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Résumé

Avant-propos

Nous considérons une situation de décision dans laquelle un ensemble d’alterna-
tives (actions potentielles) est évalué sur une famille finie et cohérente de critéres
de performance. Un décideur est amené & comparer par paires ces alternatives en
s’appuyant sur les principes des méthodes de surclassement. On considére qu’une
alternative a surclasse une alternative b lorsqu’une majorité significative de critéres
valide le fait que a est au moins aussi bonne que b et qu’il n’existe aucun critére
sur lequel a montre une contre-performance notoire par rapport a b [Roy71, Bis02].
La notion de majorité significative est directement liée a la connaissance de 1'im-
portance (ou poids) de chaque critére [Bis04], les erreurs de précision pouvant avoir
un impact non-négligeable sur la recommandation fournie. Ces paramétres peuvent
étre déterminés :

— soit directement, les poids étant donnés par le décideur et permettent ainsi le
calcul de la relation de surclassement [RB93];

— soit indirectement, le décideur étant amené a fournir des connaissances par-
tielles, permettant d’inférer les poids des critéres [MS98, BMV09].

Les travaux que nous défendons ici se concentrent autour de la notion de sta-
bilité, qui permet de caractériser la dépendance des relations de surclassement aux
paramétres de poids des critéres. Une relation est alors dite stable lorsque celle-ci
ne dépend pas d’une fixation précise de ces paramétres, mais uniquement de leur
préordre. Aprés un bref état de Part (Chapitres 1 et 2), nous étudions en détail
la notion de stabilité et en déduisons des contraintes mathématiques permettant
I’élicitation de jeux de poids des critéres maximisant la stabilité et compatibles
avec un ensemble d’informations préférentielles fournies par un décideur. Puis, nous
définissons un protocole d’élicitation des paramétres, que nous testons avec divers
décideurs afin d’en montrer la validé.

Stabilité d’une relation de surclassement

Dans le troisiéme chapitre de la thése, nous introduisons une mesure de la sta-
bilité d’une relation nette obtenue a partir de la coupe majoritaire d’une relation
valuée bipolaire de surclassement. Dans un premier temps, nous définissons cette
mesure, puis montrons comment, & partir d’'un graphe de surclassement valué et
d’un ensemble de poids de signification des critéres, nous pouvons réaliser cette
mesure. Enfin, nous proposons un ensemble de propriétés complémentaires venant
renforcer ’étude théorique.



Définitions préliminaires

Soient A = {z,y,z,...} un ensemble fini de n > 1 alternatives potentielles et
F ={gi1,...,9m} une famille cohérente de m > 1 critéres.

Pour chaque critére g;, on évalue les alternatives sur des échelles de performance
réelles, auxquelles on associe des seuils de discrimination : un seuil d’indifférence g;
et un seuil de préférence p; [RB93]. On note x; la performance de l'alternative x sur
le critére g;.

Afin de caractériser la proposition “I’alternative x est au moins aussi bonne que
Ualternative y sur le critére g;”, on associe & chaque critére g; € F' un ordre & deux
seuils S; dont la représentation numérique est obtenue par :

1 st wi+qi = Yi,
Si(z,y) = -1 si oz +pi < Y,
0 sinon.

De plus, nous associons a chaque critére g; € F' un poids de signification rationnel
wj, qui représente la contribution de g; dans la validation (ou non) de la proposition
“x est au moins aussi bonne que y”, pour toutes les paires d’alternatives. Soit W =
{w; : gi € F} Pensemble des poids associé a F, tel que 0 < w; < 1 (Vg; € F) et

> w; =1 et notons W l'ensemble de ces ensembles de poids.
g€l

La relation valuée bipolaire de surclassement globale, notée §W, agrégeant les
situations de surclassement locales, est donnée par :

SY(,y) = Y wi-Si(z,y), ¥(z,y) € Ax A
w,eW

SW(z,y) est alors évaluée sur un intervalle rationnel [0,1] avec la sémantique
suivante [Bis02] :

- S W(z,y) = 1 lorsque ’ensemble des critéres valide les situations de surclasse-
ment locales entre z et y;

— S"(x,y) > 0 lorsqu'une majorité de critéres valide la proposition “x est au
moins aussi bonne que y”;

— S"(x,y) = 0 dans le cas d’une situation d’indétermination, lorsque le poids
des critéres en faveur du surclassement est exactement balancé par celui des
critéres en défaveur ;

— S%"(z,y) < 0 lorsqu’une majorité de critéres ne valide pas la proposition “x
est au moins aussi bonne que y”;

— S%(z,y) = —1 lorsqu’aucun des critéres ne valide les situations de surclasse-
ment locales entre x et y.

Soit ZZy le préordre sur F' associé a la relation habituelle > sur I’ensemble W
des poids de signification des critéres. ~y, induit r classes d’équivalences ordonnées
IV =w ... =w IIV (1 <7 < m). Tous les critéres d’'une méme classe d’équivalence



ont des poids de méme valeur dans W et, pour ¢ < j, les critéres de II}V ont un poids
plus grand que ceux de la classe H]W. Nous dénotons W7 le jeu de poids représentant
des critéres équi-signifiants.

Stabilité d’une relation de surclassement

L’étude de la stabilité d'un surclassement, au regard des paramétres de poids
des critéres, permet de distinguer trois grands comportements :

— Les surclassements indépendants, dont la validation ou invalidation ne dépend
aucunement des paramétres de poids : C’est le cas, par exemple, de situations
de Pareto-dominance.

— Les surclassements stables, qui dépendent uniquement du préordre des poids
des critéres et restent donc invariants pour tout jeu de poids de méme préordre.

— Les surclassements instables, dépendant fortement du jeu de poids sélectionné,
pouvant étre renversés par de faibles modifications des poids sans modifier le
préordre.

L’étude de la stabilité posseéde de nombreux avantages : Il est en effet plus aisé
pour un décideur de valider un préordre sur les poids des critéres qu'un jeu de poids
précis. Une fois ce dernier validé, elle permet d’identifier les surclassements dont la
validité n’est pas discutable et ceux plus anecdotiques pour lesquels I’étude doit étre
approfondie, ce qui garantit une haute fidélité aux préférences implicites du décideur
et, de fait, permet 1’élaboration d’une recommandation plus juste.

Soit ¢} (z,y) la somme des S;(z,y) pour tous les critéres g; € II}. De plus, nous
définissons C}Y (z,y) = Ele ¢ (z,y) comme la somme cumulée des caractéristiques
“au moins ausst bon que” pour tous les critéres ayant une importance au moins égale
a celle associée a la classe I}, pour tous les k € {1,...,7}.

Proposition 0.1 (Indépendance)

\V/' F N S’L 5 = 1 S’L , — 0’
“xS™y” est indépendant <= l_e (z,y) ou Si(x,y)
JieF:Si(x,y) =1
\v/. F : S’L ) - _]. Sl 5 = O,
“r8Yy” est indépendant <= I_E (z,y) ou Si(z,y)
Jie F:Si(z,y)=—1.
Proposition 0.2 (Stabilité)
Vkel...r:C¥wxy)=0:
“xS™y” est stable <= < G, y)
Jkel...r:Cl(x,y) > 0.
Vkel...r:C¥wx,y) <0:
“r8%y” est stable <= € r: O (z,y)
Jkel...r:Cl(x,y) <O.

Proposition 0.3 (Instabilité) Une relation ne vérifiant pas la propriété de stabi-
lité est automatiquement instable.



En supposant une validation explicite du préordre des poids, il est alors claire-
ment justifiable de considérer une situation stable, méme si elle n’est que faiblement
déterminée au vu du jeu de poids utilisé, comme implicitement validée. En revanche,
une relation de surclassement faiblement déterminée et instable devra faire ’objet
d’une validation explicite de la part du décideur. Ainsi, comme il n’est pas en-
visageable de questionner le décideur sur ’ensemble des relations, nous pouvons
concentrer le processus de questionnement sur les surclassements sensibles, rédui-
sant par la-méme le temps nécessaire au protocole de validation et augmentant la
confiance du décideur dans le graphe de surclassement résultant. De cette fa, toute
exploitation ultérieure du graphe de surclassement résultant sera plus robuste.

Propriétés additionnelles

Nous avons aussi défini deux niveaux additionnels de stabilité, permettant une
meilleure caractérisation d’une situation stable, ainsi que des contraintes mathéma-
tiques permettant de les vérifier. Ainsi, en considérant un vecteur de poids w, xSVy
(resp. z8WVy) est dit :

— Stable par extension : Lorsqu’une majorité pondérée de critéres valide (resp. in-
valide) la situation entre x et y pour tous les jeux de poids plus discriminés
que W. Cette propriété caractérise le fait que la discrimination du jeu de poids
donné est suffisante pour garantir une relation, tout raffinement ultérieur du
jeu de poids ne pourra pas la modifier.

— o-stable : Lorsqu'une majorité pondérée de critéres valide (resp. invalide) la
situation entre x et y pour tout préordre obtenu par permutation des classes
d’importance de w. Cette propriété caractérise la stabilité d’un surclassement
lorsque l'on considére différents objectifs dont 'ordre d’importance n’est pas
connu, mais qui regroupe chacun des ensembles de critéres équi-importants.
Ainsi, cette propriété assure qu’un tel surclassement ne changera pas, quel que
soit 'ordre final des objectifs.

Nous montrons aussi une propriété additionnelle importante sur 'impossibilité
de trouver une relation stable allant & I’encontre de la relation obtenue avec une
ensemble de poids équi-importants. Cette propriété souligne le fait que 'utilisation
d’un jeu de poids autre que le jeu de poids équi-important se doit d’étre clairement
justifié, car il s’agit du jeu de poids offrant la solution la plus stable.

Enfin, les relations de stabilité sont étendues afin de pouvoir caractériser la
stabilité d’une affectation dans une catégorie, ou un ensemble de catégories.

Définition de la relation préférable

Lorsque 'on demande & un décideur de fournir une information préférentielle
en comparant deux alternatives, il peut nous préciser par exemple qu’il préfére une
alternative & l'autre. Le terme préférence est extrémement ambigu. On le trouve
souvent traduit, en terme de relation de surclassement, par un surclassement positif



dans un sens et un surclassement négatif dans 'autre. Or, considérant le cas simple
suivant :

alt | g1 g2 g3 g4 95
alt; | 10 8 4 5 9
alts 10 8 4 5 6

La domination de alt; sur alty est évidente, ce qui implique de la part du décideur
une préférence (en terme de rangement) de la premiére alternative. Or, en terme de
surclassement, il faudrait que le critére g5 soit un dictateur pour avoir surclassement
uniquement dans un sens. Le cas semble sans doute trivial, mais il se pose pour toutes
situations oul certains critéres sont en faveur des deux surclassements.

En terme de surclassement, il semble bien plus judicieux de traduire le terme
préférence par une inégalité entre les valeurs de surclassements : aPb = S(a,b) >
S(b,a), sans supposer S(a,b) > 0 > S(b,a). Nous introduisons alors la notion d’al-
ternative préférable, afin de ne pas confondre avec la notion d’alternative préférée
présente dans la littérature.

La propriété de stabilité originelle compare les sommes cumulées d'un couple
pour toute classe avec la valeur 0. Lorsque 1'on cherche un surclassement stable
positif, on s’assure qu’a tous niveaux, la somme cumulée est supérieure & 0. Si I’'on
souhaite vérifier qu’une alternative est préférable & une autre de fastable, il suffit de
vérifier la propriété suivante :

Proposition 0.4 (Stabilité)

VEel...r:C¥(x,y) = CM(y,x);

“x est préférable a y" est stable <=
dkel...r:Cl(z,y) > Cl(y,x).

Modéles mathématiques d’élicitation indirecte

Les chapitres 4 et 5 de la thése expliquent la construction de trois modéles ma-
thématiques permettant 1’élicitation des paramétres de poids, mais aussi des seuils
des critéres ou bien des catégories d’une problématique de tri. Chacun de ces mo-
déles est décliné en trois versions, permettant une résolution plus ou moins optimale
(au détriment du temps de résolution).

Notons AiQ I’ensemble des pairs (z,y) d’alternatives pour lesquels nous souhai-
tons forcer la stabilité.

Les poids des critéres étant supposés rationnels, nous pouvons, sans perte de
généralité, restreindre notre probléme d’estimation & des ensembles d’entiers. Ainsi,
un poids entier w; € [1, M] sera associé a chaque critére g;, o M représente la
valeur maximale admissible. En limitant notre objectif & la résolution de problémes
réels, nous pourrons en pratique fixer cette borne comme étant égale au nombre m
de critéres.



Posons P« une matrice Booléenne de terme générale [p;,], qui caractérise
par ligne le nombre d’unités de poids alloué au critére g;. Formellement, la ligne ¢
représente la décomposition du poids associé & g; sur M bits dans une base unaire
(avec les bits de poids fort le plus & gauche), de sorte que nyzl Diw = w;. Par
exemple, si g; est associé & un poids entier de 3 et que 'on a fixé M = 5, alors la
i€ ligne de P,,x5 sera (1,1,1,0,0).

Pour toutes paires (z,y) € A3,, nous introduisons alors 'ensemble de contraintes
suivant, permettant d’assurer la stabilité d’un surclassement :

Z (pm . :tSi(m,y)) > by(z,y) (Yu=1,..,M),
g;€F

o by(z,y) sont des variables booléennes définies pour chaque paire d’alterna-
tives et chaque niveau d’équi-signifiance u € {1,...,M}. Ces variables binaires
permettent d’imposer au moins un cas d’inégalité stricte pour tous les (z,y) € Ai2,
comme requis par la Proposition 1.

En pratique il est impossible de demander directement & un décideur ’ensemble
des relations stables, en vue de déterminer la signification des critéres. De maniére
générale, dans le cadre que nous avons établi, on peut supposer qu'un décideur soit
en mesure de fournir les informations préférentielles suivantes :

— un sous-ensemble E de A x A de couples ordonnés d’alternatives (a,b) pour
lesquels le décideur est en mesure d’indiquer un sens de préférence strict ou
une indifférence ;

— un préordre partiel >, sur les poids d’un sous-ensemble de critéres N C F';

— des valeurs numériques associées aux poids de certains critéres;

— des contraintes sur les valeurs numeériques associées aux poids de certains
critéres;

— un préordre partiel entre des ensembles de critéres exprimant des préférences
sur les sommes des poids de certains critéres;

— des ensembles de critéres pouvant valider ou invalider le surclassement ;

Il nous faudra donc inférer, a partir de ses préférences, les contraintes jugées
nécessaires. Dans la pratique, nous devons alors faire face a la fois & des incompati-
bilités inhérentes aux préférences du décideur (celui-ci ayant exprimé un ensemble
de préférences dont la réalisation simultanée est impossible) et aussi a des difficultés
pour assurer la stabilité du surclassement lié au jeu de poids résultant. Pour ce der-
nier point en effet, il ne sera pas toujours possible de garantir tous les surclassements
stables souhaités, par exemple lorsque ceux-ci sont incompatibles entre eux.

On introduit alors la notion de contraintes relaxées, que I’on dérive des contraintes
originelles (ou contraintes fortes) en y ajoutant des variables d’écart. Ces variables,
réelles positives que 1’on cherchera & minimiser, permettent de satisfaire pleinement
les contraintes de stabilité en cas d’impossibilité, et offrent la possibilité d’identifier
les contraintes problématiques lors de I'analyse de la solution. En effet, si la valeur
d’une variable d’écart n’est pas nulle & la fin de la résolution, alors la contrainte
associée n’a pas pu étre satisfaite. Les variables d’écart permettent alors d’assurer



qu’il n’y aura pas de blocage dans la résolution si I’on souhaite de la stabilité 1a ou
le modéle ne pourra la garantir.

Il est & noter que, lorsqu’une contrainte relaxée est violée, le surclassement n’est
plus assuré; il faut par conséquent coupler une telle contrainte relaxée avec une
contrainte forte fora ce qu'une majorité simple de critére valide le surclassement.

Validation empirique des modéles

Le chapitre 6 de la thése est entiérement consacré a la validation empirique des
différents modéles définis. Les tests s’articulent autour de deux grandes expériences :

1. La premiére consiste & montrer que les modéles sont capables de retrouver
des paramétres a partir d'un graphe de surclassement complet. Elle permet
notamment de voir le comportement des différents algorithmes face a une
information préférentielle dense (étude de temps au pire des cas)

2. La seconde tente de se rapprocher au mieux d’un protocole d’élicitation itératif,
ou l'ensemble des informations préférentiels est construit de faincrémentale,
jusqu’a suffire pour retrouver des paramétres satisfaisants. Cette expérience
met ’accent sur I'utilisation des algorithmes dans des conditions plus proches
de leur utilisation avec un décideur réel.

Nous avons considéré 25 tailles de probléemes, en faisant varier les nombre d’al-
ternatives et de critéres selon les valeur suivantes : 7, 10, 13, 16 and 19. Pour chaque
taille, 300 problémes ont été générés aléatoirement : un tableau de performance, un
vecteur de poids de critéres et des seuils de discrimination, permettant la génération
d’un graphe de surclassement réaliste (i.e. pouvant représenter les préférences d’'un
décideur).

De ces expériences, il en ressort principalement la validité de I’ensemble des algo-
rithmes d’élicitation des poids, ainsi que ceux combinant 1’élicitation des poids et des
seuils. Leur comportement face & un ensemble d’information trés dense, notamment
I’augmentation exponentiel des temps de résolution, révele la nécessité de travailler
de faincrémentale. Face a des ensembles d’informations préférentielles réduits, nous
montrons qu’il sera tout & fait raisonnable de les utiliser en temps réel face a4 un
véritable décideur.

De leur cété, les algorithmes de tri montre un comportement qui, bien que valide,
n’est pas désirable lors d’un protocole réel. En effet, les profils des catégories créés
ont tendance a étre associés a des seuils de préférence et d’indifférence peu crédibles,
rendant ’exploitation du résultat des tests théoriques peu concluants. Des travaux
futurs pour améliorer leur opérationnalité lité pourront étre envisagés.



Construction d’un protocole d’élicitation des préférences

Dans le septiéme chapitre de la thése, nous mettons en place un protocole d’éli-
citation des préférences, qui se déroule en trois temps.

Dans un premier temps, nous cherchons a établir un préordre grossier, en re-
groupant les critéres selon des classes d’importance simples, mais peu précises (par
exemple, les critéres trés importants, importants et moins importants). Une fois ce
préordre validé, nous cherchons & le raffiner jusqu’a obtenir un préordre entiérement
validé par le décideur (i.e. deux critéres dans une méme classe d’importance se-
ront automatiquement associés au méme poids). Enfin, nous cherchons a établir par
questionnement indirect des poids précis, & partir du questionnement du décideur
sur les surclassements instables non encore forcés par les informations préférentielles
déja exprimées.

Le premier temps est assez classique dans la littérature de ’aide multicritére a la
décision et n’est abordé que succinctement. Il se décompose en une phase de collecte
des informations (ensemble des alternatives potentielles et évaluation de ces alterna-
tives), et une phase de définition d’un premier préordre a raffiner. Nous proposons
en général de classer les critéres selon qu’ils soient trés importants, importants, ou
bien moins importants, mais cela peut étre réduit a deux classes si le décideur n’est
pas en mesure de fournir de telles informations avec précision.

Le second temps est résumé par l'algorithme suivant :

Algorithm 1 Raffiner un préordre initial
Entrée :
A : Ensemble d’alternatives; F' : Ensemble des critéres; P : Tableau de performance;
2., : Préordre initial.

Variables :
W : Vecteur des poids des critéres;
seuils : Certains seuils de préférence et d’indifférence. /* Certains sont donnés */
contraintes + ()
contraintes <— AJOUTER__ CONTRAINTES _PREORDRE (>,,)
Répéter

(a1, a2)  SELECTIONNER_COUPLE _ALTERNATIVES (A)

contraintes <— AJOUTER _CONTRAINTES PREFERENTIELLES (aq, ag)

{W, seuils} < RESOUDRE (A, F, P, contraintes)

Si {w, seuils} = () Alors

RESOUDRE__ CONFLITS (contraintes)
Sinon
PRESENTER _PREORDRE (>,)

: Jusqu’a ce que >, soit validé
: VALIDER_SEUILS (seuils)
: Retourner {>,,seuils}

e ol

Notons que la stabilité permet ainsi d’écarter du questionnement ’ensemble des
relations stables par extension, puisque nous ne faisons que raffiner le préordre.



Deux versions de cette seconde étape ont été implémentés. La premiére considé-
rait I’ensemble des seuils de discrimination comme connus et la seconde permettait
d’éliciter simultanément ces paramétres, en plus des paramétres de poids des cri-
téres. Enfin, la validation du préordre pouvait se faire de deux fadifférentes : Soit
par validation du décideur dés que la discrimination du préordre courant était suf-
fisante, soit lorsque le préordre courant donnait lieu & un graphe pour lequel tous
les surclassements non forcés par les informations préférentielles du décideur étaient
soient stables par extension, soit instables (i.e. dans les deux cas la stabilité n’était
plus modifiable).

Enfin, le troisiéme temps peut étre résumé par 'algorithme suivant :

Algorithm 2 Détermination des surclassements instables résiduels

Entrée :
A : Ensemble d’alternatives; F' : Ensemble des critéres; P : Tableau de performance;
>, : Préordre obtenu a I’étape précédente.

Variables :
wsx : Vecteur des poids des critéres;

1: contraintes < ()
: contraintes < AJOUTER _CONTRAINTES _POIDS (>,,)
contraintes <— AJOUTER CONTRAINTES PREFERENTIELLES INSTABLES VALIDEES

w N

Répéter
(a1,az2)  SELECTIONNER__COUPLE _INSTABLE (A4)
Si la relation entre a; et as est non nécessairement fixée Alors
contraintes <~ AJOUTER _CONTRAINTES PREFERENTIELLES (a1, az)
Wk <— RESOUDRE (A, F, P, seuils, contraintes)
Jusqu’a ce que le décideur soit satisfait
10: Retourner wx

Notons que le fait de forcer le préordre garantit que ’ensemble des relations
stables ne changeront pas, de sorte qu’il est possible de les valider de faimplicite, mais
aussi de montrer certains couples au décideur afin de s’assurer qu’il soit entiérement
d’accord avec le préordre validé. Cependant, certains surclassements ne pouvant pas
étre stables ont pu étre demandé par le décideur, c’est pourquoi il convient d’ajouter
les contraintes permettant de les forcer (car ceux-ci ne sont pas stables et donc ne
dépendent pas simplement du préordre).

