was of hepatic origin. For that purpose, we investigated
glycogenolysis by challenging mice with a GST. Rev-
erb��/� mice did not show a larger hyperglycemic
response compared to that in controls (Fig. 2H), ex-
cluding hypersensitivity to glucagon as a potential cause
of hyperglycemia. We then challenged mice with a PTT
at ZT2 to investigate a potentially greater contribution

Figure 2. Lack of whole insulin resistance or increased gluconeogenesis in Rev-erb��/� mice. A–C) Plasma insulin levels (A),
hepatic glycogen concentration (B), and plasma glucagon levels (C); n 	 6/group. D) OGTT in mice unfed overnight (i.e., from
ZT12 to ZT2) and the resulting incremental AUC (n	12/group). E) Hyperinsulinemic-euglycemic clamp and the resulting
glucose infusion rates averaged over the last 60 min of the clamp (n	6/group). F) Insulin immunostaining from pancreas
sections of �/� and �/� animals and their respective quantification (n	6/group). G) Pancreas sections of a Rev-erb��/� (left
panel) and a Rev-erb��/� mouse (right panel) stained with insulin antibody. Scale bar 	 50 �m. H, I) GST (H) and PTT (I) in
mice unfed overnight and the resulting AUCs (n	12/group). J) Glucose production in Rev-erb��/� and Rev-erb��/� primary
hepatocytes incubated with (�) or without (�) lactate-pyruvate (LP) for 2 or 24 h (n	7/group). Data are means � se. Open
circles, Rev-erb��/� mice; solid circles, Rev-erb��/� mice. �P 
 0.05 for main effect of time (top left corner) or vs. corresponding
ZT0 group of same genotype (above bar); *P 
 0.05 vs. �/� genotype at same ZT; #P 
 0.05 vs. 24 h LP� treatment.
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of gluconeogenesis in Rev-erb��/� mice. No significant
difference was detected between the genotypes (Fig.
2I). Metformin, known to decrease hepatic glucose
production by inhibiting gluconeogenesis and increas-
ing insulin sensitivity, improved glucose tolerance to
the same degree in both genotypes (data not shown).
To confirm these in vivo results, we compared glucose
production in vitro in primary hepatocytes from Rev-
erb��/� and control animals. Following 24 h incubation
in the presence of lactate-pyruvate, Rev-erb��/� hepa-
tocytes did not produce more glucose than wild-type
cells (Fig. 2J). We conclude that the chronic hypergly-
cemic phenotype of Rev-erb��/� mice cannot be ex-
plained by increased gluconeogenesis. As REV-ERB� is
a potential link between the circadian timing system
and metabolism, we hypothesized that these mice may
exhibit a circadian misalignment of energy utilization.

Daily balance in energy stores utilization is
exacerbated in Rev-erb��/� mice

To test whether the daily cycle of lipid and glucose
utilization is modified in Rev-erb��/� mice, we assessed
the 24-h variations of energy metabolism in vivo by
using indirect calorimetry. Basal metabolism, deter-
mined from the 5 lowest O2 consumption values during
the second 24-h cycle, was not significantly different
between genotypes (Supplemental Fig. S3). The RQ
(VCO2/VO2) tracks the type of fuel oxidized. High (i.e.,
close to 1) and low (i.e., close to 0.7) RQ values indicate
preferential utilization of carbohydrates and lipids,
respectively. Of interest, Rev-erb��/� mice showed al-
tered daily variations in RQ values compared to control
mice, with lower and higher values during the day and
the night, respectively (Fig. 3A, B). Cosinor fitting
followed by analysis of covariance of 48 h RQ data
revealed that the acrophase of RQ occurred 1.4 h later
(i.e., was phase delayed) in Rev-erb��/� compared to
control mice (ZT 17.4 � 0.1 vs. 16.0 � 0.2, respectively;
P 
 0.001). Furthermore, daily changes of RQ in
Rev-erb��/� mice displayed larger amplitude than in
control littermates (0.11 � 0.003 vs. 0.06 � 0.003,
respectively; P 
 0.001), whereas the daily mean RQ,
which reflects energy homeostasis, did not differ between
genotypes (�/� vs. �/�: 0.85 � 0.002 vs. 0.85 � 0.002,
respectively).

These data demonstrate that Rev-erb��/� mice have

increased fatty acid utilization during the resting pe-
riod compared to littermate controls, while their glu-
cose utilization (i.e., glucose supply to active organs
and/or conversion of dietary carbohydrates to fat) is
delayed and increased during the active period.

Increased utilization of lipid fuels in unfed
Rev-erb��/� mice

To test a preferential use of fatty acids over glucose in
Rev-erb��/� mice, we analyzed the physiological and
hepatic molecular responses of both genotypes after 24
h of food withdrawal (i.e., to trigger mobilization of
energy stores) and 24 h of food withdrawal followed by
24 h refeeding with high-carbohydrate diet (i.e., to
trigger lipogenesis). Changes in body mass associated
with food withdrawal and refeeding did not differ
significantly between the genotypes (Fig. 4A). Com-
pared to controls, Rev-erb��/� mice exhibited a signif-
icantly lower hypothermia response to 24 h of food
deprivation, resulting in higher body temperature at
the end of the nonfeeding period (Fig. 4B). This lack of
hypothermia was not due to changes in the level of
locomotor activity (Supplemental Fig. S4A). In addi-
tion, fasting blood glucose levels were still significantly
higher in Rev-erb��/� mice compared to Rev-erb��/�

animals (Fig. 4C). This confirms the mild hyperglyce-
mia after overnight food withdrawal before metabolic
tests. However, there was no difference between the
genotypes in the refeeding condition (Fig. 4C). The
absence of hyperglycemia in refed Rev-erb��/� mice
was not linked to differential changes in insulin levels
(Fig. 4D) or food intake (�/� vs. �/�: 6.09 � 0.16 vs.
6.33 � 0.17 g, respectively). One possible explanation is
that previously unfed Rev-erb��/� mice are more sensi-
tive than Rev-erb��/� animals to the hyperglycemic
effect of high-carbohydrate diet. In other words, Rev-
erb��/� mice may be more efficient to process high-
carbohydrate intake for fatty acid synthesis.

While most metabolic parameters studied did not
differ between the two genotypes in the refed condition
(Fig. 4D–I), many of them were differentially affected
by 24 h of food withdrawal in Rev-erb��/� vs. �/�

animals. In particular, hepatic glycogen was signifi-
cantly more elevated in Rev-erb��/� mice (Fig. 4E),
indicating that blood glucose is not used as a primary
source of energy in these mice. Interestingly, plasma

Figure 3. Changes in daily fuel utilization in
Rev-erb��/� mice. A) RQ (48 h; i.e., VCO2/VO2
values) of Rev-erb��/� and �/� mice, deter-
mined by indirect calorimetry. Shaded and
solid traces show fitting of the 48-h RQ data of
Rev-erb��/� and Rev-erb��/� mice, respectively,
to the cosine function. Note that data were
collected every 15 min. Shaded area indicates
the dark (i.e., active/feeding) period. Open
circles, Rev-erb��/� mice; solid circles, Rev-
erb��/� mice. B) Day and night averages of RQ.
Values are expressed as means � se (n	10/
group). �P 
 0.05 for main effect of time.
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NEFA and ketone body levels were significantly de-
creased in Rev-erb��/� mice compared to control mice
(Fig. 4H, I). This suggests that fatty acids are used as the
main source of energy during 24 h of food withdrawal
in Rev-erb�-deficient animals.

To substantiate this possibility, we analyzed the
mRNA expression of peroxisome proliferator-activated recep-
tor � (Ppar�) and Ppar�-target genes known to be
involved in ketogenesis: carnitine palmitoyltransferase 1a
(Cpt1a) and 3-hydroxy-3-methylglutaryl-CoA synthase 2
(Hmgcs2). Food withdrawal similarly enhanced the
mRNA levels of Ppar�, Cpt1a, and Hmgcs2 in both
genotypes (Fig. 4J), ruling out an abnormal ketogenesis
in Rev-erb��/� mice, which could have explained the
reduction of their ketone body levels. In addition, the
expression of phosphoenolpyruvate carboxykinase 2 (Pepck)
and glucose-6-phosphatase (G6pc), two key actors of glu-
coneogenesis, was reduced in unfed Rev-erb��/� mice
(Fig. 4K). Furthermore, the mRNA levels of glucose
transporter 2 (Glut2) and glucokinase (Gk), involved in
glucose transport and both glycogen synthesis and

glycolysis, respectively, were higher after food with-
drawal in Rev-erb��/� mice than in wild-type mice (Fig.
4K). In contrast, loss of Rev-erb� did not block the
refeeding-induced increase of lipogenic genes (Fig. 4L
and Supplemental Fig. S4C). The mRNA levels of other
regulators of glucose and lipid metabolism were similar
between the genotypes (Supplemental Fig. S4B, C). To
summarize, unfed Rev-erb��/� mice maintain relative
hyperglycemia, concomitant with available glycogen
stores and reduced gluconeogenesis. In agreement with
these findings, the lower RQ values in chow-fed Rev-
erb��/� mice during daytime demonstrate that Rev-erb�
deletion in vivo leads to a greater mobilization and
oxidation of fatty acids as well as a greater ketolysis
during the resting period.

Rev-erb��/� mice are more prone to HFD-induced
obesity

The experiments reported above indicate that the
absence of Rev-erb� leads to a shift from glucose to fatty

Figure 4. Shift from glucose to fatty acid utilization in unfed Rev-erb��/� mice. A) Body mass changes determined before (left,
upper values) and after a 24 h fast (left, lower values), and before (right, upper values) and after 24 h of food withdrawal � 24
h refeeding (right, lower values) in Rev-erb��/� and Rev-erb��/� mice. B) Body temperature during 24 h of food withdrawal and
the adjacent ZT22-24 average. Open circles, Rev-erb��/� mice; solid circles, Rev-erb��/� mice. C–I) Blood glucose (C), plasma
insulin (D), hepatic glycogen (E), hepatic triglyceride (TG; F), plasma TG (G), plasma NEFA (H), and plasma ketone body (KB;
I) levels in unfed (fasted) and refed animals. J–L) mRNA expression levels of ketogenic genes (J), glucose metabolism genes (K),
and lipogenic genes (L). Animals were sampled at ZT0. Values are expressed as means � se (n	7/group). See Supplemental
Table S1 for gene names. #P 
 0.05 for main effect of feeding condition (midpanel) or vs. corresponding unfed (fasted) group
of same genotype (above bar); *P 
 0.05 vs. �/� genotype of same feeding condition.
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acid utilization for energy supply, at least during the
resting period and 24 h of food withdrawal. During
nighttime (i.e., period of dietary carbohydrate intake),
however, mild hyperglycemia, normal insulin sensitiv-
ity, and high RQ values in chow-fed Rev-erb��/� mice
indicate an active absorption of carbohydrates. We
wondered whether de novo lipogenesis from dietary
carbohydrates could be increased at night in Rev-
erb��/� mice. We first assessed day-night parameters
related to lipid metabolism in 4-wk-old Rev-erb��/� and �/�

mice fed chow or HFD for up to 12 wk. Rev-erb��/�

mice fed HFD gained much more body mass than
HFD-fed control animals (Fig. 5A). This cannot be
attributed to biased (i.e., different) values of baseline
body mass, because they were similar between the
genotypes at 4 wk of age. Moreover, all groups had a
similar body size at the end of the experiments (data
not shown). Mean calorie intake did not significantly
differ between the genotypes, despite a trend for in-
creased calorie consumption in the Rev-erb��/� group
(P	0.08; Supplemental Fig. S5A). Rev-erb��/� mice
had a significantly higher body mass index, especially in
the HFD group (Supplemental Fig. S5B). In accor-
dance with this observation, the amount of WAT (i.e.,
perigonadal and retroperitoneal) was also significantly
greater in Rev-erb��/� mice compared to controls,
regardless of the feeding conditions (Fig. 5B, C). As
expected (33), HFD-fed control animals had signifi-
cantly higher body mass and adiposity than chow-fed
control animals, and in addition, they reached a similar
adiposity as in chow-fed Rev-erb��/� mice (Fig. 5B, C).

When fed HFD, both genotypes expressed an atten-
uated diurnal feeding rhythm (data not shown) and

showed significant hyperleptinemia (Fig. 5D), in-
creased hepatic triglycerides (Fig. 5F), decreased
plasma triglycerides (Fig. 5G), increased plasma LDL
and plasma NEFAs (Fig. 5H, I), hypercholesterolemia
(Supplemental Fig. S5D) and hyperinsulinemia (Sup-
plemental Fig. S5G), compared to their chow-fed con-
trols. Interestingly, irrespective of the feeding condi-
tions, Rev-erb��/� mice had significantly increased
plasma leptin, glucose, NEFA, LDL, ketone body, cho-
lesterol, insulin, and adiponectin levels compared to
Rev-erb��/� mice (Fig. 5D, E, H–J and Supplemental
Fig. S5D, G, H). Incidentally, HFD-induced hyperglyce-
mia was only detected with blood sampling by tail
incision (Supplemental Fig. S5K, L). The high levels of
adiponectin and leptin in chow- and HFD-fed Rev-
erb��/� mice could have prevented the development of
insulin resistance (34). Corticosterone levels, impor-
tant for carbohydrate metabolism, were not signifi-
cantly enhanced in chow-fed Rev-erb�/� mice (Supple-
mental Fig. S5I). Hepatic triglycerides in chow-fed
Rev-erb��/� mice were found to be increased at ZT10
(20) and reduced at ZT12 (25). However, we noticed a
trend toward elevated hepatic triglycerides at ZT12 in
Rev-erb��/� mice, regardless of the feeding conditions
(P	0.06; Fig. 5F). Of interest, plasma glycerol in Rev-
erb��/� mice was enhanced at ZT12 in chow-fed con-
ditions and at both time points in HFD-fed conditions
(Supplemental Fig. S5F), which may indicate enhanced
hydrolysis of triglycerides. Taken together, our data
indicate that Rev-erb� deletion leads to a fat phenotype
in chow-fed conditions, which is severely amplified in
HFD-fed conditions.

Figure 5. Rev-erb��/� mice exhibit a fat phenotype amplified on prolonged high-fat feeding. A) Body mass change over time in
chow-fed and HFD-fed �/� and �/� animals (n	12/group). Sac., sacrifice. Note that statistical analysis was performed on the
last week of feeding. Open circles, chow-fed Rev-erb��/� mice; solid circles, chow-fed Rev-erb��/� mice; light shaded triangles,
HFD-fed Rev-erb��/� mice; dark shaded triangles, HFD-fed Rev-erb��/� mice. B) Total adiposity, expressed as a percentage of
body mass (n	12/group). C) Amount of perigonadal and retroperitoneal WAT (WATp and WATr, respectively; n	12/group).
D, E) Plasma leptin (D) and glucose (E) levels (n	6/group). F, G) Hepatic triglyceride (TG; F) and plasma TG (G) levels
(n	6/group). H–J) Plasma LDL (H), NEFA (I), and ketone body (KB; J) levels (n	6/group). Values are expressed as
means � se. �P 
 0.05 for main effect of time; *P 
 0.05 for main effect of genotype; #P 
 0.05 for main effect of feeding condition.
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Expression of metabolic genes is disrupted in
chow- and HFD-fed Rev-erb��/� mice

To gain further insight into the role of REV-ERB� as
transcriptional repressor for the daily control of energy
balance, we examined the day-night levels of glucose
and lipid-related genes in the liver, WAT, and skeletal
muscle of chow- and HFD-fed Rev-erb��/� and �/�

mice. Of note, day-night expression patterns of most
metabolic genes studied in Rev-erb��/� mice were in
accordance with expression profiling from transcrip-
tome data (10,35). We first determined whether the
defective energy homeostasis in Rev-erb��/� mice was
the consequence of altered hepatic gene expression.
Notably, hepatic glycogen synthase 2 (Gys2) and Glut2
expression was significantly diminished at ZT12 in
Rev-erb��/� mice in both feeding conditions (Fig. 6A),
while no significant differences were found for Gk,

Pepck, and G6pc (Supplemental Fig. S6A), in keeping
with a previous report (20). Hepatic expression of
lipogenic genes [e.g., sterol regulatory element binding
transcription factor 1 (Srebp1c) and fatty acid synthase
(Fas)] showed decreased levels at ZT12 in chow-fed
Rev-erb��/� mice (Fig. 6A). However, while HFD did
not markedly change the expression of Srebp1c, the
hepatic mRNA levels of Fas, acetyl-coenzyme A carboxylase
(Acc), and ELOVL fatty acid elongase 6 (Elovl6) in the
Rev-erb��/� group were �2-fold higher than in control
animals at both time points (Fig. 6A). Similarly, we
found that the fatty acid transporter cluster of differenti-
ation 36 (Cd36) was significantly induced by HFD
exclusively in Rev-erb��/� animals (Fig. 6A). Of special
interest, Lpl mRNA, which encodes the rate-limiting
enzyme in triglyceride hydrolysis (36), was significantly
increased at ZT12 in the liver of Rev-erb��/� mice

Figure 6. Lipid metabolism gene expression is modified in the absence of Rev-erb�. mRNA expression of glucose and lipid
metabolism genes in liver (A), retroperitoneal WAT (B), and rectus femoris skeletal muscle (C). Data are means � se
(n	6/group). See Supplemental Table S1 for gene names. �P 
 0.05 for main effect of time (top left corner) or vs.
corresponding ZT0 group of same genotype (above bar); *P 
 0.05) for main effect of genotype (top left corner) or vs.
corresponding �/� genotype group at same ZT (above bar); #P 
 0.05 for main effect of feeding condition (top left corner)
or vs. corresponding chow-fed group at same ZT (above bar).
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compared to controls (Fig. 6A). Taken together, the
elevated expression of these metabolic actors may con-
tribute to obesity.

To further specify the obesity phenotype of Rev-
erb��/� mice, we analyzed the mRNA levels of meta-
bolic actors in WAT and skeletal muscle. Glut4, Fas, Acc,
and Srebp1c were significantly down-regulated by HFD
in both genotypes (Fig. 6B and Supplemental Fig. S6B).
Incidentally, this HFD-dependent regulation of the
lipogenic genes Acc and Fas has also been observed in
obese humans and rodents (37). While there was no
difference in Cd36 expression between the two geno-
types, the deletion of Rev-erb� also increased Lpl mRNA
expression in WAT (Fig. 6B). This suggests that in
Rev-erb��/� mice, WAT Lpl enhanced uptake of NEFA
for fat storage, thus contributing to fat overload. In
skeletal muscle, an overall tendency to down-regulate
Glut4 was seen in Rev-erb��/� mice, which only reached
statistical significance in HFD-fed Rev-erb��/� animals
at ZT12 (Fig. 6C), when massive body fat overload
started to impede physical activity (data not shown).
Expression of Fas and Acc in the muscle was also
down-regulated in response to HFD in both genotypes,
whereas the expression of Cd36 was increased by HFD
in both genotypes (Fig. 6C, Supplemental S6C). Of
note, Cd36 and Lpl expression was significantly in-
creased in Rev-erb��/� mice, irrespective of the feeding
conditions (Fig. 6C). This further supports our hypoth-
esis of an enhanced utilization of fatty acids as energy
substrate for the muscle.

Altogether, these results clearly indicate that Rev-
erb��/� mice display a defective molecular control of
energy homeostasis which contributes to HFD-induced
obesity. Both liver and skeletal muscle appear to play a
role in the production and preferential use of fatty
acids at the expense of peripheral utilization of glucose,
thus leading to a chronic mild hyperglycemia.

CLOCK drives transcriptional activation of Lpl

The overexpression of Lpl mRNA that we found in 3
peripheral tissues of Rev-erb��/� mice led us to test
whether this gene could be clock controlled. Since
several putative RORE motifs were found in the proxi-
mal promoter region of Lpl (see Supplemental Data),
we first decided to check whether the latter would be
responsive to REV-ERB� and ROR�. Neither ROR�
nor REV-ERB� had any effect toward this reporter
construct (Fig. 7A). In contrast, ROR� consistently
activated Bmal1-luc, an effect that could be partially
overcome by the addition of REV-ERB� (Fig. 7B).

However, the transcriptions of Rev-erb� and Clock/
Bmal1 are interlocked: The heterodimer CLOCK/
BMAL1 drives Rev-erb� transcription (38), and REV-
ERB� inhibits both Bmal1 and Clock transcriptions, as
previously mentioned. This explains why the mRNA
levels of both Bmal1 and Clock are higher in the
Rev-erb��/� mice than in their wild-type littermates
(Supplemental Fig. S7). Therefore, it seems plausible
that at least a subset of CLOCK/BMAL1 targets will

display enhanced expression levels in these Rev-erb��/�

mice. We thus tested the potential implication of a
putative E-box, which is located in the most proximal
promoter region of mLpl. This reporter construct sig-
nificantly responded to CLOCK/BMAL1, although the
amplitude of the response was not different from that
elicited by CLOCK alone (Fig. 7C). These results dem-
onstrate that the circadian clockwork is somehow in-
volved in the transcriptional activation of the Lpl gene.

DISCUSSION

Energy metabolism can be affected by circadian distur-
bance, as evidenced by epidemiologic studies in shift
workers and genetic disruption of clock components in
mice (1, 11). REV-ERB� is a transcription factor in-
volved both in the molecular clockwork and in several
metabolic pathways. Therefore, dissecting REV-ERB�
contribution to the daily balance between glucose and
lipid metabolism is an important step toward under-
standing the functional crosstalk between the circadian
and metabolic systems. Here we show that the absence
of REV-ERB� in vivo leads to a preferential use of fatty
acids as energy substrate during daytime, in association
with non-insulin-dependent hyperglycemia.

During the daily resting period, liver and muscle
derive most of their energy from fatty acids released

Figure 7. Transactivation by CLOCK of the Lpl promoter. A,
B) Effects of ROR� and REV-ERB� on the transcription of
Lpl-luc (A) and Bmal1-luc (B) promoter reporter constructs. C,
D) Effects of CLOCK and BMAL1 on the transcription of
Lpl-luc (C) and Per1-luc (D) promoter reporter constructs.
Luciferase assay was performed on COS-7 cells as indicated in
Materials and Methods. Data are means � se of a represen-
tative experiment performed in triplicate wells. RLU, relative
luminescence units. *P 
 0.05 vs. control (empty vector).
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from WAT. Chow-fed Rev-erb��/� mice rely more on
lipid fuels during the inactive period than do control
mice, as evidenced by low (i.e., close to 0.7) RQ values.
Accordingly, hepatic glycogen is less mobilized at the
end of the resting period, while the hyperglycemia
persists. A defect of glucose entry due to tissue-specific
impaired insulin signaling would have explained the
increased fatty acid utilization in Rev-erb��/� mice.
Deficiency in Glut4 expression has been associated with
insulin resistance (39). However, chow-fed Rev-erb��/�

mice have normal whole-body insulin sensitivity without
obvious changes in Glut4 mRNA levels in peripheral
tissues.

Another explanation for the increased fatty acid
utilization stems from the implication of REV-ERB� in
the regulation of myosin heavy chain (MyHc) isoform
expression in the skeletal muscle, based in particular
on a significant fast-to-slow MyHC isoform transforma-
tion in skeletal muscle of Rev-erb��/� mice (40). Thus,
the preponderance of this slow myosin may have in-
creased aerobic lipid metabolism, sparing glucose use
in the muscles of Rev-erb�-deficient mice. In agreement
with this hypothesis, the membrane protein Cd36 in-
volved in the binding and transport of fatty acids (36) is
up-regulated in Rev-erb��/� mice in the rectus femoris
muscle, which has both oxidative and glycolytic capa-
bilities (41). Muscle-specific overexpression of Cd36 in
mice promotes clearance of circulating fatty acids and
increases plasma glucose and insulin (42). Further-
more, Lpl mRNA in the muscle of Rev-erb�-deficient
animals is up-regulated both in the morning and the
evening. Of note, LPL activity is higher in muscles
composed predominantly of high-oxidative slow-twitch
fibers (43) and is inversely phased to daily variation of
RQ (44). Moreover, Rev-erb��/� mice are resistant to
cold-induced hypothermia (Supplemental Fig. S8), as
are transgenic mice that overexpress Lpl in skeletal
muscles (45). This improved cold tolerance could be
linked to changes in muscle physiology (i.e., enhanced
oxidative capacity) due to LPL overexpression (45).
Taken together, these findings show that increased
Cd36 and Lpl expression reflects increased muscular
uptake of fatty acids in Rev-erb��/� mice and can
contribute not only to hyperglycemia but also to the
absence of food withdrawal-induced drops in blood
glucose and body temperature.

The physiological responses to acute food withdrawal
include depletion of glycogen stores, hepatic gluconeo-
genesis, and mobilization of triglyceride in adipose
tissues, which together provide energy supply. After 24
h of food withdrawal, glycogen depletion in Rev-
erb��/� mice remains incomplete and the hepatic
expression of gluconeogenic genes much less increased
in their liver. Strikingly, blood glucose levels in unfed
Rev-erb��/� mice are not decreased as in control ani-
mals, but instead show similar values to those of fed
Rev-erb��/� mice. In sharp contrast, plasma NEFA and
ketone bodies levels in unfed Rev-erb��/� mice are
lower than in unfed control mice, reflecting acute
utilization of fatty acids. This conclusion is substanti-

ated by the facts that plasma NEFA and ketone body
levels are either similar or greater in chow-fed Rev-
erb��/� mice compared to their controls, and that
ketogenesis at the molecular level is induced by food
withdrawal. Thus, it is unlikely that reduced NEFA and
ketone bodies levels are due to decreased lipolysis
and ketogenesis. Hence, the relative hyperglycemia and
normothermia in starved Rev-erb��/� mice result from
a combination of lower activation of gluconeogenesis,
diminished glucose utilization, and increased produc-
tion and utilization of lipid fuels.