Enfin, le chapitre 7 présente des outils permettant & un décideur une meilleure
visualisation des données. En outre, nous faisons état de 'avantage de tels outils
pour une vision globale de l'information, mais précisions aussi les biais possible,
notamment les effets de compensation entre critéres dans les méthodes de surclas-
sement.



Cas pratique

Le huitiéme et dernier chapitre de la thése présente la résolution d’un cas pra-
tique avec la méthode décrite aux chapitres précédents. Le sujet était la sélection
d’une thése pour poursuivre des études d’informatique et a été présenté a plusieurs
étudiants de Master, mais aussi en premiére année de thése.

Cette étude, dont les premiéres expérience ont permis I’élaboration et I’amélio-
ration du modéle présenté dans la thése, ont démontré I'utilité de la stabilité afin
de simplifier le protocole de questionnement, mais aussi pour éviter de créer des
biais dans la solution, qui ne seraient pas perceptibles par des décideurs face & une
décision inhabituelle.

Le protocole a permis aussi de se rendre compte de la nécessité de tenir compte
de I’élicitation simultanée des poids des critéres et des seuils de discrimination. En
effet, durant les premiers tests, les seuils étaient fixés préalablement avec le décideur.
De par son manque d’expérience, une telle fixation s’est vite révélée laborieuse et
sujette a des contradictions dans I’expression des informations préférentielles. Cela
a donc permis de définir des modéle plus complexes et plus coliteux, mais plus
opérationnels. De plus, nous avons pu constater que le temps restait trés faible (de
l'ordre de 2 secondes maximum pour chaque résolution) durant le protocole, ce qui
était tout a fait concevable en temps réel.
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Introduction

“Don’t you understand that we need to be childish in order to understand?
Only a child sees things with perfect clarity, because it hasn’t developed all those
filters which prevent us from seeing things that we don’t expect to see.”

[Douglas Adams|

Making a decision may be regarded as a trivial act, as we are dealing daily with
so many alike situations. However, it requires the implementation of a cognitive
process whose complexity is closely linked to each specific situation: Obviously, we
do not make a decision in the same way when we select our clothes in the morning
or when we apply for a new job. In addition, for complex decision situations, in
day to day life or within a professional context, there is a need for formalising them
in order to motivate one particular action, in a clear and understandable way, for
every actors involved in the decision.

These formal models for making a decision are rapidly growing since the middle
of the Xx™ century, especially with the increasing computation power that permits
the solving of more and more complex problems.

Aiding a decision does not only provides a solution to a given problem, but also
supports the decision process in the collection of every opportunities, in determining
a clear and complete measure of their different implications. In the particular situ-
ation of facing different conflictual objectives, or contradictory interests, it defines
the framework of Multiple Criteria Decision Aid in which our work is located.

Using a multicriteria decision aid method to provide a recommendation requires
the determination of numerous parameters. These parameters are obtained during
a preference elicitation process, to construct an evaluation model that summarises
the subjective aspects related to the decision-maker’s perceptions or expectations,
as for example the criteria weights, which appreciate the local role of each criterion
in the construction of the overall evaluations.

Two different approaches exist to specify theses values: — either via direct prefer-
ence information, where the values are first assessed and then the overall evaluations
are computed, or — via indirect preference information, where some a priori partial
knowledge about the resulting evaluation model is used in order to infer plausible
estimators of the parameters.

However, determining precisely the numerical values of these parameters is an
important issue: As the final recommendation is highly depending on these param-
eters, it is of the highest importance to avoid impreciseness or to be able to measure
their impact on the modeling of the preferences. In addition, when considering
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an indirect elicitation of these parameters, according to an incomplete knowledge
of the resulting evaluation model, the selection of one particular set of compatible
parameters is also a very debatable question.

The work we present in this thesis takes part within the multicriteria decision
aid methods, more specifically within the outranking philosophy. It focuses on the
stability concept, which characterises the impact of some possible impreciseness of
the criteria weights on the evaluation model.

The thesis is divided into three parts. The first one is a brief state of the art
about the decision aid domain, that focuses on the preference elicitation processes
and robustness concerns, in order to motivate our work. Chapter 1 presents the
main concepts and contributions, but also details the different existing methodolog-
ical approaches in the domain to handle a multicriteria decision problem. Then,
Chapter 2 briefly studies the common framework of the preference elicitation pro-
cesses and discusses the quality of the resulting evaluation model, in order to take
into account the possible use of incomplete or imprecise information.

The second part of the thesis focuses on the stability concept, to give a theoret-
ical framework to our work. At first, Chapter 3 gives a more intuitive formulation
of the stability concept, as well as simple mathematical conditions and applications
examples, but it also extends this concept by defining two additional degrees, for a
sharper characterisation of the dependency. In Chapter 4, we define mathematical
models to elicit a vector of weights that is compatible with a set of preferential infor-
mation given by the decision-maker. These models take advantage of the stability
concept, defined in the previous chapter, by searching for a compatible weights vec-
tor that maximises the stability of the resulting evaluation model. In Chapter 5,
these models are enhanced in order to recover, in addition to the criteria weights,
some other parameters, namely some unknown discrimination thresholds in a first
time, then the categories profiles of a sorting problem.

Finally, the third part of the thesis intends to implement the mathematical
models on real practical cases. Chapter 6 first validates the models empirically. In
Chapter 7, we define a robust preference elicitation protocol, called REWAT, in order
to construct iteratively an evaluation model that illustrates the decision-maker’s
expectations. Finally, Chapter 8 presents the use of the REWAT process on a real-
case application.
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CHAPTER 1

Multicriteria decision aid

“Man is man because he is free to operate within the framework of his destiny. He is free to
deliberate, to make decisions, and to choose between alternatives.”

[Martin Luther King, Jr.]

Contents
1.1 The decision aiding approach . .. ... ... ......... 6
1.1.1 Making a decision . . . . . .. ... oL 6
1.1.2  Aiding the decision . . . . . . ... ... .. ... 7
1.1.3 Involving the decision-maker . . . . . ... ... ... ... .. 9
1.2 Modeling the decision aid process . ... ........... 10
1.2.1 Defining the fundamental decision objects . . . . . . . .. .. 10
1.2.2 Formulating the decision aid problem . . . . ... ... ... 11
1.2.3  Modeling and exploiting preferences . . . . . .. .. ... .. 13
1.3 The main formal multicriteria decision philosophies . ... 14
1.3.1 Designing and exploiting an overall value function . . . . . . 15
1.3.2 Designing and exploiting an outranking relation. . . . . . . . 17
Abstract

In this first chapter is to define the multicriteria decision aid domain, to present its
concepts and main contributions. We present a brief introduction of the multicriteria
decision aid domain, followed by the definition of the necessary concepts. In a third
section, we detail the different existing methodological approaches in the domain to

handle a multicriteria decision problem.
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1.1 The decision aiding approach

1.1.1 Making a decision

Making a decision could be considered as a trivial action, as we are constantly
dealing with so many of these situations. Thinking about it, every act, including the
will of not acting, is a decision: from the simpliest daily decisions like taking or not
an umbrella when leaving home [P0092|, to some much more complex and unusual
situations like, for instance, the selection of a location for a new airport [MA90].

There are so many ways to deal with a decision, which are closely linked to each
specific situation. For instance, we are not making a decision with a low degree of
emotional implication, like choosing a cold drink in the fridge, as we are dealing
with a critical choice that shall condition our future, like going and living in a
foreign country, or thinking about divorcing [Wat93]. People directly involved in
the decision also have an impact on the way we consider the decision : if we are
the only person to decide (“should I take a bath or a shower?”) or if there are
several persons (“where should the family go on holidays?”); At least, the private
or the professional context modify the way we envision the decision, as well as our
experience in making such decisions.

Some of these ways may be considered as not rational. Indeed, One can take
an instinctive decision, a random, or impulsive one. Such decisions have some clear
advantages: they are easy to take and they are not time-consuming. In the absence
of a possible regret in the selection of a not completely satisfying option (i.e. when
most of the considered options may be judged as relatively equivalent), they are
particularly efficient.

A delegated decision is not a decision we directly take. In fact, it is taken by
someone we have faith in. It is mainly some situations where we do not have any
experience, that way, we have no idea about what options can be considered as
good options. The difference with the random decision is that we have here the
feeling that selecting one or another option may have a really different impact. One
example is the situation where someone wants to buy his very first computer and
does not know anything about it; he will be guided towards a model by a shop
assistant and will base his decision upon the other’s opinion.

Last but not least, a rational decision consists in an understandable analysis of
the different opportunities, as well as an in-depth evaluation of their implications. It
is a standard when making a professional decision. For instance when searching for
a new supplier, we have to compare the different prices of every possible suppliers,
consider the different contracts,... Making a decision this way is much more time-
consuming and has a cost, but it warrants, when successfully achieved, a justifiable
decision, in a clear and transparent process (see for example [BeCNdSVO01] for the
advantages of a formal framework in decision involving multiple stakeholders). As it
is the most formal approach, we shall focus on it. Notice also that such an approach
brings to light some structures that can be used again for a further decision (some
examples are given in [VV00]). In that sense, we can really aid the decision, helping
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everyone to understand, analyse, explain or justify a problem or an option (for an
overview of the classical decision theories, see [Ts006]).

1.1.2 Aiding the decision

Example 1 To strengthen our clauses, let us envision the situation where a Master
student is considering the opportunities for his future career. Indeed, as it is a
brilliant student, two of his professors offer him a position for making a thesis. The
first thesis is devoted to an interesting subject and the future Ph.D. student will work
for the university where he made his studies; The second thesis is devoted to an even
more interesting subject, but the student needs to relocate far from his family.

We can easily notice the conflictual situation between the two theses that both
have some advantages and drawbacks. For instance, our student shall consider the
first thesis because his office will be the closest from his family. But in another hand,
the second thesis is the most interesting one. In the absence of an opportunity that
will be the best on every considered aspects, making a decision comes automatically
to make a compromise, or a sacrifice, possibly the least important one. Notice that
we assume in our work that no such case exists, otherwise the decision problem of
selecting the best option is trivial. We also assume a similar hypothesis on the fact
that it does not exist an opportunity which is the worst on every considered aspects.

The aim of decision aid is, as its name suggests, to help one person, or a group
of people, to take the most satisfying decision. In the particular case of facing
different conflictual objectives, or contradictory interests, the purpose is not only to
provide a solution to a given problem, but it is also to guide the decision process, in
the collection of every opportunities, in determining a clear and complete measure
of their different implications for every persons involved in the decision (see for
example [Roy87]), until the expression of a final recommendation (i.e. the output of
a method). Such an approach defines the framework of Multiple Criteria Decision
Aid (abbreviated to MCDA in the sequel of our work).

Literature on decision theory usually describes four types of approaches in the
resolution of a given decision problem: descriptive, constructive, normative and
prescriptive (see for instance [Roy93| or [BRTS88|). Indeed, for some experts, the
decision aid process is a descriptive tool, designed to help justifying a choice that
is already existing in the minds of the persons involved in the decision. It intends
to describe and model their behavior empirically when facing a decision (see for
instance [Sch88]). For some others, it should be a constructive process that helps
creating the preferences and the model simultaneously. Notice that such an approach
is not of small importance on the final output, as the process guides the individual
in the construction of his preferences (see for example |[LPB85| or [Ros01]). In
a normative approach, we try to define models, based on norms and standards,
that may be used by anyone under the acceptance of the model hypotheses (see
for instance [VNM54|, [LR57] or [Wak89]). Finally, a prescriptive approach intends
to provide readily usable mathematical tools for the search of the optimal solution
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of a particular situation. For example, these approaches are predominant in the
medical domain (when determining a cure for a patient, etc.). They make a lot
of assumptions on the user’s believes and should only be used in situations where
it exists a consensus in the points of view to be considered, so as their relative
importance (see for instance [Roy85] or [BS02]).

In practice, a decision analysis method may belong to more than one approach,
such that it combines their different aspects in the resolution of a problem. For
instance, [DT04] shows the interest of using a normative approach to impose some
rationality principles, in a prescriptive approach, in order to ease the discussion
between the different actors of the decision. In both ways, all the approaches in-
tend to provide a formalized framework for a more objective understanding of the
considered situation, strengthening the conviction in the given recommendation.

The premises of MCDA are usually accredited to the Marquis DE CONDORCET
(1743-1794), who first promoted the use of a mathematical framework in social
choice voting procedures, for a rational way of electing a candidate based on the
preferences of a set of voters [Con85|. However, its real emergence can be dated back
around the middle of the xx™ century, with SAMUELSON’s fundamental researches
on the theory of revealed preferences [Sam38|, the work from DANTZzIG [Dan48,
Dan51| and KANTOROVICH [Kan39| in linear programming, the stepping-stones of
game theory and decision theory by VON NEUMANN and MORGENSTERN [VNMb54]
and NAsH [NJ50, Nas51], the bases of social choice theory originated from ARROW’s
work [Arr63], but also the increasing interconnection between the mathematical and
psychological aspects of the decision [LR57, Tve67, Fis70].

In the late ’50s, SIMON [Sim56, Sim57| stated that in real-life decision problems,
a fully-rational decision is bounded by human factors as, for example, the decision
domain knowledge, or the cognitive capacities of the people involved in the decision.
This bounded rationality theory stated that one may consider an alternative as a
solution, not in a strict mathematical optimality, but if this alternative tends to be
satisfying enough. This vision underlies the whole discourse presented in this work.

First methods taking into account the multidimensional aspects of a problem
for its resolution appear by the beginning of the '60s, with the precursory work of
CHARNES et al. on “Goal Programming” [CCF55, CC61], known as multi-objective
programming today. By the end of the ’60s, ROY introduced an innovative decision
aid perspective, leading to the creation of the outranking methods domain [BRS66,
Roy68]. In 1976, KEENEY and RAIFFA extended the valued theory to the multi-
dimensional situations [KR76]. These two differentiated philosophies lead to the
establishment of the so-called European and American schools, we shall present in
the sequel of the chapter. We may highlight that some more recent work on Rough
sets approach are searching to offer a general framework to unify these two trends
using a rule-based system [GMSO01].

In this study, we are focusing on decisions where a unique person is responsible
of the decision act, namely the decision-maker® (DM). This hypothesis implies that

1. For a more efficient reading, we have avoided the question in regards to the decision-maker
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we are not considering here the well-known problem of the search of a consensus
among a set of decision-makers (for more details, see [MS01], [JF89] or the second
chapter of [Adl10]). We also consider every decisions that may imply a regret a
posteriori: As we already discussed, decision aid methods are only useful when one
can perceive the selection of one option rather than another as implying different
consequences.

1.1.3 Involving the decision-maker

Most of the time, a decision is strongly linked to the preferences of the decision-
maker. For instance, considering the first example, if the student estimates that the
improvement on the interest from the first thesis to the second one is not worth the
increase of the remoteness, he shall prefer the first thesis. On the contrary, if he
could conceive that working farther from his family for the duration of his Ph.D. is
not so important compared to the fact that the thesis will be in better accordance
with his wishes, he shall consider to apply for the second thesis.

It is the main difference with classical Operational Research methods, where a
problem is solved through an optimisation method and the role of the decision-maker
is confined to the delimitation of the problem and the validation of the solution, if it
exists, called the optimum. In decision aid, the decision-maker’s preferences must be
correctly modeled, as they condition the output of the decision analysis. Thereby,
as stated in SIMON’s work, specifically his study on the decision-makers’ behaviors
in administrative organisations [Sim47], the decision should be seen as a process and
not as an act, where the decision-maker has to be highly involved.

To help the decision-maker in his task, an analyst is in charge of supporting him.
This individual will be the interface between the decision-maker plus his preferences
and the mathematical modeling of the problem, by giving a clear formulation and
a rational structuring of the problem, but mainly discussing with every actors, or
stakeholders, of the decision process. We may notice that in some case, both the
roles of decision-maker and analyst can be played by a single person.

Example 2 Back to our example, after a short reflexion, our student may consider
that the laboratory of the second thesis is too far from his family and he does not want
to go and work so far away. In that case, the second thesis cannot be considered as an
acceptable solution and must be taken apart. As there only remains one opportunity,
the student should trivially consider it as the best solution. However, he decides to
search for other applications and finds three other opportunities. Also, he extends
the collected information in order to have a better understanding of the opportunities
and their different implications. Data are summarised up in Table 1.1.

gender. Thus, he and his will refer to this person in the sequel.
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Table 1.1: Selection of a thesis

‘ Interest Dist. from family  Salary  Lab. reputation
Thesis 1 Interesting 10 km € 1630 Medium
Thesis 2 | Very Interesting 900 km € 1900 Very Good
Thesis 3 | A Few Interesting 80 km € 1 600 Medium
Thesis 4 Interesting 90 km € 1655 Good

Once again, we can observe the different conflictual points of view to be consid-
ered in the decision. Notice also the variety of the evaluations: some evaluations
are quantitative, while some others are qualitative.

1.2 Modeling the decision aid process

Basically, the decision aid process may be regarded as the series of four critical
steps: The problem situation, the problem formulation, the implementation of an
evaluation model and the expression of a final recommendation [MT97, PT99, ST03|.
The first two steps help formulating the decision aid problem, while the last ones
intend to model and exploit the decision-maker’s preferences. Notice that these
steps are not always sequential in a real case study. For an extensive presentation
of the decision aid process, the reader should refer to [Ts007].

In this section, we define the formal, but abstract, framework on which a rational
decision aid process relies. At first, we introduce the fundamental objects on which
is based the multicriteria decision aid activity we shall refer to, all along the sequel
of this work; Specific objects and concepts will be introduced later when necessary.
Then, we briefly detail the main steps of such a process.

1.2.1 Defining the fundamental decision objects

We call alternatives, or decision actions, the formal definition of the considered
potential options in the decision aid process. Most of these alternatives are real
ones, as they can be implemented through the decision; some other may be ficti-
tious, only created in order to help the process. All elements of this set have to be
clearly identified and validated by the decision-maker (for instance, it only contains
acceptable alternatives) [Roy85]. The set of alternatives is usually called A and its
cardinality m > 3.

In the context of a multidimensional approach, the alternatives have to be evalu-
ated according to different aspects, or characteristics, in order to allow the compar-
ison of one alternative to another one on every dimensions. Consequently, we first
define all the meaningful points of view that the decision-maker wants to consider
(i.e. points of view having a significance on the global understanding of the prob-
lem) and then construct, on every considered point of view, a mathematical tool for
evaluating and comparing the alternatives, called criterion [Bou90]. In [BMPT06]
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the authors define as a criterion any dimension with which it is possible to associate
a preference model, even a partial one, such that one should be able to make a
choice along this single dimension. Basically, it is a function on the set of alter-
natives that acknowledges the local performances of the alternatives, based on the
decision-maker’s expectations, in a measuring preference scale that a decision-maker
must fully understand. Then, two alternatives are compared on any point of view
according to their evaluations on the associated criterion.

A criterion is not conceived only to give an objective evaluation of some aspects
of the reality (as for example a price criterion on a quantitative scale that measure
the price of the different alternatives), but can also account for the subjective points
of view of the decision-maker. For instance, referring to our example, the student is
considering a criterion interest for the thesis, which is the subjective evaluation of
his thought about the subject and the domain of the thesis.

As the evaluation of the alternatives is often a complex task to perform with
accuracy and preciseness, especially when the criterion is constructed without an
expert of the considered point of view, one should not forget that it is most of the
time an approximation of the reality, not a perfect and complete representation. As
we shall detail in the sequel, the consequences of these imprecisenesses are important
and have to be measured and minimised to their lowest possible impact.

The n > 2 considered criteria define a finite family F. This family is coher-
ent [Roy00], as it considers all the dimensions, or the points of view, that the
decision-maker takes into account in the decision and that have an effective im-
pact on the decision analysis. Thus, the exhaustiveness is granted by the fact
that two alternatives having exactly the same evaluation on the considered fam-
ily of criteria must be considered as indifferent. The family is also non-redundant
(see [Roy85, Bou90, Bis02|), as the family is considered as minimal, according to
the preceding two conditions.

In the sequel of our work, the alternatives will be denoted as z, y, z or t.
The letters ¢ and j will refer to criteria and the evaluation of the alternative x
on the criterion ¢ will be denoted as x;. All these evaluations are gathered in the
performance table.

1.2.2 Formulating the decision aid problem
Problem situation

It is a prerequisite step that helps defining for any person, even remotely involved
in the decision, a well determined role. For that, the analyst should ask the decision-
maker, or the client (i.e. the person that has requested a decision support), some
critical questions, like for instance:

— Who has a decision problem?
— Who are the different persons involved in the decision?
— Who is in charge of the final decision? Does he relies on some other persons?
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— What are the common stakes? The personal stakes?
— Who is going to pay for the consequences of a decision?

Besides, this step structures the different actors’ roles, their common or conflict-
ual interests, allowing the analyst a better understanding of the situation, as well
as the invested stakes. Thus, this last one can better apprehend what we expect
from him and then really supports the decision aid process. In addition, it makes
easier the communication between the different actors and may clarify their different
positions.

Example 3 Back to our example, we should question the student to know the dif-
ferent persons involved in the decision, for instance his parents or his girlfriend, and
their degree of involvement (“My girlfriend’s opinion about the country is really im-
portant, as we will leave together”: In that case, it seems useless and time-consuming
to discuss about some alternatives that will be invalidated by the student’s girlfriend).

Problem formulation

Although it may appear as obvious, the problem formulation is a key step in the
decision aid process, formalising the situation, in order to precisely define what is
expected at the end of the process. Besides, it appeals to Simon’s limited rational-
ity concept, such that the decision-maker’s concern are translated into a “formal”
problem on which a decision aid method can be applied.

Indeed, for a given problem situation, we may formulate the problem in different
manners that condition the whole process, especially the way the alternatives are
selected and evaluated.

Example 4 If we consider again our example, the analyst should ask the student
about a clear expression of his expectations: does he want to find a reduced set of
potential theses on which he may apply for? Or does he wants to select, among
a set of accepted applications, the most interesting one? In that case, what does
“interesting” mean? . ..

Notice that the problem formulation may be based on different problem typolo-
gies. Indeed, as stated in [Roy85|, one may identify three main problem typologies
a decision-maker can deal with, namely the choice problem, the ranking and the
sorting one.

The choice problem, also denoted P,, tries to identify a subset A’ € A, possibly
the smallest, of the alternatives a decision-maker may consider as the best ones.
Having more than one alternative in A’ leads to the difficulties of ordering them. A
related problem is the portfolio problem [BS02|, where we consider the selection of
the k£ > 1 best alternatives.

The sorting problem (Pg) is willing to assign the alternatives into predefined
and ordered categories (for instance, the good, medium and bad ones). In that case,
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the assignment is done by checking the alternatives evaluations accordance to some
defined rules.

Finally, the ranking problem (P,) considers the assessment of a complete or
partial preorder of the alternatives.

For an in-depth study of the different problem typologies, the reader should refer
to [BeC96].

1.2.3 Modeling and exploiting preferences
Evaluation model

When working with multiple criteria, namely dealing with evaluation vectors,
there is no objective definition of what an optimum vector is. At most, we can
consider a vector that is the best on every dimensions to be the optimum, but this
trivial situation is merely to exist and does not necessitate a decision support.

To our knowledge, the only objective definition has been introduced under the
name of efficiency [Par06]. Indeed, an alternative z is considered as efficient if no
other alternatives y are at least as good as  on every criteria and strictly better on
one criterion. A not efficient alternative is said to be dominated. But this definition
is not restrictive enough to be considered as a final recommendation, especially when
the number of criteria increases [Ros91], and need to be exploited in a way that takes
into account the decision-maker’s subjective expectations.

In order to compare in a global manner any pairs of alternatives of a given set A,
according to their performances on every criteria, we shall define a Multiple Criteria
Aggregation Procedure (or MCAP for short). This procedure, which is most of the
time a parametric procedure, associates with any pairs of alternatives exactly one
of the following binary relations [Roy96, FGRS10]:

— Indifference (I): This reflexive and symmetric relation appears when there
are clear and positive reasons that justify an equivalence between the two
alternatives;

— Strict preference (P): It is a non-reflexive and asymmetric relation that indi-
cates clear and positive reasons in favor of one (identified) of the two alterna-
tives;

— Weak preference (Q): It is also a non-reflexive and asymmetric relation that
corresponds to a situation where there are clear and positive reasons for inval-
idating a strict preference in favor of one (identified) of the two alternatives,
but not enough reasons for deciding either the strict preference in favor of the
other alternative or the indifference between them, leading to the inability to
distinguish between the two previous relations;

— Incomparability (R): This non-reflexive and symmetric relation occurs when
none of the three preceding relations can obtain a clear and positive support.
According to Roy [Roy90], it allows the representation of the hesitations of
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the decision-maker linked, for instance, to uncertainties, conflicts or contra-
dictions.

Let us notice that some procedures may consider only a subset of these relations.

The two main approaches we shall describe briefly in section 1.3 particularly
differ from the way these relations are constructed.

Finally, notice that it is the procedure, and not the decision-maker, that con-
structs the relations. As we shall present in the next chapter, the decision-maker
may be asked to express his opinion about some relations, but this will only help in
the tuning of the parameters.

Final recommendation

This last step allows to translate the formal result from the exploitation of the
evaluation model into a clear and understandable recommendation for the decision-
maker, but also the other actors of the decision.

Notice that the recommendation relies on some particularly strong hypothe-
sis [Tso07]:

— The analyst is certain about the formal accuracy of the evaluation model,

— The decision-maker is certain about the fact that his preferences has been
modeled with accuracy, i.e. the recommendation seems to be in accordance
with his expectations and is satisfying enough;

— The recommendation should be legitimated, ¢.e. its acceptance has to be ver-
ified amongst the different actors and their reasons to accept or reject it must
be taken into consideration by the analyst [LBO96]: A non legitimated rec-
ommendation is barely satisfying and does not deserve to be implemented.

Although legitimating a recommendation validates it within the process, it is
highly necessary to validate at first the reliability of the recommendation within the
evaluation model. Indeed, the different models intend to acknowledge an overall
picture of the situation from the decision-maker’s expressed partial information.
Thus, it is mandatory to identify and to best limit the potentially resulting biases,
which involves a perfect knowledge about the considered model from the analyst.
That will be discussed in the next chapter.

1.3 The main formal multicriteria decision philosophies

The purpose of this section is to present the two main philosophies, or schools,
for solving multicriteria decision problems, namely the American school and the Eu-
ropean school. We present the main outlines of the two approaches, which are mostly
composed of two steps: the construction of the evaluation model, which mainly re-
sults in defining the parameters of the considered method, and its exploitation with
the aim of providing a final recommendation to the decision-maker.
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These two philosophies may appear as quite similar, especially by the fact that
they deal with information of the same kind, but they clearly differ in the way
they envision the construction of the decision-maker’s preference. We will not detail
here the consideration of one particular philosophy, done by an analyst with the
decision-maker’s agreement: For further details, an interested reader may refer to
SIMPSON [Sim96]. Simply notice that the analyst must ensure the complete match
between the considered philosophy and the decision-maker’s thought patterns.

1.3.1 Designing and exploiting an overall value function

In a very intuitive approach, the Multiattribute Value Theory (MAVT) [KRT76]
consists in avoiding the difficulty of the multidimensional evaluation by creating
a unique criterion that aggregates every decision criteria in order to construct a
numerical representation of the global value of each alternative, often called score
or value, based on the decision-maker’s preferences.

Such an approach, which assumes that the decision-maker’s preferences can be
specified as a weak order over the set of alternatives A (see e.g. [BP05, KLSTT71]),
attempts to model the complete and transitive binary relation > on A via an overall
value function U [Roy71, KR76] such that, for every (z,y) € A%

rr=y <= U)>2Uly), VoyeA

This overall value function may be of any kind, but the most studied one is the
additive form [Fis64, Fis65, Fis70], the overall evaluation being equal to the sum of
the whole marginal value functions u;:

Ulx) = Zuz(xl), Vo e A,
ieF

where w; is a function entirely determined by the criterion i. More particularly,
its linear form of a weighted sum is fairly studied, where we associate with every
criteria ¢ a weight w;:

U(z) = Zwi.xi, Vr € A.
=

One classical example is the evaluation of students in a class: Each course may
represent one criterion for the evaluation and the applied coefficients define the
linear additive value functions allowing the computation of a global score for each
student, namely his average grade.

In that case, the weights parameters w; are acting like trade-offs among the
criteria, allowing to balance a locally weak evaluation on one criterion by a good
performance on one or some others.
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Two different approaches exist to specify the parameters of a given method:
either via direct preference information, where the parameters are first assessed and
then the aggregated relation is computed, or via indirect preference information,
where some a priori partial knowledge of the resulting aggregated relation is used
in order to infer plausible estimators of the parameters.

We shall remark that the additive form of U makes an important hypothesis
on the independence of the criteria. Indeed, it is possible to have some interactions
between some subsets of criteria. For instance, we may consider the use of a Choquet
integral [Chob3| or a Sugeno integral [Sug74], that considers positive interactions on
some criteria coalitions, when there is a reinforcement of the impact of one criterion
with another one, or some negative ones when there is some redundancy in the
different criteria. But, as the number of parameters increases, the complexity of the
model, especially the tuning of its parameters, becomes a harder task, such that
it does not seem realistic to ask the decision-maker to provide such parameters.
Notice that in these cases, the weights are called capacities for the Choquet integral
or fuzzy measures for the Sugeno integral.

Designing the evaluation model is a particularly demanding stage which assumes
the endorsement of some hypotheses, which are often hard to obtain, especially the
fact that we suppose the existence of a value function and its accordance to a speci-
fied form. Indeed, as this function may have any existing form, enforcing one model
may result in a bad setting of the parameters, by interpreting the preference in-
formation of the decision-maker in an incorrect basis. As we will explain in the
next chapter, it is then of high importance to verify a posteriori these hypothe-
ses, by making a sensitivity analysis of the expressed value function before giving
any recommendation, in order to provide only some solid and clearly established
statements.

Another hard task is the translation of every evaluations into a numerical scale.
Indeed, when considering qualitative scales (like “Bad/Medium/Good” for example),
we have to associate precise numerical values to any of the labels. As these values
are, by definition, imprecise (but accurate), this transformation may induce a bias in
the exploitation (as we are doing precise computation with imprecise evaluations).

However, the asset of these methods is certain, that is to say that they produce a
complete weak order of the alternatives without any incomparability between them
(it is always possible to compare the relative position of two alternatives) which
eases very much the exploitation. If we attempt to give a recommendation on the
selection of the best compromises, we only need to consider the alternatives with
the best scores. The ranking problem is solved directly and the sorting problem in
predefined categories becomes as obvious (for instance, all the alternatives with a
score between the given values v; and vy are ranked in the first category, ...).

As this work is not focusing on these methods, an interested reader may find
some extensive explanations in the fourth part of [FGEO5].
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1.3.2 Designing and exploiting an outranking relation

In response to the assumptions of the valued methods, often considered as too
difficult to ensure, the European School, lead by RoY’s work [Roy68|, suggests a
different approach based on the use of less precise information, but with a stronger
support. Indeed, instead of building complex value functions that rank every alter-
natives on a common scale, such an approach constructs a binary relation, called
the outranking relation, by comparing the alternatives systematically by pairs.

The main purpose of these methods is not to provide a complete preorder on the
alternatives, but to support the decision-maker on his preferences and his choices,
in order to explicit them.

Literature on MCDA methods suggests different ways of constructing the outrank-
ing relations. Among the most famous ones, you can find the ELECTRE-like methods
(see for example [KR76, RB93| with their detailed description) or the PROMETHEE-
like methods (an extensive presentation can be found in [BM02]), and also the RUBIS
method [BMROS8]. Again, as it is not in the scope of this thesis, we will not detail
them.

The outranking paradigm is the following: we consider that an alternative z
outranks an alternative y when there is sufficient support amongst the criteria to
validate the fact that x is at least as good as y. In a formal manner, it translates the
fact that there is a qualified majority of weighted criteria on which z is performing at
least as good as y and there is no criterion where y seriously outperforms = [RB93|.
Notice that the outranking relation is neither transitive nor reflexive.

Unlike in MAVT, the outranking methods permit three types of alternatives com-
parisons, wich are: preference, indifference and also incomparability. According to
Roy [Roy90|, incomparability allows to represent decision-maker’s hesitations which
may result from phenomena like uncertainty, conflicts and/or contradictions. Most
of the time, it results from the comparison of two alternatives stating some very
contrasted advantages, describing two opportunities completely opposed.

An alternative x outranks another alternative y when x is at least as good as y.
Logically, x and y are indifferent when both alternatives outranks the other one
(namely z is at least as good as y and y is at least as good as z). In a similar
manner, x is said to be preferred to y when x outranks y and y does not outrank x.

In order to measure the global accordance to the at least as good as statement,
between any two alternatives x and y of A, with each criterion i is associated a local
concordance degree S;(x,y) whose numerical representation is, most of the time,
given by:

1 : if = is at least as good as y on criterion i,
Si(z,y) = 0 . if & is not at least as good as y on criterion 4,
NV fia,y) €10:1] ¢ if we do not know ezactly if x is or is not

at least as good as y on criterion i.
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where f; is a monotonically non-decreasing function (w.r.t. the difference z; — y;)
which characterises the tendency of an undetermined situation to be validated or
invalidated. Most of the time, it is a linear interpolation, from 0 to 1 (see e.g. an
overview of the ELECTRE methods [FGRS10]), or a constant function equal to the
median value 0.5 (see e.g. [Bis02, BMRO0S]), but it can have any shape. Notice that
this local concordance may also be given on a scale valued between —1 and 1; In
that case, 0 is the median value. Changing from one scale to another one is done
by a simple translation.

Assuming the independence of the criteria, which is a necessary condition when
considering an outranking approach, we compute the global valued concordance re-
lation, denoted SV, aggregating the partial at least as good as situations, as follow:

S¥(x,y) =D wi- Si(w,y), V(z,y) € Ax A
ieF

where W = (w1, ws,...,wy,) is the vector of the rational importance weight which
represents the contribution of each criterion to the global at least as good as situation
for every alternatives pairs. Notice that every weights are strictly positive. Also
notice that they may be normalised (i.e. their sum is equal to 1), such that SW
will be evaluated in the rational interval [0;1] (or [—1;1], according to the chosen
concordance scale).

The criteria importance weights may appear quite similar to the weights used
in the valued theory, but the semantics is rather different. In fact, the outranking
methods are inspired from voting methods, within the social choice theory, such
that each criterion can be seen as a group of voters having the same opinion and
the associated weight represents the strength of the group (for example, the number
of voters). In value theory, the weights are trade-offs, where a loss in one criterion
may be balanced by a better performance in one or some other criteria. Once more,
these parameters may be specified via direct or indirect preference information, as
we shall detail in the next chapter.

Also, unlike in MAVT, the evaluations do not necessary need to be numerical,
as long as the decision-maker is able to pairwisely compare the values. According
to our example, as we may assume that a decision-maker clearly prefers a very
interesting subject to an interesting one, we do not need to scale into numerical
values these labels, which bypasses some difficulties related to the construction of
value functions.

On such qualitative scales with few possible values, as the decision-maker’s point
of view impacts each of them so that they are considered as significantly different
from the other ones, the local pairwise comparison is pretty easy, i.e. the local
concordance S;(z,y) is equal to 1 if x; > y; and otherwise equal to 0. But in a
continuous scale (like for example on a criterion price), or a broader qualitative
scale, one can legitimately argue that some small differences may not be significant.
This is taken into account by considering some indifference ¢; > 0 and preference
p; > q; discriminating thresholds in order to determine the interval definition of f;.



1.3. The main formal multicriteria decision philosophies 19

To put it more simply, the discriminating thresholds define some zones on which
a difference is, according to the decision-maker, either considered to be irrelevant
(i.e. there is an indifference between the evaluations), or clearly significant. In
between, we have to construct the function f; as close as possible to the decision-
maker’s preferences.

Notice that these discriminating thresholds may have two different functions
that condition their elicitation: Either they allow to represent the “objective” im-
preciseness of the tools used to construct the criteria, or they acknowledge for the
“subjective” decision-maker’s perception of what can be considered as a significant
difference. In the first case, these thresholds are given by the person in charge of
the construction of the criteria. In the second case, the analyst needs to discuss
with the decision-maker in order to determine his preference assessment. That will
be discussed later.

In absence of an incomparability situation, x is said to outrank gy as soon as
the concordance value reaches a defined level of acceptance. For instance, one may
consider that x outranks y if at least half of the weighted criteria (i.e. a median-
cut) is warranting this assumption, namely when SW(x,y) > 0.5 if the weights are
normalised on a [0; 1] scale or S¥(x,y) > 0 on a [—1; 1] scale. However, as we will
detail in the next chapter, it may be higher (i.e. a qualified majority), mainly for
taking into consideration some possible impreciseness on the parameters.

Considering such an approach assumes the decision-maker’s agreement to the
fact that there is no compensation between the criteria. This assumption is often
easier to ensure when dealing with imprecise, but accurate, evaluations (for in-
stance, some qualitative evaluations), such that it is difficult to provide some strong
recommendations based on such imprecise compensations.

It is often considered that the construction of the outranking relation is an
easier and more reliable step than the construction of a value function but, conse-
quently, the difficulties arise in the exploitation phase when searching for providing
the decision-maker an understandable and justifiable final recommendation. Indeed,
it is hardly possible to show a decision-maker such a complex relation: we have to
extract the desired information, namely the best compromise, or also a ranking or
a sorting of the alternatives.

Moreover, this relation may be incomplete, when facing some incomparable state-
ments, and not necessarily transitive [Roy90|. Thus, there is an automatic loss of
information during the required exploitation of the outranking digraph, in order to
provide some recommendations. But the construction of this relation must be an
asset of the decision aid process which will lead to a positive and strong acceptance
of the recommendation from the decision-maker. In consequence, it is essential to
be able to measure the “quality” of this relation, namely its complete accordance to
the decision-maker’s expectations.






CHAPTER 2

Preference elicitation processes

“Non puoi insegnare niente a un uomo. Puoi solo aiutarlo a scoprire cio che ha dentro di sé.”!

[Galileo Galilei]
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Abstract

In this chapter, we briefly study the common framework of the preference elicitation
processes in MCDA. First, we define the different profiles of decision-makers we may
encounter, as well as the different types of preferential information they can provide.
Then, we describe the general framework of an iterative preference elicitation process.
Finally, we discuss the robustness of the resulting evaluation model, in order to take
into account the possible use of incomplete or imprecise information. Besides, the
stability concept of outranking relations is introduced and motivated within such a
process.

1. “You cannot teach a man anything; you can only help him find it within himself.”



22 Chapter 2. Preference elicitation processes

Introduction

In the previous chapter, we have shown the main theoretical frameworks of the
multicriteria decision aid methods. In both approaches, a setting of different model
parameters is needed in order to construct a reliable evaluation model.

Nevertheless, it is not an easy task and their elicitation from a human decision-
maker may arise some well-known issues if done without enough precision. Indeed,
a decision-maker may ignore his preference or have an imprecise knowledge of its
expression in the chosen aggregation procedure. It is then essential to propose
also some indirect approaches for eliciting the parameters, based on information a
decision-maker is able to provide in a clear manner.

In addition, this knowledge is strongly correlated to the decision-maker’s degree
of experience in the considered decision domain, not to mention that the decision-
makers are far from being experts in the employed multicriteria decision method.

The chapter is constructed as follows: First, we define the different profiles of
the decision-makers we may encounter, as well as the different types of preferential
information they can provide. Then, we describe the general framework of an itera-
tive preference elicitation process. Finally, we discuss the robustness of the resulting
evaluation model, in taking care of possibly incomplete or imprecise information.
The stability concept of an outranking relation, which will be extensively studied
in the next chapter, is introduced and motivated in such a preference elicitation
process.

2.1 Decision-maker’s profiles and provided preferential
information

At first, we define the different decision-makers’ profiles that we may encounter.
Then, we list the different kinds of preferential information they can provide. Fi-
nally, we draw some critical views about the credibility we should consent to these
information.

2.1.1 Decision-makers’ profiles

Three decision-makers’ profiles are usually considered, according to their knowl-
edge of the domain of the considered decision and their habits in making such
decision:

— The naive decision-maker: He does not have any particular knowledge about
the considered decision domain and is not used to make such decisions;

— The novice decision-maker: He has pretty good knowledge of the decision
domain but is confronted to an unusual decision.

— The expert decision-maker: He is an expert of the decision domain and is used
to make such decisions [Sha88];
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The naive decision-maker

A naive decision-maker is willing to make a decision in an unusual domain which
he is not knowledgeable in. Although he is hardly considered in the literature, he
is the most common decision-maker in day to day situations. For instance, we may
quote the case of someone willing to buy his very first computer and who does not
have any idea about the model that he may consider as a good one according to
him.

The naive decision-maker has no particular knowledge about the decision domain
and is not able to configure properly any parametric decision methods, nor to express
some reliable preferential information. Most of the time, he may randomly select
one option or focus on a very few criteria he may understand (for instance, he takes
the first computer, the cheapest, the prettiest or the one he saw on television, etc.).
In the best case, his choice will be strongly supported by the recommendations of
some experts: a computer magazine comparing different models and selecting the
best ones according to different profiles of users (i.e. a normative approach), or also
the advices of a sales assistant (i.e. a delegated decision).

The novice decision-maker

The novice decision-maker is an expert, or has at least a good knowledge, of the
considered decision domain, but he faces an unusual decision. A simple example
may be a man in fond of cars, who wants to buy a new one after many years.

He is particularly at ease in talking about the domain and can easily compare
justifiably two different alternatives, but his understanding of the different points of
views is mainly implicit, such that he is uncomfortable in determining the impact
of each criterion in the global evaluation. For instance, when considering the car
example again, such a novice decision-maker will probably be able to define the
overall relation between some couples of cars, but will not automatically express
the relative importance of the criterion Number of seats compared to the criterion
Engine power.

Notice that, when dealing with a novice decision-maker, the consideration of a
constructive approach seems to be an appropriate approach, as it highlights and
makes explicit his preferences.

The expert decision-maker

He is an expert in the considered decision domain and in actually making such
decisions. We may quote, for instance, the case of a physician examining his patients
and determining precisely of which disease they are suffering. He has an intuitive
knowledge of the criteria to take into account (the pulse, the blood pressure, etc.),
he is able to precisely measure, or evaluate, these characteristics (for instance, by
measuring the temperature) and clearly understands the impact of the variations.
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His experience and his knowledge of similar decisions previously made, strongly
support him in stating his preferences. As proved in [LN80|, such an expert processes
information in his short term working memory, but he relies on the strategies com-
piled in his long term memory: when he deals with a small set of alternatives, most
of the time he is able to select the best compromise without the need of any decision
aid method. Using such a method would save time when dealing with a broader set
of potential alternatives. Notice that a descriptive approach is well-adapted to such
a decision-maker.

2.1.2 Expressing some preferential information

Basically, a decision-maker is willing to express some preferences over a decision
situation. Let Z denote this set of information. Its elements can take the form of
some constraints on the parameters of the given aggregation procedure, but they
may also be some expectations on the result of the aggregation procedure. Such
preferential information are usually and respectively called input-oriented, or output-
oriented. In both case, this information can be seen as constraints that reduce the
universe of admissible parameters for the setting of the method.