During the daily activity period, feeding allows the
restoration of energy stores depleted over the previous
daytime food withdrawal. Nocturnal RQ values in Rev-
erb��/� mice are higher than in control mice, suggest-
ing a greater utilization of glucose. This feature, how-
ever, cannot be explained by increased Glut4 mRNA
levels, fast glycolytic fibers (40), or physical activity.
Alternatively, higher nocturnal RQ values in Rev-
erb��/� mice can result from increased de novo lipogen-
esis, leading to enhanced production of lipids. Indeed,
when fatty acids are synthesized from glucose, for
instance during the absorption of dietary carbohy-
drates, the average RQ remains close to or below 1 (46).
Rev-erb��/� mice exhibit increased adiposity even when
fed chow. Of note, body fat can derive from dietary fat
and de novo lipogenesis, mainly from carbohydrates
(46). Fas mRNA expression shows a 2-fold increase at
ZT12 in the muscle and WAT of Rev-erb��/� mice,
indicating elevated fat synthesis in these tissues. How-
ever, no increased expression of lipogenic genes has
been detected in the liver of chow-fed Rev-erb��/�

mice. This is explained by our sampling times, because
expression of Srebp1c, Fas, and Elovl6 is phase shifted in
the liver of Rev-erb�-deficient mice (20), suggesting a
delay in the occurrence of fat synthesis. This was
confirmed by Feng et al. (25), who demonstrated that
REV-ERB� controls the expression of lipid metabolism
genes by recruiting the repressive chromatin modifier
histone deacetylase 3, ensuring a temporal control of
lipogenesis. In line with this study, we also show a trend
toward elevated hepatic triglycerides, an important
source of lipids for very low density lipoprotein (VLDL)
assembly at the end of the day. Hepatic de novo lipo-
genesis contributes to VLDL production, the latter
being increased in Rev-erb�-deficient mice (47). In
addition, our calorimetry data indicating a possible
nocturnal elevation of fat synthesis from dietary glucose
in chow-fed Rev-erb��/� mice are in accordance with an
increased de novo lipogenesis found in these mice
following the administration of deuterated water (25).
The improved ability to convert dietary glucose to fat in
the absence of Rev-erb� may explained the diminished
differences in blood glucose levels between both geno-
types fed high-carbohydrate diet or HFD.

In addition, our study demonstrates that the altered
circadian control of lipid homeostasis due to the ab-
sence of REV-ERB� in vivo facilitates HFD-induced
obesity. The metabolic phenotype in Rev-erb��/� mice
is robust, as increased adiposity occurs even on chow
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diet without significant hyperphagia. Interestingly, an
opposite phenotype (i.e., resistance to HFD) has been
described in Ror�-deficient mice (48). While Rev-
erb��/� and Rev-erb��/� mice challenged with HFD
become overweight and develop hyperleptinemia, hy-
perlipidemia, hypercholesterolemia, hyperinsulinemia,
and fatty liver, these metabolic responses are all signif-
icantly greater in Rev-erb��/� mice. Besides, high-fat-
fed Rev-erb��/� mice display increased ketonemia,
which is likely a response to an overload of the citric
acid cycle, blood glucose being converted to acetyl-CoA
in parallel to the production of acetyl-CoA from fat
breakdown. This indicates that the enhancement of the
fat oxidation capacity of the skeletal muscle of Rev-
erb��/� mice is not sufficient to cope with the adverse
effects of prolonged HFD feeding. In addition, hepatic
expression of Acc, Fas, and Elovl6 increases only in
Rev-erb��/� mice at both time points on HFD, in
keeping with increased de novo lipogenesis.

The overexpression of Lpl observed in Rev-erb��/�

mice is not restricted to the skeletal muscle. Indeed,
expression of Lpl, which is barely detectable in the
adult liver (49), is significantly up-regulated at ZT12 in
the liver of Rev-erb��/� mice. This is in line with the
24-h up-regulation of the Lpl transcript found in these
mice by Le Martelot et al. (20). Of note, hepatic
endothelial lipase mRNA levels are decreased in the liver
(20) while hepatic lipase mRNA expression is similar in
Rev-erb��/� mice (Supplemental Fig. S6). Interestingly,
the metabolic phenotype of chow-fed Rev-erb��/� ani-
mals is quite similar to that of liver-only Lpl-expressing
mice, which show increased liver triglyceride content
and ketone body levels (50, 51). However, Rev-erb��/�

mice do not exhibit insulin resistance like mice overex-
pressing Lpl in liver or skeletal muscle (51). Of impor-
tance, conflicting results have been reported regarding
insulin resistance induced by Lpl overexpression (52).
In addition, our results show that the overexpression of

Figure 8. Hypothetical model illustrating the consequence of altered Lpl expression in Rev-erb��/� mice. In addition to altered
daily hepatic expression of lipogenic genes (20, 25), Rev-erb� deletion impaired circadian control of Lpl, leading to its
overexpression in peripheral tissues. As a result, skeletal muscle may adapt by preferentially utilizing fatty acids (FA), thus
sparing glucose. The surplus of glucose is therefore converted to acetyl-CoA through de novo lipogenesis in parallel to the
generation of acetyl-CoA from fat breakdown. Acetyl-CoA production exceeding the cellular energy needs, ketone bodies (KB)
are synthesized to make use of the energy available (e.g., by muscle). At the same time, fat storage is increased as triglycerides
(TG) in both liver and adipose tissue. This leads to a frail energy balance in which greater uptake of fatty acids by the muscle
may relatively protect from severe hepatic steatosis and body fat overload. CHYL, chylomicrons; CHYL R, chylomicron remnants.
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Lpl also occurs in WAT of Rev-erb��/� mice. Specific
overexpression of Lpl in adipose tissue does not lead to
increased adiposity, an effect that could be due to
down-regulation of LPL in other tissues or increase in
energy expenditure (53). Interestingly, Rev-erb��/�

mice do not show increased body temperature, basal
metabolism, or thermogenic response to noradrenaline
(data not shown). Moreover, a direct correlation be-
tween adipocyte-derived LPL expression and lipid stor-
age has been proposed (54). Therefore, it is likely that
increased Lpl transcription in WAT of Rev-erb��/� mice
reflects increased activity of LPL, leading to enhanced
hydrolysis of circulating triglycerides and facilitated
NEFA uptake for storage.

The potential implication of REV-ERB� in the tran-
scriptional control of Lpl was assessed by luciferase assay
using the proximal promoter region of this gene. In
contrast to a Bmal1-luc reporter, mLpl-luc was unrespon-
sive to either REV-ERB� or ROR�. Of interest, an E-box
has been found in the mouse Lpl promoter (55).
Instead of a direct repression by REV-ERB�, activation
by CLOCK/BMAL1 could drive the temporal expres-
sion of the Lpl gene. Indeed, REV-ERB� expression is
crucial on a daily basis for the transcriptional control of
Clock and Bmal1. In the absence of Rev-erb�, Clock and
Bmal1 mRNA are overexpressed in peripheral tissues,
which can affect the expression of CLOCK/BMAL1
target genes. Our results show that Lpl expression can
be elicited by CLOCK alone. Whether this effect de-
pends on the acetyltransferase activity of CLOCK
(56,57) remains to be established. Such a positive
regulation of Lpl transcription by CLOCK/BMAL1 has
been previously mentioned (J. M. Gimble and Z. E.
Floyd, Pennington Biomedical Research Center, Baton
Rouge, LA, USA; unpublished results mentioned in ref.
58). Thus, the overexpression of Lpl appears to be the
result of a defective clockwork, keeping in mind that
the regulation of Lpl transcription can also be achieved
by other pathways (59, 60).

This study provides strong insight into the role of
REV-ERB� in the regulation of in vivo energy balance.
Our findings do not fully exclude the possibility that
impaired development of skeletal muscles (40) and
adipocytes (19) in Rev-erb�-deficient mice may partici-
pate in the observed metabolic phenotype. Alterna-
tively, altered clock functioning in the absence of
REV-ERB� could account for impaired temporal coor-
dination of developmental processes related to muscle
and adipose physiology (58, 61). We propose that
altered circadian control of metabolic pathways across
peripheral tissues is likely the main cause of the meta-
bolic phenotype of the Rev-erb��/� mice. Our data are
in agreement with the involvement of REV-ERB� in the
timing of hepatic lipid metabolism genes (20, 25).
Furthermore, we show that altered clock machinery
leads to up-regulated transcription of Lpl. In line with a
clock-regulated timing of Lpl mRNA expression, we
could not detect day-night variation of Lpl in the liver of
Rev-erb��/� mice. Circadian variations of Lpl mRNA
and LPL activity have been observed in various tissues

including the liver, with hepatic mRNA acrophase in
the early morning (4, 10, 20, 44, 59). Therefore, in the
context of glucose and fat regulation, circadian control
of Lpl appears to be essential for a balanced energy
metabolism, as suggested by Gimble and Floyd (58). If
Lpl is expressed continuously around the clock, fat
overload can ensue, while at the same time muscles
adapt toward a more oxidative metabolism (Fig. 8).

In summary, the present study uncovers a molecular
pathway that ties clock-driven Lpl expression to energy
homeostasis and highlights circadian disruption as a
potential cause for the etiology of the metabolic
syndrome.
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SUPPLEMENTAL DATA 

Animal experiments: For the intra‐peritoneal insulin sensitivity test (IPIST), mice (n = 10 / genotype, sex ratio 1:1) were fasted for 14 h (either 

from ZT12 to ZT2 or from ZT22 to ZT14) and injected i.p. with 0.5 IU/kg insulin (Umuline®NPH, Lilly, France). For the oral glucose tolerance test 

(OGTT),  mice  were  fasted  for  14  h  (from  ZT22  to  ZT14)  and  received  a  glucose  load  via  gavage  (2  g/kg;  D‐Glucose  Sigma).  Adaptive 

thermogenesis was assessed in 4‐month‐old mice (n = 6 / genotype) exposed to 4°C for 6 h from ZT2 (see Argmann et al. (2006) Curr Protoc Mol 

Biol) and recorded with rectal thermometer (Harvard apparatus, MA, USA). Note that the animals were transferred from their housing room to a 

4°C room. 

Plasma  metabolic  parameters:  Plasma  adiponectin  was  assayed  with  ELISA  Kits  (Adiponectin  EZMADP‐60K).  Plasma  corticosterone  was 

measured using an EIA kit (AC‐14F1, IDS EURL). 

Cell Culture, Transfection, and Luciferase Assay: The entire  locus of the Lpl gene (including 10kb upstream of the transcription start site and 

10kb downstream of  the  last exon) was  searched  for  the presence of  consensus ROREs  (WAWNTRGGTCA, where W  is A/T, R  is A/G and N 

corresponds  to  any  nucleotide).  A  single  consensus  RORE  was  found  in  the  Lpl  gene  within  the  46.4kb  region  examined  (NC_000074,  nt 

71394454..71440831); this corresponds to an  intergenic region,  located 3.4kb downstream of the last Lpl exon (minus strand, position 39788‐

39778 of the above‐mentioned genomic fragment). Due to its location, the functional relevance of this element is difficult to evaluate and was 

consequently not investigated. Proximal promoter regions often bear functionally important response elements and most transcription factors 

can bind sequences slightly divergent from their consensus DNA binding motif.  Indeed, several potential non‐consensus ROREs were found  in 

the proximal promoter regions of Lpl. We therefore decided to check whether this proximal promoter region was responsive to REV‐ERBα/RORα 

(see results). 