Input oriented preferential information

Let denote Z'*, included in Z, the subset of the input-oriented preferential infor-
mation, which are some information directly expressed on the method parameters.
Basically, they take one of the following aspects:

— An evaluation difference that is (resp. that is not) significant on a specific
criterion (7.e. some bounds on the discriminating thresholds values);

— A marginal utility value;

— A value, or an interval of values, for a parameter;

— A ratio or a tradeoff between two criteria weights;

— A relative importance information between two criteria, or two coalitions of
criteria (i.e. one is more important, or less important, than another).

Asking directly these parameters is putting a very strong hypothesis on the
ability of a decision-maker to provide them, or to give some reliable ratios between
them (see for instance the AHP method [Saa80]), which induces a clear and precise
knowledge of his preferences, but also a complete understanding of the considered
aggregation procedure and the semantic of the parameters.

A fair number of authors argue that the notion of relative importance only makes
sense when related to a specific method (see for instance [Mou93|, [Pod94, Pod02],
[Vin89] and a debate held during the 715° meeting of the EWG on MCDA 2). In every
day language, a criterion, or a point of view, is said to be important when it plays a
significant role in the construction of the overall preference statement. In a logical
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manner, a criterion is more important than another if it has a more decisive role in
the overall preference.

To formalise this definition, a criterion i is said to be more important (according
to every day language) than a criterion j when its marginal contribution to the
construction of the overall preference is higher than the marginal contribution of
criterion j.

This definition is hardly compatible with the concept of compensation between
criteria, as the strength of a criterion, i.e. the associated marginal utility, in the
construction of each overall score, is depending on the performance of the considered
alternative: the higher a performance is, the higher the support of the criterion is.

Within the outranking methods, if we consider the evaluation of the local concor-
dances with only three values, namely 1, —1 and 0, which corresponds respectively
to an agreement, a disagreement or a neutral position on the “at least as good as”
statement, the notion of importance of a criterion has the same semantics as in ev-
ery day language: a positive concordant statement exactly translates the fact that
the coalition of criteria in favor is more important than the coalition of criteria in
disfavor. A criterion plays a role in supporting the statement or in refuting it, but
always with the same importance (or strength), which is not the case, for instance,
with an ELECTRE-like construction of the discriminating thresholds, due to the use
of a linear interpolation, where some criteria may play a weakened role.

Working hypothesis 1 To clarify our discourse, we assume in this thesis the fol-
lowing translation: “criterion i is more important, or more significant, that crite-
rion j” means that the decision-maker should positively answer the question “Would
you be willing to consider the alternative b as a better compromise than a if b was
not at least as good as a on criterion j, but better on criterion ¢, assuming similar
performances on the other criteria?”.

Output oriented preferential information

An output-oriented preferential information is any information on the expected
result of the multicriteria aggregation procedure (MCAP). It can be a desired relative
comparison between two alternatives (for instance, the decision-maker may express
the fact that an alternative is strictly preferred to another), but also the assignment
of some alternatives to certain categories within the context of a sorting problem.
The set of such information is denoted Z°“ and is included in Z.

These overall judgments between the alternatives assume that the decision-
maker’s argumentation is in accordance with the underlying principles of the con-
sidered MCAP, as they condition the elicitation of its parameters.

In [RV85], the authors stated that a decision-maker who is confronted to the
comparison of two given alternatives x and y, should be asked to express one of
the following information (in accordance with a given and accepted aggregation
procedure P):
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— A clear indifference I between the alternatives;

— A strict preference P of one of the alternatives he shall identify;

— A weak preference @ of one of the alternatives (he hesitates between an indif-

ference or a preference, in favor of one alternative);

An incomparability R, when the alternatives are considered too different to be

compared;

— An indetermination, when he cannot express with enough conviction one of
the preceding information.

In the context of a valued approach, the incomparability is not an option for the
potential answer of the decision-maker. An indifference between two alternatives
x and y will result in an equality between their scores, i.e. U(z) = U(y), and a
preference for alternative z will highlight the fact that U(x) is greater than U (y).

Working hypothesis 2 In the context of an outranking approach, we have to trans-
late these preferential information in terms of outranking relations between the al-
ternatives. In [RV85], the authors give the following regular translations we shall
consider in the sequel of our work:

tPy < xSy and ySz
xly < xSy and yS=x
rQy <= xSy

Ry < xSy and ySz

The weak preference relation is resulting from the fact that Q = PUI = S.

2.1.3 Quality of the expressed preferential information

To better describe the “quality” of the expressed information, we should make a
clear distinction between a precise information and an accurate information:

Definition 2.1 (Preciseness) An information, given by the decision-maker, is
said to be precise when it constraints the value of one parameter, or the ratio be-
tween some parameters into reduced intervals (the intervals may be reduced to a
unique value). An imprecise information is then a less restrictive constraint.

Definition 2.2 (Accuracy) An information may be also viewed as accurate when
it can be considered in total accordance with the decision-maker’s mind. On the
contrary, an inaccurate information is going against the decision-maker’s thoughts.

An example of precise information can be the association of a criterion weight
with a unique value (e.g. “the weight associated with criterion i is 0.2”), or the fact
that two criteria must be associated with the same weight. An accurate information
may be the clear consideration by the decision-maker of a criterion more important
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than another one, without any precision on their relative importance degree. Notice
that this last information is accurate but also imprecise. Also notice that we can
have precise information that are inaccurate, when for instance a decision-maker
is asked to give a precise value for a criterion weight, but he may not be totally
confident about the expressed value.

In a quite intuitive manner, one can conceive that the more precise the infor-
mation are, the more questionable their accuracy is. In that case, assuming the
modeling of a decision problem, it is appropriate to consider that only an expert
decision-maker is comfortable in the expression of precise and accurate preferential
information, due to his experience in the domain on which he uses to take this
particular decision.

For a novice decision-maker, the expression of precise preferential information
on the parameters may appear quite arbitrary. Indeed, he may be able to provide an
accurate partial preorder between some criteria (for instance, when comparing some
cars, the fact that the color is less important than the security), but he probably
cannot express the exact relative importance between two criteria (for instance, the
security is three times more important than the color in the decision). Asking for
such precise, but inaccurate, input-oriented information may result in the setting of
a method that will not reflect the decision-maker’s expectations. In consequence, it
seems more advisable to focus on less precise information, but with an incontestable
accuracy (i.e. a stronger support from the decision-maker).

2.2 Setting up an iterative preference elicitation process

In [Mou05], MOUSSEAU defines the preference elicitation process as a “process
that goes through an interaction between the decision-maker and the analyst (or a
software) and leads the decision-maker to express preference information within the
framework of a selected MCAP”.

The preference elicitation is a part of the decision aid process, that allows to
construct the evaluation model. Notice that it requires the explicit use of an ag-
gregation procedure. Hence, the MCAP has to be selected before the preference
elicitation process and should not be modified, nor questioned, during the process,
unless the preference elicitation is restarted.

In this section, we show how it is possible to implement an iterative process for
the preference elicitation, based on a constructive approach, by first defining the
elicitation process in a formal way and then studying the behavior of the decision-
maker in such a process.

This section sums up to a large extent the work of MOUSSEAU on the preference
elicitation. For a more detailed discussion, we refer to [Mou03, Mou05].
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2.2.1 Principles of an iterative preference elicitation approach

First, we briefly present two different approaches, called aggregation approach
and disaggregation approach, and show how they are combined into an iterative
process called aggregation/disaggregation approach.

The aggregation approach

Let us consider an MCAP P, as well as a set A of alternatives evaluated on a
coherent family F' of criteria. An aggregation approach consists in inferring, from
a set of input-oriented preference information only, a compatible set of parameters
for P that allows the construction of an evaluation model, i.e. the construction of a
binary preference relation between the alternatives.

The framework of such an aggregation approach has been defined as follows by
Mousseau [Mou03|:

Defining the set A of alternatives;

Defining the coherent family F' of criteria;

— Selecting a multicriteria aggregation procedure P;

— Setting values for the parameters of P;

— Constructing the global preferences by application of P;

— Analysing the sensitivity of the preference relation in order to express recom-
mendations.

Let us notice that this framework is not necessarily defining a sequential process,
as we may observe some step backs, in order to refine, for instance, the sets of
alternatives or criteria, or to test also different values for the parameters.

In such a case, the analyst must ask the decision-maker a large number of ques-
tions for a correct tuning of the parameters. In order to determine the trade-off
between the criteria, for instance, he may ask questions like “How much do we have
to increase the evaluation x; of an alternative x on criterion ¢ in order to compen-
sate a loss of 1 unit on the evaluation z; on criterion j?”. The AHP method [Saa80]
proposes to determine the parameters by asking the relative importance between
the criteria (for instance, criterion ¢ is 3 times more important than criterion j).

It is commonly stated that this approach requires a sensitivity analysis of its
results, due to the possible impreciseness of the parameters and their effective impact
on the MCAP result. We will discuss this point in section 2.3.

The disaggregation approach

When we are dealing with the difficulty of defining some method parameters in
order to infer an evaluation model of the alternatives, we may consider a reversed
approach, namely to start from a complete or partial evaluation model given by the
decision-maker and to see if these information are compatible, or consistent, with a
given MCAP P.



2.2. Setting up an iterative preference elicitation process 29

The purpose of a disaggregation approach is then to determine a set of admissible
values for the parameters of P, from a set of overall judgments between the alterna-
tives a decision-maker is willing to express (i.e. a set of output-oriented preferential
information), assuming that his argumentation is in accordance with the underlying
principles of P. This information may be a ranking over a subset A’ C A of alterna-
tives, some pairwise alternatives comparisons, or some assignments of alternatives
to categories.

Notice that in the literature, these approaches are sometimes called ordinal re-
gression analysis or inverse analysis.

In the vast majority of cases, these approaches use linear programming tech-
niques (see for instance [JS82|, [SY85| and [Sis85]). Most of the time, to be op-
erational, they do not explore the whole admissible solution polytope, but they
focus on one particular set of parameters that maximises a given objective func-
tion. We must remark that the number of optimal or near optimal solutions may
be quite huge, such that an exhaustive search method (like for instance the reverse
simplex method [DOH54], or the Manas-Nedoma algorithms [MN68]|) may be very
time-consuming, and may require a considerable effort from the decision-maker to
select one particular solution. As we shall discuss in section 2.3, it is then manda-
tory to discuss the reliability of this solution in order to legitimate the resulting
recommendations.

The aggregation/disaggregation approach

An aggregation/disaggregation approach is a process in which we alternate be-
tween aggregation and disaggregation steps, using the output of the previous step for
the next iteration. Intuitively, we generate a set of parameters from a disaggregation
step, based on a part of the expected result, allowing to aggregate and reconstruct
the complete preference relation (i.e. the valued or the outranking relation). Then,
we discuss with the decision-maker his accordance with the relation and add, the
case given, new preferential information on the comparisons he may not agree. We
continue until a consensus is found.

The process can be seen like an iterative sequence of questions and answers whose
purpose is to lead the decision-maker to express gradually a preferential information.
This sequence may also be the opportunity to test the validity of some hypotheses,
or even to come back to some previously given information.

Example 5 We assume that an aggregation procedure is given and the set of al-
ternatives, as well as the family of criteria, have been defined. For example, let us
suppose that a decision-maker expresses the fact that an alternative a is preferred
to an alternative b. Applying a disaggregation algorithm, we find some compatible
parameters and can then start the aggregation procedure. By presenting the output
to the decision-maker (for example the ranking of a valued method), he may disagree
the fact that alternative a is preferred to alternative c. Then, we start a second
disaggregation phase. The process continues until the decision-maker is satisfied by
the recommendations.
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Note that the preference elicitation process is an important part of an aggre-
gation/disaggregation process. Therefore, it is particularly important that the se-
lection of the aggregation procedure must be done beforehand and should not be
modified during the elicitation process, as it determines the necessary parameters,
as well as their meaning, to be elicited [Vin89, Mou93, Pod94].

2.2.2 An overview of disaggregation approaches

The very first disaggregation approach is implemented by JACQUET-LAGREZE
and SISKOS in the seminal UTA method [JS82, SGMO5], using linear programming
for assessing additive value functions from a partial subjective ranking of decision
alternatives, in order to aggregate multiple criteria into a single composite criterion.

The UTA method enabled a large number of derivative methods to rise up. As
examples, we may refer to UTADIS [DGJ80| or uTA* [SY85]; but also ADELAIS [SD89],
that enables an interactive use of the UTA method. A review of the UTA multicriteria
method and some improvements can be found in [DYZ90].

An interested reader may find in [JLS01| a review by JACQUET-LAGREZE and
SISKOS on the first twenty years of the preference disaggregation methods.

When considering the non-additive value theory, we may also mention the work
of ANGILELLA et al. [AGM10], as well as an overview by GRABISCH, KOJADINOVIC
and MEYER |[GKMO8|, concerning the different methods for the identification of
Choquet integral capacities.

Considering some examples of disaggregation approaches in outranking meth-
ods, we can mention the ELECCALC system [KMN94|, which estimates indirectly
the parameters of the ELECTRE II method. In addition, different solutions for as-
sessing the parameters of the ELECTRE TRI method have been developed: In [MS98]
and [MFNO1], the authors suggest an interactive approach for assessing the criteria
weights from the assignments of some alternatives in defined categories; in order to
decrease the computational difficulty of the resulting mixed integer linear program,
MousseAu and Dias [MDO04]| propose a slight adaptation of the valued outranking
relation used in ELECTRE IIT and ELECTRE TRI. These works are complemented with
the implementation of mathematical programs for inferring veto-related parameters,
developed by [DMO06], and the work of [RD08|, assessing criteria weights and cut-
ting level parameters without having to pre-define categories. Let us also mention
the IRIS software [DMO3], an extension of the ELECTRE TRI method which allows
the decision-maker to provide assignment examples and constraints on the weights
and the cut levels of the valued outranking relation for sorting the alternatives.
A more general approach is used in the recent theoretical work in [MMBO08|, where
a mixed integer linear program is presented for assessing, at the same time, crite-
ria weights, performance discrimination thresholds as well as potential performance
values directly from a median-cut outranking relation.
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2.2.3 Knowing the potential pitfalls

As we consider a constructive approach, the decision-maker constructs his pref-
erences all along the process, based on his experience, his convictions, his values,
or his beliefs, but he is also influenced by the elicitation process itself. Indeed, the
questions we may ask, the alternatives we shall present to him will automatically
focus his attention and his deliberation. It is then of the highest importance to
know the potential pitfalls and how to best avoid them.

Helping the decision-maker in the expression of preferential information

In order to express his preferences in the comparison of some alternatives, one
must present the decision-maker with some information. It can be a part of the
result, as for example the impact of some expressed constraints on the comparison
of some alternatives. Such information is also useful for improving the convictions of
the decision-maker, in order to understand why an alternative has to be preferred to
another one, or why an alternative cannot be assigned into one particular category.

Notice that the tools we use to display the information should be in accordance
with the considered MCDA philosophy, at the risk of inducing the expression of
inconsistent preferential information. For instance, in MAVT, one may easily consider
to display the alternatives performances in a graphical way (using for instance some
box plots). But, such visualisation tools may induce some implicit compensation by
the decision-maker that are not desired in outranking methods.

We can also show him a set of compatible parameters with its expressed infor-
mation. Although, he may not be able to tune precisely the parameters, he may
however react, or verbalize its disagreement if, for example, the ratio between two
criteria weights seems underestimated or overvalued.

Independency of the comparisons

It is important to notice that, when comparing two alternatives, a decision-maker
should not be influenced in his preferences by any other alternatives. In fact, we
should assume this principle as a logical way of thinking.

If the decision-maker acts according to the principles of the valued methods,
this property is always granted. When using an outranking method, this property
is ensured for the outranking graph, but may not be validated for the resulting
recommendation. We can for instance cite the ELECTRE I method [BRS66|, that
may rank an alternative a before an alternative b if a outranks more alternatives
than b, no matter if b outranks a. Also, a non-transitive outranking digraph may
never be summed up in a true and fair ranking.

Working hypothesis 3 As it is a particularly challenging issue out of the scope
of this work, we shall concentrate on the construction of the outranking digraph and
not its exploitation. In consequence, we shall consider that the outranking digraph
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has to be compatible with the given preferences information on the comparisons of
alternatives.

Dealing with an inconsistent set of preferential information

In a constructive approach of the elicitation of the parameters, the fact that
a set of preferential information cannot be fully represented in the given aggre-
gation procedure is an important issue. Indeed, as the expressed information by
the decision-maker leads to the construction of a set of mathematical constraints, a
contradictory set of constraints may result in an empty set of admissible parameters.

Such a situation appears when some information are incoherent between them,
or impossible to model in the chosen aggregation procedure (for instance, a non-
transitive situation between three alternatives, when considering a value-oriented
aggregation method). Before trying to get rid of this conflictual situation, the ana-
lyst should verify carefully the agreement of the expressed preferential information
to the underlying principles of the given aggregation method. Also, these incoher-
ences may be due to an evolution of the decision-maker’s point of view during the
process.

Most of the time, trying to resolve the conflict comes to the determination of a
non-conflictual subset of constraints: we can for instance take the smallest possible
subset out or, if the decision-maker expressed a confidence index for each statement,
take the least confident constraints out. We may remove the one expressed first,
if considering that the construction of the preferences leads the decision-maker to
express more and more accurate preferences. As this is out of this thesis scope, we
will not detail thoroughly the existing techniques. We recommend the reading of
the articles [LLO1], [Roo79], [MDF*03], and [MDFO0G] for resolving such a situation.

It is a complex combinatory problem when the constraints are of any shape.
When considering linear constraints only, some authors (see for instance [VL81],
[Chi94]|, or [TMJ96]) intend to define some Irreducibly Inconsistent Systems (11S),
which are some minimal subset of constraints for which an inconsistency arises:
putting any constraint apart makes the inconsistency disappear (let us note that if
there is more than one 118, the global system may still remain inconsistent). Some
others try to determine the minimal set of constraints to be discarded in order to
obtain a consistent set (see for example [Chi96], [MKC00], [MDF*03]).

We must present these inconsistencies to the decision-maker, and provide him
also with some tools that allow a better understanding of the situation, in order to
come back to a coherent situation.

2.3 Analysing the robustness of preferential results

We have seen that the construction, as well as the exploitation, of an evaluation
model is depending on the use of one particular set of parameters, which may be
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compatible with the expressed preferential information. Intuitively, we may have to
deal with incomplete information, such that it should be possible to consider differ-
ent sets of parameters, both compatible with the given information, but providing
distinct recommendations.

As an analyst, how much confidence can we show in a recommendation resulting
from the selection of one particular set of compatible parameters? Why should we
give preference to this set instead of the others? What may happen if the information
are not completely accurate?

The concept of robustness, as defined by ROY, represents the dependency of a
recommendation to some impreciseness, uncertainties or some not well-known, or not
well-defined characteristics of a problem (see for instance [Roy98, Roy02, Roy10]).
In addition, DiAsS states that the general idea behind the robustness analysis ap-
proaches is to accept multiple model versions (or scenarios, or parameters sets) and
to try to identify a solution that is seen as being good or acceptable in (almost)
every model versions [Dia07].

Thus, in the sequel of this work, a recommendation will be called robust when it
is valid for a large set of possible scenarios (to be defined) that are compatible with
the given information.

In this section, we first describe three well-known tools for establishing robust
recommendations, namely the sensitivity analysis, the credibility cutting level tech-
niques and the concept of necessary and possible statements. Then, we position
and motivate our work on the concept of stability, which is an additional tool for
addressing the robustness concern.

Notice that we will not consider here the methods that determine robust con-
clusions without the decision-maker’s involvement in expressing preferential infor-
mation. This is the case with the SMAA method [LHS98| (see also the sMAA-2
method [LS01] or SMAA-3 method [HLMS98]), that intends to compute, for any al-
ternative in the context of an MAVT approach, the percentage of scenarios on which
the alternatives is the best one, according to every possible scenarios (i.e. every pos-
sible utility functions). This is particularly useful in real-life public political decision
making processes, where the decision-maker should not adopt a subjective position.

2.3.1 Sensitivity analysis within multi attribute valued theory

The main idea of sensitivity analysis is to test the impact of small parameters
changes on the resulting preference relation, most of the time focusing on the best
alternative or the alternatives ranking within the context of MAVT, where it has been
extensively studied. DANTZIG [Dan63| stated that it is a “fundamental concept in
the effective use and implementation of quantitative decision models, whose purpose
is to assess the stability of an optimal solution under changes in the parameters”.
Roy and Bouyssou [RB93| noted that it may be quite time-consuming, but it is
a necessary task to construct, modify or justify some preferences before starting
a critical discussion and establish a valuable recommendation. A methodology for
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sensitivity analysis in multi-objective decision-making is depicted in [RI90].

It is easy to understand that the complex setting of a utility function makes
questionable the provided result, not to mention the fact that a decision-maker may
often be uncomfortable in expressing some exact parameters. Indeed, based on pos-
sibly imprecise parameters, can a resulting optimal alternative be truly considered
as the best one?

A fair number of authors defined a sensitivity analysis to measure the impact of
such imprecise information, but it considers independently each parameter, as their
weights are tested separately around an “ideal” solution. For instance, in [TS97],
the authors considered two closely related sensitivity analysis problems, namely to
determine the most critical criterion (i.e. the one that modifies the best alternative
or the ranking with the smallest change in its associated current weight) and how
critical the performance measures of the alternatives are in the alternatives ranking.
MAYSTRE et al [MPS94| suggested different techniques to take into account the de-
pendencies of the parameters, but the resulting high combinatorial number of values
to be considered makes the interpretation of the results very difficult. In [DC99],
within the context of value functions, the authors developed an analysis software,
VIP, that computes a minimal and maximal score for each alternative, under a set of
linear constraints, allowing to consider interdependencies between the parameters.

An interested reader that wants to go further may for instance refer to [WB87],
[FRI&9|, [Haz86|, |[Web87|, [AP9I7|, [SHI2], [Bar92], [SHO1|, [MPY92|, or [KCCJ93|.