 

Supplemental Table S1. Sequences of primers used for Quantitative Real‐Time PCR 

Genes  Forward  Reverse 
36b4   GCTGATGGGCAAGAACACCA CCCAAAGCCTGGAAGAAGGA 
Acc (Acetyl‐Coenzyme A carboxylase alpha)  GCCTCTTCCTGACAAACGAG  TGACTGCCGAAACATCTCTG 
Acly (ATP citrate lyase)  ATCAACCCCCTTGTGGTGA  GCTTCAAGCTTGCTCCACTT 
ApocIII (Apolipoprotein CIII)   ACATGGAACAAGCCTCCAAG TGGTTGGTCCTCAGGGTTAG 
Bmal1 (Brain and muscle aryl hydrocarbon receptor nuclear 
translocator (ARNT)‐like) 

CTCATTGATGCCAAGACTGG GGTGGCCAGCTTTTCAAATA 

Cd36 (Cluster of Differentiation 36) AAGAGGTCCTTACACATACAGAGTTC AGCTGCTACAGCCAGATTCA 
Clock* (Circadian Locomotor Output Cycles Kaput)  ACCACAGCAACAGCAACAAC  GGCTGCTGAACTGAAGGAAG 
Cpt1a (Carnitine palmitoyltransferase 1A (liver))   TACTACGCCATGGAGATGCT  TGACGTGTTGGATGGTGTCT 
Cpt1b (Carnitine palmitoyltransferase 1B (muscle))  GTCGCTTCTTCAAGGTCTGG AAGAAAGCAGCACGTTCGAT 
Elovl6 (ELOVL fatty acid elongase 6)  GAGCAGAGGCGCAGAGAAC ATGCCGACCACCAAAGATAA 
Fas (Fatty acid synthase)  TCGACTTCAAAGGACCAAGC  TTCATGAACTGCACAGAGGTG 
Fgf21 (Fibroblast growth factor 21) AGATCAGGGAGGATGGAACA TCAAAGTGAGGCGATCCATA 
G6pc (Glucose‐6‐phosphatase, catalytic subunit)  CTCGTCTTCAAGTGGATTCTGT TGGCTTTTTCTTTCCTCGAA 
Gk (Glucokinase)   CCAGAAGGCTCAGAAGTTGG  TGCTTGTCCAGGAAGTCAGA 
Glut2 (Glucose transporter 2)   GGACAAACTTGGAAGGATCA  CAGTCCTGAAATTAGCCCACA 
Glut4 (Glucose transporter 4)   GATTCTGCTGCCCTTCTGTC ATTGGACGCTCTCTCTCCAA 
Gys2 (Glycogen synthase 2)   CCAGCTTGACAAGTTCGACA CCTCTTCAGCATGTGCTCTG 
Hmgcs2 (3‐hydroxy‐3‐methylglutaryl‐CoA synthase 2 
(mitochondrial)) 

AAGACCAAGGCCTCCCTTTA 
 

TAAGCCTGAGCCGTAGGAGA 

Insig2a (Insulin induced gene 2a)  CACGCCAGTGCTAAAGTAGAC  GGGTGACAACGGTTGCTAAG 
L‐Pk (Liver‐pyruvate kinase)   CGGAAAATTGGCCCAGA  CACCACATCACTGGCTTTTC 
Lipc (Hepatic lipase)  GCTGCTGGGAACAAAAGAAG AATGAGGCCAGAGTGGTGAG 
Lpl  (Lipoprotein lipase)   AGGGCTCTGCCTGAGTTGTA  CCATCCTCAGTCCCAGAAAA 
Pepck (Phosphoenolpyruvate carboxykinase 2 
(mitochondrial)) 

TTTGATGCCCAAGGCAACTT  ATCGATGCCTTCCCAGTAAA 

Ppara (Peroxisome proliferator‐activated receptor alpha)   GGATGTCACACAATGCAATTC  GGCCTTGACCTTGTTCATGT 
Pparbp (Ppar binding protein)   GAGAATCCTGTGAGCTGTCC  CGTTGGTTGCCTTCCAGTA 
Pparg (Peroxisome proliferator‐activated receptor gamma) AGACCACTCGCATTCCTTTGACAT TCCCCACAGACTCGGCACTCAATG
Srebp1c (Sterol regulatory element binding transcription 
factor 1)  

GGCACTGAAGCAAAGCTGAA  TCATGCCCTCCATAGACACA 

* Primers from Kohsaka et al. (2007) Cell Metab 



Supplemental Figure 1. Rev‐erbα‐/‐mice are hyperglycemic without whole insulin resistance.
(A) Determination of plasma insulin levels during an oral glucose tolerance test (OGTT) in mice fasted overnight (i.e., from ZT12 to
ZT2) and the resulting incremental area under the curve (AUC) based on insulin data (n = 8 / group). (B) Intraperitoneal insulin
sensitivity test (IPIST) in mice fasted overnight (i.e., from ZT12 to ZT2) and the resulting AUC (n = 12 / group). (C) OGTT and (D) IPIST
in daytime fasted mice (i.e., from ZT22 to ZT14) and the resulting AUC (n = 12 / group). Values are expressed as mean ± SEM. Note
for the IPIST that percents change from the baseline are depicted. * significant difference between genotypes for a given time point
(P < 0.05). Rev‐erbα+/+ (open symbols) and ‐/‐mice (closed symbols).( ) / ( p y ) / ( y )

Supplemental Figure 2. Pancreatic islets are normal in Rev‐erbα‐/‐mice.
(A) Islet area and (B) circularity (n = 12 / group). (C) Glucagon immunostaining of pancreatic sections in Rev‐erbα+/+ and ‐/‐mice (n =
6 / group). (D) Pancreas sections of a Rev‐erbα+/+ (left) and a ‐/‐mouse (right) stained with glucagon antibody; Scale bar: 50 µm.

Supplemental Figure 3. Changes in daily
fuel utilization in Rev‐erbα‐/‐mice.
(A) 48‐h O2 consumption of Rev‐erbα+/+
and ‐/‐ mice determined by indirect
calorimetry.y
(B) Basal metabolism calculated from the
five lowest O2 values. The grey rectangle
indicates the dark (i.e., active/feeding)
period. Rev‐erbα+/+ (open circles) and ‐/‐
mice (closed circles).



Supplemental Figure 4. General activity and hepatic gene expression in fasted or refed Rev‐erbα+/+ and ‐/‐mice.
(A) General locomotor activity during a 24‐h fast. (B) mRNA expression levels of glucose metabolism genes and (C) lipid metabolism
genes. Animals were sampled at ZT0. Values are expressed as mean ± SEM (n = 7 / group). ~ main effect of time; # main effect of
feeding condition (middle panel) or significant difference between feeding conditions for a given genotype (above bar graph) (P <
0.05); * significant difference between genotypes for a given feeding condition (P < 0.05). For abbreviations of the different genes,); g g yp g g ( ) g ,
see table S1. Rev‐erbα+/+ (open circles) and ‐/‐mice (closed circles).

Supplemental Figure 5. Rev‐erbα‐/‐
mice exhibit a fat phenotype amplified
upon prolonged High‐fat feeding.
(A) Daily calorie intake in chow‐fed and
high‐fat fed (HFD) +/+ and ‐/‐ animals (n
= 12 / group). (B) Body mass index (n =
12 / group). (C) Picture representing two
3‐month old Rev‐erbα‐/‐ mice under
HFD and chow conditions.
(D) Plasma cholesterol, (E) high‐density
lipoprotein (HDL), (F) glycerol, (G)
insulin, (H) adiponectin and (I)
corticosterone levels (n = 12 / group).
(K) 24‐h blood glucose profiles from tail
bleed in HFD conditions. (L) Mean blood
glucose levels over 24 h from chow (data
from Figure 1D) and HFD conditions
(data from Figure S5K) Rev‐erbα+/+(data from Figure S5K). Rev erbα+/+
(open circles) and ‐/‐ mice (closed
circles).
Note that mice from each feeding
conditions were age‐matched at the
time of sampling. Values are
represented as mean ± SEM. # main
effect of feeding condition (P < 0.05); ~

main effect of time (P < 0.05); * main
effect of genotype (upper left corner) or
significant difference between
genotypes for a given time point and
feeding condition (above bar graph) (P <
0.05).



Supplemental Figure 6. Gene expression in chow‐ and high‐fat fed Rev‐erbα+/+ and ‐/‐ animals.
mRNA expression of glucose and lipid metabolism genes in (A) liver, (B) retroperitoneal white adipose tissue, (C) rectus femoris
skeletal muscle. Data are means ± SEM (n = 6 / group). # main effect of feeding condition (upper left corner) or significant difference
between feeding conditions for a given genotype and time point (above bar graph) (P < 0.05); ~ main effect of time (upper leftg g g yp p ( g p ) ( ); ( pp
corner) or significant difference between time points for a given genotype and feeding condition (above bar graph) (P < 0.05); *
main effect of genotype (upper left corner) or significant difference between genotypes for a given time point and feeding condition
(above bar graph) (P < 0.05). For abbreviations of the different genes, see table S1.

Supplemental Figure 7. Clock gene
expression in chow‐ and high‐fat fed Rev‐
b / d / i lerbα+/+ and ‐/‐ animals.

mRNA expression of clock genes in (A)
liver, (B) retroperitoneal white adipose
tissue, (C) rectus femoris skeletal muscle.
Data are means ± SEM (n = 6 / group). ~

main effect of time (upper left corner) or
significant difference between time points
for a given genotype and feeding
condition (above bar graph) (P < 0.05); *
significant difference between genotypesg g yp
for a given time point and feeding
condition (above bar graph) (P < 0.05).

Supplemental Figure 8. Enhanced adaptive thermoregulation in Rev‐erbα‐/‐
mice.
Body temperature before (Time 0, ZT2) and during exposure to 4°C (n = 6 /
group). Values are expressed as mean ± SEM. ~ main effect of time (upper left
corner); * main effect of genotype (upper left corner) (P < 0.05).



168 
 

  



169 
 

Chapter 3 DISCUSSION 

1.  The FEO in Rev-erbα knockout mice 

 Numerous studies have explored the role of canonical clock genes in the 

functioning of the FEO. Some have suggested that the latter is a true circadian 

oscillator and that clock genes such as Per2 or Bmal1 are essential for its clockwork. 

Others have indicated that the molecular mechanism of the FEO could either involve 

non-classical clockwork yet to be discovered or that clock gene deletion fails to 

deeply affect food entrainment due to the involvement of metabolic and cognitive 

cues. 

1.1  Key findings discussed 

 In 12:12 light-dark conditions, Rev-erbα-/- mice exhibit reduced FAA prior to 

food access. This result is further confirmed in DD conditions in animals with or 

without SCN. However, contrary to Per2 mutant mice (Feillet et al. 2006; Mendoza et 

al. 2010), Rev-erbα deletion does not lead to a total disappearance of FAA31. 

 In contrast to slight reductions of behavioral components, thermogenesis in 

anticipation is almost abolished in Rev-erbα-/- mice. The anticipatory corticosterone 

peak and the rise in plasma ketone bodies are not observed either. However, 24-h 

hepatic clock mRNA oscillations and 24-h hypothalamic PER2 oscillations are RF-

entrained in Rev-erbα-/- mice as in their control littermates. Nevertheless, we found 

that the daily PER2 oscillations in the cerebellum are not similarly changed between 

Rev-erb+/+ and Rev-erbα-/- mice in response to RF. 

 At first glance, our results could support the circadian nature of the FEO 

functioning. Some matters, however, remain unsettled. 

1.1.1 Rev-erbα deletion and locomotor behaviors 

 By evaluating Rev-erbα contribution to food entrainment, we give a new 

evidence that clock genes are important for the ability of mice to properly anticipate 

                                                           
31

 On the other hand, not all control mice show strong FAA in our studies, in line with previous results 
(Pendergast et al. 2009).   
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mealtime, in line with previous reports (Dudley et al. 2003; Horikawa et al. 2005; 

Iijima et al. 2005; Feillet et al. 2006; Mendoza et al. 2010; Mieda et al. 2011). Indeed, 

the expression of general and wheel-running locomotor activities is significantly 

impacted prior to food access in Rev-erbα-/- mice. Nevertheless, in our study, the 

absence of Rev-erbα leads to an overall reduction of wheel-running activity. 

Interestingly, this has been observed in some (LopezMolina et al. 1997; Bunger et al. 

2000), but not all circadian mutants (Vitaterna et al. 1994; Zheng et al. 1999). Thus, it 

is not excluded that mice that do not behave similarly in the presence of a running 

wheel can eventually influence the accurate evaluation of food entrainment.  

 As previously mentioned, not all studies agree on the involvement of clock 

genes for the expression of FAA or for a proper MASCO functioning (Mohawk et al. 

2009; Storch et al. 2009), disputing the reliance of the putative FEO and MASCO 

oscillators on a SCN-like molecular mechanism. Most often, however, these studies 

did not investigate other parameters than wheel-running behaviors. In addition, FAA 

is rarely evaluated: in different lighting conditions32; following mealtime jet-lag test; or 

in T-cycle experiments (period of feeding different from 24 h, but in the circadian 

range). We have evaluated FAA in constant dark conditions, in a skeleton 

photoperiod (i.e., 1 h light-pulse at the beginning of the resting period and 1 h light-

pulse at the end of the resting period) as well as following mealtime jet-lag test, 

without revealing more FAA than in LD conditions (unpublished data; see appendix 

1). Incidentally, considering the fact that the FEO and MASCO may be a unique 

entity, the use of MAP injections could be informative to further substantiate the 

involvement of Rev-erbα in circadian pathways. 