2.3.2 Credibility level cutting technique

In the context of the outranking methods, we also may have to deal with inac-
curate, imprecise, uncertain or ill-determined data. In order to construct a highly
reliable crisp outranking relation to be exploited further, we may consider as valid
only the fuzzy outranking relations associated with a clear positive credibility higher
than a defined cut level A [FMRO5]. In fact, this cut level, introduced in the ELEC-
TRE methods, is often defined as the credibility index smallest value that is com-
patible with the assertion “x outranks y” (see for instance [DMO6]). As its direct
elicitation may be quite difficult, it is often elicited via a disaggregation procedure
with the other parameters simultaneously.

Informally, it underlines the idea that a high concordance value (i.e. a qualified
magjority) has little chance to be called into question, contrary to a low concordance
value, which seems too anecdotic to be taken into consideration. However, as we
shall present in what follows, a high value is not always a warrant for stability with
respect to imprecise weights parameters, such that a cutting technique may not be
the most suitable technique.

More details about this credibility level cutting can be found in [FR94| and some
examples of applications are given, for example, in [LLACO05], [BP07] and [CAMO3].
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2.3.3 Dealing with imprecise but accurate information

Basically, the sensitivity analysis questions the quality of a recommendation
based on precise, but not fully accurate, input-oriented information. In order to
deal with imprecise, but supposedly accurate, input-oriented information, one may
think about defining for each constituent of the evaluation model a set of admissi-
ble values. For instance, Dias and CLIMACO |[DCO00| compute robust assignments,
1.e. the best and the worst assignments for each alternative, according to some given
constraints by multiple decision-makers on the criteria weights, using the ELECTRE
TRI method [Yu92|. Then, the decision-maker may confirm some intervals, nar-
row down some others (which means the add of new preferential output-oriented
information) or dismiss an interval (leading automatically to a conflict).

In a similar manner, in response to the difficult work with inaccurate or im-
precise input-oriented preferential information, GRECO, MOUSSEAU and SLOWIN-
SKI [GMSO08] take the position to consider only output-oriented preferential infor-
mation, supposedly accurate, in an aggregation/disaggregation approach. Indeed,
the authors assess utility functions from a set of pairwise comparisons on an inter-
actively increasing subset of alternatives: This variant of the UTA method [JS82]
takes care about the robustness of the preference modeling by considering necessary
preferential statements (which are valid for all value functions compatible with the
given information) and possible statements (when at least one of the value function
validates the statement).

Basically, to compute such a property for any pair (z,y) of alternatives, we test
the consistency of the currently expressed set of preferential information, enlarged
with an information that enforce the fact that x is preferred to y or y is preferred
to = alternatively. If there is only one consistent set, the associated additional
preferential information is necessary. If both are consistent, the preference relation
is possible in both sense, such that the decision-maker should be questioned again
in order to reduce the set of possible statements.

Thus, the decision-maker is only questioned about expressing some preferential
information that are not already granted, in order to restrict the number of com-
patible scenarios. The robustness is ensured by the fact that the process stops only
when (almost) all relations between the alternatives are necessary, namely there
is only one (or a very few) admissible scenario, without the need to consider one
specific parameters set.

Note that this approach assumes that the decision-maker expresses comparisons
of alternatives that stay accurate all along the process. Indeed, as we are not asking
for any necessary judgement, there is no possibility in highlighting some changes in
the decision-maker’s way of thinking. In addition, it requires a longer questioning
of the decision-maker, not to mention that he may not be able to answer to every
questions, and the running time may become prohibitive for a real-time processing
of the decision aid.
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2.3.4 Stability of outranking relations

The stability concept tries to characterise the dependency of the outranking
relations with respect to the possibly imprecise weights parameters. This concept
has been originally introduced by BISDORFF [Bis04| under the terminology of ordinal
concordance. Basically, a situation is said to be stable, with respect to a given
weights vector w, when it only depends on the relative importance between the
criteria. Thus, a stable outranking situation is valid for every weights vectors having
the same preorder as W, such that it can be considered as a robust information
(assuming that the preorder is an accurate information, i.e. strongly supported by
the decision-maker).

The stability allows to extend the efficiency relation. As we have said in the first
chapter, the efficiency relation is the only objective relation between the alternatives,
but it is not restrictive enough to be considered as a final recommendation. Thus,
the stability allows to introduce an intermediate step between this objective relation
and the completely subjective relation from a precise setting of the parameters, by
considering the preorder as a subjective, but less questionable, information.

Like the previous concepts, the stability deals with imprecise but supposedly
accurate information. However, it only considers input-oriented information, specif-
ically a complete preorder. We can make a parallel with the necessary and possible
concepts, as a stable situation is a situation that is necessary, according to the pre-
order. However, an unstable situation may be necessary, according to some already
expressed preferential information, such that if we only focus on the stability, we
may question the decision-maker about some implicit preferential information. In
addition, contrary to DIAS and CLIMACO, we need to define a complete preorder,
which can be more difficult to obtain. But the stability property is easy to com-
pute and may provide some highly supported recommendations, without the need of
heavy mathematical computations. We will show in the construction of our iterative
preference elicitation process how both concepts may be combined.

Finally, we should draw a parallel with the recent work, on valued theory, from
PobiNovsKI [Podll, Pod12|, who analyses the sensitivity of the solution to a mul-
ticriteria choice problem, based on the expression of a partial weak order on the
importance of the criteria. The author assumes the use of criteria with a common
ordinal scale and computes for each alternative the strength of stability via a linear
program. Dealing with the outranking principles in our case, there is no restric-
tion in any particular scale for the criteria and we will consider only some stability
degrees that can be verified without the need of linear programming.



Thesis intention

The work we shall present in this thesis is in keeping with the multicriteria de-
cision aid methods, more specifically within the outranking philosophy. We focus
on situations where a unique decision-maker is involved, though we will have some
discussions showing that it is possible to consider the stability concept with multi-
ple decision-makers. The decision-maker is considered as a novice one, i.e. he has
a pretty good knowledge about the decision domain and he is facing an unusual
decision. Besides, he understands and agrees on the outranking principles.

The primary objective of this thesis is to implement a constructive preference
elicitation process which can be qualified as robust, taking advantage of the stability
concept we detail in chapter 3. Then, in chapter 4 and 5, we show how can be
implemented a disaggregation process taking this concept into account. Finally, we
describe in chapter 7 our robust preference elicitation process named REWAT, which
stands for Robust Elicitation of Weights And Thresholds, and use it in a real decision
situation in the last chapter.

Notice that such an approach is motivated by the work with a novice decision-
maker that is assumed to be able to express accurate overall preferential judgements,
to have a comprehensive view about his preferences on the relative importance of
the criteria, but also not being able to express directly some precise and accurate
parameters.
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In the second part of the thesis, we focus on the stability concept of outranking
relations, which characterises the dependency of any outranking situations towards
possible imprecisenesses of a considered vector of criteria weights. This concept,
originally introduced under the terminology of ordinal concordance, is here given
with a new perspective: We define simpler mathematical conditions in order to
verify the presence or the absence of such a property and we extend the concept
with two new degrees of dependency, supported by some examples of applications.

Chapter 3 is dedicated to the definition of the above mentioned stability concept
and how it may be useful when looking to provide a robust recommendation to a
multicriteria decision aid problem.

Chapter 4 intends to model some mathematical constraints for using this con-
cept when eliciting a vector of weights from a decision-maker’s set of preferential
information. It appears as an answer to the difficulty for a decision-maker, espe-
cially when he is not an expert in the decision domain, to provide accurately and
precisely such parameters. Based on different algorithmic choices, we define three
mixed integer linear model for the elicitation of the weights.

Finally, chapter 5 extends the defined models to elicit simultaneously additional
parameters, namely the discrimination thresholds and the category profiles in case
of a sorting problem. These parameters are supposed to be given in the previous
chapter, but some practical issues when dealing with a novice decision-maker have
shown that this is not a highly reliable working hypothesis.

Notice that we are focusing on assessing the dependency of the outranking sit-
uations with respect to the vector of criteria weights only. That presupposes the
accuracy and preciseness of the other parameters, directly given by the decision-
maker or elicited via one of our defined mathematical models. In fact, we are not
considering the possible impact of these parameters on the resulting outranking
relation. Such considerations will be tackled in future work.






CHAPTER 3

On the stability of the median-cut
outranking digraph

“There is nothing so stable as change.”

[Bob Dylan]
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Abstract

143 at

Within the context of the outranking methods, the fact that an alternative is
least as good as” another one is depending on a clear setting of different parameters,
especially the criteria weights. In this chapter, we carry on the work on the concept
of stability, which intends to characterise accurately this dependency and measure the
impact of some possible impreciseness in the weights. The more stable an outranking
statement is, the less important a precise fixation of the weights becomes necessary.
We then give an intuitive formulation, as well as simple mathematical conditions to
compute the degree of stability of any outranking statement. Moreover, we give some
practical hints on how the stability may be used to ease the resolution of a multiple

criteria decision aid problem.
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Introduction

We consider a decision situation in which a finite set of decision alternatives
is evaluated on a finite set of criteria. A decision-maker is willing to express the
weights of each criterion according to the outranking paradigm in order to assess
the overall outranking relations between all pairs of alternatives.

However, precisely determining the numerical values of these weights is an impor-
tant issue in multicriteria decision aid, when applying outranking methods [RM96]
and also in multi attribute utility theory |Zel82], with a considerable impact on the
recommendations. Being able to measure the dependency of the outranking rela-
tions with respect to the impreciseness and uncertainty related to these weights can
be a helpful instrument for providing robust recommendations [Roy98, Roy02].

In this chapter, considering a vector of criteria weights, we characterise the
stability of the resulting median-cut outranking relations, namely the dependency
of each outranking statement with respect to the precise fixation of the weights.
This work extends the one in [Bis04], by giving a more intuitive formulation of
the stability concept and a simplified way of computing it, but also by allowing a
sharper characterisation of the dependencies with two additional levels of stability.
Finally, we discuss some additional properties and sketch the use of this concept
in a preference elicitation process, in order to simplify the determination of some
weights in best accordance with the decision-maker’s mind, allowing to save time
and to draw some robust recommendations.

The chapter is organized as follows: First, we introduce some required prelimi-
nary definitions, then we formally define the stability of any outranking statements,
its extension, the way of computing it, as well as some important properties. For
each level of stability, we present a small didactic example and we conclude by
showing some perspectives on the consideration of the stability.

3.1 Preliminary definitions

3.1.1 Construction of a weighted outranking relation

Let A = {z,y,2,...} be a finite set of m > 3 potential decision alternatives
evaluated on a coherent finite family F' = {1,...,n} of n > 3 criteria. The alterna-
tives are evaluated on performance scales and the performance of alternative x on
criterion 7 is denoted ;.

Between any two alternatives x and y of A, the marginal “at least as good as”
situation S;(x,y) [Bis02, BMROS§|, with each criterion i, is characterized as follows:

1 if x; is clearly at least as good as y;,
Si(z,y) =< -1 if x; is clearly not at least as good as y;,
0 otherwise.
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For instance, considering a real performance scale, to which an indifference ¢; > 0
and a preference p; > ¢; discrimination threshold (for all i in F') are associated
[RB93], the double threshold order S;(z,y) is given by:

1 if z+q >y,
Si(z,y) =4 —1 if z+pi <y
0 otherwise.

Notice that Sj(z,y) = 0 corresponds to an undetermined situation where crite-
rion 7 is not taking part in favor nor in disfavor of the overall judgement. This may
be the case when there is not enough support to validate or invalidate the marginal
“at least as good as” situation, but also when there is a lack of information (for
instance, a missing evaluation). However, we present in section 3.3.4 a way to deal
with evaluations in a more general way, namely by considering every possible local
concordance values.

We associate furthermore with each criterion ¢ € F' a rational importance weight
w; > 0 which represents the contribution of criterion ¢ to the overall warrant or not
of the “at least as good as” preference situation between all pairs of alternatives. Let
W = (w1, ..,wy) be the vector of relative importance weights associated with F' and
let W be the set of such weights vectors. The overall valued concordance relation,
denoted SV, aggregating the partial “at least as good as” situations, is then given
by:

SY(z,y) = Zwl -Si(x,y), V(z,y) € Ax A
i€F

If a veto situation occurs in the comparison of a couple (z,y) of alternatives,
such that it invalidates the outranking situation disregarding any criteria weights,
the associated overall outranking relation is always trivially invalidated. As the
purpose of our work is to study the dependency of the outranking relation to the
weights, we may without loss of generality ignore the veto principle normally taken
into account when dealing with classical outranking relation.

In the absence of a veto situation, the outranking relation, denoted §W(:c,y),
is equal to the concordance relation S (z,y) [RB93| on which we focus our ar-
gumentation. An alternative x outranks (resp. does not outrank) an alternative y
when SV (x,y) > 0, (resp. SV(x,y) < 0), i.e. when a weighted majority of criteria
warrants (resp. does not warrant) the “at least as good as’ preference situation be-
tween x and y [Bis02]. This situation is denoted xSVy (resp. z8%y). SV (x,y) =0
indicates a balanced situation where the criteria warranting the “at least as good
as” preference situation between x and y are exactly as important as those which
do not warrant this situation. This balanced situation is denoted z7?%Vy.

Notice that we may use the notation =(zSYy) in the sequel of the thesis to
denote the fact that the statement “xS%Vy” is untrue, either because x8%Vy or x?Vy.
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3.1.2 Weights preorder

Let >, be the preorder! on F associated with the natural > relation on the
values of the weights w; of the vector w. =, induces r ordered equivalence classes
MY >, ... >, IV (1 <r <n). The criteria gathered in each equivalence class have
the same importance weight in W and for any ranks ¢ < j, those of II}" have a higher
importance weight than those of H;", the most important class being II}".

Let ¢;'(x,y) be the sum of “at least as good as” characteristics S;(x,y) for all
criteria ¢ € II}Y. Furthermore, let C}Y(x,y) = Zle ¢}’ (x,y) be the cumulative sum
of “at least as good as” characteristics for all criteria having importance at least
equal to the one associated with II}Y, for all k£ in {1...7}. Intuitively speaking, it
is the set of the most important criteria, on which we may limit the decision if the
other ones are insignificant.

Last but not least, we define I (2, y) (resp. I}~ (z,y)) as the set of criteria
of the k" class of equivalence supporting (resp. not supporting) the fact that z is
performing “at least as good as” y.

Definition 3.1 (Preorder-compatible) Two vectors w, W € W are said to be
preorder-compatible if they induce the same preorder on the weights.

Example 6 w; = {2;7;5;2} and wy = {3;6;4; 3} are preorder-compatible.

Definition 3.2 (o-preorder-compatible) Two vectors w, W € W are said to be
o-preorder-compatible if >/ is a permutation of the equivalence classes of >=,,. For
instance, assuming that w; and w; (resp. w) and w;) are any components of W
(resp. W), we verify the property as follows:

Vi,jeF 1 w; =w; <= w;:w;

Example 7 w; = {2;2;3;3;1} and wa = {4;4;1;1;2} are o-preorder-compatible,
associated with the permutation (132).

As we shall explain further on, such a property may be useful when trying to
consider different objectives, all gathering some equi-important criteria, when the
decision-maker is not able to sequence them in order of priority.

Definition 3.3 (Less discriminated weights vectors) Let us consider W and
w’in W. W’is said to be less discriminated than W when its preorder >, is obtained
by joining some adjacent classes in >, together, i.e. if and only if it respects the two
following conditions:

w; =w; = w;=w; Yi,j€F,

w; > w; = wé}w; Vi, j € F.

1. Classically, >, denotes the asymmetric part of >, whereas =, denotes its symmetric part.
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Definition 3.4 (More discriminated weights vectors) In the same way, W is
said to be more discriminated than W when its preorder is obtained by splitting some
equivalence classes, without modifying the inequalities between the classes, i.e. if it
respects the following condition:

Vi,j € F @ w >w; = w; >w,

3.1.3 Defining the preferable relation
We introduce the following relation:

Definition 3.5 (Preferable relation) Let z and y be any two different alterna-
tives of A. x is said to be preferable to y when x outranks y and when the overall
valued concordance relation SV (x,y) is higher than S™(y,x), namely the credibility
of “x is at least as good as y” is higher than the credibility of “y is at least as good
as x”. In other terms, considering only this two alternatives for a choice problem, x
could be put aside by the decision-maker with no regret to y’s advantage.

This additional relation seemed to be necessary for us for a correct use of the
method we will implement in the following chapters. Indeed, when comparing some
alternatives couples, expressing a preference between the alternatives (i.e. a posi-
tive outranking statement in one sense and a negative one in the other sense) was
not possible and expressing an indifference between them was considered as rather
pointless.

Example 8 We consider this simple didactic example of a person that wants to
buy a car and evaluates a large set of alternatives according to five criteria: Price,
Power, Equipment, Number of seats and Color. During the preference elicitation
process, this person is asked to give his preferences in the comparison of two cars
(see Table 3.1), in terms of indifference, preference, or incomparability.

Table 3.1: Comparing two cars

l ‘ J Price ‘ 1 Power ‘ 1 Equipment ‘ 1 Nb. seats ‘ 1 Color ‘
Car1l | 8000 € 255 Air-conditioning 5 Black (Good)
Car 2 | 10 000 € 257 Air-conditioning 5 Steel Gray (Very Good)

We assume the fact that the decision-maker is considering the two evaluations on
criterion Power as indifferent and has a clear preference for the steel-gray-colored
car. We assume also that criterion Price, where the difference induces a clear lo-
cal preference of the cheapest car, is not a dictator: This is easily verified when
comparing some other cars on which this person can express a preference for a car
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that is more expensive but better in every other criteria. In that case, as the cri-
terion Price is clearly more important than the criterion Color, choosing the most
expensive car will imply a higher regret than taking the cheapest one. However, it
is mathematically impossible to express a preference for the first car (as criterion
Price is not a dictator) and an indifference will not take into consideration the fact
that the cheapest alternative is less regrettable than the other.

Notice that such a situation can be generalised to every alternatives comparisons
where there are some criteria expressing a local indifference.

In this work, we will denote “xF"Vy” the fact that x is preferable to y, with respect
to the criteria weights W. Notice that this strict order binary relation includes the
complete preference relation, which leads to the following property:

Property 3.6 x is preferred to y = x is preferable to y.

Proof: The proof is obvious: If z outranks y and y does not outrank =z, it follows
that SW(z,y) > 0> SV(y,x). O

Notice that, in absence of an incomparability relation (i.e. no veto is raised), in
the comparison of any alternatives couple, at least one of the alternative outranks the
other one, such that there is always one preferable alternative, unless S"(z,y) and
SY(y, ) being equal. In that last case, the alternatives x and y will be considered
as indifferent.

3.2 Defining and computing the stability of valued out-
ranking relations

Let w € W. The stability of Sw characterizes, for all (z,y) € A x A, the
dependency of the associated median-cut outranking situation on the fixation of the
weights |Bis04|. 2SVy (resp. z8Vy) is said to be:

— Independent (with respect to the weights): if a weighted majority of criteria
warrants (resp. does not warrant) this outranking situation, for all vectors of
weights in W;

— Stable (w.r.t. the weights): when a weighted majority of criteria warrants
(resp. does not warrant) the outranking situation between x and y for any
vector of weights preorder-compatible with w. This situation is only depen-
dent on the preorder of W, not its precise numerical values;

— Unstable (w.r.t. the weights): if a weighted majority of criteria warrants
(resp. does not warrant) this outranking situation for w but not for every
vectors of weights preorder-compatible with w. The situation is depending on
the preciseness of the numerical values of the weights.

We define two additional levels of stability, allowing to more precisely charac-
terise a stable situation. zSVy (resp. x8Vy) is then said to be:
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— FEztensibly stable (w.r.t. the weights): when a weighted majority of criteria
warrants (resp. does not warrant) the situation between z and y for any vector
of weights more discriminated than w. It characterises the stability of a given
outranking statement by a basic preorder that can be refined.

— o-stable (w.r.t. the weights): when a weighted majority of criteria warrants
(resp. does not warrant) the situation between = and y for any vector of
weights o-preorder-compatible with w. It characterises the stability of an
outranking statement when considering different objectives that gather some
equi-important criteria. It ensures that a statement will not change, no matter
what the order of the objectives is.

Example 9 To illustrate our discourse, let us define an example with 4 alternatives
and 9 criteria. For simplifying the explanation and without loosing any specificity,
we are not considering here any indifference or preference discrimination thresh-
old. A wvector of weights W is defined, inducing the following importance ordering:
{91,92,93} >w {94, 95,96} >w {97,958,99}. The performance table, on which every
evaluations have to be maximized, is given in the left part of Table 3.2. The concor-
dance relation, (or outranking relation, as we consider no veto threshold in that case)
is given in the right part of Table 3.2, with normalised values between —1 and 1.

Table 3.2: Performance table and associated outranking relation

g1 92 93 g4 gs G 9gr gs 99 S
w 3 3 3 2 2 2 1 1 1 a b c d
a 5 2 6 4 1 3 7 6 5 —-0.12 -0.22 —-0.12
b 3 4 5 7 2 6 4 5 8 0.12 —0.12 —-1.00
c 6 6 3 5 8 2 5 7 3 0.22 0.12 —0.33
d 4 7 6 8 6 7 6 6 9 0.56 1.00 0.33

We can identify two issues for which the concept of stability proposes an answer.
First, what level of reliability can I assign to these concordance values, knowing that
I am not that confident in the precise fixation of the weights, but I am sure about
the preorder of the criteria? Second, considering any non-well determined value
of the concordance relation (i.e. close to a balanced situation, as for example the
concordance value for the ordered pair (b,a)), has this situation been considered as
faithfully reflecting the decision-maker’s mind or is it just an anecdotic situation
created by a not fine-enough tuning of the parameters?

In the following subsections, we detail all the levels of stability and the way of
testing their validations.