1.1.2 Rev-erbα deletion and clock gene oscillations 

  As outlined above, the SCN functioning is altered in the absence of Rev-erbα 

(Preitner et al. 2002). Regarding the FEO, since its location/network has not been yet 

clearly revealed, we have to search rather blindly for altered molecular oscillations. At 

least, we found neither major changes of core clock mRNA expression (i.e., Per1-2) 

in liver nor of PER2 expression in key hypothalamic nuclei known to be circadian 

oscillators, in both AL and RF conditions. It is thus plausible that the circadian 
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 It has been recently shown that FAA in Bmal1
-/-

 mice could be observed in 18L:6D lighting cycles or in 
constant darkness, while it was nearly absent in 12L:12D conditions (Pendergast et al. 2009) 
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network (probably including the FEO) could still work in spite of genetic perturbations 

induced by the depletion of Rev-erbα—thus contributing to the expression of some 

FAA. For instance, active compensatory mechanisms in the clock network have been 

recently demonstrated in vitro (Baggs et al. 2009). In that study, knockdown of Rev-

erbβ was shown to increase expression of its paralog Rev-erbα, ensuring a “genetic 

backup”. In this regard, more recently, Rev-erbβ has been proposed to compensate 

for the absence of Rev-erbα in mouse embryonic fibroblasts and to protect circadian 

clock function (Bugge et al. 2012)33. At least in the liver (an organ which 

demonstrates significant metabolic changes in the absence of Rev-erbα, see below), 

24-h Rev-erbβ levels are unchanged in adult Rev-erbα-/- mice (Schmutz et al. 2010). 

 On the other hand, without strong modifications in the core clock functioning—

apart from altered Bmal1 and Clock levels—of hypothalamic and peripheral 

oscillators, it is possible that downstream targets of the FEO and of the Rev-erbα 

gene are differentially impacted. This could therefore explained why some 

physiological and metabolic parameters, considered as FEO outputs, such as 

thermogenesis (mainly controlled by the preoptic area), corticosterone release 

(controlled by the adrenal), ketone bodies production (by the liver), are severely 

impaired in Rev-erbα-/- mice under scheduled food restriction, although we did not 

investigate clock and metabolic gene expression in the adrenal gland and the 

preoptic area (for investigations on the liver, see part 2.1). 

 As for the CRB oscillator, our data on PER2 expression in Rev-erbα-/- mice 

under RF are intriguing in the light of a recent study demonstrating that a functional 

cerebellar oscillator is essential to ensure proper FAA—but not for the development 

of the food-anticipatory peak of corticosterone and the phase-adjustment of 

hypothalamic Per1-2 expression to mealtime (Mendoza et al. 2010). However, it 

seems premature to correlate the altered PER2 oscillations in the cerebellum of Rev-

erbα-/- mice to their defect to show robust food anticipation. Our view of the oscillator 

properties of the CRB of Rev-erbα-/- mice is limited since we did not evaluate the 

daily pattern of expression of additional clock proteins. Indeed, mutation of clock-

related factors such as Overtime or Cry1 can significantly affect the circadian 

expression of some, but not all, clock transcripts/proteins in the CRB (Miyamoto and 
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 This study reveals a close identity of the Rev-erbα and Rev-erbβ cistromes.  
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Sancar 1999; Siepka et al. 2007). Moreover, the role of the CRB in circadian timing 

processes such as food-entrainable oscillations is not yet defined. There is evidence 

of clock mRNA/protein oscillations in this brain region (Siepka et al. 2007; Farnell et 

al. 2008) that can be entrained by RF (present results and Mendoza et al. 2010). 

However, the CRB fine-tunes motor activity, but does not initiate it; thus, decreased 

food-anticipatory activities cannot be solely imputed to impaired clockwork in this 

structure. Besides that, the CRB represents rather a weak oscillator compared to the 

SCN, since the slight PER1 oscillations in tissue explants damped out relatively 

quickly (Mendoza et al. 2010). In this regard, it is not known if the coordinated daily 

clock gene expression in the CRB requires extrinsic factors from the brain (e.g., 

indirect coupling with the SCN pacemaker) and/or the periphery (e.g., feedback from 

feeding-related signals). Furthermore, since daytime RF challenge leads to the 

appearance of locomotor activity prior to mealtime and can shorten the main bout of 

nocturnal activity (Challet et al. 1998; Holmes and Mistlberger 2000), to what level 

these changes are interpreted by the CRB oscillator? This is especially important 

considering that locomotor activity, particularly the access to a running wheel, can 

feedback to the circadian system (Turek 1989; Lax et al. 1998; Campuzano et al. 

1999; Cambras et al. 2000; van der Veen et al. 2011). Since Rev-erbα-/- mice show 

decreased wheel-running activity, this could render difficult the establishment and 

expression of food-entrained circadian rhythms34. To summarize, beyond the need to 

evaluate the property of CRB cells (i.e., the Purkinje cells) to exhibit for instance 

rhythmic neuronal activity as a putative circadian electrical output signal to modulate 

food anticipation, it would be informative to study the degree of sensitivity of clock 

gene oscillations to diverse manipulations, such as following SCN removal or in the 

absence of a feedback from the periphery35. Likewise, instead of 

pharmacological/genetic impairments of the cerebellar architecture, the use of 

inducible circadian mutant to only affect the oscillator properties of the CRB could be 

enlightening. 

                                                           
34

 Of note, the absence of Rev-erbα leads to several defects during the postnatal development of the cerebellar 
cortex (e.g., delayed differentiation of Purkinje cells), yet with no reported deficits in motor coordination in 
adult mice (Chomez et al. 2000)—a phenotype which contrasts to Rorα

-/- 
mice that suffer from cerebellar ataxia 

(Hamilton et al. 1996). 
35

 Interestingly, PER1 expression in the DMH has been shown to increase in response to food that was 
presented at variable and unpredictable times each day, in the absence of entrained FAA. In addition, peak of 
PER2 expression is observed in the DMH after mealtime. These data suggest that oscillations in the DMH are 
sensitive to feeding-related signals rather than synchronized by mealtime (Verwey and Amir 2009). 
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1.1.3 Rev-erbα deletion and noncircadian effects 

 It is also important not to exclude impaired additional biological functions in the 

observed phenotype. Circadian oscillators are considered ubiquitous and the nuclear 

receptor Rev-erbα is no exception to the rule.  

 In this context, oligophrenin-1, important for dendritic spine morphogenesis 

and hippocampus-dependent spatial memory (Khelfaoui et al. 2007), has been 

recently shown to interact with Rev-erbα (Valnegri et al. 2011). Lack of FAA in Rev-

erbα-/- mice could hence result from disrupted higher order cognitive processes and 

associative learning—and their interactions with the circadian system36. This view is 

supported by studies on Cry1-/-;Cry2-/- mice, which show altered onset and 

robustness of FAA (Iijima et al. 2005) concomitant to a lack of their ability to achieve 

time-place learning (Van der Zee et al. 2008). This is also supported by reports on 

Npas2-/- mice that demonstrate deficits in contextual and cues memory (Garcia et al. 

2000) as well as delayed development of FAA in response to RF (unpublished data 

and Dudley et al. 2003). We have not investigated yet, however, cognitive defects 

(such as the ability to discriminate and remember a circadian phase) as a potential 

confounding effect of the disrupted FAA in Rev-erbα-/- mice37. 

 Another element that could account for the reduced FAA in Rev-erbα-/- mice 

concerns mood and anxiety disorders. Mice harboring mutations in clock-related 

genes have interesting phenotypes (Easton et al. 2003; Roybal et al. 2007; Li et al. 

2009). In particular, mice overexpressing GSK3β are considered as a good model of 

hyperactivity and mania (Prickaerts et al. 2006). At least, what we have noticed is 

that Rev-erbα deficient mice do not suffer from a loss of motivation to eat after a 

period of food withdrawal or an aversion to consume a palatable snack (personal 

observations). However, we still have to assess more specifically motivation-oriented 

behaviors. On the other hand, we have evaluated anxiety and depressive-like 

behaviors in Rev-erbα-/- mice and found no noteworthy difference in comparison to 

wild-type littermates (unpublished data, see appendix 2). 

                                                           
36

 And vice-versa; indeed, the recourse to higher order cognitive processes and associative learning could 
contribute to the apparition of residual FAA in the presence of a dysfunctional FEO (network). 
37

 As an aside, Per2
Brdm1

 mutant mice that exhibit abolished FAA (Feillet et al. 2006), show normal spatial and 
contextual learning (Zueger et al. 2006). However, the time-of-day regulation of memory has not yet been 
studied in Per2 mutant mice.  
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1.1.4 Rev-erbα deletion and energy balance 

 As aforementioned in the introduction, studies on the circadian nature of the 

FEO can also be inconclusive due to the strong interactions between the circadian 

network and metabolism.  

 In our study Rev-erbα-deficient mice were healthy as evidenced by similar 

body mass, water/food intake, and general locomotor activity. Nevertheless, we 

revealed significant changes in bodily functions such as glucose metabolism, ketone 

bodies utilization and heat production, either on AL or on RF conditions. Moreover, 

the responses of several hypothalamic nuclei to food access were not clearly 

observed at the level of p-ERK expression.  

 These elements could contribute to altered food entrainment as well, and are 

discussed in the following part.    
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2. The energy homeostasis of Rev-erbα knockout mice 

 In the last decades, tight connections between clock and metabolic cycles 

have been revealed. Body’s functions and body’s energy levels cycle along the day. 

The SCN pacemaker and slave oscillators timely coordinate metabolic processes to 

ensure their occurrence at the right time of the day. Rev-erbα, a gear of the circadian 

clockwork, holds a prominent role in this regard. 

2.1 Key findings discussed 

Rev-erbα-/- mice show higher blood glucose values than those of control mice 

across the whole 24-h cycle and after a fasting period as well. However, this is not 

due to decreased sensitivity to exogenous insulin, decreased production of 

endogenous insulin or increased hepatic glucose production in the absence of Rev-

erbα38. Instead, indirect calorimetric measurements of resting energy expenditure in 

AL conditions and a 24-h fast challenge indicate that Rev-erbα-/- mice rely heavily on 

fatty acids as a source of energy. 

In addition, Rev-erbα-/- mice fed with a standard normocaloric diet exhibit 

increased adiposity that can be severely enhanced under high-fat diet regimen. They 

also develop hyperlipidemia and hyperleptinemia, regardless of the feeding 

conditions. Their defective energy homeostasis was a consequence of abnormal 

timing in the liver clockwork, as evidenced by a slight delayed in lipogenesis during 

the night period and altered expression of lipogenic genes. Moreover, lipoprotein 

lipase (Lpl) gene expression is significantly enhanced in peripheral oscillators 

following Rev-erbα depletion, thus contributing to altered lipid homeostasis (i.e., lipid 

utilization and storage).  

These results highlight the significance of daily variations in clock gene 

expression for the control of metabolic gene expression, essential for fuel balance. 

                                                           
38

 Of note, no sex differences were observed regarding our in vivo glucose homeostasis studies, apart from 
higher blood glucose values in Rev-erbα

-/-
 males than in Rev-erbα

-/-
 females, which was also observed between 

wild-type males and females. Moreover, physiological and molecular data following the 24-h fasting and 
refeeding experiments were analyzed with no sex differences, apart from Pepck mRNA expression that was 
stronger in Rev-erbα

-/-
 females than Rev-erbα

-/-
 males (unpublished data).  
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2.1.1 Rev-erbα and glucose metabolism 

 Depletion of Rev-erbα by using small interfering RNA (siRNA) molecules has 

been shown to increase the expression of G6pc and Pepck mRNA in a human 

hepatoma cell line (Yin et al. 2007). Of note, Rev-erbα overexpression has the 

opposite effect. The human G6pc promoter contains a RORE site, important for the 

repressive action of Rev-erbα. Moreover, hemin treatment also diminishes 

gluconeogenic gene expression and glucose production in vitro, demonstrating the 

metabolic relevance of heme binding to Rev-erbα. These results suggest that Rev-

erbα may play a role in the daily variation of gluconeogenesis (Yin et al. 2007). In that 

regard, we observed that Rev-erbα deletion affects glucose levels in vivo, in animals 

fed AL39, fasted overnight, fasted for 4 h (from ZT16 to ZT0; unpublished data) or for 

24 h. However, this is not due to increased gluconeogenesis as first hypothesized. 

Indeed, neither Pepck nor G6pc mRNA are significantly elevated in the liver of Rev-

erbα-/- mice (our results and Le Martelot et al. 2009) or decreased in the liver of Rev-

erbα overexpressing mice (Le Martelot et al. 2009). Likewise, in vitro hepatic glucose 

production from Rev-erbα-/- hepatocytes is not enhanced in the presence of lactate 

and pyruvate.  

 Recently, the pancreatic islets have been shown to exhibit robust oscillations 

of clock gene, and deletion of Clock or Bmal1 has deleterious consequence on β-

cells function (Marcheva et al. 2010). Interestingly, Rev-erbα depletion by siRNA 

treatment in islets cells impairs glucose-induced insulin secretion and β-cell 

proliferation (Vieira et al. 2011). However, we did not detect alterations in pancreas 

physiology that could explain the mild hyperglycemia in germline KO mice. It is thus 

not improbable that metabolic regulations (in relation with the circadian system) are 

reorganized to some extent during development (i.e., compensatory mechanisms as 

discussed above) in the absence of Rev-erbα. 