An outranking situation is independent from every vectors of weights when any
criterion validates (resp. invalidates) the local “emphat least as good as” situations
(i.e. when the first alternative dominates or is dominated by the second one):



50 Chapter 3. Stability of the median-cut outranking digraph

Proposition 3.7 (Independency)

A4 F SZ 5 =1 SZ 5 = O;
“SYy” is independent <= 'e () or Si(®,y) (3.1)
e F:Si(zy) =1
Vi€ F: Si(z,y) =—1 or Si(z,y) = 0;
“r8Yy” is independent <= LE (@.y) or 8i(w,y) (3.2)
JieF:Si(x,y)=—-1.
“r?™y” is independent <= Vi€ F:S;(z,y)=0. (3.3)

Example 10 Back to our example, we easily verify that alternative d is at least as
good as b on every criteria. In that case, d outranks b independently of any vector
of weights.

The careful reader will notice that if a veto situation occurs in the comparison
of a couple of alternatives (x,y), such that it invalidates the outranking situation
disregarding any criteria weights, it is then considered as independent.

3.2.1 Stability of the median-cut outrankings

According to a given vector of weights W, a positive (resp. negative) outrank-
ing situation xSVy (resp. z8Vy) is said to be stable if and only if it is validated
(resp. invalidated) for every vectors of weights W' which are preorder-compatible
with w. Consequently, it only depends on the preorder of W and not the precise
fixation of the weights. The following conditions give us a test for the stability of
any situation:

Proposition 3.8 (Stability)

Veel...r:CY >0;

“xSWy” is stable <= r: O (@, y) (3.4)
Fel...r:C¥(x,y) > 0.
Veel...r:CY <0;

“z8"y" is stable << G, y) (3.5)
dkel...r:CY(z,y) <O.

“e?t™y? is stable <—= VYkel...r:C(xz,y)=0. (3.6)

Proof: The underlying idea of the proof is the following: By constructing the
cumulated sums, we can ensure that the add of less important criteria in disfavor
of the statement will always be compensated by more important criteria in favor,
namely there will always be enough support to the proposed statement.

A complete proof of Proposition 3.8 is given in Annex A.1. O

Any outranking situation that does not validate the stability proposition is then
said to be unstable: Indeed, we can find vectors of weights in accordance with the
associated preorder >,, that validate the situation, but also that invalidate it or that
create a balanced situation. A precise and accurate fixation of the weights is then
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necessary in order to avoid providing a false situation. If not, the reliability of such
a situation is weak, all the more when the associated outranking value is weakly
determined.

Table 3.3: Computation of the stability of some outranking situations

Proposition | ¢ ¢ ¢ | CY CY (3 | Denotation a b [ d
bSYa -1 3 -1 -1 2 1 unstable a -1 -2 -1
cSVb 1 -1 1 1 0 1 stable b | +1 -2 =3
a8"b 1 -3 1 1 2 -1 unstable c | +2 +2 -2
c8%d -1 -1 -1 -1 -2 -3 stable d| +2 +3 +2

3: Independent outranking statement; 2: Stable; 1: Unstable.
+ (resp. —): Positive (resp. negative) outranking statement.

Example 11 Back to our example, we now compute, in the left part of Table 3.3,
the stability of some of the previous outranking situations. We have already seen that
SY(b,a) = SY(c,b) = 0.12, but these two situations have quite different behaviors.
Indeed, when looking at the computation details in Table 3.3, “cS™b” is stable, con-
trary to “bSVa”. If we consider the preorder =, as a strong constraint validated by
the decision-maker, any compatible vector of weights will ensure the validation of the
outranking situation for the ordered pair (c,b). Its weak value of concordance is not
a weakly-determined one, contrary to the second outranking relation. For instance,
one shall easily verify that, considering two vectors W = (6,6,6,2,2,2,1,1,1) and
w* = (8,8,8,3,3,3,2,2,2), both preorder-compatible with W, we obtain b8 a and
aS™'b. Notice that a sensitivity analysis that is not taking into account the preorder
of W may have considered both relations as potentially invalidated. Notice also that
considering that an outranking relation is validated only if it is associated with a
clear positive value may have invalidated both relations, whereas the first one is not
anecdotic.

Assuming an explicit validation of the preorder >, it is then clearly justifiable to
consider a stable situation, even if it is not-well determined, as implicitly validated,
whereas an unstable and not-well determined situation has to be explicitly validated
by the decision-maker. As it is not possible to ask him to validate the complete set
of outranking statements, it allows him to focus on sensitive outranking situations
only, decreasing the time of the validation protocol and increasing his confidence in
the final outranking digraph. As a result, any post-exploitation of the digraph will
be more robust.

3.2.2 Extensible stability of the median-cut outrankings

Although the computation of the stability eases the validation of some outrank-
ing statements, as they only depend on the preorder of the weights, there is a strong
hypothesis on the fact that two criteria in the same equivalence class have to be
associated with the exact same weight. Indeed, we can easily imagine a situation
where the criteria are gathered in the same equivalence class as the decision-maker
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is unable to express a higher importance in favor of one or the other criterion, but
having a doubt about the fact that these two criteria act exactly with the same
importance.

Considering a stable outranking situation, we measure its dependency to a pos-
sible lack of discrimination in the associated vector of weights. A positive (resp. neg-
ative) outranking situation 2.SVy (resp. x8%Vy) is then said to be extensibly stable
(w.r.t. w) if and only if it is validated (resp. invalidated) for every vectors of weights
more discriminated than w. Intuitively, it informs on the fact that the discrimination
inherent in the vector of weights is sufficient to describe the outranking situation
in a stable manner; adding some discrimination will not have any impact on the
situation.

For any pairs of alternatives (x,y), let us define wT as any vector of weights
associated with the preorder ITV™ (z,7) defined as follows:

Y (z,y) = IV (z,y) > IV (2,y) > ... > IV (2,y) > TV (2, )

v (z,y) is in fact obtained by splitting the classes of importances of IV between
the criteria against and the ones in favor of the situation. This preorder is the worst
case we can create of a preorder more discriminated than ITV, when considering
the validation of an outranking situation, as the criteria in favor (resp. against)
are the least (resp. most) possibly important. In a similar way, we also define w*
as the worst case when trying to invalidate an outranking situation, splitting each
equivalence class and prioritizing the criteria in favor of the validation. It follows
that:

Proposition 3.9 (Extensible stability)

“pSWTyT s stable <= “aS™y’ is extensibly stable
“x,gwiy” is stable <= “x8"y” is extensibly stable

Proof. For proving the first equivalence, if we assume the fact that “zS™" y” is sta-
ble, it is easy to verify that any vector of weights W' more discriminated than w and
different from w¥ will have either a criterion in favor of the outranking situation
more important than it is in WT or a criterion in disfavor with a lower impor-
tance than in W¥. Then, “zS"'y” will be also stable. On the other way, assuming
that “zSWVy” is extensibly stable, then it is stable for every vector of weights more
discriminated than w, especially wT.

The second equivalence is similarly verified. O

A careful reader may remark that we are not giving any condition for testing the
extensible stability of a balanced situation. In fact, we have the property that only
the balanced situations that are independent of the weights can be extensibly stable.
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Table 3.4: Extensible stability test for the proposition “dSYa”
I = {g2} > {91,935} > {94, 95,96} > {97, 98, 90}

- - o7 I IpT I I TR Ve
0 {92} {gn} {93} 0  {ga,95.96+ {97} {gs,90}
¥ (dya) | 0 1 -1 1 0 3 -1 2
cy(dya) | O 1 0 1 1 4 3 5

Table 3.5: Extensible stability

{91,92,93} > {94, 95,96} > {97,98,90} {92} > {91, 93} > {94, 95,96} > {97, 95,99}
a b C d a b C d
a — — — a —ES —
b | + — —ES b | + — —ES
c | + + — ¢ | +ES + —ES
d| + +BS + d | +Bs +ES +ES

+/—: Positive/Negative median-cut outranking statement
ES: Extensibly stable outranking statement

This is easily proved, when supposing an extensibly stable balanced situation, which
means that we can refine each equivalence class without modifying the balanced
situation. But, if there exists criteria where S;(z,y) # 0, it automatically means
that they are compensated with other criteria in the same class. Splitting the
equivalence class will result in a lack of balance. Consequently, the only extensibly
stable balanced relation are relations where S;(x,y) = 0 for every criteria ¢, which
are independent from any vector of weights.

Example 12 Returning to our example, let us suppose that the decision-maker did
not provide a precise preorder, but only grouped the criteria according to wether he
considers them as very important (g1, g2, gs), important (g4, gs, ge) or less im-
portant (g7, gs, go). Then, we associate some weights from 1 to 8 to the criteria,
according to the initial preorder and compute the extensible stability relation in left
part of Table 3.5 (An example of how to compute the extensible stability property is
given in Table 3.4). At that time, considering the given information on the weights,
there is too many uncertainties on the outranking statements. If the decision-maker
1s unease to discriminate more the preorder, the exploitation of the current outrank-
ing relation should have a very low degree of reliability, unless a sizable questioning
on the not extensibly stable outrankings.

In continuing the discussion, the decision-maker acknowledged that criterion go
1s clearly the most important one. The new outranking relation and the associated
extensible stability property are given in the right part of Table 3.5. We easily see that
the number of extensibly stable relation increased, reducing the necessary questioning
on the outrankings that are not fully validated by the preorder and its extension.
Notice that if the decision-maker is certain that the preorder is correct, namely if
two criteria with the same weights have the same exact importance, we will only
need to question him on the remaining unstable outrankings.

In a validation process of the weights, if a decision-maker is not totally sure
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that some criteria in the same importance classes are really equi-important, we can
ensure that any possible refinement will lead to the same consequences for every
extensibly stable outranking statements. He then can focus on the other outranking
situations in order to refine the preorder (if necessary).

Also, such a procedure can be useful when considering multiple decision-makers,
which would agree with a basic preorder, but they would wish to refine it in different
manners. The extensible stability will highlight the conflictual situations and those
which are not.

3.2.3 o-stability of the median-cut outrankings

Let us assume now a different situation, where the criteria have been gathered
under some more general objectives that a decision-maker does not want to order
according to their importance, but with the property of equi-importance of all cri-
teria under the same objective. This situation may happen when, for instance, a
jury has to evaluate different candidates, based on some defined criteria: For each
criterion, each member of the jury is giving an evaluation. A decision-maker may
consider the evaluations of each member of the jury on one particular objective as
equi-important, but is not able to order the different objectives.

According to a given vector of weights W, a positive (resp. negative) outranking
situation zSWVy (resp. x8Vy) is then said to be o-stable if and only if it is validated
(resp. invalidated) for every vectors of weights which are o-preorder-compatible
with w. Intuitively, this property is warranted when the order of the equivalence
classes is not important, i.e. when there are more criteria in each equivalence class
that validate (resp. invalidate) the “at least as good as” relation.

The following proposition gives us a test for the o-stability of any outranking
statement:

Proposition 3.10 (o-stability)

Vkel...r:¢ >0;

“xSYy” is o-stable < < o (x,y) (3.7)
Feel...r:cf(z,y) > 0.
kel...r:cy¥ <0;

“r8Wyr is o-stable <= Vk € r:cf(x,y) <0 (38
dkel...r:cf(z,y) <O0.

“x?™y” is o-stable <= Vkel...r:cl(z,y) =0. (3.9)

Proof. As we study every possible permutations between the equivalence classes,
each class can be considered as the most important one. As for all w and (z,y),
CY(z,y) = ¢(z,y), at least the most important class of every preorder has to
verify the Proposition 3.8, i.e. ¢}'(x,y) > 0. According to the permutations, every
equivalence classes have to verify the inequality. The condition is then a necessary
one. On the other way, assuming that every c¢(z,y) are greater or equal to 0,
no matter the order we have between the classes, every cumulative sum C)Y(z,y)
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Table 3.6: o-stability

Testing some couples of alternatives Complete relation
Proposition | ¢ ¢y 5 | o-stability a b c d
cSYb 1 -1 1 X a — — —
dSVa 1 3 1 o-stable b | + - -0
a8™d 1 -3 1 X c| + + —o
cSVd -1 -1 -1 o-stable d| +0 4o +o

+/—: Positive/Negative median-cut outranking statement
o: o-stable outranking statement

will remain greater or equal to 0. Then, the condition is enough and we get the
equivalence. O

The o-stability level corresponds in fact to the verification of a group unanimity
condition. Assuming that a situation is granted for every equivalence classes, no
matter the relative importance of each class is, the situation will be always granted.
Such a situation is highly reliable, as it suffers less from the subjectivity of the
decision.

Example 13 Now, let us assume that our example is modeling the evaluations of
a jury composed of three judges that evaluated a set of candidates, based on three
criteria. The judges are unable to agree on the way to prioritize these criteria, but
agrees on the fact that the importance of each judge on each criterion should be the
same. Consequently, we group the evaluations in three classes (based on the fact they
concern the same criterion), arbitrarily assign the weights 1, 2 and 3 to the classes
as in Table 3.2, and compute the o-stability property in right part of Table 5.6.

We easily observe that d outranks every other alternatives without the need to
order the importance classes. Moreover, d is clearly preferred to b and ¢ (as they
will never outrank d under the working hypotheses). However, as the alternative a
might outrank d, they both could be considered as indifferent. Again, without further
information, we cannot rely on the statements that are not o-stable. Nevertheless,
considering for instance a best choice problem, we could rationally recommend d as
the best alternative, but an in depth discussion on the importance of the criteria will
be required to rank the other alternatives.

3.3 Additional properties on the stability

It is important to notice that any dominant, o-stable, or extensibly stable situ-
ation, is a stable situation above all. Furthermore, if any dominant situation is also
at the same time o-stable and extensibly stable, the opposite is not always true.
Indeed, one can consider the following situation: two alternatives a and b evalu-
ated on three criteria g1, go and g3, with the following local “at least as good as”
evaluations: Si(a,b) = Sa2(a,b) = 1 and S3(a,b) = —1. Considering w = {2,1, 1},
we easily verify that “SY(a,b) > 0” is o-stable and also extensibly stable, but it is
clearly not a dominance situation.
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3.3.1 Limitation of the stability

Let w1 be the weights vector for which all the criteria weights equal 1. In the
absence of incomparability statement, it follows:

Property 3.11 (Limitation of the stability)

8"y = AweW, st xSVy is stable (3.10)
xSy = ZAweW, s.t. x8Vy is stable (3.11)

Proof: Assuming that 8%y, namely SW1(z,y) < 0. If we want to find W such
that £SVy in a stable manner, according to Proposition 3.8, we need to verify the
fact that C}Y(x,y) > 0, for all indices k, especially for £ = r, the index of the least
important class. But C}¥(x,y) is in fact the number of criteria (among the complete
set of criteria) warranting a local “at least as good as* situation. S™1(z,y) < 0.5
implies that less than half of the criteria are in favor of the outranking situation.
Then, C}Y will be always strictly negative, disregarding any weights vector.

The proof is similar for the second property. ([

In other words, when more than half of the criteria are invalidating an outranking
situation, it is impossible to find a vector of criteria weights that validates this
situation in a stable manner. Similarly, when more than half of the criteria are
validating an outranking situation, it is impossible to find a vector of criteria weights
for warranting a stable invalidation of this situation. Indeed, it is simply impossible
to warrant a stable outranking situation going against the one obtained with a vector
of equi-important weights.

A careful reader may notice that, in a comparison where there is the same number
of criteria in favor and in disfavor, we can always find a preorder warranting a stable
validation and another one warranting a stable invalidation. For instance, one may
consider a preorder with two classes, the most important class grouping all criteria
in favor, or all criteria in disfavor.

This property emphasizes the importance of the vector wi of equi-important
weights, as the resulting outranking digraph is entirely stable. Using a different set
of parameters has to be clearly justified, because the decision-maker has a precise
idea on the preorder of the weights (for example, if he is certain that two criteria
have different importances), either he evidently disagrees an outranking situation
from the equi-important digraph.

Also, it highlights the fact that we cannot only rely on the set of stable state-
ments for giving some recommendations, as they will always go in the sense of those
obtained with equi-important weights. Hereafter, we give some hints for a practical
use of the stability.

Thus, when considering the construction of such a digraph, we may proceed as
follows: we first try to validate the preorder of the weights, in a direct or indirect
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manner, as it is easier to validate such a preorder instead of a precise vector of
weights. Assuming its validation, every stable outrankings are implicitly validated
and we do not need to question the decision-maker on their reliability. But we need
to ensure the validity of the unstable statements. Also, one may consider either
a direct or an indirect method for eliciting the precise importance of the weights.
As we consider that it is not an easy task, especially for a novice decision-maker,
to accurately tune the weights, we shall present in chapter 7 the construction of a
progressive method for the elicitation of these parameters, based on an incremental
set of preferential information on the alternatives.

3.3.2 Stability of the preferable relation

As we already explained at the beginning of this chapter, in section 3.1.3, during
the elicitation protocol, we may face some preferential information like “z is prefer-
able to y’. Legitimately, one would like to know if this relation is depending on the
precise fixation of weights, i.e. unstable, or not. To do so, we consider the following
proposition, slightly adapted from 3.8:

Proposition 3.12 (Stability of the preferable relation)

VEel...r:C)l(z,y) = C¥(y,x);

3.12
dkel...r:C¥(z,y) > Cly, ). (8.12)

“xF™y” is stable < {

Proof: If we consider the differences C\¥(z,y) — C}Y(y, x), instead of C}¥(z,y) like
in Proposition 3.8, the proof of Proposition 3.12 is the same as Proposition 3.8,
the stability of the difference automatically induces the stability of the inequation

SY(z,y) > SV(y, ). g

3.3.3 Stability within the context of the sorting problem

An important application is the characterisation of the stability of category
assignments. In fact, within the context of outranking methods, we can easily define
a stable assignment as follows:

Definition 3.13 (Stable assignment) According to a given vector of weights w,
assuming that the assignment of an alternative in a category is translated in terms
of the conjunction of a set of outranking statements, we say that an alternative x is
assigned to a category Ch in a stable manner if and only if every outrankings that
need to be verified are ensured in a stable manner. Otherwise, we will say that the
assignment of x in Cp, is unstable.

For instance, according to the pessimistic rule of ELECTRE TRI [Yu92| we recalled
in the previous chapter, one says that x belongs to CY, if it outranks its lower pro-
file b,_1 and does not outrank its upper profile b;,. A decision-maker will positively
give more credit to a stable sorting, namely S%Vb;,_; and —~(xSWVby,) are stable 2.

2. “=(xS%Wy) is stable” means that either zS%y or 7"y, but the statement is stable in any case.
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In the sequel of the thesis, we shall only consider the optimistic and pessimistic
rules for the sorting of the alternatives. However, there is no restriction to these
rules and some other ones can be envisioned, provided they can be translated in
terms of the conjunction of positive or negative outrankings.

If an assignment is unstable, it may be useful to determine an interval of cate-
gories [Ch,, Ck], in decreasing order of preference, on which the alternative is assigned
in a stable manner: in other words, for each category Cj of the interval, and only
for these categories, there exists a vector of weights W’, preorder-compatible with
W, such that the alternative is assigned to C;. This can be easily verified when
considering the two assignment rules from ELECTRE TRI separately.

Property 3.14 (Stable assignment interval) Considering the pessimistic rule
for assigning the alternatives, we say that an alternative x is assigned to an interval
[Ch, C] in a stable manner when the statements ©SVb,_1 and —~(xSVby) are stable,
where by, is the upper profile of Cy, and by_1 the lower profile of C},, and when every
other outrankings from x on any profile b; that separates two adjacent categories of
the interval are unstable.

Example 14 Table 3.7 represents the stable assignments of &5 alternatives into
4 categories, namely VERY GOOD, GOOD, MEDIUM and BAD. These categories are
separated by 3 profiles: bgy, buc and bgy. When looking at the outranking statements
between alternative a, for instance, and the profiles, we easily see that a is stably
assigned to category GOOD, as it outranks its lower bound bye and does not outrank
its upper bound bgy, in a stable manner. similarly, alternative b is assigned in a
stable manner to the set of categories [MEDIUM, GOOD], as the statement “bS"by”
is unstable. Finally, notice that d is sorted (when we are not considering the stabil-
ity) in category VERY GOOD. But, as none of the considered outranking statements
with the profiles is stable, a simple tuning of the weights could sort it into any other
categories. In that case, d is assigned, in a stable manner, in the set of whole
categories.

Table 3.7: Stable assignments of some alternatives using pessimistic rule

bav bue beu Stable assignment
a | a8%bev  (sta.) | aSVbue (sta.) | aSVbew  (sta.) a € GOOD
b | b8"boy (sta.) | bSVbue (ums.) | bSVbeu  (sta.) b € [MEDIUM, GOOD)]
¢ | ¢8%bsv  (uns.) | ¢8%bue (ums.) | ¢SVbsu  (stable) || ¢ € [MEDIUM, VERY GOOD]
d | dS%bev (uns.) | dSVbue (uns.) | dSVbew  (uns.) d € [BAD, GOOD]
e | eSVbey (sta.) eSVbue  (sta.) eSYbsy  (sta.) e € VERY GOOD

Property 3.15 (Stable assignment interval) According to the optimistic rule
for assigning the alternatives, we construct the interval [Cp,Cy|, possibly reduced
to a unique category, on which an alternative x is assigned in a stable manner as
follows: bp_1 is the profile with the highest index such that tSYbp_1 is stable and
by is the lowest profile validating the outrankings bpSYz and —(xS™by) in a stable
manner.



3.3. Additional properties 59

Proof: First, as xSVby,_1 is stable, it obviously means that we cannot find a vector
of weights preorder-compatible with w such that the alternative is assigned in a
category below Cj. Also, ©SVby, is unstable, which means that it is possible to
have z8%'by, for a W’ preorder-compatible with w. This induces the validation of
the outranking bpSY'z. In consequence, the alternative should be assigned in C},
considering W’.

On the other hand, if the outrankings by SV and —(xSVby) are stable, we can
ensure that the alternative cannot be assigned in a category with a higher index
than C} when considering the preorder of w. As both two outrankings are not
stable for by_1 and every profiles with a lower index, x can be possibly assigned in
any category in between Cj and Cj (included). O

As a general principle, considering an optimistic and pessimistic rule allow the
definition of an interval of categories which runs from the pessimistic assignment to
the optimistic one [RB93|. When the stability is taken into consideration, we already
show that an interval is created around each assignment (pessimistic or optimistic).
In that case, we proceed as follows to define a unique interval of stable assignments:

Definition 3.16 (Stable assignment interval) When both optimistic and pes-
simistic assignment rules are considered, we say that an alternative T is assigned to
an interval [Ch, Ck|, possibly reduced to a unique category, in a stable manner when
Ch is the lowest category of the stable pessimistic assignment interval and CYy, the
highest category of the stable optimistic assignment interval.

Property 3.17 (Concordant assignment) Not taking into consideration the no-
tion of stability, we should notice that the two assignment rules always assign an
alternative in the same category under the three following hypotheses:

i. We are not applying any qualified majority on the outranking values: an out-
ranking is considered validated (resp. invalidated) as soon as the concordance
value is strictly positive (resp. negative). That is assumed for the whole thesis.

1. We are considering the sorting of alternatives such that no veto is raised in
their comparison with every profiles. The remaining alternatives will be sorted
separately, as considering any veto bypasses the notion of stability.

1. Fvery outrankings between one alternative and one profile are either validated
or invalidated, but there cannot be some balanced situations. It follows that

—(xSVy) = 28Vy.

Proof: Let assume that the pessimistic assignment rule sorted an alternative x into
a category Cj,. It follows that ©SVby,_1 and =(2SVby,). According to hypothesis (iii),
we have x,8%Vb;,. Due to the integrity of the concordance relation, it follows that
bp SV (assuming there is no raised veto). We then have b, > z. As zSVbj,_q,
brn_1 % x. h is then the lowest index that verify the optimistic condition. x is then
assigned to the same category C}, irrespective to one of the two rules. U

Property 3.18 Under the hypothesis given in Property 3.17, for any alternative x,
the associated stable optimistic assignment interval, designated by [Cio, Cyol, is the
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same interval as the stable pessimistic assignment one [Cip, Cyp| (where p stands for
pessimistic, o for optimistic,  for lower and u for upper).

Proof: By construction, we directly deduce that Cpp = (), as both pessimistic or
optimistic interval are lower bounded with the same condition, i.e. their index [P = [,
is the lowest index such that xSYb;_; is stable. Then, we prove that C = C2.
We know that, for every index k > [,, we have x,8Vb;, which implies that b,SWz.
As soon as 8Vby, is stable, b, SVx also is stable. Indeed, this second outranking is
mandatory when the first one is true: as the first one is stable (i.e. true for every
vector of weights preorder-compatible with W), this one has to be stable. Then,
both intervals stops at the same index, namely Cyo = Cyp. O

When intending to sort the alternatives in accordance to some given parameters
(weights, thresholds and profiles), we cannot ensure the last hypothesis. Of course,
when there is an unstable balanced outranking (which is the vast majority of the
balanced statements), it is still possible to raise the indeterminateness by slightly
modifying the vector of weights such that the outranking will be strictly positive or
strictly negative (with no preference for one or the other), but still unstable. We
then can search for a stable interval assignment, which will not be impacted by the
validation or invalidation of the outranking. Only the case with stable balanced sit-
uation shall be managed by considering the union of both optimistic and pessimistic
stable intervals.

In addition, when the profiles are unknown and are elicited via an algorithm we
shall detail in section 5.2, it seems to be advisable and not limitative to enforce the
outrankings between the alternatives and the profiles in being either valid or invalid,
but not indeterminate. In that case, it will not be necessary to consider both rules.
We shall simply model constraint for ensuring the sorting of an alternative according
to the pessimistic assignment rule and we shall present the stable assignment interval
also considering only the pessimistic rule.

3.3.4 Checking the stability property with missing evaluations

For several reasons, some evaluations of the performance table may be unavail-
able, or the decision-maker may be unease in expressing some precise discriminating
thresholds, such that there may be some missing local concordance indices. In that
case, it is still possible to test the stability of an outranking situation between two
alternatives x and y by considering all the possible values for the local concordance
values Si(z,y), for every criteria ¢ such as x; or y; is missing. If the statement is
the same for each possible configuration, i.e. x always outranks (resp. does not out-
rank) y, and if the stability is warranted for both of them, we can ensure that the
missing evaluations have no impact on the stability of the outranking statement.

Notice that we only need to test the most optimistic and most pessimistic sce-
narios, namely when all unknown S;(x,y) are replaced by 1 or —1, when trying to
validate a statement: If the resulting statements are both stable and positive (or
both stable and negative), we do not have to make further tests, as the statements
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will have the same behavior for every possible configurations. Otherwise, we have
to consider the statement as an unstable one.

Example 15 On table 3.8, we compute the stability property of three outrankings.
For instance, we associate for the ordered pair of alternatives (a,b) two scenarios:
(a,b)?, the most optimistic one (i.e. the two missing local concordance are replaced
by 1) and (a,b)P, the most pessimistic one (i.e. with missing values replaced by —1).
When computing the stability property for these two scenarios, we see that they have
different behaviors (as one is stable and the other not). Consequently, we have to
consider the outranking statement from a to b as unstable.

Table 3.8: Stable outrankings statements with missing local concordance values

Local concordance S; Cumul. sums
Criterion: | g1 g2 g3 94 g5 || CT' CY C¥ Stability
W 3 2 2 1 1
(@, ) 1 7 7 1 -1
(a,b)? 1 -1 -1 1 -1 1 -1 -1 | a? (uns.) | = a?b (unstable)
(a, b)° 11 1 1 -1 1 3 3| aS"b (sta.)
(c,d) T 7 1 0 -1
(¢, d)P -1 -1 -1 0 -1 -1 -3 4| c8Yd (sta.) | = ¢8"d (stable)
(c,d)? -1 1 -1 0 -1 -1 -1 -2 | ¢8%d (sta.)
(e, f) 7 1 7 1 1
(e, )P -1 1 -1 1 -1 -1 -1 -1 ] e87f (sta.) | = e?f (unstable)
(e, f)° 1 1 1 1 -1 1 3 3| eSVf (sta.)

In a logical way, we can compute the stable assignment of an alternative in an
interval of categories when there are some missing local concordance values between
an alternative and a profile. We only have to compute the stability, according
to the worst possible cases like in the previous paragraph for every unknown global
outranking statements and compute the interval as explained ahead, in section 3.3.3.

3.3.5 Properties on the discrimination of the preorder

Property 3.19 A stable outranking remains stable when considering a less discrim-
inated preorder.

Property 3.20 An unstable outranking cannot become stable when considering a
more discriminated preorder.

Proof. Property 3.19 is obvious when noticing that the set of constraints on the
cumulative sums to be verified in order to validate a stable outranking using any w’
less discriminated than w is included in the set of constraints validating a stable
outranking using w.

Property 3.20 is the contrapositive of Property 3.19. O
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Properties 3.19 and 3.20, as well as Proposition 3.9 on the extensible stability,
highlight the behavior of the outrankings when modifying the discrimination of a
vector of weights: In fact, when increasing the discrimination, any outranking shall
either become unstable or extensibly stable. In both case, as soon as one of these
two situation is reached, it will not change if we keep increasing the discrimina-
tion. Notice that any outranking that are independent from the weights will not be
impacted by any modification of the discrimination.

Equisignificant Increasing the discrimination y, Complete ordering
weights ¥ of the weights
Stable Unstable Unstable
Stable Ext. stable Ext. stable
Independent Independent

Figure 3.1: On the behavior of the stability when modifying the discrimination of
a weight vector

Considering at the beginning of a study that every criteria are equi-important
and discriminating two criteria only when there is a strong and clear higher impor-
tance of one criterion to another, could be a logical way for eliciting the criteria
weights, as the resulting number of stable outrankings will be maximal. However,
this stability may be reconsidered if the decision maker is uncertain on the equal
importance of two or more criteria. In a similar manner, we may notice that too
much discrimination will contribute to degrading the inherent stability of the out-
ranking digraph, without needing so many information, not to mention the issues
to ask the decision-maker for such an accurate information.

In consequence, and this will be detailed in chapter 7 on the construction of
an protocol for the elicitation of the criteria weights, it seems to be advisable to
start from the outranking digraph obtained with equi-important weights and to
refine them by presenting him some outrankings that are stable but not extensibly
stable. We shall present different assumptions in order to refine the preorder, helped
with some examples of outranking to ease the discussion. When every considered
outrankings will be extensibly stable or unstable, it will not be useless to go deeper
in the refinement of the preorder.

Also, regarding the unstable outrankings that may appear during the protocol,
they may be discussed with the decision-maker in order to be sure of their validation
or invalidation.



CHAPTER 4

Stable elicitation of criteria
welghts

“Une chose ne vaut que par Uimportance qu’on lui donne.”*
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Abstract

In this chapter, we define mathematical models to elicit a vector of weights that is
compatible with a set of preferential information given by the decision-maker. These
models take advantage of the stability concept, defined in the previous chapter, by
searching for a compatible weights vector that maximises the resulting number of
stable statement.

1. “Something is worthy only if you think so.”
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Introduction

In the previous chapter, we have defined some properties for characterising the
stability level of any outranking statements induced by a given vector of weights.

Legitimately, one would like to set a mathematical model up for the weights
elicitation that takes into account the stability concept in order to improve the
overall stability of the resulting complete outranking relation: from partial global
outranking statements confirmed by a decision-maker, one would compute a com-
patible vector of weights which maximises the total number of stable statements.
Thus, it allows an easier validation of the outranking relation, as the validation of
the elicited preorder automatically validates every stable statements.

Consequently, we present in this chapter such a mathematical model for the
elicitation of criteria weights. First, we define a set of linear constraints that may
ensure the stability of some global outranking statements. Then, we express the
types of preferential information on alternatives a decision-maker can provide and
how it can be integrated in the model. Finally, we enrich the model by potentially
adding preferential information on the relative significance of the criteria.

4.1 Stability constraints

4.1.1 Auxiliary variables and constraints

As criteria significance weights are supposed to be rational, we can, without
any lost of generality, restrict our assessment problem to integer weights vectors.
Hence, an integer weight w; € [1, M] will be associated with each criterion i € F,
M standing for the maximal admissible value. For the practical resolution of real
decision problems, this bound may be set equal to the number m of criteria.

Let Q,xu be a Boolean matrix with generic term [w; ,,], characterizing, for each
line 4, the number of weights units allocated to criterion i. Formally, line i*" rep-
resents the decomposition of the weight associated with criterion ¢ on M bits in a
unary base, such that every non-zero values are grouped together in the right side
of the matrix, in such a way that » ., w;, = w;. For example, if criterion i is
associated with an integer weights equal to 3, and if M = 5, then the i* line of the
matrix Qx5 will be (0,0,1,1,1). Although this decomposition of the weights may
be counter-intuitive, it takes all sense when we remember that we have to know
on which equivalence class is any criterion. In this way, we can easily deduce the
equivalence class of any weight by checking the index of the highest positive bit (to
the left). In addition, the decomposition enables an instant reading of the cumula-
tive sums C}Y in which the criterion is taken into account, by looking in line ¢ the
indices k£ where w; ,, is equal to 1.

As each criterion weight must be strictly positive, we easily deduce that at least
one weight unit is allocated to each criterion, i.e. w;\y = 1 for all ¢ € F'. We obtain



4.1. Stability constraints 65

the following constraint:

Zwi,M =m. (4.1)

i€F

The required cumulative semantics of €2,,x\ is therefore achieved with the fol-
lowing set of constraints, that groups together the positive bits on the right side of
the lines:

Wi,u < Wi u+1s Vie F,Vu=1.mMm— 1. (42)

4.1.2 Modeling of the stability constraints

We characterise a constraint model for ensuring the stability of some desired
outranking statements. Notice that we are not defining any constraints imposing an
independent situation: Indeed, we can ignore such unanimous situations, positive
or negative, as they concern a trivial pairwise comparison situation between Pareto
dominant (resp. dominated) alternatives. The outranking situation is anyhow then
unanimously warranted (resp. unwarranted), disregarding every possible significance
of the criteria. Those denotations don’t give us any specific information for the
elicitation of the significance weights.

Notice also that we are not giving constraints for ensuring a o-stability or ex-
tensible stability. We detail our reasons hereafter.

We define & (resp. & or &) as the set of ordered pairs (z,y) of alternatives such
that the overall at least as good as situation between x and y has to be validated
(resp. invalidated or in balance). Let us also denote Gg (resp. G or &3) the subset
of pairs of alternatives on which we want to enforce a stability level.

Furthermore, let § define the set of alternatives pairs (x,y) such that x is prefer-
able to y, namely when we want to ensure that SY(x,y) is strictly greater than
SW(y,x). Thus, F2 is the set of alternatives couples (z,y) on which we want to
ensure that x is preferable to y in a stable manner.

Finally, we also model the enforcement of a stable balanced situation for any cou-
ple of alternatives. However, even if this enforcement may be useful when solving
theoretical problems, it seems difficult for a decision-maker to express an accurate
balanced situation. In practice, when a situation is balanced, or close to a bal-
anced situation, the decision-maker will rather prefer not to express such a high
constraining statement. Thus, these constraints will not be used in practical tests.

Ensuring a simple majority validation or invalidation

One may recall that &5 is included in &, as well as §5 is included in §. Which is
the same for the constraints we want to model: ensuring the stability of a positive
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(resp. negative) outranking automatically warrants its simple majority validation
(resp. invalidation). Consequently, it may appears as redundant to define constraints
ensuring a simple majority validation or invalidation. However, as stability cannot
always be reached, we shall define in section 4.1.3 some relaxed versions of our
constraints. In that case, it will be advisable to be able to impose the simple
majority validation or invalidation.

Disregarding any desired level of stability, when a decision-maker expresses his
preference on the validity (resp. invalidity) of an outranking statement, at least we
have to ensure that the elicited vector of weights will validate the statement the
same way.

In order to model the constraints enforcing the simple majority validation of the
resulting vector of weights, we may formulate for all pairs (z,y) € & the following
constraint:

Z (( ZM:Wi,u) : Sz‘(l’vy)) >0, VY(z,y) €GB

i€F u=1

where the factor (3°)_; w;,,) represents the integer value of the estimated weight w;
of criterion 7. As we are only dealing with integer values, the strict inequalities can
be replaced by a large one when replacing the right-hand side of the equation by 1:

Z (( wa) . Si(m,y)) > 1, VY(r,y) €6 (4.3)

i€F u=1

Similarly, for every pairs (z,y) € &, we may impose the following constraint:

Z((Zwm) : Si(:v,y)) < -1, Y(z,y) €S (4.4)

i€F u=1

and for every pairs (z,y) € &

Z (( szu) . Si(x,y)) =0, V(z,y)e€ &’ (4.5)

i€F u=1

We then have an intuitive formulation of the constraints allowing to ensure the
fact that an alternative z is preferable to an alternative y:

Z (( iwzu) : Si(%y)) = Z (( i(&hu) . Si(y,x)> +1, VY(z,y)€F

e F u=1 e F u=1
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For an easier understanding of the model, we slighty modify the writing of the
constraint by factorizing them a bit. Consequently, the previous constraint is equiv-
alent to the following one:

Z (( Zwi,u) : (Si(x,y) - Sl(y’x))) = 1, V(I'?y) €F (46)

i€EF u=1
Ensuring a stable majority validation or invalidation

Let us now translate Proposition 3.8 to a computable set of constraints.

Property 4.1 When considering integer weights, Proposition 3.8 may be reformu-
lated as:

“xSWy? is o-stable Yu € l,...,maxw; : C1¥(z,y) = 0;
Juel,...,maxw; : C/¥(z,y) > 0.
Yu € l,...,maxw; : C/¥(x,y) <0;

“x8%y" is o-stable <= e AR " (z,9) '
Juel, ..., maxw; : C¥(z,y) <O0.

“p?Wy” is o-stable <= Yu € 1,...,maxw;: C/"(z,y) = 0.

where C} (x,y) is the sum of all S;(x,y) such that the significance weight w; < u.

Proof: We easily verify that all constraints from Proposition 3.8 are present in the
property, for all indices u such that it exists w; € W equals to u. For all other values
of u the constraints are redundant. O

When remarking that w; , =1 <= w; > u, we directly obtain:

ieF

In order to model the stability conditions, we introduce for all pairs (x,y) € Sq
the following set of constraints:

Z Wiy - Sz(ﬂ?,y) 2 bu(xvy)7 Vu = 1"Ma V(J?,y) € 62 (47)
i€l

where the b, (z,y) are Boolean (0, 1) variables for each pair of alternatives and
each equi-importance level v in {1,...,M} that allow us to impose at least one case
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of strict inequality for each (z,y) € G2 U &3 as required in Proposition 4.1, via the
following constraints:

M

Zbu(x,y) > 1, VY(z,y) € GUG,y (4.8)

u=1

Note that the ensuring a stable invalidation of the statements associated to a pair
in G5 corresponds to a similar constraint with a reversed inequality and a negative

bu(x,y):

Z Wiy - Sz(m;y> < _bu<xay)a Yu = 1"Ma V(l’,y) € 672 (49>
i€l

Ensuring a stable balance situation is then easily modeled via the following
constraints:

> wiw-Si(z,y) = 0, Yu=1.m, V(z,y) € &) (4.10)
i€EF

In a very similar way, we can ensure the stability of the statement “x is preferable
to y” with the following set of constraints:

Z Wi - (Sl(xvy) - Sl(yax)) > b;((ﬂ,y), Yu = ]-"Mv V((L’,y) € 52 (411)

where the b),(z,y) are Boolean variables defined for each ordered pairs of alternatives
(z,y) € §2, imposing at least one case of strict inequality, via the constraint:

u=1

Enforcing an extensible stability

In the previous chapter, we have shown how useful can be the notion of extensible
stability during the exploitation of the outranking relation, when the decision-maker
is not totally sure that some criteria in the same importance classes have exactly
the same importance.

However, trying to elicit a vector of criteria weights that best ensures the ex-
tensible stability of some desired outranking statements is resulting from a slightly
different approach. In fact, trying to maximise the number of extensibly stable
outranking statements will search for increasing the discrimination of the vector of
criteria weights.
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If we can ensure that it will not impact the stability of the outranking statements
for which the decision-maker expressed a preference (and for which we modeled
the stability constraints), the unforced outranking statements stability risks to be
damaged by an unnecessary discriminated preorder, as explained in section 3.3.5.

In these conditions, it might not be advisable to model the constraints obliging
the extensiveness of the stability of an outranking. Nevertheless, we will show how
its use is integrated to the weight elicitation protocol, in chapter 7.

Enforcing a o-stability

Even if this stability level brings us a more precise characterization of the be-
havior of any outranking, it is important to notice that its use among a real protocol
for the elicitation of the importance weights is, to date, hardly possible. Indeed, one
should easily perceive that such constraint is very restrictive and, imposing it on
some outranking statements may quickly result in an impossible solving. If we can
understand its implication in the validation of an outranking relation, when already
having a vector of weights or at least a grouping of criteria with same importance,
enforcing the computation of equivalence classes such as the relation obtains enough
support for each of them doesn’t appear relevant for us, from this moment.

In consequence, we are not giving here mathematical constraints ensuring the
o-stability of any outranking situation.

4.1.3 Constraint relaxation using slack variables

Ensuring the stability of the outranking statements validated by the decision-
maker allows, the case given, to present him the overall picture of his preferences in
a clearer manner (only considering the preorder), thus improving his understanding
of the problem. However, as it may result in the inability of solving the problem, dis-
regarding to the given preferential information, we have to introduce some relaxed
constraints, obtained from the original constraints by adding boolean slack vari-
ables, which allow a mathematical resolution by relaxing the incompatible stability
constraints with the underlying problem.

Let us now present the constraints in their first relaxed versions:

i€F
i€F
Z Wi - Si(z,y) + sT(z,y) — s (z,y) = 0, Yu=1.M, VY(z,y) € &5 (4.15)

icF

Z Wi * (Sz(x7y) - Sz(yam)) + 8/($7y) 2 b;(l‘ay)u Yu = 1~'M7 V(.’l?7y) € 3’2 (416)
ieF



70 Chapter 4. Stable elicitation of criteria weights

where s(x,y) (resp. §'(z,y)) are real slack variables associated with the ordered
pair (z,y) for enforcing the stability of the outranking (resp. preferable) relation.
A careful reader may notice the fact that, for a constraint enforcing a balance situa-
tion, two slack variables are needed, s*(z,y) and s~ (z,y) in order to know whether
the outranking statement associated with the violated constraint has become posi-
tive (i.e. s (x,y) > 0) or negative (i.e. s~ (z,y) > 0).

We may highlight that an invalidated stability constraint no longer warrants the
simple majority weight support of the considered outranking statements. Therefore,
in order to ensure the weighted majority for the expressed preference information,
we may associate with each relaxed stability constraint an original simple majority
constraint.

Notice also that we are not going to relax the simple majority weight con-
straints (4.3). In case the decision-maker would express incompatible preferen-
tial information, we will resolve this inconsistency following the approach origi-
nally proposed in [LL0O1, Roo79] and further developed and adapted to MCDA by
MOUSSEAU et al. [MDF03, MDFO06].

Minimizing the sum of the slack variables has a positive impact on the number of
stable resulting outranking relation, but is not fully optimal. Indeed, the algorithm
will prefer for example to set the value of three different slack variables up to 1
instead of setting only one up to 4, i.e. it will prefer to invalidate more constraints
with lower values. We then propose a second model for the relaxed constraints
that substitute the real variable s(x,y) by a boolean one, s;(x,y), multiplied by the

number of criteria?, m. As a result, the relaxed constraints are slightly modified as
follows:
S Wi Si(a,y) + sp(x,y)-m > bula,y), Vu= L, Y(z,y) € S (4.17)
i€l
Zwi,u : Sz(xa y) + Sb(ﬂj,y) -m g _bu(x7y)a Yu = 1"M3 V(J?, y) € @ (418)
ieF
Z Wi - Si(z,y) + (sb+(x,y) — sb_(x,y)) -m = 0, Yu=1.M, Y(z,y) € &) (4.19)
ieF

icF

As we shall explain in the sequel, the second modeling is optimal, as we can
minimise the number of violated constraints; however, as it needs the definition of
a fair amount of new boolean variables, it may result in a great increase of the
necessary time for the resolution of the mathematical program. Then, we shall
define two models, one using real slack variables and the second one with boolean
slack variables. We discuss in chapter 6 on the efficiency of both models, in terms
of running time and stability.