 Since we have done metabolic tests around the clock to evaluate glucose 

homeostasis and have explored the hormonal system (e.g., insulin, glucagon and 

glucocorticoïds) that regulate glucose balance, without being able to find strong 

                                                           
39

 Review of the literature and our data indicate strong inter-study variations of the blood glucose acrophase in 
AL-fed C57BL6/J wild-type mice under 12:12 LD cycle, making difficult to assess alterations in the daily pattern 
of blood glucose. We did not investigate the daily/circadian blood glucose rhythm in fasted animals. 
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defects that could account for the recurring mild hyperglycemia seen in Rev-erbα-/- 

mice, we favor the presence of altered timing in energy substrate utilization. 

2.1.2 Rev-erbα and lipid metabolism 

  As mentioned in the introduction, the nuclear receptor Rev-erbα has been 

shown to play a role in bile acid, cholesterol and lipoprotein metabolism, particularly 

by controlling the expression of key components of metabolic pathways.  

 Regarding lipoprotein metabolism, liver ApoA1 expression40 can be regulated 

by Rev-erbα in vitro (Vu-Dac et al. 1998) and in vivo (Le Martelot et al. 2009). Apoc3 

transcript41 has also been demonstrated to be controlled by Rev-erbα in vitro and to 

be up-regulated in the liver of Rev-erbα-/- mice (Raspe et al. 2002)42, an observation, 

however, not confirmed by others (our results and Le Martelot et al. 2009). Further in 

the lipoprotein metabolism, we found that the Lpl transcript is consistently elevated in 

three peripheral tissues of Rev-erbα-/- mice. The up-regulation of Lpl is not directly a 

consequence of abolished repressive action of Rev-erbα on Lpl transcription, but 

involves enhanced CLOCK-BMAL1 transactivation on the Lpl promoter. Intriguingly, 

the expression of Lpl-luc reporter could be elicited by CLOCK alone. Whether 

CLOCK acts directly (as an E-Box binding partner for a protein endogenously present 

in COS7 cells) or indirectly (e.g. through its acetyltransferase activity; see Doi et al. 

2006; Nader et al. 2009) remains to be established. At least, co-transfection with 

CLOCK-BMAL2 does not induce more luciferase activity than transfection with 

CLOCK alone (unpublished data, Dardente Hugues). Conversely, the role of CLOCK 

alone in the modulation of clock and metabolic gene transcription has been 

previously observed (Oishi et al. 2005; Cai et al. 2008; Nader et al. 2009; Doi et al. 

2010; Shi et al. 2010). It is also important to mention that a recent study demonstrate 

that small hairpin RNA-mediated knockdown of Rev-erbβ potentiates the up-

regulation of Lpl in the liver of Rev-erbα-/- mice (Bugge et al. 2012)—although Clock 

mRNA level has not been evaluated in this study.  

                                                           
40

 APOA1 is a major protein component of high density lipoprotein in plasma. 
41

 APOC3 is a protein component of very low density lipoprotein. It is has been shown to inhibit lipoprotein 
lipase and hepatic lipase in vitro, however, APOC3 could have rather little effect in vivo (Mendivil et al. 2010). 
42

 It is important to mention that genetic variations between mouse stains can contribute to different 
metabolic phenotype in mutant mice. 
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 Worth to mention, as well, is the induction of Lpl in other circadian mutants 

(Shimba et al. 2011). Indeed, Bmal1-/- and liver-specific Bmal1-/- mice display a 

startling up-regulation of hepatic Lpl mRNA expression43, while muscle Lpl 

expression remains unchanged in both mutant mice—however, again, without data 

on Clock mRNA expression. In addition, in primary hepatocytes from control animals, 

a two-fold reduction of Bmal1 expression via siRNA knockdown, which is associated 

with a two-fold decrease of Rev-erbα mRNA levels without affecting Clock 

expression, has a slight effect on Lpl transcript level. None mechanistic explanation 

has been proposed in that study (Shimba et al. 2011). Additional studies show: 1) 

that BMAL1 overexpression in 3T3-L1 adipocytes has no consequence on the 

expression of the Lpl gene (Shimba et al. 2005); 2) that Rev-erbα and Rev-erbβ are 

nearly undetectable at all time points in Bmal1–/– animals (Kondratov et al. 2006; 

Grechez-Cassiau et al. 2008) and 3) that the circadian oscillations of the nuclear 

accumulation and degradation of CLOCK have been suggested to depend on BMAL1 

(Kondratov et al. 2003; Kwon et al. 2006). Thus, further studies are needed to shed 

more light on the importance of the molecular clockwork for the daily control of Lpl 

expression with regard to the possible contribution of other pathways (Schoonjans et 

al. 1996; Schoonjans et al. 2000; Gachon et al. 2011). 

“Once we succeed in finding the clock gene … boy, we’d lick the problem of mechanisms …” 

C. Pittendrigh to M.K. Chandrashekaran in Berkeley, 1968 (mentioned in Chandrashekaran 

1998). 

 

  

  

                                                           
43

 In the study of Shimba et al. 2011 - Figure 7, the normalized Lpl mRNA levels to the 36b4 levels are quite 
similar among peripheral tissues. In addition, the acrophase of Lpl mRNA (see the daily and circadian patterns 
of Lpl expression) are 6-h phase-delayed compared to our results, those of Le Martelot et al. 2009 and Gachon 
et al. 2011. Besides, Lpl levels are similar to those of Bmal1 in control animals, while when L-Bmal

-/-
 and control 

mice are compared, Lpl levels are just above 0 in control animals. All these elements are hard to understand 
and raise concerns about the normalization method and the Lpl primer sequences. Furthermore, regardless of 
Lpl overexpression, the body mass of Bmal1

-/- 
mice was much lower than that of control littermates, both in 

chow-fed and high-fat-fed conditions, which deeply contrasts with independent studies (Lamia et al. 2008; Guo 
et al. 2012). Discrepancies between studies that specifically evaluate adjustment to environmental changes and 
energy metabolism can result from the development of diseases due to pathogen exposition. All our 
experiments were done with mice raised in a pathogen-free facility.   
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 As evidenced by the evaluation of energy expenditure in chow-fed mice and 

their circulating energy substrates following a 24-h challenge, Lpl overexpression 

leads to increased utilization of fatty acids as energy source in Rev-erbα-/- mice, thus 

sparing glucose use as shown by higher blood glucose levels and glycogen stores in 

chow-fed, RF and fasting conditions44. Since the resting muscle is a major contributor 

of fatty acid oxidation, we analyzed metabolic gene expression in this tissue. We 

showed no significant decrease in the capacity of the muscle of Rev-erbα-/- mice to 

oxidize fatty acids, regarding Cpt1b mRNA expression. Along with overexpressed Lpl 

mRNA, we found that Cd36 transcript is also up-regulated in the muscle of Rev-erbα-

/- mice. These findings thus support enhanced fatty acids entry into muscular cells, 

although we did not evaluate LPL activity in muscle tissues of Rev-erbα-/- mice or in 

vivo metabolic flux. Our results are consistent with the previously described shift 

towards an oxidative muscle phenotype in Rev-erbα-/- mice. Indeed, the type I MyHc 

isoform in the slow-twitch soleus muscle (mainly oxidative) and the type I fiber area in 

the fast-twitch extensor digitorum longus muscle (oxidative and highly glycolytic) 

were found to be increased in Rev-erbα-/- mice (Pircher et al. 2005). Incidentally, the 

importance of the circadian nuclear receptors in skeletal muscle cells is also 

highlighted by the role of Rorα in lipid homeostasis45 (Lau et al. 2004) and the control 

of genes important for lipid absorption (e.g., Cd36) by Rev-erbβ (Ramakrishnan et al. 

2005).  

 The overexpression of Lpl also favors fat accumulation. We found that chow-

fed Rev-erbα-/- mice suffer from dyslipidemia, in line with previous reports (Raspe et 

al. 2002; Le Martelot et al. 2009). In addition, Rev-erbα-/- mice have severe adipose 

accumulation in chow-fed conditions and are more prone to HFD-induced obesity 

compared to control mice46, likely due to enhanced LPL-mediated fatty acids uptake. 

The level of hepatic triglycerides at the day-night transition is also elevated in these 

mice (our results and Feng et al. 2011; Bugge et al. 2012). Whether increased 

hepatic TG is due to increased Lpl mRNA expression remains unclear, considering 

that the capacity of the normal adult liver to synthesize LPL and its role are still a 
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 We did not, however, evaluate energy expenditure in fasted Rev-erbα
-/- 

animals.  
45

 Of note, Rorα
-/-

 mice expressed similar levels of Lpl mRNA in skeletal muscle in comparison to wild-type 
animals. 
46

 Interestingly, 3 mo. old Rev-erbα
-/-

 mice high-fat-fed for 12 w also developed an obesity phenotype and 
severe dyslipedemia in contrast to their controls that did not (i.e., high-fed Rev-erbα

+/+
 mice and chow-fed Rev-

erbα
-/-

 mice; unpublished data).  
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subject of debate (Vilaro et al. 1986; Vilaro et al. 1988; Benavides et al. 1998; Merkel 

et al. 1998; Merkel et al. 2002). However, several works have shown that hepatic Lpl 

up-regulation can contribute to hepatic steatosis in humans and rodents (Kim et al. 

2001; Westerbacka et al. 2007; Pardina et al. 2009; Barclay et al. 2011). Of note, the 

fatty acid transporter Fabp5 is up-regulated in the liver of Rev-erbα-/- mice (Le 

Martelot et al. 2009). Moreover, we showed that HFD induces an up-regulation of 

Cd36 mRNA only in Rev-erbα-/- mice. Hence, it is clear that hepatic fatty acid 

transport is altered in the absence of Rev-erbα.  

 Emblematic of significant changes in lipid homeostasis in the liver of Rev-erbα-

/- mice, its capacity of lipogenesis is also modified. We demonstrate in vivo that Rev-

erbα depletion results in a change in RQ values during the active/feeding period—in 

line with the described phase-shifted expression of lipogenic genes in the late night 

(Le Martelot et al. 2009) and the importance of genomic recruitment of HDAC3 by 

Rev-erbα on a daily basis to ensure fatty acid synthesis at the most appropriate time 

of the day (Feng et al. 2011). Indeed, the acrophase of RQ values is slightly delayed 

in Rev-erbα-/- mice and RQ values are higher compared to control littermates during 

nighttime, indicative of enhanced hepatic de novo lipogenesis47. Interestingly, the 

importance of Rev-erbα in the control of lipogenesis is highlighted by several studies. 

The circadian transcription activity of Elovl3, which plays a role in fatty acid chain 

elongation, has been suggested to be mediated by Rev-erbα (Anzulovich et al. 2006; 

Le Martelot et al. 2009). Additionally, Elovl6 mRNA expression is phase-shifted in the 

liver of Rev-erbα-/- mice (Le Martelot et al. 2009). These results support a modulating 

role for Rev-erbα in the synthesis of very long chain fatty acids. In this context, we 

showed that Elovl6 mRNA is severely increased in the liver of high-fat fed Rev-erbα-/- 

mice. Additional lipogenic genes (i.e., Fas, Acc) are up-regulated as well. Incidentally, 

this elevated expression of lipogenic genes in Rev-erbα-/- mice could also be an 

adaptive response to energy surplus (Tepperman and Tepperman 1965) and reflect 

a remodeling of hepatic fatty acids (Oosterveer et al. 2009). 

                                                           
47

 The liver is the main organ that removes the glucose from the blood. It is the principle site of de novo 
lipogenesis.  
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2.1.3 Rev-erbα and developmental defects  

 We have demonstrated that the consistent overexpression of Lpl in liver, 

adipose tissue and skeletal muscle, results from a defective clock control of this 

gene. However, beyond clock impairment, we do not entirely exclude growth and 

developmental defects that could contribute to the metabolic phenotype of Rev-erbα-/- 

mice.  

 As previously introduced, both REV-ERBs are crucial during developmental 

stages. In particular, REV-ERBα is essential for the appropriate balance of 

transcriptional activators and repressors during postnatal cerebellar development 

(Chomez et al. 2000). REV-ERBβ has been suggested to be important for latter 

aspects of neuronal development, such as axon guidance, and at later stages of 

muscle differentiation (Bonnelye et al. 1994). REV-ERBα expression was linked to 

muscle fiber composition (Pircher et al. 2005) and both Rev-erbα and Rev-erbβ have 

been shown to play a role in skeletal muscle growth and differentiation, the former 

notably by regulating the MyoD and Myogenin genes (Downes et al. 1995; Burke et 

al. 1996). Besides, Rev-erbα mRNA has been shown to increase during 

differentiation of 3T3-L1 cells into adipocytes (Chawla and Lazar 1993; Fontaine et 

al. 2003), although this is more likely the proteasomal degradation of the REV-ERBα 

protein that is critical for late stages of adipocyte differentiation (Wang et al. 2008). 