2. Every slack variable is bounded by the number of criteria. In the worst case, C}' (z,y) = —m.
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4.2 Taking into account decision-maker’s preferences

4.2.1 Types of preferential information

We propose to integrate all further preferential information that a decision-maker
can provide in our elicitation model. This information may take the form of:

— A subset & C Ax A (resp. &) of ordered pairs of alternatives (x,y) for which a
decision-maker is able to express a valid (resp. invalid) outranking statement;
Ezxample: z is at least as good as y, z is not at least as good as t;

— A subset § C A x A of ordered pairs of alternatives (z,y) for which a decision-
maker expressed the fact that x is preferable to y;

— A partial preorder >, over the weights of a subset of criteria N C F;
Ezxample: criterion 1 is more valuable than criterion 4;

— Some constraints over numerical values associated with some criteria weights;
Example: criterion 2 weight value is equal to 3, or is between 2 and 4;

— A partial preorder between some sets of criteria, expressing preferences about
the sum of some criteria weights;

Ezxample: the coalition of criteria 1 and 3 is more important than 2;

— Some sets of criteria able to validate or invalidate an outranking statement;
Example: when an alternative x is at least as good as y over criteria 1, 2
and 3, the decision-maker considers that = outranks y.

4.2.2 Preferences on alternatives

We assume that we do not have any outranking statement to be enforced to a
balanced situation, i.e. &° = (). Even if this situation has been easily modeled and
can be useful in theoretical tests to recapture a set of parameter used to create the
complete outranking relation, in practice, such hypotheses may be too restrictive
for the elicitation of the parameters, especially as an indetermination is most of the
time the result of a limited knowledge on the overall outranking relation.

In order to provide a solution as stable as possible to the decision-maker, we
decide to associate for any couple of alternatives (z,y) € & the following linear
constraints:

— an original simple majority constraint to warrant the outranking statement;
— a relaxed stability constraint to intend a stable outranking statement;

Understandably, we add the same kind of constraints for the pairs of alternatives
in &, but trying each time to invalidate the outranking statement. For the pairs
in §, we proceed similarly, with enforcing the comparison with an original simple
majority constraint and intend to stabilise it with a relaxed stability constraint.

Let us also notice the fact that, according to Proposition 3.8, when an outranking
statement goes against the elementary outranking statement, it will not be possible
to warrant stability. It is hence useless to keep active these stability constraints, the
case given.
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Finally, when considering the sorting problem, the decision-maker may express
directly some assignments of an alternative into a defined category (bounded with
known profiles) or a set of categories. In that case, we can easily translate these infor-
mation in terms of outranking statements between the alternative and the profiles,
according to the chosen assignment rule. For instance, considering the pessimistic
assignment rule:

Z,bpy1) is added to &,

x is assigned to category C — —
8 BOLY { x,bp) is added to &.

Z,bpy1) is added to &,
x,by,) is added to .

—~ —~

x is assigned to the interval [C},,Cy] = {

Notice that, when the profiles are unknown, we cannot use this model as it now
stands. We shall present in the next chapter, section 5.2, some additional constraints
for dealing with the assignment of the alternatives in predefined categories, with no
given profiles.

4.2.3 Preferences on criteria

Furthermore, direct numerical information on criteria weights provided, the case
given, by the decision-maker, are easy to translate into linear constraints. Thus, if a
decision-maker expresses the fact that the weights of criterion 7 is equal to an integer
value u;, or if he wants to restrict the value of the weight of criterion j between two
integers v; and v}, we add some of the following constraints:

M M M
E Wie=u;,  oOr E wje>v;  and E wje < v (4.21)
c=1 c=1 c=1

A decision-maker’s statement “criterion i is more important that criterion j”
will be taken into account by adding the constraint:

M

D wie> ZM:%,C +1 (4.22)
c=1

c=1

This formula can be generalised for subsets of criteria: If a subset of criteria H
is more important than a subset K, then we add the following constraint:

SO wie) = Y O wie) +1 (4.23)

i€H c=1 JEK c=1
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We can also model the fact that a subset H of criteria is, according to the decision-
maker, sufficient to validate an outranking statement, namely the sum of its criteria
weights is strictly greater than the sum of the remaining criteria weights:

DO wie) = D wie) 1 (4.24)

i€H c=1 JEF\H c=1

By definition, ensuring a strictly higher importance to criterion ¢, with respect to
criterion j in equation (4.22) will be warranted by the elicited preorder. However,
the validation of equations (4.23) and (4.24) can be closely linked to the precise
values of the weights.

Example 16 Let us assume the following constraint, given by a decision-maker: the
coalition with criteria 1 and 2 is more important than the coalition with criteria 3
and 4. If the algorithm returns, for instance, a vector of weights W such that its
preorder gives w1 = wg > w3 = Wy, it 15 obvious that the constraint expressed by the
decision-maker is warranted for every compatible vectors of weights with >,,. But
if the algorithm returns a vector W of weights such that wy = 5, wy = 1, wg = 3
and wy = 2, its preorder =, gives w1 > w3 > wyg > wo. The constraint is then
validated, as w1 +wg = 6 and ws + wyg = 5, but not in a stable manner. Indeed, we
may consider the following weights: wy =5, wy =1, wg =4 and wy = 3, compliant
with >/, but that invalidates the initial constraint, as w1 +wo = 6 and wy+wy = 7.

When such a constraint is not warranted in a stable manner, we must be careful
to keep considering these constraints when trying to tune the weights after the
validation of the preorder, otherwise we might compute some vector of weights that
are not in accordance with the complete expressed preferential information.

We then propose to model such a constraint in a stable manner.

Property 4.2 (Stable comparison between two criteria coalitions) Let de-
fine HyK C F such that the coalition of criteria in H is more important than the
coalition of the criteria in K. To ensure the stability of the comparison of the two
coalitions, we may replace constraint (4.23) by the following set of constraints:

> wiw— Y wiuw = bu(HK), Yu=1.M, (4.25)
1€EH JEK
M
> bu(m k) > L (4.26)
u=1

Proof: The proof is obvious when noticing that it is similar to ensure the validation
of an outranking statement between two alternatives (a,b) when S;(a,b) = 1 for
each criterion ¢ € H, S;(a,b) = —1 for each criterion ¢ € K and S;(a,b) = 0 for each
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criterion ¢ € F'\ (HUK). b,(H,K) is a set of boolean variables created to ensure at
least one strict inequality, as required in Proposition 4.1. O

Of course, we should consider the relaxing of these constraints, for the same
reasons as in section 4.1.3. In consequence, constraints (4.25) is relaxed, using real
slack variables s(H, K) as follows:

D win— Y wim + s(HK) = by(H,K), VYu=1.M, (4.27)

1€EH JEK

and, in its second relaxed version, using boolean slack variables s;(H, K):

S wiw— Y wiw + (LK) m > by(H,K), Vu=1.M. (4.28)

1€EH JEK

Let us remind that a violated relaxed constraints does not ensure the valida-
tion of the original constraint. In consequence, when a decision-maker will express
the fact that a coalition of criteria is more important than another one, we will
model constraints (4.23) to ensure the simple validation of the constraints, con-
straints (4.27) or (4.28) to try to ensure the stability and constraint (4.26) for
enforcing one necessary strict inequality in the stability constraints.

4.3 Mathematical programs

Solving the linear problem stated so far will naturally provide potentially many
admissible criteria weights. Following our goal of not exploring the whole admis-
sible solution polytope, we try, hence, to recover a vector of criteria weights w*
that ensures every given outranking statement by maximising the number of stable
statements among them. We justify the research of a unique "optimal" admissi-
ble solution by the fact that theses algorithms are intended to be integrated in an
elicitation protocol, the decision-maker having, anytime, the possibility to give his
opinion on the parameters. As a result, if W* does not satisfy him, he would be
able to provide additional preferential information which will be integrated to a new
resolution (for instance, when the decision-maker considers that two equal weights
should be different, the first being for him more important than the second,. ..)

From the constraints we defined in the previous sections, we may formulate two
mathematical models allowing the elicitation of compatible weights of the criteria
with the decision-maker’s expressed preferential information, best maximising the
stability of the given outranking statements:

— A first model, STAB1, using the relaxed stability constraints with real slack
variables;
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— A second model, STABs, using the relaxed stability constraints with boolean
slack variables.

Compared with STABy, STABy presents the following enhancement: As it min-
imises the number of violated stability constraints, not the sum of real slack vari-
ables, it is optimal. However, it is using boolean variables that may lead to a longer
running time. Then, we will have to check in Chapter 6 if the additional running
time is “compensated” by a significant increase in terms of stability.

Notice that in real tests, we are considering a small set of given outranking
statements only, as the decision-maker is not willing to express his preferences over
the whole outranking relation. As we cannot use the stability constraints on a
pairwise statement without knowing its validity, it may eventually result in a lack of
stability. Recalling that potential equi-importance of the criteria naturally provides
the kind of stability of the weights we are looking for, we hence adopt as a heuristic
to minimise the overall sum of the criteria weights. Indeed, this heuristic, as it tends
to reduce the number of equi-importance classes, will increase the number of stable
statements that are not directly imposed by the decision-maker. In order to test the
adequateness of this working hypothesis, we define a control algorithm ACON that
only takes into account the simple majority constraints, minimises the sum of the
weights and drops all further stability constraints.

In order to make the lecture easier, we recall & (resp. &) as the set of ordered
pairs of alternatives (z,y) such as the decision-maker expresses the fact that z
outranks (resp. does not outrank) y. To avoid useless constraints, we are obviously
not adding constraints trying to enforce the stability when it is impossible to reach
it, according to Property 3.11 on the limitation of the stability.

To summarise, let us now present the three mixed integer linear programs. Their
validity, as well as their respective behaviors, in terms of stability and running time,
and how they can be successfully used in a real time elicitation protocol shall be
presented in-depth in Chapter 6.

4.3.1 Control algorithm (ACON)

MILP ACON
Variables:
wi,u €{0,1} Vi e F, Vu=1.M
Objective function:
M
min =~ Y. > wiw
1€F u=1
Constraints:
s.t. Z Wi,1 =M
ieF
Wi 2 Wi utl Vie F,Vu=1.mMm—1
M
> (X wiw) - Si(zy) =1 Y(z,y) € 6

i€eF u=l1
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T (e Sif@y) < -1

£ (5 o) (Si) - Sip) > 1

V(z,y) €6

V(z,y) €F

Constraints (informal) on the weights allowing to model decision-maker’s preferences:

M
S wie =0
c=1

For some 7 € F

M
Do Wie = and > wie < For some ¢ € F

c=1
M M
EWM>Z%c+1 For some (i, j) € F?
c=1 c=1
Z(szc)BZ(zwgc) For some H, K C F
€H c=1 JEK c=

4.3.2 MILP considering real relaxed stability constraints (STAB,)

For this model, we formulate a first objective function, which has to be min-
imised:

M
S/(l',y) + K3z 'Zzwi,u

i€F u=1

(F1) min : Kj - Z s(z

(z,y)€E6UG

ay) + Ka- Z

(z,y)€F

K1, Ko and K3 are parametric constants used to put in correct order the three
sub-objectives. The first part of the objective function tends to minimise the sum of
slack variables on simple stability constraints, the second part focuses on minimising
the sum of slack variables on the stable enforcement of preferable relations and the
last part cares about minimising the sum of the weights.

In order to prioritise the enforcement of the stability, as the highest value that
can be reached by the third part of the objective function is m - M, we set the values
for the constants as follows: K3 = 1, K1 = Ko = m M. It results the following mixed
integer linear program:

MILP STAB1

Variables:
wiu € {0,1}, wio =0 VieF, Vu=1.M
bu(z,y) € {0,1} V(z,y) € GUG, Yu=1..M
by (z,y) € {0,1} V(z,y) €F, Yu=1..M
s(z,y) >0 V(z,y) E6GUG
s'(z,y) 20 V(z,y) €3
bu(H, k) € {0,1} Vu = 1..M and some H, K C F'
s(H,K) >0 For some subsets H, K C F'
Objective function:
min @ m-M- >, s(xy) + m-Mm- > S(zy) + D) XM: Wi,
(z,y)E6US (z,y)€F ieF u=1
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Constraints:
s.t. Swii=m
ieF
Wiu 2 Wi utl VieF, Vu=1.Mm—1
M J—
bu(z,y) > 1 V(z,y) € 6US

u=1
> bulz,y) =1 V(r,y) €F
u=1

o X (X wiu)Silz,y) =1 V(z,y) € &
i€eF - u=1
> wiw - Si(x,y) + s(z,y) = bulz,y) Y(z,y) € 6,Yu=1.M
ieF

o X (X wiw)-Si(zy) < —1 V(z,y) € &
i1€EF u=1
> wiw s Si(x,y) — s(z,y) < —bu(z,y) Y(z,y) € 6, Yu=1.M
ieF

° X ( lei,u) - (Si(z,y) = Si(y,2)) > 1 V(z,y) € F
1€ u=
> wi - (Si(z,y) = Si(y,2)) + §'(x,y) = Vu(z,y) Y(r,y) €F, Yu=1.M
ieF

Constraints (informal) on the weights allowing to model decision-maker’s preferences:

3 wie = v For some i € I
c=1
M
S wie = u and Swie < v For some i € F
c=1 c=1
M M
SMwie = > wje+1 For some (i, j) € F?
c=1 c=1
M M
o (> wie) = (> wje)+1 For some H, K C F'
1€EH c=1 JEK c=1
3 Wi — Y, Wiw + S$(H,K) = by(HK) Vu = 1..M and some H, K C F
i€EH JEK
M
> bu(H,K) =1 Vu = 1..M and some H, K C F'
u=1

4.3.3 MILP minimizing the boolean relaxed stability constraints
(STAB>)

We slightly modify the objective function defined for the previous model in order
to take into account the boolean slack variables:

(F») min : Kj - Z sp(z,y) + Ko - Z sp(z,y) + KS'ZZWW

(z,y)EGUS (z,y)€F 1€F u=1

However, we easily see that the same values may be used for ordering the sub-
objectives (which are the same as before). In consequence, we have again K3 = 1
and K1 = Kg = m - M.
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It results the following mixed integer linear program:

MILP STAB2
Variables:
wiu € {0,1}, wio=0 Vie F, Vu=1..M
bu(x,y) € {0,1} V(z,y) €EGUG, Yu=1.M
by (z,y) € {O 1} Y(z,y) €F, Vu=1..M
sp(x,y) = V(z,y) E6GUSG
5h(z,) > V(e y) € §
bu(H,K) € {0 1} Vu = 1..M and some H, K C F'
sp(H,K) > For some H, K C F
Objective functzon:
min m-M- >, sx,y) + meoM- S sy(zy) + >0 % Wi
(z,y)EGUS (z,y)€T i€ F u=1
Constraints:
s.t. S wiit=m
i€F

Wi 2 Wiutl

Vie F, Yu=1.m—1

> bu(w,y) =1 V(x,y)é@Ug
u=1
S by > 1 Vr,y) € §
u=1
z;: ( lem) Si(z,y) > 1 V(z,y) €6
S u=
(wiu - Si(@,y)) + so(z,y)-m > bu(z,y) V(z,y) € 6,Vu =1..M
i€F
(ZM:cuzu)-Si(m y) < —1 V(z,y) €6
i€ F u=1
> (wiu - Si(z,y)) — sp(z,y)-m < —bu(z,y) Y(z,y) € 6, Yu=1.M
i€F
> ( lei,u) (Si(z,y) = Si(y,x)) = 1 V(z,y) € F
1€ u=
> wiw - (Si(z,y) = Si(y,x)) + sp(z,y)-m > by(z,y) VY(z,y) €F, Yu=1.M
i€F

Constraints (informal) on the weights allowing to model decision-maker’s preferences:

M
> Wie = s
c=1

M M

S wie=u and S wie <
c=1 c=1

ZUJ c > Z wj,c+1

c=1 c=1

Z(Z Wie) > Z(Z Wj,e) +

1€H c=1 JEK c=
> Wiw— 2 Wi + sp(H,K)-m > by(H,K)
1EH JEK

M

S bu(H,K) = 1

u=1

For some ¢ € F
For some ¢ € F
For some (i, j) € F?

For some H, K C F

Vu = 1..m and some H, K C F'

Vu = 1..M and some H, K C F




CHAPTER 5

A simultaneous elicitation of
criteria weights and other
parameters

“Le probléeme actuel vient toujours de la solution précédente.”!

[Descheneaux Daniel]
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Abstract

In this chapter, we enhance the previous mathematical programs in order to recover,
in addition to the criteria weights, some other parameters, namely some unknown
discrimination thresholds in a first time, then the categories profiles of a sorting
problem.

1. “The current issue is always resulting from the previous solution.”
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Introduction

Previously, we have introduced some mathematical models assessing, from the
decision-maker’s preferential information, a compatible vector of weights that max-
imise the stability of some considered outrankings. Even so, these algorithms make
an important hypothesis concerning the fact that the discrimination thresholds are
given. If one can assume that, on some criteria, as these thresholds are implicitly
linked to the defined scale (especially when using qualitative scales with a few ad-
missible values, one could easily express a clear preference between two adjacent
values), it is hardly possible to directly ask a novice decision-maker about precise
determination of the thresholds for every criteria.

Some preliminary tests, which have been done during the development of the
weights-elicitation protocol, have confirmed this issue. When looking at the evalu-
ations of the alternatives on the criteria, a novice decision-maker is not fully aware
of his preferences on each criterion. At best he may express a strict preference when
two values are clearly distinguishable (the difference between them consequently
imposes an upper bound on the associated preference threshold value) or he may
also express an indifference when comparing two very close values.

Also, considering the sorting problem, similar remarks may be done when asking
the decision-maker about expressing the profiles of the categories. Indeed, it is a
difficult task a novice decision-maker cannot figure out with accuracy. In fact, their
construction is hardly understandable for such a decision-maker, they have to be
constructed so as only a weighted (and unknown) half of the criteria is necessary
to consider an alternative globally at least as good as the profile (i.e. to sort the
alternative in this category or in a higher one).

First, we then extend our mathematical models to recover, from a decision-
maker’s set of preferences on pairs of alternatives, the criteria weights and the dis-
crimination indifference and preference thresholds of an outranking method, taking
into account the stable constraints, as defined in chapter 3. Then, we show how to
modify the new model in order to take into account the elicitation of the profiles of
a set of predefined categories.

For these studies, we are still considering that the veto thresholds are given.
Indeed, their integration in the defined mathematical models may highly increase
the complexity and the computation time, whereas they are, most of the time,
unnecessary. This hypothesis is easily conceivable in an elicitation protocol: if the
difference on a criterion is consequent enough to invalidate the overall outranking
relation, one can simply imagine the decision-maker capable of highlighting such
situation, when comparing some pairs of alternatives. Furthermore, we shall present
in Chapter 7 a step of the protocol allowing to determine the veto thresholds, even
by questioning the decision-maker, or when solving conflicts that might appear.
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5.1 Simultaneous elicitation of weights and discrimina-
tion thresholds

We are now taking an interest in extending the model by considering the dis-
crimination thresholds as variables. Adding such variables induces that the double
threshold order S; becomes also variable and the constraints where it appears are
no longer linear. We propose here a decomposition of these variables, adapted
from [MMBOS|.

First and foremost, as the consideration of the stability may appear non natural
and restricting, we justify it with quite similar argument than previously: Without
taking into account this notion, either we elicit a unique vector of weights, or we
compute all possible compatible scenarios with the expressed information. In the
first case, the choice of one particular vector is, most of the time, not clearly jus-
tified and the discussion with the decision-maker is uneasy, due to the difficulty in
measuring the impact of some possible modifications (we still have the possibility
in modifying one value after another, but their dependencies are difficult to ap-
prehend). In the second case, in order to reach a practical recommendation, it is
necessary to have a long and not always easy questioning on a fair number of couples
of alternatives which becomes more difficult because of the simultaneous elicitation
of the discrimination thresholds.

Once again, taking into account the notion of stability in the elicitation of one
specific vector of weights, simultaneously with some criteria discrimination thresh-
olds, helps easing the discussion with the decision-maker (as the predominant dis-
cussion on the preorder is much easier). However, we cannot ignore that maximising
the number of stable outrankings will have a not inconsiderable impact on the way
the discrimination thresholds are fixed. We shall discuss in chapter 6 on these
interactions, try to understand and measure it.

Finally, notice that this algorithm can be used when considering the sorting
problem, with given profiles but some discrimination thresholds are unknown.

5.1.1 Modeling of the constraints on the thresholds

First, let us assume the fact that the preference direction associated with every
criteria is always the maximisation of the value (the bigger a value is, the better
it is considered). If the values on one criterion have to be minimised (for instance,
in a cost criterion), we simply consider, when solving the mathematical model, the
opposite values 2.

We have to differentiate three kinds of thresholds we want to deal with:

— Constant thresholds, such that the importance of the difference between two
alternatives is constant along the whole scale of the associated criterion;

2. The evaluations are still presented to the decision-maker on their original scales
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— Proportional thresholds, such that the importance of the difference is growing
proportionally with the evaluations of the considered alternatives;

— General thresholds, such that the importance of the difference is any increasing
function of the considered alternatives.

The kind of threshold has to be known for every criteria in F', in order to create
the correct constraints in the mathematical model. As it is hardly possible to directly
ask the decision-maker about this information, they should be given by an analyst,
or elicited via a questioning of the decision-maker we shall present in chapter 7.

Modeling of the double threshold order

Let us remember that x; and y; represents the respective evaluation of alterna-
tives  and y on criterion ¢. Also, let us define F,., Fy, and Fy as the decomposition
of the family of criteria F', respectively in criteria with constant, proportional and
general discrimination thresho