 Regarding muscle development, additional studies give evidence that 

interactions between clocks component and actors of muscle physiology are crucial 

for proper muscle function. Indeed, MyoD, a regulator of myogenesis, is regulated by 

CLOCK and BMAL1 (Andrews et al. 2010). Moreover, Bmal1-deficient mice develop 

sarcopenia (Kondratov et al. 2006). ClockΔ19 and Bmal1-/- mice exhibit reduced 

skeletal muscle specific tension concomitant to altered myofilament architecture 

(Andrews et al. 2010). Muscle performance and metabolism are also affected in 

mPer2-/- mice (Bae et al. 2006). On the other hand, the importance of circadian genes 

and adipose functions are also highlighted by several studies. High-fat-fed ClockΔ19 

mice develop adipocyte hypertrophy relative to wild-type controls (Turek et al. 2005). 

Lack of PER2 results in enhanced adipocyte differentiation of cultured fibroblasts and 

increased TG contents in WAT in mice (Grimaldi et al. 2010). Disruption of the Bmal1 

gene also leads to increased total body fat content (Lamia et al. 2008; Shi et al. 
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2010) that is amplified under HFD due to up-regulation of adipogenic factors and 

down-regulation of genes of the canonical Wnt signaling pathway, important to 

suppress adipogenesis (Ross et al. 2000; Guo et al. 2012). 

 The implication of Rev-erbα in specific developmental pathways and its 

capacity to modulate adipogenesis and muscle development were first considered 

with no overt effects on WAT expansion and the organization of aerobic, intermediate 

and anaerobic muscle fibers in adult Rev-erbα-/- mice (Chomez et al. 2000). 

However, these mice do display increased adiposity, and altered MyHC isoform 

expression in skeletal muscle48 (Pircher et al. 2005), that contribute to enhanced 

oxidative metabolism. To what extent the involvement of Rev-erbα in clock-

independent functions has contributed to the phenotype that we and other groups 

have observed remains to be further investigated. Indeed, while we privilege altered 

circadian molecular oscillations per se, we could not fully exclude that aberration in 

the early stages of adipose tissue development, such as hyperplastic growth, could 

have favored lipid storage, beyond Lpl overexpression. Besides, it is plausible that 

the fast-to-slow transition during muscle development in the absence of Rev-erbα 

could underlie Lpl up-regulation. In that perspective, Lpl overexpression could rather 

appear as a consequence of developmental defects and the role of Clock 

transactivation on the Lpl promoter that we demonstrate in vitro could rather be 

negligible in vivo. However, why does Lpl overexpression also occur in the liver 

oscillator? Indeed, in the presence of an enhanced muscle oxidative metabolism, the 

liver would have just likely compensated for the unused glucose by eliciting the 

expression of lipogenic genes, but not Lpl. In this context, the evaluation of Lpl 

expression in other tissues could be informative to confirm defective clock control of 

Lpl.  

  

                                                           
48

 It is not excluded that the skeletal muscle phenotype or the delayed maturation of Purkinje cells in Rev-erbα-
/- mice may have, to some extent, contributed to their reduced wheel-running activity levels (e.g., altered 
energy-mobilization or altered fine motor coordination).  
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2.1.4 Lpl in central and peripheral tissues 

  “[…] the whole is something besides the parts” Aristotle, Metaphysics 

 

 The etiology for the mild hyperglycemia seen in chow fed, high-fat fed and 

fasted Rev-erbα-/- mice is believed to be caused by a greater reliance on fatty acids 

as energy source, particularly by the muscle. But it remains uncertain why liver or 

muscle Lpl overexpression has not induced insulin resistance (IR) in chow-fed Rev-

erbα-/- mice, as in previous reports (Ferreira et al. 2001; Kim et al. 2001)49. This is all 

the more surprising because insulin sensitivity (assessed by the intraperitoneal 

insulin sensitivity test) was either similar or greater in high-fat-fed Rev-erbα-/- mice 

compared to high-fat-fed control littermates or chow-fed Rev-erbα-/- mice 

(unpublished data), thus excluding an evolution toward diabetes. However, not all 

studies show that Lpl overexpression induces a state of IR in mice. For instance, 

muscle TG content is increased without inhibition of insulin-stimulated whole-body 

and muscle-specific glucose uptake in muscle-specific Lpl-overexpressing mice. In 

addition, these mice exhibited a strong decrease in whole-body glucose oxidation, 

whereas nonoxidative glucose disposal (i.e., for glycogen and lipid synthesis) was 

increased during hyperinsulinemic-euglycemic clamp conditions (Voshol et al. 2001). 

In this study, the liver was suggested to have compensated by increasing insulin 

sensitivity. This is intriguing since we show in Rev-erbα-/- mice that whole-glucose 

insulin sensitivity is normal and that the liver may have enhanced its capacity to 

process glucose for fat synthesis, which is supported by a recent study (Feng et al. 

2011). 

 Pancreatic islet cells can express Lpl transcript and show enzyme LPL activity 

(i.e., delivery of fatty acids to β-cells), which are regulated by glucose and insulin 

(Cruz et al. 2001). However, higher LPL activity in β-cell has been predicted to impair 

cell function such as insulin release and to promote lipotoxicity and apoptosis (Cruz 

et al. 2001). More recently, the effect of Lpl depletion and overexpression in 

pancreatic islets has been investigated. β-cell-specific Lpl-overexpressing mice had 

normal glucose tolerance until 5 months of age, while βLPL-KO mice display 
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 Of note, in Kim et al. 2001, no effect of liver-Lpl overexpression was observed on total body insulin-
stimulated glucose uptake. However, the steady-state glucose infusion rate (average rate from 90 to 120 min) 
required to maintain euglycemia was significantly decreased in the liver-LPL mice during hyperinsulinemic–
euglycemic clamp.  



184 
 

defective glucose tolerance from 1 month of age. Additionally, the increased LPL 

activity has been shown to reduce glucose oxidation in islets (Pappan et al. 2005). At 

least, our observations of unaltered glucose-induced insulin secretion, plasma insulin 

levels, as well as number, morphology and insulin content of pancreatic islets in Rev-

erbα-/- mice, do not support a strong effect of a putative Lpl overexpression in 

pancreas. Incidentally, in rabbits, systemic overexpression of human LPL transgene 

(under the control of the actin promoter) has been shown to increase whole body 

insulin sensitivity (Liu et al. 2005) and protect from HFD-induced IR (Kitajima et al. 

2004). It has been also suggested that LPL could modulate insulin signal pathway 

(e.g., in muscle), via a direct action on the insulin receptor substrate 1 (Liu et al. 

2005). However, we did not evaluate total plasma LPL or the intracellular handling of 

glucose in Rev-erbα-/- mice (e.g., in the absence of altered insulin-mediated glucose 

transport, a disrupted glycolytic pathway could have spared glucose in favor of lipid 

utilization50). Besides, we have to consider that the adverse effect of Lpl/LPL up-

regulation may be species-dependent—especially considering that systemic Lpl 

overexpression can have beneficial effects by correcting hyperlipidemia and reducing 

body fat accumulation in high-fat-fed rabbits (Koike et al. 2004). 

 The role of Lpl in the nervous system has been particularly highlighted 

recently. Mice with neuron-specific deletion of Lpl have reduced Lpl mRNA and LPL 

enzyme activity in both the hypothalamus and hippocampus and display altered 

energy balance, as reflected by increased fat mass and lower daily average 

metabolic rate—correlated with a substantial reduction in physical activity. 

Interestingly, LPL deficiency promotes the expression of the AgRP orexigenic peptide 

in the hypothalamus. From their findings, the authors proposed that TG-rich 

lipoproteins are sensed in the brain by a LPL-dependent mechanism (Wang et al. 

2011). What would happen in the hypothalamus of Rev-erbα-/- mice if Lpl was also 

up-regulated? Does hypothalamic sensing of fatty acids would have been affected? 

This is interesting since central administration of oleic acid has been shown to inhibit 

food intake (Obici et al. 2002). Regarding the hypothalamus, we observed that food 

restriction does not elicit the same metabolic responses in Rev-erbα-/- mice as in 

control littermates. Indeed, daily p-ERK expression was shown to be slightly altered 
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 In addition, disrupted brain control of daily glucose homeostasis may also have contributed to steady 
hyperglycemia in Rev-erbα

-/-
 mice. 
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in several hypothalamic areas in both AL and RF conditions, which can suggest that 

circulating signals are not integrated similarly or are different in Rev-erbα-/- mice. In 

this context, we observed that plasma leptin levels are not severely decreased 

following 24-h fast in Rev-erbα-/- mice (unpublished data). Of note, this absence of 

fasting-induced reduction of leptin levels has been suggested to be associated with 

low corticosterone levels (Jeong et al. 2004)—which are observed in Rev-erbα-/- mice 

under RF schedules. Considering that low leptin levels signal low energy stores and 

facilitate entry into torpor (Ahima et al. 1996; Gavrilova et al. 1999), the relative 

normothermia in food-deprived Rev-erbα-/- mice finds a first explanation51. Besides, 

the loss of hunger due to an altered starvation-sensing system may explain their 

defect to develop strong food-seeking behaviors—without altered food consumption 

after food deprivation. It would have been interesting to assess the time course of 

energy substrate utilization during starvation. Additionally, the characterization of 

hypothalamic neurons implicated in feeding and energy balance (e.g., in the ARC 

neurons, which are particularly sensitive to feeding-related signals such as leptin and 

ghrelin) could be informative, more especially as clock mutation can modify the levels 

and temporal expression of neuropeptides (see part 4.3.1). In that regard, AgRP is a 

good candidate considering that it is activated by ghrelin (Nogueiras et al. 2008) and 

that its expression is increased prior to mealtime (Yoshihara et al. 1996; Crowley et 

al. 2005). Moreover, AgRP neurons are sufficient to orchestrate feeding behavior 

(Aponte et al. 2011; Krashes et al. 2011). Besides AgRP neuronal activity has been 

shown to adapt in response to signals from hormones and metabolites such as 

ghrelin, leptin, glucose and fatty acids (mentioned in Sternson 2011). 

  

                                                           
51

 Of note, we cannot exclude either an up-regulation of Lpl transcript in the BAT of Rev-erbα
-/-

 mice to explain 
their greater capacity to sustain normal body temperature levels during a period of food deprivation or during 
cold exposition. Indeed, LPL supplies BAT with fatty acids to sustain nonshivering thermogenesis (Klinegenspor 
et al. 1996). 
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3. Conclusion and perspectives  

 The involvement of the nuclear receptor Rev-erbα in circadian functions is 

undeniable. Indeed, its absence in vivo leads to a reduction of the SCN period length 

(Preitner et al. 2002; Cho et al. 2012) and to an enhanced shifting response to light 

exposure, along with disrupted SCN molecular clockwork due to blunted Bmal1 

expression (Preitner et al. 2002). Rev-erbα expression has been shown to be 

differentially sensitive, in regard to the peripheral tissue considered, to jet-lag 

(Kiessling et al. 2010). Moreover, food schedules differentially affect Rev-erbα 

expression in normal mice (Damiola et al. 2000; Filipski et al. 2005; Feillet et al. 

2006). 

 In this circadian context, we further evaluate the involvement of well-known 

canonical clock genes in the molecular mechanisms of the FEO. We showed that 

Rev-erbα deletion in vivo leads to altered food-entrainable physiology, as evidenced 

by decreased locomotor activities as well as an absence of a rise in body 

temperature, corticosterone and ketone bodies prior to mealtime. These findings, 

however, were not correlated with disrupted molecular clockwork in the liver or DMH, 

the latter being likely a candidate for the development and expression of food 

anticipation (Gooley et al. 2006; Acosta-Galvan et al. 2011; Landry et al. 2011; 

Verhagen et al. 2011). Incidentally, the actual view privileges rather a spatially 

distributed FEO particularly at the central level. In that respect, our evaluation of 

PER2 oscillations in other hypothalamic nuclei essential to regulate energy balance 

and feeding behavior, did not allow us to detect altered phase-adjustment of PER2 

expression in response to RF. Activation of hypothalamic neurons as measured 

through c-FOS expression in phase with feeding time has been described in several 

studies (Angeles-Castellanos et al. 2004; Gooley et al. 2006; Ribeiro et al. 2007). Our 

data on p-ERK activation in control mice, for the first time used to assess the effect of 

RF, further suggest that the FEO is integrated into a network of oscillators. Of 

interest, in Rev-erbα-/- mice the peak of p-ERK in phase with mealtime is not clearly 

observed as in their control littermates. In addition, we uncover a potential role for 

Rev-erbα in the food synchronization of the cerebellar clockwork. Yet, the relative 

importance of clock genes as well as the CRB structure for food entrainment remains 

to be further explored. Hence, an approach could be to selectively disrupt the Rev-
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erbα clock gene in the Purkinje cells of the CRB, to evaluate the exact participation of 

the CRB oscillator to food entrainment and its capacity to generate an output signal 

to synchronize the activity of other components of the FEO network. In addition, since 

Rev-erbα depletion leads only to a mild reduction of FAA, and considering the 

recently revealed cooperative role of both Rev-erbs isoforms in circadian clock 

function (Cho et al. 2012), it would be enlightening to evaluate the phenotype of 

double KO mice (i.e., for both Rev-erbα and Rev-erbβ) regarding food entrainment.  

 The involvement of the nuclear receptor Rev-erbα in metabolism is also 

patent. Indeed, Rev-erbα acts to fine-tune metabolic pathways, by modulating 

SREBP target genes and by recruiting HDAC3 to the genome on a daily basis, both 

being important for the control of lipid metabolism (Le Martelot et al. 2009; Feng et al. 

2011). Our results demonstrate that in vivo deletion of the circadian component Rev-

erbα results in profound metabolic changes. Chow-fed Rev-erbα-/- mice display 

increased adiposity, mild hyperglycemia concomitant to a greater reliance on fatty 

acids as energy source with non-significant daily changes in energy intake or energy 

expenditure. We uncover a molecular pathway that ties together CLOCK expression 

to the 24-h rhythmic accumulation of the Lpl transcript. Disruption of this CLOCK-Lpl 

interaction due to elevated CLOCK expression in the absence of Rev-erbα is likely to 

have caused higher oxidative muscle metabolism and enhanced fat storage in the 

WAT and the liver of Rev-erbα-/- mice. Furthermore, this imbalance in fuel utilization 

predisposes Rev-erbα-/- mice to HFD-induced obesity, as supported by enhanced 

hepatic de novo lipogenesis and adipose fat storage in these mice. These results 

should be considered in the light of the recent study demonstrating that in vivo 

administration of synthetic REV-ERB agonists have positive effects on lipid and 

glucose oxidation. Moreover, these drugs are effective to reduce lipogenesis and to 

protect mice from the detrimental effects of HFD (Solt et al. 2012). Collectively, these 

findings and ours demonstrate that Rev-erbα is a key gene for the regulation of 

energy balance. In the future, it would be attractive to target Rev-erbα to limit 

circadian disorders and metabolic defects. In the same context, the relevance of 

clock-dependent and -independent pathways for the modulation of (daily) Lpl 

expression—and fuel balance—have to be strengthened by further investigations.  
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 To summarize, our two studies give novel evidence that Rev-erbα is 

fundamental for an accurate crosstalk between the circadian system and metabolism. 

The use of germline KO for our investigations of food entrainment cannot rule out that 

the significant changes in the internal energy status of our mice may be a 

confounding effect for the observed reduction of food-anticipatory components. 

Indeed, we cannot fully argue that Rev-erbα is essential to shape the mice’s 24-hour 

pattern of activity in limited food access conditions, since these mice do not display 

decreased hepatic glycogen reserves, plasma glucose and leptin levels, and body 

temperature values during periods of food deprivation. These body signals are likely 

essential to convey the energy status of an organism for instance to the 

hypothalamus, where nutrient-dependent signals are integrated and transduced into 

efferent signals—including food-seeking behaviors. Thus, it seems necessary to 

make use of brain-specific and inducible knockout, to solve the long-lasting and 

unresolved enigma regarding the (circadian) nature of the FEO (Fig. 57)—a strategy 

that we have already adopted. 

 

Figure 57. Study of the food-entrainable oscillator network in brain-specific Rev-erbα KO mice 

We will evaluate several behavioral and physiological food-entrained rhythms in mice lacking Rev-

erbα in neurons. The effect of scheduled feeding on central oscillators will be evaluated as well. 
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Appendix 1 – Food anticipation without daytime light 

1. Food-anticipatory activity in a skeleton photoperiod 

  

 Below are depicted double-plotted actograms of wheel-running activity from 

two wild-type and two Rev-erbα-/- mice. 

 

Note that the 12-h light phase or the two 1-h light pulses are indicated by yellow 

rectangles. A few days of ad libitum (AL) feeding conditions are illustrated. During 

restricted feeding (RF), food access is indicated by the orange rectangle. 

  

 

 When wild-type mice are challenged with a 6-h restricted feeding schedule, 

they showed robust food-anticipatory activity, regardless of the lighting conditions. 

Wheel-running activity levels in anticipation of mealtime, however, were higher during 

the skeleton photoperiod. This indicates that light can potentially affect the behavioral 

output of the food-entrainable oscillator. Interestingly, irrespective of the lighting 

conditions, Rev-erbα-/- mice did not exhibit food-anticipatory activity.  
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2. Food-anticipatory activity in constant darkness following mealtime jet-

lag test 

 

 Below are depicted double-plotted actograms of wheel-running activity from 

two wild-type and two Rev-erbα-/- mice. 

 

Animals are in constant dark conditions (indicated by the above dark bar). A few days 

in ad libitum (AL) feeding conditions are illustrated. During restricted feeding (RF), 

food access is indicated by the orange rectangle. After a first period of food restriction 

at a specific circadian phase, mealtime was 6-h phase-advanced (i.e., jet-lag test).  

 

 

 During the first restricted feeding period, wild-type mice showed food-

anticipatory activity, which could be resynchronized after a 6-h phase advance of 

mealtime. In Rev-erbα-/- mice, food anticipation was not observed at the two feeding 

times. 
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Appendix 2 – Behavioral tests  

To assess anxiety- or depressive-like behaviors, 32 age-matched mice (including 12 

wild-type, 10 Rev-erbα+/- and 10 Rev-erbα-/- mice) were used (sex ratio 1:1). 

 

All mice were exposed to a 12 h/12 h LD schedule. Note that animals were all tested 

around the onset of the active period.  

 

Tests were separated by several days and conducted in the following order: 1) 

Elevated plus maze; 2) Light-dark box test; 3) Forced swimming test. Prior to the first 

test, animals were equally accommodated to being handled by the experimenter, who 

was blinded to the genotype.  

 

Animals were tested in their housing room, except for the Light-dark test for which 

mice were moved to an adjacent room.  

 

 

1. Elevated plus maze 

 

a) Protocol 

 

 The elevated plus maze is a method to evaluate anxiety responses in rodents 

(i.e, conflict between their preference for protected closed areas and their motivation 

to explore a novel environment). For more information, see Walf and Frye 2007. 

 

Briefly, 3-month-old mice were placed in the maze (Fig. 1) at the junction of the open 

and closed arms, facing the same open arm and a timer was immediately set for a 5-

min testing period. During this time lapse, with the help of a PC-based software, the 

observer recorded the number of entries made by the mouse onto the open and 

closed arms (i.e. when all four paws entered an arm) and the program automatically 

evaluated the time spent in each arms.  

 

 
 

 

 

Figure 1. Elevated plus maze 
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b) Results 

  

 Data were analyzed with analyses of variance. We did not find any significant 

differences between genotypes regarding the time spent inside or the number of 

entries in the open arms (Fig. 2). Thus, the absence of a reduction in both the time 

spent and the number of entries in Rev-erbα-/- mice does not reveal any anxiety-like 

behavior.  

 
Figure 2. Evaluation of anxiety responses in Rev-erbα

+/-
 and Rev-erbα

-/-
 mice  

 

 

2. Light-dark test box 

 

a) Protocol 

 

 The light-dark test box is a method to evaluate anxiety responses in rodents 

(i.e, conflict between their aversion to light and their motivation to explore a novel 

environment). For more information, see Bourin and Hascoët 2003. 

 

Briefly, mice were moved from their housing room in their individual cage to an 

adjacent behavioral testing room under dim-light. They were then placed in the box 

for a 5 min session (Fig. 3). The entry latency to the lit compartment as well the 

number of entries and the time spent in the light box were evaluated.  

 

 

Figure 3. Light-dark box test 
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b) Results 

 Data were analyzed with analyses of variance, followed by the Unequal N 

HSD test, as appropriate (i.e., when P-value of main effect of genotypes was less 

than 0.05). Rev-erbα-/- mice displayed a significant decrease in the time spent in the 

lit compartment compared to the other groups. However, the latency to enter the lit 

compartment and the total number of entries were not significantly different between 

genotypes (Fig. 4). Thus, Rev-erbα-/- mice demonstrated an aversion to a brightly 

illuminated area; however, in view of our results in the Elevated plus maze, this 

aversion may be related to other causes than enhanced “anxiety”.  

 

Figure 4. Evaluation of anxiety responses in Rev-erbα
+/-

 and Rev-erbα
-/-

 mice 

Rev-erbα-/- mice spent significantly less time in the light side of the light-dark box (P < 0.05) compared 
to wild-type and Rev-erbα+/- mice. 

 

3. Forced swimming test  

 

a) Protocol 

 The forced swimming test is a method for screening antidepressants drugs. 

For more information, see Petit-Demoulire et al. 2004.  

In a first attempt to evaluate a depression-like behavior consecutive to Rev-erbα 

deletion, we measured baseline levels of immobility (i.e. without any antidepressant 

drug injection) in each genotype (as in Roybal et al. 2007 and Hampp et al. 2008). 

Briefly, mice were placed in a transparent cylinder filled with water (25 ± 0.5°C) to a 

depth of 10 cm for 6 min (Fig. 5). The water was changed between each mouse. A 

video camera recorded the testing session for later analysis. Immobility was defined 

as the absence of active behaviors such as swimming, limb movements, etc. The first 

two minutes were excluded from the analysis.  
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b) Results 

 Data were analyzed with analyses of variance. Immobility time did not differ 

between genotypes (Fig. 6). 

 
 

 

 

 

 

  

Figure 5. Forced swimming test 

Figure 6. Immobility time in the 

forced swimming test. 
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Julien DELEZIE 

Rôle du récepteur nucléaire Rev-erbα dans les 
mécanismes d’anticipation des repas  

et le métabolisme 

 

 

Résumé 

 La première partie de mon travail de thèse a été de définir le rôle joué par le récepteur 

nucléaire Rev-erb dans les mécanismes de synchronisation par la nourriture d’une horloge 
circadienne putative, non encore localisée, appelée « horloge alimentaire ». La seconde partie de 

mon travail a consisté à étudier la participation de Rev-erb dans les régulations des métabolismes 
glucidique et lipidique. 

 L’ensemble de nos données indique que le répresseur transcriptionnel Rev-erb joue un rôle 
charnière dans les fonctions circadiennes ainsi que dans le métabolisme. En effet, d’un point de vue 

circadien, l’absence de Rev-erb altère la synchronisation à l’heure des repas – démontré par une 
réduction des sorties comportementales et physiologiques de l’horloge alimentaire, ainsi que par 
l’absence d’ajustement du rythme de la protéine d’horloge PER2 dans l’oscillateur cérébelleux. Sur 
le plan métabolique, la délétion de ce gène modifie notamment le métabolisme des lipides – 
démontré par une accumulation excessive de tissu adipeux, une utilisation préférentielle des acides 
gras, ainsi qu’une perte de contrôle de l’expression de la Lipoprotéine lipase. 

Mots-clés : Rev-erb alpha, gène d’horloge, horloge alimentaire, métabolisme lipidique et glucidique, 
lipoprotéine lipase, obésité, anticipation de l’heure des repas, rythme circadien 

 

Résumé en anglais 

 The work performed during this PhD thesis aimed at investigating the role of the 
transcriptional silencer Rev-erbα in both the circadian clockwork of the food-entrainable oscillator 
and metabolic regulations. Firstly, by evaluating food-anticipatory components in animals fed once a 
day at the same time, we showed that mice lacking Rev-erbα display a reduction in locomotor activity 
prior to food access compared to littermate controls. Accordingly, the rises in body temperature and 
corticosterone that anticipate mealtime are also diminished. Interestingly, daily p-ERK expression in 
hypothalamic regions and daily PER2 expression in the cerebellum of Rev-erbα KO mice are not 
phase-adjusted to feeding time. These results indicate that Rev-erbα participates in the integration of 
feeding signals and in food-seeking behaviors. Secondly, by investigating energy balance in fasted, 
normal chow or high-fat fed animals, we revealed that Rev-erbα KO mice exhibit greater reliance on 
lipid fuels as energy substrates, contributing to a mild hyperglycemic state. We also found that 
Lipoprotein lipase (Lpl) expression, is strongly up-regulated in peripheral tissues of Rev-erbα KO 
mice, predisposing mice to obesity. In this regard, we uncovered a new molecular pathway that ties 
clock-driven Lpl expression to energy homeostasis. These findings highlight the significance of daily 
Rev-erbα oscillations to prevent the appearance of the metabolic syndrome. 

 In conclusion, we provide evidence that REV-ERBα may be a part of the food-entrainable 
oscillator clockwork that triggers food-anticipatory components, and represents a pivotal player to 
link the core clock machinery to metabolic pathways. 

Keywords: Rev-erb alpha; Food-entrainable oscillator; Lipid metabolism; Obesity; Lipoprotein lipase; 
Respiratory quotient; Clock gene; Food-anticipatory activity, Circadian rhythm 
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